

EasyChemistry4all by Mr. Mouad
مناهج دولة الإمـار ات

عام، متقدم ونخبة 9،10،11،12،10 00971557903129

PLEASE Share \& Subscribe to the channel. Let us reach 3000 subscriber!!

Inspire Chemistry
 Module 17
 "Acids \& Bases"

Lesson 4: "Neutralization"
$\underset{i}{\left(A \text { cid }+B_{4} \times x\right)} \rightarrow$ winter

Learning Outcomes:

D Write chemical equations for neutralization reactions.

D Explain how neutralization reactions are used in acidbase titrations.

Focus Question

What happens when an acid and base react?
MAINIDEA In a neutralization reaction, an acid reacts with a base to produce a salt and water.

New Vocabulary

neutralization reaction
salt
titration
titrant
equivalence point
acid-base indicator
end point
salt hydrolysis
buffer
buffer capacity

Review Vocabulary

stoichiometry: the study of quantitative relationships between the amounts of reactants used and products formed by a chemical reaction; is based on the law of conservation of mass

What You should intake when you experience heartburn(حموضة)?

- Figure 19 A dose
of any of these antacids can relieve the symptoms of acid indigestion by reacting with the acidic solution in the stomach and neutralizing it.
- Take one of the antacids to relieve your discomfort

- When $\mathrm{Mg}(\mathrm{OH})_{2}$ and HCl react, a neutralization reaction occurs.
- Neutralization reaction: is a reaction in which an acid and a base in an aqueous solution react to produce a salt and water

Reactions Between Acids and Bases

- A neutralization reaction is a reaction in which an acid and a base in an aqueous solution react to produce a salt and water.
- A salt is an ionic compound made up of a cation(+ ion) from a base and an anion (- ion) from an acid.

Reactions Between Acids and Bases

- Neutralization is a double-replacement reaction.

- The cation from the base $\left(\mathrm{Mg}^{2+}\right)$ is combined with the anion from the acid (Cl) in the salt $\left(\mathrm{MgCl}_{2}\right)$.

Double-replacement reactions

Double-replacement reactions The final type of replacement reaction, which involves an exchange of ions between two compounds, is called a double-replacement reaction.

Positive
Negative Replacement
"Review the charges of ions"

+ sign
- sign

!Recall!

Common Polyatomic Ions			
Ion	Name	Ion	Name
NH_{4}^{+}	Ammonium	CO_{3}^{2-}	Carbonate
$\mathrm{NO}_{2}{ }^{-}$	Nitrite	HCO_{3}^{-}	$\begin{array}{\|c\|} \hline \text { Hydrogen carbonate } \\ \text { or } \\ \text { Bicarbonate } \end{array}$
NO_{3}^{-}	Nitrate	ClO^{-}	Hypochlorite
SO_{3}^{2-}	Sulfite	ClO_{2}^{-}	Chlorite
SO_{4}^{2-}	Sulfate	ClO_{3}^{-}	Chlorate
HSO_{4}^{-}	$\begin{aligned} & \hline \text { Hydrogen sulfate } \\ & \text { or } \\ & \text { Bisulfate } \end{aligned}$	ClO_{4}^{-}	Perchlorate
OH^{-}	Hydroxide	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$	Acetate
CN^{-}	Cyanide	MnO44	Permanganate
PO_{4}^{3-}	Phosphate	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	Dichromate

Grade 10 Adv Revision Double-replacement reactions

Table 3Guidelines for Writing Double-Replacement Reactions	
Step	Example

Reactions that take place in aqueous solutions and produce water " $\mathrm{H}_{2} \mathrm{O}$ "
"Neutralization reaction" or "Acid-Base Reaction"
https://www.youtube.com/ watch?v=RmnT9jwX4gQ

$$
\begin{aligned}
\mathrm{HCl}+\mathrm{NaOH}^{\prime} & \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{NNO}_{3}+\mathrm{KOH}^{2} & \mathrm{KOHO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{SO}_{4}^{4}+\mathrm{Ca}(\mathrm{OH})_{2} & \mathrm{CaSO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Aqueous Solutions \& Their reactions "Formation of $\mathrm{H}_{2} \mathrm{O}$ "

