تم تحميل الـمــلف من موقع مدرستي الكويتية

ننصح بأفضل مذكرة منذكرات السنجاح

حمل تطبيق مدرستي الكويتية

الرياضيات

المرحلة المتوسطة

الطبعة الأولى

الستعدُّ للوحدة الأولم

🕦 أوجد ناتج ما يلي :

$$\frac{1}{2} = \frac{1}{2} \sqrt{\frac{1}{2}}$$

$$\frac{\xi}{\sqrt{\sqrt{2}}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

🕜 أكمل الحدول التالي:

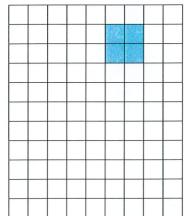
_				-	
	٣, 0	00 %.	٥,٩	0,40	الصورة العشرية
	4 °	<u>"</u>	0 9	9 7 •	الصورة الكسرية

- 😙 ضَع الرمز < أو > أو = فيما يلى لتحصل على عبارة صحيحة :

- - 🚺 أوجد ناتج كلّ ممّا يلي :
- $X = 10 + (1 \land -) \Leftrightarrow | ... = (7 -) + 11 \Leftrightarrow | X = (5 -) + (9 -)$
- - 🧿 أوجد ناتج ما يلي ثم ضعه في أبسط صورة :
 - $\frac{\sqrt{\xi}}{\sqrt{2}} = \frac{1}{\xi} \frac{1}{\sqrt{2}} \sqrt{\frac{1}{\mu}} \frac{1}{\sqrt{2}} + \sqrt{\frac{1}{2}} \frac{1}{\sqrt{2}} + \sqrt{\frac{1}{2}} \frac{1}{\sqrt{2}} = \sqrt{\frac{1}{2}} \frac{1}$

 - $\frac{1}{\sqrt{1}} \times \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \times \frac{1}{\sqrt{1}} = \frac{1$ C 1xc XXR II W - YXX -

	👣 أوجِد ناتج ما يلي :
(o - A) ÷ 1 o 🤤	1 × × × + 9
0=4-10=	= P+32= MM
1 <u>1 1 1 1 1 1 1</u>	(Y + Y) ÷ ^Y 7
- 1XV =	= T 7 = 3
£7=1,07=	
	بسط كل من التعابير التالية :
ر ب	س * × س°
ب الم الم الم	g (m =
(ص°)\ ح کر چ کری	€- w 😓
= 9v	
ر الله الله الله الله الله الله الله الل	(ل'ع')"
رص (ص)	10 7
1500	03
 علَّ المعادلة التالية : 	♦ أوجِد قيمة : ٥ س – ٣
٧ = ١ + س٢	إذا كانت س = ٢
1- V = 1-1+00 c	4 - CX 0 3
7= 40	7 = 1 =
K = M	
	St.


الجذور التربيعية والأعداد غير النسبية Square Roots and Irrational Numbers

(1-1)

سوف تتعلّم: الأعداد غير النسبية.

العبارات والمفردات:

أرادت شركة للإنشاءات اختيار قطعة أرض مربعة الشكل لإنشاء معمل للأبحاث العلمية (مخطط قطعة الأرض موضحاً على الشبكة المقابلة) ، فإذا كانت مساحة قطعة الأرض المتاحة ٤ كم ٢ .

فاحسب طول ضلعها ؟ ١٦ = ٢٦

النفرض أن مساحة قطعة الأرض ٩ كم . فما طول ضلعها ؟ عمل كسيد الم

(استعن بالشبكة المقابلة لرسم مخطط قطعة الأرض الجديدة)

النفرض أن مساحة قطعة الأرض ٥ كم . فما طول ضلعها ؟ مم ٥ مم فما طول ضلعها ؟ معطط قطعة الأرض على الشبكة ؟ هل يمكنك تمثيل مخطط قطعة الأرض على الشبكة ؟

الجذور التربيعية

, $q = {}^{Y}(T)$ ، $q = {}^{Y}(T -)$ تعلم أن

وأنه يوجد جذران تربيعيان للعدد ٩ هما:

 $+\sqrt{9} = \pi$ (الجذر التربيعي الموجب)،

 $-\sqrt{9} = -7$ (الجذر التربيعي السالب)

ويعرف الجذر التربيعي الموجب بالجذر التربيعي الأساسي .

من خواص الجذور التربيعية

إذا كان أ ، ب عددين نسبيين موجبين فإن :

•
$$\sqrt{1 \times \sqrt{1 \times 1}} = \sqrt{1} \times \sqrt{1}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

•
$$\sqrt{1} \times \sqrt{1} = 1$$

بالعودة إلى النشاط السابق:

 $\sqrt{0}$ لا ينتمي إلى مجموعة الأعداد النسبية ن ولذلك فهو ينتمي إلى مجموعة أخرى جديدة تسمى مجموعة الأعداد غير النسبية $\overline{0}$. الأعداد غير النسبية هي الأعداد التي لا يمكن كتابتها على الصورة $\frac{1}{2}$ حيث $\frac{1}{2}$ ، ب

عددان صحيحان ، ب خ ٠

وفي ما يلى بعض الأمثلة لأعداد غير نسبية:

- الأعداد العشرية التي أرقامها العشرية لا تنتهي ولا تتكرر مثل π = ... ١٤١٥٩ ٣,
 - كسور عشرية ذات نمط في كتابتها مثل ... ٢٠٢٢٠٢٢٢٠٢٠٠ . •

تدرّب (۱) 👘 :

قدِّر √ ۱٤ :

نبحث عن عددين مربعين كاملين متتاليين يقع بينهما العدد ١٤ وهما ٩٠٠٠

(تحقق من إجابتك باستخدام الآلة الحاسبة)

تذكَّرُ أنّ : الأعداد النسبية هي الأعداد التي يمكن كتابتها على صورة ل صحیحان، ب≠ ٠

تدرّب (۲) 🚻 ،

أوجد ناتج كلِّ مما يلى موظفًا خواص الجذور التربيعية:

$$\sqrt{\frac{67}{37}} = \frac{\sqrt{27}}{\sqrt{37}} = \frac{\sqrt{67}}{\sqrt{37}} = \frac{\sqrt{67}}{\sqrt{37}}$$

$$\mathbf{z} = \mathbf{z} \times \mathbf{z} = \mathbf{z} \times \mathbf{z} = \mathbf{z} = \mathbf{z}$$

$$\underbrace{\mathcal{L}}_{1} = \underbrace{\mathcal{L}}_{2} = \underbrace{\mathcal{L}}_{2} = \underbrace{\mathcal{L}}_{3} = \underbrace{\mathcal{L}}_{3}$$

$$\cdots = \cdots \times \cdots = \overline{7} \times \sqrt{7} \times \sqrt{7}$$

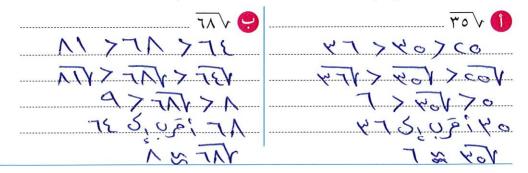
تدرّب (۳) 👘 ،

10	727	ضع الأعداد التالية في مكانها المناسب في الجدول:
7 -	70	$\sqrt{9}$, π , $\frac{1}{\sqrt{37}}$, $\sqrt{7}$, $\sqrt{9}$,

عدد غير نسبي	عدد نسبي
101	127
< V -	70
77	-111-
. ५०५५ ०५५७	7,

فكر وناقِش فكر وناقِش

هل الجذر التربيعي للعدد ٢٠٠ يساوي ضعف الجذر التربيعي للعدد ٢٠٠؟ وضح إجابتك .



تمـرًن ،

٠,٧٧ – 3	رسم	T, V.	70 V 1
۰,۱۳۱۳۳۱۳۳۳ الله المسلمة الم	π	17/3	Λ Δ

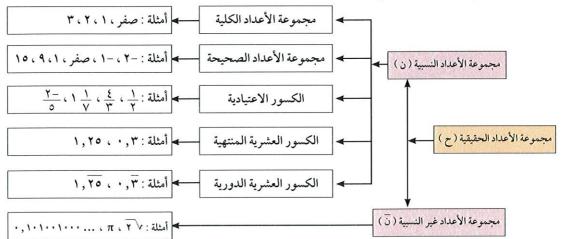
ن قدِّر كلًّا مما يلي ثم تحقق من صحة تقديرك باستخدام الآلة الحاسبة:

😙 أوجِد ناتج كلِّ مما يلي موظفًا خواص الجذور التربيعية :

ع قاعة عرض في أحد المعارض أرضتها مربعة الشكار مقسمة المارية أحزاء متطابقة

الأعداد الحقيقية (مقارنة – ترتيب) Real Numbers (Comparing – Ordering)

سوف تتعلّم: الأعداد الحقيقية ومقارنتها وترتيبها وتمثيلها.


أكمل الجدول التالي:

طول الضلع يمثل		طول الضلع المجهول	المثلث القائم	
عدد غير نسبي	عدد نسبي	034:20. (21,2.)		
	~	COV= 4+17/4= m	ا سم ا سم ا سم	
		m=1. 2. 20	السم الجسم المسم ا	

اتحاد مجموعة الأعداد النسبية (ن) ومجموعة الأعداد غير النسبية ($\ddot{\rm o}$) يشكل مجموعة تسمّى مجموعة الأعداد الحقيقية (σ) .

أى أن: ن \cup $\overline{\dot{\mathbf{c}}} = \mathbf{z}$

يوضح المخطط التالي العلاقات بين مجموعات الأعداد:

Real Numbers
الفترات
Intervals
فترات محدودة
Bounded
Intervals
فترات غير محدودة
Unbounded
Intervals
فترة مغلقة
Closed Interval

العبارات والمفردات: الأعداد الحقيقية

فترة مفتوحة Open Interval فترة نصف مغلقة Half-Closed Interval

فترة نصف مفتوحة Half-Open Interval

مثال :

 π ، π ، $\frac{1}{1}$ قارن بین العددین : قارن بین العددین

الحل:

$$\Upsilon$$
, $1\xi 1\xi 1\xi 1\xi \dots = \Upsilon$, $\overline{1\xi}$

$$\Upsilon$$
, 18109 $\approx \pi$

$$\pi > \Upsilon, \overline{1\xi}$$
 :

تدرّب (۱) 🚻 :

قارن بين العددين :

$\frac{1}{7}$, $\frac{1}{5}$	$\frac{\pi}{\circ}$ \cdot \cdot $,\overline{\tau}$
·, o = 1	",] =] = cxh
3,0 > -	, cko
1 > 1 \(\tilde{\xi} \)	7:25
2/10	7
	6
	· •••• (Y)

تدرُب (۲) 🎹 :

 $\pi \stackrel{\circ}{\wedge} \$ رتب تصاعديًّا الأعداد التالية : $\pi \$

$$\frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{\lambda}} = \frac{\lambda}} = \frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{\lambda}} = \frac{1}{\sqrt{$$

TUTC WOCT

🤪 رتب تنازليًّا الأعداد التالية:

4,160= 4/ 4,16- ≈ T-

تدرّب (۳) 🜓 :

رتب تصاعديًّا الأعداد التالية:

 $7, \overline{0}, \overline{77}$

		7	1,01	100	TIC
				-	VV
,067	CAG	0 0			

MIECKIM CHOMICOCS; WWW. TOUT CACO ONDER CONT.

40

تدرّب (٤) 📆 :

أكمل الجدول التالي:

التعبير اللفظي	التمثيل البياني	رمز المتباينة	نوع الفترة	رمز الفترة
مجموعة الأعداد الحقيقية الأكبر من أو تساوي ١ والأصغر من أو تساوي ٣	₩ **	1 ≤ س ≥ ۳	Adas	[٣,١]
م المعادد المع المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعاد المعادد المعادد اعدم اعدم اعدم اعدد اعدم اعدم اعدم	→ 1-	と>ゲーントー	مفتو حة	({ ; \ \ -)
مجموعة الأعداد الحقيقية الأكبر من أو تساوي - ٤ والأصغر من •	صفر - ٤	・フェブミー	نصف مغلقة أو نصف مفتوحة	
مجوعه کرندر الخصیم لابر من و و لاجعر من وساوی –	0 = (-	-ه<س≥-۲	نصف مفتوحة أو نصف مغلقة	

ه فکر وناقِش فکر وناقِش

هل كل مجموعة جزئية من مجموعة الأعداد الحقيقية تمثل فترة ؟

ثانيًا ؛ الفترات غير المحدودة

يوضح الجدول التالي أنواع الفترات غير المحدودة : ليكن ١ ، ب عددين حقيقيين .

ملاحظة: الرمز ∞ يقرأ ما لانهاية.

			-	
التعبير اللفظي	التمثيل البياني	رمز المتباينة	نوع الفترة	رمز الفترة
مجموعة الأعداد الحقيقية الأكبر من أو تساوي ا	-	س ≥ ٩	نصف مغلقة وغير محدودة من أعلى	(4,∞)
مجموعة الأعداد الحقيقية الأكبر من ا	←	س > ٩	مفتوحة وغير محدودة من أعلى	(√,∞)
مجموعة الأعداد الحقيقية الأصغر من أو تساوي ب	←	س ≤ ب	نصف مغلقة وغير محدودة من أسفل	(- ∞ ، ب]
مجموعة الأعداد الحقيقية الأصغر من ب		س < ب	مفتوحة وغير محدودة من أسفل	(- ∞ ، ب)

تدرّب (٥) 📆 ،

أكمل الجدول التالي:

التعبير اللفظي	التمثيل البياني	رمز المتباينة	نوع الفترة	رمز الفترة
مجموعة الأعداد			نصف مغلقة	
الحقيقية الأكبر من	₹	5 < Cm	وغير محدودة	(∞,٤]
أو تساوي ٤		8.0	من أعلى	
مجموعة الأعداد			مفتوحة وغير	(1000)
الحقيقية الأكبر من	← ⊙ →	.<0	محدودة من أما	(0000)
صفر کا ۱۵۰۰			أعلى	
2)10/05/5			ale cie	
sepy queies	Y	س ≤ -۲		(c-c M-)
C- Volumer -			Jeri io	
مجموعة الأعداد		c->w	oppies	(V
الحقيقية الأصغر	← • • • • • • • • • • • • • • • • • • •	- / 0	وكرمحدودة	(۲−,∞ −)
من – ۲			Jay is	

تمــرِّنْ ،

	ų.	
		🚺 قارن بين ا
. 1.100	15 à ·	قادن سن
ا سه يني .	ما المادين عي حر	

7, Y - , πY - 😌	$\frac{1}{\mu} \cdot \cdot \cdot \cdot \cdot \overline{\mu} \cdot \bullet \cdot \bullet$
T, C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 = 1/4 = 1/
0 / 1 / 0 1, & = 1 c	1/2 (· , Yo €)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	100 € (·,cō

• " titi	باعديًّا الأعداد		F	Y
التالية.	باعديا الاعداد	ر س بص	W	

	$\frac{1}{7}$, \cdot , 7 , $\frac{7}{6}$
	457.
(1)	برين بكولي
-	
٠, ٦٠	٠,٦ ٠,٠
	1 0 7 5 F.
	0

:	التالية	عداد	ازليًّا الأ	رتب تنا	9
-				~ w	XICO

	رتب تصاعديًّا الأعداد التالية :
	$\frac{\gamma}{V}$, $\frac{\pi}{5}$, \cdot , $\frac{\pi}{6}$
	18chox 7 10hox 17
	11/0 / = 1 (C) (C)
	, VNo c., ō c., ¿c No vieled cierli
	£ 1,0 6 1
	رتب تنازليًّا الأعداد التالية :
	$7\frac{V}{Y}$, $7,\overline{Y0}$, $\overline{\xi}$
	J.CA & TIC
	VAZZV
	-,,,
17 -	7, CA6 V S'IN & By Co.
	-6 TICL EN
	-6 TIC 6 EAV
· 7, co	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ وا
	-6 TIC 6 EAV
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ وا
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ وا
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ وا
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ وا الله المراد الحقيقية الأكبر من أو تساوي ١ وا الله المراد الحقيقية الأكبر من ١ والأصغر من المراد الحقيقية الأكبر من ١ والأصغر من
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ والمساوي ١ والمسلوب الفترة التي تمثل الأعداد الحقيقية الأكبر من ١ والأصغر من المسلوب الفترة التي تمثل الأعداد الحقيقية الأكبر من ١ والأصغر من المسلوب الفترة التي تمثل الأعداد الحقيقية الأكبر من ٤٠
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ وا الله المراد الحقيقية الأكبر من أو تساوي ١ وا الله المراد الحقيقية الأكبر من ١ والأصغر من المراد الحقيقية الأكبر من ١ والأصغر من
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ والساوي ١ والساوي ١ والساوي ١ والسلام الأعداد الحقيقية الأكبر من ١ والأصغر من السلام الأعداد الحقيقية الأكبر من ١ والأصغر من المتب الفترة التي تمثل الأعداد الحقيقية الأكبر من ٤٠
الأصغر من ٦	اكتب الفترة التي تمثل الأعداد الحقيقية الأكبر من أو تساوي ١ والمساوي ١ والمسلوب الفترة التي تمثل الأعداد الحقيقية الأكبر من ١ والأصغر من المسلوب الفترة التي تمثل الأعداد الحقيقية الأكبر من ١ والأصغر من المسلوب الفترة التي تمثل الأعداد الحقيقية الأكبر من ٤٠

🚺 أكمل الجدول التالي :

	التعبير اللفظي	التمثيل البياني	رمز المتباينة	نوع الفترة	رمز الفترة
	محوعه لاعد و مخصفه لابر من وساوی		07.42	Teles	[0,7]
	محوعة كالمعداد المحصفة الأثرين المحصفة والأحمرين	← → • →	17か7c-	Poses	(166-)
	مجموعة الأعداد الحقيقية الأكبر من أو تساوي -٤	€ *	ح ≼س	To see see	(M.E-)
a	محوعه بانواه طفية الأجمعش حن	← 	س < ہ	2000 posico	(o, ks-)

معلومات مفيدة: مركز الشيخ عبدالله

السالم الثقافي هو أكبر معالم التطور الثقافي من نوعه حول العالم. يضم المركز عدة متاحف ، منها : متحف التاريخ الطبيعي

ومتحف العلوم والتكنولوجيا ، كذلك

يضم عدة مختبرات مخصصة للتجارب العلمية وعلوم الفضاء

العمليات علمه الأعداد الحقيقية Operations on Real Numbers

سوف تتعلّم: إجراء عمليات على الأعداد الحقيقية.

نشاط ،

عدد التجارب خلال سنة	
العدد	اسم المختبر
179	التجارب
۱۳۷	الأبحاث
۱۳۷	الديناميكا
	الهوائية

يضم مركز الشيخ عبدالله السالم الثقافي ، عدة مختبرات منها:
مختبر التجارب ، مختبر الأبحاث ومُختبر الديناميكا
الهوائية . لنفترض أن الجدول المقابل يوضح عدد
التجارب خلال سنة ، احسب العدد الكلّي للتجارب ؟
لمعرفة العدد الكلّي للتجارب عليك أن توجد ناتج :

Y × 1 7 V + 1 Y 9

ادخل على الآلة الحاسبة كلُّا ممّا يلي ثمّ اكتب الناتج:

$$= Y \times 177 + 179 = Y \times (177 + 179) = (Y \times 177) + 179 = (Y \times 177)$$

٤٠٢

تذكّر أنّ :

العمليات:

أولويات ترتيب

(١) ما داخل الأقواس (٢) الأسس والجذور

- قارن النواتج .
- ما العملية التي ستبدأ بها الآلة الحاسبة في كل مرة ؟

ترتيب العمليات على الأعداد الحقيقية

تدرّب (۱) 👘 :

حدّد الإجراء الذي بتم أولًا:

الاس

(m + h +) 10 - 😜	$\wedge \times \wedge - \wedge \wedge$
القوس	in is is
$\frac{(\xi + \chi\xi)}{\zeta}$	۲× ^۳ ۲ ÷ ٤٨ 🜏

(٣) الضرب والقسمة
من اليمين
 (٤) الجمع والطرح من اليمين

فكر وناقش فكر

. م - $\frac{9+7}{3}$: أي العمليات نبدأ

خواص العمليات على الأعداد الحقيقية

إذا كانت أ ، ب ، ج أعدادًا حقيقية فإن :

خاصية الإبدال لعملية الجمع خاصية الإبدال لعملية الضرب

و
$$4 \times \psi = \psi \times 1$$
 خاصية الإبدال لعملية الضرب $+ \psi \times 1 = \psi \times 1$ خاصية التجميع لعملية الجمع $+ \psi \times 1 = \psi \times 1 =$

الضرب
$$\times + \times = (+ \times +) = (+ \times +) \times + \times = (+ \times +) \times + \times = (+ \times +) \times + \times = (+ \times +) \times = (+$$

تدرّب (۲) 👘 ؛

اذكر الخاصية المستخدمة.

$$\pi + \frac{1}{Y} = \frac{1}{Y} + \pi$$

Uptale and
$$\exists v \times (0 \times v \times V) = \exists v \times (0 \times v$$

2 de curpo de constante (
$$\frac{7}{\xi} \times \frac{\xi}{\pi}$$
) + ($\frac{\pi}{\xi} \times \frac{\xi}{\pi}$) = ($\frac{7}{\xi} + \frac{\pi}{\xi}$) $\times \frac{\xi}{\pi}$

مثال:

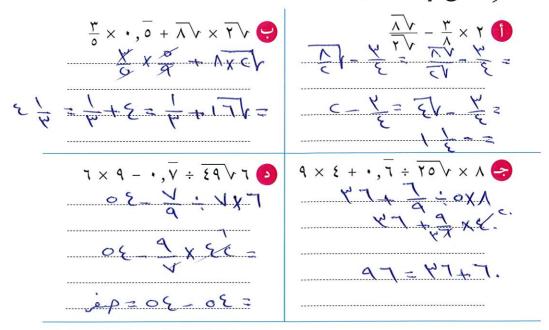
 $\overline{1}$ أوجِد الناتج في أبسط صورة : 7×7 ، $7 \times 7 \times 7$

الحل:

تدرّب (۳) 🚺 :

أوجِد الناتج في أبسط صورة:

	7 × V - ·, \(\vec{\pi} \div \tau \tau \)
co - 1 x - 1	18- 7: Exo
co - XX ==	18- 4: c. =
0	ET=18-T,=18-4XC.=


ضع أقواسًا لتصبح العبارة صحيحة : ١٠٠ + ٣ ÷ ٣ + ٣ = ٣١

تمــرّن

تين :	🕦 أوجِد قيمة كلّ مما يلي بطريقتين مختلف
cop(140 b (1.+1) x 0
$(1.\times0)+(0\times0)$	9.= IAX0
9.=0.+8.=	9. = I/X o
ر مرده در مرد (۱۲ مرد) - (۲۰ مرد	VC=VXA
	🕜 أوجِد قيمة كلّ مما يلي :
(m-)÷1+(1-)-18	7+(Y-)× £ ÷ 17 1
C-V+18=	7+c-x {
C.= C-(C=	C-= 7+ A-=
$(7-)+\frac{(7+9)^{m-}}{11-}$	$(\Upsilon -) + \frac{9 - 1\Lambda}{9}$
11 44-	

	٠.		c
	1- 1	: - +1+11	😗 أوجِد
صوره.	ے اسط	، اسامح و	او جد
-	٠ ٠	·	

زيارة قاعة	زيارة	أنواع
الاستكشاف	المركز	التذاكر
١.	۲.	عدد المتعلّمين

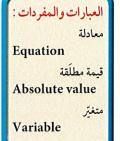
فنظمت إحدى المدارس رحلة للمركز العلمي وكانت أسعار التذاكر على الشكل التالي: الشكل التالي: زيارة المركز ٥,٣ دينار، زيارة قاعة الاستكشاف ٥,٤ دينار. احسب المبلغ

الإجمالي للرحلة مستعينًا بالجدول الموضح فيه عدد المتعلّمين المشاركين ؟

4,0X1. + 4,0XC = SPY elily

16 = 60+ V==

إذا أنتجت كلًّا من الكويت والإمارات العربية المتحدة والصين نفس الكمية من النفط في أحد الأيام ولتكن ٣,٦ مليون برميل، وأنتجت المملكة العربية السعودية في نفس اليوم ١٠ مليون برميل. احسب إجمالي إنتاج الدول الأربعة في هذا اليوم.


		1	عي معالمين
	1 X T, Y + 1	W-7/WY	3181
			1 > -
رعبا	1 C 1 1 2 1 -	+ 1. 1 =	
رميا	(C, Az la		

القيمة المطلقة Absolute Value

سوف تتعلّم: إيجاد القيمة المطلّقة وحلّ معادلات تتضمن القيمة المطلّقة.

يقف كلّ من عليّ وأحمد على خطّ للأعداد كما هو موضَّح في الشكلّ أدناه: في كلتا الحالتين، أُكتب أيّهما الأقرب إلى الصفر على خطّ الأعداد.

الحالة الأولى:

الحالة الثانية:

القيمة المطلقة

القيمة المطلّقة لعدد حقيقي هي المسافة على خطّ الأعداد بين هذا العدد والصفر .

تذكَّرْ أنّ : | h=| h± لكل ا ∈ ح .

$$\boxed{0} | - \mathcal{F}, \cdot | = | \boxed{0} | \boxed{0}$$

من خواص القيمة المطلقة

$$\left| \begin{array}{c|c} w \times w & = w \times w \end{array} \right| \times \left| \begin{array}{c|c} w & x & w \end{array} \right|$$

$$\frac{\left| \begin{array}{c|c} w & w & w \end{array} \right|}{\left| \begin{array}{c|c} w & w & w \end{array} \right|} \times \left| \begin{array}{c|c} w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w & w \end{array} \right| \times \left| \begin{array}{c|c} w & w & w & w & w & w & w \end{array}$$

تدرّب (۲) 👘 ،

أوجِد ناتج كلُّ ممّا يلي مستخدِمًا خواصّ القيمة المطلَقة:

$$\begin{vmatrix} \frac{0}{V} & | & \bigcirc \\ & \frac{|0}{V} & | & | \\ & \frac{|0}{$$

هل |٥+(٣-)| = |٥| + |٣- أ ؟ ولماذا ؟

إيجاد قيمة مقدار جبري

مثال (١) :

الحل:

$$\begin{vmatrix} \cdot & \cdot & 0 - \\ \cdot & \cdot & 0 + \\ \cdot &$$

تدرّب (۳) 🚻 ،

أوجِد قيمة كلِّ ممّا يلى :

إذا كانت س = - ٦

بالتعويض عن قيمة س

اس - ٥ | + | ٥ - س |

حلّ معادلات تتضمن قيمة مطلقة

لكلّ عدد حقيقي س يكون:

$$| \cdot | = | | \cdot |$$
 $| \cdot | = | | \cdot |$
 $| \cdot | = | | \cdot |$

يمكن استخدام خطّ الأعداد لحلّ معادلات تتضمن قيمة مطلَقة .

