\therefore

 Chapter 3
 Acids and Bases
 Revision Paper
 SECTION 1: INTRODUCTIONTO ACIDS AND BASES SECTION 2: STRENGTHS OF ACIDS AND BASES SECTION 3: HYDROGEN IONS AND PH SECTION 4: NEUTRALIZATION

Introduction to Acids and Bases

Chapter 3
Lesson 1-Revision Paper

$\therefore \sqrt[2]{6}$
مكتبة الفكــر

Section Summary

- The concentrations of hydrogen ions and hydroxide ions determine whether an aqueous solution is acidic, basic, or neutral.
- An Arrhenius acid must contain an ionizable hydrogen atom. An Arrhenius base must contain an ionizable hydroxide group.
- A Brønsted-Lowry acid is a hydrogen ion donor. A Brønsted-Lowry base is a hydrogen ion acceptor.
- A Lewis acid accepts an electron pair. A Lewis base donates an electron pair.

Page 88
3.1 Introduction to Acids and Bases

Applications 1

Write balanced equations for the reactions between the following.
a) aluminum and sulfuric acid
b) calcium carbonate and hydrobromic acid

Page 89
3.1 Introduction to Acids and Bases

Applications 1

Write balanced equations for the reactions between the following.
a) aluminum and sulfuric acid

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

b) calcium carbonate and hydrobromic acid

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{CaBr} 2(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Page 89
3.1 Introduction to Acids and Bases

Applications 2

CHALLENGE Write the net ionic equation for this reaction.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{CaBr} 2(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Page 89
3.1 Introduction to Acids and Bases

(

Applications 2

CHALLENGE Write the net ionic equation for this reaction.

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{CaBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \\
& \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{CO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

Page 89
3.1 Introduction to Acids and Bases

Applications 3

Identify the conjugate acid-base pairs in each reaction.
a. $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $\mathrm{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
c. $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Page 94
3.1 Introduction to Acids and Bases

Applications 3

Identify the conjugate acid-base pairs in each reaction.
a. $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $\mathrm{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
c. $\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Acid	Conjugate base	Base	Conjugate acid
a. $\mathrm{NH}_{4}{ }^{+}$	NH_{3}	OH^{-}	$\mathrm{H}_{2} \mathrm{O}$
b. HBr	Br^{-}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}$
c. $\mathrm{H}_{2} \mathrm{O}$	OH^{-}	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{HCO}_{3}{ }^{-}$

Page 94
3.1 Introduction to Acids and Bases

Figure 7
Which species is the conjugate base of hydrogen fluoride.

a) HF
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) F^{-}

Page 93
3.1 Introduction to Acids and Bases

Figure 7
Which species is the conjugate base of hydrogen fluoride.

a) HF
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{H}_{3} \mathrm{O}^{+}$
d) F^{-}

Page 93
3.1 Introduction to Acids and Bases

Applications 4

CHALLENGE The products of an acid-base reaction are $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{SO}_{4}{ }^{2-}$. Write a balanced equation for the reaction and identify the conjugate acid-base pairs.

Page 94
3.1 Introduction to Acids and Bases

Applications 4

CHALLENGE The products of an acid-base reaction are $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{SO}_{4}{ }^{2-}$. Write a balanced equation for the reaction and identify the conjugate acid-base pairs.
$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$.
Reactant base: $\mathrm{H}_{2} \mathrm{O}$; conjugate acid: $\mathrm{H}_{3} \mathrm{O}^{+}$
Reactant acid: $\mathrm{HSO}_{4}{ }^{-}$; conjugate base: $\mathrm{SO}_{4}{ }^{2-}$

Page 94
3.1 Introduction to Acids and Bases

Review 5

Many Lewis acids and bases are not classified as Arrhenius or BrenstedLowry acids and bases because Lewis acids are electron pair \qquad and Lewis bases are \qquad .
a) donors - electron pair acceptors
b) acceptors - electron pair receivers
c) acceptors - electron pair donors
d) acceptors - proton pair acceptors

Page 97
3.1 Introduction to Acids and Bases

Review 5

Many Lewis acids and bases are not classified as Arrhenius or BrenstedLowry acids and bases because Lewis acids are electron pair \qquad and Lewis bases are \qquad .
a) donors - electron pair acceptors
b) acceptors - electron pair receivers
c) acceptors - electron pair donors
d) acceptors - proton pair acceptors

Page 97
3.1 Introduction to Acids and Bases

Review 6

Which is not a property of acids?
a) taste sour
b) turn litmus paper blue
c) react with some metals to produce hydrogen gas
d) react with carbonates to produce carbon dioxide

Page 97
3.1 Introduction to Acids and Bases

Review 6

Which is not a property of acids?
a) taste sour
b) turn litmus paper blue
c) react with some metals to produce hydrogen gas
d) react with carbonates to produce carbon dioxide

Page 97
3.1 Introduction to Acids and Bases

Review 6

Which is not a property of bases?
a) taste bitter
b) conduct electricity
c) feel slippery
d) react with some metals to produce hydrogen gas

Page 97
3.1 Introduction to Acids and Bases

Review 6

Which is not a property of bases?
a) taste bitter
b) conduct electricity
c) feel slippery
d) react with some metals to produce hydrogen gas

Page 97
3.1 Introduction to Acids and Bases

0

Review 7

Which is true about an acidic solution?
a) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
b) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
d) feel slippery

Page 97
3.1 Introduction to Acids and Bases

Review 7

Which is true about an acidic solution?
a) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
b) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
d) feel slippery

Page 97
3.1 Introduction to Acids and Bases

Review 8

EXPLAIN why many compounds that contain one or more hydrogen atoms are not classified as Arrhenius acids.

Page 97
3.1 Introduction to Acids and Bases

(

Review 8

EXPLAIN why many compounds that contain one or more hydrogen atoms are not classified as Arrhenius acids.

Only compounds that have one or more ionizable hydrogen atom are Arrhenius acids. An ionizable hydrogen atom is an atom that is bonded to an electronegative element such as oxygen.

If the electronegativity difference between the hydrogen atom and the other element in the compound is low, then the compound is nonpolar and its not an acid.

Page 97
3.1 Introduction to Acids and Bases

Review 9

Identify the conjugate acid-base pairs in the following equation. $\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Page 97
3.1 Introduction to Acids and Bases

Review 9

Identify the conjugate acid-base pairs in the following equation.

$$
\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

HNO_{2} (acid) and $\mathrm{NO}_{2}{ }^{-}$(conjugate base); $\mathrm{H}_{2} \mathrm{O}$
(base) and $\mathrm{H}_{3} \mathrm{O}^{+}$(conjugate acid)

Page 97
3.1 Introduction to Acids and Bases

0

Review 10

Write the Lewis structure for phosphorus trichloride (PCl_{3}). Is PCl_{3} a Lewis acid, a Lewis base, or neither?

Page 97
3.1 Introduction to Acids and Bases

0

Review 10

Write the Lewis structure for phosphorus trichloride (PCl_{3}). Is PCl_{3} a Lewis acid, a Lewis base, or neither?

Phosphorus in PCl_{3} has three electrons, which it shares with three chlorine atoms, and an unshared pair of electrons. The unshared pair can act as Lewis base

Page 97
3.1 Introduction to Acids and Bases

Review 11

In the accompanying structural formula, identify any hydrogen atoms that are likely to be ionizable.

Page 97
3.1 Introduction to Acids and Bases

Review 11

In the accompanying structural formula, identify any hydrogen atoms that are likely to be ionizable.

The two hydrogen atoms attached to oxygen atoms are ionizable.

Page 97
3.1 Introduction to Acids and Bases

Mastering Concepts 55

Which is true about a basic solution?
a) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
b) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
d) Taste sour

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 55

Which is true about a basic solution?
a) $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
b) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
d) Taste sour

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 56

Write a balanced chemical equation that represents the self-ionization of water.

Page 126
3.1 Introduction to Acids and Bases

0

Mastering Concepts 56

Write a balanced chemical equation that represents the self-ionization of water.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 57

Classify each compounds as an Arrhenius acid or an Arrhenius base.
a) $\mathrm{H}_{2} \mathrm{~S}$
b) RbOH
c) $\mathrm{Mg}(\mathrm{OH})_{2}$
d) $\mathrm{H}_{3} \mathrm{PO}_{4}$

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 57

Classify each compounds as an Arrhenius acid or an Arrhenius base.
a) $\mathrm{H}_{2} \mathrm{~S} \quad$ Acid
b) RbOH

Base
c) $\mathrm{Mg}(\mathrm{OH})_{2}$ Base
d) $\mathrm{H}_{3} \mathrm{PO}_{4} \quad$ Acid

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 58

GEOLOGY When a geologist adds a few drops of HCl to a rock, gas bubbles form. What might the geologist conclude about the nature of the gas and the rock?
a) The gas is carbon dioxide, CO_{2}; the rock is limestone.
b) The gas is hydrogen, H_{2}; the rock is limestone.
c) The gas is water vapor, $\mathrm{H}_{2} \mathrm{O}$; the rock is limestone.
d) Not enough information.

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 58

GEOLOGY When a geologist adds a few drops of HCl to a rock, gas bubbles form. What might the geologist conclude about the nature of the gas and the rock?
a) The gas is carbon dioxide, CO_{2}; the rock is limestone.
b) The gas is hydrogen, H_{2}; the rock is limestone.
c) The gas is water vapor, $\mathrm{H}_{2} \mathrm{O}$; the rock is limestone.
d) Not enough information.

The gas is carbon dioxide, CO_{2}; the rock is limestone, or calcium carbonate, CaCO_{3}.

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 6o

Which is true of the following?
a) A monoprotic acid can donate two H^{+}ion, (HCl).
b) A diprotic acid can donate two H^{+}ions, $\left(\mathrm{H}_{3} \mathrm{CO}_{4}\right)$.
c) A triprotic acid can donate three H^{+}ions, $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$.
d) A monoprotic acid can donate one H^{+}ion, $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 6o

Which is true of the following?
a) A monoprotic acid can donate two H^{+}ion, (HCl).
b) A diprotic acid can donate two H^{+}ions, $\left(\mathrm{H}_{3} \mathrm{CO}_{4}\right)$.
c) A triprotic acid can donate three H^{+}ions, $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$.
d) A monoprotic acid can donate one H^{+}ion, $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 61

Why can H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$be used interchangeably in chemical equations?

Page 126
3.1 Introduction to Acids and Bases

(\$)

Mastering Concepts 61

Why can H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$be used interchangeably in chemical equations?
$\mathrm{H}_{3} \mathrm{O}^{+}$is a hydrated hydrogen ion. The hydronium ion is a hydrogen ion that has a water molecule attached to it by a covalent bond.

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 62

Use the symbols <, > and = to express the relationship between the concentrations of \mathbf{H}^{+}ions and OH^{-}ions in acidic, neutral, and basic solutions.

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 62

Use the symbols <, > and = to express the relationship between the concentrations of \mathbf{H}^{+}ions and OH^{-}ions in acidic, neutral, and basic solutions.
acidic: $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$; neutral: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$; basic:
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 63

Choose the best answer that completes the table.

Model	Acid Definition	Base Definition
b.	H^{+}producer	OH^{-}producer
c.	H^{+}donor	H^{+}acceptor
a.	electron-pair acceptor	electron-pair donor

a) (a) Arrhenius - (b) Lewis - (c) Brønsted-Lowry
b) (a) Brønsted-Lowry - (b) Lewis - (c) Arrhenius
c) (a) Brønsted-Lowry - (b) Arrhenius - (c) Lewis
d) (a) Lewis - (b) Arrhenius - (c) Brønsted-Lowry

Page 126
3.1 Introduction to Acids and Bases

Mastering Concepts 63

Choose the best answer that completes the table.

Model	Acid Definition	Base Definition
b.	H^{+}producer	OH^{-}producer
c.	H^{+}donor	H^{+}acceptor
a.	electron-pair acceptor	electron-pair donor

a) (a) Arrhenius - (b) Lewis - (c) Brønsted-Lowry
b) (a) Brønsted-Lowry - (b) Lewis - (c) Arrhenius
c) (a) Brønsted-Lowry - (b) Arrhenius - (c) Lewis
d) (a) Lewis - (b) Arrhenius - (c) Brønsted-Lowry

Page 126
3.1 Introduction to Acids and Bases

Mastering Problems 64

Write a balanced chemical equation for each of the following.
a) the dissociation of solid magnesium hydroxide in water
b) the reaction of magnesium metal and hydrobromic acid

Page 126
3.1 Introduction to Acids and Bases

Mastering Problems 64

Write a balanced chemical equation for each of the following.
a) the dissociation of solid magnesium hydroxide in water

$$
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

b) the reaction of magnesium metal and hydrobromic acid

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgBr}_{2}(\mathrm{aq})
$$

Page 126
3.1 Introduction to Acids and Bases

(2)

Mastering Problems 64
 Write a balanced chemical equation for each of the following.

c) the ionization of propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$ in water
d) the second ionization of sulfuric acid in water

Page 126
3.1 Introduction to Acids and Bases

0

Mastering Problems 64

Write a balanced chemical equation for each of the following.
c) the ionization of propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$ in water

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(\mathrm{aq})$

d) the second ionization of sulfuric acid in water

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

Page 126
3.1 Introduction to Acids and Bases

Mixed Review 97

Which of the following are polyprotic acids? Write successive ionization equations for the polyprotic acids in water.
a. $\mathrm{H}_{3} \mathrm{BO}_{3}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. HNO_{3}
d. $\mathrm{H}_{2} \mathrm{SeO}_{3}$

Page 128
3.1 Introduction to Acids and Bases

Mixed Review 97

Which of the following are polyprotic acids? Write successive ionization equations for the polyprotic acids in water.
a. $\mathrm{H}_{3} \mathrm{BO}_{3}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. HNO_{3}
d. $\mathrm{H}_{2} \mathrm{SeO}_{3}$

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{BO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{H}_{2} \mathrm{BO}_{3}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HBO}_{3}{ }^{2-}(\mathrm{aq}) \\
& \mathrm{HBO}_{3}{ }^{2-}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{BO}_{3}^{3-}(\mathrm{aq}) \\
& \mathrm{H}_{2} \mathrm{SeO}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HSeO}_{3}^{-}(\mathrm{aq}) \\
& \mathrm{HSeO}_{3}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SeO}_{3}{ }^{2-}(\mathrm{aq})
\end{aligned}
$$

Page 128
3.1 Introduction to Acids and Bases

Mixed Review 98

Write balanced chemical equations for the two successive ionizations of carbonic acid in water. Identify the conjugate-base pair in each of the equations.

