Potassium fluoride salt KF dissociates in solution as
يتغكك ملح فلوريد البوتاسيومKF في المحلول كما في المعادلة :
in the equation:

$$
\mathbf{K F}_{(\mathrm{s})} \rightarrow \mathbf{K}_{(\mathrm{aq})}^{+}+\mathbf{F}_{(\mathrm{aq})}^{-}
$$

Which of the following is correct in relation to salt solution?
أي مما يأتي صحيح فيما يتعقق بمحلول الملح؟

السبب Reason Ren	pH	
Because the K^{+}ions react with water, but the F^{-}ion is a strong Bronsted-Lowery base do not react with water	أقلّ من 7 Less than 7	A
Because the K^{+}ions do not react with water, but the F^{-}ion is a weak Bronsted-Lowery base react with water	أكبر من 7 More than 7	B
	تساوى 7	C

${ }^{* W}$ Why does BCl_{3} represent Lewis's acid
in the following reaction?

لماذا يُمثل
في الثناعل النتالي؟

Because it is proton acceptor from the base Cl^{-}

Because it is an electron pair donor to the base Cl^{-}

Because it is proton donor to the base Cl^{-}

$$
\begin{aligned}
& \text { Cl } \\
& \text { Cl } \\
& \mathrm{Cl}^{-} \text {لأنه مانـح للبروتون إلى الثقاعدت }
\end{aligned}
$$

Cl لأنه مصتقبّل لزوج إلكترونات سن القاعدة

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

-	The equilibrium lies far to the left because the base NH_{3} is	
	weak, and the conjugate base OH^{-}is strong	والقاهدة المرافقة

The equilibrium lies far to the right because the base NH_{3} is weak, and the conjugate base OH^{-}is strong

The equilibrium lies far to the left because the base NH_{3} is strong, and the conjugate base OH^{-}is weak

The equilibrium lies far to the right because the base NH_{3} is strong, and the conjugate base OH^{-}is weak

والقاهة المراففة - ${ }^{\text {قوبة }}$

والقاعدة المرالفقة - ${ }^{\text {ضعيفة }}$

والعقاهة المرافقة ${ }^{\text {(}}$ ضعيفة

$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Mn}$	-1.185
$\mathrm{Cr}^{3+}+\mathrm{Be}^{-} \rightleftarrows \mathrm{Cr}$	-0.744
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Fe}$	-0.447

\bigcirc	$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Mn}$
\bigcirc	$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Fe}$
\bigcirc	$\mathrm{Cr}^{3+}+3 \mathrm{e}^{-} \rightleftarrows \mathrm{Cr}$
\bigcirc	$\mathrm{Na}^{+}+\mathrm{e}^{-} \rightleftarrows \mathrm{Na}$

8.2-10.0	الفينو لفثّالين Phenolphthalein

Volume of base added (mL) حجم الثقاءدة الثنـأت (mL)The base is KOH , and phenolphthalein is the suitable indicator
القاعدة KOH، والكاشف المناسب هو الفينولفـالين

The base is $\mathrm{NH}_{4} \mathrm{OH}$, and bromocresol purple
القاعد8 $\mathrm{NH}_{4} \mathrm{OH}$ ، والكاشف المناسب هو بنفسجي برومو كريزول is the suitable indicator

The base is KOH , and bromocresol purple الناعدة KOH، والكاشف المناسب هو بنفسجي برومو كريزول is the suitable indicator

The base is $\mathrm{NH}_{4} \mathrm{OH}$, and phenolphthalein القاعذ8 $\mathrm{NH}_{4} \mathrm{OH}$ ، والكاشف المناسب هو الفينولفثالين

In cell 1 the reaction is spontaneous

In cell 2 the reaction continues until the zinc strip
في الخلية 2 يستر: الثفاعل حتى يستهلك قطب الخارصين is used up and then the reaction stops
to electrical energv

loses electrons - its oxidation number increases - it is the oxidized	2
يكتّب إلكترونات - يِل عدد تأكنده - يحثت له اختّرال Gains electrons - its oxidation number decreases - it is the reduced	3
 loses electrons - its oxidation number decreases - it is the reduced	4

