

الهندسية للجزيئات)	الأشكال	الوحدة الثالثة: الدرس الاول					
ذرة يحيط بها اربع مجالات الكترونية ؟	روني ل	مكل الهندسي المتوقع للمجال الالكة	ما الث	1			
مثلث مسطح	С	خطي	А	9 7			
هرم رباعي	D	هرم ثلاثي	В	3			
		-	1				
ذرة يحيط بها ثلاث مجالات الكترونية ؟	روني ا	مكل الهندسي المتوقع للمجال الالكن	ما الش	2			
هرم رباعي	С	هرم ثلاثي	A				
منحنى	D	مثلث مسطح	В				
لذرة يحيط بها 4 مجالات مرتبطة ؟	ئتروني	شكل الهندسي المتوقع للمجال الإلك	ما ال	3			
هرم ثلاثي	С	خطي	Α				
مثلث مستوي (مسطح)	D	هرم رباعي	В				
بة يحيط بها 4 مجالات الكترونية منها 3	رة مركب	شكل الهندسي للجزئ التاتج عن ذر ت مرتبطة ومجال حر ؟		4			
منحني	С	هرم ثلاثي	Α				
خطي	D	هرم رباعي	В				
بط بها 4مجالات الكترونية اثنان مرتبطان	ذرة يحب	زاوية الفعلية للمجال الالكتروني ا ن غير مرتبطان ؟		5			
104.5	С	109.5	Α				
180	D	107	В				

هندسي للمجال الالكتروني الخطي ؟	الشكل ال	ع تهجين الافلاك الذي ينتج عنه	ما نو	6	
SP ² d	С	SP	Α		
Sp ³	D	SP ²	В	9 4	
				3	
هندسي للمجال الالكتروني مثلث مستوي ؟	الشكل ال	وع تهجين الافلاك الذي ينتج عنه	ما نو	7	
SP ² d	С	SP	A		
Sp ³	D	SP ²	В		
		5.			
هندسي للمجال الالكتروني هرم رباعي	الشكل ال		ما نو الاوج	8	
SP ² d	С	SP	Α		
Sp ³	D	SP ²	В		
	7				
ني حول ذرة الكربون في المركب المقابل ؟	الالكتروا	من العبارات الاتية يصف المجال	اي ه	9	
	:S=	= C = S∷			
2 مؤتيط و2 غير مرتبط	С	4 مجالات مرتبطة	Α		
4مجالات مرتبطة و4 مجالات غير مرتبطة	D	مجالان مرتبطان	В		
رکب من نوع ^د sp؟	ن في المر	يكون التهجين حول جميع نرات الكربو	الآثية	من الأزواج	أي ا
		C_2H_2	/ CH	4	
		G ₃ H ₄ :	/ C ₂ H	4	
		C ₄ H ₁₀	C ₃ H	8	
Sag.		C ₅ H ₁₂ /	C ₄ H	6 🔲	
2 Page 30701513	_ ,t	يمياء - الثانوية العامة - الفصل الدراسي الأو	، _ ک	ذ / قملہ رحب	الأستثا
20/01212	- U	پمپام - اساس یا است استاس اساس ایراسی اور	`	- ۱ سرسی ر ۱۰ ۰	

H

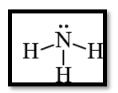
أي من الأتي يصف المجال الإلكتروني حول الذرة المركزية في المركب التالي

10

11

12

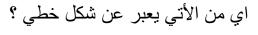
13


ِ مرتبطان	جالان غير	رتبطة وه	ر مجالات م	3	С	4 مجالات مرتبطة	Α	

B مجالات مرتبطة ومجالان غير مرتبطان D مجالات مرتبطة ومجالان غير مرتبطان

اي من الاتي صحيح عن الجزئ الأتي ؟

sp² الشكل خطي والتهجين sp² الشكل منحني والتهجين A

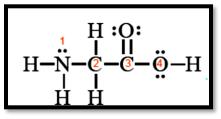

B الشكل خطي والتهجين sp الشكل منحني والتهجين

أي من الأتي صحيح عن الجزئ المقابل ؟

التهجين sp³ والزاوية الفعلية C والزاوية الفعلية 107 ما التهجين sp³ والزاوية الفعلية 107 ما 109.5

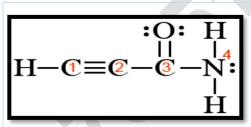
التهجين sp² والزاوية الفعلية D التهجين sp² والزاوية الفعلية 120 B 104.5

$$\mathbf{S}_{\mathbf{H}}^{\mathbf{S}_{\mathbf{H}}}$$


$$\mathbf{H}$$
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}

3 | Page

الأستناذ / قولي رجب - كيمياء - الثانوية العامة - الفصل الدراسي الأول - 30701513


	اي من الأتي صحيح عن جزئ H ₂ O ؟	14
C الشكل الهندسي للمجال هرم رباعي – الشكل الهندسي للجزئ هرم ثلاثي	الشكل الهندسي للمجال هرم رباعي – [علام الشكل الهندسي للجزئ هرم رباعي	
D الشكل الهندسي للمجال هرم رباعي – الشكل الهندسي للجزئ منحني	الشكل الهندسي للمجال هرم رباعي B	9

# #			# "
	?	SO ₂	15 ما قيمة زاوية الإرتباط الفعلية لجزئ
	107	С	180 A
	119	D	120 B

ما الشكل الهنسي للمجال الإلكتروني وقيمة زاوية المثالية في ذرة الكربون رقم 3 في الجزئ الإرتباط المقابل ؟

16

ما عدد المجالات الالكترونية ونوع التهجين في ذرة الكربون رقم 2 في الجزئ المقابل ؟

أي من الأتي صحيح عن الشكل الهندسي الجزيئي المتوقع وزاوية الإرتباط الفعلية للذرة رقم 1 في الجزئ المقابل ؟

A هرم رباعي الاوجه – 109.5

B منحني - 104.5

18

19

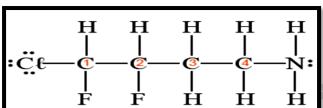
20

ما نوع التشكل في المركبات الأتية ؟

С

D

С


هرم ثلاثي الأوجه - 107

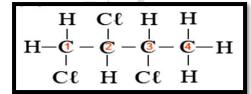
D منحني - 119

ما نوع التشكل في المركبات الاتية ؟

B وظيفي

A موضعي С D B هندسي ما أرقام ذرات الكربون في المركب التالي تمثل مراكز كيرالية ؟

- С
- 1 و 4 D


- 2 1 A
- 3 ₂ B

21

22

23

ما أرقام ذرات الكربون في المركب التالي تمثل مراكز كيرالية ؟

- C 2 و 3
- D

Α

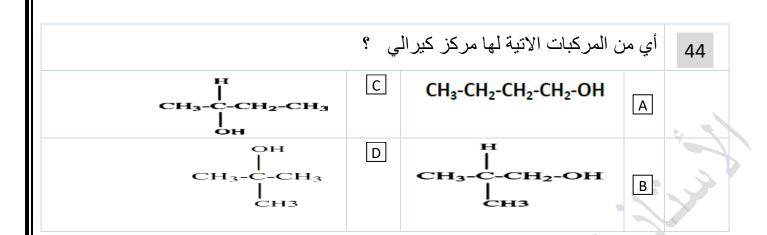
أي مما يأتي يمثل متشكل وظيفي للجزئ الاتي ؟

В

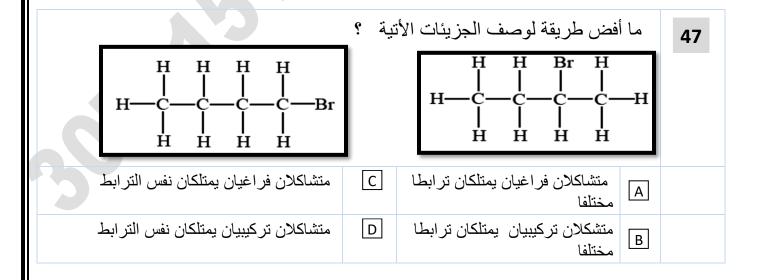
6 | Page

الأستناذ / قولي رجب - كيمياء - الثانوية العامة - الفصل الدراسي الأول -30701513

D


جب أن ترتبط بالذرة لجعلها مركز كيرالي ؟	ة التي يـ	عدد المجموعات أو الذرات المختلف	کم ۵	24
4	С	2	Α	
3	D	5	В	9
				3
صيغة الجزيئية ولكنها تختلف في طريقة				25
ę ż	لكربونية	ط الذرات مع بعضها في السلسلة ا	ارتباه	
تشكل سلسلة	С	تشكل وظيفي	A	
تشكل هندسي	D	تشكل موضعى	В	
صيغة الجزيئية ونفس المجموعة الوظيفية	ا نفس ال	صطلح الذي يعبر عن مركبات له	ما الم	26
ظیفیه ؟	وعة الز.	ا تختلف في موضع ارتباط المجم	ولكنه	
تشكل سلسلة	С	تشكل وظيفي	Α	
تشكل هندسي	D	تشكل موضعي	В	
صيغة الجزيئية ولكنها تختلف في	ا نفس ال	صطلح الذي يعبر عن مركبات له	ما الم	27
		وعة الوظيفية ؟	المجم	
تشكل سلسلة	С	تشكل وظيفي	Α	
تشكل هندسي	D	تشكل موضعى	В	
10	1			
نشاط ضوئي ؟	العضوية	سبب في إمتلاك بعض الجزيئات	ما الْـ	28
وجود مركز كيرالي	С	الاختلاف في مواضع ارتباط الذرات	Α	
الاختلاف في المجمو عات الوظيفية	D	وجود رابطة ثنائية في الجزئ	В	
	I			

