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Chapter 5

Applications of
the Definite
Integral

5.1 Area Between Curves

1. Arca = /13 [~ (2 1)) do
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2 VIn4
.2 X
= 2% — —
2,
1 In4
15
~ 3—In4
2

0
2
10. Area:/ <2+1+x> dx
—1 X
1
2
+/O (x2+1x)dx

0

2

= (2tan" 'z + %)

0
11. Area:/ :cfi dx
_92 x2 +1
2
5%
—|—/O [x2+1—x]dx
2
=2 5736—30 dx
o |x2+1
2

- 5 9 x?

= 5[nb=1nl] —[4 -0
=5lnb5—-4

3

/4
12. Area = / (cosz — sinx)dx
0

57 /4
+ / (sinx — cosx)dx
w/4
27
+ / (cosx — sinx)dx
57 /4

= (sinx + cosx) g/4

+(—cosz — sin x)|i7;£4

+(sinx + cos m)|§:/4

=42
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0.5
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0
13. Area = / (1—2?) — e%dx 0.89055
—.7145 4
o 16. Area~ / (cosz — z%)dx

( " x3> — 89055
= —e + Tr — —
3 )| s ~ 1.330782

(=140—0) — (—1.08235)
08235

—1.J -0.5 0.0 us5 1.0

1.3532 \
0.72449 17. Area:/1 (2—|—a:—a: )dz
14. Area ~ / (1 —z)— 2%dx Ty 5. (1.3532
~ 12207 _ (QI L w>
~ 1.845787 2 5 )|,
=4.01449
) -1ls 1 Lols o o.s 1 1.5 2
8767
15. Area = / (sina: — xz) dz
0
23 | 8767 1.5645
= <— cosx — ) 18. Area~ / nz — (2% — 2)]dx
3/ 0.13793

135697 ~ 1.124448
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1
N 21. Area :/ [z — (—x)]dx
j 0.2 0.4 0.6 O.Z 1 .2 1. 1.6 1 0
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0
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24. Area:/ (4—y)dy = % 27. / fe(x {fc( ) +4f.(.1)
-2 +2fc( )+4fc( 3) + f.(4)} = 291.67
: / fole) % 5 U 0) + 4701

+ 2fe( 2) + 4fe( 3) + f.(4)} = 102.33
St fe@) = 5 fol@)  291.67 — 102.33
[t fol) T 29167

=.6491....
1—.6491 = .3508,

so the proportion of energy retained is about

35.08%.
o [fe() = ()| da
28. Energy = -
O T T @) da

_J fe@yde [ fe(a)de
Iy fe(x)de [ fe(x)d
. _ 1 Jo Jew)dx
Iy fe(x)dx
2.5 018
2.0 fc(x)dl'
0 045

" [£o(0) 4 4£.(0.045) + 2£.(0.09)

00 025 05 075 1.0 125 15 + 4fc(0135) —+ fC(OIS)]
0.045
= =5 [0+ 4(200) +2(500) + 4(1000)

+ 1800]
47 1— _
26. Area = / (nx _ 21”) dx 31?
1 T 2 +1 .
Ylng S| fe(x)dz
N / Fial / L 0 045
1 ' ———[fc(0) + 4/.(0.045) + 2.(0.09)
1 [ 22
T3 ) P2 —5313(0.135)+fe(0.18)}
1n2 1 4 = 'T(o + 4(125) + 2(350) + 4(700)
_ |z 1 1 9
- [ gt etghle H']l +1800)
= 87
In* Inl7 7 In2

=5~ tan —14 + 5 + 1 2 Putting these together gives the proportion of
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energy lost as

87
Energy ~ 1 — — =~ 0.2368.

114
/ fla) % 5o U0 + 45,75
+ 2£,(1.5) + 4£,(2.25) + f+(3)} = 860

/ e {fr( )+ 4£,(.75)

+ 2fr(1.5) + 4fr(2.25) + £+(3)} = 800

860 — 800
1- (=) =.9302
( 860 )

Energy returned by the tendon is 93.02%.

As in Exercise 28, the proportion of energy re-
turned by the arch is given by

B fOS fs (m)dx
Jy Ix(@)

/fs )dx

OJ[\.')

= g[O + 4(300) + 2(1000) 4 4(1800) + 3500]
~4/8366.57

8
/0 fr(x)dx
[f-(0) +4fr(2) +2f-(4) + 4f,(6) + f,(8)]

OJ\N)

= 5[0 + 4(150) + 2(700) 4 4(1300) + 3500]
~ 7133.33

Putting these together gives the proportion of
energy lost as

7133.33
E ~1-— ~ 0.1474.
TeTey 836667 0T
3
/ fl@)de = —— 2 dx
. ;
1 3 27
- =21 _0=3
(3 3 ) o 9

Relative to the interval [0,3], the inequality
22 < 3 holds only on the subinterval [0,/3).
We find

/Oﬁ(?,—x?)dx: (395—”;3)

= (3V3-v3)-(0-0)
= 2V/3, whereas

/; (2° = 3)dz = (”;3 - 3x>

V3

0

3

V3

32.

33.

309

=(9-9) - (V3-
= 2\/3, the same.

3v/3)

Draw the graphs of the given functions,

2z
and y = mfor x> 0.

v= (x+1)

It may be observed from the graph that these
functions cut each other at a single point at

xz = 1. From the graph it is observed that
the curve y = —— lies above the curve
YT @t
2z i f
y:morOSmgl,orl‘>l,
2 2
Yy = % lies above the curve y =

\ X7 <.J A ]
Let us ﬁnd the area bounded by these Curves

between x = 0 and x = 1. It is given by

1
/((xil) N (:1:22il)>d$

—1In (a:2 —|—1))‘

1

= (ln (x4 1)2 .

=In2>1In
=0<t<1

Therefore

n(3)= (i i)
0

ie. In (g) = (ln (+1)* —In (2 + 1)) ‘t

0
or In (g) —In (&Tij)

=32 +3=2t2+t+1)
ie. t=2+3

But as 0 < t < 1, we consider t = 2 — /3

Let y; = ax? +bx + ¢, y» = ma +n, and
u = y1 — y2. If we assume that a < 0, then
y1 > y2 on (A, B) and the area between the
curves is given by the integral
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/. " s = po)da

B 5 B
= / udr = ux|, —/ xdu.
A A

By assumption, u is zero (y; = y2) at both A
and B, so the first part of the last expression
is zero. We must now show that

/Bxdu/Bx[2az+(bm)]dz

A A
is the same as
lal(B — A)*/6
= |a|(B® —3B*A + 3BA? — A%)/6.
But again because u = 0 at both A and B, we
know that
aA% +bA +c¢=mA+n and
aB? 4+ bB +c¢=mB +n.
By subtraction of the first from second, fac-
toring out (and canceling) B — A, we learn
a(B + A) = m — b, so that our target inte-
gral is also given by
B
A+ B

—2a/ x(x — + )dx

A 2
= lal{2(B® - A%)/3 — (A+ B)(B? - A%)/2}
and the studert who cares enough can/ fnigh
the details.

The case in which a > 0(y2 > y1) is not essen-
tially different.

Perhaps the most straightforward way to han-
dle this problem is by brute force. First, the
area is given by

B
Area = :I:/ [(az® + bx? + ca + d)

- (Ax2 + maz + n)|dx
:%(A4_B4)+ (b;k)(BS_AB)

(c=m)

+ (B? — A%) + (d — n)(B — A).

We can set up equations for the fact that the
graphs meet at A and B. At A and B, we set
the functions equal. At B, we set the deriva-
tives equal.

aA? 4+ bA? +cA+d=kA* +mA+n

aB* +bB* +cB+d=kB>+mB+n

3aB? +2bB +c=2kB+m

We now have a system of equations. We solve
the last equation for m and plug the result
in for m in the previous two equations. This
transforms the three equations to

aA3 + (b—k)A% — 3aAB?
—2(b—k)AB+d—n=0

35.

36.

37.

—2aB3— (b—k)B>+d—n=0

m =3aB?+2(b—k)B +c.

We solve the second equation for n and plug
the result into the first equation which then
gives

aA®+ (b—k)A? — 2(b— k)AB — 3aAB?
+2aB3+ (b—k)B?=0

n=—2aB%— (b—k)B%+d

m =3aB?+2(b—k)B +c.

Finally, solving the first equation for k£ gives
k=aA+2aB+b.

We now substitute m, then n and then finally
k in to the equation for area. After simplifying
this finally gives
+a(A - B)?

12 '

Let the upper parabola be

y =y = gz 4+ v+ h and let the lower be

y = y2 = pr?+v. They are to meet at x = w/2,
so we must have

qu? /4 + h = pw? /4, hence

h=(p—quw?/4or (¢ — p)w? = —4h.

Using symmetry, the area between the curves

is given by the integral
/-w/2

‘j (y1 — y2)dx
0

Area =

w/2
= 2/0 [h+ (q — p)a®)da

= 2[hw/2 + (q — p)w?/24]
wlh + (g — p)w?/12]
= wlh — 4h/12] = (2/3)wh.

Solve the equation 2 — 22 = ma we get

m+v/m?2+8

So the area between y = 2 — 22 and y = mx is
/(m+\/m2+8)/2
(

(2 — 2% — ma)dx

m—vm?2+8)/2
( BB g\ |2
= (22— — — ) ‘
3 2 (m—+vm?2+8)/2

1
_ g(mQ + 8)3/2

The minimum of (m? + 8)3/2/6 happens when
m = 0 and then

L5 a2 _ 1 o3 8V2
z ] —-.g32 -2V~
g T =5 3
Solve for z in z — 2% = L we get

1++v1—-4L
r=——"

2
(1—vI—4L)/2
Aq :/ L — (z — 2?%)|dx
0
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38.

39.
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22 23 (1-v1-4L)/2
=(Lr— —+ —
2 3

0

(1+v1—4L)/2
Ao :/ [(z —2?) — L)dx
(1—vI—4L)/2
(1+vI—4L)/2

2 3
(20
2 3 (1-vI=1L)/2

By setting A1 = As, we get the final answer

L=
3

Solve for z in  — 22 = kx we get
r=0,x=1—k

And the areas are

1
A1—|-A2:/ (x—xz)dle
0 6

1—k 1
As = / kxdx + / (z — 2%)dx
0 1

—k

k2 |F x? 8
2" (3-3)

2 0 2 3 1-k
BB 1 (kP (k)
N 2 6 2 3

1 3
— - -k
We want A; = Ao, that is, we want Ay = 1/12,
that is,
1
1—(1—-k)?P==

0-w=g
1—k) ==
1=

1
k=1—-—

2
(a) Consider [ (2z — 2?)dx
0

The integrand consists of the two curves

2

y = 2z and y = z*. Both these curves

2

intersect, when 2x = z° i.e. whenx

0 orx = 2. therefore The given integral
represents the area between the curves

y = 2z and y = 22 Which is As.

2
(b) Consider [ (4 —2?)dx
0

The integrand consists of two curves y = 4

2

and y = x°. Both these curves intersect
ie. when z = -2 orz = 2.
But we consider x = 2, as the area lies
in the 1st Quadrant therefore the given
integral represents the area between the
curves y = 4 and y = 2 which is A1 + As.

when 4 = 22

311

(¢) Consider ]L (2— ) dy

Here the limits of integration correspond
to the y-coordinates of the point of inter-
section of the two curves. This is because
here the variable is y and not z. The in-
tegrand consists of two curves x = 2 and
z =y (le.y = z?withz > 0). Both
these curves intersect, when 2 = /y
i.e. when y = 4. therefore The given in-
tegral represents the area between the
curves = 2 and x = ,/y which is A3
4

(d) Consider / (\/gj— %)dy

Here the loimits of integration correspond
to the y-coordinates of the point of in-
tersection of the two curves. This is be-
cause here the variable is y and not =z.
The integrand consists of two curves z =

VY (i.e.y = z?witha > O) and ¢ =

Both these curves intersect, when %

(AN

Vy ie. wheny? —4y = Oie aty =
Oandy = 4. therefore the given integral
represents the jarea between the ¢urves
r = /y and r = % which is As(same

as part (a)).

(a) Consider the area Az + As. It may be ob-

served from the part (a) of the Exercise
39 that, Ay is the area bounded by the
curves y = 2z, y = x° between the or-
dinates x = 0 and x = 2. It may also
be observed from the part (c) of the Ex-
ercise 39 that, As is the area bounded by
the curvesz = 2and y = 2?ie.x = /iy
therefore from the given figure Ay + Ag is
the area bounded by the curves y = 2z

ie. x = % and z = 2. therefore

4

Ag + As =/(2—%)dy.

0
Note that here we have y as the variable.

(b) Cousider the area Ay + A, refer part (b)

of the Exercise 39 It is in fact the converse
of that part.

(¢) Consider the area Aj, from the given fig-
ure it may be observed that, A; is the area
bounded by curves y = 4 and y = 2x. Be-
tween the ordinatgs z = 0and x = 2.

Therefore A1 = [ (4 —2x)dx
0
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42.

43.
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(d) As refer part (c) or the Exercise 39. Note
that here we have y as the variable.

The area between two curves y = sin® (z) and
y=1, for0<x<t15glvenby
¢

f(t):/(l—slnx /cosax

0
1
=3 / 1+ cos2z)d
) 0
=3 [93] 1 |
= f(t) = §t+ ZSIHQt
For finding the critical points,
J'(t) =0, therefore
1 1
3 + Zcos2t~ (2) =0.
= 14cos2t=0
orcos2t = —1
= 2t=mnmfor n=1,3,5,......
ort= % forn=1,3,5,......

[mn Zx]

Now, f”(t) = —sin 2t substituting the value
of t in f”(t), we get f”(t) = 0. Therefore,
V=——form = 1,3.5,... are the points of
inflection.

Given g (x) is a continuous function of z, for

x> 0and |g(x)] <1. f(t) is the area between

y =¢g(z) and y = 1 for 0 < z < ¢, therefore
¢

ft) = bf(l —g(x))dz. As g(z) has the local

maxima at * = a, ¢’ (a) =0 and ¢” (a) < 0.

Now from (1)

frit)=010-g(t)
g (t

S £ (6) = —g ()
= ()= o @) =0
also /' (a) = (1 - g (a)) > 0.

Thus f (t) has an point of inflection at * = a
and a need not be the critical point, it is only
if g (a) = 1. If there is a local minima at x = a,
then ¢’ (a) = 0 and ¢” (a) > 0. This does not
affect the answer.

f(4) =16.1e%7® = 21.3

g(4) = 21.3¢9404=4) = 213

21.3 represents the consumption rate (million
barrels per year) at time ¢ =4 (1/1/74).

10
/ (16.1e-°7t — 21.3e-04<t—4>) dt
4

10
- (230e~07t - 532.5304“*4)) ’

4
= 14.4 million barrels saved

44.

45.

46.

47.

48.

10

Area = (76293 — (50 — 609 at

~ 483.616(5)

This area represents amount of wood used
by firewood that was not replaced with new
growth.

For t > 0,
b(t) — 26.04t 2 26.02t — d(t)

10
/ (26.0415 _ 26.02t)dt
0

_ (506.041& _ 1006.021&)
= 2.45 million people.
This number represents births minus deaths,
hence population growth over the ten-year in-
terval.

10
0

These curves intersect when

In3—In2
T = % ~ 20.27325541
The area between the curves for 0 < ¢t < T
is the decrease in population from 0 < ¢t < T
(because b(t) < d(t) in this time period).
The area between the curves for T < t < 30
is the increase in population from 7" < ¢t < 30
(because b(t) > d(t) in this time period).
The change in populaticn.
gral:

3
AP = /0 [b(t) — d(t))] dt

3
260.04t

is/given by the inbe-

_ _ 460'02t dt

0
~ 7.3120 million people

Without formulae or tables, only rough or
qualitative estimates are possible.

[(time [ 1 [ 2] 3 [ 4] 5]
[ amount [ 397 [ 403 | 401 [ 412 [ 455 |

V(3) ~ 374,V (4) = 374,V (5) ~ 404

time

The change in amount of water is equal to the
integral of the difference between the functions
(the rate in minus the rate out). Approximat-
ing this integral:

1
/ (Into — Out) dt ~ 0

0
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49.

50.

2
/ (Into — Out) dt ~ —8
03
/ (Into — Out) dt =~
04
/ (Into — Out) dt =~
0

5
/ (Into — Out) dt ~ 4
0

Therefore V(1) = 400, V(2) ~ 392,
V(3) ~ 374, V(4) ~ 374, V(5) ~ 404.

—26

—26

In this set-up, p is price and ¢ is quantity. We

find that D(q) = S(q) only if D(q) = S(q).
2
10— r—qf aceddo -+ v
40 120 1200

12000 — 30q = 2400 + 10q + ¢>

¢ + 40¢q — 9600 = 0

(¢ —80)(¢+120) =0

within the range of the picture only at ¢ = 80.
Thus ¢* = 80 and p* = D(¢*) = S(¢*) = 8.
Consumer surplus, as an area, is that part of

the picture below the D curve, above p = p*,
and to the left of Q = ¢*.

Numerically in this case the consumer surplus
is

/Oq* [D(q) — p*]dg = /080 (2 - %) dq

q
= 90—
77 %0],
The units are dollars (¢ counting items, p in

dollars per item).

= 160 — 80 = 80.

The intersection point is approximately
(¢*,p*) = (76,8). Therefore

q
PS =p*q */ S(q)dgq
0

76 q q2
:(8)(76)*/0 (2+120+1200) dx

86849
= 5 ~ 386.00.

51.

52.

313

The curves, meeting as they do at 2 and 5, rep-
resent the derivatives C' and R’. The area (a)
between the curves over the interval [0, 2] is the
loss resulting from the production of the first
2000 items. The area (b) between the curves
over the interval [2,5] is the profit resulting
from the production of the next 3000 items.
The area (c), as the sum of the two previous
(call it (a) + (b)), is without meaning. How-
ever, the difference (b) — (a) would be the total
profit on the first 5000 items, or, if negative,
would represent the loss. The area (d) between
the curves over the interval [5, 6] represents the
loss attributable to the (unprofitable) produc-
tion of the next thousand items after the first
5000.

Profit increases when revenue is larger than
cost. The point x = 2 represents a local min-
imum in profit. The point x = 5 represents a
local maximum in profit.

5.2 Volume: Slicing,

=

w

Disks and Washers

LV = / dx_/:l(ﬁz)dm
(3:2 +2x> 31=<g+6)—<;—2>

=12
10 10
V= / 10e%91%dz = (1000e"°'*)
0 0
=1000(e*! — 1)
2 2
V= 7r/ (4 —2)%de = ——(4— x)?"
0 0
s 561
——(8—64) = —
3t )=
4
V= 2(x 4 1)%dx
i 1
(227 + 4a + 2)dr = T8
1
(a) f(0)= 750 f(500) =0
f(x) = ;O%x + 750 2
g 75
V= ——x+750) d
/0 < 50:17+ > X
50 (7503 3
=— . [ == —-0)=93,750,000 ft
75 ( 3 ) T
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. . . 2 2
(b) 'In this case, essentially the same integral 11. V= x (4 +sin E) de
is set up as in Part (a): o
0 (750 2 = w/% (16 + SSm + sin? ) dz

V= — | (500 — y)“d - B 5

/ (500) y)“dy o 2
_ 1 1 2m

82,031,250 cubic feet 0 (1633 _ 16 cosg n o= sinx)
0

6. f(0) =300, f(160) =0

15 = 3372 + 327 in®
f(z) = ——x+ 300

8
1 15 2
V:/ 60 —§x+300 dx
8 E—o = 4,800,000 ft* /
15 3 R i

This volume is one-eighth of the volume in Ex-
ample 2.1.

7. The key observation in this problem is that by
simple proportions, had the steeple continued
to a point it would have had height 36, hence tﬁ
6 extra feet. One can copy the integration
method, integrating only to 30, or one can sub-
tract the volume of the missing “point” from
the full pyramid. Either way the answer is 2m o2
3236 (1\2 6 215 12. V = / 7T<4—Sln2) dx

‘ oAt Tt
3 Z 2 N

/ =/ W(lG—SSing—i—sinQ%)dx

8. This volume is easily computed using elemen- 0

tary geometry formulas. Using calculus and

the triangular cross sections, the area of cross
sections is 150, so the total volume is

= 3372 — 327 in®

V= / 150dx = 9000. |

0 i

60 60 t:

9. V= / raldy = 71'/ 60[60 — y]dy 1]

0 0
2760 2 4
_ U 2 _ 607 i
= 607 [GOy 5 :|0 = 607 |:60 5 :| |

3
= 90T os000r £

10. The radius of the cross-section is given by
r = x, therefore the volume is given by

120 120

1
V= /chdy =7 / 120 (120 — y)dy 13. V = / A(x)dx
0
9 10 ~ 1 A(0) +44(1) + 24(.2)
= 1207 - [120y ~ y] 3(10)
2 1o +4A(.3) + 2A(4) + 4A(5)
= 1207 [1202 - 120] + 2A(.6) +4A(.7) + 2A(.8)
X 2 +4A(.9) + A(1.0)]
12037 74
= = 4 3. 24 3
5 864, 0007 ft =30 ~ 0.2467cm’
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14.

15.

16.

17.

V= /01'2 A(z)da

21£(0.0) + 4£(0.2) + 2£(0.4)

=

Q

]

4 4£(0.6) + 2(0.8) + 4f(1.0)
£ f12)
03 [0+ 4(0.2) + 2(0.3) + 4(0.2)

+2(0.4) +4(0.2) + 0]
~ 0.253333.

2
V=[] Alx)dx

2/A0 4A(.5) +2A(1
@[()Jr (:5) +24(1)

+A(15) + A(2)]
=25 ft?

V= / YA
3 [£(0.0) +4£(0.1) + 2(0.2)
4 4£(0.3) + 2/(0.4) + 4£(0.5)
4 2£(0.6) + 4£(0.7) + £(0.8)]
. %[2.0 +4(1.8) +2(1.7) + 4(1.6)
H2(58) - 4(2.0) o+

+2.4]
~ 1.533333

(a) V = W/OQ(Q ~ 2)%da

2

2(2.1) + 4(2(2)

21.

315

0

62
(a) V = 4me? — 7T/ (Iny)3dy
1
= 4re? )
— [y(ny)® —2yIny + 29[|
= 4me? — (2% - 2)
=2m(e? + 1).
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~ 9.266

2z
=7 (e +46$>
2 0
4 1
“rl(5 o)) e
4 9
™ (62 +4e? — 2)

4 A 0
_ —Y
- 25. (a) V= /71' (2 ) dy
22. (a) V= 7r/ [22 — (2 — secz)?]dx °
—m/4 T
/4 :*/ 16 — 8y +y*)dy
= <47T/ secxdx) 4 ( )
—m/4 0 374
™ Y
n =~ |16y — 4y + =
:—(wtanm|7/ﬂ4/4> 4 { y—y 243}016
~ 15.868 Tl —a g = = 28
4% 6+3] ’

/4
(b) V= 7r/ sec® xdx

/2
1 e 2 z
23. (a) V:w/o (,/M) dx :W/(16—16z+4x2)d1’

0
_r 2 1 2 372
=5 Il + 2l W{16x16x+4x}
T, 3 2 3
= T1n 2 ~0.637
2] 32
22 —7{32—32 33]—33”

dx

1 2
b) V = 2_(g_ [~
(b) 7T/O l?) (3 x2+2)
1
T 3
7T/O ( \V 22 +2 x2+2> v
e :W/(16—4x2)dx
=6 —d
" 0 '7324_21. v 0a2

1 4 3
3 =7 [16x — ]
=—iln|x2+2\ { 3 1,
2 0 _[go . 32] _ 64n
~ 7.4721 =7 “3| T 3
24. ¢~ = 22 when z ~ +0.753 2 , 2 ,
0.753 (d) V= /W(8—2x) d:v—/w(4) dx
@ V=r[ ") @l " g
3115075 2
o :w/(64—321:+4x2—16)dx

0.753 2
(b) V = 7r/ (e +1) ’
0.753 [ 22 41,3} 2
=T
0

_ (1,2 + 1)2]d$ 481 — 32? + ?
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32 1287
=796 —-64+ —| = —
7T'|: + 3} 3

4 3
16 327
=7|16— —| = —
o7 -5

64 — 16 2
( 4y+y _4>dy

T y: P !
—_ [64y —16% + = — 16y]
4 0

2 3
64 256
—mledr =] =227
T [ + 3 } 3
2 519
93 aye 22 T
20 (a) Ve jl_2 it \—} - ) dr = **1*5’

384w
T 5
(d) V= i m[6* — (24 2%)%] dz
1408w
15
(e) V= 7[2+vy)*—(2-vy’ldy
/40 1/2 16 59 !
= 8my “dy = gﬂy
0 0
128
ER
4
() V= 7[(4+vy)?—(@—-vy)?ldy

0

4
2 .
:/ 167 yl/zdy = 3—7ry3/2
0 3

4

0

28.
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29.

30.

31.

32.

33.

34.

CHAPTER 5. APPLICATIONS OF THE DEFINITE INTEGRAL

h 2
e ()
0 a
h 2
T wh
=f/‘Wy=—f
a Jo 2a

The volume of a cylinder of height A and ra-

dius \/% is h- 77(\/%)2 -

The confusing thing here is that the h of Exer-
cise 29 is not. the h-of this problem. Realizing
this,

h/a)? h?
o w(h/w?

2¢  2a3

We can choose either z or y to be our integra-
tion variable,

V:’/T/ d:r:wx\l_l:%r
-1

This is, of course, a solid ball. Notice that

1—3;2

47
V= 1— d = —
/ 22)°dx 3

The line connecting the two points (0,1) and
(1, —1) has equation

l-y
y=—-2rx+lorz=——.

oL (5

v |
:”(4‘4+1Q>

The fact that the ratios is 3 : 2 :

2T

4 3

1 is easy to

. 4
confirm since we know the volumes are 27, 5

27
d ==
an 3

35.

36.

37.

39.

. They have the same arcas.

—] =3
Z= RN
= S\
&= =)

WIS
LR
AT

N

Y
RN

N

=W/(ﬁ—fwy

If we compute the two volumes using disks par-
allel to the base, we have identical cross sec-
tions, so the volumes are the same.

This can be seen
by using elementary geometrical formulas for
area or by considering integrals. The area of
the parallelograms is given by the integral of
the heights of the line segments from 0 to 5.
The heights of the line segments are equal.

(a) If each of these line segments is the base
of square, then the cross-sectional area is
evidently

A(z) = 4(1 — 2?).

The volume would be
16

:2/01A(x)dx:8(x—3§)0:3.

(b) These segments I, cannot be the literal
“bases” of circles, because circles “sit” on
a single point of tangency. They could
however be diameters. Assuming so, the
cross sectional area would be “r/2 times
radius-squared” or 7(1 — x2)/2. The re-
sulting volume would be 7/8 times the
previous case, or 27/3.

1

(a) V:/ [2(x+1)]2dx:§

—1
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41.

42.

43.

(b) Note that the area of an equilateral tri-
angle with side length 1 is v/312/4. This
means that for a slice we have
A(z) = V3(x +1)%/4
and

/ O V3(z+1)> V3
= YT = 22
12
Reasoning as in Exercise 39, the line segment
I, is [2%,2 — 2?%],(1 < 2 < 1). The length of
this segment is
(2 —2?) — 22 = 2(1 — 2?),
hence in case (a)
A(z) =41 — 2?2 = 4(1 — 22% + z%).

The volume would again be

V= 2/01A(:c)da;

2 1\ 64
—s(1-242)=2.
8( 3+5) 15

With the same provisos as in Exercise 39, the
answer to (b) would be 7/8 times the (a)-case,
or 87/15.

For (c), the volume would be v/3/4 times the
(a)-case, or 16v/3/15.

(a) In this case, A(x) =

V = / (Inx) 2dx

1n2 —41In2+ 2.

(Inz)? and

1 2
(b) In this case, A(z) = g (an) and

2 2
m (Inz

V= =] d

Jals) e
2 w2
4 2 4
This time the line segment I, is [0,e~22], (0 <
x < Inb). If (a) this is the base of a square, the
cross-sectional area is A(z) = (e72%)? = e~42,
The volume V, would be the integral

Inb5
/ A(x)dx
0
Inb _—dx Inb5
= / e dr = ¢
0 4
1— (5" 156
=50 — T — 2496.
4 625

In the (b)-case, the segment I, is the base of
a semicircle, so the cross-sectional area would

44.

45.

46.

47.

319

be

1 e=2e\? <7r) .
— |7 =(=)e ™
2 2 8
The resulting volume V;, would be

39
(n/8)V, = ﬁ ~ .09802.

(a) In this case, A(z) = (2% — /z)? and
1
V:/ ($2*\/E)2dﬂﬁ:i
0
(b) In this case,

e )—W(Mfand

ve [ (250 )2@:230

We must estimate 7 fo r))%dz.

The given table can be extended to give these
respective values for

f(x)2:4,1.44, .81,.16,1.0,1.96, 2.56.
Simpson’s approximation to the integral would
be
——— {4+ 4(1.44) +2(.81)

( )(6)

+4010) +2(1.0) +4(1.36) 1'2:56]

The sum in the braces is 24.42, and this must

be multiplied by 7/6 giving a final answer of
12.786.

Use Simpson’s rule.

v- | "l )P

0
~ @[(4.0)2 +4(3.6)% + 2(3.4)?
+4(3.2)% +2(3.5)% + 4(3.8)% + 2(4.2)?
+ 4(4.6)% + (5.0)?]
~ 94.01216

In this problem, let x = g(y) be the equation
of the given curve describing the shape of the
container. For each height y, let V(y) be the
volume of fluid in the container when the depth
is y. Later we will estimate V (y). For now, one
knows that V (y) is the integral of 7[g(y)]?, or

by the fundamental theorem of calculus, that
= wlg)?
dy =mg\y)l -

In actual practice, y and hence V are functions
of ¢t (time). Our primary interest is in y as a
function of ¢, but we will obtain this informa-
tion indirectly, first finding V' as a function of y.
It appears that g(y) is about 2y for 0 < y < 1,
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which leads to [g(y)]? = 4y?, V(y) = 47wy3/3
(on 0 <y <1),and V(1) =4n/3 =4.2. We'll
keep the formula in mind for later, but for now
will use the value at y = 1 and the crude trape-
zoidal estimate

V(y+1) = V(y) +lg*(y) + g*(y + 1)]/2

to compile the following table:

(w9 5]V |

11 2 4 4.2

2| 2 9 24.6
31 3 9 52.9
41 3 9 81.2
5| 4 16 | 120.4

The assumption of uniform flow rate amounts
to dV/dt = constant, and if we start the clock
(t = 0) as we begin the flow, we get V = kt
for some k. The above table, supplemented by
the formula when y < 1, can be read to give
y (vertical) as a function of V' (horizontal).
But because V = kt, the graph looks exactly
the same if the horizontal units are time. In
the following picture, we have scaled it on the
assumption of a flow rate of 120.4 cubic units
per minute, a rate which requires one minute
to. fill the container. 'The previous formula
dry?/3=Vi{=kt = (120.4)t) (on 0 <y < 1),
becomes y = (3.06)t!/3 for very small ¢, and
accounts for the (barely discernible) vertical
tangent at ¢t = 0.

height

time

«

IS

4

<

N

[}

= T T O B

vvvvvvvvvvvvvvvvvvvv

49.

50.

X

T T T 7 ﬁ?ﬁ
-2 - —
_0.4—]
—0.8—

For the points of intersection, solve
1—(z—1)°=1—2?
thatis,z? — 2z 4+ 1 = 22

V3

1
=_—=y=+—
orx 5 Y 9

The desired volume V' is the sum of the volume
V1 generated by revolving the arc of the circle
2% + y? = 1 about the x-axis from z = 1 to
x = 1 and the volumeV; generated by revolv-
ing the arc of the circle (z — 1)*+y2 = 1 about
the x-axis from x =0 to x = %

Therefore V = V; + V5 where,
1

L 3
e 7.‘j (1 —xQ)d;J iz / L >

1/2

1/2
and‘/'zzw/(l—(a:—l)z)dm
0
1/2 g (1/2
:7r/(2x—x2)da:—7r {xQ—}
3 11o
0
51

The required region is formed by intersection
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of revolving circle 2 + y? = 4 about y-axis
and revolving z = 1,—4 < y < 4about y-axis.
Desired volume V is the volume obtained by
revolving the shaded region R about the x-axis
where R is bounded by x = 0,2 = 1 and the
arc of the circle 22 + 4% =4

r=1=y= +v/3

R=R;i+ Rx+ R3

R1 is bounded by » = 0,22 + 2 = 4,y = /3
R2 is bounded by 2 = 0,y = v3,y = —V/3

R3 is bounded by x = 0,22 + 3% =4,y = —/3
Let V1 ,V2 V3 be the respective volumes ob-
tained by revolving R1 , R2 , R3 about y-axis

_W{@_yjr _ o[l _8v3
3]lys 3 3
V3
ngﬂ/ldy:%r\/g
-3
Va=W

V;‘/l-I-Vz+V3
= = (16 - 5v3)

3

5.3 Volumes by

Cylindrical Shells

. Radius of a shell: r =2 —z

Height of a shell: h = 22
1
V= / 21(2 — x)z’da
-1

23 2t !
:2 —_—
(5 -7)

2. Radius of a shell: » =2+ =z

Height of a shell: h = 22

1
V= / 2m(2 4 2)x?dr = 8%

. Radius of a shell: »r =z

Height of a shell: h = 2x
1
V= / 27x(2x)dx
0

4
E

A

0o 9

. Radius of a shell: » =2 — x.

Height of a shell: h = 2z.

! 8m
V= /0 27(2 — x)(2z)dx = 3

1.0

TT T [T T T T[T T T T [T TTT
.25 0.75 1

. Radius of a shell: r = z.
eight of a shell: h = f(z) = Va? + 1.
4

V= | 2rzv2?+ ldx

0

321
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4
1.0
=7 / 2z v x2 + ldx Sz
0

2(x? +1) (amyt 2
=771 —— = — (]_7)5 -1 0.2—
3 [ T T T T T T T TYUF T T T T T T T T T ]

0 -1.0 -0.5 0lo 0.5 1.0

—0.4

—0.6

-0.8

—1.01

8. Radius of a shell: r =4 —y.
Height of a shell: h = f(y) = 24/4 — y2.
2

V=/27r(4—y)2\/4—y2dy

2 -2
X 2

=47r/(4—y)\/4—y2dy

-2

2 2
6. Radius of a shell: r =2 — x. =2 87r/v4—y2dy—27r/yv4—y2dy
Height of a shell: h = f(x) = 22. 2 , 2
1 =2(87(2m)) — 0 =327
V=[2r(2-2)2?de =5 (S 2m) 20—
—1 i

1.6 =1

1.2—

0.8—]

0.4—]
. T T T s e e e uy) -y -

-2 -1 1 2
X —0.4—

—0.8—

-1.2—

—1.6—

—2.0—

7. Radius of a shell: r =2 —y. , A3 a2t
Height of a shell: h = f(y) = 24/1 — y2. =27 <4x+x _T_7>
1

Vz/27r(2—y)2\/1—y2dy =

21 1

! 10. V:/ 2r(2 — ) ((2 — 2%) — 2?) dz
=47T/(2—y)\/1—y2dy 1

-1 :271'/ (4—2x—4x2+2x3)da:

1 1 -1

1

-1 -1 -1
_ ™ g — 4.2 _ 32m
_167r(4) 0 = dr =3
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11. V = /2 2m(2 +y)(4 — y*)dy

12. V = /2 21(2 — y) (4 — y*)dy

3 4|,
128w
3
2
13. V:/Zw(Sf:c)(e"”fxfl)dx
0
2
:277/((3—x)e”3—2x—|—m2—3)dx
0

.7;3
=27 {[(4—3:) e$—x2—|——3x}
3 0
8
:277{ 262—4+3—6> —(4-3)
~ 21.6448

14. V = /é 21(3 — z)(x — (22 — 2))dx

4
15. V = / 210(5 — y)[9 — (y — 1)?]dy

4

4 3
Y Y 2
=|-=—-—=47 24

= 2887

—2

4
17. (a) V:/2 2m(y) (y — (4 —y)) dy

zcrj (=16 +&8y)dy
2

— 7 (—16y + 4y%)|, = 167

4
(@ v:/2 2r(4—y) (y — (4 —y)) dy

4
7r/ (—2y* + 12y — 16)dy
2

Il
D

18. (a) V= 7r/ [(z+4)* = (—2)%] dz

0

= 7T/ (8x 4 16)dx
-2

=7 (42 + 16w)|22

= 327

4

323

0
(b) V:27r/ 2+2)-[(@+2)— (—2 —2)]dz

-2

0
= 27r/ (222 + 8z + 8)dx

-2
2 3

=27 (; —|—4332—|—8x)

_ 3

3

0

-2
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0 5 3 2
© V=2 [ (-0)[(@+2) - (-2~ Dlda . (_95 L sy +sy>
_92 1
0
= 271'/ (=222 — 4x)dx 117z
—2 - 5
223 0 ? 2
=or (-2 - 2r?) o) V=2n [+ D2+ -1y
-1
—92 3
_ 167 =27r/ (—y® 4 3y + 2)dy
== .
0 Yt 32 2
(d)V=7r/ (2 +2)%de = (-~ )|
-2 -
0 27
:7r/ (2% + 4z + 4)dx ==
_9 2
3 0 ? 2 2 2
= (2 42t 4 ) ©V=r [ [+9)? -+ 2%y
87 :7r/ (—y* — 3y + 8y + 12)dy
=3 i 5 2
19, (a) Method of shells. - (_y5 N 12y>
-1
_ 2
V= [2 27(3 — x)[x — (z° — 6)]dx 1627
; _ en
= / on(—a® — 42 — 3z + 18)dx 2 ,
- @ V=2n [ wr2l2+y -y
6257 J
var =2 / (—y® P4y d) dy
(b) Method of washers. J-1
vty ’
V= / — 2%]dx =2m (— — =27+ 4y)
13 B
= / m(z* — 1322 + 36)dx _ dom
-2 2
2507 1
-3 21. (a) V= / (2 — x)%da
(¢) Method of shells. O 4
3 — | (x2)2dx
vz/ 27 (3 + ) — (22 — 6)]dar Jo
-2
3 :7T/ (22 — 4z + 4)dx
= / om(x® — 222 + 9z + 18)dx o
-2
4
_ 875n — 77/0 x dz
6 Looa
(d) Method of washers. =7 o (=2 + 27 —dw +4)dx
5 3 1
V= / (6 + )2 — (+?)2)da (P e
53 .
:/ m(—z* + 2% + 122 + 36)dx 327
) = —
15
5007 1
3 (b)V*/ch(?fxfﬁ)dx
2 o1
20 (a)V:ﬂ/ [(B+y)* — (v*+1)%d :27r/ (22 — 2% —2%) da
-1 0




5.3. VOLUMES BY CYLINDRICAL SHELLS

(c) V:27r/1(x—|—1)(2—3:2—x

)dx

i
= 271'/ (=% = 22% + x + 2)dx
0

4 2563 CU2

1
:’R'/ (z* — 72 — 22 + 8)dx
0

5 73
:w(ﬂg_;_xu&)dx

L S S B R N N L S e S B S p
0.0 0.25 0.5 0.75 1.0

I
N
3

1
= 27T/ (—y° =y + 2y)dy
0

y* '
3 2

T

TR y)

0

(b) V =2r / 2 - y)? — (4*))dy

i
= 27r/ (—y4 + 9% — 4y +4)dy
0

3

5
Y Y 2
=2 — =+ =2 4
w(5+3 y+y)

1

0
_ 64
15

0.79
24. (a) V= 27T/ y[(2—y) —In(y + 1)]dy
~208

0.79
(b) Var / (2~ )® — n®(y + 1)dy

325
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~ 6.20

0.89
25. (a) Vx27r/ (2—x) - (cosx — x) dx
~ 16.72 —0.89 27. Axis of revolution: y-axis
' 0.5 Region bounded by: z = \/y,z =y
(b) Var [(2 —2%)? — (2 — cosz)?]dx i
—0.89
~ 12.64 1

(c) V= W/0~89 [(cosz)? — (z*)?]dx /
~a09” - /

0.89 >
(d) Va2 21 ,[ wlcosx — ) da /

\a

~299 s

28. Axis of revolution: y-axis
Region bounded by:
r=4—13y22=0,y=0

0.85 ]
26. (a) Var [(1 —2%)? — (1 —sinz)?|dx v ]
0 1
~ 0.57 1
0.85 0-5]
(b) Va2r (1—2)-(sinz — 2?)dz 1
0 1
~ 0.47 S P S
0.85 «
(¢) Va2 z(sinz — 2?)dx
0
~ 0.38
0.85
~ )2 212
(d) Ve [(sin2)” — (2%) ]dz 29. Axis of revolution: y-axis

0
~ 0.28 Region bounded by: y = =,y = 22
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30.

31.

32.

33.

VOLUMES BY CYLINDRICAL SHELLS

Axis of revolution: y = 4
Region bounded by:

Yy=x,y=—x,y =2

"
N T L ® L Y S 7}

"
"

o
oI T L N |

1

~

|

-

q

V=)

—

N

If the r-interval [0, R] is partitioned by points
75, the circular band

{T? <a2?+ y2 < 7'1'24-1}

has approximate area c(r;)Ar; (length times
thickness). The limit of the sum of these areas

is A = lim ) c(r;)Ar; = fo
=1

i=
we know that ¢(r) = 27r,
we can evaluate the integral, getting
R

= mR?.
0

r)dr Because

2

.

27
™9

If we think of the area of a circle of radius R
as being built up as described in Problem 61,
then

A= / 2nrdr Viewed as a function of R, the
0

derivative is

— = 27 R so this is, of course, not a coinci-

dR
dence.

The volume that we are looking for is twice
the volume of a shell with radius # and height
V1— 22

In other words, The bead is mathematically

34.

35.

36. V

327

the solid formed up from revolving the region
bounded by y = V1 — 22,2 =1/2

and the z-axis around the y-axis.

Therefore

1

V:2o/ 2z 1 — x2dx
1/2

Let u=1— 22, du = —2zdz,

andV—47r/ v 1 — 22dx
1/2

= —7477/ ut%du
2 3/4

:27[—'27.[43/2‘3/4
3 0
_ V3m 3
2

The size of the sphere is 47/3 cm?
for the value of ¢ such that

47r/ \/1—x2dx—f
—471'/ V1 — 22dx

4 2
= gﬂ'(l—c )32 = 3™

, so we look

Her\m we Want the size of the hole to be

c:\/l— 1%0.60m.

Vi= | z(1—2%)dx
xzc xt ! 1 2 &
- (2 4) T1 2t
We want )
V-Vi= 1—0V
Then
2 c* _ 1
2 4 40
~ 0.226

Letu=1—y /16,du = —ydy/S
0
V= —32\/%7r/ u'2du

1
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2 6430
32v/307 - = = il

5.4 Arc Length and

Surface Area

. For n = 2, the evaluations points are 0,0.5,1

S~ ST+ 89

=/(0-0.5)% +[f(0) — f(0.5)]?
+/(1-05)2 +[f(1) - £(0.5)]

=/0.52 +0.54 + 1/0.52 + 0.752

72/ -460

For n = 4, the evaluations points:
0,0,25,0.5,0.75,1
4

s~ Z s; =~ 1.474
i=1

. For n = 2, the evaluations points are 0,0.5,1

S~ 81+ 82 ~ 1.566

For n = 4, the evaluations points:
0,0,25,0.5,0.75,1
4

s~ Z s; =~ 1.591
i=1

. For n = 2, the evaluations points are

0,7/2,m
SR~ 81+ S2

= /(7/2)2 + [cos(7/2) — cos 0]2
+/(7/2)2
=2 +4~3724

For n = 4, the evaluations points:
0,7/4,7/2,3n /4,
4

s~ Z s; ~ 3.790
=1

+ [cos T — cos(m/2)]?