\square
2

Which of the following is correct?

$$
2 \mathrm{~F}_{(\mathrm{aq})}^{-}+\mathrm{I}_{2(\mathrm{aq})} \longrightarrow \mathrm{F}_{2(\mathrm{aq})}+2 \mathrm{I}_{(\mathrm{aq})}^{-}
$$

The fluoride ions receive electrons from the iodine
تستقبل أيونات الفلوريد إلكترونات من اليود ويحدث لها اختزالand it is reduced
\qquad The fluoride ions receive electrons from the iodine and it is oxidized

The iodine receives electrons from the fluoride
 ions and it is oxidized

The iodine receives electrons from the fluoride
يستقبل اليود إلكترونات من أيونات الفلوريد ويحدث لـه اختزال ions and it is reduced

In the figure below, what do the two half-cells need so that you can convert chemical energy into electrical energy?

في الثككل أدناه، ما الذي يحتاجه نصفا الخلية حتى يُمكنك تحويل الطاقة الكيميائية إلى طاقة كهربائية؟

A salt bridge and a metal wire to provide an unbroken
قنطر5 ملحية وسلكك نحاسي معا لتوفير مسار غير منقطع
pathway for electrical charge to flow لانتقال الثشحنات الكهربائية

Only connecting the zinc and copper strips with

Hydrosulfuric acid حمض الهيدروكبريتيك *part 2*

Which of the following statements is correct regarding the following ionization equations?

أَي العبارات التالية صحيحة فيما يتعلق بمعادلات التأين التالثية ؟

$K_{\text {a }}(298$ K)	معادلة التأين Ionization equation	الدمصن Acid
8.9×10^{-8}	$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$	الهينروكبريتيك، الثتأين الأول Hydrosulfuric, first ionization
1×10^{-19}	$\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}$	Hydrosulfuric, second ionization

[^0]

2

1
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is a strong acid and completely ionizes in aqueous solution

$$
\text { الحمضن HC2 } \mathrm{H}_{3} \mathrm{O}_{2} \text { حمضن قوي ويتأئن بشُكل تام في المحلول المائي }
$$

The number of ions in HCl solution is more than \quad عدد الأيونيانت في المحلول HCl the number of ions in $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

The number of ions in HCl solution is less than the number of ions in $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution

$$
\begin{aligned}
& \text { عد الأيونات في المحلول HCI أقل من عدد الأيونات } \\
& \text { في المحكول } \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

HCl is a weak acid and only partially ionizes in
الحمضن HCl حمضن ضـعيف ويتّأين جزبيٌا فقط في المحلول المائي

Which of the following is the balanced equation for the أي مما يأتي هي المعادلة الموزونة للتفاعل أدناه في محلول حمضي؟ reaction below in an acidic solution?

$$
\mathrm{SeO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{ClO}_{3}{ }^{-}(\mathrm{aq}) \longrightarrow \mathrm{SeO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{2(9)}
$$

$\mathrm{O} \quad 2 \mathrm{SeO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+5 \mathrm{ClO}_{3}{ }^{-}{ }_{(\mathrm{aq})}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{SeO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+5 \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

$$
\begin{equation*}
2 \mathrm{SeO}_{3}{ }^{2^{-}}{ }_{(\mathrm{aq})}+5 \mathrm{ClO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{SeO}_{4}{ }^{2^{-}}{ }_{(\mathrm{aq})}+5 \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}^{+} \tag{0}
\end{equation*}
$$

$$
5 \mathrm{SeO}_{3}^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{ClO}_{3}^{-}{ }_{(\mathrm{aq})}+2 \mathrm{H}^{+} \longrightarrow 5 \mathrm{SeO}_{4}^{2-}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$$
\begin{equation*}
5 \mathrm{SeO}_{3}{ }^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{ClO}_{3}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow 5 \mathrm{SeO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{H}^{+} \tag{0}
\end{equation*}
$$

What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution
if 74.30 mL of 0.4388 M NaOH solution is needed

0.4388 M

محلول الحمض؟
to neutralize 45.78 mL of the acid solution?