Forming water $\mathrm{H}_{2} \mathrm{O}$

\geq Chemical Reactions | Lesson 3: Reactions in Aqueous Solutions @EasyChemistry4all

E EasyChemistr...
2.11 K subscribers

Reactions Between Acids and Bases

Complete Ionic \& Net Ionic equations

- Neutralization is a double-replacement reaction.

$$
\begin{aligned}
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) & +2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Base } & + \text { Acid } \rightarrow \text { Salt }+ \text { Water }
\end{aligned}
$$

Reactions Between Acids and Bases

Complete Ionic \& Net Ionic equations

Recall that in an aqueous solution, H^{+}ion exists as a $\mathrm{H}_{3} \mathrm{O}^{+}$ion, so the net ionic equation for an acid-base neutralization reaction is

$$
\begin{aligned}
& \left(\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\left(\mathrm{OH}^{-}-(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.\right. \\
& \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

- Figure 20 A hydronium ion transfers a hydrogen ion to a hydroxide ion. The loss of the hydrogen ion by $\mathrm{H}_{3} \mathrm{O}^{+}$results in a water molecule. The gain of a hydrogen ion by OH^{-}also results in a water molecule.

$$
\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$$
\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

1. What are the products of a neutralization reaction?
an acid and a base

\qquad Reactants:Acid \& Base
an acid and a salt
a base and a salt

D
a salt and water
CORRECT

Now try to write net ionic equation for KOH and HNO_{3}

$\mathrm{KOH}_{(\text {aq) }}+\mathrm{HNO}_{3(\text { aq) }}$

$$
\begin{aligned}
& \text { Now try to write et ionic equation for } \\
& \mathrm{KOH} \text { and } \mathrm{HNO}_{3} \text { double Replacemat Reaction }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\mathrm{K}^{+}{ }_{(\mathrm{aq})} \mathrm{O}^{+\mathrm{H}^{-}}+\mathrm{OH}^{+{ }^{+}}{ }_{(\mathrm{aq})} \mathrm{NO}^{3} \mathrm{H}^{+}{ }_{(\mathrm{aq)}}}+\mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

Now try to write net ionic equation for KOH and HNO_{3}

$$
\mathrm{KOH}_{(\mathrm{aq)}}+\mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{KNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \quad \text { (Double replacement reaction) }
$$

complete ionic equation

$$
\mathrm{K}_{(\mathrm{aq})}^{4}+\mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3}^{-}\left(\mathrm{aq)} \longrightarrow \mathrm{~K}_{(\mathrm{aq})}^{+}+\mathrm{NO}_{3(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}\right.
$$

$$
\begin{aligned}
& \text { Net ionic equation } \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

If you have an acid or a base with a known volume and Unknown concentration (Molarity). How can you find its concentration?

$$
\begin{gathered}
\text { Acid-Base Titration } \\
\text { Nentralization } \\
\text { Reaction }
\end{gathered}
$$

Acid-Base Titration

- Titration is a method for determining the concentration of a solution by reacting a known volume of that solution with a solution of known concentration.

Using solution of known concentration to determine the concentration of another solution

- Figure 21 In the titration of an acid by a base, the pH meter measures the pH of the acid solution in the beaker as a solution of a base with a known concentration is added from the buret.

Acid-Base Titrations

- Titration is the process in which an acid-base neutralization reaction is used to determine the concentration of a solution of unknown concentration.
Titration Procedure
How is an acid-base titration performed?

