

CH11 Rules

Quotient Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Reciprocal Identities

$$\cot \theta = \frac{1}{\tan \theta}$$
$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

Sum Identities Addition Formulas

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Difference Identities **Subtraction Formulas**

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Double Angle Formulas

$$\sin 2a = 2\sin a \cos a$$

$$\cos 2a = \cos^2 a - \sin^2 a$$

$$= 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

Co-function Identities

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta$$
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos \theta$$
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta$$

Even-Odd Identities

$$\sin(-\theta) = -\sin\theta$$
$$\cos(-\theta) = \cos\theta$$
$$\tan(-\theta) = -\tan\theta$$

Half-Angle Formulas

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

Reference Angle Formula

Trigonometric signs:

CH5 Rules

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. A is invertible if and only if $ad - cb \neq 0$.

$$\det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb. \qquad A^{-1} = \frac{1}{ad - cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

$$A^{-1} = \frac{1}{ad - cb} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
. Then $\det(A) = |A| = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$.

KeyConcept Cramer's Rule

Let A be the coefficient matrix of a system of n linear equations in n variables given by AX = B. If $det(A) \neq 0$, then the unique solution of the system is given by

$$x_1 = \frac{|A_1|}{|A|}, x_2 = \frac{|A_2|}{|A|}, x_3 = \frac{|A_3|}{|A|}, \dots, x_n = \frac{|A_n|}{|A|}.$$

where A_i is obtained by replacing the ith column of A with the column of constant terms B. If det(A) = 0, then AXno solution or infinitely many solutions.

Form

CH6 Rules

Discover all our channels اکتشف جمیع قنو اتنا

اً. محمد زیباد Mr. Mohammed Ziad

Parabola

Farabola					
Equation of parabolas					
$y = a(x - h)^2 + k$	$x = a(y - k)^2 + h$				
a > 0 up	a > 0 right				

Direction of opening	a > 0 up	a > 0 right
	a < 0 down	a < 0 left
Vertex	(h , k)	(h, k)
Axis of symmetry	x = h	y = k
Focus	$(h,k+\frac{1}{4a})$	$(h+\frac{1}{4a},k)$
Directrix	$y=k-\frac{1}{4a}$	$x = h - \frac{1}{4a}$
Length of latus rectum	$\left \frac{1}{a}\right $	$\left \frac{1}{a}\right $

Circle

Ellipse

	_	
Standard form	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$
Orientation	Horizontal	Vertical
Vertices	$(h \mp a, k)$	$(h, k \mp a)$
Foci	$(h \mp c, k)$	$(h, k \mp c)$
Co- Vertices	$(h, k \mp b)$	$(\boldsymbol{h} \mp \boldsymbol{b}, \boldsymbol{k})$
Length of major axis	2a	2 <i>a</i>
Length of minor axis	2 <i>b</i>	2 <i>b</i>

Hyperbola

Standard form	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$
Orientation	Horizontal transverse vertex vertex co-vertex co-vertex	Vertical transverse vertex axis center vertex b.
Vertices	$(h \mp a, k)$	$(h, k \mp a)$
Foci	$(h \mp c, k)$	$(h, k \mp c)$
Co- Vertices	$(h, k \mp b)$	$(h \mp b, k)$
Length of Transverse axis	2 <i>a</i>	2a
Length of Conjugate axis	2 <i>b</i>	2 <i>b</i>
Equations of asymptotes	$y - k = \mp \frac{b}{a}(x - h)$	$y - k = \mp \frac{a}{b}(x - h)$

CH7 Rules

KeyConcept Distance and Midpoint Formulas in Space

The distance between points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ is given by

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

The midpoint M of \overline{AB} is given by

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

KeyConcept Component Form of a Vector

The component form of a vector \overrightarrow{AB} with initial point $A(x_1, y_1)$ and terminal point $B(x_2, y_2)$ is given by

$$\langle x_2 - x_1, y_2 - y_1 \rangle$$
.

KeyConcept Magnitude of a Vector in the Coordinate Plane

If **v** is a vector with initial point (x_1, y_1) and terminal point (x_2, y_2) , then the magnitude of **v** is given by

$$|\mathbf{v}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

If **v** has a component form of $\langle a, b \rangle$, then $|\mathbf{v}| = \sqrt{a^2 + b^2}$.

KeyConcept Vector Operations

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ are vectors and k is a scalar, then the following are true.

Vector Addition $a + b = \langle a_1 + b_1, a_2 + b_2 \rangle$

 $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$

Scalar Multiplication $ka = \langle ka_1, ka_2 \rangle$

Vector Subtraction

$$< a, b, c > = ai + bj + ck$$

Unit Vectors A vector that has a magnitude of 1 unit is called a **unit vector**. It is sometimes useful to describe a nonzero vector \mathbf{v} as a scalar multiple of a unit vector \mathbf{u} with the same direction as \mathbf{v} . To find \mathbf{u} , divide \mathbf{v} by its magnitude $|\mathbf{v}|$.

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$$
 or $\frac{1}{|\mathbf{v}|}\mathbf{v}$

Direction of the vector:

To find the direction of a given vector <a,b>

$$heta= an^{-1}(rac{b}{a})$$
 if a>0 or $heta= an^{-1}(rac{b}{a})+180^\circ$, if a<0

KeyConcept Dot Product of Vectors in a Plane

The dot product of $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ is defined as $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$.

KeyConcept Orthogonal Vectors

The vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

If $\boldsymbol{\theta}$ is the angle between nonzero vectors \mathbf{a} and \mathbf{b} , then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}.$$

KeyConcept Projection of u onto v

Let u and v be nonzero vectors, and let w_1 and w_2 be vector components of u such that w_1 is parallel to v as shown. Then vector w_1 is called the vector projection of u onto v, denoted $\operatorname{proj}_v u$, and

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}.$$

Work: $W = F \cdot d$, Where f: force, d: vector of displacement

Cross product:
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Volume of parallelepiped = t. ($u \times v$)