

EasyChemistry4all by Mr. Mouad
مناهج دولة الإمـار ات

عام، متقدم ونخبة 9،10،11،12،10 00971557903129

PLEASE Share \& Subscribe to the channel. Let us reach 3000 subscriber!!

Inspire Chemistry Module 17 "Acids \& Bases"

Lesson 3: "Hydrogen lons and pH"

Learning Outcomes:

Dexplain $\hat{\mathrm{p} H}$ and pOH .
Delate pH and pOH to the ion product constant for water.
Dalculate the pH and pOH of aqueous solutions.

Focus Question

What are pH and pOH ?

MAINIDEA pH and pOH are logarithmic scales that express the concentrations of hydrogen ions and hydroxide ions in aqueous solutions.
pH is related to $\left[\mathrm{H}^{+}\right]$in a solution.
pOH is related to $\left[\mathrm{OH}^{-}\right]$in a solution.

Ion Product Constant for Water

```
lesson 1
[H+}]=[\mp@subsup{\textrm{OH}}{}{-}
```

- Pure water contains equal concentrations of \mathbf{H}^{+}and OH^{-}ions produced by selfionization.
- The equation for the equilibrium can be simplified as follows.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- In the self-ionization of water, one water molecule acts as an acid, and the other acts as a base.

$+$

- The ion product constant for water, K_{w} w is the value of the equilibrium constant expression for thêself-ionization of water.

$$
\begin{aligned}
& \left.\mathrm{K}_{w} \mathrm{X} q=\left[\mathrm{H}^{+}\right] \mathrm{COH}^{-}\right] \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- Fact from experiments: With pure water at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$, both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are equal to $1.0 \times 10^{-7} \mathrm{M} . \mathrm{mol} / \mathrm{L}$

$$
\begin{aligned}
& \text { for water } K_{w}^{K_{w}}=\frac{\left.\frac{\downarrow}{\left[\mathrm{H}^{+}\right.}\right]\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-7}\right)\left(1.0 \times 10^{-7}\right), ~\left(10^{-7}\right)}{\sim} \\
& K_{w}=1.0 \times 10^{-14} \longrightarrow \text { it is } \\
& k_{\omega}=1 \times 10^{-14}
\end{aligned}
$$

- According to Le Châtelier's Principle, as [H^{+}] goes up, $\left[\mathrm{OH}^{-}\right]$must go down, and vice versa (و العكس صحيح). This happens so that the value of ${\underset{\text { K }}{w} \text { will not }}^{\text {(}}$ change.

$$
\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\left(\mathrm{OH}^{-} \downarrow\right.
$$

EXAMPLE 1

CALCULATE $\left[\mathrm{H}^{+}\right]$AND $\left[\mathrm{OH}^{-}\right]$USING $K \mathbf{w}$ At 298 K , the $\left(\mathrm{H}^{+}\right)$ion concentration in a cup of coffee is $1.0 \times 10^{-5} \mathrm{M}$. What is the $\left(\mathrm{OH}^{-}\right.$on concentration in the coffee? Is the coffee acidic, basic, or neutral? Known

$$
\begin{gathered}
\left.\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-5}\right) \mathrm{M} \\
\mathrm{~K}_{\mathrm{w}}=1.0 \times 10^{-14}
\end{gathered}
$$

Unknown

$$
\left[\mathrm{OH}^{-}\right]=? \mathrm{~mol} / \mathrm{L}
$$

2 SOLVE FOR THE UNKNOWN

Use the ion product constant expression.
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}$

$\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}}=1.0 \times 10-9 \mathrm{~mol} / \mathrm{L}$

State the ion product expression.
Solve for $\left[\mathrm{OH}^{-}\right]$.
Substitute $K_{w}=1.0 \times 10^{-14}$. Substitute $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-5} \mathrm{M}$ and solve.

Because $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the coffee is acidic. Remember!
In acids: $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
In Bases: $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

CALCULATE [H^{+}] AND [OH^{-}] USING K_{w}

IN-CLASS EXAMPLE

Use with Example Problem 1.

