

CHEMISTRY 10 ADVANCED

REVIEW TRIMESTER 2 2022-2023

Done by : Mr. Tarek Mohamed ABU DHBI SECONDARY School

1	يتعرف الدليل على حدوث تغير كيمياني	نص الكتاب والشكل 2	150 , 151
	Identy the Evidence of chemical change	Text book, Figure 2	100,101

 Figure 9.2 Each of these photos illustrates evidence of a chemical reaction.
 Describe the evidence in each photo that tells you a chemical reaction has occurred.

Which figures illustrates evidence of a chemical reaction?

أي مما يأتي يُمثل دليلاً على حدوث تفاعل كيميائي؟

O

0

0

0

1	2	3	4	
A banana changing from green to yellow	Fireworks	Water boiling	Chocolate melting	
تغيّر لون الموزة من الأخضر إلى الأصفر	ألعاب نارية	غليان الماء	انصبهار الشوكولاتة	
2 and 3 o	nly	2 و 3 فقط		
1 and 3 o	nly	1 و 3 فقط		
1 and 2 o	only	1 و 2 فقط		
3 and 4 o	nly	3 و 4 فقط		

In the figure below, what is the evidence that indicates

a chemical reaction has occurred?

في الصورة أدناه، ما الدليل على حدوث تفاعل كيميائي؟

Temperature change	تغير في درجة الحرارة	0
Formation of a solid	تكوّن مادة صلبة	0
Gas bubbles	تصاعد غاز	0
Color Change	تغير اللون	0

What is of the name of the solid substance formed from a chemical reaction as

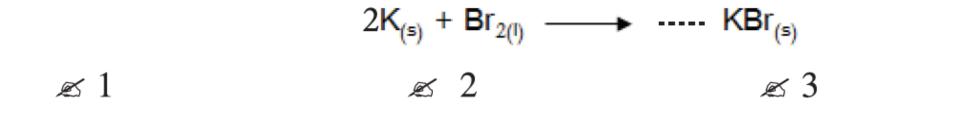
shown in the figure below?

😹 Liquid

Z Precipitate

🖉 Gas 🛛 🖉 Aqueous

		يزن المعادلات الكيميانية			
2	Bala	nce chemical equations		Text book , Figures 4 , 5 , Table2	153 , 154,155
	Al(s) +	Br ₂ (g)	→ AlBr	skeleton e skeleton e	e 9.4 The information conveyed by equations is limited. In this case, the equation is correct, but it does not
	+		\rightarrow	act. Refer	exact number of atoms that inter- to Table R-1 on page 968 for a m color conventions.
	One aluminum atom	Two bromine atoms	One aluminu Three bromin		
	2Al(s)	+ 3Br ₂ (g)	→ 2AIB	equation, the reactant side of number of part the equation.	.5 In a balanced chemical number of particles on the of the equation equals the ticles on the product side of n this case, two aluminum
		+	\rightarrow		bromine atoms are needed of the equation.
	Two aluminum atoms	Six bromine atoms	Two alumin Six bromir		


Table 9.2Steps for Bal			lancing Eq	uatio			able Explore balancing ations at glencoe.com.
Step		Process			Example		
1	<i>reaction.</i> Make s formulas correct substances. An a reactants from t sign separates m	nrow separates the he products, and a plus nultiple reactants and the physical states of	H ₂ (g) Two hydrogen atoms	+	Cl ₂ (g) Two chlorine atoms	\rightarrow \rightarrow	HCl(g) One hydrogen atom One chlorine atom
2	<i>reactants.</i> If a reidentical polyator reactants and proplyatomic ion a reaction does not atomic ions. Two			H ₂ 2 atom	-	→ s Cl	

.....

3	Count the atoms of the elements in the products. One atom of hydrogen and one atom of chlorine are produced.	HCI 1 atom H + 1 atom CI				
4	Change the coefficients to make the number of atoms of each element equal on both sides of the equation. Never change a subscript in a chemical formula to balance an equation because doing so changes the identity of the substance.	H ₂ 2 atoms H	+	Cl ₂ 2 atoms Cl	\rightarrow	2HCl 2 atoms H + 2 atoms Cl
5	Write the coefficients in their lowest possible ratio. The coefficients should be the smallest possible whole numbers. The ratio 1 hydrogen to 1 chlorine to 2 hydrogen chloride (1:1:2) is the lowest-possible ratio because the coefficients cannot be reduced further and still remain whole numbers.			$H_2(g) + Cl_2(g) →$ 1:1:2 1 H_2 to 1 Cl_2 to)

6	<i>Check your work</i> . Make sure that the chemical formulas are written correctly. Then, check that the number of atoms of each element is equal on both sides of the equation.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
---	---	--

2– What is the correct coefficient to balance the following equation?

z 7

What is the correct balanced skeleton equation that represents the chemical reaction below?

Solid sodium (Na) reacts vigorously with water (H_2O) to yield gaseous hydrogen (H_2) and a solution of sodium hydroxide (NaOH).

ما المعادلة الموزونة بالصيغ الصحيحة التي تُمثل التفاعل الكيميائي أدناه؟

يتفاعل الصوديوم الصلب (Na) بشدة مع الماء (H₂O) لينتج غاز الهيدروجين (H₂) محلول هيدروكسيد الصوديوم (NaOH) .

$Na_{(s)} + H_2O_{(aq)} \rightarrow NaOH_{(aq)} + H_{2(aq)}$	0
$2NaOH_{(aq)} + H_2O_{(\ell)} \rightarrow 2H_{2(g)} + 2Na_{(s)}$	0
$3Na_{(aq)} + 2H_2O_{(aq)} \rightarrow 2NaOH_{(s)} + 3H_{2(g)}$	0
$2Na_{(s)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(aq)} + H_{2(g)}$	0

What is the correct balanced skeleton equation that represents the chemical reaction below?

