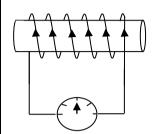
https://t.me/mohamedno3man77

نماذج قصير أول – 12 – الفصل الدراسي الثاني 2024-2023

نموذج اختبار قصير (1) فيزياء - الصف الثاني عشر - نموذج (1)

السؤال الأول (أ) اختر الإجابة الصحيحة:


-1 وهي تكافئ : -1

Wb □

Wb / m 2 Wb.m □

Wb. m 2

2- يتولد في الملف اللولبي تيار تأثيري اتجاهه كما بالشكل إذا كان المغناطيس:

N	S	□ متدكاً نحه الملف	□ متحركاً بعيداً عن الملف
	-		_

□ يتحرك مع الملف بنفس السرعة وفي نفس الاتجاه

(ب) أكمل ما يأتي :

ثابتاً أمام الملف

1 - مقدار القوة الدافعة الكهربائية المتولدة في ملف بالحث يتناسب التدفق المغناطيسي الذي يجتاز هذه اللفات.

2- يدور ملف بسرعة زاوبة ثابتة في مجال مغناطيسي منتظم (ابتداءاً من الوضع الصفري) وبعد ربع دورة تصبح القوة الدافعة الكهربائية التأثيرية المتولدة به

السؤال الثاني أ- علل لما يأتي :

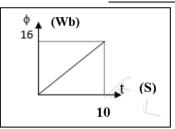
1 - وجود إشارة سالبة في قانون فاراداي ؟

2- يكون التدفق المغناطيسي أكبر ما يمكن عندما يكون مستوى الملف عمودياً على المجال ؟

ب- حل المسألة التالية :

(20) Ω ومقاومته A=(0.01) m^2 مولد تيار متردد مكون من ملف مصنوع من (50) لفة مساحة كل لفة موضوع ليدور حول محور بحركة دائرية منتظمة وبتردد ($f = 50 \; \mathrm{Hz}$) داخل مجال مغناطيسي منتظم شدته T (10) علما بأن في لحظة صفر كانت خطوط المجال لها اتجاه متجه مساحة مستوى الملف . احسب :

1- القيمة العظمى للقوة الدافعة الكهربائية المولدة في الملف:


2 - القيمة العظمي لشدة التيار الحثي المتولد في الملف:

https://t.me/mohamedno3man77

نماذج قصير أول – 12 – الفصل الدراسي الثاني 2024-2023

نموذج اختبار قصير (1) فيزياء - الصف الثاني عشر - نموذج (2)

السؤال الأول (أ) اختر الإجابة الصحيحة :

الذي يوضح التغير في التدفق المغناطيسي (ϕ) الذي يجتاز ملفاً عدد لفاته (ϕ) لفة مع الزمن (ϕ) ومنه فإن مقدار القوة الدافعة التأثيرية المتولدة في الملف (بوحدة الفولت) تساوي :

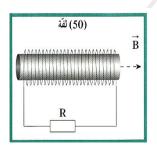
-2 القوة المغناطيسية المؤثرة على شحنة مقدارها -2 (-2) تتحرك بسرعة -2 المجال المغناطيسي شدته -2 (-2) بوحدة -

0.8 □	
-------	--

0.4 🗆 0 🗆

<u>ب) أكمل ما يأتي :</u>

-1 إذا سقط مجال مغناطيسي منتظم شدته m^2 wb / m^2 على سطح مساحته -1 m^2 (m^2) فان التدفق المغناطيسي الذي يجتازه بوحدة (m^2) يساوي


0.5

أ- قارن بين كلِ مما يأتي :

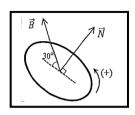
السؤال الثاني

مقدار القوة الدافعة الكهربائية الحثية	مقدار التدفق المغناطيسي	وجه المقارنة
		المجال عمودي على مستوى الملف
		المجال موازٍ لمستوى الملف

ب- حل المسألة التالية :

ملف مكون من (50) لفة حول اسطوانة فارغة مساحة قاعدتها m² (1.8) ويؤثر عليه مجال مغناطيسي منتظم اتجاهه عمودي على مستوى قاعدة الاسطوانة أحسب:

1- مقدار القوة الدافعة الحثية في الملف إذا تغير مقدار شدة المجال المغناطيسي بشكل منتظم من T (0.85) خلال s (0.85)



 $(R = 10 \Omega)$ أبأن (الحثى المار في الملف علماً بأن (الحثى المار في الملف علماً بأن الحثى الحثى المار في المار

https://t.me/mohamedno3man77

نماذج قصير أول – 12 – الفصل الدراسي الثاني 2024-2023

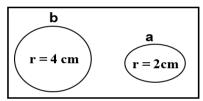
نموذج اختبار قصير (1) فيزياء - الصف الثاني عشر - نموذج (3)

