

DNA الحمض النووي الرايبوزي منقوص الاكسسجين

- هو جزيوككيير يشبه السلّهم الحلزوني ويحمل المادّة الوراثية في الخليّة

العالم فريــريك ميشر

التجــاربالتي أثبتت أن DNA هوالمادة الوراثيةوليس البروتين
أولا: تـجـــاربـ فريدريــك جريـــث

استخدمجريفث في تجربته بكتيريا ستربتوكوكس نومونيا ومنها سلالتين ها :		
		وجهه القارن\|
خشنــــــــــــ	ملســـــــ	السطخ الغارجي
		وجــود غطاء مخا طي
لاتسبّب/الالتهابالرئوي/ يميش) الفار	تسبّب التهابرئويل للفئران / توت	اثرها على المْئران في تجاربِ جريفث
لاتسبٌّ حلوث مرض التهابِئوي	تسبًّ حلوث مرض التهابرئوي	االقدرة على احداث الرض

> خطواتالتجــربة

التفسيـر	حالــــــة\| الفّران		
لان السلالة S تسببالالتهاب\|لرئوي للفأر فيهوت	يموت\|'لفأر	حقن فأرُ بالسلالة S الحية	1
لان السلالة RR لاتسبب/الالتهابالرئوي فييشر الفأرولا يووت	يعيش) الفأر	حقن فار بالسلالة R الحية	2
DNA توتالبكتيريا ويتضررالبروتين بهاولا يتضررال	-	تعريض السلالة S إلى حرارة عالية	3
السلالة Sاليمتلا لتسببالإلتهاب\|الرئوي للفئران	يیيشالفـأر	حقن فأرأبا بالسلالة S الميتةالتي سبق قتلها بالحرارة	4
مادةالتحوّل(مادةالوراثة) انتقلت بطريقة ما من سلالةلة البيتة إلى سلالة Rالحيةما أتّى إلى تيول سلالةR الي السلالةالد فهاتالثأر	يوتوتالفأر بالالتهاب الرئوي وظهورساسلاله S الحيه فيه	حقز فأُرا بخليطمن سلالة S الميتة والسلالة Rالتية	5

بكيكريا غير فارة:

ملا
أكَّدت نتائج تجارب جريفتث وأوزواند ألد أفري
 هوالجزيءالذئي يبني الموروثة

كا هو تفسير جريفث لوجود نسل من البكتيريا
الحيةفي الثأرالذي حقنه بلخليط من البكتيريا
الميتةوR/الحية؟
اقترض أن مادةالتحوّل (هادةالوراثة) انتقلت بطريقة ما من سلالة Sالميتة إلى سلالةاR الرية

 جديديةقفي النسل ،أيِبكتيريا ذاتٍ غطاءومخاطي

أوزوالد أفريوزوملاؤون
اكتشف أن هادةحضض DNA مز سلالثةالبكتير يا
ضروريةلتحول السلالةRالي السلالدك

الههف من التجربة : اثبات أن المادّة الوراثية هي حیضDNA وليس البروتين اسستخدممارثا تشيسوألفريد هيرشي في التجربة الفيروساتالمعروفةّباسم البكتريوفاج(لاقم البكتيريا)) او الفاج :

-أُعلّ خليط للفَاجفيهDNA مشُوّوخايا بكتيرية -التصقت الثاجاتاتبالبكتير يا وحقنتها بادّتّا الوراثيلة	خطواتالتجـربلة
- بدأتالبكتير يا في إنتاج فيروساتاتجديلدة من البكتريوفاج 	
	الاستنتــــــاج

لا تو جلد ماذّة هشتعّة داحل البكتيريا

تـركيـبـالحهـض النــوويوتضــاعنــهـ

 على اكتشافُالعلماو لتركيب حهض DNAو DNA وصناعة نهوذج لحهض甲

النيوكليوتيــــات والقــواعــل النيتـروجينيـة
النيوكليوتيــد : هو الككوّن الأساسي لالأهماضِ الثنويّةDNA وRNA