Page 128
3.1 Introduction to Acids and Bases

0

Mixed Review 98

Write balanced chemical equations for the two successive ionizations of carbonic acid in water. Identify the conjugate-base pair in each of the equations.
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right) /$ conjugate base $\left(\mathrm{HCO}_{3}{ }^{-}\right.$); base $\left(\mathrm{H}_{2} \mathrm{O}\right)$ / conjugate acid $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}$
acid $\left(\mathrm{HCO}_{3}{ }^{-}\right) /$conjugate base $\left(\mathrm{CO}_{3}{ }^{2-}\right)$; base ($\mathrm{H}_{2} \mathrm{O}$)/ conjugate acid ($\mathrm{H}_{3} \mathrm{O}^{+}$)

Page 128
3.1 Introduction to Acids and Bases

Think Critically 104

Which is not a counterexample for the following statement: "A substance whose chemical formula contains a hydroxyl group must be considered to be a base."?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b) NaOH
c) NH_{3}
d) $\mathrm{CH}_{3} \mathrm{COOH}$

Page 128
3.1 Introduction to Acids and Bases

Think Critically 104

Which is not a counterexample for the following statement: "A substance whose chemical formula contains a hydroxyl group must be considered to be a base."?
a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
b) NaOH
c) NH_{3}
d) $\mathrm{CH}_{3} \mathrm{COOH}$

Page 128
3.1 Introduction to Acids and Bases

Think Critically 107

Identify the Lewis acids and bases in the following reactions.
a. $\mathrm{H}^{+}+\mathrm{OH}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{Cl}^{-}+\mathrm{BCl}_{3} \leftrightarrow \mathrm{BCl}_{4}^{-}$
c. $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$

Page 128
3.1 Introduction to Acids and Bases

Think Critically 107

Identify the Lewis acids and bases in the following reactions.
a. $\mathrm{H}^{+}+\mathrm{OH}^{-} \leftrightarrow \mathrm{H}_{2} \mathrm{O}$
a. Lewis acids: H^{+}and $\mathrm{H}_{2} \mathrm{O}$; Lewis base: OH^{-}
b. $\mathrm{Cl}^{-}+\mathrm{BCl}_{3} \leftrightarrow \mathrm{BCl}_{4}^{-}$
b. Lewis acid: BCl_{3}; Lewis bases: $\mathrm{Cl}^{-}, \mathrm{BCl}_{4}^{-}$
c. $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
c. :Lewis acid: SO_{3}; Lewis base: $\mathrm{H}_{2} \mathrm{O}$

Page 128
3.1 Introduction to Acids and Bases

Think Critically 110

Salicylic acid, shown in the figure, is used to manufacture acetylsalicylic acid, commonly known as aspirin. Evaluate the hydrogen atoms in the salicylic acid molecule based on your knowledge about the ionizable hydrogen in the acetic acid molecule, $\mathrm{CH}_{3} \mathrm{COOH}$. Predict which of salicylic acid's hydrogen atoms is likely to be ionizable.

Page 128
3.1 Introduction to Acids and Bases

Think Critically 110

Salicylic acid, shown in the figure, is used to manufacture acetylsalicylic acid, commonly known as aspirin. Evaluate the hydrogen atoms in the salicylic acid molecule based on your knowledge about the ionizable hydrogen in the acetic acid molecule, $\mathrm{CH}_{3} \mathrm{COOH}$. Predict which of salicylic acid's hydrogen atoms is likely to be ionizable.

Only the hydrogen atom in the COOH group is likely to be ionizable.

Page 128
3.1 Introduction to Acids and Bases

Strengths of Acids and Bases

Chapter 3

Lesson 2 - Revision Paper
$\therefore \underbrace{2}_{3}$
مكتبة الفكــر

Section Summary

- In solution, strong acids and bases ionize completely, but weak acids and bases ionize only partially.
- For weak acids and weak bases, the value of the acid or base ionization constant is a measure of the strength of the acid or base.
- Strong acids and strong bases are completely ionized in a dilute aqueous solution. Weak acids and weak bases are partially ionized in a dilute aqueous solution.

Page 98
3.2 Strengths of Acids and Bases

Figure 12

Explain the difference in the brightness of the bulbs in terms of the concentration of ions in solution.
a) It is brighter when the solution contains less ions.
b) It is brighter when the solution contains positive ions.
c) It is brighter when the solution contains more ions.
d) It is brighter when the solution contains negative ions.

Page 99
3.2 Strengths of Acids and Bases

0

Figure 12

Explain the difference in the brightness of the bulbs in terms of the concentration of ions in solution.
a) It is brighter when the solution contains less ions.
b) It is brighter when the solution contains positive ions.
c) It is brighter when the solution contains more ions.
d) It is brighter when the solution contains negative ions.

Page 99
3.2 Strengths of Acids and Bases

Reading Check

Which of the following is true?
a) The conjugate base of a strong acid is very strong.
b) The conjugate acid of a strong base is very strong.
c) The conjugate base of a strong acid is very weak.
d) The conjugate acid of a strong base is very strong.

Page 100
3.2 Strengths of Acids and Bases

Reading Check

Which of the following is true?
a) The conjugate base of a strong acid is very strong.
b) The conjugate acid of a strong base is very strong.
c) The conjugate base of a strong acid is very weak.
d) The conjugate acid of a strong base is very strong.

القاعدة المرافقة للحمض القوي تكون ضعيفة جـدا، ولذلـك قدرتها على جذب أيـون هيدروجين
 في سـبيل الحصول على الهيدروجين.

Page 100
3.2 Strengths of Acids and Bases

Applications 12

Write ionization equations and acid ionization constant expressions for, a. HClO_{2}

b. HNO_{2}

c. HIO

Page 101
3.2 Strengths of Acids and Bases

Applications 12

Write ionization equations and acid ionization constant expressions for,
a. HClO_{2}

$$
\mathrm{HClO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{ClO}_{2}\right]}{\left[\mathrm{HClO}_{2}\right]}
$$

b. HNO_{2}

$$
\begin{aligned}
& \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}
\end{aligned}
$$

c. HIO

$$
\begin{aligned}
& \mathrm{HIO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{IO}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{IO}-]}{[\mathrm{HIO}]}
\end{aligned}
$$

Page 101
3.2 Strengths of Acids and Bases

Applications 13

Write the first and second ionization equations for $\mathrm{H}_{2} \mathrm{SeO}_{3}$.

Page 101
3.2 Strengths of Acids and Bases

د (1)

Applications 13

Write the first and second ionization equations for $\mathrm{H}_{2} \mathrm{SeO}_{3}$.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SeO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HSeO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
& \mathrm{HSeO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{SeO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

Page 101
3.2 Strengths of Acids and Bases

0

Applications 14

CHALLENGE Given the expression below, write the balanced equation for the corresponding reaction.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{ASO}_{4}{ }^{3-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HAsO}_{4}{ }^{2-}\right]}
$$

Page 101
3.2 Strengths of Acids and Bases

0

Applications 14

CHALLENGE Given the expression below, write the balanced equation for the corresponding reaction.

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{ASO}_{4}{ }^{3-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HAsO}_{4}^{2-}\right]} \\
\mathrm{HAsO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{AsO}_{4}^{3-}
\end{gathered}
$$

Page 101
3.2 Strengths of Acids and Bases

Applications 15

Write ionization equations and base ionization constant expressions for the following bases.
a. hexylamine $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{2}\right)$
b. propylamine $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}\right)$

Page 103
3.2 Strengths of Acids and Bases

0

Applications 15

Write ionization equations and base ionization constant expressions for the following bases.
a. hexylamine $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{2}\right)$

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+ \\
& \mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NH}_{2}\right]}
$$

b. propylamine $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}\right)$

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+ \\
& \mathrm{OH}^{-}(\mathrm{aq}) \\
& K_{\mathrm{b}}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}\right]}
\end{aligned}
$$

Page 103
3.2 Strengths of Acids and Bases

Applications 15

Write ionization equations and base ionization constant expressions for the following bases.
c. carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)$
d. hydrogen sulfite ion $\left(\mathrm{HSO}_{3}{ }^{-}\right)$

Page 103
3.2 Strengths of Acids and Bases

0

Applications 15

Write ionization equations and base ionization constant expressions for the following bases.
c. carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)$

$$
\begin{aligned}
& \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HCO}^{3-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& K_{\mathrm{b}}=\frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CO}_{3}^{2-}\right]}
\end{aligned}
$$

d. hydrogen sulfite ion $\left(\mathrm{HSO}_{3}{ }^{-}\right)$

$$
\begin{aligned}
& \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& K_{\mathrm{b}}=\frac{\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HSO}_{3}^{-}\right]}
\end{aligned}
$$

Page 103
3.2 Strengths of Acids and Bases

Applications 16

CHALLENGE Write an equation for a base equilibrium in which the base in the forward reaction is $\mathrm{PO}_{4}{ }^{3-}$ and the base in the reverse reaction is OH^{-}.

Page 103
3.2 Strengths of Acids and Bases

(

Applications 16

CHALLENGE Write an equation for a base equilibrium in which the base in the forward reaction is $\mathrm{PO}_{4}{ }^{3-}$ and the base in the reverse reaction is OH^{-}.

$$
\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Page 103
3.2 Strengths of Acids and Bases

0

Review 17

Which is true about the contents of dilute aqueous solutions of the strong acid HI and the weak acid HCOOH ?
I. The solution of HI contains only $\mathrm{H}_{3} \mathrm{O}^{+}$and I ' ions and water molecules.
II. The solution of HCOOH contains $\mathrm{H}_{3} \mathrm{O}^{+}$and HCOO^{-}ions, and HCOOH and $\mathrm{H}_{2} \mathrm{O}$ molecules.
III. The solution of HI contains $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{I}^{-}$ions and HI and water molecules.
IV. The solution of HCOOH contains only $\mathrm{H}_{3} \mathrm{O}^{+}$and HCOO^{-}ions, and H 2 O molecules.
a) I and II
b) III and IV
c) II and III
d) I and IV

Page 103
3.2 Strengths of Acids and Bases

Review 17

Which is true about the contents of dilute aqueous solutions of the strong acid HI and the weak acid HCOOH ?
I. The solution of HI contains only $\mathrm{H}_{3} \mathrm{O}^{+}$and I ' ions and water molecules.
II. The solution of HCOOH contains $\mathrm{H}_{3} \mathrm{O}^{+}$and HCOO^{-}ions, and HCOOH and $\mathrm{H}_{2} \mathrm{O}$ molecules.
III. The solution of HI contains $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{I}^{-}$ions and HI and water molecules.
IV. The solution of HCOOH contains only $\mathrm{H}_{3} \mathrm{O}^{+}$and HCOO^{-}ions, and $\mathrm{H}_{2} \mathrm{O}$ molecules.
a) I and II
b) III and IV
c) II and III
d) I and IV

Page 103
3.2 Strengths of Acids and Bases

Review 18

Which of the following is true?
a) The weaker the acid is, the weaker its conjugate base.
b) The weaker the base is, the weaker its conjugate acid.
c) The stronger the acid is, the stronger its conjugate base.
d) The weaker the acid is, the stronger its conjugate base.

Page 103
3.2 Strengths of Acids and Bases

Review 18

Which of the following is true?
a) The weaker the acid is, the weaker its conjugate base.
b) The weaker the base is, the weaker its conjugate acid.
c) The stronger the acid is, the stronger its conjugate base.
d) The weaker the acid is, the stronger its conjugate base.

The stronger the acid is, the weaker its conjugate base. The weaker the acid is, the stronger its conjugate base.

Page 103
3.2 Strengths of Acids and Bases

Review 19

Identify the conjugate acid-base pairs in each equation.
a. $\mathrm{HCOOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HCOO}^{-}(\mathrm{aq})+$ $\mathrm{H}_{3} \mathrm{O}^{+}$(aq)
b. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Page 103
3.2 Strengths of Acids and Bases

Review 19

Identify the conjugate acid-base pairs in each equation.
a. $\mathrm{HCOOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{HCOO}^{-}(\mathrm{aq})+$ $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
acid: HCOOH ; conjugate base: HCOO^{-}; base: $\mathrm{H}_{2} \mathrm{O}$; conjugate acid: $\mathrm{H}_{3} \mathrm{O}^{+}$;
b. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ acid: $\mathrm{H}_{2} \mathrm{O}$; conjugate base: OH^{-}; base: NH_{3}; conjugate acid: $\mathrm{NH}_{4}{ }^{+}$

Page 103
3.2 Strengths of Acids and Bases

Review 20

Explain what the K_{b} for aniline tells you. $\left(K_{\mathrm{b}}=4.3 \times 1 \mathbf{1 0}^{\mathbf{- 1 0}}\right)$.
a) The size of aniline's K_{b} indicates that aniline is a strong base.
b) The size of aniline's K_{b} indicates that aniline is a weak acid.
c) The size of aniline's K_{b} indicates that aniline is a strong acid.
d) The size of aniline's K_{b} indicates that aniline is a weak base.

