Lesson 1: Introduction to Acids and Bases

Properties of Acids and Bases

Acids	Bases
Physical properties: - Carbonic and phosphoric acids give carbonated beverages their sharp taste. - Citric and ascorbic acids give lemons their tartness. - Acetic acid makes vinegar taste sour.	Physical properties: - Taste bitter. - Soap becomes slippery when it gets wet.
Electrical conductivity: Acids and bases produce ions that cause the resulting solution to become a conductor.	
Acids cause blue litmus paper to turn red.	Bases cause red litmus paper to turn blue.

Acids Reactions with metals

Magnesium and zinc react with aqueous solutions of acids to produce hydrogen gas.

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCL}(\mathrm{aq}) \longrightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

Acids Reactions with metal carbonates

Metal carbonates react with aqueous solutions of acids to produce carbon dioxide $\left(\mathrm{CO}_{2}\right)$ gas and water.

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Geologists identify rocks as limestone $\left(\mathrm{CaCO}_{3}\right)$ by using a hydrochloric acid solution. If a few drops of the acid produce bubbles of CO_{2}, the rock contains limestone.

Write balanced equations for the reactions between the following.

a. aluminum and sulfuric acid
b. calcium carbonate and hydrobromic acid

Challenge Write the net ionic equation for the reaction between calcium carbonate and hydrobromic acid.

Hydronium and hydroxide ions

All water solutions contain hydrogen ions $\left(\mathrm{H}^{+}\right)$and hydroxide ions $\left(\mathrm{OH}^{-}\right)$.

An acidic solution contains more hydrogen ions than hydroxide ions.

A basic solution contains more hydroxide ions than hydrogen ions.
[$\left.\mathrm{H}^{+}\right] \quad$ Acidity \longrightarrow Neutral \quad Basicity \longrightarrow

Neutral solution is neither acidic nor basic. It contains equal concentrations of hydrogen ions and hydroxide ions.

Pure water produces equal numbers of H^{+}ions and OH^{-}ions in a process called self-ionization, in which water molecules react to form a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\text { Water molecules } \rightleftharpoons \text { Hydronium ion }+ \text { Hydroxide ion }
\end{gathered}
$$

The hydronium ion is a hydrogen ion which has a water molecule attached to it by a covalent bond. The symbols H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$can be used interchangeably, as this simplified self-ionization equation shows.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The Arrhenius Model

An acid is a substance that contains hydrogen and ionizes to produce hydrogen ions in aqueous solution.

A base is a substance that contains a hydroxide group and dissociates to produce a hydroxide ion in aqueous solution.

When hydrogen chloride gas dissolves in water. HCl molecules ionize to form H^{+}ions, which make the solution
acidic. $\quad \mathrm{HCl}(\mathrm{g}) \longrightarrow$ \qquad $+$ \qquad

When the ionic compound sodium hydroxide (NaOH) dissolves in water, it dissociates to produce OH^{-}ions, which make the solution basic.

$$
\mathrm{NaOH}(\mathrm{~s}) \longrightarrow
$$

\qquad $+$ \qquad

The shortcomings of Arrhenius model:

Ammonia $\left(\mathrm{NH}_{3}\right)$ and sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, can they considered as Arrhenius bases? Why?

Yet both substances produce hydroxide ions in solution and are well-known bases.

Which of the following is correct?	أي مما يأتي صحبح؟		
In basic solution $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{+}\right]$	$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	في المحلول الفاعي يكون	\bigcirc
In neutral solution $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{+}\right]$	$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	في المحول المتعادل يكون	O
In acidic solution $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	في المحلول الحمضي بكون	O
In acidic solution $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$	في الكحول الحضي يكون	\bigcirc

The Bronsted-Lowry Model
An acid is a hydrogen-ion donor. A base is a hydrogen ion acceptor.
Hydrogen ion donors and acceptors
Use this equation to answer the following questions: $\quad \mathrm{HX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})$
Which substance is the acid? \qquad Why? \qquad

The water molecule acts as a \qquad because \qquad

A conjugate acid is the species produced when a base accepts a hydrogen ion. (In this example it's \qquad
A conjugate base is the species that results when an acid donates a hydrogen ion. (In this example it's \qquad ...)

The hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is the conjugate acid of the base $\mathrm{H}_{2} \mathrm{O}$. The X^{-}ion is the conjugate base of the acid HX .

A conjugate acid-base pair consists of two substances related to each other by the donating and accepting of a single hydrogen ion.

