(لفصل الأول: الحمض النووي و الجينـات والكروموسومـات
س: أين تخزن المعلومات التي تحتّاجها كل خلية من خلايـا جسمك؟ ج: تخزن في جزيئات موجودة في أنوية الخلايا وهو الحمض النووي الر ايبوزي منقوص الأكسجينDNA. س: ما المقصود بالحمض النووي الر اييوزي منقوص الأكسجين (DNA)؟ ج: هو عبارة عن جزئ كبير يشبه السلم الحلزوني، وهو يحمل المادة الور اثثية في الخلية وهو المكون الأساسي للجينات و الكروموسومات، ويخزن المعلومات اللازمة لعمل الخلايا.
(لارس (1-1) جزئ الور اثثة

س: من هو العالم الذي أكتشف الحمض النووي الراييوزي منقوص الأكسجين(DNA)؟ (عالْ ج/ هو العالم فريدريك ميشر (عام ^NV) اكتشففه في أنوية الخلايا الصديدية.

س: وضح كيف تمكن الباحث البريطاني فريدريك جريفث تحديد ما إذا كانت الجينات تتركب من حصض أم من البروتين؟ DNA

ج: -التجبرية:

- أستخدم جريفث بكنيريا ستربنوكوكس نومونبا (التي تسبب الالتهاب الرئوي).
- حقن فأر ا بخليط من سلالة S الميتة وسلالة R الحية .
- أفترض أن الفأر لن يتأثز بهذا الخليط
-
- الفأر أصيب بالالتهاب الرئوي ومات. وقام جريفث بالبحث عن سبب موت الفأر - وزلك من خلا :-
- قام جريفث بنرك البكتيريا المأخوذة من الفأر الميت نتكاثر . - فظهر نسل البكتيريا من سلالة S ذات الغطاء المخاطي. - أفترض جريفث :-
- أن مادة التحول اننقلت بطريقة ما من سلالة S الميتة إلى السلالة R الحية. - و هذا أدي إلى تحول سلادلة R إلى سلالة S. - الاستنتّاج: -
- أن مادة التحول هي مادة ور اثية بسبب ظهور صفات جديدة في النسل

ملحوظات: -
1-لاحظ علماء آخرون أن العديد من البروتينات نتضرر من الحرارة. (فافترضو ا أن حض DNA وليس البروتينات هي المادة الور الثية)
 R إلى السلالة S . أكدت هذه النتائج أن حمض DNA هو المادة الور انثة.

(DNA أو بروتين ؟ (تجريـة البكتيريوفاج)

س: كيف أثبت عالما الورثة الامريكيان وهم مـارثـا تثبسِ و ألفقريد هيرشي أن المادة الور اثية هي DNA وليست البروتين ؟
ج: من خلال اجر اء تجربة على الفيروسات (للبكتبريوفاج (لاقم البكتيريا أو الفاج). - ملحوظة: -ينركب البكتبريوفاج من مكونين هما: 1-حمض DNA

س: ماذا يحدث عند غزو الفيروسات (البكتيريوفاج) للخاليا البكتبريةٌ ج: ا-يلتصق بسطح الخلايا البكتبرية الفيروسات (البكتيريوفاج). Y ب-حققن مادة فيها تعمل على ضبط عمليات الاسنقلاب الخلوي وصفات خلية البكتبريا كما تفعل الجينات. س: ماذا أستتتج العالمان من تجربة الفيروسات البكتيريوفاج؟ ج: أن المادة المحقونة هي لابد أن نكون المادة الور اثثة.

س: وضح تُجربة العالمان تتُيس و هيرشي التي استخلصا منها أن المادة الور اثثة في البكتيريوفاج هي حمض DNA ؟ ج::اللتجربة: -ا-أعد خليط للفاج فيه DNA مشع وخلايا بكتبرية وخليط آخر للفاج فيه بروتين مشع وخلايا بكتبرية.

Y-التصقت الفاجات بالبكتيريا وحقنتها بمادة الور اثية. r-بـعد ذلك بدأت البكتيريا في إنتاج فيروسات جديدة من البكتيريوفاج ج (الملاحظة :-أن الحمض DNA المشع هو الذي دخل إلي خلايا البكتيريا (اللاستتّاج: :-أستتتج العلماء أن المادة الور اثثة هي حمض DNA وليس البروتين .

(للارس ال

س: كيف ساعد التصوير بالأشعة XX العلماء عند محاولتّهم لتصميم نموذج DNA ؟ ج: بالحصول علي صور الجزيء و اكتثاف نركيب حصض DNA .
س: ماذا يقصد بالنيو كليوتيدة ؟ ومم نتركب؟

- اللنيوكليوتبية : هو المكون الأساسي للأحماض النووية DNA و RNA .
- نتزكب النيو كليو تيدة الو احدة من :-1-سكر خماسي الكربون:
- في حض DNA نوع السكر :منقوص الأكسجين أو الديؤكسي راييوز
 .
r-

Y- اليبورينات	1-البيريميدينات	وجه المقارنة
جزيئات حلقّة مزدوجّ	جزيئات حلقية مفردة	نتكون من
الأدنين -\|لجو انين	الثايمين-السيبتوسن- اليور اسيل	القو اعد النبيتزو جينية

س: قارن بين الحضض النووي DNA و الحمض النووي RNA من حيث نوع القو اعد النيتزو جينية :

: ما هو قانون شارجاف ؟
ج: أن كمية الأدينين نتساوي دائما مع كمية الثايمين ، وكمية السينوسين تتساوي دائما مع كمية الجو انين .
س: أذكر أهمية قانون شارجاف ؟
. DNA ج: تحديد تركيب جزئ حمض

ملاحظة:

 - أوضحت الصورة ثخانة الجزيء و النفافة بشكل لولب . - عرضت فر انكلين إحدى صور ها لمادة حمض DNA علي العالم جميس واطسون - لحظ العالم جميس واطسون وزمليه فر انسبس كريك : أن جزئ حمض DNA ثخين لدرجة أنه لا يمكن أن يكون شريطا مفردا . - وبذلك صمم نموذج يسمي اللولب المزدوج ج
 هو جزئ ذو شريطين من النيوكليو تيدات ملتفين حول بعضهما بعضا ويشبه السلم الحلزوني س: كيف يككن للليو كليوتيدات تكون اللولب المزدو ج لجزيءDNA ؟ ج: لأن النيوكليو تيدات تتكون من ثلاث مكونات وهي : - الأول هو : السكر الخماسي الكربون - الثاني هو : مجمو عة الفوسفات .