Page 103
3.2 Strengths of Acids and Bases

Review 20

Explain what the K_{b} for aniline tells you. $\left(K_{\mathrm{b}}=4.3 \times 1 \mathbf{1 0}^{\mathbf{- 1 0}}\right)$.
a) The size of aniline's K_{b} indicates that aniline is a strong base.
b) The size of aniline's K_{b} indicates that aniline is a weak acid.
c) The size of aniline's K_{b} indicates that aniline is a strong acid.
d) The size of aniline's K_{b} indicates that aniline is a weak base.

The size of aniline's K_{b} indicates that aniline is a weak base.

Page 103
3.2 Strengths of Acids and Bases

Review 21

Use the data in the table to put the seven acids in order according to increasing electrical conductivity.

Ionization Equation	$K_{a}(298 \mathrm{~K})$
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$	8.9×10^{-8}
$\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}$	1×10^{-19}
$\mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-}$	6.3×10^{-4}
$\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}$	6.2×10^{-10}
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-}$	4.5×10^{-7}
$\mathrm{HCO}_{3}{ }^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$	4.7×10^{-11}

Page 103
3.2 Strengths of Acids and Bases

Review 21

Use the data in the table to put the seven acids in order according to increasing electrical conductivity.

$\mathrm{HS}^{-}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCOOH}, \mathrm{HF}$

Ionization Equation	$K_{\mathrm{a}}(\mathbf{2 9 8} \mathrm{K})$
$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$	8.9×10^{-8}
$\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}$	1×10^{-19}
$\mathrm{HF} \rightleftharpoons \mathrm{H}^{+}+\mathrm{F}^{-}$	6.3×10^{-4}
$\mathrm{HCN} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CN}^{-}$	6.2×10^{-10}
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$	1.8×10^{-5}
$\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}{ }^{-}$	4.5×10^{-7}
$\mathrm{HCO}_{3}{ }^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$	4.7×10^{-11}

Page 103
3.2 Strengths of Acids and Bases

Mastering Concepts 65

Explain the difference between a strong acid and a weak acid in dilute aqueous solution.

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Concepts 65

Explain the difference between a strong acid and a weak acid in dilute aqueous solution.

In dilute aqueous solution,

- a strong acid ionizes completely;
- a weak acid ionizes slightly.

Page 126
3.2 Strengths of Acids and Bases

(

Mastering Concepts 66

\qquad are used for weak acids, which are partially ionized in water and create equilibria. \qquad are used for strong acids, which may be considered to be 100% ionized in dilute aqueous solutions.
a) Reaction arrows - Equilibrium arrows
b) Straight arrows - Equilibrium arrows
c) Equilibrium arrows - Reaction arrows
d) Reaction arrows - Straight arrows

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Concepts 66

\qquad are used for weak acids, which are partially ionized in water and create equilibria. \qquad are used for strong acids, which may be considered to be 100% ionized in dilute aqueous solutions.
a) Reaction arrows - Equilibrium arrows
b) Straight arrows - Equilibrium arrows
c) Equilibrium arrows - Reaction arrows
d) Reaction arrows - Straight arrows

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Concepts 67

Which of the following can be true about the solutions inside the beakers?
a) (A) $\mathrm{HCl} \quad-$ (B) HF
b) (A) $\mathrm{H}_{2} \mathrm{SO}_{4}-(B) \mathrm{HClO}_{4}$
c) (A) $\mathrm{NaOH} \quad-$ (B) NH_{3}
d) (A) $\mathrm{NH}_{3} \quad-$ (B) HNO_{3}

(B)

Page 126
3.2 Strengths of Acids and Bases

Mastering Concepts 67

Which of the following can be true about the solutions inside the beakers?
a) $(A) \mathrm{HCl} \quad-(B) \mathrm{HF}$
b) (A) $\mathrm{H}_{2} \mathrm{SO}_{4} \quad-(B) \mathrm{HClO}_{4}$
c) (A) $\mathrm{NaOH} \quad-$ (B) NH_{3}
d) (A) $\mathrm{NH}_{3} \quad-(B) \mathrm{HNO}_{3}$

Beaker (A) has a weak acid/base. Beaker (B) has a strong acid/base.

Page 126
3.2 Strengths of Acids and Bases

Mastering Concepts 68

How would you compare the strengths of two weak acids experimentally?

Page 126
3.2 Strengths of Acids and Bases

(

Mastering Concepts 68

How would you compare the strengths of two weak acids experimentally?

1. Compare the conductivities of equimolar solutions of the acids.
2. Compare acid ionization constants of the two acids.

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Concepts 69

Identify the conjugate acid-base pairs in the reaction of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with water.

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Concepts 69

Identify the conjugate acid-base pairs in the reaction of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with water.
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }^{-}(\mathrm{aq})$
acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ /conjugate base $\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)$; base $\left(\mathrm{H}_{2} \mathrm{O}\right)$ / conjugate acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$

Page 126
3.2 Strengths of Acids and Bases

Mastering Problems 70

Write the chemical equation and K_{b} expression for the ionization of ammonia in water. How is it safe for a window washer to use a solution of ammonia, which is basic?

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Problems 70

Write the chemical equation and K_{b} expression for the ionization of ammonia in water. How is it safe for a window washer to use a solution of ammonia, which is basic?
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$; Ammonia is a weak base,
therefore, its aqueous solution is not highly basic.

Page 126
3.2 Strengths of Acids and Bases

Mastering Problems 71

Hypochlorous acid is an industrial disinfectant. Write the chemical equation and the K_{a} expression for the ionization of hypochlorous acid in water.

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Problems 71

Hypochlorous acid is an industrial disinfectant. Write the chemical equation and the K_{a} a expression for the ionization of hypochlorous acid in water.

$\mathrm{HClO} \leftrightarrow \mathrm{H}^{+}+\mathrm{ClO}^{-} ;$
 $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}$

Page 126
3.2 Strengths of Acids and Bases

(1)

Mastering Problems 72

Write the chemical equation and the K_{b} expression for the ionization of aniline in water. Aniline is a weak base with the formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$.

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Problems 72

Write the chemical equation and the K_{b} expression for the ionization of aniline in water. Aniline is a weak base with the formula $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$K_{\mathrm{b}}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\right]}$

Page 126
3.2 Strengths of Acids and Bases

Mastering Problems 73

A fictional weak base, $\mathbf{Z a H} \mathbf{2}$, reacts with water to yield a solution with a OH^{-}ion concentration of $2.68 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. The chemical equation for the reaction is $\mathrm{ZaH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{ZaH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$. If $\left[\mathrm{ZaH}_{2}\right]$ at equilibrium is $\mathbf{0 . 0 9 9 7} \mathbf{~ m o l} / \mathrm{L}$, what is the value of K_{b} for ZaH_{2} ?

Page 126
3.2 Strengths of Acids and Bases

Mastering Problems 73

A fictional weak base, $\mathbf{Z a H 2}$, reacts with water to yield a solution with a OH^{-}ion concentration of $2.68 \times 1 \mathbf{1 0}^{-4} \mathrm{~mol} / \mathrm{L}$. The chemical equation for the reaction is $\mathrm{ZaH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{ZaH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$. If $\left[\mathrm{ZaH}_{2}\right]$ at equilibrium is $\mathbf{0 . 0 9 9 7} \mathbf{~ m o l} / \mathrm{L}$, what is the value of K_{b} for ZaH_{2} ?

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{\left[\mathrm{ZaH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ZaH}_{2}\right]}=\frac{\left(2.68 \times 10^{-4}\right)\left(2.68 \times 10^{-4}\right)}{0.0997-2.68 \times 10^{-4}} \\
& =7.22 \times 10^{-7}
\end{aligned}
$$

Page 126
3.2 Strengths of Acids and Bases

Mastering Problems 74

Select a strong acid, and explain how you would prepare a dilute solution of the acid. Select a weak acid, and explain how you would prepare a concentrated solution of the acid.

Page 126
3.2 Strengths of Acids and Bases

0

Mastering Problems 74

Select a strong acid, and explain how you would prepare a dilute solution of the acid. Select a weak acid, and explain how you would prepare a concentrated solution of the acid.

The dilute solution of a strong acid is prepared by dissolving a small quantity of the strong acid in a large quantity of water.

The concentrated solution of a weak acid is prepared by dissolving a large quantity of the weak acid in a small quantity of water.

Page 126
3.2 Strengths of Acids and Bases

Mixed Review 99

Strontium hydroxide is used in the refining of beet sugar. Only $\mathbf{4 . 1} \mathrm{g}$ of strontium hydroxide can be dissolved in 1 L of water at 273 K . Given that its solubility is so low, explain how is it possible that strontium hydroxide is considered to be a strong base.

Page 128
3.2 Strengths of Acids and Bases

Mixed Review 99

Strontium hydroxide is used in the refining of beet sugar. Only 4.1 g of strontium hydroxide can be dissolved in 1 L of water at 273 K . Given that its solubility is so low, explain how is it possible that strontium hydroxide is considered to be a strong base.

All of the $\mathrm{Sr}(\mathrm{OH})_{2}$ that dissolves dissociates to

 form Sr^{2+} and OH^{-}ions.Page 128
3.2 Strengths of Acids and Bases

Hydrogen Ions and pH

Chapter 3
Lesson 3 - Revision Paper

噱
مكتبة الفكــر

Section Summary

- pH and pOH are logarithmic scales that express the concentrations of hydrogen ions and hydroxide ions in aqueous solutions.
- The ion product constant for water, K_{w} equals the product of the H^{+}ion concentration and the OH^{-}ion concentration.
- The pH of a solution is the negative \log of the hydrogen ion concentration. The pOH is the negative log of the hydroxide ion concentration. pH plus pOH equals 14 .
- A neutral solution has a pH of 7.0 and a pOH of 7.0 because the concentrations of hydrogen ions and hydroxide ions are equal.

Page 104
3.3 Hydrogen lons and pH

Reading Check

Why K_{w} does not change when the concentration of hydrogen ions increases?

Page 105
3.3 Hydrogen Ions and pH

0

Reading Check

Why K_{w} does not change when the concentration of hydrogen ions increases?

The added H^{+}ions react with OH^{-}ions to form more water molecules. Thus, the concentration of OH^{-}ions decreases such that the product of the two concentrations of ions always be constant.

عندما يزداد تركيـز أيونات الهيدروجين ينقص تركيز أيونات الهيدروكسيد، بحيث يكون حاصل ضرب تركيز الأيونين ثابتا دائما

Page 105
3.3 Hydrogen Ions and pH

Example 1

At $\mathbf{2 9 8} \mathbf{K}$, the \mathbf{H}^{+}ion concentration in a cup of coffee is $\mathbf{1 . 0 \times 1 0 ^ { - 5 }} \mathbf{~ M}$. What is the $\mathbf{O H}^{-}$ion concentration in the coffee? Is the coffee acidic, basic, or neutral?

Page 105
3.3 Hydrogen Ions and pH

Example 1

At $\mathbf{2 9 8} \mathbf{K}$, the \mathbf{H}^{+}ion concentration in a cup of coffee is $\mathbf{1 . 0 \times 1 0 ^ { - 5 }} \mathbf{~ M}$. What is the OH^{-}ion concentration in the coffee? Is the coffee acidic, basic, or neutral?
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}
$$

$$
\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}}=1.0 \times 10^{-9} \mathrm{~mol} / \mathrm{L}
$$

Because $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the coffee is acidic.

State the ion product expression.

Solve for [OH^{-}].
Substitute $K_{w}=1.0 \times 10^{-14}$. Substitute $\left[H^{+}\right]=1.0 \times 10^{-5} \mathrm{M}$ and solve.

Page 105
3.3 Hydrogen lons and pH

Applications 22

For each solution, calculate $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$. State whether the solution is acidic, basic, or neutral.
a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13} \mathrm{M}$
b. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$

Page 105
3.3 Hydrogen Ions and pH

Applications 22

For each solution, calculate $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$. State whether the solution is acidic, basic, or neutral.
a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13} \mathrm{M}$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$1.0 \times 10^{-14}=\left(1.0 \times 10^{-13}\right)\left[\mathrm{OH}^{-}\right]$
$\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-13}}=\frac{\left(1.0 \times 10^{-13}\right)\left[\mathrm{OH}^{-}\right]}{1.0 \times 10^{-13}}$
$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-1} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$, the solution is basic.
b. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}}=\frac{\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-7}\right)}{1.0 \times 10^{-7}}$
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]$, the solution is neutral.

Page 105
3.3 Hydrogen lons and pH

Applications 22

For each solution, calculate $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$. State whether the solution is acidic, basic, or neutral.
c. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$

Page 105
3.3 Hydrogen Ions and pH

Applications 22

For each solution, calculate $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$. State whether the solution is acidic, basic, or neutral.
c. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$
$K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-3}\right)$
$\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-3}}=\frac{\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-3}\right)}{1.0 \times 10^{-3}}$
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-11} \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$
$K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$1.0 \times 10^{-14}=\left(4.0 \times 10^{-5}\right)\left[\mathrm{OH}^{-}\right]$
$=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-5}}=\frac{\left(4.0 \times 10^{-5}\right)\left[\mathrm{OH}^{-}\right]}{\left(4.0 \times 10^{-5}\right)}$
$\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-10} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$, the solution is basic. $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is acidic

Page 105
3.3 Hydrogen lons and pH

Applications 23

CHALLENGE Calculate the number of \mathbf{H}^{+}ions and the number of OH^{-} ions in 300 mL of pure water at 298 K .