1. A measured volume of an acidic or basic solution of unknown concentration (called analyze) is placed in a beaker. The initial pH of the solution is read with a pH meter.
2. A buret is filled with the titrating solution of known concentration. This is the standard solution, or titrant.
tirtraf
3. Measured volumes of the standard solution are added slowly to the beaker. The pH is read after each addition. This process continues until the reaction reaches the equivalence point, the point at which moles of H^{+}ions from the acid equal moles of OH^{-}ions from the base.

The color

Acid-Base Titration

$50.00 \mathrm{~mL} \mathbf{0 . 1 0 0 0} \mathrm{M}$ HCOOH Titrated with 0.1000 M NaOH

In each titration curve, a steep rise in the pH of the solution indicates that all of the H^{+}ions from the acid have been neutralized by the OH^{-}ions of the base.

- Titration of 50.0 mL of $0.100 \mathrm{M} \mathrm{HCl}, \mathrm{a}$ strong acid, with 0.100 M NaOH , a strong base.
- The initial pH of the 0.100 M HCl is 1.00
- As NaOH is added, the acid is neutralized, and the solution's pH increases gradually.
- But, when nearly all the H^{+}ions from the acid have been used up, the pH increases dramatically with the addition of an exceedingly small volume of NaOH . Abrupt increase in pH occurs at the equivalence point of the titration.
- Beyond the equivalence point, the addition of more NaOH again results in a gradual increase in PH
- Bromthymol blue is a good choice for a titration of a strong acid with a strong base

Quiz

2. What term refers to the point in a titration when the concentration of H^{+}ions from the acid equals the concentration of OH^{-}ions from the base?
the buffer capacity
the titration point

C the equivalence point
the turning point

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\left[\mathrm{HH}^{\mathrm{H}} \quad\right. \text { Neutra }} \\
& \text { equivalance }
\end{aligned}
$$

- You might think that all titrations must have an equivalence point at pH 7 because that is the point at which concentrations of hydrogen ions and hydroxide ions are equal and the solution is neutral.
Acid +Base

$$
\rightarrow \text { salt }+ \text { water }
$$

- This is not the case, however. Some titrations have equivalence points at pH values less than 7 , and some have equivalence points at pH values greater than 7 .
- These differences occur because of reactions between the newly formed salts and water (Later).

Equivalence point: which is the point at which moles of H^{+}ion from the acid equal moles of OH^{-}ion from the base.

- End point: The point at which the indicator used in a titration changes color.

(insel)
 Acid-Base Indicators

- Chemists often use a chemical dye to detect the equivalence point of an acid-base titration.
- Chemical dyes whose colors are affected by acidic and basic solutions are called acidbase indicators.
- The point at which the indicator used in a titration changes color is called the end point of the titration.
- It is important to choose an indicator that will change color at the equivalence point of the titration.

Acid-Base Indicators

MOLARITY FROM TITRATION DATA

$$
\begin{aligned}
& \text { IN-CLASS EXAMPLE } \\
& \frac{\text { Use with anole golem. } \mathrm{E}}{\text { Problem }} \text { Moles of } \mathrm{HCOOH}=1.828 \times 10^{-3} \mathrm{mo}
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {HCoOH }}=25 \mathrm{~mL} \xrightarrow{\div 1000} 0.025 \mathrm{~L} \\
& \text { Molarity }=[H \cos H]=\frac{1.828 \times 10^{-3}}{0.025}=0.07312
\end{aligned}
$$

MOLARITY FROM TITRATION DATA

IN-CLASS EXAMPLE

Use with Example Problem 6.

Problem

A volume of 18.28 mL of a standard solution of 0.1000 M NaOH was required to neutralize 25.00 mL of a solution of methanoic acid (HCOOH). What is the molarity of the methanoic acid solution?

Response

ANALYZE THE PROBLEM
You are given the molarity and volume of the NaOH solution and the volume of the methanoic acid (HCOOH) solution. The volume of base used is about four-fifths of the volume of the acid, so the molarity of the acid solution should be less than 0.1 M .