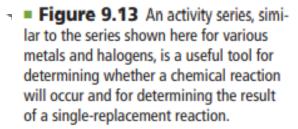
Hydrochloric acid (HCl) reacts with solid Aluminum (Al) metal to yield aqueous Aluminum chloride (AlCl₃) and Hydrogen gas (H₂) ما المعادلة الموزونة بالصيغ <mark>الصحيحة</mark> التي تُمثل التفاعل الكيميائي أدناه؟

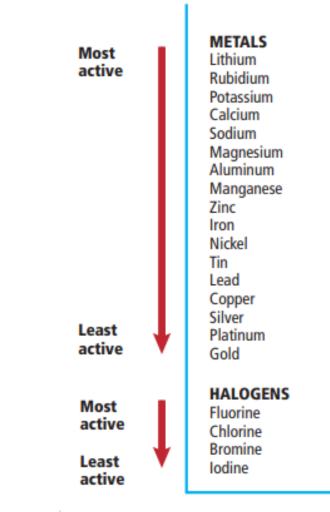
يتفاعل حمض الهيدروكلوريك (HCl) مع فلز الالمنيوم الصلب (Al) ليعطي محلول كلوريد الألمنيوم (AlCl₃) وغاز الهيدروجين (H₂)

2AI _(s) + 6HCI _(g)	$\rightarrow 2AICI_{3(l)} + 3H_{2(aq)}$	0
2Al _(s) + 6HCl _(aq)	$\rightarrow 2AICI_{3 (aq)} + 3H_{2 (g)}$	0
3AI _(aq) + 3HCI _(aq)	\rightarrow 3AICI _{3 (aq)} + 3H _{2 (g)}	0
2AICI _{3 (aq)} + 3H ₂	$_{(g)} \rightarrow 2AI_{(s)} + 6HCI_{(aq)}$	0

2. What are the correct coefficients when this equation is balanced? Sb + O₂ → Sb₄O₆ A. 1,2,10 B. 4,6,1 D. 10,5,1

3 -	يُصنف النفاعلات الكيميانية	نص الكتاب - مثال 2 - تطبيقات	من صفحة 157 إلى صفحة 166
	Classify of chemical reactions	Text book, Example 2, Applications	From page 157 to 166

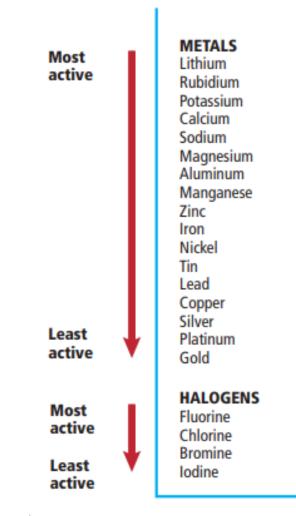

Table 9.4


Predicting Products	Interactive Table Explore types of chemical reactions at glencoe.com.
of Chemical Reactions	

Type of Reaction	Reactants	Probable Products	Generic Equation
Synthesis	 two or more substances 	one compound	$A + B \rightarrow AB$
Combustion	a metal and oxygena nonmetal and oxygena compound and oxygen	the oxide of the metalthe oxide of the nonmetaltwo or more oxides	$A + O_2 \rightarrow AO$
Decomposition	one compound	 two or more elements and/or compounds 	$AB \rightarrow A + B$
Single-replacement	a metal and a compounda nonmetal and a compound	 a new compound and the replaced metal a new compound and the replaced nonmetal 	$A + BX \longrightarrow AX + B$
Double-replacement	 two compounds 	 two different compounds, one of which is a solid, water, or a gas 	$AX + BY \rightarrow AY + BX$

Single-Replacement Reactions Predict the products that will result when these reactants combine, and write a balanced chemical equation for each reaction.

- **a.** Fe(s) + CuSO₄(aq) \rightarrow
- **b.** $Br_2(I) + MgCl_2(aq) \rightarrow$
- **c.** Mg(s) + AlCl₃(aq) \rightarrow



Predict whether the following single-replacement reactions will occur. If a reaction occurs, write a balanced equation for the reaction.

- **21.** K(s) + ZnCl₂(aq) \rightarrow
- **22.** $Cl_2(g) + HF(aq) \rightarrow$
- **23.** Fe(s) + Na₃PO₄(aq) \rightarrow
- **24. Challenge** Al(s) + Pb(NO₃)₂(aq) \rightarrow

Figure 9.13 An activity series, similar to the series shown here for various metals and halogens, is a useful tool for determining whether a chemical reaction will occur and for determining the result of a single-replacement reaction.

Which of the following is a single displacement reaction?

أي من التفاعلات التالية تفاعل استبدال احادي؟

 $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(f)}$

$$Cu_{(s)} + 2AgNO_{3(aq)} \rightarrow 2Ag_{(s)} + Cu(NO_3)_{2(aq)}$$

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(\ell)}$$

 $2NaOH_{(aq)} + CaBr_{2(aq)} \rightarrow Ca(OH)_{2(s)} + 2NaBr_{(aq)}$

• What is the type of the following chemical reaction?

$$SiO_{2(s)} + 4HF_{(aq)} \longrightarrow SiF_{4(S)} + 2H_2O_{(l)}$$

Synthesis Single replacement Sissociation Double replacement

Decomposition reaction	O تفاعل تفكك
Combustion reaction	 تفاعل احتراق
Single Replacement reaction	 تفاعل استبدال أحادي
Double Replacement reaction	🔘 تفاعل استبدال مزدوج

What is a reaction of a substance with oxygen and releases energy in the form of heat and light?

ماذا يُسمى تفاعل مادة مع الأكسجين مطلقاً طاقة في صورة حرارة وضوء؟ Which one of the following chemical reaction equations represents a <u>synthesis reaction</u>?

أي من معادلات التفاعلات الكيميائية التالية تُمثل تفاعل تكوين؟

What is the type of chemical reaction represented in the equation below?

ما نوع التفاعل الكيميائي الذي تُمثله المعادلة أدناه؟

 $AB \rightarrow A + B$

Combustion reaction	تفاعل احتراق	0
Double Replacement reaction	تفاعل استبدال مزدوج	0
Single Replacement reaction	تفاعل استبدال أحادي	0
Decomposition reaction	تفاعل تفكك	0

4. Which type of reaction is $4AI + 3O_2 \longrightarrow 2AI_2O_3$? A. synthesis B. decomposition

C. single replacement D. combustion

B. decomposition D. combustion

-	يُحول عدد المولات إلى عدد من الجسيمات المُمثلة والعكس	نص الكتاب وتطبيقات	400 404
7	Convert of moles to number of representative particles and vice versa	Text book, Applications	190 , 191

 Zinc (Zn) is used to form a corrosion-inhibiting surface on galvanized steel. Determine the number of Zn atoms in 2.50 mol of Zn.

2. Calculate the number of molecules in 11.5 mol of water (H₂O).

3. Silver nitrate (AgNO₃) is used to make several different silver halides used in photographic films. How many formula units of AgNO₃ are there in 3.25 mol of AgNO₃?

