ACIDS AND BASES

CHAPTER SUMMARY
by Abd Alrahman Basim

SECTION 1:

INTRODUCTION TO ACIDS AND BASES

SECTION 2:
STRENGTHS OF ACIDS AND BASES
\section*{SECTION 3:} HYDROGEN IONS AND PH

SECTION 4:

NEUTRALIZATION

INTRODUCTION TO ACIDS AND BASES

Properties of Acids and Bases

Acids and bases are two of the most common classifications of substances. You can recognize them by the tart taste of some of your favourite beverages and by the pungent odor of ammonia in some household cleaners.

Physical Properties

Acidic solutions taste sour (حامض). Carbonic and phosphoric acids give many carbonated beverages their sharp taste; citric and ascorbic acids give lemons and grapefruit their tartness; and acetic acid makes vinegar taste sour.

Basic solutions taste bitter (مُ) ${ }_{(م)}$ and feel slippery. A bar of soap becomes slippery when it gets wet.

Electrical Conductivity

Pure water is a non-conductor of electricity, but the addition of an acid or base produces ions that cause the resulting solution to become a conductor.

Chemical Properties

- Reactions with Litmus

Litmus (عباد الشمس) is one of the dyes commonly used to distinguish solutions of acids and bases.

Aqueous solutions of acids cause blue litmus paper to turn red.
Aqueous solutions of bases cause red litmus paper to turn blue.

- Reactions with Metals

Unlike bases, acids react with most metals to yield hydrogen gas and a salt. Most metals replace the hydrogen atoms from an acid in a single-replacement reaction.

$$
\begin{gathered}
\text { acid + metal } \rightarrow \text { salt + hydrogen } \\
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
\end{gathered}
$$

- Reactions with Metal Carbonates

Acids also react with metal carbonates and hydrogen carbonates to produce carbon dioxide $\left(\mathrm{CO}_{2}\right)$ gas, along with the corresponding metal salts and water.

$$
\begin{aligned}
& \text { acid + carbonate } \rightarrow \text { salt + water + carbon dioxide } \\
& 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Inlibrary

INTRODUCTION TO ACIDS AND BASES

The concentrations of the ions in an aqueous solution determine the nature of the solution.

- Acidic solution: $\quad\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- Neutral solution: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- Basic solution: $\quad\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Pure water produces equal numbers of $\mathbf{H +}$ ions and $\mathbf{O H}$ - ions in a process called self-ionization, in which water molecules react to form a hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and a hydroxide ion.

$$
\left.\begin{array}{rl}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{array}+\mathrm{OH}^{-}(\mathrm{aq})\right)
$$

The hydronium ion is a hydrogen ion that has a water molecule attached to it by a covalent bond. The symbols H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$can be used interchangeably, as this simplified self-ionization equation shows.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The Arrhenius Model

The Arrhenius model states that an acid is a substance that contains hydrogen and ionizes to produce hydrogen ions in aqueous solution. A base is a substance that contains a hydroxide group and dissociates to produce a hydroxide ion in aqueous solution.

$$
\begin{aligned}
\mathrm{HCl}(\mathrm{~g}) & \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{NaOH}(\mathrm{~s}) & \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

Although the Arrhenius model is useful in explaining many acidic and basic solutions, it has some shortcomings. For example, ammonia $\left(\mathrm{NH}_{3}\right)$ and sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ do not contain a hydroxide group, yet both substances produce hydroxide ions in solution and are well-known bases.

The Brønsted-Lowry Model

In the Brønsted-Lowry model of acids and bases,

An acid is a hydrogen-ion donor.

A base is a hydrogen-ion acceptor.

The symbols \mathbf{X} and \mathbf{Y} represent non-metallic elements or negative polyatomic ions. Thus, the general formula for an acid can be represented as HX or HY.

$$
\mathrm{HX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})
$$

INTRODUCTION TO ACIDS AND BASES

Conjugate Acids and Bases

The forward reaction is the reaction of an acid and a base. The reverse reaction is also the reaction of an acid and a base. The acid and base that react in the reverse reaction are identified under the equation as a conjugate acid and a conjugate base.

A conjugate acid is the species produced when a base accepts a hydrogen ion. The base $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ accepts a hydrogen ion from the acid $\mathbf{H X}$ and becomes the conjugate acid $\mathrm{H}_{3} \mathbf{O}^{+}$.

