
Chapter 5

Applications of

the Definite

Integral
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on (A,B) and the area between the
curves is given by the integral
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But again because u = 0 at both A and B, we
know that
aA2 + bA+ c = mA+ n and
aB2 + bB + c = mB + n.

By subtraction of the first from second, fac-
toring out (and canceling) B � A, we learn
a(B + A) = m � b, so that our target inte-
gral is also given by
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and the student who cares enough can finish
the details.

The case in which a > 0(y
2

> y
1

) is not essen-
tially di↵erent.

34. Perhaps the most straightforward way to han-
dle this problem is by brute force. First, the
area is given by
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We can set up equations for the fact that the
graphs meet at A and B. At A and B, we set
the functions equal. At B, we set the deriva-
tives equal.
aA3 + bA2 + cA+ d = kA2 +mA+ n
aB3 + bB2 + cB + d = kB2 +mB + n
3aB2 + 2bB + c = 2kB +m

We now have a system of equations. We solve
the last equation for m and plug the result
in for m in the previous two equations. This
transforms the three equations to
aA3 + (b� k)A2 � 3aAB2

� 2(b� k)AB + d� n = 0

� 2aB3 � (b� k)B2 + d� n = 0
m = 3aB2 + 2(b� k)B + c.

We solve the second equation for n and plug
the result into the first equation which then
gives
aA3 + (b� k)A2 � 2(b� k)AB � 3aAB2

+ 2aB3 + (b� k)B2 = 0
n = �2aB3 � (b� k)B2 + d
m = 3aB2 + 2(b� k)B + c.

Finally, solving the first equation for k gives
k = aA+ 2aB + b.

We now substitute m, then n and then finally
k in to the equation for area. After simplifying
this finally gives

Area =
±a(A�B)4

12
.

35. Let the upper parabola be
y = y

1

= qx2 + v + h and let the lower be
y = y

2

= px2+v. They are to meet at x = w/2,
so we must have
qw2/4 + h = pw2/4, hence
h = (p� q)w2/4 or (q � p)w2 = �4h.

Using symmetry, the area between the curves
is given by the integral
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= 2[hw/2 + (q � p)w3/24]
= w[h+ (q � p)w2/12]
= w[h� 4h/12] = (2/3)wh.

36. Solve the equation 2� x2 = mx we get

x =
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p
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2
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2
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=
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The minimum of (m2 + 8)3/2/6 happens when
m = 0 and then
1

6
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1

6
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8
p
2

3

37. Solve for x in x� x2 = L we get
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p
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By setting A
1

= A
2

, we get the final answer

L =
16

3
.

38. Solve for x in x� x2 = kx we get
x = 0, x = 1� k

And the areas are

A
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2

=
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0
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Z
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· [1� (1� k)3]

We want A
1

= A
2

, that is, we want A
2

= 1/12,
that is,

1� (1� k)3 =
1

2

(1� k)3 =
1

2
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1
3
p
2

k = 1� 1
3
p
2

39. (a) Consider
2R

0

�
2x� x2

�
dx

The integrand consists of the two curves
y = 2x and y = x2. Both these curves
intersect, when 2x = x2 i.e. whenx =
0 orx = 2. therefore The given integral
represents the area between the curves
y = 2x and y = x2 Which is A

2

.

(b) Consider
2R

0

�
4� x2

�
dx

The integrand consists of two curves y = 4
and y = x2. Both these curves intersect
when 4 = x2 i.e. when x = �2 orx = 2.
But we consider x = 2, as the area lies
in the 1st Quadrant therefore the given
integral represents the area between the
curves y = 4 and y = x2 which is A

1

+A
2

.

(c) Consider
4R

0

�
2�p

y
�
dy

Here the limits of integration correspond
to the y-coordinates of the point of inter-
section of the two curves. This is because
here the variable is y and not x. The in-
tegrand consists of two curves x = 2 and
x =

p
y
�
i.e. y = x2 withx > 0

�
. Both

these curves intersect, when 2 =
p
y

i.e. when y = 4. therefore The given in-
tegral represents the area between the
curves x = 2 and x =

p
y which is A

3

(d) Consider

4Z

0

⇣p
y � y

2

⌘
dy

Here the limits of integration correspond
to the y-coordinates of the point of in-
tersection of the two curves. This is be-
cause here the variable is y and not x.
The integrand consists of two curves x =
p
y
�
i.e. y = x2 withx > 0

�
and x =

y

2
.

Both these curves intersect, when
y

2
=

p
y i.e. when y2 � 4y = 0 i.e. at y =

0and y = 4. therefore the given integral
represents the area between the curves

x =
p
y and x =

y

2
which is A

2

(same

as part (a)).

40. (a) Consider the area A
2

+A
3

. It may be ob-
served from the part (a) of the Exercise
39 that, A

2

is the area bounded by the
curves y = 2x, y = x2 between the or-
dinates x = 0 and x = 2. It may also
be observed from the part (c) of the Ex-
ercise 39 that, A

3

is the area bounded by
the curves x = 2 and y = x2 i.e.x =

p
y

therefore from the given figure A
2

+A
3

is
the area bounded by the curves y = 2x
i.e. x = y

2

and x = 2. therefore

A
2

+A
3

=

4Z

0

⇣
2� y

2

⌘
dy.

Note that here we have y as the variable.

(b) Consider the area A
1

+A
2

, refer part (b)
of the Exercise 39 It is in fact the converse
of that part.

(c) Consider the area A
1

, from the given fig-
ure it may be observed that, A

1

is the area
bounded by curves y = 4 and y = 2x. Be-
tween the ordinates x = 0 and x = 2.

Therefore A
1

=
2R

0

(4� 2x) dx
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(d) A
3

refer part (c) or the Exercise 39. Note
that here we have y as the variable.

41. The area between two curves y = sin2 (x) and
y = 1, for 0  x  t is given by:

f (t) =

tZ

0

�
1� sin2x

�
dx =

tZ

0

�
cos2x

�
dx

=
1

2

tZ

0

(1 + cos 2x) dx

=
1

2
[x]t

0

+
1

4
[sin 2x]t

0

) f (t) =
1

2
t+

1

4
sin 2t

For finding the critical points,
f 0 (t) = 0, therefore
1

2
+

1

4
cos 2t · (2) = 0.

) 1 + cos 2t = 0
or cos 2t = �1
) 2t = n⇡ for n = 1, 3, 5, ......

or t =
n⇡

2
for n = 1, 3, 5, ......

Now, f 00 (t) = � sin 2t substituting the value
of t in f 00 (t), we get f 00 (t) = 0. Therefore,

t =
n⇡

2
for n = 1, 3, 5, ...... are the points of

inflection.

42. Given g (x) is a continuous function of x, for
x � 0 and |g (x)|  1. f (t) is the area between
y = g (x) and y = 1 for 0  x  t, therefore

f (t) =
tR

0

(1� g (x)) dx. As g (x) has the local

maxima at x = a, g0 (a) = 0 and g00 (a) < 0.
Now from (1)
f 0 (t) = (1� g (t))
) f 00 (t) = �g0 (t)
) f 00 (a) = �g0 (a) = 0
also f 0 (a) = (1� g (a)) � 0.
Thus f (t) has an point of inflection at x = a
and a need not be the critical point, it is only
if g (a) = 1. If there is a local minima at x = a,
then g0 (a) = 0 and g00 (a) > 0. This does not
a↵ect the answer.

43. f(4) = 16.1e.07(4) = 21.3
g(4) = 21.3e.04(4�4) = 21.3
21.3 represents the consumption rate (million
barrels per year) at time t = 4 (1/1/74).Z

10

4

⇣
16.1e.07t � 21.3e.04(t�4)

⌘
dt

=
⇣
230e.07t � 532.5e.04(t�4)

⌘���
10

4

= 14.4 million barrels saved

44. Area =

Z
10

0

[76e0.03t � (50� 6e0.09t)] dt

⇡ 483.616
This area represents amount of wood used
by firewood that was not replaced with new
growth.

45. For t � 0,
b(t) = 2e.04t � 2e.02t = d(t)Z

10

0

�
2e.04t � 2e.02t

�
dt

=
�
50e.04t � 100e.02t

���10
0

= 2.45 million people.
This number represents births minus deaths,
hence population growth over the ten-year in-
terval.

46. These curves intersect when

T =
ln 3� ln 2

.02
⇡ 20.27325541

The area between the curves for 0  t  T
is the decrease in population from 0  t  T
(because b(t) < d(t) in this time period).

The area between the curves for T  t  30
is the increase in population from T  t  30
(because b(t) > d(t) in this time period).

The change in population is given by the inte-
gral:

�P =

Z
3

0

[b(t)� d(t))] dt

=

Z
3

0

2e0.04t � 4e0.02t dt

⇡ 7.3120 million people

47. Without formulae or tables, only rough or
qualitative estimates are possible.

time 1 2 3 4 5

amount 397 403 401 412 455

V (3) ⇡ 374, V (4) ⇡ 374, V (5) ⇡ 404

0 1 2 3 4 5
350

400

450

time

g
al

lo
n
s

48. The change in amount of water is equal to the
integral of the di↵erence between the functions
(the rate in minus the rate out). Approximat-
ing this integral:Z

1

0

(Into�Out) dt ⇡ 0
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Z
2

0

(Into�Out) dt ⇡ �8
Z

3

0

(Into�Out) dt ⇡ �26
Z

4

0

(Into�Out) dt ⇡ �26
Z

5

0

(Into�Out) dt ⇡ 4

Therefore V (1) = 400, V (2) ⇡ 392,
V (3) ⇡ 374, V (4) ⇡ 374, V (5) ⇡ 404.

t
54

y

3

440

2

420

400

1

380

360

0

49. In this set-up, p is price and q is quantity. We
find that D(q) = S(q) only if D(q) = S(q).

10� q

40
= 2 +

q

120
+

q2

1200

12000� 30q = 2400 + 10q + q2

q2 + 40q � 9600 = 0
(q � 80)(q + 120) = 0

within the range of the picture only at q = 80.
Thus q⇤ = 80 and p⇤ = D(q⇤) = S(q⇤) = 8.

Consumer surplus, as an area, is that part of
the picture below the D curve, above p = p⇤,
and to the left of Q = q⇤.

Numerically in this case the consumer surplus
isZ

q

⇤

0

[D(q)� p⇤] dq =

Z
80

0

⇣
2� q

40

⌘
dq

= 2q � q2

80

����
80

0

= 160� 80 = 80.

The units are dollars (q counting items, p in
dollars per item).

50. The intersection point is approximately
(q⇤, p⇤) = (76, 8). Therefore

PS = p⇤q⇤ �
Z

q

⇤

0

S(q) dq

= (8)(76)�
Z

76

0

✓
2 +

q

120
+

q2

1200

◆
dx

=
86849

225
⇡ 386.00.

51. The curves, meeting as they do at 2 and 5, rep-
resent the derivatives C 0 and R0. The area (a)
between the curves over the interval [0, 2] is the
loss resulting from the production of the first
2000 items. The area (b) between the curves
over the interval [2, 5] is the profit resulting
from the production of the next 3000 items.
The area (c), as the sum of the two previous
(call it (a) + (b)), is without meaning. How-
ever, the di↵erence (b)�(a) would be the total
profit on the first 5000 items, or, if negative,
would represent the loss. The area (d) between
the curves over the interval [5, 6] represents the
loss attributable to the (unprofitable) produc-
tion of the next thousand items after the first
5000.

52. Profit increases when revenue is larger than
cost. The point x = 2 represents a local min-
imum in profit. The point x = 5 represents a
local maximum in profit.

5.2 Volume: Slicing,

Disks and Washers

1. V =

Z
3

�1

A(x)dx =

Z
3

�1

(x+ 2)dx

=

✓
x2

2
+ 2x

◆����
3

�1

=

✓
9

2
+ 6

◆
�
✓
1

2
� 2

◆

= 12

2. V =

Z
10

0

10e0.01xdx =
�
1000e0.01x

�����
10

0

= 1000(e0.1 � 1)

3. V = ⇡

Z
2

0

(4� x)2dx = �⇡

3
(4� x)3

���
2

0

= �⇡

3
(8� 64) =

56⇡

3

4. V =

Z
4

1

2(x+ 1)2dx

=

Z
4

1

(2x2 + 4x+ 2)dx = 78

5. (a) f(0) = 750, f(500) = 0

f(x) = �75

50
x+ 750

V =

Z
500

0

✓
�75

50
x+ 750

◆
2

dx

=
50

75
·
✓
7503

3
� 0

◆
= 93, 750, 000 ft3

aliel
Highlight
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(b) In this case, essentially the same integral
is set up as in Part (a):

V =

Z
250

0

✓
750

500

◆
2

(500� y)2dy

= 82, 031, 250 cubic feet

6. f(0) = 300, f(160) = 0

f(x) = �15

8
x+ 300

V =

Z
1

0

60

✓
�15

8
x+ 300

◆
2

dx

=
8

15
·
✓
3003

3
� 0

◆
= 4, 800, 000 ft3

This volume is one-eighth of the volume in Ex-
ample 2.1.

7. The key observation in this problem is that by
simple proportions, had the steeple continued
to a point it would have had height 36, hence
6 extra feet. One can copy the integration
method, integrating only to 30, or one can sub-
tract the volume of the missing “point” from
the full pyramid. Either way the answer is
3236

3
�
✓
1

2

◆
2

· 6
3
=

215

2
ft3.

8. This volume is easily computed using elemen-
tary geometry formulas. Using calculus and
the triangular cross sections, the area of cross
sections is 150, so the total volume is

V =

Z
60

0

150dx = 9000.

9. V =

Z
60

0

⇡x2dy = ⇡

Z
60

0

60[60� y]dy

= 60⇡


60y � y2

2

�
60

0

= 60⇡


602 � 602

2

�

=
603⇡

2
= 108000⇡ ft3

10. The radius of the cross-section is given by
r = x, therefore the volume is given by

V =

120Z

0

⇡x2dy = ⇡

120Z

0

120 (120� y)dy

= 120⇡ ·

120y � y2

2

�
120

0

= 120⇡


1202 � 1202

2

�

=
1203⇡

2
= 864, 000⇡ft3.

11. V = ⇡

Z
2⇡

0

⇣
4 + sin

x

2

⌘
2

dx

= ⇡

Z
2⇡

0

⇣
16 + 8 sin

x

2
+ sin2

x

2

⌘
dx

= ⇡

✓
16x� 16 cos

x

2
+

1

2
x� 1

2
sinx

◆����
2⇡

0

= 33⇡2 + 32⇡ in3

12. V =

Z
2⇡

0

⇡
⇣
4� sin

x

2

⌘
2

dx

=

Z
2⇡

0

⇡
⇣
16� 8 sin

x

2
+ sin2

x

2

⌘
dx

= 33⇡2 � 32⇡ in3

13. V =

Z
1

0

A(x)dx

⇡ 1

3(10)
[A(0) + 4A(.1) + 2A(.2)

+ 4A(.3) + 2A(.4) + 4A(.5)
+ 2A(.6) + 4A(.7) + 2A(.8)
+ 4A(.9) +A(1.0)]

=
7.4

30
⇡ 0.2467cm3
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14. V =

Z
1.2

0

A(x)dx

⇡ 0.2

3
[f(0.0) + 4f(0.2) + 2f(0.4)

+ 4f(0.6) + 2f(0.8) + 4f(1.0)
+ f(1.2)]

=
0.2

3
[0 + 4(0.2) + 2(0.3) + 4(0.2)

+ 2(0.4) + 4(0.2) + 0]
⇡ 0.253333.

15. V =

Z
2

0

A(x)dx

⇡ 2

3(4)
[A(0) + 4A(.5) + 2A(1)

+4A(1.5) +A(2)]
= 2.5 ft3

16. V =

Z
0.8

0

A(x)dx

⇡ 0.1

3
[f(0.0) + 4f(0.1) + 2f(0.2)

+ 4f(0.3) + 2f(0.4) + 4f(0.5)
+ 2f(0.6) + 4f(0.7) + f(0.8)]

=
0.1

3
[2.0 + 4(1.8) + 2(1.7) + 4(1.6)

+ 2(1.8) + 4(2.0) + 2(2.1) + 4(2.2)
+ 2.4]

⇡ 1.533333

17. (a) V = ⇡

Z
2

0

(2� x)2dx

= �⇡

✓
(2� x)3

3

◆����
2

0

=
8⇡

3

(b) V = ⇡

Z
2

0

⇥
32 � {3� (2� x)}2

⇤
dx

= ⇡

Z
2

0

⇥
9� {1 + x}2

⇤
dx

= ⇡

"
9x|2

0

� (1 + x)3

3

����
2

0

#

= ⇡


18� 33 � 13

3

�
=

28⇡

3

18. (a) V = ⇡

p
2Z

�
p
2

h�
4� x2

�
2 � (x2)

2

i
dx

= ⇡


16x� 8x3

3

�����

p
2

�
p
2

= ⇡

 
64
p
2

3

!

(b) V = ⇡

p
2Z

�
p
2

�
4� x2

�
2 �

�
x2

�
2

dx

= ⇡

 
64
p
2

3

!

19. (a) V = ⇡

Z
2

0

(y2)2dy = ⇡

Z
2

0

y4dy

= ⇡

✓
y5

5

◆����
2

0

=
32⇡

5

(b) V = ⇡

Z
2

0

(4)2dy

� ⇡

Z
2

0

(4� y2)2dy

= ⇡

Z
2

0

(�y4 + 8y2)dy

= ⇡

✓
�y5

5
+

8y3

3

◆����
2

0

= ⇡

✓
�32

5
+

64

3

◆
� (0 + 0)

�

=
224⇡

15

20. (a) V = ⇡

1Z

0

(
p
y)2dy � ⇡

1Z

0

�
y2
�
2

dy

= ⇡

✓
y2

2
� y5

5

◆����
1

0

= ⇡

✓
1

2
� 1

5

◆

=
3⇡

10

(b) V = ⇡

1Z

0

�
1� y2

�
2

dy � ⇡

1Z

0

(1�p
y)2dy

= ⇡

1Z

0

�
y4 � 2y2 � y + 2

p
y
�
dy

= ⇡

 
y5

5
� 2y3

3
� y2

2
+

4y
3
2

3

!�����

1

0

= ⇡

✓
1

5
� 2

3
� 1

2
+

4

3

◆
=

11⇡

30

21. (a) V = 4⇡e2 � ⇡

Z
e

2

1

(ln y)2dy

= 4⇡e2

� [y(ln y)2 � 2y ln y + 2y]
��e2
1

= 4⇡e2 � (2e2 � 2)
= 2⇡(e2 + 1).
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(b) V = ⇡

Z
2

0

(ex + 2)2 dx

� ⇡

Z
2

0

(2)2dx

= ⇡

Z
2

0

�
e2x + 4ex

�
dx

= ⇡

✓
e2x

2
+ 4ex

◆����
2

0

= ⇡

✓
e4

2
+ 4e2

◆
�
✓
1

2
+ 4

◆�

= ⇡

✓
e4

2
+ 4e2 � 9

2

◆

22. (a) V = ⇡

Z
⇡/4

�⇡/4

[22 � (2� secx)2]dx

=

 
4⇡

Z
⇡/4

�⇡/4

secxdx

!

= �
⇣
⇡ tanx|⇡/4�⇡/4

⌘

⇡ 15.868

(b) V = ⇡

Z
⇡/4

�⇡/4

sec2 xdx

= ⇡ tanx|⇡/4�⇡/4

= 2⇡

23. (a) V = ⇡

Z
1

0

✓r
x

x2 + 2

◆
2

dx

=
⇡

2
ln |x2 + 2|

��1
0

=
⇡

2
ln

3

2
⇡ 0.637

(b) V = ⇡

Z
1

0

"
32 �

✓
3�

r
x

x2 + 2

◆
2

#
dx

= ⇡

Z
1

0

✓
6

r
x

x2 + 2
� 3x

x2 + 2

◆
dx

= 6⇡

Z
1

0

r
x

x2 + 2
dx

= � 3⇡

2
ln |x2 + 2|

����
1

0

⇡ 7.4721

24. e�x

2

= x2 when x ⇡ ±0.753

(a) V = ⇡

Z
0.753

0.753

[(e�x

2

)2 � (x2)2]dx

⇡ 3.113

(b) V = ⇡

Z
0.753

0.753

[(e�x

2

+ 1)2

� (x2 + 1)2]dx

⇡ 9.266

0.0
x

0.75

1.0

0.25

0.0

−0.5 0.5 1.0

0.5

−1.0

25. (a) V =

4Z

0

⇡

✓
4� y

2

◆
2

dy

=
⇡

4

4Z

0

�
16� 8y + y2

�
dy

=
⇡

4


16y � 4y2 +

y3

3

�
4

0

=
⇡

4


64� 64 +

64

3

�
=

16⇡

3

(b) V =

2Z

0

⇡ (4� 2x)2dx

= ⇡

2Z

0

�
16� 16x+ 4x2

�
dx

= ⇡


16x� 16

x2

2
+

4x3

3

�
2

0

= ⇡


32� 32 +

32

3

�
=

32⇡

3

(c) V =

2Z

0

⇡(4)2dx�
2Z

0

⇡(2x)2dx

= ⇡

2Z

0

�
16� 4x2

�
dx

= ⇡


16x� 4x3

3

�
2

0

= ⇡


32� 32

3

�
=

64⇡

3

(d) V =

2Z

0

⇡(8� 2x)2dx�
2Z

0

⇡(4)2dx

= ⇡

2Z

0

�
64� 32x+ 4x2 � 16

�
dx

= ⇡


48x� 32

x2

2
+

4x3

3

�
2

0
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= ⇡


96� 64 +

32

3

�
=

128⇡

3

(e) V =

4Z

0

⇡(2)2dy �
4Z

0

⇡
⇣y
2

⌘
2

dy

= ⇡

4Z

0

✓
4� y2

4

◆
dy

= ⇡


4y � 1

4
· y

3

3

�
4

0

= ⇡


16� 16

3

�
=

32⇡

3

(f) V =

4Z

0

⇡

✓
8� y

2

◆
2

dy �
4Z

0

⇡(2)2dy

= ⇡

4Z

0

✓
64� 16y + y2

4
� 4

◆
dy

=
⇡

4


64y � 16

y2

2
+

y3

3
� 16y

�
4

0

= ⇡


64 +

64

3

�
=

256⇡

3

26. (a) V =

Z
2

�2

⇡
�
4� x2

�
2

dx =
512⇡

15

(b) V =

Z
4

0

⇡(
p
y)2dy = 8⇡

(c) V =

Z
2

�2

⇡
⇥
(6� x2)2 � 22

⇤
dx

=
384⇡

5

(d) V =

Z
2

�2

⇡
⇥
62 � (2 + x2)2

⇤
dx

=
1408⇡

15

(e) V =

Z
4

0

⇡
⇥
(2 +

p
y)2 � (2�p

y)2
⇤
dy

=

Z
4

0

8⇡ y1/2dy =
16

3
⇡y3/2

����
4

0

=
128

3
⇡

(f) V =

Z
4

0

⇡
⇥
(4 +

p
y)2 � (4�p

y)2
⇤
dy

=

Z
4

0

16⇡ y1/2dy =
32

3
⇡y3/2

����
4

0

=
256

3
⇡

27. (a) V =

Z
1

0

⇡(1)2dy �
Z

1

0

⇡ (
p
y)2 dy

= ⇡

Z
1

0

(1� y)dy

= ⇡

✓
y � y2

2

◆����
1

0

=
⇡

2

(b) V =

Z
1

0

⇡
�
x2

�
2

dx

= ⇡
x5

5

����
1

0

=
⇡

5

(c) V =

Z
1

0

⇡ (1�p
y)2 dy

= ⇡

Z
1

0

⇣
1� 2y1/2 + y

⌘
dy

= ⇡

✓
y � 4

3
y3/2 +

y2

2

◆����
1

0

=
⇡

6

(d) V =

Z
1

0

⇡(1)2dx�
Z

1

0

⇡
�
1� x2

�
2

dx

= ⇡

Z
1

0

�
2x2 � x4

�
dx

= ⇡

✓
2

3
x3 � x5

5

◆����
1

0

=
7⇡

15

(e) V =

Z
1

0

⇡(2)2dy �
Z

⇡ (1 +
p
y)2 dy

= ⇡

Z
1

0

⇣
3� 2y1/2 � y

⌘
dy

= ⇡

✓
3y � 4

3
y3/2 � y2

2

◆����
1

0

=
7⇡

6

(f) V =

Z
1

0

⇡
�
x2 + 1

�
2

dx

= �
Z

1

0

⇡(1)2dx

= ⇡

Z
1

0

�
x4 + 2x2

�
dx

= ⇡

✓
x5

5
+

2

3
x3

◆����
1

0

=
13⇡

15

28. (a) V =

Z
1

0

⇡x2dx =
⇡

3

(b) V =

Z
0

�1

⇡
⇥
1� (1 + y)2

⇤
dy

+

Z
1

0

⇡
⇥
1� (1� y)2

⇤
dy

=
2⇡

3
+

2⇡

3
=

4⇡

3

(c) V =

Z
1

0

⇡
⇥
(1 + x)2 � (1� x)2

⇤
dx

= 2⇡
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(d) V =

Z
1

0

⇡
⇥
(1 + x)2 � (1� x)2

⇤
dx

= 2⇡

29. V = ⇡

Z
h

0

✓r
y

a

◆
2

dy

=
⇡

a

Z
h

0

ydy =
⇡h2

2a

The volume of a cylinder of height h and ra-

dius
p
h/a is h · ⇡(

p
h/a)2 =

⇡h2

a

30. The confusing thing here is that the h of Exer-
cise 29 is not the h of this problem. Realizing
this,

V =
⇡(h/a)2

2a
=

⇡h2

2a3

31. We can choose either x or y to be our integra-
tion variable,

V = ⇡

Z
1

�1

dx = ⇡x|1�1

= 2⇡

32. This is, of course, a solid ball. Notice that
y =

p
1� x2.

V =

Z
1

�1

⇡(
p
1� x2)2dx =

4⇡

3

33. The line connecting the two points (0, 1) and
(1,�1) has equation

y = �2x+ 1 or x =
1� y

2
.

V =

Z
1

�1

⇡

✓
1� y

2

◆
2

dy

= ⇡

✓
y

4
� y2

4
+

y3

12

◆����
1

�1

=
2⇡

3

34. The fact that the ratios is 3 : 2 : 1 is easy to

confirm since we know the volumes are 2⇡,
4⇡

3

and
2⇡

3
.

-1

-1

-1 -0.5

-0.5

-0.5

0
00

0.50.5

0.5

1

1

1

35. V = ⇡

Z
r

�r

⇣p
r2 � y2

⌘
2

dy

= ⇡

Z
r

�r

(r2 � y2)dy

= ⇡ (r2y � y3

3
)

����
r

�r

=
4

3
⇡r3

36. V =

Z
h

0

⇡
⇣
� r

h
y + r

⌘
2

dy =
⇡r2h

3

37. If we compute the two volumes using disks par-
allel to the base, we have identical cross sec-
tions, so the volumes are the same.

38. They have the same areas. This can be seen
by using elementary geometrical formulas for
area or by considering integrals. The area of
the parallelograms is given by the integral of
the heights of the line segments from 0 to 5.
The heights of the line segments are equal.

39. (a) If each of these line segments is the base
of square, then the cross-sectional area is
evidently

A(x) = 4(1� x2).

The volume would be

V
a

=

Z
1

�1

A(x)dx

= 2

Z
1

0

A(x)dx = 8

✓
x� x3

3

◆����
1

0

=
16

3
.

(b) These segments I
x

cannot be the literal
“bases” of circles, because circles “sit” on
a single point of tangency. They could
however be diameters. Assuming so, the
cross sectional area would be “⇡/2 times
radius-squared” or ⇡(1 � x2)/2. The re-
sulting volume would be ⇡/8 times the
previous case, or 2⇡/3.

40. (a) V =

Z
0

�1

[2(x+ 1)]2 dx =
4

3
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(b) Note that the area of an equilateral tri-
angle with side length l is

p
3l2/4. This

means that for a slice we have
A(x) =

p
3(x+ 1)2/4

and

V =

Z
0

�1

p
3(x+ 1)2

4
dx =

p
3

12

41. Reasoning as in Exercise 39, the line segment
I
x

is [x2, 2 � x2], (1  x  1). The length of
this segment is
(2� x2)� x2 = 2(1� x2),

hence in case (a)
A(x) = 4(1� x2)2 = 4(1� 2x2 + x4).

The volume would again be

V = 2

Z
1

0

A(x)dx

= 8

✓
x� 2x3

3
+

x5

5

◆����
1

0

= 8

✓
1� 2

3
+

1

5

◆
=

64

15
.

With the same provisos as in Exercise 39, the
answer to (b) would be ⇡/8 times the (a)-case,
or 8⇡/15.

For (c), the volume would be
p
3/4 times the

(a)-case, or 16
p
3/15.

42. (a) In this case, A(x) = (lnx)2 and

V =

Z
2

1

(lnx)2dx

= 2(ln 2)2 � 4 ln 2 + 2.

(b) In this case, A(x) =
⇡

2

✓
lnx

2

◆
2

and

V =

Z
2

1

⇡

2

✓
lnx

2

◆
2

dx

=
(ln 2)2

4
� ln 2

2
+

1

4
.

43. This time the line segment I
x

is [0, e�2x], (0 
x  ln 5). If (a) this is the base of a square, the
cross-sectional area is A(x) = (e�2x)2 = e�4x.
The volume V

a

would be the integral
Z

ln 5

0

A(x)dx

=

Z
ln 5

0

e�4xdx =
�e�4x

4

����
ln 5

0

=
1�

�
1

5

�
4

4
=

156

625
= .2496.

In the (b)-case, the segment I
x

is the base of
a semicircle, so the cross-sectional area would

be✓
1

2

◆
⇡

✓
e�2x

2

◆
2

=
⇣⇡
8

⌘
e�4x.

The resulting volume V
b

would be

(⇡/8)V
a

=
39⇡

1250
⇡ .09802.

44. (a) In this case, A(x) = (x2 �
p
x)2 and

V =

Z
1

0

(x2 �
p
x)2dx =

9

70

(b) In this case,

A(x) = ⇡

✓
x2 �

p
x

2

◆
2

and

V =

Z
1

0

⇡

✓
x2 �

p
x

2

◆
2

dx =
9

280

45. We must estimate ⇡
R
3

0

[f(x)]2dx.

The given table can be extended to give these
respective values for

f(x)2 : 4, 1.44, .81, .16, 1.0, 1.96, 2.56.

Simpson’s approximation to the integral would
be

3

(3)(6)
{4 + 4(1.44) + 2(.81)

+ 4(.16) + 2(1.0) +4(1.96) + 2.56} .
The sum in the braces is 24.42, and this must
be multiplied by ⇡/6 giving a final answer of
12.786.

46. Use Simpson’s rule.

V =

Z
2

0

⇡[f(x)]2dx

⇡ ⇡(0.25)

3
[(4.0)2 + 4(3.6)2 + 2(3.4)2

+ 4(3.2)2 + 2(3.5)2 + 4(3.8)2 + 2(4.2)2

+ 4(4.6)2 + (5.0)2]
⇡ 94.01216

47. In this problem, let x = g(y) be the equation
of the given curve describing the shape of the
container. For each height y, let V (y) be the
volume of fluid in the container when the depth
is y. Later we will estimate V (y). For now, one
knows that V (y) is the integral of ⇡[g(y)]2, or
by the fundamental theorem of calculus, that
dV

dy
= ⇡[g(y)]2.

In actual practice, y and hence V are functions
of t (time). Our primary interest is in y as a
function of t, but we will obtain this informa-
tion indirectly, first finding V as a function of y.
It appears that g(y) is about 2y for 0 < y < 1,
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which leads to [g(y)]2 = 4y2, V (y) = 4⇡y3/3
(on 0 < y < 1), and V (1) = 4⇡/3 = 4.2. We’ll
keep the formula in mind for later, but for now
will use the value at y = 1 and the crude trape-
zoidal estimate
V (y + 1) = V (y) + ⇡[g2(y) + g2(y + 1)]/2
to compile the following table:

y g(y) g2(y) V (y)

1 2 4 4.2
2 2 9 24.6
3 3 9 52.9
4 3 9 81.2
5 4 16 120.4

The assumption of uniform flow rate amounts
to dV/dt = constant, and if we start the clock
(t = 0) as we begin the flow, we get V = kt
for some k. The above table, supplemented by
the formula when y < 1, can be read to give
y (vertical) as a function of V (horizontal).
But because V = kt, the graph looks exactly
the same if the horizontal units are time. In
the following picture, we have scaled it on the
assumption of a flow rate of 120.4 cubic units
per minute, a rate which requires one minute
to fill the container. The previous formula
4⇡y3/3 = V (= kt = (120.4)t) (on 0 < y < 1),
becomes y = (3.06)t1/3 for very small t, and
accounts for the (barely discernible) vertical
tangent at t = 0.

0

1

2

3

4

5

height

time

48.

y

5

4

3

2

1

t

0
86420

49.

1.6

0.0

−0.8

−1.6

1

y

2.0

1.2

0.8

0.4

−0.4

−1.2

−2.0

2−2 0
x
−1

For the points of intersection, solve
1� (x� 1)2 = 1� x2

thatis,x2 � 2x+ 1 = x2

or x =
1

2
) y = ±

p
3

2
The desired volume V is the sum of the volume
V
1

generated by revolving the arc of the circle
x2 + y2 = 1 about the x-axis from x = 1

2

to
x = 1 and the volumeV

2

generated by revolv-
ing the arc of the circle (x� 1)2+y2 = 1 about
the x-axis from x = 0 to x = 1

2

.

Therefore V = V
1

+ V
2

where,

V
1

= ⇡

1Z

1/2

�
1� x2

�
dx = ⇡

✓
x� x3

3

◆����
1

1/2

= ⇡

✓
1� 1

3

◆
�
✓
1

2
� 1

24

◆�
=

5⇡

24

and V
2

= ⇡

1/2Z

0

⇣
1� (x� 1)2

⌘
dx

= ⇡

1/2Z

0

�
2x� x2

�
dx = ⇡


x2 � x3

3

�����
1/2

0

=
5⇡

24
V = V

1

+ V
2

⇡ 1.308997

50.

2

1

0

0−1

2

−2

−2

y

1
x

−1

The required region is formed by intersection
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of revolving circle x2 + y2 = 4 about y-axis
and revolving x = 1,�4  y  4about y-axis.
Desired volume V is the volume obtained by
revolving the shaded region R about the x-axis
where R is bounded by x = 0, x = 1 and the
arc of the circle x2 + y2 = 4

x = 1 ) y = ±
p
3

R = R
1

+R
2

+R
3

R1 is bounded by x = 0, x2 + y2 = 4, y =
p
3

R2 is bounded by x = 0, y =
p
3, y = �

p
3

R3 is bounded by x = 0, x2 + y2 = 4, y = �
p
3

Let V1 ,V2 ,V3 be the respective volumes ob-
tained by revolving R1 , R2 , R3 about y-axis

V
1

=

2Z

p
3

⇡
�
4� y2

�
dy

= ⇡


4y � y3

3

�����
2

p
3

= ⇡

 
16

3
� 8

p
3

3

!

V
2

= ⇡

p
3Z

�
p
3

1dy = 2⇡
p
3

V
3

= V
1

V = V
1

+ V
2

+ V
3

=
2⇡

3

⇣
16� 5

p
3
⌘

5.3 Volumes by

Cylindrical Shells

1. Radius of a shell: r = 2� x
Height of a shell: h = x2

V =

Z
1

�1

2⇡(2� x)x2dx

= 2⇡

✓
2x3

3
� x4

4

◆����
1

�1

=
8⇡

3

y

0.5 1.0−1.0 −0.5 0.0

0.25

x

1.0

0.0

0.75

0.5

2. Radius of a shell: r = 2 + x
Height of a shell: h = x2

V =

Z
1

�1

2⇡(2 + x)x2dx =
8⇡

3

y

0.5 1.0−1.0 −0.5 0.0

0.25

x

1.0

0.0

0.75

0.5

3. Radius of a shell: r = x
Height of a shell: h = 2x

V =

Z
1

0

2⇡x(2x)dx

=
4⇡

3
x3

����
1

0

=
4⇡

3

−0.5

1.0

0.5

0.0

−1.0

1.00.750.50.250.0

4. Radius of a shell: r = 2� x.
Height of a shell: h = 2x.

V =

Z
1

0

2⇡(2� x)(2x)dx =
8⇡

3

−0.5

1.0

0.5

0.0

−1.0

1.00.750.50.250.0

5. Radius of a shell: r = x.
eight of a shell: h = f(x) =

p
x2 + 1.

V =

4Z

0

2⇡x
p
x2 + 1dx

aliel
Highlight
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= ⇡

4Z

0

2x
p

x2 + 1dx

= ⇡

0

@2
�
x2 + 1

� 3
2

3

1

A

������

4

0

=
2⇡

3

h
(17)

3
2 � 1

i

⇡ 144.7076

2

0
3

4

x
20

y

3

41

1

6. Radius of a shell: r = 2� x.
Height of a shell: h = f(x) = x2.

V =
1R

�1

2⇡ (2� x) x2dx = 8⇡

3

y

0.5 1.0−1.0 −0.5 0.0

0.25

x

1.0

0.0

0.75

0.5

7. Radius of a shell: r = 2� y.
Height of a shell: h = f(y) = 2

p
1� y2.

V =

1Z

�1

2⇡ (2� y) 2
p
1� y2dy

= 4⇡

1Z

�1

(2� y)
p
1� y2dy

= 8⇡

1Z

�1

p
1� y2dy � 4⇡

1Z

�1

y
p
1� y2dy

= 16⇡
⇣⇡
4

⌘
� 0 = 4⇡2

0.8

−0.6

x
1.0

0.6

1.0

−1.0

0.0
0.0

0.4

−1.0 0.5

0.2

−0.4

−0.5
−0.2

−0.8

8. Radius of a shell: r = 4� y.
Height of a shell: h = f(y) = 2

p
4� y2.

V =

2Z

�2

2⇡ (4� y) 2
p
4� y2dy

= 4⇡

2Z

�2

(4� y)
p

4� y2dy

= 2

0

@8⇡

2Z

�2

p
4� y2dy � 2⇡

2Z

�2

y
p

4� y2dy

1

A

= 2 (8⇡ (2⇡))� 0 = 32⇡2

1.6

−1.2

x
2

1.2

2.0

−2.0

0.0

0

0.8

−2 1

0.4

−0.8

−1
−0.4

−1.6

9. V =

Z
1

�1

2⇡(x+ 2)
�
(2� x2)� x2

�
dx

= 2⇡

Z
1

�1

�
4 + 2x� 4x2 � 2x3

�
dx

= 2⇡

✓
4x+ x2 � 4x3

3
� x4

2

◆����
1

�1

=
32⇡

3

10. V =

Z
1

�1

2⇡(2� x)
�
(2� x2)� x2

�
dx

= 2⇡

Z
1

�1

�
4� 2x� 4x2 + 2x3

�
dx

= 2⇡

✓
4x� x2 � 4x3

3
+

x4

2

◆����
1

�1

=
32⇡

3
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11. V =

Z
2

�2

2⇡(2 + y)(4� y2)dy

= 2⇡

✓
8y + 2y2 � 2y3

3
� y4

4

◆����
2

�2

=
128⇡

3

12. V =

Z
2

�2

2⇡(2� y)(4� y2)dy

= 2⇡

✓
8y � 2y2 � 2y3

3
+

y4

4

◆����
2

�2

=
128⇡

3

13. V =

2Z

0

2⇡ (3� x) (ex � x� 1) dx

= 2⇡

2Z

0

�
(3� x) ex � 2x+ x2 � 3

�
dx

= 2⇡


[(4� x) ex � x2 +

x3

3
� 3x

�����
2

0

= 2⇡

✓
2e2 � 4 +

8

3
� 6

◆
� (4� 3)

�

⇡ 21.6448

14. V =

Z
2

�1

2⇡(3� x)(x� (x2 � 2))dx

= 2⇡

Z
2

�1

�
6 + x� 4x2 + x3

�
dx

= 2⇡

✓
6x+

x2

2
� 4x3

3
+

x4

4

◆����
2

�1

=
45⇡

2

15. V =

Z
4

�2

2⇡(5� y)[9� (y � 1)2]dy

=

Z
4

�2

(y3 � 7y2 + 2y + 40) dy

=

✓
y4

4
� 7y3

3
+ y2 + 40y

◆����
4

�2

= 288⇡

16. V =

Z
4

�2

2⇡(3 + y)[9� (y � 1)2]dy

=

Z
4

�2

(�y3 � y2 + 14y + 24)dy

=

✓
�y4

4
� y3

3
+ 7y2 + 24y

◆����
4

�2

= 288⇡

17. (a) V =

Z
4

2

2⇡(y) (y � (4� y)) dy

= 2⇡

Z
4

2

�
2y2 � 4y

�
dy

= 2⇡

✓
2y3

3
� 2y2

◆����
4

2

=
80⇡

3

(b) V =

Z
2

0

2⇡(x) (4� (4� x)) dx

=

Z
4

2

2⇡(x)(4� x)dx

= 2⇡

✓
x3

3

◆����
2

0

+ 2⇡

✓
2x2 � x3

3

◆����
4

2

= 2⇡

✓
8

3
+

16

3

◆
= 16⇡

(c) V =

Z
4

2

⇡ (4� (4� y))2 dy

=

Z
4

2

⇡(4� y)2dy

= ⇡

Z
4

2

y2dy

� ⇡

Z
4

2

(16� 8y + y2)dy

= ⇡

Z
4

2

(�16 + 8y)dy

= ⇡ (�16y + 4y2)
��4
2

= 16⇡

(d) V =

Z
4

2

2⇡(4� y) (y � (4� y)) dy

= 2⇡

Z
4

2

�
�2y2 + 12y � 16

�
dy

= 2⇡

✓
�2y3

3
+ 6y2 � 16y

◆����
4

2

=
16⇡

3

18. (a) V = ⇡

Z
0

�2

⇥
(x+ 4)2 � (�x)2

⇤
dx

= ⇡

Z
0

�2

(8x+ 16)dx

= ⇡ (4x2 + 16x)
��0
�2

= 32⇡

(b) V = 2⇡

Z
0

�2

(2+x) · [(x+2)� (�x� 2)]dx

= 2⇡

Z
0

�2

(2x2 + 8x+ 8)dx

= 2⇡

✓
2x3

3
+ 4x2 + 8x

◆����
0

�2

=
32⇡

3
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(c) V = 2⇡

Z
0

�2

(�x) · [(x+ 2)� (�x� 2)]dx

= 2⇡

Z
0

�2

(�2x2 � 4x)dx

= 2⇡

✓
�2x3

3
� 2x2

◆����
0

�2

=
16⇡

3

(d) V = ⇡

Z
0

�2

(x+ 2)2dx

= ⇡

Z
0

�2

(x2 + 4x+ 4)dx

= ⇡ (
x3

3
+ 2x2 + 4x)

����
0

�2

=
8⇡

3

19. (a) Method of shells.