 Challenge Calculate the number of oxygen atoms in 5.0 mol of oxygen molecules. Oxygen is a diatomic molecule, O₂.

What is the number of atoms in a 0.645 mol sample of argon gas (Ar)?	الذرات الموجودة في 0.645 mol من عينة من رجون (Ar)؟	17. 28.
Avogadro's number = 6.02 x 10 ²³	ادرو = 6.02 x 10 ²³	عدد افوجا
9.33 x 10 ²³ atom	9.33 x 10 ²³ ذرة	0
3.88 x 10 ²³ atom	نرة 3.88 × 10 ²³	0
1.07 x 10 ²³ atom	1.07 x 10 ²³ ذرة	0
4.62 x 10 ²³ atom	4.62 x 10 ²³ ذرة	0

11.Calculate the number of molecules in 4.0 mol H_2O ?A. 0.62×10^{23} moleculesB. 2.4×10^{24} moleculesC. 2.4×10^{-23} moleculesD. 2.4×10^{23} molecules

How many moles contained in 2.50×10^{24} molecules of ammonia NH ₃ ? Avogadro's number = 6.02×10^{23}	كم عدد المولات الموجودة في 2.50 × 2.50 جزيء من الأمونيا NH ₃ عدد أفوجادرو = 10 ²³ × 6.02 × 6.02
0.42 mol	0
2.40 mol	0
4.15 mol	0
0.24 mol	0

42	يحول عدد المولات إلى كنلة مركب ما والعكس	مثال7 و 8 وتطبيقات	204, 205	
12	Convert the number of moles to the mass of a compound and vice versa	Example 6,7 , Applications	204 ,205	

Mole-to-Mass Conversion for Compounds The characteristic odor of garlic is due to allyl sulfide $[(C_3H_5)_2S]$. What is the mass of 2.50 mol of $(C_3H_5)_2S$?

37. The United States chemical industry produces more sulfuric acid (H₂SO₄), in terms of mass, than any other chemical. What is the mass of 3.25 mol of H₂SO₄?

38. What is the mass of 4.35×10^{-2} mol of zinc chloride (ZnCl₂)?

39. Challenge Write the chemical formula for potassium permanganate, and then calculate the mass in grams of 2.55 mol of the compound.

Mass-to-Mole Conversion for Compounds Calcium hydroxide [Ca(OH)₂] is used to remove sulfur dioxide from the exhaust gases emitted by power plants and for softening water by the elimination of Ca²⁺ and Mg²⁺ ions. Calculate the number of moles of calcium hydroxide in 325 g of the compound.

40. Determine the number of moles present in each compound.

a. 22.6 g AgNO₃ **b.** 6.50 g ZnSO₄ **c.** 35.0 g HCl

41. Challenge Identify each as an ionic or molecular compound and convert the given mass to moles. Express your answers in scientific notation.

a. 2.50 kg Fe₂O₃ **b.** 25.4 mg PbCl₄

Baking soda is the common name for sodium hydrogen carbonate (NaHCO₃). What is the mass in grams of 2.75 moles of sodium hydrogen carbonate?

- A 63.2 g
- **B** 84 g
- C 210 g

D 231 g

How many moles are in 22.0 g of CO_2 ? Molar mass $CO_2 = 44$ g/mol كم مولاً موجود في 22.0 g من CO²؟ الكتلة المولية 44 g/mol = CO²

1.25 mol	0
0.50 mol	0
0.60 mol	0
2.00 mol	0

How many moles are in 82.0 g of HCN? Molar mass HCN = 27.0 g/mol	كم مولاً موجوداً في 82.0 g من HCN؟ الكتلة المولية 27.0 g/mol = HCN
3.04 mol	Ο
2.53 mol	Ο
1.25 mol	Ο
0.33 mol	0

6	يتوقع إذا كانت التفاعلات في المحاليل المائية ستنتج راسبًا أم ماءً أم غازًا	نص الكتاب ومثال 3 و 4 و 5 وتطبيقات	170 .171 . 172 .173
ľ	Predict whether reactions in aqueous solutions will produce precipitate, water, or a gas	Text book, Example 4, Applications	,,,

Reactions That Form a Precipitate Write the chemical, complete ionic, and net ionic equations for the reaction between aqueous solutions of barium nitrate and sodium carbonate that forms the precipitate barium carbonate.

Reactions That Form Water Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous lithium hydroxide. This reaction produces water and aqueous lithium chloride.

Reactions That Form Gases Write the chemical, complete ionic, and net ionic equations for the reaction between hydrochloric acid and aqueous sodium sulfide, which produces hydrogen sulfide gas.

10. What happens when AgClO_{3(aq)} and NaNO_{3(aq)} are mixed?

- A. No visible reaction occurs
- B. Solid NaClO₃ precipitates out of the solution.
- C. NO_2 gas is released during the reaction.
- D. Solid Ag metal is produced.

Compound	Name	State at 25°C	Soluble in Water?	Meltin Point (°C)
NaClO ₃	sodium chlorate	solid	yes	248
Na ₂ SO ₄	sodium sulfate	solid	yes	884
NICl ₂	nickel(II) chloride	solid	yes	1031
NI(OH) ₂	nickel(II) hydroxide	solid	no	230
AgNO ₃	silver nitrate	solid	yes	210

Which one of the following reactions in aqueous solution produce gases?

أي التفاعلات التالية في المحاليل المائية من التفاعلات التي تكوّن الغاز ات؟

What is the type of chemical reaction shown in the following chemical equation?

ما نوع التفاعل الكيميائي المُبين في المعادلة الكيميائية التالية؟

$$2KI_{(aq)} + Pb(NO_3)_{2(aq)} \rightarrow PbI_{2(s)} + 2KNO_{3(aq)}$$

Reactions that form only ions	التفاعلات التي تكوّن أيونات فقط
Reactions that form gas	التفاعلات التي تكون الغازات
Reactions that form water	التفاعلات التي تكوّن الماء
Reactions that form precipitates	التفاعلات التي تكوّن رواسب

4	يغدد خصانص الأنواع المختلفة للتفاعلات الكيميانية	نص الكتاب ومثال 2 وتطبيقات والشكل 13	161 , 162 ,163
	List the characteristics of the different types of chemical reactions	ext book,Example 2, Applications , Figure	