A conjugate base is the species that results when an acid donates a hydrogen ion. The acid HX donates its hydrogen ion and becomes the conjugate base \mathbf{X}.

A conjugate acid-base pair consists of two substances related to each other by the donating and accepting of a single hydrogen ion. The \mathbf{X}^{-}ion is the conjugate base of the acid $\mathbf{H X}$.

Hydrogen Fluoride - A Brønsted-Lowry Acid

Hydrogen fluoride donates a hydrogen ion to a water molecule, so hydrogen fluoride is an acid.

Ammonia - A Brønsted-Lowry Base

Some substances that lack a hydroxide group and cannot be considered bases according to the Arrhenius definition but can be classified as bases according to the BrønstedLowry model. One example is ammonia $\left(\mathrm{NH}_{3}\right)$.

Because the NH_{3} molecule accepts a \mathbf{H}^{+}ion to form the ammonium ion $\left(\mathbf{N H}_{4}{ }^{+}\right)$, ammonia is a $\mathrm{Br} \varnothing$ nstedLowry base in the forward reaction. The ammonium ion is the conjugate acid of the base ammonia.

Water - A Brønsted-Lowry Acid and Base

When HF dissolves in water, water acts as a base; when $\mathbf{N H}_{\mathbf{3}}$ dissolves in water, water acts as an acid. Depending on what other substances are in the solution, water can act as either an acid or a base. Water and other substances that can act as both acids and bases are said to be amphoteric.

INTRODUCTION TO ACIDS AND BASES

Monoprotic and Polyprotic Acids

An acid that can donate only one hydrogen ion is called a monoprotic acid. Because acetic acid is a monoprotic acid, its formula is often written $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ to emphasize the fact that only one of the four hydrogen atoms in the molecule is ionizable.

The difference between acetic acid's ionizable hydrogen atom and the other three hydrogen atoms is that the ionizable atom is bonded to the element oxygen, which is more electronegative than hydrogen. The difference in electronegativity makes the bond between oxygen and hydrogen polar.

The hydrogen atom in hydrogen fluorine is bonded to the highly electronegative fluorine atom, so the hydrogen-fluorine bond is polar and the fluorine atom is ionizable to a certain extent.

However, the hydrogen atoms in benzene are each bonded to a carbon atom. Carbon atoms have about the same electronegativity as hydrogen. These bonds are nonpolar, so benzene is not an acid.

Acids that contain two ionizable hydrogen atoms per molecule are called diprotic acids. Acids with three hydrogen ions to donate are called triprotic acids. The term polyprotic acid can be used for any acid that has more than one ionizable hydrogen atom.

Monoprotic acids:

- HCl - Hydrochloric acid
- HF - Hydrofluoric acid
- HClO_{4} - Perchlorate
- HNO_{3} - Nitrate
- HBr - Hydrobromic acid
- $\mathrm{CH}_{3} \mathrm{COOH}$ - Acetic acid

Polyprotic acids:

- $\mathrm{H}_{2} \mathrm{SO}_{4}$ - Sulfuric acid
- $\mathrm{H}_{2} \mathrm{CO}_{3}$ - Carbonic acid
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ - Phosphoric acid
- $\mathrm{H}_{3} \mathrm{BO}_{3}-$ Boric acid following equations.

$$
\begin{aligned}
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \\
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq}) \\
\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})
\end{aligned}
$$

Inlibrary

INTRODUCTION TO ACIDS AND BASES

The Lewis Model

Lewis developed the electron-pair theory of chemical bonding and introduced Lewis structures to keep track of the electrons in atoms and molecules.

Lewis proposed that an acid is an ion or molecule with a vacant atomic orbital that can accept (share) an electron pair. A base is an ion or molecule with a lone electron pair that it can donate (share).

According to the Lewis model, a Lewis acid is an electron-pair acceptor and a Lewis base is an electronpair donor. Note that the Lewis model includes all the substances classified as Brønsted-Lowry acids and bases and many more.

Electron Pair Donors and Acceptors

In this reaction, the \mathbf{H}^{+}ion is the Lewis acid. Its vacant 1s orbital accepts an electron pair from the \mathbf{F}^{-} ion. The fluoride ion is the Lewis base. It donates a lone electron pair to form the hydrogen-fluorine bond in HF.