V =

Z
3

�2

2⇡(3� x)[x� (x2 � 6)]dx

=

Z
3

�2

2⇡(�x3 � 4x2 � 3x+ 18)dx

=
625⇡

6
(b) Method of washers.

V =

Z
3

�2

⇡[(x2 � 6)2 � x2]dx

=

Z
3

�2

⇡(x4 � 13x2 + 36)dx

=
250⇡

3
(c) Method of shells.

V =

Z
3

�2

2⇡(3 + x)[x� (x2 � 6)]dx

=

Z
3

�2

2⇡(x3 � 2x2 + 9x+ 18)dx

=
875⇡

6
(d) Method of washers.

V =

Z
3

�2

⇡[(6 + x)2 � (x2)2]dx

=

Z
3

�2

⇡(�x4 + x2 + 12x+ 36)dx

=
500⇡

3

20. (a) V = ⇡

Z
2

�1

[(3 + y)2 � (y2 + 1)2]dy

= ⇡

Z
2

�1

(�y4 � y2 + 6y + 8)dy

= ⇡

✓
�y5

5
� y3

3
+ 3y2 + 8y

◆����
2

�1

=
117⇡

5

(b) V = 2⇡

Z
2

�1

(y + 1)[((2 + y)� y2]dy

= 2⇡

Z
2

�1

(�y3 + 3y + 2)dy

= 2⇡

✓
�y4

4
+

3y2

2
+ 2y

◆����
2

�1

=
27⇡

2

(c) V = ⇡

Z
2

�1

[(4 + y)2 � (y2 + 2)2]dy

= ⇡

Z
2

�1

(�y4 � 3y2 + 8y + 12)dy

= ⇡

✓
�y5

5
� y3 + 4y2 + 12y

◆����
2

�1

=
162⇡

5

(d) V = 2⇡

Z
2

�1

(y + 2)[(2 + y)� y2]dy

= 2⇡

Z
2

�1

(�y3 � y2 + 4y + 4) dy

= 2⇡

✓
�y4

4
� y3

3
+ 2y2 + 4y

◆����
2

�1

=
45⇡

2

21. (a) V =

Z
1

0

⇡(2� x)2dx

�
Z

1

0

⇡
�
x2

�
2

dx

= ⇡

Z
1

0

(x2 � 4x+ 4)dx

� ⇡

Z
1

0

x4dx

= ⇡

Z
1

0

(�x4 + x2 � 4x+ 4)dx

= ⇡

✓
x5

5
+

x3

3
� 2x2 + 4x

◆����
1

0

=
32⇡

15

(b) V =

Z
1

0

2⇡x
�
2� x� x2

�
dx

= 2⇡

Z
1

0

�
2x� x2 � x3

�
dx

= 2⇡

✓
x2 � x3

3
� x4

4

◆����
1

0
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=
5⇡

6

(c) V =

Z
1

0

2⇡(1� x)(2� x� x2)dx

= 2⇡

Z
1

0

�
x3 � 3x+ 2

�
dx

= 2⇡

✓
x4

4
� 3x2

2
+ 2x

◆����
1

0

=
3⇡

2

(d) V =

Z
1

0

⇡
�
2� 2x2

�
2

dx

=

Z
1

0

⇡ (2� (2� x))2 dx

= ⇡

Z
1

0

(x4 � 4x2 + 4)dx� ⇡

Z
1

0

x2dx

= ⇡

Z
1

0

(x4 � 5x2 + 4)dx

= ⇡

✓
x5

5
� 5x3

3
+ 4x

◆����
1

0

=
38⇡

15

22. (a) V = ⇡

Z
1

0

[(2� x2)2 � x2]dx

= ⇡

Z
1

0

(x4 � 5x2 + 4)dx

= ⇡

✓
x5

5
� 5x3

3
+ 4x

◆
dx

=
97⇡

60

(b) V = 2⇡

Z
1

0

x(2� x2 � x)dx

= 2⇡

Z
1

0

(�x3 � x2 + 2x)dx

= 2⇡

✓
�x4

4
� x3

3
+ x2

◆
dx

=
3⇡

5

(c) V = 2⇡

Z
1

0

(x+ 1)(2� x2 � x)dx

= 2⇡

Z
1

0

(�x3 � 2x2 + x+ 2)dx

= 2⇡

✓
�x4

4
� 2x3

3
+

x2

2
+ 2x

◆
dx

=
21⇡

10

(d) V = ⇡

Z
1

0

[(2� x2 + 1)2

� (x+ 1)2]dx

= ⇡

Z
1

0

(x4 � 7x2 � 2x+ 8)dx

= ⇡

✓
x5

5
� 7x3

3
� x2 + 8x

◆
dx

=
187⇡

60

0.5

0.0 0.50.25

1.5

x

2.0

0.75

1.0

1.0
0.0

23. (a) V = 2⇡

Z
1

0

y(2� y � y2)dy

= 2⇡

Z
1

0

(�y3 � y2 + 2y)dy

= 2⇡

✓
�y4

4
� y33 + y2

◆����
1

0

=
5⇡

6

(b) V = 2⇡

Z
1

0

[(2� y)2 � (y2)2]dy

= 2⇡

Z
1

0

(�y4 + y2 � 4y + 4)dy

= 2⇡

✓
�y5

5
+

y3

3
� 2y2 + 4y

◆����
1

0

=
64⇡

15

2

0

1

20

-2

x

0.5 1.5

-1

1

24. (a) V ⇡ 2⇡

Z
0.79

0

y[(2� y)� ln(y + 1)]dy

⇡ 2.08

(b) V ⇡ ⇡

Z
0.79

0

[(2� y)2 � ln2(y + 1)]dy
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⇡ 6.20

y

0.2

0.4

0

x

43

-0.2

1 2

25. (a) V ⇡ 2⇡

Z
0.89

�0.89

(2� x) · (cosx� x4) dx

⇡ 16.72

(b) V ⇡ ⇡

Z
0.89

�0.89

[(2� x4)2 � (2� cosx)2]dx

⇡ 12.64

(c) V ⇡ ⇡

Z
0.89

�0.89

[(cosx)2 � (x4)2]dx

⇡ 4.09

(d) V ⇡ 2 · 2⇡
Z

0.89

0

x(cosx� x4)dx

⇡ 2.99

1

0.6

0.8

0.4

0

0.2

-1 0.5-0.5 10

x

26. (a) V ⇡ ⇡

Z
0.85

0

[(1� x2)2 � (1� sinx)2]dx

⇡ 0.57

(b) V ⇡ 2⇡

Z
0.85

0

(1� x) · (sinx� x2)dx

⇡ 0.47

(c) V ⇡ 2⇡

Z
0.85

0

x(sinx� x2)dx

⇡ 0.38

(d) V ⇡ ⇡

Z
0.85

0

[(sinx)2 � (x2)2]dx

⇡ 0.28

1

0.6

0.8

0.4

0

0.2

0.4 0.60.2

x

0.8 10

27. Axis of revolution: y-axis
Region bounded by: x =

p
y, x = y

y

1

0.5

x

10.50

28. Axis of revolution: y-axis
Region bounded by:
x = 4� y2, x = 0, y = 0

10

y

2

1.5

1

0.5

0

x

432

29. Axis of revolution: y-axis
Region bounded by: y = x, y = x2
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1

0.6

0.8

0.4

0

0.2

0.4 0.60.2

x

0.8 10

30. Axis of revolution: y = 4
Region bounded by:
y = x, y = �x, y = 2

y

1.5

2

x

20 1-1

0.5

-2

1

0

31. If the r-interval [0, R] is partitioned by points
r
i

, the circular band

{r2
i

 x2 + y2  r2
i+1

}

has approximate area c(r
i

)�r
i

(length times
thickness). The limit of the sum of these areas

is A = lim
nP

i=1

c(r
i

)�r
i

=
R
R

0

c(r)dr Because

we know that c(r) = 2⇡r,
we can evaluate the integral, getting

2⇡
r2

2

����
R

0

= ⇡R2.

32. If we think of the area of a circle of radius R
as being built up as described in Problem 61,
then

A =

Z
R

0

2⇡rdr Viewed as a function of R, the

derivative is
dA

dR
= 2⇡R so this is, of course, not a coinci-

dence.

33. The volume that we are looking for is twice
the volume of a shell with radius x and heightp
1� x2.

In other words, The bead is mathematically

the solid formed up from revolving the region
bounded by y =

p
1� x2, x = 1/2

and the x-axis around the y-axis.
Therefore

V = 2 ·
Z

1

1/2

2⇡x
p

1� x2dx

Let u = 1� x2, du = �2xdx,

and V = 4⇡

Z
1

1/2

x
p

1� x2dx

= �1

2
4⇡

Z
0

3/4

u1/2du

= 2⇡ · 2
3
u3/2

���
3/4

0

=

p
3⇡

2
cm3.

34. The size of the sphere is 4⇡/3 cm3, so we look
for the value of c such that

4⇡

Z
1

c

x
p

1� x2dx =
2

3
⇡.

V = 4⇡

Z
1

c

x
p
1� x2dx

=
4

3
⇡(1� c2)3/2 =

2

3
⇡

Hence we want the size of the hole to be

c =

r
1�

p
3
1

4
⇡ 0.6 cm.

35. V =

Z
1

0

x(1� x2)dx

=

Z
1

0

(x� x3)dx

=

✓
x2

2
� x4

4

◆����
1

0

=
1

4

V
1

=

Z
1

c

x(1� x2)dx

=

✓
x2

2
� x4

4

◆����
1

c

=
1

4
� c2

2
+

c4

4

We want

V � V
1

=
1

10
V

Then
c2

2
� c4

4
=

1

40
c ⇡ 0.2265

36. V = 4⇡

Z
4

0

y

s

30

✓
1� y2

16

◆
dy

Let u = 1� y2/16, du = �ydy/8

V = �32
p
30⇡

Z
0

1

u1/2du
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= 32
p
30⇡ · 2

3
=

64
p
30⇡

3

y

6

4

2

0

-2

-4

-6

x

6420-2-4-6

5.4 Arc Length and

Surface Area

1. For n = 2, the evaluations points are 0, 0.5, 1
s ⇡ s

1

+ s
2

=
p
(0� 0.5)2 + [f(0)� f(0.5)]2

+
p
(1� 0.5)2 + [f(1)� f(0.5)]2

=
p
0.52 + 0.54 +

p
0.52 + 0.752

⇡ 1.460

For n = 4, the evaluations points:
0, 0, 25, 0.5, 0.75, 1

s ⇡
4X

i=1

s
i

⇡ 1.474

2. For n = 2, the evaluations points are 0, 0.5, 1
s ⇡ s

1

+ s
2

⇡ 1.566

For n = 4, the evaluations points:
0, 0, 25, 0.5, 0.75, 1

s ⇡
4X

i=1

s
i

⇡ 1.591

3. For n = 2, the evaluations points are
0,⇡/2,⇡
s ⇡ s

1

+ s
2

=
p
(⇡/2)2 + [cos(⇡/2)� cos 0]2

+
p
(⇡/2)2 + [cos⇡ � cos(⇡/2)]2

=
p
⇡2 + 4 ⇡ 3.724

For n = 4, the evaluations points:
0,⇡/4,⇡/2, 3⇡/4,⇡

s ⇡
4X

i=1

s
i

⇡ 3.790

4. For n = 2, the evaluation points are 1, 2, 3
s ⇡ s

1

+ s
2

=
p
12 + (ln 2� ln 1)2

+
p

12 + (ln 3� ln 2)2

⇡ 2.296
For n = 4, the evaluation points are
1, 1.5, 2, 2.5, 3

s ⇡
4X

i=1

s
i

⇡ 4.161

5. This is a straight line segment from (0, 1) to
(2, 5). As such, its length is

s =
p
(5� 1)2 + (2� 0)2

=
p
20 = 2

p
5

6. s =

Z
1

�1

r
1 +

x2

1� x2

dx

=

Z
1

�1

1p
1� x2

dx

=
�
sin�1 x

���1
�1

= ⇡

7. y0(x) = 6x1/2, the arc length integrand isp
1 + (y0)2 =

p
1 + 36x.

Let u = 1 + 36x then

s =

Z
2

1

p
1 + 36xdx

=

Z
73

37

p
u

✓
du

36

◆

=
2

3(36)
u3/2

����
73

37

=
1

54
(73

p
73� 37

p
37)

⇡ 7.3824

8. s =

Z
1

0

q
1 + (e2x � e�2x)2dx

=

Z
1

0

p
e4x � 1 + e�4xdx

⇡ 3.056

9. y0(x) =
2x

4
� 1

2x
=

1

2

✓
x� 1

x

◆

1 + (y0)2 = 1 +
1

4

✓
x2 � 2 +

1

x2

◆

=
1

4

✓
x2 + 2 +

1

x2

◆

=


1

2

✓
x+

1

x

◆�
2

s =
1

2

Z
2

1

✓
x+

1

x

◆
dx

aliel
Highlight
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=
1

2

✓
x2

2
+ lnx

◆����
2

1

=
1

2

✓
3

2
+ ln 2

◆

⇡ 1.0965

10. y0(x) =
1

2
(x2 + x�2)

s =

Z
3

1

s

1 +

✓
x2

2
+

1

2x2

◆
2

dx

=
1

2

Z
3

1

p
x8 + 6x4 + 1

x2

dx

⇡ 5.152

11. x0(y) =
y3

2
� 1

2y3
=

1

2

✓
y3 � 1

y3

◆

1 + (x0)2 = 1 +
1

4

✓
y6 � 2 +

1

y6

◆

=
1

4

✓
y6 + 2 +

1

y6

◆

=


1

2
(y3 +

1

y3
)

�
2

s =

Z �1

�2

p
1 + (x0)2 dy

= ��1

�2

Z �1

�2

✓
y3 +

1

y3

◆
dy

=
1

2

 
�y4

4

����
�1

�2

+
1

2y2

����
�1

�2

!

=
1

2

✓
15

4
+

3

8

◆
=

33

16

12. Here x (y) = ey/2 + e� y/2

x0(y) =
1

2

⇣
ey/2 � e�y/2

⌘

Now

s =

1Z

�1

s

1 +


1

2

�
ey/2 � e�y/2

��2
dy

=
1

2

1Z

�1

⇣
ey/2 + e�y/2

⌘
dy

=

1Z

0

⇣
ey/2 + e�y/2

⌘
dy

= 2
⇣
ey/2 � e�y/2

⌘���
1

0

= 2

✓
e� 1p

e

◆

13. y0(x) =
x1/2

2
� x�1/2

2

=
1

2

✓p
x� 1p

x

◆

1 + (y0)2 = 1 +
1

4

✓
x� 2 +

1

x

◆

=
1

4

✓
x+ 2 +

1

x

◆

=


1

2

✓p
x+

1p
x

◆�
2

s =

Z
4

1

p
1 + (y0)2

=
1

2

Z
4

1

✓p
x+

1p
x

◆
dx

=
x3/2

3

����
4

1

+
p
x
��4
1

=
7

3
+ 1 =

10

3

14. Here f (x) = 2 ln
�
4� x2

�

) f
0
(x) =

�4x

(4� x2)

1+
⇣
f

0
(x)
⌘
2

= 1+

✓
�4x

(4� x2)

◆
2

=

✓
4 + x2

4� x2

◆
2

Now , s =

1Z

0

✓
4 + x2

4� x2

◆
dx = 2 ln (3)� 1

15. s =

Z
1

�1

q
1 + (3x2)2dx

=

Z
1

�1

p
1 + 9x4dx ⇡ 3.0957

16. s =

Z
2

�2

p
1 + 9x4dx ⇡ 17.2607

17. s =

Z
2

0

p
1 + (2� 2x)2dx ⇡ 2.9578

18. s =

Z
⇡/4

0

p
1 + sec4 xdx ⇡ 1.2780

19. s =

Z
⇡

0

p
1 + (� sinx)2dx

=

Z
⇡

0

p
1 + sin2 xdx ⇡ 3.8201

20. s =

Z
3

1

r
1 +

1

x2

dx ⇡ 2.3020

21. s =

Z
⇡

0

p
1 + (x sinx)2dx = 4.6984

22. s =

Z
⇡

0

p
1 + e�x sin2 xdx ⇡ 13.1152
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23. Here f (x) = 10
⇣
ex/20 + e�x/20

⌘

) f
0
(x) =

10

20

⇣
ex/20 � e�x/20

⌘

1 +
⇣
f

0
(x)
⌘
2

= 1 +

✓
1

2

⇣
ex/20 � e�x/20

⌘◆2

=

✓
1

2

⇣
ex/20 + e�x/20

⌘◆2

Now,

s =

20Z

�20

1

2

⇣
ex/20 + e�x/20

⌘
dx

=

20Z

0

⇣
ex/20 + e�x/20

⌘
dx

= 20
⇣
ex/20 � e�x/20

⌘���
20

0

= 20
�
e� e�1

�
⇡ 47.0080

24. s =

Z
30

�30

s

1 +


1

2

�
ex/30 � e�x/30

��2
dx

=

Z
30

�30

1

2

⇣
ex/30 + e�x/30

⌘
dx

=
⇣
15ex/30 � 15e�x/30

⌘���
30

�30

= 30e� 30e�1 ⇡ 70.51207161ft.

25. In Example 4.4, y(x) = 5(ex/10 + e�x/10)
y(0) = 5(e0 + e0) = 10
y(�10) = y(10)
= 5(e1 + e�1) = 15.43
sag = 15.43� 10 = 5.43 ft

A lower estimate for the arc length given the
sag would be

2
p
(10)2 + (sag)2

= 2
p
100 + 29.4849 ⇡ 22.76

This looks good against the calculated arc
length of 23.504.

26. If x2/3 + y2/3 = 1, then in the first quad-
rant, y = (1� x2/3)3/2 and taking only the
first-quadrant case (which would produce one
fourth of the total length s), we have y =
3

2
(1� x2/3)1/2

✓
�2

3
x�1/3

◆

= �x�1/3(1� x2/3)1/2

(y0)2 = x�2/3(1� x2/3) = x�2/3 � 1

s = 4

Z
1

0

p
1 + y02dx

= 4

Z
1

0

p
x�2/3dx

= 4

Z
1

0

x�1/3dx

= 4

✓
3

2

◆
x2/3

���
1

0

= 6

There are some technicalities in fully justifying
the preceding computation, since the integrand
(x�1/3) is unbounded at x = 0, but the con-
clusion is sound.

x

y

10

1

27. y = 0 when x = 0 and when x = 60, so the
punt traveled 60 yards horizontally.

y0(x) = 4� 2

15
x =

2

15
(30� x)

This is zero only when x = 30, at which point
the punt was (30)2/15 = 60 yards high.

s =

Z
60

0

s

1 +

✓
4� 2

15
x

◆
2

dx

⇡ 139.4 yards

v =
s

4 sec
=

139.4 yards

4 sec
· 3 feet

1 yard

= 104.55 ft/s

60

40

0

50

30

x

30 50

10

20

0 4020 6010

28. Since y(100) = 0, the ball traveled 100
yards. The maximum height of the ball is

y(50) =
25

3
yards. The arc length is s =

Z
100

0

s

1 +


1

300
(100� 2x)

�
2

dx

⇡ 101.82215 yards
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4

6

2

0

x

40 600 8020 100

29. S = 2⇡

Z
1

0

y ds

= 2⇡

Z
1

0

x2

p
1 + (2x)2dx

⇡ 3.8097

30. S =

Z
⇡

0

2⇡ sinx
p
1 + cos2 xdx

⇡ 14.42360

31. S = 2⇡

Z
2

0

y ds

= 2⇡

Z
2

0

(2x� x2)
p
1 + (2� 2x)2dx

⇡ 10.9654

32. S =

Z
0

�2

2⇡(x3 � 4x)
p
1 + (3x2 � 4)2dx

⇡ 67.06557

33. S = 2⇡

Z
1

0

y ds

= 2⇡

Z
1

0

ex
p
1 + e2xdx ⇡ 22.9430

34. S =

Z
2

1

2⇡ lnx

r
1 +

1

x2

dx

⇡ 2.86563

35. S = 2⇡

Z
⇡/2

0

y ds

= 2⇡

Z
⇡/2

0

cosx
p
1 + sin2 xdx

⇡ 7.2117

36. S =

Z
2

1

2⇡
p
x

r
1 +

1

4x
dx ⇡ 8.28315

37. s
1

=

Z
1

0

q
1 + (6x5)2dx

=

Z
1

0

p
1 + 36x10dx ⇡ 1.672

s
2

=

Z
1

0

q
1 + (8x7)2dx

=

Z
1

0

p
1 + 64x14dx ⇡ 1.720

s
3

=

Z
1

0

q
1 + (10x9)2dx

=

Z
1

0

p
1 + 100x18dx ⇡ 1.75

As n ! 1, the length approaches 2, since one
can see that the graph of y = xn on [0, 1] ap-
proaches a path consisting of the horizontal
line segment from (0, 0) to (1, 0) followed by
the vertical line segment from (1, 0) to (1, 1).

38. (a) For 0  x < 1, we have lim
n!1

xn = 0

Therefore, the length of the limiting curve
is 1 (the limiting curve is a horizontal
line). Connecting the limiting curve to
the endpoint at (1, 1) adds an additional
length of 1 for a total length of 2.

(b) y
1

= x4, y0
1

= 4x3

y
2

= x2, y0
2

= 2x

Since both are increasing for positive x, y
1

is “steeper” (y
2

is “flatter”) if and only if
y0
1

> y0
2

, i.e.,

4x3 > 2x, x2 >
1

2
, x >

r
1

2

39. (a) L
1

=

Z
⇡/6

�⇡/6

p
1 + cos2 xdx ⇡ 1.44829

L
2

=

s
⇣
sin

⇡

6
� sin

⇣
�⇡

6

⌘⌘
2

+

✓
2⇡

6

◆
2

⇡ 1.44797 Hence

L
2

L
1

=
1.44797

1.44829
⇡ .9998

(b) L
1

=

Z
⇡/2

�⇡/2

p
1 + cos2xdx ⇡ 3.8202

L
2

=

r⇣
2 sin

⇡

2

⌘
2

+ (⇡)2

=
p
⇡2 + 4 = 3.7242

Hence
L
2

L
1

⇡ 0.9749

40. (a) L
1

=

Z
5

3

p
1 + (ex)2dx ⇡ 128.3491

L
2

=
p
22 + (e5 � e3)2 ⇡ 128.3432

Hence
L
2

L
1

⇡ 0.9999
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(b) L
1

=

Z �3

�5

p
1 + (ex)2dx ⇡ 2.0006

L
2

=
p
22 + (e�5 � e�3)2 ⇡ 2.0005

Hence
L
2

L
1

⇡ 0.9999

41. (a) Considering only the vertical segment x =
1, (�1 < y < 1), the area after rotation,
as an integral in y, would be

2⇡

Z
y=1

y=�1

xds(y) = 2⇡

Z
1

�1

(1)
p
1 + 02dy

= 2⇡y|1�1

= 4⇡
(height times circumference)

The full solid of revolution is a cylinder
with radius 1, and its top and bottom
each have area ⇡(1)2 = ⇡. Hence the total
surface area is 4⇡ + ⇡ + ⇡ = 6⇡.

(b) S =

Z
1

�1

2⇡
p
1� y2

vuut1 +

 
yp

1� y2

!
2

dy

=

Z
1

�1

2⇡
p
1� y2

s
1p

1� y2
dy

=

Z
1

�1

2⇡ dy = 4⇡

(c) The equation for the right segment of the
triangle is x = (1 � y)/2. Hence the re-

sulting area is 2⇡

Z
y=1

y=�1

xds(y)

= 2⇡

Z
1

�1

✓
1� y

2

◆s

1 +

✓
�1

2

◆
2

dy

= 2⇡

Z
1

�1

✓
1� y

2

◆r
5

4
dy

=
⇡
p
5

2

✓
y � y2

2

◆����
1

�1

= ⇡
p
5

The full revolved figure is a cone with
added base of radius 1 (and area ⇡).
Hence the total surface area
⇡
p
5 + ⇡(

p
5 + 1)⇡.

(d) 6⇡ : 4⇡ : (
p
5 + 1)⇡ = 3 : 2 : ⌧

0.5

-1

1

1

0 0.5
0

-0.5

-0.5-1

42. (a) Surface area of a right circular cylinder of
radius r and height h.

y=h

x=r

y

4

2

2

x

5

3

−1

3

1

0 1−2 −1−3

0

Consider a line x = r and 0  y  h
rotating about the y � axis to form a
Right Circular Cylinder.
Here f (y) = r
Therefore, the surface area

S =

hZ

0

2⇡f (y)
q
1 + (f 0 (y))2dy

=

hZ

0

2⇡r
q
1 + (0)2dy = 2⇡rh

(b) Surface area of a sphere of radius r

x

2

2

−2

y

3

1

3
0

−1

−3

10−1−2−3

Consider a semicircle of radius r with
centre as the origin, its equation is
y =

p
r2 � x2
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for �r  x  r Rotating it about the
x� axis we get a sphere Here

f (x) =
p
r2 � x2

Therefore, the surface area

S = 2⇡

rZ

�r

f (x)
q
1 + (f 0 (x))2dx

= 2⇡

rZ

�r

p
r2 � x2

s

1 +

✓
�xp
r2 � x2

◆
2

dx

= 2⇡

rZ

�r

p
r2 � x2

r
1 +

x2

r2 � x2

dx

= 2⇡

rZ

�r

p
r2 � x2

r
r2 � x2 + x2

r2 � x2

dx

= 2⇡

rZ

�r

p
r2 � x2

r
r2

r2 � x2

dx

= 2⇡

rZ

�r

rdx

= 4⇡r2

(c) Surface area of cone of radius r and
height h

r

1.5

2

2.0

1

0.5

y

0
1.0

−2

−1

0.0
x

Consider a line y = ( r
h

)x Rotating it
about the x�axis, we get a cone of radius
r and height h Here
f (x) = ( r

h

)x
Therefore, the surface area

S = 2⇡

hZ

0

f (x)
q
1 + (f 0 (x))2dx

= 2⇡

hZ

0

rx

h

r
1 +

⇣ r
h

⌘
2

dx

= 2⇡

hZ

0

rx

h

r
r2 + h2

h2

dx

= 2⇡

hZ

0

rx

h2

p
r2 + h2dx

=
2⇡r

p
r2 + h2

h2

✓
x2

2

◆����
h

0

= ⇡r
p

r2 + h2 = ⇡rl

where l =
p
r2 + h2 is the slanted height

of the cone.

43.

1

15

5

1098765432

20

10

0
0

For the path along the positive x � axis, the
equation of the path is f (x) = 0 Therefore
f

0
(x) = 0 The distance covered along the

x� axis is

L
1

=

sZ

0

q
1 + f 0 (x)dx =

sZ

0

dx ) L
1

= s

Now, for the path along the curve

y =
2

3
(x)3/2

The equation of the path is

f (x) =
2

3
(x)3/2

Therefore

f
0
(x) =

2

3
· 3
2
· x1/2 ) f

0
(x) = x1/2

The distance covered along these curve is

L
2

=

Z
s

0

q
1 + f 0 (x)dx =

Z
s

0

p
1 + x dx

L
2

=
2

3
(s+ 1)3/2 � 2

3

(a) Consider L
2

= 2L
1

L
2

L
1

=
2(s+ 1)

3
2 � 2

3s
= 2

) (s+ 1)
3
2 = 3s+ 1 or

(s+ 1)3 = (3s+ 1)2

) s3 � 6s2 � 3s = 0
Thus s = 0 or s = 6.464102
or s = �0.464102

But s > 0,
therefore s = 6.464102
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(b) Consider the motion of the person along
the x� axis

Let g (t) be the distance walked along the
x� axis
Therefore g(t) = t, 0  t  x,) g

0
(t) = 1

Now, consider the motion of the person

along the curve y =
2

3
(x)3/2

f (t) =
2

3
(t)3/2 is the distance walked

along the curve y =
2

3
(x)3/2, 0  t  x

Therefore

f (t) =
2

3
(t)3/2, 0  t  x ) f

0
(t) =

p
t

The ratio of the speeds =
f

0
(t)

g0(t)
=

p
t

1
= 2

) t = 4

44. (a)
d

dx

p
2

Z
x

0

s

1� sin2 u

3
du

=
1

2

p
2 ·
p
4� 2 sin2 x

=
p
1 + cos2 x

(b)
d

dx

✓
1

4
x
p
1 + 16x6 +

Z
3/4p

1 + 16x6

dx

◆

=

✓
1

4

p
1 + 16x6

+
12x6

p
1 + 16x6

◆
+

3/4p
1 + 16x6

=
1/4(1 + 16x6)p

1 + 16x6

+
12x6

p
1 + 16x6

+
3/4p

1 + 16x6

=
1 + 16x6

p
1 + 16x6

=
p
1 + 16x6

5.5 Projectile Motion

1. y(0) = 80, y0(0) = 0

2. y(0) = 100, y0(0) = 0

3. y(0) = 60, y0(0) = 10

4. y(0) = 20, y0(0) = �4

5. The initial conditions are
y(0) = 30 and y0(0) = 0
We want to find y0(t) when y(t) = 0.

We start with the equation y00(t) = �32.
Integrating gives y0(t) = �32t+ c

1

.
From the initial velocity, we have

0 = y0(0) = �32(0) + c
1

, and so y0(t) = �32t
Integrating again gives y(t) = �16t2 + c

2

.
From the initial position, we have
30 = y(0) = �16(0) + c

2

and so
y(t) = �16t2 + 30.

Solving y(t) = 0 gives t = ±
q

15

8

The posi-

tive solution is the solution we are interested
in. This is the time when the diver hits the
water. The diver’s velocity is therefore

y0
⇣q

15

8

⌘
= �32

q
15

8

⇡ �43.8 ft/sec

6. The initial conditions are
y(0) = 120 and y0(0) = 0
We want to find y0(t) when y(t) = 0. We start
with the equation y00(t) = �32.
Integrating gives y0(t) = �32t+ c

1

.
From the initial velocity, we have
0 = y0(0) = �32(0) + c

1

, and so y0(t) = �32t.

Integrating again gives y(t) = �16t2+c
2

. From
the initial position, we have
120 = y(0) = �16(0) + c

2

and so
y(t) = �16t2 + 120.

Solving y(t) = 0 gives t = ±
q

15

2

. The

positive solution is the solution we are inter-
ested in. This is the time when the diver hits
the water. The diver’s velocity is therefore

y0
 r

15

2

!
= �32

r
15

2
ft/sec

7. If an object is dropped (time zero, zero ini-
tial velocity) from an initial height of y

0

, then
the impact moment is t

0

=
p
y
0

/4 and the im-
pact velocity (ignoring possible negative sign)
is v

impact

= 32t
0

= 8
p
y
0

Therefore if the object is dropped from 30 ft,
the impact velocity is
8
p
30 ⇡ 43.8178 feet per second.

If dropped from 120 ft, impact velocity is
8
p
120 ⇡ 87.6356 feet per second.

From 3000 ft, impact velocity is
8
p
3000 ⇡ 438.178 feet per second.

From a height of h y
0

, the impact velocity is
8
p
hy

0

= 8
p
h
p
y
0

=
p
h
�
8
p
y
0

�
,

which is to say that impact velocity increases
by a factor of

p
h when initial height increases

by a factor of h.

8. Ignoring air friction we have initial conditions
y(0) = 555.427 and y0(0) = 0.

Integrating y00(t) = �32 gives
y0(t) = �32t+ c

1

. The initial condition gives

aliel
Highlight
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0 = y0(0) = �32(0) + c
1

and therefore
y0(t) = �32t.

Integrating again gives y(t) = �16t+ c
2

.

The initial condition gives
555.427 = y(0) = �16(0) + c

2

and therefore
y(t) = �16t2 + 555.427.

We will assume that the baseball player catches
the ball when it is 6 feet above the ground, so
we solve
6 = y(t) = �16t2 + 555.427. Solving gives
t ⇡ ±5.86. We use the positive solution.
The velocity at this time is
y0(5.86) = �16(5.86) = �93.75 ft/sec
(If you assume the ball is caught at ground
level, the ball will be going 94.27 ft/sec.)

9. As y00 (t) = �9.8, y0 (t) = �9.8t+ y0 (0)

Therefore, y (t) = �4.9t2 + y0 (0) t+ y (0)

where y(0) represents the height of the cli↵ and
y(4) = 0.
Now, y (4) = �4.9 (16) + 4 (0) + y (0)

Thus, y (0) = 78.4 is the height of the cli↵ in
meters.

10. Let y (t) be the height of the boulder.
Therefore y00 (t) = �9.8; y (3) = 0 and
y0 (0) = 0
Thus, y0 (t) = �9.8t+ y0 (0) and
y (t) = �4.9t2 + y0 (0) t+ y (0)
Thus,
y (3) = �4.9 (9) + y (0) ) y (0) = 43.1meters

11. Let y (t) be the height at any time t.
Here v0 (t) = �9.8
Therefore v (t) = �9.8 t+ v (0) = �9.8t+ 19.6
or y0 (t) = �9.8 t+ 19.6
) y (t) = �4.9t2 + 19.6 t+ y (0) .

But y (0) = 0 therefore, y (t) = �4.9t2 + 19.6 t
which is the height at ay time t. Also the ve-
locity at any instant t is
v (t) = �9.8 t+ 19.6 = �9.8 (t� 2)

Now for the maximum height,
v (t) = 0 ) t = 2.
Therefore, maximum height is
y (2) = �4.9(2)2 + 19.6 (2) + y (0) = 19.6

He remains in the air until y (t) = 0.
That is, till�4.9t2+19.6t = 0 ) t = 0 or t = 4
Therefore, the amount of time he spent in the
air is 4sec.
The velocity with which he smacks back is
v (4) = �9.8 (4� 2) = �19.6m/s

12. Let y (t) be the height at any time t.
Here v0 (t) = �9.8,
Therefore v (t) = �9.8t+ v (0)
) y0 (t) = �9.8 t+ v (0)
) y (t) = �4.9t2 + v (0) t+ y (0) .

But y (0) = 0.
Therefore, y (t) = �4.9t2 + v (0) t which is the
height at any time t.
Now the maximum height is reached when

y0 (t) = 0 that is when t =
v (0)

9.8
.

Therefore for the maximum height

y

✓
v (0)

9.8

◆
= �4.9

✓
v (0)

9.8

◆
2

+ v (0)

✓
v (0)

9.8

◆

) 78.4 = �4.9

✓
v (0)

9.8

◆
2

+ v (0)

✓
v (0)

9.8

◆

) (v (0))2

9.8


�4.9

9.8
+ 1

�
= 78.4

) v (0) = 39.2m/s

13. Reviewing the solution to Exercise 11, the dif-
ference is that v(0) is unknown. However, we
still see that
y = �16t2 + tv(0) = �t[16t� v(0)] (factoring,
rather than completing the square). The sec-
ond time that y = 0 can be seen to occur at
time t

2

= v(0)/16, at which time
v(t

2

) = �32t
2

+ v(0) = v(0)(�2 + 1) = �v(0)

Now we see
v(t) = �32t+ v(0) = �32t+ 16t

2

= �16(2t� t
2

)

The peak was therefore at time t
2

/2, at which
time the height was �(t

2

/2)[16t2/2� v(0)]
= �(t2/2)[(v(0)/2)� v(0)]
= �(v(0)/32)[�v(0)/2] = v(0)2/64.

In summary, y
max

= [v(0)/8]2 in this problem
(and more generally, y

max

= [v(0)/8]2 + y(0)).
If y

max

= 20 inches = 5/3 feet, then
v(0)/8 =

p
5/3, and

v(0) = 8
p

5/3 ⇡ 10.33 feet per second.

This is considerably less than Michael Jordan’s
initial velocity of about 17 feet per second, but
the di↵erence in velocity is not as dramatic as
in height (20 inches to 54 inches).

14. For a given initial velocity of v
0

, the velocity
and position are given by
y0 = �32t+ v

0

y = �16t2 + v
0

t

The maximum occurs when y0 = 0 or when
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t
0

=
v
0

32
and the maximum height is

y(t
0

) = �16
⇣ v

0

32

⌘
2

+ v
0

⇣ v
0

32

⌘
=
⇣v

0

8

⌘
2

Therefore if the new initial velocity was 1.1v
0

(an increase of 10%), the new maximum height
would be✓
1.1v

0

8

◆
2

= 1.21
⇣v

0

8

⌘
2

In other words, it would be an increase in
height by 21%.

15. (a) If the initial conditions are
y(0) = H and y0(0) = 0

Integrating y00(t) = �32 gives

y0(t) = �32t+ c
1

.

The initial condition gives
y0(t) = �32t+ v

0

= �32t.

Integrating gives
y(t) = �16t2 + c

2

.

The initial condition gives
y(t) = �16t2 +H.

The impact occurs when y(t
0

) = 0 or
when t

0

=
p
y
0

/4 =
p
H/4. Therefore

the impact velocity is
y0(t

0

) = �32t
0

= �8
p
H

(b) If the initial conditions are
y(0) = 0 and y0(0) = v

0

Integrating y00(t) = �32 gives
y0(t) = �32t+ c

1

.
The initial condition gives
y0(t) = �32t+ v

0

.
Integrating gives
y(t) = �16t2 + v

0

t+ c
2

.
The initial condition gives
y(t) = �16t2 + v

0

t.

The maximum occurs when y0(t) = 0 or
when t = v

0

/32.
Therefore the maximum height is

y
⇣ v

0

32

⌘
= �16v2

0

322
+

v2
0

32
=

v
0

64
.

16. (a) The time t
0

when the lead ball hits the
ground satisfies

179 = 12800 ln

✓
cosh

✓
t
0

20

◆◆

cosh

✓
t
0

20

◆
= e179/12800

t
0

⇡ 3.3526

At time t
0

, the height of the wood ball is

179� 7225

8
ln

✓
cosh

✓
16

85
t
0

◆◆

⇡ 179� 169.0337 = 9.9663 ft

(b) The time t
1

that the wood ball need to
hit the ground satisfies

179 =
7225

8
ln

✓
cosh

✓
16

85
t
1

◆◆

cosh

✓
16

85
t
1

◆
= e1432/7225

t
1

⇡ 3.4562
The wood ball need to be released about
t
1

= t
0

= 0.1036 seconds earlier.

17. The starting point is
y00 = �9.8, y0(0) = 98 sin(⇡/3) = 49

p
3.

We get y(t) = �4.9t2 + ty0(0)
= �4.9t(t� [v(0)/4.9])
= �4.9t(t� 10

p
3)

The flight time is 10
p
3. As to the horizontal

range, we have x0(t) constant and forever equal
to 98 cos(⇡/3) = 49. Therefore x(t) = 49t and
in this case, the horizontal range is 49(10

p
3)

(meters).

18. Here y0 (0) = 40 sin
⇣⇡
6

⌘
= 20

Therefore y (t) = �4.9t2 + 20t
= t (�4.9t+ 20)

) the time of flight = t =
20

4.9
= 4.082

Now, for the horizontal range x (t)

x0 (t) = 40 cos
⇣⇡
6

⌘
= 20

p
3

Therefore
x (t) = 20

p
3t and

x (4.082) = 20 (1.7321) (4.082) = 141.3919

Repeating the same for the angle 600

y0 (0) = 40 sin
⇣⇡
3

⌘
= 34.6410

Therefore
y (t) = �4.9t2 + (34.6410) t
) y (t) = t (�4.9t+ 34.6410)

) the time of flight = t =
34.6410

4.9
= 7.0696

Now, for the horizontal range x (t)

x0 (t) = 40 cos
⇣⇡
3

⌘
= 20

Therefore x (t) = 20t and
x (7.0696) = 20 (7.0696) = 141.3919

19. This problem modifies Example 5.5 by using
a service angle of 6� (where the Example 5.5
used 7�) and no other changes. Here the serve
hits the net.

