Education Center

[الاسئلة المقترحة من الوزارة]
 لمادة

الرياضيات

الصف الثاني عشر متقدم

الفصل الدراسي الثاني

2022/2021

مع تمنياتى لكم بالنجاح والتفوق
إعداد : محمد عمر الخطيب
Khateebacademy.com

قواعد الاشتقاق (مراجعة من الفصل الأول)

\#	الدالة	بر الحضالمشقة	\#	الدالة	كهر المشتقة
1	c	0	15	$\ln x$	$\frac{1}{x}$
2	x^{n}	$n x^{n-1}$	16	$\log _{a}(f)$	$\frac{f^{\prime}}{f \times \ln a}$
3	$f \pm g$	$f^{\prime} \pm g^{\prime}$	17	$\sin x$	$\cos x$
4	$c \times f$	$c \times f^{\prime}$	18	$\cos x$	$-\sin x$
5	$f \times g$	$f \times g^{\prime}+g \times f^{\prime}$	19	$\tan x$	$\sec ^{2} x$
6	$\frac{f}{g}$	$\frac{g \times f^{\prime}-f \times g^{\prime}}{g^{2}}$	20	$\cot x$	$-\csc ^{2} x$
7	$\frac{c}{g}$	$\frac{-c \times g^{\prime}}{g^{2}}$	21	$\sec x$	$\sec x \tan x$
8	\sqrt{f}	$\frac{f^{\prime}}{2 \sqrt{f}}$	22	$\csc x$	$-\csc x \cot x$
9	$(f)^{n}$	$n(f)^{n-1} \times f^{\prime}$	23	$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
10	$=(f \circ g)(x)$	$f^{\prime}(g(x)) \times g^{\prime}(x)$	24	$\cos ^{-1} x$	$\frac{-1}{\sqrt{1-x^{2}}}$
11	$\begin{aligned} & y=f(u) \\ & u=g(x) \end{aligned}$	$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$	25	$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$
12	$g=f^{-1}(x)$	$\frac{1}{f^{\prime}(g(x))}$	26	$\cot ^{-1} x$	$\frac{-1}{1+x^{2}}$
13	a^{f}	$a^{f} \times f^{\prime} \times \ln a$	27	$\sec ^{-1} x$	$\frac{1}{\|x\| \sqrt{x^{2}-1}}$
14	e^{f}	$e^{f} \times f^{\prime}$	28	$\csc ^{-1} x$	$\frac{-1}{\|x\| \sqrt{x^{2}-1}}$

من اهم تطبيقات اللقاضل اننا نستطيع تقريب اي دالة قابلة للاشتقاق بدالة خطية عند نقطة معينة وهذا مـا يسمى بالتقريب الخطي للدالة.

$$
\begin{aligned}
& x=x_{0} \text { التقريب الخطي (الممماس) للدالة } \\
& \text { هو الدالة } \\
& L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x \\
& =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

(1) اوجد التقريب الخطي للدالة $x_{0}=1$ ثم اوجد قيمة تقريبية للعدد $f(x)=\sqrt{1.2}$ عند اوجد الثقريب الخطي للعدد
(2) اوجد التقريب الخطي للدالة $x_{0}=0$ ثم اوجد قيمة تقريبية للعدد $f(x)=(x+1)^{1 / 2}$ عند

$$
\text { اوجد التقريب الخطي للعدد } \sqrt[3]{1.2}
$$

$$
\text { اوجد التقريب الخطي للعدد } \sqrt{8.8}
$$

(2) اوجد التقريب الخطي للدالة $f(x)=\frac{2}{x}$ عند $x=1$ ثم اوجد فيمة تقربية للعدد
(1) اوجد الثقريب الخطي للدالة $f(x)=\sin 3 x$ عند x_{0} ثم اوجد قيمة تقربية للعدد (0.3)
اوجد التقريب الخطي للعدد (0.3)

اوجد التقريب الخطي للعدد (3)

الوحدة الر ابعة : تطبيقات الاشتقاق /// الدرس الثاني: الصيغ غير المعرفة (قاعدة لوبيتال)