Explain how the ion $\mathrm{HCO}_{3}{ }^{-}$can be both an acid and a base.
\qquad

Hydrogen fluoride—a Bronsted-Lowry acid
Hydrogen fluoride is an acid. Why?

Which species is the conjugate base of hydrogen fluoride? \qquad

What is the other conjugate acid-base pair? \qquad

What are the acid and base in the reverse reaction? \qquad

Hydrogen fluoride is used to manufacture a variety of fluorine-containing compounds, such as the nonstick coating on the kitchenware. It is an acid according to both the Arrhenius and Brønsted-Lowry definitions.

Ammonia-a Brønsted-Lowry base
Ammonia does not fit the Arrhenius model of bases because \qquad
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
\qquad

Label the next equation:

When HF dissolves in water, water acts as a ; when NH_{3} dissolves in water, water acts as an \qquad
Water and other substances that can act as both acids and bases are said to be amphoteric.

PRACTICE Problems

Identify the conjugate acid-base pairs in each reaction.
a. $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
b. $\mathrm{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
c. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

	Acid	Conjugate base	Base	Conjugate acid
a.				
b.				
c.				

Challenge The products of an acid-base reaction are $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{SO}_{4}{ }^{2-}$. Write a balanced equation for the reaction and identify the conjugate acid-base pairs.
\qquad

Monoprotic Acids

An acid that can donate only one hydrogen ion is called a monoprotic acid. (Examples: \qquad ..)

The formula of acetic acid is often written $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. why.

lonizable hydrogen atoms

Explain the difference between acetic acid's ionizable hydrogen atom and the other three hydrogen atoms.
\qquad
\qquad
Hydrofluoric acid (HF) is an acid in solution. Explain.

Explain why benzene is not an acid.
\qquad
\qquad

Polyprotic Acids

Any acid that has more than one ionizable hydrogen atom.

diprotic acids	triprotic acids
Acids that contain two ionizable hydrogen atoms.	Acids with three hydrogen ions to donate.
Examples:	Examples:

Write the three ionizations of phosphoric acid.

The Lewis Model

Lewis acid is an ion or molecule with a vacant atomic orbital that can accept (share) an electron pair.
Lewis base is an ion or molecule with a lone electron pair that it can donate (share).
The H^{+}ion is the Lewis acid because \qquad
The fluoride ion is the Lewis base \qquad

In this reaction:

What is the Lewis acid? \qquad
What is the Lewis base? \qquad

Another Lewis acid-base reaction occurs when gaseous sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ is brought into contact with solid magnesium oxide (MgO).

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{MgO}(\mathrm{~s}) \longrightarrow \mathrm{MgSO}_{4}(\mathrm{~s})
$$

This reaction is important for some reasons:

- Magnesium sulfate forms the heptahydrate known as Epsom salt $\left(\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$. Epsom salt has many uses, including soothing sore muscles and acting as a plant nutrient.
- In environmental applications. When MgO is injected into the flue gases of coal-fired power plants, it reacts with and removes SO_{3}, which can combine with water in the air to form sulfuric acid, which falls to Earth as acid precipitation.

Anhydrides

An acid anhydride is an oxide that can combine with water to form an acid. (example: CO_{2})
Other oxides combine with water to form bases. (example: CaO)
CO_{2} will form \qquad CaO will form \qquad
In general, oxides of metallic elements form bases, oxides of nonmetals form acids.

Assessment

Which of the following refers to a basic solution?

es $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$	es $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
\& $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$	es $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$
Which of the following is correct about to the reaction below?	
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	
A. NH_{3} is considered as Arrhenius base	A
B. $\mathrm{H}_{2} \mathrm{O}$ is considered as a Bronsted - Lowry acid	B.
C. NH_{3} accepts an electron pair from $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$ \%
D. $\mathrm{H}_{2} \mathrm{O}$ accepts H^{+}ion in the forward reaction	H2 H D D

CO_{2}

H_{2}

O_{2}

N_{2}

Which of the following is correct about to the reaction below?	
$\mathbf{H}^{+}+\mathbf{F}^{-} \rightarrow \mathbf{H}-\ddot{\mathbf{F}}:$	
A. F-ion accepts an electron pair	A.
B. F ion is considered as acceptor of hydrogen ion	
C. H^{+}ion is considered as Arrhenius base	
D. H^{+}ion donates an electron pair to F^{-}ion	F- .