Next we want to find the range for which the
serve will be in.

If ✓ is the angle, then the initial conditions are
x0(0) = 176 cos ✓, x(0) = 0
y0(0) = 176 sin ✓, y(0) = 10
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Integrating x00(t) = 0 and y00(t) = �32, then
using the initial conditions gives
x0(t) = 176 cos ✓
x(t) = 176(cos ✓)t
y0(t) = �32t+ 176 sin ✓
y(t) = �16t2 + 176(sin ✓)t+ 10

To make sure the serve is in, we see what hap-
pens at the net and then when the ball hits
the ground. First, the ball passes the net when
x = 39 or when 39 = 176(cos ✓)t. Solving gives

t =
39

176 cos ✓
Plugging this in for the function

y(t) gives

y

✓
39

176 cos ✓

◆

= �16

✓
39

176 cos ✓

◆
2

+ 176(sin ✓)

✓
39

176 cos ✓

◆
+ 10

= �1521

1936
sec2 ✓ + 39 tan ✓ + 10

We want to ensure that this value is greater
than 3 so we determine the values of ✓ that give
y > 3 (using a graphing calculator or CAS).
This restriction means that we must have
�0.15752 < ✓ < 1.5507

Next, we want to determine when the ball hits
the ground. This is when
0 = y(t) = �16t2 + 176(sin ✓)t+ 10
We solve this equation using the quadratic for-
mula to get

t =
�176 sin ✓ ±

p
1762 sin2 ✓ + 640

�32
We are interested in the positive solution, so

t =
176 sin ✓ +

p
1762 sin2 ✓ + 640

32
Substituting this in to
x(t) = 176(cos ✓)t gives

x = 44 cos ✓
⇣
22 sin ✓ +

p
484 sin2 ✓ + 10

⌘

We want to determine the values of ✓ that en-
sure that x < 60. Using a graphing calculator
or a CAS gives ✓ < �0.13429

Putting together our two conditions on ✓ now
gives the possible range of angles for which the
serve will be in:
�0.15752 < ✓ < �0.13429

20. In these tennis problems, the issue is purely
geometric. Time is irrelevant. One can obtain
valuable information by eliminating time and
writing y as a function of x. For example, with

service angle of ✓ (in degrees below the hori-
zontal), initial speed v

0

, and initial height h,
one has

y(t) = �16t2 � tv
0

sin ✓ + h,
x(t) = tv

0

cos ✓, and hence

y = f(x) =
�16x2

v2
0

cos2 ✓
� x sin ✓

cos ✓
+ h

Now one could put x = 60 (the serve would be
in if f(60) < 0), or put x = 39 (the serve would
clear the net if f(39) > 3. If one were to set
f(60) = 0 and solve for v

0

, one would obtain
a critical speed (call it v

1

) for the given (h, ✓),
above which the serve would be out. Solving
f(39) = 3 one would obtain a second critical
speed (call it v

2

), below which the serve would

hit the net. Below we tabulate v
1

and v
2

for
h = 10 and selected values of ✓.

In the 7� line, we see that it would be neces-
sary to reduce the service speed to 149ft./sec.
to get it in, and the net would not be a prob-
lem. The 7.6� line has these interesting fea-
tures: the service at 176 ft./sec. is out, whereas
the service at 170 ft./sec. is in.

h ✓ v
1

v
2

feet degrees ft/sec ft/sec

10 7.0 149.0 105.7
10 7.6 171.5 117.4
10 8.0 193.6 127.8

21. Let (x(t), y(t)) be the trajectory. In this case
y(0) = 6, x(0) = 0
y0(0) = 0, x0(0) = 130
x00(t) ⌘ 0, x0(t) ⌘ 130
x(t) = 130t

This is 60 at time t = 6/13. Meanwhile,
y00(t) = �32, y0(t) = �32t
y(t) = �16t2 + 6

y

✓
6

13

◆
= �16

✓
6

13

◆
2

+ 6 =
438

169

y

✓
6

13

◆
⇡ 2.59 ft

22. If the initial speed is now 80 ft/s, the equations
become
x(t) = 80t
y(t) = �16t2 + 6

The ball crosses home plate when x = 60, or
when t = 3/4. At the home plate, we then
have,
y(3/4) = �16(3/4)2 + 6 = �3

In other words, the ball is “under” the ground
and the ball hits the ground before reaching
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home plate.

23. Let (x(t), y(t)) be the trajectory. In this case
5� is converted to ⇡/36 radians.

y(0) = 5, x(0) = 0
y0(0) = 120 sin ⇡

36

⇡ 10.46
x0(0) = 120 cos ⇡

36

⇡ 119.54
x00(0) ⌘ 0
x0(t) ⌘ 119.54
x(t) = 119.54t
This is 120 when
t = 120/119.54 = 1.00385 . . .

Meanwhile,
y00(t) = �32
y0(t) = �32t+ 10.46
y(t) = �16t2 + 10.46t+ 5
y(1.00385) = �16(1.00385)2

+ 10.46(1.00385) + 5
y(1.00385) ⇡ �.62 ft

24. We are assuming that the height at 120 feet is
the same as the release height 5. Let ✓ be the
angle of release (above the horizontal).
We have
y(t) = �16t2 + 120t sin ✓ + 5
x(t) = 120t cos ✓

Thus x(t) will be 120 when t = 1/cos✓, at
which time y(t) will be 5 only if
�16

cos2 ✓
+ 120

sin ✓

cos ✓
= 0

Hence if 120 sin ✓ cos ✓ = 16
60 sin 2✓ = 16
2✓ = sin�1(16/60) = .2699 . . . ,
✓ = .135 (radians) or about 7.7�

To find the aim, we need the length of the ver-
tical leg of a right triangle with opposite angle
7.7�, and adjacent leg 120 ft. Thus the player
should aim
120 tan(7.7�) ⇡ 120 tan(.135) ⇡ 16.2 ft

above the first baseman’s head.

25. (a) Assuming that the ramp height h is the
same as the height of the cars, this prob-
lem seems to be asking for the initial
speed v

0

required to achieve a horizontal
flight distance of 125 feet from a launch
angle of 30� above the horizontal. We
may assume x(0) = 0, y(0) = h, and we
find

y0(0) = v
0

sin
⇡

6
=

v
0

2

x0(0) = v
0

cos
⇡

6
=

p
3

2
v
0

y00(t) ⌘ �32, x00(t) ⌘ 0

y0(t) = �32t+
v
0

2
, x0(t) =

p
3

2
v
0

y(t) = �16t2 +
v
0

2
t+ h,

x(t) =

p
3

2
v
0

t.

x(t) will be 125 if t = 250/
�p

3⌫
0

�
at

which time we require that y be h. There-
fore

�16

✓
250p
3v

0

◆
2

+
v
0

2

✓
250p
3v

0

◆
= 0

v
0

=

s
8000p

3
⇡ 68ft/s

(b) With an angle of 45� = ⇡/4, the equa-
tions become
y0(0) = v

0

sin
⇡

4
=

v
0p
2

x0(0) = v
0

cos
⇡

4
=

v
0p
2

y00(t) = �32, x00(t) = 0

y0(t) = �32t+
v
0p
2
, x0(t) =

v
0p
2

y(t) = �16t2 +
v
0

tp
2
+ h,

x(t) =
v
0

tp
2

where h is the height of the ramp.

We now solve x(t) = 125 which gives

t
0

= t =
125

p
2

v
0

At this distance, we want the car to be at
a height h to clear the cars. This gives
the equation y(t

0

) = h, or

�16

 
125

p
2

v
0

!
2

+
125v

0

p
2

v
0

p
2

+ h = h

Solving for v
0

gives
v
0

= 20
p
10 ⇡ 63.24 ft/s.

26. Let (x(t), y(t)) be the trajectory. In this case,
y(0) = 256, x(0) = 0
y0(0) = 0, x0(0) = 100
y00(t) ⌘ 32, x00(t) ⌘ 0
y0(t) = �32t, y(t) = �16t2 + 256
x0(t) = 100, x(t) = 100t

y will be zero when t = 4, at which time x will
be 400. This is the drift distance.

27. (a) In this case with
✓
0

= 0 and ! = 1
x00(t) = �25 sin(4t)
x0(0) = x(0) = 0

x0(t) =
25

4
cos 4t� 25

4
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x(t) =
25

16
sin 4t� 25

4
t

(b) With ✓
0

=
⇡

2
and ! = 1

x00(t) = �25 sin
⇣
4t+

⇡

2

⌘

x0(0) = x(0) = 0

x0(t) =
25

4
cos
⇣
4t+

⇡

2

⌘

x(t) =
25

16
sin
⇣
4t+

⇡

2

⌘
� 25

16

28. (a) With ✓
0

=
⇡

4
and ! = 2

x00(t) = �25 sin
⇣
8t+

⇡

4

⌘

x0(0) = 0 = x(0)

x0(t) =
25

8
cos
⇣
8t+

⇡

4

⌘
� 25

p
2

16

x(t) =
25

64
sin
⇣
8t+

⇡

4

⌘
� 25

p
2

16
t� 25

p
2

128

(b) With ✓
0

=
⇡

4
and ! = 1

x00(t) = �25 sin(4t+ ⇡/4)

x0(0) = x(0) = 0

x0(t) =
25

4
cos(4t+ ⇡/4)� 25

p
2

8

x(t) =
25

16
sin(4t+ ⇡/4)

25t
p
2

8
� 25

p
2

32

29. The initial conditions are
s(0) = 0, s0(0) = 0.

Integrating s00(t) = �32 gives
s0(t) = �32t+ c

1

.
The initial condition gives
s0(t) = �32t.
Integrating gives
s(t) = �16t2 + c

2

.
The initial condition gives
s(t) = �16t2.
Realizing that �32 was given in feet per
second2,and we are using centimeters now,
we use, 1 foot = 30.48 cms
and get
s(t) = �487.68t2 cm

The yardstick is grabbed when s(t
0

) = �d,
that is when

t
0

=

p
d

487.68
⇡ 0.045

p
d

30. Using the result from Exercise 15,
v
1

= 8
p
H.

Now we need to compute how big v
2

is in order
for the ball to rebound to cH.

The initial conditions are
v(0) = v

2

, s(0) = 0.
Integrating a(t) = �32 gives
v(t) = �16t+ v(0) = �16t+ v

2

Integrating again we get
s(t) = �8t2 + v

2

t+ s(0) = �8t2 + v
2

t
s(t

0

) = cH when v(t
0

) = 0, that is when
t
0

= v
2

/16

� 8
⇣ v

2

16

⌘
2

+ v
2

⇣ v
2

16

⌘
= cH

v2
2

32
= cH

v
2

=
p
32cH

Now the coe�cient of restitution is
v
2

v
1

=

p
32cH

8
p
H

=

r
c

2

31. From Exercise 5, time of impact is

t =

p
30

4
seconds.

2 1

2

somersaults corresponds to 5⇡ radians of
revolution.
Therefore the average angular velocity is
5⇡p
30/4

=
20⇡p
30

⇡ 11.47 rad/sec

32. The initial conditions are
y(0) = 10, y0(0) = 160 sin 45�

x(0) = 0, and x0(0) = 160 cos 45�

Integrating x00(t) = 0 and y00(t) = �32 and us-
ing the initial conditions gives
x0(t) = 80

p
2

x(t) = (80
p
2)t

y0(t) = �32t+ 80
p
2

y(t) = �16t2 + (80
p
2)t+ 10.

We now want to solve for when y(t) = 5, which
gives the equation
�16t2 + (80

p
2)t+ 10 = 5

Solving gives

t =
�80

p
2±

p
12800 + 640

�32
⇡ �0.087, 7.16.

We, of course, take the positive solution.
x(7.16) = (80

p
2)(7.16) ⇡ 810.1.

So, place the net 810.1 feet away from the can-
non.
y0(7.16) = �32(7.16) + 80

p
2 ⇡ 116.0

Since we have x0 = 80
p
2 ⇡ 113.1, this means

that the impact velocity is
v =

p
(x0)2 + (y0)2

=
p
(116.0)2 + (113.1)2 ⇡ 162.0

which means the Flying Zucchini comes down
squash.(We should have known this—the ve-
locity at a height of 10 should have been equal
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to his initial velocity so his velocity at a height
of of 5 should be slightly higher, which it is.)

33. Let (x(t), y(t)) be the trajectory of the cen-
ter of the basketball. We are assuming that
y(0) = 6, x(0) = 0, the angle of launch ✓ of the

shot is 52� (✓ =
13⇡

45
in radians) and the initial

speed is 25 feet per second. Therefore

y0(0) = 25 sin
13⇡

45
⇡ 19.70

x0(0) = 25 cos
13⇡

45
⇡ 15.39

y00(t) ⌘ �32, x00(t) ⌘ 0
y0(t) = �32t+ 19.70, x0(t) ⌘ 15.39
y(t) = �16t2 + 19.70t+ 6,
x(t) = 15.39t.
x will be 15 when t is about
15/15.39 = .9746 . . . , at which time y will be
about
�16(.9746 . . .)2 + 19.70(.9746 . . .) + 6 ⇡ 10

In other words, the center of the ball is at po-
sition (15, 10) and the shot is good. More gen-
erally, with unknown ✓, the number 19.70 is
replaced by 25 sin ✓, while the number 15.39 is
replaced by 25 cos ✓. y will be exactly 10 if

�16t2 + 25t sin ✓ + 6 = 10

t =
25 sin ✓ +

p
625 sin2 ✓ � 256

32
x = 25t cos ✓.

As a function of ✓, this last expression is
too complicated to use calculus (easily) to
maximize and minimize it on the ✓-interval
(48�, 57�), but quick spreadsheet calculations
give these values:
(Observe that x is not a monotonic function of
✓ in this range. It takes its maximum when ✓ is
between 52.4 and 52.5 degrees. The evidence is
overwhelming that all the shots will be good.)

✓ t x

degrees seconds feet

48.0 0.8757 14.6484
49.0 0.9021 14.7958
50.0 0.9274 14.9024
51.0 0.9516 14.9710
52.0 0.9748 15.0038
52.1 0.9771 15.0051
52.2 0.9793 15.0062
52.3 0.9816 15.0069
52.4 0.9838 15.0073
52.5 0.9861 15.0073
52.6 0.9883 15.0070
52.7 0.9905 15.0064
52.8 0.9928 15.0054
52.9 0.9950 15.0042
53.0 0.9972 15.0026
54.0 1.0187 14.9690
55.0 1.0394 14.9044
56.0 1.0594 14.8100
57.0 1.0787 14.6869

34. Let(x (t) , y (t)) be the trajectory of the centre
of the basketball.

Here y (0) = 8, x (0) = 0, ✓ = 300 and v = 27.

Therefore y’(0)=27sin
⇡

6
= 13.5 and

x0(0) = 27 cos
⇡

6
= 23.3827

y00(t) ⌘ �32 ) y0(t) = �32t+ 13.5,
Or y(t) = �16t2 + 13.5t+ 8 also,
x00(t) ⌘ 0 ) x0(t) ⌘ 23.3827

That is x(t) = (23.3827) t

(a) Consider x (t) = 15

) t =
15

23.3827
⇡ 0.6415,

for which
y (0.6415)
= �16(0.6415)2 + 13.50 (0.6415) + 8
= 10.0759

Now, y(t) = 10 ) t ⇡ 0.6520 for which

x(0.6520) = (23.3827) (0.6520)
⇡ 15.2455

It is evident from the above calcula-
tions that the centre of the ball passes
through (15, 10.0759) and (15.2455, 10).
This means that the centre of the ball goes
through the basket. The graph of the mo-
tion is as follows
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7.5

x
302520151050

y

10.0

5.0

2.5

0.0

(b) When x (t) = 14.25 ) t ⇡ 0.6094 this
gives y(t) = 10.2849.
That is (14.25, 10.2845) lies on the curve.
Therefore the minimum distance between
the centre of the ball and the front rim is
0.2845. The minimum distance between
the centre of the ball and the back rim at
(15.75, 10) is 0.50450.

(c) If the ball is of diameter, then its radius
is . Since the minimum distance between
the center of the ball and the front rim is
less than the radius of the ball, the ball
hits the front rim.

35. (a) 85� = 17

36

⇡ radiance.

x0(0) = 100 · cos
�
17

36

⇡
�
⇡ 8.72

y0(0) = 100 · sin
�
17

36

⇡
�
⇡ 99.62

x00(0) = �20
y00(0) = 0

y(t) = 99.62t
x(t) = �10t2 + 8.72t
y(t

0

) = 90 when t
0

= 0.903
x(t

0

) = x(0.903) ⇡ �0.29

The ball just barely gets into the goal.

(b) Use the calculation from Exercise 35.(a),
y(t

1

) = 10 when t
1

= 0.100
x(t

1

) = x(0.100) ⇡ 0.775

The kick does not go around the wall.

36. Let (x(t), y(t)) be the trajectory of the ship.
Some of our data is in feet, so we will take
g = �32 in this problem. We have
y00(t) = 32
y0(t) = �32t+ y0(0)
y(t) = �16t2 + y0(0)t+ y(0)
x0(t) ⌘ c
x(t) = ct+ x(0)

Solving for t, we have
1

c
(x� x(0)) = t.

Substituting this expression for t in y(t), we
have
y � y(0)

= �16


1

c
(x� x(0))

�
2

+ y0(0)


1

c
(x� x(0))

�

Hence the path is a parabola.
Turning to the question of the duration of
weightlessness, we can assume x(0) = 0, and
we know that y0(t) = 0 when y � y(0) = 2500.
For this unknown time t

1

(the moment when
y0 is zero), we have 0 = �32t

1

+ y0(0).
Therefore t

1

= y0(0)/32, and

2500 = y(t
1

)� y(0)

= �16


y0(0)

32

�
2

+ y0(0)


y0(0)

32

�

=
y0(0)2

64
,

hence y0(0)2 = 64(2500)
y0(0) = 8(50) = 400, and
t
1

= 400/32 = 25/2.

We now know that y � y(0) = �16t2 + 400t
for all t.

The second time (t
2

) that y(t) = y(0) (af-
ter time zero) occurs when t = 400/16 =
25 seconds.
This is the duration of the weightless experi-
ence. Note that t

2

= 2t
1

. The plane must pull
out of the dive soon after this time.

37. Let y(t) be the height of the first ball at time
t, and let v

0y

be the initial velocity. We can
assume y(0) = 0. As usual, we have
y00 = �32, y0 = �32t+ v

0y

,
y = �16t2 + tv

0y

.

The second return to height zero is at time
t = 16/v

0y

. If this is to be 5/2, then v
0y

= 40.
But the maximum occurs at time
v
0y

/32 = 5/4
at which time the height (y(5/4)) is
�16(25/16) + 40(5/4) = 25feet.
For eleven balls, the di↵erence is that the sec-
ond return to zero is to be at time 11/4, hence
v
0y

= 44, and the maximum height is 30.25.

38. In this case, we start with initial conditions
x0(0) = v

0x

, x(0) = 0; y0(0) = v
0y

, y(0) = 0.
Integrating x00(t) = 0 and y00(t) = �32 and us-
ing the initial conditions gives
x0(t) = v

0x

x(t) = v
0x

t
y0(t) = �32t+ v

0y

y(t) = �16t+ v
0y

t
The ball is caught when y(t) = 0 so we solve
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this equation to get t =
v
0y

16
. Plugging this

into x(t) gives the horizontal distance

! = x
⇣v

0y

16

⌘
=

v
0x

v
0y

16
.

39. The student must first study the solution to
Exercise 38. Here we have the additional x-
component of the motion, which as in so many
problems is x(t) = tv

0x

. With initial speed of
v
0

, and initial angle ↵ from the vertical, we
have v

0y

= v
0

cos↵ and
v
0x

= v
0

sin↵.The horizontal distance at
elapsed time v

0y

/16 (time of return to initial
height) is by formula
x(v

0y

/16) = (v
0y

/16)v
0x

which defines !.
As in Exercise 37, the maximum height occurs
at time v

0y

/32, and at this time the height h
is

�16(v
0y

/32)2 + v
0y

(v
0y

/32) = v2
0y

/64
= (v0y/64)(16!/v

0x

)
= (!/4)(cos↵/ sin↵) = !/(4 tan↵).

Thus ! = 4h tan↵.

40. The linear approximation is tan�1 x = x,
i.e., tanx ⇡ x From Exercise 43, we have
! = 4h tan↵

Applying the linearization gives
! = 4h tan↵ ⇡ 4h↵
or ↵ ⇡ !

4h

This shows that �↵ ⇡ �!

4h

41. We must use the result

�↵ ⇡ �!

4h
from Exercise 40.

With h = 25 from Exercise 51 (10 balls) and
! = 1, we get
�↵ about 1/100 = .01 radians
or about .6�

42. In this case, the height to juggle 11 balls is
30.25 feet. Therefore with �! = 1, we get

�↵ ⇡ �!

4h
=

1

4(30.25)
⇡ 0.0083 rad or about

0.47�.

43. With trajectory (x, y), and assuming
x(0) = 0 and y(0) = 0, we have by now seen
many times the conclusion y = �gt2 + tv sin ✓.

The return to ground level occurs at time
t = 2v sin ✓/g, at which time the horizontal
range is x = tv cos ✓ = v2 sin(2✓)/g.

With v = 60 ft per second and ✓ = 25�, and
on earth with g = 32, this is about 86 feet, a

short chip shot. On the moon with g = 5.2, it
is about 530.34 ft.

44. Let ((x(t), y(t)) be the trajectory of the initial
burst of water. If the angle of inclination of
the hose is ✓, we have the relations
tan ✓ = m
sin ✓ =

mp
1 +m2

cos ✓ =
1p

1 +m2

We assume x(0) =0 and y(0) = 0 and then find
y00(t) ⌘ �32
y0(t) = �32t+ v sin ✓
y = y(t) = �16t2 + tv sin ✓

y = y(t) =� 16t2 +
tvmp
1 +m2

x0(t) ⌘ v cos ✓

x = x(t) = tv cos ✓ =
tvp

1 +m2

Solving the last equation in the form

t =
x
p
1 +m2

v
and inserting this in the y-formula, we find

y = �16x2

(1 +m2)

v2
+mx.

45. Let (x(t), y(t)) be the trajectory of the paint
ball, and let z(t) be the height of the target at
time t. We do assume that
y(0) = z(0) (target opposite shooter at timeof
shot) and
y0(0) = 0 (aiming directly at the target, hence
using an initially horizontal trajectory), and as
a result y � z has second derivative 0, and ini-
tial value 0.

However, this only tells us that
y � z = [y0(0)� z0(0)]t = �z0(0)t
and if the target is already in motion (z0(0)
not zero), the shot may miss at 20 feet or any
distance.

If on the other hand, the target is stationary
at the moment of the shot, then the shot hits
at20 feet or any other distance.

46. In this problem, we have the falling object with
initial conditions
y0
1

(0) = 0, y
1

(0) = 100.

The object that is launched from the ground
has initial conditions
y0
2

(0) = 40, y
2

(0) = 0

We now integrate the equations
y00
1

(t) = �32 and y00
2

(t) = �32, using the initial
conditions, to get
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y0
1

(t) = �32t
y
1

(t) = �16t2 + 100
y0
2

(t) = �32t+ 40
y
2

(t) = �16t2 + 40t

Now, we just solve y
1

(t) = y
2

(t), or
�16t2 + 100 = �16t2 + 40t
Solving gives t = 2.5, so the objects collide af-
ter 2.5 seconds and this collision occurs at a
height of y

1

(2.5) = 0.

This may seem odd, but notice that the max-
imum height of the y

2

object is only 25 feet.
What this means is that the y

2

object goes up
and then down and then the y

1

object only
catches the y

1

object when both objects actu-
ally hit the ground!

47. (a) The speed at the bottom is given by
1

2
mv2 = mgH, v =

p
2gH

(b) Use the result from (a)

v =
p
2gH =

p
2 · 16g = 4

p
2g

= 4
p
2 · 32 = 32ft/s

(c) At half way down,
1

2
mv2 +mh8 = mh16,

v =
p
2 · (16� 8)g = 4

p
g

= 4
p
32 ⇡ 22.63ft/s

(d) At half way down, the slope of the line
tangent to y = x2 is, 2 ·

p
8 = 4

p
2

Hence we know thatv
y

v
x

= 4
p
2

At the same time,
(v

y

)2 + (v
x

)2 = (4
p
g)2

v2
x

=
16g

33

v
x

= 4

r
g

33
⇡ 3.939 ft/s

v
y

= 16

r
2g

33
⇡ 22.282 ft/s

48. First we compute the speed v of the bowling
ball at the moment when it rolls right out of
the window.

30 = 16t2
0

, t
0

=

p
30

4

10 = t
0

v
0

, v
0

=
40p
30

.

From conservation of energy
1

2
mv2 = mgh,

1

2
m

✓
40p
30

◆
2

= mgh

80

3
= 32 · h,

h =
5

6

The height of the ramp should be
5

6
.

5.6 Applications of Integration

to Physics and Engineering

1. We first determine the value of the spring con-
stant k. We convert to feet so that our units
of work is in foot-pounds.

5 = F (1/3) =
k

3
and so k = 15.

W =

Z
6

0

F (x)dx

=

Z
1/2

0

15xdx =
15

8
foot-pounds.

2. We first determine the value of the spring con-
stant k. We convert to feet so that our units
of work is in foot-pounds.

10 = F (1/6) =
k

6
and so k = 60.

W =

Z
3

0

F (x)dx

=

Z
1/4

0

60xdx =
15

8
foot-pounds.

3. The force is constant (250 pounds) and the dis-
tance is 20/12 feet, so the work is
W = Fd = (250)(20/12)
= 1250/3foot-pounds.

4. The force is constant (300 pounds) and the dis-
tance is 6 feet, so the work is
W = Fd = (300)(6) = 1800 foot-pounds.

5. If x is between 0 and 30, 000 feet, then the
weight of the rocket at altitude x is

10000� 1

15
x.

Therefore the work is
Z

30,000

0

⇣
10,000� x

15

⌘
dx

=

✓
10,000x� x2

30

◆����
30,000

0

= 270,000,000 ft-lb

6. If x is between 0 and 10, 000 feet, then the

weight of the rocket at altitude x is 8000� x

10
.

Therefore the work done is

aliel
Highlight
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W =

Z
10,000

0

⇣
8000� x

10

⌘
dx

= 60, 800, 000ft-lb

7. The weight of the 40 feet long chain is 1000
pounds. Therefore the weight of the 30 feet
long chain is 750 pounds. The force acting here
is 750 pounds and the distance traced due to
the applied force is 30 feet. Hence the work
done is

W = Fd
= (750) · (30)
= 22500 foot-pounds.

8. Let x be the distance of the bucket from the
initial position. Consequently x increases from
0 to 80. As the sand from the bucket leaks at
rate of 2 lb/s, the weight of bucket at the dis-
tance x is

�
100� x

2

�
. Therefore work done is

W =

Z
80

0

⇣
100� x

2

⌘
dx =

✓
100x� x2

4

◆
80

0

= 8000� 1600
= 6400 ft-lb.

9. (a) W =

Z
1

0

800x(10x)dx

=

✓
400x2 � 800

3
x3

◆����
1

0

=
400

3
mile-lb

= 704,000 ft-lb

(b) Horsepower is not equal to 800x(1 � x)
because this is the derivative with respect
to distance and not with respect to time.
Average horsepower is the ratio of
total work done divided by time:
704, 000 ft-lb

80 s
= 16 hp

10. (a) W =

Z
100

0

62.4⇡(100x� x2)(200 + x)dx

= 62.4⇡

Z
100

0

�
20,000x� 100x2 � x3

�
dx

= 8,168,140,899 ft-lb

(b) This is the same as Exercise 10.(a) except
the limits of integration change to reflect
that the tank is only filled half way:

W =

Z
50

0

62.4⇡(100x� x2)(200 + x)dx

= 3, 777, 765, 166 ft-lb

11. (a)

�

�

x

Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval
0  x  9.843 ( 1 mt = 3.281 ft).
Let us partition the tank into
0 = x

0

< x
1

< x
2

< ... < x
n

= 9.843.

such that

x
i

� x
i�1

= �x =
9.843

n

for each i = 1, 2, 3, , n.

This partitions the tank into n lay-
ers, each corresponding to an interval
[x

i�1

, x
i

].

Let us consider a water layer correspond-
ing to [x

i�1

, x
i

], which is a cylinder of
height �x and radius 3.281 ft(1mt) . This
layer must be pumped at a distance of
(9.843� c

i

) for c
i

2 [x
i�1

, x
i

]

Thus the force exerted in doing so,is
F
i

⇡ (Volume of the cylindrical slice)
⇥ (Weight of the water per unit volume)
⇡ ⇡(3.281)2 (�x)⇥ (62.4)
⇡ 2110.31 (�x)

Thus the corresponding work done
W

i

= 2110.31 (9.843� c
i

) (�x)

Therefore the total work done

W = lim
n!1

nX

i=1

(2110.31 (9.843� c
i

) (�x))

= 2110.31

9.843Z

0

(9.843� x)dx

= 2110.31

✓
9.843x� x2

2

◆����
9.843

0

= 102228.48 feet pounds

(b)
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�

�

x

Let x represent the distance measured (in
ft) from the bottom of the tank, as shown
in the above diagram. The entire tank
corresponds to the interval 0  x  3.281
(as 1mt = 3.281 ft). Let us partition the
tank into
0 = x

0

< x
1

< x
2

< ... < x
n

= 3.281.
such that

x
i

� x
i�1

= �x =
3.281

n
for each

i =1,2,3,,n. This partitions the tank
into n layers, each corresponding to an
interval [x

i�1

, x
i

]. Let us consider a
water layer corresponding to [x

i�1

, x
i

].
Which is a cuboid of length 9.843, width
2
p
6.562x� x2 and height �x.

The width is calculated with the help of
the following figure.

S

O

r

P

x

A B

In the above figure O is the centre of the
circle of radius r. OP = r � x,

AP =
q
r2 � (r � x)2 =

p
2rx� x2;

AB = 2
p
2rx� x2

The said layer must be pumped at a
distance of (2r � c

i

) for c
i

2 [x
i�1

, x
i

].
Thus the force exerted in doing so, is
F
i

⇡ (Volume of the cuboid shaped slice)
⇥ (Weight of the water per unit volume)
= (length⇥ width⇥ height)⇥ (62.4)

⇡
⇣
9.843⇥ 2

p
6.562x� x2 ⇥�x

⌘
⇥

(62.4)

⇡ 1228.41
p

6.562x� x2 (�x)

Thus the corresponding work done
W

i

= 1228.41
p
6.562x� x2 (6.562� c

i

) (�x)
Therefore the total work done

W = (1228.41)

⇥ lim
n!1

nX

i=1

⇣p
6.562x� x2 (6.562� c

i

)�x
⌘

= 1228.41

6.562Z

0

p
6.562x� x2 (6.562� x)dx

= 136304.64 feet pounds

12. We set up our coordinates similar to Example
6.3, with x representing vertical distance from
the vertex (the bottom of the tank). If slice
the water in horizontal slices, these slices have

radius r =
x

2
and the volume of a cylindrical

slice is ⇡r2�x =
⇡x2

4
�x. The weight density

of water is 62.4, which gives the force exerted
by this slice of water as 15.6⇡x2�x. This slice
of water must travel up a distance of 10 � x
and therefore the work required to pump this
slice out of the tank is

W
i

⇡ 15.6⇡x2�x(10� x)

⇡ 15.6(10� x)⇡x2�x

Now, we add up the work for all the slices and
turn it into an integral.

W =

Z
10

0

15.6(10� x)⇡x2dx

= 15.6⇡

✓
2500

3

◆

⇡ 40841 foot-pounds

13. W =

Z
10

0

axdx =
100a

2

W
1

=

Z
c

0

axdx =
ac2

2

W
1

=
W

2
gives

ac2

2
=

1

2

100a

2

c =
p
50 ⇡ 7.1 feet

The answer is greater than 5 feet because the
deeper the laborer digs, the more distance it is
required for him to lift the dirt out of the hole.

14. By calculation, the width at x feet depth is
5� x/2, therefore

W (x) =

Z
x

0

t

✓
5� t

2

◆
dt = v52x2 � 1

9
x3
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W (6) = 66

Solving
5

2
x2 � 1

9
x3 = 33 we get

x ⇡ 4.0 feet

15. We estimate the integral using Simpson’s Rule:

J =

Z
.0008

0

F (t)dt

⇡ .0008

3(8)
[0 + 4(1000) + 2(2100)

+ 4(4000) + 2(5000) + 4(5200)
+ 2(2500) + 4(1000) + 0]

⇡ 2.133
2.13 = J = m�v = .01�v
�v = 213 ft/sec
The velocity after impact is therefore
213� 100 = 113 ft/sec.

16. We compute the impulse using Simpson’s rule:

J ⇡ .6

3(6)
[0 + 4(8000) + 2(16, 000)

+4(24, 000)+2(15, 000)+4(9000)[5pt] +0]
⇡ 7533.3
7533.3 = J = m�v = 200�v
�v = 37.7 ft/sec

Since the velocity after the crash is zero, this
number is the estimated original velocity.

17. F 0(t) is zero at t = 3, and the maximum thrust
is F (3) = 30/e ⇡ 11.0364

It is implicit in the drawing that the thrust
is zero after time 6. Therefore the impulse isZ

6

0

10te�t/3dt = 90� 270e�2 ⇡ 53.55.

18. The impulse is

J =

Z
6

0

F (t) dt = 48. The impulse of Exer-

cise 17 was about 53.55 which means that the
rocket of Exercise 17 would have greater veloc-
ity and therefore a higher altitude.

19. m =

Z
6

0

⇣x
6
+ 2
⌘
dx = 15

M =

Z
6

0

x
⇣x
6
+ 2
⌘
dx = 48

Therefore,

x̄ =
M

m
=

48

15
=

16

5
= 3.2

So the center of mass is to the right of x = 3.

20. m =

Z
6

0

⇣
3� x

6

⌘
dx = 15

M =

Z
6

0

x
⇣
3� x

6

⌘
dx = 42

So, therefore

x =
M

m
=

42

15
=

14

5
= 2.8

So the center of mass is to the left of x = 3.

21. m =

Z
27

�3

✓
1

46
+

x+ 3

690

◆
2

dx

=
690

3

✓
1

46
+

x+ 3

690

◆
3

�����

27

�3

⇡ .0614 slugs ⇡ 31.5 oz

22. m =

Z
32

0

✓
1

46
+

x+ 3

690

◆
2

dx

⇡ 0.08343 slugs ⇡ 42.418 oz

23. M =

Z
27

�3

x

✓
1

46
+

x+ 3

690

◆
2

dx

⇡ 1.0208

x̄ =
M

m
=

1.0208

.0614
⇡ 16.6 in.

This is 3 inches less than the bat of Example
6.5, a reflection of the translation three inches
to the left on the number line.

24. M =

Z
32

0

x

✓
1

46
+

x+ 3

690

◆
2

dx

⇡ 1.72495

x̄ =
M

m
= 20.6745

Compared to the baseball bat of Example 6.5,
this baseball bat is longer and therefore has
more mass further out.

25. m =

Z
30

0

.00468

✓
3

16
+

x

60

◆
dx

⇡ .0614 slugs

M =

Z
30

0

.00468x

✓
3

16
+

x

60

◆
dx

⇡ 1.0969

weight = m(32)(16) = 31.4 oz

x̄ =
M

m
=

1.0969

.0614
⇡ 17.8 in.

26. The center of mass of the wooden bat of Ex-
ample 6.5 is at 19.6 inches. The center of mass
of the aluminum bat of Exercise 25 is at 17.8
inches—moving the sweet spot to the inside.

27. Area of the base is
1

2
(3 + 1) = 2.

Area of the body is 1⇥ 4 = 4.

Area of the tip is
1

2
(1⇥ 1) =

1

2
.
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Base:

m =

Z
1

0

⇢(3� 2x)dx =
5

12
⇡ .4167.

Body:

m =

Z
5

1

⇢dx = 12⇢

x̄ =
M

m
= 3

Tip:

m =

Z
6

5

⇢(6� x)dx ⇡ 2.67⇢

x̄ =
M

m
=

16

3
⇡ 5.33

28. We use the coordinate system as in Exercise 29,
with x = 0 corresponding to the left of the
rocket.

From Exercise 27, the base has total mass
5

6
⇢

and center of mass at x =
5

12
.

From Exercise 27, the body has total mass 12⇢
and center of mass at x = 3.

From Exercise 27, the tip has total mass
1

2
⇢

and center of mass at x =
16

3
.

The total mass of these three particles is

m =
40

3
⇢ and the moment of these particles is

M =

✓
5

6
⇢

◆✓
5

12

◆
+ (12⇢)(3)

+

✓
1

2
⇢

◆✓
16

3

◆

=
2809

72
⇢

The center of mass of the system is

x =
M

m
=

✓
2809

72
⇢

◆✓
3

40⇢

◆

=
2809

960
⇡ 2.926

29. The x-coordinate of the centroid is the same
as the center of mass from x = 0 to x = 4 with

density ⇢(x) =
3

2
x, hence

x̄ =
M

m
=

R
4

0

3/2 · x2dx
R
4

0

3/2 · xdx
=

8

3

The y-coordinate of the centroid is the same
as the center of mass from y = 0 to y = 6 with

density ⇢(y) = 6� 2

3
y, hence

ȳ =
M

m
=

R
6

0

2/3 ·
�
6y � 2

3

y2
�
dy

R
6

0

2/3 ·
�
6� 2

3

y
�
dy

= 2

So the center of the given triangle is the point
(8/3, 2).

3.6

5

3

2.8

1

4.0

6

4

3.2

2

0
2.42.01.61.20.80.40.0

30. Again we need to find both the x-coordinate
and y-coordinate of the centroid. But in this
case, since everything is symmetric, in fact we
can easily see that the centroid is going to be
(4, 2).

6.4

2.8

2.0

4.8

1.2

3.2 8.0

4.0

7.2

3.6

3.2

2.4

5.6

1.6

0.8

4.0

0.4

0.0
2.41.60.80.0

31. This time the x-coordinate of the centroid is
obviously x = 0, so the question remains to
find the y-coordinate.

This is the same as finding the center of mass
from y = 0 to y = 4 with density
⇢(y) =

p
4� y, hence

ȳ =
M

m
=

R
4

0

y
p
4� y dy

R
4

0

p
4� ydy

=
�
R
0

4

(4u1/2 � u3/2) du

�
R
0

4

u1/2 du

=
(8/3 · u3/2 � 2/5 · u5/2)

��4
0

2/3 · u3/2

��4
0

=
8

5

So the centroid is the pint (0, 8/5).
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4.0

0−2

1.2

1

0.4

2.0

3.6

2.4

0.8

2.8

x

0.0
−1

3.2

1.6

2

32. This time the y-coordinate is obviously y = 0.
The x-coordinate can found using the density
⇢(x) = 2x, from x = 0 to x = 4, and

x̄ =
M

m
=

R
4

0

2x2dx
R
4

0

2xdx
=

8

3

So the centroid is (8/3, 0).

3.2

1.6

0.0
2.4

−1.6

1.6 4.0

4.0

3.6

3.2

2.4

0.8

2.8
−0.8

−2.4

2.0

−3.2

−4.0

1.20.80.40.0

33. With x the depth, the horizontal width is a
linear function of x, given by x+ 40. Hence,

F =

Z
60

0

62.4x(x+ 40)dx

= 62.4

✓
x3

3
+ 20x2

◆����
60

0

= 8,985,600 lb

34. In this case, we just change the limits of inte-
gration.

F =

Z
60

10

62.4x(x+ 40) dx = 8, 840, 000 lb

35. Let x be the vertical deviation above the cen-
ter of the window, the horizontal width of the
window is given by 2

p
25� x2, depth of water

40 + x, and hydrostatic force

62.4

Z
5

�5

(x+ 40)2
p

25� x2dx

= 62.4

Z
5

�5

2x
p
25� x2dx

+ 62.4(40)

Z
5

�5

2
p
25� x2dx

⇡ 196, 035 pounds.

36. Let x be the distance from the surface of the
water. For a given value of x, the width of the
window is constant, 40. The force exerted on
the window by a slice of water, of depth x is
F
i

⇡ (62.4)(40)x�x.

We sum these forces up over the height of the
window and turn it into an integral:

F =

Z
10

0

(62.5)(10)xdx = 31, 250 lb.