البيورينات	البيرييليدينات	
جزيئات حلقية مزدوجة	جزيئات حلقية مفردة	نوع الجزيئات\|لحلقية
أدينيز A / جوانيز	الثايهين T / /	مثال

RNA	DNA	
سكر الرايبوز	(اليبوزي منقوص الأكسيجين	نوع الّسكرالخهاسِى
أدينيز A / جوانين G C U اليوراسيل / سيتوسين C	أدينيز A / جوانين G الثايهين T / سيتوسيز C	القواعل الثيتروجينية

العاله الأمريكي شارجاف

- قامبتحليل كميّات من القواعل النيتروجينية في أنواعمختلفةّ من الكائنات/الحية - اكتشف أنّكمّية الأدينيز تتساوى دائمًا مع كّيّةالثايهين وككيّةالسيتوسين تتساوى دائهًا مع كميّ|لجوانين

نسب القواعد اليترو جينية لدى أربعة كائنات (\%)

C السيتوسين	G الجوانين	الثايمين	A الأدينين	DNA مصدر
18.0	20.5	31.6	29.8	ستربتو كو كسي
17.1	18.7	32.9	31.3	فطر الخميرة
22.6	22.2	27.5	27.8	سمك الرنجة
19.8	19.9	29.4	30.9	الإنسان

قانــــــنـ شارجافـ
كمّية الأدينين تتساوى دائهاً مع كمّيةالثايهين
وكمّية|السيتوسين تتساوى دائهًا مع كمّية|لجوانين

> للإججابة على مسائل قانون شارجاف لاحظ ها يلي
> •كمية|الادنيز A = كميةالثايهيز T
> • كمية|الجوانين G = ك ك
> •مجهوعكية + A,T مجموعكية

إذا علمت أن كمية|الأدنيزA في شريط DNA تساوي\%15\% احسب كمية/الثايهيز T وكمية|الجوانين G وكميةالسيتوسين C

 .' . محموعكية|الجوانين G وكمية|السيتوسين \% \% \% $35=$ C C

تلذكرأن : يشترككحهض DNA وحهض RNA فيوجود الادنين A /والجوانين G /والسيتوسين C /

هو جزيء ذو شريطين من النيوكيوتيدات ملتقّين حول بعضهها بعضًا

اللدورالدّي قامبه	العالهم
-التقط العالآل صورةسينية لجزيءححض DNA وأوضتحت الصور ثخانة/الجزيءووالتقا فه بشكل لولبي - عرضت فرانكلين إحلىى صورها لمادّة حمض DNA على الهالم جيسسواطسون	 روزرالند فرانكلين
 	جيمسواطسون \& فرانسيس كريك

علل : حمض DNA لا يككن أن يكون شريطًا مفرًْا ؟ لان جزيء حهض DNA ثخين

علل : الارتباط بين القواعد النيتروجنيةفي شريطي

لان الأدينيز يرتبط مع الثايهيز فقط والسيتوسين
يرتبط مع الجوانين فقط وكلًا منهما يُكونّ زوجاًا مع الآخر

النهوذجالصحيح لجزيءحهض DNA يشبه السلّه الحلزوني
هيكل جا نبي السلّه الجلزوني: يتكون من السكّر خماسي الكربونومجموعة الفوسفاتاتللذان يرتبطان برابطة تسا همية قويّة
 وترتبط كلّ قاعدتين معاً بروابط هيلروجيينيةضعيفة

القواعل النيتروجنية وبعضها	سكر خماسي وقاعلة نيتروجنية	سكر خهاسي ومجهوعةّ فوسفات	
هيلدوجينيةضهيفـة	تسا همية قويـــة	تسا همية قويـــة	نوعالرابطة/الكيميائية

-الرابطة بين الأدينين والثايهين
 -الرابطة بين السيتوسينين والجوانين هيلروجنية ثلاثية (C C)