Page 105
3.3 Hydrogen Ions and pH

(

Applications 23

CHALLENGE Calculate the number of \mathbf{H}^{+}ions and the number of OH^{-} ions in 300 mL of pure water at 298 K .

At $298 \mathrm{~K},\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
$\mathrm{Mol} \mathrm{H}^{+}=\frac{1.0 \times 10^{-7} \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times$
$300 \mathrm{~mL}=3.0 \times 10^{-8} \mathrm{~mol}$
$3.0 \times 10^{-8} \mathrm{~mol} \mathrm{H}^{+}$ions $\times \frac{6.02 \times 10^{23} \mathrm{H}^{+} \text {ions }}{1 \mathrm{~mol}}=$
$1.8 \times 10^{16} \mathrm{H}^{+}$ions
Number of $\mathrm{H}^{+}=$number of $\mathrm{OH}^{-}=$
1.8×10^{16} ions

Page 105
3.3 Hydrogen lons and pH

Figure 14
Determine whether seawater or detergent has a higher concentration of H^{+}ions. How many times higher?
a) Water; 10 times.
b) Water; 2 times.
c) Detergent; 2 times.
d) Water; 100 times.

Page 106
3.3 Hydrogen Ions and pH

Figure 14
Determine whether seawater or detergent has a higher concentration of H^{+}ions. How many times higher?
a) Water; 10 times.
b) Water; 2 times.
c) Detergent; 2 times.
d) Water; $\mathbf{1 0 0}$ times.

يحتوي ماء البحر على التركيز الأعلى من أيونات
الهيدروجين؛ بأكثر من مئة مرة.

Page 106
3.3 Hydrogen Ions and pH

Example 2

What is the pH of a neutral solution at $\mathbf{2 9 8} \mathrm{K}$?

Page 107
3.3 Hydrogen Ions and pH

(1)

Example 2

What is the pH of a neutral solution at $\mathbf{2 9 8} \mathrm{K}$?
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad$ State the equation for pH.
$\mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right) \quad$ Substitute $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$.
The pH of the neutral solution at 298 K is 7.00 .

Page 107
3.3 Hydrogen Ions and pH

Applications 24

Calculate the pH of solutions having the following ion concentrations at 298 K .
a. $\left[\mathrm{H}^{+}\right] \times 1.0 \times 10^{-2} M$
b. $\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-6} \mathrm{M}$

Page 107
3.3 Hydrogen Ions and pH

0

Applications 24

Calculate the pH of solutions having the following ion concentrations at 298 K .
a. $\left[\mathrm{H}^{+}\right] \times 1.0 \times 10^{-2} M$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-2}\right)$
$\mathrm{pH}=2.00$
b. $\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-6} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(3.0 \times 10^{-6}\right) \\
& \mathrm{pH}=5.52
\end{aligned}
$$

Page 107
3.3 Hydrogen Ions and pH

Applications 25

Calculate the pH of aqueous solutions with the following $\left[\mathrm{H}^{+}\right]$at 298 K . a. $\left[\mathrm{H}^{+}\right]=0.0055 \mathrm{M}$

b. $\left[\mathrm{H}^{+}\right]=0.000084 M$

Page 107
3.3 Hydrogen Ions and pH

0

Applications 25

Calculate the pH of aqueous solutions with the following $\left[\mathrm{H}^{+}\right]$at 298 K .
a. $\left[\mathrm{H}^{+}\right]=0.0055 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log 0.0055$
$\mathrm{pH}=2.26$
b. $\left[\mathrm{H}^{+}\right]=0.000084 M$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log 0.000084$
$\mathrm{pH}=4.08$

Page 107
3.3 Hydrogen Ions and pH

Applications 26

CHALLENGE Calculate the pH of a solution having $\left[\mathrm{OH}^{-}\right]=8.2 \times 1 \mathbf{1 0}^{-6} \mathrm{M}$.

Page 107
3.3 Hydrogen Ions and pH

(

Applications 26

CHALLENGE Calculate the pH of a solution having $\left[\mathrm{OH}^{-}\right]=8.2 \times 10^{-6} \mathrm{M}$.

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=8.2 \times 10^{-6} \mathrm{M}} \\
& K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \times\left[\mathrm{H}^{+}\right]\left(8.2 \times 10^{-6}\right) \\
& {\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{8.2 \times 10^{-6}}=1.2 \times 10^{-9}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(1.2 \times 10^{-9}\right) \\
& \mathrm{pH}=8.92
\end{aligned}
$$

Page 107
3.3 Hydrogen Ions and pH

Example 3

A typical cleaner has a hydroxide-ion concentration of $4.0 \times 10^{-3} \mathrm{M}$. Calculate the pOH and pH of a cleaner at 298 K .

Page 108
3.3 Hydrogen Ions and pH

0

Example 3

A typical cleaner has a hydroxide-ion concentration of $4.0 \times 10^{-3} \mathrm{M}$. Calculate the $\mathbf{p O H}$ and pH of a cleaner at 298 K .
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad$ State the equation for pOH.
$\mathrm{pOH}=-\log \left(4.0 \times 10^{-3}\right) \quad$ Substitute $\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-3} \mathrm{M}$.
The pOH of the solution is $\mathbf{2 . 4 0}$.
Use the relationship between pH and pOH to find the pH .
$\mathrm{pH}+\mathrm{pOH}=14.00 \quad$ State the equation that relates pH and pOH .
$\mathrm{pH}=14.00-\mathrm{pOH}$
Solve for pH.
$\mathrm{pH}=14.00-2.40=11.60 \quad$ Substitute $\mathrm{pOH}=2.40$.
The pH of the solution is 11.60 .
Page 108
3.3 Hydrogen Ions and pH

Applications 27

Calculate the pH and pOH of aqueous solutions with the following concentrations at 298 K .
a. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6} \mathrm{M}$
b. $\left[\mathrm{OH}^{-}\right]=6.5 \times 10^{-4} \mathrm{M}$

Page 108
3.3 Hydrogen Ions and pH

Applications 27

Calculate the pH and pOH of aqueous solutions with the following concentrations at 298 K .

```
a. \(\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6} \mathrm{M}\)
    \(\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]\)
    \(\mathrm{pOH}=-\log \left(1.0 \times 10^{-6}\right)\)
    \(\mathrm{pOH}=6.00\)
\[
\mathrm{pH}=14.00-\mathrm{pOH}=14.00-6.00=8.00
\]
```

b. $\left[\mathrm{OH}^{-}\right]=6.5 \times 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=-\log \left(6.5 \times 10^{-4}\right)$
$\mathrm{pOH}=3.19$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.19=10.81$
Page 108
3.3 Hydrogen lons and pH

Applications 27

Calculate the pH and pOH of aqueous solutions with the following concentrations at 298 K .
c. $\left[\mathrm{H}^{+}\right]=3.6 \times 10^{-9} \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-2} \mathrm{M}$

Puye suo
3.3 Hydrogen Ions and pH

Applications 27

Calculate the pH and pOH of aqueous solutions with the following concentrations at 298 K .
c. $\left[\mathrm{H}^{+}\right]=3.6 \times 10^{-9} \mathrm{M}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
\mathrm{pH}=-\log \left(3.6 \times 10^{-9}\right)
$$

$$
\mathrm{pH}=8.44
$$

$$
\mathrm{pOH}=14.00-\mathrm{pH}=14.00-8.44=5.56
$$

d. $\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-2} \mathrm{M}$
$\mathrm{pH}=-\log \left(-2.5 \times 10^{-2}\right)$
$\mathrm{pH}=1.60$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-1.60=12.40$

Page 108
3.3 Hydrogen lons and pH

Applications 28

Calculate the pH and pOH of aqueous solutions with the following concentration at 298 K .
a. $\left[\mathrm{OH}^{-}\right]=0.000033 \mathrm{M}$
b. $\left[\mathrm{H}^{+}\right]=0.0095 \mathrm{M}$

Page 108
3.3 Hydrogen Ions and pH

0

Applications 28

Calculate the pH and pOH of aqueous solutions with the following concentration at 298 K .
a. $\left[\mathrm{OH}^{-}\right]=0.000033 \mathrm{M}$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

$$
\mathrm{pOH}=-\log (0.000033)
$$

$$
\mathrm{pOH}=4.48
$$

$$
\mathrm{pH}=14.00-4.48=9.52
$$

b. $\left[\mathrm{H}^{+}\right]=0.0095 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log (0.0095)$
$\mathrm{pH}=2.02$
$\mathrm{pOH}=14.00-2.02=11.98$

Page 108
3.3 Hydrogen Ions and pH

Applications 29

CHALLENGE Calculate pH and pOH for an aqueous solution containing $1.0 \times 10^{-3} \mathrm{~mol}$ of HCl dissolved in 5.0 L of solution.

Page 108
3.3 Hydrogen lons and pH

Applications 29

CHALLENGE Calculate pH and pOH for an aqueous solution containing $1.0 \times 10^{-3} \mathrm{~mol}$ of HCl dissolved in 5.0 L of solution.
$[\mathrm{HCl}]=\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-3} \mathrm{~mol}}{5.0 \mathrm{~L}}=0.00020 \mathrm{M}=$ $2.0 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log \left(2.0 \times 10^{-4}\right)=-(-3.70)=3.70$
$\mathrm{pOH}=14.00-3.70=10.30$

Page 108
3.3 Hydrogen Ions and pH

Example 4

What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a healthy person's blood that has a pH of 7.40 ? Assume that the temperature of the blood is 298 K .

Page 109
3.3 Hydrogen lons and pH

(\$)

Example 4

What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a healthy person's blood that has a pH of 7.40 ? Assume that the temperature of the blood is 298 K .

Determine $\left[\mathrm{H}^{+}\right]$.

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	State the equation for pH.
$-\mathrm{pH}=\log \left[\mathrm{H}^{+}\right]$	Multiply both sides of the equation by -1.
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$	Take the antilog of each side to solve for $\left[\mathrm{H}^{+}\right]$.
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-7.40)$	Substitute $\mathrm{pH}=7.40$.

$\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-8} \mathrm{M} \quad$ A calculator shows that the antilog of -7.40 is 4.0×10^{-8}.
The concentration of H^{+}ions in the blood is $4.0 \times 10^{-8} \mathrm{M}$.
Determine $\left[\mathrm{OH}^{-}\right]$.

$\mathrm{pH}+\mathrm{pOH}=14.00$	State the equation that relates pH and pOH.
$\mathrm{pOH}=14.00-\mathrm{pH}$	Solve for pOH.
$\mathrm{pOH}=14.00-7.40=6.60$	Substitute $\mathrm{pH}=7.40$.
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	State the equation for pOH.
$-\mathrm{pOH}=\log \left[\mathrm{OH}^{-}\right]$	Multiply both sides of the equation by -1.
$\left[\mathrm{OH}^{-}\right]=$antilog (-6.60)	Take the antilog of each side and substitute $\mathrm{pOH}=6.60$.
$\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-7} \mathrm{M}$.	A calculator shows that the antilog of -6.60 is 2.5×10^{-7}.

The concentration of OH^{-}ions in the blood is $2.5 \times 10^{-7} \mathrm{M}$.
Page 109

3.3 Hydrogen lons and pH

Applications 30

Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following solutions.
a. Milk, $\mathrm{pH}=6.50$
b. Lemon juice, $\mathrm{pH}=2.37$

Page 109
3.3 Hydrogen Ions and pH

(

Applications 30

Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following solutions.
a. Milk, $\mathrm{pH}=6.50$

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})
$$

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-6.50)=3.2 \times 10^{-7} \mathrm{M}
$$

$$
\mathrm{pOH}=14.00-\mathrm{pH}=14.00-6.50=7.50
$$

$$
\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-\mathrm{pOH})
$$

$$
\left[\mathrm{OH}^{-}\right]=(-7.50)=3.2 \times 10^{-8} \mathrm{M}
$$

b. Lemon juice, $\mathrm{pH}=2.37$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2.37)=4.3 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-2.37=11.63$
$\left[\mathrm{OH}^{-}\right]=$antilog (-pOH)
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-11.63)=2.3 \times 10^{-12} \mathrm{M}$

Page 109
3.3 Hydrogen lons and pH

Applications 30

Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following solutions.
c. Milk of magnesia, $\mathrm{pH}=10.50$
d. Household ammonia, pH 11.90

Page 109
3.3 Hydrogen Ions and pH

0

Applications 30

Calculate $\left[\mathrm{H}^{+}\right]$and $[\mathrm{OH}]$ in each of the following solutions.
c. Milk of magnesia, $\mathrm{pH}=10.50$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-10.50)=3.2 \times 10^{-11} \mathrm{M}} \\
& \mathrm{pOH}=14.00-\mathrm{pH}=14.00-10.50=3.50 \\
& {\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-3.50)=3.2 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

d. Household ammonia, pH 11.90

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-11.90)=1.3 \times 10^{-12} \mathrm{M}} \\
& \mathrm{pOH}=14.00-\mathrm{pH}=14.00-11.90=2.10 \\
& {\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-2.10)=7.9 \times 10-^{3} \mathrm{M}}
\end{aligned}
$$

Page 109
3.3 Hydrogen lons and pH

Applications 31

CHALLENGE Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a sample of seawater with a $\mathrm{pOH}=5.60$.