Problem

At 298 K , the H^{+}ion concentration in a cup of coffee is $1.0 \times 10^{-5} \mathrm{M}$. What is the OH^{-}ion concentration in the coffee? Is the coffee acidic, basic, or neutral?

Response

ANALYZE THE PROBLEM
You are given the concentration of the H^{+}ion, and you know that K_{w} equals 1.0×10^{-14}. You can use the ion product constant expression to solve for $\left[\mathrm{OH}^{-}\right]$. Because $\left[\mathrm{H}^{+}\right]$is greater than 1.0×10^{-7}, you can predict that $\left[\mathrm{OH}^{-}\right]$will be less than 1.0×10^{-7}.

KNOWN

$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-5} \mathrm{M}$
$K_{w}=1.0 \times 10^{-14}$

UNKNOWN

$\left[\mathrm{OH}^{-}\right]=$? $\mathrm{mol} / \mathrm{L}$

SOLVE FOR THE UNKNOWN

Use the ion product constant expression.

- State the ion product expression.

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- Solve for $\left[\mathrm{OH}^{-}\right]$.

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]}
$$

- Substitute $K_{\mathrm{w}}=1.0 \times 10^{-14}$. Substitute $\left[\mathrm{H}^{+}\right]=$ $1.0 \times 10^{-5} \mathrm{M}$ and solve.

$$
\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10-14}{1.0 \times 10-5}=1.0 \times 10^{-9} \mathrm{~mol} / \mathrm{L}
$$

Because $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the coffee is acidic.

EVALUATE THE ANSWER

The answer is correctly stated with two significant figures because $\left[\mathrm{H}^{+}\right]$and K_{w} each have two significant figures. As predicted, $\left[\mathrm{OH}^{-}\right]$is less than $1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$.
22. The concentration of either the H^{+}ion or the OH^{-}ion is given for four aqueous solutions at 298 K . For each solution, calculate $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$. State whether the solution is acidic, basic, or neutral.
(a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13} \mathrm{M}$
C. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$
(b. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
d. $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$
23. Challenge Calculate the number of H^{+}ions and the number of OH^{-}ions in 300 mL of pure water at 298 K .

22 The concentration of either the H^{+}ion or the OH^{-}ion is given for four aqueous solutions at 298 K . For each solution, calculate $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$. State whether the solution is acidic, basic, or neutral.
a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13} \mathrm{M}$
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$1.0 \times 10^{-14}=\left(1.0 \times 10^{-13}\right)\left[\mathrm{OH}^{-}\right]$
$\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-13}}=\frac{\left(1.0 \times 10^{-13}\right)\left[\mathrm{OH}^{-}\right]}{1.0 \times 10^{-13}}$
$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-1} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$, the solution is basic.
b. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
$K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-7}}=\frac{\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-7}\right)}{1.0 \times 10^{-7}}$
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]$, the solution is netural.
c. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$

$$
K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$$
1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-3}\right)
$$

$$
\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-3}}=\frac{\left[\mathrm{H}^{+}\right]\left(1.0 \times 10^{-3}\right)}{1.0 \times 10^{-3}}
$$

$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-11} M$
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$, the solution is basic.
d. $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-5} \mathrm{M}$
$K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$1.0 \times 10^{-14}=\left(4.0 \times 10^{-5}\right)\left[\mathrm{OH}^{-}\right]$
$\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}}=\frac{\left(4.0 \times 10^{-5}\right)\left[\mathrm{OH}^{-}\right]}{4.0 \times 10^{-5}}$
$\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-10} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is acidic.