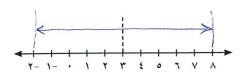
يوضّح التمثيل البياني المقابِل على خطّ الأعداد حلّين للمعادلة | س | = ٣ ونعني بها أنّ المسافة بين س و الصفر تساوي ٣ وحدات .

.. للمعادلة | س | = ٣ حلّان هما ٣ ، - ٣

يوضّح التمثيل البياني المقابِل على خطّ الأعداد حلين للمعادلة | w - o | = 3 ونعني بها أنّ المسافة بين | w - o | = 3 تساوي | x - o | = 3 وحدات .

تدرّب (٤) 🚻 ؛

أكمِل لتوجد حلّ المعادلات التالية مستعينًا بالتمثيل الموضَّح على خطّ الأعداد:


ا س ا = ٤

للمعادلة حلّان هما : س = ع أو س = ع ه ؛ ٣ ٢ ١ . -١ - ٢ - ع - ه

ی – ۳ – ۰

للمعادلة حلّان هما:

س =∆.... أو

تذكَّرْ أنّ :

- المجموعة الخالية نعبر عنها :
 - (} le ∅
- النظير الجمعي للعدد أ
 هو (أ) بحيث :
 - =(1-)+1
 - (-۱) + ۱ = صفر

- (١) إذا كان أ عددًا حقيقيًّا موجَبًا ، فإنّ المعادلة :
 - | س | = ١

لها حلّان هما m = 1 أو m = -1 ومجموعة الحلّ هي $\{1, -1\}$

(٢) إذا كان أعددًا حقيقيًّا سالبًا ، فإنّ المعادلة :

اس ا= السلهاحل في حومجموعة حلّها هي ∅

(٣) إذا كان أ = ٠ ، فإنّ المعادلة :

| m | = 1 لها حلّ وحيد هو m = 0 ومجموعة حلّها هي $| 0 \rangle$

مثال (٢) :

أوجد مجموعة حلّ المعادلة : | Y m + 1 | = 7 في ح .

الحل:

$$7 + m + 1 = 7$$

$$7 + m + 1 = 7$$

$$1 - m = 1 - 1 + m$$

$$1 - m = 1 - 1 + m$$

$$1 - m = 1 - 1 + m$$

$$1 - m = 7$$

$$2 + m = 7$$

$$3 + m = 7$$

$$4 + m = 7$$

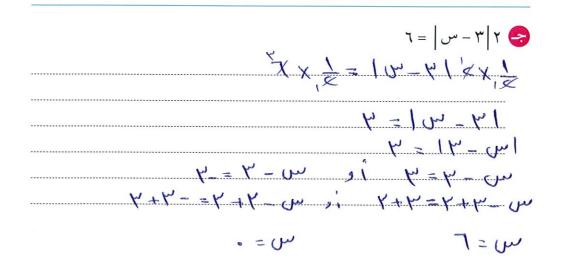
$$4 + m = 7$$

$$7 + m =$$

∴ مجموعة الحلّ = { ٢ ، ٦ }

تدرّب (٥) 🚻 :

$$V = Y - w$$
 $V = Y - w$ $V =$

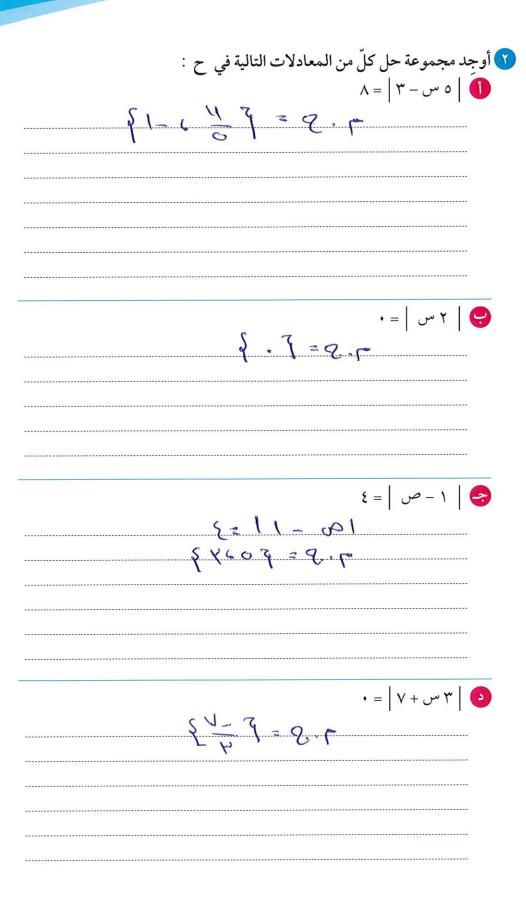


تدرّب (۲) 🚺 :

أوجد مجموعة حل كلِّ من المعادلات التالية في ح:

	= c cpo
	C+0=C+C-UP0
	1xc= cp dx 1
5 6 7	6 x 0 = 2 x 6 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
L 0 1	1 . 0

۱ = ۷ + ۱ + س ٤ 😅
13m711+ N-1-1-K
711+0281
\$ 15 Ac 3



تمــرّنٰ ،

مسرن :
أوجِد قيمة كلِّ ممّا يلي :
$m = \infty$ إذا كانت $m = \infty$
7-1 mxm/z
7-1912
μ= 7-9=
۲ − = س + ۲ ۲ إذا كانت س = − ۲
171+10+0-1=
171 + 1.12
7=7+62
۷ = س × ۷ − ٦ إذا كانت س = ۷
17-4x4 =
1541 =
1 6 M =
$\Upsilon = 0$ إذا كانت $M = 1$
1795-1411-01-
17,6-1+10,1=
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

اه س - ۶ = - ۳ - = ۶ - س ه ۹	A
۲ س - ۳ = ۱۰ = ۲ م ح کے	9
۲ = ۱ - س کر ـ د خ کم = کو	
۳ ۶ س + ۱ - ۹ = ۰)

تم تحميل الـمــلف من موقع مدرستي الكويتية

ننصح بأفضل مذكرة منذكرات السنجاح

حمل تطبيق مدرستي الكويتية

حلّ متباينة من الدرجة الأولمے في متغيّر واحد Solving First Degree Inequality in One Variable

سوف تتعلّم: كيفية حلّ متباينة من الدرجة الأولى في متغيّر واحد.

العبارات والمفردات : المتباينة Inequality

معلومات مفيدة:

يُعَدَّ مرض السكّري من المشاكلّ الصحّية الشديدة الانتشار في عصرنا الحالي ، وطبقًا للإحصائيات الطبّية العالمية ، فإنّه يوجد ما يُقدَّر عددهم بـ (٣٥٠) مليون مريض بالسكّري حول

العالم ، ولا تزال هذه الأعداد في تزايد مستمرّ على الرغم من التقدّم الطبّي الهائل. يوضّح الجدول التالي نسبة السكّر الطبيعية في دم الإنسان بوحدة مجم / ديسيلتر مقارنة بالعمر:

أكبر من أو يساوي ٦٠ سنة	أصغر من ٦٠ سنة	أصغر من ٥٠ سنة	مر	الع
أصغر من أو تساوي ١١٠	أصغر من أو تساوي ١١٠	أصغر من أو تساوي ١٠٠	صائم	نسبة السكّر
أصغر من ١٦٠	أصغر من ١٥٠	أصغر من ١٤٠	غير صائم	في الدم

الأسباب المؤدّية إلى
الإصابة بمرض السكّري:
تنتج الإصابة بمرض
السكّري عن عدم
قدرة البنكرياس على
إفراز الكمّية المناسِبة
من الأنسولين ما يؤدّي
إلى عدم قدرة الجسم
على التعامل مع الغذاء
على التعامل مع الغذاء
على التعامل مع الغذاء
في الجسم ما ينتج عنه
وفع نسبة السكّر في
الدم.

التعبيرات (أصغر من) ، (أصغر من أو تساوي) ، (أكبر من) ، (أكبر من أو تساوي) يرمز لها بالعلاقات : (<) ، (≤) ، (≥)

• أعد كتابة الجدول مستخدِمًا رموز العلاقات السابقة:

٠٠٠ سنة	۲۰ سنة	< ٥٠ سنة	مر	الع
11.	11.≥	1	صائم	نسبة السكّر
17.>	10.	18.	غير صائم	

* في المعادلات نستخدم رمز علاقة المساواة (=) ، بينما في المتباينات نستخدم رموز العلاقات < ، > ، \leq ، \geq .

من خواص التباين:

$$\cdot < -$$
 حيث $+ \times + > -$ حيث $+ \times + > + \times$

تدرّب (١) 👘 :

أوجِد مجموعة حلّ المتباينة : ٢س + > 7 في ح ، ومثِّلها على خطّ الأعداد الحقيقية .

$$\frac{1}{\gamma} \times \gamma$$
 $\frac{1}{\gamma} \geq \frac{1}{\gamma} \times \frac{1}{\gamma}$

تدرّب (۲) 🚺 ؛

أوجِد مجموعة حل : ٢ - ٣ س < ١٤ في ح ، ومثِّلها على خطَّ الأعداد الحقيقية .

بضرب طرفي المتباينة في
$$-\frac{1}{m} \times -\infty$$
 بضرب طرفي المتباينة في $-\frac{1}{m} \times -\infty$ بضرب طرفي المتباينة في $-\frac{1}{m} \times -\infty$ بخرب طرفي المتباينة في $-\infty$ بخرب المتباينة في $-\infty$ بخرب طرفي المتباينة في $-\infty$ بخرب المتباينة في المتبا

تدرّب (۳) 🚻 ،

أوجِد مجموعة حل المتباينة : $7 < m + 1 \leq 3$ ، $m \in 7$ ، ومثِّلها على خطّ الأعداد الحقيقية .

$$1 - \xi \ge 1 - 1 + \omega > 1 - 7$$

حلّ متباينات تتضمّن قيمة مطلقة

تذكَّرُ أنِّ : • إذا كان | س | = ا حيث ا ∈ ح ٍ فإن :

س = ١ أو س = -١

• مجموعة حل | س | ≤ ١

هي جميع الأعداد الحقيقية التي بعدها عن الصفر على خطّ الأعداد الحقيقية أصغر من أو يساوى ١

• مجموعة حل | س | ≥ ١

هي جميع الأعداد الحقيقية التي بعدها عن الصفر على خطّ الأعداد الحقيقية أكبر من أو يساوى ١

تذكَّرُ أنَّ : الرمز ⇔ يقرأ إذا وفقط إذا . $|m| \le l \iff -1 \le m \le l$, حيث $l \in J_+$, $m \in J_-$

مثال (١):

أوجِد مجموعة حلّ المتباينة : | w + 2 | < V في ح ، ومثِّلها على خطّ الأعداد الحقيقية .

الحل:

تدرّب (٤) 🚻 :

أوجِد مجموعة حلّ المتباينة $| w + Y | - Y \le 0$ في ح ، ومثِّلها على خطّ الأعداد الحقيقية .

$$|w+7| \le 0+7$$
 $|w+7| \le A$
 $|w$

$\mid m \mid \geq 1 \iff m \geq 1$ أو $m \leq -1$ ، حيث $1 \in J \iff m \in J \subseteq J$

مثال (۲) :

أوجِد مجموعة حلّ المتباينة : $| 7 m - 1 | \ge 7$ في ح ، ومثِّلها على خطّ الأعداد الحقيقية .

الحل:

تدرّب (٥) 🚺 ،

أوجِد مجموعة حلّ المتباينة : $Y \mid Y - w \mid V$ في ح ، ومثِّلها على خط الأعداد الحقيقية .

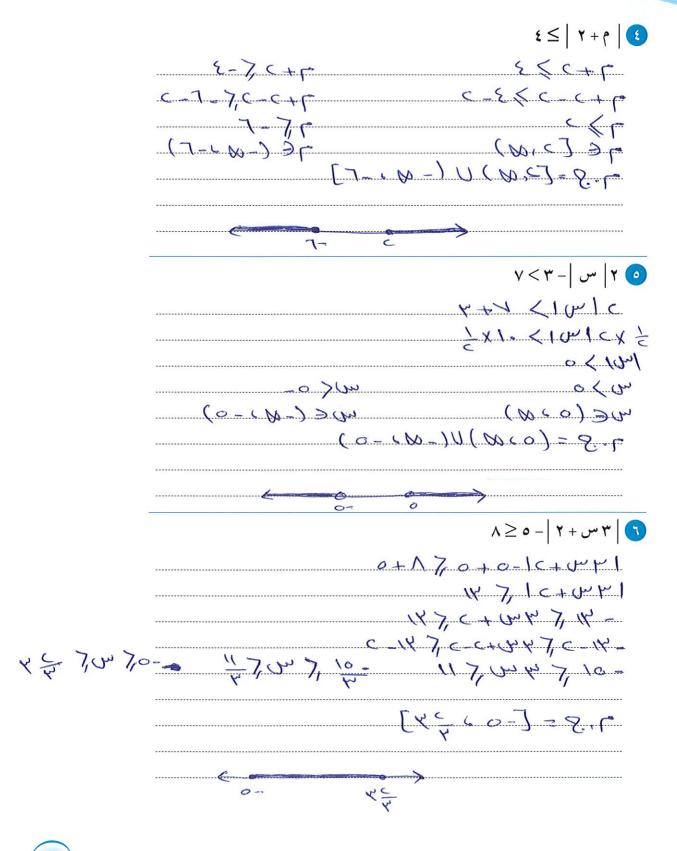
$$|Y - w| > \frac{1}{\gamma}$$

$$|w - Y| > \frac{1}{\gamma}$$

$$|w -$$

و المنافق فكروناقش

ما مجموعة حل س < - ٧ ؟ ولماذا ؟
رَ ب (٦) • • • • • • • • • • • • • • • • • • •
ود مجموعة حلَّ المتباينة : ٥ - س ≥ ٦ في ح .
0-7 < lwl-
1-7/m
وعه حل م
رَب (۷) 🚻 :
محل للعصائر الطازجة أنواع مختلفة من العصير ، فإذا كان يقدم نوع من العصير.
لمُط ثلاث أنواع من عصير الفواكه هي : الفراولة والمانجو والأناناس . فإذا كانت
ية عصير الفراولة لم لتر ، والمانجو لله ١ لتر ، فما هي الكمية التي يمكن إضافتها
عصير الأناناس علَّمًا بأن وعاء الخلط يتسع إلى ٢ لتر على الأكثر .
كتب متباينة لإيجاد كمية عصير الأناناس المناسبة) .
$C > 0 + 1 = \frac{1}{1} + \frac{1}{1}$
C> m + 12
1/2 C 7 m
17 m
كتاج بي إطافة كمية عليم لأنانان اطل من أولساوى



تمــرَّنْ ،

أوجِد مجموعة حلّ كلّ من المتباينات التالية في ح ، ومثِّلها على خطّ الأعداد الحقيقية .

۱ س – ه < ۲
0+c > 0+0-w
(V600) 155
(V60) Bass
V
۲ ≥ ۲ ص + ۳ < ۱۱
4-11 >4-4-4c> > 1-1
17,0070-
VX J > cocx J > c-x f
5 7 B7 1-
({\langle \chi \chi \chi \chi \chi \chi \chi \chi
٧ - اس + ٧ < ه
0>V+m>G-
V-07V-V+W7V-0-
c->w71c-
(c-c)c-) 15/ac-3
(C- C-

7-< m -0V 0-C- < m -0 0 V- < m - V- V > V- V > V- (V,V) = 5555
mr-r ≥ q \\ 9-717-wc1
r- 7

وليحصل المتعلم على تقدير امتياز في مادّة الرياضيات ، فإنّ عليه أنّ يحصل على ما
لا يقلُّ عن ٢٧٠ درجة في ٣ اختبارات لهذه المادّة ، حصل سالم على الدرجات
٨٤ ، ٩١ في الاختبار الأوَّل والاختبار الثاني ، فما الدرجات التي يجب أنَّ
يحصل عليها سالم في الاختبار الثالث ليحصل على تقدير امتياز.
W. < W+ NE+ 41
C1. <u+ 110<="" td=""></u+>
130 - CJ ~ (U+130 - 130
90 6
عب أن خول على أكر من أو ساءك ه ورجه
من الم النوي الله

الصورة العلمية باستخدام الأسس الصحيحة Scientific Notation by Using Integer Exponents

العبارات والمفردات: صورة علمية Scientific Notation أسس موجَبة Positive Exponents أسس سالبة Negative **Exponents**

معلومات مفيدة:

أحد أجزاء وحدة المتر

التي تُستخدَم لقياس المسافات والأطوال

القصيرة جدًّا ، وهي تَمْثَل ۲٫۰۰۰۰۱ من المتر (واحد من مليون

من المتر). النانومتر : وهو أيضًا

يمثّل أحد أجزاء وحدة المتر الصغرة

لقياس المسافات والأطوال الشديدة

القصر ، وهي تمثّل

مليون من المتر).

المتر (واحد من ألف

جدًّا ؛ حيث يُستخدَم

Microbiology هو علم دراسة الأحياء الدقيقة غير المرئية بالعين المجرّدة ، مثل البكتبريا والفطريات

الميكروبيولوجي

سوف تتعلّم: كتابة الأعداد الكبيرة والأعداد متناهية الصغر بالصورة العلمية.

الكائنات الحية والكائنات المجهرية بالملّيمتر (مم)

وأجزاءه ، وكانت بعض نتائجهم (في صورة قوى

العدد ١٠) كما في الجدول التالي .

أكمل الحدول لكي تكتشف النمط:

							Q . 0,
1	1	1.	١	١.	1	1	أطوال الكائنات بـ (مم)
., 1	1.,.	٠,١	١,٠	١٠,٠	1 ., , ,	1 , .	العدد بالصورة العشرية
4-1"	c-,	1-1	٠١.	١.	۲۱.	٣١٠	الصورة الأسّية
r-	C-	1-	•	1	۲	٣	قوة العدد ١٠ (الأسّ)

- صف النمط في الصفّ الثاني والثالث والرابع من الجدول .
- صف العلاقة بين العدد في الصورة العشرية والصورة الأسية له .

الصورة العلمية (القياسية) باستخدام الأسس الصحيحة الموجَبة

مثال (١):

أكتب العدد ٢٤١ ٦٥ بالصورة العلمية .

الحل:

70 781 , .

70 781,.

1370, F × 11

- العدد في الصورة العشرية
- حرِّك الفاصلة العشرية إلى اليسار لتحصل على عدد عشري أكبر من أو يساوي واحدًا وأصغر من ١٠ عدّ المنزلات التي تحركت بها الفاصلة العشرية إلى

اليسار لتمثّل قوّة العدد ١٠

 $\therefore 13707 = 1370, 7 \times 1^3$

.. 1370, F×11

تُسمّى بالصورة العلمية (القياسية) للعدد

تذكُّرْ أنّ : • المليون =

• التريليون =

الصورة العلمية (القياسية) للعدد: $\sim -\infty$ ، ن $\sim -\infty$ ، ن $\sim -\infty$ ، ن $\sim -\infty$. يُكتَبُ العدد على الصورة : 1×1 ، ن $\sim -\infty$. الشكلّ النظامي الصورة العلمية (القياسية) فمثلًا: 11. × 7,0781 70 7 21

قوى العدد ١٠ في الصورة الأسية

عدد عشرى قيمته المطلقة أكبر من أو يساوي ١ وأصغر من ١٠

تدرّب (١) أأ : أُكتب بالصورة العلمية كلًا ممّا يلي :

و ۲۳۱ ملیار = <u>معمد مدود ۲۳۱ = ۱۲۰ × ۱ ۱ ٪ د ا ٪ .</u>

تدرّب (۲) 👘 ؛

أُكتب رمز كلّ من الأعداد التالية بالشكلّ النظامي:

الصورة العلمية (القياسية) باستخدام الأسس الصحيحة السالبة

مثال (۲) :

أكتب العدد ٢٥٦، ٠٠ بالصورة العلمية .

الحل:

حرِّك الفاصلة العشرية إلى اليمين لتحصل على عدد عشري أكبر من أو يساوي واحدًا وأصغر من ١٠ 1. × Y, 07 عدّ المنز لات التي تحرّ كت بها الفاصلة العشرية لليمين لتمثّل قوّة العدد ١٠

تدرّب (۳) 📆 ،

أُكتب بالصورة العلمية كلًّا ممّا يلى:

تدرّب (٤) 👘 :

ا كتب رمز كلّ من الأعداد التالية بالشكلّ النظامي:

$$= {}^{\mathsf{T}} \cdot \mathsf{N} \times \mathsf{M} = {}^{\mathsf{T}} \cdot \mathsf{N} \times \mathsf{M} = {}^{\mathsf{T}} \cdot \mathsf{N} \times \mathsf{M} \times \mathsf{M}$$

تدرّب (٥) 🚺 :

قارِن بوضع > ، < ، = في كلّ ممّا يلي لتحصل على عبارة صحيحة :

مثال (٣):

 $^{"}$ 1٠× ۷, ۲ + $^{"}$ 1٠× ٤, ١ أوجد ناتج ما يلي بالصورة العلمية :

الحل

$$^{"}$$
۱۰×۷,۲ + $^{"}$ ۱۰× ξ ,۱ (بأخذ $^{"}$ ۱۰ عامل مشترك) ($^{"}$ ۷,۲ + $^{\xi}$, $^{"}$ 1۰ = ($^{"}$ 11, $^{"}$ 1۰ = $^{"}$ 1۰×۱۱, $^{"}$ 1 = $^{\xi}$ 1۰×۱, $^{"}$ 1 = $^{\xi}$ 1۰×۱, $^{"}$ 1 = $^{\xi}$ 1.

تدرّب (٦) 🚻 :

أوجد ناتج ما يلي بالصورة العلمية:

تذكّر أنّ: إذا كان س، ص أعداد صحيحة: • $1^{w} \times 1^{o}$ = 1^{w+w} • $\frac{1^{w}}{1^{o}} = 1^{w-w}$ حيث $1 \neq 1$

$$(^{\mathsf{Y}^{-}}\mathsf{I} \cdot \times \mathsf{Y}) \div (^{\circ}\mathsf{I} \cdot \times \mathsf{Y}, \mathsf{I}) \bigcirc$$

$$(^{r-}1\cdot\times Y)\times (^{V}1\cdot\times Y,Y)$$

الطنّ . (۱) عطارد (۲) الزهرة (۲) الزهرة (۳) الأرض (۳) الأرض	بعلومات م
۳,۳×۳,۳) الزهرة 9,3×۱۰٬۱ ۳) الأرض 9,0×۱۰٬۲۱	وزان بعض
(۱) عطارد (۲) الزهرة (۲) الزهرة (۳) الأرض (۵) الأرض (٤) المشترى	
(۲) الزهرة ۹ , ۶ × ۲۱ ۳) الأرض ۹ , ۰ × ۲۱ ۱۵) المشترى	الطنّ .
(۲) الزهرة ۹ , ۶ × ۲۱ ۳) الأرض ۹ , ۰ × ۲۱ ۱۵) المشترى	
۳) الأرض (۳) الأرض ۹ , ٥ × ۲۰ المشترى	
(۳) الأرض ۹ , ٥ × ۲۱ (٤) المشترى	
۹ , ۵ × ۲ ^{۱۱} (۶) المشتری	
(٤) المشترى	(٣) الأرض
(٤) المشتري ۱,۹×۱,۹	
1.×1,4	(٤) المشتري
	,٩
	2/6
600	
6	

تدرّب (۷) 🚻 :

يبلغ طول حشرة السوس ٢٩٦٥، . • سم ، بينما يبلغ طول حشرة الماء ٢٩٨١ . • سم . أكتب العددين بالصورة العلمية ، ثمّ وضِّح أيّ الحشرتين هي الأصغر طولًا ؟
اكتب العددين بالصورة العلمية ، ثمّ وضح أيّ الحشرتين هي الأصغر طولا ؟
paul. X 9, Tac = 60 0 0000
pri, x1,911=540,200
CT, X9, 70C > C1, X1,911
31 L 00V00 L 1 C

تدرّب (۸) 🕦 :

يبلغ طول قطر الأرض $1, 1, 1 \times 1$ کم ، وطول قطر کو کب المشتري يبلغ طول قطر الأرض 1, 1, 1 کم ، فبکم يزيد طول قطر کو کب المشتري عن طول قطر الأرض 1, 1, 1

 $^{\mathfrak{t}}$ ان الزيادة $^{\mathfrak{T}}$ ، $^{\mathfrak{T}}$ ، $^{\mathfrak{T}}$ ، $^{\mathfrak{T}}$ ، $^{\mathfrak{T}}$

(1,c/ -1,x/,EY) × 11 =

= (1, -12x) × (1 =

فكر وناقش فكر وناقش

- 🕦 هل يوجَد عدد لا يمكن كتابته في الصورة العلمية ؟
 - 🕜 هل (١٠ ^{صفر}) هو عدد في الصورة العلمية ؟

تمــرَّنْ ،

7. X Y + 5 C = · , · · 787	9

٤
30715 = 301/1-X
$\frac{1}{2} \frac{1}{2} \frac{1}$
₩ A (`
مليونًا = ٢٩٤٤ مليونًا = ٢٩٤٤ مليونًا =
و ۲۶۱ تريليونًا = محمد محمد الم باري الم
ن سبعمئة وأربعة وخمسون مليارًا =
= 30,LX /"
ک ستّمئة وثلاثون جزءًا من عشرة آلاف = ۲۲۰
۱ ۵ جزءًا من مليون = معمد المحمد المح
0-1. X 0 1 =
ال ۱۹۸۶ جزءًا من مليار = المسلم المسل
- TAIX X

	w	E	و	
النظام:	بالشكا	كلَّا ممّا يلج	اكتب	
ي ا	0	5	·	

 $\frac{1}{1} = \frac{1}{1} \times 1, 71$

= ¹1 · × Y , · 9

= V · × r -

= Y-1.×T, TT1 0

- 😙 قارن بوضع > ، < ، = في كلّ ممّا يلي لتحصل على عبارة صحيحة :

 - الف ۲۰۱۰× ۳,0٤ 😑 ۲۰۱۰ الف

أوجِد ناتج كلِّ ممّا يلي بالصورة العلمية :

او جِد ناتج دل مما يني بانصوره العنسيد .