Page 109
3.3 Hydrogen Ions and pH

(

Applications 31

CHALLENGE Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a sample of seawater with a $\mathrm{pOH}=5.60$.
$\left[\mathrm{OH}^{-}\right]=$antilog (-pOH)
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-5.60)=2.5 \times 10^{-6} \mathrm{M}$
$\mathrm{pH}=14.00-5.60=8.40$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-8.40)=4.0 \times 10^{-9} \mathrm{M}$

Page 109
3.3 Hydrogen Ions and pH

Reading Check

Explain why you cannot obtain the $\left[\mathrm{H}^{+}\right]$directly from the molarity of a weak acid solution.

Page 110
3.3 Hydrogen lons and pH

0

Reading Check

Explain why you cannot obtain the $\left[\mathrm{H}^{+}\right]$directly from the molarity of a weak acid solution.

Weak acids only ionizes partially; therefore, the concentration of the weak acid in a solution is not equal to $\left[\mathrm{H}^{+}\right]$

لا يتأين الحمض الضعيف كليّاً؛ لذا لا يساوي عدد مولات الحمض المذابة في لتر من المحلول تركيز أيونات الهيدروجين.

Page 110
3.3 Hydrogen Ions and pH

Figure 17
State the $\left[\mathrm{H}^{+}\right]$in the HCl flask and the $\left[\mathrm{OH}^{-}\right]$ in the NaOH flask.
a) $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.1 \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=0.5 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.5 \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.5 \mathrm{M}$
d) $\left[\mathrm{H}^{+}\right]=0.5 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.1 \mathrm{M}$
e) $\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.2 \mathrm{M}$

f) Not enough information

Page 110
3.3 Hydrogen lons and pH

Figure 17
State the $\left[\mathrm{H}^{+}\right]$in the HCl flask and the $\left[\mathrm{OH}^{-}\right]$ in the NaOH flask.
a) $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.1 \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=0.5 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.5 \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.5 \mathrm{M}$
d) $\left[\mathrm{H}^{+}\right]=0.5 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.1 \mathrm{M}$
e) $\left[\mathrm{H}^{+}\right]=0.2 \mathrm{M} \|\left[\mathrm{OH}^{-}\right]=0.2 \mathrm{M}$

f) Not enough information

Page 110
3.3 Hydrogen Ions and pH

Example 5

Formic acid is used to process latex tapped from rubber trees into natural rubber. The $\mathbf{p H}$ of a $\mathbf{0 . 1 0 0} \mathbf{M}$ solution of formic acid $(\mathbf{H C O O H})$ is 2.38. What is K_{a} for HCOOH ?

Page 111
3.3 Hydrogen Ions and pH

0

Example 5

Formic acid is used to process latex tapped from rubber trees into natural rubber. The $\mathbf{p H}$ of a $\mathbf{0 . 1 0 0} \mathbf{M}$ solution of formic acid $(\mathbf{H C O O H})$ is 2.38. What is K_{a} for HCOOH ?

Use the pH to calculate $\left[\mathrm{H}^{+}\right]$.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2.38)$
$\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{HCOO}^{-}\right]=\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-3} \mathrm{M}$
$[\mathrm{HCOOH}]$ equals the initial concentration minus $\left[\mathrm{H}^{+}\right]$.
$[\mathrm{HCOOH}]=0.100 \mathrm{M}-4.2 \times 10^{-3} \mathrm{M}=0.096 \mathrm{M}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$
$K_{\mathrm{a}}=\frac{\left(4.2 \times 10^{-3}\right)\left(4.2 \times 10^{-3}\right)}{(0.096)}=1.8 \times 10^{-4}$
Write the equation for pH .
Multiply both sides by -1 and take the antilog of each side.
Substitute $\mathrm{pH}=2.38$.
A calculator shows that the antilog of -2.38 is 4.2×10^{-3}.

Subtract $\left[\mathrm{H}^{+}\right]$from the initial $[\mathrm{HCOOH}]$.

State the acid ionization constant expression.

Substitute $\left[\mathrm{H}^{+}\right]=4.2 \times 10^{-3} \mathrm{M},[\mathrm{HCOO}]=4.2 \times 10^{-3} \mathrm{M}$, and $[\mathrm{HCOOH}]=0.096 \mathrm{M}$.

The acid ionization constant for HCOOH is 1.8×10^{-4}.
Page 111
3.3 Hydrogen lons and pH

Applications 32

Calculate the K_{a} for the following acids using the given information.
a. $0.220 M$ solution of $\mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{pH}=1.50 \quad$ b. $0.0400 M$ solution of $\mathrm{HClO}_{2}, \mathrm{pH}=1.80$

Page 111
3.3 Hydrogen Ions and pH

Applications 32

Calculate the $\boldsymbol{K}_{\mathrm{a}}$ for the following acids using the given information.
a. 0.220 M solution of $\mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{pH}=1.50$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{[\mathrm{H}+]\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-1.50)=3.2 \times 10^{-2} \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right]=\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-2} \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right]=0.220 \mathrm{M}-3.2 \times 10^{-2} \mathrm{M}=0.188 \mathrm{M}} \\
& \mathrm{~K}_{\mathrm{a}}=\frac{\left(3.2 \times 10^{-2}\right)\left(3.2 \times 10^{-2}\right)}{0.188}=5.4 \times 10^{-3}
\end{aligned}
$$

b. 0.0400 M solution of $\mathrm{HClO}_{2}, \mathrm{pH}=1.80$

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{ClO}_{2}-\right]}{\left[\mathrm{HClO}_{2}\right]} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-1.80)=1.6 \times 10^{-2} \mathrm{M}} \\
& {\left[\mathrm{CIO}_{2}{ }^{-}\right]=\left[\mathrm{H}^{+}\right]=1.6 \times 10^{-2} \mathrm{M}} \\
& {\left[\mathrm{HClO}_{2}\right]=0.0400 \mathrm{M}-1.6=10^{-2} \mathrm{M}=0.024 \mathrm{M}} \\
& K_{\mathrm{a}}=\frac{\left(1.6 \times 10^{-2}\right)\left(1.6 \times 10^{-2}\right)}{0.024}=1.1 \times 10^{-2}
\end{aligned}
$$

Page 111
3.3 Hydrogen lons and pH

Applications 33

Calculate the K_{a} of the following acids using the given information.
a. $0.00330 M$ solution of benzoic acid

$$
\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right), \mathrm{pOH}=10.70
$$

Page 111
3.3 Hydrogen Ions and pH

π

Applications 33

Calculate the K_{a} of the following acids using the given information.
a. $0.00330 M$ solution of benzoic acid

$$
\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right), \mathrm{pOH}=10.70
$$

$$
\mathrm{pH}=14.00-\mathrm{pOH}
$$

$$
\mathrm{pH}=14.00-10.70=3.30
$$

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})
$$

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-3.30)=5.0 \times 10^{-4} \mathrm{M}
$$

$$
\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]=5.0 \times 10^{-4} \mathrm{M}
$$

$$
\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]=0.00330 \mathrm{M}-5.0 \times 10^{-4} \mathrm{M}=
$$ 0.0028 M

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}=\frac{\left(5.0 \times 10^{-4}\right)\left(5.0 \times 10^{-4}\right)}{\left(3.5 \times 10^{-3}\right)} \\
& K_{\mathrm{a}}=8.9 \times 10^{-5}
\end{aligned}
$$

Page 111
3.3 Hydrogen lons and pH

Applications 33

Calculate the K_{a} of the following acids using the given information.
b. 0.100 M solution of cyanic acid (HCNO),

$$
\mathrm{pOH}=11.00
$$

Page 111
3.3 Hydrogen lons and pH

0

Applications 33

Calculate the K_{a} of the following acids using the given information.
b. 0.100 M solution of cyanic acid (HCNO),

$$
\begin{aligned}
& \mathrm{pOH}=11.00 \\
& \mathrm{pH}=14.00-\mathrm{pOH} \\
& \mathrm{pH}=14.00-11.00=3.00 \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-3.00)=1.0 \times 10^{-3} \mathrm{M}} \\
& {[\mathrm{CNO}]=\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}} \\
& {[\mathrm{HCNO}]=0.100-1.0 \times 10^{-3} \mathrm{M}=0.099 \mathrm{M}} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CNO}^{-}\right]}{\left[\mathrm{HCNO}^{-}\right]}=\frac{\left(1.0 \times 10^{-3}\right)\left(1.0 \times 10^{-3}\right)}{(0.099)} \\
& K_{\mathrm{a}}=1.0 \times 10^{-5}
\end{aligned}
$$

Page 111
3.3 Hydrogen lons and pH

Applications 33

Calculate the K_{a} of the following acids using the given information.
c. 0.150 M solution of butanoic acid
$\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right), \mathrm{pOH}=11.18$

Applications 33

Calculate the K_{a} of the following acids using the given information.
c. 0.150 M solution of butanoic acid
$\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right), \mathrm{pOH}=11.18$
$\mathrm{pH}=14.00-\mathrm{pOH}$
$\mathrm{pH}=14.00-11.18=2.82$
$\left[\mathrm{H}^{+}\right]=$antilog (-pH)
$\left[\mathrm{H}^{+}\right]=$antilog(-2.82) $=1.5 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]=1.5 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right]=0.150 \mathrm{M}-1.5 \times 10^{-3} \mathrm{M}=$
0.149M
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-}\right]}{\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right]}=\frac{\left(1.5 \times 10^{-3}\right)\left(1.5 \times 10^{-3}\right)}{(0.149)}$
$K_{\mathrm{a}}=1.5 \times 10^{-5}$
3.3 Hydrogen lons and pH

Applications 34

CHALLENGE Calculate the K_{a} of a $\mathbf{0 . 0 0 9 1} \mathbf{M}$ solution of an unknown acid (HX) having a pOH of 11.32. Use Table 4 to identify the acid.

Page 111
3.3 Hydrogen Ions and pH

0

Applications 34

CHALLENGE Calculate the K_{a} of a $\mathbf{0 . 0 0 9 1} \mathbf{M}$ solution of an unknown acid (HX) having a pOH of 11.32. Use Table 4 to identify the acid.
$\mathrm{pH}=14.00-\mathrm{pH}$
$\mathrm{pH}=14.00-11.32=2.68$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2.8)=2.1 \times 10^{-3} \mathrm{M}$
$\left[\mathrm{X}^{-}\right]=\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-3} \mathrm{M}$
$[H X]=0.0091-0.0021=0.0070 M$
$K_{a}=\frac{(0.0021)(0.0021)}{(0.0070)}=6.3 \times 10^{-4}$
The acid could be hydrofluoric acid (HF).

Page 111
3.3 Hydrogen lons and pH

Review 35

Why is the pH of an acidic solution always a smaller number than the pOH of the same solution?

Page 112
3.3 Hydrogen Ions and pH

Review 35

Why is the pH of an acidic solution always a smaller number than the pOH of the same solution?

The sum of pH and pOH is 14.00 . If a solution is acidic, its pH is less than 7.00. Therefore, pOH must be greater than 7.00 .

Page 112
3.3 Hydrogen Ions and pH

(

Review 36

How can you determine the pH of a solution if you know its pOH ?
a) Subtract the pOH from 14.00 .
b) Subtract the pOH from 7.00 .
c) Add the pOH to 14.00 .
d) Add the pOH from 7.00.

Page 112
3.3 Hydrogen lons and pH

0

Review 36

How can you determine the pH of a solution if you know its pOH ?
a) Subtract the pOH from $\mathbf{1 4 . 0 0}$.
b) Subtract the pOH from 7.00 .
c) Add the pOH to 14.00 .
d) Add the pOH from 7.00.

Page 112
3.3 Hydrogen lons and pH

0

Review 37

Which of the following is true about K_{w} in aqueous solutions?
a) Can be used to find H^{+}or OH^{-}ions concentrations.
b) Its value at 273 K is 1.00×10^{-14}.
c) Its value at 298 K is 1.00×10^{-7}.
d) It can be applied to other solutions than water.

Page 112
3.3 Hydrogen Ions and pH

Review 37

Which of the following is true about K_{w} in aqueous solutions?
a) Can be used to find H^{+}or OH^{-}ions concentrations.
b) Its value at 273 K is 1.00×10^{-14}.
c) Its value at 298 K is 1.00×10^{-7}.
d) It can be applied to other solutions than water.

Page 112
3.3 Hydrogen Ions and pH

Review 38

What happens to the $\left[\mathrm{H}^{+}\right]$of a $\mathbf{0 . 1 0} \mathbf{M}$ solution of acetic acid when a drop of NaOH solution is added?
a) The equilibrium shifts to the right
b) $\left[\mathrm{H}^{+}\right]$increases.
c) $\left[\mathrm{OH}^{-}\right]$decreases.
d) Water molecules increases.

Page 112
3.3 Hydrogen lons and pH

(

Review 38

What happens to the $\left[\mathrm{H}^{+}\right]$of a $\mathbf{0 . 1 0} \mathbf{M}$ solution of acetic acid when a drop of NaOH solution is added?
a) The equilibrium shifts to the right
b) $\left[\mathrm{H}^{+}\right]$increases.
c) $\left[\mathrm{OH}^{-}\right]$decreases.
d) Water molecules increases.

$$
\begin{aligned}
& \text { الزيـادة هِ أيونـات - }{ }^{\text {- }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { الماء غير المفكَّكة. فيزداد [[OH]، أمّا [H+ }
\end{aligned}
$$

Page 112
3.3 Hydrogen lons and pH

Review 39
 List the information needed to calculate the K_{a} of a weak acid.

Review 39

List the information needed to calculate the K_{a} of a weak acid.

- $\mathrm{pH}, \mathrm{pOH}$, or $\left[\mathrm{H}^{+}\right]$
- the initial concentration of the acid
- Kb can also be used.