ض ذرة لتهجين من النوع SP ³ ؟	ندما تتعر	د الأفلاك المهجنة التي تتشكل عا	ما عد	29
2	С	3	Α	
5	D	4	В	9 1
				3
ِض ذرة لتهجين من النوع SP ² ؟	ندما تتعر	د الأفلاك المهجنة التي تتشكل عا	ما عد	30
2	С	3	A	
3	D	4	В	
		. 5.		
ض ذرة لتهجين من النوع SP ؟	ندما تتعر	د الأفلاك المهجنة التي تتشكل عا	ما عد	31
5	С	4	Α	
2	D	3	В	
	8			
الأفلاك المهجنة من نوع SP ؟	جد بین	مة زاوية الإرتباط المثالية التي تو	ما قي	32
107	С	120	Α	
109.5	D	180	В	
الأفلاك المهجنة من نوع SP ² ؟	جد بین	مة زاوية الارتباط المثالية التي تو	ما قي	33
120	С	180	А	
107	D	119	В	
			<u></u>	


الأفلاك المهجنة من نوع SP ³ ؟	جد بین	مة زاوية الارتباط المثالية التي تو	ما قي	34
107	С	109,5	Α	
104.5	D	120	В	9 4
				5
OH W	1	قم ذرة الكربون التي لها مركز م		35
CH = CH	L	2 <u>2</u> 2	كيرال	
4	C	1	Α	
3	D	2	В	
		7.	נפו	
	نے ؟	بن المركبات الأتية لها مركز كيرا	أي م	36
CH ₃ CBr ₂ CH ₃	C		<u> </u>	30
		CH ₃ CH ₂ Cl	A	
CH ₃ CH ₂ CH ₂ OH	افا	CH₃CHBrCOOH	В	
?	رکیبي	لجزيئات الأتية يظهر فيه تشاكل تر	أي ا	37
C_2H_5F	С	C ₃ H ₈	Α	
C ₂ H ₅ Cl	D	C_2H_6O	В	
į.	C ₄ H ₉ I	د جميع المتشاكلات البنائية للصيغة 3r	ما عدد	38
3	С	2	Α	
5	D	4	В	

9 | Page

	(من الأتي له شكل فراغي خطي ؟	أي د	39
C ₂ H ₄	С	CH₄	Α	
C ₂ H ₆	D	C ₂ H ₂	В	9 4
				3
لك المهجنة حول ذرة الكربون على هيئة	, فيها الأفلا	ن المركبات العضوية الاتية تنتطم مستوي ؟		40
C ₃ H ₆	С	C ₂ H ₂	A	
C ₃ H ₈	D	C ₂ H ₆	В	
⁹ CH ₃ CH ₂ CH(€	CI)CH	متشاكل الموضعي للمركب	ما اله	41
CH ₂ Cl CH ₂ CH ₂ CH ₂ Cl	С	CH ₃ CH=CHCH ₂ Cl	Α	
CH ₃ CH ₂ CH ₂ Cl	D	CH ₃ CH ₂ CH ₂ CH ₂ Cl	В	
135				
9	كيرالي '	ركبات الاتية يحتوي على مركز	أي الم	42
CH₃-CHCl-COOH	С	CH₂OH – CH₂OH	А	
CHCI=CHCI	D	CH ₂ =CHCl	В	
	'			
	° C₂l	متشكل الوظيقي للمركب H ₅ OH	ما ال	43
au aa au	С	CH₃CHO	А	
CH₃COOH				

	؟ ر	اي من الاتي يحتوي على مركز كيرالج	45
CH₂Br-CH₂OH	С	CH₃-COOH A	
CH₃CH₂CHBrCH₃	D	CH₃COOCH₂CH₃ B	

الاسئلة المقالية

1- أكمل الجدول الآتي:

	المجالات المثالية الالكترونية المرتبطة غير المجال المثالية الفعلية								
نوع	زاية	زاوية	الشكل	الشكل	215	عدد	عدد	تركيب	
نوع التهجين	الارتباط	الارتباط	الهندسي	الهندسي	المجالات	المجالات	المجالات	لويس	الجزئ
	الفعلية	المثالية	للحز ئ	للمحال	غد	الم تبطة	الالكترونية	0.0	
	**	•	05.	•	المر تبطة	• •	* 33		
									
									-
							0		CO ₂
							10		
							, 5		
							-		
									CCI ₄
									-
					_				AIF ₃
									AIF3
									NH ₃
									H ₂ O
									2
									SO ₂
									H ₂ CO
									_

	2- متى يتطابق الشكل الهندسي الجزيئي مع الشكل الهندسي للمجال الإلكتروني ؟
	3- أذكر اسم الشكل الهنسى للجزئ والشكل الهندسى للمجال في الحالات الأتية:
	 عندما يكون عدد المجالات الإلكترونبة اثنان مرتبطة
	- عنما يكون عدد المجالات الإلكترونية ثلاثة جميعها مرتبطة . -
	- عنما يكون عدد المجالات الإلكترونية أربعة جميعها مرتبطة . -
	- عنما يكون عدد المجالات الإلكترونية أربعة منها مجال حر . -
	- عندما يكون عدد المجالات الإلكترونية أربعة منها اثنان غير مرتبطة . -
	 عنما يكون عدد المجالات الإلكترونية ثلاثة منها مجال غير مرتبط
	 4- فسر كلا من : - زاوية الإرتباط الفعلية 107 في جزئ الامونيا NH3 بدلا من 109.5 .
3	- زاوية الإرتباط الفعلية 104.5 في جزئ الماء H2O بدلا من 109.5 .
 13 P a g e	الأستناذ/قولي رجب - كيمياء - الثانوية العامة - الفصل الدراسي الأول - 30701513

5- قارن بين الجزيئات الموجودة في الجدول الآتى:

C ₂ H ₂	C₂H₄	CH₄	الجزئ
			ترکیپ لویس
			عدد المجالات
			الالكترونية
			الشكل الهندسي للمجال
			الشكل الهندسي للجزئ
)	زاوية الارتباط المثالية
	8		نوع التهجين

\mathbf{H}
// \\
Н— 🤨 🥲 — Н
S ₁

6- اكمل جدول التحليل للمركب الاتى:

نوع التهجين	زاوية الارتياط المتوقعة	زاوية الارتباط المثالية	الشكل الهندسى للجزئ	الشكل الهندسي للمجال	عدد المجالات الالكترونية غير المرتيطة	عدد المجالات الالكترونية	رقم الذرة
							رقم 1 :
							رقم 2:
							رقم 3:
							رقم 4:
							رقم 5:

$$\begin{array}{c} \overset{\boldsymbol{\cdot}}{\circ}\overset{\boldsymbol{\cdot}}{\circ}\\ \parallel\\ C\\ \overset{\boldsymbol{\cdot}}{\circ}\overset{\boldsymbol{\cdot}}{\circ}\overset{\boldsymbol{\cdot}}{\circ} & H\end{array}$$

7- اكمل جدول التحليل للمركب الاتى:

نوع التهجين	زاوية الارتياط	زاوية الارتباط	الشكل	الشكل	عدد المجالات	عدد المجالات	375	رقم الذرة
التهجين	المتوقعة	المثالية	الهندسي	الهندسي	الالكترونية غير	الإلكترونية	المجالات	4
			للجزئ	للمجال	المرتيطة	المرتبظة	الالكترونية	
								رقم 1 :
						4		رقم 2:
_						.0		رقم 3:

8- أكمل جدول التحليل للمركب الاتى:

نوع التهجين	زاوية الارتياط المتوقعة	زاوية الارتباط المثالية	الشكل الهندسي للجزئ	الشكل الهندسي للمجال	عدد المجالات الالكترونية غير المرتبطة	عدد المجالات الإلكترونية المرتبظة	عدد المجالات الالكترونية	رقم الذرة
								رقم 1 :
								رقم 2:
			25					رقم 3:

$$\begin{array}{c} & \text{H O} \\ | \ \| \\ \text{H}_2\text{N-C-C-OH} \\ \textbf{1} \ |^2 \\ \text{CH}_3 \end{array}$$

9- أكمل جدول التحليل للمركب الاتى:

نوع	زاوية الارتياط	زاوية الارتباط	الشكل	الشكل	عدد المجالات	عدد المجالات	عدد	رقم الذرة
التهجين	المتوقعة	المثالية		الهندسي	الالكترونية غير	الإلكترونية		·
			للجزئ	للمجال	المرتيطة	المرتبظة	الالكترونية	
								رقم 1 :
								,
								رقم 2:
								,
								رقم 3:
								, -