(۲,۲ + ۲,۲ + ۵) = - (۲,۲ + ۵, ۵) ...

	(c, 1 - 9, N)	$\frac{\xi}{\lambda} = \frac{1 \cdot x}{1 \cdot x} + \frac{1 \cdot x}{1 \cdot x} + \frac{1}{1 \cdot x$
(%,	x 2 / X (0 X E 1)	$(\mathbf{Y}) = (\mathbf{Y} \cdot \mathbf{Y}) \times (\mathbf{Y} \cdot \mathbf{Y}) \Leftrightarrow$
	x 7,7 = 4,7 x	$\frac{\mathcal{X}}{\mathcal{Y}} = (^{Y} I \cdot X Y) \div (^{E^{I}} I \cdot X T, Y) \bigcirc$
		بلغت مساحة مركز الشيخ عبد الله السالم الثق أكتب هذه المساحة في الصورة العلمية .
. قم	حوالي (٢ ، ٨ × ٢٠ أ) نس م بلغ مجموع عدد سكّان اا	في عام ٢٠١٦ م، بلغ عدد سكّان دولة الكويت بلغ عدد سكّان دولة الإمارات العربية المتّحدة - فأيّ الدولتين هي الأكثر عددًا في السكّان؟ وكم
	2	بالصورة العلمية ؟ ٢٠١٤ \ ١٠٤ \ ١٠٤ \ عدداً حوله العارات عمد الأسر عدداً
	_ 1	XC+16-1-XC+1-

مراجعة الوحدة الأولم Revision Unit One

أوّلًا: التمارين المقالية

		-1111 11 11 11 11 11 11 11 11	
ح :	في	أوجد مجموعة حل كلّ من المعادلات التالية	1

V-= 4+0 c 21 V= 4+0 c V= 7+0 r 1)
= xx = mcx = = = = = = = = = = = = = = = = = = =
0 (m) C - (m
20-cc3=8-1
1= 17-001C 1= 0-7 Y (?)
1 x 2 = 17- v2 1 C x 2
100-1/5
au - T
Q-[+[-]+[-]+[-]-+[
0 1 = up
20207, 13 = 8.5
1-1-V-V+19-V=V+ 9-V= {
5/my-P/=-
1 x 2 / w - P / = 0 x 2
1 mm - 1 - 1 - 1
•=4-6
9+0=9+9-6
9= W
593=9.5

من المتباينات التالية في ح ، مع تمثيل مجموعة الحلّ على خطّ) أوجد مجموعة حلّ كلّ
	الأعداد الحقيقية:
274m - 12 2	$Y \geq V - W $ $ $
1+C31+1 mh 31+C	, , -
97 mm 30	
9x 1 7 Cr x 1 7 Ox to	
1.8 - 1. [4016] · [406] 4 - 8-L	
1, (10, b), (4, b) 18 = 8.6	
0->1+m	٠ < ١ + س 🤪
1-0->1-1+m	
7-70	
(7-60-) Sur (866-17)	
(7-w-)V(w, E) = 8 p	
7x />19-01/cx/	۲> س - ۹ ۲ 😜
h > 1d - m 1	
1 W > Q - W > Y - W	
9+4 2 d+d-m 2 d+ h-	
10 ファブフ	
(10.7195	
(10,7)	
Y+N < Y+Y-18+001 NS	۵ هس + ٤ _ ۳ ≥
11 < 1 \ + m 01	
11-7, 8+00 si 11 < 8+00	
8-11-78-8+000 E-11 < 5-8+000	
= x10- 2 max = = = = = = = = = = = = = = = = = = =	10
Tw	
[K-rB-) Jm (B0/5] Jm	
r- 15	

٤ - ١٠٠١ - ٤ - ٤	各 ٤ – إس
7<1/2/	
1-7/64	
\$ 15, a	مجوع

😙 أكمل الجدول التالي :

الصورة العلمية	رمز العدد بالشكل النظامي
1. 12,0	٣٥٠٠٠
^{r-} 1•×٦,•٣	* > * - T + 4
6-1-XN-X	٠,٠٠٠٧٣
°1•× A , { { { { { { { { { { { { { { { { { }}}} }}}}}}	Λ ξ ξ

اً وَجِد ناتِج كلّ ممّا يلي بالصورة العلمية : (۱,۷×۷,۱) + (۱,۷×۷,۱) = بر (۱,۷×۷,۱) ق
$=('1\cdot\times\Lambda,1)-('1\cdot\times9,77)$
(
$\frac{1}{\sqrt{X}} = (^{V}1 \cdot \times 7) \div (^{Y-}1 \cdot \times Y, \xi)$

	0.9	الشكل النظامي:
		الشكل النظامي : الشكل النظامي النظامي : الشكل النظامي :
		يًا : التمارين الموضوعية
	ت العبارة غير	يً . لًا : في البنود التالية ، ظلَّل (أ) إذا كانت العبارة صحيحةً ، وظلَّل ﴿ إذا كَانَ صحيحة .
	(j)	$\sqrt{m+m}=\sqrt{m}+\sqrt{m}$
	(1)	$\pi-$ ، $\pi-$ ، $\pi-$ ، $\pi-$ ، $\pi-$ ، $\pi-$ الأعداد: $\pi-$ ، $\pi-$ ، $\pi-$ ، $\pi-$ ، $\pi-$ الأعداد:
	(1)	٣ مجموعة حل المعادلة س = ٥٠ في ح ، هي (٥، ٥٠)
\odot		٤ مجموعة حل المتباينة س + ١ ≤٣ في ح ، هي [-٤، ٢]
<u>.</u>		 إذا كانت س = ٣ ، فإن قيمة س - ٣ + ٧ هي ٧
، علی	ل الدائرة الدالا	انيًا : لكل بند من البنود التالية أربعة اختيارات ، واحد فقط منها صحيح ، ظلّا الإجابة الصحيحة .
: ي	ي تساوي -٥ ه	٦ الفترة التي تمثل مجموعة الأعداد الحقيقية الأصغر من ٥ والأكبر من أو
['	0,0-](3)	(0,0-) (0,0-) (1)
		∨ الفترة الممثلة على خط الأعداد
(}	, ∞-) 🕙	$[7,\infty) \Leftrightarrow (\infty,\gamma)$
		٨ مجموعة حل المتباينة ٢ س − ١ ٣< في ح هي :

- ۳ (ب
 - 🕠 أكبر الأعداد التالية هو :
 - '1·× ٤, ٢٣ (f)
 - °1 × ٤, ٢٣

جه ۰۰۰ ک

1 1/ (=)

- ٤-١٠×٩,٣٧ (ع)
- 🕦 العدد ٣٤٠٠، ٠ بالصورة العلمية هو :
 - "1·×0, & " (1)
 - ۲۱۰×٥٤,٣ (ج)

- "-1·×0, ξΥ **(**
- r-1.×087 (2)
- ᠾ العدد غير النسبي في ما يلي هو :
- $\frac{V}{q}$ \bigcirc \bigcirc \bigcirc
- ·, \(\overline{\pi} \)

1 1- (3)

تم تحميل الـمــلف من موقع مدرستي الكويتية

ننصح بأفضل مذكرة منذكرات السنجاح

حمل تطبيق مدرستي الكويتية

اِستعِدٌ للوحدة الثانية

كلّ ممّا يلي :	🐠 أوجِد العامل المشترَك الأكبر (ع . م . أ) ل
ع . م . أ =	V . 1 E
ع . م . أ =	ع . م . أ =ل
	# # # #
	🕜 حلِّل ما يلي تحليلًا تامًّا :
😜 ص ۲ – ٤	γ س ۲ س ۲ س
(c+up) (c-up)	(E - M) MC
	😙 أُوجِد ناتج كلِّ ممّا يلي :
·, •78 V 🜏	<u> </u>
· , & - & - TEV - TEV	γ - <u>γ - γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ</u>
1. 1 / h /	6 51/4
	🚯 أُوجِد ناتج كلٍّ ممّا يلي :
(۲ س² – ۷ س + ٥)	🕦 س (س + ۳)
10+ (m C1 ~ (m]	m h + ch
(۲ ص – ۱) × (۲ ص – ۱)	(۳ س − ۱) × (س + ٤)
1+ 600- 600- 600- 600-	= m - m/c + cm/==
3 902 - 3 90 + 1	= 4 w + Cm 4 =

6 - 6 m -	(m - m) (m' + m m + m') - u' + m' - m	(س + ٥) ٢ - سکم اس + ٥٥
	لية في ح :	👩 أوجِد مجموعة حل كلّ من المعادلات التا
	• = ۱٦ - ۲ ()	۱ ۳ س + ۵ = ۸
	(w) _ 3) (w _ 4 3) =	- N = 0 = 0 = M 7 - X M = W7 X - 1 - W = - W = W = W = W = W = W = W = W =
	س – ۳) سم .	🕠 أوجِد مساحة منطقة مربعة طول ضلعها (٣
	(\mathref{H}	مساحة المنظمة المربعة - لي رس _ = رس _ = س
	(س + ۱) سم (س + ۰) سم	 « منطقة مستطيلة أبعادها موضَّحة في الشكل المقابل. أو جِد مساحتها .
		م - الطول X العرمن
		(1+(m) + (m + c) = (1+(m) + (m) = (1+(m) + (m) + (m) + (m) + (m) = (1+(m) + (m) + (m) + (m) + (m) = (1+(m) + (m) + (m) + (m) + (m) + (m) = (m) +
		(

العبارات والمفردات:

- الفرق بين مكعبين Difference Between Two

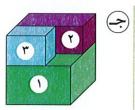
- مجموع مكتبين

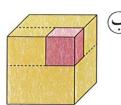
Factorising

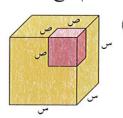
Sum of Two Cubes

Cubes

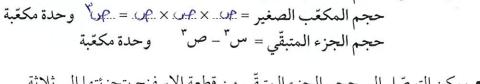
تحليل الفرق بين مكعّبين أو مجموعهما


Factorising the Difference Between Two Cubes or Their Sum

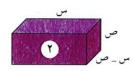


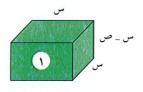

سوف تتعلّم: تحليل الفرق بين مكعّبين وتحليل مجموع مكعّبين.

أنتج مصنع للإسفنج قطعة مكعّبة الشكل طول حرفها (س) وحدة طول ، ومن أحد رؤوسها تمّ قطع مكعّب صغير طول حرفه (ص) وحدة طول كما في الشكل (أ).



معلومات مفيدة:


الإسفنج الطبيعي يتم استخراجه من حيوان الإسفنج البحري، ولكن الإسفنج المستخدم في منازلنا هو عبارة عن مادة صناعية يتم تصنيعها من سيليلوز ألياف الخشب ، أو البوليمرات البلاستيكية الرغوية ، وكثيرًا ما يستخدم الإسفنج في تنظيف الأواني والأسطح المختلفة ، كما يُستخدّم أيضًا في تصنيع بعض قطع



أحسب كلَّا من: حجم المكعّب الكبير = يس × يس × يس = يس وحدة مكعّبة

• يمكن التوصّل إلى حجم الجزء المتبقّى من قطعة الإسفنج بتجزئتها إلى ثلاثة مجسَّمات (١) ، (٢) ، (٣) كلّ منها على شكل شبه مكعّب معلومة أبعاده كما يلى :

الحجم = نين. × .بين) × (س - ص) الحجم = نين. × .بين. × (س - ص) الحجم = .بين. × (س - ص)

حجم الجزء المتبقّي = حجم الجزء (١ + حجم الجزء (٢) + حجم الجزء (٣) = (m - m) (m + m +)

تحقق من ذلك بإجراء عملية الضرب.

مما سبق نستنتج أنه لتحليل الفرق بين مكعبين س ، ص تتبع القاعدة التالية :
$$m^2 - m^3 = (m - m) (m^3 + m)$$

يمكن استبدال (ص) بـ (- ص) في القاعدة السابقة لنصل إلى الصورة:

$$(m^{2} + m^{2} = (m + m) (m^{2} - m + m) = (m^{2} + m^{2})$$

وهو ما يمثل مجموع مكعبين.

مثال :

حلِّل كلًّا مما يلى تحليلًا تامًّا:

الحل:

$$(4 + m^{4} + 7m^{4})$$

۳۶۹۳ + ب۳ **الحل :**۱۳ ۲۹۳ + ب۳

۱۳ ۲۹۳ + ب۳

۱۳ ۲۹ + ب۲ (۱۲۹۲ - ۱۹ ۲ - ۱۹ ۲ + ب۲)

تدرّب (۱) أأأ ،

حلِّل كلًّا مما يلى تحليلًا تامًّا:

$$(17 + 3.44. + 3.44. + 17)$$

تدرّب (۲) 🞁 ،

حلِّل كلًّا مما يلي تحليلًا تامًّا:

= (م)

تدرّب (۳) 🚺 :

حلِّل كلًّا مما يلى تحليلًا تامًّا:

$$(\frac{1}{37} + \dot{c}' = (\frac{14}{3} + \dot{c}') (\frac{p}{77} - \frac{4}{3} \dot{c} + \dot{c}')$$

$$\left(\frac{1}{1}, \frac{d}{c} + \frac{1}{1}, \frac{1}{c} + \frac{co}{c}\right)\left(\frac{d}{c}, \frac{d}{c}\right) = \frac{d}{c} \cdot \frac{d}{d} - \frac{d}{c} \cdot \frac{d}{d} = \frac{d}{c} \cdot \frac$$

و فكر وناقِش فكر وناقِش

هل يمكن تحليل (م ۚ - ن ۚ) بطريقتين مختلفتين ؟ وضِّح ذلك ؟ وقارن بين ما حصلت عليه .

تَّلُكُّرُ أَنَّ : حجم شبه المكعب = مساحة القاعدة × الارتفاع

تدرّب (٤) أأ :

صندوق على شكل شبه مكعّب حجمه (7 + 7) متر مكعب وارتفاعه (7 + 7) متر ، وظّف مفهوم التحليل لإيجاد مساحة قاعدته .

مجم الماعب = مساحة القاعدة لا الابرة اع مساحة القاعدة = مجم الماعب _ (٢٩ له) الارتفاع _ (٩ + ١٩) = (٢٩ ١٩) (٩ - ١٩ + ١٩) = ٢٥ - ٢٩ + ١٩ تهددن (٢٩ ١٩)

حلِّل كلَّا مما يلى تحليلًا تامًا:

 $(1,P^{C}P)(1+P) = 1+P$

(E+UC+(L)(C, L)= A-", ()

(30 + 01) = (30 + 0)(30 - 10 + 0)

1-VY a= (1-40)(1+40+Pa)

((c) + 0 = (b = 1) (b = 2 + 0) (b = 2 + 0 = 1)

(20017 + E P cm 2 - (000) (200) = " = " 0 m 17 - 37 m 170 0

	4	-				5	7	
:	تامًا	سلا	تحا	ىلە	مما	24	حلِّل	
				۔ ي			0	

كر الله مكتب طول ضلعه (س + ٣) سم ، حُفِر بداخله مكتب طول ضلعه

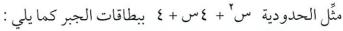
$$(m+1)$$
 ma, is all established.

 $(m+1)$ ma, is all established.

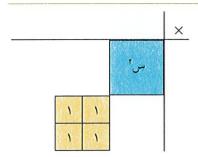
(14 + m/c + 8 my + 0) c = c7 + (mc + 4)

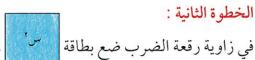
تحليل المربّع الكامل Factorising Perfect Square

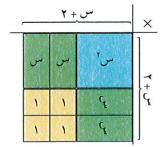
العبارات والمفردات : مربّع كامل Perfect Square


سوف تتعلّم: تحليل المربّع الكامل.

حلِّل الحدودية التالية تحليلًا تامًّا بالطريقة العملية والطريقة الجبرية:


أوّلًا: الطريقة العملية:


الخطوة الأولى:



كذلك ضع بطاقات الماعلى شكل مصفوفة كما في الشكل:

الخطوة الثالثة:

خطوة الثالثة:	ال
كمل شكل المربّع على رقعة الضرب ببطاقات س	أك
عمل شكل المربّع على رقعة الضرب ببطاقات السلامة المربّع = س + ٢	فن
∴ مساحة المربّع = (س + ۲) (س + ۲)	
(۲ + س) =	

$$(Y + w)(Y + w) = \xi + w \xi + w :$$
 $(Y + w) = \xi + w \xi + v :$

ثانيًا: الطريقة الجبرية:

درست في ما سبق:

1
للضرب: $(1+)^{1} = (1+)^{1} + (1+)^{1}$

= مربّع الحدّ الأوّل +
$$\mathbf{Y}$$
 × الحدّ الأوّل × الحدّ الثاني + مربّع الحدّ الثاني ،

= مربّع الحدّ الأوّل - \mathbf{Y} × الحدّ الأوّل × الحدّ الثاني + مربّع الحدّ الثاني .

= (الجذر التربيعي الموجَب للحدّ الأوّل + الجذر التربيعي الموجَب للحدّ الثالث) \ الموجَب للحدّ الثالث) \

= (الجذر التربيعي الموجَب للحدّ الأوّل - الجذر التربيعي الموجَب للحدّ الثالث)

.. لتحليل الحدودية س ' + ٤ س + ٤ :

$$(Y + w) = \xi + w\xi + v$$
 ...

وهذا المقدار (س٢ + ٤س + ٤) يسمى مربّعًا كاملًا

وستقتصر دراستنا في هذا الكتاب على الطريقة الجبرية فقط.

مثال (۱):

حدِّد ما إذا كانت الحدودية الثلاثية التالية مربّعًا كاملًا أم لا ؟ ثم حلّل الحدودية إذا كانت مربعًا كاملًا .

الحل

- هل س مربّع كامل ؟ الإجابة: نعم
- هل ٢٥ مربّع كامل ؟ الإجابة: نعم
- هل الحدّ الأوسط ضعف حاصل ضرب س×٥

الإجابة: نعم حيث ٢ × س × ٥ = ١٠ س (الحدّ الأوسط)

.. الحدودية الثلاثية س' + ١٠ س + ٢٥ مربّع كامل

$$(0 + m) = (0 + m) + (m + m)$$

تدرّب (۱) 📆 :

أيّ من الحدوديات الثلاثية التالية تمثّل مربعًا كاملًا:

(چ) ص ^۲ + ۳ ص + ۹	🚺 س۲ – ۱۶ س + ۶۹
ک تمثل مریح کامل	تمثل مربع کامل
	ki (m-1, 2, m) = M) = 8
(40+4)=9+Fq+P	

ه ٤ س۲ + ۳٦ س + ۹	۹ هس۲ – ۲ س – ۱
	ک تمکل مربع کامل لان (۴ س ۱) - ۹سکرسدا
	11 m 7 - 6 m - 7 m + 1
d + m 16 + m 6)	* أولان الحد لمثالث ذو الشارة ساله

تدرّب (۲) 📆 ،

حلِّل كلًّا ممّا يلي تحليلًا تامًّا:

مثال (۲):

حلِّل تحليلًا تامًّا: ٢٠ س ٢٠ - ٢٠ س + ٥

الحل:

$$0 + w + 0$$
 (بأخذ العامل المشترك) $0 + w + 0$ (بأخذ العامل المشترك) $0 + w + 0$ (بأخذ العامل المشترك) $0 + w + 0$ (با خد العامل المشترك) $0 + w + 0$ (با خد العامل المشترك)

تدرب (۳) 🚺 :

حلِّل كلًّا ممّا يلي تحليلًا تامًّا:

مثال (٣):

أوجِد قيمة جـ التي تجعل الحدودية الثلاثية التالية مربعًا كاملًا: ٩ س م + حـ س ص + ٩٤ ص ٢

الحل:

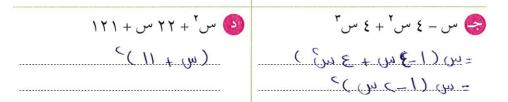
الجذر التربيعي الموجَب للحدّ الأوّل =
$$m$$
 س ، الجذر التربيعي الموجَب للحدّ الثالث = v ص ، الحدّ الأوسط = t × t س × v ص جس ص = t ۲ × t س ص t ح t ع ص t جس ص = t ۲ ع س ص t و جب = t ۲ ع س ص t و جب = t و جب = t و جب = t و الموتان ا

تدرّب (٤) 🚻 ،

وظف مفهوم المربع الكامل لإيجاد قيمة ما يلي :

$$(1 \cdot 1)^{r} = (1 \cdot 1)^{r} + (1 \cdot 1)^{r}$$

$$= (1 \cdot 1)^{r} + (1 \cdot 1)^{r}$$


تمــرُّنْ:

أيّ من الحدوديات الثلاثية التالية تمثّل مربعًا كاملًا ؟	
---	--

Υ 👝	Υ Υ
ع - ٤ ع - ٤ - ٩	🐠 س۲ + ۲ س ص + ص۲
لا عَمَل مربواً واملاً	عَمَل مربعاً كاملاً
	CA+ CA (W = C (A+ (W)
(all 6) 12/12/12/14/14	
٩ 🛂 ب ۲ ۲ + ۲ب	۲۰ + ۱۰ س + ۲۵ س ^۲
	The sue " date"
(40+3)=P3+320+T)	(1+04))-((m0+1)
(40+3) = PU+320+71	

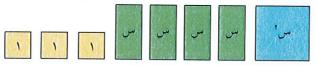
🕜 حلِّل كلَّ ممّا يلي تحليلًا تامًّا:

۲ + ۹ + ب ۲ + ۱	ا ص۲ − ۲ ص + ۱
(0 h +1)	(1_00)

ل ممّا يلي :	😘 وظف مفهوم المربع الكامل لإيجاد قيمة ك
^r (09)	۲(۱۰۳)
(1-7,)=	c(h+1")=
1+10-47=	9+74+144=
= 113 W	1.7.9=
طيقة أخزى (٥٩) - (٩٠)	
-114 119 1100 - 113	
ديات الثلاثية التالية مربعًا كاملًا :	🚯 أوجِد قيمة جـ التي تجعل كلًّا من الحدو
ى بىرى	الس + جـ س + ۸۱ الموجن الحرم المربيعي X للعد المح
9 (1)	1 Liz Migues X War Li
	1 de 1 Ben d = + 1 1 m)
	Qu) = 1 11 w
	in a fal = + N le - A
	🤗 ٤ س' - جـ س ص + ٩ ص
() ap 2 ya	الحرّم السرّبوس الموجِب (ع ب
عر ² هو ۴ عن	
	12 Keng = + slw
	(c - A
شكل مساحتها :	و يُراد بناء مصنع على قطعة أرض مربّعة الن
	(س ^۲ + ۲۰ س + ۱۰۰) وحدة مربعة . ف
QQQQQQQQQ	del gileal (m) + 11) ex

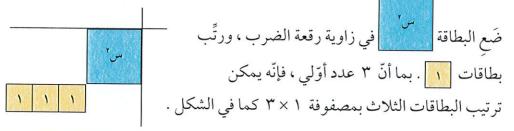
تحليل الحدودية الثلاثية : س + ب س + جـ Factorising Trinomial : $x^2 + bx + c$

سوف تتعلّم: تحليل حدودية ثلاثية على الصورة: س ٢ + ب س + ج.

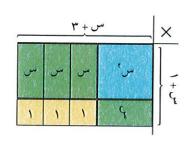


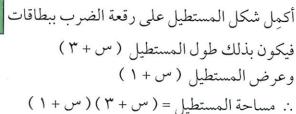
حلل الحدودية التالية تحليلًا تامًّا بالطريقة العملية والطريقة الجبرية:

أوّلًا: الطريقة العملية:


الخطوة الأولى:

مثِّل الحدودية $m^{1} + 3 m + 7$ ببطاقات الجبر كما يلي :



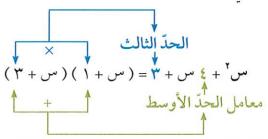


الخطوة الثانية:

الخطوة الثالثة:

$$(m+m)$$
 مساحة المستطيل = $(m+m)$

$$(1 + w)(w + w) = w + w + w + w$$
 ...


ثانيًا: الطريقة الجبرية:

لتحليل الحدودية الثلاثية m' + 3 + 7 + 1 إلى حاصل ضرب عاملين نبحث عن عددين يكون:

حاصل ضربهما ٣ الحدّ الثالث

ناتج جمعهما ٤ معامل الحدّ الأوسط

كما في الشكل التالي:

مثال (۱):

حلِّل تحليلًا تامًّا: س ٢ + ٢ س + ٥

الحل:

(1 + w)(0 + w) = 0 + w + 7 + w

تدرُب (۱) 📆 ،

حلِّل كلًّا مما يلى تحليلًا تامًّا:

مثال (۲):

حلِّل تحليلًا تامًّا: ٢ + ١ - ٢

الحل:

$$(1-1)(1+1) = 1-1$$

نبحث عن عددين حاصل ضربها (-۲) وناتج جمعها (+۱)

نبحث عن عددين حاصل

ضربها ٥ وناتج جمعها ٦

تدرّب (۲) 🜓 :

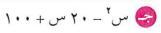
حلِّل كلًّا ممّا يلَّى تحليلًا تامًّا:

تدرّب (۳) 🚻 :

حلِّل كلًّا ممّا يلي تحليلًا تامًّا:

(<u>)</u> – س + ۲ س – ۱۲

۵۵ ۵۰ فکر وناقِش


أعطِ ثلاث قيم مختلفة ل ج في الحدودية :

س + + m س - جـ بحيث يمكن تحليلها إلى حاصل ضرب عاملين.

