Lesson 3: Hydrogen lons and pH

Ion Product Constant for Water

Write the self-ionization equation for water. Compare the numbers of hydronium and hydroxide ions formed.

The ion product constant for water (Kw) is the value of the equilibrium constant expression for the self-ionization of water.

Writing Kw
[$\mathrm{H}_{2} \mathrm{O}$] does not appear in the denominator. Why?

The Ion Product of Water

$$
K_{\mathbf{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

In dilute aqueous solutions, the product of the concentrations of the hydrogen ion and the hydroxide ion equals K w.

Experiments show that in pure water at $298 \mathrm{~K},\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are both equal to $1.0 \times 10^{-7} \mathrm{M}$. Calculate Kw .

Kw and Le Châtelier's Principle

Does Kw change when the concentration of hydrogen ions increases? Why?

Explain this change in terms of Le Châtelier's principle.

Calculate $\left[\mathrm{H}^{+}\right.$] and $\left[\mathrm{OH}^{-}\right]$Using Kw

At 298 K , the H^{+}ion concentration in a cup of coffee is $1.0 \times 10^{-5} \mathrm{M}$. What is the OH^{-}ion concentration in the coffee? Is the coffee acidic, basic, or neutral?

The concentration of either the $\mathrm{H}+$ ion or the $\mathbf{O H}$ - ion is given for four aqueous solutions at $\mathbf{2 9 8} \mathrm{K}$. For each solution, calculate $[\mathrm{H}+$] or [$\mathrm{OH}-]$. State whether the solution is acidic, basic, or neutral.
a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13} \mathrm{M}$
b. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
c. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$

The $\mathbf{p H}$ of a solution is the negative logarithm of the hydrogen ion concentration.

A solution with a pH of 0.0 is strongly \qquad ; a solution with a pH of 14.0 is strongly

A change of one pH unit represents a tenfold change in ion concentration. Determine whether seawater $(\mathrm{pH}=8)$ or detergent $(\mathrm{pH}=10)$ has a higher concentration of H^{+}ions. How many times higher?

What is pOH ?

The $\mathbf{p O H}$ of a solution is the negative logarithm of the hydroxide ion concentration.

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

What is the pH of a neutral solution at 298 K ?

Calculate the pH of solutions having the following ion concentrations at 298 K .
a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-2} \mathrm{M}$
b. $\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-6} \mathrm{M}$
c. $\left[\mathrm{H}^{+}\right]=0.0055 \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=0.000084 \mathrm{M}$

Challenge Calculate the pH of a solution having $\left[\mathrm{OH}^{-}\right]=8.2 \times 10^{-6} \mathrm{M}$.

A typical cleaner has a hydroxide ion concentration of $4.0 \times 10^{-3} \mathrm{M}$. calculate the pOH and pH of a cleaner at 298 K .

Calculate the pH and pOH of aqueous solutions with the following concentrations at 298 K .
a. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6} \mathrm{M}$
b. $\left[\mathrm{OH}^{-}\right]=6.5 \times 10^{-4} \mathrm{M}$
c. $\left[\mathrm{H}^{+}\right]=3.6 \times 10^{-9} \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-2} \mathrm{M}$
e. $\left[\mathrm{OH}^{-}\right]=0.000033 \mathrm{M}$
f. $\left[\mathrm{H}^{+}\right]=0.0095 \mathrm{M}$

Challenge Calculate pH and pOH for an aqueous solution containing $1.0 \times 10^{-3} \mathrm{~mol}$ of HCl dissolved in 5.0 L of solution.

Calculating ion concentrations from pH

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})
$$

```
[OH-] =
```

Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following solutions.
a. Milk, $\mathrm{pH}=6.50$.
c. Milk of magnesia, $\mathrm{pH}=10.50$
b. Lemon juice, $\mathrm{pH}=2.37$
d. Household ammonia, $\mathrm{pH}=11.90$
e. Blood, $\mathrm{pH}=7.40$

Challenge Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a sample of seawater with a $\mathrm{pOH}=5.60$.

Molarity and the pH of strong acids and bases

Strong acids and bases are essentially 100\% in the form of ions in solution.

If a flask contains 0.1 M HCl . What is the $\left[\mathrm{H}^{+}\right]$in the flask? \qquad

If a flask contains 0.1 M NaOH . What is the $\left[\mathrm{OH}^{-}\right]$in the flask? \qquad

Explain why you cannot obtain the $\left[\mathrm{H}^{+}\right]$directly from the molarity of a weak acid solution

Strong polyprotic acid and Multiple OH^{-}

The concentration of hydroxide ions in a $7.5 \times 10^{-4} \mathrm{M}$ solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is \qquad

Calculating Ka from pH

Write the Ka expression for

$$
\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

Calculate Ka for HF if the $\mathbf{p H}$ of $\mathbf{0 . 1 0 0 M}$ solution is $\mathbf{3 . 2 0}$.
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{F}^{-}\right]=$ \qquad
$[\mathrm{HF}]=0.100 \mathrm{M}-$ \qquad $=$ \qquad

The pH of a $\mathbf{0 . 1 0 0 \mathrm { M }}$ solution of formic acid (HCOOH) is 2.38 . What is Ka for HCOOH ?