The reaction of gaseous boron trifluoride $\left(\mathrm{BF}_{\mathbf{3}}\right)$ with gaseous ammonia $\left(\mathbf{N H}_{3}\right)$ to form $\mathbf{B F}_{3} \mathbf{N H}_{\mathbf{3}}$ is a Lewis acid-base reaction.

The $\mathbf{S O}_{\mathbf{3}}$ molecule, a Lewis acid, accepts an electron pair from the $\mathbf{O}^{\mathbf{2 -}}$ ion, a Lewis base.
The reaction of SO_{3} and MgO is important because it produces magnesium sulfate, a salt that forms the heptahydrate known as Epsom salt $\left(\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$. Epsom salt has many uses, including soothing sore muscles and acting as a plant nutrient.

The reaction to form magnesium sulfate also has environmental applications. When MgO is injected into the flue gases of coal-fired power plants, it reacts with and removes SO_{3}.

Inlibrary

INTRODUCTION TO ACIDS AND BASES

Table 2 Three Models for Acids and Bases		
Model	Acid Definition	Base Definition
Arrhenius	H^{+}producer	OH^{-}producer
Brønsted-Lowry	H^{+}donor	H^{+}acceptor
Lewis	electron-pair acceptor	electron-pair donor

Anhydrides

An acid anhydride is an oxide that can combine with water to form an acid. Other oxides combine with water to form bases. For example, calcium oxide (CaO, lime) forms the base calcium hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$. In general,

- oxides of metallic elements form bases;
- oxides of nonmetals form acids.

STRENGTHS OF ACIDS AND BASES

Strengths of Acids

In solution, strong acids and bases ionize completely, but weak acids and bases ionize only partially.

Strong Acids

HCl solution conducts electricity better than $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution. This is because ions carry electric current through the solution and all the HCl molecules contained in the solution are ionized completely into hydronium ions and chloride ions.

Strong acids are acids that ionize completely. Because strong acids produce the maximum number of ions, they are good conductors of electricity.

The ionization of hydrochloric acid in water can be represented by the following equation, which has a single arrow pointing to the right. Recall that a single arrow means that a reaction goes to completion.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Table 3 Ionization Equations

Strong Acids			Weak Acids
Name	Ionization Equation	Name	Ionization Equations
Hydrochloric	$\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$	Hydrofluoric	$\mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-}$
Hydroiodic	$\mathrm{HI} \rightarrow \mathrm{H}^{+}+\mathrm{I}^{-}$	Acetic	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
Perchloric	$\mathrm{HClO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{ClO}_{4}^{-}$	Hydrosulfuric	$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$
Nitric	$\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$	Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}$	Hypochlorous	$\mathrm{HClO} \rightleftharpoons \mathrm{H}^{+}+\mathrm{ClO}^{-}$

Weak Acids

Weak acid is an acid that ionizes only partially in dilute aqueous solution. Acetic acid does not ionize completely. Weak acids produce fewer ions and thus cannot conduct electricity as well as strong acids.

Acid Strength and the Brønsted-Lowry Model

Consider the ionization of any strong acid, HX. Remember that the acid on the reactant side of the equation produces a conjugate base on the product side. Similarly, the base on the reactant side produces a conjugate acid.

STRENGTHS OF ACIDS AND BASES

Ionization Equilibrium for a Strong Acid

HX represents a strong acid and its conjugate base is weak. That is, HX is nearly 100% ionized because $\mathrm{H}_{2} \mathrm{O}$ is a stronger base (in the forward reaction) than is the conjugate base
 X^{-}(in the reverse reaction).

In other words, the ionization equilibrium lies almost completely to the right because the base $\mathrm{H}_{2} \mathrm{O}$ has a much greater attraction for the \mathbf{H}^{+}ion than does the base \mathbf{X}^{-}.

Think of this as the battle of the bases: Which of the two ($\mathrm{H}_{2} \mathrm{O}$ or X^{-}) has a greater attraction for the hydrogen ion? In the case of all strong acids, water is the stronger base.

Ionization Equilibrium for a Weak Acid

In the battle of the bases, the conjugate base \mathbf{Y}^{-}(in the reverse reaction) is stronger than the base $\mathrm{H}_{2} \mathrm{O}$ (in the forward reaction) and manages to capture the H^{+}ion.

In the case of acetic acid, the conjugate base $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{2}^{-}$(in the reverse reaction) has a stronger attraction for hydrogen ions than does the base $\mathrm{H}_{2} \mathrm{O}$ (in the forward reaction).