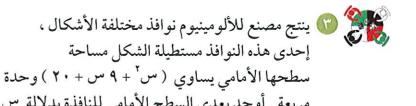
تدرّب (٤) 🐧 :

حلِّل الحدوديات الثلاثية التالية تحليلًا تامًّا:

- ¶ ص^۲ − ۲ ص − ۷
- (1+0A) (1-0A)
- w'' + 11 w' + 77 w $w(w)^2 + 21 w + 24 w$ = w(w)(w) + 11 w + 3
 - ³ س ف − ۱۸ ف^۲ ا
- (w, 1 P e) (w, 2 e)

(l, - (m) (l, _(m)

تقول منار: إنّ تحليل الحدودية $m^7 + 3 m - 71$ هو (m - 7) (m + 7) بينما تقول سلمى: إنّ تحليلها هو (m + 7) (m - 7). أيهّما على صواب ؟ فسِّر إجابتك .



تمــرّن ،

🐠 أكمِل بوضع (+) أو (-) في كلّ ممّا يلي :

$$(T_{-}, T_{-}, T_{-},$$

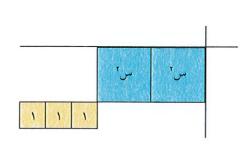
4 #		13	7	400
ي تحليلًا تامًّا:	ممّا يلم	کلا	حلل	T

Control Marian A. Salah M. Marian M.	الأمامي للنافدة بدلا له نش .	مربعه . أوجِد بعدي السطح أ
(8	= (w) + 0) (w) +	(c, t (m) q t (m)
		. 0
. \ _		
رة طول	0) a (w + 3) e 9	181elc (w. +.

حلِّل الحدودية التالية تحليلًا تامًّا بالطريقة العملية والطريقة الجبرية:

أوّلًا: الطريقة العملية:

الخطوة الأولى:


مثّل الحدودية ببطاقات الجبر كما يلي:

w w w w w					**		
	, m	س	س	ů,	س	س۲	س.۲

الخطوة الثانية:

في زاوية رقعة الضرب ضع بطاقات أسلام كذلك ضع بطاقات أنا على شكل مصفوفة بما أن ٣ عدد أولي ، فإنه يمكن ترتيب البطاقات الثلاث بمصفوفة ١ ×٣ كما في الشكل .

الخطوة الثالثة:

أكمل شكل المستطيل على رقعة الضرب ببطاقات

$$(1+m)(m+m)(m+m)$$
 .. مساحة المستطيل

$$(1+\omega)(T+\omega+T)=T+\omega+T$$

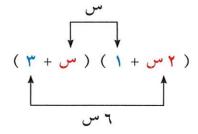
ثانيًا: الطريقة الجبرية:

لتحليل الحدودية الثلاثية ٢ س ٢ + ٥س + ٣ إلى حاصل ضرب عاملين

نتبع ما يلي :

الحدّ الأوّل: ٢ س٢

الحدّ الأوسط: ٥ س (موجب)


الحدّ الثالث: ٣ (موجب)

بما أنّ الحدّ الثالث موجَب والحدّ الأوسط موجَب، نستبعد العوامل السالبة.

.. عوامل الحدّ الأوّل ٢ س مه مي ٢ س ، س

عوامل الحدّ الثالث ٣ هي ١ ، ٣

المحاولة الأولى:

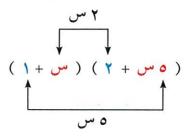
m + 7 س $= \sqrt{m}$ الحدّ الأوسط

المحاولة الثانية: (تبديل أماكن عوامل الحدّ الثالث)

7
 س + 7 س = 0 س = الحدّ الأوسط .. 7 س + 0 س + 7 س + 7 (1)

مثال :

حلِّل تحليلًا تامًّا: ٥ س ٢ + ٧ س + ٢


الحل:

عوامل الحد الأول هي ٥ س، س

الحدّ الأوّل: ٥ س٢

الحدّ الأوسط: ٧س (موجب)

الحدّ الثالث: ٢ (موجب) عوامل الحد الثالث هي ١،٢

تدرُب (۱) 🚺 ،

بعد إجراء التحليل تحقق من صحته .

حلِّل تحليلًا تامًّا كلًّا ممّا يلي:

© © هکر وناقِش

أوجِد قيمتين للمعامل ك تسمحان بتحليل الحدودية : $1 \cdot + 2 \cdot + 2 \cdot + 1 \cdot + 2 \cdot + 1 \cdot + 2 \cdot$

تم تحميل الـمــلف من موقع مدرستي الكويتية

ننصح بأفضل مذكرة منذكرات السنجاح

حمل تطبيق مدرستي الكويتية

تدرب (۲) 🜓 :

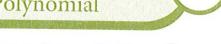
حلِّل تحليلًا تامًّا كلًّا مما يلى:

تمــرُّنْ ،

حلِّل تحليلًا تامًّا كلًّا مما يلى:

1+ 117 - 111 1	۷ + ن ۲ + ۱۰ ن + ۷
(1_1)(1-11)	(V+i)(1+ic)

- (1 とり) (リーリン (リーリン (リーリン) (ツェビュン) (ツェビュン) (ツェビュン (ソージ) (ツェビュン)
- \[
 \begin{align*}
 \text{N is \$\text{\left} \cdot \text{\left} \cdot \cdot \text{\left} \cdot \text{\left} \cdot \text{\left} \cdot \cdot \text{\left} \cdot \text{\left} \cdot \cdot \text{\left} \cdot \text{\left} \cdot \text{\left} \cdot \cdot \text{\left} \cdot \



تحليل الحدودية الرباعية Factorising Quartic Polynomial

العبارات والمفردات: حدودية رباعية **Polynomial**

سوف تتعلّم: تحليل الحدودية الرباعية.

أوجد ناتج :

تُسمّى الحدودية الناتجة حدودية رباعية .

قامت كلّ من سارة وشهد بتحليل الحدودية بطريقتين مختلفتين:

طريقة سارة اس + اص + ب ص + ب ص

$$= (| m + | m + | + | m + |$$

في كلتا الطريقتين حصلنا على الناتج نفسه.

مثال (١):

حلِّل الحدودية التالية تحليلًا تامًّا:

هـ جـ + هـ د + ب جـ + ب د

الحل:

تدرُب (۱) 📆 :

حلِّل كلَّا ممّا يلى تحليلًا تامًّا:

- ا س ا هـ س د + ص هـ ص د = (س ا هـ - س د) + (عن هـ عن د ...) = س (هـ - س د) + ص (هـ - ـ ـ ...) = (هـ - ـ ـ ـ ...) + ص (هـ - ـ ـ ...) = (هـ - ـ ـ ـ ...) (س ا + ص ا)
- ۲ س + ج س + ۲ ج + ج^۲ - () س + 4 س) + () ج ب ب ²) - س () + ج) + ب ب () + ج) - () + ب () (س + ب)

مثال (۲):

حلِّل تحليلًا تامًّا:

الحل:

$$(7 + w^{7} - 7) + (7w^{7} - 7w^{7}) = 7 + w + 7 - 7w^{7}$$

$$= w^{7} (w - w) - 7 (w - w)$$

$$= (w - w) (w^{7} - y)$$

تدرب (۲) 👬 :

حلِّل كلَّل ممّا يلي تحليلًا تامًّا:

🚺 س۲ – ۳ س ص + ۳ ص
(u) 2 4 (u) 1 + (u) 2 - (u
= m(m - h) + m(-m) + m
= w (w) _ q (w) =
(W-W) (W-W) _

 - 17 - 00 - 10 - 10 - 10 - 10 - 10 - 10
مثال (٣):
حلِّل تحليلًا تامًّا :
س" - ۲ س ^۲ - س + ۲
1-11

تذكَّرْ أَنِّ : ٢٠ - ب٢ = (١- ب) (١+ ب)

الحل:

$$(Y + w - Y) + (Y - W' - Y - W') = Y + w - Y - W'$$

$$= w^{2}(w - Y) - (W - Y)$$

$$= (w - Y)(w^{2} - Y)$$

$$= (w - Y)(w - Y)(w + Y)$$

2	(m)	تدرّب
8	(1)	Property of the Party of the Pa

حلِّل كلَّا مما يلي تحليلًا تامًّا:

17 + w - 7 w - 3 w + 77
(1c+w2-)+(~u, ~u, ~)-
= w) 2 (w) - 3 (w) - 4)
= (w) 3) (w, y)
(γ _ ω)(c + ω) (c _ ω)
😜 ص" + ٤ ص' – ٩ ص – ٣٦
(47 - UP 9 -) + (CUP E + (CUP) -

٣٦ - ٩ ص - ٩ ص - ٢٣
(47-029-) + (°028+ °02) =
= qu ² (qu + 3) - p(qu + 3)
(£ + w) (9 - cu) =
(& + op) (+ + op) =

تمــرَّنْ : حلًا كلًّا همّارا ا الله الله

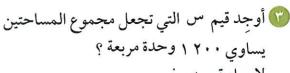
حلل كلا ممّا يلي تحليلا تامًا:
🐠 س ل - م س + ل ص - م ص
(0) to - 00 d) + ((m to - d (m) -
= w (b - q) + Qv (b - q)
(p - ()) ((p + (m) =
₩ ۲ اس + ۲ س ب + اص + ب ص
$(\omega \rho \psi + \omega \rho P) + (\psi \omega c + \omega \rho c) =$
(U+P) Up + (V+P) WC=
(U+P)(p+ (mc) =
© ٤ س ^۲ + ۲ اس + ۸ ب س + ٤ اب
(\(\psi \psi \c) \(\psi \psi \c) \(\ps
[(upc + mus) + (me)]c =
[(P+(wc))(+(P+(wc)) m]c=
(P+mc)(uc+m)c=
🚯 ۲ س' – ۸ س ص – ۳ س ب ۶ ب ص
🚯 ٣ س ٢ – ٨ س ص – ٣ س ب + ٤ ب ص = (٦ س ٢ – ٨ س ٢) + (٣ س ب + ٤ ب ٢)
= (F w) - 1 w 90) + (4 w) v + 3 v 90)
= (7 m) - 1 m qu) + (4 m v + 3 v qu) - 2 m (4 m - 3 qv) - v (4 m - 3 qv)
= (7 w) - 1 w 90) + ("4 w) v + 3 v 9v) - 2 w) (y w) - 3 9v)) - (2 9v)) - (2 9v)) - (2 9v))
= (\(m^2 - \(\lambda \long \) + (\(\long \) + \
$= (7 w)^{2} - 1 w 9) + (2 w 0) + 3 0 90)$ $= 2 w (4 w) - 3 90) - 0 (4 w) - 3 90)$ $= (2 w) - 0) (4 w) - 3 90)$ $= (2 w) - 0) (4 w) - 3 90$ $= (2 w) - 0) (4 w) - 3 90$ $= (2 w) - 3 0) - (2 w) - (2 $
= (\(m^2 - \(\lambda \long \) + (\(\long \) + \
$= (7 w)^{2} - 1 w 9) + (2 w 0) + 3 0 90)$ $= 2 w (4 w) - 3 90) - 0 (4 w) - 3 90)$ $= (2 w) - 0) (4 w) - 3 90)$ $= (2 w) - 0) (4 w) - 3 90$ $= (2 w) - 0) (4 w) - 3 90$ $= (2 w) - 3 0) - (2 w) - (2 $
$= (7 w)^{2} - 1 w (9) + (-4 w) + 3 (9)$ $= 2 w (4 w) - 3 (4 w) - 3 (4 w)$ $= (2 w) - 0) (4 w) - 3 (4 w)$ $= (2 w) - 10) (4 w) - 3 (4 w)$ $= (2 w) - 10) (4 w) - 3 (4 w)$ $= (2 w) - 10) (4 w) - 10$ $= (2 w) - 10$ $= (2 w) - 10$ $= (3 w) - 10$ $= (4 w) - 10$ $= $
$= (F w)^{2} - A w + (W w) + (W w) + 3 y + (W w) - 2 y + (W w) - 3 y + $
$= (7 w)^{2} - 1 w + (-4 w) + (-4 w) + 3 y + (-4 w) + (-$
$= (\Gamma w)^{2} - \Lambda w q () + (W w) + 3 (9 ())$ $= 2 w (4 w) - 3 q ()) (4 w) - 3 q ())$ $= (2 w) - (4 w) - 3 q ())$ $= (2 w)^{2} - (4 w) - 3 q ())$ $= (2 w)^{2} - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (4 w) - (6 w)$
$= (7 w)^{2} - 1 w + (-4 w) + (-4 w) + 3 y + (-4 w) + (-$

حلّ معادلة من الدرجة الثانية في متغيّر واحد Solving Second Degree Equation in One Variable

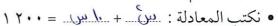
سوف تتعلّم: حلّ المعادلة من الدرجة الثانية في متغيّر واحد على الصورة العامة:

العبارات والمفردات:

معادلة من الدرجة الثانية في متغيّر واحد Second Degree **Equation** with One Variable حلّ معادلة


Solving an Equation

🧘 نشاط :


صُمِّم مصنع لموادّ البناء مرفق له مخزنان ، أحدهما أرضيته مربّعة الشكل والآخر أرضيته مستطيلة الشكل.

١٠= - + ب س + جـ = ٠ .

🕜 أُكتب مساحة أرضية المخزن (٢) بدلالة س: ٨٨٨هر

لإيجاد قيم س:

• نضع المعادلة في صورة $\{m^{'} + m + + - = *\}$

• نحلل بطريقة مناسبة لإيجاد قيم س: · = (..... +) (.... +) (.... +)

• نوجد قیم س اها س ۱ ی ع د ک س د - - ۶ ₩, = w ← · = ٣, - w 91

تذكُّر أنّ :

ملاحظة: المعادلة من الدرجة

الثانية في متغيّر واحد

تُسمّى المعادلة التربيعية.

حلِّ المعادلة يعني إيجاد قيم المتغيّر التي تحقّق

خاصية الضرب الصفري

أوجد مجموعة حلّ المعادلة : (س + o) (س – r) = r ، حيث س rثمّ تحقّقْ من صحّة الحلّ.

الحل:

تحقَّقْ:

عند حل المعادلة التربيعية سنعتبر قيم المتغير تنتمي إلى مجموعة الأعداد الحقيقية ما لم يذكر غير ذلك.

۹ = ^۲س 😭

س' - ...٩... =٩

W-= m W = m

.: مجموعة الحلّ = { ٢٠٠٠ ، ١٠٠٠ }

تدرّب (۱) 🞁 :

أوجِد مجموعة حل كلِّ من المعادلات التالية:

الضرب الصفرى

تدرّب (۲) 👘 ؛

أوجِد مجموعة حل كلِّ من المعادلات التالية:

- ٣0 + m Y = Y m €
- , = 40 (MC (m (w) (V - w) (a) w_ /= . [e w, 6 = , 0-- Wi V- Wi 30-64 } = (13) acot

	(r)	تدرب
	()	

أوجِد مجموعة حلّ المعادلة: 7 ص $^{\prime}$ + 9 ص $^{\prime}$ + 0٣ ص ٢ + ٢ ص - ٠= __ - ص + ك ·=(2+4)(1-40) [al 0 qu-1-, le qu+2 c--up €c-6-1-3-05-00-00-00

تدرّب (٤) 🚺 :

أوجد مجموعة حل كلِّ من المعادلات التالية:

ا (س + ۲) = ۶۶۱	V = (٦ - و ا
- 1 E E (C + (W)	3- [3-K=,
(1c-(c+m))(1c+(c+m))	(3-K)(3-K)=1
(w) + 31) (w _ 1)=,	1 al 3 - V = 1 = 1
اه س د ع ۱ - ۰ أو س اد ،	3=V 3=-1
1, - w 18 w	51-643- Blacos
€1, 618- } = Jd1 acg &	

تذكَّرْ أنّ : بفرض أنّ س عدد

تدرّب (٥) 🚻 ؛

ما العدد الحقيقي الذي يزيد مربّعه عن أربعة أمثاله بمقدار ٥؟

 هو س	نفرمن ان لعدد
	س کے عس = 0
	<u>س</u> ک س
	<u>(س ۔ ۵) (س </u>
	اما س _ 0 = ،
 بير) - ـ	س = ٥
51-602	2 = 1317a, 8

© © فکر وناقِش

ما مجموعة حل المعادلة $m' + 1 = \cdot$ ؟

تمــرَّنْ :

🕥 أوجِد مجموعة حل كلّ من المعادلات التالية:

🚺 (س – ۳) (۲ س + ۱) = ۰
[alw_4 = . le 2w + 1 = .
1- = m = m = m
1- = ()4
محوعة الحل ترج الها عدا ع

(90 11) (90 +1) = .

[alqu 11 = , ie qu +1 = .

-1 = op 11 = op 1 = .

\$1 - (1) ? = 15, ac 2 = .

• = 1 L + 7 A + 17 👨

(15-3)(3+4)=...
10 15+3=...
10 15+3=...
10 15-3=...
11 = -4
20 20 74)= 5-3>-4}

۰ = ۱۰ - ن + ۲ن۳

• = ٣٦ – ٢ **٩**

• = ٩ + ن ٦ - ^٢ن

ل ۲ = ۲ ل

10 - V 0 = 1 10 (U - V) = 1 10 | U - V) = 1 10 | U - V = 1 20 | V m' - Y 1 m - N = 0 m' - 7 m

VW) _ 2(W) _ A _ OW) + TW) = , 2 W) - TW) - A = , 2 (W) - 4 W) - 3) = ,

1-- (n - E- (n la) 1-- (n - E- (n 2- (n) - E- (n)

ل س (س + ۱) = ۲	۲ ص ۲ = ۱۵ ص – ۱۸
, = C _ (m _{_ c} (m	1=11+0010- Epc
, = (1 - (m) (c + (m)	(7_(p) (Y_(pc)
· _ L _ w _ si - C + cm / l = .	1-1-40 1 - 1- 10 clos
1 - w c w	T= CP E
\$16c-3= 131 acg 2	<u> </u>
	3 E & 1 - 3 = (13) Ex gã
ا ۹ م = ۱۲ م − ٤	• = ٤٩ - ٢(٣ + س)
Peg 2/2 + 3= 1	1=(1-(4+(m))(1+(4+(m)))
, , ,	12(11-11+(m))1(11+1+(m))
,=(c-py)(c-py)	(m) + (m) (m) = (m) (m)
,=(c-12h)(c-12h)	6 Capt A 196 W 1150 Pt 19
,=(c-12h)(c-12h)	(W) (1, 1 (W) 3) : .
	(w) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	(w) <u>(l) (w) 3) ; .</u> A w) <u> </u>

 ☑ ينتج مصنع للحديد والصلب قطعة على شكل شبه مكعّب أبعاده: ٤ سم ، (س + ٢) سم ، (س + ٢) سم وحجمه يساوي ١٠٠ سم . أوجِد قيمة س . 	
٤ سم ، (س + ٢) سم ، (س + ٢) سم وحجمه يساوي ١٠٠ سم .	
أوجد قيمة س.	
جمع عبد المول x العرض x الارتفاع	
\ (\) (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1,, - (c+m)(c+m) &	
Co=(c+(w)(c+(w))	
w + 3 w + 3 - 0 = .	
\ = C\ _ (m & \ ^e (m	
(m-m) (N + m)	
1alw+ V=1 lew-4=1	
ψ = - V acegai) w = ψ	

🕜 مخزن أحد المصانع أرضيته مستطيلة الشكل يزيد طولها ٢٠ مترًا عن عرضها ،
وكانت مساحتها ٣٠٠ م . أوجِد بعدي أرضية المخزن .
نفرمن أن العرص - س م
الطول = (س+ ,2) ح
ν" = (C, T (m) (m
1 = 4 1 - M C1 + CM
· - (/ · · · · · · · · · · · · · · · · · ·
fal w + 4 = 1 1e w - 1/= 1
س ۽ پلا مروومي س = ١١
العرمن - را م
11 de l = 14 eq
🚯 ما العدد الحقيقي الذي ينقص مربّعه عن خمسة أمثاله بمقدار 🔞 ؟
نفوص ان الهدد هوس
ه س _ س = ع
· - & W & ' _ m
سري م س د ع = ١
(س ع) (س _ ۱) _ ۱
1alw_3=, lew_1=,

10/ Herc 3 /e 1

مراجعة الوحدة الثانية Revision Unit Two

أوّلًا: التمارين المقالية

مَلَل كلَّا ممّا يلي تحليلًا تامًّا:	- (1)
س ۲ + ۱۷ س + ۲۶	D

۳ + ٦٤ 💮	🕦 س ^۲ + ۱٦ س + ۲۶
= (3+w) (T1 _3w) + w?)	(N + W)
	······
(a) $\sqrt{1 - \frac{1}{6}}$	€ ۳۲ س ^۳ – ٤
(4) 6 10 (4) (4) (4) (4) (4) (4)	= 3 (N w 1)
Ce o	(1 + (nc + 2m 5) (1 - (nc) 8 =
س ۲ − ۳ س − ۱۸	√ + ۸ س + ۷ √ + ۸ س + ۷ √ + ۸ س + ۷ ✓ ← ۲ ← ۲ ← ۲ ← ۲ ← ۲ ← ۲ ← ۲ ← ۲ ← ۲ ←
(w) - F) (w) + by)	(1+m)(1+m)=
o س ٔ + ۱۱ ص ً + ۲۸ ص ٔ ا	۲٤ - ۱۶ س + ۲۶ 🐠
(c/+up/)+(p)(p=	(1c+m/-cm)c
= 42 (40+3) (-	(E (h) (h (m) c
۲ س۲ – ۷ س + ۲	🛂 ۱۰ – ځ ب ۹ – ۲ب 🚇
(c_(w) (4)_(mc)	(ب ـ اك) (ب ـ ك)
🐠 ۱۲ گ ^۲ + ۱۱ ل م – ۱۰ م۲	۳ ۳ س۲۱ س – ۱۲
(36-4)(46409)	(8_m/1/mc)4:

(ف) ۹ س' ص - ۱۵ س ص + ۱۸ ص - 9 ص (س) _ رس + ۹)	1 + 0 m + 3 m + 1 () 4. () 2. () =
- p q (w - 4) (w - 4)	
⊗ س ص ^۲ + ۲ س ^۲ – ۳ ص ^۳ – ۲ س ص	→ س − ۲ س ۲ + ۳ س
= (m 2 - 2 m) + (- 4 2 m - [w 2))	(c () + () + () +
(m c + (m c + (m c + (m) m =	- w (w? 1) + 2 (w? 1)
(w - Y - w) (w - + Ep) =	(C + (w) (1 - (w) -
	 أوجِد مجموعة حل كلً من المعادلات التالية :
١٤ = ١١ - ٢ ا	س' - ۲ س = ۰
qu_11_31=	·=(7-w)v
~ C.D. () f	[] w = 0 [w - 7 = 0
(a) (Q) (a)	7=00
10 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	£76.3=US,000000
20-10-3-14-ae-2°	
و ب ^۲ + ۱۲ ن + ٤ = ٠	€ س ^۲ – ٤ س = ۲۱
1=(2+04)(2+04)	· - c/ - (w & _ (w
·= c + i + i	·= ("+")("-")
<u>c</u>	= Y+ cm / = = V- cm lal
2 0 4 C 0 4	Y 01 1-01
	especial 12 - 6 1 3 - 4 3
5 C- 3 - 131 aco 2	

0 + m - 7 m - 7 m + 0 P m - 0 m = 7 m - 7 m + 0 P m - 0 m - Γ m + 1 μ μ - 0 = 0 (μ μ m) - 0 μ (ω + 1) - 0 (μ μ m) - 0 - 1 (ω + 1 = 0 μ μ m = 0 - μ ω = -1 αυ - 0 = μ ω αυ - 0	
(7 m - 7) - m' = 1 P m' - 1/w + 3 - 0 N m' - 1/w + 3 - 0 3 (2 m - 1) (w - 1) - 0	1 = (Y + W) m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6 m
	(۱۱ وظف مفهوم المربع الكامل لإيجاد قيمة : (۲۱ ــــــــــــــــــــــــــــــــــ

ثانيًا: التمارين الموضوعية

أولًا: في البنود التالية ، ظلِّل أ إذا كانت العبارة صحيحة ، وظلِّل ب إذا كانت العبارة غير صحيحة .

9	($\left(\frac{1}{2} + \omega^{2} + \frac{1}{2} + \omega^{2}\right)\left(\frac{1}{2} + \omega^{2} + \frac{1}{2} + \omega^{2}\right) = \frac{1}{2} + \omega^{2} + + \omega^{$
<u>.</u>	(8)	$00 = ^{4}$ اذا کانت س – ص = 0 ، س + ص = 11 ، فإن س 4 – ص
	(j)	۳(۱ + س + ۱ = (س + ۲) ^۲
	(1)	$\{ " , " \} $ مجموعة حلّ المعادلة $" + " = " , " \in \neg$
	(1)	(m + m) = m + m)
(.)		اذا كان ٤ ص ٢ جـ ص + ٩ مربّعًا كاملًا ، فإنّ إحدى قيم جـ هي ١٢

ثانيًا : لكل بند من البنود التالية أربعة اختيارات ، واحد فقط منها صحيح ، ظلِّل الدائرة الدالَّة على الإجابة الصحيحة.

- 7. (3)
- 17 ج
- ٨ 🗐 ٨- (أ)
 - 🔊 س (س ۳) ۳ س + ۹ =
- (س ۳)
- (أ) (س ٣) (س + ٣)
- (د س + ۳) ک
- (ج) (س ۳) (س + ۱)
- 100 3
- ۰٤ ج
- ٤٨ (ب)
- 1 🕮
- = ۱۶-۲(۳-س)**۱**
- (أ) (س ٥) (س + ١١)
 - (ج-) (س + ۷)
- (١١ س) (س + ٥) (ب
- (س + ۱) (س ۷)

$$(\cdot, \cdot 9 - \omega \cdot, \pi - \tau, \cdot) (\omega^{\dagger} - \pi, \cdot \omega - \omega - \varepsilon)$$

اختر من القائمة (٢) ما يناسب كل بند من القائمة (١) لتحصل على عبارة صحيحة .