10- ارسم المتشاكلات التركيبية الممكنة نوع السلسلة الكربونية للبنتان ؟

11- رسم ثلاث متشاكلات تركيبية نوع السلسلة الكربونية للهكسان ؟

12- ارسم متشاكلين لكل مما يأتى ثم حدد نوع التشاكل ؟

C3H₇CHO -

 $C_3H_6O_2$ -

C₃H₆O -

C₄H₉Br -

C₃H₇Cl

C₅H₁₂ -

CH₃CHCIOH -

C₃H₈O -

13-. حدد نوع التشاكل بين لك اثنين من الجزيئات الأتية :

C₂H₅-CH₂-CHO

- حدد رقم ذرة الكيرالية ثم ارسم المتشاكلين الضوئيين ؟
- 1 2 3 CH₃-CH(NH₂)-COOH

الوحدة الثالثة: الدرس الثاني (الأشكال الهندسية للجزيئات)

أى العبارات الأتية صحيحة عن الإستبدال النيوكليوفيلي بطريقة SN1 ؟								
تتم المهاجمة من الجانب الخلفي فقط ويتكون معكوس الشكل الفراغي	С	تتم المهاجمة من الجانب الامامي فقط مع الاحتفاظ بالشكل الفراغي						
تتم المهاجمة من الجانب الامامي أو الخلفي ويتكون خليط من الشكل الفراغي ومعكوسه	D	تتم المهاجمة من الجانب الامامي أو الخلفي ويتكون معكوس الشكل الفراغي						

H H H H H-6-6-6-6-6-6-6-H H H H H H H		ما رقم ذرة الكربون التي سيضاف اليها البروم القادم من بروميد الهيدروجين HBr في الجزئ المقابل ؟				
2	С	-	1 <u>A</u>			
6	D	Δ,	3 B			

أى العبارات الأتية صحيحة عن الإستبدال النيوكليوفيلي بطريقة SN2 ؟								
تتم المهاجمة من الجانب الخلفي فقط مع الاحتفاظ بنفس الشكل الفراغي	С	تتم المهاجمة من الجانب الامامي فقط ويتكون معكوس الشكل الفراغي						
نتم المهاجمة من الجانب الخلفي فقط ويتكون معكوس الشكل الفراغي	D	تتم المهاجمة من الجانب الامامي B فقط مع الاحتفاظ بالشكل الفراغي						

H-¢-¢	H H 	مم المركب الناتج عن إضافة يد الهيدروجين الى المركب ل ؟		4	
	2-كلورو هكسان	С	هكسان	Α	
	2- كلورو هكسين	D	1- كلور هكسان	В	

) الاستبدال النيوكليوفيلي من من الاستبدال النيوكليوفيلي كالمرافيلي النيوكليوفيلي كالمرافيلي المرافيلي المرافيلي	أثناء تفاعل	موقع الذي سيهاجمه النيوكليوفيل	ما ال	5
ذرة الكربون في الكربونيل	С	مجموعة الألكيل R	Α	9
ذرة الأكسجين في الكربونيل	D	المجموعة المغادرة L	В	
e/ t. M te \ t 18 M	161 51	ti ti cti	11 -1	
· · · · · · · · · · · · · · · · · · ·		مركبات الآتية ينتج عن التحلل الم		6
كيتون		استر	A	
حمض کر بوکسیلي	D	ألدهيد	В	
	حول ؟	لمركبات الأتية ينتج عن أسيلة الك	أي ا	7
حمض كربوكسيلي	С	الدهيد	Α	
كيتون	D	استر	В	
افة الإلكتروفيلية في الألكين ؟	يكية الإض	ىن الأتي يتكون أثناء حدوث ميكان	أي ه	8
أيون سالب	С	المجموعة المغادرة	Α	
رابطة ثنائية	D	الكاربوكتيون	В	
ع الكحول ؟	الحمض م	ن الأتي ينتج عن تفاعل أنهيدريد	أي ه	9
حمض کر بوکسیلی + ألدهید	С	استر + كيتون	Α	
ألدهيد + استر	D	حمض كربوكسيلي + إستر	В	

		مما يلي يعبر عن نيوكليوفيل؟	أي	10
H ₂ O	С	NO_2^+	Α	
AICI ₃	D	BH ₃	В	9 7
	ı	<u>'</u>		
		مما يلي يعبر عن الكتروفيل ؟	أي	11
H ₂ O	С	AIF ₃	A	
CI -	D	NH ₃	В	
		مما يلي <u>لا يعتبر</u> الكتروفيل	اي	12
NH ₃	С	Br ⁺	Α	
H ₂ O	D	OH-	В	
	- 10	مما يلي <u>لا يعتبر</u> نيوكليوفيل	اي	13
NH ₃	С	CN ⁻	Α	
H ₂ O	D	BCI ₃	В	
بوكليوفيلي SN2 ؟	إحلال الني	المقصود بالرقم 2 في ميكانيكية الا	ما	14
انها تتم في خطوة واحدة .	С	أنها تناسب الهالو ألكان الثالثي .	Α	
ألخطوة الاولى تحتوي على مركبين .	D	انها تتم في خطوتين	В	

ΤT	Ī	H	Ī	Ī	6 -	- C	TT
Н-		•	•		-@≡ H H		- H

عند إضافة كلوريد الهيدروجين إلى المركب المقابل ما رقم ذرة الكربون التي سيضاف اليها الإلكتر وفيل ؟

15

16

17

18

С 2

D

В

عند إخضاع المركب المقابل لتفاعل إحلال نيوكليوفيلي ما رقم المجموعة التي تعبر عن المجموعة المغادرة ؟

С

Α

D

3

2 В

عند إضافة بروميد الهيدر وجين الى المركب المقابل ما رقم ذرة الكربون التي تحمل الشحنة الموجبة في الكاربوكتيون ؟

С 4

Α

D 3

2 В

حمض البروبانويك + حمض الهيدروكلوريك

С حمض بروبانویك + البروبانول

Α

حمض البروبانويك + حمض الهيدروكلوريك

D

البروبانول + حمض الهيدروكلوريك

В

يوكليوفيلي SN1 ؟	حلال النب	مقصود بالرقم 1 في ميكانيكية الا	ما ال	19
انها تتم في خطوة واحدة .	С	أنها تناسب الهالو ألكان الأولي .	Α	
ألخطوة الاولى تحتوي على مركب واحد .	D	انها تتم في خطوتين كل خطوة بها مركب واحد .	В	9
		. 3.3		3
9	ة القوية '	من الأتي يصف المجموعة المغادر	أي ه	20
لها سالبية كهربية مرتفعة وتنزع معها زوجا من الإلكترونات	С	لها سالبية كهربية منخفضة وتنزع معها زوجا من الإلكترونات	А	
لها سالبية كهربية منخفضة وتترك خلفها زوجا من الإلكترونات	D	لها سالبية كهربية مرتفعة وتترك خلفها زوجا من الإلكترونات	В	
		\ \\ \.		
یل ؟	ة الكربون	بن الأتي غير صحيح عن مجموعا	أي ه	21
الشكل الهندسي للمجال مثلث مستوي	С	نوع التهجين في الكربون SP ²	А	
تميل لتفاعلات الإضافة الإلكتروفيلية	D	مجموعة قطبية	В	
	N DY			
وفيلى في مجموعة الكربونيل ؟	ال النيكلي	من الأشكال الأتية ينتج عن الإستبد	أي ه	22
أنيون حالة انتقالية لها شكل مثلث مستوي على كربون الكربونيل	С	كاربوكتون له شكل مثلث مستوي على ذرة كربون الكربونيل	Α	
أنيون حالة انتقالية لها شكل هرم رباعي على كربون الكربونيل	D	كاربوكتيون له شكل هرم رباعي الأوجة على كربون الكربونيل	В	
حة ؟	رة صحي	ىن الأتي يصف النيوكليوفيل بصور	أي ه	23
مادة محبة للشحنة الموجبة ولديها زوج أو أكثر من الإلكترونات الحرة	С	مادة محبة للشحنة الموجبة ولديها نقص في الإلكترونات	Α	
مادة محبة للشحنة السالبة ولديها زوج أو أكثر من الإلكترونات الحرة .	D	مادة محبة للشحنة السالبة ولديها نقص في الإلكترونات	В	

ىر و بىن ؟	2-مىثىل	تج إضافة كلوريد الهيدروجين إلى	ما نا	24
				24
CH ₃ CH(CH ₃)CH ₃	[C]	CH ₃ CCl(CH ₃)CH ₃	A	
CH₃CCl(CH₃) CH₂Cl	D	CH ₃ CH(CH ₃)CH ₂ Cl	В	9
R	ل الأتي	ما يلي صحيح عن ميكانيكية التفاء	اي م	25
$\begin{array}{c} R \\ X - C - H + : Nu \end{array} \longrightarrow$				
Н		18		
احلال نيوكليوفيلي SN1 والمهاجمة تتم من الناحية الامامية .	С	احلال نيوكليوفيلي SN1 والمهاجمة تتم من الناحية الخلفية .	А	
احلال نيوكليوفيلي SN2 والمهاجمة تتم من الناحية الامامية .	D	احلال نيوكليوفيلي SN2 والمهاجمة تتم من الناحية الخلفية .	В	
		•		
SN1 في الإحلال النيوكليوفيلي ؟	يكانيكية	ن هاليدات الالكيل التالية تتفاعل بم	أي م	26
CH₃ CH₂C (CH₃)₂ CI	С	CH₃ CH₂CH₂CI	Α	
CH₃ CHCl CH (CH₃)₂	D	CH ₃ CH ₂ CH(CH ₃)Cl	В	
SN2 في الإحلال النيوكليوفيلي ؟	ىكانىكية	ن هاليدات الالكيل التالية تتفاعل بم	أي م	27
CH₃ CH₂C (CH₃)₂ CI	С	CH₃ CH₂CH₂Cl	Α	
CH₃ CHCl CH (CH₃)₂	D	CH ₃ CH ₂ CH(CH ₃)Cl	В	
			1	1
ن الناحية الخلفية فقط في تفاعلات	اجمتها م	ن مركبات الهالوألكان التالية تتم مه إل النيوكليوفيلي ؟	-	28
CH ₃ C (CH ₃) ₂ CH ₂ Br	С	CH ₃ CH ₂ CH ₂ C (CH ₃) ₂ Br	Α	
CH ₃ C(CH ₃) ₂ C (CH ₃) ₂ Br	D	CH ₃ CH ₂ C (CH ₃) ₂ Br	В	