يرتبط الأول والثاني معا بر ابطة كيميائية فوية (تساهمية) لتكون هيكل يشكل جانبي اللملم الحلزوني - الثالث هو : إحدى القو اعد النيتروجينية التي ترتبط بالسكر بر ابطة كيميائية فوية (تساهمبة). وبذلك ترتبط كل قاعدتين معا برابطة كيميائية ضتيفة (رو ابط هيدروجينية) لتكوين درجات السلم وبهذه الطريقة تكون اللنيوكليوتيدات اللولب المزدوج جلجزيء حمض DNA

- يتكون كل زوج من فو اعد حض DNA من (قاعدة بيورينية مع قاعدة بيريميدينية) - حبث يرنبط الأدنين مع الثابمين بر ابطتين هيبرو جينيتين - حبث يرتبط الجو انين مع السبينوسين بثلاث رو ابط هيدرو جينية.

س : ما الذي ساعد علي شر ح كيفية نسخ أو تضاعف حمض DNA ؟ . DNA اكتثشاف واطسون وكريك لتزكيب اللولب المزدوج لمادة حمض

س : علل :يحمل كل شريط من شريطي اللولب المزدوج كافة المعلومات التي يحتّاج إليها. ج: لإعادة إنشاء الثريط الآخر بحسب نظام القو اعد المتكاملة المزدوجة عند فصل الشريطين.

س: علل : قبل انقسام الخلية يتضاعف حمض DNA . ج: حتي تأخذ كل خلية جديدة نسخة كاملة متطابقة من جزيئات حمض DNA .

६-1 كبف بحدث التضاعف ؟
. ا- فبل أن تبدأ عملية التضاعف :يجب حل التفاف اللولب المزدوج وفصل شريطي حض
rعن طريق كسر الروابط الهياروجينية التي تربط القو اعد المتكاملة . r- عندما ينفصل الثريطان ترتبط إنزيمات أخري وبروتينات علي كل من الثنريطين الفرديين. .لكنع تقاربهما وإعادة التفافهما
₹- نتحرك إنزيمات بلمرة حمض DNA بدءا من شوكة التضاعف علي طول كل من شريطي حمض وتستمر علي طول الشريطين حيث تعمل علي إضافة النيوكليوتيدات للقو اعد المكثوفة بحسب نظام ازدو اج القو اعد(يعمل كل شريط كقالب) وبذلك يتشتكل لولبان مزدوجان جديدان

> : ما الدقصود بشوكة التضـاعف ؟

ج: هي النقطة التي يتم عندها فصل اللولب المزدو ج .
س : ما أهية إنزيمات بلمرة حمض DNA
ج: حيث تعمل علي إضافة النيوكليو تيدات للقو اعد المكشوفة بحسب نظام ازدو اج القو اعد (يعمل كل شريط كقالب) وبذللك يتشكل لولبان مزدوجان جديدان

ملحوظة هامة :-
تبقي إنزيمات بلمرة حمض DNA مرتبطة بالشريطين حتي وصولها إلى إثنارة تأمر ها بالانفصال . س: علل : إنزيمات بلمرة حمض DNA لها دور في التنقيق اللغوي . ج: لأن أثتاء عملية التضاعف قد تقع بعض الأخطاء حيث أن نيوكليوتيدا خاطئُ قد يضاف إلي الثريط الجديد حيث يزيل هذا الإنزيم خلال عملية التنقيق اللغوي النيوكليوتيد الخاطئ ويستبدله بالنيوكليو تيد

س: ما أهمية البروتين في جسم الكائن الحي؟
ج: يؤدي البروتين دورا أساسبا في كل عمليات الكائنات الحية بدءا من تتفس خلية البكثيريا وصو لا إلى طرفة عين الفيل .

س: كيف تصنع الكائنات البروتينات التي تحتّاج إليها ؟ ج: من خلال عملية تنسى تصنيع البروتين تتّ فيها ترجمة التنركيب الجيني للكائن (تركيب المورثات) إلى تزكيب ظاهري (الصفات) .

س: ما المقصود بالجينات ؟
ج: عبارة عن مقاطع من حمض DNA مكونة من تتابعات من النيوكليوتيدات (القو اعد النيترو جينية) ويشكل هذا التتابع شفرة تصنيع البروتينات في الخلية الحية .

س: متي يتم التتبير عن الجين ؟
عندما يصنع البروتين بحسب الشفرة التي يحملها الجين . ملحوظة :-
في بعض الأحيان يتحكم جزئ حمض DNA في جين معين بتصنيع البروتينات التي تحكم بدور ها تعبير جينات أخرى ، لناحية تتشيطها وتثبيطها - مـطومة هامة :-

يتطلب تصنيع البروتين عمل الحض النووي الراييوزي منقوص الأكسجين DNA مع حمض نووي آخر يسمى الحض النووي الراييوزي RNA. س: ما ها هو الحمض النووي الراييوزي RNA ؟ هو جزئ يتألف من شريط مفرد من النيوكليوتيدات ، يؤدي دي دور ا مـيمها في نقل المعلومات الور اثية من من حمض DNA الموجود داخل النواة إلى السيتوبلازم لتصنيع البروتين .

س: ما أوجه الاختّلاف في التزكيب بين حمض RNA وحمض و DNA ؟

س: عدد أنواع الحمض النووي الراييوزي RNA ؟
rRNA الراييوسومي ج: ا- الرسول الناقل mRNA الر

ويتم فيها نسخ المعلومات الور اثية فيها من أحد شريطي حصض .mRNA على صورة شريط من حضض DNA و-
و هي العملية التي عن طريقها تتحول لغة قو اعد الأحماض النووية إلى لغة البروتينات (الأحماض الأمينية) .

س: ما المقصود بالنسخ ؟
هو عملية نقل المعلومات الور اثثة من شريط DNA إلى شريط mRNA س: كيف تتّ عملية النسخ ؟ (مر احل عملية النسخ)
ا- خالل عمية النسخ يلتحم مع حمض DNA إنزيم بلمرة حمض RNA. Y-Y- يمر إنزيم بلمرة حمض RNA على طول القو اعد في شريط الDNA الDNA هذا ، ودائما في اتجاه واحد يقر أ الإنزيم كل نيوكليو تيد ويقرنها مع نيو كليو تيد من نيوكليوتيدات حض RNA المتكاملة .
 جزئ حمض mRNA إلى السيتوبلازم ، أما شريطا حمض DNA، فيرتبطان مجددا ليعيدا نكوين اللولب المزدوج الأساسي س: ما إنزيم بلمرة حمض RNA:-
DNA هو إنزيم يضيف نيوكليوتيدات للقو اعد المكثوفة لثريط حمض بحسب نظام ازدو اج القو اعد لإنتاج شريط حمض mRNA أثناء عملية النسخ. س: علل : تشثبه عمليه النسخ عملية التضاعف ج: حيث تستعمل القو اعد في أحد شريطي حمض DNA كقالب الصنع جزئ جديد من حض RNA بعد ف فصل الثريطين

س: قارن بين :-

الخالايا أولية النواة	الخالا حقا	وجه المقارنة
موجودة في السبيّوبلازم	داخل النواة	وجود نيوكليو تيدات حض

 عدا أن اليور اسيل يرتبط بالأدينين بدلا من الثايمين .