قاعدة لوبيتال

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\infty}{\infty} \text { اذا كانت } \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{0}{0} \text { دوال قابلة للاشتقاق } 2 \text { جو جوار النقطة c حيث }
$$

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

اوجد قيمة النهايات التالية
(1) $\lim _{x \rightarrow-2} \frac{x+2}{x^{2}-4}$
(2) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-3 x+2}$
(3) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2}{x^{2}-4}$
(4) $\lim _{x \rightarrow-\infty} \frac{x+1}{x^{2}+4 x+3}$
(5) $\lim _{t \rightarrow 0} \frac{e^{2 t}-1}{t}$
(6) $\lim _{t \rightarrow 0} \frac{\sin t}{e^{3 t}-1}$
(1) $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{2}}$

محمد عمر الخطيب
(2) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$
(3) $\lim _{t \rightarrow 1} \frac{\ln (\ln t)}{\ln t}$
（1） $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\cot x}$
محمد عمر الخطيب
محمد عمر الخظيب

الوحدة الر ابعة: تطبيقات الخشتقاق /// الدرس الثالث: القيم العظمى والصـغرى

الاعداد (القيم) الحرجة

يعرف العدد الحصرج للدالة f بانها النقطة c اما:

ملاحظة (ممكن ان تكون احدى اطراف الفترة المغلقة اذا حقتت احد الشروط السـابقة)

القيم القصوى (المطلقة) تحليلاً

(1) ايجاد جهيع النقاط الحرجة يو الفترة المفلقة المعرفة عليها الدالة (2) أيجاد قيمة الدالة عند النقاط الحرجة واطراف الفترة المغلقة.
(3) تكون اكبر هذه القيم عظمى مطلقة وتكون اصغر هذه القيه صغرى مطلقة.
(1) اوجد القيم القصوى (المطلقة) للدالة : $f(x)=x^{3}-3 x+1$ على الفترة [0,2] وبين نوعها
(2) اوجد القيم القصوى (المطلقة) للدالة :3x+1 $f(x)=x^{3}-3$ على الفترة [3,2-] وبين نوعها
(1) اوجد القيم القصوى (المطلقة) للدالة : $f(x)=x^{4}-8 x^{2}+2$ على الفترة [3,1-] وبين نوعها
(2) اوجد الاعداد الحرجة للدالة: $6(x)=x^{3}-3 x^{2}+6$ ثم اوجد القيم القصوى المحلية وبين نوعها.
(3) اوجد الاعداد الحرجة للدالة:

(1) اوجد الاعداد الحرجة للدالة: $f(x)=x^{4}-2 x^{2}+1$ ثم اوجد القيم القصوى المحلية وبين نوعها.
(2) اوجد الاعثاد الحرجة للدالث: 2 ($f(x)=x^{4}=3 x^{2}+{ }^{\text {(2) اوجد الثيم القصوى المحلية وبين نوعها. }}$
(3) اوجد الاعداد الحرجة للدالة: $f(x)=(x-1)^{1 / 3}$ ثم اوجد القيم القصوى المحلية وبين نوعها.

الوحدة الر ابعة: تطبيقات الشـتقاق /// الدرس الر ابع: الدوال المتز ايدة والمتناقصـة

(1) اوجد الاعداد الحرجة للدالة $\quad f(x)=e^{x^{2}-1}$: ثم اوجد القيم القصوى المحلية وبين نوعها.
(2 اوجد الاعداد الحرجة للدالة $\quad f(x)=x e^{-2 x}$: ثم اوجد القيم القصوى المحلية. وبين نوعها
(3) اوجد الاعداد الحرجة للدالة $f(x)=x^{2} e^{-x}$: ثم اوجد القيم القصوى المحلية وبين نوعها.

التقعر

الرسسم البياني للدالة $y=f(x)$ يكون مقعرأ للاعلى على الفترة المفتوحة
(1) اذا كان منحنى الدالة يقع فوق جميع ممـاسته.