Turn red litmus paper blue
تُحول ورقة تباع الثمس الحمراء إلى اللون الأزرق

Feel slippery
زلقة الملمس

React with zinc to produce hydrogen gas
تتفاعل مع الخارصين لتُتّج غاز الهيدروجين

It tastes bitter

What is the substance that contains hydrogen, and
ما المادة التتي تحتوي على هيدروجين وتتأين لإنتاج أيونات الهيدروجين
ionizes to produce hydrogen ions in aqueous solution?
في المحلول المائي؟
حمض لويس
قاعدة لويس is true?

$$
\mathrm{HX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})
$$

HX donates hydrogen ion to water $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$ is a Bronsted-Lowry acid
يُعتبر H2O من أحماض برونشتد - لورى
يُعُتبر HX من قواعد برونشتد - لوري

HX is a Bronsted-Lowry base
يمنح HX أيون هيدروجين للماء H2O
$H X$ accepts a hydrogen ion from water $\mathrm{H}_{2} \mathrm{O}$
H2
Which of the following is true?
أي مما يأثى صحيح؟

The ammonia NH_{3} in reaction 2 is an electron \quad تُعبر الأمونيا ${ }^{2}$
pair acceptor

The ammonia NH_{3} in reaction $\mathbf{1}$ is a Lewis base

$$
\begin{equation*}
\text { تُعتبر الأمونيا NH }{ }^{\text {فـي التقاعل } 1 \text { هاعذة لوسِ }} \tag{0}
\end{equation*}
$$

The ammonia NH_{3} in reaction 2 is a Bronsted-
تُعثير الأمونيا NH3 في التقاعل 2 حصض برونشتي - لوري
Lowry acid

The ammonia NH_{3} in reaction $\mathbf{1}$ is a Lewis acid
تُعبّر الأمونيا NH3 في التقاعل 1 حصض لوِسِ
0

Which of the following is considered a conjugate
أي مما يأتي يُعتبر نوج حمض قاعدة مرافق؟
acid -base pair?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{HPO}_{4}^{2-}
$$

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{O}^{2-}
$$

$\mathrm{HNO}_{3}, \mathrm{NO}_{3}{ }^{-}$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{4}{ }^{2-}
$$ carbonate?

$$
\mathrm{Cu}_{(\mathrm{s})}+4 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{NO}_{2(\mathrm{~g})}
$$

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

$$
\mathrm{NaHCO}_{3(\mathrm{~s})}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Which of the following is not a conjugate acid- base pair?
أي مما يلي ليس زوج حمض تاعدة مرافق؟؟ $\mathrm{HClO}_{4} / \mathrm{ClO}_{4}^{-}$

$$
\mathrm{HSO}_{3}^{-} / \mathrm{SO}_{3}^{2-}
$$

$$
\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}
$$

$$
\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}
$$

Why does BCl_{3} represent Lewis's acid

لماذا يُمثل
في الثّفاعل التالي؟
in the following reaction?

Because it is proton acceptor from the base Cl^{-}

Because it is proton donor to the base Cl^{-}

Because it is an electron pair donor to the base Cl^{-}

Because it is an electron pair acceptor from the base Cl^{-}

Cl- لأهـ مانح لزُوج إلكترونات إلمى الفاعدة
Cl- لانه مسنتبل للبروتون من العاهدت

Cl' لأنه مصتْبل لزوج إلكترونات من القاعدة

Because it accepted a proton from SO_{3}	SO_{3} لأنها استقبلت بروتونًا من
Because it donated a proton to SO_{3}	SO_{3} لأنها منحت بروتونّا إلى
Because it donated a pair of electrons to SO_{3}	SO_{3} لأنها منحت زوجا من الإلكترونات إلى
Because it accepted a pair of electrons from SO_{3}	SO_{3} (لأنها استقبلت زوجا من الإكترونات
Which of the following is amphoteric	أي مما يلي يُعتبر مادة أمفوتيربـّ؟
substance?	

$\mathrm{HPO}_{4}{ }^{2-}$	
H^{+}	
$\mathrm{H}_{3} \mathrm{PO}_{4}$	
PO_{4}^{2-}	

Which of the following chemical equations أي المعادلات الكيميائية الاتية تمُثل التفاعل represents the reaction that geologists use to identify limestone rocks from other

الذي يستخدمه الجيولوجيين للتعرف على الصخور الجيرية من بقية الصخور؟ rocks?

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

$$
\mathrm{NaHCO}_{3(\mathrm{~s})}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

$$
\mathrm{Cu}_{(\mathrm{s})}+4 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{NO}_{2(\mathrm{~g})}
$$

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