H	ما نوع التفاعل التالي ؟
H ₃ C-C-H + NaOH -	
Br	

29

احلال نيوكليوفيلي SN1

ا إضافة الكتروفيلية

احلال نيوكليوفيلي SN2

D

c

B اضافة نيوكليوفيلية

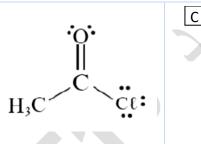
اي من جزيئات هاليد الالكيل التالية لا تكون كاربوكتيون أثناء تفاعلات الاحلال 30 النيوكليوفيلي ؟

CH₃ CHCl CH (CH₃)₂

С

D

CH₃ Cl


Α

CH₃ CH₂C (CH₃)₂ Cl

CH₃ C (CH₃)₂Cl

В

اي الجزيئات الاتية أكثر نشاطا تجاه الغحلال النيوكليوفيلي ؟ 31

Α

D

В OH

 $CH_2=CH-CH_3 + HBr$

ما ناتج التفاعل التالي ؟

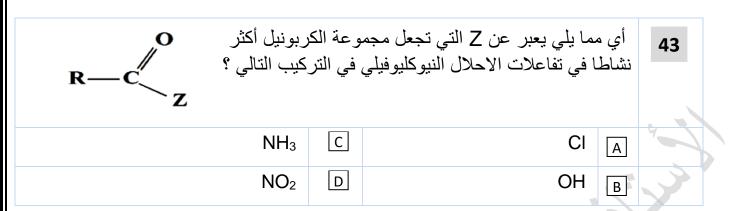
32

CH₃-CH₂-CH₂Br

С

CH₂Br - CH₂-CH₃

CH₂Br-CH₂-CH₃


D

CH₃-CHBr-CH₃

CH_3 - CH_2 - $CH=CH_2$ + HI	3r —		ج التفاعل الآتي ؟	ما نات	33
CH ₃ -CH (Br)-CH ₂ -CH ₃	С	C	H ₃ -CH ₂ -CH ₂ -CH ₂ -Br	А	
CH ₃ -CH ₂ -CH(Br)-CH ₃	D		CH ₂ Br-CH ₂ -CH ₂ -CH ₃	В	9 7
	ı				
SN1	كانيكية	ل بمي	ن مركبات الهالو ألكان التالية تتفاعا	اي مر	34
CH ₃ – C(CH ₃) ₂ -Br		С	CH₃Br	A	
CH ₃ -CH ₂ -B ₁	r [D	CH ₃ -CH ₂ -CH ₂ -Br	В	
			5		
$CH_2 = CH_2 + Br_2 $		→	لكتروفيل في التفاعل الأتي ؟	ما الإا	35
\mathbf{Br}^{+}		С	Br ₂	Α	
Br ⁻		D	$CH_2 = CH_2$	В	
		D			
CH ₃ CH=CH CH ₃ + HCl —		—	لكتروفيل في التفاعل الاتي ؟	ما الأ	36
НС		С	\mathbf{H}^{+}	Α	
СН ₃ -СН=СН-СН ₃		D	Cl	В	
^r S	بة N2	كانيكر	ن هاليدات الالكيل الاتية تتفاعل بمي	أي مر	37
CH ₃ C(CH ₃)BrCH ₂ CH ₃	С	CI	H ₃ CH ₂ CHBrCH ₂ CH ₃	А	
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ Br	D		CH ₃ CH ₂ CH ₂ CHBrCH ₃	В	

CH₃COCI + H₂O —— CH₃C	СООН	+ HCI	ذرة التي سيهاجمها ليوفيل في التفاعل الاتي ؟		38
ة الكربون قي الكربونيل] ذر	С	ذرة الكلور	А	
جموعة الميثيل] مج	D	ذرة الاكسجين في الكربونيل	В	9
		<u> </u>			3
	بونيل ؟	وعة الكر	ن التالي يؤثر على نشاط مجه	اي م	39
يل الالكتروني	الم	С	طاقة التاين	A	
إبطة الفلزية] الر	D	السالبية الكهربية	В	
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$H_3C_1^2 - C - CH_2 - CH_3$	3	ة للهجوم	قم ذرة الكربون الاكثر غرضه		40
1 O			ليو فيلي؟	النيوك	
	3 _	С	1	Α	
	4	D	2	В	
Ω					
$H_3CCOCl + H_2$	o —	-	تج التفاعل الاتي ؟	ما نا	41
$CH_3CH_2OH + HCl$		С	$CH_3CH_3 + OH^-$	Α	
CH ₃ COOH + HCl		D	CH₃CHO + HCl	В	
		'			
$(CH_3CO)_2O + CH_3OH$			نج التفاعل الاتي ؟	ما نان	42
	С		CH₃CHO +HCl	А	
CH ₃ COOH + CH ₃ COOH CH ₃ CH ₃ + CH ₃ COOH	D		OCH ₃ + CH ₃ COOH		

27 | Page

أي العبارات الأتية تصف ميكانيكية التفاعل الموضح أدناه ؟

 $\mathrm{CH_{3}\text{-}CH_{2}^{+}}$ ва الكاربوكاتيون المتكون خلال التفاعل هو ii

46

iii - تنجذب ذرة الهيدروجين الموجبة (في HI) نحو السحابة الإلكترونية السالبة للرابطة الثنائية .

ii e iii	С	iii e ii
i e ii e iii	D	ii e i B

الأسئلة المقالية

1- قارن بين ميكانيكية التفاعل SN1 وميكانيكية التفاعل SN2 ؟

وميكانيكية التفاعل SN2	ميكانيكية التفاعل SN1	وجه المقارنة
		8
		سبب التسمية
		نوع الهالو ألكان
	W	المناسب للميكانيكية
		خظوات الميكانيكية

2- ادرس التفاعل التالي ثم أجب ؟	أجب ؟	ے ثم	التالي	التفاعل	ادرس	-2
---------------------------------	-------	------	--------	---------	------	----

	Cl Cl
$H-C=C-H+C\ell-C\ell \longrightarrow$	$H-\dot{C}-\dot{C}-H$
н н	нн

ارسم ميكانيكية التفاعل ؟

ما نوع التفاعل السابق ؟

- حدد كلا من الإلكتروفيل والنيوكليوفيل ؟
- أكتب الصيغة الكيميائية للكاربوكاتيون ؟

30 | Page

الأستناذ / قولي رجب - كيمياء - الثانوية العامة - الفصل الدراسي الأول -

	م میکانیکیة التفاعل ؟	 ارست
	نوع التفاعل السابق ؟	مان
	د كلا من الإلكتروفيل والنيوكليوفيل ؟	حدد
	نب الصيغة الكيميائية للكاربوكاتيون ؟	أكتد
عد الأسلة التالية		
عن الأسلة التالية	ب الصيغة الكيميائية للكاربوكاتيون ؟ معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل:	 تب،
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل:	معا
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب	معا
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل:	معا
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل:	معا
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل: م ميكانيكية التفاعل؟	معال
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل:	معال
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل: م ميكانيكية التفاعل؟	معان
عن الأسلة التالية	معادلة تفاعل كلوريد الهيدروجين مع 2-ميثيل 2- بنتين ثم أجب ادلة التفاعل : م ميكانيكية التفاعل ؟ نوع التفاعل السابق ؟	معان

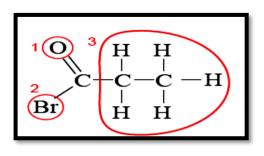
?	أجب	ثم	التالي	التفاعل	ادرس	-5
---	-----	----	--------	---------	------	----

$$H_3C-\stackrel{I}{C}-H + NaOH \longrightarrow H_3C-\stackrel{I}{C}-H + NaBr$$
Br

ميكانيكية التفاعل ؟	التفاعل ثم ارسم	حدد نوع میکانیکیة	-
---------------------	-----------------	-------------------	---