او (2) اذا كان

او (3) اذا كان

الرسـم البياني للدالة $y=f(x)$ يكون مقعرأ ثلاسفل على الفترة المفتوحة I

نقطة الانعطاف

اذا كانت ($f(x)$ دالة متصلة على الفترة المفتوحة (a,b) والتمثيل البياني يغير اتجاه التقعر عند النقطة $c \in(a, b)$ فأن النقطة (c, $f(c)$)سمى نقطة انعطاف.
 for
(1)اعتمد على الشكل المجاور الذي يهثل بيان الدالة f يوْ الاجابة عن الأسئلة التالية

(أ) فترة الثقعر للاسفل هي
(ب) فترة التقعر للاعلى هي
(ج) نقطة الانعطاف هي
(2)اعتمد على الشكل المجاور الذي يمثل بيان الدالة f

\qquad
\qquad
(و) اوجد فترات التقعر ثلاعلى.
محتمد عمر الڭطيب
(ي) قدر نقطة الانعطاف للدالة

فترات التقعر للدالة (تحليلياً)

(1) ايجاد جهيع النقاط التي تجعل المشتقة الثانية تسـاوي صفر او غير موحودة وتعينها على خط الاعداد. (2) دراسـة اشـارة المشتقة الثانية "f. (3) تحديد سلوك الدالة ff من خلال اشـارة الدالة " f.

أ) اذا كانت اشـارة الدالة " f موجبة (+)على فترة فان الدالة f تكون مقعرة للاعلى على هذه الفترة. ب) اذا كانت اشثارة الدالة " f سـالبة (-)على فترة فان الدالة f تكـون مقعرة لـلاسفل على هـذه الفترة.
(1) اوجد فترات التقعر للاعلى وفترات التقعر للاسفل و نقاط الانعطاف للدالة
$f(x)=x^{3}-3 x^{2}+4 x-1$

محمـد عمر الخطيب

(2) اوحجد فترات التقعر ثلاعلى وفترات التقعر لـلاسفل و نقاط الانعطاف للدالة
$f(x)=x^{4}-6 x^{2}+2 x+3$
$f(x)=x+\frac{1}{x}$
محمـد عمر الخطيب
(2) اوجد فترات التقعر لـلاعلى وفترات التقعر لـلاسفل و نقاط الانعطاف للدالة
$f(x)=x+3(1-x)^{1 / 3}$
محقد عمر الخطبِ
(3) اوجد فترات التقعر للاعلى وفترات التقعر لـلاسفل و نقاط الانعطاف للدالة
$f(x)=\sin x-\cos x$

الوحدة الر ابعة : تطبيقات الشتـقاق /// الدرس السـادس: رسم المنحنيـات

$$
\begin{equation*}
f(x)=\frac{g(x)}{h(x)} \tag{1}
\end{equation*}
$$

خطوط التقارب للدوال النسبية

يجب كتابة الدالة اللنبية يوٌ ابسط صورة قبل ايجاد خطوط اللقارب واذا تم اختصار احد العوامل
ع عامل غير مكر, x
وليكن $x-a$ واختفى من المقام فان للدالة فجوة عند x=a وليس خط تقارب رأسي
(2) يكون للدالة النسبية خطوط تقاربـرأسية عند اصفار المقام وتكون معادلتة (الخطبـب

يكون للدالة النسبية خطوط تقـري افقيةِ اذا كانت درجة

y=a البسط اصغر من او تساوي درجة المقام وتكون معادلتة
(4) يكون للدالة النسبية خط تقاربمـائل اذا كـانت
$y=a x+b \quad$ درجة البسط اكبر من درجة المقام ـ وتكون معادلتة
ونستخدم القسمة المطولة او القسمة التركيبية لايجادة
لا بحهز ان بـكون للدالة خط تقارب افقّيومائئل 2 نفس الوقت

$$
f(x)=\frac{x-4}{x^{3}} \quad \text { (1) ارسم منحنى الدالة }
$$

متحمد عمر الذخطيب محمد عمر الذخيب

خطوات حل مسائل القيم المثلى

مزرعة مستطيلة الشكل تقع على حافة نهر مستقيم، يراد وضع سياج طوله 96 على الجوانب الثڭلات
الاخرى مـا اكبر مسـاحة يمكن احاطتها.
(1) قطعة ارض مستطيلة الشكل مساحتها 1800 ، اوجد طول اصغر سياج ممكن احاطة الارض به من الجوانب الثيلات فقط
(2) يراد عمل سياج حول اسطبل للخيول مستطيل الشكل ومقسوم الى حضرتين متلاصقين ومتطابقين يو المساحة اذا كان طول السياج 120 اوجد ابعاد الاسطبل كامل لتكون مساحتة اكبر ما يمكن