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

Acid Ionization Constants

Although the Brønsted-Lowry model helps explain acid strength, the model does not provide a quantitative way to express the strength of an acid or to compare the strengths of various acids. The equilibrium constant expression provides the quantitative measure of acid strength.

Consider hydrocyanic acid (HCN), also known as prussic acid which is used in dying, engraving, and tempering steel. The ionization equation and equilibrium constant expression for hydrocyanic acid are as follows.

$$
\begin{gathered}
\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \\
\mathrm{Keq}_{\mathrm{eq}}
\end{gathered}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

The concentration of liquid $\mathrm{H}_{2} \mathrm{O}$ in the denominator of the expression is constant in dilute aqueous solutions, so it can be combined with $\boldsymbol{K}_{\text {eq }}$ to give a new equilibrium constant, $\boldsymbol{K}_{\mathrm{a}}$.

$$
K_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=6.2 \times 10^{-10}
$$

STRENGTHS OF ACIDS AND BASES

$\boldsymbol{K}_{\mathrm{a}}$ is called the acid ionization constant. The acid ionization constant is the value of the equilibrium constant expression for the ionization of a weak acid.

The value of $\boldsymbol{K}_{\mathrm{a}}$ indicates whether reactants or products are favored at equilibrium. For weak acids, the concentrations of the ions (products) in the numerator tend to be small compared to the concentration of un-ionized molecules (reactant) in the denominator.

The weakest acids have the smallest K_{a} values because their solutions have the lowest concentrations of ions and the highest concentrations of un-ionized acid molecules.

Note that polyprotic acids are not necessarily strong acids for any of their ionizations. Each ionization of a polyprotic acid has a K_{a} value, and the values decrease for each successive ionization.

Strengths of Bases

What you have read about acids can be applied to bases, except that $\mathbf{O H}^{-}$ions, rather than \mathbf{H}^{+} ions, are involved. The conductivity of a base depends on the extent to which the base produces OH^{-}ions in aqueous solution.

Strong Bases

Strong base is a base that dissociates entirely into metal ions and hydroxide ions. Therefore, metallic hydroxides, such as sodium hydroxide $(\mathbf{N a O H})$, are strong bases.

$$
\mathrm{NaOH}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Some metallic hydroxides, such as calcium hydroxide $\left(\mathbf{C a}(\mathrm{OH})_{2}\right)$ have low solubility and thus are poor sources of OH^{-}ions. Note that the solubility product constant, $\boldsymbol{K}_{\text {sp }}$, for calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ is small, indicating that few OH^{-}ions are present in a saturated solution.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) K_{\mathrm{sp}}=6.5 \times 10^{-6}
$$

WATCH How to Memorize Strong Acids and Bases

Weak Bases

Weak base is a base that ionizes only partially in dilute aqueous solution.
Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ reacts with water to produce an equilibrium mixture of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ molecules, $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ions, and OH^{-}ions.

Inlibrary

STRENGTHS OF ACIDS AND BASES

This equilibrium lies far to the left because the base, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is weak and the conjugate base, OH^{-}, is strong. The hydroxide ion has a greater attraction for a hydrogen ion than has a molecule of methylamine.

Base Ionization Constants

The equilibrium constant provides a measure of the extent of the base's ionization. The equilibrium constant for the ionization of methylamine in water is defined by the following equilibrium constant expression.

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}
$$

The base ionization constant, $\boldsymbol{K}_{\mathbf{b}}$, is the value of the equilibrium constant expression for the ionization of a base. The smaller the value of K_{b}, the weaker the base.

Inlibrary

HYDROGEN IONS AND PH

Ion Product Constant for Water

pH and pOH are logarithmic scales that express the concentrations of hydrogen ions and hydroxide ions in aqueous solutions.

Writing K_{w}

Pure water contains equal concentrations of \mathbf{H}^{+}and $\mathbf{O H}^{-}$ions produced by self-ionization. The double arrow indicates that this is an equilibrium.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The Ion Product of Water

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

> In dilute aqueous solutions, the product of the concentrations of the hydrogen ion and the hydroxide ion equals K_{w}.

The expression for K_{w} is a special equilibrium constant expression that applies only to water. The ion product constant for water $\boldsymbol{K}_{\mathrm{w}}$ is the value of the equilibrium constant expression for the selfionization of water.

