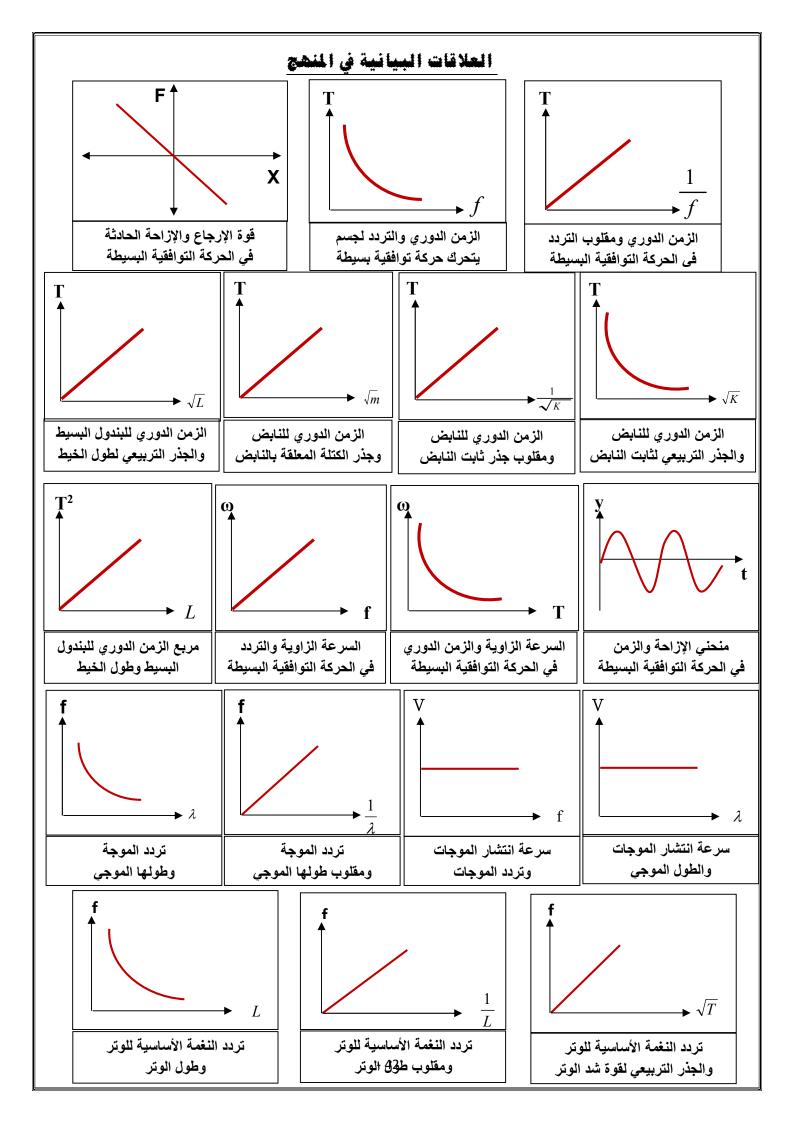
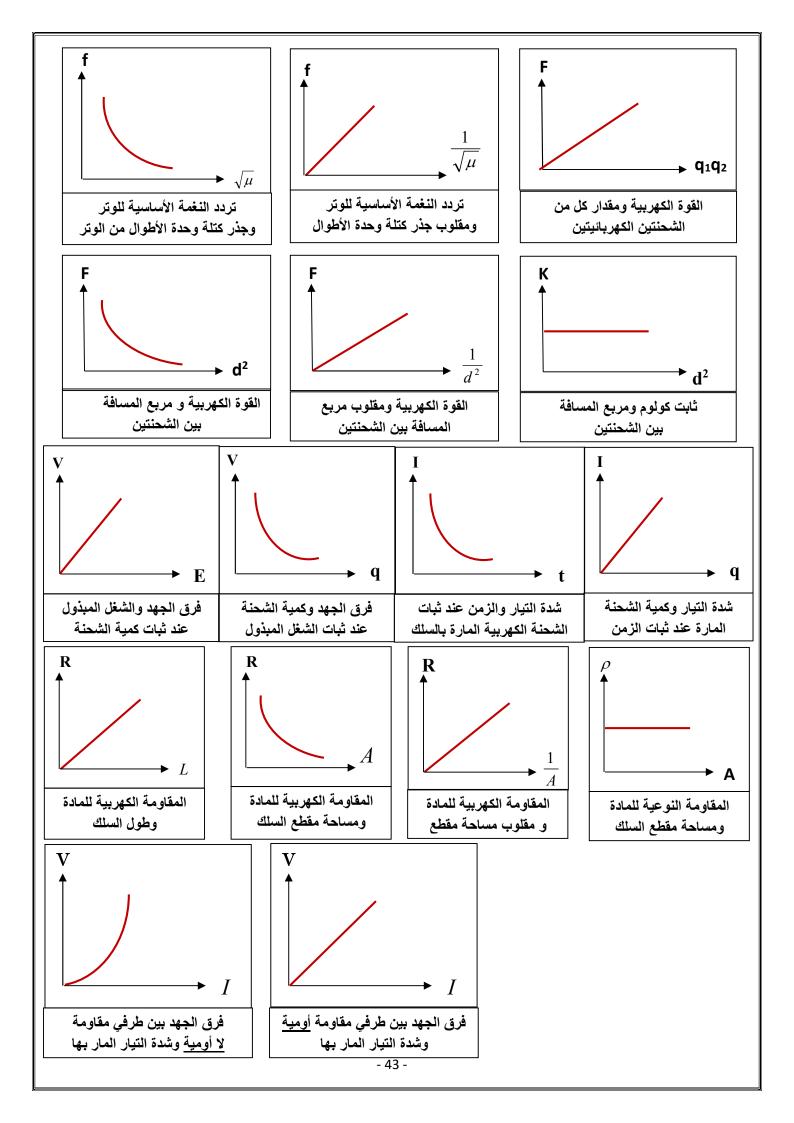