القائمة (٢)	القائمة (١)
(أ (٣س - ١) (س + ٢)	ج = ٤ + س ١١ – ٢ س ٢ <u>١٥</u>
(۱+س) (۲-س) (۳ 💬	(ح) ۲ س ^۲ – ۵ س – ۶ =
ج (۲ س - ۱) (۳ س - ٤)	(ب) = ¬¬ س ¬ + ¬ س ¬ ¬ = (ب)
(۲ س + ۱) (۳ س - ٤)	
هـ (۲ س - ۱) (۳ س + ٤)	

الحدوديات النسبية Rational Expressions

الوحدة الثالثة

ا**لرياضة** Sports

تهتم دولة الكويت بالنشء والشباب وتحرص على أن يمارسوا الرياضة في جوّ صحّي وتحت أيدي خبراء وتوفّر لهم الأماكن المناسِبة لممارسة رياضاتهم المفضّلة ، ومن هذه الأماكن إستاد جابر الأحمد الدولي وهو إستاد رياضي كويتي متعدّد الأغراض يقع في محافظة الفروانية جنوب مدينة الكويت . افتُتح الإستاد رسميًّا في ١٨ ديسمبر ٢٠١٥ م ، وتبلغ الطاقة الاستيعابية للإستاد حوالي ٢٠٠٠ متفرّج ، ويُعتبَر أكبر إستاد رياضي في الكويت والسابع عربيًّا ، والخامس والعشرين عالميًّا من حيث السعة .

استعِدّ للوحدة الثالثة

. أ) لكلُّ ممّا يلي :	 أوجد المضاعف المشترك الأصغر (م. م
۸،٦	
م . م . أ =	م . م . أ =عا
	🕜 ضَعْ كلًّا ممّا يلي في أبسط صورة :
1 4 = V = 7 (9)	<u>70 − 10 − 10 − 10 − 10 − 10 − 10 − 10 − </u>
	👣 أوجِد ناتج كلّ ممّا يلي في أبسط صورة :
$\frac{7}{\sqrt{7}} \div \frac{77}{\sqrt{70}} \odot$	$\frac{\gamma - \gamma}{\gamma_0} \times \frac{\gamma}{\xi}$
7 X CC	<- XX
(1) XXX6(1) - (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2-XX -
@ XX 70 @	0
4 x 7	$\forall x \forall x$
1 - E 10 -	10 = 10 + 10 = 10 = 10 = 10 = 10 = 10 =
CI (I CI	10 10 10
	🚯 أُوجِد ناتج كلّ ممّا يلي :
× ۳ س ن ÷ ۳ س × × س	س ^۲ – ۹ س ^۲ + ۳ س ^۲
<u>v</u> <u>E</u>	

	 أوجِد ناتج جمع ٣ س - ١ ، ٩ - ٥ س
V + (m C -	-= (m 0 9+1 mh
	=-2(w)=3)
) - (۲ س - ٥)	🕥 أوجِد الناتج في أبسط صورة : (٣ س – ١
	0 + (m c 1 - (m 4 -
	√ أوجِد ناتج ٣س × (س ۲ – ٢ س + ١)
	y w - Tw + y w
٣	1 (Y - W) - W - 1 - E - W - T - M
ے ۳ <i>س</i> ؟	الم الفسم (٣ س - ١٥ س + ٢١ س) على المراد
Ψ,	اِقسم (۳س [*] – ۱۵ س ^۳ + ۲۱ س ^۲) علم <u>ایس ۲۱ برس ۳ س ۲۱ س</u> برس ۳ س ۳ س ۲ س ۲ س س
	(m / + 0 - (m =
	🚺 حلِّل كلَّا ممّا يلي تحليلًا تامًّا:
(چ) س ^۲ – ۱۶	۳ + ۳ س ۲ ش
(m) = 3) (m+3)	()+ ()nc) (mh
	<u> </u>
س ^۳ – ۲۷	↔ سا۲ – ۱۱ س + ۳۰
(d+mh+cm)(h-m)	(<u>w)-0)(w</u>
۸ س ۲ + ۱	ه ۲ س۲ + س – ۵
1+ mc (ng) (1+ (nc)	(Fur a) (br.) + 1)

الحدوديات النسبية وتبسيطها Simplifying Rational Expressions

العبارات والمفردات:

Simplify

Rational Expression

معلومات مفيدة:

سوف تتعلّم: الحدوديات النسبية وتبسيطها.

حوضي سباحة كلَّا منهما على شكل شبه مكعّب، إذا كان حجم الحوض الأول ١٢ س ص وحدة مكعبة ، وحجم الحوض الثاني ٢٤ س' ص وحدة مكعبة.

نسبة حجم الحوض الأول إلى حجم الحوض الثاني

وختصِر نسبة حجم الحوض الأول إلى حجم الحوض الثاني ، وذلك بقسمة كلّ من حدّي النسبة على العامل المشترك الأكبر (ع. م. أ) لهما ."

تذكُّرْ أنّ : المقام أينها وُجد لا يساوي صُفرًا

- المقادير التالية: $\frac{\omega^n}{v-v}$ ، $\frac{w+v}{\omega}$ ، $\frac{w+v}{\omega}$ ، $\frac{w^2-v}{\omega}$ تسمى حدوديات نسبية.
- حيث إنّ كلًّا من البسط والمقام يمثّل حدودية ، والمقام لا يساوي صفرًا .
- عند تبسيط الحدودية النسبية نقوم بقسمة كلّ من الحدوديتين في البسط والمقام على العامل المشترّك الأكبر (ع.م.أ) لهما.

تدرّب (١) أأن ضَعْ في أبسط صورة كلًّا ممّا يلي:

copy =
$$\frac{m}{r}$$
 = $\frac{m}{r}$

(بتحليل كلِّ من البسط و المقام)

([1 + w + 1))

$$\frac{3+7}{73+7} = \frac{3+7}{7(...3...+...2...)} = \frac{1}{7}$$

۵۵۰ ۵۶۰ فکر وناقش

بسّط سالم الحدودية
$$\frac{w-Y}{m+m}$$
 كما يلي : $\frac{N_0-Y}{N_0+m}=\frac{Y-W}{m}$ ، فهل طريقته صحيحة ؟ و لماذا ؟

مثال :

ضَعْ في أبسط صورة:

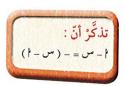
$$\frac{m^{2} + m^{2} + m^{2}}{m^{2} + m^{2} + m^{2}}$$

$$\frac{7 m^7 + 7 m}{7 + m m + 7}$$

$$=\frac{\Upsilon \omega (\omega + 1)}{(\omega + 1)(\omega + 1)} =$$

$$\frac{(1 + w) w Y}{(1 + w) (w + y)} =$$

$$\frac{\mathcal{V}}{\mathsf{V}+\mathsf{W}} =$$



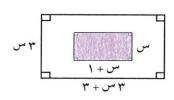
	س + ه_	س' – ۲	4
	, 70-	س۲ ـ	
(1_ w)(0-0	ú) _	e.
(0+m)(0-0	ر ب	
	1 (1.	_ (w) _	
	(04	(w)	
	•		

س – ۳	1
9 + m 7 - m	,
(w) - (w) - (w)	
W_1/W	

تدرّب (٣) ﴿ الله عَلَى الله عَلَ

		u) (1_ w		· س _ ٧	۲ س ^۲ + ۱۳ <u>۲</u> س ^۲ + ۶ س	- (1)
	(P- U	m) (V+C		ں – ۲۱ ۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔۔		
				- 0	~ 	
C	. < =	(1	- (m€).	=2	۶ س - ۲ ۱ - ۲ س	(

فكّر وناقش


أُكتب حدودية نسبية تصبح بعد تبسيطها سرء · ·

🐠 ضَعْ في أبسط صورة كلًّا ممّا يلى :

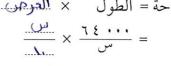
10+P1. (r+Pc) 0) Ee; -E+Pc=	۳ س ۳ ۱ س ۳ ۱ س ۳
17 - w - 17 + \\ \(\tau - \ta	(w _ 0) (w _ w) (w _ 0) (w _ w) (w + y) (w - w) (w - 0)
170 - ⁷	78+"m -3 m + 71 -3 m + 71) (m + 3) (m ² - 3 m + 71) (m ² - 3 m) + 71)
<u>س-۳</u> س-۳ (س ۲۷) - (س ۲۷)	ع س" + ۱٦ س" + ۱۲ س ٢ س" - ١٦ س" - ١٦ س = ع نان (س ع م ع نان + ١٧) - يان (س ع م ٧)
	(1+m)(m+m)me = (1+m)(m+m)(m+m)

مر الشكل المقابِل : أكتب نسبة مساحة منطقة المستطيل المظلَّل إلى مساحة منطقة المستطيل الأكبر في صورة حدودية نسبية ، ثمّ ضَعْها في أبسط صورة .

مساحة المستصل المطلل - س (س + ۱) و جدة عريقة ، مساجة المستطيل الأسر - س س (عس + س)

فسية المستمل المظل الى الاكبر - س (س+ ۱) - عن (س+ ۱) فسية المستمل المظل الى الاكبر - س (س+ ۲) من ×۲ (همور)

ضرب الحدوديات النسبية **Multiplying Rational Expressions**



سوف تتعلّم: ضرب الحدوديات النسبية.

العبارات والمفردات:
العبارات والمفردات:
المساحة = الطول \times الحرص م ، وعرضه $\frac{m}{1.1}$ م ، وعرضه $\frac{m}{1.1}$ م ، وغرضه $\frac{m}{1.1}$ م ، المالية ألم م ، وغرضه $\frac{m}{1.1}$ م ، وغرضه $\frac{m}{1.1}$ م ، وغرضه $\frac{m}{1.1}$ م ، المالية ألم م ، المالية ألم م ، المالية أل

= ...3 [-]

إذا كانت أ ، ب ، ج ، د تمثّل حدوديات حيث ب ≠ ، ، د خ ، $\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ فإنّ:

معلومات مفيدة: يتراوح طول ملعب كرة القدم الدولي بين ١٠٠ م، ١١٠ م والعرض يتراوح بين ٦٤ م، ٩١ م

مثال (۱):

أوجد الناتج في أبسط صورة:

$$\frac{1+\rho}{1-\rho} \times \frac{\rho \xi}{1+\rho}$$

الحل:

$$\frac{3 \frac{1}{1 - 1} \times \frac{1}{1 - 1}}{\frac{1}{1 - 1} \times \frac{1}{1 - 1}} = \frac{3 \frac{1}{1 - 1}}{\frac{1}{1 - 1}}$$

$$= \frac{3 \frac{1}{1 - 1}}{\frac{1}{1 - 1}} = \frac{1}{1 - 1}$$

تدرّب (۱) 📆 ؛

أوجِد الناتج في أبسط صورة:

$$\frac{\frac{v}{v} \times \frac{v}{v}}{\frac{v}{v}} = \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} = \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} = \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} \times \frac{v}{v} = \frac{v}{v} \times \frac{$$

$$\frac{7 m 7}{1-7 m 8} \times \frac{1+m 7}{7}$$

$$\frac{m 7 (1 + m 7)}{(1 - m 2) m} = \frac{m 7 (1 + m 7)}{(1 - m 2) m} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7) m} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{(1 + m 7)} = \frac{m 7 (1 + m 7)}{($$

مثال (۲) :

أوجِد الناتج في أبسط صورة:

$$\frac{\circ - \circ 7}{m - \circ} \times \frac{17 - \circ + \circ 7}{7 \cdot - \circ 7} \times \frac{7 \cdot \circ - \circ 7}{7 \cdot - \circ 7}$$

الحل:

$$\frac{\frac{\circ - \dot{\circ} \dot{\circ}}{m - \dot{\circ}} \times \frac{17 - \dot{\circ} + \dot{\circ}}{7 \cdot - \dot{\circ} m + \dot{\circ} \dot{\circ}}}{7 \cdot - \dot{\circ} m + \dot{\circ} \dot{\circ}}} = \frac{(\circ - \dot{\circ} \dot{\circ})(17 - \dot{\circ} + \dot{\circ})}{(m - \dot{\circ})(17 - \dot{\circ} m + \dot{\circ} \dot{\circ})}} = \frac{(\circ - \dot{\circ} \dot{\circ})(17 - \dot{\circ} m + \dot{\circ} \dot{\circ})}{(m - \dot{\circ})(17 - \dot{\circ} m + \dot{\circ} \dot{\circ})}} = \frac{(\circ - \dot{\circ} \dot{\circ})(17 - \dot{\circ} m + \dot{\circ})(17 - \dot{\circ})}{(m - \dot{\circ})(17 - \dot{\circ} m + \dot{\circ})(17 - \dot{\circ})}} = \frac{(\circ - \dot{\circ} \dot{\circ})(17 - \dot{\circ} m + \dot{\circ})(17 - \dot{\circ})(17 - \dot{\circ})(17 - \dot{\circ})}{(m - \dot{\circ})(17 - \dot{\circ})(17 - \dot{\circ})(17 - \dot{\circ})(17 - \dot{\circ})(17 - \dot{\circ})}} = \frac{(\circ - \dot{\circ})(17 - \dot{$$

تدرّب (۲) 🚺 ،

أوجِد الناتج في أبسط صورة:

$(w+m) \times \frac{m^{4}-V^{2}}{(w^{4}-P)} \times (w+m) \times \frac{V^{2}-V^{2}}{(w^{4}-P)(w^{4}+W)} \times \frac{V^{2}-V^{2}}{(w^{4}-P)(w^{4}+W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)(w^{4}+W)(w^{4}+W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)(w^{4}+W)(w^{4}+W)(w^{4}+W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)(w^{4}+W)(w^{4}+W)(w^{4}+W)(w^{4}+W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)(w^{4}+W)(w^{4}+W)(w^{4}+W)(w^{4}+W)(w^{4}+W)(w^{4}+W)} \times \frac{V^{2}-V^{2}}{(w^{4}-W)(w^{4}+W)(w^{4}$	j
(m) (m) (m) (m) d - (m)	
9 + my + cm -	
$\frac{\omega + \gamma}{\gamma - \omega} \times \frac{\omega' - \gamma}{\omega + \gamma} \times \frac{\varphi}{\varphi}$	9
(94) (40 ² - 93) (293+3190) (93-90-7)	
(N-UP) (V+UP) (C+UP) =	
((+OP)(Y-UP)(V+UP)UPC _(V-UP) _ (Y-UP)UPC	

تمــرَّنْ ،

🚺 أوجِد الناتج في أبسط صورة :

$$\frac{\omega}{\tau_{ou}} \times \frac{\tau_{ou}}{\tau_{ou}}$$

- 40x(40-1) (40-2)x 40	رب × درب مبر × × درب
(C-OP) 4 X UP 4	
CP X (C)	WO_

 $\frac{7-\omega}{\omega-7}\times\frac{7-\omega-7}{\omega^7}$

9 = OP	

$\frac{m7-7m}{7+m}\times\frac{1}{m-7}$	$\frac{\gamma + \gamma \xi}{\gamma + \gamma} \times \frac{\gamma - \gamma}{\gamma - 1}$
1 X (w ² - T4) (T-w) X (w+T)	(1-cb) X(c+L)
(7+w)(7-w) = ,(7+w)(7-w)-	(0+p) x (1/p) _ (1+p) x (9-1) x (9+1)
1	ے ا + ۲
$\frac{0+m^{2}-7m+0}{m-m}\times\frac{1}{m-0}$	🍑 🦰 × (ص* - ۲۵ ص)
$(w^2 - 7w) + 0)$ $(w^2 - 7w) + 0)$ $(w^2 - 7w) + 0)$ $(w^2 - 7w) + 0$ $(w^2 - 7w) + 0$	(co-co-co-co-co-co-co-co-co-co-co-co-co-c
1 _ Uu	
17 - 3 m + 7 m × 78 - 77 m	<u>γ + ω γ</u> × <u>γ ω γ γ ω γ γ ω γ γ ω γ γ ω γ γ ω γ γ ω γ γ ω γ ω γ γ ω</u>
(w)+3m+71) (m)-71)	(4 + mc) x (mcV - cmc)
m 0 x (17 + yd e + (m) (e/m) _ = (m) + 3) (w + 3)	(w + (w c)(E / w) (w + (w c)
0.0 =	<u>(mc</u>

قسمة الحدوديات النسبية **Dividing Rational Expressions**

سوف تتعلّم: قسمة الحدوديات النسبية.

أكمل ما يلي :

 $\frac{0}{7} \div \frac{10}{5}$

تذكَّرْ أنّ : النظير الضربي للحدودية أ هو أ ، أ≠ ،

إذا كانت أ ، ب ، جـ ، د تمثّل حدوديات حيث ب ≠ ، ، جـ ≠ ، ، د ≠ ، $\frac{1}{2}\frac{1}{2}$ فإنّ : $\frac{1}{2}$ \div $\frac{1}{2}$ \div $\frac{1}{2}$ \div $\frac{1}{2}$ \div فإنّ :

تدرّب (۱) 🚺 :

اكتب ما يلي في صورة عملية ضرب ، وغيِّر ما يلزم:

تدرّب (۲) 👘 ؛

أوجد الناتج في أبسط صورة:

$$\frac{w+w}{w+w} \div \frac{w-w}{w}$$

$$= \frac{w+w}{w+w} \times \frac{1-w}{w} = \frac{1-w}{w} \times \frac{1-w}{w} = \frac{1-w}{w}$$

$$\frac{(\sqrt{r+b})(\sqrt{r+b})}{\sqrt{r+b}} = \frac{(\sqrt{r+b})(\sqrt{r+b})}{\sqrt{r+b}} = \frac{(\sqrt$$

مثال:

أوجِد الناتج في أبسط صورة: $\frac{\dot{0} - \dot{0}}{\dot{0} + \dot{0} - \dot{0}} \div \frac{\dot{0} - \dot{0}}{\dot{0} + \dot{0} - \dot{0}}$

Iteld:
$$\frac{1-c}{7} \div \frac{c}{7} \div \frac{1-c}{7} \div \frac{1-c}{7} \div \frac{1-c}{7} + \frac{1}{3} \div \frac{1}{7} \div \frac{1}{7}$$

تدرّب (۳) 🚻 :

أوجد الناتج في أبسط صورة:

$$\frac{C+L_{0}}{\Lambda-L_{0}} \div \frac{\Lambda+L_{0}V-L_{0}}{\Lambda+L_{0}V-L_{0}}$$

$$\frac{\Lambda-L_{0}}{\Lambda-L_{0}} \div \frac{\Lambda+L_{0}V-L_{0}}{\Lambda+L_{0}V-L_{0}}$$

تمـرُّنْ ،

🐠 أوجِد الناتج في أبسط صورة:

$$\frac{W - w}{q - w} \div \frac{W + w}{W - w + w + w} \Leftrightarrow$$

$$\frac{\xi q + w + \xi - v w}{\xi q - v w} \div \frac{10 - w + v + v w}{w - w + v w}$$

+ \(\bar{W} - \bar{W} + \bar{W} - \bar{W} + \b

	17- WC	Y	CN +	۳س	_
L D	L (WW _C,W	C	- (W O	< w	

، فأوجِد:	$=\frac{1+m+1-m+1}{m+2m-0}$	، ن	س ^۲ + ۲ س س۲ + س – ۲	م =	🕜 إذا كانت
					۸ × ۱

م × ن (الله عليه الله
ې ÷ ن
m8 + 5m
mc-2m c-m+2m o-me+2m, c-m+2m = 1+mc-2m, mc+2m =
(0+w)(w-1) (w+o)(w+o) (1-w)(w-1)(w-1)
يُراد إقامة قرية أولمبية على قطعة أرض مستطيلة الشكل مساحتها ($m'-3$) وحدة مربّعة وأحد بعديها $\frac{m'-m-7}{m+1}$ وحدة طول .
وحدة مربّعة وأحد بعديها $\frac{m'-m-Y}{m+1}$ وحدة طول.
أوجِد البعد الآخر لقطعة الأرض.
البعد الاخر - المسامة - سرك عن سكس البعد الاخل - البعد الاول - سرك عن س + ۱
$= \frac{(1+m)(8-cm)}{(1+m)(8-cm)} = \frac{1+m}{(1+m)(8-cm)} = \frac{1+m}{(1+$

(1+m)(c-m)

= (س د) وحدة طول

جمع الحدوديات النسبية وطرحها Adding and Subtracting Rational Expressions

سوف تتعلّم: جمع الحدوديات النسبية وطرحها.

Adding جمع الحدوديات النسبية

أكمل ما يلي :

$$\frac{\frac{Y}{w} + \frac{w}{w}}{w} = \frac{\frac{Y}{w} + \frac{W}{w}}{w} = \frac{\frac{Q}{w}}{w} = \frac{Q}{w}$$

$$\frac{\frac{\gamma}{V} + \frac{\gamma}{V}}{V} = \frac{\frac{\gamma}{V} + \frac{\gamma}{V}}{V} = \frac{\gamma}{V}$$

إذا كانت أ، ب، جـ تمثّل حدوديات ، جـ \neq • فإنّ : $\frac{1}{5}$ + $\frac{1}{5}$ = $\frac{1+\frac{1}{5}}{5}$

تدرُب (۱) 📆 :

أُوجِد ناتج كلاًّ ممّا يلي في أبسط صورة:

$$\frac{\frac{0}{1+i} + \frac{0}{1+i}}{\frac{0}{1+i}} = \frac{\frac{0}{1+i} + \frac{0}{1+i}}{\frac{0}{1+i}} = \frac{\frac{1}{1+i}}{\frac{0}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}}{\frac{1+i}} = \frac{\frac{1}{1+i}}{\frac{1+i}} = \frac{1$$

$$\frac{\frac{\xi}{0+m} + \frac{\psi}{0+m}}{\frac{2}{0+m}} = \frac{\frac{\xi}{0+m} + \frac{\xi}{0+m}}{\frac{2}{0+m}} = \frac{\xi}{0+m}$$

لاحِظ لإيجاد م. م. أ (المضاعَف المشترَك الأصغر) للعددين ٨ ، ١٢ نتبع ما يلي:

وكذلك لإيجاد م . م . أ للحدين ٦س ، ٤س نتبع نفس الطريقة السابقة :

تدرّب (٢) أأن الله الما يأتي : أوجد م . م . أ في كلِّ مما يأتي :

م.م.أ	الحدوديات	
UP CM	س ، ص	
UP7	۲۹،۲۰	
۲ ص۲	۳ ص ، ۲ ص۲	۳
(o-up)up	ص ، (ص – ٥)	£
(c _ w) (l _ w)	(س – ۱) ، (س – ۲)	٥
(1+ w +) (1 - w +)	(٤ س' – ١) ، (٢ س – ١)	7
(4-04)0	(ص - ۳) ، (- ۲ + ۲ ص)	٧
(c+up)(c-up)	(ص - ۲) ، (ص - ۲) (ص + ۲)	٨
(m) (m) (m) (1-m)	(س - ۱) ، (س – ۱)	9
(m + m) (m - m)	(س۲ – ۲ س + ۹) ، (س۲ – ۹)	1.

مثال (١):

أوجِد الناتج في أبسط صورة:

الحل:

$$\frac{m}{r} + \frac{1}{3m}$$

$$= \frac{m}{r} + \frac{m}{3m} + \frac{m}{m}$$

$$= \frac{m \times m}{r} + \frac{m \times m}{r} + \frac{m \times m}{r} = \frac{m}{r}$$

$$= \frac{m \times m}{r} + \frac{m \times m}{r} + \frac{m}{r} = \frac{m}{r}$$

تدرّب (٣) 👘 :

أوجد الناتج في أبسط صورة:

$$\frac{Y}{(1-y^{2})} + \frac{Y}{(1-y^{2})} + \frac{Y}{(1-y^{2})} + \frac{Y}{(1-y^{2})} + \frac{Y}{(y^{2})} + \frac{Y}$$

مثال (۲) :

أوجِد الناتج في أبسط صورة :
$$\frac{\gamma}{m} + \frac{\gamma}{m} + \frac{\gamma}{m}$$

الحل:

$$\frac{\Psi}{Y+w} + \frac{Y}{\xi-Yw} = \frac{Y}{Y+w} + \frac{Y}{Y+w} = \frac{Y}{Y+w} = \frac{Y}{Y+w} = \frac{Y}{Y+w} + \frac{Y}{Y+w} = \frac{Y$$

$$=\frac{\gamma (\omega - \gamma)}{(\omega + \gamma)(\omega + \gamma)} + \frac{\gamma (\omega - \gamma)}{(\omega + \gamma)(\omega - \gamma)} =$$

$$\frac{7 + 7 - w - 7}{(w - 7)(w - 7)} =$$

$$=\frac{\gamma+\omega\gamma}{(\gamma+\omega\gamma)(\gamma-\omega\gamma)}=$$

$$\frac{\frac{(Y+w)^{w}}{(Y-w)}}{(Y-w)} =$$

$$\frac{\psi}{Y-\omega} =$$

تدرّب (٤) 🛗 :

أوجد الناتج في أبسط صورة:

$$\frac{1 + \sqrt{n}}{k} + \frac{(1 + \sqrt{n})(k + \sqrt{n})}{\xi} =$$

$$= \frac{y}{(w, x, y)(w, x, y)} + \frac{y}{(w, x, y)(w, y)} + \frac{y}{(w, x, y)(w, y)} = \frac{y}{(w, x, y)(w, y)} = \frac{y}{(w, x, y)(w, y)} + \frac{y}{(w, x, y)(w, y)} = \frac{y}{(w, x, y)(w, y)} = \frac{y}{(w, x, y)(w, y)} + \frac{y}{(w, y)(w, y)} = \frac{y}{(w, y)(w, y)} + \frac{y}{(w, y)(w, y)} = \frac{y}{(w, y)(w, y)} = \frac{y}{(w, y)(w, y)} + \frac{y}{(w, y)(w, y)} = \frac{y}{(w, y)} = \frac{y}{(w, y)(w, y)} = \frac{y}$$

تم تحميل الـمــلف من موقع مدرستي الكويتية

ننصح بأفضل مذكرة منذكرات السنجاح

حمل تطبيق مدرستي الكويتية

تدرّب (٥) 🚺 :

أوجِد الناتج في أبسط صورة:

معلومات مفيدة:

يستخدم المتسابقون في مباريات التجديف ، طرح الحدوديات النسبية لمعرفة تأثير مقاومة التيّار على

طرح الحدوديات النسبية

إذا كانت ١، ب ، ج تمثّل حدوديات ، ج ≠ ٠،

فإنّ :
$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

تدرّب (٦) 🚻 ؛

أوجِد ناتج كلّ ممّا يلي في أبسط صورة:

$$\frac{1-L_{c}}{L_{c}} = \frac{1-L_{c}}{\left(1-h\right)_{c}} =$$

$$=\frac{\frac{1}{1-a}-\frac{a+1}{a-1}}{\frac{a-1}{a-1}}$$

مثال (۳) :

أوجد الناتج في أبسط صورة:

$$\frac{\dot{\upsilon} + \gamma}{\dot{\upsilon}^{2} + \dot{\upsilon} - r} = \frac{\dot{\upsilon} - \gamma}{\dot{\upsilon}^{2} - \rho}$$

الحل:

$$\frac{\psi - \dot{\upsilon}}{\dot{\upsilon} + \dot{\upsilon} - \dot{\upsilon}} - \frac{\psi + \dot{\upsilon}}{\dot{\upsilon} - \dot{\upsilon} + \dot{\upsilon}}$$

$$\frac{(\mathcal{V}-\dot{\mathcal{U}})}{(\mathcal{V}-\dot{\mathcal{U}})(\mathcal{V}+\dot{\mathcal{U}})} - \frac{(\mathcal{V}+\dot{\mathcal{U}})}{(\mathcal{V}-\dot{\mathcal{U}})(\mathcal{V}+\dot{\mathcal{U}})} =$$

$$\frac{(m-3)}{(m-3)(m+3)} - \frac{(m+3)}{(m-3)(m+3)} =$$

$$\frac{1}{(\ddot{\upsilon} + \ddot{\upsilon})} - \frac{1}{(\ddot{\upsilon} + \ddot{\upsilon})} =$$

$$=\frac{1\times(\circlearrowleft+\Upsilon)}{(\circlearrowleft-\Upsilon)(\circlearrowleft+\Upsilon)}-\frac{1\times(\circlearrowleft-\Upsilon)}{(\circlearrowleft+\Upsilon)(\circlearrowleft-\Upsilon)}=$$

$$=\frac{(\ \zeta-\gamma\)-(\ \gamma+\gamma\)}{(\ \gamma-\gamma\)(\ \gamma-\gamma\)}=$$

$$=\frac{\ddot{\upsilon}+\ddot{\upsilon}-\ddot{\upsilon}+\ddot{\upsilon}}{(\ddot{\upsilon}-\ddot{\upsilon})(\ddot{\upsilon}-\ddot{\upsilon})}=$$

$$\frac{\circ}{(\Upsilon+\dot{\upsilon})(\Upsilon-\dot{\upsilon})} =$$

تدرّب (۷) 🚺 ؛

أوجِد الناتج في أبسط صورة:

$$\frac{\circ}{\Upsilon + \omega} - \frac{\Upsilon}{\Psi - \omega}$$

$$=\frac{(m+\gamma)\times(m+\gamma)}{(m-\gamma)(m+\gamma)} - \frac{(m+\gamma)\times(m-\gamma)}{(m+\gamma)(m-\gamma)} =$$

$$=\frac{7 \, m + ... 2 \, ...}{(m-7)(m+7)} - \frac{6 \, m - ... 2 \, ...}{(m-7)(m+7)}$$

$$=\frac{\lceil x_0+2/-6w_0+\delta \rceil}{(w-\pi)(w+1)}$$

$$= \frac{\omega + \omega}{(\omega - \varphi)(\omega - \varphi)} =$$

تمــرَّنْ ،

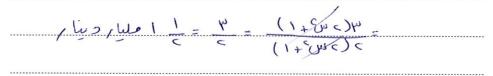
أوجِد ناتج كلّ ممّا يلي في أبسط صورة:

1-w7 - \frac{\xi}{1-w7} \frac{\xi}{1-w7}

تذكّر أنّ: أ- ب = - (ب - أ)	$\frac{4}{\sqrt{1-1}} - \frac{1}{1-\sqrt{1}}$ $\frac{4}{\sqrt{1-1}} - \frac{1}{1-\sqrt{1}}$ $\frac{4}{\sqrt{1-1}} - \frac{1}{\sqrt{1-1}}$ $\frac{4}$	$\frac{q}{m+m} - \frac{r}{m+m} \operatorname{P}$ $\frac{q}{m+m} - \frac{r}{m+m} - \frac{r}{m+m} \operatorname{P}$ $\frac{q}{m+m} - \frac{r}{m+m} \operatorname{P}$ $\frac{q}{m+m} - \frac{r}{m+m} - \frac{r}{m+m} \operatorname{P}$ $\frac{q}{m+m} - \frac{r}{m+m} - \frac{r}{m+m} - \frac{r}{m+m} \operatorname{P}$ $\frac{q}{m+m} - \frac{r}{m+m} $
(c4 (w)) w	$\frac{(c+w)w}{w(w+x)} = \frac{(c+w)w}{w(w+x)}$ $\frac{(c+w)w}{w(w+x)} + \frac{(c+w)w}{w(w+x)}$ $\frac{(c+w)w}{w(w+x)} + \frac{(c+w)w}{w(w+x)}$	- 140 = P.

$$\frac{(\omega+\omega)(\omega+\omega)}{(\omega+\omega)(\omega+\omega)} = \frac{\xi}{(\omega+\omega)(\omega+\omega)} = \frac{(\omega+\omega)(\omega+\omega)(\omega+\omega)}{(\omega+\omega)(\omega+\omega)(\omega+\omega)}$$

$$\frac{m^{2}+1}{mm^{2}+nm+0}+\frac{\sqrt{m}}{mm^{2}+nm}$$

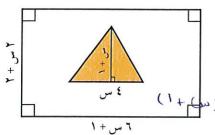


$\frac{7}{9-100}+\frac{1}{2000}-\frac{1}{200000000000000000000000000000000000$	س - س ا به س به ۹ س
7 1 E+W (W-W)(W-Y)(W-Y)	رس (۳-س) (۳-س) (۳+س) (۳+س)
7+(4+m)1-(4-m)(8+m)= (4-m)(m+m)	(4-m)m-(4+m)m (4-m) (4+m)
7+4-W-1c-WE+W4-2W -	(r- m) e(+ m) =
ع _ س = (س +4) (س-4)	رس+س) ^د (س+س)
(m/m)(m/m) = (m/m)(m/m)	

إذا كانت تكلفة بناء فندق داخل القرية الأولمبية تساوي $\frac{7 - \sqrt{7} + 7}{7 + 7}$ مليار دينار وتكلفة تأثيث هذا الفندق تساوي $\frac{7 - \sqrt{7} + 7}{3 - \sqrt{7} + 7}$ مليار دينار ، فأوجِد التكلفة الشاملة لهذا الفندق.

د بنا ر	ملار	1 + 5m 4	c + 5m 4	التكلفة الساملة -
, -	-	C + Em E	C + CM E	
	M + CM L	- 1+	W+2+ 4 W.	٣_
	C+8m8		(c+cme)

مراجعة الوحدة الثالثة Revision Unit Three


أوَّلًا: التمارين المقالية

	-					
4 4 30					-	
ممّا يلي :	25	صورة	اسط	و ف	ضا	
الله والمي الم	,-	-75-		سے ر		

10-00 10-00 - (0-00) - (0-00)	9+P7 (P) E
$\frac{-1}{17-\frac{1}{17}}$ $\frac{(\omega-\epsilon)c}{(\varepsilon-\omega)(\epsilon+\omega)}$ $c-=\frac{(\epsilon-\omega)c-}{(\epsilon-\omega)(\epsilon+\omega)}$ $\epsilon+\omega=\frac{(\epsilon-\omega)(\epsilon+\omega)}{(\epsilon+\omega)}$	۲ س ^۲ + ۲ س ۳ س ^۲ + ۳ س ۷ س (س) کر (س س (س) کر (س س (س) کر (
(0+1)(+6) (0+1)(+6) (0+1)((+6) (0+1)(0+1)	ر ال عادی (ال عادی (ال عادی) (ال عادی) (ال عادی)
1-0C 0+7 170+ "MYV @ 1w-10- "MY) (2-w) (9 w) - 01 w + 0) (4 w) + 0) (w) - 0)	- ل - ع ۳+ تا ص + ۲ ص ۲ + ۲ ص - ۳ (۱ - ۵ - ۲) (م - ۱) (م ب + ۳) (م ب - ۱)
ره + س اه - ² س ۹ - س - C - س	7-UPV =

(

أكتب نسبة مساحة المنطقة المثلّثة إلى مساحة المنطقة
المستطيلة في صورة حدودية نسبية وضعها في أبسط
صورة .

ر (د + (س ج) (ع س × (س ج ا) ع س (س ج ا

(C+(mc)(1+(m1) =	aliemph gapet as hus
	()

(V)	~ (1+m) mc	- (1+(m) mc
1+047	(1+m)cX(1+m1)	(1m+1)(2m+2

😙 أوجِد الناتج في أبسط صورة لكلّ ممّا يلي:

(m - m - 7)	$\times \frac{\xi + \omega + \xi}{\omega - w}$
(c+w)(y/w)	X (1+04) E
(4-	(w)

(C+	1	1.	1 -
167	(M)	1 + CW) 8.

	70 - 00		7.0 A - 200 7.0
(0-m4) (1-mc) x	(8 +1	س (سر) س ۱
	4md	(Ex (w)	(1-wc)
	(o-wy)(1-	- (mc) X	س اس
	4ºCm		1-000
	(o-(w4)(1-(wc)	1 WW
	4 W 4	X (1-0	sc)
	(0-w4) =
		SCH W	

 $\frac{7 + \sqrt{1 + 1 + 1} + \sqrt{1 + 1}}{9 + \sqrt{1 + 1 + 1}} \times \frac{7 + \sqrt{1 + 1} + \sqrt{1 + 1}}{9 + \sqrt{1 + 1}} \times \frac{9 + \sqrt{1 + 1}}{9 + \sqrt{1 + 1}}$

$$\frac{\omega^{+} - \omega^{-} - \omega^{+} - \omega^{+}}{\omega^{-} - \omega^{-}} \times \frac{\omega^{+} - \omega^{-} - \omega^{-}}{\omega^{-} - \omega^{-}} \times \frac{\omega^{+} - \omega^{-}}{\omega^{+} - \omega^{-}}}{\omega^{+} - \omega^{-}} \times \frac{\omega^{+} - \omega^{-}}{\omega^{+} - \omega^{-}}} \times \frac{\omega^{+} - \omega^{+}}{\omega^{+} - \omega^{-}} \times \frac{\omega^{+} - \omega^{+}}{\omega^{+} - \omega^{-}}} \times \frac{\omega^{+} - \omega^{+}}{\omega^{+} - \omega^{+}}}{\omega^{+} - \omega^{+}} \times \frac{\omega^{+} - \omega^{+}}{\omega^{+} - \omega^{+}}} \times \frac{\omega^{+} - \omega^{+}}{\omega^{+}}} \times \frac{\omega^{+} - \omega^{+}}{\omega^{+}} \times \frac{\omega^{+}}{\omega^{+}}} \times \frac{\omega^{+}}{\omega^{+}} \times \frac{\omega^{+}}{\omega^{+}}$$

	7 m 8 m + m m + m	÷ " \" \" \" \" \" \" \" \" \" \" \" \" \
Qu?	+ 04 00 + 500 X	m m v
	ح س ہے	MUP - LM
	(500 + 00 Cm + 500	1) X m N «
c m &	2+ man + ans) x	(w)-qu) (w
		On C
	(((m-q

$\frac{7 + 0 + 7 + 0}{4 + 0} \div \frac{7 + 4 + 4 + 0}{4 + 0} \div \frac{7 + 0}{4 + 0}$	m + w + v + v + v + v + v + v + v + v + v
- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4-	0 - W/ - Cm & 10 - W/, + Cm 0
(1+(P)(P)X(C+(P)(P+(P)) -	10-m/-ms)x(10-m1, +cm0) =
Y + UP -	(0-mc)(1+mc) X(h-mc+cm)0~
	(m+w) x (1+ wc) x (1-w) (0-w)
	(v-w) (1+(wc) X(1-w) (o-wc) o
	, — (M

				- 0		
	F 10000	w			٥	a Chillian
•	1.1".	161:	- 1- 1	i - "1.1	11 1 /	6
	ممايد	بوره ص	السط م	سانح نے	او جد اا	4
ڀ		0 9		ب د		
ي		مورة لكلّ		عن عج		

$\frac{Y}{W+W} + \frac{W}{V+W} $	$\frac{r}{r} + \frac{o}{r}$
(m+4)+2 (m+L)	W+0 =
(m+m)(J+m)	1° N
1 c + m c + m h + cm	1 = / =
(m+m)(1+m)	L L.V
10+00+80-	
(m+m)(1+m)	

$\frac{7}{Y-w} - \frac{\xi}{w+w}$	$\frac{7 - \sqrt{4} - \sqrt{4}}{7 - \sqrt{4} + \sqrt{4} - \sqrt{4}} + \frac{8 - \sqrt{4}}{8 - \sqrt{4}} + \frac{1}{8 - \sqrt{4}} + 1$
(m+m), -(c-m) &	$(1-\omega)\omega$ $(c-\omega)c$ $(1-\omega)(c+\omega)$
(w)+4) (m-2)	C+M C+M =
c7 - wc	1 = C + c + c + c + c + c + c + c + c + c +
(c - w) (w + w)) c -	C+0n
(c-m)(h+m)	

$\frac{m+\dot{\upsilon}}{q-\dot{\upsilon}} - \frac{1-\dot{\upsilon}\Upsilon}{m-\dot{\upsilon}\circ+\dot{\tau}\dot{\upsilon}\Upsilon}$	$\frac{\xi}{Y+w}-\frac{7}{Y+w+Yw} \Longrightarrow$
(r-0)(r+0) (r+0)(1-0c)	(c+m) (1+m)(c+m)
(H- i) (H+i)	(1+m) (c+m) = - 2 (m+1)
(ヤ+ ご) - (ヤ-ご) _ (ヤ-ご)(ヤ+ご)	(m+2)(c+w)
W W	(1+m)(c+m) c+me==
フ - = (Y-ご)(Y+ご)	(1-mc)c- (1+(m)k+m)

(س ۲ – ص ۲) ÷ (س ۳ – ص ۳) × س ب س ص + ص ۲) (س م ب ص ۲)
- 40 γ ω + 400 γ ω + 400 γ ω + 400 γ ω + 400 ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω
Of + Cm Cop - 4cm
(cop+nbm + cm) x (cop-cm) =
(m+m) x (m-4m)
(COD + OP OW + OW) X (OP + OW) =
ر س - ص) ر س عب س ص + عن) (س + ص) الله عن) الله عن الله عن أبسط صورة :
$(\frac{w^{2}}{\varpi} + \frac{w^{2}}{\varpi}) \div (\frac{w^{2}}{\varpi} + \frac{w^{2}}{\varpi})$
((of-w) op-w); (op x Ex + w x em)
COP + UP W - COP + 4°C W =
Cop ops

= (w+w)

ثانيًا: التمارين الموضوعية

أولًا: في البنود التالية ، ظلِّل أَ إذا كانت العبارة صحيحة ، وظلِّل بِ إذا كانت العبارة غير صحيحة .

9		$1 - = \frac{m - m}{m - m}$
	1	$\frac{0}{\xi + \omega + \gamma} = \frac{\gamma}{\gamma + \omega} + \frac{\gamma}{\gamma + \omega}$
9		$\frac{\sigma}{\gamma} = \frac{\gamma}{\gamma} = \frac{\gamma}$
9		$\frac{1}{m+m} = (\gamma + m) \div \frac{\gamma + m}{m+m} $

ثانيًا: لكلّ بند من البنود التالية أربعة اختيارات ، واحد فقط منها صحيح ، ظلِّل الدائرة الدالّة على الإجابة الصحيحة.

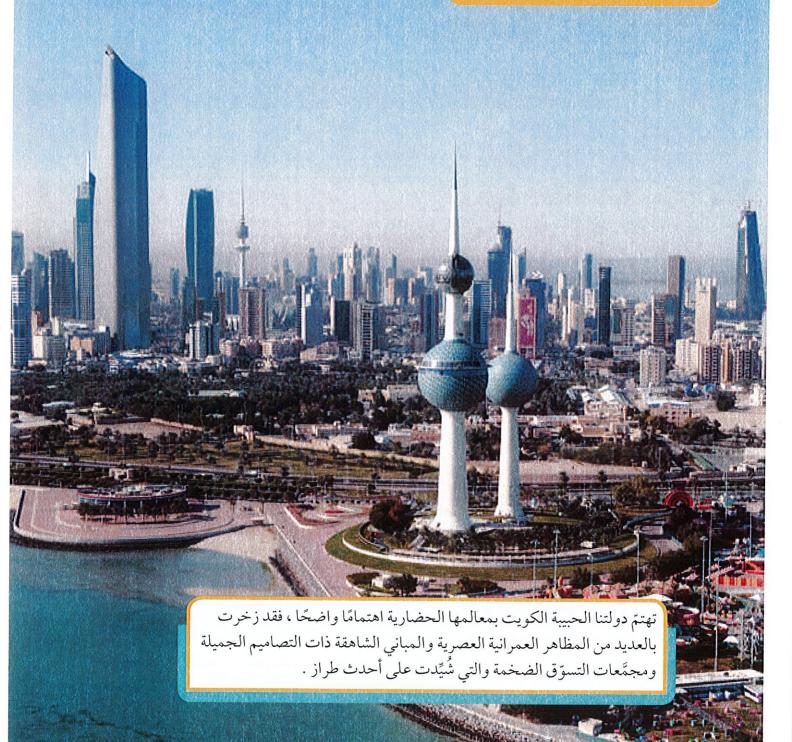
$$\frac{1-\rho}{(1-\rho)(1-\rho)} \odot \frac{\frac{7-\rho}{(1-\rho)(1-\rho)}}{\frac{(1-\rho)(1-\rho)}{(1-\rho)}} \odot \frac{\frac{7-\rho}{(1-\rho)}}{\frac{7-\rho}{(1-\rho)}} \odot \frac{\frac{7-\rho}{(1-\rho)}}{\frac{7-\rho}{(1-\rho)}}$$

$$\frac{(c+\omega)(c-\omega)}{(c-\omega)} = \frac{\xi}{(c-\omega)} - \frac{\gamma}{\gamma} = \frac{1-\rho}{(c-\omega)}$$

7-5

$$\frac{(c+\omega)(c-\omega)}{(c-\omega)} = \frac{\varepsilon - c\omega}{(c-\omega)} = \frac{\varepsilon}{\gamma - \omega} - \frac{\gamma_{\omega}}{\gamma - \omega}$$

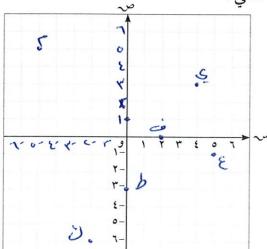
$$\frac{V - \omega}{\omega - V} \Leftrightarrow \frac{1 - \dot{\upsilon} \cdot \dot{V}}{\xi + \dot{\dot{\upsilon}}} \Leftrightarrow \frac{1 + \dot{\upsilon}}{1 - \dot{\upsilon}} \Leftrightarrow$$

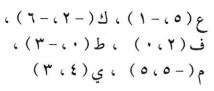

$$1 = \frac{1 + \omega P}{1 + \omega P} = \frac{1 + \omega P - \omega P c}{1 + \omega P} = \frac{1}{1 + \omega} + \frac{\omega}{1 + \omega} - \frac{\omega Y}{1 + \omega}$$

$$\frac{1 + \omega P}{1 + \omega} \stackrel{(4)}{\rightleftharpoons} \frac{1 + \omega P}{1 + \omega} \stackrel{(5)}{\rightleftharpoons} \frac{1 + \omega P}{1 + \omega} \stackrel{(7)}{\rightleftharpoons} \stackrel{(7)}{\rightleftharpoons} \frac{1 + \omega P}{1 + \omega} \stackrel{(7)}{\rightleftharpoons} \stackrel{(7)}{\rightleftharpoons} \frac{1 + \omega P}{1 + \omega} \stackrel{(7)}{\rightleftharpoons} \stackrel{$$

معالم عضاریة Cultural Landmark

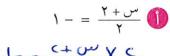
اِستعِدُ للوحدة الرابعة

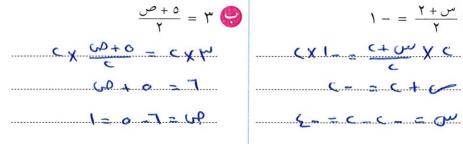

🚺 أكمل ما يلي:

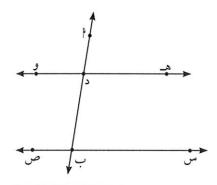

 (1-)- ٣	- 😜
 10-1	. =
	_

👣 في المستوى الإحداثي ،

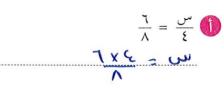
اكتب إحداثيات النقاط التالية:


😙 عيِّن النقاط التالية على المستوى الإحداثي :





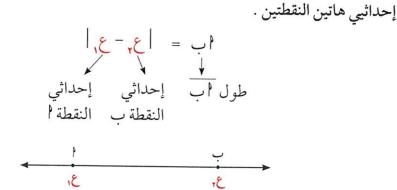
3 حلّ المعادلات التالية:



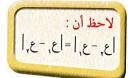
🙆 في الشكل المقابل : تحقّق من توازي ---- مس ص باستخدام الأدوات الهندسية .

🕥 حُلَّ التناسب في كلِّ ممّا يلي :

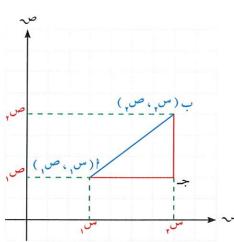
^
 ٧,


المسافة بين نقطتين في المستوى الإحداثي Distance Between Two Points In a Plane

سوف تتعلّم: إيجاد المسافة (البعد) بين نقطتين في المستوى الإحداثي .



المسافة (البعد) بين نقطتين على محور الإحداثيات هي القيمة المطلقة للفرق بين


لاحظ أن: اع -ع ا = اع -ع الشكل المرسوم، أكمل ما يلي:

من الشكل المقابل:

لاحظ أن : |س' | = |س | = س'

أي أن:

البعد بين النقطتين ١ (س، ص، ص، ب (س، ص، ص، هو:

مثال (١):

أوجد البعد بين النقطتين ١(١،١) ، ب (٥،٤)

الحل:

$$\frac{1}{4} = \sqrt{(m_{\gamma} - m_{i})^{\gamma} + (m_{\gamma} - m_{i})^{\gamma}}$$

$$=\sqrt{(0-1)^{2}+(3-1)^{2}}$$

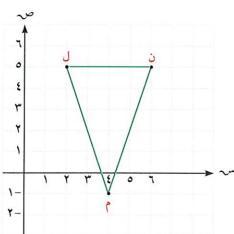
$$=\sqrt{(3)^7+(7)^7}$$

$$=\sqrt{60}$$
 = 0 e-cs deb

$$\frac{1}{4} = \sqrt{(m_{\gamma} - m_{\gamma})^{+} + (m_{\gamma} - m_{\gamma})^{+}}$$

$$=\sqrt{(...\Delta...-...\Delta...)^{1}+(...\Delta...-...\Delta...)^{1}}$$

$$=\sqrt{\left(\dots \bigcap_{i=1}^{N}\right)^{i}+\left(\dots \bigcap_{i=1}^{N}\right)^{i}}$$


$$\sqrt{(--1)^{2} + (-1)^{2} + (-1)^{2}}$$

مثال (۲):

في الشكل أدناه: بيِّن نوع المثلث لم ن بالنسبة إلى أطوال أضلاعه حيث إحداثيات رؤوسه هي: ل (٢،٥)، م (٤،١-١)، ن (٦،٥).

الحل:

$$U \dot{U} = \sqrt{(m_{\gamma} - m_{\gamma})^{7} + (m_{\gamma} - m_{\gamma})^{7}}$$

$$= \sqrt{(7 - 7)^{7} + (0 - 0)^{7}}$$

$$= \sqrt{(3)^{7} + (0 - 0)^{7}}$$

$$= \sqrt{(3)^{7}$$

.: المثلث لمن متطابق الضلعين

تدرّب (۳) 🚻 :

استخدم الحساب الذهني لإيجاد البعد بين النقطتين التاليتين:

(6-1-1) = (1-1

02 (0/= 17+9)=

لتكن ب نقطة تنتمي إلى دائرة مركزها نقطة الأصل و .

أوجد طول نصف قطر الدائرة.

ب و تمثل مصف عطر الدائرة

إحداثيات النقطتين ب ، و هما:

ب(...ا....،)، و (....ه...،ه...)

ب و = ا (س س س) م (ص ب ب

- (c) + ((-)) =

= _____ deb_____=

تمــرّن ،

س مم س می می می النقطتین النقطتین النقطتین (۲،۲)، ب(۲،۲).

🕜 إذا كانت ع (٨ ، –٣) ، ب (٢ ، ٥) ، أوجد طول علي .
= (vo-[va) + (vo-[vu) / = vi
c(Y0)+c(N-c)/=
c(N)+c(1-) / =
78+47 =
Joberpe 1 = Tolar
😙 أوجد البعد بين النقطتين ع (-٣، ٥)، ك (-١ ، ٥) .
3 [= 1 (m-m) + (m-m) = 2 E
(0-0) + (Y-1-) r=
E/= (c)+(c)/=
Jopen C-
🚯 أوجد البعد بين النقطتين ل (٤،٠)، ن (٠،-٢).
((vo_vo), (, w_w)) = i J
(o.c.)+(E.)/=
€+17 x = (c-) + ({e-) y=
- رحة طول
⊙ لتكن ¹(٥ ، ١٢) نقطة تنتمي إلى دائرة مركزها نقطة الأصل و .
أو جد طول نصف قطر الدائرة .
(\up-\up-\up-)+(\up-\up-) = 9 P
(\c-0)+(0-0)
179 / = 188+co/= (1c-) + (0-) / 3
, Job = 1 =

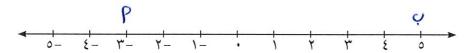
(۱) طل قطر في دائرة حيث ط(۲،۰)، ل(۸، -٤). أوجد طول نصف قطر الدائرة .
أوجد طول نصف قطر الدائرة .
dp = 1 (m m) + (m m) 2
c(c-\(\xi\)) \(\z\)
= \(\(\) + (-\(\)) = \(\)
John in the
Job ospo o - ¿ - be cie do

i le chie John John
Jusi of Job of Jours do
(10 00) + (10 cm) - 66
(c-1)+(7-1-) =
NoV= 47+69/2 ((7)+(V-))=

🧷 بين نوع المثلث لم ن بالنسبة إلى أطوال أضلاعه حيث إحداثيات رؤوسه هي :
ل (٣، –٥) ، م (–٣، ٠) ، ن (٢، ١) .
(00-20) + (10-2m) ~= FJ
(a)+(7-)/= (01)+(4-4-)/=
John TIVE CONTY
(\op_{\op}) + (\op_{\op}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(Y) + (C-) /- (O-C) + (Y-1)/-
(V) + (C-) / = (OC) + (Y-1)/ = Job 6, p = 04 / = (24 + 6) =
we we have with a cit
(no-no)+(n-m) = i c
1000
Jg/ 50 p = 0 C = (c) + (E) -
يَلُوْلُ عِلَى الْمُلِكِ اللَّهِ اللَّ

إحداثيا نقطة منتصف قطعة مستقيمة فمي المستوم الإحداثي Midpoint Coordinates in a Plane

العبارات والمفردات:


منتصف قطعة مستقيمة Midpoint of a Segment

إحداثيات Coordinates

سوف تتعلَّم: إيجاد إحداثيا نقطة منتصف قطعة مستقيمة في المستوى الإحداثي.