- يجب أن يمر mRNA في مرحلة إضافية قبل أن يخرج من النو اة لتبدأ عملية التزجمة وهو يسىى في هذه المرحة (حمض mRNA الأولي pre-mRNA)
-حمض mRNA الأولي يحتوى إلى جانب حمض DNA في الخلايا حقيقة النواة علي:
 Y- أجزاء تشفلر (تنترجم) إلى بروتينات تسمى (الإكسونات) Eons.
- تستتسخ الإنترونات و الإكسونات في حمض DNA إلى mRNA الأولى

- أي أن
(في جزيئات حمض RNA مقاطع نسمي الالتترون وهي تنزال منها فبل أن تصبح هذه الجزيئات
 (mRNA لنكوين جزئ نهائي من
- في هذه الطريقة ، يكون mRNA قد شذب ، أي قطع وأعيد تجميعه. - س علل: تُتبر عملية النتظذيب حمض RNA خطوة مهمة في عملية تصنيع البروتينات في الخلايا حقيقة النو اة .
- بعد أن يشذب mRNA يخرج من النو اة ويتجه نحو الراييوسومات حيث تتم عملية الترجمة . ६- الثفرة الور اثية (كودون) :-

س: كيف يتم تصنع البروتينات ؟
ج: من خالل اتصـال الأحماض الأمينية في سلاسل طويلة ، ذات أعداد مختلفة من الأحماض الأمينية العشرين ، نسمي عديدات البيتيد.

س: ما المقصود بعديدات البيتتي ؟
ج: اتصال الأحماض الأمينية في سلاسل طويلة ، ذات أعداد مختلفة من الأحماض الأمينية العشرين الألما - تحدد خصائص البروتينات تبعا لأنواع هذه الأحماض الأمينية .

س: كيف أن تتابعا معينا من القو اعد النيتروجينية في mRNA ، يترجم إلى تتابع معين من الأحماض الأمينية في عديد البيتيد ؟
ج: لأن اللغة التي تنخل في تركيب mRNA تنمى الثفرة الور اثثة ، وهي لغة ذات أربعة حروف تمتل أربع قو اعد مختلفة هي G،C،U،A. س: كيف لثفرة من أربععة حروف أن تحمل تركيبات لنحو ب ٪ حمضا أمينيا مختلفا ؟ ج: نتقر أ الثفرة الور اثية بثلاثة قو اعد في كل مرة تمتل كودونا.

ج: هو مجموعة من ثلاثة نيوكليوتيدات على mRNA تحدد حمض أمينيا معينا تتث إضافتّه إلى أحماض أمينة أخرى لتتككيل سلسلة عديد البيتيد .
س: أعطي مثال علي الكودون ؟

- على سبيل المثال تتابع mRNA التالي UCGCACGGU - يجب أن يقر أ هذا التتابع ثلاث قو اعد في كل مرة كما يلي :
UCG - CAC - GGU
- هذه الكودونات تمنل الأحماض الأمينية المختلفة التالية :
UCG - CAC - GGU

جيليسين- هستدين - سبرين
ملحوظة :-

عند فحص الأربعة وستين كودونا للثفرة الور اثثة الموضحة ستلاحظ أن بعض الأحماض الأمينية تحدد بأكثر من كودون ، على سبيل المثال ، هناك ستة كودونا كاتـات تحدد الحمض الأميني ليوسين وستة أخرى تحدد الحمض الأميني أرجنين في حين هناك كودون واحد وهو AUG يحدد البدء من خلال استثععاء الحمض الاميني ميثونين لبدء تصنيع البروتين تلاحظ أيضا :-
أن هناك ثلاثة كودونات لا تنتفر (لا تترجم) لأي حمض أميني ، وتـل على التوقف
س: ما المقصود بكودونات التوقف؟
هي الكودونات تشبه النقطة في نهاية الجملة حيث تحدد نهاية سلسلة عدبد الببتيد(UAG - UGA - UAA)
س: ما المقصود بالتزجمة ؟
ج: هي فكك الشففرة في mRNA لنكوين سلسلة عديد الببتيد وهي عملية تحدث في الراييوسومات . - خالل الترجمة :- نستخدم الخلية المعلومات في mRNA لتصنيع سلسلة عديد البيتيد .
: مما يتألف الر اييوسوم ؟
ج: من وحدتين ، وحدة كبيرة والأخرى صغيرة ، ترتبطان بعضمها بعضا فقط أثناء عملية الترجمة ، لاى الوحدة الكبرى للر اييوسوم موقعين للارتباط متجاورين هما A و p p
س: ما أهمية مو اقع الارتباط A و p في الر اييوسومات ؟

ج: يؤديان دور ا مهما في عملية التزجمة . إذ يرتبط بكل منهما tRNA يحمل حضضا أمينيا خاصا به . . وستثكل هذه الأحماض في ما بعد سلسلة عديد البيتيد

تصنبع البروتين

- قبل أن تحدث الترجمة ، يجب أن ينسخ ،mRNA أولا من حمض DNA داخل النواة ، يشذب ثم . يطلق إلى السبيّوبلازم ج: ا-مرحلة البدء.

س: أشر ح بالثنصيل مرحلة البدء؟
أ- مرحلة البدع :-
ا-تّبدأ عطلية النزجمة عندما يرتبط mRNA بالوحدة الر اييوسومية الصغرى في السينوبلازم r- r-كون mRNA موجها بحيث يتمركز كودون البدء AUG (الذي يشفر للحمض الأميني ميثيونين) عند الموقع p.
זـَّثم يرتبط بكودون mRNA جزئ tRNA الذي يحمل في إحدى طرفيه مقابل الكودون.

س: ما المقصود بمقابل الكودون ؟
ج: هو مجمو عة من ثلاثة نيوكليوتيدات يحملها tRNA في خلال عملية الترجمة وتكون متكاملة مع الكودون الذي يحمله mRNA وفي طرفه الثناني الحمض الأميني المشفر لهـ . を- جزئ tRNA الأول في عملية التزجمة يحمل مقابل الكودونUAC من جهة و الحضض الأميني ميثونين من الجهة الثانية .
0- عند اكتمال تركيب اللرإيوسوم (المفعل:

الكودون المتكامل مع الكودون الثناغر في الموقع A A A A A A A A حاملين لحمضين أمينين يساعد إنزيم معين في ربط الحمضين الأمينين ، بر ابطة ببتيدية ، مكونا أول حمضين أمينين في سلسلة البيتيد .
ب- مرحة الاستطالة :-

- بعد ربط الحضين الأمينين الأول و الثناني ، ينفصل جزئ tRNA الموجود في الموقع p تاركا -ور اءه حمضه الأميني
ثم يندفع جزئ tRNA الموجود في الموقع A ليحل مكان الموقع p الثثاغر . وبما أن مقابل الكودون يبقى مرتبطا بالكودون ، فإن جزئ tRNA و mRNA يتحركان عبر الر اييوسوم إلى الموقع p كوحدة جاهز ا لتلقى جزئ tRNA التاللي مع الحمض الأميني الخاص به . - وبهذه الطريقة ، تتّ نقل الأحماض الأمينية إلى الموقع A، ويتم ربطها بسلسلة البيتيد بو اسطة رابطة ببتيدية حتى ينت الوصول إلى نهاية mRNA

ج- مرحة الانتهاء

- تتتهي عملية التزجمة حين يصل كودون التوقف إلى الموقع A.

س: مـا المقصود بكودون اللتوقف ؟
ج : هو كودون ليس له مقابل كودون ولا يشفر (لا يترجم) لأي حمض أميني ما يؤدي إلى انتهاء عملية - تصنيع البروتين س: ماذا يحدث عند انتهاء عملية تصنيع البروثين ؟
ج:هي العلية التي يتم فيها تجميع الأحماض الأمينية في سلسلة عدبد الببتيد في خلال عملية النرجمة . بعد ذلك يتفكك الر ايبوسوم إلى وحدتيه الأساسيتين ، وينفصل عديد البيتيد (البروتين) ويطلق في الخلية .

لالحِينات و البرويتبنات

س: ما علاقة البروتين بألوان الأز هار وأشكال أور اقها ، فصيلة دم الإنسان أو تحديد جنس الطفل ؟ ج: أن العديد من البروتينات هي إنزيمات تحفز النفاعلات الكيميائية ونتظمها . 1- الجين الذي يحمل شفرة إنزيم يحفز تفاعل إنتاج صبغة يمكنه أن يتحكم بلون الزهرة . ץ- في حين يحنوى جين آخر على تعليمات تصنيع إنزيم يخنص بإنتاج الأنتيجينات التي تحدد فصيلة الام على سطح كريات الام الحمر اء . ץ- تحتوى جينات أخرى على تُعليمات نصنيع بروتينات معينة نتظم معدل النمو ونمطه في الكائن ، فتنتحكم بحجم هذا الأخير وشكله

بـاختصار البروتينات هي مفاتبح معظم مـا تقوم بـه الخلبة من وظائف .

س: علل : تتصل أصابع أقدام البط بأغشية أما أصابع الاجاج فلا ؟
ج: يعود ذللك إلى وجود بروتينات تسمى بروتينات تخليق العظام وتحول دون نمو أغثنية بين أصـابع الاججاج

أ- الجبنـات و البروتبنـات :

س: أي جين من الجينات في الخلية يعبر عنه بشكل دائم ؟ ج: وهو الجين الذي ينسخ إلى mRNA .

س: كيف تحدد الخلية أي الجينات سوف ينشط و أي الجينات يبقى ساكنا ؟ - قد يبدو نتابع النيو كليوتيدات في الجين للو هلة الأولى وكأنه مجرد خليط للحروف الأربعة التي تمتل قو اعد حمض DNA.

- ولكن وجد عند تحليل عمل هذه القو اعد:

1- أن نتابعات معينة تعمل كمحفزات لمو اقع ارنباط إنزيمات بلمرة الRNA. r-

- تمتلّئ الخلايا بالبروتينات ترتبط بتتابعات DNA محددة . - أهمية بالبروتينات الني تزتبط بتتابعات DNA محددة : تساعد في نتظيم وضبط عمل الجين .

س: ما الذي يساعد في تتظيم وضبط عمل الجين ؟
ج : البروتينات التي ترتبط بتتابعات DNA (Y) محددة . يشبه الجين في الشكل (ب) : هناك محفز في جانب واحد من الجين ، إلى جانب المو اقع التنظيمية حيث ترنبط بروتينات تتظم عملية النسخ وتحدد ما إذا كان الجين يعمل أو لا يعمل .

r- البرويتينات ووظائف الخلبة

معلومات :-

1- يحتوى الجسم على أكثر من . ., .0 0 بروتين مختلف .
Y r- يؤدي تغير الجين إلى تغير البروتين ما يؤدي إلى تغير تركيب الظلية ووظيفتها ، وينتج من ذلك تركيبا . ظاهريا آخر

س: تحتوى جميع الخلايا على الجينات نفسها ، لكنها لا تتتج كلها البروتينات نفسها ، فما الذي يحدث داخل كل من خليه ويسبب هذا التمايز ؟ هي أن الجينات في كل خلية من خلايا الكائنات الحية لايها آليات تتظيمية ، تحفز بدء عمل الجينات أونو قفه

س: ما أهمية آليات التتظيمية في خلايا الكائنات الحية ؟ ج: هي تحفز بدء عمل الجينات أو نوقفه .

س: متي يبدأ عمل الجين ؟
ج: عند تتشيط الجين ويؤدي إلى تصنيع الخلية للبروتين الذي يتحكم هذا الجين بإنتاجه و هذا مـا بـعرف بالتعبير الجيني .

س: ما المقصود بالتعبير الجيني؟
ج: تصنيع الخلية للبروتين الذي يتحكم جين معين بإنتاجه .
س: ماذا تتوقع عند إيقاف عمل الجين ؟
ج: إيقاف صنع البروتين الذي يشفر (يترجم) له الجين أي عدم تعبير هذا الأخير عن نفسه .

حقيقيات النواة	أوليات النواة	وجه المقارنة
غالبا ما يتضمن تتظيم عمل الجين أنظمة عديدة معقدة مختلفة .	بدء عمل الجين أو وقفه مرتبط بأي تغيير حاصل كاستجابة للعو امل البيئية	طريقة ضبط التعبير الجيني

ب. ضبط التعبير الجبني في أولبـات (لنواة

- توجد في خلية البكتيريا :-

1- بروتينات تحتاج إليها الخلية طو ال الوقت .
r- بينما هناك بروتينات أخرى لا تحتّاج إليها الخلية إلا في ظروف بيئية معنبة .

ج: نعم مثّال علي ذلك : تحتّاج بكتيريا ايشريشبا كو لابي:-

- و الجينات اللتحكمة بهذه الإنزيمات مجمعة على كروموسومها
- وعلاقة كمية اللاكثوز والإنزيمات في الخلية هي جزء همن نظام بدء عمل الإنزيمات الهضمية أو توقف عملها

ملحوظة :-

- يوجد داخل حض DNA البكتيريا :

1- جين منظم يشفر لإنتاج بروتين معين يسمى الكابح
س: ما المقصود بالكابح الموجود داخل حمض DNA البكتيريا ؟ ج: وهو بروتين يرتبط بحض DNA ليو قف عمل الجينات التي نتشفر لإنزيمات الهضم . س: حدد عمل الكابح؟ ج: يمنع الكابح إنزيم بلمرة حضض RNA من الارتباط بالمحفز أي يمنع تصنيع الإنزيمات الهضمية بما أن - إنزيم بلمرة حمض RNA ضروري لعملية النسخ

Y
وهو جزء من حمض DNA يعمل كموقع لارتباط إنزيم بلمرة حضض RNA ، الذي يقوم بنسخ حمض . mRNA إلى DNA
س: كيف يفعل دور الجين مجددا ؟

- يأتي دور سكر اللاكتوز ، فعندما تدخل البكتيريا E.coli إلى محيط غني بسكر اللاكتوز ، يرتبط هذا السكر بالكابح مغير ا شكله ، فيصبح هذا الأخبر غير نشط ولا يعود قادر ا على الارتباط بحمض DNA.
 الجين الذي يشفر للإنزيمات الهضمية ، يترجم حمض mRNA بعدئذ وتصنع الإنزيمات الهضمية . س: متي ينشط الكابح من جديد ؟
ج: بعد هضم كمية اللاكتوز كلها ، ينشط الكابح من جديد ، ويسبح حر الارنباط بحض DNA ، لالويتوقف عمل الجينات الني تتحكم بتصنيع الإنزيمات الهضمية من جديد ملحوظة هامة:-
تكثفي البكتبريا بإنتناج إنزيمات هضم المادة الغذائية (اللاكتوز) عند وجودها ، و هكذا توفر على نفسها خسارة الطاقة لتصنيع إنزيمات ليس بحاجة إليها .

६ - ضبط التعبير (لجبني في حقبقِيات النواة

- يوجد نتابه أساسي في نسخ الجين بين خلايا أولية النواة وخلايا حقيقة النواة : - في أن إنزيم بلمرة حمض RNA يرتبط بالمحفز لبدء عملية النسخ س: قارن بين :-

خلابيا حقققة النواة	خلابيا أولية النواة	وجه المقارنة
أكثر	أفقل	مجمو ع الجينات
الجينات منظمة في كروموسومات متعددة وبتتابعات أكتر تعقيدا	أقل تعقبدا	تتظيم الجينات وتعقيدها
يتم خلال مختلف مر احل عملية التعبير الجيني	قبل عملية النسخ وبعدها	ضبط التعبير الجيني

س: علل : بالرغم من جميع أنو اع خلايا جسمك تحمل الكروموسومات نفسها ولكن خالايا الجسم متمايزة ولكل نو ع من الخلايا تركيب ووظيفة مختلفين؟ ج: نتيجة بعض الاختلافات في التحكم بالتعبير الجيني الذي يعتبر عند الإنسان أو غبره من حقيقيات النواة عملية معقدة مقارنة بأوليات النواة . - إحدى طرق الضبط التعبير الجيني هي (للتعبير الجيني الاتتقائي)

س: ما المقصود بالتُتبير الجيني الانتقائي ؟
ج: يعني أن بعض الجينات فقط في كروموسومات حقيقيات النو اة تعمل فعليا أي نتشط ويحدث لها نسخ . وبذلك يكون لكل خلية وظيفة محددة . ويرتبط إيقاف الجينات عن العمل أو تفيلها بمرحلة نمو الكائن و العو امل البيئية المحيطة .

س: علل: يتّ في الخاديا حققيات النواة الضبط خالل مختلف مر احل عملية التنبير الجيني ؟ ج:لأن للخلايا حقيقيات النواة غلاف نووي يحجب عطلية النسخ عن عملية الترجمة

- من إحدى طرق ضبط عملية التعبير الجيني : ضبط عملية النست

س: كيف يتم ضبط عملية النسخ ؟
ج: بتحديد كية mRNA التي تتتج من جين محدد وسلسلة إحداث تحصل بعد عملية النسخ ونتظم بدور ها عملية ترجمة mRNA إلى بروتينات ، حتى ما بـد عملية الترجمة ، نؤثر التعديلات والتحويلات التي تحدث في عمل هذا البروتين .

س: كيف تتظم خالايا حقيقيات النو اة التعبير الجيني في خالل ضبط عملية النسخ ؟ ج : بشكل رئيسي من خلال ضبط متى يرتبط إنزيم بلمرة حمض RNA بالمحفز بمساعدة مجمو عة من البروتينات تسمى عو امل النسخ.

ج: هي بروتينات منظمة س : أُككر وظيفة عو امل النسخ ؟ ج: تتشط عملية نسخ حض DNA من خلال ارتباطها بتتابعات حض DNA محددة ملحوظة :-
يوجد على الكروموسوم موفع أو أكثر يعرف بـلمعزز.
س: ما المقصود بالمعزز ؟
ج : هو عبارة عن قطعة من حض DNA .
: أذكر وظيفة المعزز ؟
ج : وظيفته الأساسية تحسين عطلية النسخ الجيني وضبطها . س : كيف يقوم المعزز بتحسين عملية النسخ الجيني وضبطها ؟ ج : ترتبط بهذه المعززات بروتينات عدة ومختلفة تعرف بـلمنثشطات تعمل على ضبط عملية النسخ وهي تجعل ضبط التعبير الجيني في حقيقيات النواة عطلية معقدة .

1- ليس ضروريا وجود المعزز في المنطقة القريبة من المنطقة المر اد نسخها . Y- كما يوجد على الكروموسوم مو اقع تعرف باللصامتات. س: ما هي الصامتات وأههيتها ؟ ج: هي مو اقع ترتبط بها بروتينات تعرف بلككابحات تمنع ارتباط انزيم بلمرة حمض RNA بالمحفز مانعة -بذلك عملية النسخ

- لفهم كيف يحفز هذا المعزز عملية النسخ ، نأخذ كـثال : كيفية عمل الهرمونات التي تسمى ستيرويدات في خلايا الفقاريات .

س : ما هي هرمونات ستيرويدات ؟
ج : هي جزيئات مركبة من مادة دهنية تعمل كإثشارة كيمائية . مثال عليها : الاستروجين المسؤول عن ظهور الخصائص الجنسية الثانوية عند الإناث.

> س: كيف يعمل هرمونات ستيرويدات؟

عندما يعبر هذا الهرمون الغشاء الخلوي لخلية معينة ، يرتبط ببروتين مسنقبل موجود على الغشاء النووي وينتج مركبا مسنتقبلا للهرمون .
لهذا المركب شكل مو ائم للارتباط ببروتين معين يسمى بروتينيا قابلِا. يرتبط بدوره بالمناطق المعززة في حمض DNA ما ينبه إنزيم بلمرة حمض RNA لبدء عملية النسخ

س: ماذا تتوقع عند فشل آلية ضبط التُبير الجيني؟ ج: يؤدي إلى انتاج بروتين خاطئ وبالتالي إلى تنير في نمو الخلية ، تركيبها ووظيفتها وقد يسبب في بعض الأحيان إنتاج خلايا سرطانية .
(اللارس(1-0) الطفرات
س : علل :سلالة أبو الهول هي سلالة نادرة من القطط تتميز بأنها عديمة الفراء ؟
ج: وذلك إلى تغير في الكروموسوم أو حدوث طفرة جينية منتجة .
1 - اللبروتينات و الطفرات

- البروتينات أهم جز ء في تركيب الكائن الحي وهي أساسية لأداء الجسم ووظائفه .
-تؤدي بعض البروتينات ووظائفها داخل خايا الكائن الحي
- في حين تفرز بروتينات أخرى إلى خار ج الخلايا لأهداف أخرى.
 - للتغير في بروتينات الخلية تأثير كبير في تركيب الخلية أو وظيفتها س : كيف يتغير تركيب بروتينات الخلايا ؟
ج: التغير في حمض DNA يغير البروتينات التي تصنع في الخلية يسمى التغير في المادة الور اثية طفرة .
س : ما تأثنثر ات الطفرة على الكائنات الحية ؟ ج: تحدث الطفرة لأسباب عديدة .
1- بعض الطفرات لا يؤثر في الكائن او يؤثر فيه بدرجة قليلة . r- r- وبعضها الآخر ضار أو قاتل - r- و عدد فليل جدا منها نافع

س : عدد أنماط الطفرات ؟
ج: للطفرات نمطان هما :
1- الطفرات الكروموسومية. (تحدث في الكروموسومات الكاملة) (\quad (تحدث في الجبنات نفسها).

1,1 اللطفرات الكروميوسومية

أ- الطفر ات الكروموسومية التزكيبية:-
-الطفرات الكروموسومية التنركيبية :- هي تنيرات في بنية الكروموسوم أو تركيبه
س: عدد أنماط الطفر ات الكروموسومية التزكيبية ؟ ج : أربعة أنماط هي النقص ، الزيادة ، الانتقال والانقال .

:

يحدث النقص عندما ينكسر الكروموسوم ، ويفقد جزءا منه .
س :باعتقادك كيف سيؤثر هذا التّغير في الكروموسوم الأصلي ؟ نمط الأجنحة المتعر ج ناتج عن طفرة النقص ، و هذه الطفرة ليست ضارة بالذبابة ، ولكن معظم طفر ات النقص مهلكة وقد تقتل الكائن الحي

فيثلا طفرة النقص لجين المشفر لبروتين SMN على الكروموسوم رقم ه يسبب الضمور العضلي النخاعي الذي يسبب الوفاة . اللزيادة (التكرا
تحدث الزيادة عندما ينكسر جزء من الكرموسوم ويندمج في الكروموسوم الممانل. حيئذ نسخه إضافية عن أحد أجزائه ، قد تتتج هذه الطفرة من عبور غبر متكافئ بين الكروموسومات الدتمانثلة خال الانقسام الميوزي س: إلى أي مدى تغير طفرة الزيادة الكروموسوم ؟
في الثكل (بّ) الذي يوضح عينا قضيبيه الثنكل نتجت من طفرة الزيادة في الكروموسوم X.
يقصد بالانتقال: كسر جزء من الكروموسوم ثم انتقاله إلى كروموسوم آخر غير ممانل (مغاير) له . . الانتقال يؤدي إلى إعادة ترتبب مو اقع الجينات على الكروموسوم - قد يحدث الانتقال في جينات كثيرة أو فليلة في الكروموسوم - ويمكن أن يؤثر في الكائنات الحية في العديد من الطرق ألما - وكما في ضبط التعبير الجيني ، وبالتاللي في الكائنات الحية بطرق مختلفة قد تسبب تضرر ها أو موتها

- أنواع الالتقال :-

الانتقال نو عان هما :-
1- الانتقال الروبرتنوني (غير متبادل). سمى نسبة للعالم روبرتسون الذي اكتثففه . r- r- الانتقال المتبادل أو (غير الروبرنسوني)

س : ماذا يحدث خلال الانتقال الروبرتسوني ؟ ج: يتم في خلاله تبادل أجزاء من الكروموسومات س: متي تحدث الانتقال الروبرتنوني ؟
ج: تحدث هذه العملية عند انكسار الكروموسوم عند منطقة اللنتزومير واتحاد كل من الذر اعين الطويلين لللكروموسومين ليشكلا كروموسوما واحدا الدا أما الكروموسوم الذي يتنككل من اتحاد الذر اعين القصبرتين ، فيتم فقدانه بعد عدة انقسامات خلوية ـ وفي هذا النوع من الانتقال ، لا تحدث أي تغير ات ملحوظة في المادة الور اثثة لدى الإنسان .

الانتقال المتبادل (الالتقال غبر الرويرتسوني) :
يحدث خلاله تبادل قطع كروموسومية غير محددة الحجم بين كروموسومين غير متماثلين.
الالقلاب : يعني استدارة الكروموسوم رأسا على عقب أي عندما بنكسر جزء من الكروموسوم ويستنير حول نفسه ليعود وتصل بالكروموسوم نفسه في الاتجاه المعاكس س: علل : طفرة الانقلاب أقل ضرر اً من الطفرات الأخرى ؟ ج: ذلك لأنه يغير في ترنيب الجينات في الكروموسوم • وليس في عدد الجينات التي يحتوي عليها.