ما

كلّزوجمن قواعد حضض DNA يتكون من قاعلدّة بيورينية مرتبيّة بقاعلّةّ بيريملينينية أيأنّالالاينينين يرتبط مع الثايهين ،وأنّالسيتوسين
 زوجاجًا مع الآخر

- لاحظواطسونوكريك ان تركيب حمض DNA يشرحكيف يُنسَخ أو يتضاعضْ ؟
 إنشاء الشريط الآخر بحسب نظامالتقواعل المتكا ملة"المزووجة - قبل اتقسامالخليّة تخضْع مادّة حمض DNA لعملية تضاعض؟

 لان قبل انقسامالخاليّة تخضع مادةّحهض DNA لعملية تضاعض

A	T
C	G
T	
C	
G	
T	

أمامك شريطمز DND إلمكلوب:
كتابة|"لقواعل النيتروجينية لشريط المكل

س: اذا علمـت أن تتابع القواعد النيتروجنيـة لقطعة من أحل شريطي CACACATCTGG لدّبابة|'كفاكهـةّكانت DNA『 GTGTGTAGACC.........

ملاحظة

- الأدينيز A فيأحد شريطى DNA يقابله الثايهين T في الشريطالاخر -السيتوسين C في أحل شريطى DNA يقابله الجوانين Gفي الشريطالاخر

شوكة|لتضاعف
هي النقطةةالتي يته عندها فصل اللولب المزدوجويبلأ منها تحرّكّك إنزيهاتبلهرة حضضANA

التدقيق اللفوي
هي عملية يقومبطا إنزيم بلمرة حضضDNA أثناء عمليةالتضاعض حيث يزيل هذا الإنزيم النيوكليوتيد الخاطئ ويستبلـله بالنيوكليوتيل

الصحيح

كيـفـ يِحـلـالتضــاعف

أولا :إتزيم هيليكيز يحل التفاف| اللولب المزدوجويفصل اللولب المزدوج عند نقطة معينة بكسر الروابط الهيلدروجينية|لتي تربطالقواعدالمتكاملة
 وتنفع تقاربهها واعادةإلتّفا فهها

 الإنزيه|النيوكليوتيل الخاطئويستبدلهله بالنيوكليوتيد الصحيحا

الوظيفة /الأهمية / الدوررالدّي يقومبــه

يجلَ التفافاللولب المزدوجويفصل اللولب المزدوج عند نقطة معينة بكسر الروابط الهيلدروجينية|لتي تربطالقواعد المتكاملة
--له دورفي التدقيق اللفؤ أثناء عهلية|التضاعض حيث يزيل النيوكليوتيد الخاطئ ويستبلـله بالنيوكليوتيل الصحيح

إنزيم هيليكيز إنزيمبلمرة حض حم

 لان إنزيم بلهرة حهضDNA أثناء عملية/التضاعف يزيل النيوكليوتيل الخاطئ ويستبل له بالنيوكليوتيل الصحيح

علل : عند التضاعف ينفصل شريطى DNA ولايتقاربانولا يحدث إعادة إلتقا فهم؟ لان ترتبط إنزيهاتأخرى وبروتيناتعلى كلّ من الشريطين الفرديينوتفنع تقاربهها وإعادةإلتفا فهها

شكل يوضجال DNA الخيطي في حقيقياتالنواة

	أوليات\|النـــواة (البكتيريا)	
خيطي	دائري	شكل حفض
عدّةأثواكّ تضاعف عادة	شوكتي تضاعف	عددشوكات\|التضاعض
بالتّجاهيز متعاكسين محدثة فقةاعات تضاع على طول بزيءالDNA	شوكتي التضاعض تبدآن في مكان مميُّن وتتحركان باتِّجاهين مختلفين إلى أن تلتقيا في الطرف\|الآخر من حمض DNAالدائــري	مكانبلـدايةشوكة\| لتضاعض