/ 0/

6- ادرس التفاعل التالي ثم أجب ؟


ما نوع التفاعل السابق ؟

	ماركوفنيكوف لتحديد ذرة الكربون التي ستضاف إلى ذرة البروم .
، 2-مىثىل بىوتىن ، مستخدما قاعدة	. ارسم ميكانيكية تفاعل الإضافة الإلكتروفيلية لمركب HCl إلى مركب
10,0,,0,,	ماركوفنيكوف لتحديد ذرة الكربون التي ستضاف إلى ذرة البروم.
* *	
, ادرس التفاعل جيدا تم اجب :	الشكل التالي يبين ميكانيكية تفاعل التحلل المائي لكلوريد الإيثانويل
H ₃ C	الخطوة 2: الجزء 1 ألجموعة المغادرة الم
	 حدد كلا من الإلكتروفيل والنيوكليوفيل ؟
	- حدد المجموعة المغادرة ؟
	- اشرح ما يحدث في كل من الخطوة الأولى والخطوة الثانية ؟ -
	- ما اسم المركب العضوي الناتج ؟

10- الشكل المقابل يوضح ميكانيكية الإستبدال النيوكليوفيلي لمجموعة الكربونيل, ادرس الشكل جيدا ثم أجب

- ما نوع التهجين والشكل الهندسي الجزيئي لذرة الكربون قبل إنفصال المجموعة المغادرة ؟
 - ما نوع التهجين والشكل الهندسي الجزيئي لذرة الكربون في المرحلة الإنتقالية ؟
- ما العلاقة بين النشاط الكيميائي لموقع مجموعة الكربونيل والسالبية الكهربية للمجموعة المغادرة (يزداد النشاط الكيميائي أم يقل) ؟ فسر إجابتك ؟
 - فسر مجموعة الكربونيل مجموعة قطبية .
 - فسر :لماذا تتفاعل مجموعة الكربونيل بالإستبدال النيوكليوفيلي؟
 - كيف تفسر ثبات المجموعة المغادرة بعد إنفصالها عن الكربونيل ؟
- ما السبب في صعوبة إنفصال الفلور الكربونيل عن المجموعة المغادرة بالرغم من إرتفاعل السابية الكهربية له؟

¿	إستبدال النيوكليوفيلي ؟ مع ذكر السبب	تلي له نشاط كيميائي أكبر في تفاعلات الإ	11- أي من ال
	CH, NH ₂	CH, OH	
ىبب ؟	ت الإستبدال النيوكليوفيلي ؟ مع ذكر الس	ن التلي له نشاط كيميائي أكبر في تفاعلان	- 12 أي مر
	CH, NH,	CH, CH ₃	
ببب ؟	ت الإستبدال النيوكليوفيلي ؟ مع ذكر الس	ن التلي له نشاط كيميائي أكبر في تفاعلان	-13 أي مر
	CH, OH	CH, CH ₃	
35 Page	سى الأول - 30701513	يب - كيمياء - الثانوية العامة - الفصل الدراس	

14- ادرس الشكل المقابل جيدا ثم أجب عن الأسئلة التي تليه:

طبقا لقاعدة ماركوفنيكوف ؟

ما الرقم الذي يمثل المجموعة المغادرة في الشكل المقابل عندما يخضع لتفاعل الإحلال الإلكتروفيلي ؟

- ماذا يحدث عند استبدال الفلور F بدلا من ذرة البروم Br ؟فسر احابتك؟

15- أين يتم إضافة ذرة الكلور من كلوريد الهيدروجين HCl على جزئ الألكين ذي الرابطة الثنائية غير المتجانسة

16- هل تعتبر المجموعة المغادرة القوية إلكتروفيل قوي أم نيوكليوفيل قوي ؟ فسر إجابتك ؟

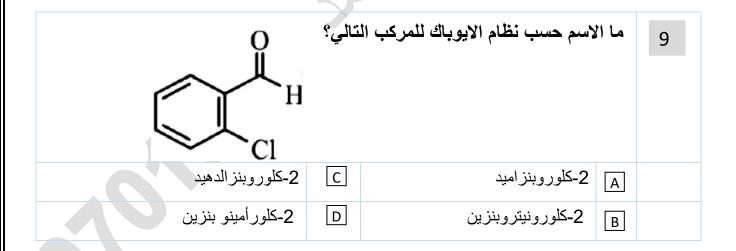
17- فسر تأثير السالبية الكهربية للمجموعة المغادرة على النشاط الكيميائي لتفاعلات الإستبدال النيوكليوفيلي لمركبات مجموعة الكربونيل ؟

18- من حيث النشاط والقدرة على تكوين تفاعلات إنعكاسية , ما الذي يجعل كلوريدات الأسيل مثالية لإنتاج الإسترات من الكحولات والفينولات ؟

الوحدة الثالثة: الدرس الثالث (الكيمياء الأروماتية)

	بنزين ؟	من التالي <u>لا يعد</u> من صفات جزئ الب	أي	1
جميع الروابط بين ذرات الكربون متساوية في الطول	С	مركب ثابت ومستقر كيميائيا بسبب ظاهرة الرنين	Α	3
يحتوي على 10 روابط تساهمية	D] مركب حلقي غير مشبع	В	

,	أي من الأتي صحيح بالنسبة لجزئ البنزين	2
c قيمة زاوبة الإرتباط بين ذرات الكربون 180	A تهجین ذرات الکربون فیه من النوع SP	
D جميع الروابط بين ذرات الكربون متساوية في الطول	یحتوي علی 10 روابط سیجما و 2 باي B	


وإستقرار جزئ البنزين مقارنة بالألكين ؟	أي من التالي يعد السبب في ثبات و	3
الكترونات الروابط باي بين ذرات الكربون ثابتة	الشكل مسطح الشكل مسطح	
D الكترونات الروابط باي بن ذرت الكربون متحركة	B مركب حلقي مشبع	

ما تتأثير لا مركزية الإلكترونات (الرنين) في تفاعلات البنزين ؟					
البنزين يتفاعل بالإحلال النيوكليوفيلي	С	البنزين يتفاعل بالإحلال الإلكتروفيلي	Α		
البنزين يتفاعل بالحذف	D	لبنزين يتفاعل بالإضافة في كل تفاعلاته	В		
		سيغة الكيميائية للبنزين ؟	ما الص	5	
C ₆ H ₅	С	C ₆ H ₆	Α		
C ₆ H ₅	D	C ₆ H ₁₂	В		

	من التالي لا يعد من صفات البنزين ؟	6 أي
C نوع التهجين يبن ذرات الكربون SP ³	الشكل الفراغي سداسي مسطح	
D الروابط بين ذرات الكربون جميعها متساوية في الطول	عدد روابط سيجما 12 وروابط باي 3	
		3

ل الإلكتروفيلي ؟	7 ما سبب تفضيل حلقة البنزين تفاعلات الإح
C ثبات إلكترونات الرابطة باي	 ه وجود ظاهرة الرنين في حلقة البنزين
D المركبات الناتجة عن الإحلال النيوكليوفيلي أكثر استقرارا	النشاط الكيميائي العالى للبنزين

أي من الأرينات التالية تصف جميع الأرينات بالطريقة الأفضل ؟					
الكحولات	С	٠	الألدهيدان	Α	
كلوريدات الأسيل		الأروماتية	المركبات	В	

2-ھيدروكسي فينول	С	2-هيدروكسي حمض البنزويك	Α	
2-هيدروكسي بنزالدهيد	D	2-ھيدروكسي أنيلين	В	

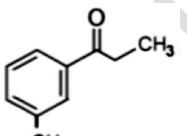
30701513

39 | Page

D В

إذا ارتبطت ذرة الكلور Cl بالموضع Q في المركب أدناه ماذا يكون اسم المركب ؟

14


- ميتا كلورو حمض بنزويك С
- A میتا کلورو بنزامید
- بارا كلورو حمض بنزويك D

B بارا کلورو بنزامید

С

أي من النالي يمثل الصيغة البنائية للمركب فنيل إيثانون ؟

15

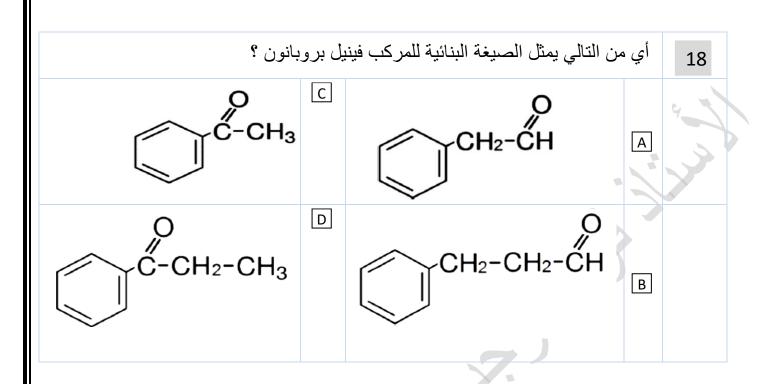
D

В

ما اسم المركب الذي تمثله الصيغة البنائية التالية ؟

NH₂ ŅΟ₂

3-نيترو ينزاميد	С	2-نیترو بنزامید	A
1		1	


D | 8-نیتروبنزونیتریل B | 2-نیتروبنزونیتریل

> أي الأزواج التالية كلاهما يحملان نفس الإسم العلمي ؟ СНз ĊНО ·СН3 Α

СНО

16

17

ما الاسم حسب نظام الأيوباك الذي تمثله الصيغة التالية ؟ O

21

22

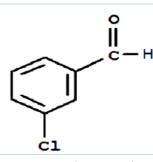
23

ما اسم المركب التالي؟

ما الاسم الصحيح للمركب التالي؟

- A -أمينو-4-كلوروحمض البنزويك C البنزويك A-أمينو-3 -كلوروحمض البنزويك
- B كاورو-4-أمينوحمض البنزويك D المينو-2-كلوروحمض البنزويك