. For n = 2, the evaluation points are 1,2, 3

S~ 81+ 82

=124+ (In2 —In1)2
+ /12 + (In3 — In2)2

~ 2.296
For n = 4, the evaluation points are
1,1.5,2,2.5,3

4

s~ Zsi ~ 4.161

. This is a straight line segment from (0,1) to

(2,5). As such, its length is
=/(6-1)2+(2-0)2
20 = 2v/5

1 2
x
. 5= {1+ ——=d
S [1 +1_x2x
1

= | ——d

/_1 Vi

= (sin™'x ! =T
( )

y'(x) = 6z/2, the arc length integrand is

V1+(y)?2 =1+ 36z

Let u 5 1 + 36z then
&= ;[ Vi A4 36xdx
J1

[ (5)

73

2 3
3(36) "

37

1
= a(73\/ﬁ — 37V37)
~ 7.3824
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To\2 T
1/3
2<2+ln2)

~ 1.0965

2

1

10. o' (x) = 1<:c +a7?)

mz 2
5*/ 1+ 22) dx

8 1 6rd
f/—wdx

~ 5.152

3 1 1 1
11. z'(y) LA . 7
2 2y 2 y3
1+(:z:’)21+1<y62+1)
4 b

LY Y

2

1, 1]

{2( y3)

. Here z(y) = e¥/2 4 e~ v/?
m'(y) 1 (ey/2 —y/2)

2
1 2
/ 1+ ey/Q—e WQ)] dy
21
1

1
5/ ey/Q + e_y/2> dy
—1

_ /1 (ey/2+e*y/2> dy
; (ey/2 _ e*y/2) ‘; -9 (e\/;>

212 p—1/2

13. y/(ﬂf) = T — 9

Now

14.

15.

16.

17.

18.

19.

20.

21.

22.

329

1
s:/ 1+ (322)%dzx
—1

1
= / V14 9z4dx ~ 3.0957
1
2
s = / V14 9z4dx ~ 17.2607
2
2
s = / V14 (2 —22)%dx ~ 2.9578
0
/4
s = / v/ 14 sect zdx ~ 1.2780
0

5= / VIF (sma)2de
0

:/ V1 + sin? zdzx ~ 3.8201
0

3 1
S :/ 1+ —2dx =~ 2.3020
1 X

s = / V14 (xsinz)?dr = 4.6984
0

s = / V1+ e *sin? zdr ~ 13.1152
0
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25.

26.
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Here f (z) =10 (ew/QO + e_””/go)

IR Y

R e ) )]
(3 ()

Now,
20

5 — / % (61/20 +e*z/20) da

—20
20

:/<ea:/20+

0
— 920 (ea:/20 _ efa:/20>’
0
=20 (e — e ') ~ 47.0080

30 1 2
— / 1+ |: (em/SO _ e—m/SO):l dx

30 4
:/ 1 (61/30+6—1/30) da
302

= (15¢7/30 — 152/ ‘30
¢ 4 1=30

e*$/20) dx

20

= 30e — 30e~! ~ 70.51207161 ft.

In Example 4.4, y(z) = 5(e®/10 4 ¢=#/10)

y(0) = 5(e” +¢€") = 10

y(~10) = y(10)

=5(e! +e!) =15.43

sag = 1543 — 10 = 5.43 ft

A lower estimate for the arc length given the
sag would be

(10)2 + (sag)?
= 2v100 4 29.4849 ~ 22.76

This looks good against the calculated arc
length of 23.504.

If 2%/3 + 4?/3 = 1, then in the first quad-
rant, y = (1 —2%/3)%/2 and taking only the
first-quadrant case (which would produce one
fourth of the total length s), we have y =
3 2

5(1 _ g2/3)1/2 (—335_1/3

e~ 1/3(1 — g2/3)1/2

—2/3(1 _ $2/3) — $_2/3 ~1

') =z

5:4/ V1+y?de
0

1
:4/ Va—2/3dx

0

28.

1
:4/ xV3dy
0
3 1
=42 2/3‘ =
<2)x . 6

There are some technicalities in fully justifying
the preceding computation, since the integrand
(z~'/3) is unbounded at z = 0, but the con-
clusion is sound.

.y =0 when = 0 and when z = 60, so the

punt traveled 60 yards horizontally.
2 2
=—(30— 1)

This is zero only when x = 30, at which point
the punt was (30) /15 = 60 yards high.

60
5—/ 1+ 4——x dm

~ 1394 yards
s 1394 yards

- 4 sec
= 104.55 ft/s

3 feet
1 yard

4 sec

Since y(100) = 0, the ball traveled 100
yards. The maximum height of the ball is

2
y(50) = —5 yards.

100
1 (100 — 2
/ + 300 00 J:)] dx

~ 101.82215 yards

The arc length is s =
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30

31

32

33

34

35

36

37.
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~ o ®

N

ol LtV Y T Ty

)

vvvvvvvvvvvvvvvvvvvvvvvvv

1
. S:27r/ yds
Jo
:277/ x2\/1+ (2z)2dx
0

~ 3.8097

. S:/ 2msinazy/1 + cos? xdx
0

~ 14.42360

2
. S:27r/ yds
J0
:27r/ (22 — 2%)\/1 + (2 — 22)2dx
0

~ 10.9654

0
.S= / om(x® — 4x)\/1 + (322 — 4)2dx
—2

~ 67.06557

1
.S:27r/ yds

0
1
= 27r/ e"V/1 4+ e2®dx ~ 22.9430
0

2 / 1
. S:/ 2rlnz 1+—2dx
1 x

~ 2.86563

/2
. S:27r/ yds
0

/2
= 277/ coszV 1+ sin? zdz
0

~ 7.2117

2
1
.S = / 2my/w4 /1 + ——dx ~ 8.28315
1 41‘

1
s1 = / \/ 1+ (625)°da
0
1
= / V14 36210z ~ 1.672
0

38.

39.

40.

S9 =
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/1 1+ (827)%da
0

1
= / V14 64zi4dx ~ 1.720
0

S3 =

/01 \/ 1+ (1029)%dx

i
= / V14 100z18dz ~ 1.75
0

As n — oo, the length approaches 2, since one
can see that the graph of y = 2™ on [0, 1] ap-
proaches a path consisting of the horizontal
line segment from (0,0) to (1,0) followed by
the vertical line segment from (1,0) to (1,1).

(a)

For 0 <z <1, we have lim z" =0
n—oo

Therefore, the length of the limiting curve
is 1 (the limiting curve is a horizontal
line). Connecting the limiting curve to
the endpoint at (1,1) adds an additional
length of 1 for a total length of 2.

y =2ty = 423

Y2 = 332; y/2 =2z

Since both are increasing for positive x, y;
is “steeper” (ys is “flatter”) if and only if
Y1, > s, ie.,

1 1
423 > 2, % > =, >\/f

w/6
L, = / vV 1+ cos? xdx ~ 1.44829
—m/6

el (1)) (%)

~ 1.44797 Hence

Ly 1.44797
L, 1.44829 ~ 9998

w/2
L, = / vV 1+ cos?2zdzr ~ 3.8202
—m/2

2
Ly, = \/(2 sin g) + (n)?
=72 +4=3.7242

Hence

Lo
— =~ 0.9749
Ly

5

L= / JIF (6)2dz ~ 128.3491
3

Lo = /22 1 (65 — &3)2 ~ 128.3432

Hence

Ly
= 0.9999
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-3
(b) Ly = V1 + (e%)2da ~ 2.0006

V224 (e —e=3)2 ~ 2.0005 os
Hence
L— ~ 0.9999
Ly i I AR

dor v v e T 1 NI
o

41. (a) Considering only the vertical segment x =
1, (-1 < y < 1), the area after rotation,
as an integral in y, would be

%/%um@zﬁxknﬂ+ww

42. (a) Surface area of a right circular cylinder of
radius r and height h.

y=-—1 =
T
= 27ry\£1 =A4r — y=h
(height times circumference) o
y o
The full solid of revolution is a cylinder = =
with radius 1, and its top and bottom 1;
each have area 7(1)? = 7. Hence the total -
surface area is 47 + ™ + ™ = 67. AARRRI AR REAS=RRRAE e ey R )
x -+
/ / 2
A/ v ‘
Sy
(b)S / ‘W\/l 1+(\/7> ay Consider alinex=rand 0 <y <h

rotating about the y — axis to form a

_ 27r /1 — Right Circular Cylinder.
7 Here f (y) =r

Therefore, the surface area
= / 2ndy = 4w h

5= [ans 1+ (7 W)y
0
(c¢) The equation for the right segment of the

h
triangle is = (1 — y)/2. Hence the re- = /2777“\/ 1+ (0)°dy = 27rh
y=1
0

y
sulting area is 27r/ xds(y)
y=-1 (b) Surface area of a sphere of radius r

oo () ()
w50 i

(-9

The full revolved figure is a cone with
added base of radius 1 (and area m).
Hence the total surface area d

V5 + (V5 + 1) -

Consider a semicircle of radius r with
centre as the origin, its equation is

(d) 6m:4n: (VB5+1)r=3:2:7 y=vr2—uz?

w
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for —r < x < r Rotating it about the
x — axis we get a sphere Here
r2 _ g2

fla) =

Therefore, the surface area

5=2ﬂ/f(x)

—zw/m\/1+

f' (x))*da

2
*—ﬁ) dx
:271'/\/7“2—3:2 1+%d$

re—x
—r
[ [p2 2+IZ’2
:271'/\/7’271'2 %dl’
-7

:27r/\/r27x2

= 27r/rdx

—r

= 47r?

r2 — g2

Stiface area of cone of radius ~ and

height h

Consider a line y = (;)x Rotating it
about the x —axis, we get a cone of radius
r and height A Here

f@)= (D

Therefore, the surface area
h

S =or / f @1+ (f (@) de

43.

333

h
= 27r/ %\/7’2 + h%dx
0
2mr\/r2 + h? [ 22 4
2 (2
= ﬂrm =l
where | = v/r2 + h2 is the slanted height
of the cone.

0

For the path along the positive z — axis, the
equation of the path is f(x) = 0 Therefore
f (z) = 0 The distance covered along the
T — azisis

L= /\/1—1—]” da:—/d:v:>L1—s

Now, for the path along the curve

2
y=3@"

The equation of the path is
2
f (@)= 5(@)"*

3
Therefore
Fa)=2-5at = f (@) =

The distance covered along these curve is

Ly = /1/1+f dx—/x/ﬂdx

2
L 13/2 £
2= 3(s+ ) 3

(a) Consider Ly = 214

Ly  2(s+1)% -2 ,

Ij - 3s B
(s—i—l)% =3s+1or
(s+1)° = (3s+1)°

=52 —6s2—35=0

Thus s =0 or s = 6.464102

or s = —0.464102

But s > 0,
therefore s = 6.464102
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(b) Consider the motion of the person along
the x — axis

Let g (t) be the distance walked along the
T — aris

Therefore g(t) =t,0 <t <z,= g (t) =1
Now, consider the motion of the person

2
along the curve y = 7@)3/2
9 3
f@ = g(t)s/2 is the distance walked

2
along the curve y = g(x)B/Q,O <t<uz

Therefoae
FO= 20 0<t <z ()= Vi
‘(¢ t
The ratio of the speeds = f,( ) = i =2
g (t 1
=t=4
(a) d \/i/I 1 sin2ud
—_ - U
d.fL' 0 3
1
= 5\/i- V4 —2sin’x
=+/1+4cos?2x
d (1 3/4
—_— v 1+ 1626 + / —_— dx)
dz ( V141626
1
,\/1 + 1626
) 3/4
V1 + 1626 1+ 16$6
1/4( +162°)
V1+ 1626
Lo 1wt 3/
V1 -+ 1626 V1 + 1626
1+ 1625
=——— =+/1+ 162"
\/1 + 1626

5.5 Projectile Motion

1.

2
3
4.
5

y(0) =80,y'(0) =0
- y(0) =100,4(0) = 0
. y(0) = 60,y'(0) = 10
y(0) =20,y'(0) = —4
. The initial conditions are

y(0) =30 and %'(0) =0

We want to find y/(t) when y(t) = 0.
We start with the equation y”(t) = —32.
Integrating gives y'(t) = —32t + ¢;.
From the initial velocity, we have

0=1y'(0) = —32(0) + ¢1, and so y'(t) = —32¢
Integrating again gives y(t) = —16t% + cs.
From the initial position, we have

30 = y(0) = —16(0) + ¢z and so

y(t) = —16t2 + 30.

Solving y(t) = 0 gives t = :t\/% The posi-
tive solution is the solution we are interested
in. This is the time when the diver hits the
water. The diver’s velocity is therefore

Yy (\/%) = 732@ ~ —43.8 ft/sec

. The initial conditions are

y(0) =120 and 4'(0) =0

We want to find y'(¢) when y(t) = 0. We start
with the equation y”(t) = —32.

Integrating gives y/'(t) = —32t + ¢;.

From the initial velocity, we have

0=1y'(0) = —32(0) + ¢1, and so y'(t) = —32t.

Integrating again gives y(t) = —16t2+cy. From
the initial position, we have

120 = y(0) = —16(0) + c2 and so

y(t) = —16t% 4 120.

Solving y(t) = 0 gives t = :I:\/g. The
positive sclation is the selution we e inter-
ested in. This is the time when the diver hits
the water. The diver’s velocity is therefore

15 /15
! — | = =324/ — ft/s
Y < 2) 3 5 t/sec

. If an object is dropped (time zero, zero ini-

tial velocity) from an initial height of yg, then
the impact moment is t) = \/yo/4 and the im-
pact velocity (ignoring possible negative sign)
is Vimpact — 32t0 = 8\/%

Therefore if the object is dropped from 30 ft,
the impact velocity is

8v/30 = 43.8178 feet per second.

If dropped from 120 ft, impact velocity is
8v/120 = 87.6356 feet per second.

From 3000 ft, impact velocity is

813000 ~ 438.178 feet per second.

From a height of h yo, the impact velocity is
8vhyo = 8vVhy/yo = Vh (8,/0) ,

which is to say that impact velocity increases
by a factor of v/h when initial height increases
by a factor of h.

. Ignoring air friction we have initial conditions

y(0) = 555.427 and 3//(0) = 0.

Integrating y"(t) = —32 gives
y'(t) = —32t 4 ¢;. The initial condition gives
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11.

0 =y'(0) = —32(0) + ¢; and therefore
y'(t) = —32t.

Integrating again gives y(t) = —16t + co.

The initial condition gives
555.427 = y(0) = —16(0) 4 co and therefore
y(t) = —16t? + 555.427.

We will assume that the baseball player catches
the ball when it is 6 feet above the ground, so
we solve

6 = y(t) = —16t> + 555.427. Solving gives
t ~ £5.86. We use the positive solution.

The velocity at this time is

y'(5.86) = —16(5.86) = —93.75 ft/sec

(If you assume the ball is caught at ground
level, the ball will be going 94.27 ft/sec.)

CAsy" () =-9.8,y (t) = —9.8t + ¥ (0)

Therefore, y (t) = —4.9t> + ' (0) t + y (0)

where y(0) represents the height of the cliff and
y(4) = 0.

Now, y (4) = —4.9 (16) + 4 (0) + y (0)

Thus, y (0) = 78.4 is the height of the cliff in
meters.

~Liet (8 be the Tieight of the boulder

Therefore y” (t) = —9.8;y(3) =0 and

y' (0)=0

Thus, ¥’ (t) = —9.8t + 3/ (0) and

y(t) = —4.9* + ¢ (0)t +y(0)

Thus,

y(3) =—-4.9(9) +y(0) = y(0) = 43.1meters

Let y (t) be the height at any time t.

Here v (t) = —9.8

Therefore v (t) = —9.8¢t + v (0) = —9.8¢ + 19.6
ory (t) = —9.8t +19.6

=y (t) = —4.9t* +19.6t + y(0).

But y (0) = 0 therefore, y (t) = —4.9t> + 19.6 ¢
which is the height at ay time ¢t. Also the ve-
locity at any instant ¢ is

v(t)=-9.8t+19.6 = —9.8(t —2)

Now for the maximum height,
v(t)=0=>t=2.

Therefore, maximum height is

y(2) = —4.9(2)> +19.6 (2) + y (0) = 19.6

He remains in the air until y (¢t) = 0.

That is, till —4.9t24+19.6t =0=t=0or t =4
Therefore, the amount of time he spent in the
air is 4sec.

The velocity with which he smacks back is
v(4) =-9.8(4—-2)=-19.6m/s

12.

13.

14.

335

Let y (t) be the height at any time t.

Here v’ (t) = —9.8,

Therefore v (t) = —9.8t + v (0)

=y (t)=—-9.8t+v(0)

=y (t)=—4.9t> +v(0) t +y(0).

But y (0) = 0.

Therefore, y (t) = —4.9t? 4+ v (0) ¢ which is the
height at any time t.

Now the maximum height is reached when

0
y' (t) =0 that iswhent:v( )

Therefore for the maximum height

y (9<2>) _ _4.9<119§?> v 0) (9(2))
= 784 = —4.9(“&?)2 +0(0) (g(g))
_ LOY {4'9 +1] = 78.4

Reviewing the solution to Exercise 11, the dif-
ference is that v(0) is unknown. However, we
still see that

y = —16t2 + tv(0) = —t[16t — v(0)] (factoring,
rather than completing the scuare)., The sec-
ond time that y = 0 can be seen to occur at
time ¢ = v(0)/16, at which time

v(te) = =32t +v(0) = v(0)(—2+ 1) = —v(0)

Now we see
v(t) = =32t + v(0) = —32¢ + 16t2
= —16(2t — o)

The peak was therefore at time t9/2, at which
time the height was —(t2/2)[16t2/2 — v(0)]

= —(22/2)[(v(0)/2) — v(0)]

= —(v(0)/32)[-v(0)/2] = v(0)*/64.

In summary, Ymax = [v(0)/8]? in this problem
(and more generally, Ymax = [v(0)/8]% + y(0)).
If ymax = 20 inches = 5/3 feet, then

v(0)/8 = /5/3, and

v(0) = 84/5/3 ~ 10.33 feet per second.

This is considerably less than Michael Jordan’s
initial velocity of about 17 feet per second, but
the difference in velocity is not as dramatic as
in height (20 inches to 54 inches).

For a given initial velocity of vy, the velocity
and position are given by

y = =32t + v

y = —16t + vot

The maximum occurs when 4 = 0 or when
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Vo
to= o
07 32
and the maximum height is

s =10(3)" (33 - (2)°

Therefore if the new initial velocity was 1.1vg
(an increase of 10%), the new maximum height
would be

2
1.1 2
D) 121 (U—O)
8 8
In other words, it would be an increase in
height by 21%.

(a) If the initial conditions are
y(0) = H and y/(0) =0
Integrating y" (t) = —32 gives
y'(t) = =32t + ¢;.
The initial condition gives
y'(t) = —32t + vy = —32t.
Integrating gives
y(t) = —16t% + cy.
The initial condition gives
y(t) = —16t* + H.
The impact occurs when y(t9) = 0 or
when ty = /yo/4 = \/ﬁ/ll Therefore
the impact velecity is
Y (to) = —32tg = —8VH
(b) If the initial conditions are
y(0) = 0 and ¢’ (0) = vy
Integrating y" (t) = —32 gives
y'(t) = =32t + ¢;.
The initial condition gives
y'(t) = —32t + vp.
Integrating gives
y(t) = —16t? + vot + ca.
The initial condition gives
y(t) = —16t% + vot.
The maximum occurs when ¢'(t) = 0 or
when ¢ = vy/32.
Therefore the maximum height is
vo\ 16v3 w2 )
v(5) 2o

T322 32 64
(a) The time tg when the lead ball hits the
ground satisfies

to
179 = 128001 h | —
n(cos (20))

tO 179/12800
h{ — ) = /
COS 20 €

to ~ 3.3526

At time tg, the height of the wood ball is

7225 16
179 — = In (cosh (85t0>>

~ 179 — 169.0337 = 9.9663 ft

17.

18.

19.

(b) The time ¢; that the wood ball need to
hit the ground satisfies

7225 16
179 = = In (cosh (85t1>)

16 1432/7225
¢ _

g5'1) = ¢

t, ~ 3.4562

The wood ball need to be released about
t1 = to = 0.1036 seconds earlier.

cosh

The starting point is

y" = —9.8, y/(0) = 98sin(r/3) = 49v/3.

We get y(t) = —4.9t + ty//(0)

= —4.9¢(t — [v(0)/4.9])

= —4.9t(t — 10V/3)

The flight time is 10v/3. As to the horizontal
range, we have 2/ (t) constant and forever equal
to 98 cos(m/3) = 49. Therefore z(t) = 49t and
in this case, the horizontal range is 49(10v/3)
(meters).

Here 1/ (0) = 40sin (%) =20
Therefore y (t) = —4.9t 4+ 20t
— 1 (—4.9¢ + 20)

20
= the time of flight =t = 9= 4.082
Now, Tor tae horizontal range x(t)

2’ (t) = 40 cos (%) =20V3

Therefore
x () = 20V/3t and
2 (4.082) = 20 (1.7321) (4.082) = 141.3919

Repeating the same for the angle 60°
y' (0) = 40sin (g) = 34.6410
Therefore

y(t) = —4.9% + (34.6410) ¢
=y (t) =t (—4.9t + 34.6410)

34.6410
= the time of flight = ¢t = = 7.0696

Now, for the horizontal range x (t)
2’ (t) = 40 cos (g) =20

Therefore x (t) = 20t and
2 (7.0696) = 20 (7.0696) = 141.3919

This problem modifies Example 5.5 by using
a service angle of 6° (where the Example 5.5
used 7°) and no other changes. Here the serve
hits the net.

Next we want to find the range for which the
serve will be in.

If 6 is the angle, then the initial conditions are
2'(0) = 176 cos 0, x(0) =0
y'(0) = 176sin6, y(0) = 10
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Integrating «”(t) = 0 and y”(¢t) = —32, then
using the initial conditions gives

2’ (t) = 176 cos 0

x(t) = 176(cos 0)t

y'(t) = —32t + 176 sin 0

y(t) = —16t* 4 176(sin O)t + 10

To make sure the serve is in, we see what hap-
pens at the net and then when the ball hits
the ground. First, the ball passes the net when
x = 39 or when 39 = 176(cos 0)t. Solving gives

t= % Plugging this in for the function
y(t) gives

39
4 176 cos 6
2
1639
176 cos 0

39
1 i —_— 1
+ 176(sin 9) (1760089) +10
1521

_ 2
= 1936860 0 +39tan6 + 10

We want to ensure that this value is greater
than 3 so we determine the values of 8 that give
y > 3 (using a graphing calculator or CAS).
This restriction ineans that we must have
—0.15762 < ¢ < 1.5507

Next, we want to determine when the ball hits
the ground. This is when
0=y(t) = —16t> + 176(sin §)t + 10
We solve this equation using the quadratic for-
mula to get
,_ 176sin6 & V176 sin” ¢ + 640
B —32
We are interested in the positive solution, so
, _ 176sin6 + \/1762sin” 6 + 640
B 32
Substituting this in to
x(t) = 176(cos 0)t gives

2 = 44 cos (22 sinf + 1/484sin% 6 + 10)

We want to determine the values of # that en-
sure that x < 60. Using a graphing calculator
or a CAS gives § < —0.13429

Putting together our two conditions on 6 now
gives the possible range of angles for which the
serve will be in:

—0.15752 < 6 < —0.13429

In these tennis problems, the issue is purely
geometric. Time is irrelevant. One can obtain
valuable information by eliminating time and
writing y as a function of . For example, with

21.
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service angle of 6 (in degrees below the hori-
zontal), initial speed vy, and initial height h,
one has

y(t) = —16t% — tvgsin + h,
z(t) = tvg cos @, and hence

—1622 xsin 6
y=flz)=

v cos?f  cosd

Now one could put z = 60 (the serve would be
in if f(60) < 0), or put = = 39 (the serve would
clear the net if f(39) > 3. If one were to set
f(60) = 0 and solve for vy, one would obtain
a critical speed (call it v1) for the given (h, ),
above which the serve would be out. Solving
f(39) = 3 one would obtain a second critical
speed (call it vo), below which the serve would
hit the net. Below we tabulate v; and vy for
h = 10 and selected values of 6.

+h

In the 7° line, we see that it would be neces-
sary to reduce the service speed to 149ft. /sec.
to get it in, and the net would not be a prob-
lem. The 7.6° line has these interesting fea-
tures: the service at 176 ft./sec. is out, whereas
the service at 170 ft./sec. is in.

[ h ]l 6 | o [ v |
[ofeed (lodegrees | ffsecs {//ft/s0e ]
10 7.0 149.0 105.7
10 7.6 171.5 1174
10 8.0 193.6 127.8
Let (x(t),y(t)) be the trajectory. In this case
y(0) = 6,2(0) =0
y'(0) = 0,2/(0) = 130
2”(t) =0,2'(t) = 130
a(t) = 130t

This is 60 at time ¢ = 6/13. Meanwhile,
y'(t) = =32,y (t) = —32¢
y(t) = —16t> +6

2
6 6 438
~ V=16 = - 2°
y(13> 6(13) 6= T69
6
— | = 2.59 ft
(i)

If the initial speed is now 80 ft/s, the equations
become

x(t) = 80t

y(t) = —16t> 4+ 6

The ball crosses home plate when x = 60, or
when ¢t = 3/4. At the home plate, we then
have,

y(3/4) = —16(3/4)? +6 = -3

In other words, the ball is “under” the ground
and the ball hits the ground before reaching
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home plate.

Let (x(t),y(t)) be the trajectory. In this case
5° is converted to 7/36 radians.

y(0) =5,2(0) =0

y'(0) = 120sin g5 ~ 10.46

2'(0) = 120 cos 55 ~ 119.54

2"(0) = 0

2/(t) = 119.54

2(t) = 119.54¢

This is 120 when

t =120/119.54 = 1.00385. . .

Meanwhile,

y'(t) = —32

y'(t) = —32t + 10.46

y(t) = —16t? + 10.46t + 5
y(1.00385) = —16(1.00385)2
+10.46(1.00385) + 5
y(1.00385) ~ —.62 ft

We are assuming that the height at 120 feet is
the same as the release height 5. Let 6 be the
angle of release (above the horizontal).

We have

y(t) = —16t* 4 120¢sinf + 5

x(t) = 120t cos §

Thus x(t) will be 120 when ¢ = 1/cost, at

which time y(t) will be 5 only if
—16 sin 6

12 =

cos? 0 Ocos@ 0
Hence if 120sinf cosf = 16
60sin 260 = 16

20 = sin~*(16/60) = .2699. ..,
f = .135 (radians) or about 7.7°

To find the aim, we need the length of the ver-
tical leg of a right triangle with opposite angle
7.7°, and adjacent leg 120 ft. Thus the player
should aim

120 tan(7.7°) ~ 120 tan(.135) ~ 16.2 ft

above the first baseman’s head.

(a) Assuming that the ramp height h is the
same as the height of the cars, this prob-
lem seems to be asking for the initial
speed vy required to achieve a horizontal
flight distance of 125 feet from a launch
angle of 30° above the horizontal. We
may assume x(0) = 0,y(0) = h, and we
find

y'(0) zvosm% = U—;
2'(0) = vg cos 7= ﬁvo

26.

27.

3
y'(t) = =32t + U—ZO z'(t) = gvo
y(t) = —16t% + U—;t + h,
3
x(t) = gvot.

a(t) will be 125 if t = 250/ (v/3vp) at
which time we require that y be h. There-

fore )

250 v < 250 )
16— +—|—— =0
<\/§vg) 2 \/§v0
v = 8000 ~~ 68ft/s
V3

(b) With an angle of 45° = x/4, the equa-
tions become

"0)=w sinE -

y'(0) 0 1717 \?

2/(0) = vpcos — = ——~

" _ " \/g_

y'(t) = =32, 2"(t)=0

/ Vo / Vo

y'(t)=-32t+—=, 2'(t)=—7
V2 V2
’Uot

y(t) = —16t* + — + h,
V2

2(t) = vol

V2

where h is the lieight-of the ramg.

We now solve z(t) = 125 which gives
125v/2

=

At this distance, we want the car to be at

a height h to clear the cars. This gives

the equation y(ty) = h, or

2
125+/2 12 2
Vo voV2

0=

=h

Solving for vy gives
vo = 2010 = 63.24 ft/s.

Let (z(t),y(t)) be the trajectory. In this case,
y(0) = 256,2(0) = 0

4/ (0) = 0,2/ (0) = 100

y'(t) =32, 2"(t) =0

y'(t) = —32t,y(t) = —16t> + 256

2'(t) = 100, z(t) = 100t

y will be zero when ¢t = 4, at which time x will
be 400. This is the drift distance.

(a) In this case with
p=0and w=1
x"(t) = —25sin(4t)

2 (0)=2(0)=0
25 25

' (t) = T cos 4t — T
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2 2
z(t) = 1—2 sin 4t — ZSt

(b) Witheozgandw:l
M — _oF o T
2"(t) = 25sm(4t+2>
2'(0) =2(0)=0
=2 T
z'(t) = 1 COS(4t+2)

25

2
z(t) = TZsin (4t+ E) 16

2
(a) With 6y = g and w =2
"(t) = —25sin (St + %)

] 8

gy = 2 ™ _ 25v2
2'(t) = cos(8t+4) 16

2 25v/2 25v/2
() = 2osin (st + ) - 202 202

(b) With 6 = % and w = 1

2" (t) = —25sin(4t + 7/4)
2'(0) = 2(0) =0

o 25 25+/2
X &N —4— COS(48 71-/4) _ ,,,é}C

25t/2 B 25v/2
] 32

z(t) = ) sin(4t + 7/4)
16

The initial conditions are

5(0) =0,s(0) =0.

Integrating s”(t) = —32 gives

§(t) = =32t +c1.

The initial condition gives

§'(t) = —32t.

Integrating gives

s(t) = —16t% + ca.

The initial condition gives

s(t) = —16t2.

Realizing that —32 was given in feet per

second?,and we are using centimeters now,

we use, 1 foot = 30.48 cms

and get

s(t) = —487.68t% cm

The yardstick is grabbed when s(ty) = —d,
that is when

~ 0.045V/d

t f—
0™ 487.68

Using the result from Exercise 15,

v = 8\/E

Now we need to compute how big vs is in order
for the ball to rebound to cH.

31.
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The initial conditions are

v(0) = vg,8(0) = 0.

Integrating a(t) = —32 gives

v(t) = —16t + v(0) = —16t + vy

Integrating again we get

s(t) = =82 + vat + s(0) = —8t% + vyt

s(tp) = cH when v(tg) = 0, that is when
tg = 1)2/16

-8(55) +u(55) =

2
)

2 _oH

32 ¢

v9 = V32cH

Now the coefficient of restitution is
ve  V32cH  Jc

V1 SvVH 2

From Exercise 5, time of impact is

= % seconds.

2% somersaults corresponds to 57 radians of

revolution.
Therefore the average angular velocity is

5T 207
——— = —— ~ 11.47 rad/sec
V30/4 /30 /

The initial conditions ate
y(0) = 10, 3/(0) = 160sin 45°
2(0) =0, and 2/(0) = 160 cos 45°

Integrating =" (¢) = 0 and y”(¢t) = —32 and us-
ing the initial conditions gives

o' (t) = 80v/2

z(t) = (80v/2)t

y'(t) = —32t + 802

y(t) = —16t% + (80v/2)t + 10.

We now want to solve for when y(t) = 5, which
gives the equation

—16t + (80v2)t +10 =5

Solving gives

_ /12800 + 640
p— 80V2EVIBOF640 ) er v

—32
We, of course, take the positive solution.

2(7.16) = (80v/2)(7.16) =~ 810.1.

So, place the net 810.1 feet away from the can-
non.

y'(7.16) = —32(7.16) + 80v/2 ~ 116.0

Since we have 2/ = 80v/2 ~ 113.1, this means
that the impact velocity is

v=1/(2)*+ (¥')?

=/(116.0)2 + (113.1)2 =~ 162.0

which means the Flying Zucchini comes down
squash.(We should have known this—the ve-
locity at a height of 10 should have been equal
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to his initial velocity so his velocity at a height
of of 5 should be slightly higher, which it is.)

Let (z(t),y(t)) be the trajectory of the cen-
ter of the basketball. We are assuming that
y(0) = 6, x(0) = 0, the angle of launch 6 of the

13
shot is 52° (0 = —— in radians) and the initial
speed is 25 feet per second. Therefore
137
'(0) = 25sin — =~ 19.70
y'(0) sin ——

137
"(0) = 25 cos — = 15.39
z'(0) coS I

y'(t) = -32,2"(t) =0

y'(t) = =32t +19.70, 2/ (t) = 15.39

y(t) = —16t* + 19.70¢ + 6,

z(t) = 15.39¢.

x will be 15 when ¢ is about

15/15.39 = .9746..., at which time y will be
about

+16(.9746 -..)% 419 70(.9746 .. ) 4- 6.~ 10

In other words, the center of the ball is at po-
sition (15, 10) and the shot is good. More gen-
erally, with unknown 6, the number 19.70 is
replaced by 25 sin 6, while the number 15.39 is
replaced by 25cosf. y will be exactly 10 if

—16t> + 25t sin 6 + 6 = 10
,_ 25sin0 + V/625sin® § — 256

32

x = 25t cos .

As a function of 6, this last expression is
too complicated to use calculus (easily) to
maximize and minimize it on the 6@-interval
(48°,57°), but quick spreadsheet calculations
give these values:

(Observe that x is not a monotonic function of
0 in this range. It takes its maximum when 6 is
between 52.4 and 52.5 degrees. The evidence is
overwhelming that all the shots will be good.)

34.

L6 [ t [ = |
| degrees | seconds [ feet |
48.0 0.8757 | 14.6484
49.0 0.9021 14.7958
50.0 0.9274 14.9024
51.0 0.9516 14.9710
52.0 0.9748 | 15.0038
52.1 0.9771 15.0051
52.2 0.9793 | 15.0062
52.3 0.9816 15.0069
52.4 0.9838 | 15.0073
52.5 0.9861 15.0073
52.6 0.9883 | 15.0070
52.7 0.9905 15.0064
52.8 0.9928 | 15.0054
52.9 0.9950 | 15.0042
53.0 0.9972 15.0026
54.0 1.0187 | 14.9690
55.0 1.0394 14.9044
56.0 1.0594 | 14.8100
57.0 1.0787 14.6869

Let(z (t),y (t)) be the trajectory of the centre
of the basketball.

Here y (0) = 8,2 (0) = 0,0 = 30%andv = 27.
Therefore y’(()):27sin% =13.5 and

2(0) = 27 cos% = 23.3827

y'(t) = 32 =/ (t) = —32t + 13.5,
Or y(t) = —16t + 13.5¢ + 8 also,
2"(t) = 0= a'(t) = 23.3827

That is z(t) = (23.3827) ¢

(a) Consider z (t) = 15

15
t= Sa3sy ~ V0415,

for which
y (0.6415)
= —16(0.6415)> + 13.50 (0.6415) + 8
= 10.0759

Now, y(t) = 10 = ¢ =~ 0.6520 for which

2(0.6520) = (23.3827) (0.6520)
~ 15.2455

It is evident from the above calcula-
tions that the centre of the ball passes
through (15,10.0759) and (15.2455, 10).
This means that the centre of the ball goes
through the basket. The graph of the mo-
tion is as follows
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(b) When z (t) = 14.25 = t ~ 0.6094 this
gives y(t) = 10.2849.
That is (14.25,10.2845) lies on the curve.
Therefore the minimum distance between
the centre of the ball and the front rim is
0.2845. The minimum distance between
the centre of the ball and the back rim at
(15.75,10) is 0.5045'.

(c) If the ball is of diameter, then its radius
is . Since the minimum distance between
the center of the ball and the front rim is
less than the radius of the ball, the ball
hits the front rim.

(a) 85” = %7‘( radiance.

2/(0) =100 - cos (4fm) ~ 8.72
y/(0) = 100 - sin (327) ~ 99.62
z’(0) = —20

y"(0) =0

y(t) = 99.62¢

x(t) = —10t% + 8.72t

y(to) = 90 when ¢y = 0.903

x(to) = (0.903) ~ —0.29
The ball just barely gets into the goal.

(b) Use the calculation from Exercise 35.(a),
y(t1) = 10 when ¢; = 0.100
(t) = 2(0.100) ~ 0.775
The kick does not go around the wall.

Let (z(t),y(t)) be the trajectory of the ship.
Some of our data is in feet, so we will take
g = —32 in this problem. We have

Yy’ (t) = 32

y'(t) = =32t + y/(0)

y(t) = —16t> + ' (0)t + y(0)

2({t)=c

x(t) = ct + z(0)

Solving for ¢, we have
1
E(x —xz(0)) =t.

37.
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Substituting this expression for ¢ in y(t), we
have

y—y(0) ,
=16 E(x - x(O))} +4/(0) E(w - w(O))}

Hence the path is a parabola.

Turning to the question of the duration of
weightlessness, we can assume z(0) = 0, and
we know that y/(t) = 0 when y — y(0) = 2500.
For this unknown time ¢; (the moment when
y' is zero), we have 0 = —32t; + '(0).
Therefore ¢t; = 3/(0)/32, and

2500 = y(12) - y(0)
y'(0) ooy [ ¢(0)
= —1 _—
0 { 2| TYO |5
_y'(0)?
64
hence 3/(0)2 = 64(2500)
4/ (0) = 8(50) = 400, and
t, = 400/32 = 25/2.
We now know that y — y(0) = —16t% + 400t
for all ¢.

The second time (¢2) that y(t) = y(0) (af-
ter time zero) occurs when ¢t = 400/16 =
25seconds

This is the duration of the weightless experi-
ence. Note that t5 = 2t;. The plane must pull
out of the dive soon after this time.

Let y(t) be the height of the first ball at time
t, and let vg, be the initial velocity. We can
assume y(0) = 0. As usual, we have

Yy’ =-32,y = =32t + vy,

y = —1612 + tvgy.

The second return to height zero is at time
t = 16/vg,. If this is to be 5/2, then vy, = 40.
But the maximum occurs at time
Voy/32 =5/4

at which time the height
—16(25,/16) + 40(5/4) = 25feet.
For eleven balls, the difference is that the sec-
ond return to zero is to be at time 11/4, hence
voy = 44, and the maximum height is 30.25.

(y(5/4)) is

In this case, we start with initial conditions
2'(0) = voz, 2(0) = 0;4/(0) = voy, y(0) = 0.
Integrating «”(¢) = 0 and y”(¢) = —32 and us-
ing the initial conditions gives

2/ (t) = vos

x(t) = vogt

y'(t) = =32t + voy

y(t) = —16t + voyt

The ball is caught when y(t) = 0 so we solve
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Oy

this equation to get t = vl—ﬁ Plugging this

into z(t) gives the horizontal distance

w=uz (@) — Yozty
16 16

The student must first study the solution to
Exercise 38. Here we have the additional z-
component of the motion, which as in so many
problems is z(t) = tvg,. With initial speed of
vg, and initial angle a from the wvertical, we
have vg, = vg cos @ and

voz = vpsina.The horizontal distance at
elapsed time v, /16 (time of return to initial
height) is by formula

x(voy/16) = (voy/16)vo, which defines w.

As in Exercise 37, the maximum height occurs
at time v, /32, and at this time the height h
is

—16(voy /32)* + voy (voy/32) = vg, /64
= (v0y/64)(16w /vy )
= (w/4)(cosa/sina) = w/(4tan a).

Thus w = 4htan .

The linear approximation is tan~ 'z = z,
i.e., tanx ~ x From Exercise 43, we have
w =4htan o

Applying the linearization gives
w = 4h tan o ~ 4ha
or ax —

4h
A
This shows that Aa ~ 4—:

We must use the result

Ao ~ 4—;: from Exercise 40.

With h = 25 from Exercise 51 (10 balls) and
w =1, we get

A about 1/100 = .01 radians

or about .6°

In this case, the height to juggle 11 balls is
30.25 feet. Therefore with Aw =1, we get

A 1
Ao ~ o9 ~ 0.0083 rad or about

4h ~ 4(30.25)
0.47°.

With trajectory (z,y), and assuming

z(0) = 0 and y(0) = 0, we have by now seen
many times the conclusion y = —gt? + tvsin 6.
The return to ground level occurs at time

t = 2vusinf/g, at which time the horizontal
range is & = tv cos = v?sin(26)/g.

With v = 60 ft per second and 6§ = 25°, and
on earth with g = 32, this is about 86 feet, a

44.

[
e

short chip shot. On the moon with ¢ = 5.2, it
is about 530.34 ft.

Let ((x(t),y(t)) be the trajectory of the initial
burst of water. If the angle of inclination of
the hose is #, we have the relations

tanf =m
‘ m
sinf =
1+ m?2
1
cosf =

We assume z(0) =0 and y(0) = 0 and then find
y'(t) = —32
y'(t) = =32t + vsinb

y =y(t) = —16t> + tvsind
tvm
= y(t) = — 1662 + —t
v =) Vitn?
2'(t) = vcosb
tv
z=z(t) =tvcosd =

V1+4+m?
Solving the last equation in the form

. V1 +m?2

v
and inserting this in the y-formula, we find

1 2
Yy = _16332(_;72”1) +mx

45. Let {a(t),y(t)) be the trajectory 'of Lhe paint

46.

ball, and let z(¢) be the height of the target at
time t. We do assume that

y(0) = z(0) (target opposite shooter at timeof
shot) and

y'(0) = 0 (aiming directly at the target, hence
using an initially horizontal trajectory), and as
a result y — z has second derivative 0, and ini-
tial value 0.

However, this only tells us that

y—z=[y(0) - #(O)]t = (0}t

and if the target is already in motion (2’(0)
not zero), the shot may miss at 20 feet or any
distance.

If on the other hand, the target is stationary
at the moment of the shot, then the shot hits
at20 feet or any other distance.

In this problem, we have the falling object with
initial conditions
y1(0) = 0,1(0) = 100.

The object that is launched from the ground
has initial conditions

Y2(0) = 40,12(0) = 0

We now integrate the equations

yy(t) = —32 and 34 (t) = —32, using the initial
conditions, to get



5.6. APPLICATIONS OF INTEGRATION TO PHYSICS AND ENGINEERING 343

47.

48.

yi(t) = =32t
y1(t) = —16t2 + 100
yh(t) = —32t + 40

yo(t) = —16t2 + 40t

Now, we just solve y; (t) = ya(t), or

—16t2 4+ 100 = —16¢2 + 40t

Solving gives t = 2.5, so the objects collide af-
ter 2.5 seconds and this collision occurs at a
height of y,(2.5) = 0.

This may seem odd, but notice that the max-
imum height of the y2 object is only 25 feet.
What this means is that the y» object goes up
and then down and then the y; object only
catches the y; object when both objects actu-
ally hit the ground!

(a) The speed at the bottom is given by
1
imvz =mgH,v =+/29H
(b) Use the result from (a)
v =1/29gH = /2169 = 4/2g
= 4V/2- 32 = 321t /s

(¢) At half way down,
1
§mv2 + mh8 = mhlo6,

W= 2 (B8] = 4/7
= 4v/32 ~ 22.63ft /s

(d) At half way down, the slope of the line
tangent to y = 22 is, 2 - /8 = 41/2
Hence we know that

Ul:4ﬁ

Vg
At the same time,
(vy)? + (v2)? = (4y/9)*

2 16g

Ty

g
e =4 /= =~ 3. ft
v = 4y 2~ 3.939 ft/s
29

First we compute the speed v of the bowling
ball at the moment when it rolls right out of
the window.

V30
30 = 16t2,tg = e

40
10 = tOUO,UO == \/ﬁ.

From conservation of energy

Lo
- = mah
5 mgh,

1 (40 )2 ,
-m|——] =m
2"\ 30 g

5
The height of the ramp should be 5

5.6 Applications of Integration

to Physics and Engineering

1. We first determine the value of the spring con-

stant k. We convert to feet so that our units
of work is in foot-pounds.

k
5:F(1/3):§andsok:15.