5. Use the activity series shown to predict which reaction will occur.

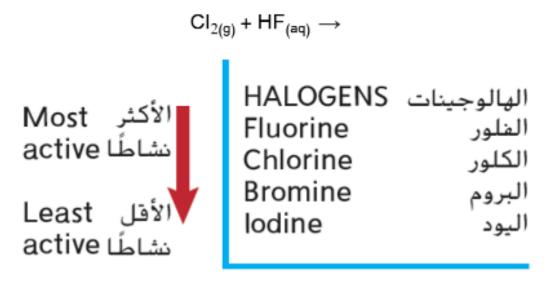
A. NaBr + I_2
B. LiF + $Cl_2 \longrightarrow$
C. KBr + F_2
D. NaCl + I_2

Activity Series for	r Halogens
Fluorine	Most Active
Chlorine	
Bromine	
lodine	Least Active
Iodine	Least Active

Using the reactivity series of metals, what would yield the single replacement reaction of calcium (Ca) with zinc nitrate $Zn(NO_3)_2$?

$$Ca_{(s)} + Zn(NO_3)_2 (aq) \rightarrow$$

مستخدماً سلسلة النشاط الكيميائي، ما الناتج المتوقع لتفاعل الاستبدال الأحادي بين الكالسيوم (Ca) مع نترات الخارصين 2n(NO₃)2 ؟


NR, No Reaction / لن يحدث تفاعل

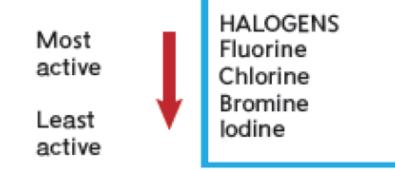
 $Zn_{(s)} + Ca(NO_3)_{2 (aq)}$

 $Zn(NO_3)_2 (aq) + Ca(OH)_2 (aq)$

 $\text{CaCl}_{2~(\text{aq})} + \text{Zn}_{~(\text{s})}$

Using the halogens reactivity series, what would yield the reaction of chlorine gas (Cl₂) with aqueous hydrogen fluoride solution (HF)?

 $CI_{2(g)} + F_{2(g)} + H_{2(g)}$


NR, No Reaction / لا يحدث تفاعل

$$HCI_{(aq)} + F_{2(g)}$$

 $HF_{(aq)} + HCI_{(aq)}$

4– Which halogen of the following replaces chlorine in its solutions?

- ∠ Bromine only

8	يُحول عدد المولات إلى عدد من الجسيمات المُمثلة والعكس	مثال 1 وتطبيقات	192
Ů	Convert of moles to number of representative particles and vice versa	Example1, Applications	132

Converting Particles to Moles Zinc (Zn) is used as a corrosion-resistant coating on iron and steel. It is also an essential trace element in your diet. Calculate the number of moles of zinc that contain 4.50×10^{24} atoms.

5. How many moles contain each of the following? **a.** 5.75×10^{24} atoms Al **b.** 2.50×10^{20} atoms Fe

- Challenge Identify the representative particle for each formula, and convert the given number of representative particles to moles.
 - **a.** $3.75 \times 10^{24} \text{ CO}_2$ **b.** $3.58 \times 10^{23} \text{ ZnCl}_2$

•	يُحول عدد المولات إلى كتلة عنصر ما والعكس	نص الكتاب - مثال 2 وتطبيقات	105 105
9	Convert of the number of moles to the mass of an element and vice versa	Text book, Example 2, Applications	195 , 196

Mole-to-Mass Conversion Chromium (Cr), a transition element, is a component of chrome plating. Chrome plating is used on metals and in steel alloys to control corrosion. Calculate the mass in grams of 0.0450 mol Cr. 15. Determine the mass in grams of each of the following.

- a. 3.57 mol Al
- b. 42.6 mol Si
- Challenge Convert each given quantity in scientific notation to mass in grams expressed in scientific notation.
 - a. 3.45 × 10² mol Co
 - **b.** $2.45 \times 10^{-2} \text{ mol Zn}$

10	يُحول عدد المولات إلى كتلة عنصر ما والعكس	مثال 5 وتطبيقات	199
	Convert of the number of moles to the mass of an element and vice versa	Example 5, Applications	

Atoms-to-Mass Conversion Helium (He) is an unreactive noble gas often found in underground deposits mixed with methane. The mixture is separated by cooling the gaseous mixture until all but the helium has liquefied. A party balloon contains 5.50×10^{22} atoms of helium gas. What is the mass, in grams, of the helium?

19. How many atoms are in each of the following samples? a. 55.2 g Li b. 0.230 g Pb c. 11.5 g Hg

20. What is the mass in grams of each of the following?

- **a.** 6.02×10^{24} atoms Bi
- **b.** 1.00×10^{24} atoms Mn
- **c.** 3.40×10^{22} atoms He
- **d.** 1.50×10^{15} atoms N
- **e.** 1.50×10^{15} atoms U
- 21. Challenge Convert each given mass to number of representative particles. Identify the type of representative particle, and express the number in scientific notation.
 a. 4.56 × 10³ g Si
 - **b.** 0.120 kg Ti

11	يتعرف العلاقات التي تربط المول بالصيغة الكيميانية	مثال 6 وتطبيقات	202 ,203
	Identify the mole relationships shown by a chemical formula	Example 6, Applications	202,200

Mole Relationships from a Chemical Formula Aluminum oxide (Al_2O_3), often called alumina, is the principal raw material for the production of aluminum (Al). Alumina occurs in the minerals corundum and bauxite. Determine the moles of aluminum ions (Al^{3+}) in 1.25 mol of Al_2O_3 .

```
How many moles of nitrogen atoms are contained in one mole of Ba(NO_3)_2?
```

- **A** 1
- **B** 2
- **C** 6
- **D** 9

29. Zinc chloride (ZnCl₂) is used in soldering flux, an alloy used to join two metals together. Determine the moles of Cl⁻ ions in 2.50 mol ZnCl₂. **30.** Plants and animals depend on glucose ($C_6H_{12}O_6$) as an energy source. Calculate the number of moles of each element in 1.25 mol $C_6H_{12}O_6$.

Iron(III) sulfate[Fe₂(SO₄)₃] is sometimes used in the water purification process. Determine the number of moles of sulfate ions present in 3.00 mol of Fe₂(SO₄)₃.

32. How many moles of oxygen atoms are present in 5.00 mol of diphosphorus pentoxide (P₂O₅)? **33. Challenge** Calculate the number of moles of hydrogen atoms in 1.15×10^1 mol of water. Express the answer in scientific notation.