علل : ظهور فققاعاتاتلتضا عف في حقيقياتاالنواةاثناء تضا عض الDNA؛

 لوجودأكثرمن 6000 شوكة تضاعض

-عند الإنسانيُنَخَخ جزيءDNAفي أجزاءوبشوكة تضاعض أيضًا ولكن بشوكةواحدة لكلّ 100 الف نيوكليوتيد تقريبًا
 هووصف لعهلية تضاعض حمض DNA حيث أنكل جزي جديد يحتوي على شريطواحد جديدوشريطواحد احدأصلي

 ونقلها لأجيال عديلدةمن خلال/الانقسام الخلوي

شكل يوضح التضا عض نصف محا فظ (المحا فظالجزئي)

•معظه يرقاتالنمل تتـولولالي عاملات مطيعات
-عند الخطرو الشهور بالتلهديد يفير النمل طعا مهل ليصبح جنودي ضيخهة

الجينـــــات ات

عبارة عن هقاطع مز حهض DNA مكوّنة مز تتابهاتمنز النيوكليوتيلات (القواعلد الثيتروجينية)

الجين يمبر عن نفّهـه
عندمـا يصنغ بروتــين

للتوضيح 1212
البروتينـاتالتي يصنعها الجيـن (أ)
مثلا قد تنشطاو تثبط جين أخر (ب)

- صيتّمّالتعبير عن الجيّن عندها يُصنَّع البروتين بحسب الشفرةالتي يحملها الجين - يتحكم جزيءححض DNA في بيض الأحيان في جين معيّز لتصنيع البروتينيات التي تيكهم بلدورها تنشيطاو تثبيط جيناتاخري - يتطلَّب تصنيع البروتِينّ عمل الحمض النووي الرايبوزي منقوص الأكسجين DNA مع حمض نوري آخر يُسْىّى الحهض النتوويالرايبوزي RNA
 وصولًا إلى طرفةلة عين الفيليل
 فيها ترجدهة|"لتركيب الجيني للكائن (تركيب المورثات) إلى تركيب ظا هري

الفروقات التر كيبية بين حمض DNA و RNA	
DNA	RNA
شريط مزدوج	شريط مفرد
أزواج القو اعد T-A ، G-C سيتوسين - جوانين ، أدينين - ثايمين	U-A ، G-C أزوا القو اعد سيتو سين - جوانين، أدينين - يوراسيل
سكّر خماسي الكربون منقوص الأكسجين (سكّر ديؤ كسي رايبوز)	سكّرّ خماسي الكربون (سكّر رايبوز)

أولا: المرحلـة الأولى عميــــة|لنسخ

خطواتالنسخ

-ينفصل شريطي حصضال DNA الواحد عز الاخرو تنكشف القواعد النيتروجنية

 اليوراسيل يرتبطبالادنين بدلا من الثاييين
 اها شريط حمضال DNA فير تبطان مجدها اليميلد اللولب المزدوج

أدينين (RNA) و DNA	
يوراسيل (فقط (RNA)	
ثايمين (فقط (DNA)	
جو انين (RNA) و (DNA	
سيتو سين (RNA) و (DNA	

 - في كــلامنههـا تُستعمل القواعد في أحد شريطي DNA - في كـلامنههـاينفصل شريطا حهض DNA الواحـلـ

عن الآخر وتنكثف القواعدالنيتروجينية -في كـلا منههـا يتّبع نظامازذواجالقواتِاعل النيتروجينية
-صاذا ایحلث لالإنزيم بلهرةRNA بعل اكتمال عملية|انلسخ ؟ ينفصل انزيم بلمرة RNA عز حهض DNA ويطلق جزيحهض

الي السيتوبلازم

- •ماذا إحدث ششريطا حضض الJ DNA بعلد اكتمال عملية/لنسخ ؟ يرتبطانمجدًّاً ليعيدا تكوين اللولب المزدوجالأساسي