23 Challenge Calculate the number of H^{+}ions and the number of OH^{-}ions in 300 mL of pure water at 298 K.

At $298 \mathrm{~K},\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
Mol H ${ }^{+}=\frac{1.0 \times 10^{-7} \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times 300 \mathrm{~mL}$
$=3.0 \times 10^{-8} \mathrm{~mol}$
$3.0 \times 10^{-8} \mathrm{~mol} \mathrm{H}^{+}$ions $\times \frac{6.02 \times 10^{-3} \mathrm{H}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{H}^{-}+}$
$=1.8 \times 1\left(\begin{array}{ll}156\end{array} \mathrm{H}^{+}\right.$ions
Number of $\mathrm{H}^{+}=$number of OH^{-}
$=1.8 \times 10^{16}$ ions

$$
\left[\mathrm{H}^{+}\right]=\frac{\left(3 \times 15^{-9}\right)}{0.0000-3} \mathrm{pH} \text { and } \mathrm{pOH}
$$

- Concentrations of $\underline{\mathrm{H}}^{+}$and OH^{-}ions are often small numbers expressed in scientific notation.
- pH and pOH are easier ways to express these small concentrations.
- pH is the negative logarithm of the hydrogen ion concentration

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-5} \rightleftharpoons \mathrm{PH}=-\log \left(1 \times 10^{-5}\right)=5}{} \begin{array}{l}
{\left[\begin{array}{l}
\mathrm{PH}=5 \\
\text { of a solution. } \\
{\left[\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\right.} \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{PH}}=10^{-5}} \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{PH}}}
\end{array}\right\}}
\end{array}} \\
& \qquad=1 \times 10^{-5 \mathrm{M}}
\end{aligned}
$$

pH and pOH

- The $\mathbf{p O H}$ of a solution is the negative logarithm of the hydroxide ion concentration.

Problem types:

CALCULATE PH FROM [H^{+}]

CALCULATE pOH AND pH FROM [OH ${ }^{-}$]
CALCULATE [H^{+}] AND [$\left.\mathrm{OH}^{-}\right]$FROM pH

What you need!!

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right] \times\left[\mathrm{H}^{+}\right]=10^{-14}} \\
& \mathrm{pH}+\mathrm{pOH}=14 \\
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} \\
& {\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{PoH}}}
\end{aligned}
$$

Molarity \& pH of strong and weak acids

EXAMPLE 2
CALCULATE PH FROM $\left[\mathrm{H}^{+}\right]$What is the pH of a neutral solution at 298 K ?

rentral solutions:- $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7}$

$$
\begin{aligned}
& P H=-\log \left[H^{+}\right] \\
& P H=-\log \left(1 \times 10^{-7}\right)=7
\end{aligned}
$$

EXAMPLE 2

CALCULATE PH FROM [H+] What is the pH of a neutral solution at 298 K ?

1 ANALYZE THE PROBLEM

In a neutral solution at $298 \mathrm{~K},\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$. You must find the negative log of $\left[\mathrm{H}^{+}\right]$.

Known
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
Unknown
$\mathrm{pH}=$?

2 SOLVE FOR THE UNKNOWN

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right)
\end{aligned}
$$

The pH of the neutral solution at 298 K is 7.00 .

APPLICATIONS
24. Calculate the pH of solutions having the following ion concentrations at 298 K .
a. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-2} \mathrm{M}$
b. $\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-6} \mathrm{M}$
25. Calculate the pH of aqueous solutions with the following $\left[\mathrm{H}^{+}\right]$at 298 K .
a. $\left[\mathrm{H}^{+}\right]=0.0055 \mathrm{M}$
b. $\left[\mathrm{H}^{+}\right]=0.000084 \mathrm{M}$
26. Challenge Calculate the pH of a solution having

$$
\left\{\begin{aligned}
&\left.P_{O H}=-\operatorname{loH}\right] \neq 8.2 \times 10^{-6} M \\
& L O H=-\log \left(8.2 \times 10^{-6}\right) \\
& P H+P O H=14 \\
& P H=14-P O H=14-5.08 \\
& P H=8.9
\end{aligned}\right.
$$

$$
\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}
$$

$$
\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{\left[0 H^{-}\right]}=\frac{1 \times 10^{-14}}{8.2 \times 10^{-6}}
$$

$$
\begin{aligned}
(P H)=-\log [H t] & =-\log \left(1.22 \times 10^{-9}\right) \\
& =8.9
\end{aligned}
$$

$$
=8 \cdot 9
$$

24. Calculate the pH of solutions having the
following ion concentrations at 298 K .
a. $\left[\mathrm{H}^{+}\right] \times 1.0 \times 10^{-2} \mathrm{M}$ $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-2}\right)$
$\mathrm{pH}=2.00$
b. $\left[\mathrm{H}^{+}\right]=3.0 \times 10^{-6} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(3.0 \times 10^{-6}\right) \\
& \mathrm{pH}=5.52
\end{aligned}
$$