Calculate the Ka for a 0.220 M solution of $\mathrm{H}_{3} \mathrm{AsO}_{4}, \mathrm{pH}=1.50$

Calculate the Ka for a 0.0400 M solution of $\mathrm{HClO}_{2}, \mathrm{pH}=1.80$

Calculate the Ka of the following acids using the given information.
a. $\quad 0.00330 \mathrm{M}$ solution of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right), \mathrm{pOH}=10.70$
b. $\quad 0.100 \mathrm{M}$ solution of cyanic acid (HCNO), $\mathrm{pOH}=11.00$
c. 0.150 M solution of butanoic acid $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right), \mathrm{pOH}=11.18$

Challenge Calculate the Ka of a 0.0091 M solution of an unknown acid (HX) having a pOH of 11.32. Use Table 4 to identify the acid.

Measuring pH

Figure 16 The approximate pH of a solution can be obtained by wetting a piece of pH paper with the solution and comparing the color of the wet paper with a set of standard colors as shown in \mathbf{a}. The portable pH meter in \mathbf{b}, which is being used to measure the pH of rain water, provides a more accurate measurement in the form of a digital display of the pH .

What is the K_{a} value of 0.0091 M solution of hydrofluoric acid HF with a $\mathrm{pH}=2.68$?

$\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

a.	$K_{a}=6.3 \times 10^{-4}$	O
b.	$K_{a}=7.6 \times 10^{-5}$	O
c.	$K_{a}=9.9 \times 10^{-5}$	O
d.	$K_{a}=4.8 \times 10^{-4}$	O

If $\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-7} \mathrm{M}$ in a solution.
What is the pH of the solution?

$$
\begin{aligned}
& \text { إذا كان } \\
& \text { فما هيمة pH للمحلول؟ }
\end{aligned}
$$

4.7

6.6

7.4

3.5

The pH of a 0.200 M solution of hydrofluoric acid HF لمحلول 0.200 من حضض الهيّروفلوركك pH الرقم الهيّروجئئي
is 2.15 . What is the Ka value of HF acid?
؟HF لحضض Ka هو HF

$$
4.7 \times 10^{-11}
$$

$$
3.2 \times 10^{-9}
$$

$$
1.8 \times 10^{-5}
$$

$$
2.6 \times 10^{-4}
$$

9.8

7.5

4.3

13.1

Which is the correct arrangement according to
 the pOH values of the solutions (X), (Y), and (Z) (Z) ذات الخصاتص التّاليةَ which have the following characteristic?
$(X): \mathbf{p H}=\mathbf{1 0 . 5}$
$(\mathrm{Y}):\left[\mathrm{H}^{+}\right]=10^{-12}$
$(\mathrm{Z}):\left[\mathrm{OH}^{-}\right]=10^{-9}$

A. (lowest) $(\mathbf{Y}) \rightarrow(X) \rightarrow(\boldsymbol{Z})_{\text {(highest) }}$	
B. (lowest) $(X) \rightarrow(\mathbf{Y}) \rightarrow(\boldsymbol{Z})_{\text {(highest) }}$	
C. (lowest) $(Z) \rightarrow(X) \rightarrow(Y)_{\text {(highest) }}$	
D. (lowest) $(X) \rightarrow(\boldsymbol{X}) \rightarrow(\mathbf{Y})_{\text {(highest) }}$	

How many times increases the concentration of hydrogen ions $\left[\mathrm{H}^{+}\right]$in the solution X than in the solution Y according to the figure below?														
POH	13		$\left.\right\|_{11} ^{3}$					xjget soluti 8 8 8 1 6 6	$\begin{array}{r} \text { on } \mathrm{x} \\ \\ \hline \\ \\ \hline \\ \\ \hline \end{array}$			$\left.\right\|_{2} ^{12}$	$\left.\right\|_{1} ^{13}$	Co
A. 2 times														(مزّتان) 2 . ${ }^{\text {(}}$
B. 10 times														. 10 هرّات
C. 100 times														(100 .C
D. 1000 times														