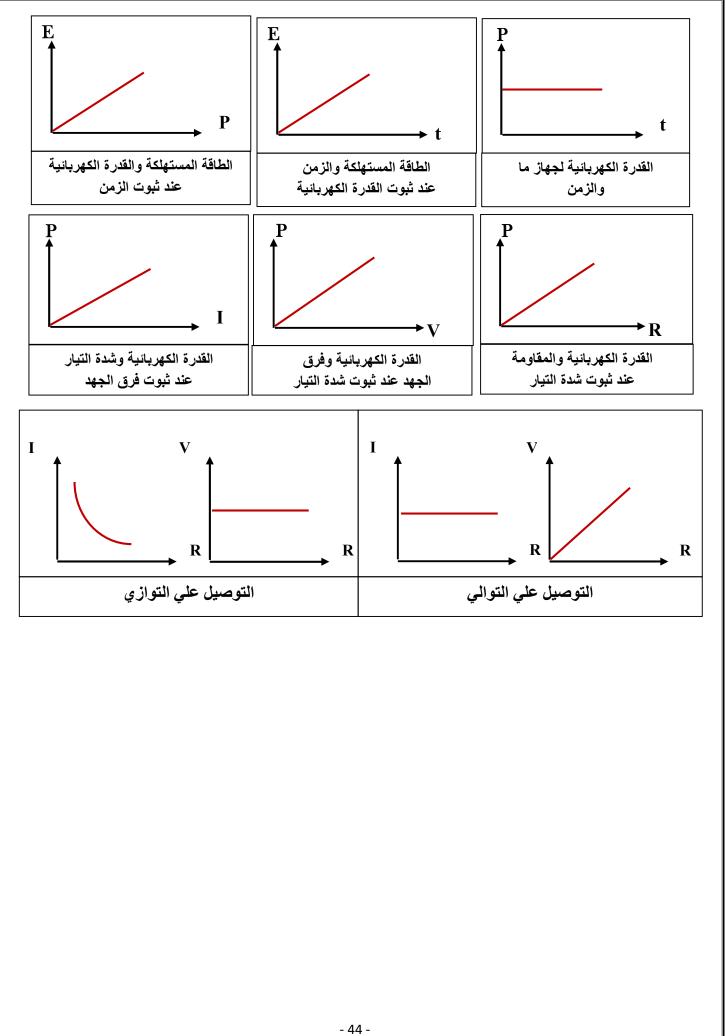
العلاقات الرياضية في المنهج