Page 112
3.3 Hydrogen Ions and pH

0

Review 40

The pH of a tomato is approximately 4.50 . What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a tomato?

Page 112
3.3 Hydrogen Ions and pH

0Review 4033

The pH of a tomato is approximately 4.50 . What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a tomato?

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-4.50)=3.2 \times 10^{-5} \mathrm{M}} \\
& \mathrm{pOH}=14.00-4.50=9.50 \\
& {\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-9.50)=3.2 \times 10^{-10} \mathrm{M}}
\end{aligned}
$$

Page 112
3.3 Hydrogen Ions and pH

0

Review 41

Determine the pH of a solution that contains $\mathbf{1 . 0} \times \mathbf{1 0}^{\mathbf{- 9}}{\mathbf{~ m o l ~ o f ~} \mathrm{OH}^{-} \text {ions }}^{\text {ion }}$ per liter.

Page 112
3.3 Hydrogen Ions and pH

(

Review 41

 per liter.

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-9} \mathrm{~mol}}{1 \mathrm{~L}}=1.0 \times 10^{-9} \mathrm{M}} \\
& \mathrm{pOH}=-\log 1.0 \times 10^{-9}=9.00 \\
& \mathrm{pH}=14.00-\mathrm{pOH} \\
& \mathrm{pH}=14.00-9.00=5.00
\end{aligned}
$$

Page 112
3.3 Hydrogen Ions and pH

Review 42

Calculate the pH of the following solutions.
a. 1.0 M HI
c. 1.0 MKOH
b. $0.050 \mathrm{M} \mathrm{HNO}_{3}$

$$
\text { d. } 2.4 \times 10^{-5} \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}
$$

Page 112
3.3 Hydrogen Ions and pH

0

Review 42

Calculate the pH of the following solutions.
a. 1.0 M HI
$\left[\mathrm{H}^{+}\right]=1.0 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 1.0$
$\mathrm{pH}=0.00$
b. $0.050 \mathrm{M} \mathrm{HNO}_{3}$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=0.050 \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.050 \\
& \mathrm{pH}=1.30
\end{aligned}
$$

c. 1.0 M KOH

$$
\left[\mathrm{OH}^{-}\right]=1.0 \mathrm{M}
$$

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 1.0
$$

$$
\mathrm{pOH}=0.00
$$

$$
\mathrm{pH}=14.00-0.00=14.00
$$

d. $2.4 \times 10^{-5} \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$

$$
\left[\mathrm{OH}^{-}\right]=2 \times\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]=(2)\left(2.4 \times 10^{-5} \mathrm{M}\right)=
$$

$$
4.8 \times 10^{-5} M
$$

$$
\mathrm{pOH}=-\log 4.8 \times 10^{-5}=4.32
$$

$$
\mathrm{pH}=14.00-4.32=9.68
$$

Page 112
3.3 Hydrogen lons and pH

Review 43

What happens to the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH as a neutral solution becomes more acidic? As a neutral solution become more basic?

Page 112
3.3 Hydrogen Ions and pH

0
Review 43
What happens to the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH as a neutral solution becomes more acidic? As a neutral solution become more basic?
As the solution becomes more acidic, $\left[\mathrm{H}^{+}\right]$ increases from 10^{-7} to $1,\left[\mathrm{OH}^{-}\right]$decreases from 10^{-7} to $10^{-14}, \mathrm{pH}$ changes from 7 to 0 and pOH changes from 7 to 14. As a neutral solution becomes more basic, $\left[\mathrm{H}^{+}\right]$decreases from 10^{-7} to $10^{-14},\left[\mathrm{OH}^{-}\right]$increases from 10^{-7} to $1, \mathrm{pH}$ changes from 7 to 14 and pOH changes from 7 to 0 .

Page 112
3.3 Hydrogen lons and pH

Mastering Concepts 75

What is the relationship between the pOH and the OH^{-}ion concentration of a solution?
a) $\left[\mathrm{OH}^{-}\right]=-\log (\mathrm{pOH})$
b) $\mathrm{pOH}=\log \left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{OH}^{-}\right]=10^{\mathrm{pOH}}$
d) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Concepts 75

What is the relationship between the pOH and the OH^{-}ion concentration of a solution?
a) $\left[\mathrm{OH}^{-}\right]=-\log (\mathrm{pOH})$
b) $\mathrm{pOH}=\log \left[\mathrm{OH}^{-}\right]$
c) $\left[\mathrm{OH}^{-}\right]=10^{\mathrm{pOH}}$
d) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

Page 127
3.3 Hydrogen lons and pH

Mastering Concepts 76

Solution (A) has a pH of 2.0. Solution (B) has a pH of $\mathbf{5 . 0}$. Which solution is more acidic? Based on the H^{+}ion concentrations in the two solutions, how many times more acidic?
a) (A) is more acidic; 100 times.
b) (B) is more acidic; 100 times.
C) (A) is more acidic; 300 times.
d) (B) is more acidic; 300 times.
e) (A) is more acidic; 1000 times.
f) (B) is more acidic; 1000 times.

Page 127
3.3 Hydrogen Ions and pH

Mastering Concepts 76

Solution (A) has a pH of 2.0. Solution (B) has a pH of $\mathbf{5 . 0}$. Which solution is more acidic? Based on the H^{+}ion concentrations in the two solutions, how many times more acidic?
a) (A) is more acidic; 100 times.
b) (B) is more acidic; 100 times.
C) (A) is more acidic; 300 times.
d) (B) is more acidic; 300 times.
e) (A) is more acidic; $\mathbf{1 0 0 0}$ times.
f) (B) is more acidic; 1000 times.

Solution A is more acidic than solution B. It is 103 , or 1000 times more acidic.

Page 127
3.3 Hydrogen Ions and pH

Mastering Concepts 77

If the concentration of H^{+}ions in an aqueous solution decreases, what must happen to the concentration of OH^{-}ions? Why?

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Concepts 77

If the concentration of H^{+}ions in an aqueous solution decreases, what must happen to the concentration of OH^{-}ions? Why?

[OH^{-}] increases. $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}}$

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Concepts 78

Use Le Châtelier's principle to explain what happens to the equilibrium $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ when a few drops of HCl are added to pure water.

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Concepts 78

Use Le Châtelier's principle to explain what happens to the equilibrium $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ when a few drops of HCl are added to pure water.

The HCl adds H^{+}ions to the water, which causes the equilibrium to shift the left.

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Concepts 79

Use the data in table to answer the following questions.
a) Which substance is the most basic?
b) Which substance is closest to neutral?
c) Which has a concentration of $\mathrm{H}^{+}=4.0 \times 10^{-10} \mathrm{M}$?
d) Which has a pOH of 11.0 ?
e) How many times more basic is antacid than blood?
pH values

Substance	pH
Household ammonia	11.3
Lemon juice	2.3
Antacid	9.4
Blood	7.4
Soft drinks	3.0

Page 127
3.3 Hydrogen lons and pH

Mastering Concepts 79

Use the data in table to answer the following questions.
a) Which substance is the most basic?
b) Which substance is closest to neutral?
c) Which has a concentration of $\mathrm{H}^{+}=4.0 \times 10^{-10} \mathrm{M}$?
d) Which has a pOH of 11.0 ?
e) How many times more basic is antacid than blood?
a) household ammonia
b) blood
c) antacid
d) soft drinks
e) 100 times

pH values	
Substance	pH
Household ammonia	11.3
Lemon juice	2.3
Antacid	9.4
Blood	7.4
Soft drinks	3.0

Page 127
3.3 Hydrogen lons and pH

Mastering Problems 80

What is $\left[\mathrm{OH}^{-}\right]$in an aqueous solution at 298 K in which $\left[\mathrm{H}^{+}\right]=5.40 \times 10^{-3}$ M?

Page 127
3.3 Hydrogen Ions and pH

(

$$
\begin{aligned}
& \text { Mastering Problems } 80 \\
& \text { What is }\left[\mathrm{OH}^{-}\right] \text {in an aqueous solution at } 298 \\
& \mathrm{M} \text { ? } \\
& K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1.00 \times 10^{-14}=\left(5.40 \times 10^{-3}\right)\left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right]=1.85 \times 10^{-12} \mathrm{M}}
\end{aligned}
$$

What is $\left[\mathrm{OH}^{-}\right]$in an aqueous solution at 298 K in which $\left[\mathrm{H}^{+}\right]=5.40 \times 10^{-3}$

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Problems 82

If 5.00 mL of 6.00 M HCl is added to 95.00 mL of pure water, the final volume of the solution is 100.00 mL . What is the pH of the solution?

Page 127
3.3 Hydrogen Ions and pH

0

Mastering Problems 82

If 5.00 mL of 6.00 M HCl is added to 95.00 mL of pure water, the final volume of the solution is 100.00 mL . What is the pH of the solution?
$\mathrm{mol} \mathrm{HCl}=\mathrm{mol} \mathrm{H}^{+}=0.00500 \mathrm{~L} \times 6.00 \mathrm{~mol} / \mathrm{L}$
$=0.0300 \mathrm{~mol}$
$\left[\mathrm{H}^{+}\right]=\frac{0.0300 \mathrm{Mol} \mathrm{H}^{+}}{0.100 \mathrm{~L}}=0.300 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.300)=0.523$
$M_{1} V_{1}=M_{2} V_{2}$
(6)(0.005) $=M_{2}(0.1)$
$\mathrm{M}_{2}=0.3 \mathrm{M}$

Page 127
3.3 Hydrogen Ions and pH

Mastering Problems 83

Given two solutions, 0.10 M HCl and 0.10 M HF , which solution has the greater concentration of H^{+}ions? Calculate pH values for the two solutions, given that $\left[\mathrm{H}^{+}\right]=7.9 \times 10^{-3} \mathrm{M}$ in the 0.10 M HF .

Page 127
3.3 Hydrogen Ions and pH

(

Mastering Problems 83

Given two solutions, 0.10 M HCl and 0.10 M HF , which solution has the greater concentration of H^{+}ions? Calculate pH values for the two solutions, given that $\left[\mathrm{H}^{+}\right]=7.9 \times 10^{-3} \mathrm{M}$ in the 0.10 M HF .

For 0.10 M HCl , a strong acid, $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 0.10=1.00$
For $0.10 \mathrm{MHF},\left[\mathrm{H}^{+}\right]=7.9 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log 7.9 \times 10^{-3}=2.10$.
HCl has the greater concentration of hydrogen ions because it has the greater pH .

Page 127
3.3 Hydrogen Ions and pH

Mastering Problems 84

Chromic acid is used as an industrial cleaner for metals. What is K_{a} for the second ionization of chromic acid $\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right)$ if a 0.040 M solution of sodium hydrogen chromate has a pH of 3.946 ?

Page 127
3.3 Hydrogen Ions and pH

(

Mastering Problems 84

Chromic acid is used as an industrial cleaner for metals. What is K_{a} for the second ionization of chromic acid $\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right)$ if a 0.040 M solution of sodium hydrogen chromate has a pH of 3.946 ?
$\mathrm{HCrO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-3.946)=1.13 \times 10^{-4} M$
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{CrO}_{4}{ }^{2-}\right]=1.13 \times 10^{-4} \mathrm{M}$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CrO}_{4}{ }^{2-}\right]}{\left[\mathrm{HCrO}_{4}{ }^{-}\right]}=\frac{\left(1.13 \times 10^{-4}\right)^{2}}{\left(0.040-1.13 \times 10^{-4}\right)}$
$=3.2 \times 10^{-7}$

Page 127
3.3 Hydrogen Ions and pH

Mixed Review 96

What is the pH of a 0.200 M solution of hypobromous acid (HBrO)?

$$
K_{\mathrm{a}}=2.8 \times 10^{-9}
$$

Page 128
3.3 Hydrogen Ions and pH

Mixed Review 96

What is the pH of a 0.200 M solution of hypobromous acid (HBrO) ?

$$
K_{a}=2.8 \times 10^{-9}
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{BrO}^{-}\right]}{[\mathrm{HBrO}]}
$$

$$
\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.200}=2.8 \times 10^{-9}
$$

$$
\left[\mathrm{H}^{+}\right]^{2}=2.8 \times 10^{-9} \times 0.200
$$

$$
\left[\mathrm{H}^{+}\right]=2.4 \times 10^{-5} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left(2.4310^{-5}\right)=4.63
$$

Page 128
3.3 Hydrogen lons and pH

Mixed Review 101

The pH probe shown is immersed in a 0.200 M solution of a monoprotic acid, HA, at 303 K . What is the value of Ka for the acid at 303 K ?

Page 128
3.3 Hydrogen Ions and pH

gentar

0

Mixed Review 101

The pH probe shown is immersed in a 0.200 M solution of a monoprotic acid, HA, at 303 K . What is the value of Ka for the acid at 303 K ?

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}(-3.10)} \\
& =7.9 \times 10^{-4} M \\
& K_{\mathrm{a}}=\frac{\left(7.9 \times 10^{-4}\right)\left(7.9 \times 10^{-4}\right)}{\left(0.200-7.9 \times 10^{-4}\right)}=3.1 \times 10^{-6}
\end{aligned}
$$

Page 128
3.3 Hydrogen lons and pH

Challenge Problem 112

You have 20.0 mL of a solution of a weak acid, HX , whose K_{a} equals 2.14 $\times 10^{-6}$. The pH of the solution is found to be 3.800 . How much distilled water would you have to add to the solution to increase the pH to 4.000 ?