5	يكتب المعادلات الأيونية الكاملة	نص الكتاب ومثال 3 وتطبيقات	169 , 170
Ŭ	Write a complete ionic equations		

35. Aqueous solutions of potassium iodide and silver nitrate are mixed, forming the precipitate silver iodide.

36. Aqueous solutions of ammonium phosphate and sodium sulfate are mixed. No precipitate forms and no gas is produced.

37. Aqueous solutions of aluminum chloride and sodium hydroxide are mixed, forming the precipitate aluminum hydroxide.

200

38. Aqueous solutions of lithium sulfate and calcium nitrate are mixed, forming the precipitate calcium sulfate.

- Write chemical, complete ionic, and net ionic equations for each of the following reactions that might produce a precipitate. Use *NR* to indicate that no reaction occurs.
- **39. Challenge** When aqueous solutions of sodium carbonate and manganese(V) chloride are mixed, a precipitate forms. The precipitate is a compound containing manganese.

7. Which of the following is the complete ionic equation of the reaction between hydroiodic acid and aqueous lithium sulfide?

A.
$$2H^{+}(aq) + S^{-2}(aq) \longrightarrow H_2S(aq)$$

B. $2H^{+}(aq) + 2I^{-}(aq) + 2Li^{+}(aq) + S^{-2}(aq) \longrightarrow H_2S(g) + 2Li^{+}(aq) + 2I^{-}(aq)$
C. $2I^{-}(aq) + 2Li(aq) \longrightarrow 2I^{-}(aq) + 2Li^{+}(aq)$
D. $2I^{-}(aq) + 2Li^{+}(aq) \longrightarrow 2LiI$

8. Which of the following is the net ionic equation of this reaction? $H_3PO_{4(aq)} + 3RbOH_{(aq)} \longrightarrow 3H_2O_{(l)} + Rb_3PO_{4(aq)}$ A. $3Rb^+(aq)$ + $PO_4^{-3}(aq)$ \longrightarrow $Rb_3PO_4(aq)$ B. $3H^{+}_{(aq)} + 3OH^{-}_{(aq)} \longrightarrow 3H_{2}O_{(1)}$ C. $3H^+(aq)$ + PO₄-3_(aq) \longrightarrow H₃PO_{4(aq)} D. $3Rb^+(aq) + 3OH^-(aq) \longrightarrow 3RbOH(aq)$

What is the **net ionic equation** for the following reaction?

ما المعادلة الأيونية الصرفة للتفاعل التالي؟

 $CaCl_{2 (aq)} + 2NaOH_{(aq)} \rightarrow 2NaCl_{(aq)} + Ca(OH)_{2 (s)}$

$$2\operatorname{Na}^{+}_{(\operatorname{aq})} + 2\operatorname{Cl}^{-}_{(\operatorname{aq})} \to 2\operatorname{Na}\operatorname{Cl}_{(\operatorname{aq})} \qquad \bigcirc$$

$$\operatorname{Ca}^{2+}_{(\operatorname{aq})} + 2\operatorname{OH}^{-}_{(\operatorname{aq})} \to \operatorname{Ca}(\operatorname{OH})_{2(\operatorname{s})} \qquad \bigcirc$$

$$\operatorname{Ca}^{2+}_{(\operatorname{aq})} + 2\operatorname{OH}^{-}_{(\operatorname{aq})} \to \operatorname{Ca}_{(\operatorname{s})} + \operatorname{O}_{2(\operatorname{g})} + \operatorname{H}_{2(\operatorname{g})} \qquad \bigcirc$$

$$\operatorname{Ca}^{2+}_{(\operatorname{aq})} + 2\operatorname{OH}^{-}_{(\operatorname{aq})} \to \operatorname{Ca}_{(\operatorname{s})} + \operatorname{O}_{2(\operatorname{g})} + \operatorname{H}_{2(\operatorname{g})} \qquad \bigcirc$$

$$\operatorname{Ca}^{2+}_{(\operatorname{aq})} + 2\operatorname{Cl}^{-}_{(\operatorname{aq})} + 2\operatorname{Na}^{+}_{(\operatorname{aq})} + 2\operatorname{OH}^{-}_{(\operatorname{aq})} \to 2\operatorname{Na}^{+}_{(\operatorname{aq})} + 2\operatorname{Cl}^{-}_{(\operatorname{aq})} + \operatorname{Ca}(\operatorname{OH})_{2(\operatorname{s})} \qquad \bigcirc$$

An ionic equation that shows all of the particles in a solution as they exist is called	إنّ المعادلة الأيونية التي تُظهر كل الجسيمات في المحلول كما هي تُسمّى	
General chemical equation	المعادلة الكيميائية العامة	
Complete ionic equation	المعادلة الأيونية كاملة	
Spectator ions equation	معادلة الأيونات المتفرجة	
Net ionic equation	المعادلة الأيونية الصترفة	

What is the meaning of spectator ions?

بماذا تُعرف الأيونات المُتفرجة؟

الأيونات المكونة للغاز المتصاعد من التفاعل

lons that produce solid precipitate from the reaction

lons that produce gas released from the reaction

The total ions in the solution of a reaction

lons that do not participate in a reaction

الأيونات المكونة للمادة الصلبة الراسبة من التفاعل

الأيونات الكلية الموجودة في محلول التفاعل

الأيونات التي لم تشارك في التفاعل

What is the **net ionic equation** for the following reaction?

ما المعادلة الأيونية الصرفة للتفاعل التالى؟

 $H_2SO_4_{(aq)} + 2NaCN_{(aq)} \rightarrow Na_2SO_4_{(aq)} + 2HCN_{(g)}$

 $2Na^{+}_{(aq)} + SO_4^{-2}_{(aq)} \rightarrow Na_2SO_4_{(aq)}$

 $2H^+_{(aq)} + 2CN^-_{(aq)} \rightarrow 2HCN_{(g)}$

 $4H^{+}_{(aq)} + 2SO_{4}^{-2}_{(aq)} \rightarrow H_{2}SO_{4(g)} + 4H_{2}O_{(f)}$

 $2H^+_{(aq)} + SO_4^{-2}_{(aq)} + 2Na^+_{(aq)} + 2CN^-_{(aq)} \rightarrow 2Na^+_{(aq)} + SO_4^{-2}_{(aq)} + 2HCN_{(g)}$

	يوضح المقصود بالنمبية المنوية لتركيب المركب	نص الكتاب - مثال 10 وتطبيقات	
13	Explain what is meant by the percentage composition of the compound	Text book, Example 10, Applications	209 ,210 ,211, 212

Calculating Percent Composition Sodium hydrogen carbonate (NaHCO₃), also called baking soda, is an active ingredient in some antacids used for the relief of indigestion. Determine the percent composition of NaHCO₃.