W= / " Fla)da

0

1/2 15
= / 15xdx = 3 foot-pounds.
0

. We first determine the value of the spring con-

stant k. We convert to feet so that our units
of work is in foot-pounds.

10 = F(1/6) = g and so k = 60.
/‘3
W F(x)dx

J 0

1/4 15
= / 60xdr = 3 foot-pounds.
0

. The force is constant (250 pounds) and the dis-

tance is 20/12 feet, so the work is
W = Fd = (250)(20/12)
= 1250/3foot-pounds.

. The force is constant (300 pounds) and the dis-

tance is 6 feet, so the work is
W = Fd = (300)(6) = 1800 foot-pounds.

. If x is between 0 and 30,000 feet, then the

weight of the rocket at altitude z is

1
10000 — e

Therefore the work is

30,000 T
/ (10,000 _ —)dx
; 15

221\ [30:000
= (10,0002 — —
(100002 - 55)

= 270,000,000 ft-1b

0

. If x is between 0 and 10,000 feet, then the

weight of the rocket at altitude z is 8000 — %
Therefore the work done is
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10,000
W= /0 (8000 - 1‘%) da

= 60, 800, 000ft-1b

The weight of the 40 feet long chain is 1000
pounds. Therefore the weight of the 30 feet
long chain is 750 pounds. The force acting here
is 750 pounds and the distance traced due to
the applied force is 30 feet. Hence the work
done is

W =Fd

= (750) - (30)
= 22500 foot-pounds.

. Let = be the distance of the bucket from the

initial position. Consequently x increases from
0 to 80. As the sand from the bucket leaks at
rate of 2 1b/s, the weight of bucket at the dis-
tance x is (100 — %) Therefore work done is

80 T 22 80
W = / (100 — f) do = (1003: - )
; 2 1),

= 8000 — 1600
= 6400 ft-1b.

[1
() W= - €002 (107 dx

Jo
1
800
= (400.’172 - x3>
3 0
400
= 7 mlle-lb

= 704,000 ft-1b

(b) Horsepower is not equal to 800x(1 — x)
because this is the derivative with respect
to distance and not with respect to time.
Average horsepower is the ratio of

total work done divided by time:
704,000 ft-1b
——— =16 hp

80 s
100
(a) W = / 62.47(1002 — 22)(200 + z)dz
0

100
= 62.47 / (20,0002 — 1002* — 2°) da
0

= 8,168,140,899 ft-1b

(b) This is the same as Exercise 10.(a) except
the limits of integration change to reflect

that the tank is only filled half way:
50
W = 62.47(1002z — 2%)(200 + z)dx

0
= 3,777,765, 166 ft-1b

11.

()

e

E—

88—

- =

Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval
0<z<9843 (1 mt = 3.281 ft).

Let us partition the tank into

O=xg <21 <29 < .. <xp =9.843.

such that
9.843
Ty — Tj—1 = Az =

n

for each 1 =1,2,3,,n.

This . partitions the tank into n lay-
ers, each correspcuding to an interval
(i1, x;].

Let us consider a water layer correspond-
ing to [x;—1,;], which is a cylinder of
height Az and radius 3.281 ft(1mt) . This
layer must be pumped at a distance of
(9.843 — ¢;) for ¢; € [x;-1, ;)

Thus the force exerted in doing so,is

F; =~ (Volume of the cylindrical slice)

x (Weight of the water per unit volume)
~ 7(3.281)° (Az) x (62.4)

~ 2110.31 (Az)

Thus the corresponding work done
W; = 2110.31(9.843 — ¢;) (Ax)

Therefore t}}le total work done

W= lim ; (2110.31 (9.843 — ¢;) (Az))

9.843
= 2110.31 / (9.843 — z)dx
0
22\ 0843
= 2110.31 <9.843x - )’
2 0

= 102228.48 feet pounds
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Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval 0 < z < 3.281
(as Imt = 3.281 ft). Let us partition the
tank into

O=20 <21 < 29 < .. < 2 = 3.281.
such that 3 981
r; — 21 = Ax = —— for each

i =1,2,3,,n.  This partitigns the tank
into n layers, each corresponding to an
interval [x;_1,z;]. Let us consider a
water layer corresponding to [z;_1,;].
Which iscacubeid of length 9.843, widih
21/6.562x — x2 and height Az.

The width is calculated with the help of
the following figure.

P

x

In the above figure O is the centre of the
circle of radius r. OP =r — x,

AP = /12— (r —2)* = V2rz — 2%
AB = 2\/2rx — 2?2

The said layer must be pumped at a
distance of (2r —¢;) for ¢; € [xi—1,24).
Thus the force exerted in doing so, is
F; ~ (Volume of the cuboid shaped slice)
x (Weight of the water per unit volume)
= (length x width x height) x (62.4)

~ (9.843 % 2v/6.5622 — 22 x Ax) x

12.

13.

14.
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(62.4)

~ 1228.411/6.5622 — 22 (Az)

Thus the corresponding work done

W; = 1228.41v6.562x — 22 (6.562 — ¢;) (Ax)

Therefore the total work done

W = (1228.41)
n

x lim " (\/6.5623: ~ 22 (6.562 — ¢) Ax)

n—oo
i=1
6.562
= 1228.41 / vV 6.5622 — 22 (6.562 — x)dx
0
= 136304.64 feet pounds

We set up our coordinates similar to Example
6.3, with x representing vertical distance from
the vertex (the bottom of the tank). If slice
the water in horizontal slices, these slices have

radius r = g and the volume of a cylindrical

2
slice is mr?Ax = %Az. The weight density

of water is 62.4, which gives the force exerted
by this slice of water as 15.6rz?Az. This slice
of water must travel up a distance of 10 — x
and therefore the work required to pump this
sliceout 0. 'the tank'is

W; =~ 15.6m2?Az(10 — z)
~ 15.6(10 — z)Tr? Az

Now, we add up the work for all the slices and
turn it into an integral.

10
W= / 15.6(10 — z)m2’dx
0

ES

~ 40841 foot-pounds

10
100
w =/ axdr = “
0
C

2
2
W1:/ awdng
0 2
w 21100
Wi = 5 gives - = 550

¢ =50 ~ 7.1 feet

The answer is greater than 5 feet because the
deeper the laborer digs, the more distance it is
required for him to lift the dirt out of the hole.

By calculation, the width at z feet depth is
5 — x/2, therefore

* t 1
W(zx) = / t <5 — 2) dt = v522”% — §x3
0



346

15.

16.

17.

18.

19.

20.
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W(6) = 66

1
Solving imz — —2% = 33 we get

9
T ~ 4.0 feet

We estimate the integral using Simpson’s Rule:

.0008
J:/ F(t)dt
0
.0008

308)

+ 4(4000) + 2(5000) + 4(5200)
+ 2(2500) + 4(1000) + 0]
~ 2.133
213 =J =mAv = .01Av
Av = 213 ft/sec
The velocity after impact is therefore
213 — 100 = 113 ft/sec.

[0 + 4(1000) + 2(2100)

We compute the impulse using Simpson’s rule:

.6
~ —— |0+ 4(8000) + 2(16, 000
+4(24,000) + 2(15,000) + 4(9000)[5pt] +0]
~ 7533.3
7533.3 = J = mAv = 200Av
Av = 37.7 ft/sec

Since the velocity after the crash ig zero) this
number is the estimated original velocity.

F'(t) is zero at t = 3, and the maximum thrust
is F(3) = 30/e ~ 11.0364

It is implicit in the drawing that the thrust
is zero after time 6. Therefore the impulse is

6
/ 10te~3dt = 90 — 270e 2 ~ 53.55.
0

The impulse is
6

J = / F(t)dt = 48. The impulse of Exer-

0
cise 17 was about 53.55 which means that the
rocket of Exercise 17 would have greater veloc-
ity and therefore a higher altitude.

m = / dr =15
M = / dr = 48
Therefore,

M 4

m 15 5

So the center of mass is to the right of x = 3.
6
x
——)dx=15
( 6) v

m:/ 3
M—/OGx<3—g>dx—42

22,

23.

24.

25.

26.

27.

So, therefore

M 42 14
52—2—2322.8

m
So the center of mass is to the left of x = 3.

27 2
1 z+4+3
. m= = d
" /_3 (46+690> v
27

_ 690 +:c+33
3 \46 " 690

~ .0614 slugs ~

m—/32 i—|—$+3 2da:
o 0 46 690

= 0.08343 slugs ~ 42.418 oz

27 2
z+3
M= / (46 690) da

~

31.5 oz

m 0614
This is 3 inches less than the bat of Example
6.5, a reflection of the translation three inches
to the left on the number line.

32 2
M:/ T i+x+3 dzr
0 46 690

~ 1.72495

T = M = 20.6745

m
Compared to the baseball bat of Example 6.5,
this baseball bat is longer and therefore has
more mass further out.

30
m = / 00468(16 60) dzr

~ .0614 slugs
30
3 x
M = 4 d
/ .00468x (16 60> T

=~ 1.0969
weight = m(32)(16) = 31.4 oz
M 1.0969 .
T= o T oew TTAR

The center of mass of the wooden bat of Ex-
ample 6.5 is at 19.6 inches. The center of mass
of the aluminum bat of Exercise 25 is at 17.8
inches—moving the sweet spot to the inside.

Area of the base is 5 3+1)=2.
Area of the body is 1 x 4 = 4.

1
Area of the tip is 5(1 x1)=—
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28.

29.

Base:
5
3 —2z)dr = — ~ .4167.
m= / x) B 6
Body:
5
m:/ pdx = 12p
1
T=—=3
m
m = / 6 — z)dx =~ 2.67p
16
_:— — &~ 5.33
. m 3

We use the coordinate system as in Exercise 29,
with £ = 0 corresponding to the left of the
rocket.

5
From Exercise 27, the base has total mass gp
and center of mass at x = G
From Exercise 27, the body has total mass 12p
and center of mass at x = 3.

1
From Exercise 27, the tip has total mass Ep

and center of mass at z = 3

The total mass of these three particles is

40
m= 3 p and the moment of these particles is

= (3) () s
() (9

2809

72
The center of mass of the system is

__ M _ (2809 \ (3
“m o\ 2 ”) \a0p
2809

= —— =292
960 920

The z-coordinate of the centroid is the same
as the center of mass from z = 0 to z = 4 with

—p

density p(z) = 2% hence

M f04 3/2-2%dr 8
r=——=—=—

m f04 3/2-xdr 3
The y-coordinate of the centroid is the same
as the center of mass from y = 0 to y = 6 with

2
density p(y) =6 — gy, hence

= M f02/3 ( 2)dy:
mo [$y3. (6--y)dy

30.

31.

So the center of the given triangle is the point

(8/3,2).

o= ———TT—TTTTT
00 04 08 12 16 20 24 28 32 3.6 40

Again we need to find both the z-coordinate
and y-coordinate of the centroid. But in this
case, since everything is symmetric, in fact we
can easily see that the centroid is going to be
(4,2).

4.0—

00 08 16 24 32 40 48 56 64 72 80

This time the z-coordinate of the centroid is
obviously « = 0, so the question remains to
find the y-coordinate.

This is the same as finding the center of mass
from y = 0 to y = 4 with density

y) = /4 —y, hence
M fyuv/A—ydy
m fo VA —ydy
—f40(4ul/2 —u?/?) du
—fful/Qdu
(8/3-uP? — 25w
= 1
2/3-ud/?|

y=

_8
5

So the centroid is the pint (0,8/5).
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32.

33.

34.

35.
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This time the y-coordinate is obviously y = 0.
The z-coordinate can found using the density
p(z) =2z, from z = 0 to © = 4, and

M [loctdr 8
m f04 2xdr 3
So the centroid is (8/3,0).

f:

With z the depth, the horizontal width is a
linear function of x, given by x + 40. Hence,

60
F= / 62.4x(x + 40)dx
0

3
— 624 <% T 201;2)

In this case, we just change the limits of inte-

gration.
60

62.4z(z + 40) dz = 8,840,000 1b

60

= 8,985,600 b
0

F =
10

Let x be the vertical deviation above the cen-
ter of the window, the horizontal width of the
window is given by 2v/25 — x2, depth of water
40 + z, and hydrostatic force

5
62.4/ (x +40)2/25 — 22dz
-5
5
= 62.4/ 224/25 — 22dx
5

5
+ 62.4(40) / 2/25 — 22dz
5

36.

37.

38.

39.

40.

~ 196,035 pounds.

Let x be the distance from the surface of the
water. For a given value of z, the width of the
window is constant, 40. The force exerted on
the window by a slice of water, of depth x is
F; =~ (62.4)(40)zAz.

We sum these forces up over the height of the
window and turn it into an integral:

10
P / (62.5)(10)dz — 31,250 Ib,
0

Assuming that the center of the circular win-
dow descends to 1000 feet, then by the previous
principle, after converting the three inch radius
to 1/4 feet, we get F' = 12,252 pounds. An al-
ternate calculation in which x is the deviation
downward from the top edge of the window,
would be

0.5
Fe / 62.4(999.75 + )
0

-24/(0.25)2 — (0.25 — x)2dx

0.5
= / 124.8(999.75 + )/ 0.5z — x2dx
0
512959 44

Due to the fact that the size of the watch is so
small, we can assume that the force will be ap-
proximately the same regardless of orientation
of the watch.

The hydrostatic force is given by F' = pdA
where, p is the density of the water (62.4),
d is the depth (60), and A is the area, A =
7(1/12)%

Putting these together gives

F ~ (62.4)(60)(m/144) ~ 81.68 1b.

(100 tons)(20 miles/hr)

(100 - 2000 1bs)(20 - 5280 ft)
3600sec
~ 5,866,667 ft-1b/s
5,866,667
- 550
~ 10,667 hp

hp

This is a matter of slicing and approximating.
Divide the subinterval [a, b] into n equal subin-
tervals. Then, we take the limit as n — oo,
which turns the Riemann sum into an integral.
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n b .
. Therefore the second moment is
J = nh_)n@lo 4_2 F(t;)At = /a F(t)dt M = M,y — M,
- =pt [a®b — (a — w)*(b—w)]
41. The bat in Exercise 23 models the bat of Ex- =Py

ample 6.5 choked up 3 in.
45. Using the formula in Exercise 42, we find that

From Example 6.5: the moments are 1323.8 for the wooden racket,

flz) = (1 + x>2 : 1792.9 for the mid-sized racket, and 2361.0 for
46 690 the oversized racket. The ratios are
i 20 mid 35 YT 78
L, f(x) - 27dx ~ 27.22. wood 7 wood '
From Exerlmse i3+ 4\ 2 46. % _ p% [SaQb —3(a— w)Q(b . w)]
f(f)_(46+ 690) ; Sincea >a—wand b>b—w

27 dM

f(z) - 2?dx ~ 20.54. e 0.
-3 Therefore as a increases, M increases.
1:2{$d2%ctio2r(1) %14moment: dM T 5 20 3
G v =5 B0 )+
.28 ) It is easy to see that o > 0. Therefore as w
42. m = / <1 + x) dx increases M increases making the racket more
0 46 690 stable.
30

—I—/ (912 + 6;0)2 dx
2 5.7 Probability
~ 0.05918 slugs.

251070 A2 L) =400 >0 for 0 <l z 1 and
e ) |
o \46 " 690 / 4a’de = o), =1-0=1
. /3035 ( N )2dx 0
- 1T Zan 3
28 92~ 690 2. f(x) = =x® > 0 on the interval [0,2] and
8
~ 1.1398 slugs 23
M 027,
7= 2 ~19.258 /0 grdr=1

m
The center of mass moves in.
3. flx)=ax+22>>0for 0 <z <1and

e .TQ 1 1
43. 2 Jc2b\/ 1 — —dx = - pra®b ! 2 4
/_a P a? 4’ /(x—l—?x?’)d:c:x——l—x— =1
0 2 "2,
44. If the racket was solid wood, then the second

moment would be 4. f(x%: cosx > 0 over [0, 7/2] and
a 2 ™

My = / 2pbx2\/ 1— % dr = pzagb / cosxdr = 1.
—a a 4 0

But, the racket is not solid wood. We have

to subtract the contribution to the second mo- 5. f(x)= 1 sinz > 0 over [0, 7] and
ment from the empty space. This amount is ” 2 1 -
equal to the second moment of a smaller wood / Zsingdr = = —cosz| =1.
racket: 0 0
M, = / 2p(b — w)z? 6. f(x) =e "% >0 over [0,In4] and
—(a—w) In 4 . L
/ e 2 dy = —2e%/? =1.
2 0 0
(a—w) 7. We solye for ¢:

= p%(a —w)3(b—w) 1= /0 catdr = g which gives ¢ = 4.
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10.

11.

12.

13.

14.

15.

16.

17.

18.
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. We solye for c:

1:/ cx+a:2da?:E+
O 2

w| =

4
which gives ¢ = 3

. We sol}/e for c:

1= / ce dx = —E(e_4 -1
O 4
4

— €

which gives ¢ = —-

We solge for c:
1= / 2ce”Cdr = 2 — 2e7%¢
0

1
which gives ¢ = 3 In 2.

‘We solve for c:

c 1
1= =ctan 'z
/0 1+ 22 0

\
o
/N
~ |
\
(e
N——
SR

which gives ¢= — ~ 1.2732

We solve for c:

—1 1
=csin" 'z

1_/ \/ﬁ 0
—0(5‘0)—*

= C——~06366
s

P(70 < 2 < 72)
72 4

70 V2T
P(76 < X < 80)
80 (.4

v

P(84 < x < 120)
120 4

- T e 08(@=68)? 1 o 776 % 1071
84 V2T

P(14 < X <60)

60 04

1 1/4
P (O <z< ) = / 6e %% dx
4 0

o6 3/4 = (—e 73?2 £ 1) = 77687

7 o 08(==68) g . (0.157

e =008z =68)" 70 ~ 0.00068634

e 0.08(z=68)% 1. . ).00068714

0.5
P0< X <05)= / 6e~5%dx ~ 0.95021
0

19.

20.

21.

22,

23.

24.

25.

26.

2
P1l<z<2)= / 6e % dx
1

e 03 = (—e712 4 %) ~ 00247

10
PB<X <10) = / 6e 5 dx
3

~1

52300 x 108

1
PO<z<1)= / dre 2 dx
0

=1

PQ

—3e7 2~ 594

2
<X<2)= / dre 2 dxr ~ 0.31443
1

10
Mean: / x(4re?")dx ~ 0.9999995
0

1
The maximum is at x = 3 and the mean is at

Tr =

0.31443.

o
N

o

vvvvvvvvvvvvvvv

b 1
Mean: u:/ xf(m)dx:/ 3x3dx
a 0
3
=-=0.75
4

Median, we must solve for m:

= /am flz)de = /Om 32%dr = m?

1
which gives m = — ~ 0.7937.

%

b 1
Mean: uz/ xf(x)dm:/ 4zt de
a 0
4
=F= 0.8

Median we must solve for m:

/f dx=/4x3da::m4
0

— =~ 0.84009.
ﬁ

which gives m =
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29.

30.

b
Mean: ,uz/ xf(x)dz

1
=/ x( 4/ )dxz0.4413
0 1+£C2

Median, we must solve for m:
1 m
e / f(x)dx

" 4/m
_/0 (Hw?)dx
4

= m= tang ~ 0.4142

b
Mean: ,uz/ xf(x)dx

/1 ( 2/7 )d
= | ——|dz
0 \/1—.22

=~ (0.6366

Median, we must solve for m:

3= [ fws
[ ()

4B P ATA AT
= p sin lﬂz:|0

_ 2 (it
7T(sm m 0)

= Zgin"'m

T

= m= sing ~ 0.7071

b
Mean: ,u:/ zf(x)dx

™1
= / —x sin xdx
0 2

1 .
= i(smm—xcosx)

U

0
Median, we must solve for m:

- Z " fayds

= sinzdz = = (1 — cosm)

DN =

0
which gives
m = cos™*(0) = % ~ 1.57.

b
Mean: ,uz/ xf(x)dx

/2
= / x cos xdx
0

- g — 1~ 0.57080

31. Density f(z) = ce=4%,[0,b],b >0

32.

33.

34.

m

= f(z)dx

a

(b) Median, we must solve for m:
1
2

m
:/ cosxdr = sinm
0

which gives m = %

b
1:/ ce ¥ dx
0

C _4x C/ —ap
= —— = —1
46 0 4 (e )
B 4
T em

Asb—o00,c— 4

From Exercise 31, ¢ =

b
u:/ cre Ydx
0

[1—e (1 +4b)]

c
T 16
— e 4 (1 + 4b)

T4l — e )
Now, taki'ng the limit,

li -
1m = —
b—)oou 4

Density f(z) = ce=%%,[0,0],b >0

b
1:/ ce %% dx
0
b

—¢ —6z € —6b
= —e =—= (e - 1)
6 o 6
_ 6
Tl
Asb— 00, c—6
b
u= / xee 5% dx
° b
C€_6C
= (—6x —1)
36 0
ce6b c
= —6b—1)+ —
36 ( )+ 36
1
As b — oo, u — 5
. A
l—eab
1—e®(1+ab)
r= a(l —e—ab)
1

lim p=—
b—oo a

~ 0.5236.

1—e %

351
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35.

38.

CHAPTER 5. APPLICATIONS OF THE DEFINITE INTEGRAL

To find the probability of these events, we add
the probabilities.

(a) P(X > 5) = 0.0514 + 0.0115 + 0.0016 +
0.0001 = 0.0646

(b) P(X < 4) = 0.0458 + 0.1796 + 0.2953 +
0.2674 + 0.1473
= 0.9354

(¢) P(X > 6)=0.0115 + 0.0016 + 0.0001
=0.0132

(d) P(X =3 or X = 4)
= 0.2674 + 0.1473
= 0.4147

(a) P(X =2or X =3) =0.441 + 0.343
=0.784

(b) P(X >1)=0.189+0.44140.343 = 0.973

(a) Suppose the statement is not true. Then

there must be a game before which the
player’s winning percentage is smaller
than 75% and after which the player’s
winning percentage is greater than 75%.
Then there are integers a and b (note that
a>m,b>nand a—b=m—n), such
that .
%<Zand%>%Then
4a < 3b, and 4a+4>3b+ 3
3b+4>4a+4>3b+3.
But there is no integer between the two
numbers 3b + 4 and 3b + 3, and thus such
situation will never happen. Thus there
must be a game after which the player’s
winning percentage is exactly 75%.

(b) Using the same argument as in the previ-
ous problem, we can conclude that:
If after a certain game, a game player’s
winning percentage is strictly less than

100k—+1, and then the player wins sev-
eral games in a row so that the win-

k
ning percentage exceeds 100m, then
at some point in this process the player’s

k
inning percentage is exactly 100——.
w gp g Xactly 1

First the first quartile, we solve
Cc

0.25 = In 2e~ (M 2)2/2 4,
0

—9 (1 _ 67(1n2)c/2>
Solving gives
c¢=—2In(7/8)/In2 ~ 0.3853 days.

39.

40.

41.

42.

For the third quartile, we solve
c

0.75 = In 2e~ (0 2)z/2 4,

0
—9 (1 _ 67(1n2)c/2)
Solving gives
c=—2In(5/8)/1In2 ~ 1.3561 days.

4 2
o—-08(z—68)

f) = o
Fla) = —\;;4 (¢ — 68)6—.08(x—68)2
#(z) = _'0646—.08(30768)2

V2r
- (1—.16(x — 68)?)

The second derivative is zero when
x—68==41/v/0.16 = +1/0.4 = £5/2

Thus the standard deviation is 5

For this, we have y = 68 and 0 = g
P(p—o<X<p+o)

= P(65.5 < X < 70.5) ~ 0.6827
P(p—20 <X < p+20)

= P(63 < X < 73) ~20.9545
Pp=30v <X < p+30)

= P(60.5 < X < 75.5) ~ 0.9973

f'(p) =mp™ ' (1—p)

f'(p) =0 when p = % and

, <0 ifp<m/n
f(p){ >0 ifp>m/n

Hence f(p) is maximized when p = m

n
In common senses, in order for an event to hap-
pen m times in n tries, the probability of the
event itself should be about m/n.

In the picture, although it might appear that
y > 1/2, the conditions are that 0 < y < 1/2,
and the labeling in the drawing implies that the
lower line is the closer. This is indeed always an
allowable assumption (by turning the picture
upside down if necessary). In the right triangle
whose hypotenuse is the lower half-needle, the
vertical side is of length (sin®)/2. Therefore
the needle hits the lower line if y—(sin 8) /2 < 0,
or if y < (sinf)/2. As to the actual probabil-
ity ratio, the denominator is just w/2, while

the numerator is
cos _*COS7T+COSO_2_1
2 |, 2 2
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43.

44.

45.

The total probability of hitting a line is thus
2/m =~ 63.66%.

To find the maximum, we take the derivative
and set it equal to zero:

#(z) = —2az(bz — 1)(bx + 1)e """ = 0. This
gives critical numbers x = 0, £—.

Since this will be a pdf for the interval [0, 4m],
we only have to check that there is a maximum

1
at 7 An easy check shows that
1
f'(z) > 0 on the interval {0, b] and

1
f'(z) < 0 for z > —. Therefore there is a

b
1
maximum at © = m = 3 (the most common
speed).
To find a in terms of m, we want the total

probability equal to 1. Since m = —, we also

b
1
make the substitution b = —.
4m R 5 m
1= axe /™ dx
0
Solving for a gives

/ n4"77, 3 ey
a= k/ zie @ '/m‘dx>
Note: this integral is not expressible in terms
of elementary functions, so we will leave it like
this. Using a CAS, one can find that
a = 2.2568m*

-1

f(t) = 4—3/2,0.38¢—100/t

40
/ k- f(t)dt =1 for k = 0.000318.
0

30
/ 0.000318 - f(¢)dt ~ 0.0134
20

The probability of a 2k-goal game ending in a
o)
%) (k+1

(2k) =~ ~——p (1 - p)*

= Tme PUY
f(2k) < f(2k — 2) for general k.

f(2k) 2k —1

=2 1—

Fok—9) P (L—=p)
Here Bl :2—%<2.

On the other hand,
2
R R +1>0
D) =2 U,p p 1=

p(1—p) <
f2k) 2k -1
fk—2) 7 k

1=

1

2
— < —
p p_4a

Now we get p(l—p)

46.

47.

353

1
<2-2- 1= 1. So f(2k) < f(2k —2). In other
words, the probability of a tie is decreasing as
the number of goals increases.

The probability HT'T appears first is the mean
of that probability over the four possibilities
for the first two coin tosses.

Let P(HT) be the probability HTT appears
first following HT.

Suppose the first two throws are HH. Then the
third throw can be either H or T. If it’s H,
then we are back in the same position: the pre-
ceding two throws are HH. But if it’s T, then
player B has won. So the probability of player
A winning in this case is 0. Putting the two
possibilities for the third throw together, as a
mean, the probability that player A wins fol-
lowing HH is:

P(HH):%XP(HH)+ L

1

3 X 0= iP (HH).
Now suppose the first two throws are HT. If
the third throw is H, then neither player has
won, and the probability HT'T will ultimately
win is (by definition) P(TH). (The last two
throws were TH.) On the other hand, if the
third, throw is T, then player . A has won! So
this time the weighted mean for the probabil-
ity that player A wins, following HT is:

1 1 1
P (HH) = 5 x P (TH) + 5 x 1= P (TH) + 5

Similarly, we get

P (TH) — % « P (HH) + % « P(HT) and
P(TT) = % x P (TH) + % x P(TT).
Therefore, we have

P(HH) =0

P(HT) = P(HT)/4 + 1/2 P(HT) = 2/3
P(TH) = P(HT)/2 =1/3

P(TT) = P(TH) P(TT) = 1/3

The mean of these four results gives us the
probability of HTT appearing before HHT is
1/3. Hence, the probability of HHT appearing
before HTT is 2/3. Therefore, player B is twice
as likely to win.

(a) The functions f (x) and g () are the pdfs,
such that f (z) = a + bx + cz?;
f(a?) =g(a).
Therefore by definition,
);9(x) >0 and

/f d:r—/ g(x)dr =1

Consider f(x) = a + bx + cx? and
g(z) = f(2?) = a + bx? + cx?.
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1
Thus, 1 :/ f(x)dx
0

1
:/ (a+bx+cm2)dx
0

x? x3 !
P bi p—
(az+ 5 +c3>

1
and 1 :/ g(x)dx
0
1
= / (a + bz + ca:4) dx
0

.CL'3 .’1,'5 !
= (am +b—+ c)

3 5

Solving (1) and (2), we get,
b= —a=14 5,
) 15
Thus f (z) = 1—&-%— %x%—cﬁ
15cz? — 12cx + ¢ + 15)

15

or f(a) =

(b) Mean of pdf g:
b

,u;j' ry{z)dz
a
U (15cx* — 12c2? + ¢+ 15
:/ x( )d
0

15 .
1 1
= (15ca® — 12¢2® + (¢ + 15) z) da
0
_ 1 (1ser®  12ex' | (c+15)a !
15\ 6 4 2 0
=05

Ch. 5 Review Exercises

1. Area :/ (a:2+2—sinx) dx
0

™

23
= <3 +2x+cosx)

3

T
= — 4+ 21 —2
3+7r

0

1
2. Area z/ (" —e ") dx
0

1
=("+e )| =et+e -2
0

1
3. Area :/ % — (2:c2 - x) dx
0

. Solving e~

1

(2 2
13" )| T2

. First solve 2 — 3 = —22 4+ 5 to find that the

intersections points are r = —2, 2.

Area = / [(—2® 4 5) — (2* — 3)] dx

-2

2 2 64
= (3”6 +8x> =5

T =92 — 22 we get

r ~ —0.537,1.316

1.316
Area ~ / (2—2"—¢")da
— 537
73
= 2 —_ -
(-5 )

1.316

~ 1.452
—.537

. First solve 42 = 1 —y to find that the intersec-

—1++5

tions points are y = 5
—14+V5
2

_ _ 2
aren= [ 10— oy

? 8
.Areaz/xzdxzf
0 3

. If P is the population at time ¢, the equation

1S

P'(t) = birth rate — death rate
=(10+2t)— (4+t) =6+1

Thus P = 6t + t2/2 + P(0), so at time t = 6,
P(6) = 36 + 18 + 10,000 = 10,054.
Alternatively,

6
A:/O [(10 + 2¢) — (4 + t)]dt
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10.

11.

12.

13.

14.

6
=54

:/06(6—|—t)dt: <6t+t22> .

population = 10,000 + 54 = 10,054

For this we use Simpson’s rule on the function

(f = 9)(x).

Aum—amm

2
z%[(3.2—1.2)4—4(3.5—1.5)+2(3.8—1.6) +
4(3.7-2.2)+2(3.2—2.0)+4(3.4—2.4) +2(3.0—
2.2)4+4(2.8-2.1)4+2(2.3-2.3) +4(2.9—2.8)+
(3.4 —2.4)]
~ 2.1733.

2
V:/ (3 + )% dz
0

2
:71'/ (9 + 6z + 2?) dx
0
3
— <9x—|—3x2+x3)

987

3

If we consider slices perpendicular to the z-
axis, then the area of a slice is equal to, (10 +
2z)(4 + z) (tength times depth). We integrate
the areas from z =0 to z = 2:

2
Area = / (10 4+ 22)(4 + x) dx
0

2

0

4
= % ~ 121.33 cubic feet.

Use trapezoidal estimate:

0.4
V=04 (2 +14+18+20+21

0.4
+ 1.8+ 1.1+ 2)

16.

0

(@V=Ar@+ﬂﬂw
- [ w2 viray

4
7r/ (4 + 492 4 y)dy
0

4
- 77/ (4 — 4y'? + y)dy
0

4
=7T/ (8y*/%)dy
0
. 20| 128w
3V 1,7 3

=T

=T

(—at — 422 + 32) da

-2

5
(—é -2 +32:v>

14087

15

473
3

2

-2

355
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2
(d) V = / 7T[(4 _ x)2 _ (4 _ 21,)2] dx (d) Meth0(12 of shells.
g v:/ 2n(4— )[4 - 4?)
1 (" — )] dy
e
17, @) V= [ 22—y - vy a0

1
= 27r/ (2y — 2y°)dy
0

1
1 19. s=/ V14 (423)° dz ~
—1

0 0
L 20. s:/1\/1+(2x+1)2 dx ~ 1.14779
1 ) 2 ex/2 2
b>V=/7T(2—y)dy 21.5/ 1+( 5 ) da ~ 4.767
0 -2
1
—/ m(y)*dy ™
Jo 22. s = / V14 4cos? 2z dx =~ 5.27037
0
= 7T/ (4 —4y)dy )
0
:7r(4y—2y2)’(1):27r 23. S:/O 21(1 — 2®)\/1 + 422 dx
1
~ 5.483
© V= [ w(@-v+1ra 1
0
' > 24. S = / 2723 \/1+ 92* da ~ 3.56312
—/ m(y+1)°dy 0
0
ted2C ) 25, B = L2
=T, e h(0) = 64,(0) = 0
o, B'(t) = —32t
- 7r/0 (y™ + 2y + 1)dy h(t) = —16t* + 64
. /1 (8 — 8y)d This is zero when ¢t = 2, at which time h/(2) =
a 0 2 —32(2) = —64. The speed at impact is re-
=7 (8y — 4y2)|é = A4r ported as 64 feet per second.
1 26. In this case we have the equations
) V=, e nl@-v) -ud (1) = —32
1
h(0)=64 R'(0)=4
271'/0 (8 — 10y + 2y°)dy h,((t)):732t‘£4?
.y (8 - ) ! h(t) = —16t% + 4t + 64
= 27 — _i_i
y =5y 0 This is zero when
_ B2 1+ V257
t=to=—3—
18. (a) Method of shells. Therefore the velocity at impact is
2
—32(1 + /257
V:/ 2my[(4 — y?) — (v* — 4)] dy B (to) = %—#4
0
= 167 = —4/257 ~ —64.125 ft /s
51271'
) V= / (4—y*)?dy = 27. y"(t) = —32,2"(t) = 0,
y(0) = 0,2(0) =0
/
Q) V= / 78— v*)* — vl dy v/(0) = 48sin ( 7)
92 / . 7
5197 (O)—48cos(9>
= ¥ (0) ~ 16.42,2'(0) ~ 45.11

3
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28.

29.

30.

y'(t) = =32t + 16.42
y(t) = —16t* 4 16.42t

This is zero at t = 1.026. Meanwhile,

2/ (t) = 45.11

x(t) = 45.11¢

2(1.026) = 45.11(1.026) =~ 46.3 ft This is the
horizontal range.

In this case we have the equations

y'(t) = -32,2"(t) =0
y(0) = 6,2(0) =0

/ . T ’ T
y'(0) = 48sin 3 ¢ (0) = 48005§

y'(t) = —32t + 48sin g
2 (t) = 48 cos g

y(t) = —16¢2 + 48t sing +6

x(t) = 48t cos g

We now solve y(t) =0 or

~16¢% + 48t sin 5 + 6= 0

which gives ¢t &~ 1.3119, this is the time of flight.

The horizontal range is
2(1,2119) & 59,17 feet.

y(0) = 6,2(0) = 0

, . 2
= — | =111
y'(0) = 80sin <45 3,
, 27
= —_ ~ 22
z'(0) = 80 cos <45 79

y"(t) = —32,2"(t) =0

y'(t) = =32t +11.13

y(t) = —16t* +11.13t +6

2’ (t) = 79.22

x(t) = 79.22t

This is 120 (40 yards) when ¢ is about 1.51. At
this time, the vertical height (if still in flight)
would be

y(1.51) = —16(1.51)% 4 11.13(1.51) + 6

= —13.6753,

Since this is negative, we conclude the ball is
not still in flight, has hit the ground, and was
not catchable.

If we repeat Exercise 29, but we’ll leave the
2

angle as 6 (we will plug in § = 24° = % later

t00).

Our equations become

y(0) =6, x(0)=0

y'(0) = 80sind, 2'(0) = 80cosfh
y'(t)=-32, 2'(t)=0

31.

357

Integrating and using the initial conditions
gives

y'(t) = —32t + 80sin 6

x'(t) = 80cos b

y(t) = —16t> 4 80t sinf + 6

x(t) = 80t cos b

We solve for the time when the ball is 40 yards
down the field:

120 = z(t) = 80t cos §

Solving gives

to=1t= 3 sec

The height at this time is

3 2
y(to) = —16 (2 sec 0)
3 .
+ 80 <2 sec0) sinf + 6
= —36sec?f 4+ 120tanf + 6

Let us say that the ball is catchable if it is be-
tween 0 and 8 feet high when the ball reaches
the 40 yard point (the player can dive or jump
to catch a low or high ball). To determine when
this occurs, we graph the function and see that
for the ball to be catchable it must be thrown
with angle in the range:

15:23° <6 < 19.51°

124

L

IS
T S R N B B R

14 16 18 20 22
theta

L

R (t) = —32
h,(O) = Vo
h(0)=0

R (t) = =32t + vy

This is zero at t = vy /32.
2 2 2

Vg v5 v Y§
() =to (5 5 -
32 0 322 + 32 64
If this is to be 128, then clearly vy must be

V/(64)(128) = 64v/2 ft /sec.

Impact speed from ground to ground is the
same as launch speed, which can be verified
by first finding the time ¢ of return to ground:
—16t% +vot =0
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32.

33.

34.

35.
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t= 00/16
and then compiling

h/ (U0/16) = —32(’[)0/16) + vg = —g
We want to determine how far in the z-
direction the drop travels. We have initial con-
ditions
2’(0) = 100, z(0) =0
y'(0) = 0, y(0) = 120
2'(t) = 100, z(t) = 100t,
y'(t) = —32t, y(t) = —16t% + 120

We first solve 0 = y = —16t2 + 120 to get

/15
t = CR This is when the supplies hit the

ground. We plug this into the equation z(t) to
determine how far the supplies traveled.

15 /15
— =1 — =~ 273.
x( 2) 00 5 73.86

So, the supplies should be dropped 273.86 feet
before the target.

F =kx, 60=k-1, k=60

W:/ " 602 do = 300 22/
0
30-4 40
A
9 3

Remember to convert miles to feet.
8
W = / (800 + 2z) dx
0

= 6464 mile-pounds
= 3.413 x 107 foot-pounds.

m = /x—2x+8)d
o2

= <3x +8x) .

M= / 2% — 2z +8) do

:/04(353—295 + 8z) du
<

x4

= 4

1 3 —I—x)
M_ %256 16
m U2 7112 7

Center of mass is greater than 2 because the
object has greater density on the right side of
the interval [0, 4].

36.

37.

38.

39. J =

40.

41.

42.

2
44
m:/(x272x+8)dx:—.
0 3
2, 44
M= | x(z®—2x+8)de = —.
0 3
_ M
T=—=1
m

The center of mass is at one because the den-
sity function is symmetrical about the point
x = 1. (The graph of y = 2?2 — 2z + 8 is a
parabola with vertex at = = 1.)

80
F= / 62.42(140 — z) dx
0
80
= 62.4/ (1402 — %) dx
0

3
— 624 (70:c2 _ ";)

= 62.4(80)%(130/3)
~ 17,305,600 1b

80

0

10
F= / 62.4(20)z dz = 46800 Ib

0065
3(8)
+ 4(2400) +

+2(2200) +
=1.52

J =mAv

1.52 = .01Av
Av =152 ft/s
152 — 120 = 32 ft/s

{0 + 4(800) + 2(1600)

2(3000) 4 4(3600)
4(1200) + 0}

2
J= / 3000£(2 — t) dt = 4000
0

Since J = mAw, we have Av = % =40 and

the speed before the collision must have been
40 feet per second (about 23.7 miles per hour).

f(z) =2+ 22 on [0,1]
fl@)>0for 0 <z <1and

1 2 4
3 I
/()(x+2:z:)dx—<2+2>

The function is positive on the interval, and

In2
/ §6721 dr =1.
o 3

1
=1
0
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2

c —c
[ e
1z x

Therefore ¢ = 2

43.

44. We want to solve for ¢:
4 c
1= / ce ™ dr=—(1—e%)
0 2

Solving gives

5
45. (a) P(x < .5) :/ 4™ dx
0

= —6_49”].15 =—et4e 2117

1 1/12 )
46. (a) P(X < — :/ 9ze " dx
12 0

5
=1- 7e—1/4 ~ 0.026499
1 1
(b) P ( <X < 1) :/ 9ze ™3 dx
2 1/2

= 26*3/2 — 4¢3 ~ 0.35868

359

1
,u:/ x(m+2w3) dx
0

1
=M 07333
o 15

3 22

3+5

:/ (:E+2x3) dx
0

LL’Q LL’4C 02 C4
BECIECY Ry

Therefore ¢ + ¢* =1,

c:\/_l%\/gmo.m

In2
8
w= / —ze 2 dx
0o 3

L 11 2 ~ 0.26895
=-—-In2=0.
2 3

For the median, we have to solve the equa-
tion

DN | =

m 4
0.5 = /0 26_21 dx = 5(1 — ™)

Solving gives

1
m = 5 In(8/5) ~ 0.23500
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1
. /sec?ttathdtz Esec?t—i—c

7. /(x2 +4)%dx = /(:c4 + 822 + 16)dx

5
8
:x—+fx3+16x+c

5 3
Chapter 6
. /x(x2 +4)%dr = /(3:5 + 82 + 16x)dx
:%6+2x4+8$2+c

Qo

[ ]
Integration o
° 9. md.ﬁv = Z tanfl z +c
x
Techniques S
10. md"x = §tan71 T+ c
x
1
11. /72dx
. V3 _ 92z —
6.1 Review of Formulas S st 1
and Techniques :/\/4(x+1)2dx:arcsm< 2 >+c
1 z+1
ax g, _ * _ax 12.
1. /e dx a@ +C, fora#o. m
B —2(x—|—1) 2@+l
1. o /4 —
2. /cos(ax)dx: gsm(ax)+c, for a # 0. 1 (@ + i 2m
a2z “(z+ D)l O
/ —d / ! (1>d Vi—(x+1)2+c
r= | ———= |- ) dz =—y4-
1_(%)2 ¢ 4
1 .
Letu:%,du:;dw. 13. /5+2x—|—x2dx
1 z+1
1 4 _gr=2tan (T2
= [ ——du=sin""(u)+c 4/4_|_( 2z an ( 9 >+C
N Y) z+1)
] -Tu
= sin (f)+c,a>0. / 4r+4
a 14. ——dx
J 5422+ 22
b o [ 2@HD ot (m 1) te
|x|\/x2—a2dx A+ (@+1)?
b 1
= —F—)d TR "
2 2
e/ (2)? — 1\ 5+ 26+t
Via) T 7/ 4t + 4 7/ 1
Letu:gd :fdxand lau| = |z] . ) 52+ t2 5+ 2t + 2
t+1
b :2ln‘4+(t+1)2’*2tan71 <+)+c
|au|\/u2 2
L R S t+1 2(t+1)
/ 16. —dt= | —————dt
|Z|/|U| u?—1 /t2+2t—|—4 (t+1)2+3
— el 1
- |a|S€C (U>+C ziln‘(t+1)2+3’+c
b L[ 0
_msec (a>+c,a> . 17. /32xd$__ 372 4
. 1 76a: 3 7630
5. [ sin(6t)dt = 6 cos(6t) + ¢ 18. dx = —5¢ +c

360



6.1.

19.

20.

21.

22,

24.

25.

26.

27.

28.

29.