Experiments show that in pure water at $\mathbf{2 9 8} \mathrm{K},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are both equal to $1.0 \times 10^{-\mathbf{7}} \mathbf{~ M}$. Therefore,

$$
\begin{aligned}
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] & =\left(1.0 \times 10^{-7}\right)\left(1.0 \times 10^{-7}\right) \\
K_{\mathrm{w}} & =1.0 \times 10^{-14}
\end{aligned}
$$

K_{w} and Le Châtelier's Principle

Adding extra hydrogen ions to water at equilibrium is a stress on the system. The system reacts in a way to relieve the stress. The added H^{+}ions react with OH^{-}ions to form more water molecules. Thus, the concentration of OH^{-}ions decreases.

pH and pOH

Chemists express the concentration of hydrogen ions using a pH scale based on common logarithms.

$$
\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]
$$

The $\mathbf{p H}$ of a solution equals the negative logarithm of the hydrogen ion concentration.

Inlibrary

HYDROGEN IONS AND PH

At 298 K,

- acidic solutions have pH values below 7 .
- Basic solutions have pH values above 7.

The logarithmic nature of the pH scale means that a change of one pH unit represents a tenfold change in ion concentration. A solution having a pH of 3.0 has ten times the hydrogen ion concentration of a solution with a pH of 4.0.

$$
\mathbf{p O H}=-\log \left[\mathrm{OH}^{-}\right]
$$

The $\mathbf{p O H}$ of a solution equals the negative logarithm of the hydroxide ion concentration.

At 298 K,

- Basic solutions have pOH values below 7.

- acidic solutions have pOH values above 7.

As with the pH scale, a change of one pOH unit expresses a tenfold change in ion concentration.

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

The sum of pH and pOH is 14.00.

Molarity and the pH of Strong Acids

For all strong monoprotic acids, the concentration of the acid is the concentration of \mathbf{H}^{+}ions. Thus, you can use the molarity of the acid to calculate pH .

Every $\mathbf{H C l}$ molecule produces one \mathbf{H}^{+}ion. A bottle labeled $\mathbf{0 . 1} \mathbf{~ M ~ H C l}$ contains $\mathbf{0 . 1} \mathbf{~ m o l}$ of \mathbf{H}^{+}ions per liter and 0.1 mol of Cl^{-}ions per liter.

HYDROGEN IONS AND PH

Molarity and the pH of Strong Bases

Similarly, the $\mathbf{0 . 1} \mathbf{~ M}$ solution of the strong base $\mathbf{N a O H}$ is fully ionized.
Some strong bases, such as calcium hydroxide, $\mathbf{C a}(\mathbf{O H})_{2}$, contain two or more $\mathbf{O H}^{-}$ions in each formula unit. The concentration of OH^{-}ion in a solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is twice the molarity of the ionic compound.

Although strong acids and strong bases are completely ionized in dilute aqueous solutions, remember that weak acids and weak bases are only partially ionized. Therefore, you must use $\boldsymbol{K}_{\mathrm{a}}$ and $\boldsymbol{K}_{\mathrm{b}}$ values to determine the concentrations of H^{+}and OH^{-}ions in solutions of weak acids and bases.

Calculating K_{a} from pH

Suppose you measured the $\mathbf{p H}$ of a $\mathbf{0 . 1 0 0} \mathbf{M}$ solution of the weak acid $\mathbf{H F}$ and found it to be $\mathbf{3 . 2 0}$.

$$
\begin{aligned}
\mathrm{HF}(\mathrm{aq}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}
\end{aligned}
$$

From the pH , you could calculate $\left[\mathrm{H}^{+}\right]$. Then, for every mole per liter of \mathbf{H}^{+}ion there must be an equal concentration of \mathbf{F}^{-}ion. That means you know two of the variables in the $\boldsymbol{K}_{\mathrm{a}}$ expression.

The concentration of $\mathbf{H F}$ at equilibrium is equal to the initial concentration of the acid (0.100M) minus the moles per liter of $\mathbf{H F}$ that dissociated, which is equal to $\left[\mathrm{H}^{+}\right]$.

Measuring pH

All pH paper is treated with one or more substances called indicators that change color depending on the concentration of hydrogen ions in a solution. While litmus paper only indicates if a substance is an acid or a base, pH papers treated with several indicators can identify a range of pH values. Phenolphthalein is another example of an indicator.