Which is the correct arrangement according to the pH values of the solutions (X), (Y), and (Z) which have the following characteristic?	
$\begin{aligned} & (X): \mathbf{p O H}=\mathbf{9} \\ & (Y):\left[\mathbf{H}^{+}\right]=1 \\ & (Z):\left[\mathbf{H}^{-}\right]= \end{aligned}$	
A. (lowest) $(Y) \rightarrow(X) \rightarrow(Z)_{\text {(highest) }}$	(
B. (lowest $(X) \rightarrow(Y) \rightarrow(Z)_{\text {(highest) }}$	$(\mathrm{S}$
$\mathrm{C}_{\text {. (lowest) }}(\boldsymbol{Z}) \rightarrow(\boldsymbol{X}) \rightarrow(\boldsymbol{Y})_{\text {(highest) }}$	
D. (lowest) $(X) \rightarrow(Z) \rightarrow(Y)_{\text {(highest) }}$	

How many times increases the concentration of كم مزَة يزيد تركيز أيون الهيّروجين [H+ hydrogen ions $\left[\mathrm{H}^{+}\right]$in the solution X than in the النحكول Y حسب الرسم أدناه؟ solution Y according to the figure below?

A. 2 times	(مرّتان) 2 . ${ }^{\text {(1) }}$
B. 10 times	10. 10 مرّات
C. 100 times	100.C
D. 1000 times	D 1000 مرّة

Which of the following aqueous solutions is acidic?
أي المحاليل المائية الثتالية حضضي ؟
(Concentrations at 298 K)
(298 K التزاكيز هند (

D المحلول Solution D	C المحلول Solution C	B المحلول Solution B	A المحول Solution A
$\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-4}$	$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$	$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3}$	$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13}$

Solution A العحول A العحول B
Solution B
Solution D
Solution C

الأكونيا المنزليد Household ammonia	عصبرِ الليّيون Lemon juice	طابـب المغنسـا Milk of magnesia	$\begin{aligned} & \text { الحليب Milk } \end{aligned}$
$\mathrm{pOH}=2.10$	pH= 2.37	$\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4}$	$\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-7}$

```
Milk of magnesia \(\rightarrow\) milk \(\rightarrow\) lemon juice \(\rightarrow\) household ammonia \(\quad\) حليب المغنيميا \(\leftarrow\) الحليب \(\leftarrow\) عصير الليمون \(\leftarrow\) الأمونيا المنزلية
Milk \(\rightarrow\) household ammonia \(\rightarrow\) lemon juice \(\rightarrow\) milk of magnesia الحليب \(\leftarrow\) الأمونيا المنزّلية \(\quad\) عصير الليمون \(\leftarrow\) حليب المغنيسيا
Household ammonia \(\rightarrow\) lemon juice \(\rightarrow\) milk \(\rightarrow\) milk of magnesia الأمونيا المنزلية \(\leftarrow\) عصير الليمون \(\leftarrow\) الحليب \(\leftarrow \leftarrow\) حليب المغيسيا
    Lemon juice \(\rightarrow\) milk \(\rightarrow\) milk of magnesia \(\rightarrow\) household ammonia \(\quad\) مصير الليمون \(\leftarrow\) الحليب
What is the value of \(\mathrm{K}_{\mathrm{a}}\) of 0.0400 M solution of acid \(\mathrm{HClO}_{2}\)
```



```
                                    \(\varsigma \mathrm{pH}=1.80\) و
    with \(\mathrm{pH}=1.80\) ?
```

4.9×10^{-9}
5.8×10^{-3}
1.0×10^{-2}
2.6×10^{-4}

What is the value of K_{a} of 0.0044 M solution
0.0044 M تركيزه $\mathrm{C}_{6} \mathrm{H}_{5} \mathbf{C O O H}$ ما قيمة Ka وpH=3.30
3.8×10^{-2}
2.6×10^{-4}
6.5×10^{-5}
4.9×10^{-9}

D المحلول Solution D	C المحلول Solution C	المحلول B Solution B	A المحلول Solution A
$\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-2} \mathrm{M}$	$\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-3} \mathrm{M}$	$\mathrm{pH}=7.40$	pOH=5.60

Solution D \rightarrow solution B \rightarrow solution A \rightarrow solution C	المحلول D
Solution B \rightarrow solution $\mathbf{C} \rightarrow$ solution $\mathbf{D} \rightarrow$ solution A	المحلول
Solution $\mathbf{C} \rightarrow$ solution A \rightarrow solution $\mathbf{B} \rightarrow$ solution \mathbf{D}	المحلول C

Solution $\mathbf{A} \rightarrow$ solution $\mathbf{B} \rightarrow$ solution $\mathbf{C} \rightarrow$ solution \mathbf{D}

Which of the following solutions is basic?
(Concentrations at 298 K)

عصير الليمون Lemon juice	ماء البحر Seawater	Pure water	فنجان قهوة Coffee cup
$\left[\mathrm{H}^{+}\right]=6.0 \times 10^{-3}$	$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-6}$	$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$	$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-5}$

Pure water
Lemon juice
Seawater
Coffee cup