REVIEW OF FORMULAS AND TECHNIQUES

2
Let u=1 —|—:E2/3,du = 22734z

4 3 .
[ syt =4 (5) [
=6In|ul+C =6In|l+z¥3 +¢

3
Let u=1+ x3/4, du = Zafl/zldx

2 dr = 2 d
21/4 1+ T = x1/4(1—|—x3/4) z

4
:2(3)/u‘1du:§lnu|—|—0

8
:§ln\l+x3/4\+c

Let u = d —d
et u=+/z,du = NG x
Smf :2/sinudu
f
= —2cosu+C =—2cosy/z+c
1 1
Let u=—,du=——dz
13; T
/Mdmz —/cosudu
T
:—sinu—l—C:—sinE—i—c

. Let u ='sinz, du = cosxzdx

T 0
/ cos ze®" ¥dr = / edu =0
0 0

Let u = tanz, du = sec? zdx

/2 1
/ sec? et T dy :/ e"du
0 0
1

=e"| =e—1
0

0
/ sec x tan xdx

—m/4
0
=secx =1-2
—m/4
/2 /2
/ csc zdx = — cot z =1
/4 /4
Let v = 23, du = 3z2dx
x? 1 1
—dr == [ ——=d
110" 3/1+u2 “
1
:gtan’1u+C’:§tan’1x3+c

xb 1
dx In(1
/1+x6 6 n(l+a% +e
1 x
——dr=sin"'Z 4¢
V4 — 2?2 2

30.

31.

32.

33.

34.

35.

36.

37.

38.

Let u = e®, du = e*dx

\/1—62I /\/1—u2
=sin'u+C =sin"'e® +¢

Let u = 22 ydu = 2xd:c

/\/1—z4 /\/lfu2
1 1
:fsin_lquC:isin_lzerc

Let u=1—z* du = —423dx

223 1
——dz=—= [ u?du
/\/1—324 2/
=240 =—-1-aMH?1¢

14z
d
/1+:c2 v
1 2x
B
+2/1+332 v

1
- 4
/1—1—952 .

1
:tan_1m+§ln|1+x2|+c
1
dx
|
. / 71/2 d

1+m1/<
:2ln|1+x1/2|+c

1
na’ /1nx<1) dx
T

Let u=Inz,du = ldx.
x

:2/udu:u2+c:(lnz)2+c

3 3 23
/ 2Ty = / 22dr = —
1 1 3

/3495\/mdx
= /34(35 —3+43)Vr — 3d

3

1

4 4
:/ (m—3)3/2dx+3/ (z — 3)2dx
3 3

4

_2 5/2 2 3/2
5(x 3) 3+3 3(x 3)
1
/x(xf?))zdm
0
1
:/ (2% — 622 + 9z)d
0
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4,2
1
39./ e 47. /f
1 VT
! 3/2 ! —1/2 de 2 a? d
‘/1‘” d“/l”’" e /Ox2+1 %mx
2 ol i1 —1121’1+21—1 d
= 2g| g 22 PR ' A =y R
) 1 1 5 1 9
:§1n2+(x—arctanm) ‘1
40. /Oxexdx——e_$20 —6_4_1 In 2
9 9 2 7+1+Z—arctan2
dr +1
) ) T 48. /7 T
41. —arctan——i—c 2
/3+x2 73 73 2z% + 4z + 10
5 Y S N (R N
/3+x3 w: N/ ) 222+ 42 + 10 272 + 4z + 10
1
:1n|2x2+4z+10|—§/7dx
. 2) (x+1)2+4
42. [ sin(3z) dx—f sin(3x)3dx 3 .
z +
Let u = 3, du—3dx ln|2x2+4z+10|4tan1( 5 )+c
1 1
:f/(s1nu)du:—fcosu+c
3 3 1 1
1 49. [ ——cdz =tan" (z)+c
= ——=cos(3z) + c. (14 22?)
3 / . 1/ 2z p
T a%®=5 | g%
/singmdx = /(sin%)sinxdm 1(1+:c ) 2 (L+2?)
:§ln 1—|—ac2)+c
(17 cos?a)sin wdly 0002 PtosdA
——dr= | ————dx
t u = cosz,du = —sinzdz. / (14 22?) (14 22)
2
/1—u )—/ugdu—/du :/(I +1)dm—/ 1 dx
(x2+1) (14 22?)
zu——u=cosx—cosx — |4 1 d
3 3 _/ v /(1+x2) v
=z —tan"' () +¢
43. /lnxdx: N/A 23 1 22
_— x:7/72xdaz
Substituting u =Inz, (1+22) 2/ (1+2?)
11133 1 4 Let ufzz duf2:rdac
e 1/ /u+1—1
= —du
2 1—|—u 1+u
44. Substituting u = x* l u+1 1 du
3 1 4 2 1—|—u 1+u
dezzarctanm +c 1
4 5 {/du — du}
+u
/1+ —gdr: N/A 1
i(u (1+u))+c
L o
45. /e_z2dx: N/A — 97 _71n (1—|—x ) +e.
Substituting u = —22 Hence we can generalize this as follows,
_xzd . 1 g2 / " de
xe x——ie +c 1+ a2
1 n—2
= x"1/<x)dx
46. /seca:dx: N/A n—1 1+ a2

1 1
sec? zdx = tanz + ¢ 50. _r der = = | ————2xdx
14 24 2) 1+t
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Let u = 22, du = 2zdzx.
1 1

1 -1
—i/mdu—§ta’n (’U)"‘C

1tan ( )+c

1 1
4a°d
/1+:134 4/1—|—x4 var

Ltu—1+x du—4x
4/ —du = - 1n()—|—c

3 1 fu2+1—1
Ldu:f/Ldu

Hence we can generalize this as follows,
x4n+1 1 x2n72 x4(n71)+1
—dr = = - | —————dzx
1+ 24 2| n—-1 1+ a4

and

x4n+3 1 x2n x4(n—1)+3
7d;[; = — —_— — 76&1)
1+t 4| n 1+ at

6.2 Integration by Parts

1. Let u = z, dv = cos xdx
du = dx,v =sinx.

/xcosxdaj:xsinm—/sinxdm

=xsinx +cosz + ¢
2. Let u = x,dv = sin4zdx
1
du = dx,v = —1 cos4zr
rsindr dx

1 1
= —Zac cosdr — / ~1 cosdx dx

1 1
= —Z:Ccosélx—&— 1—6$in4x+c.

3. Let u =z, dv = *%dx
2x

duzdx,vzie

363

1 1
/a:e%dm =3 re’® — / 3 e dx

1
zixeh—zeh—FQ

. Letu=Inzx,dv=2xdx

2
du:ldzzzandv:x—.

T
1 1
/mlnxdmziﬁlnx—/imdz‘

1
:flenxfzx2+c.

2
. Let u=Inz, dv=2%dz
1 1
du = —dz, v= - a5
2 L 3 L 3
r*Inzdr = —x°Inx — [ —x° - —dx
3 3 T

1 1
=§m31nx—§/x2dx

1 1
:71731n;1:—§z3—|—c.

3

. Let u=Inz,du= 1 dx.
x

1 2 1
/Edm—/udu:%+c=§(lnx)2+c.

. Let u =22, dv=e3dx

: g 10
du = 2xdx, v=——e¢

3
I = /xze_?’””dx

1 1
=237 / ——e 3% ) . 2adx
3 3

1 2 .
= fgxze*&” + 3 /a:e*‘gzdx
Let u =z, dv=e 3%dx

1 2 2

=-3 rie 3 3 re 3 §/6731dI
1 2 2

_ _§1,2673w o §x673w _ 277 ef?mv T

. Let I = /e”: sin 4xdx

u=€", dv = sin4xdx

1
du = e*dx, v= ~1 cos 4x
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1
I= —iem cos 4w — / (—i cos4x> e“dx du = coszdz v = —5 C0s 2z
1 1 1 . 1 1 )
= _Zex cosdr + 1 /ex cos dxdzx 1= 3 cos x sin 2x + 5173 cos2xsinx
Use integration by parts again, this time let — / (—1 cos 2x> cos xdw]
u=e", dv = cosdrdr 2
du— oo v — Lind 1 _ 1 _ 1
u=edr, v=smax :§cosmsm2x —ZCOSQ.’I?SIHSL‘-FZICL%
1
I =—-¢e"cosdx So,
1/1 1 31— L osasin2e — L cos2using +
n : Zex sinda — / 4(sin4x)exdx> 11 = 5coszsin2z — o cos2xsing + ¢
2 1
I = —le"”coszlx—i— iemsinélx _ i] I= gCOS.’L’SiDQQ? — §c082xsin:c +c
5 4 16 16
170’ 1 1 12. Here we use the trigonometric identity:
— I =——¢e"cosdx + —e"sindx + ¢; sin 2 = 2sin x cos .
16 4 16
= ——¢% cosda + ier sindz + ¢ We t}'len make the substitution
17 17 u = sinx,du = cosz dx.
10. Let, u = €2*, dv = cosz dx so that, /sinxsin 2z dx = /251112 rcosz dr
du = 2e?* dr and v = sinz.
2 2 ..
e** cos x du :/2u2du:§u3+c=§sin‘3x+c
=e*sinx — 2 / e**sinx dx This integral can also be done by parts, twice.
If this is done, an equivalent answer is ob-
Let, u = €2*, dv = sin x dz so that, tained:
du, = 2e2* dx and v.= - cos z. S CORL B 2 — 3 Ot 2 sing A e
/ e** sin x dx 0
13. Let u = z, dv = sec? zdx
:—echosx—i—Q/e%cosmdx du=dz, v=tanx
/e%coszdx /xsechdx:xtanx—/tanmdx
- sina:d
:eQ”Sinx—i-QeMcosx—4/62xcosaﬁdac = rtanz = cosz ¥
Let u = cosx, du = — sinxdx

Now we notice that the integral on both of 1
these is the same, so we bring them to one side /a: sec? xdx = xtanx + / —du
U

of the equation. =xtanz +In|u| + ¢

5/62ICOS$d$ =z tanz + In|cosz| + ¢
= e sinx + 2e* cosx + ¢; 14. Let u = (Inx)?, dv = dx
|
e® cosz dx du = QEd:v, v=2x
x
1 2
= ge% sinz + ge% cosT + ¢ I= /(ln z)%dx

1
=z(lnx)? - /x 2% g
11. Let I = /cosxcostdx x

and u = cos z, dv = cos 2xdx =z(lnz)® -2 [ Inxdz
du =sinzdzr, v = = sin 2z Integration by parts again,

u=Inz, dv=drdu=—dzr, v==x

I=z(lnz)* -2 [mlnx—/x'ldx}
x

= z(lnx)? 72$1nx+2/dz

1 1
I= 3 cos x sin 22 — / B sin 2z(— sin z)dz
1 1
= 3 cosxsin2x + 3 / sin z sin 2xdx

Let,u = sin x, dv = sin 2zdx



6.2.

15.

16.

17.

18.

19.

INTEGRATION BY PARTS

=z(nz)? —2zlnz + 27 +c

Let u = 22, dv = ze® dx so that, du = 2x dx
1
and v = iexz (v is obtained using substitu-
tion).
1

/$3€m2 dzx = §$26$2 - /mer dz

1 5.2 1 2
=-x"e” — e’ +c

2 2

— 2 g r
Let u=x2*dv = ((4+x2)3/2>d1

du = 2xdx,v = ———
V4 + 2

x? 1
=— + 2xdx
VA a2 /\/44-;;102
2
x
:*W‘FQ (4+$2)+C.

Let u = In(sinx), dv = coszdz
du =

- -cosxdxr, v=sinx
sin x
1 =) eos e ln(sin e yds

= sinz In(sin )

- cos xdx

— [ sinx -

sinz
=sinzIn(sinz) — /cos zdx
=sinzln(sinz) — sinxz + ¢

This is a substitution u = z?.

rsina?dr = = | sinudu

= —5 cosu+c= —5 cos 22 +c.

Let w =2, dv=sin2xdx

1
du=dx, v= —§c052x

1
/xsiandm
0 1
VA
7/ <c082x) dxr
o Jo 2

1
= ——xcos2xy
2
1 e
=——(1cos2—0cos0)+ = [ cos2zdx
2 2 J,

1 11 !
= —§cos2—|— 3 [25111233]0

1 1
=—3 cos2 + Z(sin2 —sin0)

1 1
= —§COS2+ EsinZ

20. Let u = 2x,dv = cosx dx
du =2 dzandv = sinz.

™
2z cos zdx = 2z sinz|) — 2/ sin zdx
0 0
= (2zsinx 4 2cosz)|; = —4.

1
21. / 2% cos mrdx
0

Let u = 22, dv = cos mxdz,

sin T
du = 2zxdzx,v = .
7r

o SINTTL

1
22cosadr = 22
0 i

=(0-0)— g/0 xsin (rz) dz

™

9 1
= —7/ zsin (mx) dzx

T Jo
Let u = z,dv = sin(nwz)dz,
du=dzx,v= —COS(FJJ).

™

2 1

— —/ asin(mrz)dz
0

™

_ 2 {_xcos(mv)

1 1
B / _ cos(mz) i
o Jo &

:.?fpww_m¢1FMmqﬂ
" :- 0

T T @ m )
2 (1 1 2

S e ) —
7T{7T+7T( )} w2

1
22. / 22 dx
0

Let u = 22, dv = 3%dx,

3x
du = 2xdx,v = -5
1 2 3z |1 1 3z
/ 22 dy = re —/ e—2xda:
0 3 o o 3

1

2 1
Z (e =0 77/ ze3%dx.
5 (€ =0)—3 i

Let u = x,dv = e>*dz,

3z
dv:dx,v:e—.
3 1 3
2

%—g/omeg’xda:

e3 2 63&01 1639:
=———<Kz—| — —dzx

3 3] 3|, J 3

3 3 1 3z
_e_2 3,_/§7M

3 3 1\3 s 3

e 2 (e3> {e‘% !
3 3|\3 9 ],

e 2([/é 1,5
S (P ey |

3 3{(3) g (€ )}

365

! Lsinrx
— / 2xdx
0 0 ™
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23.

24.

25.

26.

et 2e3 2
=3 5 Ty
763 2e? 23 27563 2
“3 0 T T w o w
10
In 2zdx

1
Let u = In2x,dv = dzx

1
du = —dx,v = .
x

10 10 4
/ In (2z)dz = 2 1n (2z)|;° —/ r—dz
1 1T

10

= (101n(20) — In2) — dz
1
= (101n(20) — In2) — [];°
= (10In(20) = In2) — (10— 1)
= (101n(20) — In2) — 9.
Let, u =Inz,dv =z dx
2
du = 1 dr,v = x—.
T 2

2 1 2
/ zlnzdr = Z2%Inz
1 2

2
1 1
= (2952 Inz — 4952)

/ ree™dx

Let w = 22, dv = e™dz,
axr
du = 2zdx,v = —.
C(I/l(lf axr
e e
z2edr = 2 — — | —2adx
a a

2 ax
Tle 2
= — — [ xe*dx.
a a
Let u = x,dv = e"dx,
eaz
dv=dzr,v = —.
a

2 ax
e 2
— — [ ze**dx
a

1

zsin (ax) dx

Let u = x,dv = sin azdzx,
cos ax

du =dx,v=—
a

zsin (az) dx

71'—COS((L$) —/—L(ax)dx

a a

CHAPTER 6. INTEGRATION TECHNIQUES

27.

28.

__mwcos (ax) n sin (ax) be a0,
a a?

(™) (Inz)dx = | (Inz) (z")dx

Let u =Inx,dv = z"dzx,
xn+1

(n+1)

1
du = —dx,v =
x

/ (In2)(z") dz

n+1 n+1 d
:(m)L—/I -

- ((ln—i—)l) (?ZL+ 1)z
BCES) /(n+1) *
_x”“(lnx)i fikan bens 1
T (n+1) 41?7 '

/(Sinax) (cosbx) dx

Let u = sinax, dv = (cosbzx) dx
sin bx

b

du = a (cosax)dx,v =

sin ax cos bx dx

in b in b
= (sin ax) smb T /a (sm% :c) (cosax) dx

_ W _¢ '(cos ax) (sinbz) dz

b b
Let u = cos ax, dv = sin bzxdz,
s b
du = —a (sinax) dz,v = _coshe

b

sinaxsinbr a .
— 3 3 cos ax sin bx dx

b

sinazsinbr a —cos bx
= — —<Jcosax
b b

_/ _C(;be (—sinax) adx }

sinarsinbr a { — cos ax cos bx

b ) b

—%/cos bx sin ax da:}

sin ax sin bx n a cos ax cos bx
b b2
an 2
+ (5) / sin ax cos bx dx
/ sin ax cos bx dx

sinaxsinbr  acosax cosbr

b + b2

an 2
+ (B) /sinam cosbx dx

2
/sinax cosbr dr — (%) /sinax cos bxr dx

sinaxsinbr  acosax cosbx
b b2
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29.

30.

a2
(1 — b2> /sin ax cosbx dx

sinaxsinbxr  acosax cosbr
b b2

sin ax cos bx dx

B b? sin az sin bx L8 cos ax cos bx
T\ — a2 b b2

sin ax cos bx dx

1
22

a#0b#0.

Letu = cos” !z, dv = coszdx

(bsin az sin bx + a cos ax cos bx) ,

du = (n —1)(cos" % z)(—sinz)dz,v = sinz 32.
cos" xdx
=sinzcos" 'z
- / (sinz)(n — 1)(cos" 2 z)(—sinx)dx
=sinzcos" 'z
+ / (n — 1)(cos™ 2 ) (sin? z)dx
=sinzcos" 'z
+ / (n — 1)(cos™ 2 z)(1 — cos® x)dx
=sin z cos™ ' x
+ / (n — 1)(cos" 2 & — cos™ x)dx 33.

Thus, / cos” xdx

=sinzcos" a4+ / (n — 1) cos" 2 xdx
—(n-1) /cos” xdx.

n / cos" zdx = sinz cos" ' x
+(n-1) /005”_2 xdx

/cos” xdx

= sinz cos" 1z + nTil /cos"*2 xdx

Let u = sin" 'z, dv = sinz dz

du= (n—1)sin" 2z cosz,v = — cos z.
sin” zdx 36.
_ on—1
= —sin" " xcosz
+(n—1) [ cos® xsin" 2 zdx
= —sin" 'zcosx
+(n—1) [ (1 —sin®z)sin" 2 zdx

= —sin" !z cosz

~o-) [

s an—2

sin zdx

31.

34.

35.

37.

+(n—-1) /sin" xdx

n / sin” zdx

= —sin" 'zcosz
—(n—1) [ sin" % zdx
n 1 oon—1
sin” xdx = ——sin™~ " x cosx
n
n—1

sin” 2 adx
n

/z3ezdx =e"(2® — 322 + 62 —6) + ¢

cos® zdx

4
= —cos*sinz + 3 /0053 xdx

= ot =

= Zcos*sinz

4 /1 9 . n 2/ d
2 cos? zsin z .
z 3005 T sinx 3 cos xdx

4 2

+ o

= — cos rsinx

| =

— 4
sinz 5 cos

+Bsinz+c

-y &
/ cos” xdx

L o rsin g 4 2/ i
= —COS” xrsSIx - COos rax
3 3

2

2
= gcos rsmx + gsmx—kc

/ sin® zdx

1 3
= ~1 sin® x cosx + 1 /sin2 xdx

1., 3/1 1.
:_ESID rcosx + - | —x — —sin2x

4\ 2 4
1
/x4e“"d;1:
0
=e

"(at — 4a® + 1227 — 24z + 24)
=9e—24

Using the work done in Exercise 34,

/2
/ sin* zdx
0

= —lsin?’xcosx—i—%x—isian
B 4 8 16
e

16

/2
/ sin® xdx
0

/2

0
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38.

39.

40.

/2

4 /2
—i—f/ sin® zda
o 5Jo
/2

5 sin x cos x

= ~ sin x cos x

0
A 2 /2
— | —=sinxcosxz — = cosx
) 3 3
(Using Exercise 30)

1
= — (sin4 (z) cos T sin® 0 cos O)

0

5 2 2
LA L inz(ﬁ) T_2 .7
5 3S 2 COS2 3COSQ
_8
15

Here we will again use the work we did in Ex-
ercise 34.
sin® zdx
= —é sin® z cosx + g /Sin4 zdx
=% sin® z cos x
+ g <—1sin3zcos:1: + éx _3 sin2:z:> +c
6 4 8 16

5 3

5 .
T CoST — — sin” x cosx
24

= ——sin
15 15
bohmme = sy 4
48 96
We now just have to plug in the endpoints:
w/2
/ sin® zdz
0
_ . 5 .3
= | —=sin’zcosxr — — sin® x cos
( 6 24
FRCTRS IR /2
—x — — sin2x
48 96 0
_ 1b5m
96
m even :
/2
sin™ xdx

0
_(m-1)(m-3)...1 =
 om(m—2)...2 2
m odd:

w/2

sin™ zdx

0
_(m—=1)(m—3)...2
 m(m-—2)...3

m even:
/2

cos zdx

P rn—H(n-3)(n—5)--1
2n(n—2)(n—4)---2

m odd:

CHAPTER 6. INTEGRATION TECHNIQUES
/2
cos™ xdx

= Dm—3)(n—5)---2
nn—2)(n—4)---3

41. Let u=cos 'z, dv=dz

1
=zcos x— | x| ——— | dx
/ < \/1—x2>

-1
=zcos " x+ | ———=dzx
V1—22

Substituting v = 1 — 22, du = —2xdx

1 1
I:xcosfla:+/ﬁ (Qdu)

1
=gcos'z — E/U*I/Qdu

1
:mcosflx—i-Qul/Q—l—c
=xcos lz—

42. Let u =tan" 'z, dv = dx

1
du=——dr,v==x
1+ 22
x

I= ,/ tantadr = sten o — J/ ——dx
/ T XEX

Subustituting u=1+a2%

1
I=xtan 'z — 51n(1+x2)+c.

1
43. Substituti = du = —=d
ubstituting v = v/z, du 2\/§x

I:/sinﬁdwzQ/usinudu
= 2(—ucosu +sinu) + ¢
= 2(—+v/xcos/z +sinx) + ¢
44. Substituting w = /=

1 1
L dr=—d
oz T 2wt

I= /e‘/";dx = /Qwe“’dw

Next, using integration by parts
u = 2w, dv=e"dw
du = 2dw, v =¢e"

I:Qwewa/ewdw

dw =

= 2we™ — 2e¥ + ¢ = 2/zeV® — 2eV7T 4 ¢
45. Let w =sin(lnz), dv = dx
du = cos(lnx)—x, v=ur
x
I= /sin(ln x)dx
=zsin(lnz) — /cos(ln x)dx
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Integration by parts again,
u = cos(lnx),dv = dx

d
du = —Sin(lnx)—x,u ==z
x
/cos(lnx)dm

=z cos(lnzx) + /sin(ln x)dx

I =zsin(lnz) —zcos(lnz) — T
2I = zsin(lnz) — x cos(lnx) + ¢;

I= 2% sin(lnx) — 22 cos(lnzx) + ¢

46. Let u =4+ 22 du = 2xdx
I:/xln(4+x2)da¢
1 1
= f/lnudu =—(ulnu—u)+C
2 2
1
= 5[(4+z2)ln(4+x2) —4—a2?+c
47. Let u = €**, du = 2e**dx
1
I= /eﬁx sin(e**)dx = §/u2 sin udu

Let v = u?, dw = sinudu
dv = 2udu, w = —cosu

1
I= 5 (—uzcosu+2 /ucosudu)
2 1\ ) ,
:—§u2005u+/ucosudu
1, .
=-3u cosu + (usinu + cosu) + ¢
1
=—3 e'® cos(e?®) + €2 sin(e??)

+ cos(e*®) + ¢

1 .
48. Let u = ¥z = :pl/?’,du = ggv*2/3dx7
3uldu = dx
I = /cosxl/gda: = 3/u2 cos udu

Let v = u?, dw = cosudu
dv = 2udu,w = sinu

I:3<uZSinu—2/usinudu>

=3u?sinu —6 [ wsinudu

= 3u’sinu — 6 (—u cosu + /cos udu)

= 3ulsinu + 6ucosu — 6sinu + ¢

= 3z sin ¥z + 6z cos V/x — 6sin Vxr + ¢

. 1
49. Let u= ¥z = 23 du = gx_2/3dx,
3uldu = dx
I:/e%dx:?)/uze“du

50.

51.

52.

53.

54.

369

=3 <u26“ — 2/ue“du)
= 3u%e" — 6 <ue“ — /e"du)

= 3u26"8— 6ue” + 66’; +c
Hence / eVoidy = / 3uetdu
0 0
= (3u”e” — 6ue” + 6e*) |(2) =6e? —6

Let u =tan" 'z, dv = zdx
dx x?
du

T1x22 VT 2

I = /xtarfl rdx

n times. Each integration reduces the power of
z by 1.

1 time. The first integration by parts gets rid
of the In z and turns the integrand into a sim-
ple integral. See, for example, Problem 4.

(a) As the given problem, [zsinz?dz can
be simplified by substituting =2 = u, we
can solve the example using substitution
method.

(b) As the given integral, [ 2 sinx da can not
be simplified by substitution method and
can be solved using method of integration
by parts.

(c) As the integral, [ Inz dz can not be sim-
plified by substitution and can be solved
using the method of integration by parts.

1
(d) As the given problem, /ﬂdx can be
T

simplified by substituting , Inx = u we
can solve the example by substitution
method.

(a) As this integral, [23e?”dz can not be
simplified by substitution method and can
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be solved by using the method of integra- 59. ,
tion by parts. | [ =] |
(b) As the given problem, fa:gex4dx can be at ] 2] +
simplified by substituting 2* = u, we can 403 | ¥ /4] —
solve the example using the substitution 12272 | e*/8 ] +
method. 24x | €2 /16 | —
2z
(¢) As the given problem, /x*Qe% dz can be 24| e7/32 | +
Lo s zte? dx
simplified by substituting — = u, we can
x
solve the example using the substitution _ lj . 3i2 3z 3 2 4 ¢
method. 2 2 2 4
(d) As this integral, [z%e~**dz can not be 60
simplified by substitution and can be ’ ‘ oS 21 ‘ ‘
ls)olved by using the method of integration o sin2a/2 | 1
y parts. 5z | —cos2z/4 | —

55. First column: each row is the derivative of the 2023 | —sin2z/8 | +
previous row; Second column: each row is the 60> cos2z/16 | —
antiderivative of the previous row. 120z sin2x/32 | +

56 120 | —cos2x/64 | —
L[ siz] | 5

7 x” cos 2xdx
x —cosx | +
3 x 1
dr® | —sinz | — = —2%sin2z + ~z*cos2z
1222 cosx | + 2 4
i — 20 60
57,2@%7“ ?Hi,ai’r’_f“ d7% #3 sin 2z — bea‘Q COs 2x
[ OS] ©
120 . 120
/x4sinmdx +3—2m51n2:c+6—4c0523:+c
= —z*cosx + 423 sinz + 1222 cosz 61.
—24xsinx — 24cosx + ¢ ’ \ e 3% \ ‘

57, SCS _6731:/3 +

’ \ Ccos T \ ‘ 3z? e 3/ —
—3x
e sinz | 1 6x —6_31/27 +
423 | —cosx | — 6] e™/81|—
1222 | —sinz | + 2357 g
24x cosT | —
24 i 32 2 2
sinz | + _ _w_w_w_)e_guc
/ 4 3 3 9 27
" cos xdx
4 3 2 62
=z " sinz 4+ 4x° cosz — 12z°sinx ’ ‘ 72 ‘ ‘
—24xcosx + 24sinx + ¢ Inz | 2°/3 | +
58. [ 2t/12 ] +
—a~7 [ a7J60 | +
4 T
role |+ The table will never terminate.
423 | e® | —
1202 [ e® | + 63. (a) Use the identity
24x | e* | — coslA cos B
24 | e” | + = i[cos(A — B) 4+ cos(A+ B)]
24e® da This identity gives

= (2t — 42 1 1202 — 240 1 24)¢” + ¢ / cos(mzx) cos(nx)dz

—T
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64. (a)

= /_Tr %[cos((m —n)x)
+ cos((m + n)z)|dx
1 [sin((m —n)x)

2 m-—n
+sin((m +n)x) ]|
m-+n o
=0

It is important that m # n because oth-

erwise cos((m —n)zx) =cos0 =1
Use the identity

SinlA sin B

= §[COS(A — B) —cos(A+ B)]

This identity gives

/7r sin(maz) sin(nz)dz

-7

= [ Sleostn =)

—7cos((m + n)z)|dx
1 [sin((m —n)x)

2 m-—n
_sin((m + n)x)}

- 1

T

—T

=0

It is important that m # n because oth-

erwise cos((m —n)x) = cos0 =1

Use the identity
cos Asin B

1
= i[sin(B + A) —sin(B — A)]
This identity gives

/ " cos(ma) sin(nz) dz

™1 )
- /_  ginn+ m)a)
—sin((n —m)z)] dz
_1 [_COS((”“”)@")
2 n—+m

 cos((n m)w)}

n—m

T

—T

=0
We have seen that
1 1
/cos2 xdx = 3% + 1 cos(2zx) + ¢

Hence by letting u = na:

/ cos? (nx)dx

65.

66.

67.

68.

371

1 nm
= — cos? udu
n

—nm

_l 1 +1 (2)
_ﬂ 2u 4COb u

T

And then/ sin? (nx)dzx

—T

/ " (1 = cos?(nz))da

/ dx—/ cos? (nx)dx

=2r—mT="7

nim

=T

—nm

The only mistake is the misunderstanding of
antiderivatives. In this problem, [ e"e™*dx

is understood as a group of antiderivatives of
ee™ ", not a fixed function. So the subtraction

by /eze*‘”dx on both sides of

/e””e_‘"”dar =-1 —I—/e”’e_””dx

does not make sense.

V= 7r/ (zVsin z)?dx = 7T/ x? sin xdx
0 0

Using integration by nearts twice we 2ot

22 sin zdz

= —x2cosx+2/mcosxdx

= —2%cosz + 2(xsinx — /sin:ndx)
= —z%cosx + 2rsinz + 2cosx + ¢

Hence,
V = (—2”cosz + 2zsinz + 2cos )|
=m° — 4~ 587

™
0

Let u=Inz, dv=¢e"dx

dx

du=—, v=2¢€"

xr
/e’”lnxdax:exlnx—/e—dm
x

/e"”lnxdm—«—/e—d:ﬂ:ewlnx—i—(}’
T

Hence,

1
/e’” (lnx—|—> der=¢e"Inz +c
T

We can guess the formula:
[t + r@de = e pia) + o

and prove it by taking the derivative:
d

o5 (€7f (@) = " f(2) + e f()
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69.

70.

=" (f(z) + f'(2))

1
Consider, / " (x)g (z)dz
0
Choose u = g (z) and dv = f"(z)dx,

so that du = ¢’ (z) dz and ,v = f' (z).

Hence, we have

[ s

—g(@) f @) - / f (@)g' () de
= () (1) =9 (0) 7 (0)
- / § (@)f (@) de

0
From the given data.
1

—0-0)- [ ¢ @Ff @

0
Choose, u = ¢’ (z) and dv = f'(z)dz,
so that,du = ¢ () dx and v = f (x).

Hence, we have

/ ¢ @)f () de

g (@) Io/f:v
<

£ =4"70) £(0))

dx}

From the given data.

1{(00)/011”(95)9”(96) iz
- / f(@)g" (2) da

I

|
c\ﬂh
k'\_'
H

Con81der

b
/ fl/ _x dx_/ (b_l')f//(l‘)dx
Choose u = (b — ) and dv= f7(

so that du = —dz and v = f' (z).

Hence, we have:

/a Cb— )" () do

—[(b—a)f’(a)Hf(b)—f(a)
f@)=f(a)+®-a)f (a)

x) dz,

CHAPTER 6. INTEGRATION TECHNIQUES

+/abf”(x)(b—

b
Consider / xsin (b — z) dx
0

_ /Ob (b— ) sinzde = /Ob (sinz) (b— ) de

Now, consider
f@)=x—sinx = f'(z)=1—cosz

and f” (z) = sinz.
Therefore, using

F0)=F )+ @) 0

+/ J" (@) (b ) d,
we get ¢
b—sinb=0—sin0+ f'(0)(b—0)

b .

—1—/5 (sinz) (b—z)dz
/xsin(b—x)dm.
0

= |sinb —b| =

Further,

b
[sind — b| = / xsin (b —z)dz| <
0

b
/xdm,
0

as sin (b—x) < 1.
b2
Thus, lsinb— b < —
Therefore the error in the approximation

. . 1
sinz ~ z is at most 2.

6.3 Trigonometric

Techniques of
Integration

1. Let u = sinx, du = cos xdx

/cosxsin4 xdr = /u4du

1
:5u5+c:gsin5x+c

2. Let u = sinz, du = cos zdx
cos® zsin? xdx = /(1 —u?)utdu

3. Let u = sin 2z, du = 2 cos 2zdx.

/4
/ cos 2zsin®2zdx
0

1t 1wt 1
= — dzf— = —
2315,
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. Lefr/g = cos 3x,du = —3sinzdz. _ —/cotx(l + cot2 z) - esc? wda
3 . 3
cos’3zx) (sin°3z) dx 2 4
/71'/4 ( ) ) =—/(u—|—u3)du=—u——u—+0
1 1 2 4
= 77/ u? (1 —u?)du cot?z  cot?
51 Ty 1 e
1wt ]!
3 {4 _6}1 11. Let u = 2% + 1, so that du = 2xdz.
1 < 3 7 )ﬂ 1 /xtan3 (2® +1) (sec (2* + 1)) da
T 3\16 48) T2 1
= f/tan?’u (secu) du
. Let u = cosx,du = —sinzdx %
/ coszxsinxdx:/ u2(—du) 2/[(86(3 u ) anu(secu)] U
0 0 1 Let secu = t,dt = tan usec udu
1, 1 1 9 1[e
= (- =2 = [ (B=1)dt==|=—t
( 3 ) . 3 2/( ) 2 {3 }H
a3
. Let u =coszx,du = —sinzdz :1 beCu—secu +c
0 1 2 3
3 31 = — 3 = — 1 1
/M2 cos” z sin zdz /0 wdu 1 = gsec?’ (:v2 + 1) -3 sec (x2 + 1) +c.
cos? (x4 1) dz 12. Let u = 2z + 1, so that du = 2dx.
1 tan (2z + 1) .sec® (22 4 1) dx

= 7/(1+c052(x+1))dx

2 1
1 1 = f/tanu.secu.sec%du
=§x+](sin2(m+1))—|—c. 2
) = i/sec”utanusec U
. Letu=2z—3,du=dx 2
" 4 Let t = secwu, so that dt = tanusecudu.
sin®(x — 3)dz = | sin*udu 1 1043
:7/ﬁﬁ:747+c
. 2 \2 2 213
= (sm u) du 3
1 {sec’u 1o, 9 1
(17C082u)x(1fcos2u)d “ 92| 3 +C—Esec (2z+1) +e
= u
2 2
1 _ o aen2
_ / ; (1 — 2.cos 2u + cos*2u) 13. Let u = cotz, du = (—csc’z) da
1 / [ 1 /cotzx escladr = /cotzx (1 + c0t2x) csclxdx
== 1—2cos?u+(1+cos4u)}du
4 2 :—/u2(1+u2)du
3 1 1
= —u — —sin2u + — cos4u + ¢ w b
3 1 ;
:g(xf?))fzsirﬂ(:rf?)) :_(cotx)j_(cotx)s_’_c
1 3 5 '
+ Ecosll(m—?)) +ec.
14. Let u = cotz,du = (—csc’z) da.
. Let u = secz, du = sec x tan xdx 9 9 9
cot“zcscxdr = — | u“du
/tangcsec3 xdx
o _ cot’x
= /tana:secxsec2 rdz 3 3
= /quu = %u:‘ te= %sec?’x +e 15. Le:cr/zf = tanz, du = sec® zdz
/ tan® z sec* zdx
. Let u = cot z, du = — csc? xdx 0

/4
cot z csct zdx = / tan? z sec? x sec? xdx
0
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w/4
= / tan? z(1 + tan® z) sec? zdx
0

1
:/ ut(1+u?) du
0
1 5 7
4 6 u  u
= d —_ -
/0 (u® + u®)du z + -

16. Let u = tanz, du = sec? zdx.

/4
/ tan? z sec? xdx
/4

1 5
2/ widu = L
1 5

7. /c052x51n xdx

D

o 35

1

2
5

-1
1
= / (1 + cos2x) (1 — cos 2x)dx

1
2
/(1 — cos? 2z)d
/

[ - = 1—|—cos4x)}d
x

18. / (cos® x + sin® z)dx = /1dx =x+c

19. Let u = cosx,du = — sinxdx
0
/ Vcos z sin® zdx
—m/3

0
= / Veosz(1 — cos? ) sin zdx
—m/3

= ], Vi =) ()

1
:/ (us/z—ul/Q)du
1/2

1
2 2 25 8
_ [u7/2_u3/2} _ 2 S
7 3 1/2 168 21
20. Let u =cotz, du= —csc®zdx
w/2
/ cot? z csc? zdx
/4

w/2
= / cot? x csc? z esc? xdx
/4

w/2
= / cot? z(1 + cot? ) csc? xdx
T

/4

0
:—/ u?(1 +u?)du

1
@ el 18
3 5], 3 5 15
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21.

22.

23.

24.

Let x = 3sinf, — <0<7

da:—3cos€d9
/ 3cosf _ 3cos® .,
x2\/9 —x2 9sin%6 - 3cosl

1
g/csc 9d9——§cot9+C

By drawing a diagram, we see that if

V)
r = sinf, then cot@z%.
V9 — 22
Thus the integral = —796—1—0
9x
Letx:4sin0,—g <9<g,
dx=4c050d9
/ cosf _cost g
\/16—&02 16 sin? 6 cos 6
1
= 16/csc 9d9——1—6cot€+c
V16 — x2
= —— +c
16x

Let x = 4sinf, so that dx = 4 cos 0d6.

/ 1651n 9 4 cos b 40

/ T
”16_x2 16 — ( 4sm9)

_ 64/ (sm29) cos 40
A/f16 — 16sin°t

sm9 0059
_6/
1/ 1—5111

2
- 16/wd0: 16/sin26‘d9
cos @

= 16/ (I_C(’Sze)de
[/d@ / (cos 20) de}

_gslo— sin 260

ST U S -1 (%
= 8sin (4) 4 sin [2sm (4)} + c.
.1 (T V16 — 22
= 8sin (7) A e Bl
4 2
Let x = 3sin#, so that dz = 3 cos0d6.

/ ﬁd“

C

+c

27 sm
= / (3cos @) d
1/9 — (3sin 9
=81 Sm (cosf)d

V9 395111
= 81/ sin"0 cos 0df = 27/sin3¢9d9
3cosb
:27/<38m04—sm30> &0




6.3.

25.

26.

27.

= 247 [3/sin 0do — /sin 39d0}

= % [3cosf)+ 00839} +c

_ % {~3cos [sin”! (%ﬂ

L coslsin ! (3)] } L.

3

This is the area of a quarter of a circle of radius

"2
/ Va4 —22de =
0

Let uf4fx2 du = —2xdx

/ /3 du
\/ —[L‘Q 4 2\/&
= 1/2’ =923
4
Let x = 3secl, dx = 3secttanfdf.
2

T
= | ———dx
/\/w2—9
B 27586298606‘tan9d9
v9sec?f —9

9sec? 6db

Uselntegration by narts.
Let u = secd and dv = sec? #df. This gives

/ sec 0do

=secfHtanf — / sec 0 tan? 0d0

=secOtanf — [ secH(sec?f — 1)dd

=secOtanf + /sec 0do — /sec3 0do

2 / sec 0d0

:sec@tanﬂ—l—/secﬁd@

/ sec 0do

= 1sec@tanGJrl/sec@ do
2 2

sec 6d6.
For this notice if u = sec + tan 6 then
du = sec @ tan f + sec? 6.

sec 0d6

_/se09(5e09+tan9)
N secf + tan 6

This leaves us to compute

1
:/fdu:1n|u|+c

u
=1In|secf + tanf| + ¢
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Putting all these together and using
vaz -9
5

2
—dz = [ 9sec® 0 do

/m ! /

:fseCHtané’—l—g/sechH

sec = g, tanf =

+91 er x279+
—In|= c
2 3 3

T x2—9+71 2
B 2 2 3

28. Let u= 2% —1,du = 2zdx
3\ 2? — 1dz
1
5/ AV 2x
1
= 5/(u+1)\/ﬁdu

1
_7/ 3/2+u1/2du
/r”/”/?

2

1 2u3/2\
"2\ 5

1

)+c

1
22— 1)5/2 & Z(g2 —

1)3/2 tec

29. Let z = 2secf,dr = 2secftan 0df
/ 2 dx_/élsecﬁtanﬁde
Vi —4 2tan 6
sec 0df
=21In|2secd + 2tanf| + ¢

:21n‘x—|—\/x2—4’+c
. Let x = 2secf,dxr = 2secftan 0df
/ /4sec20tan0 20
\/7 2tan6
/sec 0df = 2tan0 +C = /22 -4 +¢
/\/4332 /\/4x2
Let u = v/422 —

1 1
du = 78xda¢ = —8xdx
2v4x2 -9 2u

or udu = 4xdx.

Hence, we have

/ VAax? — 9
—dzx
x
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w2 19" 2o
/u +9-9, /du /
) w49 PEERTA

=u — 9tan~! (7>

A2 —
422 — 9 — 9tan ! (9639> +c.

32. Let x = 2sech,dx = 2tanfsechdf.
$2 - 4d

/ vV 45ec2 0 —

4sec?

2tan6
:/m (2tan @ sec) df

2 20
:/tanedez/seCQ 1d9
sec 0 sec 6

= / sec 0df — df

(2tan @ sec ) df

sec

= /sec 0do — /cos 0do

=In|secld + tanf| —sinf + ¢

=In ‘sec [sec_1 (g)} + tan [sec_1 (g)] ‘
— sin [sef1 (%H +c

=i (3) e (3)]

— sin [sec*1 (E)] +c
3 .
33. Let z = 3tané, dz = 3sec® 0dd

—dx
/ V9 + x2
27 tan? 0 sec? 0

V9 + 9tan’6
:/Qtan205609d0

=9 /(8602 0 — 1) sec 0d6

:9/Sec39d9—9/se09d9

= gsecﬁtane— gln|sece+tan9| +ec
_9(V9+a? (g)
2 3 3

VI+a? oz
3 t3

x4+ V9 + 22
— |

9
——In
2

V94 a? 91n
T2 2

+c

34. Let z = 2v/2tan6, dz = 2v/2sec? 0db

/x3x/8 + 22dx
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/(16\/§tan3 6)(2v/2sec 0)do

= 64/tan308609d0

64 /(sec2 0 — 1)(sectan 6 do)

64
64/(112 — 1)du = gu‘o’ —64u+ ¢

:%se039—64sect9+c
3
64 [ /8 + 22 V8 + z2
=—|——| —-64| —— | +¢
2V2 2V2

3
2v/2
_2V2 8+ 22)%2 — 16v2(8 + 222 4 ¢

3 (
35. Let ¢ = 4tanf, de = 4sec? 0do

/ V16 + 22dx
= / V16 + 16 tan2 0 - 4 sec® 0do

= 16/86(33 0do

=16 ( secOtan + ; /sec@d&)

= 8sec9tan0+8/sec9d9
= Xgecftond + 8In sech - tan 9+ ¢

= %x\/ 16 + z2

1
8ln |-
+ n4

16+$2+Z‘+c
36. Let x = 2tané, dz = 2sec? 6dd
/ 1 /2sec29
\/44_3;2 2sect
:/sec9d9:1n|sec9+tan9\+c

T+ VA4 + x2?
s |

=In

37. Let u =22+ 8,du = 2zdx

1 9
1
/x\/a:Q—i-de:i/ u'/%du
0 8

Y 27162

1
L3l =
. 3

38. Let x = 3tanf,dx = 3sec? 0 df

I= /3:2\/902 + 9dx
= /27tan29scc2 0/ 9tan? 0 + 9dz
= 81/tan298603 Odx

=81 /(se(:2 0 — 1) sec® Odx
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=381 /(sec5 0 — sec® 0)dx

To compute [ sec® df, we use integration by
parts with u = sec® § and dv = sec? 6d#.