(1) صالة عرض مستطيلة الشككل مسـاحتها 800 (1 2 ، بها ثُلاث ابواب من ثلاث جوانب عرض الباب الأول 6 10 ft به من الجوانب الاريعة.(بدون الابواب)

$\frac{p}{4}$ (2) بين انن المستطيل ذي المساحة العظمى الني محيطة فيمة ثابتة p يكون مريع طول ضثلعة

$$
\text { ومسـاحتة } A=\frac{p^{2}}{16}
$$

(3) بين أن المستطيل ذي المحيط الاصغر ومستاحتة فيمة ثايتة A ومحيطة 4
(1) يراد عمل صندوق على شكل شبه مكعب بدون غطاء من ورقة مربعة الشكل ظول ضلها 12 in وذلك بقطع 4 مربعات متطابقة عند الرؤوس، اوجد اكبر حجم للصندوق.

(a)

(2) يراد عمل صندوق على شكل شبه مكعب بدون غطاء من ورق مقوى مستطيل الشكل طول ضلها 10in وعرضها 6 وذلك بقطغ 4 مريعات متطابقة بطول ضلع x عند الرؤوس، اوجد قيمة x التي تحقق القيمة العظمى لحجم للصندوق

ينتشر حريق يٌ احدى الغابات بشكل دائري ،ويتزايد طول نصف قطر الحريق بهعدل 5 ft / min اوجد معدل التغير وِّ مساحة المنطقة المحترقة عندما يكون نصف فطر الحريق 200 ft.
(1) سلم طوله ft 10 ، موضوع احد طرفية على جدار منزل والطرف الأخر موضوع على الارض، اذا تم ستحب الجزء السفلي من السلم بمعدل 3 ft / s بعيدأ عن الحائط

اوجد سرعة انزلاق الطرف العلوي للسلم عند اللحظة الني يكون فيها الطرف السفلي على بعد 6 من الحائط.
(2) سلم طوله ft 10 ، موضوع احد طرفية على جدار منزل والطرف الأخر موضوع على الارض ، اذا تم ستحب الجزء السفلي من السلم بمعدل 3 ft / s بعيدأ عن الحائط اوجد معدل تغير الزاوية بين السلم والخط الافقي عندما يبعد اسفل السلم 6 ft من الحائط.

$$
\text { قطرة مـاء كروية تتبخر بمعدل } 1 \text { وتبقى تحافظ على شكلها }
$$

(أ) اوجد معدل تاقص نصف قطر قطرة الماء عند اللحظة التي يكون فيها نصف القطر 0.2 cm.

مسهمل عمر الخـم

(ب) اوجد سرعة تتاقص المساحة السطحية لقطرة الماء عند اللحطة التي يكون فيها نصف الثطر 0.2 cm.
(ج) اذا كان معدل تبخر حجم قطرة الماء يتتاسب مع المساحة السطحية لها ، فبين ان معدل تغيرنصف القطر ثُابت عند اي لحظة
(1) يتسرب النفط من ناقلة بحرية بمعدل $20 \mathrm{~m}^{3}$ (وينتشر بشكل دائري بسمك 2 cm ، اوجد معدل تزايد نصف قطر بقعة النفط عندما يكون نصف القطر $10 m$.
(2) يتسرب النفط من ناقلة بحرية بمعدل 120 برميل يو الدقيقة وينتشر بشكل دائري بسمك " معدل تزايد نصف قطر بقعة اللنط عندما يكون نصف القطر 300 .