KNOWN

$V_{\mathrm{A}}=25.00 \mathrm{~mL} \mathrm{HCOOH}$
$V_{\mathrm{B}}=18.28 \mathrm{~mL} \mathrm{NaOH}$
$M_{B}=0.1000 M$

SOLVE FOR THE UNKNOWN
Write the balanced formula equation for the neutralization reaction.

$$
\mathrm{HCOOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{HCOONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

- Write the acid to base mole relationship.

1 mol NaOH neutralizes 1 mol HCOOH .

- Convert volume of base from mL to L .

$$
V_{B}=18.28 \mathrm{mt} \times \frac{1 \mathrm{~L}}{1000 \mathrm{mt}}=0.01828 \mathrm{~L}
$$

MOLARITY FROM TITRATION DATA

IN-CLASS EXAMPLE

SOLVE FOR THE UNKNOWN (continued)

Calculate moles of NaOH .

- Apply the relationship between moles, molarity, and volume of base.

$$
\mathrm{Mol} \mathrm{NaOH}=\left(M_{\mathrm{B}}\right)\left(V_{\mathrm{B}}\right)
$$

- Substitute $M_{B}=0.1000 \mathrm{M}$ \& $V_{B}=0.01828 \mathrm{~L}$.

$$
\begin{gathered}
\mathrm{Mol} \mathrm{NaOH}=(0.1000 \mathrm{~mol} / \mathrm{t})(0.01828 \mathrm{t}) \\
=1.828 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}
\end{gathered}
$$

Calculate moles of HCOOH .

- Apply the stoichiometric relationship

$$
\begin{aligned}
1.828 & \times 10^{-3} \mathrm{~mol} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{HCOOH}}{1 \mathrm{~mol} \mathrm{NaOH}} \\
& =1.828 \times 10^{-3} \mathrm{~mol} \mathrm{HCOOH}
\end{aligned}
$$

Calculate the molarity of HCOOH .

- Apply the relationship between moles of acids, molarity of acid, and volume of acid.

$$
1.828 \times 10^{-3} \mathrm{~mol} \mathrm{HCOOH}=\left(\boldsymbol{M}_{\mathrm{A}}\right)\left(V_{\mathrm{A}}\right)
$$

- Solve for M_{A}.

$$
\boldsymbol{M}_{\mathrm{A}}=\frac{1.828 \times 10-3 \mathrm{~mol} \mathrm{HCOOH}}{V_{\mathrm{A}}}
$$

- Convert volume of acid from mL to L .

$$
V_{\mathrm{A}}=25.00 \mathrm{mt} \times \frac{1 \mathrm{~L}}{1000 \mathrm{mt}}=0.02500 \mathrm{~L} \mathrm{HCOOH}
$$

- Substitute $V_{A}=0.02500 \mathrm{~L}$.

$$
M_{\mathrm{A}}=\frac{1.828 \times 10-3 \mathrm{~mol} \mathrm{HCOOH}}{0.02500 \mathrm{LHCOOH}} \underset{\mathrm{~mol} / \mathrm{L}}{ }=7.312 \times 10^{-2}
$$

EVALUATE THE ANSWER

The answer agrees with the prediction that the molarity of HCOOH is less than 0.1 M , and is correctly recorded with four significant figures and the appropriate units.
44. What is the molarity of a nitric acid solution if 43.33 mL of 0.1000 M KOH solution is needed to neutralize 20.00 mL of the acid solution?
44. What is the molarity of a nitric acid solution if 43.33 mL of 0.1000 M KOH solution is needed to neutralize 20.00 mL of the acid solution?

Section 4

Neutralization
 Salt Hydrolysis (Page 147)

Learning Outcomes

Define salt and salt hydrolysis.
D Identify the type of salt (acidic, basic or neutral) and its constituent acid and base with their strengths.

Salt Hydrolysis (Page 147)

Are Salt solutions acidic, basic or neutral?