مثِّل النقطة 1 التي إحداثيها ٣٠، والنقطة ب التي إحداثيها ٥ على المحور الإحداثي.

- 🕠 مثِّل النقطة جـ منتصف أب .

= إحداثي النقطة جـ

أي أن:

إذا كانت سر إحداثي النقطة أ ، س إحداثي النقطة ب ، حيث أ ، ب نقطتين على محور إحداثي وكانت جـ نقطة منتصف أب فإن: إحداثي النقطة جه هو $\frac{m_1 + m_2}{n}$.

تدرّب (١) ﴿ أَأَ اللَّهُ اللّلْمُ اللَّهُ اللَّالِي اللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ

أوجد إحداثي النقطة د منتصف لع ، إذا كان إحداثي النقطة ل هو -١٢ ، وإحداثي النقطة ع هو ٦. 1 مراكي د _ _ - ١ + ١ = _ _ _ _ - ٢

مثال (۱):

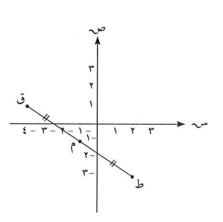
إذا كانت النقطة ك تنصف دب على محور إحداثي ، بفرض أن إحداثي النقطة ك هو ١ وإحداثي النقطة د هو ٤ ، أوجد إحداثي النقطة ب.

الحل:

نفرض أن إحداثيات النقاط د ، ك ، ب على الترتيب هي س، س ، س،

فیکون
$$m = \frac{w_1 + w_2}{Y}$$

$$\frac{Y}{Y} = 1$$


$$\frac{Y}{Y} = Y$$

في المستوى الإحداثي إذا كانت
$$\{(m_1, m_2, m_3), \dots (m_7, m_7)\}$$
 فإن : إحداثيا نقطة منتصف $\frac{1}{\sqrt{m_1}}$ هي
$$\left(\frac{m_1 + m_7}{7}, \frac{m_1 + m_7}{7}\right)$$

مثال (٢):

إذا كانت ط (٢ ، - 7) ، ق (- 3 ، ١) ، فأوجد النقطة م التي تنصف \overline{d} .

الحل:

نقطة المنتصف م
$$\left(\frac{w_1 + w_2}{Y}, \frac{w_1 + w_2}{Y}, \frac{w_1 + w_2}{Y}\right)$$
 =
$$\left(\frac{Y + (Y - \frac{1}{Y})}{Y}, \frac{(Y - \frac{1}{Y})}{Y}\right) =$$

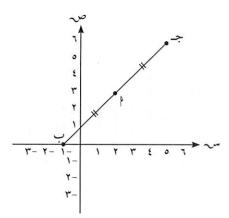
تدرّب (۲) 🚺 :

أوجد إحداثيا النقطة ف منتصف ع ل في كل مما يلي:

😌 ع (- ۲ ، ۷) ، ل (- ۱ ، - ٤)	(۱،۳-))، ل(-۳،۱)
() jar () = () = () ()	ا مراکی نے = (س + سے عمری اور ا
(8-4V (1-40-)=	(1+0- C -+ + M) =
(x c k -)=	((- (.) ;

مثال (٣):

إذا كانت ا(٣،٢) تنصف بجـ حيث ب(-١،١)، جـ (س، ص)، فأوجد النقطة جـ.


الحل:

$$\left(\frac{\gamma^{\omega}+\gamma^{\omega}}{\gamma},\frac{\gamma^{\omega}+\gamma^{\omega}}{\gamma}\right)$$
 : $\frac{\gamma^{\omega}+\gamma^{\omega}}{\gamma}$

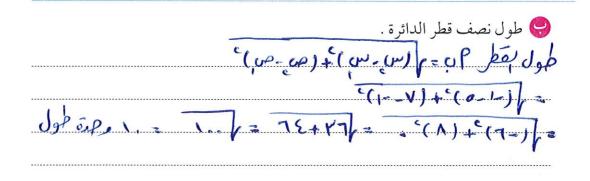
$$(\Upsilon,\Upsilon) = \left(\frac{\gamma^{\omega+1}}{\gamma}, \frac{\gamma^{\omega+1-1}}{\gamma}\right) ::$$

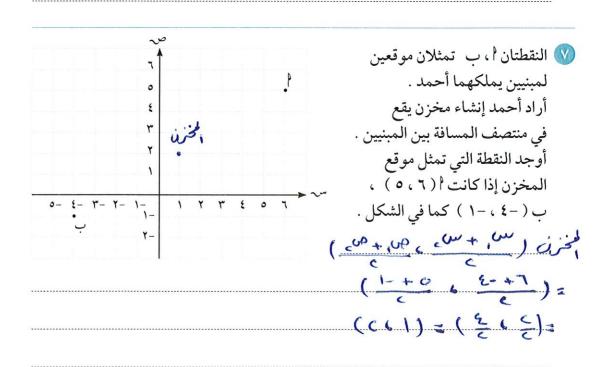
$$Y = \frac{y^{\omega} + y^{\omega}}{Y}$$

$$Y = \frac{y^{\omega} + y^{\omega} + y^{\omega}}{Y}$$

:	†	(٣)	تدرب
	>		

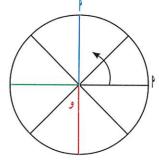
نصف آب حيث ا(۲، -۳)، أوجد النقطة ب.	إذا كانت م (- ٢ ، - ١) نقطة منت
(1-60-)=	
- CAD 4. PA	C C C
	C C
C = = WA+ P-	€-3 cm + c
15,64	
	The state of the s
	تمـــرُّنْ ،
حيث ا(- ۱ ، ۳) ، ب(۷ ، - ۱).	🕠 أوجد النقطة م منتصف أب
	6 cm+10m) p (3/10)
(
	(166)=
۔ د حیث جـ (٥، ٣- ، د (٩- ، ٤) .	🕜 أوجد النقطة ن منتصف ج
	احدای ن (س، بس
(9-44-6 8-40)
	(7-6-2)

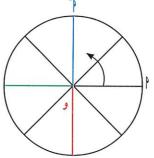



(۱۱۰ (۲۰۱۱) منتصف ف ق حیث ف (۱۱۰ (۲۰۱۱) مق (۲۰۸۱). ع (س، +س، ع هـ، +هـ، ع) = (-۱۱ + ۸ ع ۲۰۰۲) = (-۲۰۰۲)
ا أوجد النقطة ت منتصف ح ز حيث ح (۱۷، -۱۰)، ز (۱۳، -٥). ا (سن + سي ، صن + من) ا (۲۰ + ۱۷) - ۱۰ - ۱۰ - ۱۰ - ۱۰ - ۱۰ - ۱۰ - ۱۰ -
اذا کانت ك (۳ ، ۹) تنصف دف حيث د (- ۳ ، - ۱) ، فأوجد النقطة ف . از

, (v	(ب (- ١	4	(1- ,	0)}	حيث	٩	طر في الدائرة التي مركزها	قو	آ ب	6
										أوجا	

🐠 النقطة م مركز الدائرة .
سر سارسی می کمی
C (V+1-, 1-+0),
e c
(762)3
(W & C) =





العبارات والمفردات: التحويل الهندسي Transformation الدوران Rotation

🍏 نشاط (۱):

عجلة الدراجة

من الشكل المرسوم:

يوضّح السهم اتّجاه حركة عجلة الدرّاجة الهوائية وهي تدور حول نقطة ثابتة ولتكن مركز الدائرة (و) . أكمِل كلَّا ممّا يلى :

الدوران Rotation

سوف تتعلُّم: الدوران وكيفية إيجاد صورة شكل هندسي بالدوران.

و ا هو نصف مل للدائرة

وا مو معن عط آخر للدائرة

.. وا....وا

الدوران هو تحويل هندسي يعيّن لكل نقطة أفي المستوى نقطة أخرى أبحيث: ا ___ أ ، و __ و (و نقطة صامدة ، تُسمّى مركز الدوران) ،

و ا = و آ

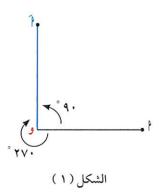
 $(rac{1}{2} \stackrel{\wedge}{0})$ هي زاوية الدوران وقياسها هـ $^\circ$.

نرمز إلى الدوران الذي مركزه نقطة الأصل (و) وقياس زاويته (هـ°) بالرمز د (و ، هـ°) . سنعتبر الدوران موجبًا إذا كان عكس اتّجاه حركة عقارب الساعة ، وسنعتبر الدوران سالبًا إذا كان مع اتّجاه حركة عقارب الساعة .

اللعبة الموضَّحة في الشكل تدور حول نقطة ثابتة ، ويكون الدوران في اتجاه حركة عقارب

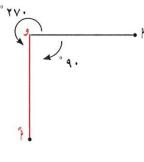
اللعبة الموضَّحة في الشكل تدور حول نقطة ثابتة ، ويكون الدوران في اتجاه مضاد لحركة عقارب الساعة.

تذكّر أنّ :


إذا كانت صورة النقطة تحت تأثير أيّ تحويل هندسي هي النقطة نفسها ، فإنَّها تُسمّى نقطة صامدة.

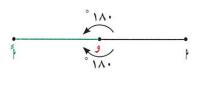
من النشاط السابق:

• في الشكل (١):


عندما تدور العجلة من الوضع أ إلى الوضع أ يتعيّن دورانًا موجّبًا (عكس اتّجاه حركة عقارب الساعة) مركزه (و) قياس زاويته ٩٠° ونعبّر عنه بالرمز : د (و ، ٩٠°) لاحظ أنّ دورانًا مو جَبًا حول (و) قياس زاويته ٩٠° يكافئ دورانًا سالبًا حول (و) قياس زاويته ٢٧٠° ففي الحالتين تدور العجلة من الوضع أ إلى الوضع أ د (و، ۹۰°) يکافيء د (و، – ۲۷۰°).

• في الشكل (٢):

عندما تدور العجلة من الوضع أ إلى الوضع أ يتعيّن دورانًا سالبًا (مع اتّجاه حركة عقارب الساعة) مركزه (و) قياس زاويته ٩٠° ونعبّر عنه بالرمز : د (و ، - ٩٠°) كذلك نلاحظ أنّ دورانًا سالبًا حول (و) قياس زاويته ٩٠° یکافئ دورانًا موجَبًا حول (و) قیاس زاویته ۲۷۰° ففي الحالتين تدور العجلة من الوضع ﴿ إِلَى الوضع ﴿


د (و، - ۹۰°) يکافيء د (و، ۲۷۰°).

الشكل (٢)

• في الشكل (٣):

كذلك نلاحظ أنّ دورانًا سالبًا حول (و) قياس زاويته ١٨٠° یکافئ دورانًا مو جَبًا حول (و) قیاس زاویته ۱۸۰° ففي الحالتين تدور العجلة من الوضع 1 إلى الوضع الَّم د (و، - ۱۸۰°) یکافیء د (و، ۱۸۰°).

الشكل (٣)

تدرّب (۱) 🚺 :

أكمل ما يلي :

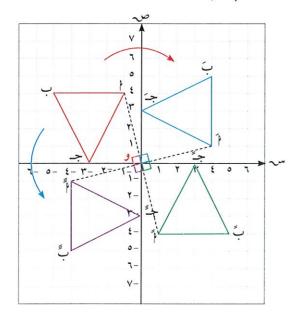
🕦 د (و،۳۰°) هو:

في اتجاه عمس حركة عقارب الساعة في اتجاه مع حركة عقارب الساعة

😭 د (و، - ۱۲۰°) هو:

بزاوية قياسها<u>....</u> بزاوية قياسها

مثال تمهيدي : ارسم صورة اب تحت تأثير الدوران: د (م، - ٥٧°) الحل: 🕦 نعيّن آ صورة النقطة ا كالآتي : 10 نرسم القطعة المستقيمة م 🤪 باستخدام المنقلة نرسم زاوية قياسها ٧٥° رأسها النقطة م وضلعيها م أ ، م س استخدام الفرجار نعيّن أعلى م س حيث م ا = م آ 앲 نعيّن بَ صورة النقطة ب بالطريقة نفسها . نرسم أَبَ صورة أب.


نشاط (۲):

رُسِمَ المثلّث أب جـ على شبكة المستوى الإحداثي حيث أ(- ١ ، ٤)،

- ثبّت ورقة شفّافة على المستوى
 وقُمْ برسم المثلّث أب جـ
 والمحاور على الورقة الشفّافة.
- ثبّت سنّ دبوس عند النقطة (و)
 وقْمْ بتدوير الورقة الشفّافة بزاوية
 قياسها ٩٠° مع اتّجاه حركة عقارب

الساعة لتحصل على المثلث أَ بَ جَ صورة المثلث البحد ونعبر عن ذلك كالتالي : $\Delta = \frac{c}{\sqrt{\rho}} \frac{\bar{\rho}}{\bar{\rho}} \frac{\bar{\rho}}{\bar{\rho}} \frac{\bar{\rho}}{\bar{\rho}}$

- وباستخدام نفس الورقة الشفّافة السابقة ، دوِّر وارسم صورة Δ أب جـ :
- حول نقطة الأصل (و) بزاوية قياسها ١٨٠° مع اتّجاه حركة عقارب الساعة Δ

🕜 أكمِل الجدول التالي وفقًا للخطوات السابقة :

جـ(-٣،٣)	ب (- ٥ ، ٤)	({ (-) }	الرؤوس الدوران
جـ (،) نجـ	بَ (ع ، ع) ب	(1, ٤) 7	د (و، – ۹۰°)
جً (،) ج	بً (٥، -٤)	(_{-,})	د (و، – ۱۸۰°)
جًّا(۰،-۳)	رًّ (٥ - ، ٤ -) بً	() 	د (و، ۹۰°)
(Y-(1)")	(0-18-) 0	(1-68-) "	د (و، – ۲۷۰°)
(K.)6	(0, (2, 0)	(1, E)P	د (و، ۲۷۰°)
(,c m) P	(5-60) 5	(8-(1)]	د (و، ۱۸۰°)

ماذا تلاحظ؟

ممّا سبق نستنتج أنّه:

إذا كانت (س، ص) نقطة في المستوى الإحداثي فإنّ:

(۱)
$$(m, m)$$
 $\frac{c(e, -e^{\circ})}{(m, m)}$ (m, m) $\frac{c(e, -e^{\circ})}{(m, m)}$ (m, m) (m, m)

$$(m, m)$$
 $\frac{c(e, 9^\circ)}{(m, m)}$ $\frac{c(e, 9^\circ)}{(m, m)}$ $\frac{c(e, 9^\circ)}{(m, m)}$ $\frac{1}{2}$ $cec(e, 1)$

(۲) (س، ص)
$$\frac{c(e^{3}-111^{\circ})}{(e^{3}-111^{\circ})}$$
 (-س، -ص) یُسمّی دوران نصف دورة (۲) (س، ص) دورة (۲) دورة (۲)

$$(m, m)$$
 $(e^{(e^{(NN^{\circ})})}$ $(-m, -m)$ $(e^{(m)})$ $(e^{(m)})$

$$(\mathfrak{m})$$
 (س، ص) $\frac{c(\mathfrak{e},-\mathfrak{r})^{2}}{2}$ (– ص، س) $\frac{\mathfrak{m}}{2}$ دورة.

خواص الدوران

تحقَّقْ من الخواصّ التالية:

- (١) الدوران يحافظ على الاستقامة.
 - (٢) الدوران يحافظ على البينية .
- (٣) الدوران يحافظ على قياسات الزوايا .
 - (٤) الدوران يحافظ على التوازي.
 - (٥) الدوران يحافظ على الأبعاد .
- (٦) الدوران يحافظ على الاتّجاه الدوراني .

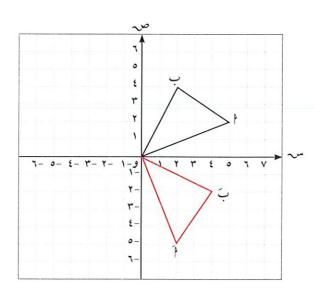
تدرّب (۲) 👘 :

أكمل كلًّا ممّا يلى حيث (و) نقطة الأصل:

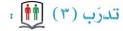
$$(-1) \qquad (0, -1) \qquad (-1) \qquad (-1)$$

$$(-\vee, \vee) \qquad \underbrace{((\vee, -\vee))^{\circ}}_{\mathsf{C}} \qquad ((\vee, \vee -))$$

هل د (و ، ۱۰۰°) يكافئ د (و ، -۲۲۰°)؟ فسر إجابتك .



مثال :


أرسم المثلّث أب و الذي رؤوسه: أ(٥،٢)، ب(٢،٤)، و (٠،٠)، أرسم المثلّث أب و (٠،٠)، أرسم المثلّث أب و (٢،٠)، وقوسه تمّ الرسم صورته بدوران حول نقطة الأصل وبزاوية قياسها ٩٠° مع اتّجاه حركة عقارب الساعة .

الحل:

$$(w, w)$$
 $\frac{c(e, -e^{\circ})}{c(e, -e^{\circ})}$ $(w, -w)$
 (v, v) $\frac{c(e, -e^{\circ})}{c(e, -e^{\circ})}$ (v, v)
 (v, v) $\frac{c(e, -e^{\circ})}{c(e, -e^{\circ})}$ (v, v) in the color in the

أرسم المثلّث لمن الذي إحداثيات

ل (- ۱ ، ۲) ، م (۲ ، ۵) ، ن (- ٥ ، ٣) ،

ثمّ ارسم صورته بدوران حول نقطة الأصل وبزاوية قياسها ١٨٠° عكس اتّجاه حركة عقارب الساعة .

(.61) Je("M.())> (.61) J

(0-, c-) = ((1x,69) > (01e) = (r-10) U = (11.19) (r10-) U

تدرّب (٤) 🚺 :

أرسم المربّع اب جه الذي إحداثيات رؤوسه: ۱(۱،۱)، ب(۱،٤)، حـ(٤،٤)، هـ(٤،٤)، ثمّ ارسم صورته تحت تأثير

د (و، - ۲۷۰°) حيث (و) نقطة الأصل.

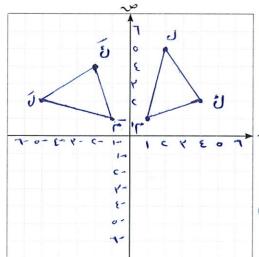
(س می) و (وع - . دع) (می رس

(1,1) P ((e v. -69) s (1,1) P (1,8-) v e (e v. -69) 9 (8,1) v (268-) P e (e v. 69) 9 (8,8) P

(8,1) e(e) ... (1,8)

	~~ _1	_					
Á	\$ "	٥			7	Ģ	
· ·	, , , , , , , , , , , , , , , , , , ,	P				Ø	
- o- E- W-	e-1 -7 -1	1	۲	٣	٤	٥	٦
	۲-						
	۳-						
	٤-						
	0 —						
	7-						

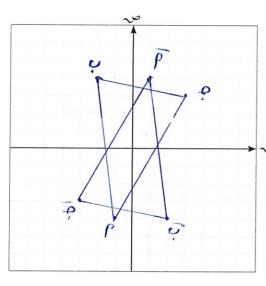
١	7.
١	11



و . * فَكُر وناقِش

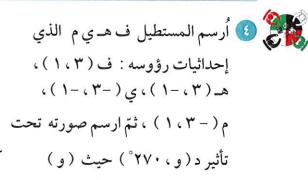
إذا كان قياس زاوية الدوران ٣٦٠° لشكل ما ، فما العلاقة بين الشكل وصورته ؟

تمــرّن :


(و) نقطة الأصل: الله حيث (و) نقطة الأصل:

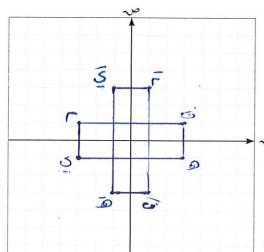
(۱ اُرسم المثلّث كم ل الذي إحداثيات رؤوسه: ك(٢،٤)، م(١،١)، ل(٢،٥)،

م (ارا) ((وه، و)) م (مارا) ل (عره) د (وه، ۹) ک (مرد)



🝿 اُرسم المثلّث اب جـ الذي إحداثيات رؤوسه: ١ (-١ ، -٤) ، ب (-۲،۲)، جـ (۳،۳)، ثمّ ارسم صورته بدوران حول نقطة الأصل وبزاوية قياسها ١٨٠° مع اتّجاه حركة عقارب الساعة.

(m, qu) c((1), (1)) (m) -(u) (8,1)P((1,7)) (8-,1-)P (8-,e) 0 ((1A-c) > (8,c-) 0

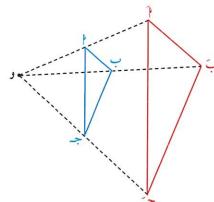

(Y-CY-) & (1A-C9) > (Y-CY) P

نقطة الأصل.

(w,co) e(cv. c) = (w, w) (x.1) [(20.09) > (1, r) = (Y-1-) 6 (EV. (9) 3 (1-, 17) D

(re1-) 5 (ev. (9) > (1-, 4-) 5 (P,1) = (°CU.(9) = (1,4-) -

التكبير Enlargement


سوف تتعلّم : تغيير الأبعاد .

العبارات والمفردات : تكبير تكبير Enlargement تصغير Reduction

درست فيما سبق ثلاثة أنواع من التحويلات الهندسية هي: الانعكاس والإزاحة والدوران وتسمّى تحويلات متقايسة (تحافظ على الأبعاد).

ويكون الشكل وصورته تحت تأثير هذه التحويلات المتقايسة متطابقين .

هل يوجد تحويل غير متقايس (لا يحافظ على الأبعاد) ؟

إعتبر التحويل الهندسي الموضّح

في الشكل المقابل:

حیث
$$\frac{e^{\hat{1}}}{e^{\hat{1}}} = \frac{e^{\hat{1}}}{e^{\hat{1}}} = \frac{e^{\hat{2}}}{e^{\hat{2}}} = \Upsilon \left(\frac{\hat{n} \cdot \hat{n}}{\hat{n} \cdot \hat{n}}\right)$$

اب → ابَ تحث تأثير هذا التحويل بينما اب ≠ ابَ

أوجِد بالقياس:

$$C = \frac{0}{600} = \frac{1}{200}$$

.. هذا التحويل غير متقايس (لا يحافظ على الأبعاد) .

نلاحظ أنّ :

(٢) النقطة وصورتها ومركز التكبير تقع على استقامة واحدة .

(٣) تحقق باستخدام الأدوات الهندسية من توازي :

يُسمّى هذا التحويل تكبيرًا.

وتُسمّى النقطة الصامدة (و) مركز التكبير ، ويُسمّى العدد ٢ (هنا) معامل التكبير .

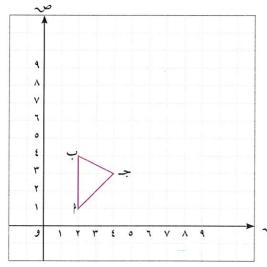
وعمومًا:

إذا كانت (و) إحدى نقاط المستوى ، فإنّ التحويل الهندسي الذي يُعيَّن لكلّ نقطة أغير (و) صورة $\hat{f} \in \overline{0}$ بحيث يكون $\frac{e^{\hat{f}}}{e^{\hat{f}}} = a c c l f r r r$ يُسمّى (تكبيرًا) وتُسمّى النقطة الصامدة (و) مركز التكبير ويُسمّى العدد الثابت معامل التكبير ويُرمَز له بالرمز م ويُرمَز له بالرمز م ويُرمَز لهذا التحويل بالرمز ت (و ، م) ويُقرَأ ت تكبير مركزه النقطة (و) ومعامله م .

لاحظ أنّ:

$$(1) \frac{e^{\hat{f}}}{e^{\hat{f}}} = q \Leftrightarrow e^{\hat{f}} = q \times e^{\hat{f}}$$

- (٢) القطعة المستقيمة وصورتها تحت تأثير التكبير متوازيتان .
 - (٣) سنكتفي بالتكبير الذي معامله م > صفر .
 - (٤) يُقصَد بالتكبير (تكبير أو تصغير) :
 - إذا كان م > ١ فالتحويل يمثّل تكبيرًا .
 - إذا كان صفر < م < ١ فالتحويل يمثّل تصغيرًا .


التكبير في المستوى الإحداثي

إذا كانت (س، ص) نقطة في المستوى الإحداثي حيث (و) نقطة الأصل،

م معامل التكبير فإنّ : (س، ص) $\frac{r}{r}$ (مس، مص) .

مثال (۱):

أرسم صورة المثلّث أب جـ مستخدِمًا التكبير الذي مركزه نقطة الأصل ومعامله ٢.

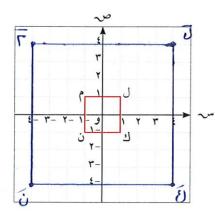
الحل:

$$(m, m)$$
 $\frac{r(e, Y)}{r}$ (Ym, Ym)

$$\{(\Upsilon, \Upsilon)\} = ((\Upsilon, \Upsilon), \Upsilon \times \Upsilon) = \{(\Upsilon, \Upsilon, \Upsilon)\}$$

$$(\lambda, \xi) = (\xi \times Y, Y \times Y) = (\xi, Y)$$

$$(7,\Lambda) = (7 \times 7, 7 \times 7) = (7,\Lambda) = (7,\Lambda)$$



تدرّب (۱) 🚻 :

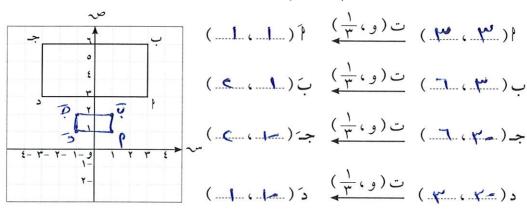
أرسم صورة المربّع لمن ك مستخدمًا التكبير ت (و،٤).