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Which of the following is not a conjugate acid- base pair?

أي مما يلي ليس زوج حمض قاعدة مرافق؟؟

$\mathrm{HSO}_{3}^{-} / \mathrm{SO}_{3}^{2-}$

0
$\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$

O
$\mathrm{HClO}_{4} / \mathrm{ClO}_{4}^{-}$

الأمونيا المنزلـية Household ammonia	عصير الليّون Lemon juice	حليب المغنّيسبا Milk of magnesia	$\begin{aligned} & \text { الحلّيب Milk } \end{aligned}$
pOH=2.10	pH= 2.37	$\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4}$	$\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-7}$

0

Lemon juice \rightarrow milk \rightarrow milk of magnesia \rightarrow household ammonia عصينر الليمون \leftarrow الحميب \leftarrow حليب المغنيسيا \leftarrow الأمونيا النمنزلية

O
Milk of magnesia \rightarrow milk \rightarrow lemon juice \rightarrow household ammonia
\leftarrow حليب المغنيسيا 0

$$
\text { Household ammonia } \rightarrow \text { lemon juice } \rightarrow \text { milk } \rightarrow \text { milk of magnesia الأمونيا المنزلية } \leftarrow \text { عصيز الليمون }
$$

Which of the following aqueous solutions is acidic?
(Concentrations at 298 K)

$$
\begin{aligned}
& \text { أَي المحاليهل الماثية التّالية حمضي ؟ } \\
& \text { (298K التماكيز عند) }
\end{aligned}
$$

D المحلول Solution D	C المحلول Solution C	B المحلول Solution B	A المحلول Solution A
$\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-4}$	$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$	$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3}$	$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13}$

)	Solution B	B المحول
)	Solution A	A المحلوز
	Solution D	D المحلول
	Solution C	C المحلول

توصيل أقطاب البطارية The connection of the battery poles	1
 The electrolyte used does not contain Cu^{2+} ions	2
لم يوصل المفتّاح مـع مصباح كهربائي The key was not connected to a light bubb	3

Both 1 and 3
1و 3 معنا
for the second bonus question answer is (A)

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Cu} & E^{0}(\mathrm{~V})=+0.3419 \\
\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Zn} & E^{0}(\mathbf{V})=-0.7618
\end{array}
$$

The standard reduction potential $\left(\mathrm{E}^{0}\right)$, of the standard
hydrogen electrode is defined as 1.104 V
1.104 V جهـ الاختزال الثياسي(E (E لقطب الهينروجين يساوي
0.000 V جهـ الاختزال القياسي) (E (E لُطب الهيدروجين يساوي

The standard reduction potential $\left(\mathrm{E}^{0}\right)$, of the standard

hydrogen electrode is defined as 0.000 VIt will be a cathode when connected to $\mathrm{Cu} \mid \mathrm{Cu}^{2+}$ electrodeIt will be an anode when connected to $\mathrm{Zn} \mid \mathrm{Zn}^{2+}$ electrode
يكون كاثوذ عند توصيله مع قطب Cu|Cu²+

Zn | Zn ${ }^{2+}$ يكون أنوذا عغد توصيله مع قُط

Which of the following chemical equations represents a reaction
أي المعادلات الكيميائية التالتية تُمُلْ ثناعل بين المحلول المائي
between the aqueous solution of an acid and metal hydrogen
carbonate?

0

$$
\begin{gathered}
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
\mathrm{NaHCO}_{3(\mathrm{~s})}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
\end{gathered}
$$

لحمض وكريونات الفلز الهُينروجيئية ؟

0

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

0

$$
\mathrm{Cu}_{(\mathrm{s})}+4 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{NO}_{2(\mathrm{~g})}
$$

In which of the following formulas does the oxidation number of oxygen differ than in the other formulas?

[^0]:

