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Chapter 3

Applications of
Di↵erentiation

3.1 Linear Approximations
and Newtons Method

1. (a) f(x) =
p
x, x0 = 1

f(x0) = f(1) =
p
1 = 1

f 0(x) =
1

2
x�1/2

f 0(x0) = f 0(1) =
1

2
So,
L(x) = f(x0) + f 0(x0) (x� x0)

= 1 +
1

2
(x� 1)

=
1

2
+

1

2
x

(b) Using the approximation L(x) to estimatep
1.2, we get

p
1.2 = f(1.2) ⇡ L(1.2) =

1

2
+

1

2
(1.2) = 1.1

2. (a) f(x0) = f(0) = 1 and

f 0(x) =
1

3
(x+ 1)

�2/3

So, f 0(0) =
1

3
The Linear approximation is,

L(x) = 1 +
1

3
(x� 0) = 1 +

1

3
x

(b) Using the approximation L(x) to estimate
3
p
1.2, we get 3

p
1.2 = f(0.2) ⇡ L(0.2) =

1 +
1

3
(0.2) = 1.066

3. (a) f(x) =
p
2x+ 9, x0 = 0

f (x0) = f (0) =
p
2 · 0+9 = 3

f 0 (x) =
1

2
(2x+ 9)�1/2 · 2

= (2x+ 9)�1/2

f 0 (x0) = f 0 (0) = (2 · 0 + 9)�1/2 =
1

3
So,
L(x) = f (x0) + f 0 (x0) (x� x0)

= 3 +
1

3
(x� 0)

= 3 +
1

3
x

(b) Using the approximation L(x) to esti-
mate

p
8.8, we get

p
8.8 = f(�0.1) ⇡

L(�0.1) = 3 +
1

3
(�0.1) = 3 � 0.033 =

2.967

4. (a) f(x) =
2

x
, x0 = 1

f(x0) = f(1) = 2

f 0(x) = � 2

x2
and so f 0(1) = �2

The linear approximation is
L(x) = 2 + (�2) (x� 1)

(b) Using the approximation L(x) to estimate
2

0.99
, we get

2

0.99
= f(0.99) ⇡ L(0.99) =

2 + (�2)(0.99� 1) = 2.02

5. (a) f(x) = sin 3x, x0 = 0
f(x0) = sin(3 · 0) = 0
f 0(x) = 3 cos 3x
f 0(x0) = f 0(0) = 3 cos(3 · 0) = 3
So,
L(x) = f(x0) + f 0(x0) (x� x0)

= 0 + 3 (x� 0)

= 3x

(b) Using the approximation L(x) to esti-
mate sin(0.3), we get sin(0.3) = f(0.1) ⇡
L(0.1) = 3(0.1) = 0.3

6. (a) f(x) = sinx, x0 = ⇡
f(x0) = sin⇡ = 0
f 0(x) = cosx
f 0(x0) = f 0(⇡) = cos⇡ = �1
The linear approximation is,
L(x) = f(x0) + f 0(x0) (x� x0)

= 0 + (�1) (x� ⇡) = ⇡ � x

(b) Using the approximation L(x) to esti-
mate sin(3.0), we get sin(3.0) = f(3.0) ⇡
L(3.0) = ⇡ � 3.0

7. (a) f(x) = 4
p
16 + x, x0 = 0

f(0) = 4
p
16 + 0 = 2

f 0(x) =
1

4
(16 + x)�3/4

f 0(0) =
1

4
(16 + 0)�3/4 =

1

32

150
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L(x) = f(0) + f 0(0)(x� 0)

= 2 +
1

32
x

= 2 +
1

32
(0.04) = 2.00125

(b) L(0.08) = 2 +
1

32
(0.08) = 2.0025

(c) L(0.16) = 2 +
1

32
(0.16) = 2.005

8. (a) f(x) = sinx, x0 = 0
f (0) = 0
f 0(x) = cosx
f 0 (0) = cos 0 = 1
L(x) = f (0) + f 0 (0) (x� 0)

= 0 + 1 · x
L(0.1) = 0.1

(b) f(x) = sinx, x0 = ⇡
3

f
⇣⇡
3

⌘
=

p
3

2

f 0
⇣⇡
3

⌘
= cos

⇡

3
=

1

2
L(x) = f

⇣⇡
3

⌘
+ f 0

⇣⇡
3

⌘⇣
x� ⇡

3

⌘

L(1) =

p
3

2
+

1

2

⇣
1� ⇡

3

⌘
⇡ 0.842

(c) f(x) = sinx, x0 =
2⇡

3

f

✓
2⇡

3

◆
=

p
3

2

f 0
✓
2⇡

3

◆
= cos

2⇡

3
= �1

2

L(x) = f

✓
2⇡

3

◆
+ f 0

✓
2⇡

3

◆✓
x� 2⇡

3

◆

=

p
3

2
� 1

2

✓
x� 2⇡

3

◆

L

✓
9

4

◆
=

p
3

2
� 1

2

✓
9

4
� 2⇡

3

◆
⇡ 0.788

9. (a) L(x) = f(20) +
18� 14

20� 30
(x� 20)

L(24) ⇡ 18� 4

10
(24� 20)

= 18� 0.4(4)

= 16.4 games

(b) L(x) = f(40) +
14� 12

30� 40
(x� 40)

f(36) ⇡ 12� 2

10
(36� 40)

= 12� 0.2(�4)

= 12.8 games

10. (a) L(x) = f(80) +
120� 84

80� 60
(x� 80)

L(72) = 120 +
36

20
(72� 80)

= 120 + 1.8(�8)

= 105.6 cans

(b) L(x) = f(100) +
168� 120

100� 80
(x� 100)

L(94) = 168� 48

20
(94� 100)

= 168� 2.4(�6)

= 182.4 cans

11. (a) L(x) = f(200) +
142� 128

220� 200
(x� 200)

L(208) = 128 +
14

20
(208� 200)

= 128 + 0.7(8) = 133.6

(b) L(x) = f(240) +
142� 136

220� 240
(x� 240)

L(232) = 136� 6

20
(232� 240)

= 136� 0.3(�8) = 138.4

12. (a) L(x) = f(10) +
14� 8

10� 5
(x� 10)

L(8) = 14 +
6

5
(�2) = 11.6

(b) L(x) = f(10) +
14� 8

10� 5
(x� 10)

L(12) = 14 +
6

5
(2) = 16.4

13. f(x) = x3 + 3x2 � 1 = 0, x0 = 1
f 0(x) = 3x2 + 6x

(a) x1 = x0 �
f(x0)

f 0(x0)

= 1� 13 + 3 · 12 � 1

3 · 12 + 6 · 1

= 1� 3

9
=

2

3

x2 = x1 �
f(x1)

f 0(x1)

=
2

3
�
�
2
3

�3
+ 3

�
2
3

�2 � 1

3
�
2
3

�2
+ 6

�
2
3

�

=
79

144
⇡ 0.5486

(b) 0.53209

14. f(x) = x3 + 4x2 � x� 1, x0 = �1
f 0(x) = 3x2 + 8x� 1
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(a) x1 = x0 �
f(x0)

f 0(x0)

= �1� 3

�6
= �1

2

x2 = x1 �
f(x1)

f 0(x1)

= �1

2
� 0.375

�4.25
= �0.4117647

(b) The root is x ⇡ �0.4064206546.

15. f(x) = x4 � 3x2 + 1 = 0, x0 = 1
f 0(x) = 4x3 � 6x

(a) x1 = x0 �
f(x0)

f 0(x0)

= 1�
✓
14 � 3 · 12 + 1

4 · 13 � 6 · 1

◆
=

1

2

x2 = x1 �
f(x1)

f 0(x1)

=
1

2
�
 �

1
2

�4 � 3
�
1
2

�2
+ 1

4
�
1
2

�3 � 6
�
1
2

�

!

=
5

8

(b) 0.61803

16. f(x) = x4 � 3x2 + 1, x0 = �1
f 0(x) = 4x3 � 6x

(a) x1 = x0 �
f(x0)

f 0(x0)

= �1� �1

2
= �1

2

x2 = x1 �
f(x1)

f 0(x1)

= �1

2
� 0.3125

2.5
= �0.625

(b) The root is x ⇡ �0.6180339887.

17. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = x3 + 4x2 � 3x+ 1, and
f 0(x) = 3x2 + 8x� 3

y

2.5

0

x

30

5.0

20

10

−10

0.0−2.5−5.0

Start with x0 = �5 to find the root near �5:
x1 = �4.718750, x2 = �4.686202,
x3 = �4.6857796, x4 = �4.6857795

18. From the graph, we see two roots:

210-1 3

15

10

5

0

-5

-10

-15

-20

4

Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = x4 � 4x3 + x2 � 1, and
f 0(x) = 4x3 � 12x2 + 2x
Start with x0 = 4 to find the root below 4:
x1 = 3.791666667, x2 = 3.753630030, x3 =
3.7524339, x4 = 3.752432297
Start with x = �1 to find the root just above
�1:
x1 = �0.7222222222,
x2 = �0.5810217936,
x3 = �0.5416512863,
x4 = �0.5387668233,
x5 = �0.5387519962

19. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = x5 + 3x3 + x� 1, and
f 0(x) = 5x4 + 9x2 + 1
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y

0.5

−5

x

10

1.0

5

0

−10

0.0−0.5−1.0

Start with x0 = 0.5 to find the root near 0.5:
x1 = 0.526316, x2 = 0.525262,
x3 = 0.525261, x4 = 0.525261

20. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = cosx� x, and
f 0(x) = � sinx� 1

y

−4

2.5

−2.5

x
543210−1−2−3

5.0

0.0

−5

−5.0

Start with x0 = 1 to find the root near 1:
x1 = 0.750364, x2 = 0.739113,
x3 = 0.739085, x4 = 0.739085

21. Use xi+1 = xi � f(x
i

)
f 0(x

i

) with

f(x) = sinx� x2 + 1, and
f 0(x) = cosx� 2x

y

−4

2.5

−2.5

x
543210−1−2−3

5.0

0.0

−5

−5.0

Start with x0 = �0.5 to find the root near
�0.5:

x1 = �0.644108, x2 = �0.636751
x3 = �0.636733, x4 = �0.636733
Start with x0 = 1.5 to find the root near 1.5:
x1 = 1.413799, x2 = 1.409634
x3 = 1.409624, x4 = 1.409624

22. Use xi+1 = xi � f(x
i

)
f 0(x

i

) with

f(x) = cosx2 � x, and
f 0(x) = 2x sinx2 � 1

y

3

2

1

0

-1

x

-2

210-1-2

Start with x0 = 1 to find the root between 0
and 1:
x1 = 0.8286590991, x2 = 0.8016918647,
x3 = 0.8010710854, x4 = 0.8010707652

y

3

2

1

0

-1

x

-2

210-1-2

23. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = ex + x, and
f 0(x) = ex + 1

y

−2

5

−5
x

3210

20

−1

15

10

0

−3

Start with x0 = �0.5 to find the root between
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0 and -1:
x1 = �0.566311, x2 = �0.567143
x3 = �0.567143, x4 = �0.567143

24. Use xi+1 = xi �
f(xi)

f 0(xi)
with

f(x) = e�x �
p
x, and

f 0(x) = �e�x � 1

2
p
x

1

0.5

0

-0.5

-1

21.510.50

Start with x0 = 0.5 to find the root close to
0.5:
x1 = 0.4234369253, x2 = 0.4262982542,
x3 = 0.4263027510

25. f(x) = x2 � 11; x0 = 3;
p
11 ⇡ 3.316625

26. Newton’s method for
p
x near x = 23 is xn+1 =

1
2 (xn + 23/xn). Start with x0 = 5 to get:
x1 = 4.8, x2 = 4.7958333, and x3 = 4.7958315.

27. f(x) = x3 � 11; x0 = 2; 3
p
11 ⇡ 2.22398

28. Newton’s method for 3
p
x near x = 23 is

xn+1 = 1
3 (2xn + 23/x2

n). Start with x0 = 3
to get:
x1 = 2.851851851, x2 = 2.843889316, and
x3 = 2.884386698

29. f(x) = x4.4 � 24; x0 = 2; 4.4
p
24 ⇡ 2.059133

30. Newton’s method for 4.6
p
x near x = 24 is

xn+1 = 1
4.6 (3.6xn+24/x3.6

n ). Start with x0 = 2
to get:
x1 = 1.995417100, x2 = 1.995473305, and
x3 = 1.995473304

31. f(x) = 4x3 � 7x2 + 1 = 0, x0 = 0
f 0(x) = 12x2 � 14x

x1 = x0 �
f(x0)

f 0(x0)
= 0� 1

0
The method fails because f 0(x0) = 0. Roots
are 0.3454, 0.4362, 1.659.

32. Newton’s method fails because f 0 = 0. As long

as the sequence avoids xn = 0 and xn =
7

6
(the

zeros of f 0), Newton’s method will succeed.
Which root is found depends on the starting
place.

33. f(x) = x2 + 1, x0 = 0
f 0(x) = 2x

x1 = x0 �
f(x0)

f 0(x0)
= 0� 1

0
The method fails because f 0(x0) = 0. There
are no roots.

34. Newton’s method fails because the function
does not have a root!

35. f(x) =
4x2 � 8x+ 1

4x2 � 3x� 7
= 0, x0 = �1

Note: f(x0) = f(�1) is undefined, so New-
ton’s Method fails because x0 is not in the do-
main of f . Notice that f(x) = 0 only when
4x2 � 8x + 1 = 0. So using Newton’s Method
on g(x) = 4x2 � 8x+ 1 with x0 = �1 leads to
x ⇡ .1339. The other root is x ⇡ 1.8660.

36. The slope tends to infinity at the zero. For ev-
ery starting point, the sequence does not con-
verge.

37. (a) With x0 = 1.2,
x1 = 0.800000000,
x2 = 0.950000000,
x3 = 0.995652174,
x4 = 0.999962680,
x5 = 0.999999997,
x6 = 1.000000000,
x7 = 1.000000000

(b) With x0 = 2.2,
x0 = 2.200000, x1 = 2.107692,
x2 = 2.056342, x3 = 2.028903,
x4 = 2.014652, x5 = 2.007378,
x6 = 2.003703, x7 = 2.001855,
x8 = 2.000928, x9 = 2.000464,
x10 = 2.000232, x11 = 2.000116,
x12 = 2.000058, x13 = 2.000029,
x14 = 2.000015, x15 = 2.000007,
x16 = 2.000004, x17 = 2.000002,
x18 = 2.000001, x19 = 2.000000,
x20 = 2.000000
The convergence is much faster with x0 =
1.2.

38. Starting with x0 = 0.2 we get a sequence that
converges to 0 very slowly. (The 20th itera-
tion is still not accurate past 7 decimal places).
Starting with x0 = 3 we get a sequence that
quickly converges to ⇡. (The third iteration is
already accurate to 10 decimal places!)
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39. (a) With x0 = �1.1
x1 = �1.0507937,
x2 = �1.0256065,
x3 = �1.0128572,
x4 = �1.0064423,
x5 = �1.0032246,
x6 = �1.0016132,
x7 = �1.0008068,
x8 = �1.0004035,
x9 = �1.0002017,
x10 = �1.0001009,
x11 = �1.0000504,
x12 = �1.0000252,
x13 = �1.0000126,
x14 = �1.0000063,
x15 = �1.0000032,
x16 = �1.0000016,
x17 = �1.0000008,
x18 = �1.0000004,
x19 = �1.0000002,
x20 = �1.0000001,
x21 = �1.0000000,
x22 = �1.0000000

(b) With x0 = 2.1
x0 = 2.100000000,
x1 = 2.006060606,
x2 = 2.000024340,
x3 = 2.000000000,
x4 = 2.000000000
The rate of convergence in (a) is slower
than the rate of convergence in (b).

40. From exercise 37, f(x) = (x�1)(x�2)2. New-
ton’s method converges slowly near the double
root. From exercise 39, f(x) = (x�2)(x+1)2.
Newton’s method again converges slowly near
the double root. In exercise 38, Newton’s
method converges slowly near 0, which is a zero
of both x and sinx but converges quickly near
⇡, which is a zero only of sinx.

41. f(x) = tanx, f(0) = tan 0 = 0
f 0(x) = sec2 x, f 0(0) = sec2 0 = 1
L(x) = f(0) + f 0(0)(x� 0)

= 0 + 1(x� 0) = x

L(0.01) = 0.01

f(0.01) = tan 0.01 ⇡ 0.0100003
L(0.1) = 0.1
f(0.1) = tan(0.1) ⇡ 0.1003
L(1) = 1
f(1) = tan 1 ⇡ 1.557

42. The linear approximation for
p
1 + x at x = 0

is L(x) = 1 + 1
2x. The error when x = 0.01 is

0.0000124, when x = 0.1 is 0.00119, and when
x = 1 is 0.0858.

43. f(x) =
p
4 + x

f(0) =
p
4 + 0 = 2

f 0(x) =
1

2
(4 + x)�1/2

f 0(0) =
1

2
(4 + 0)�1/2 =

1

4

L(x) = f(0) + f 0(0)(x� 0) = 2 +
1

4
x

L(0.01) = 2 +
1

4
(0.01) = 2.0025

f(0.01) =
p
4 + 0.01 ⇡ 2.002498

L(0.1) = 2 +
1

4
(0.1) = 2.025

f(0.1) =
p
4 + 0.1 ⇡ 2.0248

L(1) = 2 +
1

4
(1) = 2.25

f(1) =
p
4 + 1 ⇡ 2.2361

44. The linear approximation for ex at x = 0 is
L(x) = 1 + x. The error when x = 0.01 is
0.0000502, when x = 0.1 is 0.00517, and when
x = 1 is 0.718.

45. (a) f(0) = g(0) = h(0) = 1, so all pass
through the point (0, 1).
f 0(0) = 2(0 + 1) = 2,
g0(0) = 2 cos(2 · 0) = 2, and
h0(0) = 2e2·0 = 2,
so all have slope 2 at x = 0.
The linear approximation at x = 0 for all
three functions is L(x) = 1 + 2x.

(b) Graph of f(x) = (x+ 1)2 :

y

2

2

0

0
x

5

3

4

3

1

1
−1

−1−2−3

Graph of f(x) = 1 + sin(2x):
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0

y

3

3

2

1

5

4

1

−2 −1−3 2
−1

0
x

Graph of f(x) = e2x:

y

2

2

0

0
x

5

3

4

3

1

1

−1

−1−2−3

46. (a) f(0) = g(0) = h(0) = 0, so all pass
through the point (0, 0).
f 0(0) = cos 0 = 1,

g0(0) =
1

1 + 02
= 1, and

h0(0) = cosh 0 = 1,
so all have slope 1 at x = 0.
The linear approximation at x = 0 for all
three functions is L(x) = x.

(b) Graph of f(x) = sinx:

2

x

1

0
2

-1

-2

10-1-2

Graph of g(x) = tan�1 x:

2

x

1

0
2

-1

-2

10-1-2

Graph of h(x) = sinhx:

x

1

2

0
21

-2

-3

0-1-2

3

-1

sinx is the closest fit, but sinhx is close.

47. (a) 4
p
16.04 = 2.0012488

L(0.04) = 2.00125
|2.0012488� 2.00125| = .00000117

(b) 4
p
16.08 = 2.0024953

L(.08) = 2.0025
|2.0024953� 2.0025| = .00000467

(c) 4
p
16.16 = 2.0049814

L(.16) = 2.005
|2.0049814� 2.005| = .0000186

48. If you graph | tanx � x|, you see that the dif-
ference is less than .01 on the interval �.306 <
x < .306 (In fact, a slightly larger interval
would work as well).

49. The first tangent line intersects the x-axis at a
point a little to the right of 1. So x1 is about
1.25 (very roughly). The second tangent line
intersects the x-axis at a point between 1 and
x1, so x2 is about 1.1 (very roughly). Newton’s
Method will converge to the zero at x = 1.
Starting with x0 = �2, Newton’s method con-
verges to x = �1.
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y

3

2

1

0

-1

x

-2

210-1-2

Starting with x0 = 0.4, Newton’s method con-
verges to x = 1.

y

3

2

1

0

-1

x

-2

210-1-2

50. It wouldn’t work because f 0(0) = 0. x0 = 0.2
works better as an initial guess. After jumping
to x1 = 2.55, the sequence rapidly decreases
toward x = 1. Starting with x0 = 10, it takes
several steps to get to 2.5, on the way to x = 1.

51. xn+1 = xn � f(xn)

f 0(xn)

= xn �
✓
x2
n � c

2xn

◆

= xn � x2
n

2xn
+

c

2xn

=
xn

2
+

c

2xn

=
1

2

✓
xn +

c

xn

◆

If x0 <
p
a, then a/x0 >

p
a, so x0 <

p
a <

a/x0.

52. The root of xn � c is n

p
c, so Newton’s method

approximates this number.
Newton’s method gives

xi+1 = xi �
f(xi)

f 0(xi)
= xi �

xn
i � c

nxn�1
i

=
1

n
(nxi � xi + cx1�n

i ),

as desired.

53. (a) f(x) = x2 � x� 1

f 0(x) = 2x� 1

At x0 =
3

2

f(x0) =

✓
3

2

◆2

� 3

2
� 1 = �1

4
and

f 0(x0) = 2

✓
3

2

◆
� 1 = 2

By Newton’s formula,

x1 = x0 �
f(x0)

f 0(x0)
=

3

2
�

� 1
4

2
=

13

8

(b) f(x) = x2 � x� 1
f 0(x) = 2x� 1
At x0 = 5

3

f(x0) =

✓
5

3

◆2

� 5

3
� 1 =

1

9
and

f 0(x0) = 2

✓
5

3

◆
� 1 =

7

3
By Newton’s formula,

x1 = x0 �
f(x0)

f 0(x0)

=
5

3
�

1
9
7
3

=
5

3
� 1

21
=

34

21

(c) f(x) = x2 � x� 1
f 0(x) = 2x� 1
At x0 = 8

5

f(x0) =

✓
8

5

◆2

� 8

5
� 1 = � 1

25
and

f 0(x0) = 2

✓
8

5

◆
� 1 =

11

5
By Newton’s formula,

x1 = x0 �
f(x0)

f 0(x0)

=
8

5
�

� 1
25

11
5

=
8

5
+

1

55
=

89

55

(d) From part (a),

sincex0 =
F4

F3
, hence x1 =

F7

F6
.

From part (b),

since x0 =
F5

F4
hence x1 =

F9

F8
.

From part (c),

since x0 =
F6

F5
hence x1 =

F11

F10
.

Thus in general if x0 =
Fn+1

Fn
, then x1 =

F2n+1

F2n
implies m = 2n+ 1 and k = 2n

(e) Given x0 =
3

2
, then lim

n!1

Fn+1

Fn
will be
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the zero of the function f(x) = x2 �
x � 1 which is 1.618034. Therefore,

lim
n!1

Fn+1

Fn
= 1.618034

54. The general form of functionf(x) is,

fn(x) =
1

5

�
2n+2x� 3

�
for

1

2n
< x <

1

2n�1
.

Hence

f 0(x) = fn
0(x) =

2n+2

5
for

1

2n
< x <

1

2n�1
.

By Newton’s method,

x1 =
3

4
�

f
�
3
4

�

f 0
�
3
4

� =
3

4
�

f1
�
3
4

�

f1
0 � 3

4

�

=
3

4
� (3/5 )

(8/5 )
=

3

8
=

x0

2

Similarly, x2 =
x1

2
=

x0

22
and x3 =

x0

23

Continuing this, we get, xn�1 =
x0

2n�1
It may

also be observed that, for each fn(x)

x0 =
(1/2n) +

�
1/2n+1

�

2
=

3

2n+1
,

xn =
x0

2n
=

3

22n+1
) xn+1 =

3

22n+2
which

is the zero of F . Therefore Newton’s method
converges to zero of F .

55. For small x we approximate ex by x+ 1
(see exercise 44)
Le2⇡d/L � e�2⇡d/L

e2⇡d/L + e�2⇡d/L

⇡
L
⇥�
1 + 2⇡d

L

�
�
�
1� 2⇡d

L

�⇤
�
1 + 2⇡d

L

�
+
�
1� 2⇡d

L

�

⇡
L
�
4⇡d
L

�

2
= 2⇡d

f(d) ⇡ 4.9

⇡
· 2⇡d = 9.8d

56. If f(x) =
8⇡hcx�5

ehc/(kTx) � 1
, then using the linear

approximation we see that

f(x) ⇡ 8⇡hcx�5

(1 + hc
kTx )� 1

= 8⇡kTx�4

as desired.

57. W (x) =
PR2

(R+ x)2
, x0 = 0

W 0(x) =
�2PR2

(R+ x)3

L(x) = W (x0) +W 0(x0)(x� x0)

=
PR2

(R+ 0)2
+

✓
�2PR2

(R+ 0)3

◆
(x� 0)

= P � 2Px

R

L(x) = 120� .01(120) = P � 2Px

R

= 120� 2 · 120x
R

.01 =
2x

R
x = .005R = .005(20,900,000)

= 104,500 ft

58. If m = m0(1� v2/c2)1/2, then
m0 = (m0/2)(1 � v2/c2)�1/2(�2v/c2), and
m0 = 0 when v = 0. The linear approxima-
tion is the constant function m = m0 for small
values v.

59. The only positive solution is 0.6407.

60. The smallest positive solution of the first equa-
tion is 0.132782, and for the second equa-
tion the smallest positive solution is 1, so the
species modeled by the second equation is cer-
tain to go extinct. This is consistent with the
models, since the expected number of o↵spring
for the population modeled by the first equa-
tion is 2.2, while for the second equation it is
only 1.3

61. The linear approximation for the inverse tan-
gent function at x = 0 is
f(x) ⇡ f(0) + f 0(0)(x� 0)
tan�1(x) ⇡ tan�1(0) + 1

1+02 (x� 0)

tan�1(x) ⇡ x
Using this approximation,

� = tan�1

✓
3[1� d/D]� w/2

D � d

◆

� ⇡ 3[1� d/D]� w/2

D � d
If d = 0, then � ⇡ 3�w/2

D . Thus, if w or D
increase, then � decreases.

62. d0(✓) = D(w/6 sin ✓)
d(0) = D(1� w/6) so
d(✓) ⇡ d(0) + d0(0)(✓ � 0)

= D(1� w/6) + 0(✓) = D(1� w/6),
as desired.

3.2 Indeterminate Forms and
L’Hôpital’s Rule

1. lim
x!�2

x+ 2

x2 � 4

= lim
x!�2

x+ 2

(x+ 2)(x� 2)

= lim
x!�2

1

x� 2
= �1

4



3.2. INDETERMINATE FORMS AND L’HÔPITAL’S RULE 159

2. lim
x!2

x2 � 4

x2 � 3x+ 2

= lim
x!2

(x� 2)(x+ 2)

(x� 2)(x� 1)

= lim
x!2

x+ 2

x� 1
= 4

3. lim
x!1

3x2 + 2

x2 � 4

= lim
x!1

3 + 2
x2

1� 4
x2

=
3

1
= 3

4. lim
x!�1

x+ 1

x2 + 4x+ 3
is type

1
1 ;

we apply L’Hôpital’s Rule to get

lim
x!�1

1

2x+ 4
= 0.

5. lim
t!0

e2t � 1

t
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt

�
e2t � 1

�

d
dt t

lim
t!0

2e2t

1
=

2

1
= 2

6. lim
t!0

sin t

e3t � 1
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt (sin t)

d
dt (e

3t � 1)
= lim

t!0

cos t

3e3t
=

1

3

7. lim
t!0

tan�1t

sin t
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt

�
tan�1t

�

d
dt (sin t)

= lim
t!0

1/(1 + t2)

cos t
= 1

8. lim
t!0

sin t

sin�1t
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!0

d
dt (sin t)

d
dt

�
sin�1t

� = lim
t!0

cos t

1/(
p
1� t2)

= 1

9. lim
x!⇡

sin 2x

sinx
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
x!⇡

2 cos 2x

cosx
=

2(1)

�1
= �2.

10. lim
x!�1

cos�1 x

x2 � 1
is undefined (numerator goes to

⇡, denominator goes to 0).

11. lim
x!0

sinx� x

x3
is type

0

0
;

we apply L’Hôpital’s Rule thrice to get

= lim
x!0

cosx� 1

3x2
= lim

x!0

� sinx

6x

= lim
x!0

� cosx

6
= �1

6
.

12. lim
x!0

tanx� x

x3
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
x!0

sec2 x� 1

3x2
.

Apply L’Hôpital’s Rule twice more to get

lim
x!0

2 sec2 x tanx

6x

= lim
x!0

4 sec2 x tan2 x+ 2 sec4 x

6
=

1

3
.

13. lim
t!1

p
t� 1

t� 1
= lim

t!1

p
t� 1

t� 1
·
p
t+ 1p
t+ 1

= lim
t!1

(t� 1)

(t� 1)
p
t+ 1

= lim
t!1

1p
t+ 1

=
1

2

14. lim
t!1

ln t

t� 1
is type

0

0
;

we apply L’Hôpital’s Rule to get

lim
t!1

d
dt (ln t)
d
dt (t� 1)

= lim
t!1

1
t

1
= 1

15. lim
x!1

x3

ex
is type

1
1 ;

we apply L’Hôpital’s Rule thrice to get

lim
x!1

3x2

ex
= lim

x!1

6x

ex

= lim
x!1

6

ex
= 0.

16. lim
x!1

ex

x4
is type

1
1 ;

we apply L’Hôpital’s Rule four times to get

lim
x!1

ex

4x3
= lim

x!1

ex

12x2

= lim
x!1

ex

24x
= lim

x!1

ex

24
= 1.

17. limx!0
x cosx� sinx

x sin2 x
is type

1
1 ;

we apply L’Hôpital’s Rule twice to get

limx!0
cosx� x sinx� cosx

sin2 x+ 2x sinx cosx

= lim
x!0

�x sinx

sinx (sinx+ 2x cosx)
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= lim
x!0

�x

sinx+ 2x cosx

= lim
x!0

�1

cosx+ 2 cosx� 2x sinx

= �1

3
.

18. Rewrite as one fraction, we have

lim
x!0

✓
cotx� 1

x

◆
= lim

x!0

✓
x cosx� sinx

x sinx

◆

which is of type
0

0
we apply L’Hôpital’s Rule to get

= lim
x!0

✓
cosx� x sinx� cosx

sinx+ x cosx

◆

= lim
x!0

 
d
dx (�x sinx)

d
dx (sinx+ x cosx)

!

= lim
x!0

✓
� sinx� x cosx

cosx+ cosx� x sinx

◆
= 0

19. Rewrite as one fraction, we have

lim
x!0

✓
x+ 1

x
� 2

sin 2x

◆

= lim
x!0

✓
(x+ 1) sin 2x� 2x

x sin 2x

◆
is type

0

0
;

we apply L’Hôpital’s Rule four times to get

lim
x!0

 
d
dx (x+ 1) sin 2x� 2x

d
dx (x sin 2x)

!

= lim
x!0

✓
sin 2x+ 2(x+ 1) cos 2x� 2

sin 2x+ 2x cos 2x

◆

= lim
x!0

 
d
dx (sin 2x+ 2(x+ 1) cos 2x� 2)

d
dx (sin 2x+ 2x cos 2x)

!

= lim
x!0

✓
2 cos 2x+ 2 cos 2x� 4(x+ 1) sin 2x

2 cos 2x+ 2 cos 2x� 4x sin 2x

◆

=
4

4
= 1

20. lim
x!⇡

2

✓
tanx+

1

x� ⇡
2

◆

In this case the limit has the form (1 - 1).

Rewrite tanx as
sinx

cosx
and then as one frac-

tion, we get

lim
x!⇡

2

✓
tanx+

1

x� ⇡
2

◆

= lim
x!⇡

2

✓
sinx

cosx
+

1

x� ⇡
2

◆

= lim
x!⇡

2

 �
x� ⇡

2

�
sinx+ cosx�

x� ⇡
2

�
cosx

!
is type

0

0

we apply L’Hôpital’s Rule to get

= lim
x!⇡

2

 
sinx+

�
x� ⇡

2

�
cosx� sinx

cosx�
�
x� ⇡

2

�
sinx

!

= lim
x!⇡

2

 �
x� ⇡

2

�
cosx

cosx�
�
x� ⇡

2

�
sinx

!
= 0

21. lim
x!1

lnx

x2
is type

1
1

we apply L’Hôpital’s Rule to get

lim
x!1

1/x

2x
= lim

x!1

1

2x2
= 0.

22. lim
x!1

lnxp
x

is type
1
1 ;

we apply L’Hôpital’s Rule to get

lim
x!1

1
x
1

2
p
x

= lim
x!1

2p
x
= 0.

23. lim
t!1

t

et
is type

1
1

we apply L’Hôpital’s Rule to get

lim
t!1

d
dt (t)
d
dt (e

t)
= lim

t!1

1

et
= 0.

24. lim
t!1

sin 1
t

1
t

is type
0

0
we apply L’Hôpital’s Rule to get

= lim
t!1

- 1
t2 cos

1
t

� 1
t2

= lim
t!1

cos
1

t
= 1.

25. lim
t!1

ln (ln t)

ln t
As t approaches ln from below, ln t is a small
negative number. Hence ln (ln t) is undefined,
so the limit is undefined.

26. lim
t!0

✓
sin (sin t)

sin t

◆
is type

0

0
we apply L’Hôpital’s Rule to get

lim
t!0

✓
cos (sin t) cos t

cos t

◆
= 1.

27. lim
x!0

✓
sin (sinhx)

sinh (sinx)

◆
is type

0

0
we apply L’Hôpital’s Rule to get

lim
x!0

✓
cos (sinhx) coshx

cosh (sinx) cosx

◆
= 1

28. lim
x!0

✓
sinx� sinhx

cosx� coshx

◆

= lim
x!0

✓
2 sinx� ex + e�x

2 cosx� ex � e�x

◆

= lim
x!0

✓
2ex sinx� e2x + 1

2ex cosx� e2x � 1

◆
is type

0

0
we apply L’Hôpital’s Rule twice to get

lim
x!0

✓
2ex cosx+ 2ex sinx� 2e2x

�2ex sinx+ 2ex cosx� 2e2x

◆

= lim
x!0

✓
cosx+ sinx� 1

cosx� sinx� 1

◆
is type

0

0

= lim
x!0

✓
� sinx+ cosx

� sinx� cosx

◆
= �1
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29. lim
x!0+

lnx

cotx
is type

1
1

we apply L’Hôpital’s Rule to get

lim
x!0+

1/x

� csc2 x

= lim
x!0+

✓
� sinx · sinx

x

◆
= (0)(1) = 0.

30. lim
x!0+

p
x

lnx
= 0 (numerator goes to 0 and de-

nominator goes to �1).

31. lim
x!1

⇣p
x2 + 1� x

⌘

= lim
x!1

 ⇣p
x2 + 1� x

⌘ p
x2 + 1 + xp
x2 + 1 + x

!

= lim
x!1

✓
x2 + 1� x2

p
x2 + 1 + x

◆

= lim
x!1

1p
x2 + 1 + x

= 0

32. lim
x!1

lnx � x = lim
x!1

ln x
x � 1

1
x

= �1 since the

numerator goes to �1 and the denominator
goes to 0+. (Recall Example 2.8 which shows

lim
x!1

lnx

x
= 0.)

33. Let y =

✓
1 +

1

x

◆x

) ln y = x ln

✓
1 +

1

x

◆
. Then

lim
x!1

ln y = lim
x!1

x ln

✓
1 +

1

x

◆

= lim
x!1

ln
�
1 + 1

x

�

1/x

= lim
x!1

1
1+ 1

x

�
� 1

x2

�

�1/x2

= lim
x!1

1

1 + 1
x

= 1.

Hence lim
x!1

y = lim
x!1

eln y = e.

34. Notice that the limit in question has the inde-
terminate form 11. Also, note that as x gets

large,

����
x+ 1

x� 2

���� =
x+ 1

x� 2
.

Define y =

✓
x+ 1

x� 2

◆p
x2�4

. Then

ln y =
p
x2 � 4 ln

✓
x+ 1

x� 2

◆
and

lim
x!1

ln y = lim
x!1

✓p
x2 � 4 ln

✓
x+ 1

x� 2

◆◆

= lim
x!1

0

BB@

ln

✓
x+ 1

x� 2

◆

1p
x2�4

1

CCA

This last limit has indeterminate form
0

0
, so

we can apply L’Hôpital’s Rule and simplify to
find that the above is equal to

lim
x!1

�3(x2 � 4)3/2

�x3 + x2 + 2x
and this is equal to 3. So

lim
x!1

ln y = 3.

Thus lim
x!1

y = lim
x!1

eln y = e3 ⇡ 20.086.

35. lim
x!0+

✓
1p
x
�

p
xp

x+ 1

◆

= lim
x!0+

✓p
x+ 1� (

p
x)2

p
x
p
x+ 1

◆

= lim
x!0+

✓p
x+ 1� x

p
x
p
x+ 1

◆

= 1.

36. lim
x!1

p
5� x� 2p
10� x� 3

is type
0

0
we apply L’Hôpital’s Rule to get

lim
x!1

1
2 (5� x)�1/2(�1)
1
2 (10� x)�1/2(�1)

= lim
x!1

p
10� xp
5� x

=
3

2
.

37. Let y = (1/x)x. Then ln y = x ln(1/x). Then
lim

x!0+
ln y = lim

x!0+
x ln(1/x) = 0, by Exercise

27. Thus lim
x!0+

y = lim
x!0+

eln y = 1.

38. Let y = lim
x!0+

(cosx)1/x. Then

ln y = lim
x!0+

1

x
ln cosx

= lim
x!0+

ln(cosx)

x
is type

0

0
so apply L’Hôpital’s Rule to get

lim
x!0+

� tanx

1
= 0.

Therefore the limit is y = e0 = 1.

39. lim
t!1

✓
t� 3

t+ 2

◆t

= lim
t!1

(t� 3)t

(t+ 2)t

= lim
t!1

�
1� 3

t

�t
�
1 + 2

t

�t =
lim
t!1

�
1� 3

t

�t

lim
t!1

�
1 + 2

t

�t

=
lim
t!1

�
1 + �3

t

�t

lim
t!1

�
1 + 2

t

�t =
e�3

e2
= e�5

40. lim
t!1

✓
t� 3

2t+ 1

◆t

= lim
t!1

✓
1� 3

t

2 + 1
t

◆t
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= lim
t!1

�
1� 3

t

�t

2t
⇣
1 + 1/2

t

⌘t = lim
t!1

e�3

2te1/2
= 0

41. L’Hôpital’s rule does not apply. As x ! 0, the
numerator gets close to 1 and the denominator
is small and positive. Hence the limit is 1.

42. lim
x!0

ex � 1

x2
is type

0

0
, but lim

x!0

ex

2x
is not, so

L’Hôpital’s Rule does not apply to this limit.

43. L’Hôpital’s rule does not apply. As x ! 0, the
numerator is small and positive while the de-
nominator goes to �1. Hence the limit is 0.

Also lim
x!0

2x

2/x
, which equals lim

x!0
x2, is not of

the form
0

0
so L’Hôpital’s rule doesn’t apply

here either.

44. lim
x!0

sinx

x2
is type

0

0
, but lim

x!0

cosx

2x
is not, so

L’Hôpital’s rule does not apply. This limit is
undefined because the numerator goes to 1 and
the denominator goes to 0.

45. lim
x!0+

cscxp
x

In this case limit has the form
1
0

, L’Hôspital’s

Rule should not be used.

46. lim
x!0+

x�3/2

lnx
is type

1
�1 . In this case

L’Hôspital’s Rule should be used.

47. lim
x!1

x2 � 3x+ 1

tan�1x
= 1. In this case limit has

the form 1. So L’Hôspital’s Rule should not
be used.

48. lim
x!1

ln
�
x2
�

ex/3
is type

1
1 . So L’Hôspital’s Rule

should be used.

49. (a) Starting with lim
x!0

sin 3x

sin 2x
, we cannot

“cancel sin”to get lim
x!0

3x

2x
. We can cancel

the x’s in the last limit to get the final an-
swser of 3/2. The first step is likely to give
a correct answer because the linear ap-
proximation of sin 3x is 3x, and the linear
approximation of sin 2x is 2x. The linear
approximations are better the closer x is
to zero, so the limits are likely to be the
same.

(b) lim
x!0

sinnx

sinmx
is type 0

0 ;

we apply L’Hôpital’s Rule to get

lim
x!0

n cosnx

m cosmx
=

n

m
.

50. (a) lim
x!0

sinx2

x2
= lim

x!0

2x cosx2

2x

= lim
x!0

cosx2 = 1,

which is the same as lim
x!0

sinx

x
.

(b) lim
x!0

1� cosx2

x4

= lim
x!0

2x sinx2

4x3
= lim

x!0

sinx2

2x2

=
1

2
lim
x!0

sinx2

x2
=

1

2
(by part (a)),

while

lim
x!0

1� cosx

x2
= lim

x!0

sinx

2x
=

1

2
(1) =

1

2
so both of these limits are the same.

(c) Based on the patterns found in exercise
45, we should guess

lim
x!0

sinx3

x3
= 1 and lim

x!0

1� cosx3

x6
=

1

2
.

51. (a)
(x+ 1)(2 + sinx)

x(2 + cosx)

(b)
x

ex

(c)
3x+ 1

x� 7

(d)
3� 8x

1 + 2x

52. (a) lim
x!1

x� lnx = 1 (see exercise 32).

(b) lim
x!1

p
x2 + 1� x = 0 (see exercise 31).

(c) lim
x!1

p
x2 + 4x� x

= lim
x!1

(
p
x2 + 4x� x)

= lim
x!1

4xp
x2 + 4x+ x

= lim
x!1

4x 1
x

(
p
x2 + 4x+ x)

1

x

= lim
x!1

4q
1 + 4

x + 1
= 2,

where to get from the second to
the third line, we have multiplied by
(
p
x2 + 4x+ x)

(
p
x2 + 4x+ x)

.
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53. lim
x!1

ex = lim
x!1

xn = 1

lim
x!1

ex

xn
= 1. Since n applications of

L’Hôpital’s rule yields

lim
x!1

ex

n!
= 1.

Hence ex dominates xn.

54. lim
x!1

lnx = lim
x!1

xp = 1.

lim
x!1

lnx

xp
is of type

1
1

we use L’Hôpital’s Rule to get

lim
x!1

1
x

pxp�1
= lim

x!1

1

pxp
= 0 (since p > 0).

Therefore, xp dominates lnx.

55. lim
t!1

⇣
e

t

2 � t3
⌘

Since e
t

2 dominates t3. So

lim
t!1

⇣
e

t

2 � t3
⌘
= 1

56. lim
x!1

✓p
x� lnxp

x

◆
is type

1
1 .

we apply L’Hôpital’s Rule to get

lim
x!1

 
1

2
p
x
� 1

x

1
2
p
x

!
= lim

x!1

✓
x� 2

p
x

x

◆

= lim
x!1

✓
1� 2p

x

◆
= 1.

57. lim
x!1

ln
�
x3 + 2x+ 1

�

ln (x2 + x+ 2)
we apply L’Hôpital’s Rule

lim
x!1

 
d
dx

�
ln
�
x3 + 2x+ 1

��

d
dx (ln (x2 + x+ 2))

!

= lim
x!1

 
3x2+2

x3+2x+1
2x+1

x2+x+2

!

= lim
x!1

✓
3x4 + 3x3 + 8x2 + 2x+ 4

2x4 + x3 + 4x2 + 4x+ 1

◆
=

3

2
In general, for numerator and denominator the
highest degee of polynomials p and q, such that
p(x) > 0 and q(x) > 0 for x > 0,

should be the lim
x!1

ln(p(x))
ln(q(x)) .

58. lim
x!1

ln
�
e3x + x

�

ln (e2x + 4)
is

1
1 ;

we apply L’Hôpital’s Rule

lim
x!1

 
d
dx

�
ln
�
e3x + x

��

d
dx (ln (e2x + 4))

!

= lim
x!1

 
3e3x+1
e3x+x

2e2x

e2x+4

!

= lim
x!1

✓
3e5x + 12e3x + e2x + 4

2e5x + 2xe2x

◆
=

3

2

In general,when the degree of exponential term
in the numerator and denominator are di↵er-

ent, then the lim
x!1

ln
�
ekx + p(x)

�

ln (ecx + q(x))
for polyno-

mials p and q and positive numbers. k and c
will be the fraction of degrees that is k

c .

59. If x ! 0, then x2 ! 0, so if lim
x!0

f(x)

g(x)
= L,

then lim
x!0

f(x2)

g(x2)
= L (but not conversely). If

a 6= 0 or 1, then lim
x!a

f(x)

g(x)
involves the be-

havior of the quotient near a, while lim
x!a

f(x2)

g(x2)
involves the behavior of the quotient near the
di↵erent point a2.

60. Functions f(x) = |x| and g(x) = x work.

lim
x!0

f(x)

g(x)
does not exist as it approaches �1

from the left and it approaches 1 from the

right, but lim
x!0

f(x2)

g(x2)
= 1.

61. lim
!!0

2.5(4!t� sin 4!t)

4!2

= lim
!!0

2.5(4t� 4t cos 4!t)

8!

= lim
!!0

2.5(16t2 sin 4!t)

8
= 0

62. lim
!!0

2.5� 2.5 sin(4!t+
⇡

2
)

4!2
is type 0

0 ;

we apply L’Hôpital’s Rule to get

lim
!!0

�10t cos(4!t+ ⇡
2 )

8!

= lim
!!0

40t2 sin(4!t+ ⇡
2 )

8
= 5t2.

t
0.60.50.40.3

1

0.20.1

2

0

1.5

0

0.5

63. The area of triangular region 1 is
(1/2)(base)(height)
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= (1/2)(1� cos ✓)(sin ✓).
Let P be the center of the circle. The area of
region 2 equals the area of sector APC minus
the area of triangle APB. The area of the
sector is ✓/2, while the area of triangle APB
is
(1/2)(base)(height)
= (1/2)(cos ✓)(sin ✓).
Hence the area of region 1 divided by the area
of region 2 is
(1/2)(1� cos ✓)(sin ✓)

✓/2� (1/2)(cos ✓)(sin ✓)

=
(1� cos ✓)(sin ✓)

✓ � cos ✓ sin ✓

=
sin ✓ � cos ✓ sin ✓

✓ � cos ✓ sin ✓

=
sin ✓ � (1/2) sin 2✓

✓ � (1/2) sin 2✓

Then lim✓!0
sin ✓ � (1/2) sin 2✓

✓ � (1/2) sin 2✓

= lim
✓!0

cos ✓ � cos 2✓

1� cos 2✓

= lim
✓!0

� sin ✓ + 2 sin 2✓

2 sin 2✓

= lim
✓!0

� cos ✓ + 4 cos 2✓

4 cos 2✓

=
�1 + 4(1)

4(1)
=

3

4

64. lim
x!0+

160x�0.4 + 90

8x�0.4 + 10

= lim
x!0+

160 + 90x0.4

8 + 10x0.4
=

160

8
= 20. If there

is no light, the pupils will expand to this
size. This is the largest the pupils can get.

lim
x!1

160x�0.4 + 90

8x�0.4 + 10
=

90

10
= 9. As the amount

of light grows, the pupils shrink, and the size
approaches 6mm in the limit. This is the small-
est possible size of the pupils.

65. (a) V =
p
40mg tanh

�p
g

40m t
�
, therefore

lim
t!1

V

= lim
t!1

p
40mg

 
e
p

g

40m t � e�
p

g

40m t

e
p

g

40m t + e�
p

g

40m t

!

=
p
40mg lim

t!1

 
1� e�2

p
g

40m t

1 + e�2
p

g

40m t

!

=
p
40mg

as t ! 1; 2

r
g

40m
t ! 1 and

e�2
p

g

40m t ! 0 This means, when the time
increases indefinitely, its velocity reachesp
40mg.

(b) lim
m!0

V

= lim
m!0

p
40mg

 
e
p

g

40m t � e�
p

g

40m t

e
p

g

40m t + e�
p

g

40m t

!

= lim
m!0

p
40mg

 
1� e�2

p
g

40m t

1 + e�2
p

g

40m t

!

= lim
m!0

p
40mg lim

m!0

 
1� e�2

p
g

40m t

1 + e�2
p

g

40m t

!

= 0
as m ! 0; 2

p
g

40m t ! 1 and

e�2
p

g

40m t ! 0. This means, when the
mass is negligible, its velocity is 0.

(c) lim
m!1

V

= lim
m!1

p
40mg

 
e
p

g

40m t � e�
p

g

40m t

e
p

g

40m t + e�
p

g

40m t

!

= lim
m!1

p
40mg

 
e2
p

g

40m t � 1

e2
p

g

40m t + 1

!

as m ! 1; 2
p

g
40m t ! 0 and

e2
p

g

40m t ! 1

= lim
m!1

 
1

e2
p

g

40m t + 1

!
lim

m!1

⇣
e2
p

g

40m t � 1
⌘

�
1/
p
40mg

�

= (1/2 ) lim
(2
p

g

40m t)!0

✓
e
2
p

g

40m
t�1

2
p

g

40m t

◆�
2
p
g t
�

=
p
g t

This means, when the increases indefi-
nitely, its velocity reaches

p
gt.

66. lim
c!1

S = lim
c!1

⇢
8⇡
3 c2

⇣
d2

16c2 + 1
⌘3/2

� 1

��

= 8⇡
3 lim

c!1

✓
c2

h
(d2+16c2)3/2 �64c3

i

64c3

◆

= ⇡
24 lim

c!1

✓ h
(d2+16c2)3/2 �64c3

i

c

◆
is type

1
1 ;

we apply L’Hôpital’s Rule to get
⇡

24
lim
c!1


3

2

�
d2 + 16c2

�1/2
(32c)� 192c2

�

= 2⇡ lim
c!1

c
h�
d2 + 16c2

�1/2 � 4c2
i

which on rationalising gives

2⇡ lim
c!1

c
⇥�
d2 + 16c2

�
� 16c2

⇤
h
(d2 + 16c2)1/2 + 4c2

i =
⇡d2

4
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3.3 Maximum and Minimum
Values

1. (a) f(x) =
1

x2 � 1
on (0, 1) [ (1,1)

f 0(x) =
�2x

(x2 � 1)2

x = 0 is critical point.
f(0) = �1 is absolute maximum value but
0 is not included. Hence f has no absolute
extrema on interval (0, 1) [ (1,1).

(b) f(x) =
1

x2 � 1
on (-1, 1)

f 0(x) =
�2x

(x2 � 1)2

x = 0 is the only critical point.
f(0) = �1 is absolute maximum value of
f(x). Hence f has no absolute minimum
on interval (�1, 1)

(c) No absolute extrema. (They would be at
the endpoints which are not included in
the interval.)

(d) f(x) =
1

x2 � 1
on


�1

2
,
1

2

�

f 0(x) =
�2x

(x2 � 1)2

x = 0 is critical point.
f has an absolute maximum value of
f(0) = �1. f assumes its minimum at

two points x = ±1

2
and minimum value is

f

✓
�1

2

◆
= f

✓
1

2

◆
= �4

3
.

2. (a) f(x) =
x2

(x� 1)2
on (�1, 1) [ (1,1)

f 0(x) =
2x(x� 1)2 � 2x2 (x� 1)

(x� 1)4
= 0

x = 0 is critical point.
f has an absolute minimum value of
f(0) = 0 at x = 0 and no absolute maxi-
mum occurs.

(b) f(x) =
x2

(x� 1)2
on (�1, 1)

f 0(x) =
2x(x� 1)2 � 2x2 (x� 1)

(x� 1)4
= 0

x = 0 is critical point.
f has an absolute minimum value f(0) =
0 at x = 0 and there is no absolute maxi-
mum.

(c) The function does not have a maximum
or minimum. The minimum would be at
x = 0 (not included in this interval) while

the asymptote at x = 1 precludes an ab-
solute maximum.

(d) f(x) =
x2

(x� 1)2
on [�2, �1]

f 0(x) =
2x(x� 1)2 � 2x2 (x� 1)

(x� 1)4

=
�2x(x� 1)

(x� 1)4
< 0 on [�2, �1]

f(x) is decreasing function on [�2, �1] .
f(x) is maximum at x = �2 and mini-
mum at x = �1.

3. (a) f(x) = x2 + 5x� 1
f 0(x) = 2x+ 5
2x+ 5 = 0
x = �5/2 is a critical number.
This is a parabola opening upward, so we
have a minimum at x = �5/2.

(b) f(x) = �x2 + 4x+ 2
f 0(x) = �2x+ 4 = 0 when x = 2.
This is a parabola opening downward, so
we have a maximum at x = 2.

4. (a) f(x) = x3 � 3x+ 1
f 0(x) = 3x2 � 3

= 3(x2 � 1)
= 3(x+ 1)(x� 1) = 0

x = ±1 are critical numbers and f(1) =
�1, f(�1) = 3.
This is a cubic with a positive leading co-
e�cient so x = �1 is a local max, x = 1
is a local min.

(b) f(x) = �x3 + 6x2 + 2
f 0(x) = �3x2 + 12x = �3x(x + 4) = 0
when x = 0 and x = �4.
f(0) = 2, f(�4) = 162.
This is a cubic with a negative leading
coe�cient so x = 0 is a local min and
x = �4 is a local max.

5. (a) f(x) = x3 � 3x2 + 6x
f 0(x) = 3x2 � 6x+ 6
3x2 � 6x+ 6 = 3(x2 � 2x+ 2) = 0
We can use the quadratic formula to find
the roots, which are x = 1±

p
�1. These

are imaginary so there are no real critical
points.

(b) f (x) = �x3 + 3x2 � 3x
f 0 (x) = �3x2 + 6x� 3

= 3
�
�x2 + 2x� 1

�

= �3
�
x2 � 2x+ 1

�

= �3(x� 1)2
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f 0 (x) = 3(x� 1)2= 0 when x = 1.
Since f(x) is a cubic with only one critical
number it is neither local min nor max.

6. (a) f (x) = x4 � 2x2 + 1
f 0 (x) = 4x3 � 4x

= 4x
�
x2 � 1

�

= 4x (x� 1) (x+ 1)
f 0 (x) = 0 when x = 0, ±1.
x = 0, ±1 are critical numbers. x = 0
is local maximum and x = ±1 are local
minimum.

(b) f (x) = x4 � 3x3 + 2
f 0 (x) = 4x3 � 9x2

= x2 (4x� 9)
f 0 (x) = 0 when x = 0, 9

4 .
x = 0, 9

4 are critical points. x = 9
4 is local

minimum and x = 0 is neither max nor
min.

7. f(x) = x4 � 3x3 + 2
f 0(x) = 4x3 � 9x2

4x3 � 9x2 = x2(4x� 9) = 0
x = 0, 9/4 are critical numbers

5

2

−5

10

3
0

−10

10−1

x = 9/4 is a local min; x = 0 is neither a local
max nor min.

8. f(x) = x4 + 6x2 � 2
f 0(x) = 4x3+12x = 0 when x = 0 (minimum).

1

0

2

4

2

−2

0

−4

−1−2

9. f(x) = x3/4 � 4x1/4

f 0(x) =
3

4x1/4
� 1

x3/4

If x 6= 0, f 0(x) = 0 when 3x3/4 = 4x1/4

x = 0, 16/9 are critical numbers.
x = 16/9 is a local min, x = 0 is a local maxi-
mum.

0

−2

3

−4

1098765

−1

4

−3

−5

210

10. f(x) = (x2/5 � 3x1/5)2

f 0(x) = 2(x2/5 � 3x1/5)

✓
2

5x3/5
� 3

5x4/5

◆

f 0(x) = 0 when x = 35 (minimum) and

x =

✓
3

2

◆5

(maximum).

f 0(x) is undefined when x = 0 (minimum).

250

5

3

150

1

300

6

4

200

2

0
100500
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11. f(x) = sinx cosx on [0, 2⇡]
f 0(x) = cosx cosx+ sinx(� sinx)

= cos2 x� sin2 x
cos2 x� sin2 x = 0
cos2 x = sin2 x
cosx = ± sinx
x = ⇡/4, 3⇡/4, 5⇡/4, 7⇡/4
are critical numbers.
x = ⇡/4, 5⇡/4 are local max, x = 3⇡/4, 7⇡/4
are local min.
Also x = 0 is local minimum and x = 2⇡ is
local maximum.

20
x

65

0.0

−0.5

1

0.5

−0.25

3 4

0.25

12. f(x) =
p
3 sinx+ cosx

f 0(x) =
p
3 cosx�sinx = 0 when tan(x) =

p
3

or x = ⇡/3+ k⇡ for any integer k (maxima for
even k and minima for odd k).

0

x
6543210

2

1

−1

−2

13. f(x) =
x2 � 2

x+ 2
Note that x = �2 is not in the domain of f .

f 0(x) =
(2x)(x+ 2)� (x2 � 2)(1)

(x+ 2)2

=
2x2 + 4x� x2 + 2

(x+ 2)2

=
x2 + 4x+ 2

(x+ 2)
f 0(x) = 0 when x2 +4x+2 = 0, so the critical
numbers are x = �2±

p
2.

x = �2 +
p
2 is a local min; x = �2 +

p
2 is a

local max.

5 10

−10

20

0

−20

−5

10

0−10

14. f(x) =
x2 � x+ 4

x� 1

f 0(x) =
(x� 1)(2x� 1)� (x2 � x+ 4)

(x� 1)2

=
(x� 3)(x+ 1)

(x� 1)2
= 0

when x = �1 (maximum) and x = 3 (mini-
mum). f 0(x) is undefined when x = 1 (not in
domain of f).

−8

0

−20

1086420−2−4−6

20

10

−10

−10

15. f(x) =
ex + e�x

2

f 0(x) =
ex � e�x

2
f 0(x) = 0 when ex = e�x, that is, x = 0.
f 0(x) is defined for all x, so x = 0 is a critical
number. x = 0 is a local min.
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5.0

−5.0

10.0

7.5

2.5

0.0

−2.5
5.02.50.0−2.5−5.0

16. f(x) = xe�2x

f 0(x) = e�2x � 2xe�2x = 0 when x = 1
2 (max-

imum).

5.0

0.0

2

−5.0

54

2.5

3

−2.5

−7.5

1

−10.0

0−1−2−3−4−5

17. f(x) = x4/3 + 4x1/3 + 4x�2/3

f is not defined at x = 0.

f 0(x) =
4

3
x1/3 +

4

3
x�2/3 � 8

3
x�5/3

=
4

3
x�5/3(x2 + x� 2)

=
4

3
x�5/3(x� 1)(x+ 2)

x = �2, 1 are critical numbers.
x = �2 and x = 1 are local minima.

10

50

−8 1086420−2−4

40

30

20

−10 −6

18. f(x) = x7/3 � 28x1/3

f 0(x) =
7

3
x4/3 � 28

3
x�2/3 = 0 when x = �2

(local maximum) and x = 2 (local minimum).

f 0(x) is undefined at x = 0 (neither)

30

8

−10

−30

20

10

10

0

−20

6420−2−4−6−8−10

19. f(x) = 2x
p
x+ 1 = 2x(x+ 1)1/2

Domain of f is all x � �1.
f 0(x) = 2(x+ 1)1/2 + 2x

�
1
2 (x+ 1)�1/2

�

=
2(x+ 1) + xp

x+ 1

=
3x+ 2p
x+ 1

f 0(x) = 0 for 3x+ 2 = 0, x = �2/3.
x = �2/3 is critical numbers.
f 0(x) is undefined for x = �1.

25

15

2

5

54

20

3

10

0
1

−5

0−1−2−3−4−5

x = �2/3 is a local min. x = �1 is an end-
point and local maximum.

20. f(x) =
xp

x2 + 1

f 0(x) =

p
x2 + 1� x2

p
x2 + 1

x2 + 1

=
1

(x2 + 1)3/2
6= 0 for any x, and f(x)

has no critical points.
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1.0

0.0
5

−1.0

0.5

10

−0.5

0−5−10

21. Because of the absolute value sign, there may
be critical numbers where the function x2 � 1
changes sign; that is, at x = ±1. For x > 1
and for x < �1, f(x) = x2� 1 and f 0(x) = 2x,
so there are no critical numbers on these in-
tervals. For �1 < x < 1, f(x) = 1 � x2 and
f 0(x) = �2x, so 0 is a critical number.

0

3210−1−2−3

8

6

4

2

The graph confirms this analysis and shows
there is a local max at x = 0 and local min
at x = ±1.

22. f (x) = 3
p
(x3 � 3x2) =

�
x3 � 3x2

� 1
3

f 0 (x) =
1

3
· 3x2 � 6x

(x3 � 3x2)
2
3

=
1

3
· 3x2 � 6x

(x3 � 3x2)
2
3

= 0

when x = 2.
x = 2 is critical number. x = 2 is local mini-
mum. x = 0 is local maximum.

4

6

4−2 2

−2

6

8

0

−8

−6
x

y

−8 −4

−10

0 108

−6

−4

2

23. First, let’s find the critical numbers for x < 0.
In this case,
f(x) = x2 + 2x� 1
f 0(x) = 2x+ 2 = 2(x+ 1)
so the only critical number in this interval is
x = �1 and it is a local minimum.
Now for x > 0,
f(x) = x2 � 4x+ 3
f 0(x) = 2x� 4 = 2(x� 2)
so the only critical number is x = 2 and it is a
local minimum.

2

x

−3

0

5

−1

3

−2

1

−5

−5

−4 2 5
−1

0

4

431−2

−4

−3

Finally, since f is not continuous and hence not
di↵erentiable at x = 0. Indeed, x = 0 is a local
maximum.

24. f 0(x) = cosx for �⇡ < x < ⇡, and f 0(x) =
� sec2 x for |x| � ⇡.
f 0(x) = 0 for x = �⇡/2 (minimum) and
x = ⇡/2 (maximum).

0.0

x
10.0

7.5

−2.5

0.0

5.0

7.5

2.5

2.5

y

10.0

−2.5 5.0

f 0(x) is undefined for x = (2k+1)⇡2 for integers
k 6= �1 or 0 (not in domain of f).

25. f(x) = x3 � 3x+ 1
f 0(x) = 3x2 � 3 = 3(x2 � 1)
f 0(x) = 0 for x = ±1.

(a) On [0, 2], 1 is the only critical number.
We calculate:
f(0) = 1
f(1) = �1 is the abs min.
f(2) = 3 is the abs max.
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(b) On the interval [�3, 2], we have both 1
and �1 as critical numbers.
We calculate:
f(�3) = �17 is the abs min.
f(�1) = 3 is the abs max.
f(1) = �1
f(2) = 3 is also the abs max.

26. f(x) = x4 � 8x2 + 2
f 0(x) = 4x3�16x = 0 when x = 0 and x = ±2.

(a) On [�3, 1]:
f(�3) = 11, f(�2) = �14, f(0) = 2, and
f(1) = �5.
The abs min on this interval is f(�2) =
�14 and the abs max is f(�3) = 11.

(b) On [�1, 3]:
f(�1) = �5, f(2) = �14, and f(3) = 11.
The abs min on this interval is f(2) = �14
and the abs max is f(3) = 11.

27. f(x) = x2/3

f 0(x) = 2
3x

�1/3 = 2
3 3px

f 0(x) 6= 0 for any x, but f 0(x) undefined for
x = 0, so x = 0 is critical number.

(a) On [�4, �2]:
0 62 [�4,�2] so we only look at endpoints.
f(�4) = 3

p
16 ⇡ 2.52

f(�2) = 3
p
4 ⇡ 1.59

So f(�4) = 3
p
16 is the abs max and

f(�2) = 3
p
4 is the abs min.

(b) On [�1, 3], we have 0 as a critical num-
ber.
f(�1) = 1
f(0) = 0 is the abs min.
f(3) = 32/3 is the abs max.

28. f(x) = sinx+ cosx
f 0(x) = cosx� sinx = 0 when x = ⇡

4 + k⇡ for
integers k.

(a) On [0, 2⇡]:
f(0) = 1, f(⇡/4) =

p
2, f(5⇡/4) = �

p
2,

and f(2⇡) = 1.
The abs min on this interval is f(5⇡/4) =
�
p
2 and the abs max is f(⇡/4) =

p
2.

(b) On [⇡/2, ⇡]:
f(⇡/2) = 1, f(⇡) = �1.
The abs min on this interval is f(⇡) = �1
and the abs max is f(⇡/2) = 1.

29. f(x) = e�x2

f 0(x) = �2xe�x2

Hence x = 0 is the only critical number.

(a) On [0, 2]:
f(0) = 1 is the abs max.
f(2) = e�4 is the abs min.

(b) On [�3, 2]:
f(�3) = e�9 is the abs min.
f(0) = 1 is the abs max.
f(2) = e�4

30. f(x) = x2e�4x

f 0(x) = 2xe�4x�4x2e�4x = 0 when x = 0 and
x = 1/2.

(a) On [�2, 0]:
f(�2) = 4e8, f(0) = 0.
The abs min is f(0) = 0 and the abs max
is f(�2) = 4e8.

(b) On [0, 4]:
f(1/2) = e�2/4, f(4) = 16e�16.
The abs min is f(0) = 0 and the abs max
is f(1/2) = e�2/4.

31. f(x) =
3x2

x� 3
Note that x = 3 is not in the domain of f .

f 0(x) =
6x(x� 3)� 3x2(1)

(x� 3)2

=
6x2 � 18x� 3x2

(x� 3)2

=
3x2 � 18x

(x� 3)2

=
3x(x� 6)

(x� 3)2

The critical points are x = 0, x = 6.

(a) On [�2, 2]:
f(�2) = �12/5
f(2) = �12
f(0) = 0
Hence abs max is f(0) = 0 and abs min
is f(2) = �12.

(b) On [2, 8], the function is not continuous
and in fact has no absolute max or min.

32. f(x) = tan�1(x2)

f 0(x) =
2x

1 + x4
= 0 when x = 0.

(a) On [0, 1]:
f(0) = 0 and f(1) = ⇡/4.
The abs min is f(0) = 0 and the abs max
is f(1) = ⇡/4.

(b) On [�3, 4]:
f(�3) ⇡ 1.46, f(0) = 0, and f(4) ⇡ 1.51.
The abs min is f(0) = 0 and the abs max
is f(4) = tan�1 16.
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33. f(x) =
x

x2 + 1

f 0(x) =

�
x2 + 1

�
· 1� x · (2x)

(x2 + 1)2

=

�
x2 + 1

�
· 1� x · (2x)

(x2 + 1)2
=

�x2 + 1

(x2 + 1)2
= 0

when x = ±1.
x = ±1 are critical numbers.

(a) On [0, 2]:

f(0) =
0

02 + 1
= 0 is the abs minimum.

f(2) =
2

22 + 1
=

2

5

f(1) =
1

2
is the abs maximum.

(b) On [�3, 3]:

f(3) = � 3

10

f(�1) = �1

2
is the abs minimum.

f(1) =
1

2
is the abs maximum.

f(3) =
3

10

34. f(x) =
3x

x2 + 16

f 0(x) =

�
x2 + 16

�
· 3� 3x · (2x)

(x2 + 16)2

=

�
x2 + 16

�
· 3� 3x · (2x)

(x2 + 16)2
= 0

=
�3x2 + 48

(x2 + 16)2
= 0 when x = ±4.

x = ±4 are critical numbers.

(a) On [0, 2]:

f(0) =
0

02 + 16
= 0 is the abs minimum.

f(2) =
2

22 + 1
=

3

10
is the abs maximum.

(b) on [0, 6]:
f(0) = 0 is abs minimum.

f(4) =
3

8
is abs maximum.

f(6) =
9

26

35. f 0(x) = 4x3 � 6x+ 2 = 0 at about x = 0.3660,
�1.3660 and at x = 1.

(a) f(�1) = �3, f(1) = 1.
The absolute min is (�1,�3) and
the absolute max is approximately
(0.3660, 1.3481).

(b) The absolute min is approximately
(�1.3660,�3.8481) and the absolute max
is (�3, 49).

36. f 0(x) = 6x5 � 12x � 2 = 0 at about �1.3673,
�0.5860 and 1.4522.

(a) f(�1) = 1, f(1) = �3. f(�0.5860) =
1.8587.
The absolute min is f(1) = �3
and the absolute max is approximately
f(�0.5860) = 1.8587.

(b) f(�2) = 21 and f(2) = 13. f(�1.3673) =
�.2165 and f(1.4522) = �5.8675.
The absolute min is approximately
f(1.4522) = �5.8675 and the absolute
max is f(�2) = 21.

37. f 0(x) = sinx+ x cosx = 0 at x = 0 and about
2.0288 and 4.9132.

(a) The absolute min is (0, 3) and the abso-
lute max is (±⇡/2, 3 + ⇡/2).

(b) The absolute min is approximately
(4.9132,�1.814) and the absolute max is
approximately (2.0288, 4.820).

38. f 0(x) = 2x + ex = 0 at approximately x =
�0.3517.

(a) f(0) = 1 and f(1) = 1 + e ⇡ 3.71828.
f 0(x) 6= 0 on this interval, so the absolute
min is f(0) = 1 and the absolute max is
f(1) = 1 + e ⇡ 3.71828.

(b) f(�2) ⇡ 4.1353 and f(2) ⇡ 11.3891.
f(�0.3517) = 0.8272.
The absolute min is approximately
f(�0.3517) = 0.8272 and the absolute
max is approximately f(2) = 11.3891.

39. On [�2, 2], the absolute maximum is 3 and the
absolute minimum doesn’t exist.

y

1

−2.5

x

5.0

2

2.5

0.0

−5.0

0−1−2
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40. On (�2, 2) minimum is 2 and the maximum
does not exist. (The maximum would exist at
the endpoints which are not included in the in-
terval.)

2

1

0

x
210-1-2

y

6

5

4

3

41. On (�2, 2) the absolute maximum is 4 and the
absolute minimum is 2.

y

5

4

3

2

1

0

x

210-1-2

42. Absolute extrema do not exist because of the
vertical asymptote.

y

x

10

2

5

0
1

-5

-10

0-1-2

43. f(x) = x3 + cx+ 1
f 0(x) = 3x2 + c
We know (perhaps from a pre-calculus course)
that for any cubic polynomial with positive
leading coe�cient, when x is large and posi-
tive the value of the polynomial is very large
and positive, and when x is large and negative,
the value of the polynomial is very large and
negative.

Type 1: c > 0. There are no critical numbers.
As you move from left to right, the graph of f
is always rising.
Type 2: c < 0 There are two critical numbers
x = ±

p
�c/3. As you move from left to right,

the graph rises until we get to the first critical
number, then the graph must fall until we get
to the second critical number, and then the
graph rises again. So the critical number on
the left is a local maximum and the critical
number on the right is a local minimum.
Type 3: c = 0. There is only one critical num-
ber, which is neither a local max nor a local
min.

44. The derivative of a fourth-order polynomial
is a cubic polynomial. We know that cubic
polynomials must have one root, and can have
up to three roots. If p(x) is a fourth-order
polynomial, we know that

lim
x!1

p(x) = lim
x!�1

p(x) = 1

if the coe�cient of x4 is positive, and
is �1 if the coe�cient of x4 is nega-
tive. This guarantees that at least one of
the critical numbers will be an extremum.

2

4

1
x

8

12

0
-1 0-2

3.2

3

2.8

2.6

2.4

2.2

2

x
21.510.50-0.5-1
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1

0

x
210-1-2

6

5

4

3

2

-1

45. f(x) = x3 + bx2 + cx+ d
f 0(x) = 3x2 + 2bx+ c
The quadratic formula says that the critical
numbers are

x =
�2b±

p
4b2 � 12c

6

=
�b±

p
b2 � 3c

3
.

So if c < 0, the quantity under the square root
is positive and there are two critical numbers.
This is like the Type 2 cubics in Exercise 53.
We know that as x goes to infinity, the poly-
nomial x3 + bx2 + cx + d gets very large and
positive, and when x goes to minus infinity, the
polynomial is very large but negative. There-
fore, the critical number on the left must be a
local max, and the critical number on the right
must be a local min.

46. f 0(x) = 3x2 + 2bx + c = 0 when x =
�2b±

p
4b2 � 12c

6
. Adding these values to-

gether yields �2b/3.

47. f(x) = x4 + cx2 + 1
f 0(x) = 4x3 + 2cx = 2x(2x2 + c)
So x = 0 is always a critical number.

Case 1: c � 0. The only solution to 2x(2x2 +
c) = 0 is x = 0, so x = 0 is the only critical
number. This must be a minimum, since we
know that the function x4 + cx2 + 1 is large
and positive when |x| is large (so the graph is
roughly U-shaped). We could also note that
f(0) = 1, and 1 is clearly the absolute mini-
mum of this function if c � 0.

Case 2: c < 0. Then there are two other crit-
ical numbers x = ±

p
�c/2. Now f(0) is still

equal to 1, but the value of f at both new crit-
ical numbers is less than 1. Hence f(0) is a
local max, and both new critical numbers are
local minimums.

48. f 0(x) = 4x3 + 3cx2 = 0 when x = 0 and
x = �3c/4. Only x = �3c/4 will be an ex-
treme point (an absolute minimum). x = 0
will be an inflection point.

49. Since f is di↵erentiable on (a, b), it is continu-
ous on the same interval. Since f is decreasing
at a and increasing at b, f must have a local
minimum for some value c, where a < c < b.
By Fermat’s theorem, c is a critical number for
f . Since f is di↵erentiable at c, f 0(c) exists,
and therefore f 0(c) = 0.

50. Graph of f(x) = x2 + 1 and g(x) = lnx:

y

2.5

−2.5
x

5.0

5.0

2.5

0.0

−5.0

0.0−2.5−5.0

h(x) = f(x)� g(x) = x2 + 1� lnx
h0(x) = 2x� 1/x = 0
2x2 = 1
x = ±

p
1/2

x =
p

1/2 is min
f 0(x) = 2x
g0(x) = 1/x

f 0
⇣p

1/2
⌘
= 2
p
1/2 =

p
2

g0
⇣p

1/2
⌘
= 1p

1/2
=

p
2

So the tangents are parallel. If the tangent
lines were not parallel, then they would be
getting closer together in one direction. Since
the tangent lines approximate the curves, this
should mean the curves are also getting closer
together in that direction.

51. Graph of f(x) =
x2

x2 + 1
:
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0.6

0.8

0.2

0.4

0

x

543210

f 0(x) =
2x(x2 + 1)� x2(2x)

(x2 + 1)2

=
2x

(x2 + 1)2

f 00(x) =
2(x2 + 1)2 � 2x · 2(x2 + 1) · 2x

(x2 + 1)4

=
2(x2 + 1)

⇥
(x2 + 1)� 4x2

⇤

(x2 + 1)4

=
2
⇥
1� 3x2

⇤

(x2 + 1)3

f 00(x) = 0 for x = ± 1p
3
,

x = � 1p
3

/2 (0,1)

x =
1p
3
is steepest point.

52. Graph of f(x) = e�x2

:

1

0.8

0.6

0.4

0.2

0

x
210-1-2

f(x) is steepest where f 0(x) = �2xe�x2

is
maximum.
f 00(x) = �2e�x2

+ 4x2e�x2

= 0 when x =
±
p
2/2. This is where f(x) is steepest.

53. With t = 90 and r = 1/30, we have

P (n) =
3n

n!
e�3. We compute P for the first few

values of n:

n P

0 e�3

1 3e�3

2 4.5e�3

3 4.5e�3

4 3.375e�3

Once n > 3, the values of P will decrease as
n increases. This is due to the fact that to
get P (n + 1) from P (n), we multiply P (n)
by 3/(n + 1). Since n > 3, 3/(n + 1) < 1
and so P (n + 1) < P (n). Thus we see from
the table that P is maximized at n = 3 (it
is also maximized at n = 2). It makes sense
that P would be maximized at n = 3 because

(90 mins)

✓
1

30
goals/min

◆
= 3 goals.

54. f(p) = pm(1� p)n�m

f 0(p) = mpm�1(1� p)n�m

� pm(n�m)(1� p)n�m�1

To find the critical numbers, we set f 0(p) = 0
which gives
mpm�1(1� p)n�m

� pm(n�m)(1� p)n�m�1 = 0
mpm�1(1� p)n�m

= pm(n�m)(1� p)n�m�1

m(1� p) = p(n�m)
m�mp = pn� pm
p = m/n.
Since this is the only critical number, f(p) is
continuous, f(0) = f(1) = 0 and f(m/n) > 0,
p = m/n must maximize f(p).

55. y = x5 � 4x3 � x+ 10, x 2 [�2, 2]
y0 = 5x4 � 12x2 � 1
x = �1.575, 1.575 are critical numbers of y.
There is a local max at x = �1.575, local min
at x = 1.575.
x = �1.575 represents the top and x = 1.575
represents the bottom of the roller coaster.
y00(x) = 20x3 � 24x = 4x(5x2 � 6) = 0
x = 0, ±

p
6/5 are critical numbers of y0. We

calculate y0 at the critical numbers and at the
endpoints x = ±2:
y0(0) = �1

y0
⇣
±
p
6/5
⌘
= �41/5

y0 (±2) = 31
So the points where the roller coaster is mak-
ing the steepest descent are x = ±

p
6/5, but

the steepest part of the roller coast is during
the ascents at ±2.

56. To maximize entropy, we find the critical num-
bers of H.
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H 0(x) = � lnx� 1 + ln(1� x) + 1 = 0
where lnx = ln(1�x), or where x = 1�x. That
is x = 1/2. This maximizes unpredictablility
since for this value, errors and non-errors are
equally likely.

57. W (t) = a · e�be�t

as t ! 1,�be�t ! 0, so W (t) ! a.

W 0(t) = a · e�be�t · be�t

as t ! 1, be�t ! 0, so W 0(t) ! 0.

W 00(t) = (a · e�be�t · be�t) · be�t

+ (a · e�be�t

) · (�be�t)

= a · e�be�t · be�t [be�t � 1]
W 00(t) = 0 when be�t = 1
e�t = b�1

� t = ln b�1

t = ln b
W 0(ln b) = a · e�be� ln b · be� ln b

= a · e�b( 1
b

) · b · 1
b = ae�1

Maximum growth rate is ae�1 when t = ln b.

58. R0([S]) =
(Km + [S])Rm � [S]Rm

(Km + [S])2
6= 0. The

function doesn’t have a true maximum, but
lim

[S]!1
R = Rm. The rate of reaction ap-

proaches Rm but never reaches it.

59. Label the triangles as illustrated.

x

A
B

2

1

tan(A+B) = 3/x
A+B = tan�1 (3/x)

tanB = 1/x
B = tan�1(1/x)

Therefore,
A = (A+B)�B
A = tan�1 (3/x)� tan�1 (1/x)
dA

dx
=

�3/x2

1 + (3/x)2
� �1/x2

1 + (1/x)2

=
1

x2 + 1
� 3

x2 + 9
The maximum viewing angle will occur at a
critical value.
dA

dx
= 0

1

x2 + 1
=

3

x2 + 9
x2 + 9 = 3x2 + 3
2x2 = 6
x2 = 3
x =

p
3 ft ⇡ 1.73 ft

This is a maximum because when x is large
and when x is a little bigger than 0, the angle
is small.

60. (a) For the hockey player, m\AHB is the
shooting angle ✓.

A
Q
Q
Q

Q
Q
Q

Q
Q
Q

Q
Q
Q

QQ

B

H

6 1

d

A
A
A
A
A
A
A
A
AA

Therefore,

✓ = tan�1

✓
7

d

◆
� tan�1

✓
1

d

◆

Hence,

✓0 =
1

1 +
�
49
d2

�
✓
�7

d2

◆
� 1

1 +
�

1
d2

�
✓
�1

d2

◆

=
�7

d2 + 49
+

1

d2 + 1

To get the maximum angle,

✓0 =
�7

d2 + 49
+

1

d2 + 1
= 0

�7d2 � 7 + d2 + 49 = 0
6d2 = 42
d =

p
7

(b) For the hockey player, m\AHB is the
shooting angle ✓.

A
@
@
@

@
@
@

@
@
@@

B

H

5 1

d

�
�
�
�

�
�
�

�
��
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Therefore,

✓ = tan�1

✓
5

d

◆
+ tan�1

✓
1

d

◆

Hence,

✓0 =
1

1 +
�
25
d2

�
✓
�5

d2

◆
+

1

1 +
�

1
d2

�
✓
�1

d2

◆

= � 5
d2+25 � 1

d2+1

The function is decreasing as the deriva-
tive is negative. Hence the angle is maxi-
mum when ✓ is minimum = 0.

(c) For the hockey player, m\AHC is the
shooting angle, ✓.

A C
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

B

H

2 1

d

4
@
@
@
@
@
@
@
@
@@

C
C
C
C
C
C
C
C
CC

Therefore,

✓ = tan�1

✓
7

d

◆
� tan�1

✓
5

d

◆

Hence,

✓0 =
1

1 +
�
49
d2

�
✓
�7

d2

◆
� 1

1 +
�
25
d2

�
✓
�5

d2

◆

= � 7
d2+49 + 5

d2+25

To get the maximum angle,

✓0 = � 7

d2 + 49
+

5

d2 + 25
= 0

�7d2 � 175 + 5d2 + 245 = 0
2d2 = 70
d =

p
35

3.4 Increasing and Decreasing
Functions

1. y = x3 � 3x+ 2
y0 = 3x2 � 3 = 3(x2 � 1)

= 3(x+ 1)(x� 1)
x = ±1 are critical numbers.
(x + 1) > 0 on (�1, 1), (x + 1) < 0 on
(�1, �1)
(x�1) > 0 on (1, 1), (x�1) < 0 on (�1, �1)
3(x + 1)(x � 1) > 0 on (1, 1) [ (�1, �1) so

y is increasing on (1, 1) and on (�1, �1)
3(x+1)(x� 1) < 0 on (�1, 1), so y is decreas-
ing on (�1, 1).
y00 = 6x
y00 = �6 < 0 at x = �1
Hence the function is a local maximum at
x = �1.
y00 = 6 > 0 at x = 1. Hence y(1) = 0 is a local
minimum.

y

2

−20

x

40

4

20

0

−40

0−2−4

2. y = x3 + 2x2 + 1
y0 = 3x2 + 4x = x(3x+ 4)
The function is increasing when x < � 4

3 , de-
creasing when � 4

3 < x < 0, and increasing
when x > 0.
y00 = 6x+ 4
y00 = �12 < 0 at x = � 4

3
Hence f(� 4

3 ) is a local maximum at x = � 4
3 .

y00 = 4 > 0 at x = 0
Hence y(0) is a local minimum at x = 0.

x
10.5

4

3

0

2

1

-0.5
0

-1

-1

-2

-1.5-2-2.5

3. y = x4 � 8x2 + 1
y0 = 4x3 � 16x = 4x(x2 � 4)

= 4x(x� 2)(x+ 2)
x = 0, 2,�2 are critical numbers.
4x > 0 on (0, 1), 4x < 0 on (�1, 0)
(x� 2) > 0 on (2, 1), (x� 2) < 0 on (�1, 2)
(x + 2) > 0 on (�2, 1), (x + 2) < 0 on
(�1, �2)
4(x � 2)(x + 2) > 0 on (�2, 0) [ (2, 1), so
the function is increasing on (�2, 0) and on
(2, 1).
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4(x� 2)(x+2) < 0 on (�1, �2)[ (0, 2), so y
is decreasing on (�1, �2) and on (0, 2).
y00 = 12x2 � 16
At x = 0, y00 < 0. Hence y(0) is a local maxi-
mum at x = 0.
y00 = 12(±2)2 � 16 > 0 at x = ±2. Hence
y(±2) are local minima at x = ±2.

y

2

−20

x

40

4

20

0

−40

0−2−4

4. y = x3 � 3x2 � 9x+ 1
y0 = 3x2 � 6x� 9 = 3(x� 3)(x+ 1).
The function is increasing when x < �1, de-
creasing when �1 < x < 3, and increasing
when x > 3.
y00 = 6x� 6
y00 = �12 < 0 at x = �1. Hence the function
is a local maximum at x = �1.
y00 = 12 > 0 at x = 3. Hence the function is a
local minimum at x = 3.

x
420-2

20

10

0

-10

-20

-30

-40

5. y = (x+ 1)2/3

y0 = 2
3 (x+ 1)�1/3 = 2

3 3px+1

y0 is not defined for x = �1
2

3 3px+1
> 0 on (�1,1), y is increasing

2
3 3px+1

< 0 on (�1,�1), y is decreasing

The graph has minimum at x = �1.

y

−1
x

1

2−2

4

3

2

0

40−4

6. y = (x� 1)1/3

y0 = 1
3 (x� 1)�2/3.

The function is increasing for all x. The slope
approaches vertical as x approaches 1.
The graph has no extrema.

x
420-2

1.5

1

0.5

0

-0.5

-1

-1.5

7. y = sinx+ cosx
y0 = cosx� sinx = 0
cosx = sinx
x = ⇡/4, 5⇡/4, 9⇡/4, etc. cosx� sinx > 0 on
(�3⇡/4,⇡/4) [ (5⇡/4, 9⇡/4) [ . . .
cosx � sinx < 0 on (⇡/4, 5⇡/4) [
(9⇡/4, 13⇡/4) [ . . .
So y = sinx+ cosx is decreasing on
(⇡/4, 5⇡/4) , (9⇡/4, 13⇡/4),
etc., and is increasing on
(�3⇡/4,⇡/4) , (5⇡/4, 9⇡/4), etc.
y00 = � sinx� cosx

y00 = � 2p
2
< 0 at x = ⇡/4, x = 9⇡/4, etc.

Hence the function is local maximum at
x = ⇡/4, x = 9⇡/4, etc.
y00 =

p
2 > 0 at x = 5⇡/4, x = 13⇡/4 etc.

Hence the function is local minimum at
x = 5⇡/4, x = 13⇡/4 etc.
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y

0

−2

x

3

2

5
−1

−5 100−10

1

−3

8. y = sin2 x
y0 = 2 sinx cosx.
The function is increasing for 0 < x < ⇡

2 , and
decreasing for ⇡

2 < x < ⇡, and this pattern re-
peats with period ⇡.
y00 = 2 cos 2x
y00 = �2 < 0 at x = ⇡/2, x = 3⇡/2, etc.
Hence the function is local maximum at x =
⇡/2, x = 3⇡/2, etc.
y00 =

p
2 > 0 at x = 0, x = ⇡, etc.

Hence the function is a local minimum x = 0,
x = ⇡, etc.

0.6

0.4

0.2

x

0
420-2

1

0.8

9. y = ex
2�1

y0 = ex
2�1 · 2x = 2xex

2�1

x = 0
2xex

2�1 > 0 on (0,1), y is increasing

2xex
2�1 < 0 on (�1, 0), y is decreasing

y00 = 2ex
2�1

⇥
2x2 + 1

⇤

y00 = 0.736 > 0 at x = 0. Hence the function
is a local minimum at x = 0.

y

10

8

6

4

2

0

x

210-1-2

10. y = ln(x2 � 1)

y0 =
2x

x2 � 1
.

The function is defined for |x| > 1. The func-
tion is decreasing for x < �1 and increasing
for x > 1.
The graph has no extrema.

2

-4
0

-2

-2

-4

x
420

11. y = x4 + 4x3 � 2
y0 = 4x3 + 12x2 = 4x2(x+ 3)
Critical numbers are x = 0, x = �3.
4x2(x+ 3) > 0 on (�3, 0) [ (0,1)
4x2(x+ 3) < 0 on (�1,�3)
Hence x = �3 is a local minimum and x = 0
is not an extremum.

12. y = x5 � 5x2 + 1
y0 = 5x4 � 10x = 5x(x3 � 2).
At x = 0 the slope changes from positive
to negative indicating a local maximum. At
x = 3

p
2 the slope changes from negative to

positive indicating a local minimum.

13. y = xe�2x

y0 = 1 · e�2x + x · e�2x(�2)
= e�2x � 2xe�2x

= e�2x(1� 2x)
x = 1

2
e�2x(1� 2x) > 0 on (�1, 1/2)
e�2x(1� 2x) < 0 on (1/2,1)
So y = xe�2x has a local maximum at x = 1/2.
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14. y = x2e�x

y0 = 2xe�x � x2e�x = xe�x(2� x).
At x = 0 the slope changes from negative to
positive indicating a local minimum. At x = 2
the slope changes from positive to negative in-
dicating a local maximum.

15. y = tan�1(x2)

y0 =
2x

1 + x4

Critical number is x = 0.
2x

1 + x4
> 0 for x > 0

2x

1 + x4
< 0 for x < 0. Hence x = 0 is a local

minimum.

16. y = sin�1
�
1� 1

x2

�

y0 =
2

x3
· 1q

1� (1� 1
x2 )2

.

The derivative is never 0 and is defined where
the function is defined, so there are no critical
points.

17. y =
x

1 + x3
Note that the function is not de-

fined for x = �1.

y0 =
1(1 + x3)� x(3x2)

(1 + x3)

=
1 + x3 � 3x3

(1 + x3)2

=
1� 2x3

(1 + x3)2

Critical number is x = 3
p
1/2

y0 > 0 on (�1,�1) [ (�1,� 3
p
1/2)

y0 < 0 on ( 3
p
1/2,1)

Hence x = 3
p
1/2 is a local max.

18. y =
x

1 + x4

y0 =
(1 + x4)� 4x4

(1 + x4)2
=

1� 3x4

(1 + x4)2
.

At x = � 4
p
1/3 the slope changes from nega-

tive to positive indicating a local minimum. At
x = 4

p
1/3 the slope changes from positive to

negative incicating a local maximum.

19. y =
p
x3 + 3x2 = (x3 + 3x2)1/2

Domain is all x � �3.

y0 =
1

2
(x3 + 3x2)�1/2(3x2 + 6x)

=
3x2 + 6x

2
p
x3 + 3x2

=
3x(x+ 2)

2
p
x3 + 3x2

x = 0,�2,�3 are critical numbers.
y0 undefined at x = 0,�3

y0 > 0 on (�3,�2) [ (0,1)
y0 < 0 on (�2, 0)
So y =

p
x3 + 3x2 has local max at x = �2,

local min at x = 0, �3.

20. y = x4/3 + 4x1/3

y0 =
4

3
x1/3 +

4

3x2/3
=

4

3
· x+ 1

x2/3
.

At x = �1 the slope changes from negative to
positive indicating a local minimum. At x = 0
the slope is vertical and is positive on positive
side and negative on negative side, so this is
neither a minimum nor a maximum.

21. y0 = 4x3 � 45x2 � 4x+ 40
Local minima at x = �0.9474, 11.2599; local
max at 0.9374.
Local behavior near x = 0 looks like

y

2,500

−2,500
x

20151050−5

5,000

−10

0

−5,000

Global behavior of the function looks like

y

1

−20
x

40

2

20

0

−40

0−1−2

22. y0 = 4x3 � 48x2 � 0.2x + 0.5 = 0 at ap-
proximately x = �0.1037 (local minimum),
x = 0.1004 (local maximum), and x = 12.003
(local minimum).
Local behavior near x = 0 looks like
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0-0.2-0.4

0.5

0

-0.5

-1

-1.5

-2

-2.5

x
0.40.2

Global behavior of the function looks like

2000

0

-2000

x

-4000

-6000

151050-5

23. y0 = 5x4 � 600x+ 605
Local minima at x = �1.0084, 10.9079; local
maxima at x = �10.9079, 1.0084.
Local behavior near x = 0 looks like

105

x

1

10

y

2

0

20

−1

−2

0−10−20

Global behavior of the function looks like

y

1

−250

x

500

2

250

0

−500

0−1−2

24. y0 = 4x3 � 1.5x2 � 0.04x + 0.02 = 0 at ap-
proximately x = �0.1121 (local minimum),
x = 0.1223 (local maximum), and x = 0.3648
(local minimum).

x
0.60.40.20-0.2-0.4

1.12

1.08

1.04

1

25. y0 = (2x+ 1)e�2x + (x2 + x+ 0.45)(�2)e�2x

Local min at x = �0.2236; local max at
x = 0.2236.
Local behavior near x = 0 looks like

−2

105

1

−4

−1

x
543210−1

y

2

−3

0

−2

−5

Global behavior of the function looks like
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0.425

x
0.30.20.10.0−0.1−0.2−0.3

y

0.5

0.475

0.45

0.4

26. y0 = 5x4 ln(8x2) + x5 16x

8x2

= x4(5 ln(8x2) + 2) = 0 at approximately
x = ±0.2895 (a local maximum and local min-
imum). The derivative and the function are
undefined at x = 0, but the slope is negative
on both sides (neither a minimum nor a maxi-
mum).
Locally, near x = ±0.2895, the function looks
like

0.002

0.001

0

-0.001

-0.002

x
0.40.20-0.2-0.4

Globally, the function looks like a quintic

x
3210

500

-1

1000

-2

-500

0
-3

-1000

27. One possible graph:

y

10

5

0

-5

-10

x

43210-1-2

28. One possible graph:

x
43210

y

-1

5

-2

4

3

-3

2

1

0

29. One possible graph:

8

2.5

4

−7.5

x
10

y

5.0

0.0

6

−2.5

−5.0

−10.0

20−2−4−6−8−10

30. One possible graph:

x
54

y

3

5

2

4

3

1

2

1

0
0

-1

31. One possible graph:
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2

5.0

40
x

5−2 3

2.5

−4

−5.0

1−1

0.0

−2.5y

−3−5

32. One possible graph:

y

5

−2.5

−5

x
5.02.5

10

0.0

0

−10

−5.0

33. y =
x

x2 � 1

y0 =
x2 � 1� x(2x)

(x2 � 1)2

= � x2 + 1

(x2 � 1)2

There are no values of x for which y0 = 0.
There are no critical points, because the values
for which y0 does not exist (that is, x = ±1)
are not in the domain.
There are vertical asymptotes at x = ±1, and
a horizontal asymptote at y = 0. This can be
verified by calculating the following limits:

limx!±1
x

x2 � 1
= 0

lim
x!�1

x

x2 � 1
= 1

lim
x!1

x

x2 � 1
= �1

8

0

−4

−8

y

10

6

4

2

−2

−6

−10

x
210−2 −1

34. y =
x2

x2 � 1
has vertical asymptotes at x = ±1

and horizontal asymptote y = 1.

y0 =
(x2 � 1)2x� 2x(x2)

(x2 � 1)2
=

�2x

(x2 � 1)2
.

At x = 0 the slope changes from positive to
negative indicating a local maximum.

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3

35. y =
x2

x2 � 4x+ 3
=

x2

(x� 1)(x� 3)
Vertical asymptotes x = 1, x = 3. When |x| is
large, the function approaches the value 1, so
y = 1 is a horizontal asymptote.

y0 =
2x(x2 � 4x+ 3)� x2(2x� 4)

(x2 � 4x+ 3)2

=
2x3 � 8x2 + 6x� 2x3 + 4x2

(x2 � 4x+ 3)2

=
�4x2 + 6x

(x2 � 4x+ 3)2

=
2x(�2x+ 3)

(x2 � 4x+ 3)2

=
2x(�2x+ 3)

[(x� 3)(x� 1)]2

Critical numbers are x = 0 (local min) and
x = 3/2 (local max).
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y

8

8

4

4

−4

−8

0
x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

36. y =
x

1� x4
has vertical asymptotes at x = ±1

and horizontal asymptote y = 0.

y0 =
(1� x4) + 4x4

(1� x4)2
=

1 + 3x4

(1� x4)2
6= 0 for any

x and is defined where the function is defined.

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3

37. y =
xp

x2 + 1

y0 =

p
x2 + 1� x2/

p
x2 + 1

x2 + 1

=
1

(x2 + 1)3/2

The derivative is never zero, so there are no
critical points. To verify that there are hori-

zontal asymptotes at y = ±1: y =
xp

x2 + 1

=
x

p
x2
q

1 + 1
x2

=
x

|x|
q
1 + 1

x2

Thus,

limx!1
x

|x|
q

1 + 1
x2

= 1

lim
x!�1

x

|x|
q

1 + 1
x2

= �1

x

1.6

2

0.0

−0.8

0

−1.6

y

2.0

1.2

3

0.8

0.4

−0.4
1

−1.2

−2.0

−1−2−3

38. y =
x2 + 2

(x+ 1)2
has a vertical asymptote at

x = �1, and a horizontal asymptote at y = 1.

y0 =
2x(x+ 1)2 � (x2 + 2)2(x+ 1)

(x+ 1)4

=
2(x� 2)(x+ 1)

(x+ 1)4

x = 2 is the only critical number. Since
f 0(0) < 0 and f 0(3) > 0, we see that f(2)
is a local minimum.

y

x

6

6

5

4

4

3

2

2

1

0
0-2-4

39. The derivative is

y0 =
�3x4 + 120x3 � 1

(x4 � 1)2
.

We estimate the critical numbers to be approx-
imately 0.2031 and 39.999.
The following graph shows global behavior:

−1

400

0

−200

−400

x

y

500

300

200

100

−100

−300

−500

20−2 1

The following graphs show local behavior:
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30.4

31.2

30.8

30

x

0.50.40.2 0.30 0.1

2E-6

4E-6

3E-6

1E-6

0E0

-1E-6

x

5045403530

40. The derivative is

y0 =
�2x5 + 32x3 � 2x

(x4 � 1)2
.

We estimate the critical numbers to be approx-
imately ±0.251, ±3.992 and x = 0.
The following graph shows global behavior:

8.15

8.05

x

0.40.20-0.4 -0.2

8.25

8.2

8.1

8

The following graphs show local behavior:

y

0.04

0.02

0

-0.02

-0.04

x

-2-2.5-3-3.5-4-4.5-5

8.15

8.05

x

0.40.20-0.4 -0.2

8.25

8.2

8.1

8

41. The derivative is y0 =
�x2 � 120x+ 1

(x2 + 1)2
.

We estimate the critical numbers to be approx-
imately 0.008 and �120.008.
The following graph shows global behavior:

x

1050-5-10

y

100

80

60

40

20

0

The following graphs show local behavior:

0.002

-0.002

x

-50-100-150-250-300-350 -200-400

0.004

0

-0.004

6.0002E1

5.9998E1

6.0004E1

6E1

5.9996E1

x

0.020.0150.005 0.010
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42. The derivative is y0 =
�x2 + 120x� 1

(x2 � 1)2
.

We estimate the critical numbers to be approx-
imately 0.008 and 119.992.
The following graph shows global behavior:

−250

x
3210−1−2−3

y

500

250

0

−500

The following graphs show local behavior:

0.002

-0.002

x

20018016012010080 14060

0.004

0

-0.004

6.0002E1

5.9998E1

6.0004E1

6E1

5.9996E1

x

0.020.0150.005 0.010

43. Let f(x) = 3 + e�x; then f(0) = 4, f 0(x) =
�e�x < 0, so f is decreasing. But f(x) =
3 + e�x = 0 has no solution.

44. Let y1 and y2 be two points in the domain
of f�1 with y1 < y2. Let x1 = f�1(y1) and
x2 = f�1(y2). We want to show x1 < x2. Sup-
pose not. Then x2  x1. But then, since f
is increasing, f(x2)  f(x1). That is y2  y1,
which contradicts our choice of y1 and y2.

45. The domain of sin�1 x is the interval [�1, 1].
The function is increasing on the entire do-
main.

46. sin�1

✓
2

⇡
tan�1 x

◆
is defined for all x. The

derivative,
2

⇡(1 + x2)
q

1� ( 2⇡ tan�1 x)2
> 0

for all x. The function is increasing every-
where.

47. TRUE. If x1 < x2, then g(x1) < g(x2) since
g is increasing, and then f(g(x1)) < f(g(x2))
since f is increasing.

48. We can say that g(1) < g(4) and g(f(1)) <
g(f(4)), but it is not possible to determine the
maximum and minimum values without more
information.

49. f 0(0) = limx!0
f(x)� f(0)

x� 0

= lim
x!0

f(x)

x

= lim
x!0


1 + 2x sin

✓
1

x

◆�
= 1

For x 6= 0,
f 0(x)

= 1 + 2


2x sin

✓
1

x

◆
+ x2

✓
�1

x2

◆
cos

✓
1

x

◆�

= 1 + 4x sin

✓
1

x

◆
� 2 cos

✓
1

x

◆

For values of x close to the origin, the mid-
dle term of the derivative is small, and since
the last term �2 cos(1/x) reaches its minimum
value of�2 in every neighborhood of the origin,
f 0 has negative values on every neighborhood
of the origin. Thus, f is not increasing on any
neighborhood of the origin. This conclusion
does not contradict Theorem 4.1 because the
theorem states that if a function’s derivative
is positive for all values in an interval, then it
is increasing in that interval. In this example,
the derivative is not positive throughout any
interval containing the origin.

50. We have f 0(x) = 3x2, so f 0(x) > 0 for all x 6= 0,
but f 0(0) = 0. Since f 0(x) > 0 for all x 6= 0, we
know f(x) is increasing on any interval not con-
taining 0. We know that if x1 < 0 then x3

1 < 0
and if x2 > 0 then x3

2 > 0. If x1 < 0 and
x2 = 0 then x3

1 < 03 = 0, so f(x) is increasing
on intervals of the form (x1, 0). Similarly, f(x)
is increasing on intervals of the form (0, x2).
Finally, on intervals of the form (x1, x2) where
x1 < 0 < x2, we have x3

1 < 0 < x3
2 so f(x) is

again increasing on these intervals. Thus f(x)
is increasing on any interval.
This does not contradict Theorem 4.1 because
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Theorem 4.1 is not an “if and only if” state-
ment. It says that if f 0(x) > 0, then f is in-
creasing (on that interval) but it does not say
that if f 0(x) is not strictly positive that f is
not increasing.

51. f is continuous on [a, b], and c 2 (a, b) is a
critical number.

(i) If f 0(x) > 0 for all x 2 (a, c) and f 0(x) < 0
for all x 2 (c, b), by Theorem 3.1, f is in-
creasing on (a, c) and decreasing on (c, b),
so f(c) > f(x) for all x 2 (a, c) and
x 2 (c, b). Thus f(c) is a local max.

(ii) If f 0(x) < 0 for all x 2 (a, c) and f 0(x) > 0
for all x 2 (c, b), by Theorem 3.1, f is de-
creasing on (a, c) and increasing on (c, b).
So f(c) < f(x) for all x 2 (a, c) and
x 2 (c, b). Thus f(c) is a local min.

(iii) If f 0(x) > 0 on (a, c) and (c, b), then
f(c) > f(x) for all x 2 (a, c) and f(c) <
f(x) for all x 2 (c, b), so c is not a lo-
cal extremum. If f 0(x) < 0 on (a, c) and
(c, b), then f(c) < f(x) for all x 2 (a, c)
and f(c) > f(x) for all x 2 (c, b), so c is
not a local extremum.

52. If f(a) = g(a) and f 0(x) > g0(x) for all x > a,
then f(x) > g(x) for all x > a. Graphically,
this makes sense: f and g start at the same
place, but f is increasing faster, therefore f
should be larger than g for all x > a. To prove
this, apply the Mean Value Theorem to the
function f(x)� g(x).
If x > a then there exists a number c between
a and x with

f 0(c)� g0(c) =
(f(x)� g(x))� (f(a)� g(a))

x� a
.

Multiply by (x�a) (and recall f(a) = g(a)) to
get (x � a)(f 0(c) � g0(c)) = f(x) � g(x). The
lefthand side of this equation is positive, there-
fore f(x) is greater than g(x).

53. Let f(x) = 2
p
x, g(x) = 3� 1/x.

Then f(1) = 2
p
1 = 2, and g(1) = 3 � 1 = 2,

so f(1) = g(1).

f 0(x) =
1p
x
, g0(x) =

1

x2

So f 0(x) > g0(x) for all x > 1, and

f(x) = 2
p
x > 3� 1

x
= g(x) for all x > 1.

54. Let f(x) = x and g(x) = sinx.
Then f(0) = g(0). f 0(x) = 1. g0(x) = cosx.
cosx  1 for all x, therefore exercise 52 implies
that x > sinx for all x > 0.

55. Let f(x) = ex, g(x) = x+ 1.
Then f(0) = e0 = 1, g(0) = 0 + 1 = 1, so
f(0) = g(0).
f 0(x) = ex, g0(x) = 1
So f 0(x) > g0(x) for x > 0.
Thus f(x) = ex > x+ 1 = g(x) for x > 0.

56. Let f(x) = x� 1 and g(x) = lnx.
Then f(1) = g(1). f 0(x) = 1. g0(x) = 1

x .
1/x  1 for all x > 1, therefore exercise 52
implies that x� 1 > lnx for all x > 1.

57. f(x) = x3 + bx2 + cx+ d
f 0(x) = 3x2 + 2bx+ c
f 0(x) � 0 for all x if and only if
(2b)2 � 4(3)(c)  0
if and only if 4b2  12c
if and only if b2  3c.
Using the quadratic formula, we find

x2 =
�3b±

p
9b2 � 20c

10
.

Thus, if 9b2 < 20c, then the roots are imagi-
nary and so f 0(x) � 0 for all x. If this is not
the case, then we need to consider

x = ±
r

�3b±
p
9b2 � 20c

10
.

Now we need the expression inside the square
root to be less than or equal to 0, which is the
same as requiring the numerator of the expres-
sion inside the square root to be less than or
equal to 0. So we need both
�3b <

p
9b2 � 20c and

�3b < �
p
9b2 � 20c.

Of course, both are true if and only if the lat-
ter is true. In conclusion, f(x) is an increasing
function if 9b2 < 20c or �3b < �

p
9b2 � 20c.

58. TRUE. (f � g)0 (c) = f 0(g(c))g0(c) = 0, since c
is a critical number of g.

59. s(t) =
p
t+ 4 = (t+ 4)1/2

s0(t) =
1

2
(t+ 4)�1/2 =

1

2
p
t+ 4

> 0

So total sales are always increasing at the rate

of
1

2
p
t+ 4

thousand dollars per month.

60. s0(t) =
1

2
p
t+ 4

> 0 for all t > 0. If s rep-

resents the total sales so far, then s cannot
decrease. The rate of new sales can decrease,
but we cannot lose sales that already have oc-
curred.
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61. (a) µ0(�10) ⇡ 0.0048� 0.0043

�12� (�8)

=
0.0005

�4
= �0.000125

(b) µ0(�6) ⇡ 0.0048� 0.0043

�4� (�8)

=
0.0005

4
= 0.000125

Whether the warming of the ice due to
skating makes it easier or harder depends
on the current temperature of the ice. As
seen from these examples, the coe�cient
of friction µ is decreasing when the tem-
perature is �10� and increasing when the
temperature is �6�.

62. We find the derivative of f(t):

f 0(t) =
a2 + t2 � t(2t)

(a2 + t2)2

=
a2 � t2

(a2 + t2)2
.

The denominator is always positive, while the
numerator is positive when a2 > t2, i.e., when
a > t. We now find the derivative of ✓(x):

✓0(x) =
1

1 +

✓
29.25

x

◆2

✓
�29.25

x2

◆

� 1

1 +

✓
10.75

x

◆2

✓
�10.75

x2

◆

=
�29.25

x2 + (29.25)2
+

10.75

x2 + (10.75)2
.

We consider each of the two terms of the last
line above as instances of f(t), the first as
�f(29.25) and the second as f(10.75). Now,
for any given x where x � 30, this x is our a
in f(t) and since a = x is greater than 29.25
and greater than 10.75, f(t) is increasing for
these two t values and this value of a. Thus
f(29.25) > f(10.75). This means that
✓0(x) = �f(29.25) + f(10.75) < 0
(where a = x) and so ✓(x) is decreasing for
x � 30. Since ✓(x) is increasing for x � 30, the
announcers would be wrong to suggest that the
angle increases by backing up 5 yards when the
team is between 50 and 60 feet away from the
goal post.

3.5 Concavity and the Second
Derivative Test

1. f 0(x) = 3x2 � 6x+ 4
f 00(x) = 6x� 6 = 6(x� 1)
f 00(x) > 0 on (1,1)
f 00(x) < 0 on (�1, 1)
So f is concave down on (�1, 1) and concave
up on (1, 1).
x = 1 is a point of inflection.

2. f 0(x) = 4x3 � 12x+ 2 and f 00(x) = 12x2 � 12.
The graph is concave up where f 00(x) is pos-
itive, and concave down where f 00(x) is nega-
tive. Concave up for x < �1 and x > 1, and
concave down for �1 < x < 1.
x = �1, 1 are points of inflection.

3. f(x) = x+ 1
x = x+ x�1

f 0(x) = 1� x�2

f 00(x) = 2x�3

f 00(x) > 0 on (0, 1)
f 00(x) < 0 on (�1, 0)
So f is concave up on (0, 1) and concave down
on (�1, 0).
x = 0 is a point of inflection.

4. y0 = 1 � (1 � x)�2/3 and y00 = �2
3 (1 � x)�5/3.

Concave up for x > 1 and concave down for
x < 1.
x = 1 is a point of inflection.

5. f 0(x) = cosx+ sinx
f 00(x) = � sinx+ cosx
f 00(x) < 0 on . . .

�
⇡
4 ,

5⇡
4

�
[
�
9⇡
4 , 13⇡

4

�
. . .

f 00(x) > 0 on . . .
�
3⇡
4 , ⇡

4

�
[
�
5⇡
4 , 9⇡

4

�
. . .

f is concave down on . . .
�
⇡
4 ,

5⇡
4

�
[
�
9⇡
4 , 13⇡

4

�
. . .,

concave up on . . .
�
3⇡
4 , ⇡

4

�
[
�
5⇡
4 , 9⇡

4

�
. . .

x = k⇡ + ⇡
4 are the points of inflection for any

interger k.

6. f 0(x) =
2x

1 + x4
and f 00(x) =

2� 6x4

(1 + x4)2
.

Concave up for � 4

r
1

3
< x < 4

r
1

3
, and concave

down for x < � 4

r
1

3
and x > 4

r
1

3
.

x = � 4

r
1

3
, 4

r
1

3
are the points of inflection.

7. f 0(x) =
4

3
x1/3 +

4

3
x�2/3

f 00(x) =
4

9
x�2/3 +

8

9
x�5/3

=
4

9x2/3

✓
1� 2

x

◆
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The quantity
4

9x2/3
is never negative, so the

sign of the second derivative is the same as the

sign of 1 � 2

x
. Hence the function is concave

up for x > 2 and x < 0, and is concave down
for 0 < x < 2.
x = 02 are the points of inflection.

8. f 0(x) = e�4x�4xe�4x and f 00(x) = 8e�4x(2x�
1).
Concave up for x > 1/2, and concave down for
x < 1/2.
x = 1/2 is the point of inflection.

9. f(x) = x4 + 4x3 � 1
f 0(x) = 4x3 + 12x2 = x2(4x+ 12)
So the critical numbers are x = 0 and x = �3.
f 00(x) = 12x2 + 24x
f 00(0) = 0 so the second derivative test for
x = 0 is inconclusive.
f 00(�3) = 36 > 0 so x = �3 is a local mini-
mum.

10. f(x) = x4 + 4x2 + 1
f 0(x) = 4x3 + 8x
So the only critical number is x = 0.
f 00(x) = 12x2 + 8
f 00(0) = 8 > 0 so x = 0 is a local minimum.

11. f(x) = xe�x

f 0(x) = e�x � xe�x = e�x(1� x)
So the only critical number is x = 1.
f 00(x) = �e�x � e�x + xe�x = e�x(�2 + x)
f 00(1) = e�1(�1) < 0 so x = 1 is a local maxi-
mum.

12. f(x) = e�x2

f 0(x) = �2xe�x2

So the only critical number is x = 0.
f 00(x) = �2e�x2

+ 4x2e�x2

f 00(0) = �2 + 0 < 0 so x = 0 is a local maxi-
mum.

13. f(x) =
x2 � 5x+ 4

x

f 0(x) =
(2x� 5)x� (x2 � 5x+ 4)(1)

x2

=
x2 � 4

x2

So the critical numbers are x = ±2.

f 00(x) =
(2x)(x2)� (x2 � 4)(2x)

x4
=

8x

x4

f 00(2) = 1 > 0 so x = 2 is a local minimum.
f 00(�2) = �1 < 0 so x = �2 is a local maxi-
mum.

14. f(x) =
x2 � 1

x

f 0(x) =
(2x)(x)� (x2 � 1)(1)

x2

=
x2 + 1

x2

There are no critical numbers and so there are
no local extrema.

15. y = (x2 + 1)2/3

y0 =
2

3
(x2 + 1)�1/3(2x)

f 0(x) =
4x(x2 + 1)�1/3

3
So the only critical number is x = 0.
y00 =
4

3


(x2 + 1)�1/3 +

✓
�2x2

3

◆
(x2 + 1)�4/3

�

=
4

3

(x2 + 1� 2x2

3 )

(x2 + 1)4/3
=

4

9

(3x2 + 3� 2x2)

(x2 + 1)4/3

=
4

9

(x2 + 3)

(x2 + 1)4/3

So the function is concave up everywhere, de-
creasing for x < 0, and increasing for x > 0.
Also x = 0 is a local min.

15

−5

5

x
105

20

0

10

−10

16. f(x) = x lnx
f 0(x) = lnx+ 1
So the only critical number is e�1.
f 00(x) = 1/x
f 00(e�1) = e > 0 so f(x) has a local minimum
at x = e�1.
The domain of f(x) is (0,1).
f 0(x) < 0 on (0, e�1) so f(x) is decreasing on
this interval. f 0(x) > 0 on (e�1,1), so f(x) is
increasing on this interval.
f 00(x) > 0 for all x in the domain of f(x), so
f(x) is concave up for all x > 0.
Finally, f(x) has a vertical asymptote at x = 0
such that f(x) ! 1 as x ! 0+.



3.5. CONCAVITY AND THE SECOND DERIVATIVE TEST 189

20

15

10

0

5

x

108420 6

17. f(x) =
x2

x2 � 9

f 0(x) =
2x(x2 � 9)� x2(2x)

(x2 � 9)2

=
�18x

(x2 � 9)2

=
�18x

{(x+ 3)(x� 3)}2
f 00(x) =
�18(x2 � 9)2 + 18x · 2(x2 � 9) · 2x

(x2 � 9)4

=
54x2 + 162

(x2 � 9)3

=
54(x2 + 3)

(x2 � 9)3

f 0(x) > 0 on (�1,�3) [ (�3, 0)
f 0(x) < 0 on (0, 3) [ (3,1)
f 00(x) > 0 on (�1,�3) [ (3,1)
f 00(x) < 0 on (�3, 3)

f 00(0) =
162

(�9)3

f is increasing on (�1,�3)[ (�3, 0), decreas-
ing on (0, 3)[(3,1), concave up on (�1,�3)[
(3,1), concave down on (�3, 3), x = 0 is a lo-
cal max.
f has a horizontal asymptote of y = 1 and ver-
tical asymptotes at x = ±3.

y

8

8

4

4

−4

−8

0
x

10

10

6

2

6

0

−2

−6

2

−10

−2−4−6−8−10

18. f(x) =
x

x+ 2
The domain of f(x) is {x|x 6= �2}.

There is a vertical asymptote at x = �2 such
that f(x) ! 1 as x ! �2� and f(x) ! �1
as x ! �2+.

f 0(x) =
x+ 2� x

(x+ 2)2
=

2

(x+ 2)2

So there are no critical numbers. Furthermore,
f 0(x) > 0 for all x 6= �2, so f(x) is increasing
everywhere.
f 00(x) = �4(x+ 2)�3

f 00(x) > 0 on (�1, �2) (so f(x) is concave up
on this interval)
f 00(x) > 0 on (�2, 1) (so f(x) is concave down
on this interval)

y

8

4

−4

−8

10

6

2

0

−2

−6

−10

x
420−2−4

19. f(x) = sinx+ cosx
f 0(x) = cosx� sinx
f 00(x) = � sinx� cosx
f 0(x) = 0 when x = ⇡/4 + k⇡ for all integers
k. When k is even, f 00(⇡/4 + k⇡) = �

p
2 < 0

so f(x) has a local maximum. When k is odd,
f 00(⇡/4 + k⇡) =

p
2 > 0 so f(x) has a local

minimum.
f 0(x) < 0 on the intervals of the form (⇡/4 +
2k⇡,⇡/4+ (2k+1)⇡), so f(x) is decreasing on
these intervals.
f 0(x) > 0 on the intervals of the form (⇡/4 +
(2k+1)⇡,⇡/4+(2k+2)⇡), so f(x) is increasing
on these intervals.
f 00(x) > 0 on the intervals of the form (3⇡/4+
2k⇡, 3⇡/4 + (2k + 1)⇡) so f(x) is concave up
on these intervals.
f 00(x) < 0 on the intervals of the form (3⇡/4+
(2k+1)⇡, 3⇡/4+ (2k+2)⇡) so f(x) is concave
down on these intervals.
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x

1

2.5−2.5
0

−1

5.0

2

−2

−5.0 0.0

y

20. y = e�x sinx
y0 = �e�x sinx + e�x cosx = 0 when x =
⇡/4 + k⇡ for integers k.
y00 = �2e�x cosx = 0 at ⇡/2+2k⇡ for integers
k. These are inflection points. The function is
concave up for �⇡/2 < x < ⇡/2 and concave
down for ⇡/2 < x < 3⇡/2, and the pattern re-
peats with period 2⇡. The critical values are
all extrema, and they alternate between max-
ima and minima.

0-2

100

50

-4

-100

-50

-6 2

150

0

x

21. f(x) = x3/4 � 4x1/4

Domain of f(x) is {x|x � 0}.

f 0(x) =
3

4
x�1/4 � x�3/4 =

3
4

p
x� 1

x3/4

So x = 0 and x = 16/9 are critical points, but
because of the domain we only need to really
consider the latter.
f 0(1) = �1/4 so f(x) is decreasing on (0, 16/9).

f 0(4) =
0.5

43/4
> 0 so f(x) is increasing on

(16/9,1).
Thus x = 16/9 is the location of a local mini-
mum for f(x).
f 00(x) = �3

16 x
�5/4 + 3

4x
�7/4

=
�3
16

p
x+ 3

4

x7/4

The critical number here is x = 16. We find
that f 00(x) > 0 on the interval (0, 16) (so f(x)
is concave up on this interval) and f 00(x) < 0

on the interval (16,1) (so f(x) is concave
down on this interval).

1

-1

-3

x

30252015100

3

2

5
0

-2

22. f(x) = x2/3 � 4x1/3

f 0(x) = 2
3x

�1/3 � 4
3x

�2/3

=
2
3x

1/3 � 4
3

x2/3

So x = 0 and x = 8 are critical numbers.
f 0(�1) < 0 so f(x) is decreasing for x < 0.
f 0(1) < 0 so f(x) is decreasing for 0 < x < 8.
f 0(27) > 0 so f(x) is increasing on 8 < x.
f 00(x) = � 2

9x
�4/3 + 8

9x
�5/3

=
� 2

9x
1/3 + 8

9

x5/3

The critical numbers here are x = 0 and
x = 64.
f 00(�1) < 0 so f(x) is concave down on
(�1, 0).
f 00(1) > 0 so f(x) is concave up on (0, 64).
f 00(125) < 0 so f(x) is concave down on
(64,1).

50

30

40

0

20

0

10

x

400300200-100 100 500

23. The easiest way to sketch this graph is to no-
tice that

f(x) = x|x| =
(
x2 x � 0

�x2 x < 0
Since

f 0(x) =

(
2x x � 0

�2x x < 0
there is a critical point at x = 0. However, it is
neither a local maximum nor a local minimum.
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Since

f 00(x) =

(
2 x > 0

�2 x < 0
there is an inflection point at the origin. Note
that the second derivative does not exist at
x = 0.

4

20

2

−20

x
5

y

30

10

3

0

−10

−30

10−1−2−3−4−5

24. The easiest way to sketch this graph is to no-
tice that

f(x) = x2|x| =
(
�x3 x < 0

x3 x � 0
since

f 0(x) =

(
�3x2 x < 0

3x2 x � 0

there is a critical point (and local minimum)
at x = 0. Since

f 00(x) =

(
�6x x < 0

6x x � 0
there is a critical point at the origin but this is
not an inflection point.

y

2

0

−20

0
x

30

3

20

10

−10

1

−30

−1−2−3

25. f(x) = x1/5(x+ 1) = x6/5 + x1/5

f 0(x) = 6
5x

1/5 + 1
5x

�4/5

= 1
5x

�4/5(6x+ 1)

f 00(x) = 6
25x

�4/5 � 4
25x

�9/5

= 2
25x

�9/5(3x� 2)
Note that f(0) = 0, and yet the derivatives
do not exist at x = 0. This means that there
is a vertical tangent line at x = 0. The first
derivative is negative for x < �1/6 and posi-

tive for �1/6 < x < 0 and x > 0. The second
derivative is positive for x < 0 and x > 2/3,
and negative for 0 < x < 2/3. Thus, there is
a local minimum at x = �1/6 and inflection
points at x = 0 and x = 2/3.

1

3

1

0
0

x

2-2

2

-1

26. f(x) =

p
x

1 +
p
x

The domain of f(x) is {x|x � 0}.

f 0(x) =
1
2x

�1/2(1 +
p
x)�

p
x( 12x

�1/2)

(x+
p
x)2

=
x�1/2

2(1 +
p
x)2

The only critical point is x = 0, which we
need not consider because of the domain. Since
f 0(1) > 0, f(x) is increasing on (0,1).

f 00(x) =
�x�3/2(1 +

p
x)2 � 2x�1/2(1 +

p
x)x�1/2

4(1 +
p
x)4

=
�(x�1/2 + 3)

4x(1 +
p
x)3

The critical numbers are x = 0 (which we again
ignore) and x = 1/9. Since f 00(1) < 0 and
f 00(1/16) < 0, f(x) is concave down on (0,1).

0.5

0.3

0.1

x

32.521.510.50

0.6

0.4

0.2

0

27. f(x) = x4 � 26x3 + x
f 0(x) = 4x3 � 78x2 + 1
The critical numbers are approximately
�0.1129, 0.1136 and 19.4993.
f 0(�1) < 0 implies f(x) is decreasing on
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(�1,�0.1129).
f 0(0) > 0 implies f(x) is increasing on
(�0.1129, 0.1136).
f 0(1) < 0 implies f(x) is decreasing on
(0.1136, 19.4993).
f 0(20) > 0 implies f(x) is increasing on
(19.4993,1).
Thus f(x) has local minimums at x = �0.1129
and x = 19.4993 and a local maximum at
x = 0.1136.
f 00(x) = 12x2 � 156x = x(12x� 156)
The critical numbers are x = 0 and x = 13.
f 00(�1) > 0 implies f(x) is concave up on
(�1, 0).
f 00(1) < 0 implies f(x) is concave down on
(0, 13).
f 00(20) > 0 implies f(x) is concave up on
(13,1).
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20

10

−20

105

25

15

5

0

x
400

28. f(x) = 2x4 � 11x3 + 17x2

f 0(x) = 8x3 � 33x2 + 34x
= x(8x� 17)(x� 2)

The critical numbers are x = 0, x = 2 and
x = 17/8.
f 00(x) = 24x2 � 66x+ 34
f 00(0) > 0 implies f(x) is concave up at x = 0
so f(x) has a local minimum here and f(x) is
decreasing on (�1, 0).
f 00(2) < 0 implies f(x) is concave down at
x = 2 so f(x) has a local maximum here and
f(x) is increasing on (0, 2).
f 00(17/8) > 0 implies f(x) is concave up at
x = 17/8 so f(x) has a local minimum here and
f(x) is decreasing on (2, 17/8) and increasing
on (17/8,1).
f 00(x) = 2(12x2 � 33x+ 17)
The critical numbers are

x =
33±

p
273

24
= 2.0635, 0.6866.

So f(x) is concave up on (�1, 0.6866) and
(2.0635,1) and f(x) is concave down on
(0.6866, 2.0635).
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103

x

30

25
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8

5
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29. y = 3
p
2x2 � 1

y0 =
4x

3(2x2 � 1)2/3
= 0 at x = 0 and is unde-

fined at x = ±
p
1/2.

y00 =
�4(2x2 + 3)

9(2x2 � 1)5/3
is never 0, and is undefined

where y0 is.
The function changes concavity at x =
±
p

1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test
shows that x = 0 is a minimum.

2

1

0
0

-2-4
x

64

4

3

2

-1

-6

30. f(x) =
p
x3 + 1

f(x) is defined for x � �1.
f 0(x) = 1

2 (x
3 + 1)�1/2(3x2)

The critical numbers are x = �1 (which we ig-
nore because of the domain) and x = 0.
f 0(�1/2) > 0 so f(x) is increasing on (�1, 0).
f 0(1) > 0 so f(x) is also increasing on (0,1)
so f(x) has no relative extrema.
f 00(x) =
3

2
·
2x(x3 + 1)1/2 � x2 1

2 (x
3 + 1)�1/23x2

x3 + 1

=
2x(x3 + 1)� 3

2x
4

(x3 + 1)3/2

=
� 1

2x
4 + 2x

(x3 + 1)3/2

The critical numbers are x = 0 and x = 41/3

(and x = �1, which we need not consider).
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f 00(�1/2) < 0 so f(x) is concave down on
(�1, 0). f 00(1) > 0 so f(x) is concave up on
(0, 41/3). f 00(2) > 0 so f(x) is concave up on
(41/3,1).

3

5

1

4

2

0

x

310-1 2

31. f(x) = x4 � 16x3 + 42x2 � 39.6x+ 14
f 0(x) = 4x3 � 48x2 + 84x� 39.6
f 00(x) = 12x2 � 96x+ 84

= 12(x2 � 8x+ 7)
= 12(x� 7)(x� 1)

f 0(x) > 0 on (.8952, 1.106) [ (9.9987,1)
f 0(x) < 0 on (�1, .8952) [ (1.106, 9.9987)
f 00(x) > 0 on (�1, 1) [ (7,1)
f 00(x) < 0 on (1, 7)
f is increasing on (.8952, 1.106) and on
(9.9987,1), decreasing on (�1, .8952) and on
(1.106, 9.9987), concave up on (�1, 1)[(7,1),
concave down on (1, 7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1, 7 are
inflection points.

300000

400000

100000

200000

0

x

3020100-20 -10

32. y = x4 + 32x3 � 0.02x2 � 0.8x
y0 = 4x3 + 96x2 � 0.04x � 0.8 = 0 at approxi-
mately x = �24, �0.09125, and 0.09132.
y00 = 12x2 + 192x � 0.04 = 0 at approxi-
mately x = 16.0002 and 0.0002, and changes
sign at these values, so these are inflection
points. The Second Derivative Test shows
that x = �24 and 0.09132 are minima, and
that x = �0.09125 is a maxima. The extrema
near x = 0 look like this:

0.08

0.04

0

-0.04

-0.08

x
0.20.10-0.1-0.2

The
global behavior looks like this:

50000

x

0

-50000

10

-100000

0-10-20-30

100000

33. f(x) = x
p
x2 � 4; f undefined on (�2, 2)

f 0(x) =
p
x2 � 4
+ x

�
1
2

�
(x2 � 4)�1/2(2x)

=
p
x2 � 4 +

x2

p
x2 � 4

=
2x2 � 4p
x2 � 4

f 00(x) =
4x

p
x2 � 4� (2x2 � 4) 12 (x

2 � 4)�1/2(2x)

x2 � 4

=
4x(x2 � 4)� (2x2 � 4)x

(x2 � 4)3/2

=
2x3 � 12x

(x2 � 4)3/2
=

2x(x2 � 6)

(x2 � 4)3/2

f 0(x) > 0 on (�1,�2) [ (2,1)
f 00(x) > 0 on

�
�
p
6, 2
�
[
�p

6,1
�

f 00(x) < 0 on
�
�1,�

p
6
�
[
�
2,
p
6
�

f is increasing on (�1,�2) and on (2,1),
concave up on

�
�
p
6,�2

�
[
�p

6,1
�
, concave

down on
�
�1,�

p
6
�
[
�
2,
p
6
�
, x = ±

p
6 are

inflection points.
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34. f(x) =
2xp
x2 + 4

f 0(x) =
2
p
x2 + 4� 2x( 12 )(x

2 + 4)�1/22x

(x2 + 4)

=
8

(x2 + 4)3/2

f 0(x) is always positive, so there are no critical
points and f(x) is always increasing.
f 00(x) = 8(� 3

2 )(x
2 + 4)�5/2(2x)

=
�24x

(x2 + 4)5/2

The only critical point is x = 0. Since
f 00(�1) > 0, f(x) is concave up on (�1, 0).
Also f 00(1) < 0, so f(x) is concave down on
(0,1) and x = 0 is an inflection point for f .
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35. The function has horizontal asymptote y = 0,
and is undefined at x = ±1.

y0 =
�2x

x4 � 2x2 + 2
= 0

only when x = 0.

y00 =
2(3x4 � 2x2 � 2)

(x4 � 2x2 + 2)2
= 0

at approximately x = ±1.1024 and changes
sign there, so these are inflection points (very
easy to miss by looking at the graph). The
Second Derivative Test shows that x = 0 is a
local maximum.

1

0.5

x

0
0 6

-1.5

4-4

1.5

-0.5

-1
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36. f(x) = e�2x cosx
f 0(x) = �2e�2x cosx� e�2x sinx

= e�x(�2 cosx� sinx)
f 00(x) = �2e�2x(�2 cosx� sinx)

+ e�2x(2 sinx� cosx)
= e�2x(4 sinx+ 3 cosx)

f 0(x) = 0 when sinx = �2 cosx so when
x = k⇡ + tan�1(�2) for any integer k.
f 00(2k⇡ + tan�1(�2)) < 0 so there are local
maxima at all such points, while f 00((2k+1)⇡+
tan�1(�2)) > 0, so there are local minima at
all such points. f 00(x) = 0 when 4 sinx =
�3 cosx or x = k⇡ + tan�1(�3/4) for any in-
teger k. All such points x are inflection points.

x

1086420-2
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37. One possible graph:
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38. One possible graph:
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39. One possible graph:
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40. One possible graph:
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41. f(x) = ax3 + bx2 + cx+ d
f 0(x) = 3ax2 + 2bx+ c
f 00(x) = 6ax+ 2b
Thus, f 00(x) = 0 for x = �b/3a. Since f 00

changes sign at this point, f has an inflection
point at x = �b/3a. Note that a 6= 0.

For the quartic function (where again a 6= 0),
f(x) = ax4 + bx3 + cx2 + dx+ e
f 0(x) = 4ax3 + 3bx2 + 2cx+ d
f 00(x) = 12ax2 + 6bx+ 2c

= 2(6ax2 + 3bx+ c)
The second derivative is zero when

x =
�3b±

p
9b2 � 24ac

12a

=
�3b±

p
3(3b2 � 8ac)

12a

There are two distinct solutions to the previous
equation (and therefore two inflection points)
if and only if 3b2 � 8ac > 0.

42. Since f 0(0) = 0 and f 00(0) > 0, f(x) must have
a local minimum at x = 0. Since we also know
that f(0) = 0, this means that there is some
neighborhood (possibly very small) of 0 such
that for all x in this neighborhood (exluding
x = 0), f(x) > 0.

Similarly, g0(0) = 0 and g00(0) < 0 implies that
g(x) must have a local maximum at x = 0.
Again we know that g(0) = 0, so there is some
neighborhood of 0 such that for all x in this
neighborhood (exluding x = 0), g(x) < 0.

On the smaller of these two neighborhoods, we
know that g(x) < 0 < f(x).

43. Let f(x) = �1� x2. Then
f 0(x) = �2x
f 00(x) = �2
so f is concave down for all x, but
�1� x2 = 0 has no solution.

44. The statement is true.

45. f(x) is concave up on (�1, �0.5) and
(0.5, 1); f(x) is concave down on (�0.5, 0.5).
f(x) is decreasing on the intervals (�1, 1) and
(0, 1) ; increasing on the intervals (�1, 0) and
(1,1). f(x) has local maxima at 0 and min-
ima at -1 and 1. Inflection points of f(x) are
�0.5 and 0.5.

46. f(x) is concave up on (1, 1); f(x) is concave
down on (�1, 1). f(x) is increasing on the in-
tervals (�1, 0) and (2, 1); decreasing on the
intervals (0, 2). Inflection point of f(x) is 1.

47. (a) For #45 :
The interval of increase is (�1, �1.5)
and (1.5, 1) . The interval of decrease
is(�1.5, 1.5) . Minima at x = 1.5 and
Maxima at x = �1.5. It is concave up for
(�1, 0) [ ( 1, 1 ) . It is concave down for
(�1, �1) [ ( 0, 1 ) . The points of inflec-
tion are x = 0 and ± 1.

For #46:
The interval of increase is

�
� 1

2 ,
1
2

�
[

(3, 1) . The interval of decrease is�
�1, � 1

2

�
[
�
1
2 , 3

�
Minima at x = 1

2and
Maxima at x = � 1

2 , 3. It is concave
up for(�1, 0) [ ( 2, 1 ) . It is concave
down for(0, 2) . The points of inflection
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are x = 0 , 2..

(b) For #45:
It is concave up for (�1, �1.5) [
(1.5, 1) . It is concave down for
(�1.5, 1.5) . The points of inflection are
x = 0 and ± 1.5.

For #46:
It is concave up for

�
� 1

2 ,
1
2

�
[ (3, 1) . It

is concave down for
�
�1, � 1

2

�
[
�
1
2 , 3

�
.

The points of inflection are x = ± 1
2 , 3..

48. If f 00(c) < 0, then f 0 is decreasing at c. Because
f 0(c) = 0, this means that f 0 > 0 to the left of
c and f 0 < 0 to the right of c. Therefore, by the
First Derivative Test, f(c) is a local maximum.
The proof of the second claim is similar.

49. Add and subtract 16 to complete square.
x4 � 8x2 + 10

= x4 � 8x2 + 16 + 10� 16

=
�
x2 � 4

�2 � 6
Therefore, absolute minimum occurs when�
x2 � 4

�2
= 0. That is absolute minimum is

�6 and occurs when x = ±2.

Similarly, add and subtract 9 to x4 � 6x2 + 1.
x4 � 6x2 + 1

= x4 � 6x2 + 9 + 1� 9

=
�
x2 � 3

�2 � 8

Therefore, absolute minimum occurs when�
x2 � 3

�2
= 0. That is absolute minimum is

�8 and occurs whenx = ±
p
3.

50. f (x) = x4 + bx3 + cx2 + dx+ 2
f 0 (x) = 4x3 + 3bx2 + 2cx+ d
f 00 (x) = 12x2 + 6bx+ 2c

To find inflection points, solve f 00 (x) = 0.

x =
�6b±

p
36b2 � 96c

24
x is real only if 36b2 � 96c > 0

) c <
3

8
b2

The critical numbers are

x =
�6b+

p
36b2 � 96c

24
and

x =
�6b�

p
36b2 � 96c

24
Therefore sum of x-coordinates

=
�6b+

p
36b2 � 96c

24
+

�6b�
p
36b2 � 96c

24

=
�6b+

p
36b2 � 96c� 6b�

p
36b2 � 96c

24

=
�12b

24
=� b

2

51. We need to know w0(0) to know if the depth is
increasing.

52. We assume the sick person’s temperature is too
high, and not too low. We do need to know
T 0(0) in order to tell which is better.

If T 00(0) = 2 and T 0 > 0, the person’s temper-
ature is rising alarmingly.

If T 00(0) = �2 and T 0 > 0, the person’s tem-
perature is increasing, but leveling o↵.
Negative T 00 is better if T 0 > 0.

If T 00(0) = 2 and T 0 < 0, the person’s temper-
ature is decreasing and leveling o↵.

If T 00(0) = �2 and T 0 < 0, the person’s tem-
perature is dropping too steeply to be safe.
Positive T 00 is probably better if T 0 < 0.

53. s(x) = �3x3 + 270x2 � 3600x+ 18000
s0(x) = �9x2 + 540x� 3600
s00(x) = �18x+ 540 = 0
x = 30. This is a max because the graph of
s0(x) is a parabola opening down. So spend
$30,000 on advertising to maximize the rate of
change of sales. This is also the inflection point
of s(x).

54. Q0(t) measures the number of units produced
per hour. If this number is larger, the worker
is more e�cient.
Q0(t) = �3t2 + 12t + 12 will be maximized
where
Q00 = �6t + 12 = 0, or t = 2 hours. (This
is a maximum by the First Derivative Test.)
It is reasonable to call this inflection point the
point of diminishing returns, because after this
point, the e�ciency of the worker decreases.

55. C(x) = .01x2 + 40x+ 3600

C(x) =
C(x)

x
= .01x+ 40 + 3600x�1

C
0
(x) = .01� 3600x�2 = 0

x = 600. This is a min because C̄ 00(x) =
7200x�3 > 0 for x > 0, so the graph is con-
cave up. So manufacture 600 units to minimize
average cost.

56. Solving c0 = 0 yields t = 19.8616. The Sec-
ond Derivative Test shows this is a maximum.



3.6. OVERVIEW OF CURVE SKETCHING 197

Solving c00 = 0 yields t = 41.8362. Suppose a
second drug produced a similar plasma concen-
tration graph, with the same maximum, but a
later inflection point. Then the plasma concen-
tration decays faster for the second drug, since
it takes longer for the rate of decay to level o↵.

57. Since the tangent line points above the sun, the
sun appears higher in the sky than it really is.

3.6 Overview of Curve
Sketching

1. f(x) = x3 � 3x2 + 3x
= x(x2 � 3x+ 3)

The only x-intercept is x = 0; the y-intercept
is (0, 0).
f 0(x) = 3x2 � 6x+ 3

= 3(x2 � 2x+ 1) = 3(x� 1)2

f 0(x) > 0 for all x, so f(x) is increasing for all
x and has no local extrema.
f 00(x) = 6x� 6 = 6(x� 1)
There is an inflection point at x = 1: f(x) is
concave down on (�1, 1) and concave up on
(1,1).
Finally, f(x) ! 1 as x ! 1 and f(x) ! �1
as x ! �1.

0.8

25

−0.8
x

4.84.03.22.41.6

50

0
0.0

−25

−50

−1.6−2.4

2. f(x) = x4 � 3x2 + 2x
= x(x3 � 3x+ 2)

The x-intercepts are x = �2, x = 1 and x = 0;
the y-intercept is (0, 0).
f 0(x) = 4x3 � 6x+ 2

= 2(2x3 � 3x+ 1)
The critical numbers are x = �1.366, 0.366
and 1.
f 0(x) > 0 on (�1.366, 0.366) and (1, 1), so
f(x) is increasing on these intervals. f 0(x) < 0
on (�1, �1.366) and (0.366, 1), so f(x) is de-
creasing on these intervals. Thus f(x) has local
minima at x = �1.366 and x = 1 and a local
maximum at x = 0.366.

f 00(x) = 12x2 � 6 = 6(2x2 � 1)
The critical numbers here are x = ±1/

p
2.

f 00(x) > 0 on (�1,�1/
p
2) and (1/

p
2,1) so

f(x) is concave up on these intervals. f 00(x) <
0 on (�1/

p
2, 1/

p
2) so f(x) is concave down

on this interval. Thus f(x) has inflection
points at x = ±1/

p
2.

Finally, f(x) ! 1 as x ! ±1.

y
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−10

x
3210

15

−1

10

5

−5
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3. f(x) = x5 � 2x3 + 1
The x-intercepts are x = 1 and x ⇡ �1.5129;
the y-intercept is (0, 1).
f 0(x) = 5x4 � 6x2 = x2(5x2 � 6)
The critical numbers are x = 0 and x =
±
p
6/5. Plugging values from each of the

intervals into f 0(x), we find that f 0(x) > 0
on (�1,�

p
6/5) and (

p
6/5,1) so f(x) is

increasing on these intervals. f 0(x) < 0 on
(�
p
6/5, 0) and (0,

p
6/5) so f(x) is decreas-

ing on these intervals. Thus f(x) has a local
maximum at �

p
6/5 and a local minimum atp

6/5.
f 00(x) = 20x3 � 12x = 4x(5x2 � 3)
The critical numbers are x = 0 and x =
±
p

3/5. Plugging values from each of the in-
tervals into f 00(x), we find that f 00(x) > 0
on (�

p
3/5, 0) and (

p
3/5,1) so f(x) is con-

cave up on these intervals. f 00(x) < 0 on
(�1, �

p
3/5) and (0,

p
3/5) so f(x) is con-

cave down on these intervals. Thus f(x) has
inflection points at all three of these critical
numbers.
Finally, f(x) ! 1 as x ! 1 and f(x) ! �1
as x ! �1.
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4. f (x) = x4 + 4x3 � 1
The x-intercepts are x ⇡ �4.01541 and x ⇡
0.6012; the y-intercept is (0,�1).
f 0 (x) = 4x3 + 12x2 = 4x2 (x+ 3)
The critical numbers are x = 0 and x = �3.
Plugging values from each of the intervals into
f 0(x), we find that f 0(x) > 0 on (�3, 0) and
(0, 1) so f(x) is increasing on these intervals.
f 0(x) < 0 on (�1, �3) so f(x) is decreasing
on these intervals. Thus f(x) has a local min-
imum at �3.
f 00 (x) = 12x2 + 24x = 12x (x+ 2)
The critical numbers are x = 0 and x = �2.
Plugging values from each of the intervals into
f 00(x), we find that f 00(x) > 0 on (�1, �2)
and (0, 1) so f(x) is concave up on (�1, �2)
and (0, 1). f 00(x) < 0 on (�2, 0) so f(x) is
concave down on (�2, 0). The graph has in-
flection points at �2 and 0.

Finally, f(x) ! 1 as x ! 1 and f(x) ! 1
as x ! �1.

y
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−10

x

−30
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−25
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5. f(x) = x+
4

x
=

x2 + 4

x
This function has no x- or y-intercepts. The
domain is {x|x 6= 0}.
f(x) has a vertical asymptote at x = 0 such
that f(x) ! �1 as x ! 0� and f(x) ! 1 as
x ! 0+.

f 0(x) = 1� 4x�2 =
x2 � 4

x2

The critical numbers are x = ±2. We find
that f 0(x) > 0 on (�1,�2) and (2,1) so
f(x) is increasing on these intervals. f 0(x) < 0
on (�2, 0) and (0, 2), so f(x) is decreasing on
these intervals. Thus f(x) has a local maxi-
mum at x = �2 and a local minimum at x = 2.
f 00(x) = 8x�3

f 00(x) < 0 on (�1, 0) so f(x) is concave down
on this interval and f 00(x) > 0 on (0,1) so
f(x) is concave up on this interval, but f(x)
has an asymptote (not an inflection point) at
x = 0.
Finally, f(x) ! �1 as x ! �1 and f(x) !
1 as x ! 1.
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6. f(x) =
x2 � 1

x
= x� 1

x
There are x-intercepts at x = ±1, but no y-
intercepts. The domain is {x|x 6= 0}.
f(x) has a vertical asymptote at x = 0 such
that f(x) ! 1 as x ! 0� and f(x) ! �1 as
x ! 0+.
f 0(x) = 1 + x�2 > 0, So there is no critical
numbers. f(x) is increasing function.
f 00(x) = �2x�3

f 00(x) > 0 on (�1, 0) so f(x) is concave up on
this interval and f 00(x) < 0 on (0,1) so f(x)
is concave down on this interval, but f(x) has
an vertical asymptote (not an inflection point)
at x = 0.
Finally, f(x) ! �1 as x ! �1 and
f(x) ! 1 as x ! 1.
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7. f (x) =
x2 + 4

x3
has no x-interscept and no y-

interscept. The domain of f includes all real
numbers x 6= 0. f(x) has a vertical asymptote
at x = 0

f 0 (x) =
2x
�
x3
�
�
�
x2 + 4

� �
3x2
�

(x3)2

=
�
�
x2 + 12

�

x4

Since f 0 (x) = 0 has no real roots, the graph
has no extrema. f 0(x) < 0 on (�1, 0) and
(0,1) so f(x) is decreasing on these inter-

vals. f 00 (x) = �
"
x4 (2x)�

�
x2 + 12

� �
4x3
�

(x4)2

#

=
2
⇥
x2 + 24

⇤

x5

f 00(x) < 0 on (�1, 0) so f(x) is concave down
on this interval and f 00(x) > 0 on (0,1) so
f(x) is concave up on this interval, but f(x)
has an asymptote (not an inflection point) at
x = 0.
Finally, f(x) ! 0 as x ! �1 and f(x) ! 0 as
x ! 1. Therefore, the graph has horizontal
asymptot y = 0.
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0
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−20

−40
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8. f (x) =
x� 4

x3

The graph has x-intercepts at x = 4, but no
y-intercepts. The domain of f includes all real
numbers x 6= 0. f(x) has a vertical asymptote
at x = 0

f 0 (x) =
x3 � (x� 4)

�
3x2
�

(x3)2

=
�2x+ 12

x4

The critical numbers is x = 6. We find that
f 0(x) > 0 on (�1, 0) and (0,6) so f(x) is
increasing on these intervals. f 0(x) < 0 on
(6,1), so f(x) is decreasing on these intervals.
Therefore, the graph has a local maximum at
x = 6.

f 00 (x) =

�
x4
�
(�2)� (�2x+ 12)

�
4x3
�

(x4)2

=
6x� 48

x5

f 00(x) > 0 on (�1, 0) and (8,1) so f(x) is
concave up on this interval and f 00(x) < 0 on
(0, 8) so f(x) is concave down on this interval,
but f(x) has an inflection point at x = 8.
Finally, f(x) ! 0 as x ! �1 and f(x) ! 0 as
x ! 1. Therefore, the graph has horizontal
asymptote y = 0.
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−20
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9. f (x) =
2x

x2 � 1
The graph has x-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers x = ±1. f(x) has vertical asymptotes at
x = ±1.

f 0 (x) =
2
�
x2 � 1

�
� (2x) (2x)

(x2 � 1)2

=
�2
�
x2 + 1

�

(x2 � 1)2

Since f 0 (x) = 0 has no real roots, the graph
has no extrema. f 0(x) < 0 on (�1, �1),
(�1, 0), (0, 1) and (1, 1) so f(x) is decreasing
on these intervals.

f 00 (x) = �2

"
2x
�
x2 � 1

� ⇥
x2 � 1� 2x2 � 2

⇤

(x2 � 1)4

#

=
4x
⇥
x2 + 3

⇤

(x2 � 1)3

f 00(x) > 0 on (�1, 0) and (1,1) so f(x) is
concave up on this interval and f 00(x) < 0 on
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(�1,�1) and (0, 1) so f(x) is concave down on
this interval, but f(x) has an inflection point
at x = 0.
Finally, f(x) ! 0 as x ! �1 and f(x) ! 0 as
x ! 1. Therefore, the graph has horizontal
asymptote y = 0.

0

10

8

2

−2

−6

8

10

6

−4

4

0

6

−4

−8

−2−8 −6−10

−10

2 4

10. f (x) =
3x2

x2 + 1
The graph has x-intercept and y-intercept at
(0, 0). The domain of f includes all real num-
bers.

f 0 (x) =

�
x2 + 1

�
(6x)�

�
3x2
�
(2x)

(x2 + 1)2

=
6x

(x2 + 1)2

f 0(x) < 0 on (�1, 0) so f(x) is decreasing on
these intervals and f 0(x) > 0 on (0,1) so f(x)
is increasing on these interval.

f 00 (x) =

�
x2 + 1

� ⇥
6
�
x2 + 1

�
� 24x2

⇤

(x2 + 1)4

=
6� 18x2

(x2 + 1)3

The critical numbers are x = ±
q

1
3 . We find

that f 00(x) > 0 on
⇣
�
q

1
3 ,
q

1
3

⌘
so f(x) is

concave up on this interval and we find that

f 00(x) < 0 on
⇣
�1,�

q
1
3

⌘
and

⇣q
1
3 ,1

⌘
so

f(x) is concave down on this interval, but the

graph has inflection points at x = ±
q

1
3 .

Finally, f(x) ! 3 as x ! �1 and f(x) ! 3 as
x ! 1. Therefore, the graph has horizontal
asymptote at y = 3.
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5−5
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4

2

1

0
100−10

11. f (x) = (x+ sinx)
The graph has x-intercepts and y-intercepts at
(0, 0). The domain of f includes all real num-
bers.
f 0(x) = 1 + cosx � 0,therefore the graph has
no extrema and f(x) is a increasing function.
f 00 (x) = � sinx
f 00(x) < 0 on (2n⇡, (2n+ 1)⇡) so f(x) is con-
cave down on this interval and we find that
f 00(x) > 0 on ((2n+ 1)⇡, 2 (n+ 1)⇡) so f(x)
is concave up on this interval, but the graph
has inflection points at x = n⇡.
Finally, f(x) ! �1 as x ! �1 and f(x) !
1 as x ! 1. Therefore, the graph has no
horizontal asymptote.
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12. f (x) = sinx� cosx
f 0 (x) = cosx+ sinx is zero for x = n⇡ � ⇡

4 .
f 00 (x) = � sinx+ cosx
When n is even, f 00(x) > 0 and so f is mini-
mum at x = n⇡ � ⇡

4 .
When n is odd, f 00(x) < 0 and so f is maxi-
mum at x = n⇡ � ⇡

4 .
f 00(x) = 0 for x = n⇡+ ⇡

4 . So inflection points
are n⇡ + ⇡

4 .
f 00(x) < 0 on

�
⇡
4 + n⇡, 5⇡

4 + n⇡
�
so f(x) is

concave down on this interval and we find that
f 00(x) > 0 on

�
5⇡
4 + n⇡, 9⇡

4 + n⇡
�
so f(x) is

concave up on this interval.



3.6. OVERVIEW OF CURVE SKETCHING 201

5

1

2

6

−3

−2

4

3

2 8

0

−1
4

−4

−5

0−2−4−6−8−10 10

13. f(x) = x lnx
The domain is {x|x > 0}. There is an x-
intercept at x = 1 and no y-intercept.
f 0(x) = lnx+ 1
The only critical number is x = e�1. f 0(x) < 0
on (0, e�1) and f 0(x) > 0 on (e�1,1) so
f(x) is decreasing on (0, e�1) and increasing
on (e�1,1). Thus f(x) has a local minimum
at x = e�1.
f 00(x) = 1/x, which is positive for all x in the
domain of f , so f(x) is always concave up.
f(x) ! 1 as x ! 1.

2.5

1.5

0.5

x

32.521.510.50

3

2

1

0

14. f(x) = x lnx2

The domain is {x|x 6= 0}. There are x-
intercepts at x = ±1 but no y-intercept.
f 0(x) = lnx2 + 2
The critical numbers are x = ±e�1. f 00(x) =
2/x, so x = �e�1 is a local maximum and
x = e�1 is a local minimum. f(x) is increasing
on (�1,�e�1) and (e�1,1); f(x) is decreas-
ing on (�e�1, 0) and (0, e�1). f(x) is concave
down on (�1, 0) and concave up on (0,1).
f(x) ! �1 as x ! 1 and f(x) ! 1 as
x ! 1.

2.5

−2.5
x

3210−1−2

5.0

−3

0.0

−5.0

15. f(x) =
p
x2 + 1

The y-intercept is (0, 1). There are no x-
intercepts.
f 0(x) = 1

2 (x
2 + 1)�1/22x = xp

x2+1
The only

critical number is x = 0. f 0(x) < 0 when x < 0
and f 0(x) > 0 when x > 0 so f(x) is increas-
ing on (0,1) and decreasing on (�1, 0). Thus
f(x) has a local minimum at x = 0.

f 00(x) =

p
x2 + 1� x 1

2 (x
2 + 1)�1/22x

x2 + 1

=
1

(x2 + 1)3/2

Since f 00(x) > 0 for all x, we see that f(x) is
concave up for all x.
f(x) ! 1 as x ! ±1.
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16. f(x) =
p
2x� 1

The domain is {x|x � 1/2}. There is an x-
intercept at x = 1/2.
f 0(x) = 1

2 (2x� 1)�1/22 = 1p
2x�1

f 0(x) is undefined at x = 1/2, but this is an
endpoint of f(x) and there are no other criti-
cal points. Since f 0(x) is positive for all x in
the domain of f , we see that f(x) is increasing
for all x in the domain.
f 00(x) = � 1

2 (2x� 1)�3/22 = �1
(2x�1)3/2

f 00(x) < 0 for all x in the domain of f , so f is
concave down for all x for which it is defined.
f(x) ! 1 as x ! 1.
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1
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x
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17. f(x) = (x3 � 3x2 + 2x)1/3

f 0(x) =
3x2 � 6x+ 2

3(x3 � 3x2 + 2x)2/3

There are critical numbers at x =
3±

p
3

3
, 0,

1 and 2.

f 00(x) =
�6x2 + 12x� 8

9(x3 � 3x2 + 2x)5/3

with critical numbers x = 0, 1 and 2. f 00(x)
changes sign at these values, so these are in-
flection points. The Second Derivative test

shows that x =
3 +

p
3

3
is a minimum, and

x =
3�

p
3

3
is a maximum.

f(x) ! �1 as x ! �1 and f(x) ! 1 as
x ! 1.

0
0 2
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−2 −1
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1

1
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18. f(x) = (x3 � 3x2 + 2x)1/2

f(x) is defined for 0  x  1 and x � 2.
f(x) ! 1 as x ! 1.

f 0(x) =
3x2 � 6x+ 2

2(x3 � 3x2 + 2x)1/2

There are critical numbers at x =
3±

p
3

3
, 0,

1 and 2.

f 00(x) =
3x4 � 12x3 + 12x2 � 4

4(x3 � 3x2 + 2x)3/2

with critical numbers x = 0, 1 and 2 and
x ⇡ �0.4679 and 2.4679. f(x) is undefined at
x = �0.4679, so we do not consider this point.

f 00(x) changes sign at x = 2.4679, so this is an
inflection point. The Second Derivative test

shows that x =
3�

p
3

3
is a maximum.

At x = 0, 1, 2, f(x) is minimum.
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19. f (x) = x5/3 � 5x2/3

The domain of f includes all real numbers.

f 0(x) =
5

3
x

2
3 � 10

3
x� 1

3

=
5

3

⇣
x

2
3 � 2x� 1

3

⌘

=
5

3

✓
x� 2

x1/3

◆

Critical number is x = 2.
f 0(x) > 0 on (�1, 0) and (2,1). So f(x) is
increasing on these intervals.
f 0(x) < 0 on (0, 2) and so f(x) is decreasing
on this interval.
Therefore f(x) is maximum at x = 0 and min-
imum at x = 2.

f 00 (x) =
5

3

✓
2

3
x� 1

3 +
2

3
x� 4

3

◆

=
10

9

⇣
x� 1

3 + x� 4
3

⌘

=
10

9

✓
x+ 1

x4/3

◆

The critical number is at x = 0, �1. f 00(x)
changes sign at these values, so these are in-
flection points. f(x) ! �1 as x ! �1 and
f(x) ! 1 as x ! 1.
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20. f(x) = x3 � 3

400
x = x(x2 � 3

400
)

The y-intercept (also an x-intercept) is (0, 0)
and there are also x-intercepts at x = ±

p
3/20.

f 0(x) = 3x2 � 3

400
The critical numbers are x = ±1/20.
f 00(x) = 6x, so x = �1/20 is a local maximum
and x = 1/20 is a local minimum. f(x) is in-
creasing on (�1,�1/20) and (1/20,1) and
decreasing on (�1/20, 1/20). It is concave up
on (0,1) and concave down on (�1, 0), with
an inflection point at x = 0.
f(x) ! �1 as x ! �1 and f(x) ! 1 as
x ! 1.
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21. f(x) = e�2/x

f 0(x) = e�2/x

✓
2

x2

◆
=

2

x2
e�2/x

f 00(x) =
�4

x3
e�2/x +

2

x2
e�2/x

✓
2

x2

◆

=
4

x4
e�2/x � 4

x3
e�2/x

f 0(x) > 0 on (�1, 0) [ (0,1)
f 00(x) > 0 on (�1, 0) [ (0, 1)
f 00(x) < 0 on (1,1)
f increasing on (�1, 0) and on (0,1), con-
cave up on (�1, 0) [ (0, 1), concave down on
(1,1), inflection point at x = 1. f is unde-
fined at x = 0.

lim
x!0+

e�2/x = lim
x!0+

1

e2/x
= 0 and

lim
x!0�

e�2/x = 1
So f has a vertical asymptote at x = 0.
lim
x!1

e�2/x = lim
x!�1

e�2/x = 1

So f has a horizontal asymptote at y = 1.
Global graph of f(x):
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Local graph of f(x):
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22. f(x) = e1/x
2

The function has a vertical asymptote at x = 0
such that f(x) ! 1 as x approaches 0 from
the right or left. There is a horizontal asymp-
tote of y = 1 as x ! ±1.

f 0(x) =
�2

x3
· e1/x

2

f 0(x) > 0 for x < 0, so f(x) is increasing on
(�1, 0) and f 0(x) < 0 for x > 0, so f(x) is
decreasing on (�1, 0).

f 00(x) =
2e1/x

2

(3x2 + 2)

x6

is positive for all x 6= 0, so f(x) is concave up
for all x 6= 0.
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42

23. f (x) =
1

x3 � 3x2 � 9x+ 1

f 0(x) = � 3x2 � 6x� 9

(x3 � 3x2 � 9x+ 1)2
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The critical numbers are x = �1, 3.

f 00 (x) =
6
�
6x4 � 4x3 � 7x2 + 12x+ 2

�

(x3 � 3x2 � 9x+ 1)3

The Second Derivative test shows that the
graph has a local minimum at x = �1 and
a local maximum at x = 3. The graph has
a vertical asymptote at x = �1.9304. Sim-
ilarly, the graph has vertical asymptotes at
x = 0.1074 and 4.8231.
f(x) ! 0 as x ! �1 and f(x) ! 0 as x ! 1.
Therefore, the graph has horizontal asymptote
y = 0.

43210−6

2.5

0.0
−4

−2.5

6−2−3 5−1

−5.0

−5

5.0

24. f (x) =
1

x3 + 3x2 + 4x+ 1

f 0 (x) = � 3x2 + 6x+ 4

(x3 + 3x2 + 4x+ 1)2

Since f 0 (x) = 0 has no real roots, the graph
has no extrema.

f 00 (x) =
12x4 + 48x3 + 78x2 + 66x+ 26

(x3 + 3x2 + 4x+ 1)3

The Critical number is x = �0.316722.
f 00 (x) > 0 on (�0.3176722,1) so the graph
is concave up on this interval. f 00 (x) < 0
on (�1,�0.3176722) so the graph is concave
down on this interval. the graph has a vertical
asymptote at x = �0.3176722. f(x) ! 0 as
x ! �1 and f(x) ! 0 as x ! 1.
Therefore, the graph has horizontal asymptote
y = 0.

2.4

0.8

−0.8
2
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25. f(x) = (x3 � 3x2 + 2x)2/3

f 0(x) =
2(3x2 � 6x+ 2)

3(x3 � 3x2 + 2x)1/3

There are critical numbers at x =
3±

p
3

3
, 0,

1 and 2.

f 00(x) =
18x4 � 72x3 + 84x2 � 24x� 8

9(x3 � 3x2 + 2x)4/3

with critical numbers x = 0, 1 and 2 and
x ⇡ �0.1883 and 2.1883. f 00(x) changes sign
at these last two values, so these are inflection
points. The Second Derivative test shows that

x =
3±

p
3

3
are both maxima. Local minima

occur at x = 0, 1 and 2.
f(x) ! 1 as x ! ±1.

6

4

2

0

x

43210-2 -1

8

26. f(x) = x6 � 10x5 � 7x4 + 80x3 + 12x2 � 192x
f(x) ! 1 as x ! ±1.
f 0(x) = 6x5� 50x4� 28x3+240x2+24x� 192
Critical numbers at approximately x =
�1.9339, �1.0129, 1, 1.9644, and 8.3158.
f 00(x) = 30x4 � 200x3 � 84x2 + 480x+ 24
Critical numbers at approximately x =
�1.5534, �0.0496, 1.5430, and 6.7267, and
changes sign at each of these values, so these
are inflection points. The Second Derivative
Test shows that x = �1.9339, 1, and 8.3158
are local minima, and x = �1.0129 and 1.9644
are local maxima. The extrema near x = 0
look like this:

200
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100

0
-1

-100

-2 1
x

2

The inflection points, and the global behavior
of the function can be seen on the following
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graph.
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27. f(x) =
x2 + 1

3x2 � 1
Note that x = ±

p
1/3 are not in the domain

of the function, but yield vertical asymptotes.

f 0(x) =
2x(3x2 � 1)� (x2 + 1)(6x)

(3x2 � 1)2

=
(6x3 � 2x)� (6x3 + 6x)

(3x2 � 1)2

=
�8x

(3x2 � 1)2

So the only critical point is x = 0.

f 0(x) > 0 for x < 0
f 0(x) < 0 for x > 0
so f is increasing on (�1,�

p
1/3) and on

(�
p

1/3, 0); decreasing on (0,
p
1/3) and on

(
p

1/3,1). Thus there is a local max at x = 0.

f 00(x) = 8 · 9x2 + 1

(3x2 � 1)3

f 00(x) > 0 on (�1,�
p
1/3) [ (

p
1/3,1)

f 00(x) < 0 on (�
p
1/3,

p
1/3)

Hence f is concave up on (�1,�
p
1/3) and on

(
p

1/3,1); concave down on (�
p
1/3,

p
1/3).

Finally, when |x| is large, the function ap-
proached 1/3, so y = 1/3 is a horizontal asymp-
tote.
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28. f(x) =
5x

x3 � x+ 1
Looking at the graph of x3 � x + 1, we see

that there is one real root, at approximately
�1.325; so the domain of the function is all x
except for this one point, and x = �1.325 will
be a vertical asymptote. There is a horizontal
asymptote of y = 0.

f 0(x) = 5
1� 2x3

(x3 � x� 1)2

The only critical point is x = 3
p
1/2. By the

first derivative test, this is a local max.

f 00(x) = 10
3x5 + x3 � 6x2 + 1

(x3 � x+ 1)3

The numerator of f 00 has three real roots,
which are approximately x = �.39018, x =
.43347, and x = 1.1077. f 00(x) > 0 on
(�1,�1.325) [ (�.390, .433) [ (1.108,1)
f 00(x) < 0 on (�1.325,�.390) [ (.433, 1.108)
So f is concave up on (�1,�1.325) [
(�.390, .433) [ (1.108,1) and concave down
on (�1.325,�.390) [ (.433, 1.108). Hence x =
�.39018, x = .43347, and x = 1.1077 are in-
flection points.

x

8

2

0

−4

0

−8

y

10

6

3

4

2

−2
1

−6

−10

−1−2−3

29. f(x) = x2
p
x2 � 9

f is undefined on (�3, 3).

f 0(x) = 2x
p

x2 � 9+x2

✓
1

2
(x2 � 9)�1/2 · 2x

◆

= 2x
p

x2 � 9 +
x3

p
x2 � 9

=
2x(x2 � 9) + x3

p
x2 � 9

=
3x3 � 18xp

x2 � 9
=

3x(x2 � 6)p
x2 � 9

=
3x(x+

p
6)(x�

p
6)p

x2 � 9

Critical points ±3. (Note that f is undefined
at x = 0, ±

p
6.)
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f 00(x) =
(9x2 � 18)

p
x2 � 9

x2 � 9

�
(3x3 � 18x) · 1

2 (x
2 � 9)�1/2 · 2x

x2 � 9

=
(9x2 � 18)(x2 � 9)� x(3x3 � 18x)

(x2 � 9)3/2

=
(6x4 � 81x2 + 162)

(x2 � 9)3/2

f 00(x) = 0 when

x2 =
81±

p
812 � 4(6)(162)

2(6)

=
81±

p
2673

12
=

1

4
(27±

p
297)

So x ⇡ ±3.325 or x ⇡ ±1.562, but these latter
values are not in the same domain. So only
±3.325 are potential inflection points.
f 0(x) > 0 on (3,1)
f 0(x) < 0 on (�1,�3)
f 00(x) > 0 on (�1,�3.3) [ (3.3,1)
f 00(x) < 0 on (�3.3,�3) [ (3, 3.3)
f is increasing on (3,1), decreasing on
(�1,�3), concave up on (�1,�3.3) [
(3.3,1), concave down on (�3.3,�3)[(3, 3.3).
x = ±3.3 are inflection points.
Global graph of f(x):

−5

500

x
1050

750

250

−10
0

Local graphs of f(x):

x

30

43.5

10

32.52

40

20

0

20

x

0
-2-2.5-3-3.5-4

40

30

10

30. f(x) = 3
p
2x2 � 1

f 0(x) =
4x

3(2x2 � 1)2/3

f 0(x) = 0 at x = 0 and is undefined at
x = ±

p
1/2.

f 00(x) =
�4(2x2 + 3)

9(2x2 � 1)5/3

f 00(x) is never 0, and is undefined where f 0

is. The function changes concavity at x =
±
p

1/2, so these are inflection points. The
slope does not change at these values, so they
are not extrema. The Second Derivative Test
shows that x = 0 is a minimum.
f(x) ! 1 as x ! ±1.

2

1

0
0

-2-4
x

64

4

3

2

-1

-6

31. f(x) = e�2x sinx
f 0(x) = e�2x(cosx� 2 sinx)
f 00(x) = e�2x(3 sinx� 4 cosx)
f 0(x) = 0 when cosx = 2 sinx; that is,
when tanx = 1/2; that is, when x =
k⇡ + tan�1(1/2), where k is any integer.
f 0(x) < 0, and f is decreasing, on intervals of
the form (2k⇡ + tan�1( 12 ), (2k + 1)⇡ + tan�1( 12 ))
f 0(x) > 0 and f is increasing, on intervals of
the form ((2k � 1)⇡ + tan�1( 12 ), 2k⇡ + tan�1( 12 ))
Hence f has a local max at x = 2k⇡ +
tan�1(1/2) and a local min at x = (2k +
1)⇡ + tan�1(1/2).
f 00(x) = 0 when 3 sinx = 4 cosx; that
is, when tanx = 4/3; that is, when x =
k⇡ + tan�1(4/3). The sign of f 00 changes at
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each of these points, so all of them are inflec-
tion points.

y

4

8

2

4

−2

−4

0
x

5

10

3

1

6

0

−1

−3

2

−5

−2−4−6−8−10

32. f(x) = sinx� 1
2 sin 2x

f 0(x) = cosx� cos 2x
f 0(x) = 0 when x = 2k⇡, 2⇡/3 + 2k⇡, or
4⇡/3 + 2k⇡.
f 00(x) = � sinx+ 2 sin 2x
f 00(x) = 0 when x = 0, ⇡ and approximately
±1.3181, and the pattern repeats with period
2⇡. f 00 changes sign at each of these values, so
these are inflection points. The First Deriva-
tive Test shows that x = 2k⇡ is neither a min-
imum nor a maximum. The Second Derivative
Test shows that the other critical numbers are
extrema that alternate between minima and
maxima.

1

0.5

0

-0.5

-1

5
x

-5 100-10

33. f(x) = x4 � 16x3 + 42x2 � 39.6x+ 14
f 0(x) = 4x3 � 48x2 + 84x� 39.6
f 00(x) = 12x2 � 96x+ 84

= 12(x2 � 8x+ 7)
= 12(x� 7)(x� 1)

f 0(x) > 0 on (.8952, 1.106) [ (9.9987,1)
f 0(x) < 0 on (�1, .8952) [ (1.106, 9.9987)
f 00(x) > 0 on (�1, 1) [ (7,1)
f 00(x) < 0 on (1, 7)
f is increasing on (.8952, 1.106) and on
(9.9987,1), decreasing on (�1, .8952) and on
(1.106, 9.9987), concave up on (�1, 1)[(7,1),
concave down on (1, 7), x = .8952, 9.9987 are
local min, x = 1.106 is local max, x = 1, 7 are

inflection points.
f(x) ! 1 as x ! ±1.
Global graph of f(x):

10000

0

x

20151050-5-10

40000

30000

20000

Local graph of f(x):

2.5

2

1.5

1

0.5

x

1.41.210.80.6

34. f(x) = x4 + 32x3 � 0.02x2 � 0.8x
f 0(x) = 4x3 + 96x2 � 0.04x� 0.8
f 0(x) = 0 at approximately x = �24,
�0.09125, and 0.09132.
f 00(x) = 12x2 + 192x� 0.04
f 00(x) = 0 at approximately x = 16.0002 and
0.0002, and changes sign at these values, so
these are inflection points. The Second Deriva-
tive Test shows that x = �24 and 0.09132 are
minima, and that x = �0.09125 is a maxima.
The extrema near x = 0 look like this:

0.08

0.04

0

-0.04

-0.08

x
0.20.10-0.1-0.2

The global behavior looks like this:



208 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

50000

x

0

-50000

10

-100000

0-10-20-30

100000

35. f(x) =
25� 50

p
x2 + 0.25

x

= 25

 
1� 2

p
x2 + 0.25

x

!

= 25

 
1�

p
4x2 + 1

x

!

Note that x = 0 is not in the domain of the
function.

f 0(x) = 25

 
1�

p
4x2 + 1

x2
p
4x2 + 1

!

We see that there are no critical points. In-
deed, f 0 < 0 wherever f is defined. One can
verify that

f 00(x) > 0 on (0,1)
f 00(x) < 0 on (�1, 0)
Hence the function is concave up on (0,1) and
concave down on (�1, 0).

lim
x!1

25� 50
p
x2 + 0.25

x

= lim
x!1

25

x
� 50

p
x2 + 0.25

x

= lim
x!1

0� 50
x
q

1 + 0.25
x2

x

= lim
x!1

�50

r
1 +

0.25

x2
= �50

lim
x!�1

25� 50
p
x2 + 0.25

x

= lim
x!1

25

x
� 50

p
x2 + 0.25

x

= lim
x!�1

0� 50
(�x)

q
1 + 0.25

x2

x

= lim
x!1

50

r
1 +

0.25

x2
= 50

So f has horizontal asymptotes at y = 50 and
y = �50.

20

0

40

-40

-20

x

105-5 0-10

36. f(x) = tan�1

✓
1

x2 � 1

◆

The function has horizontal asymptote y = 0,
and is undefined at x = ±1.

f 0(x) =
�2x

x4 � 2x2 + 2
f 0(x) = 0 only when x = 0.

f 00(x) =
2(3x4 � 2x2 � 2)

(x4 � 2x2 + 2)2

f 00(x) = 0 at approximately x = ±1.1024
and changes sign there, so these are inflection
points (very easy to miss by looking at the
graph). The Second Derivative Test shows that
x = 0 is a local maximum.

1

0.5

x

0
0 6

-1.5

4-4

1.5

-0.5

-1

2-2-6

37. f(x) = x4 + cx2

f 0(x) = 4x3 + 2cx
f 00(x) = 12x2 + 2c
c = 0: 1 extremum, 0 inflection points
c < 0: 3 extrema, 2 inflection points
c > 0: 1 extremum, 0 inflection points
c ! �1: the graph widens and lowers
c ! +1: the graph narrows

38. f(x) = x4 + cx2 + x
f 0(x) = 4x3 + 2cx+ 1
f 00(x) = 12x2 + 2c
If c is negative, there will be two solutions to
f 00 = 0, and these will be inflection points. For
c > 0 there will be no solutions to f 00 = 0,
and no inflection points. For c = 0, f 00 = 0
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when x = 0, but does not change sign there,
so this is not an inflection point. f 0 = 0 has
one solution, corresponding to a minimum, for
all c > �1.5. For c = �1.5, there is a second
critical point which is neither a minimum nor
a maximum. For c < �1.5 there are three crit-
ical points, two minima and a maximum. As
c ! 1 the curve has one minimum, and nar-
rows. As c ! �1, the two minima get farther
apart and drop lower. The local maximum ap-
proaches (0, 0).

39. f(x) =
x2

x2 + c2

f 0(x) =
2c2x

(x2 + c2)2

f 00(x) =
2c4 � 6c2x2

(x2 + c2)3

If c = 0: f(x) = 1, except that f is undefined
at x = 0. c < 0, c > 0: horizontal asymp-
tote at y = 1, local min at x = 0, since the
derivative changes sign from negative to posi-
tive at x = 0; also there are inflection points at
x = ±c/

p
3. As c ! �1, c ! +1: the graph

widens.

40. f(x) = e�x2/c

f 0(x) =
�2x

c
· e�x2/c

f 00(x) =
�2c+ 4x2

c2
· e�x2/c

For c > 0 the graph is a bell curve centered
at its maximum point (0, 1), and the inflection
points are at x = ±

p
c/2. As c ! 1, the

curve widens.

The function is not defined for c = 0.

For c < 0, there are no inflection points, and
x = 0 is a minimum. The graph is cup shaped
and widens as c ! �1.

41. When c = 0, f(x) = sin(0) = 0.

Since sinx is an odd function, sin(�cx) =
� sin(cx). Thus negative values of c give the
reflection through the x-axis of their positive
counterparts. For large values of c, the graph
looks just like sinx, but with a very small pe-
riod.

42. When c = 0, we have f(x) = x2
p
�x2, which

is undefined.

Since x2
p
c2 � x2 = x2

p
(�c)2 � x2, the func-

tion is the same regardless of whether c is neg-
ative or positive. The function is always 0 at
x = 0 and undefined for |x| > |c|. Where it

is defined, f(x) � 0, attaining its minimum
at x = 0. It reaches its maximum value at
x = ±

p
2c2/3. At these points, f attains the

value 2
p
3|c|3/9. The function looks generally

the same as |c| gets large, with the domain and
range increasing as |c| does.

43. f(x) =
3x2 � 1

x
= 3x� 1

x
y = 3x is a slant asymptote.

0 4

10

−10

x
5

y

15

5

3

0

−5

−15

−2 −1−4 −3−5 1 2

44. f(x) =
3x2 � 1

x� 1
= 3x+ 3 +

2

x� 1
,

so the slant asymptote is y = 3x+ 3.

y

20

15

10

5

0

x-5

-10

6

-15

420-2-4-6

45. f(x) =
x3 � 2x2 + 1

x2
= x� 2 +

1

x2

y = x� 2 is a slant asymptote.

y

8

4

4

1 2

−4

−2
x

10

5

6

2

3

0

−2

−6

−8

−10

−1−4 −3−5 0

46. f(x) =
x3 � 1

x2 � 1
= x+

x� 1

x2 � 1
,
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so the slant asymptote is y = x.

-10

x
6420-2

y

-4

10

-6

5

0

-5

47. f(x) =
x4

x3 + 1
= x� x

x3 + 1

y = x is a slant asymptote.

0.0

x
3210−1

5.0

−5.0

2.5

y

−2−3

−2.5

48. f(x) =
x4 � 1

x3 + x
= x+

�x2 � 1

x3 + x
,

so the slant asymptote is y = x.

-10

x
6420-2

y

-4

10

-6

5

0

-5

49. One possibility:

f(x) =
3x2

(x� 1)(x� 2)

50. One possibility:

f(x) =
x

x2 � 1

51. One possibility:

f(x) =
2xp

(x� 1)(x+ 1)

52. One possibility:

f(x) =
2x2

(x� 1)(x� 3)

53. lim
x!1


x4 � x2 + 1

x2 � 1
� x2

�

= lim
x!1


x4 � x2 + 1� x2(x2 � 1)

x2 � 1

�

= lim
x!1


1

x2 � 1

�
= 0

Thus f(x) =
x4 � x2 + 1

x2 � 1
has x2 as an asymp-

tote.

8,000

6,000

4,000

0

10,000

9,000

7,000

5,000

3,000

2,000

1,000

2001000−100−200

54. (a) f (x) =
x4

x+ 1

=
x4 � 1 + 1

x+ 1

=

�
x2 + 1

�
(x+ 1) (x� 1)

x� 1
+

1

x+ 1

=
�
x2 + 1

�
(x+ 1) +

1

x+ 1
One possible polynomial is p(x) =�
x2 + 1

�
(x+ 1). Then |f(x)� p(x)| =��� 1

x+1

���! 0 as x ! 1.

(b) f (x) =
x5 � 1

x+ 1

=
x5 + 1� 2

x+ 1

= x4 � x3 + x2 � x+ 1� 2

x+ 1
One possible polynomial is p(x) = x4 �
x3 + x2 � x + 1. Then |f (x)� p (x)| =��� 2
x+1

���! 0 as x ! 1.
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(c) f(x) =
x6 � 2

x+ 1

=
x6 � 1� 1

x+ 1

=

�
x3 � 1

� �
x3 + 1

�
� 1

x+ 1

=

�
x3 � 1

�
(x+ 1)

�
x2 � x+ 1

�
� 1

x+ 1

=
�
x3 � 1

� �
x2 � x+ 1

�
� 1

x+ 1
One possible polynomial is p(x) =�
x3 � 1

� �
x2 � x+ 1

�
. Then |f (x)� p(x)| =��� 1

x+1

���! 0 as x ! 1.

55. f(x) = sinhx =
ex � e�x

2

f 0(x) =
ex + e�x

2
f 0(x) > 0 for all x so f(x) is always increasing
and has no extrema.

f 00(x) =
ex � e�x

2
f 00(x) = 0 only when x = 0 and changes sign
here, so f(x) has an inflection point at x = 0.

3

2

1

-1

-2

0

-3

x

210-1-2

f(x) = coshx =
ex + e�x

2

f 0(x) =
ex � e�x

2
f 0(x) = 0 only when x = 0.

f 00(x) =
ex + e�x

2
f 00(x) > 0 for all x, so f(x) has no inflection
points, but x = 0 is a minimum.

50

30

10

x

420-2-4

70

60

40

20

0

56. For y = sinhx we need to use � 1
2e

�x instead
of 1

2e
�x. To explain the enveloping behavior,

note that:

lim
x!�1

sinhx = lim
x!�1

ex � e�x

2

= lim
x!�1

� e�x

2

lim
x!1

sinhx = lim
x!1

ex � e�x

2

= lim
x!1

ex

2

0.8

1.6

2.4

−2.4

−0.8
2−1

3.2

0.0

−3.2

0−2
x

−1.6

1

To explain the enveloping behavior for y =
coshx, note that:

lim
x!�1

coshx = lim
x!�1

ex + e�x

2

= lim
x!�1

e�x

2

lim
x!1

coshx = lim
x!1

ex + e�x

2

= lim
x!�1

ex

2
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3

1−1

2

−2 20

0

1

x

57. f(x) = xe�bx

f(0) = 0
f(x) > 0 for x > 0

lim
x!1

xe�bx = lim
x!1

x

ebx
= lim

x!1

1

bebx
= 0

(by L’Hôpital’s rule)
f 0(x) = e�bx (1� bx), so there is a unique crit-
ical point at x = 1/b, which must be the maxi-
mum. The bigger b is, the closer the max is to
the origin. For time since conception, 1/b rep-
resents the most common gestation time. For
survival time, 1/b represents the most common
life span.

58. From the graph we can count 15 maxima and
16 minima in the range 0  x  10. Using a
CAS to solve
f 0(x) = � sin(10x+ 2 cosx)(10� 2 sinx) = 0,
we find the following values of x at the extrema.

Minima Maxima
0.11549 0.44806
0.80366 1.18055
1.57080 1.96104
2.33793 2.69353
3.02610 3.33776
3.63216 3.91326
4.18477 4.45009
4.71239 7.97469
5.24001 5.51152
5.79261 6.08702
6.39868 6.73125
7.08685 7.46374
7.85398 8.24422
8.62112 8.97672
9.30929 9.62094
9.91535

59. f (x) = A = tan�1

✓
29.25

x

◆
� tan�1

✓
10.75

x

◆

f 0 (x) =

"
x2

x2 + (29.25)2

✓
�29.25

x2

◆#

�
"

x2

x2 + (10.75)2

✓
�10.75

x2

◆#

f 0 (x) = 0 )
�29.25

x2 + (29.25)2
+

10.75

x2 + (10.75)2
= 0

x = 17.73 ft.
Substitue x = 17.73 in f (x) .

A = tan�1

✓
29.25

17.73

◆
� tan�1

✓
10.75

17.73

◆

= 58.78� 31.23

= 27.55�

Now x is increased to (x+ 15) .
f (x+ 15) = A

= tan�1

✓
29.25

x+ 15

◆
� tan�1

✓
10.75

x+ 15

◆

f 0 (x+ 15)

=

2

64
1

1 +
⇣

29.25
x+15

⌘2

 
�29.25

(x+ 15)2

!3

75

�

2

64
1

1 +
⇣

10.75
x+15

⌘2

 
�10.75

(x+ 15)2

!3

75

=
�29.25

(x+ 15)2 + (29.25)2

+
10.75

(x+ 15)2 + (10.75)2

f 0 (x) = 0 ) x = 2.73 ft.
Substitute x = 2.73 in f (x) .

A = tan�1

✓
29.25

2.73

◆
� tan�1

✓
10.75

2.73

◆

= 84.67� 75.75

= 8.92�

Therefore, A decreases by 18.63�.

60. x(t) =
2.5

w
t� 2.5

4w2
sin 4wt

Since 0  t  0.68. Hence

0  x(t) 
⇣

(2.5)(0.68)
w � 2.5

4w2 sin (4w (0.68))
⌘


�
1.7
w � 2.5

4w2 sin (2.72w)
�


⇣

6.8w�2.5sin(2.72w)
4w2

⌘

Taking limit as w ! 0

lim
w!0

0  lim
w!0

x (t)  lim
w!0

⇣
6.8w�2.5sin(2.72w)

4w2

⌘

(by L’Hôpital’s rule)
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lim
w!0

✓
6.8w � 2.5sin (2.72w)

4w2

◆

= lim
w!0

6.8� 6.8 cos (2.72w)

8w
(by L’Hôpital’s rule)

lim
w!0

18.496 sin (2.72w)

8
= 0

Hence
lim
w!0

0  lim
w!0

x(t)  0.

As w ! 0, x(t) ! 0 that is the knuckleball
will move in a straight direction.

3.7 Optimization

1. A = xy = 1800

y =
1800

x

P = 2x+ y = 2x+
1800

x

P 0 = 2� 1800

x2
= 0

2x2 = 1800
x = 30
P 0(x) > 0 for x > 30
P 0(x) < 0 for 0 < x < 30
So x = 30 is min.

y =
1800

x
=

1800

30
= 60

So the dimensions are 300 ⇥ 600 and the mini-
mum perimeter is 120 ft.

2. If y is the length of fence opposite the river,
and x is the length of the other two sides, then
we have the constraint 2x + y = 96. We wish
to maximize
A = xy = x(96� 2x).
A0 = 96� 4x = 0 when x = 24.
A00 = �4 < 0 so this gives a maximum. Rea-
sonable possible values of x range from 0 to 48,
and the area is 0 at these extremes. The maxi-
mum area is A = 1152, and the dimensions are
x = 24, y = 48.

3. P = 2x+ 3y = 120
3y = 120� 2x

y = 40� 2

3
x

A = xy

A(x) = x

✓
40� 2

3
x

◆

A0(x) = 1

✓
40� 2

3
x

◆
+ x

✓
�2

3

◆

= 40� 4

3
x = 0

40 =
4

3
x

x = 30
A0(x) > 0 for 0 < x < 30
A0(x) < 0 for x > 30.

So x = 30 is max, y = 40� 2

3
· 30 = 20.

So the dimensions are 200 ⇥ 300.

4. Let x be the length of the sides facing each
other and y be the length of the third side.
We have the constraint that xy = 800, or
y = 800/x. We also know that x > 6 and
y > 10. The function we wish to minimize is
the length of walls needed, or the side length
minus the width of the doors.
L = (y � 10) + 2(x� 6) = 800/x+ 2x� 22.
L0 = �800/x2 + 2 = 0 when x = 20.
L00 = 1600/x3 > 0 when x = 20 so this is
a minimum. Possible values of x range from
6 to 80. L(6) = 123.3, L(80) = 148, and
L(20) = 58. To minimize the length of wall,
the facing sides should be 20 feet, and the third
side should be 40 feet.

5. A = xy

P = 2x+ 2y

2y = P � 2x

y =
P

2
� x

A(x) = x

✓
P

2
� x

◆

A0(x) = 1 ·
✓
P

2
� x

◆
+ x(�1)

=
P

2
� 2x = 0

P = 4x

x =
P

4
A0(x) > 0 for 0 < x < P/4
A0(x) < 0 for x > P/4

So x = P/4 is max,

y =
P

2
� x =

P

2
� P

4
=

P

4
So the dimensions are P

4 ⇥ P
4 . Thus we have a

square.
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6. We have a rectangle with sides x and y and
area A = xy, and that we wish to minimize
the perimeter,

P = 2x+ 2y = 2x+ 2 · A
x
.

P 0 = 2� 2A

x2
= 0 when x =

p
A.

P 00 = 4A/x3 > 0 here, so this is a minimum.
Possible values of x range from 0 to 1. As x
approaches these values the perimeter grows
without bound. For fixed area, the rectan-
gle with minimum perimeter has dimensions
x = y =

p
A, a square.

7. V = l · w · h
V (x) = (10� 2x)(6� 2x) · x, 0  x  3
V 0(x) = �2(6� 2x) · x+ (10� 2x)(�2) · x

+ (10� 2x)(6� 2x)

= 60� 64x+ 12x2

= 4(3x2 � 16x+ 15)

= 0

x =
16±

p
(�16)2 � 4 · 3 · 15

6

=
8

3
±

p
19

3

x =
8

3
+

p
19

3
> 3.

V 0(x) > 0 for x < 8/3�
p
19/3

V 0(x) < 0 for x > 8/3�
p
19/3

So x =
8

3
�

p
19

3
is a max.

8. If we cut squares out of the corners of a 12” by
16” sheet and fold it into a box, the volume of
the resulting box will be

V = x(12� 2x)(16� 2x)
= 4x3 � 56x2 + 192x,

where the value of x must be between 0 and 6.
V 0 = 12x2 � 112x+ 192 = 0
when x = 14±2

p
13

3 ⇡ 7.07 and 2.26. The crit-

ical value x = 14+2
p
13

3 is outside of the rea-
sonable range. The volume is 0 when x is 0
or 6. The First Derivative Test shows that
x = 14�2

p
13

3 gives the maximum volume.

9. (a) V = l · w · h
The volume of the first box (without top)
is
V1 = V1(x) = (6� 2x)2(x) = 4x(3� x)2

where 0 < x < 3. The volume of the
second box (without top and bottom) is
V2 = V2(x) = x3.
Thus, we find the absolute maximum of

the continuous function
V = V (x) = V1(x)+V2(x) = 4x(3� x)2+
x3

on the interval 0 < x < 3.
V 0(x) = 4(3� x)2 + 4x (2 (3� x) (�1)) + 3x2

= 4
�
9� 6x+ x2

�
� 8x (3� x) + 3x2

= 15x2 � 48x+ 36

= (x� 2) (15x� 18)
Now compare the value of the function at
the critical points.
V (1.2) = 17.28

V (2) = 16
Therefore, the value x = 1.2 maximizes
the sum of volumes of the boxes.

(b) The volume of the first box (without top)
is
V1 = V1(x) = (6� 2x)(4� 2x)(x)
= 4x(3� x)(2� x), where 0 < x < 2
The volume of the second box (without
top and bottom) is
V2 = V2(x) = x3.
Thus, we find the absolute maximum of
the continuous function
V = V (x) = V1(x) + V2(x)
= 4x(3� x)(2� x) + x3, on the interval
0 < x < 2.
We have,
V 0(x) = 4 (3� x) (2� x) + 4x (2� x) (�1)

+ 4x (3� x) (�1) + 3x2

= 4
�
6� 5x+ x2

�
� 4x (2� x)

� 4x (3� x) + 3x2

= 15x2 � 40x+ 24
Now compare the value of the function at
the critical points.
V (0.91169) = 9.0

V (1.75496) = 5.4
Therefore, x = 0.91169 maximizes the
sum of volumes of the boxes.

10. The volume of the first box (without top) is
V1 = V1(x) = (6� 2x)(d� 2x)(x),
where 0 < x < min{d

2 , 3}
The volume of the second box (without top and
bottom) is
V2 = V2(x) = x3.
Thus, we find the absolute maximum of the
continuous function
V = V (x) = V1(x) + V2(x)
= x(6� 2x)(d� 2x) + x3, on the interval
0 < x < min{d

2 , 3}
We have,
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V 0(x) = (�2x)(d� 2x)� 2x(6� 2x)

+ (d� 2x)(6� 2x) + 3x2

= 15x2 � 24x� 4dx+ 6d

= 15x2 � x(24 + 4d) + 6d = 0
To get real values of x, (24+4d)2�4·15·6d � 0
and this is ture for all d > 0.
Therefore for each d > 0, we can find x such
that V is maximum.

11. d =
p
(x� 0)2 + (y � 1)2

y = x2

d =
p
x2 + (x2 � 1)2

= (x4 � x2 + 1)1/2

d0(x) =
1

2
(x4 � x2 + 1)�1/2(4x3 � 2x)

=
2x(2x2 � 1)

2
p
x4 � x2 + 1

= 0

x = 0,±
p
1/2;

f(0) = 1, f(
p
1/2) = 3/4, f(�

p
1/2) = 3

4 ;

Thus x = ±
p
1/2 are min, and the points on

y = x2 closest to (0, 1) are (
p
1/2, 1/2) and

(�
p

1/2, 1/2).

12. Points on the curve y = x2 can be written
(x, x2). The distance from such a point to (3, 4)
is
D =

p
(x� 3)2 + (x2 � 4)2

=
p
x4 � 7x2 � 6x+ 25.

We numerically approximate the solution of

D0 =
2x3 � 7x� 3p

x4 � 7x2 � 6x+ 25
= 0 to be x ⇡

2.05655, and two negative solutions. The neg-
ative critical numbers clearly do not minimize
the distance. The closest point is approxi-
mately (2.05655, 4.22940).

13. d =
p
(x� 0)2 + (y � 0)2

y = cosx

d =
p
x2 + cos2 x

d0(x) =
2x� 2 cosx sinx

2
p
x2 + cos2 x

= 0

x = cosx sinx

x = 0
So x = 0 is min and the point on y = cosx
closest to (0, 0) is (0, 1).

14. Points on the curve y = cosx can be written
(x, cosx). The distance from such a point to
(1, 1) is

D =
p

(x� 1)2 + (cosx� 1)2

=
p

x2 � 2x+ cos2 x� 2 cosx+ 2
We numerically approximate the solution of

D0 =
x� 1� cosx sinx+ sinxp

x2 � 2x+ cos2 x� 2 cosx+ 2
= 0

to be x ⇡ 0.789781. The First or Second
Derivative Test shows that this is a minimum
distance. The closest point is approximately
(0.789781, 0.704001).

15. For (0, 1), (
p
1/2, 1/2) on y = x2, we have

y0 = 2x, y0(
p

1/2) = 2 ·
p

1/2 =
p
2 and

m =
1
2 � 1

�
q

1
2 � 0

=
1p
2
.

For (0, 1), (�
p
1/2, 1/2) on y = x2, we have

y0(�
p
1/2) = 2(�

p
1/2) = �

p
2 and

For (3, 4), (2.06, 4.2436) on y = x2, we have
y0(2.06) = 2(2.06) = 4.12 and

m =
4.2436� 4

2.06� 3
= �0.2591 ⇡ � 1

4.12
.

16. For (3, 9), (1, 8) on y = 9� x2, we have
y0 = �2x, y0(1) = �2 · 1 = �2 and

m =
8� 9

1� 3
=

1

2
.

For (5, 11), (0.79728, 8.364) on y = 9 � x2, we
have y0(0.79728) = �2(0.79728) = �1.59456
and

m =
8.364� 11

0.79728� 5
= 0.6272 ⇡ 1

1.59456
.

17. Cost: C = 2(2⇡r2) + 2⇡rh
Convert from fluid ounces to cubic inches:
12 fl oz = 12 fl oz · 1.80469 in3/fl oz

= 21.65628 in3

Volume: V = ⇡r2h so

h =
V

⇡r2
=

21.65628

⇡r2

C = 4⇡r2 + 2⇡r

✓
21.65628

⇡r2

◆

C(r) = 4⇡r2 + 43.31256r�1

C 0(r) = 8⇡r � 43.31256r�2

=
8⇡r3 � 43.31256

r2

r = 3

r
43.31256

8⇡
= 1.198900

when C 0(r) = 0.
C 0(r) < 0 on (0, 1.1989)
C 0(r) > 0 on (1.1989,1)
Thus r = 1.1989 minimizes the cost and

h =
21.65628

⇡(1.1989)2
= 4.795700.

18. If the top and bottom of the cans are 2.23 times
as thick as the sides, then the new cost func-
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tion will be

C(r) = 2⇡

✓
2.23r2 +

21.65628

⇡r

◆
.

Then C 0(r) = 2⇡

✓
4.46r � 21.65628

⇡r2

◆
= 0

when r = 3

r
21.65628

4.46⇡
⇡ 1.156.

The First Derivative Test shows this is a mini-
mum, and we can verify that the cost increases
without bound as r ! 0 and r ! 1.

19. Let x be the distance from the connection
point to the easternmost development. Then
0  x  5.
f(x) =

p
32 + (5� x)2 +

p
42 + x2,

0  x  5
f 0(x) = �(9 + (5� x)2)�1/2(5� x)

+
1

2
(16 + x2)�1/2(2x)

=
x� 5p

9 + (5� x)2
+

xp
16 + x2

= 0

x =
20

7
⇡ 2.857

f(0) = 4 +
p
34 ⇡ 9.831

f

✓
20

7

◆
=

p
74 ⇡ 8.602

f(5) = 3 +
p
41 ⇡ 9.403

So x = 20/7 is minimum. The length of new
line at this point is approximately 8.6 miles.
Since f(0) ⇡ 9.8 and f(5) ⇡ 9.4, the water
line should be 20/7 miles west of the second
development.

20. Say the pipeline intersects the shore at a dis-
tance x from the closest point on the shore
to the oil rig. Then x will be between 0
and 8. The length of underwater pipe is then
W =

p
x2 + 252, and the length of pipe con-

structed on land will be L =
p
(8� x)2 + 52.

The total cost will be C = 50W + 20L.

We numerically solve

C 0 =
50xp

625 + x2
+

10(2x� 16)p
x2 � 16x+ 89

= 0

to find x ⇡ 5.108987. The first derivative test
shows that this gives a minimum. The cost at
this value is $1391 thousand. The cost when
x = 0 is $1439 thousand, and the cost when
x = 8 is $1412 thousand, so x = 5.108987 gives
the absolute minimum cost.

21. (a) C(x) = 5
p
16 + x2 + 2

p
36 + (8� x)2

0  x  8

C(x) = 5
p
16 + x2 + 2

p
100� 16x+ x2

C 0(x) = 5

✓
1

2

◆
(16 + x2)�1/2 · 2x

+ 2

✓
1

2

◆
(100� 16x+ x2)�1/2(2x� 16)

=
5xp

16 + x2
+

2x� 16p
100� 16x+ x2

= 0

x ⇡ 1.2529

C(0) = 40

C(1.2529) ⇡ 39.0162

C(8) ⇡ 56.7214

The highway should emerge from the
marsh 1.2529 miles east of the bridge.

(b) If we build a straight line to the inter-
change, we have x = (3.2).

Since C(3.2)�C(1.2529) ⇡ 1.963, we save
$1.963 million.

22. (a) Say the road intersects the edge of the
marsh at a distance x from the closest
point on the edge to the bridge. Then
x will be between 0 and 8. The length of
road over marsh is now M =

p
x2 + 42,

and the length of road constructed on dry
land will be L =

p
(8� x)2 + 62. The to-

tal cost will be C = 6M + 2L.

We numerically solve

C 0 =
6xp

16 + x2
+

2x� 16p
x2 � 16x+ 100

= 0

to find x ⇡ 1.04345. The first deriva-
tive test shows that this gives a minimum.
The cost at this value is $43.1763 mil-
lion. The cost when we use the solution
x = 1.2529 from exercise 19 is $43.2078
million, so the increase is $31,500.

(b) C(x) = 5
p
16 + x2 + 3

p
36 + (8� x)2

0  x  8

C 0(x) =
5xp

16 + x2
+

3x� 24p
100� 16x+ x2

Setting C 0(x) = 0 yields

x ⇡ 1.8941

C(0) = 50

C(1.8941) ⇡ 47.8104

C(8) ⇡ 62.7214
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The highway should emerge from the
marsh 1.8941 miles east of the bridge. So
if we must use the path from exercise 21,
the extra cost is
C(1.2529)� C(1.8941)
= 48.0452� 47.8104 = 0.2348
or about $234.8 thousand.

23. Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

f(y) =
z � y

r
+

p
x2 + y2

s

Solving f 0(y) = 0 for y, we get y =
sxp

r2 � s2
.

Substitute x = 4m and z = 8m. Therefore, we
have

y =
(0.9) (4)q

(6.4)2 � (0.9)2

⇡ 0.56815.

Therefore, Elvis should enter into the water at
y ⇡ 0.56815.

From the equation y =
xp

r/s+ 1
p
r/s� 1

, we

get that the value of y is independent of z > 1.

24. Let r denote the running speed, and s be the
swimming speed and let f(y) be the time to
get to the ball. Since time = distance/speed,
we have

f(y) =
z � y

r
+

p
x2 + y2

s

Solving f 0(y) = 0 for y, we get y =
sxp

r2 � s2
.

Substitute r = 6.4 and s = 0.9.

y =
0.9xq

(6.4)2 � (0.9)2
⇡ 0.144x

Therefore, for any x the optimal entry point is
approximately y = 0.144x.

25. T (x) =

p
1 + x2

v1
+

p
1 + (2� x)2

v2

T 0(x) =
1

v1
· 1
2
(1 + x2)�1/2 · 2x

+
1

v2
(1 + (2� x)2)�1/2 · (2� x)(�1)

=
x

v1
p
1 + x2

+
x� 2

v2
p

1 + (2� x)2

Note that

T 0(x) =
1

v1
· xp

1 + x2

� 1

v2
· (2� x)p

1 + (2� x)2

=
1

v1
sin ✓1 �

1

v2
sin ✓2

When T 0(x) = 0, we have
1

v1
sin ✓1 =

1

v2
sin ✓2

sin ✓1
sin ✓2

=
v1
v2

26. The distance light travels is

D =
p
22 + x2 +

p
12 + (4� x)2.

We maximize this by solving

D0 =
xp

4 + x2
+

2x� 8

2
p
x2 � 8x+ 17

= 0

to find x = 8/3. For this value of x,
✓1 = ✓2 = tan�1(3/4). (Or simply note similar
triangles.)

27. V (r) = cr2(r0 � r)

V 0(r) = 2cr(r0 � r) + cr2(�1)

= 2crr0 � 3cr2

= cr(2r0 � 3r)
V 0(r) = 0 when r = 2r0/3
V 0(r) > 0 on (0, 2r0/3)
V 0(r) < 0 on (2r0/3,1)
Thus r = 2r0/3 maximizes the velocity.
r = 2r0/3 < r0, so the windpipe contracts.

28. We wish to minimize

E(✓) =
csc ✓

r4
+

1� cot ✓

R4
.

We find

E0(✓) = �csc ✓ cot ✓

r4
+

1 + cot2 ✓

R4

=
� cos ✓R4 + r4

r4R4 sin2 ✓
.

This is zero when cos ✓ = r4/R4, so ✓ =
cos�1(r4/R4). The derivative changes from
negative to positive here, so this gives a mini-
mum as desired.



218 CHAPTER 3. APPLICATIONS OF DIFFERENTIATION

29. p(x) =
V 2x

(R+ x)2

p0(x) =
V 2(R+ x)2 � V 2x · 2(R+ x)

(R+ x)4

=
V 2R2 � V 2x2

(R+ x)4

p0(x) = 0 when x = R
p0(x) > 0 on (0, R)
p0(x) < 0 on (R,1)
Thus x = R maximizes the power absorbed.

30. If the meter registers 115 volts, then v =
115

p
2. The function V (t) = v sin(2⇡ft) has

amplitude v, so the maximum value of the volt-
age is 115

p
2.

31. ⇡r + 4r + 2w = 8 + ⇡

w =
8 + ⇡ � r(⇡ + 4)

2

A(r) =
⇡r2

2
+ 2rw

=
⇡r2

2
+ r(8 + ⇡ � r(⇡ + 4))

= r2
⇣
�4� ⇡

2

⌘
+ r(8 + ⇡)

A0(r) = �2r
⇣
4 +

⇡

2

⌘
+ (8 + ⇡) = 0

A0(r) = 0 when r = 1
A0(r) > 0 on (0, 1)
A0(r) < 0 on (1,1)

Thus r = 1 maximizes the area so

w =
8 + ⇡ � (⇡ + 4)

2
= 2.

The dimensions of the rectangle are 2⇥ 2.

32. Let x be the distance from the end at which the
wire is cut. Due to symmetry, we may consider
0  x  1. We wish to minimize the area of
the squares formed by the two pieces. The to-
tal area is

A(x) =
⇣x
4

⌘2
+

✓
2� x

4

◆2

=
2x2 � 4x+ 4

16
.

We compute

A0(x) =
x

4
� 1

4
= 0 when x = 1.

A00 =
1

4
> 0, so this is a minimum.

We check A(0) = 1/4 and A(1) = 1/8 and see
that cutting the wire in half minimizes the area
of the two squares.

33. l ⇥ w = 92, w = 92/l
A(l) = (l + 4)(w + 2)

= (l + 4) (92/l + 2)
= 92 + 368/l + 2l + 8
= 100 + 368l�1 + 2l

A0(l) = �368l�2 + 2

=
2l2 � 368

l2
A0(l) = 0 when l =

p
184 = 2

p
46

A0(l) < 0 on (0, 2
p
46)

A0(l) > 0 on (2
p
46,1)

So l = 2
p
46 minimizes the total area. When

l = 2
p
46, w = 92

2
p
46

=
p
46.

For the minimum total area, the printed area
has width

p
46 in. and length 2

p
46 in., and

the advertisement has overall width
p
46+2 in.

and overall length 2
p
46 + 4 in.

34. Let x and y be the width and height of the ad-
vertisement. Then xy = 120 and y = 120/x.
We wish to maximize the printed area

A = (x� 2)(y � 3) = (x� 2)(
120

x
� 3)

= 126� 3x� 240

x
.

We find A0 = �3 +
240

x2
= 0 when x = 4

p
5.

The first Derivative Test shows that this is a
maximum. The smallest x could be is 2, and
this gives A(2) = 0. The largest x could be is
40, and this also gives A(40) = 0. Thus, we
see that the dimensions which maximize the
printed area are x = 4

p
5 and y = 6

p
5.

35. (a) Let L represent the length of the ladder.
Then from the diagram, it follows that
L = a sec ✓ + b csc ✓.
Therefore,

dL

d✓
= a sec ✓ tan ✓ � b csc ✓ cot ✓

0 = a sec ✓ tan ✓ � b csc ✓ cot ✓

a sec ✓ tan ✓ = b csc ✓ cot ✓

b

a
=

sec ✓ tan ✓

csc ✓ cot ✓

=
1

cos ✓

sin ✓

cos ✓

sin ✓

1

sin ✓

cos ✓
= tan3 ✓

Thus,
tan ✓ = 3

p
b/a

✓ = tan�1
⇣

3
p

b/a
⌘

= tan�1
⇣

3
p

4/5
⌘

⇡ 0.748 rad or 42.87 degrees
Thus, the length of the longest ladder
that can fit around the corner is approxi-
mately
L = a sec ✓ + b csc ✓
= 5 sec(0.748) + 4 csc(0.748)
⇡ 12.7 ft
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(b) From part (a), we have that ✓ =
tan�1( 3

p
b/a) is the critical number lim-

iting the length of the ladder. Thus
tan ✓ = b1/3/a1/3. We can then draw
a right triangle with ✓ as one angle and
the length of the side opposite ✓ equal to
b1/3 and the length of the side adjacent
to ✓ equal to a1/3. By the Pythagorean
Theorem, the hypotenuse of this triangle
is (a2/3 + b2/3)1/2. From this triangle, we
find

sin ✓ =
b1/3

(a2/3 + b2/3)1/2
and

cos ✓ =
a1/3

(a2/3 + b2/3)1/2
so

csc ✓ =
(a2/3 + b2/3)1/2

b1/3
and

sec ✓ =
(a2/3 + b2/3)1/2

a1/3
.

Thus
L = a sec ✓ + b csc ✓

= a · (a
2/3 + b2/3)1/2

a1/3
+ b · (a

2/3 + b2/3)1/2

b1/3

= a2/3(a2/3 + b2/3)1/2 + b2/3(a2/3 + b2/3)1/2

= (a2/3 + b2/3)(a2/3 + b2/3)1/2

= (a2/3 + b2/3)3/2.

(c) Using the result of part (b) and solving
for b:

L = (a2/3 + b2/3)3/2

L2/3 = a2/3 + b2/3

b2/3 = L2/3 � a2/3

b = (L2/3 � a2/3)3/2

= (82/3 � 52/3)3/2

⇡ 1.16 ft

(d) This was already done in part (c) while
solving for b:
b = (L2/3 � a2/3)3/2.

36. (a) R(x) =
35x� x2

x2 + 35

R0(x) = �35
x2 + 2x� 35

(x2 + 35)2

= �35
(x� 5)(x+ 7)

(x2 + 35)2

Hence the only critical number for x � 0
is x = 5 (that is, 5000 items). This
must correspond to the absolute maxi-
mum, since R(0) = 0 and R(x) is nega-

tive for large x. So maximum revenue is
R(5) = 2.5 (that is, $2500).

(b) To maximize

R(x) =
cx� x2

x2 + c
,

we compute

R0(x) =
c(c� 2x� x2)

(x2 + c)2
.

This is zero when x2 + 2x� c = 0, so

x =
�2±

p
4 + 4c

2
.

The First Derivative Test shows that

x =
�2 +

p
4 + 4c

2
is a maximum.

37. (a) Q0(t) is e�ciency because it represents the
number of additional items produced per
unit time.
Q(t) = �t3 + 12t2 + 60t
Q0(t) = �3t2 + 24t+ 60

= 3(�t2 + 8t+ 20)
This is the quantity we want to maximize.

Q00(t) = 3(�2t + 8) so the only critical
number is t = 4 hours. This must be
the maximum since the function Q0(t) is
a parabola opening down.

(b) The worker’s e�ciency, Q0 is maximized
at the point of diminishing returns be-
cause at this point Q00 changes from pos-
itive to negative. The First Derivative
Test applied to Q0 shows that Q0 has a
local maximum at this point. (This as-
sumes that the graph of Q changes from
concave up to concave down at the inflec-
tion point. If this was reversed, the inflec-
tion point would not be a point of dimin-
ishing returns, and the e�ciency would be
minimized at such a point.)

38. (a) Let C(t) be the total cost of the tickets.
Then
C(t) =(price per ticket)(# of tickets)
C(t) = (40� (t� 20))(t)

= (60� t)(t) = 60t� t2

for 20 < t < 50. Then C 0(t) = 60� 2t, so
t = 30 is the only critical number. This
must correspond to the maximum since
C(t) is a parabola opening down.

(b) If each additional ticket over 20 reduces
the cost-per-ticket by c dollars, then the
total cost for ordering x tickets (with x
between 20 and 50) is
C(x) = (40� c(x� 20))x

= (40 + 20c)x� cx2.
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This is a downward facing parabola with

one maximum at x =
20 + 10c

c
. If we

want the maximum cost to be at x = 50,
we must choose c so that the peak of the
parabola is at or to the right of 50. The

value of x =
20 + 10c

c
increases as c de-

creases, and equals 50 when c = 1
2 . Any

discount of 50 cents or less will cause the
maximum cost to occur when the group
orders 50 tickets.

39. R =
2v2 cos2 ✓

g
(tan ✓ � tan�)

R0(✓) =
2v2

g
[2 cos ✓(� sin ✓)(tan ✓ � tan�)

+ cos2 ✓ · sec2 ✓
⇤

=
2v2

g


�2 cos ✓ sin ✓ · sin ✓

cos ✓
+2 cos ✓ sin ✓ tan�

+cos2 ✓ · 1

cos2 ✓

�

=
2v2

g

⇥
�2 sin2 ✓ + sin(2✓) tan� + 1

⇤

=
2v2

g

⇥
�2 sin2 ✓ + sin(2✓) tan�

+(sin2 ✓ + cos2 ✓)
⇤

=
2v2

g
[sin(2✓) tan�

+(cos2 ✓ � sin2 ✓)
⇤

=
2v2

g
[sin(2✓) tan� + cos(2✓)]

R0(✓) = 0 when

tan� =
� cos(2✓)

sin(2✓)
= � cot(2✓)

= � tan
⇣⇡
2
� 2✓

⌘

= tan
⇣
2✓ � ⇡

2

⌘

Hence � = 2✓ � ⇡/2, so

✓ =
1

2

⇣
� +

⇡

2

⌘

=
�

2
+

⇡

4
=

��

2
+ 45�

i. � = 10�, ✓ = 50�

ii. � = 0�, ✓ = 45�

iii. � = �10�, ✓ = 40�

40. A = 4xy
dA

dx
= 4 (xy0 + y)

To determine y0 =
dy

dx
, use the equation for the

ellipse:

1 =
x2

a2
+

y2

b2

0 =
2x

a2
+

2yy0

b2
2yy0

b2
= �2x

a2

y0 = � b2

a2
x

y
Substituting this expression for y0 into the ex-

pression for
dA

dx
, we get

dA

dx
= xy0 + y

= x

✓
� b2

a2
x

y

◆
+ y

= � b2

a2
x2

y
+ y

The area is maximized when its derivative is
zero:

0 = � b2

a2
x2

y
+ y

b2

a2
x2

y
= y

x2

a2
=

y2

b2
Substituting the previous relationship into the
equation for the ellipse, we get
x2

a2
=

y2

b2
=

1

2
and therefore,

x =
ap
2

and y =
bp
2

Thus, the maximum area is

A = 4
ap
2

bp
2
= 2ab

Since the area of the circumscribed rectangle
is 4ab, the required ratio is

2ab : ⇡ab : 4ab = 1 :
⇡

2
: 2

41. Let Vc be the volume of the cylinder, h be the
height of the cylinder and r the radius of the
cylinder so that
Vc = h⇡r2.
Let Vs be the volume of the sphere and R be
the radius of the sphere so that

Vs =
4

3
⇡R3.

Draw the sphere on coordinate axes with cen-
ter (0, 0) and inscribe the cylinder. Then draw
a right triangle as follows: draw a straight line
from the origin to the side of the cylinder (this
line has length r, the radius of the cylinder);
draw a line from this point to the point where
the cylinder meets the sphere (this line has
length h/2, half the height of the cylinder);
connect this point with the origin to create the
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hypotenuse of the triangle (this line has length
R, the radius of the sphere). Thus we see that

R2 = r2 +

✓
h

2

◆2

.

Now we have

Vs =
4

3
⇡

✓
r2 +

h2

4

◆3/2

.

Taking the derivative of both sides with respect
to h gives

0 = 2⇡

✓
r2 +

h2

4

◆1/2✓
2rr0 +

h

2

◆
.

Solving for r0, we find r0 = �h/4r. Taking the
derivative with respect to h of both sides of the
formula for the volume for the cylinder yields
dVc

dh
= ⇡r2 + 2h⇡rr0.

Plugging in the formula we found for r0 gives
dVc

dh
= ⇡r2 + 2h⇡r

✓
�h

4r

◆

= ⇡r2 � h2⇡

2
.

To maximize the volume of the cylinder, we set
this equal to 0 and find that the volume of the
cylinder is maximized when h2 = 2r2. In this
case, the formula relating R, r and h above
gives

h =

r
4

3
R2 =

2Rp
3
.

The maximum volume of the cylinder is then
Vc = h⇡r2

=
⇡h3

2
=

⇡
⇣

2Rp
3

⌘3

2

=
1p
3

✓
4

3
⇡R3

◆

=
1p
3
Vs.

42. Suppose that a = b in the isoscles triangle, so
that
A2 = s(s� a)(s� b)(s� c) = s(s� a)2(s� c)

Since s =
1

2
(a+ b+ c), it follows that

s = 1
2 (2a+c) = a+ c

2 , so that s�a = c
2 . Thus,

A2 = s

✓
c2

4

◆
(s� c)

=
s

4

�
sc2 � c3

�

Since s is a constant (it’s half of the perimeter),
we can now di↵erentiate to get

2A
dA

dc
=

s

4

�
2sc� 3c2

�

0 = c(2s� 3c)

Thus, the area is maximized when 2s�3c = 0,
which means c = 2

3s. Solving for a, we get

a = s� c

2
= s� s

3
=

2

3
s.

Thus, the area is maximized when a = b = c;
in other words the area is maximized when the
triangle is equilateral.

The maximum area is

A =
p
s(s� c)3 =

r
s
⇣s
3

⌘3

=
s2

9

p
3 =

p2

36

p
3

3.8 Related Rates

1. V (t) = (depth)(area) = ⇡
48 [r(t)]

2

(units in cubic feet per min)

V 0(t) =
⇡

48
2r(t)r0(t) =

⇡

24
r(t)r0(t)

We are given V 0(t) = 120
7.5 = 16.

Hence 16 =
⇡

24
r(t)r0(t) so

r0(t) =
(16)(24)

⇡r(t)
.

(a) When r = 100,

r0(t) =
(16)(24)

100⇡
=

96

25⇡
⇡ 1.2223 ft/min,

(b) When r = 200,

r0(t) =
(16)(24)

200⇡
=

48

25⇡
⇡ 0.61115 ft/min

2. V = (depth)(area).
1

8

00
=

1

96

0
, so

V (t) = 1
96⇡r(t)

2.

Di↵erentiating we find
dV

dt
=

2⇡

96
r(t)

dr

dt
.

Using 1 ft3 = 7.5 gal, the rate of change of vol-

ume is
90

7.5
= 12. So when r(t) = 100,

12 =
2⇡

96
100

dr

dt
, and

dr

dt
=

144

25⇡
feet per minute.

3. (a) From #1,

V 0(t) =
⇡

48
2r(t)r0(t) =

⇡

24
r(t)r0(t),

so
g

7.5
=

⇡

24
(100)(.6) = 2.5⇡,

so g = (7.5)(2.5)⇡

= 18.75⇡ ⇡ 58.905 gal/min.

(b) If the thickness is doubled, then the rate
of change of the radius is halved.
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4. (a) t = hours elapsed since injury
r = radius of the infected area
A = area of the infection
A = ⇡r2

A0(t) = 2⇡r(t) · r0(t)
When r = 3 mm, r0 = 1 mm/hr,
A0 = 2⇡(3)(1) = 6⇡ mm2/hr

(b) We have A0(t) = 2⇡rr0(t), and r0(t) = 1
mm/hr, so when the radius is 6 mm we
have
A0(t) = 2⇡ · 6 · 1 = 12⇡mm2/hr.
This rate is larger when the radius is
larger because the area is changing by
the same amount along the entire circum-
ference of the circle. When the radius
is larger, there is more circumerence, so
the same change in radius causes a larger
change in area.

5. V (t) =
4

3
⇡[r(t)]3

V 0(t) = 4⇡[r(t)]2r0(t) = Ar0(t)
If V 0(t) = kA(t), then

r0(t) =
V 0(t)

A(t)
=

kA(t)

A(t)
= k.

6. We have A0(t) = 2⇡rr0(t), and r0(t) = 5
ft/min, so when the radius is 200 ft we have
A0(t) = 2⇡ · 200 · 5 = 2, 000⇡ ft2/min.

7. (a) 102 = x2 + y2

0 = 2x
dx

dt
+ 2y

dy

dt
dy

dt
= �x

y

dx

dt

= �6

8
(3)

= �2.25 ft/s

(b) We have

cos ✓(t) =
x(t)

10
.

Di↵erentiating with respect to t gives

� sin ✓(t) · ✓0(t) = x0(t)

10
.

When the bottom is 6 feet from the wall,
the top of the ladder is 8 feet from the
floor and this distance is the opposite side
of the triangle from theta. Thus, at this
point, sin ✓ = 8/10. So

� 8

10
✓0(t) =

3

10

✓0(t) = �3

8
rad/s.

8. (a) ✓ = ⇡ � tan�1

✓
40

60� x

◆
� tan�1

✓
20

x

◆

d✓

dx
= �

40
⇣

1
60�x

⌘2

1 +
⇣

40
60�x

⌘2 +
20
x2

1 +
�
20
x

�2

When x = 30, this becomes

d✓

dx
= �

40
�

1
30

�2

1 +
�
40
30

�2 +
20
900

1 +
�
20
30

�2

= � 1

1625
rad/ft

d✓

dt
=

d✓

dx

dx

dt

=

✓
� 1

1625

◆
(4)

⇡ �0.00246 rad/s

(b) As in the solution to #8(a), let x be the
distance from the 200 building to the per-
son. To find the maximum ✓, we set
d✓

dx
= 0 and solve for x:

0 = �
40

✓
1

60� x

◆2

1 +

✓
40

60� x

◆2 +

20

x2

1 +

✓
20

x

◆2

20

x2 + 40
=

40

(60� x)2 + 1
0 = 20x2 + 2400x� 56000
0 = x2 + 120x� 2800
Using the quadratic formula, we find two
roots:
x = �60± 80
We discard the x value obtained from the
minus sign as it is negative and does not
make sense for our problem. The other
value is x = 20. We find ✓0(10) > 0 and
✓0(30) < 0, so x = 20 must be a maximum
as desired.

9. (a) We know [x(t)]2 + 42 = [s(t)]2. Hence
2x(t)x0(t) = 2s(t)s0(t), so

x0(t) =
s(t)s0(t)

x(t)
=

�240s(t)

x(t)
. When x =

40, s =
p

402 + 42 = 4
p
101, so at that

moment

x0(t) =
(�240)(4

p
101)

40
= �24

p
101.

So the speed is 24
p
101 ⇡ 241.2mph.

(b) From #9(a), we have

x0(t) =
s(t)s0(t)

x(t)
=

�240s(t)

x(t)
.

This time the height is 6 miles, so s =p
402 + 62 = 2

p
409, so at that moment

x0(t) =
(�240)(2

p
409)

40
= �12

p
409.
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So the speed is 12
p
409 ⇡ 242.7mph. The

di↵erence in height does not make a large
di↵erence in the speed of the plane.

10. (a) If the police car is not moving, then
x0(t) = 0, but all the other data are un-
changed. So

d0(t) =
x(t)x0(t) + y(t)y0(t)p

[x(t)]2 + [y(t)]2

=
�(1/2)(50)p
1/4 + 1/16

=
�100p

5
⇡ �44.721.

This is more accurate.

(b) If the police car is at the intersection, then
the rate of change the police car measures
is
0 · (�40) + 1

2 · (�50)
q

1
4 + 0

= �50,

the true speed of the car.

11. d0(t) =
x(t)x0(t) + y(t)y0(t)p

[x(t)]2 + [y(t)]2

=
�(1/2)(

p
2� 1)(50)� (1/2)(50)p

1/4 + 1/4
= �50.

12. The radar gun will read less than the actual
speed if the police car is not at the intersection,
and is travelling away from the intersection.

13. From the table, we see that the recent trend is
for advertising to increase by $2000 per year.
A good estimate is then x0(2) ⇡ 2 (in units of
thousands). Starting with the sales equation
s(t) = 60� 40e�0.05x(t),
we use the chain rule to obtain
s0(t) = �40e�0.05x(t)[�0.05x0(t)]

= 2x0(t)e�0.05x(t).
Using our estimate that x0(2) ⇡ 2 and since
x(2) = 20, we get s0(2) ⇡ 2(2)e�1 ⇡ 1.471.
Thus, sales are increasing at the rate of ap-
proximately $1471 per year.

14. The year 2 rate of change for the average cost

is given by C
0
(t) =

�94

x2
· x0(t).

From the table we see that in year two x = 9.4
and x0 = 0.6, so

C
0
(t) =

�94

9.42
· 0.6 = �0.6383 per year.

15. C(x) = 10 +
100

x

C
0
(x(t)) =

�100

x2
· x0(t)

C
0
(10) = �1(2) = �2 dollars per item, so av-

erage cost is decreasing at the rate of $2 per
year.

16. The rate of change of sales is
s0 = 0.8e�0.04xx0(t).
We are given x = 40 and x0(t) = 1.5, so
s0 = 0.8e�0.04·40 · 1.5 = 0.242 thousand dollars
per year.

17. (a) We have tan ✓ =
x

2
, so

d

dt
(tan ✓) =

d

dt

⇣x
2

⌘

sec2 ✓ · ✓0 = 1

2
x0

✓0 =
1

2 sec2 ✓
· x0 =

x0 cos2 ✓

2

at x = 0, we have tan ✓ =
x

2
=

0

2
so ✓ = 0

and we have x0 = �130ft/s so

✓0 =
(�130) · cos2 0

2
= �65 rad/s.

(b) x = 2 tan ✓, so
dx

dt
= 2 sec2 ✓

d✓

dt
. ✓ = 0

(and sec ✓ = 1) as the ball crosses home

plate, so
d✓

dt
=

1

2

dx

dt
. For this to be less

than 3 radians per sec, the pitch must be
less than 6 ft/sec.

18. (a) t = number of seconds since launch
x = height of rocket in miles after t sec-
onds
✓ = camera angle in radians after t sec-
onds

tan ✓ =
x

2
d

dx
(tan ✓) =

d

dx

⇣x
2

⌘

sec2 ✓ · ✓0 = 1

2
x0

✓0 =
cos2 ✓ · x0

2
When x = 3, tan ✓ = 3/2, so cos ✓ =
2/

p
13.

✓0 =

⇣
2p
13

⌘2
(.2)

2
⇡ .03 rad/s

(b) If the height of the rocket is x, then
x = 2 tan ✓, and
dx

dt
= 2 sec2 ✓

d✓

dt
.

When x = 1 and
dx

dt
= 0.2, we have

0.2 = 2 · 5
4
· d✓
dt

and
d✓

dt
= 0.08 radians

per sec. This is larger because the angle
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changes more quickly when the rocket is
close to the ground. When the rocket is
far away, large changes in height result in
small changes in the angle, since the angle
is approaching a limit of ⇡/2.

19. (a) Let ✓ be the angle between the end of
the shadow and the top of the lamppost.

Then tan ✓ =
6

s
and tan ✓ =

18

s+ x
, so

x+ s

18
=

s

6
d

dx

✓
x+ s

18

◆
=

d

dx

⇣s
6

⌘

x0 + s0

18
=

s0

6
x0 + s0 = 3s0

s0 =
x0

2
Since x0 = 2, s0 = 2/2 = 1 ft/s.

(b) From #19(a), s0 = x0/2. Since x0 = �3,
s0 = �3/2 ft/s.

20. (a) P (t) · V 0(t) + P 0(t)V (t) = 0
P 0(t)

V 0(t)
= �P (t)

V (t)
= � c

V (t)2

(b) Solving Boyle’s Law for P gives P =
c

V
.

Then di↵erentiating gives

P 0(V ) =
�c

V 2
, the same as P 0(t)/V 0(t).

21. Let r(t) be the length of the rope at time t and
x(t) be the distance (along the water) between
the boat and the dock.

r(t)2 = 36 + x(t)2

2r(t)r0(t) = 2x(t)x0(t)

x0(t) =
r(t)r0(t)

x(t)
=

�2r(t)

x(t)

=
�2

p
36 + x2

x
When x = 20, x0 = �2.088; when x = 10,
x0 = �2.332.

22. The volume of a cone is V =
1

3
⇡r2h, and we

know that this cone has r =
h

2
, so we have

V =
⇡

12
h3. Di↵erentiating gives

dV

dt
=

⇡h2

4
· dh
dt

.

We are given that
dV

dt
= 5m3/s, so when h = 2

meters, we have

5 =
⇡22

4
· dh
dt

,

so
dh

dt
=

5

⇡
meters per second.

23. f(t) =
1

2L(t)

s
T

⇢
=

110

L(t)
.

f 0(t) =
�110

L(t)2
L0(t).

When L = 1/2, f(t) = 220 cycles per second.
If L0 = �4 at this time, then f 0(t) = 1760 cy-
cles per second per second. It will only take
1/8 second at this rate for the frequency to go
from 220 to 440, and raise the pitch one octave.

24. V =
4

3
⇡r3

dV

dt
=

4

3
⇡(3r2)

dr

dt
= 4⇡r2

dr

dt

1 = 4⇡r2
dr

dt
dr

dt
=

1

4⇡r2

When r = .01,
dr

dt
=

2500

⇡

When r = .1,
dr

dt
=

25

⇡
.

At first, the radius expands rapidly; later it
expands more slowly.

25. (a) Let R represent the radius of the circular
surface of the water in the tank.
V (R) = ⇡

h
602(602 �R2)1/2�

1

3
(602 �R2)3/2 +

2

3
603
�

dV

dR
= ⇡


602

✓
1

2

◆
(602 �R2)�1/2(�2R)�

1

3

✓
3

2

◆
(602 �R2)1/2(�2R)

�

= ⇡


�602Rp
602 �R2

+R
p
602 �R2

�

= ⇡R


�602 + 602 �R2

p
602 �R2

�

=
�⇡R3

p
602 �R2

dR

dt
=

dV/dt

dV/dR

=
10

dV/dR

=
�10

p
602 �R2

⇡R3

i. Substituting R = 60 into the previ-

ous equation, we get
dR

dt
= 0.
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ii. We need to determine the value of R
when the tank is three-quarters full.
The volume of the spherical tank is
4

3
⇡603, so when the tank is three-

quarters full, V (R) = ⇡603. Substi-
tuting this value into the formula for
V (R) and solving for R (using a CAS,
for example) we get R ⇡ 56.265. Sub-
stituting this value into the formula
for dR/dt, we get

dR
dt =

�10
p
602 �R2

⇡R3

⇡ �10
p
602 � 56.2652

⇡56.2653

⇡ �0.00037 ft/s

(b) Assuming the tank is at least half full, we
can represent the height of the water in
the tank by h(t) =

p
602 �R2 + 60.

Di↵erentiating gives

h0(t) =
1

2
(602 �R2)�1/2(�2R)R0(t)

= �(602 �R2)�1/2R ·R0(t)

=
�(602 �R2)�1/2R · (�10

p
602 �R2)

⇡R3
.

Here we have used the expression for R0(t)
found in exercise 35.

i. Substituting R = 60 into the previ-
ous equation, we get h0(t) = 0.

ii. Substituting R ⇡ 56.265 into the for-
mula for h0(t) gives h0(t) ⇡ 0.001006
ft/s.

26. (a) The volume of the conical pile is V =
1

3
⇡r2h. Since h = 2r, we can write the

volume as

V =
1

3
⇡

✓
h

2

◆2

h =
1

12
⇡h3 Thus,

dV

dt
=

⇡h2

4
· dh
dt

20 =
⇡62

4
· dh
dt

dh

dt
=

20

9⇡
dr

dt
=

10

9⇡
(b) In this case, we have r = h so

V =
1

3
⇡h2h =

⇡h3

3
Thus V 0(t) = ⇡h2h0(t) so when the height
is 6 feet,

h0(t) = r0(t) =
20

36⇡
=

5

9⇡
.

27. (a) Let an object move around the circle
x2(t) + y2(t) = r2. Both x and y coor-
dinates are the functions of t and r is a
constant.

320 5

0.0

−5.0

−2 −1 1−5 −3

5.0

−2.5

4−4

2.5

Therefore, on di↵erentiating w.r.t. t, we
get
2x(t)x0(t) + 2y(t)y0(t) = 0

x(t)x0(t) + y(t)y0(t) = 0

Therefore, y0(t) =
�x(t)x0(t)

y(t)
and

x0(t) = �y(t)y0(t)

x(t)
Thus, if x(t) = 0, then y0(t) = 0 and if
y(t) = 0, then x0(t) = 0
From the graph it can be observed that:
At x(t) = 0 the tangent is horizontal

which means
y0(t)

x0(t)
= 0 ) y0(t) = 0 and

At y(t) = 0 the tangent is vertical which

means
x0(t)

y0(t)
= 0 ) x0(t) = 0

(b) An object move around the asteroid
x2/3(t) + y2/3(t) = 1. Both x and y
coordinates are the functions of time.

−4

0.0

543210−1−2−3

5.0

2.5

−2.5

−5

−5.0

Therefore, on di↵erentiating w.r.t. t, we
get
2

3
x�1/3(t)x0(t) +

2

3
y�1/3(t)y0(t) = 0

x(t)[y0(t)]
3
+ y(t)[x0(t)]

3
= 0
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y0(t) =

✓
�y(t)

x(t)

◆1/3

x0(t) and

x0(t) =

✓
�x(t)

y(t)

◆1/3

y0(t)

thus, if x(t) = 0, then y(t) = 1, x0(t) = 0
and if y(t) = 0, then x(t) = 1, y0(t) = 0
From the graph it can be observed that,
at x(t) = 0 the tangent is vertical which

means
x0(t)

y0(t)
= 0 ) x0(t) = 0 and

at y(t) = 0 the tangent is horizontal which

means
y0(t)

x0(t)
= 0 ) y0(t) = 0

28. (a) Let ✓ be the angle of the light at the
shadow as shown in figure below:

L

h(t)

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

S

100

x� 1010

64� h(t)

✓

O

Then,

tan ✓ =
h(t)

x(t)� 10
=

100

x(t)

) x(t) =
1000

100� h(t)

x0(t) =
1000h0(t)

[100� h(t)]2

= �
8000

p
(64� h(t))

[100� h(t)]2

At h = 0,

x0(t) = �
8000

p
(64� 0)

[100� 0]2

= �64000

10000
= �6.4

(b) |x0(t)| = 8000

p
(64� h(t))

[100� h(t)]2

At maxima or minima of |x0(t)|,
d

dx
|x0(t)| = 0

)
� 1

2 (64� h(t))�1/2h0(t)

[100� h(t)]2

+

p
(64� h(t)

[100� h(t)]3
· 2h0(t) = 0

) �h0(t){(100�h(t))�4(64�h(t))} = 0
) h0(t) = 0 or 100�256�h(t)+4h(t) = 0
) h0(t) = 0 or h(t) = 52
At h0(t) = 0 : |x0(t)| = 0
At h(t) = 52 :

|x0(t)| = 8000

p
64� h(t)

[100� h(t)]2

= 8000

p
(64� 52)

(100� 52)2
= 12.02

Therefore, h(t) = 52 is the height in which
|x0(t)| is maximum.

29. (a) d (t) =
q
(x (t)� 8)2 + (0� 4)2

therefore d0 (t) = (x(t)�8)x0(t)p
(x(t)�8)2+16

Now d0 (t) = 0.9 and x0 (t) = 6.4
gives x (t) = 8.5681

hence t = x(t)�x(0)
x0(t) = 8.5681

6.4 = 1.3388

(b) Thus the location at this moment is
(8.5681, 0)

30. ✓ = tan�1

✓
2s

vT

◆

d✓

dt
=

�
� 2s

T

�
v�2v0(t)

1 +
�
2s
vT

�2

=
�2sv0(t)

Tv2
⇥
1 + 4s2

v2T 2

⇤

=
�2sTv0(t)

T 2v2 + 4s2

For T = 1, s = 0.6 and v0(t) = 1,

d✓

dT
=

�1.2

v2 + 1.44

(a)
d✓

dT
=

�1.2

2.44
⇡ �0.4918 rad/s

(b)
d✓

dT
=

�1.2

5.44
⇡ �0.2206 rad/s

3.9 Rates of Change in
Economics and the Sci-
ences

1. The marginal cost function is
C 0(x) = 3x2 + 40x+ 90.
The marginal cost at x = 50 is C 0(50) =
9590. The cost of producing the 50th item is
C(50)� C(49) = 9421.
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2. The marginal cost function is
C 0(x) = 4x3 + 28x+ 60.
The marginal cost at x = 50 is C 0(50) =
501460. The cost of producing the 50th item
is C(50)� C(49) = 486645.

3. The marginal cost function is
C 0(x) = 3x2 + 42x+ 110.
The marginal cost at x = 100 is C 0(100) =
34310. The cost of producing the 100th item
is C(100)� C(99) = 33990.

4. The marginal cost function is
C 0(x) = 3x2 + 22x+ 40.
The marginal cost at x = 100 is C 0(100) =
32240. The cost of producing the 100th item
is C(100)� C(99) = 31930.

5. C 0(x) = 3x2 � 60x+ 300
C 00(x) = 6x� 60 = 0
x = 10 is the inflection point because C 00(x)
changes from negative to positive at this value.
After this point, cost rises more sharply.

6. A linear model doesn’t reflect the capacity of
the stadium, or the presence of a certain num-
ber of fans who would attend no matter what
the price, but away from the extremes a linear
model might serve adequately. For ticket price
x, the revenue function is
R(x) = x(�3, 000x+ 57, 000)

= �3, 000x2 + 57, 000x.
We solve
R0(x) = �6, 000x+ 57, 000 = 0
and find that x = 9.5 dollars per ticket is the
critical number. Since R00 = �6, 000 < 0, this
is a maximum.

7. C(x) = C(x)/x = 0.1x+ 3 +
2000

x

C
0
(x) = 0.1� 2000

x2

Critical number is x = 100
p
2 ⇡ 141.4.

C
0
(x) is negative to the left of the critical num-

ber and positive to the right, so this must be
the minimum.

8. The average cost function is

C(x) =
0.2x3 + 4x+ 4000

x

= 0.2x2 + 4 +
4000

x
.

C
0
(x) = 0.4x� 4000

x2
= 0

when x ⇡ 21.54. This is a minimum because

C
00
= 0.4 +

4000

x3
> 0 at this x.

9. C(x) = C(x)/x = 10
e0.02x

x

C
0
(x) = 10e.02x

✓
.02x� 1

x2

◆

Critical number is x = 50. C
0
(x) is negative to

the left of the critical number and positive to
the right, so this must be the minimum.

10. The average cost function is

C(x) =

p
x3 + 800

x
and

C
0
(x) =

x3 � 1600

2x2
p
x3 + 800

.

This is zero when x = 3
p
1600. This is a mini-

mum because

C
00
=

5, 120, 000 + 12, 800x3 � x6

4x3(x3 + 800)3/2
> 0 at this

x.

11. (a) C(x) = 0.01x2 + 40x+ 3600
C 0(x) = 0.02x+ 40

C(x) =
C(x)

x
= 0.01x+ 40 +

3600

x
C 0(100) = 42

C(100) = 77

so C 0(100) < C(100)

C(101) = 76.65 < C(100)

(b) C 0(x) = 0.02x+ 40
C 0(1000) = 60

C(x) =
0.01x2 + 40x+ 3600

x
C(1000) = 53.6

C(1001) = 53.6064

(c) C
0
(x) = 0.01� 3600

x2
= 0

so x = 600 is min and

C 0(600) = 52

C(600) = 52

12. (a) P (x) = R(x)� C(x)
P 0(x) = R0(x)� C 0(x) = 0
R0(x) = C 0(x)

(b) P (x) = (10x� 0.001x2)� (2x+ 5, 000).
P 0(x) = 8� 0.002x = 0 if x = 4, 000.
This is a maximum because P 00(x) =
�0.002 < 0.

13. E =
p

f(p)
f 0(p)

=
p

200(30� p)
(�200) =

p

p� 30

To solve
p

p� 30
< �1, multiply both sides
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by the negative quantity p � 30, to get p >
(�1)(p � 30) or p > 30 � p, so 2p > 30, so
15 < p < 30.

14. E =
pf 0(p)

f(p)
=

p(�200)

200(20� p)
=

p

p� 20
p

p� 20
< �1 when p > 20 � p, so demand is

elastic when 10 < p < 20.

15. f(p) = 100p(20� p) = 100(20p� p2)

E =
p

f(p)
f 0(p)

=
p

100p(20� p)
(100)(20� 2p)

=
20� 2p

20� p

To solve
20� 2p

20� p
< �1, multiply both sides by

the positive quantity 20 � p to get 20 � 2p <
(�1)(20� p), or 20� 2p < p� 20, so 40 < 3p,
so 40/3 < p < 20.

16. E =
pf 0(p)

f(p)

=
p(600� 120p)

60p(10� p)
=

2p� 10

p� 10

If
2p� 10

p� 10
< �1 for positive p, then p � 10

must be negative. this means
2p� 10

p� 10
< �1

when 2p � 10 > 10 � p, so demand is elastic

when
20

3
< p < 10.

17. [pf(p)]0 < 0
if and only if p0f(p) + pf 0(p) < 0
if and only if f(p) + pf 0(p) < 0
if and only if pf 0(p) < �f(p)

if and only if pf 0(p)
f(p) < �1

18. The percentage change in quantity purchased

(using the chain rule) is Q0(I)·I0

Q(I) . The percent-

age change in income is I0

I .
The income elasticity of demand is then
Q0(I)·I0

Q(I) · I
I0 or Q0(I)·I

Q(I) .

19. (a) Rewrite x0 (t) as f (x) = 2x[4� x].
f 0 (x) = 2 (4� x) + 2x (�1)

= 8� 4x
f 0 (x) = 0 ) x = 2 where the f (x) is
maximum

(b) The critical points of x0 (t) = 2x[4�x] are
x = 0 and x = 4.

x0 (t) > 0, 0 < x (t) < 4

x0 (t) < 0, x > 4 or x < 0
Therefore, the limiting concentration is 4.

20. (a) Rewrite x0 (t) as f (x) = 0.5x[5� x].
f 0 (x) = 0.5 (5� x) + 0.5x (�1)

= 2.5� x
f 0 (x) = 0 ) x = 2.5 where the f (x) is
maximum.

(b) The critical points of x0 (t) = 0.5x[5 � x]
are x = 0 and x = 5.
x0 (t) > 0, 0 < x (t) < 5

x0 (t) < 0, x > 5 or x < 0
Therefore, the limiting concentration is 5.

21. y0(t) = c · y(t)[K � y(t)]
y(t) = Kx(t)
y0(t) = Kx0(t)
Kx0(t) = c ·Kx(t)[K �Kx(t)]

x0(t) = c ·Kx(t)[1� x(t)]

= rx(t)[1� x(t)]

r = cK

22. The given conditions translate into equations
3 = c · 2(K � 2) and 4 = c · 4(K � 4). Solving
the first equation for c and substituting into
the second equation gives
4 = 4·3(K�4)

2(K�2) ) K = 8 and c = 1/4.

23. x0(t) = [a� x(t)][b� x(t)]
for x(t) = a,
x0(t) = [a� a][b� a] = 0
So the concentration of product is staying the
same.
If a < b and x(0) = 0 then x0(t) > 0 for
0 < x < a < b
x0(t) < 0 for a < x < b
Thus x(t) = a is a maximum.

24. x(0) =
a[1� e�(b�a)·0]

1�
�
a
b

�
e�(b�a)·0

=
a[1� 1]

1�
�
a
b

� = 0

lim
t!1

x(t) = a[1�0]
1�0 = a

For a = 2 and b = 3 the graph looks like this:
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1

0.5

0

t
1086420

y

3

2.5

2

1.5

25. The first inflection point occurs around f =
1/3, before the step up. The second occurs
at the far right of the graph. The equivalence
point is presumably more stable. The first in-
flection point would be hard to measure, since
the pH takes drastic leap right after the inflec-
tion point occurs.

26. Recall that we are assuming 0 < f < 1. As
f ! 1�,
p0(f) = 1

f(1�f) ! 1

27. R(x) =
rx

k + x
, x � 0

R0(x) =
rk

(k + x)2

There are no critical numbers. Any possible
maximum would have to be at the endpoint
x = 0, but in fact R is increasing on [0,1), so
there is no maximum (although as x goes to
infinity, R approaches r).

28. PV 7/5 = c
d

dP

⇣
PV 7/5

⌘
=

d

dP
(c) = 0

V 7/5 +
7

5
PV 2/5 dV

dP
= 0

V +
7

5
P
dV

dP
= 0

dV

dP
=

�5

7

V

P
.

But V 7/5 = c/P , so V = (c/P )5/7. Hence
dV

dP
=

�5

7

V

P

=
�5

7

(c/P )5/7

P
=

�5c5/7

7P 12/7
.

As pressure increases, volume decreases.

29. m0(x) = 4 � cosx, so the rod is less dense at
the ends.

30. m0(x) = 3(x� 1)2 + 6.
Density is maximum at the ends and at a min-
imum in the middle.

31. m0(x) = 4, so the rod is homogeneous.

32. m0(x) = 8x.
Density increases from 0 at the left end to a
maximum at the right end.

33. Q0(t) = e�2t · (�2)(cos 3t� 2 sin 3t)
+ e�2t((� sin 3t · 3)� 2 cos 3t · 3)

= e�2t(�8 cos 3t+ sin 3t) amps

34. Q0(t) = et(3 cos 2t+ sin 2t)
+ et(�6 sin 2t+ 2 cos 2t)

= 5et(cos 2t� sin 2t) amps

35. As t ! 1, Q(t) ! 4 sin 3t, so e�3t cos 2t is
called the transient term and 4 sin 3t is called
the steady-state value.
Q0(t) = e�3t · (�3) cos 2t
+ e�3t(� sin 2t · 2) + 4 cos 3t · 3

= e�3t(�3 cos 2t� 2 sin 2t)
+ 12 cos 3t

The transient term is e�3t(�3 cos 2t� 2 sin 2t)
and the steady-state value is 12 cos 3t.

36. Q0(t) = �2e�2t(cos t� 2 sin t)
+ e�2t(� sin t� 2 cos t)
+ e�3t � 3te�3t � 8 sin 4t

Q0(t) = e�2t(�4 cos t+ 3 sin t)
+ e�3t(1� 3t)� 8 sin 4t

The transient term is e�2t(�4 cos t+ 3 sin t) +
e�3t(1 � 3t) and the steady-state value is
�8 sin 4t.

37. The rate of population growth is given by
f(p) = 4p(5� p) = 4(5p� p2)
f 0(p) = 4(5� 2p),
so the only critical number is p = 2.5. Since
the graph of f is a parabola opening down, this
must be a max.

38. The rate of growth R = 2p(7 � 2p), so R0 =
14� 8p = 0 when p = 7/4. This is a maximum
because R00 = �8 < 0.

39. p0(t) =
�B(1 +Ae�kt)0

(1 +Ae�kt)2

=
�B(�kAe�kt)

(1 +Ae�kt)2

=
kABe�kt

(1 +Ae�kt)2

=
kABe�kt

1 + 2Ae�kt +A2e�2kt

=
kAB

ekt + 2A+A2e�kt

As t goes to infinity, the exponential term goes
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to 0, and so the limiting population is
B

1 +A(0)
= B.

40. If the inflection point is p = 120, then the max-
imum population is B = 240. If the initial pop-
ulation is p(0) = 40, then

40 =
240

1 +A
.

We solve to get A = 5. If then p(12) = 160, we
have the equation

160 =
240

1 + 5e�12k

which we can solve to get

k =
ln 10

12
.

41. For a = 70, b = 0.2, f(t) =
70

1 + 3e�0.2t
=

70(1 + 3e�0.2t)�1

f(2) =
7� 0

1 + 3e�0.2·2 ⇡ 23

f 0(t) = �70(1 + 3e�0.2t)�2(3e�0.2t)(�0.2)

=
42e�0.2t

(1 + 3e�0.2t)2

f 0(2) =
42e0.2·2

(1 + 3e�0.2·2)2
⇡ 3.105

This says that at time t = 2 hours, the rate at
which the spread of the rumor is increasing is
about 3% of the population per hour.

lim
t!1

f(t) =
70

1 + 0
= 70

so 70% of the population will eventually hear
the rumor.

42. f 0(t) = �0.02e�0.02t + 0.42e�0.42t

f 0(t) = 0 when 0.42e�0.42t = 0.02e�0.02t, or
e�0.4t = 0.02/0.42. So we see that

t = � ln 0.047619

0.4
⇡ 7.6113

is the critical value. The Second Derivative
Test shows that it is a maximum.

43. f 0(x) =
�64x�1.4(4x�0.4 + 15)

(4x�0.4 + 15)2

� (160x�0.4 + 90)(�1.6x�1.4)

(4x�0.4 + 15)2

=
�816x�1.4

(4x�0.4 + 15)2
< 0

So f(x) is decreasing. This shows that pupils
shrink as light increases.

44. T (x) = 102� 1

6
x2 +

1

54
x3.

To maximize |T 0(x)|, we find all extrema of
T 0(x) and compare their magnitudes.

T 0(x) =
�1

3
x+

1

18
x2.

T 00(x) =
�1

3
+

1

9
x = 0 when x = 3.

We test the critical numbers and the endpoints:

T 0(0) = 0, T 0(6) = 0, and T 0(3) =
�1

2
. The

dosage that maximizes sensitivity is 3 mg.

45. If v is not greater than c, the fish will never
make any headway. E0(v) = v(v�2c)

(v�c)2 so the
only critical number is v = 2c. When v is large,
E(v) is large, and when v is just a little big-
ger than c, E(v) is large, so we must have a
minimum.

46. We wish to minimize P = 1
v + cv3.

P 0 = �1
v2 + 3cv2 = 0 when v = 4

q
1
3c .

P 00 = 2
v3 +6cv > 0 at this velocity, so this gives

the minimum power.

47. (a) xy = c
y = c

x

Time spent to cover y miles =
y

r1
Time spent to cover x miles=

x

r2
So, the total time spent (T ) =

y

r1
+

x

r2
Now by taking f (x) = T we get:

f (x) =

✓
y

r1
+

x

r2

◆

=

✓
c

r1

1

x
+

x

r2

◆

f 0 (x) =
�c

r1
· 1

x2
+

1

r2
f 0 (x) = 0 )
�cr2 + r1x2 = 0
r1x2 = cr2
x2 =

cr2
r1

x =

r
cr2
r1

Substitute x =

r
cr2
r1

in y = c
x .

y =
cq
cr2
r1

=

r
r1c

r2

Therefore, when x =

r
cr2
r1

and y =
r

r1c

r2
, the time spent by the commuter

is minimum.

(b) Time spent driving at r1 =
y

r1
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=

q
r1c
r2

r1
=

r
c

r1r2

Time spent driving at r2 =
x

r2

=

q
r2c
r1

r2
=

r
c

r1r2
Therefore, equal time is spent driving at
r1 and r2.

48. (a) C (v) = avp+ b
p

v

C 0 (v) = ap+

✓
�bp

v2

◆

C 0 (v) = 0 ) ap+

✓
�bp

v2

◆
= 0

a+

✓
�b

v2

◆
= 0

a =
b

v2

v2 =
b

a

v = ±
r

b

a

C 00(v) =
bp

v3

C 00(v) > 0 at v =

r
b

a
.

Therefore, v =
q

b
a to minimize C (v).

(b) C (v) = ap
v2

v � vc
+ b

p

v � vc

C 0 (v) = ap

"
(v � vc) (2v)� v2

(v � vc)
2

#

+

"
�bp

(v � vc)
2

#

=
1

(v � vc)
2

⇥
2apv (v � vc)� apv2 � bp

⇤

=
1

(v � vc)
2

⇥
apv2 � 2apvcv � bp

⇤

C 0 (v) = 0 )
apv2 � 2apvcv � bp = 0

v =
2apvc ±

q
(2apvc)

2 + 4abp2

2ap

v = vc ±
r
vc2 +

b

a

Therefore, v = vc ±
r
vc2 +

b

a
minimizes

C (v)

Ch. 3 Review Exercises

1. f(x) = e3x, x0 = 0,
f 0(x) = 3e3x

L(x) = f(x0) + f 0(x0)(x� x0)
= f(0) + f 0(0)(x� 0)
= e3·0 + 3e3·0x
= 1 + 3x

2. f 0(x) =
2x

2
p
x2 + 3

.

f(1) = 2, and f 0(1) = 1/2.
L(x) = 1

2 (x� 1) + 2.

3. f(x) = 3
p
x = x1/3, x0 = 8

f 0(x) = 1
3x

�2/3

L(x) = f(x0) + f 0(x0)(x� x0)
= f(8) + f 0(8)(x� 8)
= 3

p
8 + 1

3 (8)
�2/3(x� 8)

= 2 + 1
12 (x� 8)

L(7.96) = 2 + 1
12 (7.96� 8) ⇡ 1.99666

4. sin 3 is close to sin⇡. If y = sinx, y0 = cosx.
The point is (⇡, 0) and the slope is �1. The
linear approximation of sinx at x = ⇡ is
L(x) = �(x� ⇡), so
sin 3 ⇡ �(3� ⇡) ⇡ 0.14159.

5. From the graph of f(x) = x3 +5x� 1, there is
one root.
f 0(x) = 3x2 + 5
Starting with x0 = 0, Newton’s method gives
x1 = 0.2, x2 = 0.198437, and x3 = 0.198437.

6. From the graph of f(x) = x3 � e�x, there is
one root.
f 0(x) = 3x2 + e�x

Starting with x0 = 1, Newton’s method gives
x1 = 0.8123, x2 = 0.7743, and x3 = 0.7729,
which is accurate to 4 decimal places.

7. Near an inflection point, the rate of change
of the rate of change of f(x) is very small so
there aren’t any big dropo↵s or sharp increases
nearby to make the linear approximation inac-
curate.

8. If y =
1

1� x
, then y0 =

1

(1� x)2
.

For “small” x, x is near 0. The point on the
curve when x = 0 is (0, 1), and the slope is 1,
so the linear approximation is L(x) = x + 1,
and this is valid for “small” x.

9. lim
x!1

x3 � 1

x2 � 1
is type 0

0 ;
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L’Hôpital’s Rule gives

lim
x!1

3x2

2x
=

3

2
.

10. lim
x!0

sinx

x2 + 3x
is type 0

0 ;

L’Hôpital’s Rule gives

lim
x!0

cosx

2x+ 3
=

1

3
.

11. lim
x!0

e2x

x4 + 2
is type 1

1 ;

applying L’Hôpital’s Rule twice gives:

lim
x!1

2e2x

4x3

= lim
x!1

4e2x

12x2
= lim

x!1

8e2x

24x

= lim
x!1

16e2x

24
= 1

12. lim
x!1

(x2e�3x) = lim
x!1

x2

e3x
is type 1

1 ;

applying L’Hôpital’s Rule twice gives:

lim
x!1

2x

3e3x

= lim
x!1

2

9e3x
= 0

13. L = lim
x!2+

����
x+ 1

x� 2

����

p
x2�4

lnL = lim
x!2+

✓p
x2 � 4 ln

����
x+ 1

x� 2

����

◆

= lim
x!2+

0

@
ln
���x+1
x�2

���
(x2 � 4)�1/2

1

A

= lim
x!2+

0

@

���x�2
x+1

��� �3
(x�2)2

�x(x2 � 4)�3/2

1

A

= lim
x!2+

✓
3(x2 � 4)3/2

x(x+ 1)(x� 2)

◆

= lim
x!2+

✓
3(x� 2)1/2(x+ 2)3/2

x(x+ 1)

◆

lnL = 0

L = 1

14. lim
x!1

x ln

✓
1 +

1

x

◆
= lim

x!1

ln
�
1 + 1

x

�

1
x

is type 0
0 so we can apply L’Hôpital’s Rule:

lim
x!1

1

(1+ 1
x

)
(�x�2)

�x�2

= lim
x!1

1�
1 + 1

x

� = 1

15. lim
x!0+

(tanx lnx) = lim
x!0+

✓
lnx

cotx

◆

= lim
x!0+

✓
1/x

� csc2 x

◆

= lim
x!0+

�
✓
sin2 x

x

◆

= � lim
x!0+

✓
sinx

x
sinx

◆

= (�1)(0) = 0

16. lim
x!0

tan�1 x

sin�1 x
is type 0

0 ;

we can apply L’Hôpital’s Rule:

lim
x!0

1
1+x2

1p
1�x2

= lim
x!0

p
1� x2

1 + x2
= 1

17. f 0(x) = 3x2 + 6x� 9 = 3(x2 + 2x� 3)
= 3(x+ 3)(x� 1)

So the critical numbers are x = 1 and x = �3.
f 0(x) > 0 on (�1,�3) [ (1,1)
f 0(x) < 0 on (�3, 1)
Hence f is increasing on (�1,�3) and on
(1,1) and f is decreasing on (�3, 1). Thus
there is a local max at x = �3 and a local min
at x = 1.

f 00(x) = 3(2x+ 2) = 6(x+ 1)
f 00(x) > 0 on (�1,1)
f 00(x) < 0 on (�1,�1)
Hence f is concave up on (�1,1) and concave
down on (�1,�1), and there is an inflection
point at x = �1.

18. f 0(x) = 4x3 � 4
f 0(x) = 0 when x = 1, and this is the only
critical number. The function is decreasing for
x < 1 and increasing for x > 1.
f 00 = 12x2 > 0 when x = 1, so this is a lo-
cal minimum. f 00 = 0 when x = 0, but does
not change sign there, so there are no inflection
points. The function is concave up everywhere.

19. f 0(x) = 4x3 � 12x2 = 4x2(x� 3)
x = 0, 3 are critical numbers.
f 0(x) > 0 on (3,1)
f 0(x) < 0 on (�1, 0) [ (0, 3)
f increasing on (3,1), decreasing on (�1, 3)
so x = 3 is a local min.
f 00(x) = 12x2 � 24x = 12x(x� 2)
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f 00(x) > 0 on (�1, 0) [ (2,1)
f 00(x) < 0 on (0, 2)
f is concave up on (�1, 0) [ (2,1), concave
down on (0, 2) so x = 0, 2 are inflection points.

20. f 0(x) = 3x2 � 6x� 24 = 3(x� 4)(x+ 2)
f 0(x) = 0 when x = 4 and x = �2. The func-
tion is increasing for x < �2, then decreasing
for �2 < x < 4, and increasing for x > 4.
x = �2 represents a local maximum, and x = 4
represents a local minimum.
f 00(x) = 6x� 6
f 00(x) = 0 when x = 1, and changes sign there,
so x = 1 is an inflection point. The function
is concave down for x < 1 and concave up for
x > 1.

21. f 0(x) = e�4x + xe�4x(�4) = e�4x(1 � 4x)
x = 1/4 is a critical number.
f 0(x) > 0 on

�
�1, 1

4

�

f 0(x) < 0 on
�
1
4 ,1

�

f increasing on
�
�1, 1

4

�
, decreasing on�

� 1
4 ,1

�
so x = 1/4 is a local max.

f 00(x) = e�4x(�4)(1� 4x) + e�4x(�4)
= �4e�4x(2� 4x)

f 00(x) > 0 on
�
1
2 ,1

�

f 00(x) < 0 on
�
�1, 1

2

�

f is concave up on
�
1
2 ,1

�
, concave down on�

�1, 1
2

�
so x = 1/2 is inflection point.

22. f 0(x) = 2x lnx+ x = x(2 lnx+ 1)
f 0(x) = 0 when lnx = �1/2, so x = e�1/2.
(x = 0 is not a critical number because it is not
in the domain of the function.) The function
is decreasing for 0 < x < e�1/2, and increasing
for x > e�1/2. The critical number x = e�1/2

represents a minimum.
f 00(x) = 2 lnx+ 3
f 00(x) = 0 when x = e�3/2 and the sign
changes from negative to positive there, so this
is an inflection point. The function is concave
down for 0 < x < e�3/2 and concave up for
x > e�3/2.

23. f 0(x) =
x2 � (x� 90)(2x)

x4

=
�(x� 180)

x3

x = 180 is the only critical number.
f 0(x) < 0 on (�1, 0) [ (180,1)
f 0(x) > 0 on (0, 180)
f(x) is decreasing on (�1, 0) [ (180,1) and
increasing on (0, 180) so f(x) has a local max-
imum at x = 180.

f 00(x) = �x3 � (x� 180)(3x2)

x6

= ��2x+ 540

x4

f 00(x) < 0 on (�1, 0) [ (0, 270)
f 00(x) > 0 on (270,1) so x = 90 is an inflec-
tion point.

24. f 0(x) =
4x

3(x2 � 1)1/3

f 0(x) = 0 at x = 0 and is undefined at x = ±1.
The function is decreasing for x < �1, increas-
ing for �1 < x < 0, decreasing for 0 < x < 1,
and increasing for 1 < x. Critical numbers
x = ±1 are minima, and x = 0 is a maximum.

f 00(x) =
4(x2 � 3)

9(x2 � 1)4/3

f 00(x) = 0 when x = ±
p
3, and undefined

for x = ±1. The function is concave up for
x < �

p
3, concave down for �

p
3 < x < �1,

concave down for �1 < x < 1, concave down
for 1 < x <

p
3, and concave up for

p
3 < x.

The inflection points are x = ±
p
3.

25. f 0(x) =
x2 + 4� x(2x)

(x2 + 4)2

=
4� x2

(x2 + 4)2

x = ±2 are critical numbers.
f 0(x) > 0 on (�2, 2)
f 0(x) < 0 on (�1,�2) [ (2,1)
f increasing on (�2, 2), decreasing on
(�1,�2) and on (2,1) so f had a local min
at x = �2 and a local max at x = 2.
f 00(x) =
�2x(x2 + 4)2 � (4� x2)[2(x2 + 4) · 2x]

(x2 + 4)4

=
2x3 � 24x

(x2 + 4)3

f 00(x) > 0 on
�
�
p
12, 0

�
[
�p

12,1
�

f 00(x) < 0 on
�
�1,�

p
12
�
[
�
0,
p
12
�

f is concave up on
�
�
p
12, 0

�
[
�p

12,1
�
,

concave down on
�
�1,�

p
12
�
[
�
0,
p
12
�
so

x = ±
p
12, 0 are inflection points.

26. f 0(x) =
2

(x2 + 4)3/2

f 0(x) is never zero and is defined for all x, so
there are no critical numbers. The function is
increasing for all x.

f 00(x) =
�6x

(x2 + 4)5/2

f 00(x) = 0 when x = 0. The function is con-
cave up for x < 0, concave down for x > 0, and
the inflection point is x = 0.

27. f 0(x) = 3x2 + 6x� 9
= 3(x+ 3)(x� 1)
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x = �3, x = 1 are critical numbers, but
x = �3 /2 [0, 4].
f(0) = 03 + 3 · 02 � 9 · 0 = 0
f(4) = 43 + 3 · 42 � 9 · 4 = 76
f(1) = 13 + 3 · 12 � 9 · 1 = �5
So f(4) = 76 is absolute max on [0, 4], f(1) =
�5 is absolute min.

28. First note that f(x) =
p
x(x� 1)(x� 2) is

only defined on [0, 1][[2,1). So we are looking
at the intervals [0, 1] [ [2, 3].

f 0(x) =
3x2 � 6x+ 2

2
p
x3 � 3x2 + 2x

The numerator has roots x = 3±
p
3

3 , but f(x)

is only defined at 3�
p
3

3 . The denominator has
zeros at x = 0, 1 and 2. Plus we have to check
the values of f at the endpoint x = 3. We find:
f(0) = 0

f( 3�
p
3

3 ) ⇡ 0.6204
f(1) = 0
f(2) = 0
f(3) =

p
6 ⇡ 2.4495

Thus f(x) has an absolute maximum on this
interval at x = 3 and absolute minimums at
x = 0, x = 1 and x = 2.

29. f 0(x) = 4
5x

�1/5

x = 0 is critical number.
f(�2) = (�2)4/5 ⇡ 1.74
f(3) = (3)4/5 ⇡ 2.41
f(0) = (0)4/5 = 0
f(0) = 0 is absolute min, f(3) = 34/5 is abso-
lute max.

30. f 0(x) = 2xe�x � x2e�x = xe�x(2� x)
f 0(x) = 0 when x = 0 and x = 2. We test f(x)
at the critical numbers in the interval [�1, 4],
and the endpoints.
f(�1) = e ⇡ 2.718
f(0) = 0
f(2) = 4/e2 ⇡ 0.541
f(4) = 16/e4 ⇡ 0.293
The absolute maximum is f(�1) = e, and the
absolute minimum is f(0) = 0.

31. f 0(x) = 3x2 + 8x+ 2

f 0(x) = 0 when

x =
�8±

p
64� 24

6
= �4

3
±

p
10

3

x = �4

3
�

p
10

3
is local max, x = �4

3
+

p
10

3
is

local min.

32. f 0(x) = 4x3 � 6x+ 2
= 2(x� 1)(2x2 + 2x� 1)

f 0(x) = 0 when x = 1 and x =
�1±

p
3

2
, and

the derivative changes sign at these values, so
these critical numbers are all extrema.

33. f 0(x) = 5x4 � 4x+ 1 = 0
x ⇡ 0.2553, 0.8227
local min at x ⇡ 0.8227,
local max at x ⇡ 0.2553.

34. f 0(x) = 5x4 + 8x� 4
f 0(x) = 0 at approximately x = �1.3033 and
x = 0.4696 (found using Newton’s method,
or a CAS numerical solver). The derivative
changes sign at these values so they correspond
to extrema: x = �1.3033 is a local max and
x = 0.4696 is a local min.

35. One possible graph:

 

5

-5

 
5-5

36. One possible graph:

x
3

1

2

0.5

0
1

-0.5

-1

0-1-2-3

37. f 0(x) = 4x3 + 12x2 = 4x2(4x+ 3)
f 00(x) = 12x2 + 24x = 12x(x+ 2)
f 0(x) > 0 on (�3, 0) [ (0,1)
f 0(x) < 0 on (�1,�3)
f 00(x) > 0 on (�1,�2) [ (0,1)
f 00(x) < 0 on (�2, 0)
f increasing on (�3,1), decreasing on
(�1,�3), concave up on (�1,�2) [ (0,1),
concave down on (�2, 0), local min at x = �3,
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inflection points at x = �2, 0.
f(x) ! 1 as x ! ±1.

y

100

80

60

40

20

0

-20

-40

x

20-2-4

38. f 0(x) = 4x3 + 8x
f 0(x) = 0 when x = 0.
f 00 = 12x2 + 8 > 0 at x = 0, so this is a min-
imum. f 00(x) > 0 for all x so there are no
inflection points.
f(x) ! 1 as x ! ±1.

x

100

3

80

60

2

40

20

1
0
0-1-2-3

39. f 0(x) = 4x3 + 4 = 4(x3 + 1)
f 00(x) = 12x2

f 0(x) > 0 on (�1,1)
f 0(x) < 0 on (�1,�1)
f 00(x) > 0 on (�1, 0) [ (0,1)
f increasing on (�1,1), decreasing on
(�1,�1), concave up on (�1,1), local min
at x = �1.
f(x) ! 1 as x ! ±1.

0

x

3210-1-2-3

20

y

100

80

60

40

40. f 0(x) = 4x3 � 8x
f 0(x) = 0 when x = 0 and x = ±

p
2.

f 00 = 12x2 � 8 < 0 at x = 0, so this is a max-
imum. f 00(x) > 0 for x = ±

p
2, so these are

minima.
f 00(x) = 0 when x = ±

p
2/3, and changes sign

there, so these are inflection points.
f(x) ! 1 as x ! ±1.

x
321

40

0

30

20

-1

10

0
-2-3

41. f 0(x) =
x2 + 1� x(2x)

(x2 + 1)2

=
1� x2

(x2 + 1)2

f 00(x) =
�2x(x2 + 1)2 � (1� x2)2(x2 + 1)2x

(x2 + 1)4

=
2x(x2 � 3)

(x2 + 1)4

f 0(x) > 0 on (�1, 1)
f 0(x) < 0 on (�1,�1) [ (1,1)
f 00(x) > 0 on

�
�
p
3, 0
�
[
�p

3,1
�

f 00(x) < 0 on
�
�1,�

p
3
�
[
�
0,
p
3
�

f increasing on (�1, 1), decreasing on
(�1,�1) and on (1,1), concave up on

⇣
�
p
3, 0
⌘
[
⇣p

3,1
⌘
,

concave down on

⇣
�1,�

p
3
⌘
[
⇣
0,
p
3
⌘
,

local min at x = �1, local max at x = 1, in-
flection points at 0, ±

p
3.

lim
x!1

x

x2 + 1
= lim

x!�1

x

x2 + 1
= 0

So f has a horizontal asymptote at y = 0.
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0

-1

-2

x

420-2-4
y

2

1

42. f 0(x) = � x2 + 1

(x2 � 1)2

is undefined when f(x) is undefined, and is
never zero. There are no extrema. There are
vertical asymptotes at x = ±1, and horizontal
asymptote y = 0.

f 00(x) =
2x(x2 + 3)

(x2 � 1)3

f 00(x) = 0 when x = 0, and this is the inflec-
tion point: f(x) is concave down on (�1,�1)
and (0, 1); f(x) is concave up on (�1, 0) and
(1,1).

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3

43. f 0(x) =
(2x)(x2 + 1)� x2(2x)

(x2 + 1)2

=
2x

(x2 � 1)2

f 00(x) =
2(x2 + 1)2 � 2x · 2(x2 + 1)2x

(x2 + 1)4

=
2� 6x2

(x2 + 1)3

f 0(x) > 0 on (0,1)
f 0(x) < 0 on (�1, 0)

f 00(x) > 0 on
⇣
�
q

1
3 ,
q

1
3

⌘

f 00(x) < 0 on
⇣
�1,�

q
1
3

⌘
[
⇣q

1
3 ,1

⌘

f increasing on (0,1) decreasing on (�1, 0),

concave up on

 
�
r

1

3
,

r
1

3

!
,

concave down on
 
�1,�

r
1

3

!
[
 r

1

3
,1
!
,

local min at x = 0, inflection points at x =
±
p

1/3.

lim
x!1

x2

x2 + 1
= lim

x!�1

x2

x2 + 1
= 1

So f has a horizontal asymptote at y = 1.

y

2

1

0

-1

-2

x

420-2-4

44. f 0(x) = � 2x

(x2 � 1)2

f 0(x) = 0 when x = 0, and is undefined when
f(x) is undefined. There is a local maximum
at x = 0. There are vertical asymptotes at
x = ±1, and horizontal asymptote y = 1.

f 00(x) =
2(3x2 + 1)

(x2 � 1)3

f 00(x) 6= 0 for any x, and there are no inflec-
tion points: f(x) is concave up on (�1,�1)[
(1,1) and concave down on (�1, 1).

x
32

y

1

4

0

2

0
-1

-2

-4

-2-3
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45. f 0(x) =
3x2(x2 � 1)� x3(2x)

(x2 � 1)2

=
x4 � 3x2

(x2 � 1)2

f 00(x) =
(4x3 � 6x)(x2 � 1)2

(x2 � 1)4

� (x4 � 3x2)2(x2 � 1)2x

(x2 � 1)4

=
2x3 + 6x

(x2 � 1)4

f 0(x) > 0 on
�
�1,�

p
3
�
[
�p

3,1
�

f 0(x) < 0 on
�
�
p
3,�1

�
[ (�1, 0) [ (0, 1) [�

1,
p
3
�

f 00(x) > 0 on (�1, 0) [ (1,1)
f 00(x) < 0 on (�1,�1) [ (0, 1)
f increasing on (�1,�

p
3) and on (

p
3,1);

decreasing on (�
p
3,�1) and on (�1, 1) and

on (1,
p
3); concave up on (�1, 0)[(1,1), con-

cave down on (�1,�1)[(0, 1); x = �
p
3 local

max; x =
p
3 local min; x = 0 inflection point.

f is undefined at x = �1 and x = 1.

lim
x!1+

x3

x2 � 1
= 1, and

lim
x!1�

x3

x2 � 1
= �1

So f has vertical asymptotes at x = 1 and
x = �1.

-5

-10

x

420-2-4
y

10

5

0

46. f 0(x) = � 8x

(x2 � 1)2

f 0(x) = 0 when x = 0, and is undefined
when f(x) is undefined. f(x) is increasing
on (�1,�1) and (�1, 0); f(x) is decreasing
on (0, 1) and (1,1). There is a local maxi-
mum at x = 0. There are vertical asymptotes
at x = ±1, and horizontal asymptote y = 0.

f 00(x) =
8(3x2 + 1)

(x2 � 1)3

f 00(x) 6= 0 for any x, and there are no inflec-
tion points. f(x) is concave up on (�1,�1)

and (1,1); f(x) is concave down on (�1, 1).

-10

x
3210-1

y

-2

10

-3

5

0

-5

47. d =
p
(x� 2)2 + (y � 1)2

=
p
(x� 2)2 + (2x2 � 1)2

f(x) = (x� 2)2 + (2x2 � 1)2

f 0(x) = 2(x� 2) + 2(2x2 � 1)4x
= 16x3 � 6x� 4

f 0(x) = 0 when x ⇡ 0.8237
f 0(x) < 0 on (�1, 0.8237)
f 0(x) > 0 on (0.8237,1)
So x ⇡ 0.8237 corresponds to the closest point.
y = 2x2 = 2(0.8237)2 = 1.3570
(0.8237, 1.3570) is closest to (2, 1).

48. We compute the slope of the tangent line to
y = 2x2 at the closest point (0.8237, 1.3570).
When x = 0.8237, we get y0 = 3.2948.
The slope of the line between (2, 1) and
(0.8237, 1.3570) is

1� 1.3570

2� 0.8237
= �0.3035 =

�1

3.2948
,

so the lines are perpendicular.

49. C(x) = 6
p
42 + (4� x)2 + 2

p
22 + x2

C 0(x) =
6 · 1

2 [16 + (4� x)2]�1/2 · 2(4� x)(�1)

+ 2 1
2 (4 + x2)�1/2 · 2x

=
6(x� 4)p

16 + (4� x)2
+

2xp
4 + x2

C 0(x) = 0 when x ⇡ 2.864
C 0(x) < 0 on (0, 2.864)
C 0(x) > 0 on (2.864, 4)
So x ⇡ 2.864 gives the minimum cost. Locate
highway corner 4� 2.864 = 1.136 miles east of
point A.

50. Let F (v) = e�v/2. Then F 0(v) = �0.5e�v/2,
so F 0(v) < 0 for all v. Thus F (v) is decreasing
for all v. This says that as the speed of contrac-
tion increases, the force produced decreases.

Let P (v) = ve�v/2. Then
P 0(v) = e�v/2(1� 1

2v).
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P 0(v) = 0 when v = 2. We check that
P 0(0) > 0 and P 0(4) < 0 so v = 2 is in fact
a maximum.

51. Area: A = 2⇡r2 + 2⇡rh
Convert to in3:
16 fl oz = 16 fl oz · 1.80469 in3/fl oz

= 28.87504in3

Volume: V = ⇡r2h

h =
Vol

⇡r2
=

28.87504

⇡r2

A(r) = 2⇡

✓
r2 +

28.87504

⇡r

◆

A0(r) = 2⇡

✓
2r � 28.87504

⇡r2

◆

2⇡r3 = 28.87504

r = 3

r
28.87504

2⇡
⇡ 1.663

A0(r) < 0 on (0, 1.663)
A0(r) > 0 on (1.663,1)

So r ⇡ 1.663 gives the minimum surface area.

h =
28.87504

⇡(1.663)2
⇡ 3.325

52. If C(x) = 0.02x2 + 4x+ 1200,
then C 0(x) = 0.04x+ 4 > 0 for positive values
of x (number of items manufactured). This
must be positive because the cost function
must be increasing. It must cost more to man-
ufacture more items.
C 00(x) = 0.04 > 0. This means that the cost
per item is rising as the number of items pro-
duced increases. (For an e�cient process, the
cost per item should decrease as the number of
items increases.)

53. Let ✓1 be the angle from the horizontal to the
upper line segment defining ✓ and let ✓2 be the
angle from the horizontal to the lower line seg-
ment defining ✓. Then the length of the side

opposite ✓2 is
H � P

2
while the length of the

side opposite ✓1 is
H + P

2
. Then

✓(x) = ✓1 � ✓2

= tan�1

✓
H + P

2x

◆

� tan�1

✓
H � P

2x

◆

and so

✓0(x) =
1

1 +
�
H+P
2x

�2

✓
�H + P

2x2

◆

� 1

1 +
�
H�P
2x

�2

✓
�H � P

2x2

◆
.

We set this equal to 0:

0 =
�2(H + P )

4x2 + (H + P )2
+

2(H � P )

4x2 + (H � P )2

and solve for x:

2(H + P )

4x2 + (H + P )2
=

2(H � P )

4x2 + (H � P )2

8x2(H + P )� 8x2(H � P )

= 2(H � P )(H + P )2

� 2(H + P )(H � P )2

8x2(2P ) = 2(H � P )(H + P )(2P )

x2 =
H2 � P 2

4

x =

p
H2 � P 2

2
.

54. From exercise 53 we know that

✓0(x) =
�2(H + P )

4x2 + (H + P )2
+

2(H � P )

4x2 + (H � P )2

and that the function ✓(x) is maximized at

x =

p
H2 � P 2

2
.

Plugging in the appropriate H and P values
for high school shows that ✓(x) is maximized
by x ⇡ 23.9792. This is not in the range spec-
ified. In order to find out whether ✓(x) is in-
creasing or decreasing in the interval specified
we plug the H and P values into the expression
for ✓0(x) and then plug in a value in our inter-
val, say 55. We find that ✓0(55) ⇡ �0.00392.
Since this is negative, ✓(x) is decreasing on this
interval, so the announcers must be wrong.

Following the same procedure for college, we
find that ✓(x) is maximized by x ⇡ 17.7324
and ✓0(55) ⇡ �0.00412 so again the announc-
ers would be wrong.

Finally, for pros we see that ✓(x) is maximized
at x = 0 and ✓0(55) ⇡ �0.0055 so the announc-
ers would be wrong once again. In this situa-
tion there is no x value for which the announc-
ers would be correct, but in the high school
and college situations, if the field goal is taken
from some x less than the x which maximized
✓(x), the announcers would be correct.
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55. Q0(t) = �3e�3t sin 2t+ e�3t cos 2t · 2
= e�3t(2 cos 2t� 3 sin 2t) amps

56. f(x) = 0.3x(4�x), f 0(x) = 1.2�0.6x = 0 when
x = 2, and changes from positive to negative
there, so this represents a maximum.

57. ⇢(x) = m0(x) = 2x
As you move along the rod to the right, its
density increases.

58. With no studying, the person scores f(0) =
90

1 + 4
= 18.

f 0(x) =
144e�0.4t

(1 + 4e�0.4t)2
.

If the student were to study one hour, the score
will increase by approximately

f 0(0) =
144

25
= 5.76 points.

59. C 0(x) = 0.04x+ 20
C 0(20) = 0.04(20) + 20 = 20.8
C(20)� C(19) =
0.02(20)2 + 20(20) + 1800

� [0.02(19)2 + 20(19) + 1800]
= 20.78

60. C(x) =
0.02x2 + 20x+ 1800

x

= 0.02x+ 20 +
1800

x
,

C
0
(x) = 0.02� 1800

x2

C
0
(x) = 0 when x = 300, and the deriva-

tive changes from negative to positive here, so
x = 300 gives the minimum average cost.



Chapter 4

Integration

4.1 Antiderivatives

1.
x

4

4
,

x

4

4
+ 3,

x

4

4
� 2

 
−3

 

2

10

−2 3

20

−1

5

1

15

2.
x

4

4
� x

2

2
,

x

4

4
� x

2

2
� 1,

x

4

4
� x

2

2
+ 4

0

3

2

5

2

4

−1
−2

1

1
x

0−1

6

3. e

x

, e

x + 1, ex � 3

x
21−1

7.5

0.0

−2

5.0

−2.5

2.5

0

4. sinx, sinx+ 2, sinx� 5

−2

3−3 210

−4

2

x

0

−1

−6

−2

5.

Z
(3x4 � 3x)dx =

3

5
x

5 � 3

2
x

2 + c

6.

Z
(x3 � 2)dx =

1

4
x

4 � 2x+ c

7.

Z ✓
3
p
x� 1

x

4

◆
dx = 2x3/2 +

x

�3

3
+ c

8.

Z ✓
2x�2 +

1p
x

◆
dx

= �2x�1 + 2x1/2 + c

9.

Z
x

1/3 � 3

x

2/3

dx =

Z
(x�1/3 � 3x�2/3)dx

=
3

2
x

2/3 � 9x1/3 + c

10.

Z
x+ 2x3/4

x

5/4

dx =

Z
(x�1/4 + 2x�1/2)dx

=
4

3
x

3/4 + 4x1/2 + c

11.

Z
(2 sinx+ cosx)dx = �2 cosx+ sinx+ c

12.

Z
(3 cosx� sinx)dx = 3 sinx+ cosx+ c

13.

Z
2 secx tanxdx = 2 secx+ c

240
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14.

Z
4p

1� x

2

dx = 4arcsinx+ c

15.

Z
5 sec2 xdx = 5 tanx+ c

16.

Z
4 cosx

sin2 x
dx = �4 cscx+ c

17.

Z
(3ex � 2)dx = 3ex � 2x+ c

18.

Z
(4x� 2ex)dx = 2x2 � 2ex + c

19.

Z
(3 cosx� 1/x)dx = 3 sinx� ln |x|+ c

20.

Z
(2x�1 + sinx)dx = 2 ln |x|� cosx+ c

21.

Z
4x

x

2 + 4
dx = 2 ln |x2 + 4|+ c

22.

Z
3

4x2 + 4
dx =

3

4
tan�1

x+ c

23.

Z
cosx

sinx
dx = ln | sinx|+ c

24.

Z
(2 cosx� e

x)dx = 2 sinx� e

x + c

25.

Z
e

x

e

x + 3
dx = ln | ex + 3|+ c

26.

Z
e

x + 3

e

x

dx =

Z
(1 + 3e�x)dx

= x� 3e�x + c

27.

Z
x

1/4(x5/4 � 4)dx =

Z
(x3/2 � 4x1/4)dx

=
2

5
x

5/2 � 16

5
x

5/4 + c

28.

Z
x

2/3(x�4/3 � 3)dx =

Z
(x�2/3 � 3x2/3)dx

= 3x1/3 � 9

5
x

5/3 + c

29.
d

dx

ln |secx+ tanx|

=
1

secx+ tanx

d

dx

(secx+ tanx)

=
secx tanx+ sec2x

secx+ tanx

=
secx (tanx+ secx)

secx+ tanx= secx

30.
d

dx

ln |sinx · 2|

=
1

sinx · 2
d

dx

(sinx · 2)

=
2 cosx

2 sinx
= cotx

31. (a) N/A

(b) By Power Formula,
Z
(
p
x

3 + 4)dx =
2

5
x

5/2 + 4x+ c.

32. (a) By Power Formula,Z
3x2 � 4

x

2

dx =

Z
(3� 4x�2)dx

= 3x+ 4x�1 + c

(b) N/A

33. (a) N/A

(b) By Reversing derivative formula,Z
sec2 xdx = tanx+ c

34. (a) By Power Formula,Z ✓
1

x

2

� 1

◆
dx = � 1

x

� x+ c

(b) N/A

35. Finding the antiderivative,

f(x) = 3ex +
x

2

2
+ c.

Since f(0) = 4,
we have 4 = f(0) = 3 + c.
Therefore,

f(x) = 3ex +
x

2

2
+ 1.

36. Finding the antiderivative,
f(x) = 4 sinx+ c.
Since f(0) = 3,
we have 3 = f(0) = c.
Therefore,
f(x) = 4 sinx+ 3.

37. Finding the antiderivative
f

0(x) = 4x3 + 2ex + c

1

.
Since, f 0 (0) = 2.
We have 2 = f

0 (0) = 2 + c

1

and therefore
f

0(x) = 4x3 + 2ex.
Finding the antiderivative,
f(x) = x

4 + 2ex + c

2

.
Since f (0) = 3,
We have 3 = f (0) = 2 + c

2

Therefore,
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f(x) = x

4 + 2ex + 1.

38. Finding the antiderivative,
f

0(x) = 5x4 + e

2x + c

1

.
Since f

0 (0) = �3,
we have �3 = f

0 (0) = 1 + c

1

Therefore,
f

0(x) = 5x4 + e

2x � 4.
Finding the antiderivative,

f(x) = x

5 +
e

2x

2
� 4x+ c

2

.

Since f (0) = 2,

We have 2 = f (0) =
1

2
+ c

2

Therefore,

f(x) = x

5 +
e

2x

2
� 4x+

3

2
.

39. Taking antiderivatives,
f

0 (t) = 2t+ t

2 + c

1

f (t) = t

2 +
t

3

3
+ c

1

t+ c

2

Since f (0) = 2,
we have 2 = f (0) = c

2

Therefore,

f (t) = t

2 +
t

3

3
+ c

1

t+ 2.

Since f (3) = 2,
we have
2 = f (3) = 9 + 9 + 3c

1

+ 2
� 6 = c

1

Therefore,

f (t) =
t

3

3
+ t

2 � 6t+ 2.

40. Taking antiderivatives,
f

0(t) = 4t+ 3t2 + c

1

f(t) = 2t2 + t

3 + c

1

t+ c

2

Since f (1) = 3,
we have 3 = f (1) = 2 + 1 + c

1

+ c

2

Therefore,
c

1

+ c

2

= 0
Since f (�1) = �2,
we have �2 = f (�1) = 2� 1� c

1

+ c

2

Therefore, �c

1

+ c

2

= �3.
So, c

1

= 3

2

and c

2

= � 3

2

Hence,

f(t) = t

3 + 2t2 +
3

2
t� 3

2
.

41. Taking antiderivatives,
f

00(x) = 3 sinx+ 4x2

f

0(x) = �3 cosx+
4

3
x

3 + c

1

f(x) = �3 sinx+
1

3
x

4 + c

1

x+ c

2

.

42. Taking antiderivatives,
f

00(x) = x

1/2 � 2 cosx

f

0(x) =
2

3
x

3/2 � 2 sinx+ c

1

f(x) =
4

15
x

5/2 + 2 cosx+ c

1

x+ c

2

.

43. Taking antiderivatives,
f

000(x) = 4� 2/x3

f

00(x) = 4x+ x

�2 + c

1

f

0(x) = 2x2 � x

�1 + c

1

x+ c

2

f(x) =
2

3
x

3 � ln |x|+ c

1

2
x

2 + c

2

x+ c

3

44. Taking antiderivatives,
f

000(x) = sinx� e

x

f

00(x) = � cosx� e

x + c

1

f

0(x) = � sinx� e

x + c

1

x+ c

2

f(x) = cosx� e

x +
c

1

2
x

2 + c

2

x+ c

3

45. Position is the antiderivative of velocity,
s(t) = 3t� 6t2 + c.
Since s(0) = 3, we have c = 3. Thus,
s(t) = 3t� 6t2 + 3.

46. Position is the antiderivative of velocity,
s(t) = �3e�t � 2t+ c.
Since s(0) = 0, we have �3 + c = 0 and there-
fore c = 3. Thus,
s(t) = �3e�t � 2t+ 3.

47. First we find velocity, which is the antideriva-
tive of acceleration,
v(t) = �3 cos t+ c

1

.
Since v(0) = 0 we have
�3 + c

1

= 0, c
1

= 3 and
v(t) = �3 cos t+ 3.
Position is the antiderivative of velocity,
s(t) = �3 sin t+ 3t+ c

2

.
Since s(0) = 4, we have c

2

= 4. Thus,
s(t) = �3 sin t+ 3t+ 4.

48. First we find velocity, which is the antideriva-
tive of acceleration,

v(t) =
1

3
t

3 + t+ c

1

.

Since v(0) = 4 we have c

1

= 4 and

v(t) =
1

3
t

3 + t+ 4.

Position is the antiderivative of velocity,

s(t) =
1

12
t

4 +
1

2
t

2 + 4t+ c

2

.

Since s(0) = 0, we have c

2

= 0. Thus,

s(t) =
1

12
t

4 +
1

2
t

2 + 4t.
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49. (a) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

x

7.5

2.5

−2.5

−0.8−4.0

y

10.0

5.0

3.2
0.0

−5.0

1.60.0−1.6−3.2 2.40.8−2.4

(b) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

4.8

x
31

7.2

20

8.8

−1−3

4.0

5.6

6.4

3.2

2.4

8.0

−2

50. (a) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

y

0

10

2−4

14

x

8

12

4

−4

−2

6

0

2

−2

(b) There are many correct answers, but any
correct answer will be a vertical shift of
these answers.

−10

x
31

5

20

15

−1−3

−5

0

10

−2

51. We start by taking antiderivatives:
f

0(x) = x

2

/2� x+ c

1

f(x) = x

3

/6� x

2

/2 + c

1

x+ c

2

.
Now, we use the data that we are given. We
know that f(1) = 2 and f

0(1) = 3, which gives
us
3 = f

0(1) = 1/2� 1 + c

1

,
and
1 = f(1) = 1/6� 1/2 + c

1

+ c

2

.
Therefore c

1

= 7/2 and c

2

= �13/6 and the
function is

f(x) =
x

3

6
� x

2

2
+

7x

2
� 13

6
.

52. We start by taking antiderivatives:
f

0(x) = 3x2 + 4x+ c

1

f(x) = x

3 + 2x2 + c

1

x+ c

2

.
Now, we use the data that we are given. We
know that f(�1) = 1 and f

0(�1) = 2, which
gives us
2 = f

0(�1) = �1 + c

1

,
and
1 = f(�1) = 1� c

1

+ c

2

.
Therefore c

1

= 3 and c

2

= 3 and the function
is
f(x) = x

3 + 2x2 + 3x� 3.

53.
d

dx

⇥
sinx2

⇤
= 2x cosx2

Therefore,Z
2x cosx2

dx = sinx2 + c

54.
d

dx

h
(x3 + 2)3/2

i
=

9

2
x

2(x3 + 2)1/2

Therefore,Z
x

2

p
x

3 + 2dx =
2

9
(x3 + 2)3/2 + c

55.
d

dx

⇥
x

2 sin 2x
⇤
= 2(x sin 2x+ x

2 cos 2x)

Therefore,
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Z �
x sin 2x+ x

2 cos 2x
�
dx

=
1

2
x

2 sin 2x+ c

56.
d

dx

x

2

e

3x

=
2xe3x � 3x2

e

3x

e

6x

Therefore,Z
2xe3x � 3x2

e

3x

e

6x

dx =
x

2

e

3x

+ c

57.

Z
x cos(x2)p
sin(x2)

dx =
p

sin(x2) + c

58.
d

dx

�
2
p
x sinx

�
= 2

p
x cosx+

1p
x

sinx
Z ✓

2
p
x cosx+

1p
x

sinx

◆
dx

= 2
p
x sinx+ c

59. Use a CAS to find antiderivatives and verify by
computing the derivatives:
For 11.1(b):Z

secxdx = ln | secx+ tanx|+ c

Verify:
d

dx

ln | secx+ tanx|

=
secx tanx+ sec2 x

secx+ tanx
= secx

For 11.1(f):Z
x sin 2xdx =

sin 2x

4
� x cos 2x

2
+ c

Verify:
d

dx

✓
sin 2x

4
� x cos 2x

2

◆

=
2 cos 2x

4
� cos 2x� 2x sin 2x

2
= x sin 2x

60. Use a CAS to find antiderivatives and verify by
computing the derivatives:
For 31(a): The answer is too complicated to be
presented here.

For 32(b):
1

9

 
3x+

p
3 ln

2
p
3� 3x

2
p
3 + 3x

!
+ c

Verify:

d

dx

"
1

9

 
3x+

p
3 ln

2
p
3� 3x

2
p
3 + 3x

!#

=
1

9

 
3 +

2
p
3 + 3x

2
p
3� 3x

·

�3(2
p
3 + 3x)� 3(2

p
3� 3x)

(2
p
3 + 3x)2

!

=
1

9

✓
3� 36

12� 9x2

◆
=

x

2

3x2 � 4
For 33(a): Almost the same as in Exercise 59,
example 1.11 (b).

For 34(b):
1

2
ln

x� 1

x+ 1
+ c

Verify:
d

dx

✓
1

2
ln

x� 1

x+ 1

◆

=
1

2
· x+ 1

x� 1
· (x+ 1)� (x� 1)

(x+ 1)2

=
1

x

2 � 1

61. Use a CAS to find antiderivatives and verify by
computing the derivatives:

(a)

Z
x

2

e

�x

3

dx = �1

3
e

�x

3

+ c

Verify:
d

dx

✓
�1

3
e

�x

3

◆

= �1

3
e

�x

3

· (�3x2)

= x

2

e

�x

3

(b)

Z
1

x

2 � x

dx = ln |x�1|� ln |x|+c Verify:

d

dx

(ln |x� 1|� ln |x|)

=
1

x� 1
� 1

x

=
x� (x� 1)

x(x� 1)

=
1

x(x� 1)
=

1

x

2 � x

(c)

Z
secxdx = ln | secx+ tanx|+ c

Verify:
d

dx

[ln | secx+ tanx|]

=
secx tanx+ sec2 x

secx+ tanx

=
secx(secx+ tanx)

secx+ tanx
= secx

62. Use a CAS to find antiderivatives and verify
by computing the derivatives:

(a)

Z
x

x

4 + 1
dx =

1

2
arctanx2 + c

Verify:
d

dx

✓
1

2
arctanx2

◆

=
1

2
· 1

x

4 + 1
· 2x =

x

x

4 + 1

(b)

Z
3x sin 2xdx

=
3

4
sin 2x� 3x

2
cos 2x+ c
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Verify:
d

dx

✓
3

4
sin 2x� 3x

2
cos 2x

◆

=
3

2
cos 2x� 3

2
cos 2x+ 3x sin 2x

= 3x sin 2x

(c)

Z
lnxdx = x lnx� x+ c

Verify:
d

dx

(x lnx� x) = lnx+ 1� 1

= lnx

63.

Z �1p
1� x

2

dx = cos�1(x) + c

1

Z �1p
1� x

2

dx = � sin�1(x) + c

2

Therefore,
cos�1

x+ c

1

= � sin�1

x+ c

2

Therefore,
sin�1

x+ cos�1

x = constant
To find the value of the constant, let x be any
convenient value.
Suppose x = 0; then sin�1 0 = 0 and cos�1 0 =
⇡/2, so

sin�1

x+ cos�1

x =
⇡

2

64. To derive these formulas, all that needs to be
done is to take the derivatives to see that the
integrals are correct:
d

dx

(tanx) = sec2 x

d

dx

(secx) = secx tanx

65. To derive these formulas, all that needs to be
done is to take the derivatives to see that the
integrals are correct:
d

dx

(ex) = e

x

d

dx

�
�e

�x

�
= e

�x

66. (a)

Z
1

kx

dx =
1

k

Z
1

x

dx

=
1

k

ln |x|+ c

1

(b)

Z
1

kx

dx =
1

k

Z
k

kx

dx

=
1

k

ln |kx|+ c

2

Because
1

k

ln |kx| = 1

k

(ln |k|+ ln |x|)

=
1

k

ln |x|+ 1

k

ln |k| = 1

k

ln |x|+ c

The two antiderivatives are both correct.

67. The key is to find the velocity and position
functions. We start with constant acceleration
a, a constant. Then, v(t) = at + v

0

where v

0

is the initial velocity. The initial velocity is 30
miles per hour, but since our time is in seconds,
it is probably best to work in feet per second
(30mph = 44ft/s). v(t) = at+ 44.
We know that the car accelerates to 50 mph
(50mph = 73ft/s) in 4 seconds, so v(4) = 73.

Therefore, a · 4 + 44 = 73 and a =
29

4
ft/s

So,

v(t) =
29

4
t+ 44 and

s(t) =
29

8
t

2 + 44t+ s

0

where s
0

is the initial position. We can assume
the the starting position is s

0

= 0.

Then, s(t) =
29

8
t

2 + 44t and the distance

traveled by the car during the 4 seconds is
s(4) = 234 feet.

68. The key is to find the velocity and position
functions. We start with constant acceleration
a, a constant. Then, v(t) = at + v

0

where v

0

is the initial velocity. The initial velocity is 60
miles per hour, but since our time is in seconds,
it is probably best to work in feet per second
(60mph = 88ft/s). v(t) = at+ 88.
We know that the car comes to rest in 3 sec-
onds, so v(3) = 0.
Therefore,
a(3)+88 = 0 and a = �88/3ft/s (the accelera-
tion should be negative since the car is actually
decelerating.
So,

v(t) = �88

3
t+ 88 and

s(t) = �44

3
t

2 + 88t+ s

0

where s

0

is the initial

position. We can assume the the starting po-
sition is s

0

= 0.

Then, s(t) = �44

3
t

2 + 88t and the stopping

distance is s(3) = 132 feet.

69. To estimate the acceleration over each inter-
val, we estimate v

0(t) by computing the slope
of the tangent lines. For example, for the in-
terval [0, 0.5]:

a ⇡ v(0.5)� v(0)

0.5� 0
= �31.6 m/s2.

Notice, acceleration should be negative since
the object is falling.
To estimate the distance traveled over the in-
terval, we estimate the velocity and multiply
by the time (distance is rate times time). For
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an estimate for the velocity, we will use the
average of the velocities at the endpoints. For
example, for the interval [0, 0.5], the time inter-
val is 0.5 and the velocity is �11.9. Therefore
the position changed is (�11.9)(0.5) = �5.95
meters. The distance traveled will be 5.95 me-
ters (distance should be positive).
Interval Accel Dist

[0.0, 0.5] �31.6 5.95
[0.5, 1.0] �2 12.925
[1.0, 1.5] �11.6 17.4
[1.5, 2.0] �3.6 19.3

70. To estimate the acceleration over each inter-
val, we estimate v

0(t) by computing the slope
of the tangent lines. For example, for the in-
terval [0, 1.0]:

a ⇡ v(1.0)� v(0)

1.0� 0
= �9.8 m/s2.

Notice, acceleration should be negative since
the object is falling.
To estimate the distance traveled over the in-
terval, we estimate the velocity and multiply
by the time (distance is rate times time). For
an estimate for the velocity, we will use the av-
erage of the velocities at the endpoints. For
example, for the interval [0, 1.0], the time in-
terval is 1.0 and the velocity is �4.9. Therefore
the position changed is (�4.9)(1.0) = �4.9 me-
ters. The distance traveled will be 4.9 meters
(distance should be positive).
Interval Accel Dist

[0.0, 1.0] �9.8 4.9
[1.0, 2.0] �8.8 14.2
[2.0, 3.0] �6.3 21.75
[3.0, 4.0] �3.6 26.7

71. To estimate the speed over the interval, we
first approximate the acceleration over the in-
terval by averaging the acceleration at the end-
point of the interval. Then, the velocity will be
the acceleration times the length of time. The
slope of the tangent lines. For example, for the
interval [0, 0.5] the average acceleration is �0.9
and v(0.5) = 70 + (�0.9)(0.5) = 69.55.
And, the distance traveled is the speed times
the length of time. For the time t = 0.5, the

distance would be
70 + 69.55

2
⇥0.5 ⇡ 34.89 me-

ters.

Time Speed Dist

0 70 0
0.5 69.55 34.89
1.0 70.3 69.85
1.5 70.35 105.01
2.0 70.65 104.26

72. To estimate the speed over the interval, we first
approximate the acceleration over the interval
by averaging the acceleration at the endpoint
of the interval. Then, the velocity will be the
acceleration times the length of time. the slope
of the tangent lines. For example, for the in-
terval [0.0, 0.5] the average acceleration is �0.8
and v(0.5) = 20+(�0.8)(.5) = 19.6. Of course,
speed is the absolute value of the velocity.
And, the distance traveled is the average speed
times the length of time. For the time t = 0.5,

the distance would be
20 + 19.6

2
⇥ 0.5 = 9.9

meters.
Time Speed Dist

0 20 0
0.5 19.6 9.9
1.0 17.925 19.281
1.5 16.5 27.888
2.0 16.125 34.044

4.2 Sums And Sigma Notation

1. The given sum is the sum of twice the
squares of the integers from 1 to 14.

2(1)2 + 2(2)2 + 2(3)2 + . . .+ 2(14)2 =
14X

i=1

2i2

2. The given sum is the sum of squares
roots of the integers from 1 to 14.p
2� 1 +

p
3� 1 +

p
4� 1 + . . .+

p
15� 1

=
p
1 +

p
2 +

p
3 + ... +

p
13 +

p
14

=
14X

i=1

p
i

3. (a)
50X

i=1

i

2 =
(50)(51)(101)

6
= 42, 925

(b)

 
50X

i=1

i

!
2

=

✓
50(51)

2

◆
2

= 1, 625, 625

4. (a)
10X

i=1

p
i

= 1 +
p
2 +

p
3 +

p
4 +

p
5 +

p
6
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+
p
7 +

p
8 +

p
9 +

p
10

⇡ 22.47

(b)

vuut
10X

i=1

i =

r
10(11)

2
=

p
55

5.
6X

i=1

3i2 = 3 + 12 + 27 + 48 + 75 + 108

= 273

6.
7X

i=3

i

2 + i = 12 + 20 + 30 + 42 + 56

= 160

7.
10X

i=6

(4i+ 2)

= (4(6) + 2) + (4(7) + 2) + (4(8) + 2)
+ (4(9) + 2) + (4(10) + 2)
= 26 + 30 + 34 + 38 + 42
= 170

8.
8X

i=6

(i2 + 2)

= (62 + 2) + (72 + 2) + (82 + 2)
= 38 + 51 + 66 = 155

9.
70X

i=1

(3i� 1) = 3 ·
70X

i=1

i� 70

= 3 · 70(71)
2

� 70 = 7, 385

10.
45X

i=1

(3i� 4) = 3
45X

i=1

i� 4
45X

i=1

1

= 3

✓
45(46)

2

◆
� 4(45) = 2925

11.
40X

i=1

(4� i

2) = 160�
40X

i=1

i

2

= 160� (40)(41)(81)

6
= 160� 22, 140 = �21, 980

12.
50X

i=1

(8� i) = 8
50X

i=1

1�
50X

i=1

i

= 8(50)� 50(51)

2
= �875

13.
100X

n=1

�
n

2 � 3n+ 2
�

=
100X

n=1

n

2 � 3
100X

n=1

n+
100X

n=1

2

=
(100)(101)(201)

6
� 3

100(101)

2
+ 200

= 338, 350� 15, 150 + 200 = 323, 400

14.
140X

n=1

�
n

2 + 2n� 4
�

=
140X

n=1

n

2 + 2
140X

n=1

n�
140X

n=1

4

=
(140)(141)(281)

6
+ 2

✓
140(141)

2

◆
� 4 (140)

= 943, 670

15.
30X

i=3

h
(i� 3)2 + i� 3

i

=
30X

i=3

(i� 3)2 +
30X

i=3

(i� 3)

=
27X

n=0

n

2 +
27X

n=0

n (substitute i� 3 = n)

= 0 +
27X

n=1

n

2 + 0 +
27X

n=1

n

=
27 (28) (55)

6
+

27 (28)

2
= 7308

16.
20X

i=4

(i� 3) (i+ 3) =
20X

i=4

�
i

2 � 9
�

=
20X

i=4

i

2 � 9
20X

i=4

1

=
20X

i=1

i

2�
3X

i=1

i

2�9
20X

i=4

1

=
20 (21) (41)

6
� 1� 4� 9� 9 (17)

= 2703

17.
nX

k=3

�
k

2 � 3
�

=
nX

k=3

k

2+
nX

k=3

(�3)

=
nX

k=1

k

2 �
2X

k=1

k

2

+
nX

k=1

(�3)�
2X

k=1

(�3)

=
n (n+ 1) (2n+ 1)

6
� 1� 4

+ (�3)n� (�3) (2)

=
n (n+ 1) (2n+ 1)

6
� 5� 3n+ 6
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=
n (n+ 1) (2n+ 1)

6
� 3n+ 1

18.
nX

k=0

�
k

2 + 5
�

=
nX

k=0

k

2 +
nX

k=0

5

= 0 +
nX

k=1

k

2 + 5 +
nX

k=1

5

=
n (n+ 1) (2n+ 1)

6
+ 5 + 5n

19.
nX

i=1

f(x
i

)�x

=
5X

i=1

(x2

i

+ 4x
i

) · 0.2

= (0.22 + 4(0.2))(0.2) + . . .

+ (12 + 4)(0.2)
= (0.84)(0.2) + (1.76)(0.2)
+ (2.76)(0.2) + (3.84)(0.2)
+ (5)(0.2)

= 2.84

20.
nX

i=1

f(x
i

)�x

=
5X

i=1

(3x
i

+ 5) · 0.4

= (3(0.4) + 5)(0.4) + . . .

+ (3(2) + 5)(0.4)
= (6.2)(0.4) + (7.4)(0.4)
+ (8.6)(0.4) + (9.8)(0.4)
+ (11)(0.4)

= 17.2

21.
nX

i=1

f(x
i

)�x

=
10X

i=1

(4x2

i

� 2) · 0.1

= (4(2.1)2 � 2)(0.1) + . . .

+ (4(3)2 � 2)(0.1)
= (15.64)(0.1) + (17.36)(0.1)
+ (19.16)(0.1) + (21.04)(0.1)
+ (23)(0.1) + (25.04)(0.1)
+ (27.16)(0.1) + (29.36)(0.1)
+ (31.64)(0.1) + (34)(0.1)

= 24.34

22.
nX

i=1

f(x
i

)�x

=
10X

i=1

(x3 + 4) · 0.1

= ((2.05)3 + 4)(0.1) + . . .

+ ((2.95)3 + 4)(0.1)
= (202.4375)(0.1)
= 20.24375

23.
nX

i=1

1

n

"✓
i

n

◆
2

+ 2

✓
i

n

◆#

=
1

n

"
nX

i=1

i

2

n

2

+ 2
nX

i=1

i

n

#

=
1

n

"
1

n

2

nX

i=1

i

2 +
2

n

nX

i=1

i

#

=
1

n


1

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

+
2

n

✓
n(n+ 1)

2

◆�

=
n(n+ 1)(2n+ 1)

6n3

+
n(n+ 1)

n

2

lim
n!1

nX

i=1

1

n

"✓
i

n

◆
2

+ 2

✓
i

n

◆#

= lim
n!1


n(n+ 1)(2n+ 1)

6n3

+
n(n+ 1)

n

2

�

=
2

6
+ 1 =

4

3

24.
nX

i=1

1

n

"✓
i

n

◆
2

� 5

✓
i

n

◆#

=
1

n

"
nX

i=1

i

2

n

2

� 5
nX

i=1

i

n

#

=
1

n

"
1

n

2

nX

i=1

i

2 � 5

n

nX

i=1

i

#

=
1

n


1

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

� 5

n

✓
n(n+ 1)

2

◆�

=
n(n+ 1)(2n+ 1)

6n3

� 5n(n+ 1)

2n2

=
�13n2 � 12n+ 1

6n2

lim
n!1

nX

i=1

1

n

"✓
i

n

◆
2

� 5

✓
i

n

◆#

= lim
n!1

�13n2 � 12n+ 1

6n2

= lim
n!1

�13

6
� 12

6n
+

1

6n2
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= �13

6

25.
nX

i=1

1

n

"
4

✓
2i

n

◆
2

�
✓
2i

n

◆#

=
1

n

"
16

nX

i=1

i

2

n

2

� 2
nX

i=1

i

n

#

=
1

n

"
16

n

2

nX

i=1

i

2 � 2

n

nX

i=1

i

#

=
1

n


16

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

� 2

n

✓
n(n+ 1)

2

◆�

=
16n(n+ 1)(2n+ 1)

6n3

� n(n+ 1)

n

2

lim
n!1

nX

i=1

1

n

"
4

✓
2i

n

◆
2

�
✓
2i

n

◆#

= lim
n!1


16n(n+ 1)(2n+ 1)

6n3

� n(n+ 1)

n

2

�

=
16

3
� 1 =

13

3

26.
nX

i=1

1

n

"✓
2i

n

◆
2

+ 4

✓
i

n

◆#

=
1

n

"
nX

i=1

4i2

n

2

+ 4
nX

i=1

i

n

#

=
1

n

"
4

n

2

nX

i=1

i

2 +
4

n

nX

i=1

i

#

=
1

n


4

n

2

✓
n(n+ 1)(2n+ 1)

6

◆

+
4

n

✓
n(n+ 1)

2

◆�

=
4n(n+ 1)(2n+ 1)

6n3

+
4n(n+ 1)

2n2

=
10n2 + 12n+ 2

3n2

lim
n!1

nX

i=1

1

n

"✓
2i

n

◆
2

+ 4

✓
i

n

◆#

= lim
n!1

10n2 + 12n+ 2

3n2

= lim
n!1

10

3
+

12

3n
+

2

3n2

=
10

3

27. Want to prove that

nX

i=1

i

3 =
n

2(n+ 1)2

4

is true for all integers n � 1.
For n = 1, we have
1X

i=1

i

3 = 1 =
12(1 + 1)2

4
,

as desired.
So the proposition is true for n = 1.
Next, assume that
kX

i=1

i

3 =
k

2(k + 1)2

4
,

for some integer k � 1.
In this case, we have by the induction assump-
tion that for n = k + 1,
nX

i=1

i

3 =
k+1X

i=1

i

3 =
kX

i=1

i

3 + (k + 1)3

=
k

2(k + 1)2

4
+ (k + 1)3

=
k

2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
n

2(n+ 1)2

4
as desired.

28. Want to prove that
nX

i=1

i

5 =
n

2(n+ 1)2(2n2 + 2n� 1)

12

is true for all integers n � 1.
For n = 1, we have
1X

i=1

i

3 = 1 =
12(1 + 1)2(2 + 2� 1)

12
,

as desired.
So the proposition is true for n = 1.
Next, assume that
kX

i=1

i

5 =
k

2(k + 1)2(2k2 + 2k � 1)

12
,

for some integer k � 1.
In this case, we have by the induction assump-
tion that for n = k + 1,
nX

i=1

i

5 =
k+1X

i=1

i

5 =
kX

i=1

i

5 + (k + 1)5

=
k

2(k + 1)2(2k2 + 2k � 1)

12
+ (k + 1)5

=
k

2(k + 1)2(2k2 + 2k � 1) + 12(k + 1)5

12

=
(k + 1)2[k2(2k2 + 2k � 1) + 12(k + 1)3]

12
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=
(k + 1)2[2k4 + 14k3 + 35k2 + 36k + 12]

12

=
(k + 1)2(k2 + 4k + 4)(2k2 + 6k + 3)

12

=
n

2(n+ 1)2(2n2 + 2n� 1)

12
as desired.

29.
10X

i=1

(i3 � 3i+ 1)

=
10X

i=1

i

3 � 3
10X

i=1

i+ 10

=
100(11)2

4
� 3

10(11)

2
+ 10

= 2, 870

30.
20X

i=1

(i3 + 2i)

=
20X

i=1

i

3 + 2
20X

i=1

i

=
400(21)2

4
+ 2

20(21)

2
= 44, 520

31.
100X

i=1

(i5 � 2i2)

=
100X

i=1

i

5 � 2
100X

i=1

i

2

=
(1002)(1012)[2(1002) + 2(100)� 1]

12

� 2
100(101)(201)

6
= 171, 707, 655, 800

32.
100X

i=1

(2i5 + 2i+ 1)

= 2
100X

i=1

i

5 + 2
100X

i=1

i+ 100

= 2
(1002)(1012)[2(1002) + 2(100)� 1]

12

+ 2 · 100(101)
2

+ 100

= 343, 416, 675, 200

33.
nX

i=1

(ca
i

+ db

i

) =
nX

i=1

ca

i

+
nX

i=1

db

i

= c

nX

i=1

a

i

+ d

nX

i=1

b

i

34. When n = 0, a =
a� ar

1� r

.

Assume the formula holds for n = k�1, which
gives

a+ ar + · · · ark�1 =
a� ar

k

1� r

.

Then for n = k,

we have a+ ar + · · · ark
= a+ ar + · · · ark�1 + ar

k

=
a� ar

k

1� r

+ ar

k

=
a� ar

k + ar

k(1� r)

1� r

=
a� ar

k + ar

k � ar

k+1

1� r

=
a� ar

k+1

1� r

=
a� ar

n+1

1� r

as desired.

35.
nX

i=1

e

6i/n

✓
6

n

◆

=
6

n

nX

i=1

e

6i/n

=
6

n

✓
e

6/n � e

6

1� e

6/n

◆

=
6

n

✓
1� e

6

1� e

6/n

� 1

◆

=
6

n

1� e

6

1� e

6/n

� 6

n

Now lim
x!1

6

n

= 0, and

lim
x!1

6

n

1� e

6

1� e

6/n

= 6(1� e

6) lim
x!1

1/n

1� e

6/n

= 6(1� e

6) lim
x!1

1

�6e6/n

= e

6 � 1.

Thus lim
x!1

nX

i=1

e

6i/n

6

n

= e

6 � 1.

36.
nX

i=1

e

(2i)/n

2

n

=
2

n

✓
e

2/n � e

2

1� e

2/n

◆

=
2

n

✓
1� e

2

1� e

2/n

� 1

◆
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=
2

n

1� e

2

1� e

2/n

� 2

n

Now lim
x!1

2

n

= 0, and

lim
x!1

2

n

1� e

2

1� e

2/n

= 2(1� e

2) lim
x!1

1/n

1� e

2/n

= 2(1� e

2) lim
x!1

1

�2e2/n

= e

2 � 1.

Thus lim
x!1

nX

i=1

e

2i/n

2

n

= e

2 � 1.

37. Distance
= 50(2) + 60(1) + 70(1/2) + 60(3)
= 375 miles.

38. Distance
= 50(1) + 40(1) + 60(1/2) + 55(3)
= 285 miles.

39. On the time interval [0, 0.25], the estimated ve-

locity is the average velocity
120 + 116

2
= 118

feet per second.
We estimate the distance traveled during the
time interval [0, 0.25] to be
(118)(0.25� 0) = 29.5 feet.
Altogether, the distance traveled is estimated
as
= (236/2)(0.25) + (229/2)(0.25)
+ (223/2)(0.25) + (218/2)(0.25)
+ (214/2)(0.25) + (210/2)(0.25)
+ (207/2)(0.25) + (205/2)(0.25)

= 217.75 feet.

40. On the time interval [0, 0.5], the estimated ve-

locity is the average velocity
10 + 14.9

2
= 12.45

meters per second. We estimate the distance
fallen during the time interval [0, 0.5] to be
(12.45)(0.5� 0) = 6.225 meters.
Altogether, the distance fallen (estimated)
= (12.45)(0.5) + (17.35)(0.5)
+ (22.25)(0.5) + (27.15)(0.5)
+ (32.05)(0.5) + (36.95)(0.5)
+ (41.85)(0.5) + (46.75)(0.5)

= 118.4 meters.

4.3 Area

1. (a) Evaluation points:
0.125, 0.375, 0.625, 0.875.

Notice that �x = 0.25.
A

4

= [f(0.125) + f(0.375) + f(0.625)
+ f(0.875)](0.25)

= [(0.125)2 + 1 + (0.375)2 + 1
+ (0.625)2 + 1 + (0.875)2 + 1](0.25)

= 1.38125.

x

0.60.4 1.20.8

0.5

0

2

0.2
0

1.5

1

1

(b) Evaluation points:
0.25, 0.75, 1.25, 1.75.
Notice that �x = 0.5.
A

4

= [f(0.25) + f(0.75) + f(1.25)
+ f(1.75)](0.5)

= [(0.25)2 + 1 + (0.75)2 + 1 + (1.25)2

+ 1 + (1.75)2 + 1](0.5)
= 4.625.

0 1

7

2

6

5

4

3

2

1

0

x
2.51.50.5-0.5

2. (a) Evaluation points:
1.125, 1.375, 1.625, 1.875.
Notice that �x = 0.25.
A

4

= [f(1.125) + f(1.375) + f(1.625)
+ f(1.875)](0.25)

= [(1.125)3 � 1 + (1.375)3 � 1
+ (1.625)3 � 1 + (1.875)3 � 1](0.25)

= 2.7265625.
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2

6

x

21.81.61.41.2

4

7

5

0

3

1

1

(b) Evaluation points:
1.25, 1.75, 2.25, 2.75.
Notice that �x = 0.5.
A

4

= [f(1.25) + f(1.75) + f(2.25)
+ f(2.75)](0.5)

= [(1.25)3 � 1 + (1.75)3 � 1
+ (2.25)3 � 1 + (2.75)3 � 1](0.5)

= 17.75.

2 2.51.51
x

0

30

25

20

15

10

5

3

3. (a) Evaluation points:
⇡/8, 3⇡/8, 5⇡/8, 7⇡/8.
Notice that �x = ⇡/4.
A

4

= [f(⇡/8) + f(3⇡/8) + f(5⇡/8)
+ f(7⇡/8)](⇡/4)

= [sin(⇡/8) + sin(3⇡/8) + sin(5⇡/8)
+ sin(7⇡/8)](⇡/4)

= 2.05234.

0

x

32.52

0.8

1.510 0.5

0.4

0.2

1

0.6

(b) Evaluation points:
⇡/16, 3⇡/16, 5⇡/16, 7⇡/16, 9⇡/16,

11⇡/16, 13⇡/16, 15⇡/16.
Notice that �x = ⇡/8.
A

4

= [f(⇡/16) + f(3⇡/16) + f(5⇡/16)
+ f(7⇡/16)+ f(9⇡/16)+ f(11⇡/16)
+ f(13⇡/16) + f(15⇡/16)](⇡/8)

= [sin(⇡/16) + sin(3⇡/16) + sin(5⇡/16)
+ sin(7⇡/16) + sin(9⇡/16)
+ sin(11⇡/16) + sin(13⇡/16)
+ sin(15⇡/16)](⇡/8)

= 2.0129.

0.8

0.5 2.5
0

3

0.4

0.6

1

1.5

0.2

x

210

4. (a) Evaluation points:
�0.75, �0.25, 0.25, 0.75.
Notice that �x = 0.5.
A

4

= [f(�0.75) + f(�0.25) + f(0.25)
+ f(0.75)](0.5)

= [4� (�0.75)2 + 4� (�0.25)2 + 4
� (0.25)2 + 4� (0.75)2](0.5)

= 7.375.

x

0.50-0.5

3

1-1

1

4

0

2

(b) Evaluation points:
�2.75, �2.25, �1.75, �1.25.
Notice that �x = 0.5.
A

4

= [f(�2.75) + f(�2.25) + f(�1.75)
+ f(�1.25)](0.5)

= [4� (�2.75)2 + 4� (�2.25)2 + 4
� (�1.75)2 + 4� (�1.25)2](0.5)

= �0.625.
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-6

-3 -2.5 -2

-4

-1.5
x

0

-2

2

-1

5. (a) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x where i

is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

16

15X

i=0

"✓
i

16

◆
2

+ 1

#
⇡ 1.3027

(b) There are 16 rectangles and the evalua-

tion points are given by c

i

= i�x +
�x

2
where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

16

15X

i=0

"✓
i

16
+

1

32

◆
2

+ 1

#

⇡ 1.3330

(c) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x + �x

where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

16

15X

i=0

"✓
i

16
+

1

16

◆
2

+ 1

#

⇡ 1.3652

6. (a) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x where i

is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

8

15X

i=0

"✓
i

8

◆
2

+ 1

#
⇡ 4.4219

(b) There are 16 rectangles and the evalua-

tion points are given by c

i

= i�x +
�x

2
where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

8

15X

i=0

"✓
i

8
+

1

16

◆
2

+ 1

#
⇡ 4.6640

(c) There are 16 rectangles and the evalua-
tion points are given by c

i

= i�x + �x

where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
1

8

15X

i=0

"✓
i

8
+

1

8

◆
2

+ 1

#
⇡ 4.9219

7. (a) There are 16 rectangles and the evalua-
tion points are the left endpoints which
are given by
c

i

= 1 + i�x where i is from 0 to 15.

A

16

= �x

15X

i=0

f(c
i

)

=
3

16

15X

i=0

r
1 +

3i

16
+ 2 ⇡ 6.2663

(b) There are 16 rectangles and the evalua-
tion points are the midpoints which are
given by

c

i

= 1 + i�x +
�x

2
where i is from 0 to

15.

A

16

= �x

15X

i=0

f(c
i

)

=
3

16

15X

i=0

r
1 +

3i

16
+

3

32
+ 2

⇡ 6.3340

(c) There are 16 rectangles and the evalua-
tion points are the right endpoints which
are given by
c

i

= 1 + i�x where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)

=
3

16

16X

i=1

r
1 +

3i

16
+ 2 ⇡ 6.4009

8. (a) There are 16 rectangles and the evalua-
tion points are the left endpoints which
are given by
c

i

= �1 + i�x��x

where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)
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=
1

8

16X

i=1

e

�2(�1+

i

8�
1
8 ) ⇡ 4.0991

(b) There are 16 rectangles and the evalua-
tion points are the midpoints which are
given by

c

i

= �1 + i�x� �x

2
where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)

=
1

8

16X

i=1

e

�2(�1+

i

8�
1
16 ) ⇡ 3.6174

(c) There are 16 rectangles and the evalua-
tion points are the right endpoints which
are given by
c

i

= �1 + i�x where i is from 1 to 16.

A

16

= �x

16X

i=1

f(c
i

)

=
1

8

16X

i=1

e

�2(�1+

i

8 ) ⇡ 3.1924

9. (a) There are 50 rectangles and the evalua-
tion points are given by c

i

= i�x where i

is from 0 to 49.

A

50

= �x

50X

i=0

f(c
i

)

=
⇡

100

50X

i=0

cos

✓
⇡i

100

◆
⇡ 1.0156

(b) There are 50 rectangles and the evalua-

tion points are given by c

i

=
�x

2
+ i�x

where i is from 0 to 49.

A

50

= �x

50X

i=0

f(c
i

)

=
⇡

100

50X

i=0

cos

✓
⇡

200
+

⇡i

100

◆

⇡ 1.00004

(c) There are 50 rectangles and the evalua-
tion points are given by c

i

= �x + i�x

where i is from 0 to 49.

A

50

= �x

50X

i=0

f(c
i

)

=
⇡

100

50X

i=0

cos

✓
⇡

100
+

⇡i

100

◆

⇡ 0.9842

10. (a) There are 100 rectangles and the evalu-
ation points are left endpoints which are

given by c

i

= �1 + i�x � �x where i is
from 1 to 100.

A

100

= �x

100X

i=1

f(c
i

)

=
2

100

100X

i=1

"✓
�1 +

2i

100
� 2

100

◆
3

� 1

#

⇡ �2.02

(b) There are 100 rectangles and the evalua-
tion points are midpoints which are given

by c

i

= �1+ i�x� �x

2
where i is from 1

to 100.

A

100

= �x

100X

i=1

f(c
i

)

=
2

100

100X

i=1

"✓
�1 +

2i

100
� 1

100

◆
3

� 1

#

= �2

(c) There are 100 rectangles and the evalua-
tion points are right endpoints which are
given by c

i

= �1 + i�x where i is from 1
to 100.

A

100

= �x

100X

i=1

f(c
i

)

=
2

100

100X

i=1

"✓
�1 +

2i

100

◆
3

� 1

#
⇡ �1.98

11. (a) �x =
1

n

. We will use right endpoints as

evaluation points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
1

n

nX

i=1

"✓
i

n

◆
2

+ 1

#
=

1

n

3

nX

i=1

i

2 + 1

=
1

n

3

✓
n(n+ 1)(2n+ 1)

6

◆
+ 1

=
8n2 + 3n+ 1

6n2

Now to compute the exact area, we take
the limit as n ! 1:

A = lim
n!1

A

n

= lim
n!1

8n2 + 3n+ 1

6n2

= lim
n!1

8

6
+

3

6n
+

1

6n2

=
4

3

(b) �x =
2

n

. We will use right endpoints as

evaluation points, x
i

=
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x
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=
2

n

nX

i=1

"✓
2i

n

◆
2

+ 1

#

=
2

n

nX

i=1

"✓
2i

n

◆
2

+ 1

#

=
2

n

nX

i=1

✓
2i

n

◆
2

+
2

n

nX

i=1

1

=
8

n

3

nX

i=1

i

2 + 2

=
8

n

3


n (n+ 1) (2n+ 1)

6

�
+ 2

=
8

n

2


(n+ 1) (2n+ 1)

6

�
+ 2

=
4

3n2

�
2n2 + 3n+ 1

�
+ 2

=
14n2 + 12n+ 4

3n2

Now, to compute the exact area, we take
the limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1

14n2 + 12n+ 4

3n2

=
14

3

(c) �x =
2

n

We will use right endpoints as

evaluation points,x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f (x
i

)�x

=
nX

i=1

�
x

i

2 + 1
�✓ 2

n

◆

=
2

n

nX

i=1

 ✓
1 +

2i

n

◆
2

+ 1

!

=
2

n

nX

i=1

✓
2 +

4i

n

+
4i2

n

2

◆

= 4 +
8

n

2

nX

i=1

i+
8

n

3

nX

i=1

i

2

= 4 +
8

n

2

✓
n (n+ 1)

2

◆

+
8

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 4 +

✓
4n+ 4

n

◆
+


8n2 + 12n+ 4

3n2

�

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

✓
4 +

4n+ 4

n

+
8n2 + 12n+ 4

3n2

◆

= 4 + 4 +
8

3
=

32

3

12. (a) �x =
1

n

. We will use right endpoints as

evaluation points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
1

n

nX

i=1

"✓
i

n

◆
2

+ 3

✓
i

n

◆#

=
1

n

3

nX

i=1

i

2 +
3

n

2

nX

i=1

i

=
1

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

+
3

n

2

✓
n(n+ 1)

2

◆

=
11n2 + 12n+ 1

6n2

Now to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

11n2 + 12n+ 1

6n2

= lim
n!1

11

6
+

12

6n
+

1

6n2

=
11

6

(b) �x =
2

n

. We will use right endpoints as

evalution points, x
i

=
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
2

n

nX

i=1

"✓
2i

n

◆
2

+ 3

✓
2i

n

◆#

=
8

n

3

nX

i=1

i

2 +
12

n

2

nX

i=1

i

=
8

n

3


n (n+ 1) (2n+ 1)

6

�

+
12

n

2


n (n+ 1)

2

�

=

"�
8n2 + 12n+ 4

�

3n2

#
+


6n+ 6

n

�

Now, to compute the exact area, we take
the limit as n ! 1 : A = lim

n!1
A

n

= lim
n!1

 �
8n2 + 12n+ 4

�

3n2

+
6n+ 6

n

!

=
8

3
+ 6 =

26

3
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(c) �x =
2

n

. We will use right endpoints as

evalution points, x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

⇥
x

i

2 + 3x
i

⇤ 2
n

=
2

n

nX

i=1

"✓
1 +

2i

n

◆
2

+ 3

✓
1 +

2i

n

◆#

=
2

n

nX

i=1

✓
4 +

10i

n

+
4i2

n

2

◆

= 8 +
20

n

2

nX

i=1

i+
8

n

3

nX

i=1

i

2

= 8 +
20

n

2

✓
n (n+ 1)

2

◆

+
8

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 8+
10

n

(n+ 1)+
4

3n2

�
2n2 + 3n+ 1

�

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

8 +
10

n

(n+ 1) +
4

3n2

�
2n2 + 3n+ 1

��

= 8 + 10 +
8

3
=

62

3

13. (a) �x =
1

n

. We will use right endpoints as

evalution points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
1

n

nX

i=1

"
2

✓
i

n

◆
2

+ 1

#

=
2

n

3

nX

i=1

i

2 + 1

=
2

n

3


n (n+ 1) (2n+ 1)

6

�
+ 1

=

�
5n2 + n+ 1

�

3n2

Now, to compute the exact area, we take
the limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1

"�
5n2 + n+ 1

�

3n2

#
=

5

3
.

(b) �x =
2

n

. We will use right endpoints as

evalution points, x
i

= �1 +
2i

n

.

A

n

=
nX

i=1

f (x
i

)�x

=
nX

i=1

�
2x

i

2 + 1
�✓ 2

n

◆

=
2

n

nX

i=1

 
2

✓
�1 +

2i

n

◆
2

+ 1

!

=
2

n

nX

i=1

✓
3� 8i

n

+
8i2

n

2

◆

= 6� 16

n

2

nX

i=1

i+
16

n

3

nX

i=1

i

2

= 6� 16

n

2

✓
n (n+ 1)

2

◆

+
16

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 6�
✓
8n+ 8

n

◆
+

✓
16n2 + 24n+ 8

3n2

◆

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

6�
✓
8n+ 8

n

◆
+

✓
16n2 + 24n+ 8

3n2

◆�

= 6� 8 +
16

3
=

10

3

(c) �x =
2

n

. We will use right endpoints as

evaluation points, x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x

=
2

n

nX

i=1

2

✓
1 +

2i

n

◆
2

+ 1

=
2

n

nX

i=1

✓
8i2

n

2

+
8i

n

+ 3

◆

=
16

n

3

nX

i=1

i

2 +
16

n

2

nX

i=1

i+ 6

=
16

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

+
16

n

2

✓
n(n+ 1)

2

◆
+ 6

=
16n(n+ 1)(2n+ 1)

6n3
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+
16n(n+ 1)

2n2

+ 6

Now to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

✓
16n(n+ 1)(2n+ 1)

6n3

+
16n(n+ 1)

2n2

+ 6

◆

= lim
n!1

32

6
+

16

2
+ 6 =

58

3

14. (a) �x =
1

n

. We will use right endpoints as

evalution points, x
i

=
i

n

.

A

n

=
nX

i=1

f(x
i

)�x =
nX

i=1

�
4x

i

2 � x

i

� 1
n

=
1

n

nX

i=1

"
4

✓
i

n

◆
2

�
✓
i

n

◆#

=
1

n

nX

i=1

✓
4i2

n

2

� i

n

◆�

=
4

n

nX

i=1

i

2

n

2

� 1

n

nX

i=1

i

n

=
4

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

� 1

n

2

✓
n (n+ 1)

2

◆

=
2

3n2

�
2n2 + 3n+ 1

�
� 1

2n
(n+ 1)

=
5

6
+

3

2n
+

2

3n2

Now, to compute the exact area, we take
the limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1

✓
5

6
+

3

2n
+

2

3n2

◆

=
5

6

(b) �x =
2

n

. We will use right endpoints as

evalution points, x
i

= �1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x =
nX

i=1

⇥
4x

i

2 � x

i

⇤ 2
n

=
2

n

nX

i=1

"
4

✓
�1 +

2i

n

◆
2

�
✓
�1 +

2i

n

◆#

=
2

n

nX

i=1

✓
5� 18i

n

+
16i2

n

2

◆

=
10

n

nX

i=1

1� 36

n

2

nX

i=1

i+
32

n

3

nX

i=1

i

2

= 10� 36

n

2

✓
n (n+ 1)

2

◆

+
32

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 10� 18

n

(n+ 1) +
16

3n2

�
2n2 + 3n+ 1

�

=
8

3
� 2

n

+
16

3n2

Now, to compute the exact area, we take
the limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1

✓
8

3
� 2

n

+
16

3n2

◆

=
8

3

(c) �x =
2

n

. We will use right endpoints as

evaluation points x
i

= 1 +
2i

n

.

A

n

=
nX

i=1

f(x
i

)�x =
nX

i=1

⇥
4x

i

2 � x

i

⇤ 2
n

=
2

n

nX

i=1

"
4

✓
1 +

2i

n

◆
2

�
✓
1 +

2i

n

◆#

=
2

n

nX

i=1

✓
3 +

14i

n

+
16i2

n

2

◆

=
6

n

nX

i=1

1 +
28

n

2

nX

i=1

i+
32

n

3

nX

i=1

i

2

= 6 +
28

n

2

✓
n (n+ 1)

2

◆

+
32

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

= 6+
14

n

(n+ 1)+
16

3n2

�
2n2 + 3n+ 1

�

=
92

3
+

30

n

+
16

3n2

Now, to compute the exact area, we take
the limit as n ! 1:

A = lim
n!1

A

n

= lim
n!1

✓
92

3
+

30

n

+
16

3n2

◆

=
92

3
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15.
n Left Midpoint Right

Endpoint Endpoint

10 10.56 10.56 10.56
50 10.662 10.669 10.662
100 10.6656 10.6672 10.6656
500 10.6666 10.6667 10.6666
1000 10.6667 10.6667 10.6667
5000 10.6667 10.6667 10.6667

16.
n Left Midpoint Right

Endpoint Endpoint

10 0.91940 1.00103 1.07648
50 0.98421 1.00004 1.01563
100 0.99213 1.00001 1.00783
500 0.99843 1.00000 1.00157
1000 0.99921 1.00000 1.00079
5000 0.99984 1.00000 1.00016

17.
n Left Midpoint Right

Endpoint Endpoint

10 15.48000 17.96000 20.68000
50 17.4832 17.9984 18.5232
100 17.7408 17.9996 18.2608
500 17.9480 17.9999 18.0520
1000 17.9740 17.9999 18.0260
5000 17.9948 17.9999 18.0052

18.
n Left Midpoint Right

Endpoint Endpoint

10 �2.20000 �2 �1.80000
50 �2.04000 �2 �1.96000
100 �2.02000 �2 �1.98000
500 �2.00400 �2 �1.99600
1000 �2.00200 �2 �1.99800
5000 �2.00040 �2 �1.99960

19. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: L < M < A < R.

x

432

200

600

3.5

1000

2.5

800

400

0

20. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: L < A < M < R.

32.5

50

21.5
x

1

250

200

150

100

0

21. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: R < A < M < L.

0.02

x

0.12

2
0

0.1

0.08

42.5

0.06

0.04

3 3.5

22. Let L, M , and R be the values of the Riemann
sums with left endpoints, midpoints and right
endpoints. Let A be the area under the curve.
Then: R < A < M < L.

32.5

50

21.5
x

1

250

200

150

100

0

23. There are many possible answers here. One
possibility is to use x = 1/6 on [0, 0.5] and
x =

p
23/6 on [0.5, 1].

24. There are many possible answers here. One
possibility is to use x = 1/4 on [0, 0.5] and
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x = 25/36 on [0.5, 1].

25. (a) We subdivide the interval [a, b] into n

equal subintervals. If you are located at
a + (b � a)/n (the first right endpoint),
then each step of distance�x takes you to
a new right endpoint. To arrive at the i-
th right endpoint, you have to take (i�1)
steps to the right of distance �x. There-
fore,
c

i

= a+ (b� a)/n+ (i� 1)�x = a+ i�x.

(b) We subdivide the interval [a, b] into n

equal subintervals. The first evaluation
point is a + �x/2. From this evaluation
point, each step of distance �x takes you
to a new evaluation point. To arrive at
the i-th evaluation point, you have to take
(i � 1) steps to the right of distance �x.
Therefore,
c

i

= a+�x/2 + (i� 1)�x

= a+ (i� 1/2)�x, for i = 1, . . . , n.

26. (a) We subdivide the interval [a, b] into n

equal subintervals. If you are located at a
(the first left endpoint), then each step of
distance �x takes you to a new left end-
point. To arrive at the i-th left endpoint,
you have to take (i� 1) steps to the right
of distance �x. Therefore,
c

i

= a+ (i� 1)�x.

(b) We subdivide the interval [a, b] into n

equal subintervals. The first evaluation
point is a + �x/3. From this evaluation
point, each step of distance �x takes you
to a new evaluation point. To arrive at
the i-th evaluation point, you have to take
(i � 1) steps to the right of distance �x.
Therefore,
c

i

= a+�x/3 + (i� 1)�x

= a+ (i� 2/3)�x, for i = 1, . . . , n.

27. Consider interval [2, 4] , then �x =
2

n

.

Use right endpoints as evaluation points,

x

i

=

✓
2 +

2i

n

◆
.

A = lim
n!1

nX

i=1

" r
2 +

2i

n

!
2

n

#

= lim
n!1

nX

i=1

"
p
2

 r
1 +

i

n

!
2

n

#

Hence,

A

2

= lim
n!1

nX

i=1

"
p
2

 r
1 +

i

n

!
2

n

#
.

28. Consider interval[0, 2] , then �x =
2

n

.

Use mid points as evaluation points, x

i

=⇣
2(i�1)

n

+ 2i

n

⌘

2
.

A = lim
n!1

nX

i=1

2

4

0

@

s
2(i�1)

n

+ 2i

n

2

1

A 2

n

3

5

= lim
n!1

nX

i=1

" r
2i� 2 + 2i

2n

!
2

n

#

Hence,

A = lim
n!1

nX

i=1


1p
n

⇣p
2i� 1

⌘ 2

n

�
.

Assume
i = k + 1.

A =
n�1X

k=0


1p
n

⇣p
2 (k + 1)� 1

⌘ 2

n

�

=
nX

k=1


1p
n

⇣p
2k + 1

⌘ 2

n

�

hence,

A

1

=
nX

k=1


1p
n

⇣p
2k + 1

⌘ 2

n

�
.

29. U

4

=
2

4

4X

i=1

✓
i

2

◆
2

=
1

8

4X

i=1

i

2 =
1

8

⇥
12 + 22 + 32 + 42

⇤

=
30

8
= 3.75 L

4

=
2

4

4X

i=1

✓
i� 1

2

◆
2

=
1

8

4X

i=1

i

2 =
1

8

⇥
02 + 12 + 22 + 32

⇤

=
14

8
= 1.75

30. The function f(x) = x

2 is symmetric on the
two intervals [�2, 0] and [0, 2], so the upper
sum U

8

is just double the value of U
4

as cal-
culated in Exercise 35, and the same is for L

8

.

The answers are
U

8

= 2 · 3.75 = 7.5, L
8

= 2 · 1.75 = 3.5.

31. (a) U

n

=
2

n

nX

i=1

✓
2i

n

◆
2

=

✓
2

n

◆
3

nX

i=1

i

2

=

✓
2

n

◆
3

n(n+ 1)(2n+ 1)

6
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=
4

3

n(n+ 1)(2n+ 1)

n

3

=
4

3

✓
1 +

1

n

◆✓
2 +

1

n

◆

lim
n!1

U

n

=
4

3
(2) =

8

3

(b) L

n

=
2

n

nX

i=1

✓
2(i� 1)

n

◆
2

=

✓
2

n

◆
3

nX

i=1

(i� 1)2

=

✓
2

n

◆
3

n�1X

i=1

i

2

=

✓
2

n

◆
3 (n� 1)(n)(2n� 1)

6

=
4

3

(n� 1)(n)(2n� 1)

n

3

=
4

3

✓
1� 1

n

◆✓
2� 1

n

◆

lim
n!1

L

n

=
4

3
(2) =

8

3

32. (a) U

n

=
2

n

nX

i=1

"✓
0 +

2

n

i

◆
3

+ 1

#

=
2

n

nX

i=1

"✓
2i

n

◆
3

+ 1

#

=

✓
2

n

◆
4

nX

i=1

i

3 +
nX

i=1

1

=
24

n

4


n

2(n+ 1)2

4
+

2

n

(n)

�

=
4(n+ 1)2

n

2

+ 2

=
4(n2 + 2n+ 1)

n

2

+ 2

= 6 +
8

n

+
4

n

2

lim
n!1

U

n

= 6

(b) L

n

=
2

n

n�1X

i=0

"✓
0 +

2

n

i

◆
3

+ 1

#

=
2

n

n�1X

i=0

"✓
2i

n

◆
3

+ 1

#

=

✓
2

n

◆
4

n�1X

i=0

i

3 +
nX

i=1

1

=
24

n

4


(n� 1)2n2

4
+

2

n

(n)

�

=
4(n� 1)2

n

2

+ 2

=
4(n2 � 2n+ 1)

n

2

+ 2

= 6� 8

n

+
4

n

2

lim
n!1

L

n

= 6

33. Here, f (x) = a

2 � x

2 and interval is [�a, a].

Hence �x =
2a

n

.

Use right endpoints as evaluation points,

x

i

=

✓
�a+

2ai

n

◆
.

A

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

�
a

2 � x

i

2

�
�x

=
nX

i=1

" 
a

2 �
✓
�a+

2ia

n

◆
2

!
2a

n

#

=
nX

i=1

✓
4ia2

n

� 4i2a2

n

2

◆
2a

n

�

=
8a3

n

2

nX

i=1

i�8a3

n

3

nX

i=1

i

2

=
8a3

n

2

✓
n (n+ 1)

2

◆

� 8a3

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

=
4a3

n

(n+ 1)� 4a3

3n3

�
2n2 + 3n+ 1

�

Now, to compute the exact area, we take the
limit as n ! 1:
A = lim

n!1
A

n

= lim
n!1


4a3

n

(n+ 1)� 4a3

3n3

�
2n2 + 3n+ 1

��

=

✓
4� 8

3

◆
a

3 =
4

3
a

3

=
2

3
(2a)

�
a

2

�

34. Here,f (x) = ax

2and interval is [0, b].

Hence �x =
b

n

.

Use right endpoints as evaluation points, x
i

=✓
bi

n

◆
.

A

n

=
nX

i=1

f(x
i

)�x
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=
nX

i=1

�
ax

i

2

�
�x

=
nX

i=1

"
a

✓
bi

n

◆
2

b

n

#

=
ab

3

n

3

nX

i=1

i

2

=
ab

3

n

3

✓
n (n+ 1) (2n+ 1)

6

◆

=
ab

3

6n2

�
2n2 + 3n+ 1

�

Now, to compute the exact area, we take the
limit as n ! 1 :
A = lim

n!1
A

n

= lim
n!1


ab

3

6n2

�
2n2 + 3n+ 1

��

=
2ab3

6
=

ab

3

3
=

1

3
b

�
ab

2

�

35. Using left hand endpoints:
L

8

= [f(0.0)+f(0.1)+f(0.2)+f(0.3)+f(0.4)+
f(0.5) + f(0.6) + f(0.7)](0.1)
= (2.0 + 2.4 + 2.6 + 2.7 + 2.6 + 2.4 + 2.0 +
1.4)(0.1) = 1.81
Right endpoints:
R

8

= [f(0.1)+f(0.2)+f(0.3)+f(0.4)+f(0.5)+
f(0.6) + f(0.7) + f(0.8)](0.2)
= (2.4 + 2.6 + 2.7 + 2.6 + 2.4 + 2.0 + 1.4 +
0.6)(0.1) = 1.67

36. Using left hand endpoints:
L

8

= [f().0)+f(0.2)+f(0.4)+f(0.6)+f(0.8)+
f(1.0) + f(1.2) + f(1.4)](0.2)
= (2.0 + 2.2 + 1.6 + 1.4 + 1.6 + 2.0 + 2.2 +
2.4)(0.2) = 3.08
Right endpoints:
R

8

= [f(0.2)+f(0.4)+f(0.6)+f(0.8)+f(1.0)+
f(1.2) + f(1.4) + f(1.6)](0.2)
= (2.2 + 1.6 + 1.4 + 1.6 + 2.0 + 2.2 + 2.4 +
2.0)(0.2) = 3.08

37. Using left hand endpoints:
L

8

= [f(1.0)+f(1.1)+f(1.2)+f(1.3)+f(1.4)+
f(1.5) + f(1.6) + f(1.7)](0.1)
= (1.8 + 1.4 + 1.1 + 0.7 + 1.2 + 1.4 + 1.82 +
2.4)(0.1) = 1.182
Right endpoints:
R

8

= [f(1.1)+f(1.2)+f(1.3)+f(1.4)+f(1.5)+
f(1.6) + f(1.7) + f(1.8)](0.1)
= (1.4 + 1.1 + 0.7 + 1.2 + 1.4 + 1.82 + 2.4 +
2.6)(0.1) = 1.262

38. Using left hand endpoints:
L

8

= [f(1.0)+f(1.2)+f(1.4)+f(1.6)+f(1.8)+
f(2.0) + f(2.2) + f(2.4)](0.2)

= (0.0 + 0.4 + 0.6 + 0.8 + 1.2 + 1.4 + 1.2 +
1.4)(0.2) = 1.40
Right endpoints:
R

8

= [f(1.2)+f(1.4)+f(1.6)+f(1.8)+f(2.0)+
f(2.2) + f(2.4) + f(2.6)](0.2)
= (0.4 + 0.6 + 0.8 + 1.2 + 1.4 + 1.2 + 1.4 +
1.0)(0.2) = 1.60

39. A ⇡ (0.2 � 0.1)(0.002) + (0.3 � 0.2)(0.004) +
(0.4 � 0.3)(0.008) + (0.5 � 0.4)(0.014) +
(0.6 � 0.5)(0.026) + (0.7 � 0.6)(0.048) +
(0.8 � 0.7)(0.085) + (0.9 � 0.8)(0.144) +
(0.95 � 0.9)(0.265) + (0.98 � 0.95)(0.398) +
(0.99� 0.98)(0.568) + (1� 0.99)(0.736) + 1/2 ·
[(0.1� 0)(0.002)
+(0.2�0.1)(0.004�0.002)+(0.3�0.2)(0.008�
0.004) + (0.4 � 0.3)(0.014 � 0.008) + (0.5 �
0.4)(0.026 � 0.014) + (0.6 � 0.5)(0.048 �
0.026) + (0.7 � 0.6)(0.085 � 0.048) + (0.8 �
0.7)(0.144 � 0.085) + (0.9 � 0.8)(0.265 �
0.144) + (0.95 � 0.9)(0.398 � 0.265) + (0.98 �
0.95)(0.568 � 0.398) + (0.99 � 0.98)(0.736 �
0.568) (1� 0.99)(1� 0.736)]
⇡ 0.092615 The Lorentz curve looks like:

0.6

10.80.60.4

1

0.2

0.8

0.4

0.2

0

40. Obviously G = A

1

/A

2

is greater or equal to
0. From the above figure we see that the
Lorentz curve is below the diagonal line y = x

on the interval [0, 1], hence the area A

1


the area A

2

. Furthermore, A
2

= the area of
the triangle formed by the points (0, 0), (1, 0)
and (1, 1), hence equal to 1/2. Now G =
A

1

/A

2

= 2A
1

. Using the date in Exercise 33,
G ⇡ 2 · 0.092615 = 0.185230.

4.4 The Definite Integral

1. We know thatZ
3

0

�
x

3 + x

�
dx ⇡

nX

i=1

�
c

3

i

+ c

i

�
�x

Where c

i

=
x

i

+ x

i�1

2
, x

i

=
3i

n

, n = 6.
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Here c

i

=
3i

6

+ 3(i�1)

6

2
=

(2i� 1)

4
.

nX

i=1

�
c

3

i

+ c

i

�
.

3

n

=
6X

i=1

"
(2i� 1)3

64
+

(2i� 1)

4

#
.

1

2

=

✓
1

64
+

1

4
+

27

64
+

3

4
+

125

64
+

5

4
+

343

64

+
7

4
+

729

64
+

9

4
+

1331

64
+

11

4

◆
.

1

2

)
Z

3

0

�
x

3 + x

�
dx ⇡ 24.47

2. We know thatZ
3

0

p
x

2 + 1dx ⇡
nX

i=1

q
c

2

i

+ 1�x

Where c

i

=
x

i

+ x

i�1

2
, x

i

=
3i

n

, n = 6.

Here c

i

=
3i

6

+ 3(i�1)

6

2
=

(2i� 1)

4
.

nX

i=1

q
c

2

i

+ 1

✓
3

n

◆

=
6X

i=1

0

@
s✓

2i� 1

4

◆
2

+ 1

1

A
.

1

2

=

 p
17

4
+

5

4
+

p
41

4
+

p
65

4

+

p
97

4
+

p
137

4

!
.

1

2

)
Z

3

0

p
x

2 + 1dx ⇡ 5.64

3. We know thatZ
⇡

0

sinx2

dx ⇡
nX

i=1

�
sin c2

i

�
�x.

Where c

i

=
x

i

+ x

i�1

2
, x

i

=
i⇡

n

, n = 6.

Herec
i

=
⇡i

6

+ ⇡(i�1)

6

2
=

(2i� 1)⇡

12
.

nX

i=1

�
sin c2

i

� ⇣
⇡

n

⌘

=
6X

i=1

"
sin

✓
(2i� 1)⇡

12

◆
2

#
.

⇣
⇡

6

⌘

=

"
sin
⇣
⇡

12

⌘
2

+ sin

✓
3⇡

12

◆
2

+ sin

✓
5⇡

12

◆
2

+sin

✓
7⇡

12

◆
2

+ sin

✓
9⇡

12

◆
2

+ sin

✓
11⇡

12

◆
2

#
.

⇡

6

)
Z

⇡

0

sinx2

dx ⇡ 0.8685

4. We know thatZ
2

�2

e

�x

2

dx ⇡
nX

i=1

e

�c

2
i�x.

Where c

i

=
x

i

+ x

i�1

2
, x

i

= �2 +
4i

n

, n = 6.

Here,

c

i

=

�
�2 + 4i

6

�
+
h
�2 + 4(i�1)

6

i

2
=

2i� 7

3
.

nX

i=1

e

�c

2
i

✓
4

n

◆
=

6X

i=1

e

�c

2
i

✓
4

6

◆

=
h
e

�25/9 + e

�1 + e

�1/9

+e

�1/9 + e

�1 + e

�25/9

i
.

2

3

=
h
e

�25/9 + e

�1 + e

�1/9

i
.

4

3

)
Z

2

�2

e

�x

2

dx ⇡ 1.7665

5. Notice that the graph of y = x

2 is above the
x-axis. So,

R
3

1

x

2

dx is the area of the region
bounded by y = x

2 and the x-axis, between
x = 1 and x = 3.

6. Notice that the graph of y = e

x is above the
x-axis. So,

R
1

0

e

x

dx is the area of the region
bounded by y = e

x, and the x-axis, between
x = 0 and x = 1.

7. Notice that the graph of y = x

2 � 2 is below
the x�axis for |x| 

p
2 above the, x�axis for

|x| �
p
2.

Also,Z
2

0

�
x

2 � 2
�
dx

=

Z p
2

0

�
x

2 � 2
�
dx+

Z
2

p
2

�
x

2 � 2
�
dx.

So,
R
2

0

�
x

2 � 2
�
dx is the additon of the ar-

eas of the regions bounded by y = x

2 � 2and
the x�axis, between x = 0 and x =

p
2 (which

is below the x�axis) and between x =
p
2 and

x = 2 (which is above the x�axis)

8. Notice that the graph of y = x

3 � 3x2 + 2x
is below the x-axis, for 1  x  2 and x  0
and above the x-axis, for all other values of x.
Also,Z

2

0

�
x

3 � 3x2 + 2x
�
dx

=

Z
1

0

�
x

3 � 3x2 + 2x
�
dx

+

Z
2

1

�
x

3 � 3x2 + 2x
�
dx
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So,

Z
2

0

�
x

3 � 3x2 + 2x
�
dx is the additon of

the areas of the regions bounded by
y = x

3 � 3x2 + 2x and the x-axis between
x = 0 and x = 1 (which is above the x-axis)
and between x = 1 and x = 2 (which is below
the x-axis).

9. For n rectangles, �x =
1

n

, x
i

= i�x.

R

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

2x
i

�x =
1

n

nX

i=1

2

✓
i

n

◆
=

2

n

2

nX

i=1

i

=
2

n

2

✓
n(n+ 1)

2

◆
=

(n+ 1)

n

To compute the value of the integral, we take
the limit as n ! 1,Z

1

0

2xdx = lim
n!1

R

n

= lim
n!1

(n+ 1)

n

= 1

10. For n rectangles, �x =
1

n

, x

i

= 1 + i�x.

R

n

=
nX

i=1

f(x
i

) �x

=
nX

i=1

2x
i

�x =
1

n

nX

i=1

2

✓
1 +

i

n

◆

=
2

n

nX

i=1

1 +
2

n

2

nX

i=1

i

=
2

n

(n) +
2

n

2

✓
n(n+ 1)

2

◆

= 2 +
(n+ 1)

n

To compute the value of the integral, we take
the limit as n ! 1,Z

2

1

2xdx = lim
n!1

R

n

= lim
n!1

2 +
(n+ 1)

n

= 2 + 1 = 3

11. For n rectangles,

�x =
2

n

, x

i

= i�x =
2i

n

.

R

n

=
nX

i=1

f(x
i

)�x

=
nX

i=1

(x2

i

)�x =
2

n

nX

i=1

✓
2i

n

◆
2

=
2

n

nX

i=1

4i2

n

2

=
8

n

3

nX

i=1

i

2

=
8

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

=
4(n+ 1)(2n+ 1)

3n2

To compute the value of the integral, we take
the limit as n ! 1,Z

2

0

x

2

dx = lim
n!1

R

n

= lim
n!1

4(n+ 1)(2n+ 1)

3n2

=
8

3

12. For n rectangles,

�x =
3

n

, x

i

= i�x =
3i

n

.

R

n

=
nX

i=1

f(x
i

)�x

=
nX
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n(n+ 1)(2n+ 1)

6

◆
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✓
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◆
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n

2

+ 3

To compute the value of the integral, we take
the limit as n ! 1,Z

3

0

(x2 + 1)dx = lim
n!1

R

n

= lim
n!1

9(n+ 1)(2n+ 1)

n

2

+ 3

= 9 + 3 = 12

13. For n rectangles, �x =
2

n

,

x

i

= 1 + i�x = 1 +
2i

n

R

n

=
nX

i=1

f(x
i

) �x

=
nX
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(x2
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◆
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✓
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n
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� 4



264 CHAPTER 4. INTEGRATION

To compute the value of the integral, we take
the limit as n ! 1,Z

3

1

(x2 � 3)dx = lim
n!1

R

n

=
8

2
+

16

6
� 4 =

8

3

14. For n rectangles,

�x =
4

n

, x

i

= �2 + i�x = �2 +
4i

n
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n

=
nX

i=1

f(x
i

)�x =
nX

i=1

(x2

i

� 1)�x

=
4
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nX

i=1

✓
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4i
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✓
3� 16i
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=
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1� 64
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nX

i=1

i+
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nX
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i
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=

✓
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n

◆
n� 64

n

2

✓
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◆

+
64

n

3

✓
n(n+ 1)(2n+ 1)

6

◆

= 12� 32(n+ 1)

n

+
32(n+ 1)(2n+ 1)

3n2

To compute the value of the integral, we take
the limit as n ! 1,Z

2

�2

(x2 � 1)dx = lim
n!1

R

n

= lim
n!1


12� 32(n+ 1)

n

+
32(n+ 1)(2n+ 1)

3n2

�

= 12� 32 +
64

3
=

4

3

15. Notice that the graph of y = 4 � x

2 is above
the x-axis between x = �2 and x = 2:Z

2

�2

(4� x

2)dx

16. Notice that the graph of y = 4x � x

2 is above
the x-axis between x = 0 and x = 4:Z

4

0

(4x� x

2)dx

17. Notice that the graph of y = x

2 � 4 is below
the x-axis between x = �2 and x = 2. Since
we are asked for area and the area in question
is below the x-axis, we have to be a bit careful.

Z
2

�2

�(x2 � 4)dx

18. Notice that the graph of y = x

2 � 4x is below
the x-axis between x = 0 and x = 4. Since we
are asked for area and the area in question is
below the x-axis, we have to be a bit careful.Z

4

0

�(x2 � 4x)dx

19.

Z
⇡

0

sinxdx

20. �
Z

0

�⇡/2

sinxdx+

Z
⇡/4

0

sinxdx

21. The total distance is the total area under the
curve whereas the total displacement is the
signed area under the curve. In this case, from
t = 0 to t = 4, the function is always positive
so the total distance is equal to the total dis-
placement. This means we want to compute

the definite integral

Z
4

0

40(1 � e

�2t)dt. We

compute various right hand sums for di↵erent
values of n:

n R

n

10 146.9489200
20 143.7394984
50 141.5635684

100 140.7957790
500 140.1662293
1000 140.0865751

It looks like these are converging to about 140.
So, the total distance traveled is approximately
140 and the final position is
s(b) ⇡ s(0) + 140 = 0 + 140 = 140.

22. The total distance is the total area under the
curve whereas the total displacement is the
signed area under the curve. In this case, from
t = 0 to t = 4, the function is always posi-
tive so the total distance is equal to the total
displacement. This means we want to com-
pute the definite integral

R
4

0

30e�t/4

dt. We
compute various right hand sums for di↵erent
values of n:

n R

n

10 72.12494524
20 73.97390774
50 75.09845086

100 75.47582684
500 75.77863788
1000 75.81654616
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It looks like these are converging to about 75.8.
So, the total distance traveled is approximately
75.8 and the final position is
s(b) ⇡ s(0) + 75.8 = �1 + 75.8 = 74.8.

23.

Z
4

0

f(x)dx

=

Z
1

0

f(x)dx+

Z
4

1

f(x)dx

=

Z
1

0

2xdx+

Z
4

1

4dx
Z

1

0

2xdx is the area of a triangle with base

1 and height 2 and therefore has area =
1

2

(1)(2) = 1.Z
4

1

4dx is the area of a rectangle with base 3

and height 4 and therefore has area = (3)(4) =
12.
ThereforeZ

4

0

f(x)dx = 1 + 12 = 13

24.

Z
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0

f(x)dx+

Z
4

2

f(x)dx

=

Z
2

0

2dx+

Z
4

2

3xdx
Z

2

0

2dx is the area of a square with base 2 and

height 2 (it is, after all, a square) and therefore
has area = 4.Z

4

2

3xdx is a trapezoid with height 3 and bases

6 and 12 and therefore has area (using the for-
mula in the front of the text)

area =
1

2
(6 + 12)(2) = 18.

ThereforeZ
4

0

f(x)dx = 4 + 18 = 22

25. f
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28. f
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29. The function f(x) = 3 cosx2 is decreasing on
[⇡/3,⇡/2]. Therefore, on this interval, the
maximum occurs at the left endpoint and is
f(⇡/3) = 3 cos(⇡2

/9). The minimum occurs at
the right endpoint and is f(⇡/2) = 3 cos(⇡2

/4).
Using these to estimate the value of the inte-
gral gives the following inequality:
⇡

6
· (3 cos ⇡

2

4
) 

Z
⇡/2

⇡/3

3 cosx2

dx

 ⇡

6
· (3 cos ⇡

2

9
)

�1.23 
Z

⇡/2

⇡/3

3 cosx2

dx  0.72

30. The function f(x) = e

�x

2

is decreasing on
[0, 1/2]. Therefore, on this interval, the maxi-
mum occurs at the left endpoint and is f(0) =
1. The minimum occurs at the right endpoint
and is f(1/2) = e

�1/4. Using these to estimate
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the value of the integral gives the following in-
equality:
1

2
(e�1/4) 

Z
1/2

0

e

�x

2

dx  1

2
(1)

0.3894 
Z

1/2

0

e

�x

2

dx  0.5

31. The function f(x) =
p
2x2 + 1 is increasing

on [0, 2]. Therefore, on this interval, the maxi-
mum occurs at the right endpoint and is f(2) =
3. The minimum occurs at the left endpoint
and is f(0) = 1. Using these to estimate the
value of the integral gives the following inequal-
ity:

(2)(1) 
Z

2

0

p
2x2 + 1dx  (2)(3)

2 
Z

2

0

p
2x2 + 1dx  6

32. The function f(x) =
3

x

3 + 2
is decreasing

on [�1, 1]. Therefore, on this interval, the
maximum occurs at the left endpoint and is
f(�1) = 3. The minimum occurs at the right
endpoint and is f(1) = 1. Using these to esti-
mate the value of the integral gives the follow-
ing inequality:

(2)(1) 
Z

1

�1

3

x

3 + 2
dx  (2)(3)

2 
Z

1

�1

3

x

3 + 2
dx  6

33. We are looking for a value c, such that

f(c) =
1

2� 0

Z
2

0

3x2

dx

Since

Z
2

0

3x2

dx = 8, we want to find c so that

f(c) = 4 or, 3c2 = 4
Solving this equation using the quadratic for-

mula gives c = ± 2p
3

We are interested in the value that is in the

interval [0, 2], so c =
2p
3
.

34. We are looking for a value c, such that

f(c) =
1

1� (�1)

Z
1

�1

(x2 � 2x)dx

Since

Z
1

�1

(x2 � 2x)dx =
2

3
, we want to find c

so that f(c) =
1

3
or, c2 � 2c =

1

3

Solving this equation using the quadratic for-

mula gives c =
3± 2

p
3

3

We are interested in the value that is in the

interval [�1, 1], so c =
3� 2

p
3

3
.

35. (a)

Z
2

0

f(x)dx+

Z
3

2

f(x)dx =

Z
3

0

f(x)dx

(b)

Z
3

0

f(x)dx�
Z

3

2

f(x)dx =

Z
2

0

f(x)dx

36. (a)

Z
2

0

f(x)dx+

Z
1

2

f(x)dx =

Z
1

0

f(x)dx

(b)

Z
2

�1

f(x)dx+

Z
3

2

f(x)dx =

Z
3

�1

f(x)dx

37. (a)

Z
3

1

(f (x) + g (x)) dx

=

Z
3

1

f (x) dx+

Z
3

1

g (x) dx

= 3 + (�2) = 1

(b)

Z
3

1

(2f (x)� g (x)) dx

= 2

Z
3

1

f (x) dx�
Z

3

1

g (x) dx

= 2 (3)� (�2) = 8

38. (a)

Z
3

1

(f (x)� g (x)) dx

=

Z
3

1

f (x) dx�
Z

3

1

g (x) dx

= 3� (�2) = 5

(b)

Z
3

1

(4g (x)� 3f (x)) dx

= 4

Z
3

1

g (x) dx� 3

Z
3

1

f (x) dx

= 4 (�2)� 3 (3) = �17

39. (a)

3

2

1

2 31
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(b)

12

8

4

3 421

40. (a)

1

0 1

(b)

8

6

4

2

2-2 0

41. (a) Notice that x

2 sinx is a continuous func-
tion for all values of x and
for 1  x  2,
sinx  x

2 sinx  4 sinx.
On using theorem 4.3,we getZ

2

1

sinxdx 
Z

2

1

x

2 sinxdx


Z

2

1

4 sinxdx

(cos 1� cos 2) 
Z

2

1

x

2 sinxdx

 4 (cos 1� cos 2)

(b) Notice that x

2 sinx is a continuous func-
tion for all values of x and
for 1  x  2, x2 sin 1  x

2 sinx  x

2 .
On using theorem 4.3,we get

sin 1

Z
2

1

x

2

dx 
Z

2

1

x

2 sinxdx


Z

2

1

x

2

dx

sin 1
x

3

3

����
2

1


Z

2

1

x

2 sinxdx  x

3

3

����
2

1

7

3
sin 1 

Z
2

1

x

2 sinxdx  7

3

(c) Let us evaluate

Z
2

1

x

2 sinxdx

using

Z
2

1

x

2 sinxdx ⇡
nX

i=1

c

2

i

sin c
i

�x

and n = 6

Where c

i

=
x

i

+ x

i�1

2
, x

i

= 1 +
i

6
,

Here c

i

=
2 + i

6

+ (i�1)

6

2

=
(2i+ 11)

12
nX

i=1

�
c

2

i

sin c
i

�✓ 1

n

◆

=

"✓
13

12

◆
2

sin

✓
13

12

◆
+

✓
15

12

◆
2

sin

✓
15

12

◆

+

✓
17

12

◆
2

sin

✓
17

12

◆
+

✓
19

12

◆
2

sin

✓
19

12

◆

+

✓
21

12

◆
2

sin

✓
21

12

◆
+

✓
23

12

◆
2

sin

✓
23

12

◆#
.

1

6

Therefore,

Z
2

1

x

2 sinxdx ⇡ 2.2465

(cos 1� cos 2) 
Z

2

1

x

2 sinxdx

 4 (cos 1� cos 2)
) 0.9564  2.2465  3.8257
and
7

3
sin 1 

Z
2

1

x

2 sinxdx  7

3
) 1.9634  2.2465  2.3333
The second inequality gives a range which
is more closer to the value of the integral.
Therefore, part (b) is more useful than
part (a).

42. Notice that x

2

e

�
p
x is a continuous function

for all values of x � 0.
For 1  x  2,

e

�
p
2  e

�
p
x  e

�1
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Therefore x

2

e

�
p
2  x

2

e

�
p
x  x

2

e

�1

Thus, on using theorem 4.3.Z
2

1

x

2

e

�
p
2

dx 
Z

2

1

x

2

e

�
p
x

dx 
Z

2

1

x

2

e

�1

dx

e

�
p
2

x

3

3

����
2

1


Z

2

1

x

2

e

�
p
x

dx  e

�1

x

3

3

����
2

1

7

3
e

�
p
2 

Z
2

1

x

2

e

�
p
x

dx  7

3
e

�1

0.5672 
Z

2

1

x

2

e

�
p
x

dx  0.8583

43. This is just a restatement of the Integral Mean
Value Theorem.

44. Let c =
a+ b

2
. By definition,

Z
b

a

f(x)dx = lim
n!1

nX

i=1

f(c
i

)�x.

We can choose n to be always even, so that
n = 2m, andZ

b

a

f(x)dx = lim
n!1

nX

i=1

f(c
i

)�x

= lim
m!1

mX

i=1

f(c
i

)�x+ lim
m!1

nX

i=m+1

f(c
i

)�x

=

Z
c

a

f(x)dx+

Z
b

c

f(x)dx

45. Between x = 0 and x = 2, the area below the
x-axis is much less than the area above the x-
axis. Therefore

R
2

0

f(x)dx > 0

46. Between x = 0 and x = 2, the area above the
x-axis is much greater than the area below the
x-axis. Therefore

R
2

0

f(x)dx > 0

47. Between x = 0 and x = 2, the area below the
x-axis is slightly greater than the area above
the x-axis. Therefore

R
2

0

f(x)dx < 0

48. Between x = 0 and x = 2, the area below the
x-axis is much greater than the area above the
x-axis. Therefore

R
2

0

f(x)dx < 0

49.

Z
2

0

3xdx =
1

2
bh =

1

2
(2)(6) = 6

50.

Z
4

1

2xdx =
1

2
(a+ b)h =

1

2
(2 + 8)(3)

= 15

51.

Z
2

0

p
4� x

2 =
1

4
⇡r

2 =
1

4
⇡

�
22
�
= ⇡

52.

Z
0

�3

p
9� x

2

dx =
1

4
⇡r

2 =
1

4
⇡32

=
9⇡

4

53. (a) Given limit

lim
n!1

1

n

h
sin
⇣
⇡

n

⌘
+ ....+ sin

⇣
n⇡

n

⌘i

= lim
n!1

1

n

"
nX

i=1

sin

✓
i⇡

n

◆#

We know that

lim
x!1


nP

i=1

f(c
i

)�x

�
=
R
b

a

f(x)dx

Where c

i

= a+ i�x and �x =

✓
b� a

n

◆

On comparision,we get

c

i

=
i

n

,�x =
1

n

and

f(x) = sin(⇡x) ) a = 0, b = 1
Therefore

lim
n!1

1

n

"
nX

i=1

sin

✓
i⇡

n

◆#
=

Z
1

0

sin(⇡x)dx

(b) Given limit

= lim
n!1


n+ 1

n

2

+
n+ 2

n

2

+ ...+
2n

n

2

�

= lim
n!1

1

n

"
nX

i=1

n+ i

n

#

We know that

lim
x!1

"
nX

i=1

f(c
i

)�x

#
=

Z
b

a

f(x)dx

Where c

i

= a+ i�x and �x =

✓
b� a

n

◆

On comparision,we get

c

i

=
i

n

,�x =
1

n

and f(x) = 1 + x

) a = 0, b = 1
Therefore,

lim
n!1

1

n

"
nX

i=1

n+ i

n

�x

#
=

Z
1

0

(1 + x)dx

(c) Given limit

lim
n!1

"
f

�
1

n

�
+ f

�
2

n

�
+ ...+ f

�
n

n

�

n

#

= lim
n!1

1

n

"
nX

i=1

f

✓
i

n

◆#

We know that

lim
x!1

"
nX

i=1

f(c
i

)�x

#
=

Z
b

a

f(x)dx

Where c

i

= a+ i�x and �x =

✓
b� a

n

◆
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On comparision,we get

c

i

=
i

n

and �x = 1

n

) a = 0, b = 1
Therefore,

lim
n!1

1

n

"
nX

i=1

f

✓
i

n

◆#
=

Z
1

0

f(x)dx

54.
1

b� a

Z
b

a

f(x)dx = v

Z
b

a

f(x)dx = v(b� a)

and
1

c� b

Z
c

b

f(x)dx = w

Z
c

b

f(x)dx = w(c� b)

The average value of f over [a, c] is
1

c� a

Z
c

a

f(x)dx

=
1

c� a

"Z
b

a

f(x)dx+

Z
c

b

f(x)dx

#

=
1

c� a

[v(b� a) + w(c� b)]

=
v(b� a) + w(c� b)

c� a

55. Since b(t) represents the birthrate (in births
per month), the total number of births from
time t = 0 to t = 12 is given by the integralR
12

0

b(t) dt.
Similarly, the total number of deaths from time
t = 0 to t = 12 is given by the integralR
12

0

a(t) dt.
Of course, the net change in population is the
number of birth minus the number of deaths:
Population Change
= Births�Deaths

=

Z
12

0

b(t) dt�
Z

12

0

a(t) dt

=

Z
12

0

[b(t)� a(t)] dt.

Next we solve the inequality
410� 0.3t > 390 + 0.2t
20 > 0.5t then t < 40 months .
Therefore b(t) > a(t) when t < 40 months.
The population is increasing when the birth
rate is greater than the death rate, which is
during the first 40 month. After 40 months,
the population is decreasing. The population-
would reach a maximum at t = 40 months.

56. Since b(t) represents the birthrate (in births

per month), the total number of births from
time t = 0 to t = 12 is given by the integralZ

12

0

b(t)dt.

Similarly, the total number of deaths from time
t = 0 to t = 12 is given by the integralZ

12

0

a(t)dt.

Of course, the net change in population is the
number of birth minus the number of deaths:
Population Change
= Births�Deaths

=

Z
12

0

b(t)dt�
Z

12

0

a(t)dt

=

Z
12

0

[b(t)� a(t)]dt.

By graphing b(t) and a(t) we see that their
graphs intersect 9 times, at
t ⇡ 38.5, 40.1, 44.4, 46.9, 50.2, 53.6,
56.1, 60.5, 61.9.
This tells us that we have b(t) > a(t) on the
intervals
(0, 38.5), (40.1, 44.4), (46.9, 50.2),
(53.6, 56.1), (60.5, 61.9).
The maximum population will occur when t =
50.2.

404

402

396

60
t

394

50200

398

400

392

3010 70

390

40

57. From PV = 10 we get P (V ) = 10/V . By
definition,Z

4

2

P (V ) dV =

Z
4

2

10

V

dV

=
nX

i=1

2

n

· 10

2 + 2i

n

An estimate of the value of this integral is
setting n = 100, and then the integral ⇡ 6.93

58. The average temperature over the year is
1

12

Z
12

0

64� 24 cos
⇣
⇡

6
t

⌘
dt. If you look at the

graphs T (t) and f(t) = 64 you should be able
to see that the area under T (t) and f(t) be-
tween t = 0 to t = 12 are equal. This means
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that the average temperature is 64.

0
102
t

128640

80

60

40

20

59. Since r is the rate at which items are shipped,
rt is the number of items shipped between time
0 and time t. Therefore, Q � rt is the num-
ber of items remaining in inventory at time t.
Since Q � rt = 0 when t = Q/r, the formula
is valid for 0  t  Q/r. The average value of
f(t) = Q� rt on the time interval [0, Q/r] is

1

Q/r � 0

Z
Q/r

0

f(t)dt

=
r

Q

Z
Q/r

0

(Q� rt)dt

=
r

Q


Qt� 1

2
rt

2

�
Q/r

0

=
r

Q


Q

2

r

� r

2

Q

2

r

2

�

=
r

Q


Q

2

2r

�
=

Q

2
.

60. f(Q) = c

0

D

Q

+ c

c

Q

2

f

0(Q) = �c

0

D

Q

2

+
c

c

2
Setting f

0(Q) = 0 gives
c

0

D

Q

2

=
c

c

2

Q =

r
2c

0

D

c

c

. This is the right answer of Q

minimizing the total cost f(Q), since when the
value of Q is very small, the value of D/Q

will get very big, and when the value of Q

is very small, the value of Q/2 will get very
big. This means that the function f(Q) is de-
creasing on the interval [0,

p
2c

0

D/c

c

] and in-

creasing on the interval [
p

2c
0

D/c

c

,1]. When

Q =
p
2c

0

D/c

c

,

c

0

D

Q

=
c

0

Dq
2c0D

c

c

= c

c

q
2c0D

c

c

2
= c

c

Q

2
.

61. Delivery is completed in time Q/p, and since
in that time Qr/p items are shipped, the in-
ventory when delivery is completed is

Q� Qr

p

= Q

✓
1� r

p

◆
.

The inventory at any time is given by

g(t) =

8
<

:
(p� r)t for t 2

h
0, Q

p

i

Q� rt for t 2
h
Q

p

,

Q

r

i

The graph of g has two linear pieces. The av-
erage value of g over the interval [0, Q/r] is the
area under the graph (which is the area of a
triangle of base Q/r and height Q(1�r/p)) di-
vided by the length of the interval (which is the
base of the triangle). Thus the average value
of the function is (1/2)bh divided by b, which
is
(1/2)h = (1/2)Q(1� r/p).
This time the total cost is

f(Q) = c

0

D

Q

+ c

c

Q

2
(1� r

p

)

f

0(Q) = �c

0

D

Q

2

+
c

c

(1� r

p

)

2

f

0(Q) = 0 gives
c

0

D

Q

2

=
c

c

2
(1� r

p

)

Q =

s
2c

0

D

c

c

(1� r/p)
.

The order size to minimize the total cost is

Q =

s
2c

0

D

c

c

(1� r/p)
.

62. Use the result from Exercise 60,

Q =

r
2c

0

D

c

c

=

r
2(50, 000)(4000)

3800
⇡ 324.44.

Since this quantity already takes advantage of
largest possible discount, the order size that
minimizes the total cost is about 324.44 items.

63. The maximum of
F (t) = 9� 108(t� 0.0003)2

occurs when 108(t� 0.0003)2 reaches its mini-
mum, that is, when t = 0.0003. At that time
F (0.0003) = 9 thousand pounds.
We estimate the value of
Z

0.0006

0

[9� 108(t� 0.0003)2] dt using midpoint

sum and n = 20, and getm�v ⇡ 0.00360 thou-
sand pound-seconds, so �v ⇡ 360 ft per sec-
ond.

64. The impulse-momentum equation of Prob-
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lem 65 gives 5�v

=

Z
0.4

0

(1000� 25, 000(t� 0.2)2) dt

=

Z
0.4

0

(�25000t2 + 10000t) dt

Using a midpoint sum and n = 20 gives an
approximation for this integral of 267.0. This
means 5�v ⇡ 267 and �v ⇡ 53.4 m/s

4.5 The Fundamental Theorem

of Calculus

1.

Z
2

0

(2x� 3)dx =
�
x

2 � 3x
�����

2

0

= �2

2.

Z
3

0

�
x

2 � 2
�
dx =

✓
x

3

3
� 2x

◆����
3

0

= 3

3.

Z
1

�1

�
x

3 + 2x
�
dx =

✓
x

4

4
+ x

2

◆����
1

�1

= 0

4.

Z
2

0

�
x

3 + 3x� 1
�
dx

=

✓
x

4

4
� 3x2

2
� x

◆����
2

0

= �4

5.

Z
4

1

✓
x

p
x+

3

x

◆
dx

=

✓
2

5
x

5/2 + 3 log x

◆����
4

1

=
2

5
· 32 + 3 log 4� 2

5
.1� 3 log 1

=
62

5
+ 3 log 4

6.

Z
2

1

✓
4x� 2

x

2

◆
dx =

✓
2x2 +

2

x

◆����
2

1

= 5

7.

Z
1

0

�
6e�3x + 4

�
dx =

✓
6e�3x

�3
+ 4x

◆����
1

0

= � 2

e

3

+ 4 + 2� 0 = � 2

e

3

+ 6

8.

Z
2

0

✓
e

2x � 2e3x

e

3x

◆
dx

=

Z
2

0

�
e

�x � 2
�
dx =

�
�e

�x � 2x
�����

2

0

= � 1

e

2

� 3

9.

Z
⇡

⇡/2

(2 sinx� cosx)dx = �2 cosx� sinx

�����

⇡

⇡/2

= 3

10.

Z
⇡/2

⇡/4

3 cscx cotxdx = (�3 cscx)

�����

⇡/2

⇡/4

= �3 + 3
p
2

11.

Z
⇡/4

0

(sec t tan t) dt = sec t

�����

⇡/4

0

=
p
2� 1

12.

Z
⇡/4

0

sec2tdt = tan t

�����

⇡/4

0

= 1

13.

Z
1/2

0

3p
1� x

2

dx = 3sin�1

x

�����

1/2

0

= 3
⇣
⇡

6
� 0
⌘
=

⇡

2

14.

Z
1

�1

4

1 + x

2

dx = 4arctanx

����
1

�1

= 2⇡

15.

Z
4

1

t� 3

t

dt

=

Z
4

1

�
1� 3t�1

�
dt = (t� 3 ln |t|)

����
4

1

= 3� 3 ln 4

16.

Z
4

0

t (t� 2) dt =

✓
t

3

3
� t

2

◆����
4

0

=
16

3

17.

Z
t

0

⇣
e

x/2

⌘
2

dx = (ex)

����
t

0

= e

t � 1

18.

Z
t

0

�
sin2x+ cos2x

�
dx

=

Z
t

0

1dx = (x)

����
t

0

= t

19. The graph of y = 4 � x

2 is above the x-axis
over the interval [�2, 2].Z

2

�2

�
4� x

2

�
dx =

✓
4x� x

3

3

◆����
2

�2

=
32

3

20. The graph of y = x

2 � 4x is below the x-axis
over the interval [0, 4].
Z

4

0

�
�
x

2 � 4x
�
dx =

✓
�x

3

3
+ 2x2

◆����
4

0

=
32

3

21. The graph of y = x

2 is above the x-axis over
the interval [0, 2] .Z

2

0

x

2

dx =
x

3

3

����
2

0

=
8

3
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22. The graph of y = x

3 is above the x-axis over
the interval
[0, 3] .Z

3

0

x

3

dx =

✓
x

4

4

◆����
3

0

=
81

4

23. The graph of y = sinx is above the x-axis over
the interval [0,⇡] .Z

⇡

0

sinxdx = � cosx

����
⇡

0

= 2

24. The graph of y = sinx is below the x-axis over
the interval

⇥
�⇡

2

, 0
⇤
and above the x-axis over

the interval
⇥
0, ⇡

4

⇤
. Hence we need to compute

two seperate integrals and add them together:
Z

0

�⇡/2

� sinxdx+

Z
⇡/4

0

sinxdx

= 1 +

✓
1� 1p

2

◆
= 2� 1p

2
.

25. f

0 (x) = x

2 � 3x+ 2

26. f

0 (x) = x

2 � 3x� 4

27. f

0 (x) =
⇣
e

�(x2)2 + 1
⌘

d

dx

�
x

2

�

= 2x
⇣
e

�x

4

+ 1
⌘

28. f

0 (x) = � secx

29. f (x) =

Z
0

e

x

sin t2dt+

Z
2�x

0

sin t2dt

f

0 (x) = � sin e2x
d

dx

(ex)

+ sin (2� x)2
d

dx

(2� x)

= �e

x sin e2x � sin (2� x)2

30. f (x) =

Z
0

2�x

e

2t

dt+

Z
xe

x

0

e

2t

dt

f

0 (x) = �e

2(2�x)

d

dx

(2� x)

+ e

2(xe

x

)

d

dx

(xex)

= e

4�2x + e

2xe

x

(xex + e

x)

31. f (x) =

Z
0

x

2

sin (2t) dt+

Z
x

3

0

sin (2t) dt

f

0 (x) = � sin
�
2x2

�
d

dx

�
x

2

�

+ sin
�
2x3

�
d

dx

�
x

3

�

= �2x sin
�
2x2

�
+ 3x2 sin

�
2x3

�

32. f (x) ==

Z
0

3x

�
t

2 + 4
�
dt+

Z
sin x

0

�
t

2 + 4
�
dt

= �
Z

3x

0

�
t

2 + 4
�
dt+

Z
sin x

0

�
t

2 + 4
�
dt

f

0 (x) = �
�
9x2 + 4

�
d

dx

(3x)

+
�
sin2x+ 4

�
d

dx

(sinx)

= �27x2 � 12 + sin2x cosx+ 4 cosx

33. s (t) = 40t+ cos t+ c,

s (0) = 0 + cos 0 + c = 2

so therefore c = 1 and s (t) = 40t+ cos t+ 1.

34. s (t) = 10et + c,

s (0) = 10 + c = 2

so therefore c = �8 and s (t) = 10e�t � 8.

35. v (t) = 4t� t

2

2
+ c

1

,

v (0) = c

1

= 8

so therefore c

1

= 8 and v (t) = 4t� t

2

2
+ 8.

s (t) = 2t2 � t

3

6
+ 8t+ c

2

,

s (0) = c

2

= 0

so therefore c

2

= 0 and s (t) = 2t2 � t

3

6
+ 8t.

36. v (t) = 16t� t

3

3
+ c

1

,

v (0) = c

1

= 0

so therefore c

1

= 0 and

v (t) = 16t� t

3

3
.

s (t) = 8t2 � t

4

12
+ c

2

,

s (0) = c

2

= 30

so therefore c

2

= 30 and s (t) = 8t2 � t

4

12
+ 30.

37. Let w (t) be the number of gallons in the tank
at time t.

(a) The water level decreases if w

0 (t) =
f (t) < 0 i.e. if f (t) = 10 sin t < 0, for
which ⇡ < t < 2⇡.

Alternatively, the water level increases if
w

0 (t) = f (t) > 0 i.e. if f (t) = 10 sin t >
0, for which 0 < t < ⇡.

(b) Now,we start with

w

0 (t) = 10 sin t

Therefore,

Z
⇡

0

w

0 (t) dt =

Z
⇡

0

10 sin tdt

w (⇡)� w (0) = � 10 cos t|⇡
0
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But w (0) = 100.

Therefore,

w (⇡)� 100 = �10 (�1� 1) = 20
) w (⇡) = 120.

Therefore the tank will have 120 gallons
at t = ⇡.

38. Let w (t) be the number of thousand gallons in
the pond at time t.

(a) The water level decreases if w

0 (t) =
f (t) < 0 i.e. if f (t) = 4t � t

2

< 0, for
which 4 < t  6.

Alternatively, the water level increases if
w

0 (t) = f (t) > 0 i.e. if f (t) = 4t�t

2

> 0,
for which 0 < t < 4.

(b) Now, we start with w

0 (t) = 4t�t

2

, There-
foreZ

6

0

w

0 (t) dt =

Z
6

0

�
4t� t

2

�
dt

w (6)� w (0) =

✓
2t2 � t

3

3

◆����
6

0

But w (0) = 40.

Therefore,

w (6)� 40 = 72� 72 = 0
) w (6) = 40.

Therefore the pond has 40,000 gallons at
t=6.

39. y

0 (x) = sin
p
x

2 + ⇡

2.
At the point in question, y (0) = 0 and y

0 (0) =
sin⇡ = 0. Therefore, the tangent line has slope
0 and passes through the point (0, 0). The
equation of this line is y = 0.

40. y

0 (x) = ln
�
x

2 + 2x+ 2
�
.

At the point in question, y (�1) = 0 and
y

0 (�1) = ln 1 = 0. Therefore, the tangent
line has slope 0 and passes through the point
(�1, 0). The equation of this line is y = 0.

41. y

0 (x) = cos
�
⇡x

3

�
.

At the point in question, y (2) = 0 and y

0 (2) =
cos 8⇡ = 1. Therefore, the tangent line has
slope 1 and passes through the point (2, 0).
The equation of this line is y = x� 2.

42. y

0 (x) = e

�x

2
+1.

At the point in question, y (0) = 0 and y

0 (0) =
e. Therefore, the tangent line has slope e and
passes through the point (0, 0). The equation
of this line is y = ex.

43.

Z
2

0

p
x

2 + 1dx = lim
n!1

nX

i=1

2

n

s✓
2i

n

+ 1

◆

Estimating using n = 20, we get the Riemann
sum ⇡ 2.96.

44.

Z
2

0

�p
x+ 1

�
2

dx =

Z
2

0

�
x+ 2

p
x+ 1

�
dx

=

✓
x

2

2
+

4

3
x

3
2 + x

◆����
2

0

= 4 +
8
p
2

3
.

45.

Z
4

1

x

2

x

2 + 4
dx = lim

n!1

nX

i=1

3

n

⇣
1 + (3i/n)2

⌘

(3i/n)2 + 4

Estimating using n = 20, we get the Riemann
sum ⇡ 1.71.

46.
R
4

1

x

2 + 4

x

2

dx =
R
4

1

1 +
4

x

2

dx =
�
x� 4x�1

�����
4

1

= 6

47.

Z
⇡/4

0

sinx

cos2x
dx

=

Z
⇡/4

0

tanx secxdx = secx

�����

⇡/4

0

=
p
2� 1

48.

Z
⇡/4

0

tanx

sec2x
dx =

Z
⇡/4

0

sinx cosxdx

=

Z
⇡/4

0

1

2
sin 2xdx =

✓
�1

4
cos 2x

◆�����

⇡/4

0

=
1

4

49. From the graph of f(x),
Z

3

0

f (x) dx <

Z
2

0

f (x) dx <

Z
1

0

f (x) dx.

The function increases if g

0 (x) = f (x) > 0
i.e. when x < 1 or x > 3. Thus, the function
g (x) is increasing in the intervals (�1, 1) and
(3,1). The function g (x) has critical points
at g0 (x) = 0. i.e. when x = 1 or x = 3. There-
fore the critical points of g(x) are x = 1 and
x = 3.

50.

Z
1

0

f (x) dx <

Z
3

0

f (x) dx <

Z
2

0

f (x) dx.

The function increases if g0 (x) = f (x) > 0 i.e.
when 0 < x < 2 or x > 4. Thus, the function
g (x) is increasing in the intervals (0, 2) and
(4,1). The function g (x) has critical points
at g0 (x) = 0 i.e.when x = 0, x = 2 and x = 4.
Therefore the critical points of g(x) are x = 0,
x = 2 and x = 4.
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51. If you look at the graph of 1/x2, it is obvious
that there is positive area between the curve
and the x-axis over the interval [�1, 1]. In ad-
dition to this, there is a vertical asymptote in
the interval that we are integrating over which
should alert us to a possible problem.

The problem is that 1/x2 is not continuous
on [�1, 1] (the discontinuity occurs at x = 0)
and that continuity is one of the conditions in
the Fundamental Theorem of Calculus, Part
I(Theorem 4.1).

y

50

40

30

20

10

0

x

10.50-0.5-1

52. If you look at the graph of sec2x, it is obvious
that there is positive area between the curve
and the x-axis over the interval [0,⇡]. In ad-
dition to this, there is a vertical asymptote in
the interval that we are integrating over which
should alert us to a possible problem. The
problem is that sec2x is not continuous on [0,⇡]
and that continuity is one of the conditions in
the Fundamental Theorem of Calculus, Part I
(Theorem 4.1).

x

y

4

10

8

3

6

4

2

2

0
10-1

53. The integrals in parts (a) and (c) are improper,
because the integrands have asymptotes at one
of the limits of integration. The Fundamental
Theorem of Calculus applies to the integral in
part (b).

54. The Fundamental Theorem of Calculus applies
to the integral in part (a). The integral in part

(b) is improper since the point x = 3 lies in

the interval [0, 4], and
1

(x� 3)2
is not defined

at x = 3. The integral in part (c) is improper
since the point x = ⇡/2 lies in the interval
[0, 2], and secx is not defined at x = ⇡/2.

55. f

ave

=
1

3� 1

Z
3

1

�
x

2 � 1
�
dx

=
1

2

✓
x

3

3
� x

◆����
3

1

=
10

3

56. f

ave

=
1

1� 0

Z
1

0

�
2x� 2x2

�
dx

=

✓
x

2 � 2x3

3

◆����
1

0

=
1

3

57. f

ave

=
1

⇡/2� 0

Z
⇡/2

0

cosxdx

=
2

⇡

(sinx)|⇡/2
0

=
2

⇡

58. f

ave

=
1

2� 0

Z
2

0

e

x

dx

=
1

2
(ex)

����
2

0

=
1

2

�
e

2 � 1
�

59. (a) Using the Fundamental Theorem of Cal-
culus, it follows that an antiderivative of

e

�x

2

is

Z
x

a

e

�t

2

dt where a is a constant.

(b) Using the Fundamental Theorem of Cal-
culus, it follows that an antiderivative of

sin
p
x

2 + 1 is

Z
x

a

sin
p

t

2 + 1dt where a

is a constant.

60. It may be observed that f is piecewise contin-
uous over its domain.
For 0 < x  4,

g(x) =

Z
x

0

f (t) dt =

Z
x

0

�
t

2 + 1
�
dt

=

✓
t

3

3
+ t

◆����
x

0

=
x

3

3
+ x

Now, for x > 4

g(x) =

Z
x

0

f (t) dt

=

Z
4

0

f (t) dt+

Z
x

4

f (t) dt

=

Z
4

0

�
t

2 + 1
�
dt+

Z
x

4

�
t

3 � t

�
dt

=

✓
t

3

3
+ t

◆����
4

0

+

✓
t

4

4
� t

2

2

◆����
x

4
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=

✓
43

3
+ 4

◆
+

✓
x

4

4
� x

2

2
� 44

4
+

42

2

◆

=
x

4

4
� x

2

2
� 92

3

g (x) =

(
x

3

3

+ x for 0 < x  4
x

4

4

� x

2

2

� 92

3

for 4 < x

Consider

g

0 (4) = lim
h!0

g (4 + h)� g (4)

h

= lim
h!0

1

h

"Z
4+h

0

f (t) dt�
Z

4

0

f (t) dt

#

= lim
h!0

1

h

Z
4+h

4

f (t) dt.

The Right Hand Limit:

lim
h!0

+

1

h

Z
4+h

4

f (t) dt

= lim
h!0

+

1

h

Z
4+h

4

�
t

3 � t

�
dt

= lim
h!0

+

1

h


t

4

4
� t

2

2

�
4+h

4

= lim
h!0

+

1

h

"
(4 + h)4

4
� (4 + h)2

2
� 44

4
+

42

2

#

= lim
h!0

+

1

h


h

4

4
+ 4h3 � 47h2

2
+ 60h

�

= lim
h!0

+


h

3

4
+ 4h2 � 47h

2
+ 60

�
= 60.

Now, the Left Hand Limit:

lim
h!0

�

1

h

Z
4+h

4

f (t) dt

= lim
h!0

�

1

h

Z
4+h

4

�
t

2 + 1
�
dt

= lim
h!0

�

1

h


t

3

3
+ t

�
4+h

4

= lim
h!0

�

1

h

"
(4 + h)3

3
+ 4 + h� 43

3
� 4

#

= lim
h!0

+

1

h


h

3 + 12h2 + 48h+ 64

3
+ h� 64

3

�

= lim
h!0

+


h

2

3
+ 4h+ 17

�
= 17.

Therefore, g

0 (4) doesn’t exist though f (4)
exists. Therefore g

0(x) = f(x) is not true for
all x � 0.

61. f

0 (x) = x

2 � 3x+ 2.
Setting f

0 (x) = 0, we get (x� 1) (x� 2) = 0
which implies x = 1, 2.

f

0 (x) =

⇢
> 0 when t < 1 or t > 2
< 0 when 1 < t < 2

f (1) =

Z
1

0

�
t

2 � 3t+ 2
�
dt

=

✓
t

3

3
� 3t2

2
+ 2t

◆����
1

0

=
5

6

f (2) =

Z
2

0

�
t

2 � 3t+ 2
�
dt

=

✓
t

3

3
� 3t2

2
+ 2t

◆����
2

0

=
2

3
Hence f (x) has a local maximum at the

point

✓
1,

5

6

◆
and local minimum at the point

✓
2,

2

3

◆
.

62. g (x) =

Z
x

0

Z
u

0

f (t) dt

�
du

g

0 (x) =

Z
x

0

f (t) dt

g

00 (x) = f (x)
A zero of f corresponds to a zero of the second
derivative of g (possibly an inflection point of
g).

63. When a < 2 or a > 2, f is continuous. Using
the Fundamental Theorem of Calculus,h
lim
x!a

F (x)
i
� F (a)

= lim
x!a

[F (x)� F (a)]

= lim
x!a

Z
x

0

f (t) dt�
Z

a

0

f (t) dt

�

= lim
x!a

Z
x

a

f (t) dt

�
= 0

When a = 2,

lim
x!a

�

Z
x

a

f (t) dt

�
= lim

x!2

�

Z
x

2

tdt

�

= lim
x!2

�


t

2

2

�
x

2

= lim
x!2

�


x

2

2
� 22

2

�
= 0

and lim
x!a

+

Z
x

a

f (t) dt

�

= lim
x!2

+

Z
x

2

(t+ 1) dt

�

= lim
x!2

+


t

2

2
+ t

�
x

2

= lim
x!2

+


x

2

2
+ x� 22

2
� 2

�

= 0
Thus, for all value of a,h
lim
x!a

F (x)
i
� F (a) = 0

lim
x!a

F (x) = F (a)

Thus, F is continuous for all x. However, F 0 (2)
does not exist, which is shown as follows:

F

0 (2) = lim
h!0

F (2 + h)� F (2)

h
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= lim
h!0

1

h

"Z
2+h

0

f (t) dt�
Z

2

0

f (t) dt

#

= lim
h!0

1

h

Z
2+h

2

f (t) dt

We will show that this limit does not exist by
showing that the left and right limits are dif-
ferent. The right limit is

lim
h!0

+

1

h

Z
2+h

2

f (t) dt

= lim
h!0

+

1

h

Z
2+h

2

(t+ 1) dt

= lim
h!0

+

1

h


t

2

2
+ t

�
2+h

2

= lim
h!0

+

1

h

"
(2 + h)2

2
+ 2 + h� 22

2
� 2

#

= lim
h!0

+

1

h


h

2 + 4h+ 4

2
+ 2 + h� 4

�

= lim
h!0

+

1

h


h

2

2
+ 3h

�

= lim
h!0

+

1

h


h

2
+ 3

�
= 3

The left limit is

lim
h!0

�

1

h

Z
2+h

2

f (t) dt

= lim
h!0

�

1

h

Z
2+h

2

tdt

= lim
h!0

�

1

h


t

2

2

�
2+h

2

= lim
h!0

�

1

h

"
(2 + h)2

2
� 22

2

#

= lim
h!0

�

1

h


h

2 + 4h+ 4

2
� 2

�

= lim
h!0

�

1

h


h

2
+ 2

�
= 2

Thus, F 0(2) does not exist. This result does
not contradict the Fundamental Theorem of
Calculus, because in this situation, f(x) is not
continuous, and thus The Fundamental Theo-
rem of Calculus does not apply.

64. When x = 0,
lim
n!1

g

n

(x) = lim
n!1

f (xn)

= lim
n!1

f (0) = f (0)

When 0 < x < 1,
lim

n!x

n

= 0, and then

lim
n!1

g

n

(x) = lim
n!1

f (xn)

= f

⇣
lim

n!1
x

n

⌘
= f (0)

= lim
n!1

f (0) = f (0)

When x = 1,

lim
n!1

g

n

(x) = lim
n!1

f (xn)

= lim
n!1

f (1) = f (1) .

Thus the integral
R
1

0

g

n

(x) dx represents the
net area between the graph of f (xn) and the
x-axis. As n approaches 1,

f (xn) !
⇢

f (0) when 0  x < 1
f (1) when x = 1

Thus the integral
R
1

0

g

n

(x) dx approaches the
area of the shape of a rectangle with length
1 and width f (0) (possibly negative), which

means lim
n!1

R
1

0

g

n

(x) dx = f (0).

65.

Z
x

0

[f (t)� g (t)] dt

=

Z
x

0

[55 + 10 cos t� (50 + 2t)] dt

=

Z
x

0

[5 + 10 cos t� 2t] dt

= 5t+ sin t� t

2

��x
0

= 5x+ sinx� x

2

Since we are integrating the di↵erence in
speeds, the integral represents the distance
that Katie is ahead at time x. Of course, if
this value is negative, is means that Michael is
really ahead.

66. (a) CS =

Z
Q

0

D (q) dq � PQ

=

Z
Q

0

�
150q � 2q � 3q2

�
dq � PQ

=
�
150q � q

2 � q

3

���Q
0

� PQ

= 150Q�Q

2 �Q

3

�
�
150� 2Q� 3Q2

�
Q

= Q

2 + 2Q3

.

When Q = 4,
CS = 16 + 2 (64) = 144 dollors
When Q = 6, CS = 36 + 2 (216) =
468 dollors
The consumer surplus is higher for Q = 6
than that for Q = 4.

(b) CS =

Z
Q

0

D (q) dq � PQ

=

Z
Q

0

40e�0.05q

dq � PQ

=
�
�800e�0.05q

���Q
0

� PQ

= �800e�0.05Q + 800� 40e�0.05Q

= �840e�0.05Q + 800.
When Q = 10, CS = �840e�0.5 + 800 ⇡
290.5 dollors
When Q = 20, CS = �840e�1 + 800 ⇡
491.0 dollors
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The consumer surplus is higher for Q =
20 than that for Q = 10.

67. The next shipment must arrive when the in-
ventory is zero. This occurs at time T : f (t) =
Q� r

p
t

f (T ) = 0 = Q� r

p
T

r

p
T = Q

T =
Q

2

r

2

The average value of f on [0,T] is
1

T

Z
T

0

f (t) dt

=
1

T

Z
T

0

⇣
Q� rt

1/2

⌘
dt

=
1

T


Qt� 2

3
rt

3/2

�
T

0

=
1

T


QT � 2

3
rT

3/2

�

= Q� 2

3
r

p
T

= Q� 2

3
r

Q

r

=
Q

3

68. The total annual cost f (Q) = c

0

D

Q

+ c

c

A =

c

0

D

Q

+ c

c

Q

3

f

0 (Q) = �c

0

D

Q

2

+ c

c

1

3
f

0 (Q) = 0

gives that Q =
q

3c0D

c

c

.

This value of Q minimizes the total cost, since

f

0 (Q)

8
<

:
> 0 when Q <

q
3c0D

c

c

< 0 when Q >

q
3c0D

c

c

When Q =

r
3c

0

D

c

c

,

c

0

D

Q

= c

0

Dp
3c

0

D/c

c

= c

c

Q

3
= c

c

A

4.6 Integration By Substitu-

tion

1. Let u = x

3 + 2 and then du = 3x2

dx andZ
x

2

p
x

3 + 2dx =
1

3

Z
u

�1/2

du

=
2

9
u

3/2 + c =
2

9
(x3 + 2)u3/2 + c.

2. Let u = x

4 + 1and then du = 4x3

dx and

Z
x

3(x4 + 1)
�2/3

dx =
1

4

Z
u

�2/3

du

=
3

4
u

1/3 + c =
3

4
(x4 + 1)

1/3

+ c.

3. Let u =
p
x+ 2 and then du =

1

2
x

�1/2

dx and
Z

(
p
x+ 2)

3

p
x

dx = 2

Z
u

3

du

=
2

4
u

4 + c =
1

2
(
p
x+ 2)

4

+ c.

4. Let u = sinxand then du = cosxdx andZ
sinx cosxdx =

Z
udu

=
u

2

2
+ c =

sin2x

2
+ c.

5. Let u = x

4 + 3 and then du = 4x3

dx andZ
x

3

p
x

4 + 3dx =
1

4

Z
u

1/2

du

=
1

6
u

3/2 + c =
1

6
(x4 + 3)

3/2

+ c.

6. Let u = 1 + 10x, and then du = 10dx andZ p
1 + 10xdx =

1

10

Z p
udu

=
1

10

Z
u

1/2

du =
1

15
u

3/2 + c

=
1

15
(1 + 10x)3/2 + c.

7. Let u = cosx and then du = � sinxdx andZ
sinxp
cosx

dx = �
Z

dup
u

= �2
p
u+ c = �2

p
cosx+ c.

8. Let u = sinx and then du = cosxdx andZ
sin3x cosxdx =

Z
u

3

du

=
u

4

4
+ c =

sin4x

4
+ c.

9. Let u = t

3 and then du = 3t2dt andZ
t

2 cos t3dt =
1

3

Z
cosudu

=
1

3
sinu+ c =

1

3
sin t3 + c

10. Let u = cos t + 3 and then du = � sin tdt andZ
sin t(cos t+ 3)3/4dt = �

Z
u

3/4

du

= �4

7
u

7/4 + c = �4

7
(cos t+ 3)7/4 + c.

11. Let u = x

2 + 1 and then du = 2xdx andZ
xe

x

2
+1

dx =

Z
1

2
e

u

du =
1

2
e

u + c

=
1

2
e

x

2
+1 + c
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12. Let u = e

x + 4 and then du = e

x

dx andZ
e

x

p
e

x + 4dx =

Z p
udu =

2

3
u

3/2 + c

=
1

2
(ex + 4)3/2 + c

13. Let u =
p
x and then du = 1

2

p
x

dx and
Z

e

p
x

p
x

dx = 2

Z
e

u

du = 2eu + c = 2e
p
x + c

14. Let u =
1

x

and then du = � 1

x

2

dx and
Z

cos
�
1

x

�

x

2

dx = �
Z

cosudu = � sinu+ c

= � sin
1

x

+ c

15. Let u = lnx and then du = 1

x

dx and
Z p

lnx

x

dx =

Z p
udu =

2

3
u

3/2 + c

=
2

3
(lnx)3/2 + c

16. Let u = tanx and then du = sec2xdx and
Let u = lnx and then du = 1

x

dx andZ
sec2x

p
tanxdx =

Z
u

1/2

du

=
2

3
u

3/2 + c =
2

3
(
p
tanx)

3/2

+ c

17. Let t =
p
u+ 1 and then

dt =
1

2
u

�1/2

du =
1

2
p
u

du and

Z
1p

u (
p
u+ 1)

du = 2

Z
1

t

dt = 2 ln |t|+ c

= 2 ln
��p

u+ 1
��+ c = 2 ln

�p
u+ 1

�
+ c

18. Let u = v

2 + 4 and then du = 2vdv andZ
v

v

2 + 4
dv =

1

2

Z
1

u

du =
1

2
ln |u|+ c

=
1

2
ln
��
v

2 + 4
��+ c =

1

2
ln
�
v

2 + 4
�
+ c

19. Let u = lnx + 1 and then du =
1

x

dx and
Z

4

x(lnx+ 1)2
dx = 4

Z
u

�2

du

= �4u�1 + c = �4(lnx+ 1)�1 + c

20. Let u = cos 2x and then du = �2 sin 2xdx andZ
tan 2xdx =� 1

2

Z
1

u

du

= �1

2
ln |u|+ c = �1

2
ln | cos 2x|+ c

21. Let u = sin�1

x and then du =
1p

1� x

2

dx and

Let u = cos 2x and then du = �2 sin 2xdx and

Z
(sin�1

x)
3

p
1� x

2

dx =

Z
u

3

du

=
u

4

4
+ c =

(sin�1

x)
4

4
+ c

22. Let u = x

2 and then du = 2xdx andZ
xp

1� x

4

dx =
1

2

Z
1p

1� u

2

du

=
1

2
sin�1

u+ c =
1

2
sin�1

x

2 + c

23. (a) Let u = x

2 and then du = 2xdx andZ
xp

1� x

4

dx =
1

2

Z
1p

1� u

2

du

=
1

2
sin�1

u+ c =
1

2
sin�1

x

2 + c

(b) Let u = 1 � x

4 and then du = �4x3

dx

andZ
x

3

(1� x

4)1/2
dx = �1

4

Z
u

�1/2

du

= �1

2
u

1/2 + c = �1

2
(1� x

4)
1/2

+ c

24. (a) Let u = x

3 and then du = 3x2

dx andZ
x

2

1 + x

6

dx =
1

3

Z
1

1 + u

2

du

=
1

3
tan�1

u+ c =
1

3
tan�1

x

3 + c

(b) Let u = 1 + u

6 and then du = 6x5

dx andZ
x

5

1 + x

6

dx =
1

6

Z
1

u

du

=
1

6
ln |u|+ c =

1

6
ln |1 + x

6|+ c

25. (a)

Z
1 + x

1 + x

2

dx

=

Z
1

1 + x

2

dx+

Z
x

1 + x

2

dx

= tan�1

x+ c

1

+

Z
x

1 + x

2

dx

Let u = 1 + x

2 and then du = 2xdx.

= tan�1

x+ c

1

+
1

2

Z
1

u

du

= tan�1

x+ c

1

+
1

2
ln |u|+ c

2

= tan�1

x+
1

2
ln
��1 + x

2

��+ c

= tan�1

x+
1

2
ln
�
1 + x

2

�
+ c

(b)

Z
1 + x

1� x

2

dx =

Z
1 + x

(1� x) (1 + x)
dx

=

Z
1

1� x

dx

Let u = 1� x and then du = �dx.

= �
Z

1

u

du = � ln |u|+ c

= � ln |1� x|+ c



4.6. INTEGRATION BY SUBSTITUTION 279

26. (a) Let u = x

3/2 and then

du =
3

2
x

1/2

dx =
3

2

p
xdx and

Z
3
p
x

1 + x

3

dx = 2

Z
1

1 + u

2

du

= 2tan�1

u+ c = 2tan�1

⇣
x

3/2

⌘
+ c

(b) Let u = x

5
2 and then

du =
5

2
x

3
2
dx =

5

2
x

p
xdx and

Z
x

p
x

1 + x

5

dx =
2

5

Z
1

1 + u

2

du

=
2

5
tan�1

u+ c =
2

5
tan�1

⇣
x

5/2

⌘
+ c

27. Let u = t+ 7 and then du = dt, t = u� 7 andZ
2t+ 3

t+ 7
dt =

Z
2 (u� 7) + 3

u

du

=

Z ✓
2� 11

u

◆
du = 2u� 11 ln |u|+ c

= 2 (t+ 7)� 11 ln |t+ 7|+ c

28. Let u = t + 3 and then du = dt andZ
t

2

(t+ 3)1/3
dt =

Z
(u� 3)2

u

1/3

du

=

Z ⇣
u

5/3 � 6u2/3 + 9u�1/3

⌘
du

=
3

8
u

8/3 � 18

5
u

5/3 +
18

2
u

2/3 + c

=
3

8
(t+ 3)8/3� 18

5
(t+ 3)5/3+

18

2
(t+ 3)2/3+ c

29. Let u =
p
1 +

p
x and then (u2 � 1)

2

= x,
2(u2 � 1)(2u)du = dx andZ

1p
1 +

p
x

dx =

Z
4u(u2 � 1)

u

du

= 4

Z
(u2 � 1)du = 4(

u

3

3
� u) + c

=
4

3
(1 +

p
x)

3/2 � 4(1 +
p
x)

1/2

+ c

30. Let u = x

2 and then du = 2xdx andZ
dx

x

p
x

4 � 1
=

Z
du/2

u

p
u

2 � 1

=
1

2
sec�1

u+ c =
1

2
sec�1

x

2 + c

31. Let u = x

2 + 1 and then u = 2xdx, u(0) = 1,
u(2) = 5 andZ

2

0

x

p
x

2 + 1dx =
1

2

Z
5

1

p
udu

=
1

2
.

2

3
u

3/2

����
5

1

=
1

3
(
p
125� 1) =

5

3

p
5� 1

3

32. Let u = ⇡x

2 and then du = 2⇡xdx and
Z

3

1

x sin(⇡x2)dx =
1

2⇡

Z
9⇡

⇡

sinudu = (sinu)

����
9⇡

⇡

=

0

33. Let u = t

2 + 1 and then du = 2tdt,

u (�1) = 2 = u (1) andZ
1

�1

t

(t2 + 1)1/2
dt =

1

2

Z
2

2

u

�1/2

du = 0

34. Let u = t

3 and then du = 3t2dt,

u (0) = 0, u (2) = 8 andZ
2

0

t

2

e

t

3

dt =
1

3

Z
8

0

e

u

du =
1

3
e

u

����
8

0

=
1

3

�
e

8 � 1
�

35. Let u = e

x and then du = e

x

dx,

u(0) = 1, u(2) = e

2 and

Z
2

0

e

x

1 + e

2x

dx =

Z
e

2

1

1

1 + u

2

du = tan�1

u

�����

e

2

1

= tan�1

e

2 � ⇡

4

36. Let u = 1 + e

x and then du = e

x

dx,

u (0) = 2, u (2) = 1 + e

2 and

Z
2

0

e

x

1 + e

x

dx =

Z
1+e

2

2

1

u

du = ln (u)

�����

1+e

2

2

= ln
�
1 + e

2

�
� ln (2) = ln

✓
1 + e

2

2

◆

37. Let u = sinx and then du = cosxdx
u(⇡/4) = 1/

p
2, u(⇡/2) = 1 and

Z
⇡/2

⇡/4

cotxdx =

Z
1

1/

p
2

1

u

du = ln |u|

�����

1

1/

p
2

= ln
p
2

38. Let u = lnx and then du =
1

x

dx, u(1) = 0,

u(e) = 1 and
Z

e

1

lnx

x

dx =

Z
1

0

udu =
u

2

2

����
1

0

=
1

2

39.

Z
4

1

x� 1p
x

dx =

Z
4

1

(x1/2 � x

�1/2)dx

= (
2

3
x

3/2 � 2x1/2)

����
4

1

= (
16

3
� 4)� (

2

3
� 2) =

8

3

40. Let u = x

2 + 1 and then du = 2xdx andZ
1

0

x

(x2 + 1)1/2
dx =

1

2

Z
2

1

u

�1/2

du

= (u1/2)
���
2

1

=
p
2� 1

41. (a)

Z
⇡

0

sinx2

dx ⇡ .77 using midpoint evalu-

ation with n � 40.
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(b) Let u = x

2 and then du = 2xdx and
Z

⇡

0

x sinx2

dx =
1

2

Z
⇡

2

0

sinudu

=
1

2
(� cosu)

����
⇡

2

0

= �1

2
cos⇡2 +

1

2
⇡ 0.95134

42. (a) Let u = x

2 and then du = 2xdx,

u(�1) = 1, u(1) = 1 and

Z
1

�1

xe

�x

2

dx =

1

2

Z
1

1

e

�u

du = 0

(b)

Z
1

�1

e

�x

2

⇡ 1.4937 using midpoint evalua-

tion with n � 50.

43. (a)

Z
2

0

4x2

(x2 + 1)2
dx ⇡ 1.414 using right end-

point evaluation with n � 50.

(b) Let u = x

2 + 1 and then du = 2xdx,
x

2 = u� 1 andZ
2

0

4x3

(x2 + 1)2
dx =

Z
5

1

2.
u� 1

u

2

du

=

Z
5

1

(2u�1 � 2u�2)du

= (2 ln |u|+ 2u�1)
��5
1

= 2 ln 5� 8

5

44. (a)

Z
⇡/4

0

secxdx ⇡ .88 using midpoint evalu-

ation with n � 10.

(b)

Z
⇡/4

0

sec2xdx = (tanx)

�����

⇡/4

0

= 1.

45.
1

2

Z
4

0

f(u)du.

46.
1

3

Z
8

1

f(u)du.

47.

Z
1

0

f(u)du.

48.

Z
4

0

f(
p
x)p
x

dx = 2

Z
2

0

f(u)du.

49.

Z
a

�a

f(x)dx

=

Z
0

�a

f(x)dx+

Z
a

0

f(x)dx

Let u = �x and du = �dx in the first integral.
Then

Z
a

�a

f(x)

= �
Z

0

�a

f(�u)du+

Z
a

0

f(x)dx

=

Z
a

0

f(�u)du+

Z
a

0

f(x)dx

If f is even, then f(�u) = f(u), and soZ
a

�a

f(x)dx

=

Z
a

0

f(u)du+

Z
a

0

f(x)dx

=

Z
a

0

f(x)dx+

Z
a

0

f(x)dx

= 2

Z
a

0

f(x)dx

If f is odd, then f(�u) = �f(u), and soZ
a

�a

f(x)dx

= �
Z

a

0

f(u)du+

Z
a

0

f(x)dx

= �
Z

a

0

f(x)dx+

Z
a

0

f(x)dx

= 0

50. First, let u = x� T, then for any a,Z
a+T

T

f(x)dx =

Z
a

0

f(u+ T )du

=

Z
a

0

f(u)du =

Z
a

0

f(x)dx

If we let a = T, then we getZ
T

a

f(x)dx =

Z
2T

T

f(x)dx.

If we let a = 2T, then we getZ
2T

0

f(x)dx =

Z
3T

T

f(x)dx

and thenZ
T

0

f(x)dx =

Z
2T

T

f(x)dx

=

Z
2T

0

f(x)dx�
Z

T

0

f(x)dx

=

Z
3T

T

f(x)dx�
Z

2T

T

f(x)dx

=

Z
3T

2T

f(x)dx

It is straight forward to see that for any integer
i,
Z

T

0

f(x)dx =

Z
(i+1)T

iT

f(x)dx

Now suppose 0  a  T , then
Z

T

0

f(x)dx�
Z

a+T

a

dx
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=

Z
a

0

f(x)dx�
Z

a+T

T

f(x)dx

So

Z
T

0

f(x)dx =

Z
a+T

a

dx

Now suppose a is any number. Then a must lie
in some interval [iT, (i+1)T ] for some interger
i. Use the similar method as in above, we shall
get
Z

(i+1)T

iT

f(x)dx =

Z
a+T

a

f(x)dx

And since

Z
(i+1)T

iT

f(x)dx =

Z
T

0

f(x)dx,

we get

Z
T

0

f(x)dx =

Z
a+T

a

f(x)dx

51. (a) Let u = 10� x, so that du = �dx. Then,

I =

Z
10

0

p
x

p
x+

p
10� x

dx

= �
Z

x=10

x=0

p
10� up

10� u+
p
u

du

= �
Z

u=0

u=10

p
10� up

10� u+
p
u

du

=

Z
u=10

u=0

p
10� up

10� u+
p
u

du

I =

Z
x=10

x=0

p
10� xp

10� x+
p
x

dx

The last equation follows from the previ-
ous one because u and x are dummy vari-
ables of integration. Now note thatp

x

p
x+

p
10� x

=

p
x+

p
10� x�

p
10� x

p
x+

p
10� x

= 1�
p
10� x

p
x+

p
10� x

Thus,Z
10

0

p
x

p
x+

p
10� x

dx

=

Z
10

0


1�

p
10� x

p
x+

p
10� x

�
dx

=

Z
10

0

1dx�
Z

10

0

p
10� x

p
x+

p
10� x

dx

I =

Z
10

0

1dx� I

2I = 10
I = 5

(b) Let u = a� x, so that
du = �dx Then,

I =

Z
a

0

f(x)

f(x) + f(a� x)
dx

= �
Z

0

a

f(a� u)

f(a� u) + f(u)
du

=

Z
a

0

f(a� u)

f(a� u) + f(u)
du

I =

Z
a

0

f(a� x)

f(a� x) + f(x)
dx

The last equation follows from the previ-
ous one because u and x are dummy vari-
ables of integration. Now note that

f(x)

f(x) + f(a� x)

=
f(x) + f(a� x)� f(a� x)

f(x) + f(a� x)

= 1� f(a� x)

f(a� x) + f(x)
Thus,Z

a

0

f(x)

f(x) + f(a� x)
dx

=

Z
a

0


1� f(a� x)

f(a� x) + f(x)

�
dx

=

Z
a

0

1dx�
Z

a

0

f(a� x)

f(a� x) + f(x)
dx

2I = a

I = a/2

52. (a) Let u = 6� x, so that du = �dx.
Then,

I =

Z
4

2

sin2(9� x)

sin2(9� x) + sin2(x+ 3)
dx

= �
Z

2

4

sin2(u+ 3)

sin2(u+ 3) + sin2(9� u)
du

=

Z
4

2

sin2(u+ 3)

sin2(u+ 3) + sin2(9� u)
du

=

Z
4

2

sin2(x+ 3)

sin2(x+ 3) + sin2(9� x)
dx

=

Z
4

2


1� sin2(9� x)

sin2(x+ 3) + sin2(9� x)

�
dx

I =

Z
4

2

1dx� I

2I = 2
I = 1

(b) Let u = 6� x, so that du = �dx.
Then,

I =

Z
4

2

f(9� x)

f(9� x) + f(x+ 3)
dx

= �
Z

2

4

f(u+ 3)

f(u+ 3) + f(9� u)
du

=

Z
4

2

f(u+ 3)

f(u+ 3) + f(9� u)
du

=

Z
4

2

f(x+ 3)

f(x+ 3) + f(9� x)
dx
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=

Z
4

2


1� f(9� x)

f(x+ 3) + f(9� x)

�
dx

I =

Z
4

2

1dx� I

2I = 2
I = 1

53. Let 6�u = x+4; that is, let u = 2�x, so that
du = �dx.
Then,

I =

Z
2

0

f(x+ 4)

f(x+ 4) + f(6� x)
dx

= �
Z

0

2

f(6� u)

f(6� u) + f(u+ 4)
du

=

Z
2

0

f(6� u)

f(6� u) + f(u+ 4)
du

=

Z
2

0

f(6� x)

f(6� x) + f(x+ 4)
dx

=

Z
2

0

f(6� x) + f(x+ 4)� f(x+ 4)

f(6� x) + f(x+ 4)
dx

=

Z
2

0


1� f(x+ 4)

f(6� x) + f(x+ 4)

�
dx

I =

Z
2

0

1dx� I

2I = 2
I = 1

54. (a) Let u = x

1/6, so that du = 1

6

x

�5/6

dx.
Then,

I =

Z
1

x

5/6 + x

2/3

dx

=

Z
x

�5/6

dx

1 + x

�1/6

=

Z
6 du

1 + 1

u

=

Z
6u

u+ 1
du

Let v = u+1, then dv = du and u = v�1.

Then, I =

Z
6u

u+ 1
du

=

Z
6(v � 1)

v

dv

=

Z ✓
6� 6

v

◆
dv

= 6v � 6 ln |v|+ c

= 6(u+ 1)� 6 ln |u+ 1|+ c

= 6(x1/6 + 1)� 6 ln |x1/6 + 1|+ c

(b) Let u = x

1/6, so that du = (1/6)x�5/6

dx,
which means 6u5

du = dx.
Thus,Z

1p
x+ 3

p
x

dx

= 6

Z
u

5

u

3 + u

2

du

= 6

Z
u

3

u+ 1
du

= 6

Z 
u

2 � u+ 1� 1

u+ 1

�
du

= 6


u

3

3
� u

2

2
+ u� ln |u+ 1|

�
+ c

= 2x1/2 � 3x1/3 + 6x1/6

= �6 ln |x1/6 + 1|+ c

(c) Let u = x

1/q, then q du = x

(1�q)/q

dx, and

I =

Z
1

x

(p+1)/q + x

p/q

dx

=

Z
x

(1�q)/q

dx

x

(p+2�q)/q + x

(p+1�q)/q

dx

= q

Z
1

u

p+2�q + u

p+1�q

du

= q

Z
u

q�1�p

u+ 1
du

The rest of the calculation will depend on
the values of p and q.

55. First let u = ln
p
x, so that du =

x

�1/2(1/2)x�1/2

dx, so that 2du =
1

x

dx. Then,
Z

1

x ln
p
x

dx = 2

Z
1

u

du

= 2 ln |u|+ c

= 2 ln | ln
p
x|+ c

Now use the substitution u = lnx, so that
du = 1

x

dx. Then,
Z

1

x ln
p
x

dx =

Z
1

x ln(x1/2)
dx

=

Z
1

x

�
1

2

�
lnx

dx

= 2

Z
1

u

du

= 2 ln |u|+ c

1

= 2 ln | lnx|+ c

1

The two results di↵er by a constant, and
so are equivalent, as can be seen as follows:
2 ln | ln

p
x| = 2 ln | ln(x1/2)|

= 2 ln

����
1

2
lnx

����

= 2


ln

1

2
+ ln | lnx|

�

= 2 ln
1

2
+ 2 ln | lnx|

= 2 ln | lnx|+ constant

56. The area of the region bounded by the curve
y = ⇡x� x

2 and x-axis, where 0  x  1 isZ
1

0

�
⇡x� x

2

�
dx
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=

✓
⇡

x

2

2
� x

3

3

◆����
1

0

=
⇡

2
� 1

3
.

The area of the region bounded by the curve
y =

�
⇡ cosx� cos2x

�
sinx and x-axis, where

0  x  ⇡

2

is
R
⇡/2

0

�
⇡ cosx� cos2x

�
sinxdx.

Let u = cosx and then du = � sinxdx.

u (0) = 1, u
⇣
⇡

2

⌘
= 0.

=

Z
0

1

�
�⇡u+ u

2

�
du

= �⇡

✓
u

2

2

◆
+

u

3

3

����
0

1

=
⇡

2
� 1

3
Thus, the areas are equal.

1.5

0.5

2.5

2.0

1.0

0.0

1.00.750.50.250.0

2.0

1.8

1.6

1.4

1.2

1.0

0.6

0.8

0.4

0.2

0.0

57. The point is that if we let u = x

4

, then we get
x = ±u

1/4

, and so we need to pay attention to
the sign of u and x. A safe way is to solve the
original indefinite integral in terms of x, and
then solve the definite integral using boundary
points in terms of x.Z

1

�2

4x4

dx =

Z
x=1

x=�2

u

1/4

du

=
4

5
u

5/4

����
x=1

x=�2

=
4

5
x

5

����
x=1

x=�2

=
4

5

⇣
15 � (�2)5

⌘
=

4

5
(1� (�32)) =

132

5

58. The problem is that it is not true on entire in-

terval [0,⇡] that cosx =
p

1� sin2x. This is
only true on the interval

⇥
0, ⇡

2

⇤
. To make this

substitution correctly, one must break up the
integral:Z

⇡

0

cosx(cosx)dx

=

Z
⇡/2

0

cosx(cosx)dx+

Z
⇡

⇡/2

cosx(cosx)dx

=

Z
x=⇡/2

x=0

p
1� u

2

du

�
Z

x=⇡

x=⇡/2

p
1� u

2

du

=

✓
u

2
+

sin�1

u

2

◆����
x=⇡/2

x=0

�
✓
u

2
+

sin�1

u

2

◆����
x=⇡

x=⇡/2

=

✓
sinx

2
+

sin�1(sinx)

2

◆����
x=⇡/2

x=0

�
✓
sinx

2
+

sin�1(sinx)

2

◆����
x=⇡

x=⇡/2

=

✓
1

2
+

⇡

4

◆
� 0� 0 +

✓
1

2
+

⇡

4

◆

= 1 +
⇡

2

59. Let u = 1/x, so that du = �1/x2

dx, which
means that �1/u2

du = dx. Then,Z
1

0

1

x

2 + 1
dx = �

Z
1

1/a

1/u2

1/u2 + 1
du

=

Z
1/a

1

1

1 + u

2

du =

Z
1/a

1

1

1 + x

2

dx

The last equation follows from the previous one
because u and x are dummy variables of inte-
gration. Thus,

tan�1

x

��1
a

= tan�1

x

��1/a
1

tan�11� tan�1

a = tan�1

1

a

� tan�11

tan�1

a+ tan�1

1

a

= 2tan�11

tan�1

a+ tan�1

1

a

=
⇡

2

60. If u = 1/x, then du = �dx/x

2 andZ
1

|x|
p
x

2 � 1
dx

=

Z
1

x

2

p
x

2 � 1
dx

= �
Z

1p
1� u

2

du

= �sin�1

u+ c

= �sin�11/x+ c
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On the other hand,Z
1

|x|
p
x

2 � 1
dx = sec�1

x+ c

1

So �sin�11/x = sec�1

x+ c

2

.

Let x = 1, we get
sin�11 = sec�11 + c

2

⇡

2
= 0 + c

2

c

2

=
⇡

2

61. x =

R
2

�2

x

p
4� x

2

dx

R
2

�2

p
4� x

2

dx

Examine the denominator of x, the graph ofp
4� x

2, which is indeed a semicircle, is sym-
metric over the two intervals [�2, 0] and [0, 2],
while multiplying by x changes the symmetry
into anti-symmetry. In other words,Z

0

�2

x

p
4� x

2

dx = �
Z

2

0

x

p
4� x

2

dx

so thatZ
2

�2

x

p
4� x

2

dx

=

Z
0

�2

x

p
4� x

2

dx+

Z
2

0

x

p
4� x

2

dx = 0

Hence x = 0.
Now the integral

R
2

�2

p
4� x

2

dx is the area of
a semicircle with radius 2, thus its value is
(1/2)⇡22 = 2⇡. Then

y =

R
2

�2

�p
4� x

2

�
2

dx

2
R
2

�2

p
4� x

2

dx

=

R
2

�2

�
4� x

2

�
dx

2.2⇡

=

R
0

�2

�
4� x

2

�
dx+

R
2

0

�
4� x

2

�
dx

4⇡

=
2
R
2

0

�
4� x

2

�
dx

4⇡

=

R
2

0

�
4� x

2

�
dx

2⇡

=
1

2⇡

✓
4x� x

3

3

◆����
2

0

=
8

3⇡

62. These animals are likely to be found 0.7 miles
from the pond. Let u = �x

2, then du =
�2xdx, u(0) = 0, u(2) = �4 andZ

2

0

xe

�x

2

dx = �1

2

Z �4

0

e

u

du

= �1

2

�
e

�4 � 1
�
=

1� e

�4

2

0.4

0.2

0.3

x

20 0.5
0

1 1.5

0.1

63. V (t) = V

p

sin(2⇡ft)V 2(t)

= V

2

p

sin2(2⇡ft)

= V

2

p

✓
1

2
� 1

2
cos (4⇡ft)

◆

=
V

2

p

2
(1� cos (4⇡ft))

rms =

s

f

Z
1/f

0

V

2 (t) dt

=

s

f

Z
1/f

0

V

2

p

2
(1� cos (4⇡ft)) dt

=
V

p

p
fp
2

s✓
t� sin (4⇡ft)

4⇡f

◆����
1/f

0

=
V

p

p
fp
2

r
1

f

=
V

pp
2

64.