/ sec® 0 do

=sec® Otanf — / 3sec® 0 tan? 0d0

=sec’ftanf —3 / sec® O(sec? 6 — 1)do

=sec®ftanf — 3 /(8665 0 — sec® 0)do

4 / sec® 0d0

=sec®Otanf + 3 / sec 0d0 /sec5 0do

= i sec® O tan 6 + % /sec3 0do

To compute [ sec® 0df and [sect df, see Ex-

ercise 27.
Putting all this together gives:

I =281 [ (sec®§ —sec® §)dx
1 24
= 8— sec® 0 tan 6 + —3 /sec3 0do
4 4
231 sect6ds
81 81
=7 sec® O tan 6 — Z/sec?’ 0do
81 81
= zsec3 ftanf — gseCGtane

1
—%ln\secﬂ—l—tanm—i—c

We don’t worry about the result being in terms
of x since this is a definite integral. Our lim-
its of integration are x = 0 and =z = 2.
terms of @ this means the limits of integration

correspond to § = 0 and tanf =

/ 2 /2% + 0da

= (81 sec® O tan 6 — —81 sec @ tan @
4 8
rx=2

1
—% In|secd —|—tan9>

0
_81\/ﬁ32 81 (V13
43<3>_83

81 13 2
EM

g.

39.

40.

41.

_ITVI3 81,

4 8

T

Let 2 = tan 6, dz = sec?0d6.
x3 tan’
S — 2040
[t = [ (g )=
/ (tan?6) (tan @ sec§) df

Let t = secf, dt = tan 6 sec6db.
( ec?d — 1) tan 0 sec 6d0

[
:/(tQ—l)dt: [tg—t} +c

+c.

) 2sec?0do
4 + 4tan®6
<2tan0 +1

2secf
=0 A2tas f + 1) (sexidf) d6é

(2se(:29) do

| I
N \\\

sec 0do

= 2secf + Insecf + tan | + ¢
= 2sec {tan_1 (g)] +In ‘sec [tan_l (f

sec 0 tan 6d6 +

4 2
+ tan [tarf1 (5)] ’ +c

~ 2scc fan (2))

+In ’sec [tanfl (

oK
~—
+
—
o8
~—
+
)

x
—dx
/ \/:(;2 + 4z
2¢ +4 — 4

\/x2 —|—4x
1 2+ 4

\/z2+4x /\/x2+4:17
Letu—x +4x du = 2z +4)dz.
4
/ 2 \/:172—|—41:—4+

(x+2)°—4

(22 + 4x)
— 2log {(:ﬁ + 4x) +

)

(:v+2)2—4} +c

42 / 24 / 2 d
. —— Al — T
N 22 —62x+9—-9

377
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43.

44.

2
= / m,dx

x
Let u =z — 3, du = dx.
f/idu

Vuz -9

Let u = 3sec, du = 3secftan0db.

z/#3se09tan9d9
\/(3sec)® — 9

1
=2 | ———secHtan0dld
/ Vsec20 — 1

:2/ 1 sec 0 tan 0d6
tan 6

—2/se09d9 = 2lIn|secf + tanf| + ¢

= 21n |sec (gee*l (%))
+ tan (sec! (%))‘ +e
—2ln (%) + tan (sec_l (g))‘ +e

x—3
=21
T3

+tan (sec_1 (T))‘ +c.

x
/—dm
\/10 + 2z —|— %2

/ \/9—|—1+2m+x2
= | ———dx
(z+1)°+9

1-1
:/de
2

V(@+1)"+9

r+1
:/m /W

Let u =2+ 1,du = dx.
:/Lduf/;du
VauZ +9 VuZ +9
71/27“@7/#@
2J) Vur+9 Vu? + 32
Let t = u? 49, dt = 2udu.
/ —dt— 1og u+ u2+32}+c

_\f—log {u—k u2+32} +c
=+vu?+9—1log {u—l—

(x+1)*+9

u2+9}—|—c

—log {(m+1)+ (x+1)2+9} +ec

2
—dr =
/ Vir — x2

2
/ dzx
V4 -4+ 4 — 2
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45.

46.

47.

2
= / m,dx

Let u =2 — 2, du = dx.
2

:/ﬁd“

Let uw = 2sinf, du = 2cosdf.

:/—2cos9d9
\/4— (2sin )

=2 / ; cos 6df
V1 —sin%6

22/ ! cos@d@z?/d@z?ﬁ—!—c
cos 0

-2
= 2sin~! (g) +c¢=2sin”! (x2> +c.

Using u = tan z, gives
/ tan z sec* zdx

= /tan x(1 4 tan? z) sec? zdx
uw(l + u?)du = /(u +u®)du

1 1
:§u2+1u4+c

Dtan? o+ L tant s +
=—tan“z 4+ —tan"x + ¢
2 4

Using u = sec x, gives

/ tan z sec* zdx

tan z sec x sec® zdx
1 1
3 4 4
= du = -u c=-sec x+c
/u U 1 + 1 +

Using u = tanx gives

/tanz%msec4 xdx = /u3(u2 + 1)du
u® N ul n
=—+—+c
6 4 !
tan® z N tan? z N
= c
6 4 ?

Using u = sec x gives

tan® z sec? zdx = /(u2 — Du? du

U6 U4 SGC6 T sec4 €T

6 4 6 4
(tan?z + 1) (tan?z + 1)2
6 4

tan®x  tan'z 1
= +— =40

6 4 12
tan® x n tan? x n
= c
6 4 2

(a) This is using integration by parts followed

by substitution
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u=sec" 2z, dv=sec?zdx
du = (n — 2)sec" %z tanxdr, v = tanzx

I= /sec" rdr = sec" 2z tanz
—(n—-2) /sec"_2(8e62 x — 1)dz
=sec" 2xtanz
—(n— 2)/ "2 r)dx
"2ytanz — (n —2)I
+(n—-2) /sec”*2 xdx (n— 1)1

(sec™ x — sec

= sec

rtanx n—2

I =

sec" ?ztanz + (n — 2)/sec”_2 xdx
n—1

n—2
/sec"*2 zdx
/sec‘5 xdx

sec
n—1
! t + 1 d
= — n —_
2S€‘C.’17 anxr 5 secxaxr

1 1
= isecxtanm—i— §1n|seca:+tanx| +ec

sec* zdx

—

1 2
=3 sec® tan x + 3 / sec? wdx 50.

1 A 2
= gsec”;ztan;c+ gtan:H—c

/

1 3
=1 secd rtanz + Z/sec3 xdx

=4
sec® xdx

(d)

3
Zsec?’:z:tano:Jr gsecxtanx

3
+§ln|secx+tan:c|+c

48. Make the substitution x = asinf.
4b [ 4b ¢
—/ \/a2 — 22dx = —/ Va2 — 22dx
4b
acos Va2 — a2 sin? 0d0
0

T
/2
:4b/ a cos® 6db
0
= 4ab + L 2
=4a 2:17 4sm T

49. /csczdx: /csczi
cscx + cotx

cscx) cot x + cscix
= / ( ) dzr
cscx + cotx
Let u = cscx + cot x,
du = — (cscx) cot x — csc’.

1
f/fdu:fln|u\+c
u

w/2
= abmw

0

cscx + cotx
dzx

51.

—In|escx + cot x| + c.
In |[cscx — cot | + ¢.

escizdr = | cscx.cscadz

@\u

cscxz, dv = csczdx
U= —cscxr.cotz,v =—cotx

QU

csccxdz

I~

—cscx.cotx

- / (—cotz) (—

= —cscxrcotx — / (csc x.cotzx) dx

cscx. cot x)dx

= —cscxcotr — /cscm. (csc2a: — 1) dx
= —cscxcotx — / (csc?’x) dx—i—/csc zdx

2 [ escdzdr = —cscxcotz + | cscadx

—csczeotx + Injescx — cot x| + ¢

/ cscdzdx
1

:5(_

csczcotx + In|escx — cotz|) + ¢

J (cosz —1)(cosz + 1)
/ cosx + 1
— | ———dx

JE

sin“x
1
cscx (cot x + cscx) do

sinx

COS T

) (

) as

sinx

—cscxcot z — cscladx

:/(—cscxcotx)dx—l—/(—csc%c) dz
=cscx +cotr +c and,
/ 1
——dx
cosr + 1
/ cosx — 1 d
T
(cosz — 1) (cosz + 1)
/COS:I,'f 1
—oodw
sin“z
1 cos T 1

sinx

sinx sin

[ (@)l

cscx (cot x — cscx) do

) as

—cscx cot z + cscladx

/(fcscxcotx)d:cf/(f

=cscx —cotxr +c

CSsz) dx

Using a CAS we get
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(Ex 3.2) /COS4 zsin® zdz

L. 5 5 2 5
:—§s1nx cosx” — — cosx” + ¢

35
(Ex 3.3) /\/sinxcos5 xdx
2
= —sinz'/? — ésing:”2
11 7

2
+ gsinm?’/z—f—c

(Ex 3.5) /(3054 xdx

1 3 3 . 3
= -—cosz”sinz + gcosxsmx—&- gx—&—c

(Ex 3.6) /tan3 zsec® xdx

s s
sin sin &
= 1/5 = +1/15 3
Ccos x° COS T
sin x

—-1/15 —1/15 sin2? cos x
cos

—2/15 cosz + ¢
Obviously my CAS used different tech-
niques. The answers given by the book
are simpler.

1 and2824/2 s

25} () MARGAH rAad) 4 ) — 3
52, (a sl @eos® cos” 1
7 L 35 5
= ——(1 —cos®z) cos® x — — cos® x
35
=_—cos’x— —cos"x

The conclusion is ¢ = 0

1
(b) BT tanz — 1—55ec2mtanx
Lo 4
+ gsec rtanx
2

= t 1(1+t 22)t
= 15 anx 15 an- r)tanx

L an® 4+ tan®
= —tan x —tan o
3 5

The conclusion is ¢ =0

53. The average power
1 27/ w
= RI? cos?(wt) dt

2m

w
RI? [*/“1
_ w27T /O 3 [1 4+ cos(2wt)] dt
WRI? 1 B
= t + — sin(2wt
yo { +2ws1n( w)} .

wRI? [27 1 dwm 1
= Ti—sin(=E) —o0| = ZRI?
A L;erm(w) ] 2

CHAPTER 6. INTEGRATION TECHNIQUES

6.4 Integration of

Rational Functions
Using Partial
Fractions

rT—95 z—5
2—1 (z+1)(z-1)

A B
x+1+x71
r—5=A(x—-1)+B(z+1)
r=-1:—6=-24;A=3
r=1:—-4=2B;B=-2

r—5 3 2

22—1 z+1 z2-1

T —5 3 2
/z2—1dx_/<x+l_x—l>dx

=3ln|z+1|—-2n|z—1+c¢

595—2_ br — 2

2. =

22—4 (z+2)(z—2)
A B

x—|—2+x—2

S5t —2=A(x—2)+ Bz +2)
©£d20241{s — 4 hlipss
r=2:8=4B;B =2

5T — 2 3 2

x2—47m+2+x—2

5r — 2 3 2
/x2—4dx_/<x+2+gc—2>dx
=3lnjz+2|+2In|z—-2|+¢

6z - 6z
22—z-2 (r—2)(x+1)
A B
x—2+x+1
6r=A(x+1)+ Bz —2)
r=2:12=3A4;A=14

r=—-1:—6=-3B;B=2
6z 4 2

2—z—-2 x-2 xz+1

6x
/xz—x—2dx

_/ 4+2 J
o r—2 x+1 .

=4In|jz—2|+2In|jz+ 1] +¢
3z 3z

4. =

22=3z—-4 (z4+1)(z—4)
A B

x+1+x—4




3x=A(x—4)+ Bz +1)
xz—l:—3:—5A;A:§
x:3:12:5B;B:%

3z _3/5 12/5
22—3z—4 z4+1 z—4

3z
—d
/xQ—Sx—Zl v
:/ 3/5 n 12/5 dx
r+1 x—4

12
:gln\x+1|+€ln|x74|+c

-x+5 -z +95
a3 -2 -2 x(z—2)(x+1)
4, 5
oz -2 z+1
—z+5=Ax—-2)(z+1)+ Bz(x +1)
+ cx(x —2)
x:0:5:fQA:A:fg
9022:3:63:3:1

r=-1:6=3C:C=2

x371’272%’_ T r—2 x+1
—_d
3 — 22 — 22 v

SRR

5 1
:—§ln|x|+§ln|x—2|
+2In|z+1]+c¢

—x+5 5/2 1/2 2
52 Y

3z+8  3z+8
w3452+ 6 x(z+2)(z+3))
A B C

x +x+2+m+3
3z +8=A(x+2)(z+3) + Bx(x + 3)
+ cx(z+2)
x:():8:6A;A:é
r=-2:2=-2B;B=-1
1
r=-3:-1=3C,C=—-=
3
3z +8 4/3 1 1/3

3+ 522 +6x =z z+2 x+3
/ 3xr+8 d

e

3 + 522 + 62

:/(45/83_33—1|-2_ a:lf)?)) de

6.4. INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS

4 1
:§ln|x|—ln|x+2\—§1n|x+3|+c

50 —23  5z-23

T6r2—1lz -7 (z+1)(3zx—17)
B

2241 327
52 —23=ABx—7)+ B(2x+1)

151 17
=T - A44=3
’ 2 2
= - =_B;B=-2
3° 3 3
5023 3 2

622 —1lz —7 20+1 3x—7
5 — 23
/6 P

2
/<2x+1 3x—7)dm

3
51 |21:+1|—71n|3x—7|+c
3r+5  3w+5
" 522 —dx—1  (bx+1)(z—1)
A N B
b+l z-—1
3m+5—A(x—1)+B(5x+1)
122 6 1
r=—-"—=—-AA=——
5 9 ) 4 3
t=1:8=6B;B=-
3
3u+5  11/3 | 4/3

522 —4drx—1 bHzx+1 xz-—1

- / <_ 5151431 * m4£31> de

M jse 410+ Sfe — 1]+
= —— 1N |0x —n|r — C
15 3

r—1 r—1

T a3+ 4x? +4r x(r+2)2

7é+ B N C
oz 42 (z+2)2

r—1=A(x+2)?+ Ba(xr+2)+Cx
1
=0:—-1=4A4:A=—-
=0 ; 1

x:—2:—3:—QC;C=g
r=1:0=9A+3B+C;B = -
r—1
3 + 472 + 4o
/4 1/4 3/2

xr  z+2 (x+2)?
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/ x—1 d
23+ da? +da T 1 do
B 1/4  1/4 32\, 23+ Az
- - T + 3 R 1 -
x z+2 (x+2) _ L da
N x  x?2+4
1 1 3
=—7 - - 1
4x —5 dxr —5
10. = 2 _ _
3 — 322 a%(z—3) 13, 2= Tz — 17
A B C 62 — 11z — 10
=ztEtr 3 _2,1  a-3
4x —5 = Ax(x — 3) + B(x — 3) + Ca? 3 3(22-5)Bz+2)
=(A+C)2® + (-3A+ B)z + (-3B) _2. 17 A B
B_da__To_T 37 3|20-5" 3x+2
4 35 S7)/9 59/3 7/9 P = e Bl )
Tz —
1‘3773172:_74_?4_1773 .13251—?:?14,14:—3;
dr—5 2. B Ve p
56'3—3.%'2 . 4 2 37 ?7 3
7/9  5/3  7/9 Ao
— -+ dx 622 — 11z — 10
z = x-3 2 1[ -3 5
1 =S +3 +
:,@|x|,§,+zln|xf3‘+c 3 3[2305 3x+2}
In 3x 9 /4x2_7x_17dx
17, £+2 =42 622 — 11z — 10
2+ x(x2+1) 3 f<2 1 N 5/3 )l
edqdd0; e
A Br+cC J\9 2x-5 3x+2
=4 == - 2 1 5
z  z?41 :gx—§ln|2x—5|+§ln|3x+2|+c
z+2= A" +1) + (Bz + O)z Ly T 2
= Az’ + A+ Ba* + Cx I S G (R )
=(A+B)2*+Cx+ A N A LB
=z
A=2C=1;B=-2 z+1 =z-1
c12 9 _9pii 2e=A(x—1)+ B(z+1)
SR A=B=1
¥+ oz 2?+1
z+2 2 —2z+1 4 1 1
/x3+xdx_/<x+ x2+1>dx x2—1_x+ac+1+x—1
2 2z 1 3
= e T N 7+
/(x x2+1+x2+1> v /xz_ldx
=2In|z| —In(x® +1) +tan 'z + ¢ =/<x—|— 1 —|—1)dm
) ) z+1 x-1
12. 23+ dzr  x(a? +4) :%+1n|m+1|+ln|x—l\+c
A Bx+C
Ry 20+3  22+3

15.

2 = 2
1=A@?+1)+ (Bx+ C)x . —|—142x—|—1 B(I+1)
_ 2 _
1=(A4+B)z*+Cx+ A x+1+(m+1)2

2r+3=A(z+1)+B

A=1,B=-1;C=0
1 1 - r=-1:B=1;A=2

x3+4a:_ac+x2—|—4



6.4.

16.

17.

18.

INTEGRATION OF RATIONAL FUNCTIONS USING PARTIAL FRACTIONS

w43 2 1
2420 +1 z+1 (x4 1)2

/ 2x + 3 i

2 4+2r+1

_/ 2 1\,
N x+1 (z+4+1)2 v

1
=2ln|z4+1|—-——+c¢

r+1
2x _ 2x
r2—6x+9 (z—3)2
A B

7m—3+(m—3)2
2r=A(x—-3)+ B

A=2:B=6
2z 2 n 6
22—6x+9 x-3 (x—3)2

2x
—_d
/x2—6x—|—9 .

:/(a:33+<x—63>2)d‘”

— 2|z — 3| - ——
nlx — 3 x_g—i—c
a3 —4 - —222 — 21— 4
73 4+ 222 + 22 x(x? + 2x +.2)
4 B e
=1 — _—
+ x +m2+2x+2

— 22?2 —2r —4 = A(2® 4+ 2z + 2) + (Bz + o)z

= (A+ B)2* + (2A+c)x + 24
A=-2:B=0;C =2

3 —4
3 4 222 + 22

-1 £,
+ x +x2+2m+2

/ 3 —4
—_————dx
3 4+ 222 + 22

:/(”fwﬂim)dm

=z —2Injz|+2tan " (z + 1)+ ¢
4 B 4

3 — 222 + 4z x(2? — 27+ 4)

é_'_ Bx+C

r  r?2-21x+4

4=A(2* - 22 +4)+ (Bz+C)x

= (A+ B)2? + (—24+ C)z +4A

A=1,B=-1;C=2

4 1 —x+2

x3f2xz+4x_:c+x272x+4

4 d
—_—dzx
3 — 222 + 4z

19.

20.

_/<1+x+2 >dz

x x2—-2r+4

:/<1_1 20 — 2 n 1 >d$
x 2x2-2x+4 (r—1)2+3

1
=lIn|z| — §ln(x2 — 2z +4)

n 1 ; _1(x—1)+
— tan — c
V3 V3
323 41

R |
73+3ﬁfm+4

N xd—x2+ar-—1
32 — 3z +4
(z24+1)(z—1)
Aa:+B+ c
2+1  x-—1

=3+

322 =3z +4=(Az + B)(z — 1) + C(a* + 1)

= A2x? — Az +Br— B+ Cz?>+C
r=1:4=2C;C=2
A+c=3:A=1
—A+B=-3:B=-2

323 41 _3+:1772+ 2
-2+ —1 2+1 x-1
[ 351

—_—d
/333—302—1—30—1 v

r—2 2
= —— d
/<3+m2+1+x—1> T
x 2 2
= - d
/<3+x2—|—1 x2+1+x—1) v

1
=3z + Eln(z2+1)f2tanflm
+2In|z—-1]+c¢

20t + 922+ —4 22 +x—4
- =204+ ———-
3+ 4z x(z? +4)
A Bz+C
=2r+ —+ —
2+ 4

2’ +x—4=A@*+4)+ (Bx+C)x
= (A4 B)2? + Cx + 44
A=-1B=2C=1

20t + 922+ —4 1 20 +1
=2r— —+
3 + 4 r 2244
9 1+ 2z " 1
:1’—7
r 224+4 x22+4

/2$4+9$2+$—4
dxr
3 + 4x

—/ 2x—1+27$+; dx
N r x24+4 z2+4

1
:x2—1n|x\+1n(x2+4)+§tan71g+c
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3 2 11 2 2 g
91, & +z+ a_94 n 26. Let u=2* du= (2z)dx.
2%+ 20— 8 c+d w2 / z le/ 2
24+ 2 i 41 2] x4 +1
22 +2x —8 =5 | 53— =;tan(u) +c
2
=2 _9r41lln|z+4
2, ) oy, A2 —rtl 1
+2Injz—2[+c " 162 —1 4z +1 2w+ 1
gy _THL 2T 37T /49347*2@
"a2—br—6 x+1 x—6 16z% — 1
> _/<4x+1+ 1 )d;c
- -
N B 422 +1 2241
/x2—5x—6x 1 s ] 1
" 2/7 | 31/1 :/ L b d
_/(_x+1+x—6>dx ( 24x2+1+4x2+1+2x—|—1> v
1 1
2 = ——Inf4z? + 1] + = tan (2
:7?1n|x+1\+3—771n|x76|+0 2 nfda” + |+2 an™"(2z)
1
“In|2z + 1
g H4 2 1 3 Tyt

7_’,_7_
3 +3224+2c x x+2 z4+1
3c+7 13/32  1/32  3z/8+7/8

T +4 28. =

[y P16 ws2wk2 e
2 1 3 3r+7

= =z — d / dx

/<x+x+2 m—i—l) v zt —16

(1232 1/32 . 3x/847/8)
-

=2z +mfe+2/=3ln|z+ 1 +¢
1 1/3 (z+2)/3 _/(13/32_ 1/32 3 2%

B-1 (-1 (@P@+z+1) r—2 z+2 162244
1

1
J s 1y

24.

1 1 z+2 82 +4
3@ @rern” = Dnfe-2| - o lnfe+2)
3 (@=1) (@ 32, 32
:1/ 1L 1 2r+d dz ——ln(x2+4)——tan*1£+c
3) (z-1) 2(224+2z2+41) 16 16 2
_1/ 1 1 2241 ,
“3) @-1) 2@ +a+1) 29. L tT
1 3 d 3x2+2x+1
_§(x2+x+1)m _5_24_1 10x + 2
:1/ 11 2z+1 T3 9 93220 +1
3 (:1?—1) 2($2+$+1) / Z'3+l‘
—— " dx
_1 3 dx 3r2 + 22+ 1
2(x+1/2)% +3/4 /(:g 2 1 10z+2 >dx
1 1 — - — — —
:{lnx—1|—ln’x2+x+1’ 3 9 93x2+4+2x+1
3 2 _/ ¢ 2 15 Gr+2
—ﬁtan1<2z“)]+c B 3 9 933:24+2x+1
V3 14 1 )d
-3 xXr
933(x+1/3)2+2/3
25. Letu:m4—x,du:(4x3—1)da:. 22 2( 5/) 2/
/(4x3_1)da:— du =5 " ¥t o B 2w+ 1)

4 — 2z o U 22 1 (3z+1
:1n|u|+c:1n‘x4fx|+c. - tan 5 +c
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30.

31.

32.

33.

3 — 2
—3r+2
z 4 1 2lx—6

=23t I 312

3 — 2z
/2 3x+2d

/( 1 21z — 6 )dw

3 42x2—3x—|—2

[z 4 21 4z-3
_/<+3+162w23x+2
—|—§ L )dx

B (w—3/4) T 7/16

4

Z+3x+ﬁln(2x —3z+2)

39v7T (4 —3
— —— tan +c
56 V7

4% +3 3 -3

x3+x2+x:5 2 +x+1

/ 422 +3
————dx
x3+a? +
/ 3 x—3
AN S
r r24+z+1
3
= [(=+
r x22+z+1 224zx+1
1
=Jlaja q'—iIl]EIZ—} «+ 1]

—ltanfl <2£L’+1> tc
V3 V3
dx +4 1 2

ot a3 4222 0 22

/ 4z 4+ 4 d

ot a3 202

_/ 1,2 =%=23 \,

N z 22 2rz+2)™

2 1

:1n|x|—g—§ln(ac2+x+2)
) 1 2x+1

— —tan +c
7o ()

Let u =22, dv = (sinz) dx

So that du = (2z) dzandv = — cos .

22 sin zdx
=2 (—cosz) — / (—cosz) (2z) dx
= —7z? cosx+2/x(cos:z:) dz

Let u = x,dv = cos zdx,
so that du = drandv = sinz.

2% sin zdx

= fxzcos:erQ/xcosxdx

s+1/2 72 )dm

34.

35.

36.

37.

38.

39.

= —x?cosx + 2{xsinz + cosz} +c.

Let u = x,dv = e**dzx .
2z

so that du = drandv = 67.

2z 2x
2% e e
dr = o— — —d
/CE@ X T D) D) X

eQac 2z

S
=r— —— +tc¢
2 4
Letu:(sin%fél)7
so that du = 2sinx cos z dx.
/sma:cosm 1/du
—adr =5 [ —
sin“x — 4 2 U
:11n|u|+c:11n|sin2x—4|+c
2 2

Let t = e®, dt = e®dx and 3% =3

2e” 2
/Ld:ﬂ:/idt
e3r + ¢ 3+t
2 2
:/; t2+1dt—21n|t|—ln|t +1]+c

=2Inle”| —Inle 21+1’+c

422 +2 _ Az +B Cx+D

(22 +1)2 22+1 (22 +1)?

42 +2 = (Az + B)(2* + 1) 4+ (Cxz + D)
=Az® + B2 + (A+C)z+ (B + D)
A=0;B=4,C=0;D=-2

422+ 2 4 -2

@11E 211 @iy

x3 42 _AerB Cx+D

(z2+1)2  22+1 (22 +1)?

3 +2=(Az+B)(x* +1)+cx+ D
= A2® + Ba? + (A+c)x + (B + D)
A=1;,B=0;C=-1;D=2

3 +2 T —x+2

@112 211 @iy

422 +3
(x2+x+1)2
Az + B Cx+ D
S 224 x4+l (224 x4 1)2

42° +3=(Az+ B)(z* +x+ 1) +cx + D

= A + Az? + Ax+ B>+ Bx+B+cx+ D
A=0

A+B=4:B=4

A4+B+c¢c=0:C=-4

B+D=3:D=-1
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40.

41.

42.

422 + 3

(22 4+ 2+ 1)2
_ 4 4r+1

T2t r+1 (2 4a+1)2

t 4+ 23 _1+m3—8x2—8
(3:2—|-4)2_ (22 + 4)2
_1+Ax+B Cx+D
N r24+4 (22 +4)2

23 —82? —8 = (Ax+ B)(z* +4) +cx + D
= Az + Ba? + (4A + c)x + (4B + D)
A=1B=-8C=-4,D=24

r—8
z2+4

—4x 424
(22 4 4)2

Let u = 23 + 1, du = 32%dx

3 322
/xkﬂﬂm—/;iﬁ:Tﬁx

1
——d
(u—1)u “

)

=lnlu—1]—Injul+¢
u—1

zt + 23

T
@rag

=In

+c
I
3

3+ 1

On the other hand, we can let

2

=In

+c

1
u=—, du=——dz
x x

3 3u?
/x‘*—i—xdx__/il—lﬂﬁ du

=—Injl+u|+c=—-Inj14+1/23 +¢

To see that the two answers are equivalent,

notet}gat 5
T z°+1 3
Let u =22 4+ 1,du = 2zdz
2 2x
—dr = | ——5——d
/x3+x v /x2(x2+1) v
/ du | u—1 L
= = C
u(u —1) u
T R
=1In c
2+1
1 1
Let u=—,du=——dz
T T
2 2u
der=— | ——=d
/x?’—i—m o /1+u2 b
1
=-—Injl+u?|+c=—In 1+ —|+c
x
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To see that the two answers are equivalent,
note that
2
In|——
2241

! 1
=—n1+ﬁ

=—1In

:c2+1’

43. (a) Partial fractions

(a)

(b) Substitution method

(¢) Substitution and Partial fractions.
)

(d) Substitution

44. (a) Partial fractions

(
(b

)

) Substitution and Partial fractions.
(¢) Partial fractions

)

(d) Partial fractions

45. /sechdxz/%dx
(1 - sian)

Let u = sin x, so that du = cos xdx.
/ cosvdr / du
(1 — sin2x)2 (1- U2)2

(1—u)(1+u)

By partial fractions,

1 D S S
u—ufu+w2‘4(@u> (1-u)®

Hence, / secdzdx

1
| n| u|+(1_u)
S

— c

(1+w)

+1n|l + u

1

(1 —sinx)
1

(1 +sinx)

—In|l —sinz| +

+1In|1 +sinz| —

6.5 Integration Table
and Computer
Algebra Systems

X
1:/@:@¥ﬁ

2 1
- % 4 In|2+4
162 1 40) T 16 mI2 Al Fe
1 1
- ¢ In|2+4
Se+dn) Tig 2t
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CU2 1 2 t3
2. | ————d = —3(2t5 —4) /4 — 16+ Zsin~'—
/(2+4x)2 * 21’ ( ) Tt oy e
1 4 1
0
3. Substitute u =1+ € 8. Substitut .
. Substitute u = e
e%\/l—l—ewdx:/(u—l)\/ﬂdu — 16 — u2
V16 —e2tdt = [ ——du
U
z/(u?’/Q—ul/Q)du
4416 — u?
=16 —-u2 —-4ln|——MW—
B 2, VI6 - —dln|———F— 4
5 3
44 +/16 — 2t
2 2 _ _ o2t rv-y =
:5(1+€z)5/2_§(1+eaz)3/2+c =v16—e 41In o +c
In4
4. Substitute u = ¢ V16 — e2tdt = —v/15 + 4In (\/ﬁ+4)
e3\/1 4 2 doc:‘/uQ\/l—&—u2 du 0
1 9. Substitut =
:gu(1+2u2)m . e/
1 1/6223_'_ 1/u2
| V1 2
18n|u—|— +u?| +c I+ VI ) 4o
:geI(1+2621)\/1+62x =1In(e® + V4 +e2*) + ¢
1 In2 ev 2\/§+2
——Inle*+V1+e22|+c ——dr=In| ——
8 | | 0o Ve 44 <1+\/5
5. Substitute u = 2x
10. Subs‘mtu‘ceu-a&2
/ h=1 o ol 2L /1 Vs 9 du
\/1+49c22 ./\/5 z? T2
1 U 1
7§/71+7u2 du =3 <\/u2—9—?>sec_1 |3|> \
:l{ﬁ_ﬁﬂz VT3 1(4)
812 = — — —sec -
i 2 2 3
—iln(u—i— 1+u?)| +e¢
1 11. Substitute u =z — 3
:gx\/1+4x2 /\/61’7:02
1
_ = \/ 2
- 2
6. Substitute u = sinz u
coS T V9 —u?
dx = 72du
sin 3+251nx) . u
du =—=V9—w2—sin' = +c
u2(3+2u) vy 3
—21 B+2ul 1 =—— /9 (z—3)?
B 9 . U 2u ¢ z—3
—1
2|3+ 2sinx 1 —sin <>+C
B 9 sinx 3sinx
7. Substitute u — 3 12. Substitute zszeczz’gjanx
8. / dzr
o4 — todt /tanx\/Sltanx—tangx
1 2 (1 — 2 :/7du
3 /u ( —u2)du uv/8u — u?
1 1 \/
== E(2112—4) 4—u2—|——6$irfIE +c :—M—l—c
318 8 2 4u
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13.

14.

15.

16.

17.

18.

19

V8tanz — tan®x

= — c
4tanzx +
tanbudu
L 4
= gtan u— [ tan“udu

1 1
gtan5u — [Stan?’u— /tan2udu]

1 5 1 3
:gtan u—gtan u—+ tanu —u + c.

esctudu

1 2
= —§CSC2'LL cotu + 3 /csc2udu

2
2
= ——csc’ucotu — = cotu + c.
3 3

Substitute u = sin x
cos T

—dz =

sinxy/4 + sinx

1 vVi+u—2
= —In|—|+c¢

Vi Vitu+2
V4d+sinz — 2 n
| /4 +sinz+ 2

2

du

J i

In

_ 1
2

Substltute u=x

/\/m /m

_ (;) (3%~ 16u+ 128)VI T u + ¢

1
E(3x4 —162% +128)V/4 4+ 22 + ¢

bstitute u = x>

Su
1
/x3cosx2dm: §/ucosudu

1 :
—(cosu+ usinu) + ¢

[\

1 1
3 cosz? + §x2 sinz? + ¢

Substitute u = z2

x sin(32?) cos(42?) dx
%/sin(?)u) cos(4u) du

71 cosu  cosTu "
2\ 2 14 ¢

cosz?  cosTx?

4 28

. Substitute u = cosx

sin 2z /QSinxcos:cd
——dr = | ——dx
v1+cosx v1+cosx

CHAPTER 6. INTEGRATION TECHNIQUES

20.

21.

22,

23.

24.

25.

26.

27.

=2 [?}(u—Z)\/Hﬁ} +ec

4
=-3 (cosz —2)v/1+cosx + ¢
Substitute u = x?
V1 + 4a? 1 [V1+44u

V1+4du [\/1+4u—1}
=— +1In +c

2u VIddu+1
\/1+4$2Jrl V14+4x2 -1
= — n
222 V1+4z2+1
Substitute u = sint
sm2tcost
\/sm t+4
= | ———du
/\/u2+4 A
:%\/4—|—u2—§ln(u—|— 4+ u?)+c
1. D)
:§smt 4+ sin“ ¢t

—2In (Si]’lt-i— \/4—I—Sin2t\ +c

Substitute u = v/t

ln\[dt—Q/lnudu
i

=2ulnu—2u+c=2VtlnvVt — 2Vt +¢

2
Substitute u = -
x

e=2/e" 1 w
/ 3 dle/e du

1 1
fe +c—16_2/x2—|—c

Substitute u = 22
/13 2% oy — 1/u
8
é (u—1)e* é( 222 —1)e** + ¢
S,
/\/495—372 *

27
—\/4x—x2+2cosl< 2x> +c

/657” cos 3z dx

1 : 5z
= — COS o SIN ok )€e C
57 (B cos 3z + 3sin3x)e™ +

Substitute u = e*
/e"” tan~!(e%)dz = /tanfl udu



6.6.

28.

29.
30.
31.

32.

33.

34.

35.

36.

37.

IMPROPER INTEGRALS

= utan

:ex

1
_1u—§1n(1—|—u2)+c

1
tan™! e — 5 In(1 + e**) + ¢

Substitute u = 4x

/(ln4x)3 dzx = i/(lnu)?’ dx

4

L (u(lnu)3 - 3/(1n u)? dm)

= Zu(ln u)®

3

— = (u(lnw)® = 2ulnu+2u) +c

4

= 2(Indz)?® — 3zx(Inu)? + 6xIndx — 6z + ¢

Answer depends on CAS used.

Answer depends on CAS used.

Any answer is wrong because the integrand is
undefined for all = # 1.

Answer depends on CAS used.

Answer depends on CAS used.

Answer depends on CAS used.

Answer depends on CAS used.

b
Maple gives the result: o

1
a?

If the CAS is unable to compute an antideriva-

tive,

| f(z) dz is generally printed showing this

inability.

6.6 Improper Integrals

1.

(a)
(b)

(c)

improper, function not defined at z =0

not improper, function continuous on
entire interval

not improper, function continuous on
on entire interval

improper, interval is infinite

improper, function not defined at z =0

improper, interval is infinite

1 1
/x_1/3dx: lim 3y
0 11%—>O+ R
= lim -22/3
R—0+ 2 R
— lim 7(1 32/3) 5
R—0t

(b)

(a)

(b)

(a)

(b)

389
1 1
/x*4/3dx: lim Y3y
0 R—0+ R
1
= lim (73z71/3)
R—01 R
= lim (=3)(1-R7'%) =
i (=3)( ) = o0
So the original integral diverges.
oo R
/ r~4%dz = lim A
1 R—oo [y
R
= lim 51’1/5‘
R—>oo
= hm 5RY5 — 5 = 00
So the original integral diverges.
') R
/ 2 %%z = lim dx
1 R—oo Jq
= lim -5z~ /‘
R—o0
= lim —5R"Y°4+5=5
R—o0
1 R
1 1
dr = lim dx
[ == dm [
= lim —2\/1—a:|0
R—1—
= lim —2(v1-R-1)=2
"—r1-

dr = lim

) B9
—d
/1 Vh—x R—5- /1 Vh—1x *
= lim — 445 —x|1

R—5—
= lim —4(V/5—-R—-2)= -8
R—5—

dr = lim

Ral* / V1 — z2

= lim 2sin 'z

R—1— 0
= lim 2(sin"' R —sin~'0)
R—1—
T
=2(5-0)=r
1/2 9
—dx
o xVvV1—22
1/2 9
= li —d
REI(Jl‘*' R v/ 1 — 22 v
1/2
. 1++vV1—22 /
= lim 2In| —— =00
R—0+ xT

R
Therefore the original integral diverges.

o R
7. (a)/ xe®dr = lim xe®dx
0

R—oo J

= lim (ze® —e”)
R—o0

0
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= lim ef(R—1)+1=00
R—o00
So the original integral diverges.

Substitute u = —2x

9.
oo 1 — 00
I:/ e 2y = —f/ u?edu
o 8/
1 -
= f/ u?etdu
8 J
-2
=— lim u?edu
8 R——c0 R
1 -2
= — lim (u®e" — 2ue" + 2e%)
R——o0 R
o, 1o R 2
=3¢ + gRLHEOOe (-R*+2R—-2)
But, lim ef(-R?+2R—2)
R——o0
= lim e ®(—~R*-2R - 2)
R—o0
. —R?>-2R-2
= lim —————
R—o0 R e 9 9
. —2R- .=
Hence, I = 16_2
Substitute u = 3z
1
I = lim / 223 dx 10.
el JLoo
=5 - u?etdu
1 3
— 3 2 u u u
=3 Rgriloo(u e — 2ue" + 2¢e%) .
5 3 1 . R/ p2
=—e —— 1 -2 2
57¢ "7 g, ¢ (2R +2)
But, lim e¢®(R* - 2R +2)
R—o0
= lim e ®(R*>+ 2R +2)
R—o0
. R*4+2R+2
= lim —F = 0
R—o0 56
H I=_¢
ence, 276
Substitute u = —4x
0
I:/ ze ¥ dy 11.
1 "0
=16 - ue'du
1 O
= — lim ue"du
16 R—— R
1 1' ( u u)
16 R |
L1y B(R—1)
=——+— lim e —
16 16 R——o0
But, lim ef(R—1)
R——o0
= lim e ®(-R—-1)=0
R— o0

(a)

So the original integral diverges.

-1 -1
——dr = i —d
/_oo TR ), T
—1
3
= lim =—g2/3
=" +° lim RY?=co

2 2 R——o0
So the original integral diverges.

0o R
/ cosxdr = lim / cos xdx
Jo 11-»20 Jj

R

= lim s1nx‘

R—o00 0
= lim (sin R —sin0)

R—00
So the original integral diverges.

oo
/ cosxe” M *dx

0
R

= lim cosxe” M *dx
R—o0 0

= lim —e 07
R—o00 0

= lim —e %R 41
R— o0

So the original integral diverges.

1
/ Inxdzx
0

= lim
R—0t JRp

1
Inxdzx

1
lim (zlnz —x)
R—0+ R
= lim (—1— RInR+ R)
R—0t R
n
—1— lim ——
R0+ 1/R
1/R
— lim —%
R0+ —1/R?
-1+ lim R=-1
R—0+

=-1
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12.

13.

IMPROPER INTEGRALS

(b)

/2
/ sec? zdx
0

R
= lim sec? zdx
R—m /2~
R
= lim tanx

R—m/2~
= lim

R—m /2~
Therefore the original integral diverges.

/2
/ cot xdx
0

/2 cosx

0
tan R — tan0 = oo

= lim

——dx
R—0+ Jp  sinzx

/2
= lim In|sinz]
R—0%+

= In|sin(7/2)| — ngﬁl In|sin R| =

So the original integral diverges.

/2
/ tan zdx
0

R .
sinz

dx
R

—1In|cos x|

= lim
R—mw/2 Jy cosx

= lim
R—m/2

=_Jim_(—~In|cosR)| —|— Inl) =

R—m)2

So the original integral diverges.

3

2
/ 5 dx
0o T*— 1
3
1 1

= - d

/0 ( z+1 + T — 1> *

1

r 1
= lim — + dx
R—1- Jy z+1 zx-1
3
1 1
+ lim / - + dx
R—1+ Jg z+1 x-1
Both of these integrals behave like
1
1
lim —dx
R—0+ R T
= Rhﬁr%+ (In1-InR) 15.
= lim In =00
R—0%+
So the original integral diverges.
4
2
/ 5 * dx
1 X7 — 1
4
2
= lim idm

Ro1+ Jp 22 —1
= lim In(2? — 1)|4
R—1+ R

= lim Inl15

R—1+

1
2
[
4 X -1

—In(R*-1) =

14.

B op

d
,4.’1]2—1 v

= lim
R—1—

. 2 R

hHll In(z* — 1)|” 4

hm In(R* - 1) —In15 =
—1-

So the original integral dlvergeb

T
/ xsec’zdx
0

/2 T
= / xsec?zdx + / xsec?zdx
0 w/2

(ztanz + In|cos :c|)|§

= lim
R—m/2~

+ lim

o m (ztanz + In|cos z|)| 5

=00
So the original integral diverges.

2
2
: d
/0 31

19 2
/0 3 -1 x+/1 231
R
2
= lim 3 dr
R—1— 0 X 71

~ lim 2( ln\x +x+1)
R—1— 6
R
tan (26) o)
i)
R—1+ 6
1 (2z+1 R
B ﬁ)+ In(z—1)
\/§ 3

> 1
—d
./,oolﬂc?gU

©1 > 1

0
= lim —
R——o0 JRp 1+.’E2
S|
+ lim ——dx
R—o0 0 1+$2
z|% + lim tan™!
R—o0
= lim (tan™'0—tan~'R)
R——o0

+ lim (tan™* R —tan~'0)
R—o00

= lim tan~!
R—o0

o[y’

391
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16.

17.

. 1 z—1
= lim =1In
R—1+ 2 z+1/)|p

. 1 1 1 R—-1

= lim -In{=]—-—=In{ ——

R—1+ 2 3 2 R+1
=00

Therefore the original integral diverges.

2
x

—d

/0 221

L, 2
/0 2?2 —1 a:+/1 2217
R
= lim %dw
R—1- Jg x4 -1
2
li d
+Ri>nll+ R IE271 v
1 R
= lim = In2? —1|
R—1- 2 0
1 2
+ lim =lIn|z? — 1]
R—1+ 2 R
. 1 2 1
= lim (-In|R*—1|— =In|-1]
B> X4 2

= —00
So the original integral diverges.

S|
= li d
ro2- Jy (@—22""
R

. 1
= lim

R—2-2—1x|,

. 1 1
= lim —— =00

So the original integral diverges.

Substitute u = /x
1 —u

> 1
Hence ——dz
0 xe\/f

L |
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18.

19.

()

+ li 2,2
Rgnoo e eR
=1+1=2

/2
(b) / tan zdx
0

R

= lim tan xdx

R—)ﬂ'/2’ 0
R

= lim —Incosxz
R—m/2~ 0

= lim (—IncosR) =0
R—m /2~

Therefore the original integral diverges.

Substitute u = e”

I:/ S
0 e'l’—i—l

<1
— [
/1 u2+1x
R

. 1
= lim 27dx
R—oo J1 W + 1
L
= lim tan~™ u’
R—o0 1
= lim (tanflR — tanfll)
R—o0
T T w
2 4 4
Substitute u = tan e

e T
1= ——dx
0o Vz2+1

/2
= / tanu (\/ tan?u + 1) du
0

R

= lim tanu (secu) du
R—m/2 Jo
R
= lim secu
R—7/2 0
= lim secR—sec0 =00
R—m/2~

Therefore the original integral diverges.

1 1
1, :/ 7 Pdzr = lim x " Pdx
0 R—0t R

e 1 - gp—p+l

= lim = lim ——
R—0t \-p+1/|p R0t —p+1

We need p < 1 for the above limit to con-
verge. If this is the case,

I, = m—
e} R
I, = / z Pdxr = lim z Pdx
1 R—o0 1
A R—PH 1
= lim = lim ——
R—oo —p+ 1 1 R—oo —p+ 1

We need p > 1 for the above limit to



6.6. IMPROPER INTEGRALS
converge.

(¢) There are three cases.
Case 1: p> —1

0o R
/ zPdr = lim zPdx
0

R—o0 Jg
P+l R Rp+1
= lim = lim =
R—>oop—|—10 R—><>op—|—1
So / xPdx diverges.
Case 2: p=—1
<1
We have already seen that / —dx
oo T
diverges.

Case 3: p< —1

1 1
zPdr = lim zPdz
0 R—0t R

ek

lim
R—0t p+1|p
1 — RpHL

im

R—0+ p+1
oo

So / xPdx diverges.
— 00

20. (a) Casel: If r >0

Subshitate 1w/ =17,
<0

I = ze ™ dx
0
R

== lim uedu

4 R—o0 0

R

= — hm ue’ — e

nr | & 1
= — lim eR(R—l)——ono

r“ R—00 r

So / xe"*dx diverges for r > 0.
0

Case2: For r <0,

Substitogte U= —rx
I = re"dx
= im ue*
T2 R%oo/
= —— lim ue
R~>oo
N 1
N R(_p_ I
——Tzlflgnooe 1( R-1) 72
=0-5="3
r r

Therefore, for all r < 0 the integral

o0
/ xe" dx converges.
0

21.

22.

23.

393

(b) Casel: If r >0
Substitute u = rx

0
I = / zedx

1 O

= — lim uedu
r“R——oc0 Jp

— 1 li u uy (0

= g plim (ue" —e")|p
1 1

=—=—-= 1 B(RrR-1
r2 T 2 RS 0E (B—1)
1 1

e V=0

0
So / ze"*dx converges for r > 0.

—00
Case2: For r <0,

0
the integral / ze" dx diverges.

— o0
Therefore, for all r < 0
the integral fooo xe™dx converges.

02 x_1
1+1’3 LE3 - JC2
> 1 R
/ —dz = lim —dzx
= 0% R—oo [k~

| ! < 1) R
= lim ([ ——

R—o0 xT 1
=l l—I—l =1
TR \TR N

*
S —d .
0 /1 [ g3 converges

x2 =2 32

Tt g2
x4 +3 7 4 v

0o R
/ 3z 2dx = lim 3z 2dx
1

R— o0 1
R
~ Jim =2 = lim l3+3:3
R—oco X 1 R R

> 29
S d .
0 /1 ST 30 converges

x S T 1 -0
73/2 — 1 13/2 T p1/2

0o R
/ z%dr = lim x 1 %dx
2

R—o0 [o

R
= Tim 2\/5‘
2

R—o0

= 1%11320(2\/172— 2V2) =

So / 3/+1dx diverges.
2 XT =
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24.

25.

26.

27.

28.

29.

2
2 4+ sec le
T T
<1 R
/ —dxr = lim —dx
1 xr R—o0 1 X

= lim ln|x||f“: lim In|R| = oo
R—o0 R—o0

oo 2 2
So / wdw diverges.
1 :1:

R
. 3
= lim (——
R—o0 et 0
= lim ffR+3 =3
R—o0 e
> 3
So dx converges.
o T+er
—_ 3 —_
e’ <e™™®
s} R
e *dr = lim e “dx
1 R—o0 1
R
= lim —e~ ‘ = lim —e et
R—o0 1 R—o00

/ 3
So / e~ % dx converges.
1

sin? z 1 1
< < —
1+e* 14 e” e

< 1 Ry
/ —dz = lim —xda:
0

e’ R—oo Jo €
= 1' —_ z
Rgnoo( € ) 0
= lim (—e B 4+1)=1
R—o00

< sin? gz
So dx converges.
0 1 + er

Inz z
< —_
et +1 e*
o R
/ —dx = lim xe *dx
5 €F R—o0 Jo
= I =T =T
(e e,
= lim e B(~R—1) + 3¢
R—o0
and lim e ®(-R 1)
TR 1
= lim —/~ — lim — =
Ao R R o 0
* Inz
So dx converges.
5 e 41
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30.

31.

32.

o) R
/ e*dr = lim e“dx
2

R—oo [o
= lim ¢*
R—o0 2
= lim (eff —€?) = 0
R—o0

2
ew +z+1 > em

00 R
/ e’dr = lim edx
1

R—oo Jq

= lim e””‘ = lim (e —e) =
R—o0 1 R—o0

o0
2 .
SO/ e® TeHdy diverges.
1

Let u = Indx, dv = xdx
dx z?
duy=—,v=—
x

2
1, 1
xln4xdw:§x 1n4x—§ xdx

1 2
:§m21n4x—%+c 1

1
I:/ zlndzdr = lim z Indxdx
0

R— 0t Jp
L

1 2
= lim fx21n4:1771
R— 0+ \ 2 4 R
1 1 R?
=——— i —R*’In4R — —
1 roor (2 " 4 )

1 1
=_-_Z lim+R21n4R

4 2R—0 4
lim RZINAR = lim if
R— 0t R— 0+ R™2
—1 R2
— =0

lim =
R— 0+ —2

R—1>H(l)+ —2R-3

Hence I = —=
ence 1

Let u =z, dv = e **dx

du =dx, v= —56_2”’

- 1 )
/xe_hd:v = —ge_zx + 3 /e‘Qldm

— 7{6721 o 672:1:
2
0o R
/ ze ?*dx = lim ze *dx
0 R—o0 0
R
= lim (—Ee_% —6_275)
R—o0 0
= lim e 2 (-R/2-1)+1
R—o0 /2 1
. —R/2-—
TR T er T
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33.

34.

35.

36.

37.
38.

39.

IMPROPER INTEGRALS

< q S|
V=m —dx—ﬂ lim —dx
1 x

i 1
=7 Jim (_R+1>_

The surface area is infinite:

<1 1
S:2w/ S\ 14 —da
1 X x

1 11
S\ >

B
and/ —dxr = lim —dx

R—oo [ X

R
= lim ln|x|‘ = lim hR =00
R—o0 1 R—o0

o0

The integral / z3dx diverges:

— 00
oo R
/ z2dz = lim z3dx
0 RR%oc 0
S R!
FA v arced 209 4+
=00 Roco 4
R

23dx = 0:

= o0

The limit lim
R—oo J_p

R 1‘4
lim z3dr = lim =
R— o0 R R—o0 _R

4 4
= lim (R—R>:lim0:0
R—o0 4 4 R—o0

R

True, this statement can be proved using the
integration by parts:

[ e =zt - [ gtz

where g(x) is some function related to f(x).
1

False, consider f(z) = —
x

False, consider f(z) =Inz

True, this statement is best understood graph-
ically.

(a) Substitute u = Vkz

/_Oo e f/ o=

(b) We use integration by parts
(u= e v= x):

e dr = ze™® + 2/:E2

S5

_ 2
e dx

40.
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Since the graph of the function ze~ is

anti-symmetric across the y-axis,

. 210 2| R
hm(xe’” . =0

+ xe™”
R—o0
Tho%n we have
2 2
e ¥ dr=2 22e™® dx
700

And the conclusion is
/ :E26_$ dr = g

(a) Since k > 0, we have

> sin kz > sin kx
dr = / k)dx
A T 0 kx *)
Let u = kx,du = kdx.

o -
Sin u ™
du = —.

0 u 2

(b) Since k < 0,
> 0.

m
o0 . o) .
sin kx sin(—m)x
do— [ SmEmz,
0 T 0 €
0o -
sin mx

= — / dx

0 €

S max (m) de

o
/0 mz

assume k = —m , where

Let u = max, so that du = mdx
sinu 0

(c) Since k > 0, we have

oo 1.2 o
/ sin ;mdx _ /
0 T 0
Let u = kz, du = kdx.
S ke = k;g

L
_/0 :

(d) Since & < 0, assume k = —m, where

m > 0.
sin? [(—m) z]

® sinkx > & —
7 dr = 2
0 € 0 €
oo .2
/oO sin?mzx (
o (mz)

2
Let u = ma, du = mdzx.

sinkz

(kz)”

(kQ) dx

dzx

m2) dx

1
we have —dx converges to -—.
x4 3
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42.

<z
Hence / —5——d also converges.
1 €T 1
x 1
So that, we have, 0 < f(z) < g(z) .

By Comparison test,
<z 1 1
——dz < —dr = ——.
/1 o1t /1 e 3

(a) Let f(z) %

So that, we have, 0 < f(z) < g(x).
By Comparison test,

/Oo L g / )

——dx ——dx

2 \/3721 o Vad -1
1) = —— diverges.

f(x) T g

Hence g(z) =

1

= —and g(z) =
22

and

< also diverges
—_— v .
Va3 —1
T

So that, we have, 0 < f(z) < g(x) .
By Comparison test,

>~ 1
/2 ﬁdl’ < A de, and
1
g(x) = 571 converges.
x
Vad -1
x

(¢) Let f(x) = N — and
g(x) = ——

Vs =1
So that, we have, 0 < f(z) < g(x) .
By Comparlson test,

/ W
and g(z) = \/ﬁ x
Hence f(m) = \/ﬁ

verges.

Hence j(z) = also converges.

o0
—dz < / de
2 \/x571

converges.

also con-

43. Substitute u = I —

w/2 0
/ In(sin z)d / n(sin(7/2 — u))du
0 /2

w/2 /2
:/ ln(cosu)duz/ In(cos x)dx
0 0

Moreover,

/2

2/ In(sinz)dx
0 w/2 /2

:/ ln(cos:v)d:r—l—/ In(sinz)dx
0 0

w/2
= /0 [In(cos z) + In(sin z)] dx

CHAPTER 6. INTEGRATION TECHNIQUES

44.

45.

w/2
= / In(sin z cos z)dx
0

w/2
= /0 [In(sin(2z)) — In 2]dx

w/2 T
= / In(sin(2x))dx — 5 In2
0

1 U
= 5/0 In(sinz)dz — g1n2
Hence,
w/2
2/ In(sin z)dz
1
= 3/, In(sinz)der — = 1n2

On the other hand, we notlce that the graph of
sin x is symmetric over the interval [0, 7] across
the line = 7/2, hence
T w/2
In(sinz)dx = 2/ In(sin z)dz
agd then ’

1 ™ w/2
7/ ln(sinx)dx:/ In(sin z)dz
2 Jo 0

/2
So we get / In(sinx)dz = fg In2
0

1
/ (lnz)"dr = lim / (Inz)"dz

t—0t J, t

Ry

~ lim { (Ina)"|! — n/l (1nx)"—1d4

t—>04r

Using#112 from the table.

= i [0 tm0?)]
Jim {n /t 1 (1ng:)"‘1dz]

1
=0— lim [n/ (lnx)nldﬂc} .
t—0t t

Continuing in the same manner,

1
/ (Inz)"dx
0

n—1 [ . !
=(-1)"""n! :t1_1>I(IJl+ (Inx) dx}
— (1)l :tl_igl+ (xlnz — ac)L
= (-1)""'n! _tl_i>rgl+ ((0—tnt) — (1 — t))]
= (1)

Improper because tan(m/2) is not defined. The

two mtegrals
/2
)d
/0 1+ tanz x / f(@)de

because the two integrand only differ at one
value of z, and that except for this value, ev-
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erything is proper.
tanz
g(z) = 1+ tan z

Oifr ==
I xr D)

Substitute u = x — g followed by w = —u

ﬂ'/2 1 0 1
——dz = —du
anx _ —cotu
0 1
= — —dw
/2 1—|—cotw

/2
/ cosw dw

sin w

sin w
/ —dw
0 sinw + cosw
t
/ anw dw
0 tanw + 1
/2
t
_/ anx e
o tanx+1
Moreover,
m/2 t /2 1
/ ﬂdm—i—/ — i
o tanx+1 o l+tanz

/”/2 tan x n 1 ) p
= l‘
0 l+tanz = 1+4tanz,

/¢

= /D
T)a T

:/ B ldz ==
0 0 2

/2 1 1 /7 T
e [ =1 (5)
ence/o 1+tana " 2\2) 7 1

46. As in exercise.45, We have

/”/2 1 d /”/2 tan®x d
——dx = ——dx
o 1+tan®x o 1+tanfz

hence,

/2 1
0 1+ tan®zx

[}

w/2 1 /2 t k
0 14 tan"x 0 1+ tan"x

w/2
= lde = =
0 2
therefore,

m/2 1
[ ——
0 14 tan®z 4

47. Use integration by parts twice, first time
let wu=—=23dv=ds— 2w~ dg
second time
let u = —5% dv = —2ze~% dx

_ 2
e ™ dx

1 3
= 7§$3€7I2 +/§$267$2d1’

48.
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1
— 1536_12
3 1 1
+ 3 (—2$U€_x2 + 3 /e_xde>
1
= —51'36_352 — Zwe_mz + 1 e~ dx

Putting integration limits to all the above, and
realizing that Wl;en taking limits to Foo, all
multiples of e™® as shown in above will go
to 0 (we have seen this a lot of times before).
Then we get

° 4 2 3 [ 2 3
/ xe_ld:v:f/ e ¥ dr = =\/7
. 1) . 1

This means when n = 2, the statement
0 2n—1)---3-1
/ 2e " dg = @Gn-1)--3-1 Vv
2n
—o00

is true. (We can also check that the case for
n = 1 is correct.) For general n, supposing
that the statement is true for all m < n, then
integration by parts gives

.2
e " dx

1 2n —1
— _5332n—1e—;1c2 4 nT /xQn—Qe—x2dx
angio hence
e~ dy

_ 4’102— 1 /_Oo xZn_Ze_dea;‘

2n—1 (2n—3)---3-1
) 2 2 1. 3 2171_1 v
_(@n-1)--3- /r

2"7,
Substitute u = v/ax

1 2
e dr = — [ e % du
/ \/6/

and then

° —ax? N 1 > 2 - ™
/_Ooe dx—\/a/_ooe dU—\/;

Ignoring issues of convergence, the derivatives
can be taken from the integrand, we get the

following:

1st derivative

d (% e, d [T
da J_ da

2nd derivative

d? /°° —aa? g, _ d?
da? J_ € x_da

oo 2 _ax? ]. ™

_ dr = — =,/ —
/_OOCL'Q T D) a3
T

a

2
o0
oo
/ x4e*”2dx:§ 15
PN 4V a
- nthoodcrivative
O g, 4 [R
da™ da” a

—00
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49.

50.

> 2
(_1)71/ xQne—az dzx

2n—-1)---3-1 I
on a2n+l

= (-1

Setting a = 1, we get the result of Exercise 47.

0o R
(a) / ke ?®dx = lim ke 2%dx
0

R—o0 0
= —— lim e ?*
R—o0 0
k. _9R k
=g Am e =5=1
Sok=2
0o R
(b) / ke *®dx = lim ke 4 dx
0 R— o0 0
k
= —= lim e %
R—o0 0
_ ko ar _k_
LY
Sok=4
(c) Ifr > 0:
[e%S) R
/ ke " dx = lim ke " dx
0 R—o0 0
R
= —— lim e "
r R—oo 0
k R
Mg’ (2R 1) = D=0
r2 Rlﬁroo\ 1) r
Sok=r

(a) Substitute u = 2z
o) R
/ kxe ?*dz = lim kxe 2% dx
0

R—o0 0

L R
= — lim / ue “dx

4 R—oo 0

k R
= — lim (ue " +e™)

4 R—oo 0

4 R—oo GR 4
Sok=—-4

(b) Substitute v = 4z
o] R
/ kze **dz = lim kxe **dx
0

R—o0 J

R
=g dm, [ v

=

16 Am (ue " +e)

0
k. R+1 k
—mﬁﬂ(gz‘q—‘m—l
So k=-16
(c¢) If r>0:
Substitute u = rx

[e%S) R
/ kxe " dxr = lim kxe " dx
0

R—oo J

CHAPTER 6. INTEGRATION TECHNIQUES

51.

52.

53.

R

= lim ue “dx

74 R—00 0

k R
= — lim (ue™™ +e™")

74 R—00 0

k. R+1 k
_ﬂ$&(é3_0__ﬂ_l
So k= —r?
Ifr <O0:

oo

The integral kxe "dx diverges for

any value of k, so there is no value of k to
make the function f(z) =k a pdf.

From Exercise 49 (c¢) we know that this r has
to be positive.
Substitute u = rx

u:/ xf(x)dx:/ ree”"Tdx
0 0

= lim ree” "Cdx
R—o0 0
1 R
= — lim ue” “du
r R—oo 0
1 R
= — lim e”*(—u—1)
7 R—oo 0
. —R-—-1 1 1 1
= lim 7 +-=04-=-
=00 e T (3 r

From Exercise 50 (c¢) we know that this r has
to be positive.
Substitute u = rx

o0
u:/ xf(x)dx:/ r2z?e " dx
0 0

= lim rla?e " dy
R—o0 0
1 R

= — lim we " du
T R—oo 0

1
— lim e ¥%(—u? — 2u — 2)’
7 R—oo 0
—-R?-2R-2 2 2 2
T r T

= lim
R—00 €R

35 1
/ 7671/40dl_ —
. 40

P(z > 35) =1 — above = e 3%/40

35
_efw/40’ — ] _ ¢—35/40
0

40

/ ie—x/zxodx _ _e—w/40’40 — 1 _ ¢—40/40
o 40 0

P(z > 40) =1 — above = e 10/40
45

/ ie"”/‘mdw _ _e—w/40’45 — ] _ o—45/40
o 40 0

P(z > 45) =1 — above = e 45/40

Hence,
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P(z > 40)
— ﬂ — ¢ 5/40 & 0.8825
e—35/40 :
P(x > 45)
— ﬂ — ¢75/40 , 0.8825
T e—40/40 T -

54. (a) Following Exercise 53, we get

Plx >m+nlr >n) =

1-— Oern %e*“"/‘md:ﬂ
o _ (™1 ,—z/40

1 0 10€ /40

e—(7n+n)/40

T om0 €

—m/40

0

A
(b)/ cedy = —e~ |t = 1 — oA
0

P(x >m+nlz >n) =

1 . Oern cefc;vdx efc(m+n)

P(z >m+n)
P(z >n)

P(z >m+n)
Pz >n)

11— fom ce—dxdx e—cn

=€

xr
= / 2e 2t = —e™ 2
0 0

B froo[l — Fy(z)]dx
() = f_roc Fi(z)dx
B [ e dx
B Jo (1 —e2*)dx

1, —2r —2r
26 e

(b) For 0 <o <1, FQ(J;):/I Fa(b)dt

_/OzfQ(t)dt_/Omldt_t

Qu(r) = froo[l — Fy(x)]dz

0

[l Fa(x)da
le(l—:r)dx %—r—kg
N for rdr %
1 =2r+ r?
-2

©m= [ ahio)s

= / 2ze 2 dx
0

r+ier -1 2rfe -1

=X

399
R
= lim 2re *dx
R—o0 0
R
= lim e *(—2 — 1/2)’
R—o00 0

1 1
— i o—2R L_t
—H}gr(l)oe (R—|-1/2)—|-2 5

o = /00 x fo(x)dx

1 2
:/xdx:x—
0 2

1

. 0
— 2
w1 = po and when r =1/2
o—21/2
0(1/2) = 1

T2 1)21e 2221
0a(1/2) =~

(d) The graph of fs(x) is more stable than

that of fi(x).
fi(x) > folz) for 0 < z < 0.34
and fi(z) < fo(x) for z > 1.

2r—1
Q :1—7
(e) h(r) 26_2{+2T—1
QQTZI— ’I“;
T
and

(e +2r—1)=e "+ (r—1)>>0
This means

when r < 1/2, Q1(r) < Qa(r)

when r > 1/2, Q1(r) > Qa(r)

In terms of this example, we see that the
riskier investment is only disadvantageous
when 7 small, and will be better when r
large.

56. Following Exercise 54(b),
R(t)=P(x>t)=Plx >1)

t t

=1—/ f(z)de=1- / ce” “dx
0

=l-(1l—e ="

. Graph of py(z):

1 1
/ p1(x)de = / 1dr =1,
0 0

Graph of pa(z):

0

Similarly,

1 1/2 1
/ pe (z)dx = / dadx + / (4 — 4z) dx
0 0 1/2

— 22°|% + (4o — 207)

1
1/2

()3
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The Boltzmann integral

I(p1) = /0 p1 (x) Inp; (x)dr

1
:/ 1lnldx = 0.
0

1
Also, I(ps) = / p2 (z)Inps (z) dx
1/2 0
= / 4z In (4z) dz
0

1

+/ (4 —42)In (4 — 4z) dx
1/2

Let u = 4z, du = 4dx

and t = 4 — 4z, dt = —4dx

1 /2 1 /0
:7/ ulnudu—f/ tintdt
4 0 4 2
1 <1 ) 1 2>2
=—|=v*Inu—-u
% 2 4 0
=3 (2In2 — 1) = 0.193147.

1
For the pdf pa(z) , the probability at @ = B is

1
maximum which is equal to =.The probability

decreases as x tends to 0 or 1.

1

2 < -

x O_ch<4

10 2 1< <1

_ “ 1=779
a(e) = 8 — 10 1< 3
2 —2x Z<:1c§1

Graph of ps(z):
1 1/4 1/2
/ ps () dx = / 2zdx + / (102 — 2)dx
0 0 1/4

3/4 1
+ / (8 — 10x)dx + / (2 —2z)dx
1/2 3/4

Also, The Boltzmann integral
1

I(ps) = /0 p3 (z) Inps (x) dx
= /1/4 2zIn (2z) dz

1/2
+/ (10x — 1) In(10z — 1)dz
1/4

3/4
+ / (8 — 10z) In(8 — 10z)dz
1/2

1
+ / (2 —22)In (2 — 22) dzx
3/4
= 0.42.
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Ch. 6 Review Exercises

1. Substitute u = /x

s
e

el du = 2e" +c=2eVe + ¢
vt

1
2. Substitute v = —

T
/Sm;#dx:—/sinudu

=cosu+ c=cos(l/x) + ¢

3. Use the table of integrals,

/ x d 1 1 2. 1. n
———dr=——zV1—2?24+-sin" z+c
V1 — 22 2 2
4. Use the table of integrals,
/ 2 d 9 g1 x n
————=dr =2sin" " - +¢
V9 — 22 3
5. Use integration by parts, twice:
2 3% dx
1 2
= —§x26_3‘” t3 /ﬂce_?’“c dx
1
— —*JL‘2673I

6. Substitute u = z°
2 —g° —u 1 —z3
T4e dr == [ e “du= ge +c

7. Substitute u = z2

/de_l/ﬂ
14247 2/ 142
1

:§tan71u+c:§tanflx2+c
z? 1 4
8. ﬂdmzzln(l+$)+c
x3 1 4
9- mdmzzln(ét"—x)'i‘c

10. Substitute u = z2

/Ld _lfﬂ
4 4 x4 x—2 4 4+ u?

11.

/e ;
12. /cos4xd:c = fs1n4:v+c
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13. Integration by parts,

1
/ T sin3x dx
0

1 I
:—fxcos?)x‘ —|—f/ cos 3z dx

3 o 3/

L 053+ ~sin3 ‘1
= —— —sin

3cos 9s T

1 1
= —§COSS—|— §sin3

14. Substitute u = z2

1 14
/xsin4x2dx:/ —sin4u du
0 0o 2

1
:—gcos4u‘0:§(l—cos4)

15. Use the table of integrals

/2
/ sin? z dz
0

= ——sin®zcosz

/2

0
n 3/x 1 . /2
1 \5 — gsinzcosz
_3m
16
16. Use the table of integrals
pose:
/ cos® x dx
0
2 ne s by o\ |72 2
= | zsinz + - sinzcos® x =
3 3 0 3

17. Use integration by parts,

1
/ rsinmx dr
-1

1 1 1t
= ——TCoSTI ‘ + — cosmx dr
™ —1 ™

—1
2 1 . 1 2
:f—i——Qsmmc’ —
T s - ™

18. Use integration by parts, twice

1
/ 2% cos mx dx
0

1

1 1

= —x sm7rx’ - — rsinmx dx
™ 0 Vs 0

2 ( 1 vt
=—— ffxcosmc’ + — cosmx dx
7r 7r o 7 Jp
2 /1 1. 1 2
=—= f—l——Qsmmc‘ =——
T\T 7 0 m
19. Use integration by parts

2 1.4 2 1 2
/ x3lnxdx:—lnx‘ —f/ 23 dx
1 4 1 4/

xt |2 15

20.

21.

22.

23.

24.

)
55|

—s

26.

27.

28.

29.

401

/4 /4 1
/ sin z cos x dx = / —sin2x dx
0 0 2

1
= — = ‘2
4COb €T

Substitute u = sin x

/ Cos x sin :cdx*/

SlIl €T

3 em 3
Substitute u = sinx
coszsin® x dx =
4 sin
= +c= 1

Substitute © = sinx
cos® xsin® x dx =

u4 u®

/4 1

u? du
w? du

/(1 —u?)u? du

3sin*z — 2sin® z

6

bstitute u = cos x

Su
/ costxsin® v dr = —

:?*7“‘:

Substitute u = tan

tan? zsect x dx =

-
U3 5

12
ut(1 —u?) du
—7u® + 5u” te
35

u?(1 4 u?) du

Ly
3 5

Substitute © = tan x

tan® z sec? z dx =

\

tan? x

4 4

Substitute u = sinx

/ Vsinz cos® z dx

2
= /u1/2(1 —u?)du = -u

2
== s1n3/2

7

bstitute u = secx

Sub
/ an® zsec® x dx =

5tan® z + 3tan®
+c

15

wd du

2
. 3/2_?u7/2_~_c

2
szsin7/2x+c

/(u2 —1u?du

3sec® x — Hsec® ¢

u®
) 3

Complete the square,

- d
8§ +4x + 2 .

2
[z

15




402 CHAPTER 6. INTEGRATION TECHNIQUES

30. Complete the square, _ / 3 n 3 da

3 dx r—3 x+4
V—=2x — 2?2 =3Injz—3|+3ln|z+4|+¢
3 .
= / s de=3sin" (z— 1) +c 39. Use the method of PFD
1-(-1) /4x2+6x12d
——dz
31. Use the table of integrals, a3 — 4z

) 3 -1 2
/dz4x2+c :/<m+x+2+x 2) du
2 /4 _ 2 2% -
zVi-z =3ln|z|—Injz+2|+2Injz — 2|+ ¢
32. Substitute u =9 — 22

x d 1 / du 40. Use tgle method of PFD
——dx=—= | —5
o 2 /53;, +2dx:/<2+23$) da
1 1 ) 3+ ) z x+1
W32 _ g .2\3/2
Te= 3(9 z)"  +e :2ln|x|+§ln(x2+l)+c
33. Substitute u =9 — 5152 (9— ) 41. Use the table of integrals,
—u
/md‘r: _5/ ul/2 du /e””costdw
= _g/u—lﬂ du—&-%/ulm du _ (cos 2z + 2sin 2zx)e” .
5
1
o,1/2 4 1 3/2
ut+ 3" te 42. Substitute u = 22 followed by integration by
=—9(9— m2)1/2 + %(9 _ x2)3/2 +e parts )
/:v?’singlc2 dr = i/usinudu
34. Substitute u = 22 —9 1 1
/72 <L %j[\u +9)u~ = au € —%u 2413 /cosudu
1”x -9 = ——wucosu+ =sinu+c
=§u3/2+9u1/2—|—c % ) 2

= ——z%cosa® + 1sinsc2 +c
2 2

1
=-(9-2232 499 -2V ¢
3 43. Substitute u = 22 + 1

1
35. Substitute u =22+ 9 /m\/ 22 +1dx = 3 /u1/2 du
z3 1 1 1
N — 9\~ 2¢g _ 1.3/2 _ 12 3/2
| =g [ W re=3t+ ) e
u?? —9ul’? 4 ¢ 44. Use the table of integrals
1 1—22dzx
:g(m2+9)3/2—9(1‘2—|—9)1/2+c /1/7 .
=-V1-22+_sintxte
36. Substituteuzac—I—Qd 2 2
U
7dx:4/— 4 A B
\% 45. =
z+9 Vi 2 —3x—4 1+x—4
=8u1/2+c:8\/a:—|—9+c 4=Axr - )+ ( 1)
=(A+B)z+ (—4A+ B)
37. Use the method of PFD 4 4
idx A= 53_5
22+ 3r+2 A4 a5 45
:/ 3 + —2 dx 22-3x—-4 zx+1 zx—-4
z+1 x+2
=3ln|z+1]-2ln|z+2|+c 4 2z _ A B
6. +
24+zx—-6 -2 xz+3

38. Use t%ex rileéchod of PFD 2% = A(x +3) + Bz — 2)

x2+x—12dx =(A+B)x+ (3A—-2B)
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4 6
A:g;BZE 53. [ sectzdx
2 4/5  6/5 1, 2 [
x2+x76_z72+x+3 = g sec xtanx—i—g/sec xdz
1 2
—6 A B C = _sec’ztanz + = tanz + ¢
w422 -2r = -1 x+2
;167:71:;1(;:12(233-527)—&;le(¢+2)—|—0$($—1) 54. /tan5xdx
B2 —2r  x -1 212 —Ztan x—/tanxw
1 1
22-22—-2 A Bzx+c :ftan4x—ftan2x+/tanacdx
48, — =T 4 4 2
3+ r  x2+1 1 A 1 )
= —tan"z — —tan“z — In|cosz| + ¢
2?2 =20 —2=A(x*+1)+ (Bx + o)z 4 2
=(A+B)® +cx+ A 55. Substitute u = 3 — =
A=-2:B=3;C=-2 74 dr = —4 71 du
? -2 -2 -2 3x-2 2(3 — )2 (3 —u)u?
B+ oz 241 4 13-u 4
:71 R
49 r—2 A n B 911‘ u +3u+c
T2 tdr 4 42 (242)2 41 x 4
Z*_QFBA_(“?ZQ)*B R el Ty B
x—2 _ 1 4 —4 56. Substitute ©w = sinx
24+4r+4 x+2  (x+2)? cosT dx:/ du
sin? (3 + 4sin x) u?(3 4 4u)
2 .
50. '*%”*1?”2' = izi"? + 705 +1D§ T [ B
(2% +1) v (2% +1) 9 ‘ U 3u
22 —2=(Az+B)(x* +1)+cx+ D A |3+ 4sinz 1
A=0;B=1C=0;D=-3 =—1In - - — c
9 sinx 3sinx
x2 -2 1 n -3 9
2 2 2 2 2 /9 2
(.1‘ +1) ¢+ 1 (l‘ -‘1-1) m 2 4+Z‘
57. | —5—dv= | —5—dx
51. Substitute u = 2* T T
/egm /4+€2mdx _ lg_’_xQ
1 =2 7+ln’x+\/9/4+x2’ +c
= [ ¥\/4e2% 4 elady = 5/\/4u+u2 du z
/v v ]
=- (u+2)2 —4du 9+ 422 9
2 -y ™ 21 e 2
1( Ny 2)2 ; p +2In|x + 4—|—x +c
=—(u-+ U+ -
4
2 2
—In|(u+2)++/(u+2)%—4|+c 58, /%dle/xi?dx
(e2w+2),/4e2m+e4w V4 — 9z 3 \/4/9_1“
- 1 2 3
=——x 4/9—x2+—sin71—x+c
—ln‘(ezr+2)—|— 4e?* 4 e47| + ¢ 6 27 2
V4 — 2
52. Substitute v = 2 . 59. /de
/x\/x4—4dm:§/\/u2—4du - 2442
S =v4—-—22 —2Inh|—— | +¢
— T
:%—ln|u+\/u2—4|+c
22zt —4 x? 1 1
:f_ln|x2+4/x4_4|+c 60. mdl’—g mdz
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61.

62.

63.

64.

65.

66.

1/ 2secftan

3 ) (4sec2f —4)3/2
_l/secetaHQ
-3

tan® 6 .
1 3
= f/cscﬁcotedx - +c
3 3vazb —4
Substitute u = 22 — 1
/1 T /0 du
= el
0 $2 — 1 1 2U,
R
= lim o lim In |ul ’
R—0- J_1 2u  R—0-

This limit does not exist, so the integral di-
verges.

Substitute u=x—4

2dx 62du
va — 0o Vu
= lim 2u71/2 du = lim 4ul/2
R—0t JRr R—0*+ R
= lim (46 —4VR) =4V6
R—0t+
e R
/ 3 dx = lim % dzr
1 l’ R—o0 1 X
. 3 . 3
— jim S| =l g 433

Use integration by parts,
oo R
/ ze 3 dr = lim ze 3% dx
1

R—oo Jq

(5]
R—o0 3 9

R

1

R 1 4e3
_ 3R (| _* _ =
= g e (3 9>+ 9
4e—3
9

<y Ry
/ ———dx = lim ——dx
0 4+ a? R—oo Jg 4+ x2

R
= lim ztanflg( — lim 2tan 'R=r1
0

R—o0 R—o0
5 |R
o0 —XT 1
/ e~ dg = lim _¢ = —
0 R—o0 2 2
b
0 " d o —x B 1
B N
—-R
i 1 1
S T dr=-—2-=0
0 / ze T 373
2
— dm = lim — dxr
R—>O+ R T
= lim ——| =
R—0+ X R
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68.

69.

70.

71.

So the original integral diverges.

/2 rdr . 2 rdx
= lim
1

1—22 Rt Jp 1—a?

=00
R
So the original integral diverges.

= lim —fln|1—x\
R—1+ 2

If ¢(t)

T T
/c(t)dt:/ Rdt = RT
0 0

If c(t) = 3te?T*, then we can use integration by
parts to get

= R, then the total amount of dye is

T
/ 3te?Tt gt

0

3t th‘T /T 3 ory
=2 R

o7 1o J, 2T°¢

T

_ §€2T2 _ ieth

2 2|,
3.2 3 e 3
=3¢ 2t T

Since R = ¢(T) = 37T

The cardiac output is
RT 3772627

B RT?
372277 /2 — 3277 /4 + 3 /4

With v =In(z + 1) and v =z

/lna:Jrldx

=zln(z+1) — /

—xlnx—i—l

T
x+1

/(- Hl)

=zln(z+1)—z+In(z+1)+
Withu =In(z +1) andv =2 +1

Inz + 1dx

z+1
—(x—l—l)ln(x—i—l)—/x_'_ldx

=@+1)hn+1)-z+c

The two answers are the same.

n

1 (&)
fn,ave = — / Inxdz
e" Jo

1 . e
=— lim
e R—0 R

Inzdx

1 . "

= — lim (mlnx—x)‘
e" R—0

= — lim (ne" —

—RmR+R)=n-1
e"™ R—0
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72. First we notice that So we want to find the value of a so that
lim Pt <z <t+At) a—90
At—0 X %ktAt / VA4S0 o—v* gy — 0.49v/7
= lim —— de = f(t 0
AtS0 At . f(z)dze = f(t) Using a CAS we find
And then the failure rate function a9 ~ 1.645,a =~ 125
Pz <t+ Atlz > t) V450
Ao At Some body being called a genius need to have
— lim 1 Pt <z <t+At) a IQ score of at least 125.
At—0 At Pz >t) ©
_ oo Pl<z<t+A) 1 f(t) 76.1(1):/ —  dr=tan 'z =1
= A, At "R(t)  R(1) o (1+a?) b =5
Now, I (n+1)
73. R(t)=P t)y=1 t —d = ! / L d b
. R(t)=P(z>1t)= —/Oce x “araor ) G+ xo
t —-n
S1- (e =1-(me = o fa((+)) p
0 — / / 5y dz | dz
Hence By 0 dx (14 22)
S _C . tan 'z |~ 42 /°° xrtan™lz J
o = |— n ———dx
R(t) e 1+22)"], o (1+22)"
* gtan"lz
s I 1) = 2 ———d .. (1
74. (a) P(x>s):1—/ ze ¥ dx = Iln+1) n/o (14 22)" v )
0 s 1 4 1,2 _ 1,2
1 a—x o —=x Also, I (n+1 :/ ——dx
=1—(—=ze e ") . ( ) o (1+22)"*!
=1- (1 775?75 —e ) () - o -
={see” 2 Jo (1 + 22yt
Pz > s+tlz > s) I(n) 1 / x? i >
=1I(n)-— x
_ P(x(> s +)t) A+22)" ) 0+25)""],
Pz >s o\ —7
_ (s+t+1)e st —et t —/OO ! (1+‘T ) ) / i dx | dx
 (s+1)es - 1+s 0 dx (1+2?)
(b) Take the derivative w.r.t s: o —tanlz |
d(_, t _, Lt =1(n) =\ | Tt
— e "+ e = —e (1+2?) 0
ds 1+s (1+s)2 ~ =
When ¢ > 0, since e”* > 0 and —|—2n/ M r
(14 5)? > 0, the above derivative is neg- o (1+az2)"H
ative, so the function P(x > s+ t|x > s) > (2% — ztan™'z)
is decreasing w.r.t. s ds = I(n) - n/ nt1
.Ir.t. s. 0 (1 +1,2)
(o] xQ
75. W?oblse a CAS to see that =1I(n)— QTL/O m dx
! 67(17100)2/450 dr ~ 2475% o0 mtan_lx
90 \ 45071' —+ 2”/ W X
We can use substitution to get o (1+2%)
1 0 (1002 /450 g Therefore,
Vasor J, Int+1)=I)
_ - —u® —Zn/ — drtI(n+1
= \/7?/ —gpe du o (1+m2)n+1 ( )
V450 (using (1))
Since/ e dx =/, =I(n)—2n(I(n)—I(n+1))+1(n+1)

o, V3
/ e " do= 5 Hence proved.
0
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AsI(n+1 :2n_1I n

I(n)(——;n)_gl(in— 1)()

I(n—l)%ia% 5I(n—2)

I(n2)%g_%l(n3)
2n —6

and so on therefore,

CHAPTER 6. INTEGRATION TECHNIQUES

12)="210),
3w
=27
m=2.7
2n—3 2n—-5 2n—7
Thus, T (n) = . .
s, (n)1 -2 -4 G
n — s
T(DI(n)==.2... I
WIm) =5 75,2 3



Chapter 7

First-Order
Differential
Equations

7.1 Modeling with

Differential Equations

. Exponential growth with & = 4 so we can use
Equation (1.4) to arrive at the general solution
Y. -The libitial condition zives/2/="4A
so the solution is y = 2e*.

of o= Ze

. Exponential growth with £ = 3 so we can use
Equation (1.4) to arrive at the general solu-
tion of y = Ae®. The initial condition gives
—2 = A so the solution is y = —2¢e3'.

. Exponential growth with £ = —3 so we can use
Equation (1.4) to arrive at the general solution
of y = Ae™3!. The initial condition gives 5 = A
so the solution is y = 5e 3.

. Exponential growth with £ = —2 so we can
use Equation (1.4) to arrive at the general so-
lution of y = Ae~2!. The initial condition gives
—6 = A so the solution is y = —6e~ 2.

. Exponential growth with & = 2 so we can use
Equation (1.4) to arrive at the general solu-
tion of y = Ae?*. The initial condition gives
2= Ae? A= e% so the solution is y = e%ezt.
. Exponential growth with & = —1 so we can
use Equation (1.4) to arrive at the general so-
lution of y = Ae™!. The initial condition gives
2 = Ae™!, or A = 2¢ and so the solution is
y = 2e tL

407

10.

11.

. Exponential growth with £ = 1. We can use

equation 1.9, to arrive at the general solution
y(t) = Ae' 4+ 50. The initial condition gives
A = 20 so the solution is y(t) = 20e! + 50.

. Exponential growth with £ = 0.1. We can use

equation 1.9, to arrive at the general solution
y(t) = Ae® +100. The initial condition gives
A = 20 so the solution is y(t) = 20e%! + 100.

(a) The doubling time of the bacterial culture
is lhour. Hence, in 3 hours the population
of bacteria will be 3200.

The equation for population must be
y(t) = 400e**

We know that in 1 hour, the population
is 800, so

800 = y(1) = 400e*.

Solving for k gives k = In2.

y(t) = 400et 02

After 3.5 hours, the population is
y(3.5) = 400e3-21n2
= 400 x 23° ~ 4525cells.

(b)

The bacterial culture is increased by 4
times in two hours. Hence in 6 hours the
population of bacteria will be 6400.

The equation for population must be
y(t) = 100e*

We know that in 2 hours, the population
is 400, so

400 = y(2) = 100e3*.

Solving for k gives k = In 2.

y(t) = 10002

After 7 hours, the population is
y(7) = 100”12 = 100 x 128
= 12800 cells.

The initial population of 100 bacteria will
increase to 200 in four hours. Hence the
population of bacteria will reach 400 in 8
hours.

The equation for population must be
y(t) = 100e"*

We know that in 4 hours, the population
doubles, so

200 = y(4) = 100e**

Solving for k give k = (In2)/4 and

y(t) _ 10061&(111 2)/4

To determine when the
reaches 6,000, we solve

y(t) = 6,000 or 6000 = 100et("2)/4

Solving gives

p— 60 o3 698 hours.
In2

population
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12.

13.

14.
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(a) The initial population of 200 bacteria will
increase to 600 in five hours. Hence the
population of bacteria will reach 5400 in
15 hours.

(b) The equation for population must be
y(t) = 200~
We know that in 3 hours, the population
triples, so
600 = y(3) = 200e3*
Solving for k gives
k= (In3)/3 and y(t) = 200e!(m3)/3

(¢) To determine when the
reaches 20, 000, we solve
y(t) = 20,000 or 20000 = 200e!("3)/3
Solving gives

t= 31n100 ~ 12.575 hours.

In

population

With ¢ measured in minutes, and
y = Aelkt) = 10%eM

on the time interval (0,7") (during which no
treatment is given), the condition on T is that
10% of the population at time T (surviving af-
ter the treatment) will be the same as the ini-
tial population.

In other words, 10% = (.1)108¢*T.
This gives
" =10 and T = In(10) /k.

To get k we use the given doubling time

tq = 20. Since we always have t; = In(2)/k,
this leads to k = In(2)/20 and
In(10)  201n(10)

In(2)

We will assume that the number of acres to
sustain the growing population grows at a con-
stant exponential rate. This means that the
number of acres requires is given by

N(t) = Ae™

where N(t) is given in billions of acres (this is
not necessary, but it simplifies the constants).
We will assume that ¢t = 0 corresponds to the
year 1950.

In this case we know that N(0) = 1 and
N(30) = 2. This gives us A = 1 and we can

solve for r:
2 = eSOr

= = ~ 66.44 minutes.
n(2)/20 66 minutes

which gives us r = 1;—02 ~ 0.0231.

We now want to find when N(¢) = 3.2

so we solve the equation 3.2 = et

15.

16.

17.

18.

In3.2
Solving gives t = ln3.2 ~ 50.34 which means

r
that this occurs in the year 2000.

Given y(t) = Ae™, the doubling time t4 obeys
2A = Aertd, 2 = ¢td

In2
rtg =In2,t; = i as desired.
r

The equation for amount of the substance is
y(t) = Ae™

To find the halving time, we solve

é = Ae™ for t.

2
Solving gives t = M = 2
r r

Notice that since r < 0, this value of t is pos-
itive. In fact, this formula is essentially the
same formula for doubling time (the difference
being that the value for r is either positive or
negative depending on if we are in the growth

or decay situation).

Using the formula in exercise 16, we find the

decay constant is
In2

28

Thus the formula for the amount of substance
18

y(t) = Ae™

r =

(a) After 84 years,

y(84) = Ae" ~ 0.125A. Hence, this
is about 12.5% of original amount of
Strontium-90.

(b) After 100 years,
y(100) = Ae'%" ~ 0.084A.

Thus,this is about 8.4%
amount of Strontium-90.

of original

Using the formula in Exercise 16, we find the

decay constant is
In2

0.7 x 109
Thus the formula for the amount of substance

is
y(t) = 50e™

T =

(a) After 100 years,
y(100) = 509" ~ 49.9999995 grams.
Hence, approximately 49.99995% of orig-
inal 235U will remain after 100 years.

(b) After 1000 years,
y(1000) = 5010097 ~ 49.9999995 grams.
Hence, approximately 49.99995% of orig-
inal 235U will remain after 1000 years.
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19. Using the formula in Exercise 16, we have

20.

21.

22,

3 = —(In2)/r and therefore r = —(In2)/3.
Thus the formula for amount of substance is
y(t) — Aeft(lnz)/?,

The initial condition gives A = 0.4 and so
y(t) = 0.de—10n2)/3

(a) For y(t) =0.1,
We get, 0.1 = 0.4¢t(02)/3,
Solving for ¢ gives
31n(4)
~ In(2)
Thus the amount will drop below 0.1 mg
after 6 hours.

(b) For y(¢t) = 0.01,
We get, 0.01 = 0.4 t122)/3,
Solve for t gives
= 31n(40) = 15.97 hours.
In(2)
Thus the amount will drop below 0.01 mg
after 15.97 hours.

= 6 hours.

Using the formula in Exercise 16, we have
2.8 = —(In2)/r and therefore r = —(In 2)/2.8.
Thus the formula for amount of substance is
y(t) — Aeft(an)/Z.s

The initial” conuition gives A ="'0.4 and so
y(t) — 0.4€_t(11]2)/2'8

(a) For y(t) =0.1,
We get, 0.1 = 0.4¢t(02)/2:8,
Solving for ¢t gives
= M = 5.6 hours.
In(2)
Thus the amount will drop below 0.1 mg
after 5.6 hours.

(b) For y(t) = 0.01,
We get, 0.01 = 0.4¢—t(n2)/2:8,
Solve for ¢ gives
= M = 14.9 hours.
In(2)
Thus the amount will drop below 0.01 mg
after 14.9 hours.

In2
The half-life i =——
e half-life is 5730 years, so r 5730
Solving for ¢ in
y(t) = 0.204 = Ae™ " gives
57301n(5)
t=——F—-=13,305 .
n(2) , years
The half-life is 5730 years, so r In2
i -
Years, 5730

The proportion oﬁf the carbon-14 left is there-
fore equal to ™0 ~ 2.912 x 1072,

23.

24.

25.

26.
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Newton’s Law of Cooling gives
y(t) = AeM + T, with T, = 70.
We have y(0) = 200 so
200 = A+ 70 and A =130

We have y(1) = 180 so

180 = y(1) = 130e* + 70 and k = In

110
130 )"
The temperature will be 120 when
120 = y(t) = 130e™(H10/130)t 4 70 and
In (5/13) .
= ———= 5720 tes.
In (11/13) FHHTIHEES
Newton’s Law of Cooling gives
y(t) = AeM + T, with T, = 70.
We have y(0) = 200 so
200 = y(0) = A+ 70 and A = 130.
After one minute we have y(1) = 160 and
160 = y(1) = 130e* 4 70
Solving for k gives k = In %
The bowl in Exercise 23 reaches it temperature
in about 5.720 minutes. At this time, the tem-

perature of this bowl will be:
y(5.720) = 130eF720) 170 ~ 85.87 degrees.

(a) Using Newton’s Law of Cooling
y = AeFt + T, with T, = 70,y(0) = 50,
we get' 50 = Ae’ -+ 70, A =1--20)
so that y(t) = —20e* + 70.
If, after two minutes, the temperature is
56 degrees, 56 = —20e? + 70
14
2k
=—=07
© T2 )
2k =0.7,k = 3 In0.7
Therefore, y(t) = —20e(™0-Nt/2 170,

(b) From (a.), the equation for the tempera-
ture of the drink is
y(t) _ _206(1n 0.7)t/2 +70
After 10 minutes, the temperature is
y(10) ~ 66.64 degrees
The drink warms to 66° when
66 = y(t) = —20eM0-DH/2 4 70
Solving for t gives ¢t ~ 9.025 minutes

(a) The problem is that the rate of cooling is
not constant

(b) The coffee will cool quicker when it is hot-
ter. Therefore the serving temperature
was greater than 180 degrees.

(c) With t the time elapsed since serving,
with the ambient temperature 68 degrees
and if the temperature is 160 degrees
when ¢ = 20, then
y(t) = Ae*t +T,,160 = Ae* 20 + 68
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27. Using Newton’s Law of Cooling with ambient 31.
temperature 70 degrees, initial temperature 60
degrees, and with time ¢ (in minutes) elapsed
since 10:07, we have

t) = Ae** + 70,60 = Ae®* + 70

28.

29.

Monthly: A = 1000 <1 + 12) ~ $1083.00

CHAPTER 7. FIRST-ORDER DIFFERENTIAL EQUATIONS

Ae?0% = 92 After 22 minutes the temper-
ature is 158 degrees,
158 = Ae?*" + 68, Ae?" = 90
e%:AeQ% _ 90 k—ll 90

Ae20k 92 92
Therefore, y(t) =
Usmg the ﬁrst set of numbers,
A620 1in 2 92 —92

92
A= Ty ~ 114.615

y(t) = 114.615¢2 (2 52)t 4 68
The serving temperature is
y(0) = 114.615e° + 68 = 182.615 minutes.

=A+70,A=—

and y(t) = —10e** + 70 (for the martini).
Two minutes later, its temperature is 61 de-
grees. Hence,

61 = —10e*? 4 70, e

1 9
ln—k

07 ; 10 In.9

DO | HS‘G

Therefore, y(t) = —10e(z19)t 4 70
The temperature is 40 degrees at elapsed time
t only if 32.

40 =
_ 2In3

—10e(31m9)t 4 70
~ —20.854 or about 21 minutes be-

n.
fore 10:07 p.m. The time was 9:46p.m.

Here the unknown is the initial temperature,
T = y(0). The equation for temperature of the
coffee is y(t)
Using the initial temperature gives the equa-
tion T = A+ 70, so A =T — 70 and the
equation for the temperature is now given by
t) = (T — 70)e¥* + 70

The value for k will not change (k does not de-
pend on initial conditions) and therefore

1
=5 In(95/110)
We want the temperature at 5 minutes to be
120, so this gives the equation
120 = y(5) =
Solving for T gives

0
= — + 70 ~ 142.13 degrees.

= AeFt + 70

(T —70)e’* + 70

Annual: A = 1000(1 + 0.08)* ~ $1080.00

0.08

AeQ(ln 90f f92)t + 68 30.

33.

0.08 ) 3%
Daily: A = 1000 (1 + 365) ~ $1083.28

Continuous: A = 1000e(*-8)! ~ $1083.29

Annual: A = 1000(1 + 0.08)° ~ $1469.33

0.08
Monthly: A = 1000 (1 + 12) ~ $1489.85

0,08 5365
Daily: A = 1000 (1 + 365) ~ $1491.76

Continuous: A = 1000e(0-8)> ~ $1491.83

(a) Person A:
A =10,000e122° = $110,231.76
Person B:
B = 20,000e 1219 = $66,402.34

(b) At 4% interest:
Person A:
A =10,000e0-0920 ~ $22 955.41
Person B:
A = 20,000e0-0910 ~ $29 836.49

(¢) To find the rate so that A and B are even,
wesolve, 10,0002 == 20, 006
Solving gives r =1n2/2 ~ 6.93%

(a) Let t be the number of years after 1985.
Then, assuming continuous compounding
at rate r,

9800 = 34¢" 10 10 =

1 9800
Therefore,

9800

t/10
A = 34em (%580)t — 34 (9220)

(b) In 2005, t = 20 and
A=34 <9§20) = $2,824,705.88

(¢) The equation for the value of the cards is
y(t) = Pe™.
We take t = 0 to correspond to the year
1985 which means that P = 22.
To determine k we use
32 = y(10) = 22¢!0"

1
1g 1n(32/22)

The value in 2005 is then given by
y(20) = 22¢%07 ~ $46.55

Solving for r gives ,

With a constant depreciation rate of 10%, the
value of the $40, 000 item after ten years would
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34.

35.

36.

37.

38.

MODELING WITH DIFFERENTIAL EQUATIONS

be,

40,000(e~(OD19) = 40,000 " ~ $14,715.18
and after twenty years

40,000(e~(©-1)20) = 40,000e2 ~ $5,413.41

By the straight line method, assuming a value
of zero after 20 years, the value would be
$20,000 after ten years.

The value of the asset is given by v(t) = Pe"

where P = 400,00 and » = —0.4.

After 5 years, the value is v(5) ~ 54, 134.
After 10 years, the value is v(10) ~ 7326.

For the $ 40,000 asset with linear depreciation,
we have v(t) = 40000 — 4000¢

In this case, after 5 years, the value is

v(5) ~ $20, 000.

After 10 years, the value is v(10) = $0.

The problem with comparing tax rates for
the income bracket [16K,20K] over a thirteen
year time interval, is that due to inflation, the
persons in this income bracket in 1988 have
less purchasing power than those in the same
bracket in 1975, and a lower tax rate may
or may not compensate. To quantify and il-
lustrate, assume a 5.5% annual inflation rate.
This would translate into a loss of purchasing
power amouritiog 10

41/(1.055)* = 1/(2.006) ~ 1/2,

which is essentially to say that in terms of com-
parable purchasing power, the income bracket
[16K,20K] in 1988 corresponds to an income
bracket of [8K, 10K] in 1975. One should then
go back and look at the tax rate for the latter
bracket in 1975. Only if that tax rate exceeds
the 1988 rate (15%) for the bracket [16 K, 20K]
should one consider that taxes have genuinely
gone down.

Adjusting for inflation, $16,000 in 1975 was
worth 16, 000(1.055)'3 ~ $32, 092

In 1975, the tax rate on $16,000 was 28%. In
1988, the tax rate on $32,092 was also 28%.
This means that the tax rates were roughly
equal.

Ty = 30,000 - 0.15 -+ (40,000 — 30,000) - 0.28
= $7300

T = 30,000 - 0.15 + (42,000 — 30,000) - 0.28
= $7860

T + 05T, = $7665

The tax T on the new salary is greater than
the adjusted tax (1.057%) on the old salary.

What happened is that the amount taxed at
15% remains $30,000. If this figure is also

39.

40.

41.

42,
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adjusted for inflation then the amount of tax
owed remains the same. In other words, if the
first $30,000(1.05) = $31500 is taxed at 15%
and the rest is taxed at 28%.

Fitting a line to the first two data points on the
plot of time vs. the natural log of the popula-
tion (y = In(P(z))) produces the linear func-
tion y = 1.468x + 0.182,

which is equivalent to fitting the original date
with the exponential function

P(z) = el468a+0.182 o

P(x) = 1.200e!-468

(a) As in Exercise 39, we let & denote time
and y = InP. We pick the second and
fourth data point to fit a line to (any two
data points are fine to use and will give
slightly different answers). In this case,
the points are (1,In15) (3,In33)

The equation of the line connecting these
two points is

In P =y =0.394x + 3.102
Exponentiating this equation gives

P — oV — (0-3942+3.102 _ 99 949 0-394z

(b) As in Exercise 39, we let z denote time
and ¢ /= In P. -We pick the second and
fourth data point to fit a line to (any two
data points are fine to use and will give
slightly different answers). In this case,
the points are (1,In16) (3,In11)

The equation of the line connecting these
two points is
In P =y = —0.18735x + 2.9599

Exponentiating this equation gives
P — ¥ — —0-187352+2.9599

= 19.297 670.1873526

As in Exercise 39, we let x denote time (with
2 = 0 corresponding to the year 1960) and let
y = In P. Looking at the graph of the modified
data, we decide to use the first and last data
points. In this case, the points are

(0,In7.5) (30,1n1.6)

The equation of the line connecting these two
points is In P = y = —0.0515x + 2.0149

Exponentiating this equation gives
P — ¢V — ¢—0.0515042.0149 _ = £ —0.0515z

As in Exercise 39, we let x denote time (with
z = 0 corresponding to the year 1960) and
let y = InP. Looking at the graph of the
modified data, we decide to use the first and
last data points. In this case, the points are
(0,In69.9) (30,In75.2)
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The equation of the line connecting these two
points is In P = y = 0.013790z + 4.2471

Exponentiating this equation gives
P — oV — 0-0137902+4.2471 _ (9  ,0.013790z

Consider the equation,
y=x— E + ce™ "
2

differentiating both sides by x

Yy =1—2ce”

substituting for ce~2*

1
:1—2{y—x+2} =2z — 2y

y' + 2y = 2.

Consider the equation,

y =32 +c)

differentiating both sides with respect to x
3z

! [R—

1 3z
= X = = —.
Y 2y/(3x% + ¢) V(3Bx24+c) Y

With known conclusion

y=Ae " A =150 t =24, and r = In(2)/t,
we tind that withi ¢, =31 we get

y = 150(1/2)4/31) = 87.7, and with t, = 46
we get y = 150(1/2)(24/46) = 104.5.

The difference is about 17 days, at 19% not
a dramatically large percentage of the smaller
base of 88(105/88 = 1.19). If one had expected
the two numbers to be proportional to the half
lives, one would have expected the difference
to come in at 48% (46/31 = 1.48) and would
definitely consider the 19% to be far less than
anticipated.

We use the formula of Exercise 16.

If the half-life is 2 days then r = _lr172

and in two weeks the proportion remaining-
would be e~ 14(72)/2 ~ 0.007813 (so about

0.78%). If the half-life is 3 days then

In2
r = ——— and in two weeks the proportion re-

maining would be
e~14(n2)/3 ~ (0.03917 = 3.9.%

In this case, with t;, = 4, A =1, y = Ae™ ",
and r = In(2)/4, one finds y = (1/2)*/4).

The curve is a typical exponential, declining
from a value of 1 at t =0 to

1/26 = 1/64 = .016 at ¢ = 24.

FIRST-ORDER DIFFERENTIAL EQUATIONS

T T T
12 18 24

x

48. If the half-life is 1 hour, the decay rate is

In2
Bk WY

We assume that the drug is taken every 6
hours. When the drug is initially taken, the
initial amount of 1 gm:

Y1 = 1e—tln2 — 2—t

After 6 hours, the amount left is

y1(6) =275 = 0.015625

When the 2nd dose is taken, the initial amount
will be 1 gm plus the amount left from the 1st
dose:

Yo = (1.015625)e 112 = (1.015625)2 "

After 6 hours, the amount left is

s (612 (11015625)27 % (:0158651

When the 3rd dose is taken, the initial amount
will be 1 gm plus the amount left from the 2nd
dose:

y3 = (1.0158691)e~ "2 = (1.0158691)2~*
After 6 hours, the amount left is

y3(6) = (1.0158691)275 ~ 0.015873

When the 4th dose is taken, the initial amount
will be 1 gm plus the amount left from the 3rd
dose:

ys = (1.015873)e 12 = (1.015873)2 ¢

After 6 hours, the amount left is

y4(6) = (1.015873)27°% ~ 0.015873

49. With r the rate of continuous compounding,
the value of an initial amount X after ¢ years
is Xe™. If the goal is P, then the relation is
P=Xe"or X = Pe~ "t Withr = .08, t = 10,
P =10,000, we find,

X =10,000e~-8 = $4493.29.

50. The present value is

PV = $40, 0002V 0-06t

= $40,000¢2V~0-05¢
The best time to sell is when this is at a
maximum (because this is when it is worth
the most). To maximize PV, we can maxi-
mize 2v/t —0.06¢. This maximum occurs when
t ~ 278.
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51.

52.

53.

T —rT
1—e"
/ e Mt = ——
0 T

T _ —rT _ —rT
tef’r‘tdt — T6 T 1 62 7
0 r r
With r = .05 and T' = 3, we find
for (A): 60,000(20) (1 —e~15) = $167,150

for (B): we get the above plus
(3000)—60e ™15 + 400(1 — e~19)
= 12,223 for a total of $179,373

for (C), the exponentials cancel, and the an-
swer is simply

3
/ 60000dt = $180,000.
0

3
(a) / 60, 000e”9°C=) dt ~ $194,201.09
0

3
(b) / (60,000 + 3,000t)e’25G=) gy

0
~ $208,402.18

3
(c) / 60, 000e°-05£0-05(3—1) gy
0
~ $209,130.16

(a) The comparison is to be made be-
tween tluee vezrs of accuriulation | pf
$1,000,000 versus the accumulation of
four annual payments of $280,000 at
times 0, 1,2, 3, then the respective figures
are 1,000,000(1.08)% = 1,259,712 versus
280,000(1.083 + 1.082 + 1.08 + 1)
= 1,261,711.

One should take the annuity.

(b) If we got the $1 million lump sum,
then the amount received after 3 years
at the rate of interest of 6% is,
1000000 x (1.06)3 ~ 1000000 x 1.191016

= $1191016.
If the amount is received in install-
ments of $280000 at the starting of
every year, the amount received is,
280000(1 + 1.06 + 1.062 + 1.06°)

= 280000 x 4.374616 ~ 1224892.
One should take the installments

(c) If we got the $1 million lump sum,
then the amount received after 3 years
at the rate of interest of 10% is,
1000000 x (1.1)® & 1000000 x 1.331

= $1331000.
If the amount is received in install-
ments of $280000 at the starting of
every year, the amount received is,

413

280000(1 + 1.1+ 1.1% 4 1.1%)

= 280000 x 4.641 ~ $1299480.
One should take the annuity

54. The actual doubling time for money invested

at 8% is obtained by solving
2 = €998 which gives 8.66 years.

In general, the doubling time is
In2  0.69314

(Ifence ther“Rule of 69”). 72 is used because
most interest is not compounded continuously.
For example, if 10% interest is compounded
once a year, it takes 7.27 years to double.

7.2 Separable Differential

Equations

(a) Separable.
/

Y =3r+1
cosy

(b) Not separable.

(a) Separable.
y/
=2z

cosy—1

(b) Not separable.

(a) Separable.
y' = y(z* + cosx)
/
vo_ 2 + cosx
(b) Not separable.

(a) Not separable.

(b) Separable.
Y —1=2°—-2z
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7. Sy =27 13. yf = 27
y (siny) -
1 sSIny)y = cosx
/?dy:/Z’erw . ,
. (siny)y'(z)de = | (cosx)dx
- ="_4¢ )
Y 3 ) or /(smy) dy:/(cosx)dx
y:*m cosy = —sinx + c.
1 J =
8. Y2 +1 =2 14. sec’yy ==z

/ — dy= /de /sec2 ydy = /xdw
y?+1 9

arctany = 2x + ¢ tany:x——i—c
y = tan(2z + ¢) 2 22
Y= tan~! ( + c>
2
622
9. yy = ——
vy 1123 / .

1
15. -y =
dy = y T 1422
/yy /1+3 / _/
~dy T dz

2y2 =21 +2% +e¢

1n|y|:fln|1+x2|—|—c

y=e? s e kv/1+ a2

y==2v4In|l+ 23| +c

10. (y+ 1)y’ =3z

2 3
11. ¢/ = 2—3361’_“', y = 2 X ¢
(7 y et
yye ¥ = 2ze "

yye Vdr = /Qxefzda:

ye Y (y'dx) = /2xe‘xdm

r /ye*ydy: /2xe*g”dz

/ye_ydy =-—ye VY—eY+e

——

and /xe_wdac =—ge ¥ —e"+c

—ye Y —e ¥V =2(—ze " —e ") +c
—ye ¥V —e V= 2ze7" -2 " +c.

/
1
12. L -
1—y2 zhz

1 1
/ —dy = / dx
/1—y2 rzlnx
arcsiny = In(lnz) + ¢
y =sin[ln(lnz) + (]
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2
_1_/
— X
o

=3(z+1)?

@ |

Iny = (x —l—yl)?’ +c
I y= ke(erl)s

Using the initial condition,
1

1=ke k=-
e

_ L@y
e

Y

22. %y =2 -1

YRy = /(m ~1)da

S —

22
3 =5~z +c
Using flhe initial conditing,
23 07 8
379~ 0+4cc= 3
3 2
8
yt_at 8
3 2 3
23. yy' = 4z°
2 3
4
Using the initial condition,
22
? =c=2
2 3
4
24. yy =x —1

X
—
<
&
%o
—
8
|
L
QL
8

- , v a?
20. y =1+y T =g ke
/
_Y 4 Using the initial condition,
L+y? (=22 02 04 8
=— - c,e= =
/ i de:/dx 2 2 3
I+y 2 22 8
T W)= [ dx 772 T3
1492
1 ! 1
7dy:/dx 25. L —
£c%a—£y2m+c 1y vt3
v In |y|

y = tan(z + ¢). T=1n|x—|—3|—|—c
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26.

27.

28.

29.

30.

31.
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Injy|=4In|z +3|+¢

[yl = k(jz + 3])*

Using the initial condition,

1] = k()" k=1

lyl = (= +3))*

(4y+ 1)y =3z

/(4y +1)dy = /3mdx
3z

2y2 + Yy = 7 +c

Using the initial condition,

12
2(4)2+4:3() —l—c,c:%
32 69
2Pty =" =
Yy +y 5 + 5

cosyy =4z

siny = 22% + c.

Using the initial condition,

0 =sin(0) =siny(0) =0+c=c
siny = 22

y = arcsin(2z?)

(-1/vV2 <2 <1/V/2)

1
coty)y = —
(coty)y” = — 1
cotydy = / ~dr
x
In|siny| =1Inlz| + ¢
siny = Az
Using the initial condition,
sin T_ AA=1
2

siny =x

For this problem we have M = 2 and k = 3.
Using these and the initial condition, we solve

for A.
2A4e3(2)(0) 24
T A0 T 14 A
= 266t
YT T e

For this problem we have M =3 and k£ = 1.
Using these and the initial condition, we solve
for A.

o BACO 34
1+ A0 14+ A
- 26e3t

Y71 + 3edt

For this problem we have M =5 and k = 2.
Using these and the initial condition, we solve

for A.
5A4e1000) 54

T 14 Ael00) T T+ A

32.

33.

34.

35.

A=4
20610t
y= 10t
1+ 4e

For this problem we have M = 2 and k = 1.
Using these and the initial condition, we solve

for A.
2A4¢2(0) 24

T 11 A0 T 1+ A4
A=1

2e2t
Yot

For this problem we have M =1 and k = 1.
Using these and the initial condition, we solve

for A.

3 Ael0) A
4 14 A4e© 14+ A4’
A:

o 3e

y_1+3et

For this problem we have M = 3 and k = 1.
Using these and the initial condition, we solve

for A. )
3420 34

0= =
%)+Ae3(0) 1+ A’

y=0

(a) Substituting r = Mk in
y =71y (1 - J\y4y> we get
’sz(l——) = ky(M —
y 7 y(M —y)
!
— =k
y(M —y)
Adapting the solution
MAeMkt ) )
= W mn (27) Wlth T = Mk,
M Aem
1+ Aet
In this case with » = .71, M = 8 x 107
and y(0) = 2 x 107, we find

Y

we find y =

8 x 107A
2x107 = =
<100 =y(0) = =77
Theref 2 1A 1/3
T T = - = — =
T TAT S w0 ’

and after routine simplification we find
(8 x107)e ™
ylt) = = 7



7.2.

36.

37.
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()

1E8

5E7-

-4 -2 ] 2 4

The biomass of halibut is given by
(8 % 107)60.7115
3+ 071t
The carrying capacity is 8 x 107 so we

1 7\,0.71t
solve: 0.9 (8 x 107) = X 10)e 77

3+ 071t
Solving gives t ~ 4.642 years
Y ‘ = AeM** with A > 0. Under the
M —y

circumstances y > M, the ratio is nega-
tive, and the resolution is
— _ AeMkt

M-y
This further resolves as
wan M’Aey""‘ yi yAeI\/Ikt7
which eventually becomes
M AeM*kt M Aemt

V= AeMkt — 1~ Aet —1°

M Aet
T Aert —1
Our initial condition is y(0) = 3 x 108
which gives

From Part (a), y

(8 x 107M)A
3% 10% = S N el
x 107 =y(0) A-1
15 15

(A-1)=A, A==
4 11

After routine simplification this gives the
(12 x 108)e 71t
15€0-71¢ — 11
We now want to solve
y=1.1M = (1.1)(8 x 107) or

12 x 108)e0-71
1.1 107) = (12 x 10%)e™ "
(LDE X 10%) = =55 17
Solving gives t ~ 2.94 years

equation y =

Let A be the accumulated value at time ¢
and d be the amount of the deposits made
yearly, then A satisfies
A’ =0.064+d
This (}iﬁerential equation separates to

A
0.06A +d
In(0.06A4 + d)

0.06

= 1 and integrates to

=t+cor

(a)

417

0.06A4 + d = ke
At time ¢t = 0, A is the unknown initial
investment P,
hence k = .06 P 4+ 2000, and so
06A + 2000 = (.06P + 2000)e%6¢.
If we want A = 1,000,000 at ¢ = 20, we
must have
62000 = (.06P + 2000)e' 2

1.2
p_ 62000e - 2000 ~ $277.001
As in Part (a), if A is the accumulated
value at time ¢t and d is the amount of the
deposits made yearly, then A satisfies
A" =0.06A+d
This cliiﬁ’erential equation separates to

A

0.06A +d
In(0.06 A4 + d)

006 e
0.06A4 + d = ke
We know that A(0) = 10,000 which gives
0.06(10,000) + d = k
and therefore k = d 4+ 600 and
0.06A4 + d = (d + 600)e-2%
We want to find d when ¢ = 20 and
A = 1,000, 000:
0.06(2/000,000) == d = (d + 660)22 062
60,000 + d = (d + 600)e*
Solving for d gives
60, 000 — 600e!2
d= el2 -1

= 1 and integrates to

~ $25,002.16

38. We start with A'(t) = 0.08, A(t) — 12P
A(0) = 150,000
where P is the payment made each month.
Solving this differential equation:

A/

0.08A _12P '
In(0.084 — 12P)

—¢
0.08 te

0.084 — 12P = ke 0%
Using the initial condition gives
k = 12000 — 12P We set A(30) =0

Solve for P:
—12P = (12000 — 12P)e**
1200024
=— "  ~$1099.77
12(e24 — 1) §1099

Total amount paid:
(30)(12)(1099.77) = $395,917
Total interest:

395,917 — 150,000 = $245,917

Reworking Exercise 38.(a):
A'(t) = 0.075A(t) — 12P
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A(0) = 150,000
where P is the payment made each
month. ISolving this differential equation:
A
0.075A—12P
In(0.0754 — 12P) ttc
0.075 N
0.075A — 12P = ke® 0™ (k = 0-075¢)
Using the initial condition gives
k= 11250 — 12P
We set A(30) = 0 and solve for P:
—12P = (11250 — 12P)e*?°
_ 11250e%%
C12(e225 — 1)
P ~ $1047.95
Total amount paid:
(30)(12)(1047.95) = $377,262
Total interest:
377,262 — 150,000 = $227, 262
The half-percent decrease in interest de-
creases the total interest by $18655.

Reworking Exercise 38.(a):
A'(t) = 0.08A(t) — 12P
A(0) = 150,000
where P is the payment made each
month: Solving this differeatial equation:
Al
0.08A—12p '
0.084 — 12P = ke 0%
k = 12000 — 12P
We set A(15) = 0 and solve for P:
—12P = (12000 — 12P)e*?
12000et-2
= ez =) ~ $1430.01
The monthly payments are increased by
about $330.
Total amount paid:
(15)(12)(1430.01) = $257,582
The total amount is decreased by about
$138, 335.
Total interest:
257,582 — 150,000 = $107, 582

Reworking Exercise 38.(a):

A'(t) = 0.08A(t) — 12P

A(0) = 125,000

where P is the payment made each

month./ Solving this differential equation:
A

0.08A —12P

0.084 — 12P = ke

k = 10000 — 12P We set A(30) = 0 and

solve for P:

—12P = (10000 — 12P)e?**

39.

10000e24
P= 12021 = 1) ~ $916.47
Total amount paid:
(30)(12)(916.47) = $329,930
Total interest:
329,930 — 125,000 = $204, 930
By adding an additional down payment of
$25000, the total interest is decreased by

about $41000.

Starting with A’ = .08 A4+ 10,000 with the
initial condition A(0) = 0.

Solving gives .08A 4+ 10,000 = 10,000e-98¢.
At time t = 10 we have

1 81
A= % — $153,193
This would be the amount in his fund at

age 40, and it would accumulate in the

next 25 years to
153,193¢(:08)25 = §1.131,949.

We set up and solve the initial value prob-
lem:

dA
— = 0.08 4 + 20000,

A0)=0
i ©

1
Wln|0.08A +20000| =t +¢

12.510/]0.08(0) + 20030 =0+ ¢

¢ = 12.51n 20000

At age 65, t = 25 and we have the equa-

tion

12.51n]0.08 A + 20000|

= 20+ 12.51n 20000

Solving for A1 %‘ives

A 20000(e*® — 1)
.08

Following the conditions of Part (a), re-

placing however the 8% by an unknown

force r, we come after ten years of pay-

ment and twenty-five additional years of

accumulation to

r_1
10,000 ) 2o

~ $998, 258

r
For contrast, if the payment rate 10, 000 is
replaced by 20,000, and the payment in-
terval of ten years is replaced by twenty-
five years, we come to an accumulation
after the twenty-five years of

25r 1
90,000~ 1.

This number is to be compared to the pre-
vious. Equating the two expressions leads

to
2(6257‘ _ 1) — 6557" _ 625r or

36257" — 9= e357“
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40.

41.

The equation can only be solved with the
help of some form of technology, but the
answer of r about .105(10.5%) can at least
be checked.

dA

i 0.1A—-d, A(0)= 1,000,000
10ln|0.1A—d|=t+c¢

A — et/10+c/10 + 10d

A= Be'/" +10d

1,000,000 = B + 10d

B =1,000,000 — 10d

A = (1,000,000 — 10d)e'/** + 10d

We now want to determine d so that A(30) =0

0 = (1,000,000 — 10d)e® 4 10d
1,000, 000€?
d=""—"""""—"~$105,240
10(e3 — 1) §

(a) Starting from

21
y = §/Q;3+2x2+9x+3c
with y(0) = 0, we have ¢ = 0. Therefore,

T ™
-10 -5 [ 5 10

(b) The solution glven in Part (a) is

y={/a®+ x + 9z,

Notice that
3z +21lz+9

2/3
21
3 <x3 + 3x2 + 9x>

and this solution has a vertical tangent
line at z = 0.

22 +T7r+3
2

y =

(c) Given y' = , that y/(z) does

not exist for a given « if y(z) = 0.
We see that y(z) = 0 if

—3c=212%+ % + 9z

The cubic polynomial on the right, call it
h(zx), has its derivative given by

B (z) =322 4+ 21z + 9 = 3(22 + Tz + 3),
and the roots of h/(z) are

42.

419

T = -7 Q\F —6.5414
- *HQ\ﬁ _ 4586

The effect is that h(x) has a relative max-
imum at x; and a relative minimum at xo,
and so the equation —3c¢ = h(z) has three
solutions when —3c lies between the rela-
tive minimum and the relative maximum,
ie., if h(z2) < =3¢ < h(z1), or when

—h(z1) e —h(z2)
3

Therefore,

217 + 37/37
o = — <+12 f) ~ —36.84

91 N
5 = w ~ 67185,

101

(b) When ¢ = cg, h(z) = =3¢

In effect, h(z) + 3co
3c
_ o 2 2
= (z — x2) (;U + (x2)2> .

Now, in the solution y(x) to the differen-
tial equation, we have

d d

3 2 / _ 3 _

y (/rf)y (@) = () = -

=h'(z) = (z — z1)(x — z2),

 whiley? (2) = [y ()]** =

= (z — x2)Y3(x — 23)%/3.

Now we can see that

Y (z) = (@)

3y?(z)

B (x — 1)
 3(x — w2) /3 (x — x3)%/3
and this will become unbounded if 2 ap-
proaches either x5 or x3. These are the
two points of vertical tangency.

(c¢) Looking at Exercise s 41.(a) and 41.(b),
the denominator of 3’ is

91 2/3
3 (a:3 + ?xQ + 933)

(h() + 3c2)

[h(2)+3c,)*/?
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Setting this to 0 gives the equation

21
x3+?x2+9x20

Solving gives x = 0 and
—21+3v33
r=—r

1 —9.5584, —0.94158

43. When the given numbers are substituted for

the given symbols, the differential equation be-
comes
' = (4—2)(.6—z)— 62527

B S S G e AN R |
8 25 8 5 15/ °

When separated it takes the form
/

:I: —_
CEUICEDN
in which b = 12/5, a = 4/15 < b, and
r=3/8.

By partial fractions we find

1 1 1 1
(x—b)(x—a) (b—a) |l (z—0)(z—a)
arid-after-integration Ave find

1 )
T—a

=rt+c

(b—a)
or in this case with
b—a=(36/15) — (4/15) = 32/15,

v—12/51 _32(3
z—4/15]  15\8 "

4 32

= St+62 <CQ = 1501) .

Using the given initial condition
x=.2=1/5 when t =0, we find
co =1n|(11/5)/(1/15)| = In(33),

In

x—12/5 LI
nl-—————|=—tan
33(z —4/15)| 5
x—12/5

_ X T A9 a5 45
33 (z — 4/15) ¢
(the choice of sign is + since the left side is 1
when x = 1/5).

Concluding the algebra we find
br — 12 _ At/

115z —4)  ©
5x —12 = 11(15z — 4)e*/®,
12 — 44e*/5 4 (3 —11e*/°
rT=———"——7r==-|—=—7% ], and
5—11(15)e4/> — 5 \ 1 — 33e4t/5

it is apparent that x — 5 as t — oo.

44.

45.

The text should read (b) 2(0) = 0.6.

In both cases, the general solution to the dif-

ferential equation is as in Exercise 43:
4 (ke™/5 - 3)

5 (3ke4t/5 - 1)

Notice that regardless of initial condition,
. 4

tlglolo z(t) = 15

xr =

(a) Using the initial condition z(0) = 0.3
gives k = —21 and the solution is

4 (—21e*/> - 3)

5 (—63e%/5 — 1)

(b) Vsing the initial .condition x(0) = 0.6
gives k = —1.8 and the solution is

 4(—1.8eM/5 —3)

5 (—b.dett/5 — 1)

This situation is impossible because the

initial (0) = ¢ = 0.6. We are given that

b+ ¢ = 0.6 and ¢ = d which means that

¢ < 0.6, contradicting the initial condi-

tion.

Tr =

X

After beginning,

¥ =.6(.5—xz)(.6 —1z)— 420+ z)
=.6(.3 — L1z 4 2?) — 422

227 — 662 + .18

(e 3 9
5 10 10

The parameters b,a,r are respectively
3,3/10,1/5.
We jump ahead to
1 x—3 27 [t i 27t n
njl———\=—1{- = — .
z—3/10] 10\5 " 1) T 5" T
In this case with x = .2 = 1/5 when ¢t = 0, we
(1/5) -3
ey =In|—=L2 "2 | —n28,
‘ (1/5) — (3/10)
=3 — 1.27/50 _ 27t/50
28 (z — 3/10) ’
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46.

47.

and the conclusion is
5(z — 3) = 14(102 — 3)e?7t/%0,
15 — 42¢%7/50 42 — 15¢27¢/50
¥ T 5~ 140e27t/50 140 — he-27t/50
3 (14— 5e27/50
=5 < 98 _ ¢—27t/50 ) :

—

2'(t) = (0.6 — 2)(0.4 — z) — 0.42(0.1 + z)
z(0) =0.2
z'(t) _
22— 14402
B it
1522 — 26z +6

2579|152 — /79 — 13|
158 et vo—13|
15z —V79-13
152+ V79— 13
158
25V/79°
With t = 0 and = = 0.2, you can solve to get
:: \1/779 + 13 + (V79 — 13)Ce"
15(1 — Cert)

Cert

where r =

(a) We find
y' = .025y(8—y)—.2 = —.025(y* -8y +8)

1 . .
= —E(y —b)(y — a), in which

b=4+V8,a=4—8.
y—b| 1
’_ o (2v8) t+

This leads to In

co
and with y(0) = 8 we have
1 8—10
n =
S_a C2,
| @ =0B—a)|  —tv8
(y—a)(8—0) 20
tv8
y—b 8—b V8
= e 20 .
y—a 8—a

We can see that as ¢ — oo the right side
goes to zero, hence also the left side, and

48.

49.

421

hence

y — b=4+48=6.828427

This represents an eventual fish popula-
tion of about 682, 800.

(b) We set up the differential equation. In

this case we have to complete the square:
y' = 0.025y(8 —y) — 0.6

= —0.025(y? — 8y + 24)

= —0.25[(y — 4)* + 8§

y/

————— = —0.025
(y—4)2+38

1
—————dy = —0.025t + ¢
/ w-42+8"
To integrate, we will use the substitution

Yy — . .
u = =——— which gives us
NG 8 1
—0.025¢ = ——d
e / (y—42+8"

—/ V8 du = 1 tan"! u
8(u? +1) 24/2
R (y—4)

2v2 V8
Manipulating gives

V2
y =4+ 2V2tan (;)[4—/@)

The ‘initial conditicn; ¢y(9) =8 gives us
k = tan"1v/2 = 0.9553 and therefore

/2
y =4+ 2V2tan <—;Of + 0.9553)

And, if you graph y, it is easy to see that
y(27.02) = 0 and therefore the fish all die
off in about 27 years.

The equilibrium solutions are the algebraic so-
lutions to the quadratic equation
025P(8 — P)— R =0, or P2—8P —40R = 0.
In the process of studying Exercise 47.b
(R = .2) we found it convenient to factor the
left side (P was y at the time) and the roots
were b = 4 + /8 and a = 4 — /8. In Exer-
cise 47.b, the corresponding equation (R = .6)
would be
0= P?—8P+40R = P?> — 8P + 24.
But this equation has no real roots, hence no
equilibrium populations.
P = .051P(8 —P)— 6
2

= —%(P —8P+12)

1

20

(P—-6)(P—2)

Following well-established procedures, we
come to
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50.

51.
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In| =0 Ly

n =—-

P2l 5 ™

P—-6 !

P7:2 = Ae 5,(A = =+e* or zero)

We learn from this relation that the ratio
(P —6)/(P — 2) never changes sign, always
negative if the initial condition has P(0) in the
interval (2,6). Clearly in this case the expo-
nential approaches zero as t — oo and P ap-
proaches 6. This last conclusion is true even if
P(0) > 6.

If on the other hand 0 < P(0) < 2, the ra-
tio is forever positive, and we find eventually
P—6_P0)—=6 _;
P—2  P(0)-2°

Here the right side is a positive decreasing func-
tion of ¢ and so must be the left side. The effect
is that P itself is decreasing (not obvious) and
reaches the value zero when

/5 =3/ = 4r when
P0)—6
. 6-P0) __._ 6-P(0)
t=o e = poy ~ "M 5= 3p0)

In the ratio inside the (second) Iln, the nu-
merator is clearly more than the denominator,
wiicn/ig 1556l pogitive, This is some-moment
of positive time, after which the population is
zero and no further activity occurs.

Comparing Exercise’s 47.(b) and 49, we see
that the equations are the same except for the
natural growth rates (0.2 in Exercise 47.b, 0.4
in Exercise 49). The fish in Exercise 64 die
out whereas the fish population in Exercise 49
approaches a limiting population.

The differential equation is
r'(t) = k[r(t) — S]. This separates as
7,/

=k, and solves as

In(r — S) =kt+c.

In this case S = 1000, r(0) = 14,000,

and r(4) = 8,000.

Putting t = 0, we see that the constant c is

In 13,000, we learn

r = 1000
55000 ~ F

and putting t = 4,

In—=1In 7,000 = 4k.
13 13,000
Assembling the available information, we find

— 1000 ¢ P
T okt = Sk = Sl and
113,000 gk) = gz, an

7\ /4
= 1,000 + 13,000 | —
’r b + ) <13) b

52.

53.

54.

55.

or equivalently r = 1 4 13e~-'%476* thousands.

The amount of grain is
A(t) = —1000¢ + 6000

The differential equation for S(t) is
S'(t) = 0.02A(t) = —20t + 120
S(0) =0,

We solve this to get

S(t) = —10t% + 120t

S(6) = 360

From the differential equation, with z = ¢ /y,
we find z = k(M — y). This is a line in the
(y, z)-plane. The z-intercept is M and the
slope is —k.

We estimate the derivative, 3’, at each point
by using the adjacent point and computing the
slope:

t 2 3 1 5
y |[1197 | 1291 | 1380 | 1462
Y 94| 89| 82
2=y /y 0.073 | 0.064 | 0.056

We now plot the (y,z) data and find a slope
and intercept. By looking at the graph or by
picking two points you can see that slope is
Zhout -9/4/x 1075 and thé z-intercapt s abons

2037. This gives us M =~ 2037

If y = ky(M — y), then by the product rule
y" =kly' (M —y) —yy'] = ky'[M — 2y].

This will be zero when y = M /2. In what fol-
lows, we make exception of the two equilibrium
solutions y = 0 and y = M. With any other
solution, y # 0, y # M, and 3’ # 0. Thus
whatever time ¢y (if any) at which y becomes
M/2 is sure to be an inflection time. More-
over, there can be no circumstances of inflec-
tion other than y = M /2. Such a time 5 > 0 is
bound to occur if and only if 0 < y(0) < M/2,
in which case the time % is unique.

The given differential equation is

‘C%’ =9.8 — 0.0020?

ZZT: = 10200 (v* — 4900)
2

P

pr =k (v+70)(v—"70)

As the value of k is a negative number, the pa-
rameters b and a (b > a) are b = 70 and
a = —170.
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v—"T0

Thus, the solution is

1

7.3. DIRECTION FIELDS AND EULER’S METHOD

140kt + ¢

n
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10.

11.

12.

13.

14.