عمليـة النسخ	عملية/التضا عف	
إنتاجشريط	إنتّاج جزلئانّ هز	الها
RNA انزيبربلهرق	انزيهبلبرة\|	الانزيم\| الذّي يقومهإضافة النيوكليوتيدات
شريطواحل هن	DNA شريطين هن	عدد أششرطة DNAالمستخذدمة أثناءاوالعملية
-يضاف اليوراسيل (U) مقابل (A) الادنين -يضاف الجوانين(G) مقابل السيتوسين(C) -يضافالادنين (A) مقابل الثايهين (T)	يضافُ الثا يهين (T (T مقابل (A) الادادين والعكسويضاف الجوانين(G) مقابل السيتوسين(C) والعكس	ألية\|إضا فةّالقواعلد أمامالقواعلـ الـكشوفةّة

RNA اتزيم بلمرة	انزيمبلمرة		
وهو إنزيم يضيف نيوكليوتيل\|تللقواعل المكشوفةّ لشريط حضض DNA بحسب نظام ازذواج القواعد لإنتاجشريط حهض mRNAأثناء عملية	النسخ	هو إنـزيم يعمل على ظول كلّ من شريطي حهض DNA حيث يضيف النيوكليوتيدات للقواعد المكشوفةّ بجسب نظام ازّواج القواعل المتكاملة	التعريف / المفوم
النسخ	التضاعف /التدقيق اللفوي	العملية/التي يقومبه	
-يضيف اليوراسيل (U) مقابل (A) الادنين -يضيف الجوانين(G) مقابل السيتوسين(C) -يضيف الادنين (A) مقابل الثايهين (T)	يضيف الثايهين (T) مقابل(A) الادنين والعكس ويضيف الجوانين(G) مقابل السيتوسين(C)والعكس	ألية"إضا فة\|'لقواعد أمامالقواعل المششوفة	
يضيف نيوكليوتيلات للقواعل المكشوفةّة شريط واحد من حمض DNA بحسب نظام مازدواجالقواعل أثناء عملية\|لنسخ لإنتاجشريط حمض mRNA	يضيف النيوكليوتيدات للقواعد المكشوفةبةسسب نظام \|زدواج القواعد التكاملة علي شريطي DNA أثناء عملية	لتضا عف / له دور هُي التدقيق اللفؤوي أثنثاء عهلية التضاعف حيث يزيل النيوكليوتيد الخا طئويستبدله بالنيوكليوتيد الصحيح	الوظيفة

تشـيـبـحضض

هي عملية تحلدثفي الخالايا حقيقية|لنواة حيث تزيل الانزيهاتمن mRNA قبل خروجه مز النواة الإنتروناتوتربط|لإكسونات بعضها ببعضوشُذِّأي قُطِّع وأُعيد تجِيمه

الإنترونات	الإكسونات	
	أبزاء¢تُشفّر(تترجه) إلى بروتينات	التعريض/المفهوم

مــلاحظـات هــامـــــة

-تُستنسَخْ الإنترونات والإكسوناتفي حمض DNA الي mRNA الأولي
 -تعتبر عملية|لتشذّيب لحمض RNA خطوة مههةٌ في عملية تصنيع البروتيناتفي حقيقياتالنواة

في حقيقياتالنواة	mRNA	$\begin{gathered} \hline \text { (الأولي mRNA } \\ \text { (pre- mRNA) } \end{gathered}$	
يوجد	يوجد	يوجد	الإكسونات
يوجد	لايوجد	يوجد	الإنترونات

-ساذا يحدثmRNA الأولي(pre- mRNA) في حقيقياتالنواقأثثاء عملية|التشذيب؟ تزيل الانزيهاتمز mRNA الأوليالإنتروناتوتربط/الإكسوناتبعضها ببعضشريضاف الرأسوالذايل لتكويز جزيءنهائي من mRNA
-صاذاً يحدث لـmRNA بعل أن يُشذّب؟؟ يخرج مز النواةويتَّجه نحو الرايبوسومات حيث تتمّ عملية الترجمة وتصنيع البروتين