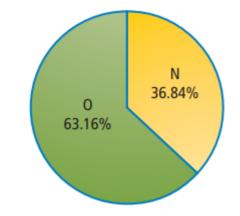
54. What is the percent composition of phosphoric acid (H₃PO₄)?

55. Which has the larger percent by mass of sulfur, H_2SO_3 or $H_2S_2O_8$?

56. Calcium chloride (CaCl₂) is sometimes used as a de-icer. Calculate the percent by mass of each element in CaCl₂.

- 57. Challenge Sodium sulfate is used in the manufacture of detergents.
 - a. Identify each of the component elements of sodium sulfate, and write the compound's chemical formula.
 - **b.** Identify the compound as ionic or covalent.
 - c. Calculate the percent by mass of each element in sodium sulfate.

17. Which is the percent composition of bromine in the compound NaBr? (molar mass of Br = 80.0 g/mol , Na = 23.0 g/mol) A. 81.6% B. 79.9% C. 84.1% D. 77.7%


What is the percent by mass of sodium (Na) in sodium sulfate (Na2SO4)?	ما النسبة المئوية بحسب كتلة عنصر الصوديوم في كبريتات الصوديوم (Na2SO4)؟
Molar mass: Na = 23 g/mol Na2SO4 = 119 g/mol	الكتلة المولية: 23 g/mol = Na 119 g/mol = Na2SO4
19.3%	0
77.3%	0
38.7%	0
23.1%	0

In the caffeine molecule ($C_8H_{10}N_4O_2$), what is the percent by mass of carbon (C)?	في جزيء الكافيين (C ₈ H ₁₀ N ₄ O ₂)، ما النسبة المئوية بحسب كتلة عنصر الكربون (C)؟
Molar mass: C = 12 g/mol C ₈ H ₁₀ N ₄ O ₂ = 194 g/mol	الكتلة المولية: 12 g/mol = C 194 g/mol = C ₈ H ₁₀ N ₄ O ₂
24.74%	0
49.48%	0
12.37%	0
6.19%	Ο

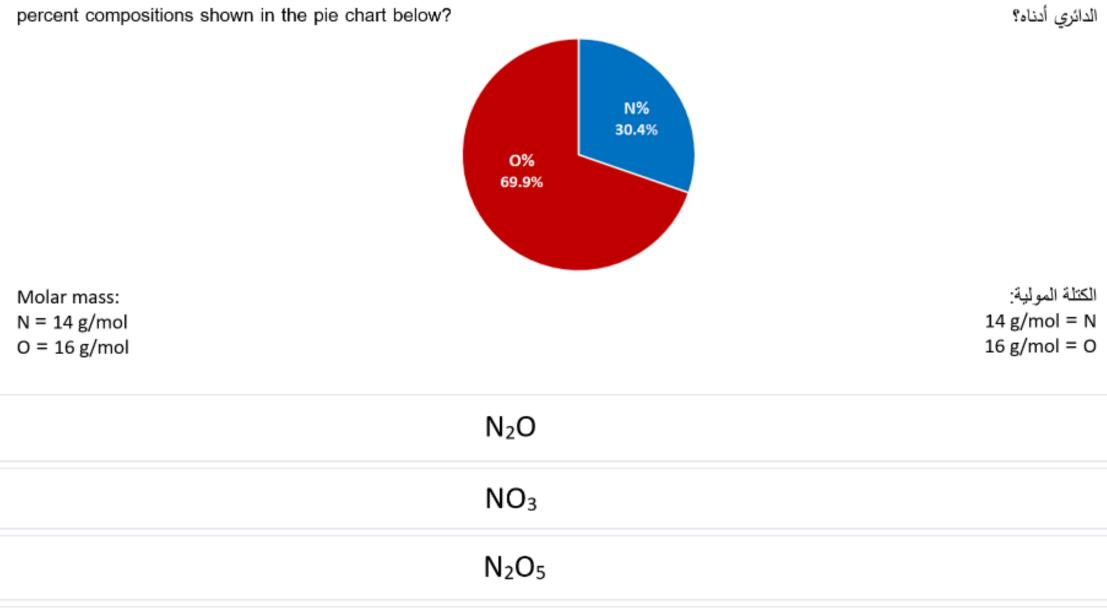
	يُحدد الصيغ الأولية والجزينية لمركب ما من النسبة المنوية للكتلة وبيانات الكتلة الفعلية	نص الكتاب - مثال 11 وتطبيقات	
14	Determin of the empirical and molecular formulas for a compound from mass percent and	Text book, Example 11, Applications	212 ,213 ,214

Empirical Formula from Percent Composition Methyl acetate is a solvent commonly used in some paints, inks, and adhesives. Determine the empirical formula for methyl acetate, which has the following chemical analysis: 48.64% carbon, 8.16% hydrogen, and 43.20% oxygen.

58. The circle graph at the right gives the percent composition for a blue solid. What is the empirical formula for this solid?

59. Determine the empirical formula for a compound that contains 35.98% aluminum and 64.02% sulfur.

60. Propane is a hydrocarbon, a compound composed only of carbon and hydrogen. It is 81.82% carbon and 18.18% hydrogen. What is the empirical formula?

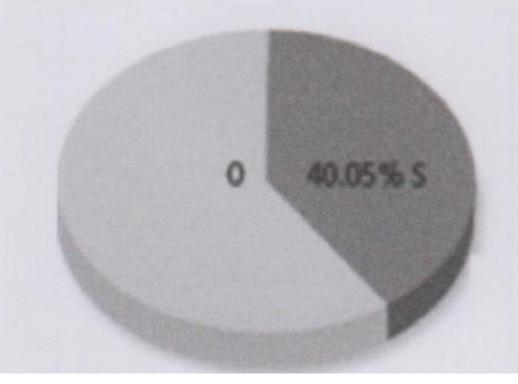

61. Challenge Aspirin is the world's most-often used medication. The chemical analysis of aspirin indicates that the molecule is 60.00% carbon, 4.44% hydrogen, and 35.56% oxygen. Determine the empirical formula for aspirin.