37. Assuming that the center of the circular win-
dow descends to 1000 feet, then by the previous
principle, after converting the three inch radius
to 1/4 feet, we get F = 12,252 pounds. An al-
ternate calculation in which x is the deviation
downward from the top edge of the window,
would be

F =

Z
0.5

0

62.4(999.75 + x)

· 2
p
(0.25)2 � (0.25� x)2dx

=

Z
0.5

0

124.8(999.75 + x)
p
0.5x� x2dx

⇡ 12, 252 lb

38. Due to the fact that the size of the watch is so
small, we can assume that the force will be ap-
proximately the same regardless of orientation
of the watch.
The hydrostatic force is given by F = ⇢dA
where, ⇢ is the density of the water (62.4),
d is the depth (60), and A is the area, A =
⇡(1/12)2.
Putting these together gives
F ⇡ (62.4)(60)(⇡/144) ⇡ 81.68 lb.

39. (100 tons)(20 miles/hr)

=
(100 · 2000 lbs)(20 · 5280 ft)

3600sec

⇡ 5,866,667 ft-lb/s

=
5,866,667

550
hp

⇡ 10, 667 hp

40. This is a matter of slicing and approximating.
Divide the subinterval [a, b] into n equal subin-
tervals. Then, we take the limit as n ! 1,
which turns the Riemann sum into an integral.

J ⇡
nX

i=1

F (t
i

)�t.
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J = lim
n!1

nX

i=1

F (t
i

)�t =

Z
b

a

F (t) dt

41. The bat in Exercise 23 models the bat of Ex-
ample 6.5 choked up 3 in.

From Example 6.5:

f(x) =

✓
1

46
+

x

690

◆
2

;
Z

27

�3

f(x) · x2dx ⇡ 27.22.

From Exercise 23:

f(x) =

✓
1

46
+

x+ 3

690

◆
2

;
Z

27

�3

f(x) · x2dx ⇡ 20.54.

Reduction in moment:
27.22� 20.54

27.22
⇡ 24.5%

42. m =

Z
28

0

✓
1

46
+

x

690

◆
2

dx

+

Z
30

28

✓
1

92
+

x

690

◆
2

dx

⇡ 0.05918 slugs.

M =

Z
28

0

x

✓
1

46
+

x

690

◆
2

dx

+

Z
30

28

x

✓
1

92
+

x

690

◆
2

dx

⇡ 1.1398 slugs

x̄ =
M

m
⇡ 19.258

The center of mass moves in.

43.

Z
a

�a

2⇢x2b

r
1� x2

a2
dx =

1

4
⇢⇡a3b

44. If the racket was solid wood, then the second
moment would be

M
0

=

Z
a

�a

2⇢bx2

r
1� x2

a2
dx = ⇢

⇡

4
a3b

But, the racket is not solid wood. We have
to subtract the contribution to the second mo-
ment from the empty space. This amount is
equal to the second moment of a smaller wood
racket:

M
1

=

Z
a�w

�(a�w)

2⇢(b� w)x2

·

s

1� x2

(a� w)2
dx

= ⇢
⇡

4
(a� w)3(b� w)

Therefore the second moment is
M = M

0

�M
1

= ⇢
⇡

4

⇥
a3b� (a� w)3(b� w)

⇤

45. Using the formula in Exercise 42, we find that
the moments are 1323.8 for the wooden racket,
1792.9 for the mid-sized racket, and 2361.0 for
the oversized racket. The ratios are
mid

wood
⇡ 1.35,

over

wood
⇡ 1.78

46.
dM

da
= ⇢

⇡

4

⇥
3a2b� 3(a� w)2(b� w)

⇤

Since a > a� w and b > b� w

dM

da
> 0.

Therefore as a increases, M increases.
dM

dw
= ⇢

⇡

4

⇥
3(a� w)2(b� w) + (a� w)3

⇤

It is easy to see that
dM

dw
> 0. Therefore as w

increases M increases making the racket more
stable.

5.7 Probability

1. f(x) = 4x3 � 0 for 0  x  1 andZ
1

0

4x3dx = x4

��1
0

= 1� 0 = 1

2. f(x) =
3

8
x2 � 0 on the interval [0, 2] and

Z
2

0

3

8
x2dx = 1.

3. f(x) = x+ 2x3 � 0 for 0  x  1 and
Z

1

0

(x+ 2x3)dx =
x2

2
+

x4

2

����
1

0

= 1

4. f(x) = cosx � 0 over [0,⇡/2] andZ
⇡/2

0

cosxdx = 1.

5. f(x) =
1

2
sinx � 0 over [0,⇡] and

Z
⇡

0

1

2
sinxdx =

1

2
� cosx

����
⇡

0

= 1.

6. f(x) = e�x/2 � 0 over [0, ln 4] andZ
ln 4

0

e�x/2dx = �2e�x/2

���
ln 4

0

= 1.

7. We solve for c:

1 =

Z
1

0

cx3dx =
c

4
which gives c = 4.

aliel
Highlight
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8. We solve for c:

1 =

Z
1

0

cx+ x2dx =
c

2
+

1

3

which gives c =
4

3
.

9. We solve for c:

1 =

Z
1

0

ce�4xdx = � c

4
(e�4 � 1)

which gives c =
4

1� e�4

.

10. We solve for c:

1 =

Z
2

0

2ce�cxdx = 2� 2e�2c

which gives c =
1

2
ln 2.

11. We solve for c:

1 =

Z
1

0

c

1 + x2

= c tan�1x
��1
0

= c
⇣⇡
4
� 0
⌘
= c

⇡

4

which gives c =
4

⇡
⇡ 1.2732

12. We solve for c:

1 =

Z
1

0

cp
1� x2

= c sin�1x
��1
0

= c
⇣⇡
2
� 0
⌘
= c

⇡

2

) c =
2

⇡
⇡ 0.6366

13. P (70  x  72)

=

Z
72

70

.4p
2⇡

e�.08(x�68)

2

dx ⇡ 0.157

14. P (76  X  80)

=

Z
80

76

0.4p
2⇡

e�0.08(x�68)

2

dx ⇡ 0.00068634

15. P (84  x  120)

=

Z
120

84

.4p
2⇡

e�.08(x�68)

2

dx ⇡ 7.76⇥ 10�11

16. P (14  X  60)

=

Z
60

14

0.4p
2⇡

e�0.08(x�68)

2

dx ⇡ 0.00068714

17. P

✓
0  x  1

4

◆
=

Z
1/4

0

6e�6xdx

= �e�6x

��1/4
0

= (�e�3/2 + 1) ⇡ .77687

18. P (0  X  0.5) =

Z
0.5

0

6e�6xdx ⇡ 0.95021

19. P (1  x  2) =

Z
2

1

6e�6xdx

= �e�6x

��2
1

= (�e�12 + e�6) ⇡ .00247

20. P (3  X  10) =

Z
10

3

6e�6xdx

⇡ 1.52300⇥ 10�8

21. P (0  x  1) =

Z
1

0

4xe�2xdx

= 1� 3e�2 ⇡ .594

22. P (1  X  2) =

Z
2

1

4xe�2xdx ⇡ 0.31443

23. Mean:

Z
10

0

x(4xe�2x)dx ⇡ 0.9999995

24. The maximum is at x =
1

2
and the mean is at

x ⇡ 0.31443.

210-1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

x
43

25. (a) Mean: µ =

Z
b

a

xf(x)dx =

Z
1

0

3x3dx

=
3

4
= 0.75

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx =

Z
m

0

3x2dx = m3

which gives m =
1
3
p
2
⇡ 0.7937.

26. (a) Mean: µ =

Z
b

a

xf(x)dx =

Z
1

0

4x4dx

=
4

5
= 0.8

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx =

Z
m

0

4x3dx = m4

which gives m =
1
4
p
2
⇡ 0.8409.
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27. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
1

0

x

✓
4/⇡

1 + x2

◆
dx ⇡ 0.4413

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

✓
4/⇡

1 + x2

◆
dx

=
4

⇡

�
tan�1x

���m
0

=
4

⇡
tan�1m

) m = tan
⇡

8
⇡ 0.4142

28. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
1

0

x

✓
2/⇡p
1� x2

◆
dx

⇡ 0.6366

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

✓
2/⇡p
1� x2

◆
dx

=
2

⇡
sin�1x

��m
0

=
2

⇡

�
sin�1m� 0

�

=
2

⇡
sin�1m

) m = sin
⇡

4
⇡ 0.7071

29. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
⇡

0

1

2
x sinxdx

=
1

2
(sinx� x cosx)

����
⇡

0

=
⇡

2

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

sinxdx =
1

2
(1� cosm)

which gives

m = cos�1(0) =
⇡

2
⇡ 1.57.

30. (a) Mean: µ =

Z
b

a

xf(x)dx

=

Z
⇡/2

0

x cosxdx

=
⇡

2
� 1 ⇡ 0.57080

(b) Median, we must solve for m:
1

2
=

Z
m

a

f(x)dx

=

Z
m

0

cosxdx = sinm

which gives m =
⇡

6
⇡ 0.5236.

31. Density f(x) = ce�4x, [0, b] , b > 0

1 =

Z
b

0

ce�4xdx

= � c

4
e�4x

���
b

0

= � c

4

�
e�4b � 1

�

c =
4

1� e�4b

As b ! 1, c ! 4

32. From Exercise 31, c =
4

1� e�4b

µ =

Z
b

0

cxe�4xdx

=
c

16

⇥
1� e�4b(1 + 4b)

⇤

=
1� e�4b(1 + 4b)

4(1� e�4b)

Now, taking the limit,

lim
b!1

µ =
1

4

33. Density f(x) = ce�6x, [0, b] , b > 0

1 =

Z
b

0

ce�6xdx

=
�c

6
e�6x

����
b

0

= � c

6

�
e�6b � 1

�

c =
6

1� e�6b

As b ! 1, c ! 6

µ =

Z
b

0

xce�6xdx

=
ce�6c

36
(�6x� 1)

����
b

0

=
ce�6b

36
(�6b� 1) +

c

36

As b ! 1, µ ! 1

6

34. c =
A

1� e�ab

µ =
1� e�ab(1 + ab)

a(1� e�ab)

lim
b!1

µ =
1

a
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35. To find the probability of these events, we add
the probabilities.

(a) P (X � 5) = 0.0514 + 0.0115 + 0.0016 +
0.0001 = 0.0646

(b) P (X  4) = 0.0458 + 0.1796 + 0.2953 +
0.2674 + 0.1473
= 0.9354

(c) P (X � 6) = 0.0115 + 0.0016 + 0.0001
= 0.0132

(d) P (X = 3 or X = 4)
= 0.2674 + 0.1473
= 0.4147

36. (a) P (X = 2 or X = 3) = 0.441 + 0.343
= 0.784

(b) P (X � 1) = 0.189+0.441+0.343 = 0.973

37. (a) Suppose the statement is not true. Then
there must be a game before which the
player’s winning percentage is smaller
than 75% and after which the player’s
winning percentage is greater than 75%.
Then there are integers a and b (note that
a � m, b � n and a � b = m � n), such
that
a

b
<

3

4
and

a+ 1

b+ 1
>

3

4
. Then

4a < 3b, and 4a+ 4 > 3b+ 3
3b+ 4 > 4a+ 4 > 3b+ 3.

But there is no integer between the two
numbers 3b+4 and 3b+3, and thus such
situation will never happen. Thus there
must be a game after which the player’s
winning percentage is exactly 75%.

(b) Using the same argument as in the previ-
ous problem, we can conclude that:

If after a certain game, a game player’s
winning percentage is strictly less than

100
k

k + 1
, and then the player wins sev-

eral games in a row so that the win-

ning percentage exceeds 100
k

k + 1
, then

at some point in this process the player’s

winning percentage is exactly 100
k

k + 1
.

38. First the first quartile, we solve

0.25 =

Z
c

0

ln 2e�(ln 2)x/2dx

= 2
⇣
1� e�(ln 2)c/2

⌘

Solving gives
c = �2 ln(7/8)/ ln 2 ⇡ 0.3853 days.

For the third quartile, we solve

0.75 =

Z
c

0

ln 2e�(ln 2)x/2dx

= 2
⇣
1� e�(ln 2)c/2

⌘

Solving gives
c = �2 ln(5/8)/ ln 2 ⇡ 1.3561 days.

39. f(x) =
.4p
2⇡

e�.08(x�68)

2

f 0(x) =
�.064p

2⇡
(x� 68)e�.08(x�68)

2

f 00(x) =
�.064p

2⇡
e�.08(x�68)

2

·
�
1� .16(x� 68)2

�

The second derivative is zero when
x� 68 = ±1/

p
0.16 = ±1/0.4 = ±5/2

Thus the standard deviation is
5

2
.

40. For this, we have µ = 68 and � =
5

2
.

P (µ� �  X  µ+ �)
= P (65.5 < X < 70.5) ⇡ 0.6827
P (µ� 2�  X  µ+ 2�)
= P (63 < X < 73) ⇡ 0.9545
P (µ� 3�  X  µ+ 3�)
= P (60.5 < X < 75.5) ⇡ 0.9973

41. f 0(p) = mpm�1(1� p)n�m

� (n�m)pm(1� p)n�m�1

f 0(p) = 0 when p =
m

n
and

f 0(p)

⇢
< 0 if p < m/n
> 0 if p > m/n

Hence f(p) is maximized when p =
m

n
.

In common senses, in order for an event to hap-
pen m times in n tries, the probability of the
event itself should be about m/n.

42. In the picture, although it might appear that
y > 1/2, the conditions are that 0  y  1/2,
and the labeling in the drawing implies that the
lower line is the closer. This is indeed always an
allowable assumption (by turning the picture
upside down if necessary). In the right triangle
whose hypotenuse is the lower half-needle, the
vertical side is of length (sin ✓)/2. Therefore
the needle hits the lower line if y�(sin ✓)/2  0,
or if y  (sin ✓)/2. As to the actual probabil-
ity ratio, the denominator is just ⇡/2, while
the numerator is

�cos ✓

2

����
⇡

0

=
� cos⇡ + cos 0

2
=

2

2
= 1.
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The total probability of hitting a line is thus
2/⇡ ⇡ 63.66%.

43. To find the maximum, we take the derivative
and set it equal to zero:

f 0(x) = �2ax(bx� 1)(bx+ 1)e�b

2
x

2

= 0. This

gives critical numbers x = 0,±1

b
.

Since this will be a pdf for the interval [0, 4m],
we only have to check that there is a maximum

at
1

b
. An easy check shows that

f 0(x) > 0 on the interval


0,

1

b

�
and

f 0(x) < 0 for x >
1

b
. Therefore there is a

maximum at x = m =
1

b
(the most common

speed).

To find a in terms of m, we want the total

probability equal to 1. Since m =
1

b
, we also

make the substitution b =
1

m
.

1 =

Z
4m

0

ax2e�x

2
/m

2

dx

Solving for a gives

a =

✓Z
4m

0

x2e�x

2
/m

2

dx

◆�1

Note: this integral is not expressible in terms
of elementary functions, so we will leave it like
this. Using a CAS, one can find that
a ⇡ 2.2568m�3

44. f(t) = t�3/2e0.38t�100/t

Z
40

0

k · f(t)dt = 1 for k = 0.000318.

Z
30

20

0.000318 · f(t)dt ⇡ 0.0134

45. The probability of a 2k-goal game ending in a
k � k tie is

(2k) =
(2k) · · · (k + 1)

(k) · · · (1) pk(1� p)k

f(2k) < f(2k � 2) for general k.
f(2k)

f(2k � 2)
= 2

2k � 1

k
p (1� p)

Here
2k � 1

k
= 2� 1

k
< 2.

On the other hand,✓
p� 1

2

◆
2

� 0, p2 � p+
1

4
� 0

p� p2  1

4
, p(1� p)  1

4

Now we get
f(2k)

f(2k � 2)
= 2

2k � 1

k
p (1� p)

< 2 · 2 · 1
4
= 1. So f(2k) < f(2k � 2). In other

words, the probability of a tie is decreasing as
the number of goals increases.

46. The probability HTT appears first is the mean
of that probability over the four possibilities
for the first two coin tosses.

Let P(HT) be the probability HTT appears
first following HT.

Suppose the first two throws are HH. Then the
third throw can be either H or T. If it’s H,
then we are back in the same position: the pre-
ceding two throws are HH. But if it’s T, then
player B has won. So the probability of player
A winning in this case is 0. Putting the two
possibilities for the third throw together, as a
mean, the probability that player A wins fol-
lowing HH is:

P (HH) =
1

2
⇥ P (HH) +

1

2
⇥ 0 =

1

2
P (HH).

Now suppose the first two throws are HT. If
the third throw is H, then neither player has
won, and the probability HTT will ultimately
win is (by definition) P(TH). (The last two
throws were TH.) On the other hand, if the
third throw is T, then player A has won! So
this time the weighted mean for the probabil-
ity that player A wins, following HT is:

P (HH) =
1

2
⇥ P (TH) +

1

2
⇥ 1 =

1

2
P (TH) +

1

2
Similarly, we get

P (TH) =
1

2
⇥ P (HH) +

1

2
⇥ P(HT) and

P (TT) =
1

2
⇥ P (TH) +

1

2
⇥ P(TT).

Therefore, we have
P(HH) = 0
P(HT) = P(HT)/4 + 1/2 P(HT) = 2/3
P(TH) = P(HT)/2 = 1/3
P(TT) = P(TH) P(TT) = 1/3
The mean of these four results gives us the
probability of HTT appearing before HHT is
1/3. Hence, the probability of HHT appearing
before HTT is 2/3. Therefore, player B is twice
as likely to win.

47. (a) The functions f (x) and g (x) are the pdfs,
such that f (x) = a+ bx+ cx2 ;
f
�
x2

�
= g (x).

Therefore by definition,
f (x) ; g (x) � 0 andZ

1

0

f(x)dx =

Z
1

0

g(x)dx = 1

Consider f(x) = a+ bx+ cx2 and
g(x) = f(x2) = a+ bx2 + cx4.
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Thus, 1 =

Z
1

0

f(x)dx

=

Z
1

0

�
a+ bx+ cx2

�
dx

=

✓
ax+ b

x2

2
+ c

x3

3

◆����
1

0

) a+
b

2
+

c

3
= 1..... (1)

and 1 =

Z
1

0

g(x)dx

=

Z
1

0

�
a+ bx2 + cx4

�
dx

=

✓
ax+ b

x3

3
+ c

x5

5

◆����
1

0

) a+
b

3
+

c

5
= 1..... (2)

Solving (1) and (2), we get,

b = �4c

5
; a = 1 +

c

15
;

Thus f (x) = 1 +
c

15
� 4c

5
x+ cx2

or f (x) =

�
15cx2 � 12cx+ c+ 15

�

15

(b) Mean of pdf g:

µ =

Z
b

a

xg(x)dx

=

Z
1

0

x

�
15cx4 � 12cx2 + c+ 15

�

15
dx

=
1

15

Z
1

0

�
15cx5 � 12cx3 + (c+ 15)x

�
dx

=
1

15

✓
15cx6

6
� 12cx4

4
+

(c+ 15)x2

2

◆����
1

0

= 0.5

Ch. 5 Review Exercises

1. Area =

Z
⇡

0

�
x2 + 2� sinx

�
dx

=

✓
x3

3
+ 2x+ cosx

◆����
⇡

0

=
⇡3

3
+ 2⇡ � 2

2. Area =

Z
1

0

(ex � e�x) dx

= (ex + e�x)
���
1

0

= e+ e�1 � 2

3. Area =

Z
1

0

x3 �
�
2x2 � x

�
dx

=

✓
x4

4
� 2

3
x3 +

x2

2

◆����
1

0

=
1

12

4. First solve x2 � 3 = �x2 + 5 to find that the
intersections points are x = �2, 2.

Area =

Z
2

�2

[(�x2 + 5)� (x2 � 3)] dx

=

✓
�2

3
x3 + 8x

◆ ���
2

�2

=
64

3
.

5. Solving e�x = 2� x2 we get
x ⇡ �0.537, 1.316

Area ⇡
Z

1.316

�.537

�
2� x2 � ex

�
dx

=

✓
2x� x3

3
+ e�x

◆����
1.316

�.537

⇡ 1.452

6. First solve y2 = 1� y to find that the intersec-

tions points are y =
�1±

p
5

2
.

Area =

Z �1+
p

5
2

�1�
p

5
2

[(1� y)� y2] dy

=

✓
y � y2

2
� y3

3

◆����

�1+
p

5
2

�1�
p

5
2

=
5
p
5

6
.

7. Area =

Z
1

0

x2 dx+

Z
2

1

(2� x) dx

=
x3

3

����
1

0

+

✓
2x� x2

2

◆����
2

1

=
1

3
+ (4� 2)�

✓
2� 1

2

◆
=

5

6

8. Area =

Z
2

0

x2 dx =
8

3

9. If P is the population at time t, the equation
is

P 0(t) = birth rate� death rate
= (10 + 2t)� (4 + t) = 6 + t

Thus P = 6t+ t2/2 + P (0), so at time t = 6,

P (6) = 36 + 18 + 10,000 = 10,054.

Alternatively,

A =

Z
6

0

[(10 + 2t)� (4 + t)]dt

aliel
Highlight
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=

Z
6

0

(6 + t)dt =

✓
6t+

t2

2

◆����
6

0

= 54

population = 10,000 + 54 = 10,054

10. For this we use Simpson’s rule on the function
(f � g)(x).
Z

2

0

[f(x)� g(x)] dx

⇡ 0.2

3
[(3.2�1.2)+4(3.5�1.5)+2(3.8�1.6) +

4(3.7�2.2)+2(3.2�2.0)+4(3.4�2.4) +2(3.0�
2.2)+4(2.8�2.1)+2(2.3�2.3) +4(2.9�2.8)+
(3.4� 2.4)]
⇡ 2.1733.

11. V =

Z
2

0

⇡(3 + x)2 dx

= ⇡

Z
2

0

(9 + 6x+ x2) dx

= ⇡

✓
9x+ 3x2 +

x3

3

◆����
2

0

=
98⇡

3

12. If we consider slices perpendicular to the x-
axis, then the area of a slice is equal to (10 +
2x)(4 + x) (length times depth). We integrate
the areas from x = 0 to x = 2:

Area =

Z
2

0

(10 + 2x)(4 + x) dx

=
364

3
⇡ 121.33 cubic feet.

13. Use trapezoidal estimate:

V = 0.4

✓
0.4

2
+ 1.4 + 1.8 + 2.0 + 2.1

+ 1.8 + 1.1 +
0.4

2

◆

⇡ 4.2

14. (a) V =

Z
1

0

⇡x4 dx =
⇡

5

(b) V =

Z
1

0

⇡(1� y) dy =
⇡

2

(c) V =

Z
1

0

⇡[(2�p
y)2 � 1] dy =

5⇡

6

(d) V =

Z
1

0

⇡[(2 + x2)2 � 2] dx =
53

15

15. (a) V =

Z
2

�2

⇡(4)2 dx�
Z

2

�2

⇡(x2)2 dx

= ⇡

Z
2

�2

(16� x4) dx

= ⇡

✓
16x� x5

5

◆����
2

�2

=
256⇡

5

(b) V =

Z
4

0

⇡(
p
y)2dy = ⇡

Z
4

0

ydy

=
⇡y2

2

����
4

0

= 8⇡

(c) V =

Z
4

0

⇡(2 +
p
y)2dy

�
Z

4

0

⇡(2�p
y)2dy

= ⇡

Z
4

0

(4 + 4y1/2 + y)dy

� ⇡

Z
4

0

(4� 4y1/2 + y)dy

= ⇡

Z
4

0

(8y1/2)dy

= 8⇡ · 2
3
y3/2

����
4

0

=
128⇡

3

(d) V =

Z
2

�2

⇡(6)2 dx

�
Z

2

�2

⇡(x2 + 2)2 dx

= ⇡

Z
2

�2

(�x4 � 4x2 + 32) dx

= ⇡

✓
�x5

5
� 4x3

3
+ 32x

◆����
2

�2

=
1408⇡

15

16. (a) V =

Z
2

0

⇡(4x2 � x2) dx = 8⇡

(b) V =

Z
2

0

⇡

✓
y2 � y2

4

◆
dy

+

Z
4

2

⇡

✓
4� y2

4

◆
dy

= 2⇡ +
10⇡

3
=

16⇡

3

(c) V

=

Z
2

0

⇡


(1 + y)2 �

⇣
1 +

y

2

⌘
2

�
dy

+

Z
4

2

⇡


9�

⇣
1 +

y

2

⌘
2

�
dy

= 4⇡ +
16⇡

3
=

28⇡

3
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(d) V =

Z
2

0

⇡[(4� x)2 � (4� 2x)2] dx

= 8⇡

17. (a) V =

Z
1

0

2⇡y((2� y)� y)dy

= 2⇡

Z
1

0

(2y � 2y2)dy

= 2⇡

✓
y2 � 2y3

3

◆����
1

0

=
2⇡

3

(b) V =

Z
1

0

⇡(2� y)2dy

�
Z

1

0

⇡(y)2dy

= ⇡

Z
1

0

(4� 4y)dy

= ⇡ (4y � 2y2)
��1
0

= 2⇡

(c) V =

Z
1

0

⇡((2� y) + 1)2dy

�
Z

1

0

⇡(y + 1)2dy

= ⇡

Z
1

0

(9� 6y + y2)dy

� ⇡

Z
1

0

(y2 + 2y + 1)dy

= ⇡

Z
1

0

(8� 8y)dy

= ⇡ (8y � 4y2)
��1
0

= 4⇡

(d) V =

Z
1

0

2⇡(4� y)((2� y)� y)dy

= 2⇡

Z
1

0

(8� 10y + 2y2)dy

= 2⇡

✓
8y � 5y2 +

2y3

3

◆����
1

0

=
22⇡

3

18. (a) Method of shells.

V =

Z
2

0

2⇡y[(4� y2)� (y2 � 4)] dy

= 16⇡

(b) V =

Z
2

�2

⇡(4� y2)2 dy =
512⇡

15

(c) V =

Z
2

�2

⇡[(8� y2)2 � y4] dy

=
512⇡

3

(d) Method of shells.

V =

Z
2

�2

2⇡(4� y)[(4� y2)

� (y2 � 4)] dy

=
208⇡

3

19. s =

Z
1

�1

q
1 + (4x3)2 dx ⇡ 3.2

20. s =

Z
0

�1

p
1 + (2x+ 1)2 dx ⇡ 1.14779

21. s

Z
2

�2

s

1 +

✓
ex/2

2

◆
2

dx ⇡ 4.767

22. s =

Z
⇡

0

p
1 + 4 cos2 2x dx ⇡ 5.27037

23. S =

Z
1

0

2⇡(1� x2)
p

1 + 4x2 dx

⇡ 5.483

24. S =

Z
1

0

2⇡x3

p
1 + 9x4 dx ⇡ 3.56312

25. h00(t) = �32
h(0) = 64, h0(0) = 0
h0(t) = �32t
h(t) = �16t2 + 64

This is zero when t = 2, at which time h0(2) =
�32(2) = �64. The speed at impact is re-
ported as 64 feet per second.

26. In this case we have the equations

h00(t) = �32
h(0) = 64 h0(0) = 4
h0(t) = �32t+ 4
h(t) = �16t2 + 4t+ 64

This is zero when

t = t
0

=
1 +

p
257

8
Therefore the velocity at impact is

h0(t
0

) =
�32(1 +

p
257)

8
+ 4

= �4
p
257 ⇡ �64.125 ft/s

27. y00(t) = �32, x00(t) = 0,
y(0) = 0, x(0) = 0

y0(0) = 48 sin
⇣⇡
9

⌘

x0(0) = 48 cos
⇣⇡
9

⌘

y0(0) ⇡ 16.42, x0(0) ⇡ 45.11
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y0(t) = �32t+ 16.42
y(t) = �16t2 + 16.42t

This is zero at t = 1.026. Meanwhile,

x0(t) ⌘ 45.11
x(t) = 45.11t
x(1.026) = 45.11(1.026) ⇡ 46.3 ft This is the
horizontal range.

28. In this case we have the equations

y00(t) = �32, x00(t) = 0
y(0) = 6, x(0) = 0

y0(0) = 48 sin
⇡

9
, x0(0) = 48 cos

⇡

9
y0(t) = �32t+ 48 sin

⇡

9
x0(t) = 48 cos

⇡

9
y(t) = �16t2 + 48t sin

⇡

9
+ 6

x(t) = 48t cos
⇡

9
We now solve y(t) = 0 or

�16t2 + 48t sin
⇡

9
+ 6 = 0

which gives t ⇡ 1.3119, this is the time of flight.

The horizontal range is

x(1.3119) ⇡ 59.17 feet.

29. y(0) = 6, x(0) = 0

y0(0) = 80 sin

✓
2⇡

45

◆
⇡ 11.13,

x0(0) = 80 cos

✓
2⇡

45

◆
⇡ 79.22

y00(t) = �32, x00(t) = 0
y0(t) = �32t+ 11.13
y(t) = �16t2 + 11.13t+ 6
x0(t) = 79.22
x(t) = 79.22t

This is 120 (40 yards) when t is about 1.51. At
this time, the vertical height (if still in flight)
would be
y(1.51) = �16(1.51)2 + 11.13(1.51) + 6
= �13.6753,

Since this is negative, we conclude the ball is
not still in flight, has hit the ground, and was
not catchable.

30. If we repeat Exercise 29, but we’ll leave the

angle as ✓ (we will plug in ✓ = 24� =
2⇡

15
later

too).

Our equations become
y(0) = 6, x(0) = 0
y0(0) = 80 sin ✓, x0(0) = 80 cos ✓
y00(t) = �32, x00(t) = 0

Integrating and using the initial conditions
gives
y0(t) = �32t+ 80 sin ✓
x0(t) = 80 cos ✓
y(t) = �16t2 + 80t sin ✓ + 6
x(t) = 80t cos ✓

We solve for the time when the ball is 40 yards
down the field:
120 = x(t) = 80t cos ✓
Solving gives

t
0

= t =
3

2
sec ✓

The height at this time is

y(t
0

) = �16

✓
3

2
sec ✓

◆
2

+ 80

✓
3

2
sec ✓

◆
sin ✓ + 6

= �36 sec2 ✓ + 120 tan ✓ + 6

Let us say that the ball is catchable if it is be-
tween 0 and 8 feet high when the ball reaches
the 40 yard point (the player can dive or jump
to catch a low or high ball). To determine when
this occurs, we graph the function and see that
for the ball to be catchable it must be thrown
with angle in the range:
15.23� < ✓ < 19.51�

theta
22

y

20

12

8

18

4

0
16

-4

14

31. h00(t) = �32
h0(0) = v

0

h(0) = 0
h0(t) = �32t+ v

0

This is zero at t = v
0

/32.

h
⇣ v

0

32

⌘
= �16

✓
v2
0

322

◆
+

v2
0

32
=

v2
0

64
If this is to be 128, then clearly v

0

must be

p
(64)(128) = 64

p
2 ft/sec.

Impact speed from ground to ground is the
same as launch speed, which can be verified
by first finding the time t of return to ground:
�16t2 + v

0

t = 0
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t = v
0

/16
and then compiling

h0 (v
0

/16) = �32(v
0

/16) + v
0

= �v
0

32. We want to determine how far in the x-
direction the drop travels. We have initial con-
ditions
x0(0) = 100, x(0) = 0
y0(0) = 0, y(0) = 120
x0(t) = 100, x(t) = 100t,
y0(t) = �32t, y(t) = �16t2 + 120

We first solve 0 = y = �16t2 + 120 to get

t =

r
15

2
. This is when the supplies hit the

ground. We plug this into the equation x(t) to
determine how far the supplies traveled.

x

 r
15

2

!
= 100

r
15

2
⇡ 273.86

So, the supplies should be dropped 273.86 feet
before the target.

33. F = kx, 60 = k · 1, k = 60

W =

Z
2/3

0

60x dx = 30x2

��2/3
0

=
30 · 4
9

=
40

3
ft-lb

34. Remember to convert miles to feet.

W =

Z
8

0

(800 + 2x) dx

= 6464 mile-pounds
= 3.413⇥ 107 foot-pounds.

35. m =

Z
4

0

�
x2 � 2x+ 8

�
dx

=

✓
x3

3
� x2 + 8x

◆����
4

0

=
112

3

M =

Z
4

0

x
�
x2 � 2x+ 8

�
dx

=

Z
4

0

�
x3 � 2x2 + 8x

�
dx

=

✓
x4

4
� 2x3

3
+ 4x2

◆����
4

0

=
256

3

x̄ =
M

m
=

256

3

112

3

=
256

112
=

16

7

Center of mass is greater than 2 because the
object has greater density on the right side of
the interval [0, 4].

36. m =

Z
2

0

(x2 � 2x+ 8) dx =
44

3
.

M =

Z
2

0

x(x2 � 2x+ 8) dx =
44

3
.

x =
M

m
= 1

The center of mass is at one because the den-
sity function is symmetrical about the point
x = 1. (The graph of y = x2 � 2x + 8 is a
parabola with vertex at x = 1.)

37. F =

Z
80

0

62.4x(140� x) dx

= 62.4

Z
80

0

(140x� x2) dx

= 62.4

✓
70x2 � x3

3

◆����
80

0

= 62.4(80)2(130/3)

⇡ 17,305,600 lb

38. F =

Z
10

5

62.4(20)x dx = 46800 lb

39. J ⇡ .0008

3(8)
{0 + 4(800) + 2(1600)

+ 4(2400) + 2(3000) + 4(3600)
+2(2200) + 4(1200) + 0}
= 1.52

J = m�v

1.52 = .01�v
�v = 152 ft/s
152� 120 = 32 ft/s

40. J =

Z
2

0

3000t(2� t) dt = 4000

Since J = m�v, we have �v =
4000

100
= 40 and

the speed before the collision must have been
40 feet per second (about 23.7 miles per hour).

41. f(x) = x+ 2x3 on [0, 1]
f(x) � 0 for 0  x  1 and

Z
1

0

�
x+ 2x3

�
dx =

✓
x2

2
+

x4

2

◆����
1

0

= 1

42. The function is positive on the interval, and

Z
ln 2

0

8

3
e�2x dx = 1.
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43.

1 =

Z
2

1

c

x2

dx =
�c

x

����
2

1

=
�c

2
+ c =

c

2

Therefore c = 2

44. We want to solve for c:

1 =

Z
4

0

ce�2x dx =
c

2
(1� e�8)

Solving gives

c =
2

1� e�8

.

45. (a) P (x < .5) =

Z
.5

0

4e�4x dx

= �e�4x

��.5
0

= 1� e�2 ⇡ .864

(b) P (.5  x  1) =

Z
1

.5

4e�4x dx

= �e�4x

��1
.5

= �e�4 + e�2 ⇡ .117

46. (a) P

✓
X <

1

12

◆
=

Z
1/12

0

9xe�3x dx

= 1� 5

4
e�1/4 ⇡ 0.026499

(b) P

✓
1

2
< X < 1

◆
=

Z
1

1/2

9xe�3x dx

=
5

2
e�3/2 � 4e�3 ⇡ 0.35868

47. (a) µ =

Z
1

0

x
�
x+ 2x3

�
dx

=
x3

3
+

2x5

5

����
1

0

=
11

15
⇡ 0.7333

(b)
1

2
=

Z
c

0

�
x+ 2x3

�
dx

=
x2

2
+

x4

2

����
c

0

=
c2

2
+

c4

2

Therefore c2 + c4 = 1,

c =

s
�1 +

p
5

2
⇡ 0.786

48. (a) µ =

Z
ln 2

0

8

3
xe�2x dx

=
1

2
� 1

3
ln 2 ⇡ 0.26895

(b) For the median, we have to solve the equa-
tion

0.5 =

Z
m

0

8

3
e�2x dx =

4

3
(1� e2m)

Solving gives

m =
1

2
ln(8/5) ⇡ 0.23500



Chapter 6

Integration

Techniques

6.1 Review of Formulas

and Techniques

1.

Z
e

ax

dx =
1

a

e

ax + c, for a 6= 0.

2.

Z
cos(ax)dx =

1

a

sin(ax) + c, for a 6= 0.

3.

Z
1p

a

2 � x

2
dx =

Z
1q

1�
�
x

a

�2

✓
1

a

◆
dx

Let u =
x

a

, du =
1

a

dx.

=

Z
1p

1� u

2
du = sin�1 (u) + c

= sin�1
⇣
x

a

⌘
+ c, a > 0.

4.

Z
b

|x|
p
x

2 � a

2
dx

=

Z
b

|x|
q�

x

a

�2 � 1

✓
1

a

◆
dx

Let u =
x

a

, du =
1

a

dx and |au| = |x| .

=

Z
b

|au|
p
u

2 � 1
du

=
b

|a|

Z
1

|u|
p
u

2 � 1
du

=
b

|a| sec
�1 (u) + c

=
b

|a| sec
�1
⇣
x

a

⌘
+ c, a > 0.

5.

Z
sin(6t)dt = �1

6
cos(6t) + c

6.

Z
sec 2t tan 2t dt =

1

2
sec 2t+ c

7.

Z
(x2 + 4)2dx =

Z
(x4 + 8x2 + 16)dx

=
x

5

5
+

8

3
x

3 + 16x+ c

8.

Z
x(x2 + 4)2dx =

Z
(x5 + 8x3 + 16x)dx

=
x

6

6
+ 2x4 + 8x2 + c

9.
3

16 + x

2
dx =

3

4
tan�1 x

4
+ c

10.
2

4 + 4x2
dx =

1

2
tan�1

x+ c

11.

Z
1p

3� 2x� x

2
dx

=

Z
1p

4� (x+ 1)2
dx = arcsin

✓
x+ 1

2

◆
+ c

12.

Z
x+ 1p

3� 2x� x

2
dx

= �1

2

Z �2(x+ 1)p
4� (x+ 1)2

dx

= �1

2
· 2[4� (x+ 1)2]1/2 + C

= �
p
4� (x+ 1)2 + c

13.

Z
4

5 + 2x+ x

2
dx

= 4

Z
1

4 + (x+ 1)2
dx = 2 tan�1

✓
x+ 1

2

◆
+ c

14.

Z
4x+ 4

5 + 2x+ x

2
dx

= 2

Z
2(x+ 1)

4 + (x+ 1)2
dx = 2 ln | 4 + (x+ 1)2|+ c

15.

Z
4t

5 + 2t+ t

2
dt

=

Z
4t+ 4

5 + 2t+ t

2
dt�

Z
4

5 + 2t+ t

2
dt

= 2 ln
���4 + (t+ 1)2

���� 2tan�1

✓
t+ 1

2

◆
+ c

16.

Z
t+ 1

t

2 + 2t+ 4
dt =

Z
2 (t+ 1)

(t+ 1)2 + 3
dt

=
1

2
ln
���(t+ 1)2 + 3

���+ c

17.

Z
e

3�2x
dx = �1

2
e

3�2x + c

18.

Z
3e�6x

dx = �3

6
e

�6x + c
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19. Let u = 1 + x

2/3
, du =

2

3
x

�1/3
dx

Z
4

x

1/3(1 + x

2/3)
dx = 4

✓
3

2

◆Z
u

�1
du

= 6 ln |u|+ C = 6 ln |1 + x

2/3|+ c

20. Let u = 1 + x

3/4
, du =

3

4
x

�1/4
dx

Z
2

x

1/4 + x

dx =

Z
2

x

1/4(1 + x

3/4)
dx

= 2

✓
4

3

◆Z
u

�1
du =

8

3
ln |u|+ C

=
8

3
ln |1 + x

3/4|+ c

21. Let u =
p
x, du =

1

2
p
x

dx

Z
sin

p
xp

x

dx = 2

Z
sinudu

= �2 cosu+ C = �2 cos
p
x+ c

22. Let u =
1

x

, du = � 1

x

2
dx

Z
cos(1/x)

x

2
dx = �

Z
cosudu

= � sinu+ C = � sin
1

x

+ c

23. Let u = sinx, du = cosxdxZ
⇡

0
cosxesin x

dx =

Z 0

0
e

u

du = 0

24. Let u = tanx, du = sec2 xdxZ
⇡/2

0
sec2 xetan x

dx =

Z 1

0
e

u

du

= e

u

���
1

0
= e� 1

25.

Z 0

�⇡/4
secx tanxdx

= secx
���
0

�⇡/4
= 1�

p
2

26.

Z
⇡/2

⇡/4
csc2 xdx = � cotx

���
⇡/2

⇡/4
= 1

27. Let u = x

3
, du = 3x2

dx

x

2

1 + x

6
dx =

1

3

Z
1

1 + u

2
du

=
1

3
tan�1

u+ C =
1

3
tan�1

x

3 + c

28.

Z
x

5

1 + x

6
dx =

1

6
ln(1 + x

6) + c

29.
1p

4� x

2
dx = sin�1 x

2
+ c

30. Let u = e

x

, du = e

x

dx

e

x

p
1� e

2x
dx =

Z
1p

1� u

2
du

= sin�1
u+ C = sin�1

e

x + c

31. Let u = x

2
, du = 2xdxZ

xp
1� x

4
dx =

1

2

Z
1p

1� u

2
du

=
1

2
sin�1

u+ C =
1

2
sin�1

x

2 + c

32. Let u = 1� x

4
, du = �4x3

dxZ
2x3

p
1� x

4
dx = �1

2

Z
u

�1/2
du

= �u

1/2 + C = �(1� x

4)1/2 + c

33.

Z
1 + x

1 + x

2
dx

=

Z
1

1 + x

2
dx+

1

2

Z
2x

1 + x

2
dx

= tan�1
x+

1

2
ln |1 + x

2|+ c

34.

Z
1p

x+ x

dx

=

Z
x

�1/2 · 1

1 + x

1/2
dx

= 2 ln | 1 + x

1/2|+ c

35.

Z
lnx2

x

dx = 2

Z
lnx

✓
1

x

◆
dx

Let u = lnx, du =
1

x

dx.

= 2

Z
u du = u

2 + c = (lnx)2 + c

36.

Z 3

1
e

2 ln x

dx =

Z 3

1
x

2
dx =

x

3

3

����
3

1

=
26

3

37.

Z 4

3
x

p
x� 3dx

=

Z 4

3
(x� 3 + 3)

p
x� 3dx

=

Z 4

3
(x� 3)3/2dx+ 3

Z 4

3
(x� 3)1/2dx

=
2

5
(x� 3)5/2

����
4

3

+ 3 · 2
3
(x� 3)3/2

����
4

3

=
12

5

38.

Z 1

0
x(x� 3)2dx

=

Z 1

0
(x3 � 6x2 + 9x)dx

=

✓
x

4

4
� 2x3 +

9

2
x

2

◆����
1

0

=
11

4
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39.

Z 4

1

x

2 + 1p
x

dx

=

Z 4

1
x

3/2
dx+

Z 4

1
x

�1/2
dx

=
2

5
x

5/2

����
4

1

+ 2x1/2
���
4

1
=

72

5

40.

Z 0

�2
xe

�x

2

dx = � 1

2
e

�x

2

����
0

�2

=
e

�4 � 1

2

41.

Z
5

3 + x

2
dx =

5p
3
arctan

xp
3
+ c

Z
5

3 + x

3
dx: N/A

42.

Z
sin(3x)dx =

1

3

Z
sin(3x)3dx

Let u = 3x, du = 3dx.

=
1

3

Z
(sinu)du = �1

3
cosu+ c

= �1

3
cos(3x) + c.

Z
sin3xdx =

Z
(sin2x) sinxdx

=

Z
(1� cos2x)sinxdx

Let u = cosx, du = � sinxdx.

=

Z �
1� u

2
�
(�du) =

Z
u

2
du�

Z
du

=
u

3

3
� u =

cos3x

3
� cosx.

43.

Z
lnxdx: N/A

Substituting u = lnx,Z
lnx

2x
dx =

1

4
ln2 x+ c

44. Substituting u = x

4
Z

x

3

1 + x

8
dx =

1

4
arctanx4 + c

Z
x

4

1 + x

8
dx: N/A

45.

Z
e

�x

2

dx: N/A

Substituting u = �x

2Z
xe

�x

2

dx = �1

2
e

�x

2

+ c

46.

Z
secxdx: N/A

Z
sec2 xdx = tanx+ c

47.

Z 2

0
f(x)dx

=

Z 1

0

x

x

2 + 1
dx+

Z 2

1

x

2

x

2 + 1
dx

=
1

2
ln |x2 + 1|

���
1

0
+

Z 2

1

✓
1� 1

x

2 + 1

◆
dx

=
1

2
ln 2 + (x� arctanx)

���
2

1

=
ln 2

2
+ 1 +

⇡

4
� arctan 2

48.

Z
4x+ 1

2x2 + 4x+ 10
dx

=

Z
4x+ 4

2x2 + 4x+ 10
dx�

Z
3

2x2 + 4x+ 10
dx

= ln |2x2 + 4x+ 10|� 3

2

Z
1

(x+ 1)2 + 4
dx

= ln |2x2 + 4x+ 10|� 3

4
tan�1

✓
x+ 1

2

◆
+ c

49.

Z
1

(1 + x

2)
dx = tan�1 (x) + c.

Z
x

(1 + x

2)
dx =

1

2

Z
2x

(1 + x

2)
dx

=
1

2
ln
�
1 + x

2
�
+ c.

Z
x

2

(1 + x

2)
dx =

Z
x

2 + 1� 1

(1 + x

2)
dx

=

Z �
x

2 + 1
�

(x2 + 1)
dx�

Z
1

(1 + x

2)
dx

=

Z
dx�

Z
1

(1 + x

2)
dx

= x� tan�1 (x) + c.

Z
x

3

(1 + x

2)
dx =

1

2

Z
x

2

(1 + x

2)
2xdx

Let u = x

2
, du = 2xdx.

=
1

2

Z
u

1 + u

du =
1

2

Z
u+ 1� 1

1 + u

du

=
1

2

⇢Z
u+ 1

1 + u

du�
Z

1

1 + u

du

�

=
1

2

⇢Z
du �

Z
1

1 + u

du

�

=
1

2
(u� ln (1 + u)) + c

=
1

2
x

2 � 1

2
ln
�
1 + x

2
�
+ c.

Hence we can generalize this as follows,Z ✓
x

n

1 + x

2

◆
dx

=
1

n� 1
x

n�1 �
Z ✓

x

n�2

1 + x

2

◆
dx

50.

Z
x

1 + x

4
dx =

1

2

Z
1

1 + x

4
2xdx
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Let u = x

2
, du = 2xdx.

=
1

2

Z
1

1 + u

2
du =

1

2
tan�1 (u) + c

=
1

2
tan�1

�
x

2
�
+ c.

Z
x

3

1 + x

4
dx =

1

4

Z
1

1 + x

4
4x3

dx

Let u = 1 + x

4
, du = 4x3

.

=
1

4

Z
1

u

du =
1

4
ln (u) + c

=
1

4
ln
�
1 + x

4
�
+ c.

Z
x

5

1 + x

4
dx

=
1

2

Z
x

4

1 + x

4
2xdx

Let u = x

2
, du = 2xdx.

=
1

2

Z
u

2

1 + u

2
du =

1

2

Z
u

2 + 1� 1

1 + u

2
du

=
1

2

⇢Z
u

2 + 1

1 + u

2
du�

Z
1

1 + u

2
du

�

=
1

2

⇢Z
du�

Z
1

1 + u

2
du

�

=
1

2

�
u� tan�1 (u)

 
+ c

=
1

2

�
x

2 � tan�1
�
x

2
� 

+ c.

Hence we can generalize this as follows,Z
x

4n+1

1 + x

4
dx =

1

2

⇢
x

2n�2

n� 1

�
�
Z

x

4(n�1)+1

1 + x

4
dx

and
Z

x

4n+3

1 + x

4
dx =

1

4

⇢
x

2n

n

�
�
Z

x

4(n�1)+3

1 + x

4
dx

6.2 Integration by Parts

1. Let u = x, dv = cosxdx
du = dx, v = sinx.Z

x cosxdx = x sinx�
Z

sinxdx

= x sinx+ cosx+ c

2. Let u = x, dv = sin 4xdx

du = dx, v = �1

4
cos 4x

Z
x sin 4x dx

= �1

4
x cos 4x�

Z
�1

4
cos 4x dx

= �1

4
x cos 4x+

1

16
sin 4x+ c.

3. Let u = x, dv = e

2x
dx

du = dx, v =
1

2
e

2x
.

Z
xe

2x
dx =

1

2
xe

2x �
Z

1

2
e

2x
dx

=
1

2
xe

2x � 1

4
e

2x + c.

4. Let u = lnx, dv = x dx

du =
1

x

dx and v =
x

2

2
.

Z
x lnx dx =

1

2
x

2 lnx�
Z

1

2
x dx

=
1

2
x

2 lnx� 1

4
x

2 + c.

5. Let u = lnx, dv = x

2
dx

du =
1

x

dx, v =
1

3
x

3
.

Z
x

2 lnxdx =
1

3
x

3 lnx�
Z

1

3
x

3 · 1
x

dx

=
1

3
x

3 lnx� 1

3

Z
x

2
dx

=
1

3
x

3 lnx� 1

9
x

3 + c.

6. Let u = lnx, du =
1

x

dx.

Z
lnx

x

dx =

Z
udu =

u

2

2
+ c =

1

2
(lnx)2 + c.

7. Let u = x

2
, dv = e

�3x
dx

du = 2xdx, v = �1

3
e

�3x

I =

Z
x

2
e

�3x
dx

= �1

3
x

2
e

�3x �
Z ✓

�1

3
e

�3x

◆
· 2xdx

= �1

3
x

2
e

�3x +
2

3

Z
xe

�3x
dx

Let u = x, dv = e

�3x
dx

du = dx, v = �1

3
e

�3x

I = �1

3
x

2
e

�3x

+
2

3


�1

3
xe

�3x �
Z ✓

�1

3
e

�3x

◆
dx

�

= �1

3
x

2
e

�3x � 2

9
xe

�3x +
2

9

Z
e

�3x
dx

= �1

3
x

2
e

�3x � 2

9
xe

�3x � 2

27
e

�3x + c

8. Let u = x

3
, du = 3x2

dx.Z
x

2
e

x

3

dx =
1

3

Z
e

u

dx =
1

3
e

u + c

=
1

3
e

x

3

+ c.

9. Let I =

Z
e

x sin 4xdx

u = e

x

, dv = sin 4xdx

du = e

x

dx, v = �1

4
cos 4x
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I = �1

4
e

x cos 4x�
Z ✓

�1

4
cos 4x

◆
e

x

dx

= �1

4
e

x cos 4x+
1

4

Z
e

x cos 4xdx

Use integration by parts again, this time let
u = e

x

, dv = cos 4xdx

du = e

x

dx, v =
1

4
sin 4x

I = �1

4
e

x cos 4x

+
1

4

✓
1

4
e

x sin 4x�
Z

1

4
(sin 4x)exdx

◆

I = �1

4
e

x cos 4x+
1

16
e

x sin 4x� 1

16
I

So,
17

16
I = �1

4
e

x cos 4x+
1

16
e

x sin 4x+ c1

I = � 4

17
e

x cos 4x+
1

17
e

x sin 4x+ c

10. Let, u = e

2x
, dv = cosx dx so that,

du = 2e2x dx and v = sinx.Z
e

2x cosx dx

= e

2x sinx� 2

Z
e

2x sinx dx

Let, u = e

2x, dv = sinx dx so that,
du = 2e2x dx and v = � cosx.Z

e

2x sinx dx

= �e

2x cosx+ 2

Z
e

2x cosx dx

Z
e

2x cosx dx

= e

2x sinx+ 2e2x cosx� 4

Z
e

2x cosx dx

Now we notice that the integral on both of
these is the same, so we bring them to one side
of the equation.

5

Z
e

2x cosx dx

= e

2x sinx+ 2e2x cosx+ c1Z
e

2x cosx dx

=
1

5
e

2x sinx+
2

5
e

2x cosx+ c

11. Let I =

Z
cosx cos 2xdx

and u = cosx, dv = cos 2xdx

du = sinxdx, v =
1

2
sin 2x

I =
1

2
cosx sin 2x�

Z
1

2
sin 2x(� sinx)dx

=
1

2
cosx sin 2x+

1

2

Z
sinx sin 2xdx

Let,u = sinx, dv = sin 2xdx

du = cosxdx v = �1

2
cos 2x

I =
1

2
cosx sin 2x+

1

2


�1

2
cos 2x sinx

�
Z ✓

�1

2
cos 2x

◆
cosxdx

�

=
1

2
cosx sin 2x � 1

4
cos 2x sinx+

1

4
Idx

So,
3

4
I =

1

2
cosx sin 2x� 1

4
cos 2x sinx+ c1

I =
2

3
cosx sin 2x� 1

3
cos 2x sinx+ c

12. Here we use the trigonometric identity:
sin 2x = 2 sinx cosx.

We then make the substitution
u = sinx, du = cosx dx.Z

sinx sin 2x dx =

Z
2 sin2 x cosx dx

=

Z
2u2

du =
2

3
u

3 + c =
2

3
sin3 x+ c

This integral can also be done by parts, twice.
If this is done, an equivalent answer is ob-
tained:
1

3
cosx sin 2x� 2

3
cos 2x sinx+ c

13. Let u = x, dv = sec2 xdx
du = dx, v = tanxZ

x sec2 xdx = x tanx�
Z

tanxdx

= x tanx�
Z

sinx

cosx
dx

Let u = cosx, du = � sinxdxZ
x sec2 xdx = x tanx+

Z
1

u

du

= x tanx+ ln |u|+ c

= x tanx+ ln |cosx|+ c

14. Let u = (lnx)2, dv = dx

du = 2
lnx

x

dx, v = x

I =

Z
(lnx)2dx

= x(lnx)2 �
Z

x · 2 lnx
x

dx

= x(lnx)2 � 2

Z
lnxdx

Integration by parts again,

u = lnx, dv = dxdu =
1

x

dx, v = x

I = x(lnx)2 � 2


x lnx�

Z
x · 1

x

dx

�

= x(lnx)2 � 2x lnx+ 2

Z
dx
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= x(lnx)2 � 2x lnx+ 2x+ c

15. Let u = x

2, dv = xe

x

2

dx so that, du = 2x dx

and v =
1

2
e

x

2

(v is obtained using substitu-

tion).Z
x

3
e

x

2

dx =
1

2
x

2
e

x

2

�
Z

xe

x

2

dx

=
1

2
x

2
e

x

2

� 1

2
e

x

2

+ c

16. Let u = x

2
, dv =

 
x

(4 + x

2)3/2

!
dx

du = 2xdx, v = � 1p
4 + x

2
Z

x

3

(4 + x

2)3/2
dx =

Z
x

2

 
x

(4 + x

2)3/2

!
dx

= � x

2

p
4 + x

2
+

Z
1p

4 + x

2
2xdx

= � x

2

p
(4 + x

2)
+ 2
p
(4 + x

2) + c.

17. Let u = ln(sinx), dv = cosxdx

du =
1

sinx
· cosxdx, v = sinx

I =

Z
cosx ln(sinx)dx

= sinx ln(sinx)

�
Z

sinx · 1

sinx
· cosxdx

= sinx ln(sinx)�
Z

cosxdx

= sinx ln(sinx)� sinx+ c

18. This is a substitution u = x

2
.Z

x sinx2
dx =

1

2

Z
sinudu

= �1

2
cosu+ c = �1

2
cosx2 + c.

19. Let u = x, dv = sin 2xdx

du = dx, v = �1

2
cos 2x

Z 1

0
x sin 2xdx

= �1

2
x cos 2x

����
1

0

�
Z 1

0

✓
�1

2
cos 2x

◆
dx

= �1

2
(1 cos 2� 0 cos 0) +

1

2

Z 1

0
cos 2xdx

= �1

2
cos 2 +

1

2


1

2
sin 2x

�1

0

= �1

2
cos 2 +

1

4
(sin 2� sin 0)

= �1

2
cos 2 +

1

4
sin 2

20. Let u = 2x, dv = cosx dx

du = 2 dxandv = sinx.Z
⇡

0
2x cosxdx = 2x sinx|⇡0 � 2

Z
⇡

0
sinxdx

= (2x sinx+ 2 cosx)|⇡0 = �4.

21.

Z 1

0
x

2 cos⇡xdx

Let u = x

2
, dv = cos⇡xdx,

du = 2xdx, v =
sin⇡x

⇡

.

Z 1

0
x

2cos⇡xdx = x

2 sin⇡x

⇡

����
1

0

�
Z 1

0

sin⇡x

⇡

2xdx

= (0� 0)� 2

⇡

Z 1

0
x sin (⇡x) dx

= � 2

⇡

Z 1

0
x sin (⇡x) dx

Let u = x, dv = sin(⇡x)dx,

du = dx, v = �cos(⇡x)

⇡

.

� 2

⇡

Z 1

0
xsin(⇡x)dx

= � 2

⇡

(
�x cos(⇡x)

⇡

����
1

0

�
Z 1

0
�cos(⇡x)

⇡

dx

)

= � 2

⇡

(
(�cos⇡

⇡

� 0) +
1

⇡


sin(⇡x)

⇡

�1

0

)

= � 2

⇡

⇢
1

⇡

+
1

⇡

(0� 0)

�
= � 2

⇡

2

22.

Z 1

0
x

2
e

3x
dx

Let u = x

2
, dv = e

3x
dx,

du = 2xdx, v =
e

3x

3
.

Z 1

0
x

2
e

3x
dx =

x

2
e

3x

3

����
1

0

�
Z 1

0

e

3x

3
2xdx

=
1

3

�
e

3 � 0
�
� 2

3

Z 1

0
xe

3x
dx.

Let u = x, dv = e

3x
dx,

dv = dx, v =
e

3x

3
.

e

3

3
� 2

3

Z 1

0
xe

3x
dx

=
e

3

3
� 2

3

(
x

e

3x

3

����
1

0

�
Z 1

0

e

3x

3
dx

)

=
e

3

3
� 2

3

⇢✓
e

3

3

◆
�
Z 1

0

e

3x

3
dx

�

=
e

3

3
� 2

3

(✓
e

3

3

◆
�

e

3x

9

�1

0

)

=
e

3

3
� 2

3

⇢✓
e

3

3

◆
� 1

9

�
e

3 � 1
��
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=
e

3

3
� 2e3

9
+

2

27

�
e

3 � 1
�

=
e

3

3
� 2e3

9
+

2e3

27
� 2

27
=

5e3

27
� 2

27

23.

Z 10

1
ln 2xdx

Let u = ln 2x, dv = dx

du =
1

x

dx, v = x.

Z 10

1
ln (2x)dx = x ln (2x)|101 �

Z 10

1
x

1

x

dx

= (10 ln(20)� ln 2)�
Z 10

1
dx

= (10 ln(20)� ln 2)� [x]101
= (10 ln(20)� ln 2)� (10� 1)
= (10 ln(20)� ln 2)� 9.

24. Let, u = lnx, dv = x dx

du =
1

x

dx, v =
x

2

2
.

Z 2

1
x lnxdx =

1

2
x

2 lnx

����
2

1

�
Z 2

1

1

2
xdx

=

✓
1

2
x

2 lnx� 1

4
x

2

◆����
2

1

= 2 ln 2� 3

4
.

25.

Z
x

2
e

ax

dx

Let u = x

2
, dv = e

ax

dx,

du = 2xdx, v =
e

ax

a

.

Z
x

2
e

ax

dx = x

2 e
ax

a

�
Z

e

ax

a

2xdx

=
x

2
e

ax

a

� 2

a

Z
xe

ax

dx.

Let u = x, dv = e

ax

dx,

dv = dx, v =
e

ax

a

.

x

2
e

ax

a

� 2

a

Z
xe

ax

dx

=
x

2
e

ax

a

� 2

a

⇢
x

e

ax

a

�
Z

e

ax

a

dx

�

=
x

2
e

ax

a

� 2

a

⇢
xe

ax

a

� e

ax

a

2

�
+ c

=
x

2
e

ax

a

� 2xeax

a

2
+

2eax

a

3
+ c, a 6= 0.

26.

Z
x sin (ax) dx

Let u = x, dv = sin axdx,

du = dx, v = �cos ax

a

.

Z
xsin (ax) dx

= x

� cos (ax)

a

�
Z

�cos (ax)

a

dx

= �x cos (ax)

a

+
sin (ax)

a

2
+ c, a 6= 0.

27.

Z
(xn) (lnx) dx =

Z
(lnx) (xn) dx

Let u = lnx, dv = x

n

dx,

du =
1

x

dx, v =
x

n+1

(n+ 1)
.

Z
(lnx)(xn) dx

= (lnx)
x

n+1

(n+ 1)
�
Z

x

n+1

(n+ 1)

dx

x

=
x

n+1 (lnx)

(n+ 1)
�
Z

x

n

(n+ 1)
dx

=
x

n+1 (lnx)

(n+ 1)
� x

n+1

(n+ 1)2
+ c, n 6= �1.

28.

Z
(sin ax) (cos bx) dx

Let u = sin ax, dv = (cos bx) dx

du = a (cos ax) dx, v =
sin bx

b

.

Z
sin ax cos bx dx

= (sin ax)
sin bx

b

�
Z

a

✓
sin bx

b

◆
(cos ax) dx

=
(sin ax) (sin bx)

b

� a

b

Z
(cos ax) (sin bx) dx

Let u = cos ax, dv = sin bxdx,

du = �a (sin ax) dx, v = �cos bx

b

.

sin ax sin bx

b

� a

b

Z
cos ax sin bx dx

=
sin ax sin bx

b

� a

b

⇢
cos ax

� cos bx

b

�
Z � cos bx

b

(� sin ax) adx

�

=
sin ax sin bx

b

� a

b

⇢
� cos ax cos bx

b

�a

b

Z
cos bx sin ax dx

�

=
sin ax sin bx

b

+
a cos ax cos bx

b

2

+
⇣
a

b

⌘2 Z
sin ax cos bx dx

Z
sin ax cos bx dx

=
sin ax sin bx

b

+
a cos ax cos bx

b

2

+
⇣
a

b

⌘2 Z
sin ax cos bx dx

Z
sin ax cos bx dx�

⇣
a

b

⌘2 Z
sin ax cos bx dx

=
sin ax sin bx

b

+
a cos ax cos bx

b

2
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✓
1� a

2

b

2

◆Z
sin ax cos bx dx

=
sin ax sin bx

b

+
a cos ax cos bx

b

2Z
sin ax cos bx dx

=

✓
b

2

b

2 � a

2

◆✓
sin ax sin bx

b

+
a cos ax cos bx

b

2

◆

Z
sin ax cos bx dx

=

✓
1

b

2 � a

2

◆
(b sin ax sin bx+ a cos ax cos bx) ,

a 6= 0 b 6= 0.

29. Letu = cosn�1
x, dv = cosxdx

du = (n� 1)(cosn�2
x)(� sinx)dx, v = sinxZ

cosn xdx

= sinx cosn�1
x

�
Z

(sinx)(n� 1)(cosn�2
x)(� sinx)dx

= sinx cosn�1
x

+

Z
(n� 1)(cosn�2

x)(sin2 x)dx

= sinx cosn�1
x

+

Z
(n� 1)(cosn�2

x)(1� cos2 x)dx

= sinx cosn�1
x

+

Z
(n� 1)(cosn�2

x� cosn x)dx

Thus,

Z
cosn xdx

= sinx cosn�1
x+

Z
(n� 1) cosn�2

xdx

� (n� 1)

Z
cosn xdx.

n

Z
cosn xdx = sinx cosn�1

x

+ (n� 1)

Z
cosn�2

xdx

Z
cosn xdx

=
1

n

sinx cosn�1
x+

n� 1

n

Z
cosn�2

xdx

30. Let u = sinn�1
x, dv = sinx dx

du = (n� 1) sinn�2
x cosx, v = � cosx.Z

sinn xdx

= � sinn�1
x cosx

+ (n� 1)

Z
cos2 x sinn�2

xdx

= � sinn�1
x cosx

+ (n� 1)

Z
(1� sin2 x) sinn�2

xdx

= � sinn�1
x cosx

� (n� 1)

Z
sinn�2

xdx

+ (n� 1)

Z
sinn xdx

n

Z
sinn xdx

= � sinn�1
x cosx

� (n� 1)

Z
sinn�2

xdx

Z
sinn xdx = � 1

n

sinn�1
x cosx

� n� 1

n

Z
sinn�2

xdx

31.

Z
x

3
e

x

dx = e

x(x3 � 3x2 + 6x� 6) + c

32.

Z
cos5 xdx

=
1

5
cos4 sinx+

4

5

Z
cos3 xdx

=
1

5
cos4 sinx

+
4

5

✓
1

3
cos2 x sinx+

2

3

Z
cosxdx

◆

=
1

5
cos4 sinx+

4

15
cos2 x sinx

+
8

15
sinx+ c

33.

Z
cos3 xdx

=
1

3
cos2 x sinx+

2

3

Z
cosxdx

=
1

3
cos2 x sinx+

2

3
sinx+ c

34.

Z
sin4 xdx

= �1

4
sin3 x cosx+

3

4

Z
sin2 xdx

= �1

4
sin3 x cosx+

3

4

✓
1

2
x� 1

4
sin 2x

◆

35.

Z 1

0
x

4
e

x

dx

= e

x(x4 � 4x3 + 12x2 � 24x+ 24)
��1
0

= 9e� 24

36. Using the work done in Exercise 34,Z
⇡/2

0
sin4 xdx

=

✓
�1

4
sin3 x cosx+

3

8
x� 3

16
sin 2x

◆����
⇡/2

0

=
3⇡

16

37.

Z
⇡/2

0
sin5 xdx
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= �1

5
sin4 x cosx

����
⇡/2

0

+
4

5

Z
⇡/2

0
sin3 xdx

= �1

5
sin4 x cosx

����
⇡/2

0

+
4

5

✓
�1

3
sin2 x cosx� 2

3
cosx

◆����
⇡/2

0
(Using Exercise 30)

= �1

5

⇣
sin4

⇣
⇡

2

⌘
cos

⇡

2
� sin4 0 cos 0

⌘

+
4

5

✓
�1

3
sin2

⇣
⇡

2

⌘
cos

⇡

2
� 2

3
cos

⇡

2

◆

=
8

15

38. Here we will again use the work we did in Ex-
ercise 34.Z

sin6 xdx

= �1

6
sin5 x cosx+

5

6

Z
sin4 xdx

= �1

6
sin5 x cosx

+
5

6

✓
�1

4
sin3 x cosx+

3

8
x� 3

16
sin 2x

◆
+ c

= �1

6
sin5 x cosx� 5

24
sin3 x cosx

+
15

48
x� 15

96
sin 2x+ c

We now just have to plug in the endpoints:Z
⇡/2

0
sin6 xdx

=

✓
�1

6
sin5 x cosx� 5

24
sin3 x cosx

+
15

48
x� 15

96
sin 2x

◆����
⇡/2

0

=
15⇡

96

39. m even :Z
⇡/2

0
sinm xdx

=
(m� 1)(m� 3) . . . 1

m(m� 2) . . . 2
· ⇡
2

m odd:Z
⇡/2

0
sinm xdx

=
(m� 1)(m� 3) . . . 2

m(m� 2) . . . 3

40. m even:Z
⇡/2

0
cosm xdx

=
⇡(n� 1)(n� 3)(n� 5) · · · 1

2n(n� 2)(n� 4) · · · 2
m odd:

Z
⇡/2

0
cosm xdx

=
(n� 1)(n� 3)(n� 5) · · · 2

n(n� 2)(n� 4) · · · 3 .

41. Let u = cos�1
x, dv = dx

du = � 1p
1� x

2
dx, v = x

I =

Z
cos�1

xdx

= x cos�1
x�

Z
x

✓
� 1p

1� x

2

◆
dx

= x cos�1
x+

Z
xp

1� x

2
dx

Substituting u = 1� x

2
, du = �2xdx

I = x cos�1
x+

Z
1p
u

✓
�1

2
du

◆

= x cos1 x� 1

2

Z
u

�1/2
du

= x cos�1
x� 1

2
· 2u1/2 + c

= x cos�1
x�

p
1� x

2 + c

42. Let u = tan�1
x, dv = dx

du =
1

1 + x

2
dx, v = x

I =

Z
tan�1

xdx = x tan�1
x�

Z
x

1 + x

2
dx

Substituting u = 1 + x

2
,

I = x tan�1
x� 1

2
ln(1 + x

2) + c.

43. Substituting u =
p
x, du =

1

2
p
x

dx

I =

Z
sin

p
xdx = 2

Z
u sinudu

= 2(�u cosu+ sinu) + c

= 2(�
p
x cos

p
x+ sin

p
x) + c

44. Substituting w =
p
x

dw =
1

2
p
x

dx =
1

2w
dx

I =

Z
e

p
x

dx =

Z
2wewdx

Next, using integration by parts
u = 2w, dv = e

w

dw

du = 2dw, v = e

w

I = 2wew � 2

Z
e

w

dw

= 2wew � 2ew + c = 2
p
xe

p
x � 2e

p
x + c

45. Let u = sin(lnx), dv = dx

du = cos(lnx)
dx

x

, v = x

I =

Z
sin(lnx)dx

= x sin(lnx)�
Z

cos(lnx)dx
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Integration by parts again,
u = cos(lnx), dv = dx

du = � sin(lnx)
dx

x

, v = x

Z
cos(lnx)dx

= x cos(lnx) +

Z
sin(lnx)dx

I = x sin(lnx)� x cos(lnx)� I

2I = x sin(lnx)� x cos(lnx) + c1

I =
1

2
x sin(lnx)� 1

2
x cos(lnx) + c

46. Let u = 4 + x

2
, du = 2xdx

I =

Z
x ln(4 + x

2)dx

=
1

2

Z
lnudu =

1

2
(u lnu� u) + C

=
1

2
[(4 + x

2) ln(4 + x

2)� 4� x

2] + c

47. Let u = e

2x
, du = 2e2xdx

I =

Z
e

6x sin(e2x)dx =
1

2

Z
u

2 sinudu

Let v = u

2
, dw = sinudu

dv = 2udu, w = � cosu

I =
1

2

✓
�u

2 cosu+ 2

Z
u cosudu

◆

= �1

2
u

2 cosu+

Z
u cosudu

= �1

2
u

2 cosu+ (u sinu+ cosu) + c

= �1

2
e

4x cos(e2x) + e

2x sin(e2x)

+ cos(e2x) + c

48. Let u = 3
p
x = x

1/3
, du =

1

3
x

�2/3
dx,

3u2
du = dx

I =

Z
cosx1/3

dx = 3

Z
u

2 cosudu

Let v = u

2
, dw = cosudu

dv = 2udu,w = sinu

I = 3

✓
u

2 sinu� 2

Z
u sinudu

◆

= 3u2 sinu� 6

Z
u sinudu

= 3u2 sinu� 6

✓
�u cosu+

Z
cosudu

◆

= 3u3 sinu+ 6u cosu� 6 sinu+ c

= 3x sin 3
p
x+ 6 3

p
x cos 3

p
x� 6 sin 3

p
x+ c

49. Let u = 3
p
x = x

1/3
, du =

1

3
x

�2/3
dx,

3u2
du = dx

I =

Z
e

3p
x

dx = 3

Z
u

2
e

u

du

= 3

✓
u

2
e

u � 2

Z
ue

u

du

◆

= 3u2
e

u � 6

✓
ue

u �
Z

e

u

du

◆

= 3u2
e

u � 6ueu + 6eu + c

Hence

Z 8

0
e

3p
x

dx =

Z 2

0
3u2

e

u

du

=
�
3u2

e

u � 6ueu + 6eu
���2

0
= 6e2 � 6

50. Let u = tan�1
x, dv = xdx

du =
dx

1 + x

2
, v =

x

2

2

I =

Z
x tan�1

xdx

= tan�1
x

x

2

2
� 1

2

Z
x

2

1 + x

2
dx

= tan�1
x

x

2

2

� 1

2

Z
1dx�

Z
1

1 + x

2
dx

�

= tan�1
x

x

2

2
� 1

2

�
x� tan�1

x

�
+ C

= tan�1
x

x

2

2
� x

2
+

1

2
tan�1

x+ c

Hence

Z 1

0
x tan�1

xdx

=

✓
tan�1

x

x

2

2
� x

2
+

1

2
tan�1

x

◆����
1

0

=
⇡

4
� 1

2

51. n times. Each integration reduces the power of
x by 1.

52. 1 time. The first integration by parts gets rid
of the lnx and turns the integrand into a sim-
ple integral. See, for example, Problem 4.

53. (a) As the given problem,
R
x sinx2

dx can
be simplified by substituting x

2 = u, we
can solve the example using substitution
method.

(b) As the given integral,
R
x

2 sinx dx can not
be simplified by substitution method and
can be solved using method of integration
by parts.

(c) As the integral,
R
x lnx dx can not be sim-

plified by substitution and can be solved
using the method of integration by parts.

(d) As the given problem,

Z
lnx

x

dx can be

simplified by substituting , lnx = u we
can solve the example by substitution
method.

54. (a) As this integral,
R
x

3
e

4x
dx can not be

simplified by substitution method and can
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be solved by using the method of integra-
tion by parts.

(b) As the given problem,
R
x

3
e

x

4

dx can be
simplified by substituting x

4 = u, we can
solve the example using the substitution
method.

(c) As the given problem,

Z
x

�2
e

4
x

dx can be

simplified by substituting
1

x

= u, we can

solve the example using the substitution
method.

(d) As this integral,
R
x

2
e

�4x
dx can not be

simplified by substitution and can be
solved by using the method of integration
by parts.

55. First column: each row is the derivative of the
previous row; Second column: each row is the
antiderivative of the previous row.

56.
sinx

x

4 � cosx +
4x3 � sinx �

12x2 cosx +
24x sinx �
24 � cosx +

Z
x

4 sinxdx

= �x

4 cosx+ 4x3 sinx+ 12x2 cosx
� 24x sinx� 24 cosx+ c

57.
cosx

x

4 sinx +
4x3 � cosx �

12x2 � sinx +
24x cosx �
24 sinx +

Z
x

4 cosxdx

= x

4 sinx+ 4x3 cosx� 12x2 sinx
� 24x cosx+ 24 sinx+ c

58.
e

x

x

4
e

x +
4x3

e

x �
12x2

e

x +
24x e

x �
24 e

x +
Z

x

4
e

x

dx

= (x4 � 4x3 + 12x2 � 24x+ 24)ex + c

59.
e

2x

x

4
e

2x
/2 +

4x3
e

2x
/4 �

12x2
e

2x
/8 +

24x e

2x
/16 �

24 e

2x
/32 +

Z
x

4
e

2x
dx

=

✓
x

4

2
� x

3 +
3x2

2
� 3x

2
+

3

4

◆
e

2x + c

60.
cos 2x

x

5 sin 2x/2 +
5x4 � cos 2x/4 �
20x3 � sin 2x/8 +
60x2 cos 2x/16 �
120x sin 2x/32 +
120 � cos 2x/64 �

Z
x

5 cos 2xdx

=
1

2
x

5 sin 2x +
5

4
x

4 cos 2x

� 20

8
x

3 sin 2x� 60

16
x

2 cos 2x

+
120

32
x sin 2x+

120

64
cos 2x+ c

61.
e

�3x

x

3 �e

�3x
/3 +

3x2
e

�3x
/9 �

6x �e

�3x
/27 +

6 e

�3x
/81 �

Z
x

3
e

�3x
dx

=

✓
�x

3

3
� x

2

3
� 2x

9
� 2

27

◆
e

�3x + c

62.
x

2

lnx x

3
/3 +

x

�1
x

4
/12 +

�x

�2
x

5
/60 +

The table will never terminate.

63. (a) Use the identity
cosA cosB

=
1

2
[cos(A�B) + cos(A+B)]

This identity givesZ
⇡

�⇡

cos(mx) cos(nx)dx
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=

Z
⇡

�⇡

1

2
[cos((m� n)x)

+ cos((m+ n)x)]dx

=
1

2


sin((m� n)x)

m� n

+
sin((m+ n)x)

m+ n

�����
⇡

�⇡

= 0

It is important that m 6= n because oth-
erwise cos((m� n)x) = cos 0 = 1

(b) Use the identity
sinA sinB

=
1

2
[cos(A�B)� cos(A+B)]

This identity givesZ
⇡

�⇡

sin(mx) sin(nx)dx

=

Z
⇡

�⇡

1

2
[cos((m� n)x)

� cos((m+ n)x)]dx

=
1

2


sin((m� n)x)

m� n

� sin((m+ n)x)

m+ n

�����
⇡

�⇡

= 0

It is important that m 6= n because oth-
erwise cos((m� n)x) = cos 0 = 1

64. (a) Use the identity
cosA sinB

=
1

2
[sin(B +A)� sin(B �A)]

This identity givesZ
⇡

�⇡

cos(mx) sin(nx) dx

=

Z
⇡

�⇡

1

2
[sin((n+m)x)

� sin((n�m)x)] dx

=
1

2


�cos((n+m)x)

n+m

+
cos((n�m)x)

n�m

�����
⇡

�⇡

= 0

(b) We have seen thatZ
cos2 xdx =

1

2
x+

1

4
cos(2x) + c

Hence by letting u = nx:Z
⇡

�⇡

cos2(nx)dx

=
1

n

Z
n⇡

�n⇡

cos2 udu

=
1

n

✓
1

2
u+

1

4
cos(2u)

◆����
n⇡

�n⇡

= ⇡

And then

Z
⇡

�⇡

sin2(nx)dx

=

Z
⇡

�⇡

(1� cos2(nx))dx

=

Z
⇡

�⇡

dx�
Z

⇡

�⇡

cos2(nx)dx

= 2⇡ � ⇡ = ⇡

65. The only mistake is the misunderstanding of

antiderivatives. In this problem,

Z
e

x

e

�x

dx

is understood as a group of antiderivatives of
e

x

e

�x, not a fixed function. So the subtraction

by

Z
e

x

e

�x

dx on both sides of
Z

e

x

e

�x

dx = �1 +

Z
e

x

e

�x

dx

does not make sense.

66. V = ⇡

Z
⇡

0
(x
p
sinx)2dx = ⇡

Z
⇡

0
x

2 sinxdx

Using integration by parts twice we getZ
x

2 sinxdx

= �x

2 cosx+ 2

Z
x cosxdx

= �x

2 cosx+ 2(x sinx�
Z

sinxdx)

= �x

2 cosx+ 2x sinx+ 2 cosx+ c

Hence,
V = (�x

2 cosx+ 2x sinx+ 2 cosx)
��⇡
0

= ⇡

2 � 4 ⇡ 5.87

67. Let u = lnx, dv = e

x

dx

du =
dx

x

, v = e

x

Z
e

x lnxdx = e

x lnx�
Z

e

x

x

dx

Z
e

x lnxdx+

Z
e

x

x

dx = e

x lnx+ C

Hence,Z
e

x

✓
lnx+

1

x

◆
dx = e

x lnx+ c

68. We can guess the formula:Z
e

x(f(x) + f

0(x))dx = e

x

f(x) + c

and prove it by taking the derivative:
d

dx

(exf(x)) = e

x

f(x) + e

x

f

0(x)
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= e

x(f(x) + f

0(x))

69. Consider,

Z 1

0
f

00(x)g (x) dx

Choose u = g (x) and dv = f

00(x)dx,
so that du = g

0 (x) dx and , v = f

0 (x) .

Hence, we haveZ 1

0
g (x)f 00(x)dx

= g (x) f 0 (x)|10 �
Z 1

0
f

0 (x)g0 (x) dx

= (g (1) f 0 (1)� g (0) f 0 (0))

�
Z 1

0
g

0 (x)f 0 (x) dx

From the given data.

= (0� 0)�
Z 1

0
g

0 (x)f 0 (x) dx.

Choose, u = g

0 (x) and dv = f

0(x)dx,
so that,du = g

00 (x) dx and v = f (x) .

Hence, we have

�
Z 1

0
g

0 (x)f 0 (x) dx

= �
⇢
g

0 (x) f (x)|10 �
Z 1

0
f (x) g00 (x) dx

�

= � {(g0 (1) f (1)� g

0 (0) f (0) )

�
Z 1

0
f (x) g00 (x) dx

�

From the given data.

= �
⇢
(0� 0 )�

Z 1

0
f (x) g00 (x) dx

�

=

Z 1

0
f (x) g00 (x) dx.

70. Consider,Z
b

a

f

00 (x) (b� x) dx =

Z
b

a

(b� x) f 00 (x) dx

Choose u = (b� x) and dv = f

00 (x) dx,
so that du = �dx and v = f

0 (x) .

Hence, we have:Z
b

a

(b� x)f 00 (x) dx

= (b� x) f 0 (x)|b
a

+

Z
b

a

f

0 (x) dx

= (0� [(b� a) f 0 (a)]) +

Z
b

a

f

0 (x) dx

= � [(b� a) f 0 (a)] + f (x)|b
a

= � [(b� a) f 0 (a)] + f (b)� f (a)Z
b

a

f

00 (x) (b� x) dx

= � [(b� a) f 0 (a)] + f (b)� f (a)

f (b) = f (a) + (b� a) f 0 (a)

+

Z
b

a

f

00 (x) (b� x) dx

Consider

Z
b

0
x sin (b� x) dx

=

Z
b

0
(b� x) sinxdx =

Z
b

0
(sinx) (b� x) dx

Now, consider
f (x) = x� sinx ) f

0 (x) = 1� cosx

and f

00 (x) = sinx.
Therefore, using
f (b) = f (a) + f

0 (a) (b� a)

+

Z
b

a

f

00 (x) (b� x) dx,

we get
b� sin b = 0� sin 0 + f

0 (0) (b� 0)

+

Z
b

0
(sinx) (b� x) dx

) |sin b� b| =

�����

Z
b

0
x sin (b� x) dx

�����.

Further,

|sin b� b| =

�����

Z
b

0
x sin (b� x) dx

����� 

�����

Z
b

0
xdx

�����,

as sin (b� x)  1.

Thus, |sin b� b|  b

2

2
.

Therefore the error in the approximation

sinx ⇡ x is at most
1

2
x

2.

6.3 Trigonometric

Techniques of

Integration

1. Let u = sinx, du = cosxdxZ
cosx sin4 xdx =

Z
u

4
du

=
1

5
u

5 + c =
1

5
sin5 x+ c

2. Let u = sinx, du = cosxdxZ
cos3 x sin4 xdx =

Z
(1� u

2)u4
du

=
u

5

5
� u

7

7
+ c

=
sin5 x

5
� sin7 x

7
+ c

3. Let u = sin 2x, du = 2 cos 2xdx.Z
⇡/4

0
cos 2xsin32xdx

=
1

2

Z 1

0
u

3
du =

1

2


u

4

4

�1

0

=
1

8

aliel
Highlight
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4. Let u = cos 3x, du = �3 sinxdx.Z
⇡/3

⇡/4

�
cos33x

� �
sin33x

�
dx

= �1

3

Z �1

�1/
p
2
u

3
�
1� u

2
�
du

= �1

3


u

4

4
� u

6

6

��1

�1p
2

= �1

3

✓
3

16
� 7

48

◆
= � 1

72

5. Let u = cosx, du = � sinxdxZ
⇡/2

0
cos2 x sinxdx =

Z 0

1
u

2(�du)

=

✓
�1

3
u

3

◆����
0

1

=
1

3

6. Let u = cosx, du = � sinxdxZ 0

�⇡/2
cos3 x sinxdx = �

Z 1

0
u

3
du = �1

7.

Z
cos2 (x+ 1) dx

=
1

2

Z
(1 + cos 2 (x+ 1))dx

=
1

2
x+

1

4
(sin 2 (x+ 1)) + c.

8. Let u = x� 3, du = dxZ
sin4(x� 3)dx =

Z
sin4udu

=

Z �
sin2u

�2
du

=

Z
(1� cos 2u)

2
⇥ (1� cos 2u)

2
du

=

Z
1

4

�
1� 2 cos 2u+ cos22u

�

=
1

4

Z 
1� 2 cos 2u+

1

2
(1 + cos 4u)

�
du

=
3

8
u� 1

4
sin 2u+

1

32
cos 4u+ c

=
3

8
(x� 3)� 1

4
sin 2 (x� 3)

+
1

32
cos 4 (x� 3) + c.

9. Let u = secx, du = secx tanxdxZ
tanx sec3 xdx

=

Z
tanx secx sec2 xdx

=

Z
u

2
du =

1

3
u

3 + c =
1

3
sec3 x+ c

10. Let u = cotx, du = � csc2 xdxZ
cotx csc4 xdx

= �
Z

cotx(1 + cot2 x) · csc2 xdx

= �
Z

(u+ u

3)du = �u

2

2
� u

4

4
+ C

= �cot2 x

2
� cot4

4
+ c

11. Let u = x

2 + 1, so that du = 2xdx.Z
xtan3

�
x

2 + 1
� �

sec
�
x

2 + 1
��

dx

=
1

2

Z
tan3u (secu) du

=
1

2

Z ⇥�
sec2u� 1

�
tanu (secu)

⇤
du

Let secu = t, dt = tanu secudu

=
1

2

Z �
t

2 � 1
�
dt =

1

2


t

3

3
� t

�
+ c

=
1

2


sec3u

3
� secu

�
+ c

=
1

6
sec3

�
x

2 + 1
�
� 1

2
sec
�
x

2 + 1
�
+ c.

12. Let u = 2x+ 1, so that du = 2dx.Z
tan (2x+ 1) .sec3 (2x+ 1) dx

=
1

2

Z
tanu. secu.sec2udu

=
1

2

Z
sec2utanu secudu

Let t = secu, so that dt = tanu secudu.

=
1

2

Z
t

2
dt =

1

2


t

3

3

�
+ c

=
1

2


sec3u

3

�
+ c =

1

6
sec3 (2x+ 1) + c.

13. Let u = cotx, du =
�
�csc2x

�
dxZ

cot2x csc4xdx =

Z
cot2x

�
1 + cot2x

�
csc2xdx

= �
Z

u

2
�
1 + u

2
�
du

= �u

3

3
� u

5

5
+ c

= � (cotx)3

3
� (cotx)5

5
+ c.

14. Let u = cotx, du =
�
�csc2x

�
dx.Z

cot2x csc2xdx = �
Z

u

2
du

= �u

3

3
+ c =

cot3x

3
+ c.

15. Let u = tanx, du = sec2 xdxZ
⇡/4

0
tan4 x sec4 xdx

=

Z
⇡/4

0
tan4 x sec2 x sec2 xdx
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=

Z
⇡/4

0
tan4 x(1 + tan2 x) sec2 xdx

=

Z 1

0
u

4(1 + u

2) du

=

Z 1

0
(u4 + u

6)du =
u

5

5
+

u

7

7

����
1

0

=
12

35

16. Let u = tanx, du = sec2 xdx.Z
⇡/4

⇡/4
tan4 x sec2 xdx

=

Z 1

�1
u

4
du =

u

5

5

����
1

�1

=
2

5

17.

Z
cos2 x sin2 xdx

=

Z
1

2
(1 + cos 2x) · 1

2
(1� cos 2x)dx

=
1

4

Z
(1� cos2 2x)dx

=
1

4

Z 
1� 1

2
(1 + cos 4x)

�
dx

=
1

4

✓
1

2
x� 1

8
sin 4x

◆
+ c

=
1

8
x� 1

32
sin 4x+ c

18.

Z
(cos2 x+ sin2 x)dx =

Z
1dx = x+ c

19. Let u = cosx, du = � sinxdxZ 0

�⇡/3

p
cosx sin3 xdx

=

Z 0

�⇡/3

p
cosx(1� cos2 x) sinxdx

=

Z 1

1/2

p
u(1� u

2)(�du)

=

Z 1

1/2
(u5/2 � u

1/2)du

=


2

7
u

7/2 � 2

3
u

3/2

�����
1

1/2

=
25

168

p
2� 8

21

20. Let u = cotx, du = � csc2 xdxZ
⇡/2

⇡/4
cot2 x csc4 xdx

=

Z
⇡/2

⇡/4
cot2 x csc2 x csc2 xdx

=

Z
⇡/2

⇡/4
cot2 x(1 + cot2 x) csc2 xdx

= �
Z 0

1
u

2(1 + u

2)du

= �

u

3

3
+

u

5

5

�����
0

1

=
1

3
+

1

5
=

8

15

21. Let x = 3 sin ✓,�⇡

2
< ✓ <

⇡

2
dx = 3 cos ✓ d✓Z

1

x

2
p
9� x

2
dx =

Z
3 cos ✓

9 sin2 ✓ · 3 cos ✓
d✓

=
1

9

Z
csc2 ✓d✓ = �1

9
cot ✓ + C

By drawing a diagram, we see that if

x = sin ✓, then cot ✓ =

p
9� x

2

x

.

Thus the integral = �
p
9� x

2

9x
+ c

22. Let x = 4 sin ✓,�⇡

2
< ✓ <

⇡

2
,

dx = 4 cos ✓d✓Z
1

x

2
p
16� x

2
dx =

Z
cos ✓

16 sin2 ✓ cos ✓
d✓

=
1

16

Z
csc2 ✓d✓ = � 1

16
cot ✓ + c

= �
p
16� x

2

16x
+ c

23. Let x = 4sin✓, so that dx = 4 cos ✓d✓.Z
x

2

p
16� x

2
dx =

Z �
16sin2✓

�
4 cos ✓

q
16� (4 sin ✓)2

d✓

= 64

Z �
sin2✓

�
cos ✓

p
16� 16sin2✓

d✓

= 64

Z �
sin2✓

�
cos ✓

4
q�

1� sin2✓
�d✓

= 16

Z
sin2✓ cos ✓

cos ✓
d✓ = 16

Z
sin2✓d✓

= 16

Z ✓
1� cos 2✓

2

◆
d✓

= 8

Z
d✓ �

Z
(cos 2✓) d✓

�

= 8


✓ � sin 2✓

2

�
+ c

= 8sin�1
⇣
x

4

⌘
� 4 sin

h
2sin�1

⇣
x

4

⌘i
+ c.

= 8sin�1
⇣
x

4

⌘
� x

p
16� x

2

2
+ c

24. Let x = 3 sin ✓, so that dx = 3 cos ✓d✓.Z
x

3

p
9� x

2
dx

=

Z
27
�
sin3✓

�
q

9� (3 sin ✓)2
(3 cos ✓) d✓

= 81

Z
sin3✓p

9� 9sin2✓
(cos ✓) d✓

= 81

Z ✓
sin3✓

3 cos ✓

◆
cos ✓d✓ = 27

Z
sin3✓d✓

= 27

Z ✓
3 sin ✓ � sin 3✓

4

◆
d✓
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=
27

4


3

Z
sin ✓d✓ �

Z
sin 3✓d✓

�

=
27

4


�3 cos ✓ +

cos 3✓

3

�
+ c

=
27

4

n
�3 cos

h
sin�1

⇣
x

3

⌘i

+
cos
⇥
sin�1

�
x

3

�⇤

3

)
+ c.

25. This is the area of a quarter of a circle of radius
2,Z 2

0

p
4� x

2
dx = ⇡

26. Let u = 4� x

2
, du = �2xdxZ 1

0

xp
4� x

2
dx = �

Z 3

4

du

2
p
u

= �u

1/2
���
3

4
= 2�

p
3

27. Let x = 3 sec ✓, dx = 3 sec ✓ tan ✓d✓.

I =

Z
x

2

p
x

2 � 9
dx

=

Z
27 sec2 ✓ sec ✓ tan ✓p

9 sec2 ✓ � 9
d✓

=

Z
9 sec3 ✓d✓

Use integration by parts.
Let u = sec ✓ and dv = sec2 ✓d✓. This givesZ

sec3 ✓d✓

= sec ✓ tan ✓ �
Z

sec ✓ tan2 ✓d✓

= sec ✓ tan ✓ �
Z

sec ✓(sec2 ✓ � 1)d✓

= sec ✓ tan ✓ +

Z
sec ✓d✓ �

Z
sec3 ✓d✓

2

Z
sec3 ✓d✓

= sec ✓ tan ✓ +

Z
sec ✓d✓

Z
sec3 ✓d✓

=
1

2
sec ✓ tan ✓ +

1

2

Z
sec ✓ d✓

This leaves us to compute

Z
sec ✓d✓.

For this notice if u = sec ✓ + tan ✓ then
du = sec ✓ tan ✓ + sec2 ✓.Z

sec ✓d✓

=

Z
sec ✓(sec ✓ + tan ✓)

sec ✓ + tan ✓
d✓

=

Z
1

u

du = ln |u|+ c

= ln | sec ✓ + tan ✓|+ c

Putting all these together and using

sec ✓ =
x

3
, tan ✓ =

p
x

2 � 9

3
:

Z
x

2

p
x

2 � 9
dx =

Z
9 sec3 ✓ d✓

=
9

2
sec ✓ tan ✓ +

9

2

Z
sec ✓ d✓

=
9

2
sec ✓ tan ✓ +

9

2
ln | sec ✓ + tan ✓|+ c

=
9

2

⇣
x

3

⌘ p
x

2 � 9

3

!

+
9

2
ln

�����
x

3
+

p
x

2 � 9

3

�����+ c

=
x

p
x

2 � 9

2
+

9

2
ln

�����
x+

p
x

2 � 9

3

�����+ c

28. Let u = x

2 � 1, du = 2xdxZ
x

3
p
x

2 � 1dx

=
1

2

Z
x

2
p

x

2 � 1(2x)dx

=
1

2

Z
(u+ 1)

p
udu

=
1

2

Z
u

3/2 + u

1/2
du

=
1

2

✓
2u5/2

5
+

2u3/2

3

◆
+ c

=
1

5
(x2 � 1)5/2 +

1

3
(x2 � 1)3/2 + c

29. Let x = 2 sec ✓, dx = 2 sec ✓ tan ✓d✓Z
2p

x

2 � 4
dx =

Z
4 sec ✓ tan ✓

2 tan ✓
d✓

= 2

Z
sec ✓d✓

= 2 ln |2 sec ✓ + 2 tan ✓|+ c

= 2 ln
���x+

p
x

2 � 4
���+ c

30. Let x = 2 sec ✓, dx = 2 sec ✓ tan ✓d✓Z
xp

x

2 � 4
dx =

Z
4 sec2 ✓ tan ✓

2 tan ✓
d✓

= 2

Z
sec2 ✓d✓ = 2 tan ✓ + C =

p
x

2 � 4 + c

31.

Z p
4x2 � 9

x

dx =

Z p
4x2 � 9

4x2
4xdx

Let u =
p
4x2 � 9,

du =
1

2
p
4x2 � 9

8xdx =
1

2u
8xdx

or udu = 4xdx.

Hence, we haveZ p
4x2 � 9

x

dx
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=

Z
u

u

2 + 9
udu =

Z
u

2

u

2 + 9
du

=

Z
u

2 + 9� 9

u

2 + 9
du =

Z
du�

Z
9

u

2 + 9
du

= u� 9tan�1
⇣
u

3

⌘
+ c

=
p
4x2 � 9� 9tan�1

 p
4x2 � 9

3

!
+ c.

32. Let x = 2 sec ✓, dx = 2 tan ✓ sec ✓d✓.Z p
x

2 � 4

x

2
dx

=

Z p
4sec2✓ � 4

4sec2✓
(2 tan ✓ sec ✓) d✓

=

Z
2 tan ✓

4sec2✓
(2 tan ✓ sec ✓) d✓

=

Z
tan2✓

sec ✓
d✓ =

Z
sec2✓ � 1

sec ✓
d✓

=

Z
sec ✓d✓ �

Z
1

sec ✓
d✓

=

Z
sec ✓d✓ �

Z
cos ✓d✓

= ln |sec ✓ + tan ✓|� sin ✓ + c

= ln
���sec

h
sec�1

⇣
x

2

⌘i
+ tan

h
sec�1

⇣
x

2

⌘i���

� sin
h
sec�1

⇣
x

2

⌘i
+ c

= ln
���
⇣
x

2

⌘
+ tan

h
sec�1

⇣
x

2

⌘i���

� sin
h
sec�1

⇣
x

2

⌘i
+ c.

33. Let x = 3 tan ✓, dx = 3 sec2 ✓d✓Z
x

2

p
9 + x

2
dx

=

Z
27 tan2 ✓ sec2 ✓p

9 + 9 tan2 ✓
d✓

=

Z
9 tan2 ✓ sec ✓d✓

= 9

Z
(sec2 ✓ � 1) sec ✓d✓

= 9

Z
sec3 ✓d✓ � 9

Z
sec ✓d✓

=
9

2
sec ✓ tan ✓ � 9

2
ln | sec ✓ + tan ✓|+ c

=
9

2

 p
9 + x

2

3

!⇣
x

3

⌘

� 9

2
ln

�����

p
9 + x

2

3
+

x

3

�����+ c

=
x

p
9 + x

2

2
� 9

2
ln

�����
x+

p
9 + x

2

3

�����+ c

34. Let x = 2
p
2 tan ✓, dx = 2

p
2 sec2 ✓d✓Z

x

3
p
8 + x

2
dx

=

Z
(16

p
2 tan3 ✓)(2

p
2 sec ✓)d✓

= 64

Z
tan3 ✓ sec ✓ d✓

= 64

Z
(sec2 ✓ � 1)(sec ✓ tan ✓ d✓)

= 64

Z
(u2 � 1)du =

64

3
u

3 � 64u+ c

=
64

3
sec3 ✓ � 64 sec ✓ + c

=
64

3

 p
8 + x

2

2
p
2

!3

� 64

 p
8 + x

2

2
p
2

!
+ c

=
2
p
2

3
(8 + x

2)3/2 � 16
p
2(8 + x

2)1/2 + c

35. Let x = 4 tan ✓, dx = 4 sec2 ✓d✓Z p
16 + x

2
dx

=

Z p
16 + 16 tan2 ✓ · 4 sec2 ✓d✓

= 16

Z
sec3 ✓d✓

= 16

✓
1

2
sec ✓ tan ✓ +

1

2

Z
sec ✓d✓

◆

= 8 sec ✓ tan ✓ + 8

Z
sec ✓d✓

= 8 sec ✓ tan ✓ + 8 ln |sec ✓ + tan ✓|+ c

=
1

2
x

p
16 + x

2

+ 8 ln

����
1

4

p
16 + x

2 +
x

4

����+ c

36. Let x = 2 tan ✓, dx = 2 sec2 ✓d✓Z
1p

4 + x

2
dx =

Z
2 sec2 ✓

2 sec ✓
d✓

=

Z
sec ✓d✓ = ln | sec ✓ + tan ✓|+ c

= ln

�����
x+

p
4 + x

2

2

�����+ c

37. Let u = x

2 + 8, du = 2xdxZ 1

0
x

p
x

2 + 8dx =
1

2

Z 9

8
u

1/2
du

=
1

3
u

3/2

����
9

8

=
27� 16

p
2

3

38. Let x = 3 tan ✓, dx = 3 sec2 ✓ d✓

I =

Z
x

2
p
x

2 + 9dx

=

Z
27 tan2 ✓ sec2 ✓

p
9 tan2 ✓ + 9dx

= 81

Z
tan2 ✓ sec3 ✓dx

= 81

Z
(sec2 ✓ � 1) sec3 ✓dx
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= 81

Z
(sec5 ✓ � sec3 ✓)dx

To compute
R
sec5 ✓ d✓, we use integration by

parts with u = sec3 ✓ and dv = sec2 ✓d✓.Z
sec5 ✓ d✓

= sec3 ✓ tan ✓ �
Z

3 sec3 ✓ tan2 ✓d✓

= sec3 ✓ tan ✓ � 3

Z
sec3 ✓(sec2 ✓ � 1)d✓

= sec3 ✓ tan ✓ � 3

Z
(sec5 ✓ � sec3 ✓)d✓

4

Z
sec5 ✓d✓

= sec3 ✓ tan ✓ + 3

Z
sec3 ✓d✓

Z
sec5 ✓d✓

=
1

4
sec3 ✓ tan ✓ +

3

4

Z
sec3 ✓d✓

To compute
R
sec3 ✓d✓ and

R
sec ✓ d✓, see Ex-

ercise 27.
Putting all this together gives:

I = 81

Z
(sec5 ✓ � sec3 ✓)dx

=
81

4
sec3 ✓ tan ✓ +

243

4

Z
sec3 ✓d✓

� 81

Z
sec3 ✓d✓

=
81

4
sec3 ✓ tan ✓ � 81

4

Z
sec3 ✓d✓

=
81

4
sec3 ✓ tan ✓ � 81

8
sec ✓ tan ✓

� 81

8
ln | sec ✓ + tan ✓|+ c

We don’t worry about the result being in terms
of x since this is a definite integral. Our lim-
its of integration are x = 0 and x = 2. In
terms of ✓ this means the limits of integration

correspond to ✓ = 0 and tan ✓ =
2

3
.

Z 2

0
x

2
p
x

2 + 9dx

=

✓
81

4
sec3 ✓ tan ✓ � 81

8
sec ✓ tan ✓

�81

8
ln | sec ✓ + tan ✓|

◆����
x=2

x=0

=

0

@81

4

 p
13

3

!3✓
2

3

◆
� 81

8

 p
13

3

!✓
2

3

◆

�81

8
ln

�����

p
13

3
+

2

3

�����

!

�
✓
81

4
(1)(0)� 81

8
(1)(0)� 81

8
ln |1 + 0|

◆

=
17

p
13

4
� 81

8
ln

�����
2 +

p
13

3

�����

39. Let x = tan ✓, dx = sec2✓d✓.Z
x

3

p
1 + x

2
dx =

Z ✓
tan3✓

sec ✓

◆
sec2✓d✓

=

Z �
tan2✓

�
(tan ✓ sec ✓) d✓

Let t = sec ✓, dt = tan ✓ sec ✓d✓.

=

Z �
sec2✓ � 1

�
tan ✓ sec ✓d✓

=

Z �
t

2 � 1
�
dt =


t

3

3
� t

�
+ c

=


sec3✓

3
� sec ✓

�
+ c

=

"
sec3

�
tan�1

x

�

3
� sec

�
tan�1

x

�
#
+ c.

40. Let x = 2 tan ✓, d✓ =
�
2sec2✓

�
d✓.Z

x+ 1p
4 + x

2
dx

=

Z ✓
2 tan ✓ + 1p
4 + 4tan2✓

◆
2sec2✓d✓

=

Z ✓
2 tan ✓ + 1

2 sec ✓

◆�
2sec2✓

�
d✓

=

Z
(2 tan ✓ + 1) (sec ✓) d✓

= 2

Z
sec ✓ tan ✓d✓ +

Z
sec ✓d✓

= 2 sec ✓ + ln |sec ✓ + tan ✓|+ c

= 2 sec
h
tan�1

⇣
x

2

⌘i
+ ln

���sec
h
tan�1

⇣
x

2

⌘i

+ tan
h
tan�1

⇣
x

2

⌘i���+ c

= 2 sec
h
tan�1

⇣
x

2

⌘i

+ ln
���sec

h
tan�1

⇣
x

2

⌘i
+
⇣
x

2

⌘���+ c.

41.

Z
xp

x

2 + 4x
dx

=
1

2

Z
2x+ 4� 4p

x

2 + 4x
dx

=
1

2

Z
2x+ 4p
x

2 + 4x
dx� 1

2

Z
4p

x

2 + 4x
dx

Let u = x

2 + 4x, du = (2x+ 4) dx.

=
1

2

Z
dup
u

� 1

2

Z
4p

x

2 + 4x� 4 + 4
dx

= u

1/2 � 1

2

Z
4q

(x+ 2)2 � 4
dx

=
p
(x2 + 4x)

� 2 log

�
x

2 + 4x
�
+
q
(x+ 2)2 � 4

�
+ c.

42.

Z
2p

x

2 � 6x
dx =

Z
2p

x

2 � 6x+ 9� 9
dx
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=

Z
2q

(x� 3)2 � 9
dx

Let u = x� 3, du = dx.

=

Z
2p

u

2 � 9
du

Let u = 3 sec ✓, du = 3 sec ✓ tan ✓d✓.

=

Z
2q

(3 sec ✓)2 � 9
3 sec ✓ tan ✓d✓

= 2

Z
1p

sec2✓ � 1
sec ✓ tan ✓d✓

= 2

Z
1

tan ✓
sec ✓ tan ✓d✓

= 2

Z
sec ✓d✓ = 2 ln |sec ✓ + tan ✓|+ c

= 2 ln
���sec

⇣
sec�1

⇣
u

3

⌘⌘

+ tan
⇣
sec�1

⇣
u

3

⌘⌘���+ c

= 2 ln
���
⇣
u

3

⌘
+ tan

⇣
sec�1

⇣
u

3

⌘⌘���+ c

= 2 ln

����

✓
x� 3

3

◆

+tan

✓
sec�1

✓
x� 3

3

◆◆����+ c.

43.

Z
xp

10 + 2x+ x

2
dx

=

Z
xp

9 + 1 + 2x+ x

2
dx

=

Z
xq

(x+ 1)2 + 9
dx

=

Z
x+ 1� 1q
(x+ 1)2 + 9

dx

=

Z
x+ 1q

(x+ 1)2 + 9
dx�

Z
1q

(x+ 1)2 + 9
dx

Let u = x+ 1, du = dx.

=

Z
up

u

2 + 9
du�

Z
1p

u

2 + 9
du

=
1

2

Z
2up
u

2 + 9
du�

Z
1p

u

2 + 32
du

Let t = u

2 + 9, dt = 2udu.

=
1

2

Z
dtp
t

dt� log
h
u+

p
u

2 + 32
i
+ c

=
p
t� log

h
u+

p
u

2 + 32
i
+ c

=
p
u

2 + 9� log
h
u+

p
u

2 + 9
i
+ c

=
q
(x+ 1)2 + 9

� log


(x+ 1) +

q
(x+ 1)2 + 9

�
+ c.

44.

Z
2p

4x� x

2
dx =

Z
2p

4� 4 + 4x� x

2
dx

=

Z
2q

4� (x� 2)2
dx

Let u = x� 2, du = dx.

=

Z
2p

4� u

2
du

Let u = 2 sin ✓, du = 2 cos d✓.

=

Z
2q

4� (2 sin ✓)2
2 cos ✓d✓

= 2

Z
1p

1� sin2✓
cos ✓d✓

= 2

Z
1

cos ✓
cos ✓d✓ = 2

Z
d✓ = 2✓ + c

= 2sin�1
⇣
u

2

⌘
+ c = 2sin�1

✓
x� 2

2

◆
+ c.

45. Using u = tanx, givesZ
tanx sec4 xdx

=

Z
tanx(1 + tan2 x) sec2 xdx

=

Z
u(1 + u

2)du =

Z
(u+ u

3)du

=
1

2
u

2 +
1

4
u

4 + c

=
1

2
tan2 x+

1

4
tan4 x+ c

Using u = secx, givesZ
tanx sec4 xdx

=

Z
tanx secx sec3 xdx

=

Z
u

3
du =

1

4
u

4 + c =
1

4
sec4 x+ c

46. Using u = tanx givesZ
tan3 x sec4 xdx =

Z
u

3(u2 + 1)du

=
u

6

6
+

u

4

4
+ c1

=
tan6 x

6
+

tan4 x

4
+ c2

Using u = secx givesZ
tan3 x sec4 xdx =

Z
(u2 � 1)u3

du

=
u

6

6
� u

4

4
=

sec6 x

6
� sec4 x

4

=
(tan2 x+ 1)3

6
� (tan2 x+ 1)2

4

=
tan6 x

6
+

tan4 x

4
� 1

12
+ c1

=
tan6 x

6
+

tan4 x

4
+ c2

47. (a) This is using integration by parts followed
by substitution



6.3. TRIGONOMETRIC TECHNIQUES OF INTEGRATION 379

u = secn�2
x, dv = sec2 xdx

du = (n � 2) secn�2
x tanxdx, v = tanx

I =

Z
secn xdx = secn�2

x tanx

� (n� 2)

Z
secn�2(sec2 x� 1)dx

= secn�2
x tanx

� (n� 2)

Z
(secn x� secn�2

x)dx

= secn�2
x tanx� (n� 2)I

+ (n� 2)

Z
secn�2

xdx (n� 1)I

= secn�2
x tanx + (n � 2)

Z
secn�2

xdx

I =
secn�2

x tanx

n� 1
+

n� 2

n� 1

Z
secn�2

xdx

(b)

Z
sec3 xdx

=
1

2
secx tanx+

1

2

Z
secxdx

=
1

2
secx tanx+

1

2
ln | secx+ tanx|+ c

(c)

Z
sec4 xdx

=
1

3
sec3 x tanx+

2

3

Z
sec2 xdx

=
1

3
sec3 x tanx+

2

3
tanx+ c

(d)

Z
sec5 xdx

=
1

4
sec3 x tanx+

3

4

Z
sec3 xdx

=
1

4
sec3 x tanx+

3

8
secx tanx

+
3

8
ln | secx+ tanx|+ c

48. Make the substitution x = a sin ✓.

4b

a

Z
a

0

p
a

2 � x

2
dx =

4b

a

Z
a

0

p
a

2 � x

2
dx

=
4b

a

Z
⇡/2

0
a cos ✓

p
a

2 � a

2 sin2 ✓d✓

= 4b

Z
⇡/2

0
a cos2 ✓d✓

= 4ab

✓
1

2
x+

1

4
sin 2x

◆����
⇡/2

0

= ab⇡

49.

Z
cscxdx =

Z
cscx

cscx+ cotx

cscx+ cotx
dx

=

Z
(cscx) cotx+ csc2x

cscx+ cotx
dx

Letu = cscx+ cotx,
du = � (cscx) cotx� csc2x.

= �
Z

1

u

du = � ln |u|+ c

= � ln |cscx+ cotx|+ c.

= ln |cscx� cotx|+ c.

Z
csc3xdx =

Z
cscx.csc2xdx

u = cscx, dv = csc2xdx
du = � cscx. cotx, v = � cotxZ

csc3xdx

= � cscx. cotx

�
Z

(� cotx) (� cscx. cotx)dx

= � cscx cotx�
Z �

cscx.cot2x
�
dx

= � cscx cotx�
Z

cscx.
�
csc2x� 1

�
dx

= � cscx cotx�
Z �

csc3x
�
dx+

Z
cscxdx

2

Z
csc3xdx = � cscx cotx+

Z
cscxdx

= � cscx cotx+ ln |cscx� cotx|+ cZ
csc3xdx

=
1

2
(� cscx cotx+ ln |cscx� cotx|) + c

50.

Z
1

cosx� 1
dx

=

Z
cosx+ 1

(cosx� 1) (cosx+ 1)
dx

= �
Z

cosx+ 1

sin2x
dx

= �
Z ✓

1

sinx

◆✓
cosx

sinx
+

1

sinx

◆
dx

= �
Z

cscx (cotx+ cscx) dx

=

Z
� cscx cotx� csc2xdx

=

Z
(� cscx cotx) dx+

Z �
�csc2x

�
dx

= cscx+ cotx+ c and,Z
1

cosx+ 1
dx

=

Z
cosx� 1

(cosx� 1) (cosx+ 1)
dx

= �
Z

cosx� 1

sin2x
dx

= �
Z ✓

1

sinx

◆✓
cosx

sinx
� 1

sinx

◆
dx

= �
Z

cscx (cotx� cscx) dx

=

Z
� cscx cotx+ csc2xdx

=

Z
(� cscx cotx) dx�

Z �
�csc2x

�
dx

= cscx� cotx+ c

51. Using a CAS we get
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(Ex 3.2)

Z
cos4 x sin3 xdx

= �1

7
sinx2 cosx5 � 2

35
cosx5 + c

(Ex 3.3)

Z p
sinx cos5 xdx

=
2

11
sinx11/2 � 4

7
sinx7/2

+
2

3
sinx3/2 + c

(Ex 3.5)

Z
cos4 xdx

=
1

4
cosx3 sinx+

3

8
cosx sinx+

3

8
x+ c

(Ex 3.6)

Z
tan3 x sec3 xdx

= 1/5
sinx4

cosx5
+ 1/15

sinx4

cosx3

� 1/15
sinx4

cosx
� 1/15 sinx2 cosx

� 2/15 cosx+ c

Obviously my CAS used di↵erent tech-
niques. The answers given by the book
are simpler.

52. (a) �1

7
sin2 x cos5 x� 2

35
cos5 x

= �1

7
(1� cos2 x) cos5 x� 2

35
cos5 x

=
1

7
cos7 x� 1

5
cos5 x

The conclusion is c = 0

(b) � 2

15
tanx� 1

15
sec2 x tanx

+
1

5
sec4 x tanx

= � 2

15
tanx� 1

15
(1 + tan2 x) tanx

+
1

5
(1 + tan2 x)2 tanx

=
1

3
tan3 x+

1

5
tan5 x

The conclusion is c = 0

53. The average power

=
1
2⇡
!

Z 2⇡/!

0
RI

2 cos2(!t) dt

=
!RI

2

2⇡

Z 2⇡/!

0

1

2
[1 + cos(2!t)] dt

=
!RI

2

4⇡


t+

1

2!
sin(2!t)

�����
2⇡/!

0

=
!RI

2

4⇡


2⇡

!

+
1

2!
sin

✓
4!⇡

!

◆
� 0

�
=

1

2
RI

2

6.4 Integration of

Rational Functions

Using Partial

Fractions

1.
x� 5

x

2 � 1
=

x� 5

(x+ 1)(x� 1)

=
A

x+ 1
+

B

x� 1

x� 5 = A(x� 1) +B(x+ 1)
x = �1 : �6 = �2A;A = 3
x = 1 : �4 = 2B;B = �2

x� 5

x

2 � 1
=

3

x+ 1
� 2

x� 1
Z

x� 5

x

2 � 1
dx =

Z ✓
3

x+ 1
� 2

x� 1

◆
dx

= 3 ln |x+ 1|� 2 ln |x� 1|+ c

2.
5x� 2

x

2 � 4
=

5x� 2

(x+ 2)(x� 2)

=
A

x+ 2
+

B

x� 2

5x� 2 = A(x� 2) +B(x+ 2)
x = �2 : �12 = �4A;A = 3
x = 2 : 8 = 4B;B = 2

5x� 2

x

2 � 4
=

3

x+ 2
+

2

x� 2
Z

5x� 2

x

2 � 4
dx =

Z ✓
3

x+ 2
+

2

x� 2

◆
dx

= 3 ln |x+ 2|+ 2 ln |x� 2|+ c

3.
6x

x

2 � x� 2
=

6x

(x� 2)(x+ 1)

=
A

x� 2
+

B

x+ 1

6x = A(x+ 1) +B(x� 2)
x = 2 : 12 = 3A;A = 4
x = �1 : �6 = �3B;B = 2

6x

x

2 � x� 2
=

4

x� 2
+

2

x+ 1Z
6x

x

2 � x� 2
dx

=

Z ✓
4

x� 2
+

2

x+ 1

◆
dx

= 4 ln |x� 2|+ 2 ln |x+ 1|+ c

4.
3x

x

2 � 3x� 4
=

3x

(x+ 1)(x� 4)

=
A

x+ 1
+

B

x� 4

aliel
Highlight
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3x = A(x� 4) +B(x+ 1)

x = �1 : �3 = �5A;A =
3

5

x = 3 : 12 = 5B;B =
12

5

3x

x

2 � 3x� 4
=

3/5

x+ 1
+

12/5

x� 4Z
3x

x

2 � 3x� 4
dx

=

Z ✓
3/5

x+ 1
+

12/5

x� 4

◆
dx

=
3

5
ln |x+ 1|+ 12

5
ln |x� 4|+ c

5.
�x+ 5

x

3 � x

2 � 2x
=

�x+ 5

x(x� 2)(x+ 1)

=
A

x

+
B

x� 2
+

C

x+ 1

� x+ 5 = A(x� 2)(x+ 1) +Bx(x+ 1)
+ cx(x� 2)

x = 0 : 5 = �2A : A = �5

2

x = 2 : 3 = 6B : B =
1

2
x = �1 : 6 = 3C : C = 2

�x+ 5

x

3 � x

2 � 2x
= �5/2

x

+
1/2

x� 2
+

2

x+ 1Z �x+ 5

x

3 � x

2 � 2x
dx

=

Z ✓
�5/2

x

+
1/2

x� 2
+

2

x+ 1

◆
dx

= �5

2
ln |x|+ 1

2
ln |x� 2|

+ 2 ln |x+ 1|+ c

6.
3x+ 8

x

3 + 5x2 + 6x
=

3x+ 8

x(x+ 2)(x+ 3))

=
A

x

+
B

x+ 2
+

C

x+ 3

3x+ 8 = A(x+ 2)(x+ 3) +Bx(x+ 3)
+ cx(x+ 2)

x = 0 : 8 = 6A;A =
4

3
x = �2 : 2 = �2B;B = �1

x = �3 : �1 = 3C;C = �1

3

3x+ 8

x

3 + 5x2 + 6x
=

4/3

x

� 1

x+ 2
� 1/3

x+ 3Z
3x+ 8

x

3 + 5x2 + 6x
dx

=

Z ✓
4/3

x

� 1

x+ 2
� 1/3

x+ 3

◆
dx

=
4

3
ln |x|� ln |x+ 2|� 1

3
ln |x+ 3|+ c

7.
5x� 23

6x2 � 11x� 7
=

5x� 23

(2x+ 1)(3x� 7)

=
A

2x+ 1
+

B

3x� 7

5x� 23 = A(3x� 7) +B(2x+ 1)

x = �1

2
: �51

2
= �17

2
A;A = 3

x =
7

3
: �34

3
=

17

3
B;B = �2

5x� 23

6x2 � 11x� 7
=

3

2x+ 1
� 2

3x� 7Z
5x� 23

6x2 � 11x� 7
dx

=

Z ✓
3

2x+ 1
� 2

3x� 7

◆
dx

=
3

2
ln | 2x+ 1|� 2

3
ln | 3x� 7|+ c

8.
3x+ 5

5x2 � 4x� 1
=

3x+ 5

(5x+ 1)(x� 1)

=
A

5x+ 1
+

B

x� 1

3x+ 5 = A(x� 1) +B(5x+ 1)

x = �1

5
:
22

5
= �6

5
A;A = �11

3

x = 1 : 8 = 6B;B =
4

3

3x+ 5

5x2 � 4x� 1
= � 11/3

5x+ 1
+

4/3

x� 1Z
3x+ 5

5x2 � 4x� 1
dx

=

Z ✓
� 11/3

5x+ 1
+

4/3

x� 1

◆
dx

= �11

15
ln |5x+ 1|+ 4

3
ln |x� 1|+ c

9.
x� 1

x

3 + 4x2 + 4x
=

x� 1

x(x+ 2)2

=
A

x

+
B

x+ 2
+

C

(x+ 2)2

x� 1 = A(x+ 2)2 +Bx(x+ 2) + Cx

x = 0 : �1 = 4A;A = �1

4

x = �2 : �3 = �2C;C =
3

2

x = 1 : 0 = 9A+ 3B + C;B =
1

4
x� 1

x

3 + 4x2 + 4x

= �1/4

x

+
1/4

x+ 2
+

3/2

(x+ 2)2
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Z
x� 1

x

3 + 4x2 + 4x
dx

=

Z ✓
�1/4

x

+
1/4

x+ 2
+

3/2

(x+ 2)2

◆
dx

= �1

4
ln |x|+ 1

4
ln |x+ 2|� 3

2(x+ 2)
+ c

10.
4x� 5

x

3 � 3x2
=

4x� 5

x

2(x� 3)

=
A

x

+
B

x

2
+

C

x� 3

4x� 5 = Ax(x� 3) +B(x� 3) + Cx

2

= (A+ C)x2 + (�3A+B)x+ (�3B)

B =
5

3
;A = �7

9
;C =

7

9

4x� 5

x

3 � 3x2
= �7/9

x

+
5/3

x

2
+

7/9

x� 3Z
4x� 5

x

3 � 3x2
dx

=

Z ✓
�7/9

x

+
5/3

x

2
+

7/9

x� 3

◆
dx

= �7/9

ln
|x|� 5

3

1

x

+
7

9
ln |x� 3|+ c

11.
x+ 2

x

3 + x

=
x+ 2

x(x2 + 1)

=
A

x

+
Bx+ C

x

2 + 1

x+ 2 = A(x2 + 1) + (Bx+ C)x

= Ax

2 +A+Bx

2 + Cx

= (A+B)x2 + Cx+A

A = 2;C = 1;B = �2

x+ 2

x

3 + x

=
2

x

+
�2x+ 1

x

2 + 1
Z

x+ 2

x

3 + x

dx =

Z ✓
2

x

+
�2x+ 1

x

2 + 1

◆
dx

=

Z ✓
2

x

� 2x

x

2 + 1
+

1

x

2 + 1

◆
dx

= 2 ln |x|� ln(x2 + 1) + tan�1
x+ c

12.
1

x

3 + 4x
=

1

x(x2 + 4)

=
A

x

+
Bx+ C

x

2 + 4

1 = A(x2 + 1) + (Bx+ C)x
1 = (A+B)x2 + Cx+A

A = 1;B = �1;C = 0

1

x

3 + 4x
=

1

x

+
�x

x

2 + 4

Z
1

x

3 + 4x
dx

=

Z ✓
1

x

+
�x

x

2 + 4

◆
dx

= ln |x|� 1

2
ln(x2 + 4) + c

13.
4x2 � 7x� 17

6x2 � 11x� 10

=
2

3
+

1

3

x� 31

(2x� 5)(3x+ 2)

=
2

3
+

1

3


A

2x� 5
+

B

3x+ 2

�

x� 31 = A(3x+ 2) +B(2x� 5)

x =
5

2
: �57

2
=

19

2
A,A = �3;

x = �2

3
: �95

3
= �19

3
B,B = 5;

4x2 � 7x� 17

6x2 � 11x� 10

=
2

3
+

1

3


�3

2x� 5
+

5

3x+ 2

�

Z
4x2 � 7x� 17

6x2 � 11x� 10
dx

=

Z ✓
2

3
� 1

2x� 5
+

5/3

3x+ 2

◆
dx

=
2

3
x� 1

2
ln | 2x� 5|+ 5

9
ln | 3x+ 2|+ c

14.
x

3 + x

x

2 � 1
= x+

2x

(x+ 1)(x� 1)

= x+
A

x+ 1
+

B

x� 1

2x = A(x� 1) +B(x+ 1)
A = B = 1

x

3 + x

x

2 � 1
= x+

1

x+ 1
+

1

x� 1
Z

x

3 + x

x

2 � 1
dx

=

Z ✓
x+

1

x+ 1
+

1

x� 1

◆
dx

=
x

2

2
+ ln |x+ 1|+ ln |x� 1|+ c

15.
2x+ 3

x

2 + 2x+ 1
=

2x+ 3

(x+ 1)2

=
A

x+ 1
+

B

(x+ 1)2

2x+ 3 = A(x+ 1) +B

x = �1 : B = 1;A = 2
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2x+ 3

x

2 + 2x+ 1
=

2

x+ 1
+

1

(x+ 1)2Z
2x+ 3

x

2 + 2x+ 1
dx

=

Z ✓
2

x+ 1
+

1

(x+ 1)2

◆
dx

= 2 ln |x+ 1|� 1

x+ 1
+ c

16.
2x

x

2 � 6x+ 9
=

2x

(x� 3)2

=
A

x� 3
+

B

(x� 3)2

2x = A(x� 3) +B

A = 2;B = 6

2x

x

2 � 6x+ 9
=

2

x� 3
+

6

(x� 3)2Z
2x

x

2 � 6x+ 9
dx

=

Z ✓
2

x� 3
+

6

(x� 3)2

◆
dx

= 2 ln |x� 3|� 6

x� 3
+ c

17.
x

3 � 4

x

3 + 2x2 + 2x
= 1 +

�2x2 � 2x� 4

x(x2 + 2x+ 2)

= 1 +
A

x

+
Bx+ c

x

2 + 2x+ 2

� 2x2 � 2x� 4 = A(x2 + 2x+ 2) + (Bx+ c)x
= (A+B)x2 + (2A+ c)x+ 2A
A = �2;B = 0;C = 2

x

3 � 4

x

3 + 2x2 + 2x

= 1 +
�2

x

+
2

x

2 + 2x+ 2
Z

x

3 � 4

x

3 + 2x2 + 2x
dx

=

Z ✓
1 +

�2

x

+
2

(x+ 1)2 + 1

◆
dx

= x� 2 ln |x|+ 2 tan�1(x+ 1) + c

18.
4

x

3 � 2x2 + 4x
=

4

x(x2 � 2x+ 4)

=
A

x

+
Bx+ C

x

2 � 2x+ 4

4 = A(x2 � 2x+ 4) + (Bx+ C)x
= (A+B)x2 + (�2A+ C)x+ 4A
A = 1;B = �1;C = 2

4

x

3 � 2x2 + 4x
=

1

x

+
�x+ 2

x

2 � 2x+ 4Z
4

x

3 � 2x2 + 4x
dx

=

Z ✓
1

x

+
�x+ 2

x

2 � 2x+ 4

◆
dx

=

Z ✓
1

x

� 1

2

2x� 2

x

2 � 2x+ 4
+

1

(x� 1)2 + 3

◆
dx

= ln |x|� 1

2
ln(x2 � 2x+ 4)

+
1p
3
tan�1

✓
x� 1p

3

◆
+ c

19.
3x3 + 1

x

3 � x

2 + x� 1

= 3 +
3x2 � 3x+ 4

x

3 � x

2 + x� 1

= 3 +
3x2 � 3x+ 4

(x2 + 1)(x� 1)

= 3 +
Ax+B

x

2 + 1
+

C

x� 1

3x2 � 3x+ 4 = (Ax+B)(x� 1) + C(x2 + 1)
= Ax

2 �Ax+Bx�B + Cx

2 + C

x = 1 : 4 = 2C;C = 2
A+ c = 3 : A = 1
�A+B = �3 : B = �2

3x3 + 1

x

3 � x

2 + x� 1
= 3 +

x� 2

x

2 + 1
+

2

x� 1
Z

3x3 + 1

x

3 � x

2 + x� 1
dx

=

Z ✓
3 +

x� 2

x

2 + 1
+

2

x� 1

◆
dx

=

Z ✓
3 +

x

x

2 + 1
� 2

x

2 + 1
+

2

x� 1

◆
dx

= 3x+
1

2
ln(x2 + 1)� 2 tan�1

x

+ 2 ln |x� 1|+ c

20.
2x4 + 9x2 + x� 4

x

3 + 4x
= 2x+

x

2 + x� 4

x(x2 + 4)

= 2x+
A

x

+
Bx+ C

x

2 + 4

x

2 + x� 4 = A(x2 + 4) + (Bx+ C)x
= (A+B)x2 + Cx+ 4A
A = �1;B = 2;C = 1

2x4 + 9x2 + x� 4

x

3 + 4x
= 2x� 1

x

+
2x+ 1

x

2 + 4

= 2x� 1

x

+
2x

x

2 + 4
+

1

x

2 + 4
Z

2x4 + 9x2 + x� 4

x

3 + 4x
dx

=

Z ✓
2x� 1

x

+
2x

x

2 + 4
+

1

x

2 + 4

◆
dx

= x

2 � ln |x|+ ln(x2 + 4) +
1

2
tan�1 x

2
+ c



384 CHAPTER 6. INTEGRATION TECHNIQUES

21.
x

3 + x+ 2

x

2 + 2x� 8
= x� 2 +

11

x+ 4
+

2

x� 2
Z

x

3 + x+ 2

x

2 + 2x� 8
dx

=

Z ✓
x� 2 +

11

x+ 4
+

2

x� 2

◆
dx

=
x

2

2
� 2x+ 11 ln |x+ 4|

+ 2 ln |x� 2|+ c

22.
x

2 + 1

x

2 � 5x� 6
= � 2/7

x+ 1
+

37/7

x� 6
Z

x

2 + 1

x

2 � 5x� 6
dx

=

Z ✓
� 2/7

x+ 1
+

37/7

x� 6

◆
dx

= �2

7
ln |x+ 1|+ 37

7
ln |x� 6|+ c

23.
x+ 4

x

3 + 3x2 + 2x
=

2

x

+
1

x+ 2
� 3

x+ 1Z
x+ 4

x

3 + 3x2 + 2x
dx

=

Z ✓
2

x

+
1

x+ 2
� 3

x+ 1

◆
dx

= 2 ln |x|+ ln |x+ 2|� 3 ln |x+ 1|+ c

24.
1

x

3 � 1
=

1/3

(x� 1)
� (x+ 2)/3

(x2 + x+ 1)Z
1

x

3 � 1
dx

=
1

3

Z
1

(x� 1)
� x+ 2

(x2 + x+ 1)
dx

=
1

3

Z
1

(x� 1)
� 1

2

2x+ 4

(x2 + x+ 1)
dx

=
1

3

Z
1

(x� 1)
� 1

2

2x+ 1

(x2 + x+ 1)

� 1

2

3

(x2 + x+ 1)
dx

=
1

3

Z
1

(x� 1)
� 1

2

2x+ 1

(x2 + x+ 1)

� 1

2

3

(x+ 1/2)2 + 3/4
dx

=
1

3


ln |x� 1|� 1

2
ln
��
x

2 + x+ 1
��

�
p
3tan�1

✓
2x+ 1p

3

◆�
+ c

25. Let u = x

4 � x, du =
�
4x3 � 1

�
dx.Z �

4x3 � 1
�

x

4 � x

dx =

Z
du

u

= ln |u|+ c = ln
��
x

4 � x

��+ c.

26. Let u = x

2
, du = (2x) dx.Z

x

x

4 + 1
dx =

1

2

Z
2x

x

4 + 1
dx

=
1

2

Z
du

u

2 + 1
=

1

2
tan (u) + c

=
1

2
tan

�
x

2
�
+ c.

27.
4x� 2

16x4 � 1
=

�4x+ 1

4x2 + 1
+

1

2x+ 1Z
4x� 2

16x4 � 1
dx

=

Z ✓�4x+ 1

4x2 + 1
+

1

2x+ 1

◆
dx

=

Z ✓
�1

2

8x

4x2 + 1
+

1

4x2 + 1
+

1

2x+ 1

◆
dx

= �1

2
ln |4x2 + 1|+ 1

2
tan�1(2x)

+
1

2
ln |2x+ 1|+ c

28.
3x+ 7

x

4 � 16
=

13/32

x� 2
� 1/32

x+ 2
� 3x/8 + 7/8

x

2 + 4Z
3x+ 7

x

4 � 16
dx

=

Z ✓
13/32

x� 2
� 1/32

x+ 2
� 3x/8 + 7/8

x

2 + 4

◆
dx

=

Z ✓
13/32

x� 2
� 1/32

x+ 2
� 3

16

2x

x

2 + 4

�7

8

1

x

2 + 4

◆
dx

=
13

32
ln |x� 2|� 1

32
ln |x+ 2|

� 3

16
ln(x2 + 4)� 7

16
tan�1 x

2
+ c

29.
x

3 + x

3x2 + 2x+ 1

=
x

3
� 2

9
+

1

9

10x+ 2

3x2 + 2x+ 1
Z

x

3 + x

3x2 + 2x+ 1
dx

=

Z ✓
x

3
� 2

9
+

1

9

10x+ 2

3x2 + 2x+ 1

◆
dx

=

Z ✓
x

3
� 2

9
+

1

9

5

3

6x+ 2

3x2 + 2x+ 1

�1

9

4

3

1

3(x+ 1/3)2 + 2/3

◆
dx

=
x

2

6
� 2

9
x+

5

27
ln(3x2 + 2x+ 1)

� 2
p
2

27
tan�1

✓
3x+ 1p

2

◆
+ c
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30.
x

3 � 2x

2x2 � 3x+ 2

=
x

2
+

4

3
+

1

4

21x� 6

2x2 � 3x+ 2
Z

x

3 � 2x

2x2 � 3x+ 2
dx

=

Z ✓
x

2
+

4

3
+

1

4

21x� 6

2x2 � 3x+ 2

◆
dx

=

Z ✓
x

2
+

4

3
+

21

16

4x� 3

2x2 � 3x+ 2

+
39

32

1

(x� 3/4)2 + 7/16

◆
dx

=
x

2

4
+

4

3
x+

21

16
ln(2x2 � 3x+ 2)

� 39
p
7

56
tan�1

✓
4x� 3p

7

◆
+ c

31.
4x2 + 3

x

3 + x

2 + x

=
3

x

+
x� 3

x

2 + x+ 1
Z

4x2 + 3

x

3 + x

2 + x

dx

=

Z ✓
3

x

+
x� 3

x

2 + x+ 1

◆
dx

=

Z ✓
3

x

+
x+ 1/2

x

2 + x+ 1
� 7/2

x

2 + x+ 1

◆
dx

= 3 ln |x|+ 1

2
ln |x2 + x+ 1|

� 7p
3
tan�1

✓
2x+ 1p

3

◆
+ c

32.
4x+ 4

x

4 + x

3 + 2x2
=

1

x

+
2

x

2
+

�x� 3

x

2 + x+ 2Z
4x+ 4

x

4 + x

3 + 2x2
dx

=

Z ✓
1

x

+
2

x

2
+

�x� 3

x

2 + x+ 2

◆
dx

= ln |x|� 2

x

� 1

2
ln(x2 + x+ 2)

� 5p
7
tan�1

✓
2x+ 1p

7

◆
+ c

33. Let u = x

2
, dv = (sinx) dx

So that du = (2x) dx and v = � cosx.Z
x

2 sinxdx

= x

2 (� cosx)�
Z

(� cosx) (2x) dx

= �x

2 cosx+ 2

Z
x (cosx) dx

Let u = x, dv = cosxdx,
so that du = dx and v = sinx.Z

x

2 sinxdx

= �x

2 cosx+ 2

Z
x cosxdx

= �x

2 cosx+ 2 {x sinx+ cosx}+ c.

34. Let u = x, dv = e

2x
dx .

so that du = dx and v =
e

2x

2
.

Z
xe

2x
dx = x

e

2x

2
�
Z

e

2x

2
dx

= x

e

2x

2
� e

2x

4
+ c

35. Let u =
�
sin2x� 4

�
,

so that du = 2 sinx cosx dx.Z
sinx cosx

sin2x� 4
dx =

1

2

Z
du

u

=
1

2
ln |u|+ c =

1

2
ln
��sin2x� 4

��+ c

36. Let t = e

x

, dt = e

x

dx and e

3x = t

3Z
2ex

e

3x + e

x

dx =

Z
2

t

3 + t

dt.

=

Z
2

t

� 2t

t

2 + 1
dt = 2 ln |t|� ln

��
t

2 + 1
��+ c

= 2 ln |ex|� ln
��
e

2x + 1
��+ c

37.
4x2 + 2

(x2 + 1)2
=

Ax+B

x

2 + 1
+

Cx+D

(x2 + 1)2

4x2 + 2 = (Ax+B)(x2 + 1) + (Cx+D)
= Ax

3 +Bx

2 + (A+ C)x+ (B +D)
A = 0;B = 4;C = 0;D = �2

4x2 + 2

(x2 + 1)2
=

4

x

2 + 1
+

�2

(x2 + 1)2

38.
x

3 + 2

(x2 + 1)2
=

Ax+B

x

2 + 1
+

Cx+D

(x2 + 1)2

x

3 + 2 = (Ax+B)(x2 + 1) + cx+D

= Ax

3 +Bx

2 + (A+ c)x+ (B +D)
A = 1;B = 0;C = �1;D = 2

x

3 + 2

(x2 + 1)2
=

x

x

2 + 1
+

�x+ 2

(x2 + 1)2

39.
4x2 + 3

(x2 + x+ 1)2

=
Ax+B

x

2 + x+ 1
+

Cx+D

(x2 + x+ 1)2

4x2 + 3 = (Ax+B)(x2 + x+ 1) + cx+D

= Ax

3 +Ax

2 +Ax+Bx

2 +Bx+B + cx+D

A = 0
A+B = 4 : B = 4
A+B + c = 0 : C = �4
B +D = 3 : D = �1
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4x2 + 3

(x2 + x+ 1)2

=
4

x

2 + x+ 1
� 4x+ 1

(x2 + x+ 1)2

40.
x

4 + x

3

(x2 + 4)2
= 1 +

x

3 � 8x2 � 8

(x2 + 4)2

= 1 +
Ax+B

x

2 + 4
+

Cx+D

(x2 + 4)2

x

3 � 8x2 � 8 = (Ax+B)(x2 + 4) + cx+D

= Ax

3 +Bx

2 + (4A+ c)x+ (4B +D)
A = 1;B = �8;C = �4;D = 24

x

4 + x

3

(x2 + 4)2
= 1 +

x� 8

x

2 + 4
+

�4x+ 24

(x2 + 4)2

41. Let u = x

3 + 1, du = 3x2
dxZ

3

x

4 + x

dx =

Z
3x2

x

3(x3 + 1)
dx

=

Z
1

(u� 1)u
du

=

Z ✓
1

u� 1
� 1

u

◆
du

= ln |u� 1|� ln |u|+ c

= ln

����
u� 1

u

����+ c

= ln

����
x

3

x

3 + 1

����+ c

On the other hand, we can let

u =
1

x

, du = � 1

x

2
dx

Z
3

x

4 + x

dx = �
Z

3u2

1 + u

3
du

= � ln |1 + u

3|+ c = � ln |1 + 1/x3|+ c

To see that the two answers are equivalent,
note that

ln

����
x

3

x

3 + 1

���� = � ln

����
x

3 + 1

x

3

���� = � ln |1 + 1/x3|

42. Let u = x

2 + 1, du = 2xdx
Z

2

x

3 + x

dx =

Z
2x

x

2(x2 + 1)
dx

=

Z
du

u(u� 1)
= ln

����
u� 1

u

����+ c

= ln

����
x

2

x

2 + 1

����+ c

Let u =
1

x

, du = � 1

x

2
dx

Z
2

x

3 + x

dx = �
Z

2u

1 + u

2
du

= � ln |1 + u

2|+ c = � ln

����1 +
1

x

2

����+ c

To see that the two answers are equivalent,
note that

ln

����
x

2

x

2 + 1

���� = � ln

����
x

2 + 1

x

2

���� = � ln

����1 +
1

x

2

����

43. (a) Partial fractions

(b) Substitution method

(c) Substitution and Partial fractions.

(d) Substitution

44. (a) Partial fractions

(b) Substitution and Partial fractions.

(c) Partial fractions

(d) Partial fractions

45.

Z
sec3xdx =

Z
cosx

�
1� sin2x

�2 dx

Letu = sinx, so that du = cosxdx.Z
cosx dx

�
1� sin2x

�2 =

Z
du

(1� u

2)2

=

Z
1

(1� u)2(1 + u)2
du

By partial fractions,

1

(1� u)2(1 + u)2
=

1

4

 
1

(1� u)
+

1

(1� u)2

+
1

(1 + u)
+

1

(1 + u)2

!

Hence,

Z
sec3xdx

=
1

4


� ln |1� u|+ 1

(1� u)
+ ln |1 + u|

� 1

(1 + u)

�
+ c

=
1

4


� ln |1� sinx|+ 1

(1� sinx)

+ ln |1 + sinx|� 1

(1 + sinx)

�
+ c

6.5 Integration Table

and Computer

Algebra Systems

1.

Z
x

(2 + 4x)2
dx

=
2

16(2 + 4x)
+

1

16
ln | 2 + 4x|+ c

=
1

8(2 + 4x)
+

1

16
ln | 2 + 4x|+ c
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2.

Z
x

2

(2 + 4x)2
dx

=
1

64

✓
2 + 4x� 4

2 + 4x
� 4 ln |2 + 4x|

◆
+ c

3. Substitute u = 1 + e

xZ
e

2x
p
1 + e

x

dx =

Z
(u� 1)

p
u du

=

Z
(u3/2 � u

1/2) du

=
2

5
u

5/2 � 2

3
u

3/2 + c

=
2

5
(1 + e

x)5/2 � 2

3
(1 + e

x)3/2 + c

4. Substitute u = e

xZ
e

3x
p

1 + e

2x
dx =

Z
u

2
p
1 + u

2
du

=
1

8
u(1 + 2u2)

p
1 + u

2

� 1

8
ln |u+

p
1 + u

2|+ c

=
1

8
e

x(1 + 2e2x)
p
1 + e

2x

� 1

8
ln |ex +

p
1 + e

2x|+ c

5. Substitute u = 2x

Z
x

2

p
1 + 4x2

dx

=
1

8

Z
u

2

p
1 + u

2
du

=
1

8

h
u

2
�
p

1 + u

2

�1

2
ln(u+

p
1 + u

2)

�
+ c

=
1

8
x

p
1 + 4x2

� 1

16
ln(2x+

p
1 + 4x2) + c

6. Substitute u = sinxZ
cosx

sin2 x(3 + 2 sinx)
dx

=

Z
1

u

2(3 + 2u)
du

=
2

9
ln

����
3 + 2u

u

�����
1

2u
+ c

=
2

9

����
3 + 2 sinx

sinx

�����
1

3 sinx
+ c

7. Substitute u = t

3Z
t

8
p

4� t

6
dt

=
1

3

Z
u

2
⇣p

4� u

2
⌘
du

=
1

3


u

8

�
2u2 � 4

�p
4� u

2 +
16

8
sin�1u

2

�
+ c

=
1

24
t

3
�
2t6 � 4

�p
4� t

6 +
2

3
sin�1 t

3

2
+ c

Z 1

0
t

8
p

4� t

6
dt =

⇡

9
�

p
3

12

8. Substitute u = e

t

Z p
16� e

2t
dt =

Z p
16� u

2

u

du

=
p
16� u

2 � 4 ln

�����
4 +

p
16� u

2

u

�����+ c

=
p
16� e

2t � 4 ln

�����
4 +

p
16� e

2t

e

t

�����+ c

Z ln 4

0

p
16� e

2t
dt = �

p
15 + 4 ln

⇣p
15 + 4

⌘

9. Substitute u = e

xZ
e

x

p
e

2x + 4
dx =

Z
1p

u

2 + 4
du

= ln(u+
p

4 + u

2) + c

= ln(ex +
p
4 + e

2x) + c

Z ln 2

0

e

x

p
e

2x + 4
dx = ln

 
2
p
2 + 2

1 +
p
5

!

10. Substitute u = x

2
Z 2

p
3

x

p
x

4 � 9

x

2
dx =

1

2

Z 4

3

p
u

2 � 9

u

du

=
1

2

✓p
u

2 � 9� 3 sec�1 |u|
3

◆����
4

3

=

p
7

2
� 3

2
sec�1

✓
4

3

◆

11. Substitute u = x� 3Z p
6x� x

2

(x� 3)2
dx

=

Z p
(u+ 3)(6� (u+ 3))

u

2
du

=

Z p
9� u

2

u

2
du

= � 1

u

p
9� u

2 � sin�1 u

3
+ c

= � 1

x� 3

p
9� (x� 3)2

� sin�1

✓
x� 3

3

◆
+ c

12. Substitute u = tanxZ
sec2 x

tanx
p
8 tanx� tan2 x

dx

=

Z
1

u

p
8u� u

2
du

= �
p
8u� u

2

4u
+ c
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= �
p
8 tanx� tan2 x

4 tanx
+ c

13.

Z
tan6udu

=
1

5
tan5u�

Z
tan4udu

=
1

5
tan5u�


1

3
tan3u�

Z
tan2udu

�

=
1

5
tan5u� 1

3
tan3u+ tanu� u+ c.

14.

Z
csc4udu

= �1

3
csc2u cotu+

2

3

Z
csc2udu

= �1

3
csc2u cotu� 2

3
cotu+ c.

15. Substitute u = sinxZ
cosx

sinx
p
4 + sinx

dx =

Z
1

u

p
4 + u

du

=
1p
4
ln

����

p
4 + u� 2p
4 + u+ 2

����+ c

=
1

2
ln

����

p
4 + sinx� 2p
4 + sinx+ 2

����+ c

16. Substitute u = x

2Z
x

5

p
4 + x

2
dx =

1

2

Z
u

2

p
4 + u

2
du

=

✓
1

2

◆
2

15
(3u2 � 16u+ 128)

p
4 + u+ c

=
1

15
(3x4 � 16x2 + 128)

p
4 + x

2 + c

17. Substitute u = x

2Z
x

3 cosx2
dx =

1

2

Z
u cosu du

=
1

2
(cosu+ u sinu) + c

=
1

2
cosx2 +

1

2
x

2 sinx2 + c

18. Substitute u = x

2Z
x sin(3x2) cos(4x2) dx

=
1

2

Z
sin(3u) cos(4u) du

=
1

2

✓
cosu

2
� cos 7u

14

◆
+ c

=
cosx2

4
� cos 7x2

28
+ c

19. Substitute u = cosxZ
sin 2xp
1 + cosx

dx =

Z
2 sinx cosxp
1 + cosx

dx

= �2

Z
up
1 + u

du

= �2


2

3
(u� 2)

p
1 + u

�
+ c

= �4

3
(cosx� 2)

p
1 + cosx+ c

20. Substitute u = x

2
Z

x

p
1 + 4x2

x

4
dx =

1

2

Z p
1 + 4u

u

2
du

= �
p
1 + 4u

2u
+ ln

p
1 + 4u� 1p
1 + 4u+ 1

�
+ c

= �
p
1 + 4x2

2x2 + ln

"p
1 + 4x2 � 1p
1 + 4x2 + 1

#
+ c

21. Substitute u = sin tZ
sin2 t cos tp
sin2 t+ 4

dt

=

Z
u

2

p
u

2 + 4
du

=
u

2

p
4 + u

2 � 4

2
ln(u+

p
4 + u

2) + c

=
1

2
sin t

p
4 + sin2 t

� 2 ln
⇣
sin t+

p
4 + sin2 t

⌘
+ c

22. Substitute u =
p
tZ

ln
p
tp
t

dt = 2

Z
lnu du

= 2u lnu� 2u+ c = 2
p
t ln

p
t� 2

p
t+ c

23. Substitute u = � 2

x

2
Z

e

�2/x2

x

3
dx =

1

4

Z
e

u

du

=
1

4
e

u + c =
1

4
e

�2/x2

+ c

24. Substitute u = 2x2Z
x

3
e

2x2

dx =
1

8

Z
ue

u

du

=
1

8
(u� 1)eu + c =

1

8
(2x2 � 1)e2x

2

+ c

25.

Z
xp

4x� x

2
dx

= �
p
4x� x

2 + 2 cos�1

✓
2� x

2

◆
+ c

26.

Z
e

5x cos 3x dx

=
1

34
(5 cos 3x+ 3 sin 3x)e5x + c

27. Substitute u = e

xZ
e

x tan�1(ex)dx =

Z
tan�1

u du
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= u tan�1
u� 1

2
ln(1 + u

2) + c

= e

x tan�1
e

x � 1

2
ln(1 + e

2x) + c

28. Substitute u = 4xZ
(ln 4x)3 dx =

1

4

Z
(lnu)3 dx

=
1

4

✓
u(lnu)3 � 3

Z
(lnu)2 dx

◆

=
1

4
u(lnu)3

� 3

4

�
u(lnu)2 � 2u lnu+ 2u

�
+ c

= x(ln 4x)3 � 3x(lnu)2 + 6x ln 4x� 6x+ c

29. Answer depends on CAS used.

30. Answer depends on CAS used.

31. Any answer is wrong because the integrand is
undefined for all x 6= 1.

32. Answer depends on CAS used.

33. Answer depends on CAS used.

34. Answer depends on CAS used.

35. Answer depends on CAS used.

36. Maple gives the result:
b⇡r
1

a

2

37. If the CAS is unable to compute an antideriva-
tive,

R
f(x) dx is generally printed showing this

inability.

6.6 Improper Integrals

1. (a) improper, function not defined at x = 0

(b) not improper, function continuous on
entire interval

(c) not improper, function continuous on
on entire interval

2. (a) improper, interval is infinite

(b) improper, function not defined at x = 0

(c) improper, interval is infinite

3. (a)

Z 1

0
x

�1/3
dx = lim

R!0+

Z 1

R

x

�1/3
dx

= lim
R!0+

3

2
x

2/3

����
1

R

= lim
R!0+

3

2

⇣
1�R

2/3
⌘
=

3

2

(b)

Z 1

0
x

�4/3
dx = lim

R!0+

Z 1

R

x

�4/3
dx

= lim
R!0+

(�3x�1/3)
���
1

R

= lim
R!0+

(�3)(1�R

�1/3) = 1
So the original integral diverges.

4. (a)

Z 1

1
x

�4/5
dx = lim

R!1

Z
R

1
x

�4/5
dx

= lim
R!1

5x1/5
���
R

1

= lim
R!1

5R1/5 � 5 = 1
So the original integral diverges.

(b)

Z 1

1
x

�6/5
dx = lim

R!1

Z
R

1
dx

= lim
R!1

�5x�1/5
���
R

1

= lim
R!1

�5R�1/5 + 5 = 5

5. (a)

Z 1

0

1p
1� x

dx = lim
R!1�

Z
R

0

1p
1� x

dx

= lim
R!1�

� 2
p
1� x

��R
0

= lim
R!1�

�2(
p
1�R� 1) = 2

(b)

Z 5

1

2p
5� x

dx = lim
R!5�

Z
R

1

2p
5� x

dx

= lim
R!5�

� 4
p
5� x

��R
1

= lim
R!5�

�4(
p
5�R� 2) = �8

6. (a)

Z 1

0

2p
1� x

2
dx = lim

R!1�

Z
R

0

2p
1� x

2
dx

= lim
R!1�

2 sin�1
x

����
R

0

= lim
R!1�

2(sin�1
R� sin�1 0)

= 2
⇣
⇡

2
� 0
⌘
= ⇡

(b)

Z 1/2

0

2

x

p
1� x

2
dx

= lim
R!0+

Z 1/2

R

2

x

p
1� x

2
dx

= lim
R!0+

�2 ln

 
1 +

p
1� x

2

x

!�����

1/2

R

= 1

Therefore the original integral diverges.

7. (a)

Z 1

0
xe

x

dx = lim
R!1

Z
R

0
xe

x

dx

= lim
R!1

(xex � e

x)
���
R

0



Chapter 7

First-Order
Di↵erential
Equations

7.1 Modeling with
Di↵erential Equations

1. Exponential growth with k = 4 so we can use
Equation (1.4) to arrive at the general solution
of y = Ae

4t. The initial condition gives 2 = A

so the solution is y = 2e4t.

2. Exponential growth with k = 3 so we can use
Equation (1.4) to arrive at the general solu-
tion of y = Ae

3t. The initial condition gives
�2 = A so the solution is y = �2e3t.

3. Exponential growth with k = �3 so we can use
Equation (1.4) to arrive at the general solution
of y = Ae

�3t. The initial condition gives 5 = A

so the solution is y = 5e�3t.

4. Exponential growth with k = �2 so we can
use Equation (1.4) to arrive at the general so-
lution of y = Ae

�2t. The initial condition gives
�6 = A so the solution is y = �6e�2t.

5. Exponential growth with k = 2 so we can use
Equation (1.4) to arrive at the general solu-
tion of y = Ae

2t. The initial condition gives

2 = Ae

2
, A =

2

e

2
so the solution is y =

2

e

2
e

2t.

6. Exponential growth with k = �1 so we can
use Equation (1.4) to arrive at the general so-
lution of y = Ae

�t. The initial condition gives
2 = Ae

�1, or A = 2e and so the solution is
y = 2e�t+1.

7. Exponential growth with k = 1. We can use
equation 1.9, to arrive at the general solution
y(t) = Ae

t + 50. The initial condition gives
A = 20 so the solution is y(t) = 20et + 50.

8. Exponential growth with k = 0.1. We can use
equation 1.9, to arrive at the general solution
y(t) = Ae

0.1t+100. The initial condition gives
A = 20 so the solution is y(t) = 20e0.1t + 100.

9. (a) The doubling time of the bacterial culture
is 1hour. Hence, in 3 hours the population
of bacteria will be 3200.

(b) The equation for population must be
y(t) = 400ekt

We know that in 1 hour, the population
is 800, so
800 = y(1) = 400ek.
Solving for k gives k = ln 2.
y(t) = 400et ln 2

(c) After 3.5 hours, the population is
y(3.5) = 400e3.5 ln 2

= 400⇥ 23.5 ⇡ 4525cells.

10. (a) The bacterial culture is increased by 4
times in two hours. Hence in 6 hours the
population of bacteria will be 6400.

(b) The equation for population must be
y(t) = 100ekt

We know that in 2 hours, the population
is 400, so
400 = y(2) = 100e2k.
Solving for k gives k = ln 2.
y(t) = 100et ln 2

(c) After 7 hours, the population is
y(7) = 100e7 ln 2 = 100⇥ 128
= 12800 cells.

11. (a) The initial population of 100 bacteria will
increase to 200 in four hours. Hence the
population of bacteria will reach 400 in 8
hours.

(b) The equation for population must be
y(t) = 100ekt

We know that in 4 hours, the population
doubles, so
200 = y(4) = 100ek4

Solving for k give k = (ln 2)/4 and
y(t) = 100et(ln 2)/4

(c) To determine when the population
reaches 6, 000, we solve
y(t) = 6, 000 or 6000 = 100et(ln 2)/4

Solving gives

t =
4 ln 60

ln 2
⇡ 23.628 hours.
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12. (a) The initial population of 200 bacteria will
increase to 600 in five hours. Hence the
population of bacteria will reach 5400 in
15 hours.

(b) The equation for population must be
y(t) = 200ekt

We know that in 3 hours, the population
triples, so
600 = y(3) = 200e3k

Solving for k gives
k = (ln 3)/3 and y(t) = 200et(ln 3)/3

(c) To determine when the population
reaches 20, 000, we solve
y(t) = 20, 000 or 20000 = 200et(ln 3)/3

Solving gives

t =
3 ln 100

ln 3
⇡ 12.575 hours.

13. With t measured in minutes, and
y = Ae

(
kt) = 108ekt

on the time interval (0, T ) (during which no
treatment is given), the condition on T is that
10% of the population at time T (surviving af-
ter the treatment) will be the same as the ini-
tial population.

In other words, 108 = (.1)108ekT .
This gives
e

kT = 10 and T = ln(10)/k.

To get k we use the given doubling time

t

d

= 20. Since we always have t

d

= ln(2)/k,
this leads to k = ln(2)/20 and

T =
ln(10)

ln(2)/20
=

20 ln(10)

ln(2)
⇡ 66.44 minutes.

14. We will assume that the number of acres to
sustain the growing population grows at a con-
stant exponential rate. This means that the
number of acres requires is given by
N(t) = Ae

rt

where N(t) is given in billions of acres (this is
not necessary, but it simplifies the constants).
We will assume that t = 0 corresponds to the
year 1950.

In this case we know that N(0) = 1 and
N(30) = 2. This gives us A = 1 and we can
solve for r:
2 = e

30r

which gives us r =
ln 2

30
⇡ 0.0231.

We now want to find when N(t) = 3.2

so we solve the equation 3.2 = e

rt

Solving gives t =
ln 3.2

r

⇡ 50.34 which means

that this occurs in the year 2000.

15. Given y(t) = Ae

rt, the doubling time t

d

obeys

2A = Ae

rt

d

, 2 = e

rt

d

rt

d

= ln 2, t
d

=
ln 2

r

as desired.

16. The equation for amount of the substance is
y(t) = Ae

rt

To find the halving time, we solve
A

2
= Ae

rt for t.

Solving gives t =
ln(1/2)

r

= � ln 2

r

Notice that since r < 0, this value of t is pos-
itive. In fact, this formula is essentially the
same formula for doubling time (the di↵erence
being that the value for r is either positive or
negative depending on if we are in the growth
or decay situation).

17. Using the formula in exercise 16, we find the
decay constant is

r = � ln 2

28
Thus the formula for the amount of substance
is
y(t) = Ae

rt

(a) After 84 years,

y(84) = Ae

84r ⇡ 0.125A. Hence, this
is about 12.5% of original amount of
Strontium-90.

(b) After 100 years,
y(100) = Ae

100r ⇡ 0.084A.

Thus,this is about 8.4% of original
amount of Strontium-90.

18. Using the formula in Exercise 16, we find the
decay constant is

r = � ln 2

0.7⇥ 109

Thus the formula for the amount of substance
is
y(t) = 50ert

(a) After 100 years,
y(100) = 50e100r ⇡ 49.9999995 grams.
Hence, approximately 49.99995% of orig-
inal 235

U will remain after 100 years.

(b) After 1000 years,
y(1000) = 50e1000r ⇡ 49.9999995 grams.
Hence, approximately 49.99995% of orig-
inal 235

U will remain after 1000 years.
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19. Using the formula in Exercise 16, we have
3 = �(ln 2)/r and therefore r = �(ln 2)/3.
Thus the formula for amount of substance is
y(t) = Ae

�t(ln 2)/3

The initial condition gives A = 0.4 and so
y(t) = 0.4e�t(ln 2)/3

(a) For y(t) = 0.1,
We get, 0.1 = 0.4e�t(ln 2)/3.
Solving for t gives

t =
3 ln(4)

ln(2)
= 6 hours.

Thus the amount will drop below 0.1 mg
after 6 hours.

(b) For y(t) = 0.01,
We get, 0.01 = 0.4e�t(ln 2)/3.
Solve for t gives

t =
3 ln(40)

ln(2)
= 15.97 hours.

Thus the amount will drop below 0.01 mg
after 15.97 hours.

20. Using the formula in Exercise 16, we have
2.8 = �(ln 2)/r and therefore r = �(ln 2)/2.8.
Thus the formula for amount of substance is
y(t) = Ae

�t(ln 2)/2.8

The initial condition gives A = 0.4 and so
y(t) = 0.4e�t(ln 2)/2.8

(a) For y(t) = 0.1,
We get, 0.1 = 0.4e�t(ln 2)/2.8.
Solving for t gives

t =
2.8 ln(4)

ln(2)
= 5.6 hours.

Thus the amount will drop below 0.1 mg
after 5.6 hours.

(b) For y(t) = 0.01,
We get, 0.01 = 0.4e�t(ln 2)/2.8.
Solve for t gives

t =
2.8 ln(40)

ln(2)
= 14.9 hours.

Thus the amount will drop below 0.01 mg
after 14.9 hours.

21. The half-life is 5730 years, so r = � ln 2

5730
Solving for t in
y(t) = 0.20A = Ae

�rt gives

t =
5730 ln(5)

ln(2)
⇡ 13,305 years.

22. The half-life is 5730 years, so r = � ln 2

5730
The proportion of the carbon-14 left is there-
fore equal to e

r106 ⇡ 2.912⇥ 10�52.

23. Newton’s Law of Cooling gives
y(t) = Ae

kt + T

a

with T

a

= 70.
We have y(0) = 200 so
200 = A+ 70 and A = 130
We have y(1) = 180 so

180 = y(1) = 130ek + 70 and k = ln

✓
110

130

◆
.

The temperature will be 120 when
120 = y(t) = 130eln(110/130)t + 70 and

t =
ln (5/13)

ln (11/13)
⇡ 5.720 minutes.

24. Newton’s Law of Cooling gives
y(t) = Ae

kt + T

a

with T

a

= 70.
We have y(0) = 200 so
200 = y(0) = A+ 70 and A = 130.
After one minute we have y(1) = 160 and
160 = y(1) = 130ek + 70

Solving for k gives k = ln
9

13
.

The bowl in Exercise 23 reaches it temperature
in about 5.720 minutes. At this time, the tem-
perature of this bowl will be:
y(5.720) = 130ek(5.720) + 70 ⇡ 85.87 degrees.

25. (a) Using Newton’s Law of Cooling
y = Ae

kt + T

a

with T

a

= 70, y(0) = 50,
we get 50 = Ae

0 + 70, A = �20
so that y(t) = �20ekt + 70.
If, after two minutes, the temperature is
56 degrees, 56 = �20ek2 + 70

e

2k =
14

20
= 0.7

2k = ln 0.7, k =
1

2
ln 0.7

Therefore, y(t) = �20e(ln 0.7)t/2 + 70.

(b) From (a.), the equation for the tempera-
ture of the drink is
y(t) = �20e(ln 0.7)t/2 + 70
After 10 minutes, the temperature is
y(10) ⇡ 66.64 degrees
The drink warms to 66� when
66 = y(t) = �20e(ln 0.7)t/2 + 70
Solving for t gives t ⇡ 9.025 minutes

26. (a) The problem is that the rate of cooling is
not constant

(b) The co↵ee will cool quicker when it is hot-
ter. Therefore the serving temperature
was greater than 180 degrees.

(c) With t the time elapsed since serving,
with the ambient temperature 68 degrees
and if the temperature is 160 degrees
when t = 20, then
y(t) = Ae

kt + T

a

, 160 = Ae

k·20 + 68
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Ae

20k = 92 After 22 minutes the temper-
ature is 158 degrees,
158 = Ae

22k + 68, Ae

22k = 90

e

2k =
Ae

22k

Ae

20k
=

90

92
, k =

1

2
ln

90

92
Therefore, y(t) = Ae

1
2 (ln 90ff92)t + 68

Using the first set of numbers,
Ae

20· 12 ln 90
92 = 92

A =
92

e

10 ln 90
92

⇡ 114.615

y(t) = 114.615e
1
2 (ln 90

92 )t + 68

The serving temperature is
y(0) = 114.615e0+68 = 182.615 minutes.

27. Using Newton’s Law of Cooling with ambient
temperature 70 degrees, initial temperature 60
degrees, and with time t (in minutes) elapsed
since 10:07, we have
y(t) = Ae

kt + 70, 60 = Ae

0k + 70

= A+ 70, A = �10
and y(t) = �10ekt + 70 (for the martini).
Two minutes later, its temperature is 61 de-
grees. Hence,

61 = �10ek2 + 70, e2k =
9

10

2k = ln
9

10
, k =

1

2
ln

9

10
=

1

2
ln .9

Therefore, y(t) = �10e(
1
2 ln .9)t + 70

The temperature is 40 degrees at elapsed time
t only if

40 = �10e(
1
2 ln .9)t + 70

t =
2 ln 3

ln .9
⇡ �20.854 or about 21 minutes be-

fore 10:07 p.m. The time was 9:46p.m.

28. Here the unknown is the initial temperature,
T = y(0). The equation for temperature of the
co↵ee is y(t) = Ae

kt + 70
Using the initial temperature gives the equa-
tion T = A + 70, so A = T � 70 and the
equation for the temperature is now given by
y(t) = (T � 70)ekt + 70
The value for k will not change (k does not de-
pend on initial conditions) and therefore

k =
1

2
ln(95/110)

We want the temperature at 5 minutes to be
120, so this gives the equation
120 = y(5) = (T � 70)e5k + 70
Solving for T gives

T =
50

e

5k
+ 70 ⇡ 142.13 degrees.

29. Annual: A = 1000(1 + 0.08)1 ⇡ $1080.00

Monthly: A = 1000

✓
1 +

0.08

12

◆12

⇡ $1083.00

Daily: A = 1000

✓
1 +

0.08

365

◆365

⇡ $1083.28

Continuous: A = 1000e(0.8)1 ⇡ $1083.29

30. Annual:A = 1000(1 + 0.08)5 ⇡ $1469.33

Monthly:A = 1000

✓
1 +

0.08

12

◆60

⇡ $1489.85

Daily: A = 1000

✓
1 +

0.08

365

◆5·365
⇡ $1491.76

Continuous: A = 1000e(0.8)5 ⇡ $1491.83

31. (a) Person A:
A = 10,000e.12·20 = $110,231.76
Person B:
B = 20, 000e.12·10 = $66,402.34

(b) At 4% interest:
Person A:
A = 10, 000e(0.04)20 ⇡ $22, 255.41
Person B:
A = 20, 000e(0.04)10 ⇡ $29, 836.49

(c) To find the rate so that A and B are even,
we solve, 10, 000e10r = 20, 000
Solving gives r = ln 2/2 ⇡ 6.93%

32. (a) Let t be the number of years after 1985.
Then, assuming continuous compounding
at rate r,

9800 = 34er·10, e10r =
9800

34

r =
1

10
ln

✓
9800

34

◆
⇡ .566378

Therefore,

A = 34e
1
10 ln( 9800

34 )t = 34

✓
9800

34

◆
t/10

(b) In 2005, t = 20 and

A = 34

✓
9800

34

◆2

= $2,824,705.88

(c) The equation for the value of the cards is
y(t) = Pe

rt.
We take t = 0 to correspond to the year
1985 which means that P = 22.
To determine k we use
32 = y(10) = 22e10r

Solving for r gives , r =
1

10
ln(32/22)

The value in 2005 is then given by
y(20) = 22e20r ⇡ $46.55

33. With a constant depreciation rate of 10%, the
value of the $40, 000 item after ten years would
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be,
40,000(e�(0.1)10) = 40,000e�1 ⇡ $14,715.18
and after twenty years
40,000(e�(0.1)20) = 40,000e�2 ⇡ $5,413.41
By the straight line method, assuming a value
of zero after 20 years, the value would be
$20,000 after ten years.