When a strip of pH paper is dipped into an acidic solution or a basic solution, the color of the paper changes. To determine the pH , the new color of the paper is compared with standard pH colors on a chart.

The $\mathbf{p H}$ meter provides a more accurate measure of pH . When electrodes are placed in a solution, the meter gives a direct analog or digital readout of pH .

NEUTRALIZATION

Reactions Between Acids and Bases

In a neutralization reaction, an acid reacts with a base to produce a salt and water. When $\mathrm{Mg}(\mathrm{OH})_{2}$ and HCl react, a neutralization reaction occurs.

$$
\begin{aligned}
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) & +2 \mathrm{HCl}(\mathrm{aq}) \\
\text { Base } & +\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Acid } & \rightarrow \text { Salt }+ \text { Water }
\end{aligned}
$$

A salt is an ionic compound made up of a cation from a base and an anion from an acid. Neutralization is a double-replacement reaction.

Writing Neutralization Equations

When writing neutralization equations, you must know whether all of the reactants and products in the solution exist as molecules or as formula units.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Because HCl is a strong acid, NaOH a strong base, and NaCl a soluble salt, all three compounds exist as ions in an aqueous solution.

$$
\begin{aligned}
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq}) & +\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \\
\mathrm{Na}^{+}(\mathrm{aq}) & +\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

The chloride ion and the sodium ion appear on both sides of the equation, so they are spectator ions. They can be eliminated to obtain the net ionic equation for the neutralization of a strong acid by a strong base.

$$
\begin{gathered}
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

In an aqueous solution, a H^{+}ion exists as a $\mathrm{H}_{3} \mathrm{O}^{+}$ion.

Acid-base Titration

In the antacid reaction below, 1 mol of $\mathrm{Mg}(\mathrm{OH})_{2}$ neutralizes 2 mol of HCl .

$$
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

In the reaction of sodium hydroxide and hydrogen chloride, 1 mol of NaOH neutralizes 1 mol of HCl .

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

NEUTRALIZATION

Stoichiometry provides the basis for a procedure called titration (المعايرة), which is used to determine the concentrations of acidic and basic solutions. Titration is a method for determining the concentration of a solution by reacting a known volume of that solution with a solution of known concentration.

To find the concentration of an acid solution, you would titrate the acid solution with a solution of a base of known concentration.

Molarity Equation

$$
\frac{M_{1} V_{1}}{n_{1}}=\frac{M_{2} V_{2}}{n_{2}}
$$

Titration Procedure:

1. A measured volume of an acidic or basic solution of unknown concentration is placed in a beaker. The electrodes of a pH meter are immersed in this solution, and the initial pH of the solution is read and recorded.
2. A buret (سحاحة) is filled with the titrating solution of known concentration. This is called the standard solution, or titrant (محلول المعايرة).

3. Measured volumes of the standard solution are added slowly and mixed into the solution in the beaker. The pH is read and recorded after each addition.

This process continues until the reaction reaches the equivalence point, which is the point at which moles of \mathbf{H}^{+}ion from the acid equal moles of $\mathbf{O H}^{-}$ion from the base.

Strong-Strong Titration

The initial pH of the 0.100 M HCl is 1.00 . As NaOH is added, the acid is neutralized and the solution's pH increases gradually.

However, when nearly all of the H^{+}ions from the acid have been used up, the pH increases dramatically with the addition of an exceedingly small volume of NaOH .

This abrupt increase in pH occurs at the equivalence point of the titration. Beyond the equivalence point, the addition of more NaOH again results in a gradual increase in pH .

Inlibrary
2022-2023

NEUTRALIZATION

Strong-Weak Titration

Some titrations have equivalence points at pH values less than 7, and some have equivalence points at pH values greater than 7. These differences occur because of reactions between the newly formed salts and water.

The figure shows that the equivalence point for the titration of methanoic acid (a weak acid) with sodium hydroxide (a strong base) lies between pH 8 and pH 9.

Acid-base Indicators

Acid-base indicators are chemical dyes whose colors are affected by acidic and basic solutions. Chemists often use a chemical dye rather than a pH meter to detect the equivalence point of an acidbase titration.

The familiar dark color of tea becomes lighter when lemon juice is added. A substance contained in tea is an indicator.

Most indicators are large molecules that act as weak acids. Slight differences in bonding patterns when an indicator molecule is ionized
 or un-ionized account for the color changes.