Page 129
3.3 Hydrogen Ions and pH

Challenge Problem 112

You have 20.0 mL of a solution of a weak acid, HX , whose K_{a} equals 2.14 $\times 10^{-6}$. The pH of the solution is found to be 3.800 . How much distilled water would you have to add to the solution to increase the pH to 4.000 ?
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}(-3.800)$
$=1.58 \times 10^{-4}$
$\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}=\frac{\left(1.58 \times 10^{-4}\right)^{2}}{M_{\text {initial }}}=2.14 \times 10^{-6}$
$M_{\text {final }}=\frac{\left(1.00 \times 10^{-4}\right)^{2}}{2.14 \times 10^{-6}}=0.00467 M$
$M_{\text {initial }}=\frac{\left(1.58 \times 10^{-4}\right)^{2}}{\left(2.14 \times 10^{-6}\right)}=0.0117 M$
Moles of HX in the initial and final solutions are equal.
$\left(M_{\text {initial }}\right)\left(V_{\text {initial }}\right)=\left(M_{\text {finall }}\right)\left(V_{\text {final }}\right)$
$(0.0117 M \times 20.00 \mathrm{~mL})=\left(0.00467 M \times V_{\text {final }}\right)$
Diluted solution:
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}(-4.000)$
$=1.00 \times 10^{-4}$
$2.14 \times 10^{-6} \cong \frac{\left(1.00 \times 10^{-4}\right)^{2}}{M_{\text {final }}}$
$V_{\text {final }}=\frac{(0.0117 \mathrm{~mol} / \mathrm{L})(20.00 \mathrm{~mL})}{0.00467 \mathrm{~mol} / \mathrm{L}}$
Add 30.1 mL of distilled water to the original 20.0 mL.

Page 129
3.3 Hydrogen Ions and pH

Multiple Choice 3

Hydrogen bromide (HBr) is a strong, highly corrosive acid. What is the pOH of a 0.0375 M HBr solution?
a) 12.574
b) 12.270
c) 1.733
d) 1.433

Page 130
3.3 Hydrogen Ions and pH

0

Multiple Choice 3

Hydrogen bromide (HBr) is a strong, highly corrosive acid. What is the pOH of a 0.0375 M HBr solution?
a) $\mathbf{1 2 . 5 7 4}$
b) 12.270
c) 1.733
d) 1.433

Page 130
3.3 Hydrogen lons and pH
$\mathrm{pOH}=14-1.43=12.574$

Multiple Choice 4

Use the table below to answer question, which acid is the strongest?
a) formic acid
b) Iutidinic acid
c) cyanoacetic acid
d) barbituric acid

Ionization Constants and pH Data for
Several Weak Organic Acids

Acid	$\mathbf{p H}$ of $\mathbf{1 . 0 0 0}$ Solution	$\boldsymbol{K}_{\mathbf{a}}$
Formic	1.87	1.78×10^{-4}
Cyanoacetic	$?$	3.55×10^{-3}
Propanoic	2.43	$?$
Lutidinic	1.09	7.08×10^{-3}
Barbituric	2.01	9.77×10^{-5}

Page 130
3.3 Hydrogen lons and pH

Multiple Choice 4

Use the table below to answer question, which acid is the strongest?
a) formic acid
b) lutidinic acid
c) cyanoacetic acid
d) barbituric acid

Ionization Constants and pH Data for
Several Weak Organic Acids

Acid	$\mathbf{p H}$ of $\mathbf{1 . 0 0 0}$ Solution	$\boldsymbol{K}_{\mathrm{a}}$
Formic	1.87	1.78×10^{-4}
Cyanoacetic	$?$	3.55×10^{-3}
Propanoic	2.43	$?$
Lutidinic	1.09	7.08×10^{-3}
Barbituric	2.01	9.77×10^{-5}

Page 130
3.3 Hydrogen Ions and pH

Multiple Choice 5

What is the hydronium ion concentration of the propanoic acid?
a) 1.4×10^{-5}
b) 3.72×10^{-3}
c) 2.43×10^{0}
d) 7.3×10^{4}

Ionization Constants and pH Data for Several Weak Organic Acids

Acid	$\mathbf{p H}$ of $\mathbf{1 . 0 0 0}$ Solution	$\boldsymbol{K}_{\mathbf{a}}$
Formic	1.87	1.78×10^{-4}
Cyanoacetic	$?$	3.55×10^{-3}
Propanoic	2.43	$?$
Lutidinic	1.09	7.08×10^{-3}
Barbituric	2.01	9.77×10^{-5}

Page 130
3.3 Hydrogen lons and pH

Multiple Choice 5

What is the hydronium ion concentration of the propanoic acid?
a) 1.4×10^{-5}
b) 3.72×10^{-3}
c) 2.43×10^{0}
d) 7.3×10^{4}

Ionization Constants and pH Data for Several Weak Organic Acids

Acid	$\mathbf{p H}$ of $\mathbf{1 . 0 0 0}$ Solution	$\boldsymbol{K}_{\mathbf{a}}$
Formic	1.87	1.78×10^{-4}
Cyanoacetic	$?$	3.55×10^{-3}
Propanoic	2.43	$?$
Lutidinic	1.09	7.08×10^{-3}
Barbituric	2.01	9.77×10^{-5}

Page 130
3.3 Hydrogen lons and pH

Multiple Choice 6

What is the pH of a 0.40 M solution of cyanoacetic acid?
a) 2.06
b) 1.22
c) 2.45
d) 1.42

Ionization Constants and pH Data for Several Weak Organic Acids

Acid	pH of $\mathbf{1 . 0 0 0}$ Solution	$\boldsymbol{K}_{\mathrm{a}}$
Formic	1.87	1.78×10^{-4}
Cyanoacetic	$?$	3.55×10^{-3}
Propanoic	2.43	$?$
Lutidinic	1.09	7.08×10^{-3}
Barbituric	2.01	9.77×10^{-5}

Page 130
3.3 Hydrogen lons and pH

Multiple Choice 6

What is the pH of a 0.40 M solution of cyanoacetic acid?
a) 2.06
b) 1.22
c) 2.45
d) 1.42
$3.55 \times 10^{-3} \times 0.40 \mathrm{M}=\left[\mathrm{H}^{+}\right]^{2}$
$\left[\mathrm{H}^{+}\right]=0.038 \mathrm{M}$
$\mathrm{pH}=-\log (0.038)=1.42$
Ionization Constants and pH Data for Several Weak Organic Acids

Acid	pH of $\mathbf{1 . 0 0 0}$ Solution	$\boldsymbol{K}_{\mathrm{a}}$
Formic	1.87	1.78×10^{-4}
Cyanoacetic	$?$	3.55×10^{-3}
Propanoic	2.43	$?$
Lutidinic	1.09	7.08×10^{-3}
Barbituric	2.01	9.77×10^{-5}

Page 130
3.3 Hydrogen Ions and pH

Neutralization

Chapter 3
Lesson 4 - Revision Paper

Section Summary

- In a neutralization reaction, an acid reacts with a base to produce a salt and water.
- The net ionic equation for the neutralization of a strong acid by a strong base is $\mathrm{H}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$.
- Titration is the process in which an acid-base neutralization reaction is used to determine the concentration of a solution.

Page 113
3.4 Neutralization

Reading Check

Write the complete ionic equation and the net ionic equation for the neutralization of HNO_{3} by KOH .

Page 114
3.4 Neutralization

0

Reading Check

Write the complete ionic equation and the net ionic equation for the neutralization of HNO_{3} by KOH .

$$
\begin{aligned}
& \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{KNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} ; \\
& \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq}) \\
& \mathrm{K}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \\
& \\
& \mathrm{NO}_{3}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

Page 114
3.4 Neutralization

Figure 22
Identify two ways in which the graphs are different.

Page 115
3.4 Neutralization

Figure 22

Identify two ways in which the graphs are different.

- The equivalence point is different.
- The difference in pH levels is bigger in the strong acid titration.

الجزء العمـودي لمنحنى الحمض القوي مع القاعدة القويـة الحـيـة الطول من الجزء العمودي لمعايرة الحمض الضعيف.

Page 115
3.4 Neutralization

Example 6

A volume of $\mathbf{1 8 . 2 8} \mathbf{~ m L}$ of a standard solution of $\mathbf{0 . 1 0 0 0 M} \mathbf{N a O H}$ was required to neutralize 25.00 mL of a solution of methanoic acid (HCOOH). What is the molarity of the methanoic acid solution?

Page 118
3.4 Neutralization

Example 6

A volume of $\mathbf{1 8 . 2 8} \mathbf{m L}$ of a standard solution of $\mathbf{0 . 1 0 0 0 M} \mathbf{N a O H}$ was required to neutralize 25.00 mL of a solution of methanoic acid (HCOOH). What is the molarity of the methanoic acid solution?

$$
\begin{gathered}
\mathrm{HCOOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{HCOONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\frac{M_{1} V_{1}}{n_{1}}=\frac{M_{2} V_{2}}{n_{2}} \rightarrow \frac{(0.1)\left(18.28 \times 10^{-3}\right)}{1}=\frac{\left(M_{2}\right)\left(25 \times 10^{-3}\right)}{1} \\
M_{2}=\frac{(0.1)\left(18.28 \times 10^{-3}\right)}{\left(25 \times 10^{-3}\right)}=7.312 \times \mathbf{1 0}^{-2} \mathbf{~ m o l} / \mathrm{L}
\end{gathered}
$$

Page 118
3.4 Neutralization

Applications 44

What is the molarity of a nitric acid solution if 43.33 mL of 0.1000 M KOH solution is needed to neutralize $\mathbf{2 0 . 0 0} \mathbf{~ m L}$ of the acid solution?

Page 118
3.4 Neutralization

0

Applications 44

What is the molarity of a nitric acid solution if 43.33 mL of 0.1000 M KOH solution is needed to neutralize $\mathbf{2 0 . 0 0} \mathbf{~ m L}$ of the acid solution?

$\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
\frac{M_{\mathrm{KOH}} V_{\mathrm{KOH}}}{n_{\mathrm{KOH}}}= & \frac{M_{\mathrm{HNO}_{3}} V_{\mathrm{HNO}_{3}}}{n_{\mathrm{HNO}_{3}}} \rightarrow \frac{(0.1)\left(43.33 \times 10^{-3}\right)}{1}=\frac{\left(M_{\mathrm{HNO}_{3}}\right)\left(20 \times 10^{-3}\right)}{1} \\
& M_{\mathrm{HNO}_{3}}=\frac{(0.1)\left(43.33 \times 10^{-3}\right)}{\left(20 \times 10^{-3}\right)}=\mathbf{0 . 2 1 6 7} \mathbf{~ m o l} / \mathbf{L}
\end{aligned}
$$

Page 118
3.4 Neutralization

Applications 45

What is the concentration of a household ammonia cleaning solution if 49.90 mL of 0.5900 M HCl is required to neutralize $\mathbf{2 5 . 0 0} \mathbf{~ m L}$ of the solution?

Page 118
3.4 Neutralization

0

Applications 45

What is the concentration of a household ammonia cleaning solution if 49.90 mL of 0.5900 M HCl is required to neutralize $\mathbf{2 5 . 0 0} \mathbf{~ m L}$ of the solution?

$\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$

$$
\begin{gathered}
\frac{M_{\mathrm{HCl}} V_{\mathrm{HCl}}}{n_{\mathrm{HCl}}}=\frac{M_{\mathrm{NH}_{3}} V_{\mathrm{NH}_{3}}}{n_{\mathrm{NH}_{3}}} \rightarrow \frac{(0.59)\left(49.9 \times 10^{-3}\right)}{1}=\frac{\left(M_{\mathrm{NH}_{3}}\right)\left(25 \times 10^{-3}\right)}{1} \\
M_{\mathrm{NH}_{3}}=\frac{(0.59)\left(49.9 \times 10^{-3}\right)}{\left(25 \times 10^{-3}\right)}=1.178 \mathrm{~mol} / \mathrm{L}
\end{gathered}
$$

Page 118
3.4 Neutralization

Applications 46

 25.00 mL of $0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

Applications 46

 25.00 mL of $0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?

$3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
\frac{M_{\mathrm{H}_{3} \mathrm{PO}_{4}} V_{\mathrm{H}_{3} \mathrm{PO}_{4}}}{n_{\mathrm{H}_{3} \mathrm{PO}_{4}}}=\frac{M_{\mathrm{NaOH}} V_{\mathrm{NaOH}}}{n_{\mathrm{NaOH}}} \rightarrow \frac{(0.1)(25)}{1}=\frac{(0.5)\left(V_{\mathrm{NaOH}}\right)}{3} \\
V_{\mathrm{NaOH}}=\frac{(0.1)(25)(3)}{(0.5)}=15 \mathrm{~mL}
\end{gathered}
$$

Page 118
3.4 Neutralization

Applications 47

Write equations for the salt hydrolysis reactions occurring when the following salts dissolve in water. Classify each as acidic, basic, or neutral.
a. ammonium nitrate
b. potassium sulfate

Page 119
3.4 Neutralization

Applications 47

Write equations for the salt hydrolysis reactions occurring when the following salts dissolve in water. Classify each as acidic, basic, or neutral.
a. ammonium nitrate $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$

$$
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

The solution is acidic.
b. potassium sulfate $\mathrm{K}_{2} \mathrm{SO}_{4}$

$$
\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The solution is neutral.

Page 119
3.4 Neutralization

Applications 47

Write equations for the salt hydrolysis reactions occurring when the following salts dissolve in water. Classify each as acidic, basic, or neutral.
c. rubidium acetate
d. calcium carbonate

Page 119
3.4 Neutralization

Applications 47

Write equations for the salt hydrolysis reactions occurring when the following salts dissolve in water. Classify each as acidic, basic, or neutral.
c. rubidium acetate $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Rb}$
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+$ $\mathrm{OH}^{-}(\mathrm{aq})$

The solution is basic.
d. calcium carbonate CaCO_{3}
$\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightarrow \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
The solution is basic.