الشويلات			
$gm \div 1000 \rightarrow Kg$	الكتلة	$cm \div 100 \rightarrow m$	الطو ل
gm · 1000 / Hg	,	$mm \div 1000 \rightarrow m$,,
$\min \times 60 \rightarrow S$	**11	$cm^2 \div 100^2 \to m^2$	المساحة
$hr \times 3600 \rightarrow S$	الزمن	$mm^2 \div 1000^2 \rightarrow m^2$	المسادة
$mA \times 10^{-3} \rightarrow A$	شدة التيار	$\mu C \times 10^{-6} \to C$	الشحنة الكهربائية

قوانين المركة التوافقية البسيطة		
$f = \frac{N}{t}$	التردد في الحركة التوافقية البسيطة	
$T = \frac{t}{N}$	الزمن الدوري في الحركة التوافقية البسيطة	
$f = \frac{1}{T}$	العلاقة بين التردد والزمن الدوري	
$\omega = \frac{2\pi}{T} = 2\pi f$	السرعة الزاوية في الحركة التوافقية البسيطة	
$y = A\sin(\omega t)$	الإزاحة في الحركة التوافقية البسيطة	
$T = 2 \pi \sqrt{\frac{m}{K}}$	الزمن الدوري في النابض	
$T = 2\pi \sqrt{\frac{L}{g}}$	الزمن الدوري في البندول البسيط	
$F = -mg\sin\theta$	قوة الإرجاع للبندول البسيط	


قوانين المركة الموجية		
$v = \lambda \times f$	سرعة انتشار الموجات	
$\lambda = \frac{d}{N}$	الطول الموجي	


قوانين الأوتار المستعرضة		
$V = \sqrt{\frac{T}{\mu}}$	سرعة الموجات في الوتر المهتز	
$f = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$	تردد النغمة الصادرة من الوتر المهتز	
T = mg	قوة الشد بدلالة الكتلة المعلقة في الوتر	
$\mu = \frac{m}{L}$	كتلة وحدة الأطوال بدلالة كتلة الوتر	


التوافقية الثانية	التوافقية الأولي	النغمة الأساسية	نوع النغمة
			الشكل
n = 3	n = 2	n = 1	عدد القطاعات
$L = \frac{3}{2}\lambda$	$L = \frac{2}{2}\lambda = 1\lambda$	$L = \frac{1}{2}\lambda$	$\mathbf{L}=rac{n}{2}\mathbf{\lambda}$ طول الوتر
$\mathbf{f}_2 = 3 \mathbf{f}_0$	$\mathbf{f}_1 = 2 \mathbf{f}_0$	$\mathbf{f_0}$	التردد (f)

قوانين الكهربائية الساكنة والتيار المستمر		
$F = \frac{K q_1 q_2}{d^2}$	القوة الكهربائية المتبادلة بين شحنتين (قانون كولوم)	
$N = \frac{q}{e}$	عدد الالكترونات	
$I = \frac{q}{t}$	شدة التيار	
$V = \frac{E}{q}$	فرق الجهد	
$R = \frac{\rho L}{A}$	المقاومة الكهربائية	
$R = \frac{V}{I}$	المقاومة الكهربائية (قانون أوم)	
$\rho = \frac{RA}{L}$	المقاومة النوعية	
$P = \frac{E}{t}$ $P = I^{2} R$ $P = I V$	القدرة الكهربائية	
$E = P \times t$ $E = I^{2}R \times t$ $E = IV \times t$	الطاقة الكهربائية	

قوانين التوصيل على التوالي والتوازي		
دوائر التوازي	دوائر التوالي	وجه المقارنة
$I_{eq} = I_1 + I_2 + I_3$	$I_{eq} = I_1 = I_2 = I_3$	1- شدة التيار الكلي في الدائرة
$V_{eq} = V_1 = V_2 = V_3$	$V_{eq} = V_1 + V_2 + V_3$	2- الجهد الكلي للمصدر
$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	$R_{eq} = R_1 + R_2 + R_3$	3- قيمة المقاومة المكافئة

