Grade 10 Formula sheet | Term 2 | Physics

Quantity	Unit		
Current (I)	Ampere (A)	$I=\frac{q}{t}$	$I=\sqrt{\frac{P}{R}}$
		$I=\frac{\Delta V}{R}$	$I=\frac{P}{\Delta V}$
		$I=\sqrt{\frac{E}{R t}}$	
Charge (q)	Coulomb (C)	$q=I t$	$q=\frac{E}{\Delta V}$
Time (t)	Seconds (s)	$t=\frac{q}{I}$	$t=\frac{E}{P}$
		$t=\frac{E}{Y^{2} R}$	$t=\frac{E R}{\Delta V^{2}}$
Resistance (R)	Ohm (Ω)	$R=\frac{\Delta V}{I}$	$R=\frac{P}{I^{2}}$
		$R=\frac{\Delta V^{2}}{P}$	$R=\frac{E}{I^{2} t}$
		$R=\frac{\Delta V^{2} t}{E}$	
Potential difference (V) or (ΔV)	Volt (V)	$\Delta V=I R$	$\Delta V=\sqrt{P R}$
		$\Delta V=\frac{E}{q}$	$\Delta V=\frac{P}{I}$
		$\Delta V=\sqrt{\frac{E R}{t}}$	
Power (P)	Watt (W)	$P=I \Delta V$	$P=\frac{E}{t}$
		$P=I^{2} R$	$P=\frac{\Delta V^{2}}{R}$
Energy (E)	Joule (J)	$E=P t$	$E=I^{2} \mathrm{Rt}$
		$E=q \Delta V$	$E=\frac{\Delta V^{2}}{R} t$

Quantity	Unit	Equation	
Series circuit			
Total resistance (equivalent resistance) (R) or (R_{eq})	Ohm (Ω)	$R=R_{1}+R_{2}+R_{3} \cdots$	You add them
Total current (I)	Ampere (A)	$I=I_{1}=I_{2}=I_{3} \ldots$	The same current for all
Potential difference of the source ($\Delta V_{\text {source }}$) or the battery	Volt (V)	$\Delta V_{\text {source }}=V_{1}+V_{2}+V 3 \ldots$	Every resistor will take some voltage
Voltage divider (series circuit)	Ohm (Ω)	$R_{1}+R_{2}=\frac{\Delta V}{I}$	
	Ampere (A)	$I=\frac{\Delta V}{R_{1}+R_{2}}$	
	Volt (V)	$\Delta V=I\left(R_{1}+R_{2}\right)$	
Parallel circuit			

Total resistance (equivalent resistance) (R) or (R_{eq})	Ohm (Ω)$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$		Find $1 / \mathrm{R}$ then take the reciprocal المقلوب
Total current (I)	Ampere (A)	$I=I_{1}+I_{2}+I_{3} \ldots$	Each path مسار will take some current
Potential difference of the source ($\Delta V_{\text {source }}$) or the battery	Volt (V)	$\Delta V_{\text {source }}=V_{1}=V_{2}=V 3 \ldots$	All have the same voltage
	Ampere (A)	$\Sigma I=0$	Junction rule: the total current going in the junction is positive and the total current going from the junction is negative (both are equation to each other).
	Volt (V)	$\Sigma V=0$	Loop rule: the potential difference in a loop is equal to zero