25. Calculate the pH of aqueous solutions having the following $\left[\mathrm{H}^{+}\right]$at 298 K .
a. $\left[\mathrm{H}^{+}\right]=0.0055 \mathrm{M}$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log 0.0055
\end{aligned}
$$

$$
\mathrm{pH}=2.26
$$

b. $\left[\mathrm{H}^{+}\right]=0.000084 M$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log 0.000084 \\
& \mathrm{pH}=4.08
\end{aligned}
$$

26. Challenge Calculate the pH of a solution having $\left[\mathrm{OH}^{-}\right]=8.2 \times 10^{-6} \mathrm{M}$.

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=8.2 \times 10^{-6} \mathrm{M}} \\
& K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \times\left[\mathrm{H}^{+}\right]\left(8.2 \times 10^{-6}\right) \\
& {\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{8.2 \times 10^{-6}}=1.2 \times 10^{-9}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log (1.2 \times \\
& \mathrm{pH}=8.92
\end{aligned}
$$

$$
\mathrm{pH}=-\log \left(1.2 \times 10^{-9}\right)
$$

EXAMPLE 3

CALCULATE pOH AND pH FROM [OH ${ }^{-}$] In Figure 16, a cow is being fed straw and hay that has been treated with ammonia. The addition of ammonia to animal feed promotes protein growth in the animal. Another use of ammonia is as a household cleaner, which is an aqueous solution of ammonia gas. A typical cleaner has a hydroxide-ion concentration of $4.0 \times 10^{-3} \mathrm{M}$. Calculate the pOH and pH of a cleaner at 298 K .

Known
$\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-3} \mathrm{M}$
Unknown

CALCULATE pOH AND pH FROM [OH ${ }^{-}$] In Figure 16, a cow is being fed straw and hay that has been treated with ammonia. The addition of ammonia to animal feed promotes protein growth in the animal. Another

Known

$\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-3} \mathrm{M}$

Unknown
$\mathrm{pOH}=$?
$\mathrm{pH}=$? use of ammonia is as a household cleaner, which is an aqueous solution of ammonia gas. A typical cleaner has a hydroxide-ion concentration of $4.0 \times 10^{-3} \mathrm{M}$. Calculate the pOH and pH of a cleaner at 298 K .

2 SOLVE FOR THE UNKNOWN

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log \left(4.0 \times 10^{-3}\right)
\end{aligned}
$$

State the equation for pOH .
Substitute $\left[\mathrm{OH}^{-}\right]=4.0 \times 10^{-3} \mathrm{M}$.
The pOH of the solution is 2.40.
Use the relationship between pH and pOH to find the pH .

$$
\begin{array}{ll}
\mathrm{pH}+\mathrm{pOH}=14.00 & \begin{array}{l}
\text { State the equation that relates } \\
\mathrm{pH} \text { and } \mathrm{pOH} . \\
\text { sH }
\end{array} \\
\text { Solve for } \mathrm{pH} .
\end{array}
$$

The pH of the solution is 11.60 .

EXAMPLE 4
CALCULATE $\left[\mathrm{H}^{+}\right]$AND $\left[\mathrm{OH}^{-}\right]$FROM PH What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a healthy person's blood that has a pH of 7.403 Assume that the temperature of the blood is 298 K .