ما الصيغة الأولية لمركب يحتوي على النسب الواردة في التمثيل البياني الدائري أدناه؟

What is the empirical formula for a compound with the following percent compositions shown in the pie chart below?

percent compositions chemin in the pic chart below		البيدي الداري الدار
	C 15.8% S 84.2%	
Molar Mass:		الكتلة المولية:
C = 12 g/mol S = 32 g/mol		12 g/mol = C 32 g/mol = S
		\$230
	CS	0
	C ₂ S	0
	CS ₃	0
	CS ₂	0

What is the empirical formula for a compound with the following percent compositions shown in the pie chart below?



ما الصيغة الأولية لمركب يحتوي على النسب الواردة في التمثيل البياني

NO₂

20. What is the empirical formula for the substance whose percent composition in shown? (molar mass of S= 32.07 g/mol, 0= 16.00 g/mol)

A. SO_3 B. SO C. S_2O_6 D. S_3O

	يتعرف العلاقات التي يُمكن اسْتقاقها من معادلة كيميانية موزونة	مثال 1 وتطبيقات		
15	Identy the relationships can be derived from a balanced chemical equation	Example1, Applications	238 ,239	

Interpreting Chemical Equations The combustion of propane (C₃H₈) provides energy for heating homes, cooking food, and soldering metal parts. Interpret the equation for the combustion of propane in terms of representative particles, moles, and mass. Show that the law of conservation of mass is observed.

- Interpret the following balanced chemical equations in terms of particles, moles, and mass. Show that the law of conservation of mass is observed.
 - **a.** $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - **b.** $HCl(aq) + KOH(aq) \rightarrow KCl(aq) + H_2O(l)$
 - **c.** $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$
- Challenge For each of the following, balance the chemical equation; interpret the equation in terms of particles, moles, and mass; and show that the law of conservation of mass is observed.
 - **a.** __Na(s) + __H₂O(l) \rightarrow __NaOH(aq) + __H₂(g)

16	يكتب النسب المولية من معادلة كيميانية موزونة	نص الكتاب وتطبيقات	239 ,240
	Write the mole ratios from a balanced chemical equation	Text book, Applications	200,240

- Determine all possible mole ratios for the following balanced chemical equations.
 - **a.** $4AI(s) + 3O_2(g) \rightarrow 2AI_2O_3(s)$
 - **b.** $3Fe(s) + 4H_2O(I) \rightarrow Fe_3O_4(s) + 4H_2(g)$
 - **c.** $2HgO(s) \rightarrow 2Hg(l) + O_2(g)$
- Challenge Balance the following equations, and determine the possible mole ratios.
 - **a.** $ZnO(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2O(l)$
 - **b.** butane (C_4H_{10}) + oxygen \rightarrow carbon dioxide + water

In the equation below,

Which of the following mole ratio is **NOT** correct?

 $4A + 3B \rightarrow 2C$

mol C mol B
mol C mol B
mol A mol C
mol A mol B

	يُطبق خطوات الحسابات الكيميانية	نص الكتاب ومثال2 و3 والتطبيقات	
17	Apply the steps to solve stoichiometric problems	Text book, Example 2,3 , Applications	241 ,242, 243 ,244

Mole-to-Mole Stoichiometry One disadvantage of burning propane (C_3H_8) is that carbon dioxide (CO_2) is one of the products. The released carbon dioxide increases the concentration of CO_2 in the atmosphere. How many moles of CO_2 is produced when 10.0 mol of C_3H_8 is burned in excess oxygen in a gas grill? Methane and sulfur react to produce carbon disulfide (CS₂), a liquid often used in the production of cellophane.

$$\underline{CH}_{4}(g) + \underline{S}_{8}(s) \rightarrow \underline{CS}_{2}(l) + \underline{H}_{2}S(g)$$

- a. Balance the equation.
- **b.** Calculate the moles of CS_2 produced when 1.50 mol S_8 is used.
- c. How many moles of H₂S is produced?

- Challenge Sulfuric acid (H₂SO₄) is formed when sulfur dioxide (SO₂) reacts with oxygen and water.
 - a. Write the balanced chemical equation for the reaction.
 - **b.** How many moles of H₂SO₄ is produced from 12.5 moles of SO₂?
 - **c.** How many moles of O_2 are needed?

Mole-to-Mass Stoichiometry Determine the mass of sodium chloride (NaCl), commonly called table salt, produced when 1.25 mol of chlorine gas (Cl₂) reacts vigorously with excess sodium.

14. Challenge Titanium is a transition metal used in many alloys because it is extremely strong and lightweight. Titanium tetrachloride (TiCl₄) is extracted from titanium oxide (TiO₂) using chlorine and coke (carbon).

 $TiO_2(s) + C(s) + 2CI_2(g) \rightarrow TiCI_4(s) + CO_2(g)$

- **a.** What mass of Cl_2 gas is needed to react with 1.25 mol of TiO₂?
- **b.** What mass of C is needed to react with 1.25 mol of TiO₂?
- c. What is the mass of all of the products formed by reaction with 1.25 mol of TiO_2 ?

How many moles of carbon dioxide CO₂ will be produced if 100.0 g of potassium hydrogen carbonate KHCO₃ have decomposed? كم مولًا ينتج من ثاني أكسيد الكربون CO₂ إذا تفكك 100.0 g من كربونات البوتاسيوم الهيدروجينية KHCO₃ ؟

$2KHCO_{3(s)} \rightarrow K_{2}CO_{3(s)} + CO_{2(g)} + H_{2}O_{(s)}$

(الكتلة المولية g/mol = KHCO₃ (الكتلة المولية

0.5 mol	0
1 mol	0
0.25 mol	0
2 mol	0

(Molar Mass of KHCO₃ = 100 g/mol)

In the following equation, which mole ratio to be

used to convert from moles of O2 to moles of CO2?

في المعادلة التالية، ما المُعامل المُستخدم للتحويل من عدد مولات O2 إلى عدد مولات CO2؟

$$C_5H_{12 (l)} + 8O_{2 (g)} \rightarrow 6H_2O_{(g)} + 5CO_{2 (g)}$$

$\frac{5 \ mol \ O_2}{1 \ mol \ CO_2}$	
$\frac{5 \ mol \ \mathrm{CO}_2}{8 \ mol \ \mathrm{O}_2}$	
$\frac{8 \text{ mol } O_2}{6 \text{ mol } CO_2}$	
5 mol CO ₂ 6 mol O ₂	

18	يُطبق خطوات الحسابات الكيميانية	مثال 4 وتطبيقات	245
	Apply the steps to solve stoichiometric problems	Example 4, Applications	240

Mass-to-Mass Stoichiometry Ammonium nitrate (NH_4NO_3), an important fertilizer, produces dinitrogen oxide (N_2O) gas and H_2O when it decomposes. Determine the mass of H_2O produced from the decomposition of 25.0 g of solid NH_4NO_3 .