$7.5=1 t^{3}$
$\frac{1^{\prime \prime}}{4}=\frac{1}{4}$ in $=\frac{1}{4} \times \frac{1}{12} f t=\frac{1^{\prime}}{48}$

(3) يتسرب النفط من ناقلة بحرية بمعدل 90 gl (3 / min وينتشر بشك تزايد نصف قطر بقعة النفط عندما يكون نصف القطر 100 ft

1 barel $=42 g$

وهي دالة حدية اي تحسب قيمة التكلفة عند قُطعة واحدة فقط وليست تراكمية
 التككلفة الحدية

$$
\bar{C}(x)=\frac{C(x)}{x} \quad \text { (4) متوسط التحبالفة للقطعة الواحدة يساوي }
$$

$$
\text { أذا كانت دالة التكافة لأنتاج } x \text { لعبة تعطى بالعلاقة } C(x)=0.02 x^{2}+2 x+4000
$$

$$
\text { (أ) اوجد تكالفة انتاج اول } 100 \text { قطعة }
$$

(ب) اوجد تكلفة انتاج اول 1000 قطعة

$$
\begin{aligned}
& \text { (2 (2) التكلفة الفعلية لانتاج القطعة رقم } \\
& \text { (3) التكـلفة الحدية لانتاج القطعة رقم }
\end{aligned}
$$

$$
\text { أذا كانت دالة التحكلفة لأنتاج } x \text { لعبة تعطى بالعلاقة } C(x)=0.02 x^{2}+2 x+4000
$$

(أ) اوجد التكلفة الفعلية لانتاج اللعبة رقم 100.
(ب) اوجد التشلفة الحدية لانتاج اللعبة رقم 100.
(ج) قارن بين التكلفة الفعلية لانتاج اللعبة رقم 100والتكلفة الحدية لانتاج اللعبة رقم 100.
(د) اوجد متوسط انتاج القطعة الواحدة عند انتاج 100 قطعة
(هـ) اوجد متوسط انتاج القطعة الواحدة عند انتاج 1000 قطعة
(و) قارن بين متوسط تكلفة القطعة الواحدة عند انتاج 100 قطعة و 1000مـاذا تلاحظ.

إنتهت الوحدة الرابعة بحمد الله واعتذر للجميع عن أي تقصير أو خطأ.

الوحدة الخامسة : التكـامل //الدرس الؤول: الدوال اغصلية

(1) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c \quad, n \neq-1$
(2) $\int \sin x d x=-\cos x+c$
(3) $\int \cos x d x=\sin x+c$
(4) $\int \sec ^{2} x d x=\tan x+c$
(5) $\int \csc ^{2} x d x=-\cot x+c$
(6) $\int \sec x \tan x d x=\sec x+c$
(7) $\int \csc x \cot x d x=-\csc x+c$
(8) $\int e^{x} d x=e^{x}+c$
(9) $\int \frac{1}{x} d x=\ln |x|+c$
(10) $\int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+c$
(11) $\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c$
(12) $\int \frac{1}{|x| \sqrt{x^{2}-1}} d x=\sec ^{-1} x+c$
$* \int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+c$

* $\int \sin (a x+b) d x=\frac{-\cos (a x+b) x}{a}+c$
(1) $\int 2 \sec x \tan x d x$
(2) $\int \sec ^{2} x d x$
(3) $\int 4 \frac{\cos x}{\sin ^{2} x} d x$
(4) $\int \frac{\cos x}{\sin x} d x$
(5) $\int \frac{4 x}{x^{2}+4} d x$
(6) $\int \frac{e^{x}}{e^{x}+3} d x$
(7) $\int \frac{3}{4 x^{2}+4} d x$
(8) $\int \frac{4}{\sqrt{1-\sin ^{2} x}} d x$

الدالة المكانية جـ> دالة السرعة المتجهية دالة التسـارع

الدالة المكانية

(1) حدد الدالة المكانية $s(t)=3 \sin t+1$ لدالة السرعة المتجهة $a(t)=0$ والسرعة الأبتدائية 1 و

$$
\text { الموقع الابتدائي } 4=\text { = }
$$

 الموقع الابتدائي 0 =

الوحدة الخامسة: التكـامل / //الدرس الثاني: المجموع والرمزسيجما

رمز المجموع (سيجما)