$$
\begin{aligned}
& \text { Known Unknown } \\
& \begin{array}{lll}
\mathrm{pH}=7.40 & \begin{array}{ll}
{\left[\mathrm{H}^{+}\right]=? \mathrm{~mol} / \mathrm{L}} \\
{\left[\mathrm{OH}^{-}\right]=? \mathrm{~mol} / \mathrm{L}}
\end{array} & 3.98 \sim 4
\end{array} \\
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{PH}}} \\
& {\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{POH}}} \\
& \text { (1) }\left[H^{+}\right]=10^{-\mathrm{Pt}}=10^{-7.4} \\
& \begin{array}{l}
\text { oOH }=14-\mathrm{PH}=14-7.4-6.6 \\
{\left[H^{+}\right]=10^{-P H}=10^{-7.4}=3.98 \times 10^{-8}} \\
{\left[\mathrm{OH}^{-7}\right]=10^{-\mathrm{POH}=10^{-6.6}=}}
\end{array} \\
& \begin{array}{l}
\text { PH }=14-P H=14-7.4=-6.6 \\
{\left[H^{+}\right]=10^{-P H}=10^{-7.4}=\frac{3.98 \times 10^{-8}}{}\left[\mathrm{OH}^{-7}\right]=10^{-P \mathrm{OH}^{4}}=10^{-6.6}=} \\
2.51 \times 10^{-7}
\end{array} \\
& \begin{array}{l}
\text { oOH }=14-P H=14-7.4=-6.6 \\
{\left[H^{+}\right]=10^{-P H}=10^{-7.4}=\frac{3.98 \times 10^{-8}}{}\left[\mathrm{OH}^{-7}\right]=10^{-P \mathrm{OH}^{4}}=10^{-6.6}=} \\
2.51 \times 10^{-7}
\end{array} \\
& {\left[\mathrm{CH}^{-}\right]=\frac{1 \times 10^{-14}}{3.98 \times 10^{-14}}=2.51 \times 10^{-7}}
\end{aligned}
$$

EXAMPLE 4

CALCULATE $\left[\mathrm{H}^{+}\right]$AND $\left[\mathrm{OH}^{-}\right]$FROM $\mathbf{~} \mathbf{H}$ What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a healthy person's blood that has a pH of 7.40 ? Assume that the temperature of the blood is 298 K .

Known Unknown
 $\mathrm{pH}=7.40 \quad\left[\mathrm{H}^{+}\right]=$? mol $/ \mathrm{L}$
 $\left[\mathrm{OH}^{-}\right]=? \mathrm{~mol} / \mathrm{L}$

2 SOLVE FOR THE UNKNOWN
Determine $\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& -\mathrm{pH}=\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})} \\
& {\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-7.40)} \\
& {\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-8} \mathrm{M}}
\end{aligned}
$$

State the equation for pH .
Multiply both sides of the equation by -1 .
Take the antilog of each side to solve for $\left[\mathrm{H}^{+}\right]$.
Substitute $\mathrm{pH}=7.40$.
A calculator shows that the antilog of -7.40 is 4.0×10^{-8}.

$$
3.98
$$

EXAMPLE 4

CALCULATE $\left[\mathrm{H}^{+}\right]$AND $\left[\mathrm{OH}^{-}\right]$FROM $\mathbf{p H}$ What are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a healthy person's blood that has a pH of 7.40 ? Assume that the temperature of the blood is 298 K .

$$
\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-8} \mathrm{M} \quad \text { A calculator shows that the antilog of }-7.40 \text { is } 4.0 \times 10^{-8} .
$$

The concentration of H^{+}ions in the blood is $4.0 \times 10^{-8} \mathrm{M}$.
Determine $\left[\mathrm{OH}^{-}\right]$.
$\mathrm{pH}+\mathrm{pOH}=14.00 \quad$ State the equation that relates pH and pOH.
$\mathrm{pOH}=14.00-\mathrm{pH} \quad$ Solve for рон.
$\mathrm{pOH}=14.00-7.40=6.60 \quad$ Substitute $\mathrm{pH}=7.40$.
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad$ State the equation for por.
$-\mathrm{pOH}=\log \left[\mathrm{OH}^{-}\right] \quad$ Multiply both sides of the equation by $\mathbf{- 1}$.
$\left[\mathrm{OH}^{-}\right]=$antilog $(-6.60) \quad$ Take the antilog of each side and substitute $\mathrm{pOH}=6.60$.
$\left[\mathrm{OH}^{-}\right]=2.5 \times 10^{-7} \mathrm{M} . \quad \mathrm{A}$ calculator shows that the antilog of -6.60 is 2.5×10^{-7}.

