

الاختبار التقويمي الثاني

للصيف العلمي الفصل الدراسي الثاني 2024 / 2023

بنود الاختبار	توزيع درجات الاختبار		درجة الاختبار	مدة الاختبار	موعد الاختبار
				The second second	
(9-2)	مقال	موضوعي	٦درجات	ه۲ دقیقة	الأسبوع
(9-3)					Р
(9-4)	٤	Γ			
(9-8)					

إشراف الهوجمين الفنيين : أ.دلال العتيبي & أ.جوزة العتيبي نموذج للاختبار االتقويميي الثاني العام الدراسي: 2023 - 2024 الفصل الدراسي الثاني 8 $\frac{(1-\cos\theta)(1+\cos\theta)}{\cos^2\theta}=\tan^2\theta$

الصف 11 علمي

وزارة التربية الإدارة العامة للتعليم الخاص التوجيه الفني للرياضيات

أولا الأسئلة المقالية:

1 اثبت صحة المتطابقة

 $4sin \ \theta + 1 = sin \ \theta$; $0 \le \theta < 2\pi$: أوجد مجموعة حل المعادلة

ثانيا الأسئلة الموضوعية:

	$\sin\frac{\pi}{3}\cos\frac{\pi}{7} - \sin\frac{\pi}{7}\cos\frac{\pi}{3} =$							
a	$\cos \frac{4\pi}{21}$	b	$sin\frac{4\pi}{21}$	С	$cos \frac{10 \pi}{21}$	d	$sin \frac{10 \pi}{21}$	1
	$\cos \frac{\pi}{8} =$							
a	$\frac{2+\sqrt{2}}{2}$	b	$\sqrt{2} - 1$	С	$\frac{\sqrt{2+\sqrt{2}}}{2}$	d	$\frac{\sqrt{2-\sqrt{2}}}{2}$	2

الإدارة العامة للتعليم الخاص الفصل الدراسي الثاني الثاني الصف 11 علمي التوجيه الفنى للرياضيات أولا الأسئلة المقالية: 8 $\frac{(1-\cos\theta)(1+\cos\theta)}{\cos^2\theta} = \tan^2\theta$ 1 اثبت صحة المتطابقة الطرف الايسر $\frac{(1-\cos\theta)(1+\cos\theta)}{\cos^2\theta} = \frac{1-\cos^2\theta}{\cos^2\theta}$ الحل $=\frac{\sin^2\theta}{\cos^2\theta}=(\frac{\sin\theta}{\cos\theta})^2=\tan^2\theta$ الطرف الايمن $4\sin\theta - \sin\theta = -1$ $3\sin\theta = -1 \rightarrow \sin\theta = \frac{-1}{2}$ $\sin \alpha = |\sin \theta| = \frac{1}{3}$ بفرض أن $\alpha = |\sin \theta| = \frac{1}{3}$ بفرض أن عند الإناد للزاوية الاسناد للزاوية الإسناد للزاوية الرسناد للزاوية الإسناد الإسناد للزاوية الإسناد الزاوية الإسناد الإسناد الإسناد الإسناد الإسناد الإسناد الإسناد الإ $\therefore \alpha = \sin^{-1}\left(\frac{1}{3}\right) \approx 0.34 \, rad$ $\theta : \sin \theta < 0$ تقع في الربع الثالث أو الربع الرابع الرابع الرابع تقع في تقع في تقع في تقع نتا تقع الربع الرابع الر $au: heta = \pi + 0.34 = 3.4816$, $3.4816 \in [0, 2\pi)$ عندما heta تقع في الربع الثالث auعندما heta تقع في الربع الرابع الرابع heta=0.34=5.9432 , heta=0.34=5.94323.4816 ، 5.9432 } = حل المعادلة = { ثانيا الأسئلة الموضوعية: $\sin \frac{\pi}{3} \cos \frac{\pi}{7} - \sin \frac{\pi}{7} \cos \frac{\pi}{3} =$ 1 $sin \frac{10 \pi}{21}$ b $\sin \frac{4\pi}{21}$ $\cos \frac{4\pi}{21}$ $cos \frac{10 \pi}{21}$ d $\cos \frac{\pi}{8} =$ $b \sqrt{2} - 1 c \frac{\sqrt{2 + \sqrt{2}}}{2}$ $d \frac{\sqrt{2-\sqrt{2}}}{2}$ $a \frac{2+\sqrt{2}}{2}$

نموذج الإجابة الاختبار االتقويميي العام الدراسي: 2023 - 2024

وزارة التربية

أولاً الأسئلة المقالية:

حل المعادلة:

$$2\cos x + \sqrt{3} = 0$$

الحل:

$$2\cos x = -\sqrt{3}$$

$$\cos x = -\frac{\sqrt{3}}{2}$$

 χ نفرض أن α هي زاوية الاسناد للزاوية

$$cos\alpha = |\cos x| = \left| -\frac{\sqrt{3}}{2} \right| = \frac{\sqrt{3}}{2}$$

$$\alpha = \frac{\pi}{6}$$

 $\cos x < 0$

تقع في الربع الثاني أو الثالث x:

$$x = \left(\pi - \frac{\pi}{6}\right) + 2k\pi = \frac{5\pi}{6} + 2k\pi$$
$$x = \left(\pi + \frac{\pi}{6}\right) + 2k\pi = \frac{7\pi}{6} + 2k\pi$$

حل المعادلة:

$$x = \frac{5\pi}{6} + 2k\pi$$
 if $x = \frac{7\pi}{6} + 2k\pi$

اذا كان :

$$sin\theta = \frac{-1}{\sqrt{2}}$$
 , $\pi < \theta < \frac{3\pi}{2}$

. $\sin 2\theta$ فأوجد

الحل:

$$cos^{2}\theta + sin^{2}\theta = 1$$

$$cos^{2}\theta = 1 - sin^{2}\theta$$

$$= 1 - (\frac{-1}{\sqrt{2}})^{2}$$

$$= \frac{1}{2}$$

$$: \pi < \theta < \frac{3\pi}{2}$$

$$cos\theta = \frac{-1}{\sqrt{2}}$$

$$sin 2\theta = 2sin\theta cos\theta$$

$$sin 2\theta = 2 \times \frac{-1}{\sqrt{2}} \times \frac{-1}{\sqrt{2}} = 1$$

ثانياً الأسئلة الموضوعية:

а	b	تمثل متطابقة $3sinx = \sin(3x)$	1
a	b	$tan^2 \frac{\pi}{12} + tan^2 \frac{5\pi}{12} = 14$	2

نموذج للاختبار االتقويميي الثاني العام الدراسي: 2023 - 2024 الفصل الدراسي الثاني

الصف 11 علمي

وزارة التربية الإدارة العامة للتعليم الخاص التوجيه الفني للرياضيات

8

 $2\cos x + \sqrt{3} = 0$ أوجد مجموعة حل المعادلة

أولا الأسئلة المقالية:

2

 $\sin \alpha = \frac{4}{5}$; $0 < \alpha < \frac{\pi}{2}$

إذا كانت:

 $\cos \beta = \frac{-12}{13}$; $\pi < \beta < \frac{3\pi}{2}$

 $sin(\alpha + \beta)$

أ*و*جد*ي*

ثانيا :الأسئلة الموضوعية:

المقدار $(\cos x + \sin x)^2 - (\cos x - \sin x)^2$ متطابق مع المقدار								
а	$-4\sin x \cos x$	b	2	С	-2	d	4sin x cox	1
cos	$\cos 94^{\circ} \cos 18^{\circ} + \sin 94^{\circ} \sin 18^{\circ} =$							
а	cos 112º	b	cos 76º	С	sin 112 ⁰	d	sin 76 ⁰	

وزارة التربية نموذج الإجابة الاختبار االتقويميي العام الدراسي: 2023 - 2024 الإدارة العامة للتعليم الخاص الثاني الصف 11 علمي الفصل الدراسي الثاني التوجيه الفنى للر باضبات أولا الأسئلة المقالية: 8 1 أوجد مجموعة حل المعادلة $2\cos x + \sqrt{3} = 0$ $2\cos x + \sqrt{3} = 0 \implies \cos x = \frac{-\sqrt{3}}{2}$ الحل $\alpha = \frac{\pi}{6} \iff \cos \alpha = |\cos x| = \frac{\sqrt{3}}{2}$ نفرض أن α هي زاوية الاسناد للزاوية α في الربع الثاني أو الربع الثالث $x : \cos x < 0$ $\therefore x = \frac{5\pi}{6} + 2k\pi \iff x = \left(\pi - \frac{\pi}{6}\right) + 2k\pi$, $k \in Z$ عندما x تقع في الربع الثاني: $\therefore x = \frac{7\pi}{6} + 2k\pi \iff x = \left(\pi + \frac{\pi}{6}\right) + 2k\pi$, $k \in Z$ عندماx تقع في الربع الثالث: $\{\frac{5\pi}{6}+2k\pi \quad , \quad \frac{7\pi}{6}+2k\pi \}$... مجموعة حل المعادلة هي : $\sin \alpha = \frac{4}{5}$; $0 < \alpha < \frac{\pi}{2}$: إذا كانت <u></u> $\cos \beta = \frac{-12}{12}$; $\pi < \beta < \frac{3\pi}{2}$ $sin(\alpha + \beta)$ أوجدي $\sin^2 \alpha + \cos^2 \alpha = 1 \qquad \Rightarrow \qquad (\frac{4}{5})^2 + \cos^2 \alpha = 1$ الحل: $\therefore \cos^2 \alpha = \frac{9}{25} \implies \cos \alpha = \pm \frac{3}{5}$ $\therefore 0 < \alpha < \frac{\pi}{2}$, $\cos \alpha > 0$ $\therefore \cos \alpha = \frac{3}{5}$ $\sin^2 \beta + \cos^2 \beta = 1 \qquad \Rightarrow \qquad (\frac{-12}{12})^2 + \sin^2 \beta = 1$ $\therefore \sin^2 \beta = \frac{25}{160} \implies \sin \beta = \pm \frac{5}{13}$ $\pi < \beta < \frac{3\pi}{2} \quad , \sin \beta < 0 \quad \therefore \sin \beta = \frac{-5}{13}$ $\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$ $=\left(\frac{4}{5}\right)\left(\frac{-12}{13}\right)+\left(\frac{3}{5}\right)\left(\frac{-5}{13}\right)=-\frac{63}{65}$