(1) $\sum_{i=1}^{n} c=n c$
(2) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
(3) $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 \mathrm{n}+1)}{6}$
(4) $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

$$
\sum_{i=1}^{n}\left(c a_{i} \pm d b_{i}\right)=c \sum_{i=1}^{n} a_{i} \pm d \sum_{i=1}^{n} b_{i}
$$

(1) $\sum_{i=1}^{8}\left(i^{2}+2\right)$
(2) $\sum_{i=1}^{40}(3 i-4)$

الوحدة الخامسـة: التكـامل

مجموع ريمان لحساب المساحة

يسهى المقدار $f(x)$ عملى الفترة $f\left(\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x\right.$ مجموع ريهـان للدالة x_{i} هي عناصر التجززئة و ${ }^{\text {C }}$ هي نقاط القيم
(1) اعتمد على الجدول المجاور هِوْ تقدير قيمة مساحة المنطقة المحصورة بالمنحنى (f) $f(x)$ ومحور x على الفترة [0,1] حيث قواعد القيم هي نقطة النهاية اليسرى

x	0.0	0.2	0.4	0.6	0.8	1.0
$f(x)$	2.0	2.2	1.6	1.4	1.6	2.0

(2) اعتمد على الجدول المجاور بٌِ تقدير قيمة مساحة المنطقة المحصورة بالمنحنى (x) ومحور x على

x	1.0	1.2	1.4	1.6	1.8	2.0
$f(x)$	0.0	0.4	0.6	0.8	1.2	1.4

(1) اعتمد على الجدول المجاور ٌِِ تقدير قيمة مساحة المنطقة المحصورة بالمنحنى (x) $f(x)$ ومحور x على الفترة [0,0.8] حيث قواعد القيم هي نقطة النهاية اليسرى

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
$f(x)$	2.0	2.4	2.6	2.7	2.6	2.4	2.0	1.4	0.6

(2) اعتمد على الجدول المجاور يوْ تقدير قيمة مساحة المنطقة المحصورة بالمنحنى (x) $f(x)$ ومحور x على الفترة $30,2.6]$ حيث قواعد القيم هي نقطة النهاية اليمنى

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6
$f(x)$	0.0	0.4	0.6	0.8	1.2	1.4	1.2	1.4	1.0

الوحدة الخامسـة : التكــامل /// الدرس الر ابع: التكامل المحدود

اذا كانت كل من $f(x)$ و $g(x)$ دوال متصلة على الفترة [a,b] $f(x) \geq g(x)$ حيث المساحة المحصورة بين المنحنين تعطى بالتكامل

$$
\begin{aligned}
& \int_{a}^{b}[f(x)-g(x)] d x
\end{aligned}
$$

ملاحظة : يمكن اعتبار محور x دالة معادلتها 0 د
(1) اكتب التخكامل الذي يعبر عن المساحة المحصورة فوق محور x وتحت المنحنى
(2) اكتب الثتكامل الذي يعبرعن المساحة المحصورة تحت محور x وفوق المنحنى

$f(x)=\sin x$ (3) اكتب التكامل الذي يعبرعن المساحة المحصورة بين محور x والمنحنى حيث

القيمة المتوسطة للدالة

اذا كانت الدالة f قابلة للتكامل على الفترة [a, $]$ فان القيمة المتوسطة للدالة f تساوي

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \quad, f(c)=f_{\text {ave }}
$$

النظرية

$$
\text { (2) اوجد القيمة المتوسطة للدالة } f(x)=x^{2}+2 x \text { على الفترة [0,1] }
$$

(1) اوجد القيمة المتوسطة للدالة $f(x)=x^{2}-1$ على الفترة [1,3] ثم اوجد قيمة c التي تحقق

$$
\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x \quad \text { بصورة تكامل منفرد }
$$

$$
\int_{0}^{2} f(x) d x-\int_{2}^{3} f(x) d x \text { بصورة تكامل منفرد }
$$

$$
\text { فاوجد } \quad \int_{1}^{3} g(x) d x=-2, \int_{1}^{3} f(x) d x=3 \quad \text { اذا كان (3) }
$$