The concentration of OH^{-}ions in the blood is $2.5 \times 10^{-7} \mathrm{M}$.

APPLICATIONS
30. Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following solutions.
a. Milk, $\mathrm{pH}=6.50$
c. Milk of magnesia, $\mathrm{pH}=10.50$
b. Lemon juice, $\mathrm{pH}=2.37$
d. Household ammonia, $\mathrm{pH}=11.90$
31. Challenge Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a sample of seawater with a $\mathrm{pOH}=5.60$.

$$
\begin{aligned}
& \mathrm{PH}=14-5.6=8.4 \\
& {\left[\mathrm{H}^{+}\right]=10^{-8.4}=3.98 \times 10^{-9} \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}\right]=10^{-5.6}=2.51 \times 10^{-6} \mathrm{M}}
\end{aligned}
$$

APPLICATIONS

30. Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the following solutions.
a. Milk, $\mathrm{pH}=6.50$
c. Milk of magnesia, $\mathrm{pH}=10.50$
b. Lemon juice, $\mathrm{pH}=2.37$
d. Household ammonia, $\mathrm{pH}=11.90$
31. Challenge Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a sample of seawater with a $\mathrm{pOH}=5.60$.
32. Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in each of the
following solutions.
a. Milk, $\mathrm{pH}=6.50$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-6.50)=3.2 \times 10^{-7} \mathrm{M}$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-6.50=7.51$
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-\mathrm{pOH})$
$\left[\mathrm{OH}^{-}\right]=(-7.50)=3.2 \times 10^{-8} \mathrm{M}$
b. Lemon juice, $\mathrm{pH}=2.37$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-2.37)=4.3 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-2.37=11.63$
$\left[\mathrm{OH}^{-}\right]=$antilog (-pOH)
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-11.63)=2.3 \times 10^{-12} \mathrm{M}$
c. Milk of magnesia, $\mathrm{pH}=10.50$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-10.50)=3.2 \times 10^{-11} \mathrm{M}$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-10.50=3.50$
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-3.50)=3.2 \times 10^{-4} \mathrm{M}$
d. Household ammonia, pH 11.90
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-11.90)=1.3 \times 10^{-12} \mathrm{M}$
$\mathrm{pOH}=14.00-\mathrm{pH}=14.00-11.90=2.10$
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-2.10)=7.9 \times 10-{ }^{3} \mathrm{M}$

33. Challenge Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a sample of seawater with a $\mathrm{pOH}=5.60$.
$\left[\mathrm{OH}^{-}\right]=$antilog $(-\mathrm{pOH})$
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-5.60)=2.5 \times 10^{-6} \mathrm{M}$
$\mathrm{pH}=14.00-5.60=8.40$
$\left[\mathrm{H}^{+}\right]=$antilog $(-8.40)=4.0 \times 10^{-9} \mathrm{M}$
strong

$$
[H A]=4 M
$$

$$
\begin{aligned}
& \mathrm{J}=4 \mathrm{M} \\
& \mathrm{CH}^{+} \mathrm{]}
\end{aligned}=2 \times 4=8 \mathrm{M}
$$

For all strong monoprotic acids, the concentration of the acid is the concentration of H^{+}ions.

$$
\left[\mathrm{HCl} \xlongequal{\Rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}} \mathrm{CH}^{+}\right]=5 \times 10^{-3} \mathrm{M} \stackrel{10}{\Rightarrow} \mathrm{CH}^{-3}
$$

- For all strong bases, the concentration of the base is the concentration of available OH^{-}ions. $\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

$$
[\mathrm{NaOH}]=5 \Rightarrow\left[\mathrm{OH}^{2}\right]=5
$$

- Weak acids and weak bases only partially ionize, so K_{d} and $\left(K_{b}\right)$ values must be used to calculate $\overline{\mathrm{pH}}$ and pOH .
- Litmus paper or a pH meter with electrodes can be used to determine the pH of a solution.