CHAPTER 7. FIRST-ORDER DIFFERENTIAL EQUATIONS

0| 0.00 2 0
110.05 2 0.025
21 0.10 | 2.00125 | 0.0499688
3 10.15 | 2.00375 | 0.0748597

20 | 1.00 | 2.22563 | 0.449312

40 | 2.00 | 2.81443 | 0.710622

15. First for h = 0.1:

010.0 1 3
11]0.1 1.3 3.51
210.2 1.651 3.878199
3103 2.0388199 | 3.998493015
10 | 1.0 | 3.847783601 .58569576
20 | 2.0 | 3.999018724 | 0.00392415

For for h = 0.05:
0] 0.00 1 3
11]0.05 1.15 3.2775
210.10 1.313875 | 3.529232484
31 0.15 | 1.490336624 | 3.740243243
20 | 1.00 | 3.818763110 .69210075
40 | 2.00 | 3.997787406 | 0.00884548

16. For h = 0.1:

RN I NN
N
M PP
77777777 I NN
Y s mnnatNNNNN
A e NNNNNN
E1227 500 AN
777777 ~NONNNN N NN
=g
S i
bbb bbb bbb bbb
Field C
. Field B
. Field D
Field F
Field A
Field E
For h = 0.1:
010.0 1 0
110.1 1 0.2
210.2 1.02 408
310.3 1.0608 .63648
10 | 1.0 | 2.334633363 | 4.669266726
20 | 2.0 | 29.49864321 | 117.9945728
For h = 0.05
’ n ‘ Tn ‘ y(zn) ‘ f(@n, Yn) ‘
0 0.00 1 0
11 0.05 1 .10
210.10 1.0050 .201000
310.15 1.01505000 | .3045150000
20 | 1.00 | 2.510662314 | 5.021324628
40 | 2.00 | 39.09299942 | 156.3719977
For h = 0.1:
nlan | ylen) | f@n,yn) |
010.0 2 0
1]0.1 2 0.05
210.2 2.005 | 0.0997506
310.3]2.01498 | 0.148885
10 | 1.0 | 2.21504 0.45146
20 | 2.0 | 2.80022 | 0.714229

For h = 0.05:

01]0.0 2 0
1/0.1 2 0.025
210.2| 2.0025 | 0.0498752
310.3]2.00749 | 0.0744416
10 | 1.0 | 2.10745 | 0.225158
20 | 2.0 | 2.39672 | 0.348172
For h = 0.05:
[ n] x| yln) | f@a,yn) |
0 |0.00 2 0
11]0.05 2 0.0125
2 1 0.10 | 2.00062 | 0.0249844
3 10.15 | 2.00187 | 0.0374298
20 | 1.00 | 2.11272 | 0.224036
40 | 2.00 | 2.40349 | 0.346214
17. For h = 0.1:
01]0.0 3 -3
110.1 2.7 | —2.604837418
2 10.2] 2439516258 | —2.258247011
310.312.213691557 | —1.954509778
10 | 1.0 | 1.300430235 | —.6683096762
20 | 2.0 | .9587323942 | —0.0940676774
For h = 0.05:
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’ n‘ Ln ‘ y(mn)‘ f(xnvyn)‘
0| 0.0 3 -3
110.05 2.85 | —2.801229424
21 0.10 | 2.709938529 | —2.614775947
310.15 | 2.579199732 | —2.439907708

20 | 1.00 | 1.334942742 | —.7028221832

40 | 2.00 | .9795316061 | —.1148668893

18. For h =0.1:

n/‘ In ‘ y(mn)‘ f(xnayn)‘
010.0 1 0.841471
1101 1.08415 0.873905
2102 1.17154 0.881349
3103 1.25967 0.86199

10 | 1.0 | 1.67065 | —0.00498132

20 | 2.0 | 0.418744 —3.59339

For h = 0.05:

’ n‘ In ‘ y(xn)‘ f(xnayn)‘

0] 0.00 1 0.841471
110.05 | 1.04207 0.860952
210.10 | 1.08512 0.87436
31015 | 1.12884 0.881416
20 | 1.00 1.6513 | —0.003238
40 | 2.00 | 0.291667 | —3.71245
19. For h = 0.1:
71‘ L ‘ y(wn) ‘ f(xnvyn)‘
01]0.0 1 1.0
110.1 1.10 | 1.095445115
21 0.2 | 1.209544512 | 1.187242398
31 0.3 | 1.328268752 | 1.276036344
10 | 1.0 | 2.395982932 | 1.842819289
20 | 2.0 | 4.568765342 | 2.562960269

For h = 0.05:

’ n ‘ Tn ‘ y(zn) ‘ f(@n, Yn) ‘
01 0.00 1 1
11]0.05 1.05 | 1.048808848
21 0.10 | 1.102440442 | 1.096558454
31 0.15 | 1.157268365 | 1.143358371

20 | 1.00 | 2.420997836 | 1.849593965
40 | 2.00 | 4.620277218 | 2.572989937
20. For h =0.1:
01]0.0 4 4
1]0.1 4.4 4.40114
21 0.2 |4.84011 4.84424
31 0.3 5.32454 5.33298
10 | 1.0 | 10.3981 10.4461
20 | 2.0 | 27.0677 27.1414

For h = 0.05:

21.

22.

23.

24.

n‘ Tn ‘ y<xn)‘ f(xnayn)‘
01]0.00 4 4
110.05 4.2 4.2003
21 0.10 | 4.41001 4.41115
31 0.15 | 4.63057 4.633
20 | 1.00 | 10.6384 10.6853
40 | 2.00 | 28.326 28.3965

(a) The exact solution to Exercise 13 is

y(z) = e
y(1) ~ 2.718281828
y(2) ~ 54.59815003

The exact solution to Exercise 14 is

y(z) = Va2 +4

y(1) ~ 2.236067977
y(2) ~ 2.828427124

The exact solution to Exercise 15 is

y(r) =

4

1+ 3e4=

y(1) ~ 3.791659974
y(2) ~ 3.995978495

The exact solution to Exercise 16 is

1
y(z) = 5(12352 + 64)1/3
(D) 222.117911792
y(2) ~ 2.410142264
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25. Equilibrium solutions come from ¢y’ = 0, which
only occur when y = 0 or y = 2. From the
direction field, y = 0 is seen to be an unstable
equilibrium and y = 2 is seen to be a stable
equilibrium.
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27. Equilibrium solutions come from g’ = 0, which
only occur when y = 0 or y = +1. From the
direction field, y = 0 and y = —1 are seen to
be an unstable equilibrium and y = 1 is seen
to be a stable equilibrium.
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28. Equilibrium solutions come from 3’ = 0, which
only occur when e = 1 or when y = 0. From
the direction field, y = 0 is seen to be a stable

equilibrium.
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26. Equilibrium solutions come from 3’ = 0, which

only occur when y = 1.
field, y = 1 is seen to be an unstable equilib-
rium.

From the direction
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29. Equilibrium solutions come from g3’ = 0, which
only occur when y = 1.
field, y = 1 is seen to be a stable equilibrium.

From the direction
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7.3. DIRECTION FIELDS AND EULER’S METHOD

8.0000
14.4292

20.6175
31.2662

e e e e e e e e e e e S S S S
ASSNRNNRNNNN NS NNNNNNNN

AYAAAAANAN

8.0000
13.4400
25.4607
58.1372

181.3525

8.0000

8.4864
14.5203
15.6855
41.4900
47.0711

8621
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3.0000
3.8000
5.1440
7.6901
13.5038
y(an) |
3.0000
3.9280
4.6495
5.6803
3.0000
3.0800
3.9396
4.0848
6.5184
6.9333
Exact ‘
3.0000
4.1374

1
(

(2 __62$)2

6.8713
21.4869
—18.7351
—6.5688

0.05
210.10
310.15
410.20
10| 0.50 | 218.1215 | 47576.0009

2

01 0.00
01 0.00
1]0.01
910.09
10| 0.10
20 | 0.20
21]0.21

]

5| 0.50 | 31.6390 | 1000.0295
30 | 0.30 | 15.8434 | 250.0139

0| 0.00
11]0.10
210.20
310.30
410.40
0.000
0.100
0.200
0.300
0.400
0.500

13

[n] @]
(] @]

[f(@)]* —1

For h = 0.05:
For h = 0.01:

33. Using Euler’s method:
For h =0.1:

A\ AN ;27/// \

For the second part,

34. The first part is just a matter of checking:
f(0.1) ~ 4.1374
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to be an unstable equilibrium and y = 1 is seen

y = 1. From the direction field, y = —1 is seen
to be a stable equilibrium.

30. Equilibrium solutions come from 3’ = 0, which
only occur when 3?2

31.

32.
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35.

36.
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£(0.2) ~ 6.8713
£(0.3) ~ 21.4869
£(0.4) ~ —18.7351
£(0.5) ~ —6.5688

The vertical asymptote in the solution occurs
when the denominator vanishes, which is to say
when €2 = 1/k, or # = —In(k)/2. In our case,
with y(0) = 3, we have k = 1/2 and the verti-
cal asymptote at x = In(2)/2 = .3466.

The field diagram cannot give any fore-warning
of the vertical asymptote. Dependent as the
field equations are only on y, they can only hint
at things which likewise depend on y. The loca-
tion of the vertical asymptote, by its very na-
ture an x-measurement, is instead dependent
directly on the solution-parameter k£ and indi-
rectly on the initial condition.

In this case where the actual z-value does
not enter the calculations, the Euler process
merely generates the numbers in the recursive
sequence Y, = hyfkl + Yn—1 — h subject to an
initial condition of y, = 3. The numbers in
such a sequence will increase to infinity, with
growth rate depending on h. The simultaneous
determination of x,, through the law x, = hn
has nothing to-do with 'the geometry of the so-
lution to the differential equation. “Jumping

over the asymptote” is the pseudo-event which

.3466
happens when n passes from below 5 to

above, has no special relation to the Euler y-
numbers, and no relation whatever to the so-
lution of the differential equation.

:
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When x moves across the vertical asymptote,
the values for y change from positive to nega-
tive.

This means that if y represents force on a robot
arm then it doesn’t make sense for the force
to approach infinity in a finite amount of time
(which is what the vertical asymptote repre-
sents). The Euler approximation with a small

step size probably gives a better idea of the
actual force that the robot arm will actually
encounter.

37. Forh=1
T ‘ FEuler ‘ FExact ‘ Error ‘
0 1 4 3
0.1 | 3.33333333 | 4.5301951 | 1.1968618
0.2 | 3.85185185 | 5.0420817 | 1.19022993
0.3 | 4.38445358 | 5.5197958 | 1.1353422
0.4 | 4.91286010 | 5.9516999 | 1.03883983
0.5 | 5.41841632 | 6.3311318 | 0.91271546
0.6 | 5.88468616 | 6.6561471 | 0.77146092
0.7 | 6.29961809 | 6.9285769 0.628959
0.8 | 6.65667665 | 7.152808 | 0.49613166
0.9 | 6.9547456 | 7.3346184 | 0.37987281
1| 7.19706156 | 7.4802467 | 0.28318508
1.1 ] 7.38968814 | 7.595759 | 0.20607056
1.2 | 7.54002195 | 7.6866742 | 0.14665227
1.3 | 7.65563011 | 7.7577945 | 0.10216436
1.4 | 7.74350906 | 7.8131639 | 0.06965481
1.5 | 7.80971372 | 7.8561103 | 0.0463966
1.6 | 7.85924977 | 7.8893249 | 0.03007510
1.7 | 7.89612281 | 7.9149552 | 0.01883258
1.8 | 7.9234637 | 7.9346994 | 0.01123572
For & =0.1
’ T \ FEuler \ FEzxact \ Error ‘
0 1 4 3
0.1 | 1.23333333 | 4.53019515 | 3.2968618
0.2 | 1.51151852 | 5.04208178 | 3.53056327
0.3 | 1.83843385 | 5.51979585 3.681362
0.4 | 2.21602156 | 5.95169993 | 3.73567836
0.5 | 2.64326894 | 6.33113178 | 3.68786284
0.6 | 3.11524497 | 6.65614708 | 3.54090211
0.7 | 3.62248525 | 6.92857689 | 3.3060916
0.8 | 4.15106801 | 7.15280830 | 3.0017403
0.9 | 4.68364062 | 7.33461843 | 2.65097781
1| 5.20139514 | 7.48024665 | 2.27885151
1.1 | 5.6866168 | 7.5957587 | 1.9091419
1.2 ] 6.12512759 | 7.68667421 | 1.56154663
1.3 | 6.50792201 | 7.75779446 | 1.24987245
1.4 | 6.83159959 | 7.81316387 | 0.98156428
1.5 | 7.09766771 | 7.8561103 | 0.75844261
1.6 | 7.31114954 | 7.88932487 | 0.57817533
1.7 | 7.47902583 | 7.91495539 | 0.43592956
1.8 | 7.60890514 | 7.93469943 | 0.32579429

The smaller we make h (Time Step) the more
accurate approximation at a given point tends
to be. As well the smaller the value of h the
more steps it takes to reach a given value of x.

38. f(z)=a?—-2,f (z) =2z
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39.

Use f(x) and f'(w) ina (t) = —ffc/((fc((?)))
, (@ (1) - 2]

N0

Let © (t) =z

=5

dz _ [22 — 2]

dt 222

Hence, 2_722612 = dt

Integrate both sides.
—1n(2—22) =t+c

2— 22 =ce ! wherec=e
z=vV2—cet
x(t) =vV2—ce?
z(0)=1=1=+/2-c(1)
c=1

Therefore, x (t) = V2 — e~ *.
hm z(t) = hm V2 —et

—\/ (Ast—>ooe —>0)
v

—c1

Euler’s Method
(s ) de

is used to solve

Y )

1’1 =29 =+ h

y1 = Yo + hf (xo,y0)
Subsequently,

Yn+l = Yn + hf (a:na yn)

Yn+1 =

Yn+1 — Yn -

dy
dx

L=TLn
While solving for y=0 in Newton’s Method, we
make an assumption that y,41 = 0 Hence ,
—Yn _ h

dy
de |
T=Typ
Yn
Tn+1 —xn'i_h—xn_
ay
de|
T=ITy,

This is Newton’s Method.

The general solution is

y:x——2x2+2m+c.

Using the initial condition y(3) =
y(0) = ¢ = 3 and therefore
3

0 gives

y:%—2x2+2x+3

40. Integrating gives
1 13
=-——1In(4 1
V=17 16 n(dx+1)+c¢

Using the initial condition y(8) =1 gives

13
c=-1+ 6 In 33 and therefore

1

429

13 13
= - - — -1+ =1 ~
Y= 16 In(4z 4+ 1) + 16 n33 y(0)

1.8409

-
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\

\
AAARARAR AR
AN RN
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41. Using a CAS gives y(0) =~

x
1 2 3
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42. Using a CAS gives y(0)
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43. The equilibrium solutions are the constant so-

lutions to the DE. If indeed g is a certain con-
stant k, then

0=g¢g = —k+3k*/(1 +k?) = —k(k* - 3k +
1)/(k* +1). Thus k = 0 is clearly one solu-
tion, while the two roots of the quadratic in
the numerator are also solutions. These are

the numbers
a= 3 *2‘/5 ~ .3820 and

34/m

b= ~ 2.6810.

Of the three, 0 and b are stable, while a is un-
stable. As a result of this stability feature,
tlim g(t) =0if 0 < g(0) < a, while

—00

tlirgo g(t) =bif a < g(0).

As the problem evolves, g depends not only on
time ¢, but on a certain real parameter x. We
could write g = g,(t), and the dependence on

x is through the initial condition:
3 3sin(x)

+(0) = -
9:(0) =5+ —

With z restricted to the interval [0, 47] (47 be-
ing about 12.5664), the first event (g,(0) < a,
equivalently tlgglo g:(t) = 0, equivalently even-
tual black - stripe zone) occurs when z lies
in one of the two intervals (3.9827,5.4421) or
(10.2658,11.7253). More precisely, these are
the intervals with endpoints

3 1 x/g T _1 V5
7:|:cos <3>and2j:cos (3.

w
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44. If £k = 10 then the differential equation be-

comes
o —0.01z(z3 — 1022 + 101z — 10)

1+ 22

It is clear that x = 0 is a solution. The other
solution(s) come from solving
g(z) = 2% — 1022 + 101z — 10 = 0

Notice that ¢'(z) = 32% — 20z + 101 and

¢'(x) = 0 has no real solutions (use the
quadratic formula). This means that ¢'(x) is
always positive and g(z) is always increasing,
which means there is exactly one real solution
to g(z) = 0. By graphing (or using Newton’s
method, for example), one case see that an
equilibrium solution is x = 0.0999899 and this
must be the only solution.

If £ = 50, then the differential equation be-
comes

;o —0.0022(2® — 5022 4 501z — 50)
v 1+ 22
Again, x = 0 is a solution, and the other solu-
tions come from solving
g(x) = 23 — 502% 4+ 501z — 50 = 0
If you graph g(x), you can see that there are
now three positive solutions x ~ 0.10081, = ~
13.7018, x ~ 36.1974. If we look at the direc-
tion field, notice that the middle equilibrium
solution (x = 36.2) is unstable—a small de-
crease in population will send the population to
the lower equilibrium solution whereas a small
increase in population will send the population
towards the higher equilibrium solution.
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7.4 Systems of First-

Order Differential
Equations

1. Equilibrium points are those that satisfy

2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have

0=0.2z — 0.22> — 0.4zy

0=-0.1y + 0.2zy

0=x(0.2—0.2x — 0.4y)

0=y(-0.1+0.22)
z=00r02—-02r—-04y =0
y'=00r2==035

The equilibrium points are

(0,0), corresponding to the case where there
are no predators or prey

(1,0), corresponding to the case where there
are 200 prey but no predators

(0.5,0.25), corresponding to the having both
populations constant, with two times as many
prey as predators.

. Equilibrium points are those that satisfy
2'(t) = 0 and y'(t) = 0. Substituting into the
equations, we have

0=0.4z —0.1z> — 0.2zy

0=-0.2y +0.1zy

0=x(0.4 — 0.1z — 0.2y)

0=y(-0.2+0.1z)
z=00r04—-01x—-02y=0

y=0orz=2

The equilibrium points are

(0,0), corresponding to the case where there
are no predators or prey

(4,0), corresponding to the case where there
are 400 prey but no predators

(2,1), corresponding to the having both popu-
lations constant, with two times as many prey
as predators.

3. Equilibrium points are those that satisfy
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2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have

0=0.3z —0.122 — 0.2zy

0=-0.2y +0.1zy

0=2(0.3 — 0.1z — 0.2y)

0=y(—0.2+0.1z)
z=00r03-01x—-02y=0

y=0o0rx=2

The equilibrium points are

(0,0), corresponding to the case where there
are no predators or prey

(3,0), corresponding to the case where there
are 300 prey but no predators

(2,0.5), corresponding to the having both pop-
ulations constant, with four times as many
prey as predators.

. Equilibrium points are those that satisfy

2'(t) = 0 and y/(¢t) = 0. Substituting into the
equations, we have

0=0.1z — 0.212% — 0.4y

0=—-0.1y + 0.2zy

0=2(0.1 —0.1z — 0.4y)

0=y(—-0.1+0.2x)
z=0o0r0.1—-0.1x —0.4y =0
y=0orx=0.5

The equilibrium poiks are

(0,0), corresponding to the case where there
are no predators or prey

(1,0), corresponding to the case where there
are 100 prey but no predators

(0.5,0.125), corresponding to the having both
populations constant, with four times as many
prey as predators.

. Equilibrium points are those that satisfy

2'(t) = 0 and y'(¢) = 0. Substituting into the
equations, we have

0=0.2z — 0.1z> — 0.4zy

0=—-03y+0.1zy

0=2(0.2 - 0.1z — 0.4y)

0=y(—-0.3+0.2x)
z=00r02—-01x—-04y =0
y=0orzxz=1.5

The equilibrium points are

(0,0), corresponding to the case where there
are no predators or prey

(2,0), corresponding to the case where there
are 200 prey but no predators

(1.5,0.125), corresponding to the having both
populations constant, with twelve times as
many prey as predators.

. Equilibrium points are those that satisfy

2'(t) = 0 and y'(¢) = 0. Substituting into the
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equations, we have @ 0.2z - 0.12% — 0.4zy

0=0.2z—0.12% — 0.4zy dr  —0.3y+ 0.lzy

0=-0.2y +0.1zy From the following phase portrait, we observe
0=2(0.2—-0.1z — 0.4y) that

0=y(-0.2+0.1z) (0,0) is an unstable equilibrium,
r=00r02—-0.1x—04y =0 (2,0) is an unstable equilibrium,
y=0orx=2 (1.5,0.125) is a stable equilibrium.

The equilibrium points are

(0,0), corresponding to the case where there R Y NN
N A
are no predators or prey :Z::EE;; / g 2 g g 2 ? ? ;
(2,0), corresponding to the case where there et At AR AR NN
are 200 prey but no predators. st A A AR RN
R A A A A
. o T2
7. In Exercise 1, i S AAAR RN
dy 0.2z —0.222 — 0.4ay ———t AR RN
dr 0.1y + 0.2 FIIINNSISLL
— 0.~ —
z Ay +0.2zy . NN NN NN S AR B
From the following phase portrait, we observe ERRR AR SRR R RN
that B
(0,0) is an unstable equilibrium, ”
(1,0) is a stable equilibrium,
(0.5,0.25) is an unstable equilibrium. 10. In Exercise 6, ,
dy 0.2z —0.1z* — 0.4zy
. EEEEREEN dx —0.2y + 0.1zy .
E Phbvvvevy From the following phase portrait, we observe
3 BRRRRRRS: (0,0) is an unstable equilibrium,
e IS RRRERRN (2,0) is a stable equilibrium.
frrtiiny
& piyrvvvay .
. R Ay
3 MR T——— 771
0.7 NNV VLV VL T 71
3 [ 7NNV ] SN
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T AN~ ]
4 0.2 0.4 0. 0.8 1 TSNNNNS—/
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8. In Exercise 2, INVVERE R LY
dy 0.4z —0.12% — 0.2zy e } I [ I l I I {
da —0.2y + 0.1zy EN t f
From the following phase portrait, we observe f SRR VS
that
(0,0) is an unstable equilibrium, ™ ) ) bl b
(4,0) is a stable equilibrium, 11. The point (0,0) is an unstable equilibrium.
(2,1) is an unstable equilibrium. 12. The point (0.5,0.5) is a stable equilibrium.
I::fiﬁfff /] l SREERNY. 13. The point (0.5,0.5) is a stable equilibrium.
E ’iggé é \ % % % % % % % % 14. The point (1,0) is a stable equilibrium.
A7 o ) '
M Prbrbbbd 15. Equilibrium points are those that satisfy
Hf:IQSSiiS%\ ! & & % % % % % % % 2'(t) = 0 and /() = 0. Substituting into the
Y e N .
RS equations, we have
BN T 0= 030~ 0.22% ~ 0.1z
“HN\ 7N _ 2
:mml A 0 =02y — 0.1y* — 0.1ay
el ‘U‘Uf\ﬂw 0=2(0.3—0.22 — 0.1y)

0=y(0.2—-0.1y — 0.1x)

z=00r03—-02x—-0.1y=0
9. In Exercise 5, y=00r02—-01y—0.1x =0
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16.

17.

r=0o0r2x+4+y=3
y=0orz+y=2

The equilibrium points are

(0,0), corresponding to the case where neither
species exists,

(0,2), corresponding to the case where species
Y exists but species X does not,

(1.5,0), corresponding to the case where
species X exists but species Y does not,
(1,1), corresponding to the have both species
exist, with species Y as many as species X.

Equilibrium points are those that satisfy
2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have

0= 0.4z —0.12% — 0.2zy

0= 0.5y — 0.4y% — 0.1zy

0=2(0.4 —0.1z — 0.2y)
0=y(0.5—-0.4y — 0.1x)

r=00r04—-01x—-02y=0
y=00r05—-04y —0.1x =0

r=0orx+2y=4
y=0orzxz+4y=>5

The equilibrium points are

(0,0), corresponding, to the case where neither
species exists,

(0,1.25), corresponding to the case where
species Y exists but species X does not,
(4,0), corresponding to the case where species
X exists but species Y does not,

(3,0.5), corresponding to the have both species
exist, with species X six times as many as
species Y.

Equilibrium points are those that satisfy
2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have

0= 0.3z — 0.22> — 0.2zy

0=0.2y —0.13% — 0.2zy

0=2(0.3 — 0.2z — 0.2y)
0=y(0.2—-0.1y — 0.22)

z=00r03—-02x—-02y=0
y=00r02-01y—-02x =0

r=0orxz+y=15
y=0or2x4+y=2

The equilibrium points are

(0,0), corresponding to the case where neither
species exists,

(0,2), corresponding to the case where species
Y exists but species X does not,

(1.5,0), corresponding to the case where
species X exists but species Y does not,

18.

19.

20.

(0.5, 1), corresponding to the have both species
exist, with species Y twice as many as species
X.

Equilibrium points are those that satisfy
2'(t) = 0 and y'(¢) = 0. Substituting into the
equations, we have

0=0.4z — 0.3z°> — 0.1zy

0=0.3y — 0.2y% — 0.12y

0=2(0.4—0.3z — 0.1y)

0=y(0.3—0.2y —0.1x)
z=00r04—-03x—-0.1y=0
y=00r03—-02y—-0.1x=0
r=0or3z+y=4

y=0orzxz+2y=3

The equilibrium points are

(0,0), corresponding to the case where neither
species exists,

(0,1.5), corresponding to the case where
species Y exists but species X does not,
(4/3,0), corresponding to the case where
species X exists but species Y does not,
(1,1), corresponding to the have both species
exist, with species Y as many as species X.

Equilibrium points are those that satisfy
Aty =0 and y'(t) = 0. -Substituving 1mco the
equations, we have

0=0.2z — 0.22° — 0.1zy

0=0.1y — 0.1y* — 0.22y

0=2(0.2—-0.2z¢ —0.1y)

0=y(0.1—-0.1y — 0.2x)

z=00r02-02x—-01y=0
y=00r01-01y—-02x =0
r=0o0r2z+y=2

y=0or2z4+y=1

The equilibrium points are

(0,0), corresponding to the case where neither
species exists,

(0,1), corresponding to the case where species
Y exists but species X does not,

(1,0), corresponding to the case where species
X exists but species Y does not.

Equilibrium points are those that satisfy
2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have

0=0.1z — 0.22° — 0.1zy

0=0.3y — 0.2y% — 0.12y

0=2(0.1 —0.2c — 0.1y)

0=y(0.3—0.2y —0.1z)
z=0o0r01-02x—-0.1y=0
y=00r03—-02y—0.1x=0
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r=0o0r2z+y=1

= = ] /<
y=0orzxz+2y=3 11977
The equilibrium points are ] 52
(0,0), corresponding to the case where neither R 2%
species exists, 1177
i od §1 04 oI T TI T TTT
(0,1.5), corresponding to the case where ] Rt ———————
species Y exists but species X does not, o t ( ‘{ s T T T
. -7 S/ e
(0.5,0), corresponding to the case where R NN i e ——
] T
species X exists but species Y does not. AN A YW
1 N —— 7 N\ N~

21. In Exercise 15,
dy 0.3z — 0.22% — 0.1zy

dr 0.2y —0.1y2 — 0.1lay (b)
From the following phase portrait, we observe
that = S m——
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25.

26.

27.

28.

29.

30.

31.
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j '—'4]‘5—'2'0 '—'2]13—'2'0 'OED 2E-20 4E-20
x
Write u = y,v = 3y'. We then have
/
ALy
v = —2zv — 4u + 422

Write ©v = y,v = y'. We then have
/
u=uv

v =3v—3/ru+4

Write u = y,v = 3y'. We then have
u =v
v =coszv — zu® + 2z
Write u = y,v = 3'. We then have
u =

, =34 u+2x
v T

Write uy =y, up =3/, and ug = y”,

Uy = U2
Uy = U3
uhy = —2xu3 + duy — 2uy + 2

Write u1 =y, up = v/, and uz = y”,

uhy = 202Uy — ul 42

: / 1 111
VVrlteul::y7u2::y7/u'3::y7u4::y7

Uy = us
uh = ug
!/

Uz = Uy

uly = 2uy — zup +2 — €”

32.

33.

34.

36.

37.

: / 1 111
“HmeulzzwquzzyaUSZZI7w1:y )
Uy = ug
Uy = U3
Uz = Ug )
uy = 2uzug — (cos x)uj

An approximate solution is
x(1) = 0.253718, y(1) ~ 0.167173.

n | Ty Un
0 0.2 0.2
1 0.2048 0.1964
21 0.2097201152 | 0.19287422728
31 0.2147629013 | 0.1894212388
5 | 0.2252268589 | 0.1827279868
10 | 0.2537179001 | 0.1671729953

An approximate solution is
x(1) = .252044, y(1) ~ .23354.

n | Tn | Yn |
0 0.2 0.2
1 2048 2032
2 [ 2096889856 | .2064349440
3] 2146673944 | 2097046177
5 | .2248930443 | 2163471744
10 | .2520442475 | 2335415381

Equitibrivin - points | are’ “those | that  catisly

2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have
0= (z* —4)(y* ~ 9)

0=ax>— 2y
0=(z+2)(x—-2)(y+3)(y—3)
0=z(x—2y)
r=2,x=-2,y=3,y= -3
=0,z =2y

The equilibrium points are
(231)7(4723471)7(633)7(4763473)7(033)7(07473)'

Equilibrium points are those that satisfy
2/'(t) = 0 and y'(¢) = 0. Substituting into the
equations, we have

0=(@-y)(l-z-y)
0=2z—ay=x(2—y)

r=yorx+y=1
r=0o0ry=2

The equilibrium points are
(0,0),(2,2),(0,1),(-1,2).

Equilibrium points are those that satisfy
2'(t) = 0 and y/(t) = 0. Substituting into the
equations, we have
0=02+2x)(y—2)
0={A—-2)(z+y)
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38.

39.

40.

41.
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r=-2o0rx=y
r=4orx=—y

The equilibrium points are
(0,0),(—2,2),(4,4).

Equilibrium points are those that satisfy
2'(t) = 0 and y'(t) = 0. Substituting into the
equations, we have

0=—-z+y

0=y+a>

0=0-0=(y+2})—(—z+y)=22-2z
z2(x—1)=0,z=00rz=1
When z =0,y =0

and when z =1,y = —1

The equilibrium points are (0, 0), (1, —1).

S~

aaaaa

NN

A N O
A N
A N N

7
7
7
7
?‘
/

VPP PLLS>

For equilibrium solutions, set 2’ = ¢y = 0 to
get

0= 0.4z — 0.1z — 0.2zy

0= —-0.5y +0.1zy

0=0.12(4 —z — 2y)

0=0.1y(-5+z)

Equilibrium points are (0,0), (4, 0).

Neither of these solutions has non-zero values
for both populations, so the species cannot co-
exist. Now suppose that the death rate of

42.

43.

species Y is D instead of 0.5, and let us search
for equilibrium solutions where both popula-
tion values are non-zero. The equations are
now

' = 0.4z —0.12% — 0.2zy

y' = —Dy+0.1zy

where D > 0. 0 =0.1z(4 — x — 2y)

0=0.1y(x — 10D)

Since we are searching for non-zero solutions,
0=4—2z—2y

0=z—-10D

Solving the second equation gives z = 10D,
and substituting this expression into the first
equation gives
0=4—-10D—-2y=2-5D—y

y=2-5D

The equilibrium solution for y will be positive
provided that 2 — 5D > 0, which means that
D < 04.

Continuing the computation in the solution to
Exercise 43. Suppose that the birth rate of
species X is B instead of 0.4, and let us search
for equilibrium solutions where both popula-
tion values are non-zero. The equations are
oW

r’ = Bx — 0.1z — 0.22y

y' = —0.5y + 0.1zy

where B > 0. 0 = z(B — 0.1z — 0.2y)
0=1y(—-0.5+0.1x)

Since we are searching for non-zero solutions,
0=B-0.1z—0.2y

0=-5+=2

Solving the second equation gives x = 5, and
substituting this expression into the first equa-

tion gives
0=B-05-02y
y=5B—-25

The equilibrium solution for y will be positive
provided that 5B — 2.5 > 0, which means that
B> 0.5.

Assume that all coefficients are positive. The
equations that define equilibrium are
0=2z(b—cx—Fky)
0=y(—d+ koy)
For the species to coexist, both x and y must
be nonzero, and so the equations reduce to
0=b—cr—ky
0=—d+kyy

. . d
Solving the second equation, we get y = e
Substituting the result into the first equatiorzl,
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44.

d
Ozb—cx—klk—

cxzb—&: I?kg—dkzl
ko ko
v bky — dkq
Ck‘z
Thus, > 0 if and only if bky — dk; > 0, which

is equivalent to bk > dk;.

Assume that ¢ = 0, the model becomes
' =bx — kizy
y' = —dy + kazy
For the species to coexist, we look for nonzero
equilibrium solutions to
0=bx — kizy = z(b— k1y)
0= —dy + koxy = y(—d + kox)
which gives
O:b—kly,Oz —d+k‘2.’L‘
b d

y= y L

k1 ko

If the pesticide is used, b will be reduced and d
will be increased. This means that the equilib-
rium population for the pest will be increases,
while that for the predator will be decreases.
This is not a desired effect of the pesticide.

Ch. 7 Review Hxercises

1.

2.

We separate variables and integrate.
1

“y' =2
1
fdy:/2dz
Y

Inly| =2z +c¢

y:k/‘€2w

The initial condition gives 3 = k so the solution
is y = 3e2°

We separate variables and integrate.

The initial condition gives us 2 = A so the so-
lution is y = 2e 3%

. We separate variables and integrate.

yy' =2z
/ydyz/Qxdx
2

¥y _ 2

5 7 +c

y=1+2z2+c¢

437

The initial condition gives us 2 = +/c,c =4 so
the solution is y = /222 + 4

. We separate variables and integrate.

1
7;3/ =3z
1
— | 5dy= [ 3zdx
Yy
1 322 n
=2 4.
Y 2
B 2
Y= 321 2¢
2
The initial condition gives us 4 = —
c
the solution i 2
ionisy=-———
so the solution is y 522112

. We separate variables and integrate.

\;gy’=\/5

/y_l/Qdy:/xl/de

2
9y1/2 = g363/2 te

23/2 2
yZ(zs*Q

The initial condition gives us

-€d40 \° 5
—\§+Q =3
23/2 5

2
so the solution is y = ( + )

3 3

. We separate variables and integrate.

r_
127 =7

1
[ = [
2

T
tan ly="+¢
y= +

2
= tan x——l—c
4 2

The initial condition gives us 1 = tanc

L 2 7
so the solution is y = tan ) + 1

. With ¢ measured in hours, we have

y = Aekt, A =y(0) = 10%.
If the doubling time is 2, then

2 =e? k=1In(2)/2, and

y = 104etln(2)/2 — 10421&/2'

To reach y = 10° at a certain unknown time ¢,
we need

2t/2 = 100,

‘ 21n(100)

~ 13.3 h .
m(2) 3.3 hours
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10.

11.

12.

13.
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. Assuming that the growth is exponential, we

have y(t) = Aekt.

Since the population at ¢ = 0 is 100, we have
A =100.

y(2) = 140 allows us to solve for k:

140 = 100e%*, or k = %111(7/5).

Population at t =6 is
y(6) = 100e5(1/2)(7/5) = 274 4

. With ¢ measured in hours, x in milligrams, we

get

1?2

To get to x = .1 at a certain unknown time ¢,
we need

2t/2 = 2 _ 9
1 ’
21In(2
t= n(20) ~ 8.64 hours.
In(2)

The relationship between half-life (7) and the
growth constant (r) is

In2
S (see Exercise 18 of Section 6.1).
r
Therefore, our growth constant is
In 2
Y Advat
3

The proportion of material left after 9 hours is
1
69T = g (: 125%)

The proportion of material left after 11 hours
is e’ ~ 0.07874 (~ 7.874%).

The equation for the doubling time ¢4 in this
case is
2 = %% hence
In(2)
tqg =
.08

~ 8.66 years.

With continuous compounding, this invest-
ment will be worth
$4000¢(0-06)(10) ~ $7288.48

For temperature T" at time ¢, and ambient tem-

perature T,, we have
T—-T, 4
TO)-T,
In this case with T, = 68,7(0) = 180 and
T(1) =176, we have
108 176 —68

112 180—68

k=1In % =1In g ,
112 28

T — 68 27\
_ otk — tIn(27/28) _ () :

112 28

14.

15.

16.

17.

18.

27\ °
T = 12 =) .
68 + (%)

To rea(ch 7 = )120 at unknown time ¢, we need
In(52/112 .

= W ~ 21.1 minutes.

Let y(t) represent the temperature of the drink.

We start with the differential equation

y'(t) = Kly(t) — 70]

This has solution y(t) = Aekt 4 70.

We now find constants A and k. The ini-

tial condition is y(0) = 46 and we also know

y(4) = 48.

46 =y(0) = A+ 70

48 = y(4) = Ae* + 70

This tells us that A = —24 and

k= [In(11/12)]/4.

To determine when y(t) = 58 we solve

58 = —24eFt 4+ 70

Solving gives

In2
t= —HT ~ 127 minutes.
So, just over 2 hours.
!
LA
Y
4
I |y| Ay i Ye
42
y = Ae” /2
1, 1
yy V1— 22

/ld —/;dx
Y Y V1—22

In|y| =sin"ta+c

y:Aesin71I

2 I
(y"+y)y = T2
/(y2+y)dy:/41+:v2dx
vy

+ 5 =4tan" 'z 4 ¢
It is impossible (without using a CAS) to write
out the explicit formula of y in terms of x.

e Yy =e”
—/e ydy:/—e“’dz
e ¥V=—-e"+c¢
y =In(c—€")
. Equilibrium solutions occur where y' = 0

which occurs when y = 0 and y = 2. y =0
is unstable and y = 2 is stable which can be
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seen by drawing the direction field.
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both stable which can be seen by drawing the

y = 0 is unstable and y = —1 and y = 1 are
direction field.

20. Equilibrium solutions occur where 3y = 0
which occurs when y =0, y =1 and y
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21. Equilibrium solutions occur where 3’

which occurs when y = 0, and it is stable.
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Equilibrium solutions occur where vy’

22. We have ¢y’ = yly

Y

0

which occurs when y = 0 and y = 3, both

unstable.

26.
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27. The differential equation is
' = (3—2z)(4—2)— 2522

= .12 — .7z + .7522
3,, 14 4
A—Z(Z — ng‘+ 55)

3

= z(z —r)(x — s). in which

r_7+\/ﬁ T—-V13

5 T 1
I YE
15
When separated it takes the form
x/
N A— 1
(. —r)(z—s)

D /4

i which 'k'==3/4.

By partial fractions we find
1

ml 1
N (r—s>{<x—r> <x—s>}

and after integration we find

1 _
———1In r-r = kt + ¢1 or in this case
(r—s) T — 5
T—r 2413 (3

1 =y = wt

. r— s 15 (4 +Cl> wt+ c2

V13 21/13
w = TO ~ 36056, Cy = Tcl

Using the initial condition z(0) = ¢, we find

2 =1nl(c—r)/(c—s)l,

plle=s@=—n) o4
(c—7r)(x—s)

T e TR el
T —S c—s c—s '
s(r —c)eYt +r(c—s)

Tr =

(r—clevt+ (c—s)
(c—s) ot
r e + s
B r—c
(c—s)e_wt+1
r—c

The choice of sign is + since the left side of the

CHAPTER 7.

FIRST-ORDER DIFFERENTIAL EQUATIONS

middle equation is (¢ — r)/(c — s) when t = 0
and x = c. The last expression is one of many
possible ways to normalize. It is apparent that
T — s~ .22630 as t — oo Numerically, when

¢ = 0.1, this comes to

22630 — .14710¢~-36056¢
v 1 — .20806¢—-36056t and the graph

looks like

When ¢ = 0.4, this comes to

. .22630 + .39999¢ 360561 - )
T T ¥ 5657de—so0s6t - A the grap
looks like

28. The equilibrium solutions are where 2’(t) = 0,

or when
0=(0.3—2)(0.4 — ) — 0.252>
=0.752% — 0.7z + 0.12

We can solve this using the quadratic formula:
L 0T+ V/(=0.7)2 — 4(0.75)(0.12)

2(0.75)
~ 0.22630, 0.70704

These are our equilibrium solutions.
x = 0.22630 is a stable equilibrium.
x = 0.70703 is an unstable equilibrium.
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29.

30.

31.
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The DE S r integrates to
(x —a)?
—~  — rt+c. and then
T—a
1
c=—,
a
—1 —a
T—a= = —)
c+rt 1+ art
1 a’rt
r=al|l-— = .
1+art 1+ art

One can see that all values of x lie between
0 and a, and that tll>nolo z(t) = a All the ini-
tial amounts of the A,B substances (both a in
this case) will eventnally be converted to the X
substance wnicn uitimately will have the same
concentration as the original concentrations of
the other two substances.

Using partial fractions gives
_ dv___ [(L 1\,
rt+c_/x(1—x) _/<x * 1—x) v
x
1_

=Injz| —In|]l—z|=In

Solving for z,
x
:k7¢
1—2 ¢ .
ke”
H)=—"
z(t) 1+ kert
We clearly have lim z(t) =1

t—o0

(k=)

SoL
Vot
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With A the amount in the account at time ¢

32.

33.

34.

441

the DE is
A’(t) = .10A + 20,000 with an IC of
A(0) = 100,000.

The DE separates and integrates easily, yield-
ing

101n].104 4 20,000| =t + ¢

¢ = 101n(30,000),

104 + 20,000 = 30,000¢/°.

If the fortune is to reach 1,000,000 at unknown
time ¢, we must have

120,000 = 30,000¢'/1°
t 12

— =In— =1n(4),
10 3

t =101In(4) ~ 13.86 years.

If the payments are made at the end of each
year instead of continuously, we will have a se-
quence of differential equations with exponen-
tial growth solutions. For the first year, we will
have A;(t) = 100,000e’'* 0<t <1

When ¢ = 1, we have A;(1) ~ $110,517. At
the beginning of the second year, we deposit
$20,000 so we start with a total of $130,517.
We can now use this for the second year and see
that for the second year A, (t) = $130,517e%-1%.
At the end of the second year we have

Ag(1) =~ $144, 244. I we continue this process,
one can see that at the end of the 14th year, or
when t = 14, (including the $20,000 deposit),
there will be $986,517 in the account. At the
end of the 15th year (including the $20,000
deposit), there will be $1,110,270 in the ac-
count. There will be exactly $1,000,000 in the
account when ¢t ~ 14.14

It is a predator-prey model. For equilibrium
solutions, set ' =3’ = 0 to get

0=0.1z — 0.1z% — 0.2zy

0=-0.1y +0.1zy

which are equivalent to

0=01z(1—z—2y)
0=01ly(—1+z)z=00rz=1-2y
y=0orx=1.

The equilibrium solutions are (0,0) (no prey or
predators) and (1,0) (prey but no predators).

It is a competing species model. For equilib-
rium solutions, set 2’ =y’ = 0 to get
0=0.2z—0.122 — 0.2zy

0=0.1y —0.1y% — 0.1zy

which are equivalent to

0=2(0.2—0.1z — 0.2y)
0=y(01-01ly—0lzx)x=0o0rz+2y=2
y=0orzxz+y=1.
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The equilibrium solutions are (0,0) (neither 38. In Exercise 33,
species), (0,1) (species Y but no species X) dy 0.5z —0.12% — 0.2zy
and (2,0) (species X but no species Y). dr 0.4y —0.1y2 — 0.2zy
From the direction field, (0,0), (0,4) and (5,0)
35. It is a competing species model. For equilib- are unstable, (1,2) is stable.

rium solutions, set 2’ =y’ = 0 to get

5 _
— _ _ s SIS
0= 0.5z O.lx2 0.2zy ‘?jjj;;;jﬁiiﬁﬁ/ﬁﬁﬁﬁi
J— -/ S
0=04y —0.1y" — 0.2zy TG22220220220000007
. . TN ST
which are equivalent to R S A NN
TN\ SIS
0=0.1z(5—x —2y) G L
_ _ _ N Y
0=01yd—y—2z)z=0o0rx+2y=>5 = A
y=Dorzety =4 ; SEE2000007
- ~——
T . . F— T TN VNN N T
The equilibrium solutions are (0,0) (none of ei- == IS 2247
ther species), (0,4) (none of first species, some 7711 f t T PV 2
of second), (5,0) (some of first species, none of ] T : 3 : :
second), (1,2) (twice as many of second species
as first species)
39. Write u = y,v = 3/, then
r_
36. It is a predator-prey model. For equilibrium u/ =v )
solutions, set ' = 3’ = 0 to get vl =datv = 2u+dru — 1
_ _ 2 _
0=04z —0.1z° — 0.2zy 40. (a)
0=-0.2y +0.1zy
which are equivalent to - AN L L
0.1 ——
_ I 4 —
M R : whni=
0=01y(—24z)z=00rz=4—2y . NN E 2=
Y Ao\ PR B cad ' KRN N ¥ a7 P
] ke
The equilibrium solutions are (0,0) (no prey or 009 NNNNNNNNER S
predators) and (4,0) (prey but no predators). ] SNNANNANNNNE S
NN /—
NN ny —
. 0.04 Et‘.:tii:\\\\\\ :?.QQ {/
NN e B
37. I(;l EXGSCllse 3%, ) ) 0.2 ] \\.\\::\.\\.\.\.\\.\.\\: l.;
y _ UVl —U.lz" —U.2zy 0 e
dx —0.1y + 0.1zy 0.4 0.6 0.8 '
From the direction field, we see that (0,0) is
unstable and (1,0) is stable. (b)
o] INERRY 0.4 NP —
3 /AR B 1] /L7 r e
3 7100 1 11720222
. 7700 1 [ 11722222
4 AR 0. 155%?5;:::
3 7700 B 1177 cee——
.3 2700 1 S
Ena——t A 11 Voo
e R R AR R e 0.2 | R [ L&
e =SNNNN N NN ] 1) \\\!11///-/-—«-
SRR 2 11 NNV P —
NN NN 1\ NN P
ERN Ny 1) NNNNNN N e
B A A A 4 0.3\ NNNNNNNN Y —
ERVR R R R RN [N SRR AL
- \ L l L TN SN ———T —\—
NN S
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