Many of the indicators used by chemists are shown in the figure above. Bromthymol blue is a good choice for a titration of a strong acid with a strong base, and phenophthalein changes color at the equivalence point of a titration of a weak acid with a strong base.

Inlibrary

NEUTRALIZATION

Indicators and Titration End Point

Many indicators used for titration are weak acids. Each has its own particular pH or pH ranges over which it changes color.

The end point of the titration is the point at which the indicator used in a titration changes color. It is important to choose an indicator for a titration that will change color at the equivalence point of the titration.

Calculating Molarity

The balanced equation for a titration reaction is the key to calculating the unknown molarity. For example, sulfuric acid is titrated with sodium hydroxide according to this equation.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

From the equation, you know that the mole ratio of NaOH to $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 2:1. Two moles of NaOH are required to neutralize 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Use the molarity equation to find the unknown.

Molarity Equation

$$
\frac{M_{1} V_{1}}{n_{1}}=\frac{M_{2} V_{2}}{n_{2}}
$$

Salt Hydrolysis

Many salts react with water in a process known as salt hydrolysis. In salt hydrolysis,

- the anions of the dissociated salt accept hydrogen ions from water
- or the cations of the dissociated salt donate hydrogen ions to water.

The indicator bromthymol blue provides surprising results when added to three solutions of ionic salts.

- NaNO_{3} turns the indicator green, the solution is neutral.
- KF turns the indicator blue, the solution is basic.

- $\mathrm{NH}_{4} \mathrm{Cl}$ turns the indicator yellow, the solution is acidic.

Salts that Produce Basic Solutions

Potassium fluoride is the salt of a strong base (KOH) and a weak acid (HF).

NEUTRALIZATION

$$
\mathrm{KF}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

The \mathbf{K}^{+}ions do not react with water, but the $\mathbf{F}^{\mathbf{+}}$ ion is a weak $\mathrm{Br} \varnothing$ nsted-Lowry base. Some fluoride ions establish this equilibrium with water.

$$
\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Hydrogen fluoride molecules and $\mathbf{O H}^{-}$ions are produced. The production of the $\mathbf{O H}^{-}$ions makes the solution basic.

Salts that Produce Acidic Solutions

$\mathrm{NH}_{4} \mathrm{Cl}$ is the salt of a weak base $\left(\mathrm{NH}_{3}\right)$ and a strong acid (HCl).

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

The Cl^{-}ions do not react with water, but the $\mathbf{N H}_{4}{ }^{+}$ion is a weak $\mathrm{Br} \varnothing$ nsted-Lowry acid. Ammonium ions react with water molecules to establish this equilibrium.

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Ammonia molecules and hydronium ions are produced. The presence of hydronium ions makes the solution acidic.

Salts that Produce Neutral Solutions

Sodium nitrate $\left(\mathrm{NaNO}_{3}\right)$ is the salt of a strong acid $\left(\mathrm{HNO}_{3}\right)$ and a strong base (NaOH). Little or no salt hydrolysis occurs because neither Na^{+}nor $\mathrm{NO}_{3}{ }^{-}$react with water. Therefore, a solution of sodium nitrate is neutral.

Buffer solutions and their applications are not required for the EOT2 exam this year.

Inlibrary

CHAPTER 3

ACIDS AND BASES
 C H A P T E R S U M M A R Y

Resources

- Acids and Bases, from Glencoe Chemistry: Matter and Change ©(2017

THIS FILE IS FOR EDUCATIONAL PURPOSES ONLY.

This file is under Fair Use:

Copyright Disclaimer under section 107 of the Copyright Act of 1976, allowance is made for "fair use" for purposes such as criticism, comment, news reporting, teaching, scholarship, education and research. Fair use is a use permitted by copyright statute that might otherwise be infringing.

All rights and credit go directly to Its rightful owners. No copyright infringement Intended.

Related Files:

Chemistry Student Book T2 2022-2023
[https://t.me/Intibrary/1496]

Chemistry Teacher Guide T2 2022-2023
[https://t.me/InLibrary/1510]

Lesson 3.4 Summary 2022-2023
[https://t.me/InLibrary/1567]

Chemistry Student Book AR T2 2022-2023
[https://t.me/InLibrary/1489]

Chemistry Teacher Guide AR T2 2022-2023
[https://t.me/InLibrary/1503]