-هي مجهوعةّمن ثلاثة نيوكليوتيداتعلىmRNA تُحلِّدحهضًاً أمينيًا معينًا

البروتينات تتكون من اتحادالاحماض الامينية"في سلاسل طويلةتسهي عديلاتِالببتيل

الحمض جليسين
شُفرته
الحمض هستدين
ششرتّه CAC
الحمض سيرين
شُفرتّهCG

معلومات هامــــة جـدا جــــا
-عدد الاحماض الامينية"الموجولةة وتقط عشرين حمض اميني -الحهضالاميني يمثل بثلاث قواعد نيتروجنيةّوكل ثلاث قواعد نيتروجينيةتسلسي كودن او شفرةوراثية" - عددالكودوناتفي الجسم 64 كودون

 -تحلدد خصائصالبروتيناتتبعا لانوع|الاحماضالالامينية"

الثشرة الوراثية: (كودونات mRNA والأحماض الأمينية)									
القاعدّة الثانية في الكودون									
	U		C		A	G			
	U	UUU UUC Uنينيل ألانين UUA UUG UUR Leu	$\left.\begin{array}{l} \mathrm{UCU} \\ \text { UCC } \\ \text { UCA } \\ \text { UCG } \end{array}\right]$	$\begin{aligned} & \text { سيرين Ser } \end{aligned}$		$\left.\begin{array}{l}\text { UGU } \\ \text { UGC }\end{array}\right]$ UGA UGG		$\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{G} \end{aligned}$	
	C	$\left.\begin{array}{l}\text { CUU } \\ \text { CUC } \\ \text { CUA } \\ \text { CUG }\end{array}\right]$ Leu	$\left.\begin{array}{l}\mathrm{CCU} \\ \mathrm{CCC} \\ \mathrm{CCA} \\ \mathrm{CCG}\end{array}\right]$	برولين	$\left.\begin{array}{lc}\text { CAU } \\ \text { CAC } \\ \text { CAA } \\ \text { CAG }\end{array}\right]$His Gln	$\left.\begin{array}{l} \mathrm{CGU} \\ \mathrm{CGC} \\ \mathrm{CGA} \\ \mathrm{CGG} \end{array}\right]$	$\underset{\text { Arg }}{\substack{\text { أرجن }}}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{G} \end{aligned}$	
	A		$\left.\begin{array}{l} \mathrm{ACU} \\ \mathrm{ACC} \\ \mathrm{ACA} \\ \mathrm{ACG} \end{array}\right]$	$\begin{aligned} & \text { ثريونين } \\ & \text { Thr } \end{aligned}$	$\left.\left.\begin{array}{lc}\text { AAU } \\ \text { AAC }\end{array}\right] \begin{array}{c}\text { Asn } \\ \text { AAA } \\ \text { AAG }\end{array}\right]$Lys	$\left.\begin{array}{l} \mathrm{AGU} \\ \mathrm{AGC} \\ \mathrm{AGA} \\ \mathrm{AGG} \end{array}\right]$		$\begin{aligned} & \mathrm{U} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{G} \end{aligned}$	$\begin{array}{\|} \overline{\overline{3}} \\ \vdots \\ \vdots \\ \vdots \end{array}$
	G	$\left.\begin{array}{ll}\text { GUU } \\ \text { GUC } \\ \text { GUA } \\ \text { GUG }\end{array}\right] \quad$ Val	$\left.\begin{array}{l} \mathrm{GCU} \\ \text { GCC } \\ \text { GCA } \\ \text { GCG } \end{array}\right]$	$\begin{aligned} & \text { ألانين } \\ & \text { Ala } \end{aligned}$		$\left.\begin{array}{l} \text { GGU } \\ \text { GGC } \\ \text { GGA } \\ \text { GGG } \end{array}\right]$	جليسين Gly	$\begin{aligned} & \mathrm{U} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{G} \end{aligned}$	