Molarity and the pH of strong acids

$$
\underline{\mathrm{HCl}}(\mathrm{aq}) \rightarrow\left(\mathrm{H}^{+} \mathrm{aq}\right)+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Every HCl molecule produces one H^{+}ion. The bottle labeled 0.1 M HCl ontains 0.1 mol of H^{+}ohs per liter and 0.1 mol of Cl^{-}ions per liter. For all strong monoprotic acids, the concentration of the acid is the concentration of H^{+}ions. Thus, you

$$
\begin{aligned}
& \binom{\text { can use the molarity of the acid to calculate } \mathrm{pH} .}{\text { Acid }}[\mathrm{HCl}]=\left[1 \times 10^{-3}\right)=\left[\mathrm{H}^{+}\right] \\
& \\
& \\
& \mathrm{PH}=72 \quad \mathrm{PH}=\log \left[\mathrm{H}^{+}\right]=-\log \left(1 \times 10^{-3}\right) \\
&
\end{aligned}
$$

Molarity and the pH of strong acids

$$
\begin{aligned}
& \text { strong } 2 \mathrm{H}^{+2}+A^{-} \\
& {\left[\mathrm{H}_{2} A\right]=1 \times 10^{-3} \Rightarrow\left[\mathrm{H}^{+}\right]=2 \times 1 \times 10^{-3}=2 \times 10^{-3} \mathrm{Na}} \\
& \mathrm{PH}=? ?-\log \left(2 \times 10^{-3}\right)=2.69
\end{aligned}
$$

Molarity and the pH oftrong bases
$0.1 M$ solution of the strong base NaOH in Figure $\mathbf{1 8 . 1 7}$ is fully ionized.

$$
\begin{aligned}
& \mathrm{O} .1 \mathrm{M} \\
& \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

One formula unit of NaOH produces one OH^{-}ion. Thus, the concentration of the OH^{-}ions is the same as the molarity of the solution, 0.1 M .

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{OH}_{2}\right)^{2} \rightarrow \mathrm{Ca}^{2}+(2) \mathrm{O}_{-} \mathrm{H}^{-} \\
& {\left[\mathrm{Ca}\left(\mathrm{OH}_{2} \mathrm{H}\right)_{2}=0.1 \mathrm{M}\right.} \\
& {\left[\mathrm{OH}^{-}\right]=2 \times 0.1=0.2 \mathrm{M}}
\end{aligned}
$$

Molarity \& pH of weak acids
CALCULATE Ka d 2 FROM pH
EXAMPLE Problem 18.5
Calculate $\boldsymbol{K}_{\mathrm{a}}$ from $\mathbf{p H}$ Formic acid is used to process latex tapped from rubber
trees into natural rubber. The pH of a 0.100 M solution) of formic acid (HCOOH) is
2.38. What is K_{a} for HCOOH ?

EXAMPLE Problem 18.5
Calculate $\boldsymbol{K}_{\mathrm{a}}$ from $\mathbf{p H}$ Formic acid is used to process latex tapped from rubber trees into natural rubber. The pH of a 0.100 M solution of formic acid (HCOOH) is 2.38. What is K_{a} for HCOOH ?

$$
\left.\therefore \mathrm{H}^{+}\right]_{\frac{1}{2}} 4.168 \times 10^{-3}
$$

$$
\begin{aligned}
& {[\mathrm{HCOOH}]_{i}=0.1 \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
& k_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[[\mathrm{HCOOH}]}=\frac{\left(4.168 \times 10^{-3}\right)\left(4.168 \times 10^{-3}\right)}{0.096}=\frac{1.8 \times 10^{-4}}{\frac{1.29}{2}}
\end{aligned}
$$

EasyChemistry4all by Mr. Mouad
مناهج دولة الإمـار ات

عام، متقدم ونخبة 9،10،11،12،10 00971557903129

PLEASE Share \& Subscribe to the channel. Let us reach 3000 subscriber!!