Z
2

�2

f

2 (t)dt

=

Z �1

�2

1dt+

Z
1

�1

t

2

dt+

Z
2

1

1dt

= 1 +
2

3
+ 1 =

8

3

rms =

s
1

4

Z
2

1

f

2 (t) dt

=

s
1

4

✓
8

3

◆
=

r
2

3

t
0

1

2

0.5

0
1

-0.5

-1

-1-2
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4.7 Numerical Integration

1. Midpoint Rule:

1R

0

�
x

2 + 1
�
dx

⇡ 1

4


f

✓
1

8

◆
+ f

✓
3

8

◆
+ f

✓
5

8

◆
+ f

✓
7

8

◆�

=
85

64
Trapezoidal Rule:

1R

0

�
x

2 + 1
�
dx

⇡ 1� 0

2 (4)


f (0) + 2f

✓
1

4

◆
+ 2f

✓
1

2

◆
+ 2f

✓
3

4

◆

+f (1)]

=
43

32
Simpson’s Rule:

1R

0

�
x

2 + 1
�
dx

=
1� 0

3 (4)


f (0) + 4f

✓
1

4

◆
+ 2f

✓
1

2

◆
+ 4f

✓
3

4

◆

+f (1)]

=
4

3

2. Midpoint Rule:

2R

0

�
x

2 + 1
�
dx

⇡ 1

2


f

✓
1

4

◆
+ f

✓
3

4

◆
+ f

✓
5

4

◆
+ f

✓
7

4

◆�

=
1

2

✓
17

16
+

25

16
+

41

16
+

65

16

◆

=
37

8
Trapezoidal Rule:

2R

0

�
x

2 + 1
�
dx

⇡ 1

4


f (0) + 2f

✓
1

2

◆
+ 2f (1) + 2f

✓
3

2

◆

+f (2)]

=
1

4

✓
1 +

5

2
+ 4 +

13

2
+ 5

◆

=
19

4
Simpson’s Rule:

2R

0

�
x

2 + 1
�
dx

=
1

6


f (0) + 4f

✓
1

2

◆
+ 2f (1) + 4f

✓
3

2

◆

+f (2)]

=
1

6
(1 + 5 + 4 + 13 + 5)

=
14

3

3. Midpoint Rule:

3R

1

1

x

dx

⇡ 3� 1

4


f

✓
5

4

◆
+ f

✓
7

4

◆
+ f

✓
9

4

◆
+ f

✓
11

4

◆�

=
1

2

✓
4

5
+

4

7
+

4

9
+

4

11

◆

=
3776

3465

Trapezoidal Rule:

3R

1

1

x

dx

⇡ 3� 1

2 (4)


f (1) + 2f

✓
3

2

◆
+ 2f (2) + 2f

✓
5

2

◆

+f (3)]

=
1

4

✓
1 +

4

3
+ 1 +

4

5
+

1

3

◆

=
67

60

Simpson’s Rule:

3R

1

1

x

dx

=
3� 1

3 (4)


f (1) + 4f

✓
3

2

◆
+ 2f (2) + 4f

✓
5

2

◆

+f (3)]

=
1

6

✓
1 +

8

3
+ 1 +

8

5
+

1

3

◆

=
11

10

4. Midpoint Rule:

1R

�1

�
2x� x

2

�
dx

⇡ 1

2


f

✓
�3

4

◆
+ f

✓
�1

4

◆
+ f

✓
1

4

◆
+ f

✓
3

4

◆�

=
1

2

✓
�33

16
� 9

16
+

7

16
+

15

16

◆

=
�5

8

Trapezoidal Rule:

1R

�1

�
2x� x

2

�
dx

⇡ 1

4


f (�1) + 2f

✓
�1

2

◆
+ 2f (0) + 2f

✓
1

2

◆

+f (1)]



286 CHAPTER 4. INTEGRATION

=
1

4

✓
�3� 5

2
+ 0 +

3

2
+ 1

◆

= �3

4
Simpson’s Rule:
1R

�1

�
2x� x

2

�
dx

⇡ 1

6


f (�1) + 4f

✓
�1

2

◆
+ 2f (0) + 4f

✓
1

2

◆

+f (1)]

=
1

6
(�3� 5 + 0 + 3 + 1)

= �2

3

5. Midpoint Rule:

ln 4� 1.366162 = 1.386294� 1.366162
= 0.020132

Trapezoidal Rule:

ln 4� 1.428091 = 1.386294� 1.428091
= �0.041797

Simpson’s Rule:

ln 4� 1.391621 = 1.386294� 1.391621
= �0.005327

Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

6. Midpoint Rule:
ln 8� 1.987287 = 2.079442� 1.987287
= 0.092155
Trapezoidal Rule:
ln 8� 2.289628 = 2.079442� 2.289628
= �0.210186
Simpson’s Rule:
ln 8� 2.137327 = 2.079442� 2.137327
= �0.057885
Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

7. Midpoint Rule:
sin 1� 0.843666 = 0.841471� 0.843666
= �0.002195
Trapezoidal Rule: sin 1 � 0.837084 =
0.841471� 0.837084
= 0.004387
Simpson’s Rule:
sin 1� 0.841489 = 0.841471� 0.841489
= �0.000018
Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

8. Midpoint Rule: e

2 � 7.322986 = 7.389056 �
7.322986
= 0.06607
Trapezoidal Rule: e

2 � 7.52161 = 7.389056 �
7.52161
= �0.132554
Simpson’s Rule: e

2 � 7.391210 = 7.389056 �
7.391210
= �0.002154
Hence, the approximation using Simpson’s
Rule is too small and the Approximation us-
ing Trapezoidal Rule is too large.

9.
⇡R

0

cosx2

dx

n Midpoint Trapezoidal Simpson

10 0.5538 0.5889 0.5660
20 0.5629 0.5713 0.5655
50 0.5652 0.566 0.5657

10.

⇡

4R

0

sin⇡x2

dx

n Midpoint Trapezoidal Simpson

10 0.386939 0.385578 0.386476
20 0.386600 0.386259 0.386485
50 0.386504 0.386450 0.386486

11.
2R

0

e

�x

2

dx

n Midpoint Trapezoidal Simpson

10 0.88220 0.88184 0.88207
20 0.88211 0.88202 0.88208
50 0.88209 0.88207 0.88208

12.
3R

0

e

�x

2

dx

n Midpoint Trapezoidal Simpson

10 0.886210 0.886202 0.886207
20 0.886208 0.886206 0.886207
50 0.886207 0.886207 0.886207

13.
⇡R

0

e

cos x

dx

n Midpoint Trapezoidal Simpson

10 3.9775 3.9775 3.9775
20 3.9775 3.9775 3.9775
50 3.9775 3.9775 3.9775

14.
1R

0

3
p
x

2 + 1dx

n Midpoint Trapezoidal Simpson

10 3.333017 3.336997 3.334337
20 3.334012 3.335007 3.334344
50 3.334291 3.334450 3.334344



4.7. NUMERICAL INTEGRATION 287

15. The exact value of this integral is
1R

0

5x4

dx = x

5

��1
0

= 1� 0 = 1

n Midpoint EM

n

10 1.00832 8.3⇥ 10�3

20 1.00208 2.1⇥ 10�3

40 1.00052 5.2⇥ 10�3

80 1.00013 1.3⇥ 10�3

n Trapezoidal ET

n

10 0.98335 1.6⇥ 10�2

20 0.99583 4.1⇥ 10�3

40 0.99869 1.0⇥ 10�3

80 0.99974 2.6⇥ 10�4

n Simpson ES

n

10 1.000066 6.6⇥ 10�5

20 1.0000041 4.2⇥ 10�6

40 1.00000026 2.6⇥ 10�7

80 1.00000016 1.6⇥ 10�8

16. The exact value of this integral is
2R

1

1

x

dx = ln 2

n Midpoint EM

n

10 0.692835 3.1⇥ 10�4

20 0.693069 7.8⇥ 10�5

40 0.693128 2.0⇥ 10�5

80 0.693142 4.9⇥ 10�6

n Trapezoidal ET

n

10 0.693771 6.2⇥ 10�4

20 0.693303 1.6⇥ 10�4

40 0.693186 3.9⇥ 10�5

80 0.693157 9.8⇥ 10�6

n Simpson ES

n

10 0.693150 3.1⇥ 10�6

20 0.693147 1.9⇥ 10�7

40 0.693147 1.2⇥ 10�8

80 0.693147 8.0⇥ 10�10

17. The exact value of this integral is
⇡R

0

cosxdx = sinx|⇡
0

= 0

n Midpoint EM

n

10 0 0
20 0 0
40 0 0
80 0 0

n Trapezoidal ET

n

10 0 0
20 0 0
40 0 0
80 0 0

n Simpson ES

n

10 0 0
20 0 0
40 0 0
80 0 0

18. The exact value of this integral is
⇡

4Z

0

cosxdx =
1p
2

n Midpoint EM

n

10 0.707289 1.8⇥ 10�4

20 0.707152 4.5⇥ 10�5

40 0.707118 1.1⇥ 10�5

80 0.707110 2.8⇥ 10�6

n Trapezoidal ET

n

10 0.706743 3.6⇥ 10�4

20 0.707016 9.1⇥ 10�5

40 0.707084 2.3⇥ 10�5

80 0.707101 5.7⇥ 10�6

n Simpson ES

n

10 0.7071087 1.5⇥ 10�7

20 0.7071068 9.5⇥ 10�9

40 0.7071068 6⇥ 10�10

80 0.7071068 6⇥ 10�10

19. If you double the error in the Midpoint Rule is
divided by 4, the error in the Trapezoidal Rule
is divided by 4 and the error in the Simpson’s
Rule is divided by 16.

20. If you halve the interval length b� a the error
in the Midpoint Rule is divided by 8, the error
in the Trapezoidal Rule is divided by 8 and the
error in the Simpson’s Rule is divided by 32.

21. Trapezoidal Rule:
2R

0

f (x) dx

⇡ 2� 0

2 (8)
[f (0) + 2f (0.25) + 2f (0.5)

+ 2f (0.75) + 2f (1) + 2f (1.25) + 2f (1.5)
+ 2f (1.75) + f (2)]

=
1

8
[4.0 + 9.2 + 10.4 + 9.6 + 10 + 9.2 + 8.8

+ 7.6 + 4.0]
= 9.1
Simpson’s Rule:
2R

0

f (x) dx

⇡ 2� 0

3 (8)
[f (0) + 4f (0.25) + 2f (0.5)

+ 4f (0.75) + 2f (1) + 4f (1.25) + 2f (1.5)
+4f (1.75) + f (2)]
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=
1

12
[4.0 + 18.4 + 10.4 + 19.2 + 10.0

+18.4 + 8.8 + 15.2 + 4.0]
⇡ 9.033

22. Trapezoidal Rule:
2R

0

f (x) dx

⇡ 0.25

2
[f (0) + 2f (0.25) + 2f (0.5)

+2f (0.75) + 2f (1) + 2f (1.25) + 2f (1.5)
+2f (1.75) + f (2)]

=
0.25

2
[(1.0) + 2(0.6) + 2(0.2) + 2(�0.2)

+ 2(�0.4) + 2(0.4) + 2(0.8)
+ 2(1.2) + (2.0)]
= 1.025.
Simpson’s Rule:
2R

0

f (x) dx

⇡ 0.25

3
[f (0) + 4f (0.25) + 2f (0.5)

+ 4f (0.75) + 2f (1) + 4f (1.25) + 2f (1.5)
+4f (1.75) + f (2)]

=
0.25

3
[(1.0) + 4 (0.6) + 2 (0.2) + 4 (�0.2)

+2 (�0.4) + 4 (0.4) + 2 (0.8) + 4 (1.2) + (2.0)]
⇡ 1.016667

23. (a) f (x) =
1

x

, f

00 (x) =
2

x

3

, f

(4) (x) =
24

x

5

.

Then K = 2, L = 24. Hence according to
Theorems 9.1 and 9.2,

|ET

4

|  2
(4� 1)3

12 · 42 ⇡ 0.281

|EM

4

|  2
(4� 1)3

24 · 42 ⇡ 0.141

|ES

4

|  24
(4� 1)5

180 · 42 ⇡ 0.127

(b) Using Theorems 9.1 and 9.2, and the cal-
culation in Example 9.10, we find the
following lower bounds for the number
of steps needed to guarantee accuracy of
10�7 in Exercise 5:

Midpoint:

r
2 · 33

24 · 10�7

⇡ 4745

Trapezoidal:

r
2 · 33

14 · 10�7

⇡ 6709

Simpson’s:
4

r
24 · 35

180 · 10�7

⇡ 135

24. (a) f(x) = cosx, f 00(x) = � cosx,
f

(4)(x) = cosx.Then K = L = 1.

Hence according to
Theorems 9.1 and 9.2,

|ET

4

|  1
1

12 · 42 ⇡ 0.005

|EM

4

|  1
1

24 · 42 ⇡ 0.003

|ES

4

|  1
1

180 · 44 ⇡ 2.17⇥ 10�5

(b) Midpoint: |E
n

|K (b� a)3

24n2

=
1

24n2

We want
1

24n2

 107

24n2 � 107

n

2 � 107

24

n �
r

107

24
⇡ 645.5

So need n � 646.

Trapezoid: |ET

n

|K (b� a)3

12n2

=
1

12n2

We want n2 � 107

12

n �
r

107

12
⇡ 912.87

n � 913

Simpson: |ES

n

|L (b� a)5

180n4

=
1

180n4

1

180n4

 10�7

180n4 � 107

n

4 � 107

180

n � 4

r
107

180
⇡ 15.4

So need n � 16.

25. (a) f(x) = lnx. Hence, f

0(x) = 1

x

and
f

00(x) = � 1

x

2 . Therefore |f 00(x)|  1.
The error using Trapezoidal Rule is

|E (T
n

)|  1
(2� 1)3

12n2

 10�6

|E (T
n

)|  1

12n2

 10�6

Solving for n,

|E (T
n

)|  1

12
106  n

2

n �
r

1

12
106

⇡ 288.67

(b) f(x) = lnx. Hence, f 0(x) = 1

x

, f

00(x) =
� 1

x

2 . Therefore |f 00(x)|  1.

The error using Midpoint Rule is
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|E (M
n

)|  1
(2� 1)3

24n2

 10�6

|E (M
n

)|  1

24n2

 10�6

Solving for n,

|E (M
n

)|  1

24
106  n

2

n �
r

1

24
106

⇡ 204.12

(c) f(x) = lnx. Hence, f 0(x) =
1

x

,

f

00(x) = � 1

x

2

, f

000(x) =
2

x

3

and f

(4) (x) =

� 6

x

4

. Therefore
���f (4) (x)

���  6.

The error using Simpson’s Rule is

|E (S
n

)|  6
(2� 1)4

180n4

 10�6

|E (S
n

)|  1

30n4

 10�6

Solving for n,

|E (S
n

)|  1

30
106  n

4

n � 4

r
1

30
106

⇡ 13.5

26. (a) f(x) = x lnx. Hence, f 0(x) = 1+lnx and

f

00(x) =
1

x

. Therefore |f 00(x)|  1.

|E (T
n

)|  1
(4� 1)3

12n2

 10�6

|E (T
n

)|  27

12n2

 10�6

Solving for n,

|E (T
n

)|  27

12
106  n

2

n �
r

27

12
106

= 1500.

(b) f(x) = x lnx. Hence, f 0(x) = 1 + lnx,

f

00(x) =
1

x

. Therefore |f 00(x)|  1.

The error using Trapezoidal Rule is

|E (M
n

)|  1
(4� 1)3

24n2

 10�6

|E (M
n

)|  27

24n2

 10�6

Solving for n,

|E (M
n

)|  27

24
106  n

2

n �
r

27

24
106

⇡ 1060.66

(c) f(x) = x lnx. Hence, f 0(x) = 1 + lnx,

f

00(x) =
1

x

, f

000(x) = � 1

x

2

and f

(4) (x) =
2

x

3

.

Therefore
���f (4) (x)

���  2.

The error using Simpson’s Rule is

|E (S
n

)|  2
(4� 1)4

180n4

 10�6

|E (S
n

)|  9

10n4

 10�6

Solving for n,

|E (S
n

)|  9

10
106  n

4

n � 4

r
9

10
106

⇡ 30.8

27. (a) f(x) = e

x

2

. Hence, f 0(x) = 2xex
2

,

f

00(x) = 2ex
2 �

2x2 + 1
�
. Therefore,

|f 00(x)|  6e ⇡ 16.3097.
The error using Trapezoidal Rule is

|E (T
n

)|  16.3097
(1� 0)3

12n2

 10�6

|E (T
n

)|  16.3097

12n2

 10�6

Solving for n,

|E (T
n

)|  16.3097

12
106  n

2

n �
r

16.3097

12
106

⇡ 1165.

(b) f(x) = e

x

2

. Hence, f 0(x) = 2xex
2

,

f

00(x) = 2ex
2 �

2x2 + 1
�
. Therefore,

|f 00(x)|  6e ⇡ 16.3097.
The error using Trapezoidal Rule is

|E (M
n

)|  16.3097
(1� 0)3

24n2

 10�6

|E (M
n

)|  16.3097

24n2

 10�6

Solving for n,

|E (M
n

)|  16.3097

24
106  n

2

n �
r

16.3097

24
106

⇡ 824.36

(c) f(x) = e

x

2

. Hence,

f

0(x) = 2xex
2

,

f

00(x) = 2ex
2 �

2x2 + 1
�
,

f

000(x) = 4ex
2 �

2x3 + 3x
�

f

(4) (x) = 4ex
2 �

4x4 + 12x2 + 3
�
.
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Therefore, |f 00(x)|  76e ⇡ 206.5823.
The error using Simpson’s Rule is

|E (S
n

)|  206.5823
(1� 0)4

180n4

 10�6

|E (S
n

)|  206.5823

180n2

 10�6

Solving for n,

|E (S
n

)|  206.5823

180
106  n

2

n � 4

r
206.5823

180
106

⇡ 32.7307.

28. (a) f(x) = xe

x

Hence,
f

0(x) = e

x (x+ 1)
f

00(x) = e

x (x+ 2)
Therefore,

|f 00(x)|  4e2 ⇡ 21.21
The error using Midpoint Rule is

|E (M
n

)|  21.21
(2� 1)3

24n2

 10�6

|E (M
n

)|  21.21

24n2

 10�6

Solving for n,

|E (M
n

)|  2402.0293

24
106  n

2

n �
r

21.21

24
106

⇡ 940.0797838

(b) f(x) = xe

x

Hence,
f

0(x) = e

x (x+ 1)
f

00(x) = e

x (x+ 2)
Therefore,

|f 00(x)|  4e2 ⇡ 21.21
The error using Trapezoidal Rule is

|E (T
n

)|  21.21
(2� 1)3

12n2

 10�6

|E (T
n

)|  21.21

12n2

 10�6

Solving for n,

|E (T
n

)|  21.21

12
106  n

2

n �
r

21.21

12
106

⇡ 1329.473580

(c) f(x) = xe

x

Hence,

f

0(x) = e

x (x+ 1) , f 00(x) = e

x (x+ 2)
f

000(x) = e

x (x+ 3)
f

(4) (x) = e

x (x+ 4)
Therefore,

���f (4) (x)
���  6e2 ⇡ 31.82

The error using Simpson’s Rule is

|E (S
n

)|  31.82
(2� 1)4

180n4

 10�6

|E (S
n

)|  31.82

180n2

 10�6

Solving for n,

|E (S
n

)|  31.82

180
106  n

2

n � 4

r
31.82

180
106

⇡ 20.50486515

29. We use K = 60, L = 120

n EM

n

Error Bound

10 8.3⇥ 10�3 2.5⇥ 10�2

n ET

n

Error Bound

10 1.6⇥ 10�2 5⇥ 10�2

n ES

n

Error Bound

10 7.0⇥ 10�5 6.6⇥ 10�3

30. We use K = L = 1.

n EM

n

Error Bound

10 0 1.3⇥ 10�2

n ET

n

Error Bound

10 0 2.6⇥ 10�2

n ES

n

Error Bound

10 0 1.7⇥ 10�4

31. (a) Left Endpoints:Z
2

0

f(x)dx

⇡ 2� 0

4
[f(0) + f(.5) + f(1)

+f(1.5)]

=
1

2
(1 + .25 + 0 + .25)

= .75

(b) Midpoint Rule:Z
2

0

f(x)dx

⇡ 2� 0

4
[f(.25) + f(.75)

+f(1.25) + f(1.75)]

=
1

2
(.65 + .15 + .15 + .65)

= .7

(c) Trapezoidal Rule:Z
2

0

f(x)dx
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⇡ 2� 0

2(4)
[f(0) + 2f(.5) + 2f(1)

+2f(1.5) + f(2)]

=
1

4
(1 + .5 + 0 + .5 + 1)

= .75

(d) Simpson’s rule:

2Z

0

f(x) dx

=
2

12
[f(0) + 4f(0.5) + 2f(1)

+4f(1.5) + f(2)]

=
1

6
[1 + 4(0.25) + 2(0) + 4(0.25) + 1]

=
1

6
[4]

= 0.66666

32. (a) Left Endpoints:Z
2

0

f(x)dx

⇡ 1

2
(f(0) + f(.5) + f(1) + f(1.5))

=
1

2
(0.5 + 0.8 + 0.5 + 0.1)

= 0.95

(b) Midpoint Rule:Z
2

0

f(x) dx

⇡ 1

2
(0.7 + 0.8 + 0.4 + 0.2)

= 1.05

(c) Trapezoidal Rule:Z
2

0

f(x)dx

⇡ 1

4
[0.5 + 2(0.8) + 2(0.5) + 2(0.1)

+ 0.5]
= 0.95

(d) Simpson’s rule:

2Z

0

f(x) dx

=
2� 0

12
[f(0) + 4f(0.5) + 2f(1)

+4f(1.5) + f(2)]

=
1

6
[0.5 + 4(0.9) + 2(0.5) + 4(0.1) + 0.5]

=
1

6
[0.5 + 3.6 + 1 + 0.4 + 0.5]

= 1

33. (a) Midpoint Rule:

M

n

<

bR
a

f (x)dx

(b) Trapezoidal Rule:

T

n

>

bR
a

f (x)dx

(c) Simpson’s Rule:
Not enough information.

34. (a) Midpoint Rule:

M

n

<

bR
a

f (x)dx

(b) Trapezoidal Rule:

T

n

>

bR
a

f (x)dx

(c) Simpson’s Rule:

S

n

�
bR
a

f (x)dx

35. (a) Midpoint Rule:

M

n

>

bR
a

f (x)dx

(b) Trapezoidal Rule:

T

n

<

bR
a

f (x)dx

(c) Simpson’s Rule:
Not enough information.

36. (a) Midpoint Rule: M
n

>

bR
a

f (x)dx

(b) Trapezoidal Rule: T
n

<

bR
a

f (x)dx

(c) Simpson’s Rule: S
n


bR
a

f (x)dx

37. (a) Midpoint Rule: M
n

<

bR
a

f (x)dx

(b) Trapezoidal Rule: T
n

>

bR
a

f (x)dx

(c) Simpson’s Rule: S
n

=
bR
a

f (x)dx

38. (a) Midpoint Rule: M
n

=
bR
a

f (x)dx

(b) Trapezoidal Rule: T
n

=
bR
a

f (x)dx

(c) Simpson’s Rule: S
n

=
bR
a

f (x)dx
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39. 1

2

(R
L

+R

R

)

=
n�1P
i=0

f (x
i

) +
nP

i=1

f (x
i

)

= f (x
0

) +
n�1P
i=1

f (x
i

) +
n�1P
i=1

f (x
i

) + f (x
n

)

= f (x
0

) + 2
n�1P
i=1

f (x
i

) + f (x
n

) = T

n

40.

x

y

0 0.5 1

2

1

41. I

1

=
1R

0

p
1� x

2

dx is one fourth of the area of

a circle with radius 1, so

1Z

0

p
1� x

2

dx =
⇡

4

I

2

=

1Z

0

1

1 + x

2

dx = arctan x|1
0

= arctan 1� arctan 0 =
⇡

4
n S

n

(
p
1� x

2) S

n

( 1

1+x

2 )

4 0.65652 0.78539
8 0.66307 0.78539

The second integral

Z
1

1 + x

2

dx provides a

better algorithm for estimating ⇡.

42.

hZ

�h

�
Ax

2 +Bx+ c

�
dx

=

✓
A

3
x

3 +
B

2
x

2 + cx

◆����
h

�h

=
2

3
Ah

3 + 2Ch

=
h

3

�
2Ah2 + 6C

�

=
h

3
[f (�h) + 4f (0) + f (h)]

43. (a)

1Z

�1

xdx = 0

✓
� 1p

3

◆
+

✓
1p
3

◆
= 0

(b)

1Z

�1

x

2

dx =
2

3
✓
� 1p

3

◆
2

+

✓
1p
3

◆
3

=
2

3

(c)

1Z

�1

x

3

dx = 0

✓
� 1p

3

◆
3

+

✓
1p
3

◆
3

= 0

44. Simpson’s Rule with n = 2 :
1Z

�1

⇡ cos
⇣
⇡x

2

⌘
dx

⇡ 2

6

✓
f (�1) + 4f

✓
�1

3

◆
+ f (1)

◆

=
1

3


⇡ cos

✓
�⇡

2

◆
+ 4⇡ cos

✓
�⇡

6

◆
+ ⇡ cos

⇣
⇡

2

⌘�

=
⇡

3

⇣
0 + 2

p
3 + 0

⌘
=

2⇡p
3

⇡ 3.6276

Gaussian quadrature:
1Z

�1

⇡ cos
⇣
⇡x

2

⌘
dx

⇡ f

✓
�1p
3

◆
+ f

✓
1p
3

◆

= ⇡ cos

✓
� ⇡

2
p
3

◆
+ ⇡ cos

✓
⇡

2
p
3

◆

⇡ 3.87164

45. Simpson’s Rule is not applicable because
sinx

x

is not defined at x = 0. L = lim
x!0

sinx

x

= lim
x!0

cosx

1
= cos 0 = 1

The two functions f (x) and
sinx

x

di↵er only

at one point,so
⇡R

0

f (x) dx =
⇡R

0

sinx

x

dx We can

now apply Simpson’s Rule with n = 2 :
⇡R

0

f (x) dx

⇡ ⇡

6

✓
1 +

4 sin⇡
⇡

2

+
sin⇡

⇡

◆

=
⇡

2

✓
1

3
+

8

3⇡

◆
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⇡ ⇡

2
· 1.18

46. The function
sinx

x

is not defined at x = 0, and

it is symmetric across the y-axis. We define a
new function

f(x) =

⇢
sinx/x if x 6= 0
1 if x = 0

over the interval [0,⇡/2], and

Z
⇡/2

�⇡/2

sinx

x

dx =

2

Z
⇡/2

0

f(x)dx

Use Simpson’s Rule on n = 2:Z
⇡/2

0

f(x)dx

⇡ ⇡

12

 
1 +

p
2

2

⇡/4
+

1

⇡/2

!

⇡ ⇡

2
· 15.22

Hence
Z

⇡/2

�⇡/2

sinx

x

dx ⇡ ⇡

2
· 30.44

47. Let I be the exact integral. Then we have

T

n

� I ⇡ �2(M
n

� I)
T

n

� I ⇡ 2I � 2M
n

T

n

+ 2M
n

⇡ 3I
T

n

3
+

2

3
M

n

⇡ I

48. The text does not say this, but we want to
show that

1

3

T

n

+ 2

3

M

n

= S

2n

In this case, we have data points:
x

0

, x

1

, x

2

, x

3

, ..., x

2n

.

The midpoint rule will use the points:
x

1

, x

3

, ..., x

2n�1

.

The trapezoidal rule will use the points:
x

0

x

2

, ..., x

2n

.

1

3
T

n

+
2

3
M

n

=

✓
1

3

◆✓
b� a

2n

◆
[f (x

0

) + 2f (x
2

) + 2f (x
4

)

+ ...+ 2f (x
2n�2

) + f (x
2n

)]

+

✓
2

3

◆✓
b� a

n

◆
⇥ [f (x

1

) + f (x
3

)

+ f (x
5

) + ...+ f (x
2n�1

) + f (x
2n

)]

=

✓
b� a

2n

◆
[f (x

0

) + 4f (x
1

) + 2f (x
2

)

+ 4f (x
3

) + 2f (x
4

) + ...+ 2f (x
2n�2

)
+ 4f (x

2n�1

) + f (x
2n

)]
= S

2n

49. f(x) + f(1� x)

=
x

2

2x2 � 2x+ 1
+

(1� x)2

2(1� x)2 � 2(1� x) + 1

=
x

2

2x2 � 2x+ 1

+
(1� x)2

2 (1� 2x+ x

2)� 2 + 2x+ 1

=
x

2

2x2 � 2x+ 1
+

(1� x)2

2x2 � 2x+ 1

=
x

2

x

2 + (x� 1)2
+

(1� x)2

(1� x)2 + x

2

=
x

2 + (1� x)2

x

2 + (1� x)2

= 1
By Trapezoidal Rule,
1Z

0

f (x) dx

=
(1� 0)

2n
[f(x

0

) + 2f(x
1

)

+ 2f(x
2

) + ...+ 2f(x
n�1

) + f(x
n

)]

=
(1� 0)

2n


f(0) + 2f(

1

n

)

+ 2f(
2

n

) + ...+ 2f(
n� 1

n

) + f(1)

�

as f(x) + f(1� x) = 1,
we have,
f(0) + f(1) = 1,

f(
1

n

) + f(
n� 1

n

) = 1

f(
2

n

) + f(
n� 2

n

) = 1
.

.

.

f(
n� 1

n

) + f(
1

n

) = 1

Adding the above n equations, we get

f(0) + 2f(

1

n

) + ..+ 2f(
n� 1

n

) + f(1)

�
= n

Hence,
1Z

0

f (x) dx =
1

2n
(n) =

1

2

50.

nZ

0

x

n

dx

=

✓
n� 0

2n

◆
[f

0

+ 2f
1

+ 2f
2

+ ...+ 2f
n�1

+ f

n

]

=
1

2
[f(0) + 2f(1) + 2f(2) + 2f(3) + .........

+ 2f(n� 1) + f(n)]

=
1

2
[(nn) + 2(1n + 2n + 3n + .......+ (n� 1)n]
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Now
nZ

0

x

n

dx =
x

n+1

n+ 1

����
n

0

=
n

n+1

n+ 1

The sum of the areas of the trapezoids is
greater than the area defined by the curve

over the interval 0 to n.
n

n+1

n+ 1
<

n

n

2
+ 1n +

2n + 3n + ...+ (n� 1)n

n

n+1

n+ 1
+

n

n

2
< 1n + 2n ++...+ (n� 1)n + n

n

2nn+1 + n

n+1 + n

n

2(n+ 1)
< 1n + 2n + .........+ n

n

3nn+1 + n

n

2(n+ 1)
< 1n + 2n + 3n + ..........+ n

n

(3n+ 1)

2(n+ 1)
n

n

< 1n + 2n + 3n + .........+ n

n

4.8 The Natural

Logarithm As An

Integral

1. ln 4 = ln 4� ln 1 = lnx|4
1

=

Z
4

1

dx

x

0.5

x
5

1.25

43

0.25

21

0.75

0

1.0

0.0

1.5

2. ln 5 =

Z
5

1

dx

x

x
5

1.25

0.75

3

0.25

1

1.5

4

0.5

0

1.0

2 6

0.0

3. ln 8.2 =

Z
8.2

1

dx

x

1.25

0.75

0.25

x
62

1.0

0.0

80

0.5

4

1.5

4. ln 24 =

Z
24

1

dx

x

x
25

1.25

0.75

15

0.25

5

1.5

20

0.5

0

1.0

10 30

0.0

5. ln 4 =

Z
4

1

dx

x

⇡ 3

12

✓
1

1
+ 4

1

1.75
+ 2

1

1.5
+ 4

1

3.25
+

1

4

◆

⇡ 1.3868

6. ln 5 =

Z
5

1

dx

x

⇡ 4

12

✓
1

1
+ 4

1

2
+ 2

1

3
+ 4

1

4
+

1

5

◆

⇡ 1.6108

7. (a) Simpson’s Rule with n = 32 :

ln 4 =
R
4

1

dx

x

⇡ 1.386296874
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(b) Simpson’s Rule with n = 64 :

ln 4 =
R
4

1

dx

x

⇡ 1.386294521

8. (a) Simpson’s Rule with n = 32 :

ln 4 =
R
4

1

dx

x

⇡ 1.609445754

(b) Simpson’s Rule with n = 64 :

ln 4 =
R
4

1

dx

x

⇡ 1.609438416

9.
7

2
ln 2

10. ln 2

11. ln

 
32 ·

p
3

9

!
= 1

2

ln 3

12. ln

✓
1

9

· 1

9

3

◆
= �5 ln 3

13.
1p

x

2 + 1
.

1

2

�
x

2 + 1
�� 1

2
.2x

14.
5x4 sinx cosx+ x

5cos2x� x

5 sinx

x

5 sinx cosx

15.
x

5 + 1

x

4

·
4x3

�
x

5 + 1
�
� x

4

�
5x4

�

(x5 + 1)2

16.

r
x

5 + 1

x

3

· 1
2
·
✓

x

3

x

5 + 1

◆�1/2

·
3x2

�
x

5 + 1
�
� x

3

�
5x4

�

(x5 + 1)2

17.
d

dx

1

2

 
ln
�
x

2 + 1
�

ln 7

!

=
1

2 ln 7

d

dx

�
ln
�
x

2 + 1
��

=
1

ln 7

✓
x

x

2 + 1

◆

18.
d

dx

✓
x ln 2

ln 10

◆
=

ln 2

ln 10

d

dx

(x) = log
10

2

19. Let y = 3sin x

On taking natural logarithm.

ln y = ln
�
3sin x

�
= sinx ln 3

1

y

dy

dx

=
d

dx

(sinx ln 3) = ln 3
d

dx

(sinx)

1

y

dy

dx

= (ln 3) cosx

dy

dx

= y (ln 3) cosx

dy

dx

= 3sin x (ln 3) cosx

20. y = 4
p
x

On taking natural logarithm.

ln y = ln
⇣
4
p
x

⌘
=

p
x ln 4

1

y

dy

dx

=
d

dx

�p
x ln 4

�

= (ln 4)
d

dx

�p
x

�

= (ln 4)

✓
1

2
p
x

◆

dy

dx

= y

(ln 4)

2
p
x

dy

dx

=
4
p
x (ln 4)

2
p
x

21.

Z
1

x lnx
dx = ln |lnx|+ c

22.

Z
1p

1� x

2sin�1

x

dx = ln
��sin�1

x

��+ c

23. Let u = x

2

, du = 2xdxZ
x3x

2

dx =
1

2

Z
3udu =

3x
2

2 ln 3
+ c

24. Let u = 2x, du = 2x(ln 2)dxZ
2x sin (2x) dx =

1

ln 2

Z
sin (u) du

=
� cos (2x)

ln 2
+ c

25. Let u =
2

x

, du =

✓
�2

x

2

◆
dx

Z
e

2/x

x

2

dx = �1

2

Z
e

u

du

= � 1

2eu
+ c = �1

2
e

2/x + c

26. Let u = lnx3

, du =

✓
3

x

◆
dx

Z
sin
�
lnx3

�

x

dx =
1

3

Z
sinudu

= �1

3
cosu+ c

= �1

3
cos
�
lnx3

�
+ c

27.

Z
1

0

x

2

x

3 � 4
dx

=
1

3
ln
��
x

3 � 4
��1
0

=
1

3
ln 3� 1

3
ln 4 =

1

3
ln

3

4

28.

Z
1

0

e

x � e

�x

e

x + e

�x

dx

= ln
��
e

x + e

�x

����1
0
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= ln
�
e+ e

�1

�
� ln 2

= ln

✓
e+ e

�1

2

◆

29.

Z
1

0

tanxdx =

Z
1

0

sinx

cosx
dx

= � ln |cosx||1
0

= � ln |cos 1|� ln |cos 0|
= � ln (cos 1)

30. Let u = lnx, du =
dx

xZ
lnx

x

dx =

Z
udx =

u

2

2
+ c

=
(lnx)2

2
+ c

Z
2

1

lnx

x

dx =
(lnx)2

2

�����

2

1

=
ln22

2
� ln21

2
=

ln22

2

31. ln
⇣
a

b

⌘
= ln

✓
a · 1

b

◆
= ln a+ ln

✓
1

b

◆

= ln a� ln b

32. Consider x = 2�n, where n is any integer for
x > 0.

On taking natural logarithm.

lnx = ln 2�n

) lnx = �n ln 2
Now x ! 0, 2�n ! 0 ) n ! 1
) lim

x!0+

(lnx) = lim
n!1

(�n ln 2)

= � (ln 2) lim
n!1

(n).

But, ln 2 ⇡ 0.6931 and lim
n!1

n = 1
) lim

x!0+

(lnx) = �1.

33. We know that by definition, ln(n) =

Z
n

1

1

x

dx

which is the area bounded by the curve y =
1

x

,

the positive x-axis between the ordinates x = 1

and x = n. Let y = f(x) =
1

x

.

1 43

y

2 6

2

0
0

5

1

3

x
5

4

From the graph, it may be observed that the

area bounded by y =
1

x

; the x-axis between

the ordinates x = 1 and x = n is lesser than
the shaded area which is the sum of areas of
the (n� 1) rectangles having width 1 unit and
height f (i)
Thus from the graph,
Z

n

1

1

x

dx <

n�1X

i=1

(f (i)⇥ 1)

ln(n) < f (1) + f (2) + f (3) + ...

..+ f (n� 1)

or ln(n) < 1 +
1

2
+ .....+

1

n� 1

Hence proved. We know that,

lim
n!1

ln(n) = 1

lim
n!1

✓
1 +

1

2
+ .....+

1

n� 1

◆
� lim

n!1
ln(n)

= 1

34. We know that by definition,

ln(n) =

Z
n

1

1

x

dx

which is the area bounded by the curve

y =
1

x

, the positive x-axis between the ord-

nates x = 1 and x = n.

Let y = f(x) =
1

x

.

y

2

20
x

5

5

4

3

4

1

1
0

3
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Let us consider (n � 1) rectangles, having
width 1 unit and height f (i+ 1) where i =
1, 2, 3, ........, n� 1. Thus from the graph,
Z

n

1

1

x

dx >

n�1X

i=1

(f (i+ 1)⇥ 1)

ln(n) > f (2) + f (3) + .....+ f (n)

or ln(n) >
1

2
+

1

3
.....+

1

n

.

35. Since the domain of the function y = lnx

is (0,1) , f 0 (x) =
1

x

> 0 for x > 0. So f

is increasing throughout the domain. Simi-

larly, f

00 (x) = � 1

x

2

< 0 for x > 0. There-

fore, the graph is concave down everywhere,
the graph of the function y = lnx is as below.

2

2.0
0

1.0 3.0

3

2.5

1

−1

1.5

−2

−3

0.50.0

36. Proof of (ii)

By using the rules of logarithm we have,

ln

✓
e

r

e

s

◆
= ln (er)� ln (es)

= r ln e� s ln e = r � s = ln
�
e

r�s

�

Since lnx is one to one, it follows that

e

r

e

s

= e

r�s

.

Proof of (iii)

By using the rules of logarithm we have,

ln (er)t = t ln (er) = rt ln e = ln
�
e

rt

�

Since lnx is one to one, it follows that

(er)t = e

rt

.

37. h = ln eh =

Z
e

h

1

1

x

dx =
e

h � 1

x̄

,

for some x̄ in (0, h)
e

h � 1

h

= x̄

as h ! 0+, x̄ ! 0, then

lim
h!0

+

e

h � 1

h

= 0

� h = ln e�h =

Z
e

�h

1

1

x

dx =
e

�h � 1

x̄

,

for some x̄ in (�h, 0)
e

�h � 1

�h

= x̄

as h ! 0+,�h ! 0�, x̄ ! 0, then

lim
h!0

+

e

�h � 1

�h

= 0

38. f (x) = lnx, then f

0 (x) = 1

x

and f

0 (1) = 1.
On the other hand

f

0 (a) = lim
x!a

lnx� ln a

x� a

f

0 (1) = lim
x!1

lnx� ln 1

x� 1
= 1

lim
x!1

lnx

x� 1
= 1

Thus the reciprocal of
lnx

x� 1
has the same

limit,

lim
x!1

x� 1

lnx
= 1

Substituting x = e

h

, lim
h!0

e

h � 1

h

= 1

39. (a) Given that, y = ln(x+1) by using a linear
approximation.

f(x) ⇡ f(x
0

) + f

0(x
0

) (x� x

0

)

For small value of x,

f(x) ⇡ f(0) + f

0(0) (x� 0)
ln(1 + x) ⇡ 0 + 1 · (x� 0)
ln(1 + x) ⇡ x.

(b) By using area under the curve.

Area the rectangle

= f(1) · x = x

Also,

Z
1+x

1

1

t

dt = ln t|1+x

1

= ln(1 + x)� ln(1)
= ln(1 + x).

As x approaches to zero, we get:
ln(1 + x) ⇡ x

40. f (x) = lnx� 1

f

0 (x) =
1

x

x

0

= 3

x

1

= x

0

� f (x
0

)

f

0 (x
0

)
= 3� ln 3� 1

1

3

= 6� 3 ln 3 ⇡ 2.704163133

x

2

= x

1

� f (x
1

)

f

0 (x
1

)
⇡ 2.718245098

x

3

= x

2

� f (x
2

)

f

0 (x
2

)
⇡ 2.718281827

e ⇡ 2.718282183
Three steps are needed to start at x

0

= 3 and
obtain five digits of accuracy.



298 CHAPTER 4. INTEGRATION

41. f (x) =
1

1 + e

�x

2

1.0

0

−1.0

3

2.0

1.5

0.5

1
0.0

−0.5

−1−2−3

Using lim
x!1

e

�x = 0 we get

lim
x!1

1

1 + e

�x

= 1.

Using lim
x!�1

e

�x = 1 we get

lim
x!1

1

1 + e

�x

= 0.

The function f(x) is increasing over (�1,1)
and when x = 0,

f (0) =
1

1 + 1
=

1

2
.

So g(x) =

⇢
0 if x < 0
1 if x � 0

The threshold value for g(x) to switch is x = 0.
One way of modifying the function to move
the threshold to x = 4 is to let f (x) =

1

1 + e

�(x�4)

.

42. 1� (9/10)10 ⇡ 0.65132
1� (19/20)20 ⇡ 0.64151
1� (9/10)10 > 1� (19/20)20

The probability of winning is lower.

When taking the limit as n ! 1,

lim
n!1


1�

✓
n� 1

n

◆
n

�

= 1� lim
n!1

✓
n� 1

n

◆
n

= 1� lim
n!1

✓
1 +

�1

n

◆
n

= 1� e

�1

43. s(x) = x

2 ln(1/x)
s

0(x) = 2x ln 1/x+ x

2 · x · (�1/x2)
= 2x ln(1/x)� x = x(2 ln(1/x)� 1)

s

0(x) = 0 gives
x = 0 (which is impossible) or
ln(1/x) = 1/2, x = e

�1/2

.

Since s

0(x)

⇢
< 0 if x < e

�1/2

> 0 if x > e

�1/2

The value x = e

�1/2 maximizes the transmis-
sion speed.

44. ln


lim

n!1

✓
1 +

1

n

◆
n

�

= lim
n!1

ln

✓
1 +

1

n

◆
n

= lim
n!1

n ln

✓
1 +

1

n

◆

= lim
n!1

ln(1 + 1/n)

1/n

= lim
n!1

�1/n2

�1/n2(1 + 1/n)

= lim
n!1

1

1 + 1/n

= 1

Ch. 4 Review Exercises

1.

Z
(4x2 � 3) dx =

4

3
x

3 � 3x+ c

2.

Z
(x� 3x5) dx =

x

2

2
� 1

2
x

6 + c

3.

Z
4

x

dx = 4 ln |x|+ c

4.

Z
4

x

2

dx = � 4

x

+ c

5.

Z
2 sin 4x dx = �1

2
cos 4x+ c

6.

Z
3 sec2 x dx = 3 tanx+ c

7.

Z
(x� e

4x) dx =
x

2

2
� 1

4
e

4x + c

8.

Z
3
p
x dx = 2x3/2 + c

9.

Z
x

2 + 4

x

dx =

Z
(x+ 4x�1) dx

=
x

2

2
+ 4 ln |x|+ c

10.

Z
x

x

2 + 4
dx =

1

2
ln(x2 + 4) + c

11.

Z
e

x(1� e

�x) dx =

Z
(ex � 1) dx

= e

x � x+ c
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12.

Z
e

x(1 + e

x)2 dx

=

Z
(ex + 2e2x + e

3x) dx

= e

x + e

2x +
1

3
e

3x + c

13. Let u = x

2 + 4, then du = 2x dx and
Z

x

p
x

2 + 4 dx

=
1

2

Z
u

1/2

du =
1

3
u

3/2 + c

=
1

3
(x2 + 4)3/2 + c

14.

Z
x(x2 + 4) dx =

Z
(x3 + 4x) dx

=
x

4

4
+ 2x2 + c

15. Let u = x

3

, du = 3x2

dxZ
6x2 cosx3

dx = 2

Z
cosu du

= 2 sinu+ c = 2 sinx3 + c

16. Let u = x

2

, du = 2x dxZ
4x secx2 tanx2

dx

= 2

Z
secu tanu du

= 2 secu+ c = 2 secx2 + c

17. Let u = 1/x, du = �1/x2

dxZ
e

1/x

x

2

dx = �
Z

e

u

du

= �e

u + c = �e

1/x + c

18. Let u = lnx, du = dx/xZ
lnx

x

dx =

Z
u du

=
u

2

2
+ c =

(lnx)2

2
+ c

19.

Z
tanx dx =

Z
sinx

cosx
dx

= � ln | cosx|+ c

20. Let u = 3x+ 1, du = 3 dxZ p
3x+ 1dx =

1

3

Z
u

1/2

du

=
1

3
· 2
3
u

3/2 + c =
2

9
(3x+ 1)3/2 + c

21. f(x) =

Z
(3x2 + 1) dx = x

3 + x+ c

f(0) = c = 2
f(x) = x

3 + x+ 2

22. f(x) =

Z
e

�2x

dx = �1

2
e

�2x + c

f(0) = �1

2
+ c = 3

c =
7

2

f(x) = �1

2
e

�2x +
7

2

23. s(t) =

Z
(�32t+ 10) dt

= �16t2 + 10t+ c

s(0) = c = 2
s(t) = �16t2 + 10t+ 2

24. v(t) =

Z
6 dt = 6t+ c

1

v(0) = c

1

= 10
v(t) = 6t+ 10

s(t) =

Z
(6t+ 10) dt = 3t2 + 10t+ c

2

s(0) = c

2

= 0
s(t) = 3t2 + 10t

25.
6X

i=1

(i2 + 3i)

= (12 + 3 · 1) + (22 + 3 · 2) + (32 + 3 · 3)
+ (42 + 3 · 4) + (52 + 3 · 5) + (62 + 3 · 6)
= 4 + 10 + 18 + 28 + 40 + 54
= 154

26.
12X

i=1

i

2 = 650

27.
100X

i=1

(i2 � 1)

=
100X

i=1

i

2 �
100X

i=1

1

=
100(101)(201)

6
� 100

= 338, 250

28.
100X

i=1

(i2 + 2i)

=
100X

i=1

i

2 + 2 ·
100X

i=1

i

=
100(101)(201)

6
+ 100(101)

= 348, 450

29.
1

n

3

nX

i=1

(i2 � i)

=
1

n

3

 
nX

i=1

i

2 � ·
nX

i=1

i

!
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=
1

n

3

✓
n(n+ 1)(2n+ 1)

6
� n(n+ 1)

2

◆

=
(n+ 1)(2n+ 1)

6n2

� n+ 1

2n2

lim
n!1

1

n

3

nX

i=1

(i2 � i)

= lim
n!1

✓
(n+ 1)(2n+ 1)

6n2

� n+ 1

2n2

◆

=
2

6
� 0 =

1

3

30. Evaluation points: 0.25, 0.75, 1.25, 1.75

Riemann sum = �x

nX

i=1

f(c
i

)

=
2

4

4X

i=1

(c2
i

� 2c
i

)

=
1

2

⇥
(0.252 � 2 · 0.25) + (0.752 � 2 · 0.75)

+(1.252 � 2 · 1.25) + (1.752 � 2 · 1.75)
⇤

= �2.75

1

-0.4

0

-0.8

0.4

0.50
x

1.5 2

31. Riemann sum =
2

8

8X

i=1

c

2

i

= 2.65625

32. Riemann sum =
2

8

8X

i=1

c

2

i

= 0.6875

33. Riemann sum =
3

8

8X

i=1

c

2

i

⇡ 4.668

34. Riemann sum =
1

8

8X

i=1

c

2

i

⇡ 0.6724

35.

(a) Left-endpoints:Z
1.6

0

f(x) dx

⇡ 1.6� 0

8
(f(0) + f(.2) + f(.4)

+ f(.6) + f(.8) + f(1) + f(1.2)
+ f(1.4))

=
1

5
(1 + 1.4 + 1.6 + 2 + 2.2 + 2.4

+ 2 + 1.6)
= 2.84

(b) Right-endpoints:Z
1.6

0

f(x) dx

⇡ 1.6� 0

8
(f(.2) + f(.4) + f(.6)

+ f(.8) + f(1) + f(1.2) + f(1.4)
+ f(1.6))

=
1

5
(1.4 + 1.6 + 2 + 2.2 + 2.4

+ 2 + 1.6 + 1.4)
= 2.92

(c) Trapezoidal Rule:Z
1.6

0

f(x) dx

⇡ 1.6� 0

2(8)
[f(0) + 2f(.2) + 2f(.4)

+ 2f(.6) + 2f(.8) + 2f(1)
+ 2f(1.2) + 2f(1.4) + f(1.6)]

= 2.88

(d) Simpson’s Rule:Z
1.6

0

f(x) dx

⇡ 1.6� 0

3(8)
[f(0) + 4f(.2) + 2f(.4)

+ 4f(.6) + 2f(.8) + 4f(1)
+ 2f(1.2) + 4f(1.4) + f(1.6)]

⇡ 2.907

36.

(a) Left-endpoints:Z
4.2

1

f(x) dx

⇡ (0.4)[f(1.0) + f(1.4) + f(1.8)
+ f(2.2) + f(2.6) + f(3.0)
+ f(3.4) + f(3.8)]

= (0.4)(4.0 + 3.4 + 3.6 + 3.0
+ 2.6 + 2.4 + 3.0 + 3.6)

= 10.24

(b) Right-endpoints:Z
4.2

1

f(x) dx

⇡ (0.4)[f(1.4) + f(1.8) + f(2.2)
+ f(2.6) + f(3.0) + f(3.4)
+ f(3.8) + f(4.2)]

= (0.4)(3.4 + 3.6 + 3.0 + 2.6
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+ 2.4 + 3.0 + 3.6 + 3.4)
= 10.00

(c) Trapezoidal Rule:Z
4.2

1

f(x) dx

⇡ 0.4

2
[f(1.0) + 2f(1.4) + 2f(1.8)

+ 2f(2.2) + 2f(2.6) + 2f(3.0)
+ 2f(3.4) + 2f(3.8) + f(4.2)]

= (0.2)[4.0 + 2(3.4) + 2(3.6)
+ 2(3.0) + 2(2.6) + 2(2.4)
+ 2(3.0) + 2(3.6) + 3.4]

= 10.12

(d) Simpson’s Rule:Z
4.2

1

f(x) dx

⇡ 0.4

3
[f(1.0) + 4f(1.4) + 2f(1.8)

+ 4f(2.2) + 2f(2.6) + 4f(3.0)
+ 2f(3.4) + 4f(3.8) + f(4.2)]

=
0.4

3
[4.0 + 4(3.4) + 2(3.6)

+ 4(3.0) + 2(2.6) + 4(2.4)
+ 2(3.0) + 4(3.6) + 3.4]

⇡ 10.05333

37. See Example 7.10.

Simpson’s Rule is expected to be most accu-
rate.

38. In this situation, the Midpoint Rule will be less
than the actual integral. The Trapezoid Rule
will be an overestimate.

39. We will compute the area A

n

of n rectangles
using right endpoints. In this case �x = 1

n

and
x

i

= i

n

A

n

=
nX

i=1

f(x
i

)�x =
1

n

nX

i=1

f

✓
i

n

◆

=
1

n

nX

i=1

2 ·
✓
i

n

◆
2

=
2

n

3

nX

i=1

i

2

=

✓
2

n

3

◆
n(n+ 1)(2n+ 1)

6

=
(n+ 1)(2n+ 1)

3n2

Now, to find the integral, we take the limit:Z
1

0

x

2

dx = lim
n!1

A

n

= lim
n!1

(n+ 1)(2n+ 1)

3n2

=
2

3

40. We will compute the area A

n

of n rectangles

using right endpoints. In this case �x =
2

n

and x

i

=
2i

n

A

n

=
nX

i=1

f(x
i

)�x =
2

n

nX

i=1

f

✓
2i

n

◆

=
2

n

nX

i=1

✓
2i

n

◆
2

+ 1

=
8

n

3

nX

i=1

i

2 +
2

n

nX

i=1

1

=

✓
8

n

3

◆
n(n+ 1)(2n+ 1)

6
+

✓
2

n

◆
n

=
4(n+ 1)(2n+ 1)

3n2

+ 2

Now, to find the integral, we take the limit:Z
2

0

(x2 + 1) dx = lim
n!1

A

n

= lim
n!1

✓
4(n+ 1)(2n+ 1)

3n2

+ 2

◆

=
8

3
+ 2 =

14

3

41. Area =

Z
3

0

(3x� x

2) dx

=

✓
3x2

2
� x

3

3

◆ ���
3

0

=
9

2

42. Area

=

Z
1

0

(x3 � 3x2 + 2x) dx

�
Z

2

1

(x3 � 3x2 + 2x) dx

=
1

4
+

1

4
=

1

2

43. The velocity is always positive, so distance
traveled is equal to change in position.

Dist =

Z
2

1

(40� 10t) dt

= (40t� 5t2)
���
2

1

= 25

44. The velocity is always positive, so distance
traveled is equal to change in position.

Dist =

Z
2

0

20e�t/2

dt = (�40e�t/2)
���
2

0

= 40(�e

�1 + 40) ⇡ 25.2848
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45. f

ave

=
1

2

Z
2

0

e

x

dx =
e

2 � 1

2
⇡ 3.19

46. f

ave

=
1

4

Z
4

0

(4x� x

2) dx =
8

3

47.

Z
2

0

(x2 � 2) dx =

✓
x

3

3
� 2x

◆ ���
2

0

= �4

3

48.

Z
1

�1

(x3 � 2x) dx =

✓
x

4

4
� x

2

◆ ���
1

�1

= 0

49.

Z
⇡/2

0

sin 2x dx = �1

2
cos 2x

���
⇡/2

0

= 1

50.

Z
⇡/4

0

sec2 x dx = tanx
���
⇡/4

0

= 1

51.

Z
10

0

(1� e

�t/4) dt

=
⇣
t+ 4e�t/4

⌘ ���
10

0

= 6 + 4e�5/2

52.

Z
1

0

te

�t

2

dt

=

✓
�1

2
e

�t

2

◆ ���
1

0

= �1

2
(e�1 � 1)

53.

Z
2

0

x

x

2 + 1
dx =

1

2
ln |x2 + 1|

���
2

0

=
ln 5

2

54.

Z
2

1

lnx

x

dx =

✓
ln2 x

2

◆ ���
2

1

=
ln2 2

2

55.

Z
2

0

x

p
x

2 + 4 dx

=

✓
1

2
· 2
3
· (x2 + 4)3/2

◆ ���
2

0

=
16
p
2� 8

3

56.

Z
2

0

x(x2 + 1) dx

=

✓
1

4
(x2 + 1)2

◆ ���
2

0

= 6

57.

Z
1

0

(ex � 2)2 dx =

Z
1

0

(e2x�4e

x

+4) dx

=

✓
1

2
e

2x � 4ex + 4x

◆ ���
2

0

=

✓
e

2

2
� 4e+ 4

◆
�
✓
1

2
� 4

◆

=
e

2

2
� 4e+

15

2

58.

Z
⇡

�⇡

cos(x/2) dx

= (2 sin(x/2))
���
⇡

�⇡

= 4

59. f

0(x) = sinx2 � 2

60. f

0(x) =
p
(x2)2 + 1 · 2x

61.

a) Midpoint Rule:Z
1

0

p
x

2 + 4 dx

⇡ 1� 0

4


f

✓
1

8

◆
+ f

✓
3

8

◆

+f

✓
5

8

◆
+ f

✓
7

8

◆�

⇡ 2.079

b) Trapezoidal Rule:Z
1

0

p
x

2 + 4 dx

⇡ 1� 0

2(4)


f(0) + 2f

✓
1

4

◆

+2f

✓
1

2

◆
+ 2f

✓
3

4

◆

+f(1)]
⇡ 2.083

c) Simpson’s Rule:Z
1

0

p
x

2 + 4 dx

⇡ 1� 0

3(4)


f(0) + 4f

✓
1

4

◆

+2f

✓
1

2

◆
+ 4f

✓
3

4

◆
+ f(1)

�

⇡ 2.080

62.

a) Midpoint Rule:Z
2

0

e

�x

2
/4

dx

⇡ 2

4
[f(0.25) + f(0.75)

+ f(1.25) + f(1.75)]
⇡ 1.497494

b) Trapezoidal Rule:Z
2

0

e

�x

2
/4

dx

⇡ 2

8
[f(0) + 2f(.5) + 2f(1)
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+ 2f(1.5) + f(2)]
⇡ 1.485968

c) Simpson’s Rule:Z
2

0

e

�x

2
/4

dx

⇡ 2

12
[f(0) + 4f(.5) + 2f(1)

+ 4f(1.5) + f(2)]
⇡ 1.493711

63.
n Midpoint Trapezoid Simpson’s

20 2.08041 2.08055 2.08046
40 2.08045 2.08048 2.08046

64.
n Midpoint Trapezoid Simpson’s

20 1.493802 1.493342 1.493648
40 1.493687 1.493572 1.493648

65. Consider u = tanh
�
t

2

�
=

sinh
�
t

2

�

cosh
�
t

2

�

=

⇣
e

t

2 �e

� t

2

2

⌘

⇣
e

t

2
+e

� t

2

2

⌘ =

⇣
e

t

2 � e

� t

2

⌘

⇣
e

t

2 + e

� t

2

⌘

therefore
1� u

2

1 + u

2

=
1�

⇣
e

t

2 �e

� t

2

e

t

2
+e

� t

2

⌘
2

1 +
⇣

e

t

2 �e

� t

2

e

t

2
+e

� t

2

⌘
2

=

⇣
e

t

2 + e

� t

2

⌘
2

�
⇣
e

t

2 � e

� t

2

⌘
2

⇣
e

t

2 + e

� t

2

⌘
2

+
⇣
e

t

2 � e

� t

2

⌘
2

=
2 (et + e

�t)

4
= cosh t ,

similarly,
2u

1 + u

2

=

2

⇣
e

t

2 �e

� t

2

⌘

⇣
e

t

2
+e

� t

2

⌘

1 +
⇣

e

t

2 �e

� t

2

e

t

2
+e

� t

2

⌘
2

=
2
⇣
e

t

2 � e

� t

2

⌘⇣
e

t

2 + e

� t

2

⌘

⇣
e

t

2 + e

� t

2

⌘
2

+
⇣
e

t

2 � e

� t

2

⌘
2

=
2 (et � e

�t)

4
= sinh t

(a)

Z
1

sinh t+ cosh t
dt

=

Z
1

2u

(1�u

2
)

+ (1+u

2
)

(1�u

2
)

du

(Put:u = tanh(t/2))

=

Z �
1� u

2

�

(1 + u)2
du

=

Z ✓
1� u

1 + u

◆
du

=

Z ✓
2

1 + u

� 1

◆
du

= 2 ln (1 + u)� u

= 2 ln (1 + tanh(t/2))� tanh(t/2)

(b)

Z
sinh t+ cosh t

1 + cosh t
dt

=

Z
2u

(1�u

2
)

+
(1+u

2)
(1�u

2
)

1 + (1+u

2
)

(1�u

2
)

du

=

Z
(1 + u)2

2
du

=
1

2

 
(1 + u)3

3

!

=
(1 + tanh(t/2))3

6
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