 O_2N O_2 O_2 O_2 O_2


A 2-3-1 الثني نيترو تولوين (C -4-6-ثلاثي نيترو تولوين

B مينو تولوين D -4-3-ثلاثي أمينو تولوين B

°c−c1

A کلورید البنزویل C کلورید البنزویل

B فنیل کلورو میثان D کلورید بنزونیتریل

ما الاسم الصحيح للمركب التالي ؟

A ميتا كلورو حمض البنزويك

B میتا کلورو بنزونیتریل

ميتا كلورو بنزالدهيد

D ميتا كلورو فينول

CN O_2N Br

6-برومو-2-نيتروبنزونيتريل

С

С

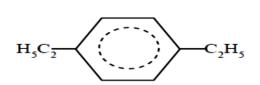
D

D

С

D 1-برومو 4-نيتروبنزونيتريل

ما اسم المركب الذي تمثله الصيغة البنائية التالية ؟


2-برومو-5-نيتروبنزونيتريل

2-نيترو-6-بروموبنزونيتريل

24

25

26

1,4-ثنائي ميثيل ينزين

1,4-ثنائي إيثيل ينزين

ما الاسم الصحيح للمركب التالي ؟

1,2-ثنائى ميثيل ينزين

1,2-ثنائي إيثيل ينزين

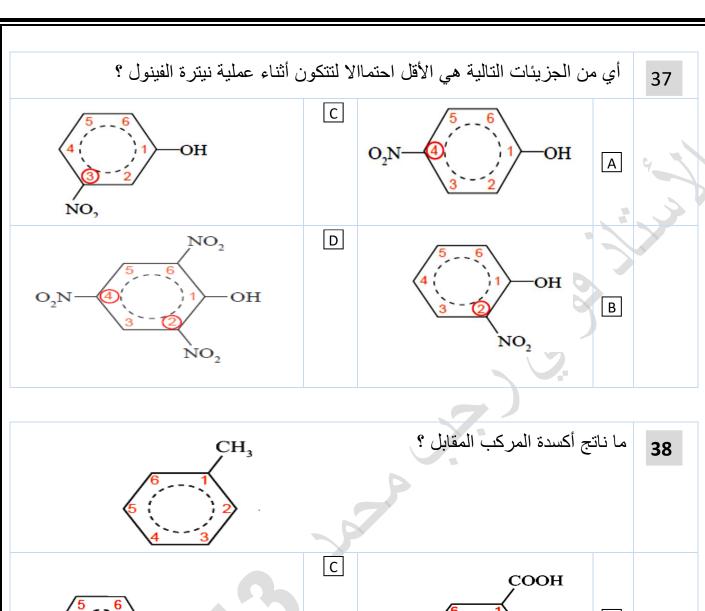
В

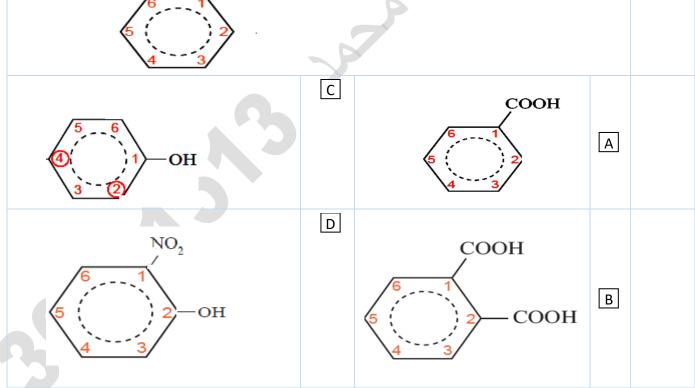
Α

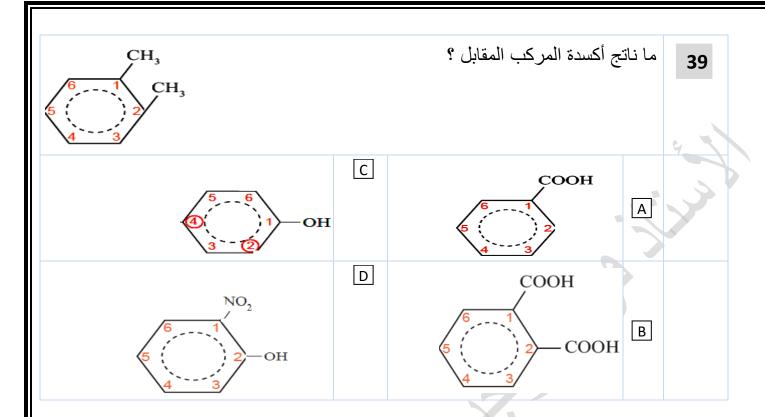
أي من التالي مثالا لحمض كربوكسيلي ؟ 27

CH₃ С -ОН

В


Α


44 | Page


الأستناذ / قولي رجب - كيمياء - الثانوية العامة - الفصل الدراسي الأول -30701513

28		مدد ذرات الهيدروجين الموجودة قى وعتي نيترو على حلقة البنزين ؟	الجزئ	الأروماتي الناتج عن حدوث عملية إستبدال
	Α	2	С	5
	В	4	D	6
	1			
29	ما ال	مركب العضوي الناتج عن عملية أدّ	سدة ألكيا	ل البنزين ؟
	A	كحول أروماتي	С	ألدهيد أروماتي
	В	إستر أروماتي	D	حمض كربوكسيلي أروماتي
			1	
30	ما ال	غاز الناتج عن تفاعل القينول مع فلز	الصودي	وم ؟
	Α	H ₂	С	N ₂
	В	O ₂	D	CO ₂
			5	
31		م المجموعة التي تحل محل ذرة اله روفيلية ؟	در وجيز	، عندما تخضع الأرينات للنيترة
	Α	النيترات	С	النيتريت
	В	النيتريد	D	النيترونيوم
			ı	
32	ما الر المقابا	رقم الذي يشير إلى الموقع البنزيلي ل؟	ئي الشكل	3_4
	А	1	С	2
	В	3	D	4

جموعة الميثيل ومجموعة الهيدروكسيل	ه إليه مـ	الموضع على حلقة البنزين الذي توجاء عملية الإستبدال النيوكليوفيلي؟		33
أورثو و ميتا	С] أورثو و بارا	A	
أورثو وميتا وبارا	D] ميتا وبارا	В	
			=	7
		الصيغة الكيميائية لمجموعة الفينيل؟	ما	34
C ₆ H ₅ OH	С	C ₆ H ₆ OH [Α	
C ₆ H ₅	D	C ₆ H ₆	В	
ن والتي ستوجه مجموعة الهيدروكسيل بدال إلكتروفيلي ؟		رقم ذرات الكربون الموجودة على حلفه ها بأكبر نسب عندما يخضع الفينول لعم		35
2 و 3	С] 1 و 2	Α	
2 و 4	D] 1 و 4	В	
			'	
\$ 25	?	ب مما يلي صحيح عن الموقع البنزيلي	أي	36
لأكسدة	عملية ا	عدم وجود هيدروجين بنزيلي لا تحدث	>-i	
زین یتأکسد کلاهما	حلقة البن	في حالة وجود مجموعتي ألكيل على .	-ii	
ملى حلقة البنزين يتأكسد كلاهما	ألكيل ع	. عند وجود مجموعة نيترو ومجموعة	-iii	
i e iii	С] i و ii	Α	
i e ii e iii	D] ii e iii	В	

أي من التالي يمثل الإلكتروفيل في تفاعل نيترة البنزين ؟								
HSO ₄	С	HNO_2^-	A	40				
NO ₃	D	NO_2^+	В					

		ما السبب الذي يجعل الفينول أكثر نشاطا	41
مجموعة ⁻ OH التي تقال الكثافة الإلكترونية لحلقة البنزين	С	مجموعة -OH التي تزيد الكثافة الإلكترونية لحلقة البنزين	
مجموعة - OHالساحبة للإلكترونات	D	مجموعة -OH التي توجه في الموضع ميتا	

أي مما يلي صحيح عن الفينول ؟

i-أقل نشاطا من البنزين بسبب وجود مجموعة الهيدر وكسيل المانحة للإلكتر ونات.

ii- يتفاعل مع القواعد القوية والصودبوم كحمض ضعيف.

iii- يكون خمس تراكيب رنين غير متكافئة تعمل على إستقرار الأيون.

ii و iii C

i e ii A

i و ii و iii D iii e iii

ما ناتج تفاعل الفينول مع فلز الصوديوم ؟

43

42

 $C_6H_5ONa + H_2$

 $C_6H_5ONa + H_2O$

 $C_6H_5COOH + H_2$

D

c

 $C_6H_5COOH + H_2O$

ما سبب تفضيل مركبات الأرينات تفاعل الإحلال الإلكتروفيلي عن تفاعلات الإضافة ؟ 44

وجود ظاهرة الرنين في حلقة البنزين [] الروابط الثنائية الثابتة في حلقة البنزين

النشاط الكيميائي العالي لحلقة البنزين [D] المركبات الناتجة عن الإحلال أكثر استقرارا

В

ما تأثير مجموعة الهيدروكسيل (OH) على النشاط الكيميائي لحلقة البنزين ؟ 45

A زيد الكثافة الإلكترونية و النشاط الكيميائي C تزيد الكثافة الإلكترونية تقال النشاط الكيميائي

B تقلل الكثافة الإلكترونية و النشاط الكيميائي D تقلل الكثافة الإلكترونية وتقلل النشاط الكيميائي

(OH) على تفاعلات الإستبدال	روكسيل	ي من التالي يصف تأثير مجموعة الهيدر لإلكتروفيلي في الفينول ؟	46
تزيد نشاط الحلقة الأروماتية وتوجه في الموضع أورثو وميتا	С	تزيد نشاط الحلقة الأروماتية وتوجه في الموضع أورثو وبارا	9 4
تقال نشاط الحلقة الأروماتية وتوجه في الموضع أورثو وميتا	D	تقال نشاط الحلقة الأروماتية وتوجه في الموضع أورثو وبارا	

 47
 أي مما يلي صحيح عند تفاعل خليط من حمض الكبريتيك المركز وحمض النيتريك المركز مع النزين ؟

 i- الإلكتروفيل النشط هو -NO_.