بـ الطةرة الكروموسبومبـة اللعددبـة :
الطفرة الكرو موسو مبة العددية :
هي طفرة كروموسومية تسبب اختلال في عدد الكروموسومـات في خلايا الكائن وتعرف باختلال الصيغة
الكرو موسو مية .
س: مـا سبب ظهور اختلال الصبيغة الكروموسوميةّ؟ ج: نتيجة انقسام غير منتظم للخلايا يتمثل بعدم انفصـال الكروموسومـات المتمانتلة أو الكرومـاتيدين الثڭفيقين

أثتاء الانقسام
وبتّج هذا أفر ادا: -

- إ إما بكروموسوم إضـافي (نتلث كروموسومي 2n+1)
- (2n-1 أو بكروموسوم نـاقص (وحيد الكروموسومي أـمي

س : عدد أضرار الطفر ات الكروموسوميةٌ العددية ؟
ج: تسبب الطفر اث الكروموسومية العددية :
تشو هات خلقية و عقلية منّل منلز مة داون.
س : أذكر العدد الكروموسومي و الأعر اض للفر اد المصـابين بمناز مة داون ؟ ج: العدد الكروموسومي :-
يوجد في نو اة خلابا المصـابين به V \& كروموسوما ، وذلك لو جود كروموسوم
 الأعر اض : لدى هؤ لاء الأفر اد
1- تخلف في النمو الجسدي • ب- ودر جات متفاوتة من التخلف العقللي •
ب- في معظم الحالات تشوه في أعضاء معينة خاصـة في القلب .
ع - ولـه تز كيب مميز للجسم و الوجه ونكون معالم عندهم شبيهه بأفر اد بـلاد المونغول أو المغول •
و هذا يفسر لماذا كان اسم المونغولي يستعمل في الماضي لتسمبه هذه الظاهرة .
ملحوظة: :-
إن السبب الأساسي و الصحيح لـذا النضـاعف في الكرو موسوم المفرد غير معروفة . إنما مدى حدوث
منلازمة داون يظهر بصورة جلية لدى الأطفال تزبي أعمار أمهاتهم عن الأربعين عاما .
ملحوظة :-

- هنالك تشو هات كروموسومية أخرى مثلّ النتلث الكروموسومي الذي يسبب الموت السريع للأطفال • ومن أمثلّة النشو هات العددية للكروموسومات الجنسية : يذكر منالز مة تبرنر و متلاز مة كلاينفلتر •

ج: إن الثخص المصاب هو أنثي تمتلك نسخه واحدة من الكروموسوم الجنسي X X44 () وتكون متخلفة النمو وعاقرا .

س : أذكر متالازمة كلاينفلتر ؟
ج: إن الشخص المصاب هو ذكر ، يمتلك كروموسوما X واحدا أو أكثر إضافة إلى الكروموسومين XXY XX الجنسيين XXY ، XXXY) XY ويكون عاقر ا ، مع وجود بعض الملامح الأنثوية المميز لديه .

r,1 (الطفرات الجينية :-

للطفرات الجبينية:-
هي التغير ات في تنلسل النيوكليوتيدات على مستوي الجين
س : ما مدي تأثنير الطفر ات الجينية ؟
تتفاوت تأثيرات الطفرات اعتمادا على ما إذا كانت تحدث في الأمشاج (الخلايا الجنسية) أو في الخالاي

- تتتج الأنو اع الرئيسية من طفرات الجينات إما من استبدال نيوكليوتيد أو نقص نيوكليوتيد أو إدخال نيو كليو تيد.
- ينتج من طفرات النقص والإدخال الجينية :-
- إنتاج بروتين مختلف تماما . فالحمض RNA الرسول يقر أ من خلال كودوناته في خلال عملية التنرجمة
- ويغير إدخال النيوكليوتيدات أو نقصها تتابع القو اعد ما يؤدي إلى إز احة إطار القراءة في الرسالة الور اثثة لذلك سمي تأتثبر هذه (الطفرات طفرة إزاحة الإططر

ينتج استبدال قاعدة مفردة في الجين المشفر للهيموجلوبين حبنا طافرا مسؤو لا عن مرض فقر الام المنجلي

لالدرس (1-7) الجينات و اللسرطان

س: ما ضرر الأشُعة السينية علي الإنسان ؟ ج: قد تسبب حدوث الطفرات التي تؤدي إلى السرطان •

س: علل : أستخدم المتأني للأشُعة السينية ؟ ج:الاستخدام المتأني يساعد على تشخيص السرطان وعلاجه وفي الكشف عن العظام والأسنان وفي البحث الطبي 1- اللطقرات و الضبط

- تحدث الطفر ات بشكل عثو ائي ونتائجها غير متوقعه :

1- بعضها لا يؤثز أو يؤثر بدرجة بسيطة في وظيفة الكائنات الحية ويكون مصدر ا للنتوع الجيني الذي يحصل بهذف النكيف مع البيئة المتغيرة .

Yس : منتي تكون الطفرات ضـاره أو مكيته ؟ ج: عندما تخير الطفرات الجينات التي تسيطر على نمو الخلايا وتخصصها و قد تسبب السرطان . س: عرف السرطان ؟
ج: هو مرض يسبب نمو اغير طبيعي للخلايا . س: ما هو سبب نمو الخلايا السرطانية نمو اغير طبيعي ؟ نمو الخلية هو عملية منتظمة للغاية ، يتم التحكم بها بو اسطة إشار ات كيميائية وفيزيائية تمنع انقسام الخلايا أو تحفزه . لا تتجاوب الخلايا التي أصبحت سرطانية مع الإشار ات التي توفف انقسام الخلابا . بذلك تتكاثر الخلايا السرطانية بدون توقف . وتبدا المشاكل الصحية عندما تغزو الخلايا السرطانية الجهاز المناعي المسؤول عن تدمير ها .
تبدأ بعد ذلك الخلابا السرطانية بالنكاثز ، محدثة كتلة من الخلابا تسمى وريمـ .

