

Introduction

$\begin{array}{\|\|c\|} \hline \text { Class index } \\ \hline \text { Class welcom } \end{array}$	Lesson 8-4 : understand fractions of different wholes	
	Objectives:	
coin		
Oumems		
sater	I can compare fractions of different wholes	
cemen		
orfeerem		
Pemat ior		9

Student Edition

 Grade 3 . Volume 2UAE Edition
Grade 3 2021-2022

Page 49-52
Unit 8
Lesson 4

Learning Outcome

Learning Targets

- I can compare fractions when they refer to the same whole.
- I can explain why you can compare fractions only when they refer to the same whole.

Vocabulary

Equivalent 」
Comparison 」
Numerator．」
［Denominator．

Page 50

Hector says that the shaded part of each figure represents the same amount.

How do you respond to Hector's statement?

The wholes are not the same shape. $\frac{1}{2}$ of the hexagon does not represent the same amount as $\frac{1}{2}$ of the rectangle.

To compare fractions, the wholes must be the same shape and size.

You can compare fractions only when they refer to the same whole.

The wholes are not the same size. $\frac{1}{2}$ of the small hexagon does not represent the same amount as $\frac{1}{2}$ of the large hexagon.

Math is... Precision What whole could be used to compare to $\frac{1}{2}$ the rectangle?

Page 50

© Work Together

Cale walks $\frac{1}{2}$ the distance from his house to school. Sophia walks $\frac{1}{2}$ the distance from her house to school. Do you have enough information to decide whether they walked the same distance? Explain your reasoning.

No, I can not, until I know the distance from their houses to school.

On My Own

Name
Are the parts equivalent? Write yes or no.
1.

No
3.

yes
2.

4.

yes
5. Shenae eats $\frac{1}{3}$ of her sandwich. Brody eats $\frac{1}{3}$ of his sandwich. What do you need to know to determine if Shenae and Brody eat the same amount?

I need to know the size and shape of the sandwiches to compare.
6. Blayke said she was $\frac{1}{2}$ the height of her brother. Drew said he was $\frac{1}{2}$ the height of his sister. Do you have enough information to decide if the children are the same height? Explain your reasoning.

No, I need to know all their heights to be able to compare.

How can you draw a picture to match the statement?
7. Two models of $\frac{1}{3}$ that represent the same amount.

9. Two models of $\frac{1}{2}$ that do not represent the same amount.

11. Do the fraction circles represent the same amount? Why or why not?
8. Two models of $\frac{1}{4}$ that do not represent the same amount.

10. Two models of $\frac{2}{3}$ that represent the same amount.

No, the fractions are the same but the shape is not.
12. Extend Your Thinking Kara swam $\frac{1}{3}$ the distance of a 100-meter race. Marcus swam $\frac{1}{3}$ the distance of a 500 -meter race. Did Kara and Marcus swim the same number of meters? Explain.

No, the reaces are different distances.

Does this make sense?