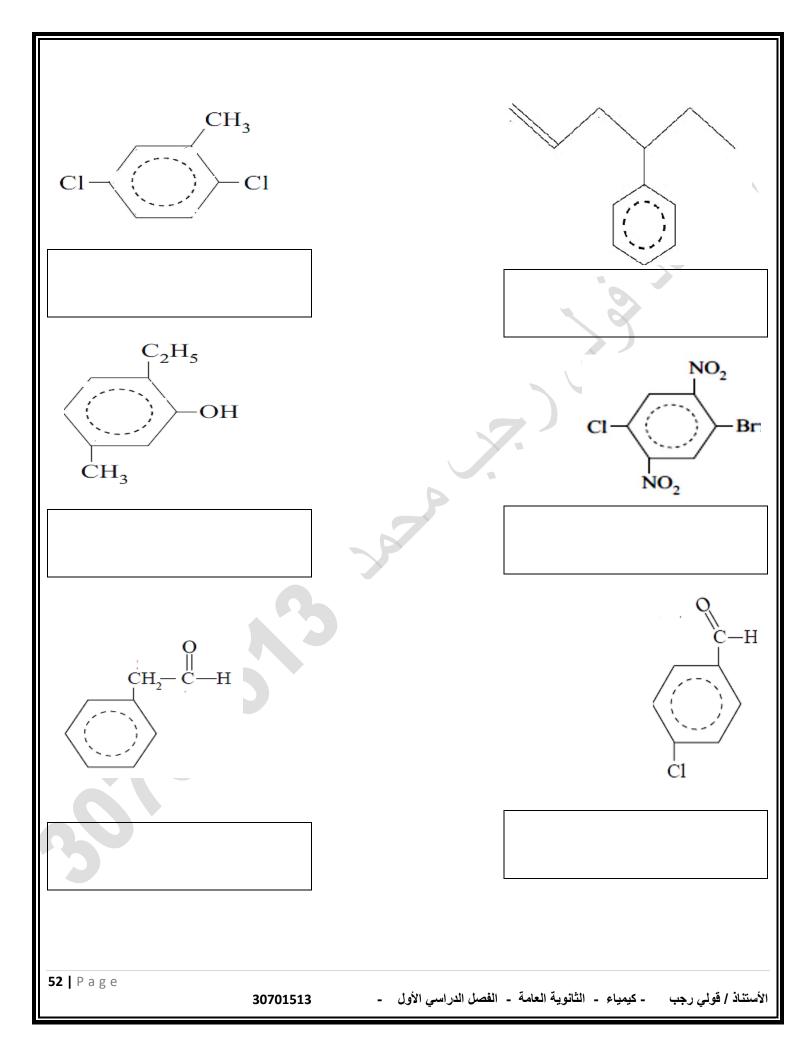
 ii- يتم التفاعل عند درجة 500 .

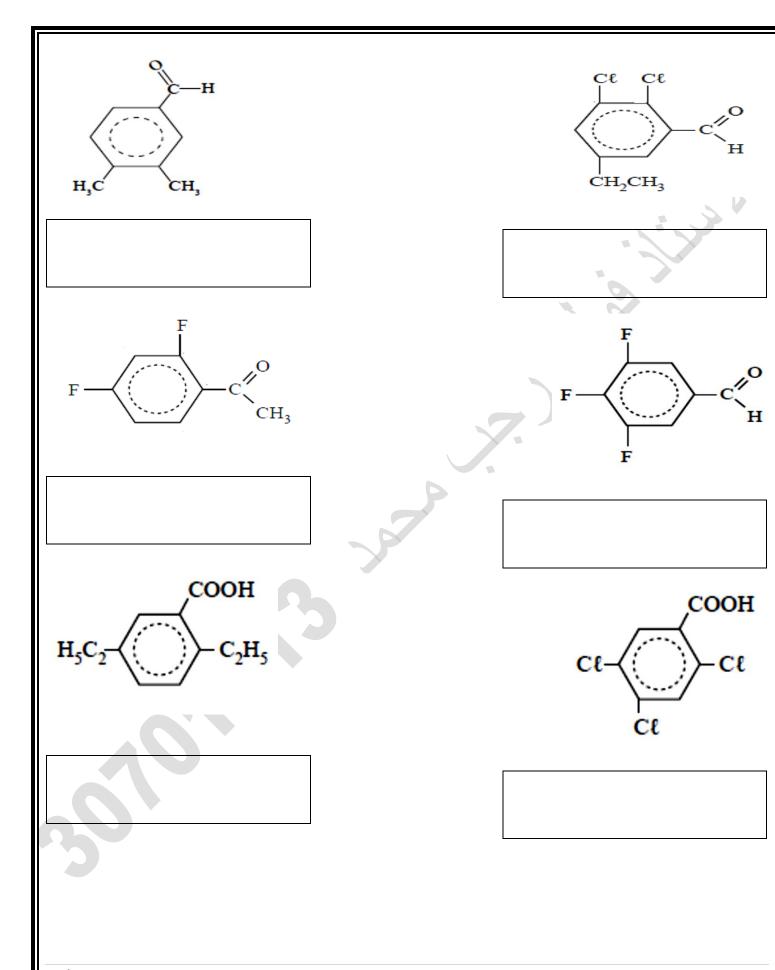
 iii- يعمل حمض النيتريك المركز عامل حفاز .

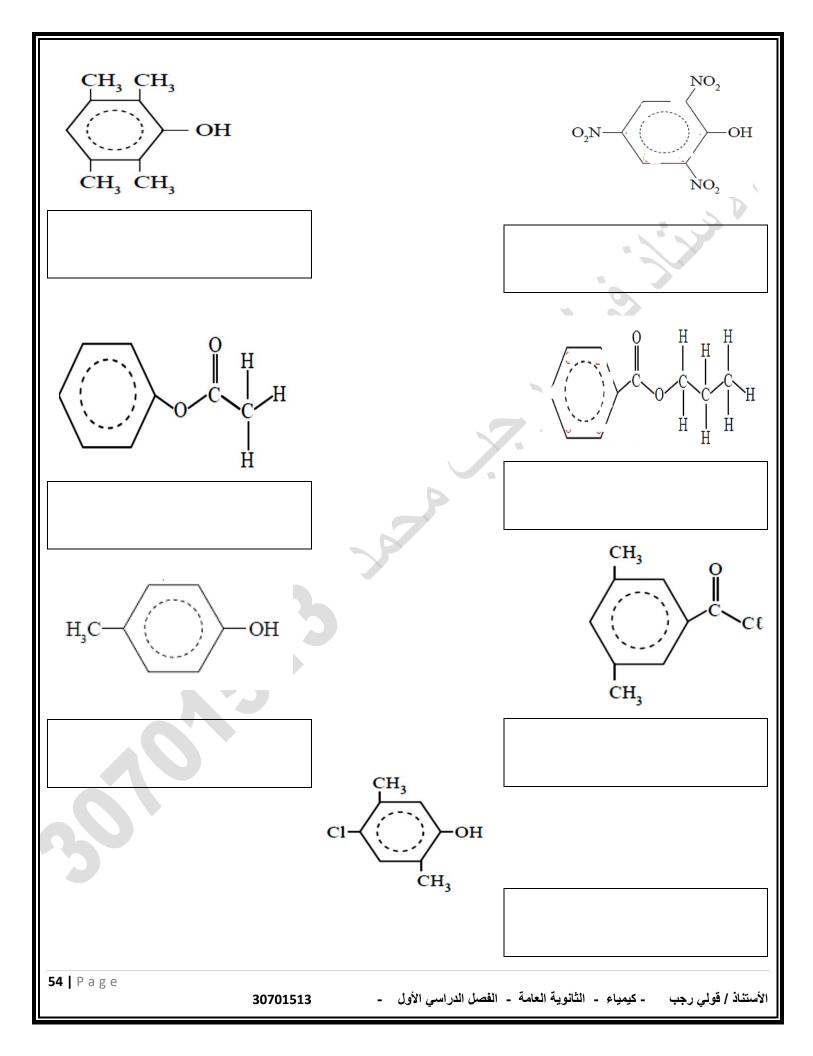
 A

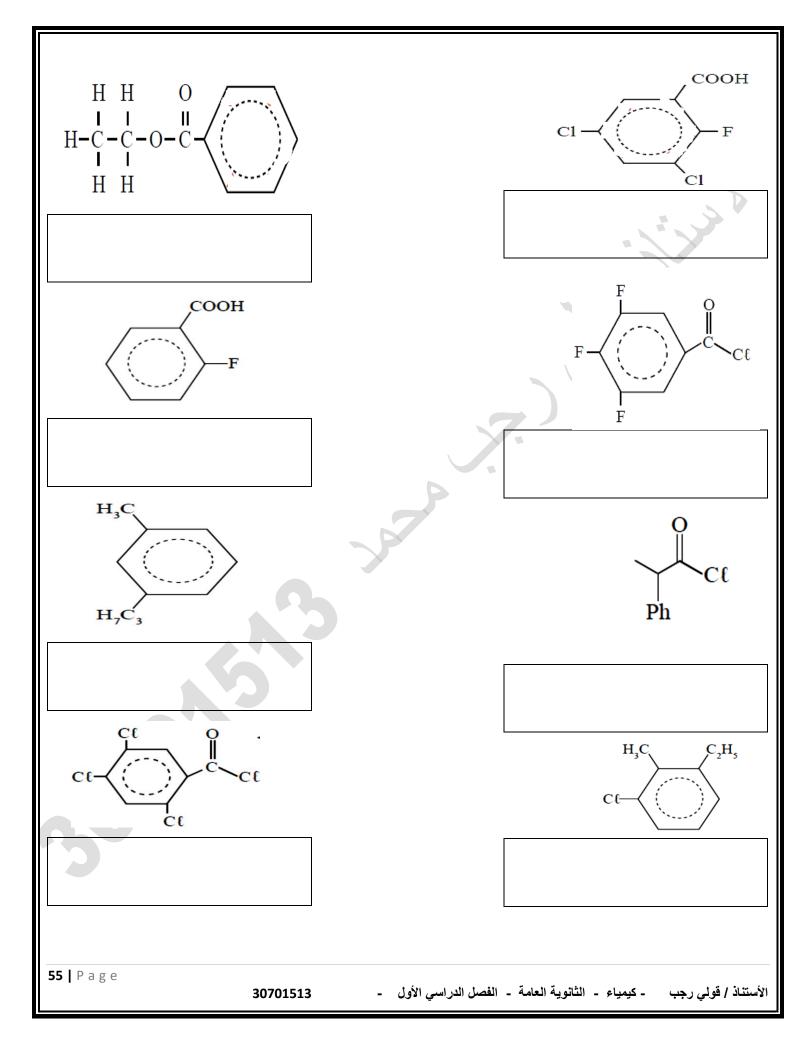
 iii و ii

 Iii و ii


المقالية	الأسئلة
----------	---------


السؤال الأول أكتب أسماء المركبات التالية:


COOH



$$H_5C_2$$
 $-Br$

التالية	للمركبات	البنائي	التركيب	ارسم
	<u> </u>	<u> </u>	<u> </u>	<u> </u>

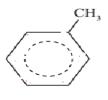
البنائي للمرحبات النالية	ارستم التركيب
حمض 4- أيودو بنزويك (4-iodobenzoic acid).	، فينيل البنزوات (phenyl benzoate).
4-كلورو بنزالدهيد (4-chlorobenzaldehyde).	1- فلورو -4- فينيل -3- هكسانون (1-fluoro-4-phenyl-3-hexanone).
	5.
2,1-ثنائي فلورو -6- أيودو بنزين	4,2-ثنائي كلورو فينول (2,4-dichlorophenol).
. (1,2-difluoro-6-iodobenzene)	(2,1 diemorophonor, ogue 3,2 1,2
، إيثيل البنزوات (ethyl benzoate).	5,3,1-ثلاثي ميثيل بنزين (1,3,5-trimethylbenzene).
3,2,1-ثلاثي برومو بنزين (1,2,3-tribromobenzene).	2-فینیل-3-هبتانون (2-phenyl-3-heptanone).
56 Page	

	(-1111 -1.11 ₀) , (()) (()) (
ميثانوات الفينيل Phenyl methanoate	6-phenylhexanoyl chloride فينيل كلورىد هكسانوبل-6
	9
او4- ثنائي كلورو -2-ميثيل بنزين (1,4-dichloro-2-methylbenzene)	2-methylbenzoic acid حمض2-ميثيل بنزويك
	33.5
	5.
2-فينيل إيثانال (2-phenyl ethanal)	.2-ایثیل-5-میثیل فینول(2-ethyl-5-methylphenol).
	(2.4.122
2,4,5-trichlorobenzoic acid . ثلاثى كلورو بنزويك، 5,4,2	(2,4-difluoro)phenylethanone ثنائي فلورو)فينيل إيثانون
2-methylbenzoic acid حمض2-میثیل بنزوبك	حمض3-فینیل هکسانوبك 3-phenylhexanoic acid
33.3	o phonyment and agree of the
57 Page	

فينون فينون فينون فينون فينون فينون فينون فينون في فينون فينون في فينون فينون في في فينون في فينون في فينون في	فینول مودیوم مودیوم (1) أنبویة اختبار رقم (1) Test tube no. (1)	لسؤال الثاني: درس الشكل المقابل ثم أجب عن الأسئلة التالية: 1- أي الأنبوبتين يتصاعد منها غاز وما اسم الغاز؟ رقم الأنبوبة: اسم الغاز: 2- أكتب الصيغة الكيميائية للمركب العضوي الذي يتكون في الانبوبتين؟ وما هو استخدام ها المركب؟ الصيغة الكيميائية: الاستخدام: الاستخدام:
H ₂ 0 + Y - OH +		7 + 11 ₂ 0

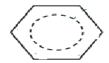
Z + H₂

التفاعل رقم 3


1- أكتب الصيغ الكيميائية للمركبات X, Y, Z?

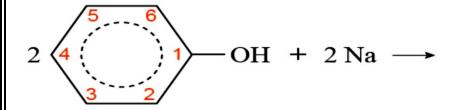
2- ما رقم التفاعل الذي يدل على حمضية الفينول ؟فسر ذلك ؟

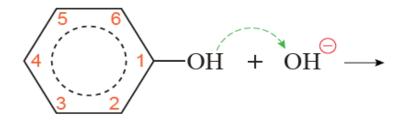
متبدال في التفاعل رقم 1 ؟	ى النشاط الكيميائي لحلقة البنزين ومواضع الاس	3- ما تأثير مجموعة الهيدروكسيل عل
	التفاعل رقم 3 ؟	4- ما هي استخدامات المركب Z في
تها ؟	ها أيون الفينوكسيد في التفاعل رقم 2 وما أهمي	5- كم عدد تراكيب الرنين التي سيكون
فيلي ؟	يائيا من البنزين في تفاعلات الإستبدال الإلكتر	6- لماذا يعتبر الفينول أكثر نشاطا كيم
	التالية ثم أجب عن الأسئلة التي تليها:	
CH ₃	CH ₃ CH ₃ CH ₃	CH NO ₂
المركب 🗛	المركب B	المركب C
	، KMNO ؟ فسر إجابتك ؟	1- ما المركب الذي لا يتأكسد بواسطة
	ج عن أكسدة المركب C بواسطة KMNO4؟	2- ما الصيغة الكيميائية للمركب الناتج
	ج عن أكسدة المركب A بواسطة KMNO4؟	3- ما الصيغة الكيميائية للمركب الناتج
50 P 2 g 0		

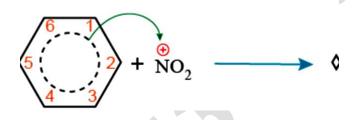

السؤال الخامس: ادرس المركبات التالية ثم أجب عن الأسئلة التي تليها:

OH

C₆H₅CH₃


C₆H₅OH




C₆H₆

المركب C	المركب B	المركب A
(A أم B)؟فسر إجابتك ؟	في تفاعلات الإستبدال الإلكتروفيلي (1- ما المركب الاكثر نشاطا كيميائيا
₹ KMn	تج عن أكسدة المركب C بواسطة O ₄	2- ما الصيغة الكيميائية للمركب النا
	كب A ? وما شروط هذا التفاعل ؟	3- ما المركب الناتج عن نيترة المردّ
(أكتب الناتج عند زيادة درجة الحرارة)؟	تأثير زيادة درجة الحرارة على الناتج	4- ما نواتج نيترة المركب C ؟ وما
اتج الأكسدة بواسطة 4KMnO ؟	لكربون رقم 3 في المركب C أكتب ن	5- عند إرتباط مجموعة إيثيل بذرة ا
، C أكتب ناتج الأكسدة بواسطة 4KMnO ؟	N) بذرة الكربون رقم 3 في المركب	O_2^- عند إرتباط مجموعة نيترو O_2^-
	قع بنزيلي في المركبات السابقة ؟	7- ما المركب الذي يحتوي على مو

السؤال السادس: أكمل المعادلات التالية

$$NO_2^+ + C_6^-H_6^- \rightarrow$$

لسؤال السابع: ارسم ميكانيكية نيترة البنزين

······································