> س : صنف الأور ام ؟

الأور ام الخبيثة	الأور ام الحميدة	وجه المقارنة
قادر ا على الانتشار في أنسجه أخرى.	لا يغزو الأنسجة المحيطة	الانتشار
يكون مضر ا جدا	بحدث قليلا من المشاكل التي يمكن إز التها بالجر احة	الأضرار

س : ما الخاصبة الأكثر تـدمبر ا من وجود ورم خبيث ؟ هي أن خلاياه قادرة على التحرر من الورم و الاخول في الأوعية الدموية و اللمفاوية ، حيث تتنقل إلى مو اقع جديدة في الجسم محدثة أور اما جديدة في هذه المو اقع ، هذا انتشار للخلايا إلى مو اقع بعيدة عن . مو قعها الأصلي يسمى الالالبثـثـث

س: ما أسباب الإصـابة بالسرطان ؟
ج: تختلف أسباب الإصـابة بالسرطان:

- فبعض الأمر اض السرطانية من مثل السرطان الذي يسبب أورام العين يمكن أن يورث .
- في حين نتتج أمر اض سرطانية أخرى من عو امل بيئية أو نتيجة عو امل جينية وبيئية مجتمعة . بصرف النظر عن مسبباتها .

س: ما هي الخاصبة الني تشترك فيها جميع أنو اع الأمر اض السرطانية ؟ ج: هي أن الجينات المسؤولة عن إنتاج خلايا جديدة لا نتو قف عن العمل . ملحوظة :-

الجين الذي يسبب سرطنة الخايا يسمى حين الأور ام - وجد أن جينات الأور ام في كروموسومات الإنسان :(هي أنشكال طافرة لجينات تتشفر (تتزجم) لبروتينات تسمى عو امل النمو) • وهي تؤدي دور ا في

المساعدة على ضبط انقسام الخلية وتميز ها ـ اليّا س: ما هي الطر ائق الأساسية ليصبح الجين مسببا للأور ام؟
الأوليىــ: حدوث طفرة في جين عامل النمو قد تسبب إنتاج كميات طبيعية من عامل النمو ، ولكن قد يكون البروتين محورا إلى عامل نمو ضخم ، فيسبب انقساما خلويا سريعا و غير منضبط .

لثلثبةِ : خطأ في تضاعف حمض DNA تتتج منه نسخ متعددة من جين عامل نمو مفرد . عادة ينسخ جين و احد لإنتاج عامل النمو ، أما في هذه الحالة فتتسخ جينات عديدة وتزدداد كمية عامل النمو في الخلية . تعمل الجينات المتضاعفة معا كجينات مسببة للأور ام

لثثلثةٍ : تغير موقع الجين على الكروموسوم بفعل الانتقال . في بعض الحالات يسيطر بادئ جديد على الجين المنتقل يسمح بتكرار نسخه ما يؤدي إلى إنتاج العديد من عو امل النمو
ملحوظة :-

- توجد جينات تنمى للجبنـات (القامعة للؤورام.

س: ما أهمية الجينات القامعة للأور ام ؟ ج: هي مسؤولة عن منع نمو خلايا الأورام السرطانية ، وتعرف بمضاد جين الأورام

س: ماذا نتوقع عن حدوث طفرة في الجينات القامعة للأور ام ؟ ج: أدت إلى توقف عمله ، تكون النتيجة نمو اغير طبيعي وغير مضبط للخلايا .

> مثـال علي ذلك :-

لقد اكتثف أن مرض سرطان الشبكية يعود إلى طفرة في الجين القامع الو اقع على الكروموسوم ِ ا وهي طفرة متتحية . لذلك كل الأثخاص الذين يمتلكون جينا متتحيا واحد على أحد الكروموسومات المتماتلة لديهم استعداد لهذا المرض .

r - أسبـب (لطفرات الجبينـة

س: علل : نؤدي العوامل البيئية دور ا رئيسيا في تطور السرطان ؟ ج: لأن للثخص الذي لديه الاستُداد لنوع من السرطان أن ينمي المرض في ظروف بيئية محددة . ويمكن للثخص نفسه أن يقلص خطورة إصابته بالمرض بضبط الـون الظروف البيئية ، لأن العو امل البيئية يكن أن تسهم في تكوين الجينات اللطافرةِ غير المرغوب فيها .

ج: هو العامل في البيئة الذي يمكن أن يحدث طفرات في حض DNA.
س:ما هي العو امل في البيئة الذي يمكن أن يحدث طفرات في حمض DNA (مطفر)؟

ج : تنشل العو امل المعروفة بعض أثنكال الإشعاع مثل النوع الذي ينطلق من الحو ادث النووية ، وبعض أنواع المو اد الكيميائية من متل تلك الموجودة في منتجات التبغ
ملحوظات :-
.
 - تشمل الأمتلة عليه القطر ان في السجائر ، بعض العقاقير ، مواد كيمائية معينة في اللحوم المدخنة - وقطر ان الفحم في بعض أصباغ الثنعر

بالإضافة إلى الفيروسات التي ارتبطت بالسرطان ، وبعض أنواع الإششعاع كالأشتعة فوق البنفسجية ، تسبب الأشنعة فوق البنفسجية طفرة في DNA الخالية .
ويرتبط التعرض للأشعة فوق البنفسجية بسرطان الجلد ، تسبب الأشععة متل العو امل الأخرى المسببة
للطفرة ، تنغير ا في رسالة حمض DNA التي تورث للخلايا البنوية عندما تتقسم الخلية - تحمى طبقة الأوزون في طبقات الجو العليا الناس من الأشععة فوق البنفسجية ، لكن في العقود الأخيرة ، حدث تدمير لطبقة الأوزون على الأرجح بفعل بعض الملوثات الكيميائية التي تسمى كلوروفلورو كريون التي يكثر استخدامها في اللأبروسولات وأجهزة التبريد .

ج: باختّاف نوع العامل المسبب للطفرة • يمكن أن تسبب العو امل المسرطنة السرطان إما باستبدال القو اعد في حض DNA أو بتغير ها.

ملحوظات :

1- بعض المسرطنات نتشابه كيمائيا مع قو اعد حض DNA وتسمى قو اعد موازيةً.

- قواعد مولزيةِ : يمكنها أن نتدمج مع جزئ حضض DNA . ولأنها ليست مطابقة تماما لقو اعد حمض DNA ، فإنها نكون أزواج قو اعد غير طبيعية وخلا في الرسالة الور اثثة .

ץ- ب- بعض المسرطنات الأخرى تتفاعل مع قو اعد حم DNA وتحدث تغير ا فيها . ثم عندما تتقسم الخلية تتنقل التغير ات في رسالة حمض DNA إلى الخا>يا البنوية . rـ ترتبط قدرة المركبات الكيميائية على إحداث السرطان بققر اتها على إحداث الطفرات .