Salts:

KF
 $\mathrm{NH}_{4} \mathrm{Cl}$
 NaNO_{3}

Bromothymol Blue

Figure 26 The indicator bromthymol blue provides surprising results when added to three solutions of ionic salts. $\mathrm{An}_{\mathrm{NH}}^{4} \mathrm{Cl}$ solution is acidic, a NaNO_{3} solution is neutral, and a KF solution is basic. The explanation has to do with the strengths of the acid and base from which each salt was formed.

Salt Hydrolysis (Page 147)

- Many salts react with water in a process known as salt hydrolysis.
- In salt hydrolysis, the anions of the dissociated salt accept hydrogen ions from water or the cations of the dissociated salt donate hydrogen ions to water.

- Salt hydrolysis can produce basic, acidic, or neutral solutions.

$$
K O H+H F \longrightarrow \widetilde{K F}+H_{2} O
$$

Salts that produce basic solutions Potassium fluoride is the salt of astrong base)(KOH) and a weak acid (HF). It dissociates into potassium ions and fluoride ions.

$$
\mathrm{KF}(\mathrm{~s}) \rightarrow{\underline{K^{+}}}^{+}(\mathrm{aq})+\underline{\mathrm{F}}^{-}(\mathrm{aq})
$$

The K^{+}ions do not react with water, but the F^{-}ion is a weak Brønsted-Lowry base. Some fluoride ions establish this equilibrium with water.

Salts that produce acidic solutions $\mathrm{NH}_{4} \mathrm{Cl}$ is the salt of a weak base $\left(\mathrm{NH}_{3}\right)$ and a strong acid (HCl). When dissolved in water, the salt dissociates into ammonium ions and chloride ions.

The Cl^{-}ions do not react with water, but the $\mathrm{NH}_{4}{ }^{+}$ion is a weak Brønsted-Lowry acid. Ammonium ions react with water molecules to establish this equilibrium.

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

More $\mathrm{H}_{3} \mathrm{O}^{+}=$More acidic solution

$$
P H<7
$$

Salts that produce neutral solutions Sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ is the salt of a strong acid $\left(\mathrm{HNO}_{3}\right)$ and a strong base (NaOH). Little or no salt hydrolysis occurs because neither Na^{+}nor $\left(\mathrm{NO}_{3}-\right.$ react with water. Therefore, a solution of sodium nitrate is neutral.

$$
\mathrm{NaOH}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{H} 2 \mathrm{O}
$$

Page 148

APPLICATIONS

47. Write equations for the salt hydrolysis reactions occurring when the following salts dissolve in water. Classify each as acidic, basic, or neutral.
a. ammonium nitrate c. rubidium acetate

b. potassium sulfate \mathbf{d}. calcium carbonate
a. ammonium nitrate $\mathrm{NH}_{4}: \mathrm{NO}_{3}$

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

The solution is acidic.
b.) potassium sulfate $\mathrm{K}_{2} \mathrm{SO}_{4}$ $\underbrace{\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow\left(\mathrm{SSO}_{4}^{-}(\mathrm{aq})\right.}_{\text {The solution is neutral. }}+\mathrm{OH}^{-}(\mathrm{aq})$
c. rubidium acetate
$\mathrm{RbCH}_{3} \mathrm{COO}$

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+ \\
& \mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

The solution is basic.
d. calcium carbonate $\mathrm{Ca}_{2} \mathrm{CO}_{3}$
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
The solution is basic.

Page 148

48. Challenge Write the equation for the reaction that occurs in a titration of ammonium hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ with hydrogen bromide (HBr). Will the pH at the equivalence point be greater or less than 7 ?

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Br}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}
\end{aligned}
$$

Hydronium ions are formed so the pH will be less than 7.

Quiz

3. In what process do anions of a dissociated salt accept hydrogen ions from water or cations of the salt donate hydrogen ions to water?
neutralization
30 titration

C salt hydrolysis

CORRECT

buffering

