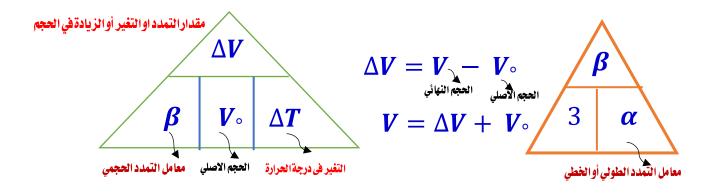

علل ١٤ يأتي:


ماذا يحدث:	
لسعة المكثف إذا تم استبدال الهواء بين لوحي المكثف بمادة عازلة .	-1
الحدث: تزداد .	
التفسير : لأن ثابت العزل الكهربائي النسبي يزداد وسعة المكثف تتناسب طردياً مع ثابت العزل الكهربائي النسبي.	
لسعة المكثف إذا تم استبدال الهواء بين لوحي المكثف بمادة عازلة ثابت عزلها الكهربائي =4	-2
الحدث: تزداد السعة الى أربعة أمثال.	
التفسير: لأن سعة المكثف تتناسب طردياً مع ثابت العزل الكهربائي النسبي .	
لسعة المكثف اذا زادت المساحة المستركة بين لوحيه الى المثليّ .	-3
الحدث: تزداد السعة الى المثلين .	
التفسير : لأن سعة المكثف تتناسب طردياً مع المساحة المشتركة بين اللوحين .	
لسعة المكثف اذا زادت المسافة بين لوحيه.	-4
الحدث: تقل السعة.	
التفسير : لأن سعة المكثف تتناسب عكسياً مع المسافة بين اللوحين .	
لشدة المجال الكهربائي اذا أصبح بعد النقطة عن الشحنة (2d) عند ثبات الشحنة الكهربائية .	-5
الحدث: تقل شدة المجال الى الربع .	
التفسير: لأن شدة المجال الكهربائي تتناسب عكسياً مع مربع بعُد النقطة عن الشحنة.	
لشدة المجال الكهربائي اذا زيدت المسافة بين لوحي المكثف الى (2d) عند ثبات فرق الجهد .	-6
الحدث: تقل الى النصف .	
التفسير: لان شدة المجال الكهربائي تتناسب عكسياً مع البعُد بين اللوحين.	
للحرارة الكامنة لانصهار مادة عند زيادة كتلتها .	-7
الحدث: لا تتغير.	
التفسير: لأنها تتوقف على نوع المادة فقط.	
للحرارة الكامنة لتصعيد مادة عند زيادة كتلتها .	-8
الحدث: لا تتغير.	
التفسير: لأنها تتوقف على نوع المادة فقط.	

أهم المقارنات

عندما تكون الشحنة المبببة للمجال سالبة	عندما تكون الشحنة المببة للمجال موجبة	وجه المقارنة
باتجاه الشحنة	مبتعداً عن الشحنة	اتجاه المجال الكهربائي
المجال الكهربائي غير المنتظم	الجال الكهربائي المنتظم	وجه المقارنة
المجال الكهربائي متغير الشدة أو الاتجاه أو كلاهما	المجال الكهربائي ثابت الشدة والاتجاه عند جميع النقاط	التعريف
المجال حول شحنة كهربائية مفردة أو بين شحنتين متجاورتين .	المجال بين لوحي مكثف مستو مشحون	مثال
خطوط منحنیة – غیر متوازیة – وعلی أبعاد غیر متساویة من بعضها	خطوط مستقيمة – متوازية – وعلى أبعاد متساوية من بعضها	خصائصه (يتكون من)
$\vec{\mathbf{E}} = \frac{k.q}{d^2}$	$\vec{\mathbf{E}} = \frac{\mathbf{V}}{\mathbf{d}}$	العلاقة الرياضية

اعداد أ/ أيمن السمان

شدة المجال الكهربائي	$\overrightarrow{\pmb{E}} = rac{\overrightarrow{\pmb{F}}}{\pmb{q}}$
شدة المجال الكهربائي عند نقطة يقاس بـN/C	$\overrightarrow{E} = \frac{K.q}{d^2}$
شدة المجال الكهربائي المنتظم (بين لوحي مكثف)	$\overrightarrow{E} = \frac{V}{d}$
السعة الكهربائية للمكثف تقاس بـ F فاراد	$C = \frac{\varepsilon_{\circ}.\varepsilon_{r}.A}{d}$
السعة الكهربائية للمكثف	$C = \frac{q}{V}$
السعة الكهربائية للمكثف	$C = \varepsilon_r. C_\circ$
كمية الحرارة اللازمة للانصهار	$Q=m.L_f$
كمية الحرارة اللازمة للتصعيد (التبخير)	$Q=m.L_V$

وحدة القياس الدولية	الرمز	الكمية الفيزيائية
J/kg	L_f	الحرارة الكامنة للانصبهار
J/kg	L_V	الحرارة الكامنة للتصعيد
N/C j V/m	E	شدة المجال الكهربائي
کولوم (C)	q	الشحنة الكهربائية
فولت (v)	V	فرق الجهد الكهربائي

حل المسألة التالية :

(0)c عند درجة من الجليد كتلتها (0.01)kg ودرجة حرارتها (-30)c ودرجة حرارتها (0.01)kg ودرجة من الجليد كتلتها الحسب كمية من الجليد كتلتها $c_{ice}=2090~J/Kgk$ ودرجة من الجليد كتلتها الحسب والمحتان $c_{ice}=2090~J/Kgk$

1- كمية الطاقة الحرارية الكلية التي اكتسبها الجليد .

الحل:
$$Q_1 \xrightarrow{Q_1} \frac{Q_2}{2}$$
 جليد $Q_2 \xrightarrow{Q_2} \frac{Q_2}{2}$ جليد $Q_3 \xrightarrow{Q_3} \frac{Q_4}{2}$ عند $Q_4 = cm\Delta T = 2090 \times 0.01 \times (0 - (-30) = 627 (J))$ $Q_5 = mL_5 = 0.01 \times 3.33 \times 10^5 = 3330 (J)$ $Q_5 = Q_1 + Q_2 = 627 + 3330 = 3957 (J)$

حل المسألة التالية:

احسب كمية الطاقة الحرارية اللازمة لتحويل g (50) من الجليد عند درجة C (0) الى ماء درجة حرارته C (70)

$$L_f = 3.33 imes 10^5 \ J/Kg$$
 $c_{water} = 4190 \ J/Kgk$ علماً بأن $Q_1 \ Q_2 \ Q_1 \ Q_2 \ Q_3 \ Q_2 \ Q_3 \ Q$

حل المسألة التالية:

(200) $^{\circ}$ مكثف هوائي مستو المساحة المشتركة بين لوحية $^{\circ}$ $^{\circ}$ $^{\circ}$ والمسافة بينهما $^{\circ}$ اكتسب جهداً مقداره $^{\circ}$

$$arepsilon_{\circ}=8.85 imes10^{-12}F/m$$
 فاذا كان

1- سعة المكثف

$$C = \frac{\varepsilon_{0} \times \varepsilon_{r} \times A}{d} = \frac{8.85 \times 10^{-12} \times 1 \times 0.01}{1 \times 10^{-3}} = 8.85 \times 10^{-11} F$$

$$q = CV = 8.85 imes 10^{-11} imes 200 = 1.77 imes 10^{-8} C$$
 . محنة المكثف .

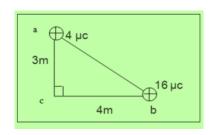
$$E = \frac{V}{d} = \frac{200}{1 \times 10^{-3}} = 200000 \ V/m$$
 : شدة المجال بين لوحى المكثف

حل المسألة التالية : اعداد أ/ أيمن السمان

مكثف كهربائي مصنوع من لوحين معدنيين مساحتهما المشتركة cm^2 (20) والمسافة بين لوحيهما م

: احسب
$$arepsilon_{\circ}=8.85 imes10^{-12}F/m$$
 علماً بان

1السعة الكهربائية للمكثف اذا كان الهواء هو الوسط العازل بين اللوحين -1


$$C_{\circ} = \frac{\varepsilon_{\circ \times} \varepsilon_{r} \times A}{d} = \frac{8.85 \times 10^{-12} \times 1 \times 2 \times 10^{-3}}{0.001} = 1.77 \times 10^{-11} F$$

 $\mathbf{\epsilon_r} = \mathbf{5.4}$ سعة المكثف اذا مليء الحيز بين اللوحين بالميكا -2

$$C = \frac{\varepsilon_{0} \times \varepsilon_{r} \times A}{d} = \frac{8.85 \times 10^{-12} \times 5.4 \times 2 \times 10^{-3}}{0.001} = 9.558 \times 10^{-11} F$$

$$C = \mathbf{\epsilon_r}$$
. $C_{\circ} = \mathbf{5}$. $\mathbf{4} \times 1.77 \times 10^{-11} = 9.558 \times 10^{-11} F$ حل اخر

حل المسألة التالية : من الشكل المقابل احسب : 1-مقدار شدة المجال الكهربائي عند النقطة C

$$E_1 = \frac{K \cdot q_1}{d^2} = \frac{9 \times 10^9 \times 4 \times 10^{-6}}{3^2} = 4000N/C$$

$$E_2 = \frac{K \cdot q_2}{d^2} = \frac{9 \times 10^9 \times 16 \times 10^{-6}}{4^2} = 9000N/C$$

$$E_r = \sqrt{E_1^2 + E_2^2} = \sqrt{4000^2 + 9000^2} = 9848.85N/C$$

C احسب القوة المؤثرة على مقدارها $(-2\mu C)$ موضوعة عند النقطة -2

$$F = E_r$$
. $q = 9848.85 \times 2 \times 10^{-6} = 0.019$ N

حل المسألة التالية:

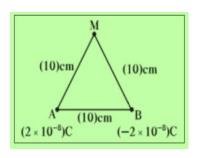
(400)
$$\mu$$
 .c (100) μ .c (100) μ .c $E_1 = \frac{K.q_1}{d^2} = \frac{9 \times 10^9 \times 100 \times 10^{-6}}{0.05^2} = 360 \times 10^6 N/C$ شرقاً $E_2 = \frac{K.q_2}{d^2} = \frac{9 \times 10^9 \times 400 \times 10^{-6}}{0.05^2} = 1.44 \times \frac{10^9 N}{C}$ غرباً $E_r = E_2 - E_1 = 1.44 \times 10^9 - 360 \times 10^6 = 1.08 \times \frac{10^9 N}{C}$ شرقاً شرقاً $E_r = E_2 - E_1 = 1.44 \times 10^9 - 360 \times 10^6 = 1.08 \times \frac{10^9 N}{C}$

. شرقاً E_2 محصلة المجال : باتجاه المجال الأكبر E_2 شرقاً -2

حل المسألة التالية:

اذا كانت المسافة بين لوحى مكثف هوائي مشحون m (0.02) وشدة المجال الكهربائي بين لوحيه v/m (103) احسب: -1 فرق الجهد بين لوحى المكثف .

$$V = E. d = 10^3 \times 0.02 = 20v$$


2- القوة المؤثرة على الكترون وضع في منتصف المسافة بين لوحى المكثف عليه .

$$F = E. q = 10^3 \times 1.6 \times 10^{-19} = 1.6 \times 10^{-16} N$$

3-حدد عناصر متجه المجال الكهربائي.

الاتجاه : خطوط متعامدة تخرج من اللوح الموجب وتتجه الى اللوح السالب .

 $E=(10^3)v/m$: المقدار

 $q_2 = 3x10^{-8} c$

 $q_1 = 2x10^{-8} c$

حل المسألة التالية: من الشكل المقابل احسب:

M مقدار شدة المجال الكهربائي الناتج عن الشحنتين عند النقطة -1

$$E_1 = \frac{K \cdot q_1}{d^2} = \frac{9 \times 10^9 \times 2 \times 10^{-8}}{0.1^2} = 18000 N/C$$

$$E_2 = \frac{K.q_2}{d^2} = \frac{9 \times 10^9 \times 2 \times 10^{-8}}{0.1^2} = 18000N/C$$

$$E_r = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos(\theta)} =$$

$$\sqrt{18000^2 + 18000^2 + 2 \times 18000 \times 18000\cos(120)} = 18000N/C$$

2- اتجاه محصلة شدة المجال الكهربائي.

$$\alpha = sin^{-1} \left(\frac{E_2 sin(\theta)}{E_r} = sin^{-1} \left(\frac{18000 sin(120)}{18000} = 60^{\circ} \right) \right)$$

حل المسألة التالية: من الشكل المقابل احسب:

1- مقدار شدة المجال الكهربائي عند النقطة M

$$E_1 = rac{K.q_1}{d^2} = rac{9 imes 10^9 imes 2 imes 10^{-8}}{0.1^2} = 18000 N/C$$
شرقاً

$$E_2 = \frac{K.q_2}{d^2} = \frac{9 \times 10^9 \times 3 \times 10^{-8}}{0.1^2} = 27000 N/C$$
 شرقا

$$E_r = E_2 + E_1 = 18000 + 27000 = 45000N/C$$

2- اتجاه محصلة المجال: نفس اتجاه المجالين نحو الشرق.

حل المسألة التالية:

سخنت كرة من النحاس حجمها
$$m^3$$
 (25) من الدرجة (25) حتى الدرجة $(70)^{\circ}$ 0 إذا علمت أن معامل التمدد الخطى لمادة النحاس $c^{\circ}(17 \times 10^{-6})c^{-1}$ احسب :

1- معامل التمدد الحجمي لمادة النحاس

$$\beta = 3 \alpha = 3 \times 17 \times 10^{-6} = 5.1 \times 10^{-5}$$
 $1/c^{\circ}$

(70)c° حجم الكرة عند درجة حرارة -2

$$\Delta V = \beta. V_{\circ}. \Delta T = 5.1 \times 10^{-5} \times 30 \times 10^{-6} \times (70 - 25) = 6.885 \times 10^{-8} \quad m^{3}$$
$$V = \Delta V + V_{\circ} \Longrightarrow V = 6.885 \times 10^{-8} + 30 \times 10^{-6} \Longrightarrow V = 3.0068 \times 10^{-5} m^{3}$$

حل المسائل التالية:

مكعب نحاسي حجمه $^{\circ}$ ($^{\circ}$) عند درجة حرارة $^{\circ}$ ($^{\circ}$) سُخّن إلى درجة حرارة $^{\circ}$ ($^{\circ}$) فزاد حجمه بمقدار $^{\circ}$ ($^{\circ}$) . احسب :

1- معامل التمدد الحجمي للنحاس.

$$\beta = \frac{\Delta V}{V \cdot \Delta T} = \frac{0.51}{100 \times (130 - 30)} = 5.1 \times 10^{-5}$$
 1/c°

2- الحجم النهائي للمكعب.

$$V = \Delta V + V_{\circ} \implies V = 0.51 + 100 \implies V = 100.51 \ cm^{3}$$

اعداد أ/ أيمن السمان