لان الكودون يتكون من ثلاث قواعد نيتروجينية فقط كها أن هناكك أربعة|أنواعمن القواعلد النيتروجينية (A,U,G,C)

 وبالحسابرياضيا نجل 4 ل 3 = 64 كودون -بالرغه انع عددالاحهاض الامينية 20 لاان عددالكودونات64 كودون؟
 الأميني ميثيونيز لبدو تصنيع البروتين

شفرة(كودوز) التوقف	شفرة(كودوز) البباية	
هي الشفرةالتي يتوقف عندها تصنيع البروتين	هي الشفرةالتي يبلأ عندها تصنيع البروتين	اللتعريف//الفهوم
UAA/ UGA / UAG	AUG هلا كودون واحد هو	الكودون
لاتشفَّر (لاتُترجِّ) لأيّيّحضّأميني	ميثيونين	الأحهاض الأمينية

اذكرالهبببالعلهي :

- كودوناتالتوقف تشبه النقطةّفي نهاية|لجملة"


```
                    قوانين تساعد على الحل 12
عددالنيوكليوتيدات( (القواعد النيتروجينية)= عدد = 3+3 X X (لشفرةالتوقف )
```


-|ذكر عددالقواعد النيتروجينية(النيوكليوتيدات) لبروتين يتكوزمز 4 احماضامينية؟ - بروتين الmRNAالششفر له به 21 قاعدة نيتروجنية|احسب عليدهالاحماضالامينية/الكونه للبروتين ؟

-هي العملية التي عن طريقطا تتحوّل لغة قواعل الأحماض النووية"إلى لغة"البروتينات (الأحماض الأمينية) .

 -أوهي عملية"تُدث في الرايبوسوهات يتّ فيها فكَ الشفرةفي mRNA لتكويز سلسلة عديل الببتيد حيث تستخلدمالخليّة|لمعلوماتفي mRNAلتصنيع سلسلة عديد البيتيل

تتابع النيوكليوتيدات(القواعل النيتروجينية) في جزيءmRNA تقتبر معلومات توضحِ الطريقة"التي تتصّل بها الأحماض الأمينية . بمضصوا مع بعض لإنتاج سلسلة عديل الببتيل

مما يتـركيـبالرايبوسسوم §

 بعضًا فقط أثثاء عملية|لترجمهة

هلّهالأحماض في ما بعلد سلسلة عليد الببتيل

س: متي تتحلد الوحدتين الصفريوالكبري للرايبوسوم؟ ترتبطان ببیضهها بعضًا فقط أثناء عملية|"لترجهة
 عملية|لترجمهةإذ يرتبطبكلَّ منهها tRNA يحمل حهضًا أمينيًا خاصطًا به
س: ها اهمية|الموقفين p, A فيالرايبوسوم؟
 حهضًا أمينيًا خاصَاً به

هي العملية|لتي يتمّ فيها تجميع الأحماض الأمينيةفي سلسللة عديل البيبتيل خخلال عملية/الترجمةٍ

أولا: مرحلـة|لبــلدي

ميثيونين عند الموقع P بابرايريوسوم
-يرتبط بكودوز طريّة" مقابل الكووون UACوالطرف/الاخر الحمض الامينيالميثيونيز

-عند اكتهال تركيب الرايبوسوم الفمعل (ارتبـاطالوحدتين

-يصبح الموقوين A, B علي الرايبوسوم حاملمين لحمضيين امينين
 حضيين في سلسلةلةالبيتيد
tRNA
هو الجزيء الذئي يحمل في إحدي طرفية مقابل الكودوزن UAC والطرف|الاخر الحمض|الامينياليثيوينين

|الرايبوسوم||"فهفل

هوارتبـاطالوحدتين الرايبوسوميتين الكبرى

الرابطة بين الأمهـاضالأمينيـة
رإبطة بيتيديـــــة
 لانأنزيم معين في مرحلة"البدئيسا علد علي ربط الحمضيين الأمينينين برابطة" بيتيدية مكونة|ولحصضيين فيسلسلةالببتيد