One of the reactions used to inflate automobile air bags involves sodium azide (NaN₃). What is the **mass** of N₂ produced from the decomposition of 195 g of NaN₃? أحد التفاعلات المستخدمة لنفخ الأكياس الهوائية في السيارات يتضّمن أزايد الصوديوم (NaN₃).

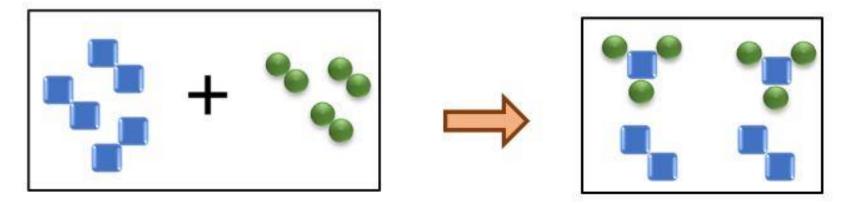
ماهي **كتلة N**aN₃ الناتجة عن تفكك g 195 من NaN₃ ؟

 $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$

N₂ gas

Molar mass: NaN3 = 65 g/mol N2 = 28 g/mol		كتلة مولية: 65 g/mol = NaN ₃ 28 g/mol = N ₂
	56.0 g	
	112.0 g	
	126.0 g	
	25.0 g	

19	يُحدد المتفاعل المحدد في تفاعل كيمياني	نص الكتاب ومثال 5 وتطبيقات	250, 251
	Determin the limiting reactant In a chemical reaction	Text book, Example 4,5	


Determining the Limiting Reactant The reaction between solid white phosphorus (P_4) and oxygen produces solid tetraphosphorus decoxide (P_4O_{10}). This compound is often called diphosphorus pentoxide because its empirical formula is P_2O_5 .

- **a.** Determine the mass of P_4O_{10} formed if 25.0 g of P_4 and 50.0 g of oxygen are combined.
- b. How much of the excess reactant remains after the reaction stops?

- **23.** The reaction between solid sodium and iron(III) oxide is one in a series of reactions that inflates an automobile airbag: $6Na(s) + Fe_2O_3(s) \rightarrow 3Na_2O(s) + 2Fe(s)$. If 100.0 g of Na and 100.0 g of Fe₂O₃ are used in this reaction, determine the following.
 - a. limiting reactant
 - b. reactant in excess
 - c. mass of solid iron produced
 - d. mass of excess reactant that remains after the reaction is complete

- 24. Challenge Photosynthesis reactions in green plants use carbon dioxide and water to produce glucose (C₆H₁₂O₆) and oxygen. A plant has 88.0 g of carbon dioxide and 64.0 g of water available for photosynthesis.
 - a. Write the balanced chemical equation for the reaction.
 - b. Determine the limiting reactant.
 - c. Determine the excess reactant.
 - d. Determine the mass in excess.
 - e. Determine the mass of glucose produced.

blue squares represent element X, green circles represent element Y. Which of the following is correct? المربعات الزرقاء تُمثل العنصر X، والدوائر الخضراء تُمثل العنصر Y. أي مما يلي صحيح؟

Limiting reactant is X2	المتفاعل المحدد هو X2	0
Limiting reactant is Y2	المتفاعل المحدد هو <mark>Y</mark> 2	0
X ₂ is consumed first in the reaction	يتم استهلاك X2 أولاً في التفاعل	0
At the end of the reaction an amount of Y_2 is leftover unreacted	في نهاية التفاعل تبقى كمية من ٢ 2 غير متفاعلة	0

In the following reaction, if we use 100 g of sodium Na and	في التفاعل التالي، أذا استخدمنا g 100 من الصوديوم Na						
100 g of iron (III) oxide (Fe ₂ O ₃), what is the limiting reactant?							
$6Na_{(s)} + Fe_2O_{3(s)} \rightarrow 3Na_2O_{(s)} + 2Fe_{(s)}$							
Molar Mass: Na = 23 g/mol Fe ₂ O ₃ = 160 g/mol	الكتلة المولية: 23 g/mol = Na 160 g/mol = Fe ₂ O ₃						
Na	0						
Fe	0						
Fe ₂ O ₃	0						
Na₂O	0						

20	يحسب المردود النظري للتفاعل الكيمياني	نص الكتاب - ومثال 6 وتطبيقات	253,254,255
20	Calculate of the theortical yield of a chemical reaction	Text book, Example 6, , Applications	200,204,200

Percent Yield Solid silver chromate (Ag_2CrO_4) forms when potassium chromate (K_2CrO_4) is added to a solution containing 0.500 g of silver nitrate $(AgNO_3)$. Determine the theoretical yield of Ag_2CrO_4 . Calculate the percent yield if the reaction yields 0.455 g of Ag_2CrO_4 .

28. Aluminum hydroxide (Al(OH)₃) is often present in antacids to neutralize stomach acid (HCl). The reaction occurs as follows: Al(OH)₃(s) + 3HCl(aq) → AlCl₃(aq) + 3H₂O(l). If 14.0 g of Al(OH)₃ is present in an antacid tablet, determine the theoretical yield of AlCl₃ produced when the tablet reacts with HCl.

29. Zinc reacts with iodine in a synthesis reaction: $Zn + I_2 \rightarrow ZnI_2$.

- a. Determine the theoretical yield if 1.912 mol of zinc is used.
- **b.** Determine the percent yield if 515.6 g of product is recovered.

- 30. Challenge When copper wire is placed into a silver nitrate solution (AgNO₃), silver crystals and copper(II) nitrate (Cu(NO₃)₂) solution form.
 - a. Write the balanced chemical equation for the reaction.
 - b. If a 20.0-g sample of copper is used, determine the theoretical yield of silver.
 - c. If 60.0 g of silver is recovered from the reaction, determine the percent yield of the reaction.

 Red mercury(II) oxide decomposes at high temperatures to form mercury metal and oxygen gas.
 2HgO(s) → 2Hg(l) + O₂(g)

If 3.55 mol of HgO decomposes to form 1.54 mol of O_2 and 618 g of Hg, what is the percent yield of this reaction?

- **A.** 13.2%
- **B.** 42.5%
- C. 56.6%
- **D.** 86.8%