(a) $\int_{1}^{3}[f(x)+g(x)] d x=$
(b) $\int_{1}^{3}[f(x)-g(x)] d x=$
(c) $\int_{1}^{3}[2 f(x)-g(x)] d x=$
(d) $\int_{1}^{3}[4 f(x)-3 g(x)] d x=$

الوحدة الخامسـة: التكــامل /// الـدرس الخامس: النظريـة الاسـاسيـة في التفاضبل

النظرية الاساسية لحسـاب التفاضل والتكامل (الجزء الوول)
اذا كانت الدالة f متصلة على الفترة [a, $]$ و $F(x)$ هي الدالة الاصلية د f فان

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

اوجد قيمة كـل مما يلي
(1) $\int_{0}^{2}(2 x-3) d x=$
(2) $\int_{0}^{3}\left(x^{2}-2\right) d x=$
(3) $\int_{-1}^{1}\left(x^{3}+2 x\right) d x=$
(4) $\int_{0}\left(x^{3}+3 x-1\right) d x=$
(5) $\left.\int_{1}^{4} x \sqrt{x}+\frac{3}{x}\right) d x=$
(6) $\left.\int_{1}^{2} 4 x-\frac{2}{x^{2}}\right) d x=$

النظريـة الساسـية لحسـاب التفاضـل والتكامل (الجزء الثاني)

اذا كانت الدالة f متصلة على الفترة [a,b $\quad F(x)=\int_{a}^{x} f(t) d t \quad$ و كانت

$$
F^{\prime}(x)=f(x)
$$

$$
\begin{aligned}
& \text { اذا كانت الدالة } f \text { متصلة على الفترة [a, } F(x)=\int_{a}^{g(x)} f(t) d t=\text { و كـدانت } \\
& F^{\prime}(x)=f(\mathrm{~g}(x)) \times \mathrm{g}^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { اذا كانت الدالة } f \text { متصلة على الفترة [a, } F \text { ف و } F \text { فانت } F(x)=\int_{h(x)}^{g(x)} f(t) d t \text { فان } \\
& F^{\prime}(x)=f(\mathrm{~g}(x)) \times g^{\prime}(x)-f(h(x)) \times h^{\prime}(x)
\end{aligned}
$$

(1) $f(x)=\int_{1}^{x}\left(t^{2}+2 t+1\right) d t$
(2) $f(x)=\int_{x}^{1} \sec t d t$
（1）$f(x)=\int_{e^{x}}^{2-x} \sin t^{2} d t$
（2）$f(x)=\int_{x^{2}}^{x^{3}} \sin (3 t) d t$
（3）$f(x)=\int_{3 x}^{\sin x}\left(t^{2}+4\right) d t$
（4）$f(x)=\int_{2-x}^{x e^{x}} e^{2 t} d t$

الوحدة الخامسـة: التكــامل / الـلدس السـادس: التكامل بالتـعويض

قبل البدأ بالتكامل ...اسئل نفسك

1) هل الدالة التي نريد ايجاد تكاملها هي ناتج جمع وطرح حدود وكل حلدد قابل للتكامل 2) هل الدالة التي نريد ايجاد تكاملها هي ناتج ضرب او قسمة ويمكن تحويلها ال جمع او طرح حدود وكل حدد قابل للتكامل 3) هل الدالة التي نريد ايجاد تكاملها هي حاصل ضرب او قسمة دالتين ،احدى الدالتين او جزء منها يساوي ثابت في مشتقة الدالة الاخرى
(1) $\int x e^{x^{2+1}} d x$
(2) $\int e^{x} \sqrt{e^{x}+1} d x$
(1) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$

متحمد عمر الخطيب
(2) $\int \frac{\cos (1 / x)}{x^{2}} d x$
(3) $\int \frac{\sqrt{\ln x}}{x} d x$

محمد عمبر الخطيب
محمدا عمر الخطيب
(4) $\int \sec ^{2} x \sqrt{\tan x} d x$
(1) $\int \frac{1}{\sqrt{u}(\sqrt{u}+1)} d u$

محمها عمر الخطيب
(2) $\int \frac{v}{v^{2}+4} d v$
(3) $\int \frac{4}{x(\ln x+1)^{2}} d v$

以hell yac La=0

\qquad