34. The value of the asset is given by v(t) = Pe

rt

where P = 400, 00 and r = �0.4.
After 5 years, the value is v(5) ⇡ 54, 134.
After 10 years, the value is v(10) ⇡ 7326.
For the $ 40,000 asset with linear depreciation,
we have v(t) = 40000� 4000t
In this case, after 5 years, the value is
v(5) ⇡ $20, 000.
After 10 years, the value is v(10) = $0.

35. The problem with comparing tax rates for
the income bracket [16K, 20K] over a thirteen
year time interval, is that due to inflation, the
persons in this income bracket in 1988 have
less purchasing power than those in the same
bracket in 1975, and a lower tax rate may
or may not compensate. To quantify and il-
lustrate, assume a 5.5% annual inflation rate.
This would translate into a loss of purchasing
power amounting to
41/(1.055)13 = 1/(2.006) ⇡ 1/2,
which is essentially to say that in terms of com-
parable purchasing power, the income bracket
[16K, 20K] in 1988 corresponds to an income
bracket of [8K, 10K] in 1975. One should then
go back and look at the tax rate for the latter
bracket in 1975. Only if that tax rate exceeds
the 1988 rate (15%) for the bracket [16K, 20K]
should one consider that taxes have genuinely
gone down.

36. Adjusting for inflation, $16, 000 in 1975 was
worth 16, 000(1.055)13 ⇡ $32, 092
In 1975, the tax rate on $16, 000 was 28%. In
1988, the tax rate on $32, 092 was also 28%.
This means that the tax rates were roughly
equal.

37. T1 = 30, 000 · 0.15 + (40,000� 30,000) · 0.28
= $7300
T2 = 30,000 · 0.15 + (42,000� 30,000) · 0.28
= $7860
T1 + .05T1 = $7665

The tax T2 on the new salary is greater than
the adjusted tax (1.05T1) on the old salary.

38. What happened is that the amount taxed at
15% remains $30, 000. If this figure is also

adjusted for inflation then the amount of tax
owed remains the same. In other words, if the
first $30, 000(1.05) = $31500 is taxed at 15%
and the rest is taxed at 28%.

39. Fitting a line to the first two data points on the
plot of time vs. the natural log of the popula-
tion (y = ln(P (x))) produces the linear func-
tion y = 1.468x+ 0.182,
which is equivalent to fitting the original date
with the exponential function
P (x) = e

1.468x+0.182 or
P (x) = 1.200e1.468x

40. (a) As in Exercise 39, we let x denote time
and y = lnP . We pick the second and
fourth data point to fit a line to (any two
data points are fine to use and will give
slightly di↵erent answers). In this case,
the points are (1, ln 15) (3, ln 33)
The equation of the line connecting these
two points is
lnP = y = 0.394x+ 3.102
Exponentiating this equation gives
P = e

y = e

0.394x+3.102 = 22.242 e0.394x

(b) As in Exercise 39, we let x denote time
and y = lnP . We pick the second and
fourth data point to fit a line to (any two
data points are fine to use and will give
slightly di↵erent answers). In this case,
the points are (1, ln 16) (3, ln 11)
The equation of the line connecting these
two points is
lnP = y = �0.18735x+ 2.9599
Exponentiating this equation gives
P = e

y = e

�0.18735x+2.9599

= 19.297 e�0.18735x

41. As in Exercise 39, we let x denote time (with
x = 0 corresponding to the year 1960) and let
y = lnP . Looking at the graph of the modified
data, we decide to use the first and last data
points. In this case, the points are
(0, ln 7.5) (30, ln 1.6)
The equation of the line connecting these two
points is lnP = y = �0.0515x+ 2.0149
Exponentiating this equation gives
P = e

y = e

�0.0515x+2.0149 = 7.5 e�0.0515x

42. As in Exercise 39, we let x denote time (with
x = 0 corresponding to the year 1960) and
let y = lnP . Looking at the graph of the
modified data, we decide to use the first and
last data points. In this case, the points are
(0, ln 69.9) (30, ln 75.2)
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The equation of the line connecting these two
points is lnP = y = 0.013790x+ 4.2471
Exponentiating this equation gives
P = e

y = e

0.013790x+4.2471 = 69.9 e0.013790x

43. Consider the equation,

y = x� 1

2
+ ce

�2x

di↵erentiating both sides by x

y

0 = 1� 2ce�2x

substituting for ce�2x

= 1� 2


y � x+

1

2

�
= 2x� 2y

y

0 + 2y = 2x.

44. Consider the equation,
y =

p
(3x2 + c)

di↵erentiating both sides with respect to x

y

0 =
1

2
p
(3x2 + c)

⇥ 6x =
3xp

(3x2 + c)
=

3x

y

.

45. With known conclusion
y = Ae

�rt, A = 150, t = 24, and r = ln(2)/t
h

we find that with t

h

= 31 we get
y = 150(1/2)(24/31) = 87.7, and with t

h

= 46
we get y = 150(1/2)(24/46) = 104.5.
The di↵erence is about 17 days, at 19% not
a dramatically large percentage of the smaller
base of 88(105/88 = 1.19). If one had expected
the two numbers to be proportional to the half
lives, one would have expected the di↵erence
to come in at 48% (46/31 = 1.48) and would
definitely consider the 19% to be far less than
anticipated.

46. We use the formula of Exercise 16.

If the half-life is 2 days then r = � ln 2

2
and in two weeks the proportion remaining-
would be e

�14(ln 2)/2 ⇡ 0.007813 (so about
0.78%). If the half-life is 3 days then

r = � ln 2

3
and in two weeks the proportion re-

maining would be
e

�14(ln 2)/3 ⇡ 0.03917 = 3.9.%

47. In this case, with t

h

= 4, A = 1, y = Ae

�rt,
and r = ln(2)/4, one finds y = (1/2)(t/4).
The curve is a typical exponential, declining
from a value of 1 at t = 0 to
1/26 = 1/64 = .016 at t = 24.

1

0.5

x

24181260

48. If the half-life is 1 hour, the decay rate is

r = � ln 2

1
= � ln 2

We assume that the drug is taken every 6
hours. When the drug is initially taken, the
initial amount of 1 gm:
y1 = 1e�t ln 2 = 2�t

After 6 hours, the amount left is
y1(6) = 2�6 = 0.015625
When the 2nd dose is taken, the initial amount
will be 1 gm plus the amount left from the 1st
dose:
y2 = (1.015625)e�t ln 2 = (1.015625)2�t

After 6 hours, the amount left is
y2(6) = (1.015625)2�6 ⇡ 0.0158691
When the 3rd dose is taken, the initial amount
will be 1 gm plus the amount left from the 2nd
dose:
y3 = (1.0158691)e�t ln 2 = (1.0158691)2�t

After 6 hours, the amount left is
y3(6) = (1.0158691)2�6 ⇡ 0.015873
When the 4th dose is taken, the initial amount
will be 1 gm plus the amount left from the 3rd
dose:
y4 = (1.015873)e�t ln 2 = (1.015873)2�t

After 6 hours, the amount left is
y4(6) = (1.015873)2�6 ⇡ 0.015873

49. With r the rate of continuous compounding,
the value of an initial amount X after t years
is Xe

rt. If the goal is P , then the relation is
P = Xe

rt orX = Pe

�rt. With r = .08, t = 10,
P = 10,000, we find,
X = 10,000e�.8 = $4493.29.

50. The present value is

PV = $40, 000e2
p
t

e

�0.06t

= $40, 000e2
p
t�0.06t

The best time to sell is when this is at a
maximum (because this is when it is worth
the most). To maximize PV , we can maxi-
mize 2

p
t� 0.06t. This maximum occurs when

t ⇡ 278.
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51.

Z
T

0
e

�rt

dt =
1� e

�rT

rZ
T

0
te

�rt

dt =
�Te

�rT

r

+
1� e

�rT

r

2
,

With r = .05 and T = 3, we find
for (A): 60,000(20) (1� e

�.15) = $167,150

for (B): we get the above plus

(3000)�60e�.15 + 400(1� e

�.15)
= 12,223 for a total of $179,373

for (C), the exponentials cancel, and the an-
swer is simplyZ 3

0
60000dt = $180,000.

52. (a)

Z 3

0
60, 000e0.05(3�t)

dt ⇡ $194, 201.09

(b)

Z 3

0
(60, 000 + 3, 000t)e0.05(3�t)

dt

⇡ $208, 402.18

(c)

Z 3

0
60, 000e0.05te0.05(3�t)

dt

⇡ $209, 130.16

53. (a) The comparison is to be made be-
tween three years of accumulation of
$1,000,000 versus the accumulation of
four annual payments of $280,000 at
times 0, 1, 2, 3, then the respective figures
are 1,000,000(1.08)3 = 1,259,712 versus
280,000(1.083 + 1.082 + 1.08 + 1)
= 1,261,711.
One should take the annuity.

(b) If we got the $1 million lump sum,
then the amount received after 3 years
at the rate of interest of 6% is,
1000000⇥ (1.06)3 ⇡ 1000000⇥ 1.191016

= $1191016.
If the amount is received in install-
ments of $280000 at the starting of
every year, the amount received is,
280000(1 + 1.06 + 1.062 + 1.063)

= 280000⇥ 4.374616 ⇡ 1224892.
One should take the installments

(c) If we got the $1 million lump sum,
then the amount received after 3 years
at the rate of interest of 10% is,
1000000⇥ (1.1)3 ⇡ 1000000⇥ 1.331

= $1331000.
If the amount is received in install-
ments of $280000 at the starting of
every year, the amount received is,

280000(1 + 1.1 + 1.12 + 1.13)

= 280000⇥ 4.641 ⇡ $1299480.
One should take the annuity

54. The actual doubling time for money invested
at 8% is obtained by solving
2 = e

0.08t which gives 8.66 years.
In general, the doubling time is
ln 2

r

⇡ 0.69314

r

(hence the “Rule of 69”). 72 is used because
most interest is not compounded continuously.
For example, if 10% interest is compounded
once a year, it takes 7.27 years to double.

7.2 Separable Di↵erential
Equations

1. (a) Separable.
y

0

cos y
= 3x+ 1

(b) Not separable.

2. (a) Separable.
y

0

cos y � 1
= 2x

(b) Not separable.

3. (a) Separable.
y

0 = y(x2 + cosx)
y

0

y

= x

2 + cosx

(b) Not separable.

4. (a) Not separable.

(b) Separable.
y

0 � 1 = x

3 � 2x

5.

1

y

y

0 = x

2 + 1
Z

1

y

dy =

Z
(x2 + 1)dx

ln |y| = x

3

3
+ x+ c

y = e

x

3
/3+x+c = Ae

x

3
/3+x

6.

1

y � 1
y

0 = 2x
Z

1

y � 1
dy =

Z
2xdx

ln |y � 1| = x

2 + c

y � 1 = e

x

2+c

y = 1 +Ae

x

2

aliel
Highlight
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7.

1

y

2
y

0 = 2x2

Z
1

y

2
dy =

Z
2x2

dx

� 1

y

=
2x3

3
+ c

y = � 1

2x3
/3 + c

8.

1

y

2 + 1
y

0 = 2
Z

1

y

2 + 1
dy =

Z
2dx

arctan y = 2x+ c

y = tan(2x+ c)

9. yy

0 =
6x2

1 + x

3Z
ydy =

Z
6x2

1 + x

3
dx

1

2
y

2 = 2 ln |1 + x

3|+ c

y = ±
p

4 ln |1 + x

3|+ c

10. (y + 1)y0 = 3xZ
(y + 1)dy =

Z
3xdx

y

2

2
+ y =

3

2
x

2 + c

11. y

0 =
2x

y

e

y�x, y

0 =
2x

y

⇥ e

y

e

x

y

0
ye

�y = 2xe�x

Z
y

0
ye

�y

dx =

Z
2xe�x

dx

Z
ye

�y (y0dx) =

Z
2xe�x

dx

or

Z
ye

�y

dy =

Z
2xe�x

dx

Z
ye

�y

dy = �ye

�y � e

�y + c

and

Z
xe

�x

dx = �xe

�x � e

�x + c

� ye

�y � e

�y = 2(�xe

�x � e

�x) + c

� ye

�y � e

�y = �2xe�x � 2e�x + c.

12.

y

0
p
1� y

2
=

1

x lnxZ
1p

1� y

2
dy =

Z
1

x lnx
dx

arcsin y = ln(lnx) + c

y = sin[ln(lnx) + c]

13. y

0 =
cosx

sin y
(sin y) y0 = cosxZ

(sin y) y0(x)dx =

Z
(cosx)dx

or

Z
(sin y) dy =

Z
(cosx)dx

cos y = � sinx+ c.

14. sec2 yy0 = xZ
sec2 ydy =

Z
xdx

tan y =
x

2

2
+ c

y = tan�1

✓
x

2

2
+ c

◆

15.

1

y

y

0 =
x

1 + x

2Z
1

y

dy =

Z
x

1 + x

2
dx

ln |y| = 1

2
ln |1 + x

2|+ c

y = e

1
2 ln |1+x

2|+c = k

p
1 + x

2

16. yy

0 =
2

x+ 1Z
ydy =

Z
2

x+ 1
dx

y

2

2
= 2 ln |x+ 1|+ c

17. y

0 = �xy,
y

0

y

= �x

Z
y

0

y

dx =

Z
�xdx

Z
1

y

(y0dx) = �
Z

xdx

ln |y| = �x

2

2
+ c

y = e

⇣
� x

2

2 +c

⌘

= Ae

� x

2

2

A=3

A=2

A=11.0

3.0

0.0

x

0.5

0−4 −2

2.0

1.5

2.5

2 4
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18. y

0 = �x

y

, y0y = �x

Z
y

0
ydx =

Z
�xdx

Z
y (y0dx) = �

Z
xdx

y

2

2
= �x

2

2
+ c

y

2 = �x

2 + 2c

y =
p

�x

2 + 2c

c=3

c=2

c=1

2.4

y

42

0.8

0.0

−4.0

−3.2

x
0

4.0

−0.8

−2.4

1.6

−2

3.2

−4

−1.6

19. y

0 =
1

y

, y

0
y = 1

R
y

0
ydx =

R
dxR

y (y0dx) =
R
dx

y

2

2
= x+ c

y

2 = 2x+ 2c
y =

p
2x+ 2c

c=3

c=2

c=1

x

2.0

0 2

3.6

0.0
−4

0.4

4

1.6

0.8

−2

1.2

2.4

3.2

2.8

20. y

0 = 1 + y

2

y

0

1 + y

2
= 1

Z
y

0

1 + y

2
dx =

Z
dx

Z
1

1 + y

2
(y0dx) =

Z
dx

Z
1

1 + y

2
dy =

Z
dx

arctan y = x+ c

y = tan(x+ c).

c=2 c=1

4

−4

x
−1

−2
y

4

1

3

0

−3

5

1

−5

2 3

2

−1 0

21.

y

0

y

= 3(x+ 1)2

ln y = (x+ 1)3 + c

y = ke

(x+1)3

Using the initial condition,

1 = ke, k =
1

e

y =
1

e

e

(x+1)3

22. y

2
y

0 = x� 1Z
y

2
dy =

Z
(x� 1)dx

y

3

3
=

x

2

2
� x+ c

Using the initial condition,
23

3
=

02

2
� 0 + c, c =

8

3

y

3

3
=

x

2

2
� x+

8

3

23. yy

0 = 4x2

y

2

2
=

4x3

3
+ c

Using the initial condition,
22

2
= c = 2

y

2

2
=

4x3

3
+ 2

24. yy

0 = x� 1Z
ydy =

Z
x� 1dx

y

2

2
=

x

2

2
� x+ c

Using the initial condition,
(�2)2

2
=

02

2
� 0 + c, c =

8

3

y

2

2
=

x

2

2
� x+

8

3

25.

y

0

4y
=

1

x+ 3
ln |y|
4

= ln |x+ 3|+ c
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ln |y| = 4 ln |x+ 3|+ c

|y| = k(|x+ 3|)4
Using the initial condition,
|1| = k(1)4, k = 1
|y| = (|x+ 3|)4

26. (4y + 1)y0 = 3xZ
(4y + 1)dy =

Z
3xdx

2y2 + y =
3x2

2
+ c

Using the initial condition,

2(4)2 + 4 =
3(1)2

2
+ c, c =

69

2

2y2 + y =
3x2

2
+

69

2

27. cos y y0 = 4x
sin y = 2x2 + c.
Using the initial condition,
0 = sin(0) = sin y(0) = 0 + c = c

sin y = 2x2

y = arcsin(2x2)
(�1/

p
2 < x < 1/

p
2)

28. (cot y)y0 =
1

xZ
cot ydy =

Z
1

x

dx

ln | sin y| = ln |x|+ c

sin y = Ax

Using the initial condition,

sin
⇡

2
= A,A = 1

sin y = x

29. For this problem we have M = 2 and k = 3.
Using these and the initial condition, we solve
for A.

1 =
2Ae3(2)(0)

1 +Ae

3(2)(0)
=

2A

1 +A

,

A = 1

y =
2e6t

1 + e

6t

30. For this problem we have M = 3 and k = 1.
Using these and the initial condition, we solve
for A.

2 =
3Ae3(0)

1 +Ae

3(0)
=

3A

1 +A

,

A = 2

y =
6e3t

1 + 3e3t

31. For this problem we have M = 5 and k = 2.
Using these and the initial condition, we solve
for A.

4 =
5Ae10(0)

1 +Ae

10(0)
=

5A

1 +A

,

A = 4

y =
20e10t

1 + 4e10t

32. For this problem we have M = 2 and k = 1.
Using these and the initial condition, we solve
for A.

1 =
2Ae

2(0)

1 +Ae

2(0)
=

2A

1 +A

,

A = 1

y =
2e2t

1 + e

2t

33. For this problem we have M = 1 and k = 1.
Using these and the initial condition, we solve
for A.
3

4
=

Ae

(0)

1 +Ae

(0)
=

A

1 +A

,

A = 3

y =
3et

1 + 3et

34. For this problem we have M = 3 and k = 1.
Using these and the initial condition, we solve
for A.

0 =
3Ae

3(0)

1 +Ae

3(0)
=

3A

1 +A

,

A = 0

y = 0

35. (a) Substituting r = Mk in

y

0 = ry

⇣
1� y

M

⌘
we get

y

0 = Mk

⇣
1� y

M

⌘
= ky(M � y)

1

y(M � y)
y

0 = k

Adapting the solution

y =
MAe

Mkt

1 +Ae

Mkt

in (2.7) with r = Mk,

we find y =
MAe

rt

1 +Ae

rt

In this case with r = .71, M = 8 ⇥ 107

and y(0) = 2⇥ 107, we find

2⇥ 107 = y(0) =
8⇥ 107A

1 +A

.

Therefore
A

1 +A

=
2

8
=

1

4
, A = 1/3,

and after routine simplification we find

y(t) =
(8⇥ 107)e.71t

3 + e

.71t

(b)
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0-2

5E7

-4
x

y

42

1E8

(c) The biomass of halibut is given by

y =
(8⇥ 107)e0.71t

3 + e

0.71t

The carrying capacity is 8 ⇥ 107 so we

solve: 0.9
�
8⇥ 107

�
=

(8⇥ 107)e0.71t

3 + e

0.71t

Solving gives t ⇡ 4.642 years

36. (a)

����
y

M � y

���� = Ae

Mkt with A > 0. Under the

circumstances y > M , the ratio is nega-
tive, and the resolution is

y

M � y

= �Ae

Mkt

.

This further resolves as
y = �MAe

Mkt + yAe

Mkt

,

which eventually becomes

y =
MAe

Mkt

Ae

Mkt � 1
=

MAe

rt

Ae

rt � 1
.

(b) From Part (a), y =
MAe

rt

Ae

rt � 1
Our initial condition is y(0) = 3 ⇥ 108

which gives

3⇥ 108 = y(0) =
(8⇥ 107)A

A� 1
15

4
(A� 1) = A,A =

15

11
After routine simplification this gives the

equation y =
(12⇥ 108)e0.71t

15e0.71t � 11
We now want to solve
y = 1.1M = (1.1)(8⇥ 107) or

(1.1)(8⇥ 107) =
(12⇥ 108)e0.71t

15e0.71t � 11
Solving gives t ⇡ 2.94 years

37. (a) Let A be the accumulated value at time t

and d be the amount of the deposits made
yearly, then A satisfies
A

0 = 0.06A+ d

This di↵erential equation separates to
A

0

0.06A+ d

= 1 and integrates to

ln(0.06A+ d)

0.06
= t+ c or

0.06A+ d = ke

0.06t

At time t = 0, A is the unknown initial
investment P ,
hence k = .06P + 2000, and so
.06A+ 2000 = (.06P + 2000)e.06t.
If we want A = 1,000,000 at t = 20, we
must have
62000 = (.06P + 2000)e1.2

P =
62000e�1.2 � 2000

.06
⇡ $277,901

(b) As in Part (a), if A is the accumulated
value at time t and d is the amount of the
deposits made yearly, then A satisfies
A

0 = 0.06A+ d

This di↵erential equation separates to
A

0

0.06A+ d

= 1 and integrates to

ln(0.06A+ d)

0.06
= t+ c or

0.06A+ d = ke

0.06t

We know that A(0) = 10, 000 which gives
0.06(10, 000) + d = k

and therefore k = d+ 600 and
0.06A+ d = (d+ 600)e0.06t

We want to find d when t = 20 and
A = 1, 000, 000:
0.06(1, 000, 000) + d = (d+ 600)e0.06(20)

60, 000 + d = (d+ 600)e1.2

Solving for d gives

d =
60, 000� 600e1.2

e

1.2 � 1
⇡ $25, 002.16

38. We start with A

0(t) = 0.08, A(t)� 12P
A(0) = 150, 000
where P is the payment made each month.
Solving this di↵erential equation:

A

0

0.08A� 12P
= 1

ln(0.08A� 12P )

0.08
= t+ c

0.08A� 12P = ke

0.08t

Using the initial condition gives
k = 12000� 12P We set A(30) = 0

(a) Solve for P :
�12P = (12000� 12P )e2.4

P =
12000e2.4

12(e2.4 � 1)
⇡ $1099.77

Total amount paid:
(30)(12)(1099.77) = $395, 917
Total interest:
395, 917� 150, 000 = $245, 917

(b) Reworking Exercise 38.(a):
A

0(t) = 0.075A(t)� 12P
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A(0) = 150, 000
where P is the payment made each
month. Solving this di↵erential equation:

A

0

0.075A� 12P
= 1

ln(0.075A� 12P )

0.075
= t+ c

0.075A� 12P = ke

0.075t (k = e

0.075c)
Using the initial condition gives
k = 11250� 12P

We set A(30) = 0 and solve for P :
�12P = (11250� 12P )e2.25

P =
11250e2.25

12(e2.25 � 1)
P ⇡ $1047.95

Total amount paid:
(30)(12)(1047.95) = $377, 262

Total interest:
377, 262� 150, 000 = $227, 262

The half-percent decrease in interest de-
creases the total interest by $18655.

(c) Reworking Exercise 38.(a):
A

0(t) = 0.08A(t)� 12P
A(0) = 150, 000
where P is the payment made each
month. Solving this di↵erential equation:

A

0

0.08A� 12P
= 1

0.08A� 12P = ke

0.08t

k = 12000� 12P

We set A(15) = 0 and solve for P :
�12P = (12000� 12P )e1.2

P =
12000e1.2

12(e1.2 � 1)
⇡ $1430.01

The monthly payments are increased by
about $330.
Total amount paid:
(15)(12)(1430.01) = $257, 582

The total amount is decreased by about
$138, 335.

Total interest:
257, 582� 150, 000 = $107, 582

(d) Reworking Exercise 38.(a):
A

0(t) = 0.08A(t)� 12P
A(0) = 125, 000
where P is the payment made each
month. Solving this di↵erential equation:

A

0

0.08A� 12P
= 1

0.08A� 12P = ke

0.08t

k = 10000 � 12P We set A(30) = 0 and
solve for P :
�12P = (10000� 12P )e2.4

P =
10000e2.4

12(e2.4 � 1)
⇡ $916.47

Total amount paid:
(30)(12)(916.47) = $329, 930
Total interest:
329, 930� 125, 000 = $204, 930
By adding an additional down payment of
$25000, the total interest is decreased by
about $41000.

39. (a) Starting with A

0 = .08A+10,000 with the
initial condition A(0) = 0.

Solving gives .08A+10,000 = 10,000e.08t.

At time t = 10 we have

A =
10,000(e.8 � 1)

.08
= $153,193

This would be the amount in his fund at
age 40, and it would accumulate in the
next 25 years to
153,193e(.08)25 = $1,131,949.

(b) We set up and solve the initial value prob-
lem:
dA

dt

= 0.08A+ 20000, A(0) = 0

1

0.08
ln |0.08A+ 20000| = t+ c

12.5 ln |0.08(0) + 20000| = 0 + c

c = 12.5 ln 20000

At age 65, t = 25 and we have the equa-
tion
12.5 ln |0.08A+ 20000|
= 20 + 12.5 ln 20000

Solving for A gives

A =
20000(e1.6 � 1)

.08
⇡ $998, 258

(c) Following the conditions of Part (a), re-
placing however the 8% by an unknown
force r, we come after ten years of pay-
ment and twenty-five additional years of
accumulation to

10,000
(e10r � 1)

r

e

25r
.

For contrast, if the payment rate 10, 000 is
replaced by 20, 000, and the payment in-
terval of ten years is replaced by twenty-
five years, we come to an accumulation
after the twenty-five years of

20,000
(e25r � 1)

r

.

This number is to be compared to the pre-
vious. Equating the two expressions leads
to
2(e25r � 1) = e

35r � e

25r or
3e25r � 2 = e

35r
.
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The equation can only be solved with the
help of some form of technology, but the
answer of r about .105(10.5%) can at least
be checked.

40.

dA

dt

= 0.1A� d, A(0) = 1, 000, 000

10 ln |0.1A� d| = t+ c

A = e

t/10+c/10 + 10d
A = Be

t/10 + 10d
1, 000, 000 = B + 10d
B = 1, 000, 000� 10d
A = (1, 000, 000� 10d)et/10 + 10d
We now want to determine d so that A(30) = 0
0 = (1, 000, 000� 10d)e3 + 10d

d =
1, 000, 000e3

10(e3 � 1)
⇡ $105, 240

41. (a) Starting from

y = 3

r
x

3 +
21

2
x

2 + 9x+ 3c

with y(0) = 0, we have c = 0. Therefore,

y = 3

r
x

3 +
21

2
x

2 + 9x

y

5

10

x

-10 5 10-5 0

(b) The solution given in Part (a) is

y = 3

r
x

3 +
21

2
x

2 + 9x,

Notice that

y

0 =
3x2 + 21x+ 9

3

✓
x

3 +
21

2
x

2 + 9x

◆2/3

and this solution has a vertical tangent
line at x = 0.

(c) Given y

0 =
x

2 + 7x+ 3

y

2
, that y

0(x) does

not exist for a given x if y(x) = 0.
We see that y(x) = 0 if

�3c = x

3 +

✓
21

2

◆
x

2 + 9x

The cubic polynomial on the right, call it
h(x), has its derivative given by
h

0(x) = 3x2 + 21x+ 9 = 3(x2 + 7x+ 3),
and the roots of h0(x) are

x1 =
�7�

p
37

2
⇡ �6.5414

x2 =
�7 +

p
37

2
⇡ �.4586

The e↵ect is that h(x) has a relative max-
imum at x1 and a relative minimum at x2,
and so the equation �3c = h(x) has three
solutions when �3c lies between the rela-
tive minimum and the relative maximum,
i.e., if h(x2) < �3c < h(x1), or when
�h(x1)

3
< c <

�h(x2)

3
Therefore,

c1 = �
 
217 + 37

p
37

12

!
⇡ �36.84

c2 =
�217 + 37

p
37

12
⇡ .67185.

42. (a)

y

5

10

10
x

-5-10 50

(b) When c = c2, h(x) = �3c2
In e↵ect, h(x) + 3c2

= (x� x2)
2

✓
x+

3c2
(x2)2

◆
.

Now, in the solution y(x) to the di↵eren-
tial equation, we have

3y2(x)y0(x) =
d

dx

(y3) =
d

dx

(h(x) + 3c2)

= h

0(x) = (x� x1)(x� x2),

, whiley2(x) = [y3(x)]2/3 = [h(x)+3c2]
2/3

= (x� x2)
4/3(x� x3)

2/3
.

Now we can see that

y

0(x) =
h

0(x)

3y2(x)

=
(x� x1)

3(x� x2)1/3(x� x3)2/3

and this will become unbounded if x ap-
proaches either x2 or x3. These are the
two points of vertical tangency.

(c) Looking at Exercise s 41.(a) and 41.(b),
the denominator of y0 is

3

✓
x

3 +
21

2
x

2 + 9x

◆2/3
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Setting this to 0 gives the equation

x

3 +
21

2
x

2 + 9x = 0

Solving gives x = 0 and

x =
�21± 3

p
33

4
⇡ �9.5584,�0.94158

43. When the given numbers are substituted for
the given symbols, the di↵erential equation be-
comes
x

0 = (.4� x)(.6� x)� .625x2

=
3

8
x

2 � x +
6

25
=

3

8

✓
x� 12

5

◆✓
x� 4

15

◆
.

When separated it takes the form
x

0

(x� b)(x� a)
= r

in which b = 12/5, a = 4/15 < b, and
r = 3/8.
By partial fractions we find

1

(x� b)(x� a)
=

1

(b� a)

⇢
1

(x� b)

1

(x� a)

�

and after integration we find
1

(b� a)
ln

����
x� b

x� a

���� = rt+ c1

or in this case with
b� a = (36/15)� (4/15) = 32/15,

ln

����
x� 12/5

x� 4/15

���� =
32

15

✓
3

8
t+ c1

◆

=
4

5
t+ c2

✓
c2 =

32

15
c1

◆
.

Using the given initial condition
x = .2 = 1/5 when t = 0, we find
c2 = ln |(11/5)/(1/15)| = ln(33),

ln

����
x� 12/5

33 (x� 4/15)

���� =
4

5
t and

x� 12/5

33 (x� 4/15)
= ±e

4t/5 = e

4t/5

(the choice of sign is + since the left side is 1
when x = 1/5).

Concluding the algebra we find
5x� 12

11(15x� 4)
= e

4t/5
,

5x� 12 = 11(15x� 4)e4/5,

x =
12� 44e4t/5

5� 11(15)e4t/5
=

4

5

✓
3� 11e4t/5

1� 33e4t/5

◆
, and

it is apparent that x ! 4

15
as t ! 1.

y

0.2

x

1050

44. The text should read (b) x(0) = 0.6.

In both cases, the general solution to the dif-
ferential equation is as in Exercise 43:

x =
4
�
ke

4t/5 � 3
�

5
�
3ke4t/5 � 1

�

Notice that regardless of initial condition,

lim
t!1

x(t) =
4

15

(a) Using the initial condition x(0) = 0.3
gives k = �21 and the solution is

x =
4
�
�21e4t/5 � 3

�

5
�
�63e4t/5 � 1

�

(b) Using the initial condition x(0) = 0.6
gives k = �1.8 and the solution is

x =
4
�
�1.8e4t/5 � 3

�

5
�
�5.4e4t/5 � 1

�

This situation is impossible because the
initial x(0) = c = 0.6. We are given that
b + c = 0.6 and c = d which means that
c < 0.6, contradicting the initial condi-
tion.

45. After beginning,
x

0 = .6(.5� x)(.6� x)� .4x(0 + x)
= .6(.3� 1.1x+ x

2)� .4x2

= .2x2 � .66x+ .18

=
1

5

✓
x

2 � 33

10
x+

9

10

◆

=
1

5
(x� 3)

✓
x� 3

10

◆
.

The parameters b, a, r are respectively
3, 3/10, 1/5.
We jump ahead to

ln

����
x� 3

x� 3/10

���� =
27

10

✓
t

5
+ c1

◆
=

27

50
t+ c2.

In this case with x = .2 = 1/5 when t = 0, we
find

c2 = ln

����
(1/5)� 3

(1/5)� (3/10)

���� = ln 28,

x� 3

28 (x� 3/10)
= ±e

27/50 = e

27t/50
,
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and the conclusion is

5(x� 3) = 14(10x� 3)e27t/50,

x =
15� 42e27t/50

5� 140e27t/50
=

42� 15e�27t/50

140� 5e�27t/50

=
3

5

✓
14� 5e�27t/50

28� e

�27t/50

◆
.

y

0.2

x

1050

46. x

0(t) = (0.6� x)(0.4� x)� 0.4x(0.1 + x)
x(0) = 0.2

x

0(t)

x

2 � 1.4x+ 0.2
= 1

Z
25

15x2 � 26x+ 6
dx = t+ c

25
p
79

158
ln

�����
15x�

p
79� 13

15x+
p
79� 13

����� = t+ c

15x�
p
79� 13

15x+
p
79� 13

= ce

rt

where r =
158

25
p
79

.

With t = 0 and x = 0.2, you can solve to get
C ⇡ 17.

x =

p
79 + 13 + (

p
79� 13)Ce

rt

15(1� Ce

rt)

47. (a) We find
y

0 = .025y(8�y)� .2 = �.025(y2�8y+8)

= � 1

40
(y � b)(y � a), in which

b = 4 +
p
8, a = 4�

p
8.

This leads to ln

����
y � b

y � a

���� = � 1

40

⇣
2
p
8
⌘
t+

c2

and with y(0) = 8 we have

ln

����
8� b

8� a

���� = c2,

ln

����
(y � b)(8� a)

(y � a)(8� b)

���� =
�t

p
8

20
,

y � b

y � a

=
8� b

8� a

e

�
t

p
8

20
.

We can see that as t ! 1 the right side
goes to zero, hence also the left side, and

hence
y ! b = 4 +

p
8 = 6.828427

This represents an eventual fish popula-
tion of about 682, 800.

(b) We set up the di↵erential equation. In
this case we have to complete the square:
y

0 = 0.025y(8� y)� 0.6
= �0.025(y2 � 8y + 24)

= �0.25[(y � 4)2 + 8]
y

0

(y � 4)2 + 8
= �0.025

Z
1

(y � 4)2 + 8
dy = �0.025t+ c

To integrate, we will use the substitution

u =
y � 4p

8
which gives us

�0.025t+ c =

Z
1

(y � 4)2 + 8
dy

=

Z p
8

8(u2 + 1)
du =

1

2
p
2
tan�1

u

=
1

2
p
2
tan�1

✓
y � 4p

8

◆

Manipulating gives

y = 4 + 2
p
2 tan

 
�t

p
2

20
+ k

!

The initial condition, y(0) = 8 gives us
k = tan�1

p
2 ⇡ 0.9553 and therefore

y = 4 + 2
p
2 tan

 
� t

p
2

20
+ 0.9553

!

And, if you graph y, it is easy to see that
y(27.02) = 0 and therefore the fish all die
o↵ in about 27 years.

48. The equilibrium solutions are the algebraic so-
lutions to the quadratic equation
.025P (8�P )�R = 0, or P 2 � 8P � 40R = 0.
In the process of studying Exercise 47.b
(R = .2) we found it convenient to factor the
left side (P was y at the time) and the roots
were b = 4 +

p
8 and a = 4 �

p
8. In Exer-

cise 47.b, the corresponding equation (R = .6)
would be
0 = P

2 � 8P + 40R = P

2 � 8P + 24.
But this equation has no real roots, hence no
equilibrium populations.

49. P

0 = .05P (8� P )� .6

= � 1

20
(P 2 � 8P + 12)

= � 1

20
(P � 6)(P � 2)

Following well-established procedures, we
come to



422 CHAPTER 7. FIRST-ORDER DIFFERENTIAL EQUATIONS

ln

����
P � 6

P � 2

���� = �1

5
t+ c2,

P � 6

P � 2
= Ae

�
t

5
, (A = ±e

c2 or zero)

We learn from this relation that the ratio
(P � 6)/(P � 2) never changes sign, always
negative if the initial condition has P (0) in the
interval (2, 6). Clearly in this case the expo-
nential approaches zero as t ! 1 and P ap-
proaches 6. This last conclusion is true even if
P (0) > 6.

If on the other hand 0  P (0) < 2, the ra-
tio is forever positive, and we find eventually
P � 6

P � 2
=

P (0)� 6

P (0)� 2
e

�t/5
.

Here the right side is a positive decreasing func-
tion of t and so must be the left side. The e↵ect
is that P itself is decreasing (not obvious) and
reaches the value zero when

e

�t/5 = 3
P (0)� 2

P (0)� 6
or when

t = 5 ln
6� P (0)

3[2� P (0)]
= 5 ln

6� P (0)

6� 3P (0)

In the ratio inside the (second) ln, the nu-
merator is clearly more than the denominator,
which is itself positive. This is some moment
of positive time, after which the population is
zero and no further activity occurs.

50. Comparing Exercise’s 47.(b) and 49, we see
that the equations are the same except for the
natural growth rates (0.2 in Exercise 47.b, 0.4
in Exercise 49). The fish in Exercise 64 die
out whereas the fish population in Exercise 49
approaches a limiting population.

51. The di↵erential equation is
r

0(t) = k[r(t)� S]. This separates as
r

0

r � S

= k, and solves as

ln(r � S) = kt+ c.
In this case S = 1000, r(0) = 14,000,
and r(4) = 8,000.
Putting t = 0, we see that the constant c is
ln 13,000, we learn

ln
r � 1000

13,000
= kt,

and putting t = 4,

ln
7

13
= ln

7,000

13,000
= 4k.

Assembling the available information, we find

ln
r � 1000

13,000
= kt =

t

4
(4k) =

t

4
ln

7

13
, and

r = 1,000 + 13,000

✓
7

13

◆
t/4

,

or equivalently r = 1 + 13e�.15476t thousands.

52. The amount of grain is
A(t) = �1000t+ 6000

The di↵erential equation for S(t) is
S

0(t) = 0.02A(t) = �20t+ 120
S(0) = 0,

We solve this to get
S(t) = �10t2 + 120t
S(6) = 360

53. From the di↵erential equation, with z = y

0
/y,

we find z = k(M � y). This is a line in the
(y, z)-plane. The z-intercept is M and the
slope is �k.

We estimate the derivative, y0, at each point
by using the adjacent point and computing the
slope:

t 2 3 4 5
y 1197 1291 1380 1462
y

0 94 89 82
z = y

0
/y 0.073 0.064 0.056

We now plot the (y, z) data and find a slope
and intercept. By looking at the graph or by
picking two points you can see that slope is
about �9.4⇥10�5 and the z-intercept is about
2037. This gives us M ⇡ 2037

54. If y0 = ky(M � y), then by the product rule
y

00 = k[y0(M � y)� yy

0] = ky

0[M � 2y].

This will be zero when y = M/2. In what fol-
lows, we make exception of the two equilibrium
solutions y ⌘ 0 and y ⌘ M . With any other
solution, y 6= 0, y 6= M , and y

0 6= 0. Thus
whatever time t0 (if any) at which y becomes
M/2 is sure to be an inflection time. More-
over, there can be no circumstances of inflec-

tion other than y = M/2. Such a time t0 > 0 is
bound to occur if and only if 0 < y(0) < M/2,
in which case the time t0 is unique.

55. The given di↵erential equation is
dv

dt

= 9.8� 0.002v2

dv

dt

= � 2

1000

�
v

2 � 4900
�

k=� 2

1000
dv

dt

= k (v + 70) (v � 70)

As the value of k is a negative number, the pa-
rameters b and a (b > a) are b = 70 and
a = �70.



Thus, the solution is

ln

����
v � 70

v + 70

���� = 140kt+ c

Given that v (0) = 0, we find c = 0and
70� v

70 + v

= e

140kt

Because k < 0, the right hand side goes to zero
as t goes to infinity. Therefore, v ! 70.This is
the terminal velocity.

56. The tangent line to y = f(x) at x = a passes
through the point (a, f(a)) with slope f

0(a),
and hence the equation is
y � f(a) = f

0(a)(x� a)

We find the x� and y� intersections of this
line
y = f(a)� af

0(a),

x =
�f(a) + af

0(a)

f

0(a)
and hence the area is

A(a) = [f(a)� af

0(a)] · �f(a) + af

0(a)

f

0(a)

= �1

2


a

2
f

0(a)� 2af(a) +
f(a)2

f

0(a)

�
and

dA

da

= �1

2
[2af 0(a)� 2f(a)]

Setting
dA

da

= 0 we get

2af 0(a) = 2f(a), f 0(a) = f(a)

This means that a curve such that A is the
same for any choice of a > 0 satisfies
y

0(x) = y(x) for all x.
Hence
dy

dx

= y,

dy

y

= dx, ln |y| = x+ c

y = ke

x
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