- تصنيع بروتين يبلأبشفرة AUG

 - في عمليةالترجهة جزيويوالtRNAالاول دائما يحمل :
 هبناءالبروتين يبلـأعند الموقع p في الرايبوسووموينتهي بناءوالبروتين عنل الموقع A في الرايبوسومو

مقابل الكودون	الكودون	
tRNA	mRNA	نوع RNA اللّي يجهاله
وهو مجموعة من ثلاثة نيوكليوتيداتيحملها tRNA في خلال عملية الترجهلة وتكون متكا ملة مع الكودون اللذي mRNA يحمله	هي مجهوعة من ثلاثة نيوكليوتيدات على تُحلِّد حهضًا أمينيًا معينًا	المفهوم/التعريف

ثــانيــا: مرحلـة|الأستطـالــــــــة

- بعل ربط الحهضيين الامينيين الاول والثاني ينفصل جيزيءtRNAالموجود في الموقع p تاركا وراءو حمضه الاميني
 -ببا انمقابل الكودوز على tRNA يبقي مرتبط بالكودوز على mRNA فَن جزيء tRNA وmRNA عبرالرايبوسومالي الموقع p C كو حلدة واحلدة
 بهلهالطريقة يتم نقل الاحماض الامينية|لي الموقع Aويته ربطها بسلسلة|الببتيل بواسطةرابطة ببتيدية حتي يتم mRNA الوصول الي نها ية

علل : يظهر كودون جلد يد في الموقع A اثثناء مر حلة الاستطالهة لان مقابل الكودون في tRNA الموجود بالموقع A يبقي مرتبط بالكودون على mRNA / ثم جزيء tRNA الموجود بالِّققع

عمليـةيتم فيطا تجهيع الأحماض الأمينية في سلسلة علديد البيبتيد في خلال عملية\|لترجمة	هي هرحلـة تتنتي فيها عملية\|لترجمة حيز يصل كودون يشفَّر (لا يُترجَمَ) ويؤلّيّي إلى انتهاء عهملية تصنيِ البروتين	التعريض / \|المفهـوم

لتصنيع البروتين تنسخ الخليةحصض
DNA إلى حهض mRNAالنّي يتوجه
-ثلرايبوسومبعل تكوين البروتين ؟
يتفكَّك الرايبوسومإلى وحلدتيه الأساسيتين الصفريويوالكبري
-السلسلة عديلدةالببتيد بعل عمليةالترجمةٌ?
تتفصل سلسلة عديد الببتيل(البروتين) وتطلَق في الخليّة
إلى مواقع تصنيع البروتين في السيتوبالازم أيالرايبوسوماتويبقى DNA بالنواة

الجينــات تتهل شفرة(تعليمـات) لصنــــ البروتيـن وهذا البروتـيـن تظهر أهميته في أن له عالاقة
بألوان الأزهاروأشكال أوراققا وفصيلةد دمّ|الإنسان أو تِحديل جنس الطظل

 البروتيـنـ المطلوب:
-مقابل الكودون tRNA, الموجودو في الموقع p هو

- مقابل الكودون tRNAJ الموجود في الموقع Aهو . AAGA -الرابطة بين الحهضالالاميني الميثيونينوالفنيل ألانين رابطة" . بيتيدية.

الشكل الثاني أمـامكا يوضح مر حلةمن مراحل تصنيع
البروتيـن المطلوب: -اليرحلة|"لتي أمامك هي ...الانتهاء. -هل تتوقع أن يأتي tRNA ويحمل حمض أميني في الموقع A

وذّلكك لان كودون التوقف لايشفرولايترجم لحمض أميني - ماذا يحـدثللرايبوسوم بِلد إنتهاء تصنيع البروتين ؟ يتفكَك الرايبوسومإلى ووحدتيه الأساسيتين الصغريووالكبري