نموذج الإجابة الاختبار االتقويميي العام الدراسي: 2023 - 2024 الفصل الدراسي الثاني

الثاني الصف 11 علمي

وزارة التربية الإدارة العامة للتعليم الخاص التوجيه الفني للرياضيات

2

ثانيا :الأسئلة الموضوعية:

	المقدار $(\cos x + \sin x)^2 - (\cos x - \sin x)^2$ المقدار							
а	−4sin x cox	b	2	С	-2	d	4sin x cox	1
$\cos 94^{\circ} \cos 18^{\circ} + \sin 94^{\circ} \sin 18^{\circ} =$								2
а	cos 112 ⁰	b	cos 76º	С	sin 112 ⁰	d	sin 76 ⁰	۷

أولاً الأسئلة المقالية:

حل المعادلة:

$$\sqrt{2}\cos x = 1$$

الحل:

$$\cos x = \frac{1}{\sqrt{2}}$$

 χ نفرض أن α هي زاوية الاسناد للزاوية

$$cos\alpha = |cosx| = \left|\frac{1}{\sqrt{2}}\right| = \frac{1}{\sqrt{2}}$$

$$\alpha = \frac{\pi}{4}$$

 $: \cos x > 0$

$$x$$
 تقع في الربع الأول أو الرابع x : $x = \left(2\pi - \frac{\pi}{4}\right) + 2k\pi = \frac{7\pi}{4} + 2k\pi$ $x = \left(\frac{\pi}{4}\right) + 2k\pi$

حل المعادلة:

$$x = \left(\frac{\pi}{4}\right) + 2k\pi \quad \text{if} \quad x = \frac{7\pi}{4} + 2k\pi$$

اذا كان:

$$cos\theta = \frac{3}{5}$$
 , $0 < \theta < \frac{\pi}{2}$. $sin 2\theta$ فأوجد

الحل:

$$cos^{2}\theta + sin^{2}\theta = 1$$

$$sin^{2}\theta = 1 - cos^{2}\theta$$

$$= 1 - (\frac{3}{5})^{2}$$

$$= \frac{16}{25}$$

$$: 0 < \theta < \frac{\pi}{2}$$

$$sin\theta = \frac{4}{5}$$

$$sin 2\theta = 2sin\theta cos\theta$$

$$sin 2\theta = 2 \times \frac{4}{5} \times \frac{3}{5} = \frac{24}{25}$$

4

ثانياً الأسئلة الموضوعية:

а	b	. تمثل متطابقة $\cos 2x = sin^2x - cos^2x$	1
a	b	$\sin 75 = \frac{\sqrt{6} + \sqrt{2}}{4}$	2

العام الدراسي: 2024-2023 الفصل الدراسي الثاني

نموذج للاختبار التحصيلي الثاني الصف: الحادي عشر علمي وزارة التربية الإدارة العامة للتعليم الخاص التوجية الفني للرياضيات

8

أولاً الأسئلة المقالية:

حل المعادلة:

$$2\cos x + \sqrt{3} = 0$$

لحل :

 $\sin\theta=\frac{-1}{\sqrt{2}}$, $\pi<\theta<\frac{3\pi}{2}$

. $\sin 2\theta$ فأوجد

الحل:

2

4

ثانياً الأسئلة الموضوعية:

а	b	تمثل متطابقة $3sinx = sin(3x)$	1
а	b	$tan^2 \frac{\pi}{12} + tan^2 \frac{5\pi}{12} = 14$	2

8

اذا كان:

$$\cos\theta = \frac{3}{5} \quad , \qquad 0 < \theta < \frac{\pi}{2}$$

. $\sin 2\theta$ فأوجد

الحل:

أولاً الأسئلة المقالية:

حل المعادلة:

$$\sqrt{2}\cos x = 1$$

الحل:

2

4

ثانياً الأسئلة الموضوعية:

а	b	. تمثل متطابقة $\cos 2x = \sin^2 x - \cos^2 x$	1
а	b	$\sin 75 = \frac{\sqrt{6} + \sqrt{2}}{4}$	2