أ/محمد نعمان

السؤال الأول (أ) اختر الإجابة الصحيحة:

-1 في الشكل المجاور إذا علمت أن مساحة سطح اللفة (0.2) و شدة المجال -1المنتظم T (3) فإن التدفق المغناطيسي الذي يخترق اللفة بوحدة (Wb) يساوي :

0.6	0.52 🗖	0.3 🗖	0 🗆


2- عندما يدور ملف بسرعة زاوية ثابتة في مجال مغناطيسي منتظم تتولد بالملف قوة محركة كهربائية تأثيرية تبلغ قيمتها العظمى عندما يصبح مستوي الملف:

على خطوط المجال	$\frac{\pi}{3}$ rad	🗖 مائلا بزاوية	عمودي على اتجاه المجال	J
علي خطوط المجال	$\frac{\pi}{6}$ rad	🗖 مائلا بزاوية	مواز لمستوي خطوط المجال	J

(ب) أكمل ما يأتى :

1- بزيادة مساحة السطح الذي تخترقه خطوط المجال فإن التدفق المغناطيسي

2- في الشكل عندما يتغير التدفق المغناطيسي في الحلقتين المعدنيتين (b ، a) بنفس المعدل تتولد في الحلقة (a) قوة دافعة كهربائية مقدارها (ع) فإن الحلقة (b) يتولد فيها قوة دافعه كهربائية مقدارها

السؤال الثاني أ- علل لما يأتي:

1 - تزداد صعوبة دفع مغناطيس في ملف متصل بمقاومة خارجية كلما زاد عدد لفاته ؟

2 عند قذف جسيم مشحون في مجال مغناطيسي موازبا للمجال فإنه لا يتأثر بقوة مغناطيسية ؟

ب- حل المسألة التالية :

ملف مستطيل مكون من (100) لفة ومساحة اللفة m^2) يدور حول محور موازِ نطوله في مجال مغناطيسى منتظم شدته $^{-4}$ ($^{-4}$ $^{-4}$) فيولد قوة دافعة تأثيرية قيمتها العظمى $^{-4}$ ($^{-4}$). احسب : 1- السرعة التي يدور بها الملف:

2 – تردد هذا التيار:

https://t.me/mohamedno3man77 نماذج قصير أول – 12 – الفصل الدراسي الثاني 2024-2023 نموذج اختبار قصير (1) فيزياء - الصف الثاني عشر - نموذج (4) السؤال الأول (أ) اختر الإجابة الصحيحة: 1- الوحدة الدولية لقياس التدفق المغناطيسي هي وبر (Wb) و تكافئ : V/S^2 $V.S^2$ $V/S \square$ 2- عندما تكون زاوية دوران ملف المولد الكهربائي التي يصنعها مع اتجاه خطوط المجال المغناطيسي مساوية ° 270 فإن قيمة القوة الدافعة تساوى : □ أكبر من الصفر بقليل 🗖 صفر 🗖 عظمي سالبة 🗖 عظمی موجبة (ب) أكمل ما يأتى: 1- يتولد التيار التأثيري في الملف المبين في الشكل المقابل إذا كان (ab) مغناطيس و الطرف (a) قطباً 2- تكون القوة الدافعة التأثيرية المتولدة من دوران ملف في مجال مغناطيسي منتظم لحظة مروره بالوضع المبين بالشكل مساوبة السؤال الثاني اً أ) ماذا يحدث في الحالات التالية : 1 - لمقدار التدفق المغناطيسي الذي يخترق الملف عندما مستوى الملف موازياً لخطوط المجال ؟ الحدث :الحدث : <u>التفسير:</u>ا 2 - لمسار حركة بروتون عندما يقذف عمودياً في مجال مغناطيسي منتظم ؟ (شكل المسار) التفسير :

ب- حل المسألة التالية :

مجال مغناطيسي منتظم مقداره T (0.2) واتجاهه عمودياً داخل الورقة دخل هذا المجال v=(200) m /s وبسرعة منتظمة q=(2) μ C وباتجاه مواز لسطح الورقة باتجاه اليمين كما بالشكل المجاور .

 $\overset{\textstyle \otimes}{\scriptstyle \otimes} \overset{\textstyle \otimes}{\scriptstyle \vee} \overset{\textstyle \vee}{\scriptstyle v}$

1- احسب مقدار القوة المغناطيسية F المؤثرة في الشحنة:

2- حدد اتجاه القوة المغناطيسية:

أ / محمد نعمان