Page 119
3.4 Neutralization

Applications 48

CHALLENGE Write the equation for the reaction that occurs in a titration of ammonium hydroxide ($\mathrm{NH}_{4} \mathrm{OH}$) with hydrogen bromide (HBr). Will the pH at the equivalence point be greater or less than 7 ?

Applications 48

CHALLENGE Write the equation for the reaction that occurs in a titration of ammonium hydroxide ($\mathrm{NH}_{4} \mathrm{OH}$) with hydrogen bromide (HBr). Will the pH at the equivalence point be greater or less than 7 ?
$\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})+\mathrm{HBr}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Br}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}$
Hydronium ions are formed so the pH will be less than 7.

Page 119
3.4 Neutralization

Review 49

Explain why the net ionic equation for the neutralization reaction of any strong acid with any strong base is always the same.

Page 122
3.4 Neutralization

Review 49

Explain why the net ionic equation for the neutralization reaction of any strong acid with any strong base is always the same.

After the elimination of spectator ions from the neutralization equation, each neutralization reaction is the reaction of one mole of hydrogen ion with one mole of hydroxide to form one mole of water.

كل تفاعـل تعادل هو تفاعل 1 mol 1 من أيون الهيدروجين مع mol1من الهيدروكسيد؛ لتكوين 1 سol 1 من الماء.

Page 122
3.4 Neutralization

Review 50

Which of the following is true?
a) The equivalence point is where the pH equals 7 .
b) The end point is the point at which the solution have equal moles of H^{+}and OH^{-}ions
c) The equivalence point is the point at which the indicator used in a titration changes color.
d) The end point is the point at which the indicator used in a titration changes color.

Page 122
3.4 Neutralization

Review 50

Which of the following is true?
a) The equivalence point is where the pH equals 7 .
b) The end point is the point at which the solution have equal moles of H^{+}and OH^{-}ions
c) The equivalence point is the point at which the indicator used in a titration changes color.
d) The end point is the point at which the indicator used in a titration changes color.

Page 122
3.4 Neutralization

Review 50

What is the difference between the equivalence point and the end point of a titration?

Page 122
3.4 Neutralization

0

Review 50

What is the difference between the equivalence point and the end point of a titration?

- Equivalence point is the pH at which the moles of $\mathrm{H}+$ ions from the acid equal the moles of OH - ions from the base.
- The end point is the point at which the indicator used in a titration changes color.
- نقطة التكافؤ هي pH التي تتساوى عندها مولات أيونات H+ من الحمض، مع مولات أيونات -OH من القاعدة.
نقطة النهاية هي النقطة التى يتغيّر عندها لون الكاشف المستعمل في المعايرة.

Page 122
3.4 Neutralization

Review 52

Calculate the molarity of a solution of hydrobromic acid (HBr) if 30.35 mL of $\mathbf{0 . 1 0 0 0 M} \mathbf{N a O H}$ is required to titrate $\mathbf{2 5 . 0 0} \mathbf{~ m L}$ of the acid to the equivalence point.

Page 122
3.4 Neutralization

0

Review 52

Calculate the molarity of a solution of hydrobromic acid (HBr) if 30.35 $\mathbf{m L}$ of $\mathbf{0 . 1 0 0 0 M} \mathbf{N a O H}$ is required to titrate $\mathbf{2 5 . 0 0} \mathbf{~ m L}$ of the acid to the equivalence point.

$\mathrm{HBr}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\begin{gathered}
\frac{M_{\mathrm{NaOH}} V_{\mathrm{NaOH}}}{n_{\mathrm{NaOH}}}=\frac{M_{\mathrm{HBr}} V_{\mathrm{HBr}}}{n_{\mathrm{HBr}}} \rightarrow \frac{(0.1)(30.35)}{1}=\frac{\left(M_{\mathrm{HBr}}\right)(25)}{1} \\
M_{\mathrm{HBr}}=\frac{(0.1)(30.35)}{(25)}=\mathbf{0 . 1 2 1 4} \mathbf{~ m o l} / \mathbf{L}
\end{gathered}
$$

Page 122
3.4 Neutralization

Mastering Concepts 85

What acid and base must react to produce an aqueous sodium iodide solution?

Page 127
3.4 Neutralization

0

Mastering Concepts 85

What acid and base must react to produce an aqueous sodium iodide solution?

Hydroiodic acid (HI) and sodium hydroxide (NaOH) must react.

Page 127
3.4 Neutralization

0

Mastering Concepts 86

What acid-base indicators would be suitable for the neutralization reaction whose titration curve is shown in the figure?
a) Bromphenol (3-5)
b) Methyl red (4-6)
c) Bromcresol purple (5-6.5)

d) Bromthymol blue (6-7.5)

Page 127
3.4 Neutralization

Mastering Concepts 86

What acid-base indicators would be suitable for the neutralization reaction whose titration curve is shown in the figure?
a) Bromphenol (3-5)
b) Methyl red (4-6)
c) Bromcresol purple (5-6.5)

d) Bromthymol blue (6-7.5)

Bromcresol purple or alizarin would be suitable because they would change color near a pH 6.0 equivalence point.

Page 127
3.4 Neutralization

Mastering Concepts 87

When might a pH meter be better than an indicator to determine the end point of an acid-base titration?

Page 127
3.4 Neutralization

(

Mastering Concepts 87

When might a pH meter be better than an indicator to determine the end point of an acid-base titration?

A pH meter could be used when there is no acid-base indicator that changes color at or near the equivalence point, or when such an indicator is not available

Page 127
3.4 Neutralization

Mastering Concepts $\mathbf{8 9}$

When methyl red is added to an aqueous solution, a pink color results. When methyl orange is added to the same solution, a yellow color is produced. What is the approximate pH range of the solution?
Use the figure below

Page 127
3.4 Neutralization

Mastering Concepts 89

When methyl red is added to an aqueous solution, a pink color results. When methyl orange is added to the same solution, a yellow color is produced. What is the approximate pH range of the solution?
Use the figure below
The pH is between approximately 4.2 and 5.6.

Page 127
3.4 Neutralization

Mastering Concepts 90

Give the name and formula of the acid and the base from which each salt was formed.
a. NaCl
b. KHCO_{3}

Page 127
3.4 Neutralization

(

Mastering Concepts 90

Give the name and formula of the acid and the base from which each salt was formed.
a. NaCl
base: sodium hydroxide (NaOH); acid: hydrochloric acid (HCl)
b. KHCO_{3}
base: potassium hydroxide (KOH); acid: carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$

Page 127
3.4 Neutralization

Mastering Concepts go

Give the name and formula of the acid and the base from which each salt was formed.
c. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
d. CaS

Page 127
3.4 Neutralization

0

Mastering Concepts go

Give the name and formula of the acid and the base from which each salt was formed.
c. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
base: ammonia $\left(\mathrm{NH}_{3}\right)$; acid nitrous acid $\left(\mathrm{HNO}_{2}\right)$
d. CaS
base: calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$; acid hydrosulfuric acid $\left(\mathrm{H}_{2} \mathrm{~S}\right)$

Page 127
3.4 Neutralization

0

Mastering Problems 91

Write formula equations and net ionic equations for the hydrolysis of each salt in water.
a. sodium carbonate
b. ammonium bromide

Page 127
3.4 Neutralization

Mastering Problems 91

Write formula equations and net ionic equations for the hydrolysis of each salt in water.
a. sodium carbonate
$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NaHCO}_{3}(\mathrm{aq})+$ $\mathrm{NaOH}(\mathrm{aq})$;
$\mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
b. ammonium bromide

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Br}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HBr}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) ; \\
& \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

Page 127
3.4 Neutralization

Mastering Problems 92

Lithium hydroxide is used to purify air by removing carbon dioxide. A $25.00-\mathrm{mL}$ sample of lithium hydroxide solution is titrated to an end point
 of the LiOH solution?

Page 127
3.4 Neutralization

Mastering Problems 92

Lithium hydroxide is used to purify air by removing carbon dioxide. A $\mathbf{2 5 . 0 0}-\mathrm{mL}$ sample of lithium hydroxide solution is titrated to an end point
 of the LiOH solution?

$\mathrm{HCl}+\mathrm{LiOH} \rightarrow \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
\frac{M_{\mathrm{HCl}} V_{\mathrm{HCl}}}{n_{\mathrm{HCl}}}=\frac{M_{\mathrm{LiOH}} V_{\mathrm{LiOH}}}{n_{\mathrm{LiOH}}} \rightarrow \frac{(0.334)(15.22)}{1}=\frac{\left(M_{\mathrm{LiOH}}\right)(25)}{1} \\
M_{\mathrm{LiOH}}=\frac{(0.334)(15.22)}{(25)}=\mathbf{0 . 2 0 3 3} \mathbf{~ m o l} / \mathrm{L}
\end{gathered}
$$

Page 127
3.4 Neutralization

Mastering Problems 93

In an acid-base titration, 45.78 mL of a sulfuric acid solution is titrated to
 is the molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Page 127
3.4 Neutralization

Mastering Problems 93

In an acid-base titration, 45.78 mL of a sulfuric acid solution is titrated to the end point by $\mathbf{7 4 . 3 0 \mathrm { mL }}$ of 0.4388 M sodium hydroxide solution. What is the molarity of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
\frac{M_{\mathrm{NaOH}} V_{\mathrm{NaOH}}}{n_{\mathrm{NaOH}}}=\frac{M_{\mathrm{H}_{2} \mathrm{SO}_{4} V_{\mathrm{H}_{2} \mathrm{SO}_{4}}}^{n_{\mathrm{H}_{2} \mathrm{SO}_{4}}} \rightarrow \frac{(0.4388)(74.3)}{2}=\frac{\left(M_{\mathrm{H}_{2} \mathrm{SO}_{4}}\right)(45.78)}{1}}{1} \\
M_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{(0.4388)(74.3)}{(2)(45.78)}=\mathbf{0 . 3 5 6 1} \mathbf{~ m o l} / \mathbf{L}
\end{gathered}
$$

Page 127
3.4 Neutralization

Mixed Review 95

How many milliliters of 0.225 M HCl would be required to titrate 6.00 g of KOH ? $(\mathrm{KOH}$ molar mass $=56.1056)$

Page 128
3.4 Neutralization

Mixed Review 95

How many milliliters of 0.225 M HCl would be required to titrate 6.00 g of $\mathrm{KOH} ?(\mathrm{KOH}$ molar mass $=56.1056)$

$$
\mathrm{HCI}+\mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{gathered}
M_{\mathrm{KOH}}=\frac{6 \mathrm{~g}}{56.1056 \mathrm{~g} / \mathrm{mol}}=0.107 \mathrm{~mol} / \mathrm{L} \\
\frac{M_{\mathrm{HCl}} V_{\mathrm{HCl}}}{n_{\mathrm{HCl}}}=\frac{M_{\mathrm{KOH}} V_{\mathrm{KOH}}}{n_{\mathrm{KOH}}} \rightarrow \frac{(0.225)\left(V_{\mathrm{HCl}}\right)}{1}=\frac{(0.107)(1 \mathrm{~mL})}{1} \\
V_{\mathrm{HCl}}=\frac{(0.107)}{(0.225)}=475 \mathrm{~mL}
\end{gathered}
$$

Page 128
3.4 Neutralization

Think Critically 108

Sketch the shape of the approximate pH v . volume curve that would result from titrating a diprotic acid with a 0.10 M NaOH solution.

Page 128
3.4 Neutralization

Think Critically 108

Sketch the shape of the approximate pH v . volume curve that would result from titrating a diprotic acid with a 0.10 M NaOH solution.

Page 128
3.4 Neutralization

Multiple Choice 1

What is the pH at the equivalence point of this titration?
a) 10
b) 9
c) 5

d) 1

Page 130
3.4 Neutralization

Multiple Choice 1

What is the pH at the equivalence point of this titration?
a) 10
b) 9
C) 5

d) 1

Page 130
3.4 Neutralization

Multiple Choice 2

Which indicator would be effective for detecting the end point of this titration?
a) methyl orange, with a range of 3.2-4.4
b) phenolphthalein, with a range of 8.2-10

c) bromocresol green, with a range of 3.8-5.4
d) thymol blue, with a range of 8.0-9.6

Multiple Choice 2

Which indicator would be effective for detecting the end point of this titration?
a) methyl orange, with a range of 3.2-4.4
b) phenolphthalein, with a range of 8.2-10

c) bromocresol green, with a range of 3.8-5.4
d) thymol blue, with a range of 8.0-9.6

Page 130
3.4 Neutralization

Chapter 3 - Acids and Bases

Resources

- Acids and Bases, from Glencoe Chemistry: Matter and Change ©2017

THIS FILE IS FOR EDUCATIONAL PURPOSES ONLY.

This file is under Fair Use:
Copyright Disclaimer under section 107 of the Copyright Act of 1976, allowance is made for "fair use" for purposes such as criticism, comment, news reporting, teaching, scholarship, education and research. Fair use is a use permitted by copyright statute that might otherwise be infringing.
All rights and credit go directly to Its rightful owners. No copyright infringement Intended.

Related Files:

Chemistry Student Book T2 2022-2023
[https://t.me/InLibrary/1496]
Chemistry Teacher Guide T2 2022-2023
[https://t.me/InLibrary/1510]
Chapter 3 Summary 2022-2023
[shorturl.at/GJYo3]
Chemistry Student Book AR T2 2022-2023
[https://t.me/InLibrary/1489]
Chemistry Teacher Guide AR T2 2022-2023
[https://t.me/InLibrary/1503]