 $(m, m) \xrightarrow{\tau(e, \xi)} (\xi m, \xi m)$

ن المربّع ل م ن ك $\frac{v(e^{3})}{v(e^{3})}$ المربّع لَ مَ نَ كَ $v(e^{3})$

خواص التكبير

بالرجوع إلى تدرّب (١) تحقَّقْ من الخواصّ التالية:


- (١) التكبير يحافظ على الاستقامة .
 - (٢) التكبير يحافظ على البينية .
- (٣) التكبير يحافظ على قياسات الزوايا .
 - (٤) التكبير يحافظ على التوازي.
- (٥) التكبير يحافظ على الاتّجاه الدوراني .
- (٦) التكبير لا يحافظ على الأبعاد (تحويل غير متقايس).

تدرّب (٢) 🚻 ؛

أكتب النقاط التي تمثّل رؤوس الشكل أب جد ، ثمّ ارسم صورة الشكل مستخدمًا التصغير الذي مركزه نقطة الأصل ومعامله $\frac{1}{2}$.

$$(m, m) \xrightarrow{\pi} (\frac{1}{\pi}, \frac{1}{\pi}) \xrightarrow{\pi} (m, m)$$

$$(\frac{1}{7}, \frac{1}{9})$$
 الشكل أب جـ د َ الشكل أب جـ د َ الشكل الشكل

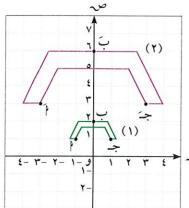
- 🕜 أكمل من الرسم في الشكل السابق :
- (۱) نسبة محیط المستطیل (آب جود در الی محیط المستطیل (اب جود المستطیل (اب

إذا كان ت (و، م) فإن:

- (١) نسبة محيط صورة الشكل الهندسي إلى محيطة تساوي معامل التكبير (م).
 - (۲) نسبة مساحة صورة الشكل الهندسي إلى مساحته تساوي مربع معامل التكبير (a^{Y}).

تدرّب (۳) 🚻 :

مربع طول ضلعه ٥ سم . أوجد مساحة صورته تحت تأثير تكبير ت (و، ٢):


تدرّب (٤) 👘 :

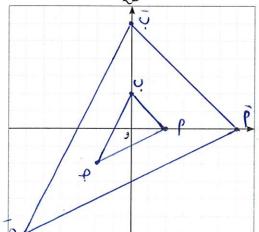
ليكن ت (و، م) تكبير حيث (و) نقطة الأصل، أ ﴿ ﴿ وَ اللَّهِ اللَّهُ الللَّهُ الللَّهُ اللَّهُ اللَّهُ الللَّهُ الللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللَّهُ

تدرُب (٥) 🚺 :

في الشكل المقابل: أوجِد معامل التكبير المستخدَم لتحويل المضلّع (١)

إلى المضلّع (٢).

(rcr	-) P	(1e1-1P
(7,	.)0	((,,)
(7 6	m) P (_ (1,1) -
		مماط لکبیر



إذا كان معامل التكبير يساوي ١ فما هي العلاقة بين الشكل وصورته ؟

تدرب (۲) 🚺 :

أُرسم المثلّث أب جـ حيث أ(٢،٠)، ب (٢،٠)، جـ (٢،٠) ثم أُرسم صورته تحت تأثير ت (و،٣) حيث (و) نقطة الأصل.

(.,7)Pe(r()0(.,c)P

(1,) 0 ((()) 0 ((,))
(-	7-7-) Pe(419) O(C-, C-) P
~~	9

تمــرَّنْ ،

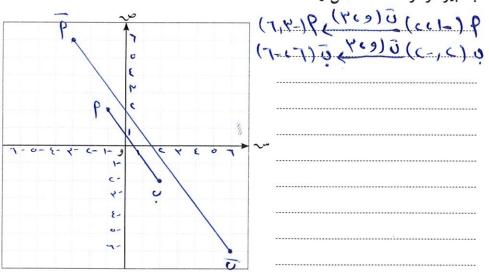
(و) نقطة الأصل:

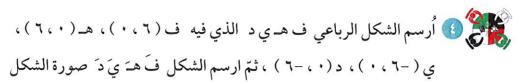
$$(1 \wedge (1, -7)) \xrightarrow{\underline{\tau}(e, 7)} \xrightarrow{\underline{\tau}(e, 7)} \varphi$$

$$(-1, 3) \qquad \overline{(e, \frac{1}{3})} \qquad$$

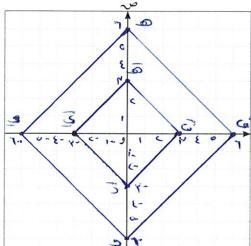
Jest Jaki

الكُورِ النقاط التي تمثّل رؤوس المثلث لمن ثمّ ارسم المثلّث لَ مَنَ صورة المثلّث لم ن تحت تأثير ت (و، ٢).


((-,7-)\vec{\((\color\vec{\color\


(7-6c) Qe (cc) Q (M-, 1) U

0 7	



أرسم أب إذا كانت ا (- ۱ ، ۲) ، ب (۲ ، - ۲) ثمّ ارسم أَبَ صورة اب الله بتكبير مركزه نقطة الأصل ومعامله ٣ .

ف هـي د تحت تأثير ت (و ، $\frac{1}{2}$) .

(., 4	نة	(} ()	10((,	ف
(W).) 6	(26)	10(-	u.)	0
()	-) 3	(265	0)0(.	,7)	5
(Y-,	.)5	(- 69	0 (7-	. .)	5

 	 	 	 -	 	 					•		-	 •		 	•		-		 •	 		••		
 	 		 -	 					 -	-		-			 				-	 ¥	 	 	 	 	
 	 	 -	 	 		-		-			 -				 						 	 	 	 	
 	 -			-			-		 -	••	•		•		 		-			 •	 •			 	

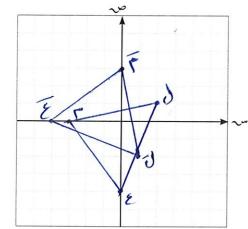
تم تحميل الـمــلف من موقع مدرستي الكويتية

ننصح بأفضل مذكرة منذكرات السنجاح

حمل تطبيق مدرستي الكويتية

📀 أوجِد معامل التكبير أو التصغير (م) في كلّ من الحالات التالية حيث النقطة 🖟
صورة النقطة ٢ ، والنقطة بَ صورة النقطة ب.
(1,1), 1(11,7)
My mand of lan
(10,0)) ((0,0))
معامل ليكسر
(- , 1 -)) ((- , 7 -))
معامل لتعوش ا
ه اب = ۸ سم ، اب = ۱ سم
- reipel, John
🕥 مستطيل بعداه ٣ سم ، ٥ سم . أوجد محيط ومساحة صورته تحت تاثير تكبير
ه سم ، ٥ سم ، أوجد محيط ومساحة صورته تحت تأثير تكبير ترو ، ٣).
ت (و، ۳). دره اه المسلمل کون آئیر تیکیر هی ۱۵،۹
ت (و ، ٣) .
ت (و، ۴). نعراه لمستطل کری آیکر تیکیر هجی ۹ ، ۱۵ (محمد المحمد)
10.9. 9. 10.00.
10 (9 50 minder 25 de 10) c . (4, 10) c .
10.9. 9. 10.00.
10 (9 50 minder 25 de 10) c . (4, 10) c .
10 (9 50 minder 25 de 10) c . (4, 10) c .
10 (9 50 minder 25 de 10) c . (4, 10) c .

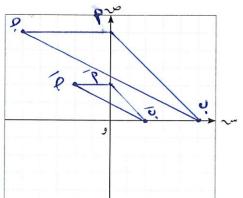
مراجعة الوحدة الرابعة Revision Unit Four


أوّلًا: التمارين المقالية

أولاً : التمارين المفالية
((۱ ، ۱) ، م (− ۲ ، ۳) : (اذا کانت ل (۸ ، ۳)) :
<u>ا</u> أوجد طول لم .
(0-)+(0-)/- ((N-4)+(4-4-)/- ((no-(no))+(n-(n))
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
🤪 أوجد إحداثيا النقطة هـ منتصف ل م .
او جد إحداثيا النقطة هـ منتصف لم . بعداكي هـ (س, دس، ي ص, دهن)
(<u>ll v l</u>) =
إذا كانت ل (٢ ، - ١) ، ن (- ١ ، - ٣) ، م (٠ ، - ٤) ، أثبت أن : ل ن = ل م .
(1-4-)+((-1-))= ((10-(10))+(10-(10)) \= id
= ((-1) = (c-) = - / 4/ eque de
(1-8-)+(c-0)+(c-0)+(4-20)+=Fd
= \((-5) + (-4) = +3+ P = 4 41 eas del.
300=67=147. a=dol.
😙 أكمِل كلَّا ممّا يلي :
(1, m) p (e, 1, 0°) x q (m, 1)
(۱۰۰-۳) د (و، - ۹۰)
(۲،۱) د (و،۱۱۱°) کُر (۱۱، ۲۰) (۳۰۱۱°) کُر (۱۱، ۲۰) (۳۰۱۱°) کُر (۱۰،۱۰) (۳۰۱۱°) (۳۰۱°) (۳۰۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°) (۳۰°)
$(1, -7) \xrightarrow{c(e, -9^\circ)} \xrightarrow{\tilde{q}(-1, 1)} \tilde{q}(-1, 1)$ $(1, -7) \xrightarrow{c(e, 1, 1)^\circ} \tilde{q}(-1, 1)$ $(1, -7) \xrightarrow{c(e, 3)} \tilde{q}(-1, 1)$ $(2, -7) \xrightarrow{c(e, 3)} \tilde{q}(-1, 1)$
$(\frac{1}{2}, \frac{1}{2})$

(۱،۲) ، ل (۲،۲) ، ثم ارسم المثلث ع م ل الذي رؤوسه: ع (۰، -٤) ، م (-۳، ۰) ، ل (۲،۲) ، ثم ارسم المثلث ع م ل الذي رؤوسه : ع (۲،۲ ° عكس اتجاه حركة عقارب الساعة .

(c, s,) \(\frac{\cu.(\gamma)}{\cu.(\gamma)}\) \(\frac{(\cu.(\gamma))}{\cu.(\gamma)}\) \(\cu.(\gamma)) \(\cu.(\gamma)\) \(\cu.(\gamma)) \(\cu.(\gamma)) \) \(\cu.(\gamma)) \(\cu.(\gamma)) \)



- اليكن ت (و، م) تكبير حيث (و) نقطة الأصل، ب → ب ، ج → ج.
 أوجد معامل التكبير أو التصغير (م) في كل من الحالات التالية:
 - (アハ)ン、(アハア)し

ما مل بيضي لي

اب ج = ٤ سم ، بَ جَ = ٢٤ سم الم

ارسم Δ اب جـ الذي رؤوسه هي : (0,0) ، ب(0,0) ، جـ (-0,0) ، ثم ارسم 0 بن الله بتكبير ت (0,0) .

(c, c) $\hat{\rho}_{c}$ $(\frac{c}{5}, 9)$ $\hat{o}(0, .)$ $\hat{\rho}_{c}$ $(\frac{c}{5}, 9)$ $\hat{o}(0, 0)$ \hat{o}_{c} (c, c) $\hat{\rho}_{c}$ $(\frac{c}{5}, 9)$ $\hat{o}(0, 0-)$ $\hat{\rho}_{c}$

ثانيًا: التمارين الموضوعية

أوّلًا: في البنود التالية ، ظلّل أ إذا كانت العبارة صحيحة ، وظلِّل ب إذا كانت العبارة غير صحيحة .

\odot	#	د (و، ۲۰°) یکافئ د (و، –۳۰۰۰°)	
<u>.</u>	****	التكبير هو تحويل هندسي لا يحافظ على الأبعاد .	0
1	(Ť)	الدوران لا يحوي نقاطًا صامدة .	0
	(1)	إذا كانت جـ منتصف آب وكانت جـ (٣،٥) ، ١ (- ١ ، ٣)	1
1		فإن ب (۲ ، ۲) .	
	The state of the s	مثلث أطوال أضلاعه ٥ سم ، ٦ سم ، ٣ سم فإن محيط صورته	0
		تحت تأثير تكبير ت (و،٢) هو ٢٨ سم .	

ثانيًا: لكلّ بند من البنود التالية أربعة اختيارات، واحد فقط منها صحيح، ظلِّل الدائرة الدالّة على الإجابة الصحيحة.

إذا كانت ق (٣،٠)، ك (١،٠) فإن: ق ك = وحدة طول.	وحدة طول.	=	ق ك) فان :	(• . 1)	، (۰ ،	ق (٣	اذا كانت
--	-----------	---	-----	---------	-----------	---------	-------	----------

- معامل التكبير هو :
 - ٤,٥ (7
 - 11 (3)
 - ¶ أب جـد مربّع تقاطع قطريه في النقطة م ، صورة ∆ أب م بدوران د (م، ۲۷۰°) هي :
- 🕥 في الشكل المقابل: إذا كانت س ص صورة الب بتكبير مركزه جـ ، فإن معامله هو : \rightarrow 7 \bigcirc $\frac{1}{7}$ \bigcirc $\frac{7}{7}$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
 - انقطة جـ (2, 2) هي صورة النقطة 1 بتصغير ت $(2, \frac{1}{2})$ فإن 1 هي : $(7,1) \bigcirc (3,1) \bigcirc (1,1) \bigcirc (1,1$

الوحدة الخامسة الإحصاء والاحتمال Statistics and Probability

عالم البيانات Data World

الإدارة العركزية للإحصاء Central Statistical Bureau إدارة النعداد والإحصاءات السكانية إدارة النعداد والإحصاءات السكانية and Population Statistics Department

إهتمّت دولة الكويت بالتخطيط العلمي باعتباره الأسلوب الأمثل لكشف آفاق المستقبل ولتحقيق التنمية الاقتصادية والاجتماعية الشاملة ، ويُعتَبر الجهاز الإحصائي من أوائل المؤسَّسات التي واكبت إنشاء دولة الكويت عشيّة الاستقلال في مطلع الستينات . ولكي يتمكّن هذا الجهاز من تأدية عمله على أكمل وجه لا بدّ له أن يبحث عن البيانات المناسِبة . والبيانات بمفهومها العام هي مجموعة من الحروف أو الكلمات أو الأرقام أو الرموز أو الصور المتعلّقة بموضوع ما يتمّ جمعها ومعالجتها وتحويلها إلى معلومات مفيدة لاتّخاذ القرارات المناسِبة .

استعِدٌ للوحدة الخامسة

ط للقيم التالية:	. الحسابي والوسيه	لمدي والمتوسط	🚺 أوجِد ا
	0 () (0	. V . 9 . o .	٣

😘 أكمل الجدول التكراري التالي بإيجاد مراكز الفئات ثم أجب عما يلي :

مراكز الفئات	التكرار	الفئات
ల	۲	–
7	٤	-٦
9	۲	-۸
11	٣	-1.

<u>e</u>	. =	الفئة	رل	ا طو	Í	
----------	-----	-------	----	------	---	--

욉 اكتب جميع النواتج الممكنة في كلِّ مما يلي :
(1) رمي قطعة نقود مرة واحدة . ميورة أو يما با
اسحب کرة عشوائیًا من کیس فیه ٤ کرات صفراء ، ٣ کرات حمراء . حرفراء ، محمداء ، معفراء ، معفراء ، المراء ، المراء ، المراء ،
عند رمي مكعب منتظم مرقم من ١ إلى ٦ مرة واحدة . أوجد ما يلي :
🚺 احتمال (ظهور عدد أولي) 🚆 🚍 🚽
🤪 احتمال (ظهور عدد غير أولي) 🏋 🌊 لے
😓 احتمال (ظهور عدد أكبر من ٥)ــــــــــــــــــــــــــــــــ
🕑 احتمال (ظهور عدد أصغر من ٧) 🛴 ב ا
😁 احتمال (ظهور عدد أكبر من ٦)

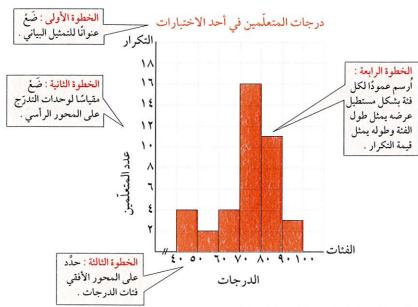
العبارات والمفردات:

Histogram Frequency

المدرَّج التكراري

المدرَّج التكراري Histogram Frequency

سوف تتعلّم: عرض وتمثيل البيانات بمدرجات تكرارية.



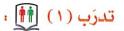
سبق لك دراسة الجدول التكراري ذي الفئات والذي يُعتبَر وسيلة مهمّة في تنظيم عدد كبير من البيانات ، ويمكن تمثيل البيانات الواردة في الجداول التكرارية بواسطة المدرَّج التكراري .

يوضّح الجدول التالي الدرجات النهائية التي حصل عليها ٤٠ متعلّمًا في أحد الاختبارات (النهاية العظمى ١٠٠) .

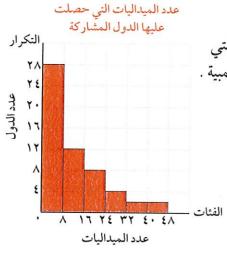
- 9 •	- A •	- V •	- ٦٠	-0.	- ٤ •	الفئات
٣	11	١٦	٤	۲	٤	التكرار

لتمثيل بيانات الجدول التكراري من خلال المدرَّج التكراري ، اتّبع الخطوات التالية :

استخدِم المدرَّج التكراري للإجابة عمّا يلي :


- 🐠 كم عدد المتعلّمين الذين حصلوا على أقلّ من ٧٠ درجة ؟ ملم معلمين
- 🐠 بكم يزيد عدد المتعلّمين في الفئة الرابعة عن عدد المتعلمين في الفئة الخامسة؟

julie 0 2 11 17



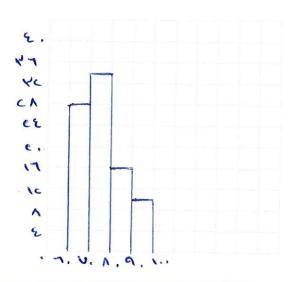
المدرَّج التكراري هو تمثيل بياني بالأعمدة المتلاصقة يُستخدَم لعرض مجموعة البيانات المنظَّمة في جدول تكراري ذي فئات .

يبيّن المدرَّج التكراري المقابل عدد الميداليات التي حصدتها الدول المشارِكة في إحدى الدورات الأولمبية . أجب عمّا يلي :

- **ا** ما طول الفئة ؟ المسلم
- کم عدد الدول التي حصلت على ٣٢ ميدالية فأكثر ؟ ميدالية
 - کم عدد الدول التي حصلت على أقلّ من ۲٤ ميدالية ؟ ٨ ٤ د على

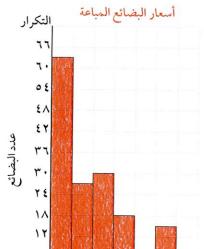
تدرّب (۲) 🚻 ؛

السرعة القصوى في أحد الشوارع التجارية في مدينة الكويت العاصمة 20 كم / س، يبيّن الجدول المقابل عدد المخالفات المسجَّلة بحقّ عدد من سائقي المركبات الذين لم يلتزموا بالقانون. مثّل البيانات الواردة في الجدول باستخدام المدرَّج التكراري، ثمّ أجب عما يلي:


كم عدد مخالفات سائقي المركبات الذين بلغت سرعتهم ٥٥ كم / س فأكثر ؟

التكرار	الفئات
٥	- ٤٥
٨	- 0 ∗
١.	- 00
٦	۰۲۰
٣	- 70

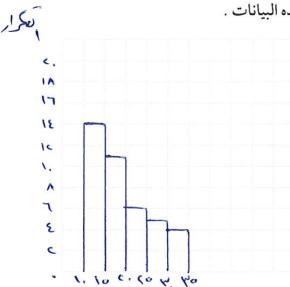
تدرّب (۳) 🚺 ،


يوضّح الجدول التكراري المقابل فئات أسعار الفئات ٦٠ - ٧٠ - ٥٠ - ٩٠ - ٩٠ - ٩٠ أسهم بعض الشركات والمؤسَّسات التجارية التكرار ٢٨ ٣٤ ١٠ ١٠ المدرَجة في أحد الأسواق المالية بالدولار الأميركي . إصنع مدرَّجًا تكراريًّا لهذه البيانات .

تمــرَّنْ:

أجب عمّا يلي:

سبيّن المدرَّج التكراري المقابل أسعار مختلف البضائع المباعة في إحدى الجمعيات التعاونية بالدينار الكويتى:



الأسعار بالدينار الكويتي

- **أ** ما طول الفئة ؟
- کم عدد البضائع التي بلغ سعرها ٣٦ دينارًا فأكثر ؟ ٣٦٠ ١٥٠ ٣٦٠
- الفئة الأكثر مبيعًا؟ أحل من ١٠٠٠ السير المناسر

😘 يبيّن الجدول التالي الزمن بالدقائق الذي استغرقه ٤٠ متعلّمًا للوصول من المنزل إلى المدرسة ، إصنع مدرَّجًا تكراريًّا لهذه البيانات .

التكرار	الفئات
١٤	- \ •
11	- 10
٦	– Y •
0	- 70
٤	- ۳٠

ر الفات

أجب عمّا يلي:

- - عدد المتعلّمين الذين يصلون إلى المدرسة في ٢٥ دقيقة فأكثر ؟ <u> المعكمين</u>

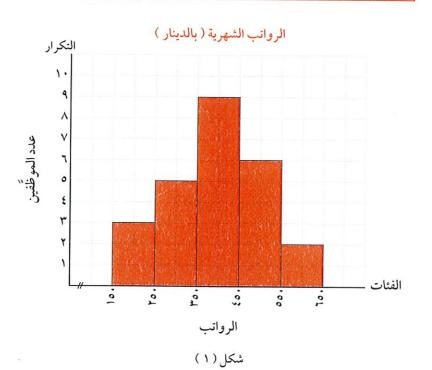
وضّح الجدول التكراري أطوال بعض المتعلّمين في إحدى المدارس، المعلّمين في إحدى المدارس، وإصنع مدرَّجًا تكراريًّا لتمثيل البيانات.

1501ce			
c,			
IN			
19			
18			
10			
\.			
7			
٤			
C			
i.	110 150%	150 100 170	

التكرار	الفئات
٨	- 110
١٢	- 170
۲.	- 170
19	- 180
10	- 100

O lie

المضلَّع التكراري Polygon Frequency

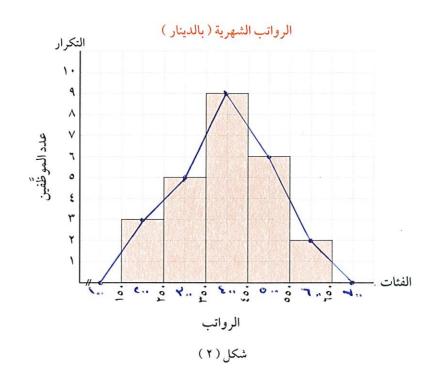

سوف تتعلّم: عرض وتمثيل البيانات بمضلّعات تكرارية.

لتالي فئات الرواتب الشهرية (بالدينار) للموظَّفين في إحدى الشركات درج تكراري (شكل ١).

54 %	العبارات والمفردات:
يمثّل الجدول ال	المضلَّع التكراري Polygon Frequency
وتمّ تمثيلها بما	

٦.,	0 44	۷.,	٧.,	c.,	مراكز الفئات
۲	٦	٩	0	٣	التكرار
- 00 •	- 60.	- 40 .	- ۲0.	-10.	الفئات

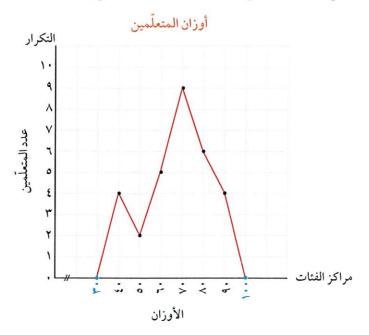
تذكَّرْ أنّ : مركز الفئة = الحدّ الأعلى الحد الأدنى للفئة ⁺ للفئة


أكمِل الجدول السابق (أكتب مراكز الفئات).

🕜 في شكل (٢) اتّبع الخطوات التالية :

- 🐠 مثِّل مراكز الفئات على المحور الأفقي .
- 🥏 عيّن النقاط التي تمثل : (مركز الفئة ، التكرار) .
- 😂 صِلْ بين النقاط السابقة على التوالى مستخدِمًا حافّة المسطرة .
- المضلّع بتمثيل النقطتين (۰۰، ۱۰۰) ، (۰، ۷۰۰) ثم صل . المضلّع بتمثيل النقطتين (۱۰۰) ، (هاتان النقطتان ليستا من ضمن هذه البيانات)

لاحظ أنّ:


الشكل الناتج في النشاط السابق يُسمّى مضلَّعًا تكراريًّا ، ويُعبِّر بوجه عامّ عن مقدار واتّجاه التغيّر في مجموعة من القيم .

تدرّب (۱) 🚺 :

يمثّل الشكل التالي أوزان متعلّمي أحد فصول الصف التاسع.

تأمَّل الشكل ثمّ أجب عمّا يلي:

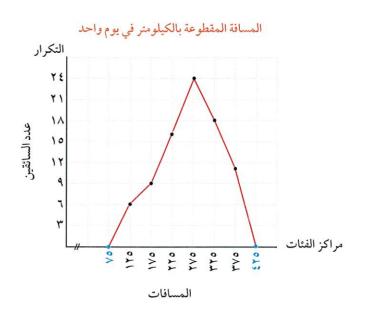
؟ مطاع ساري	م التمثيل البياني	ماذا يُسمّر	1
	" لفئة الأكثر تكرارً		_
0	لفئة الأقل تكرارً	ما مركز ال	

مثال :

يبيّن الجدول التالي المسافة المقطوعة بالكيلومتر من قبل ٨٤ سائقًا في إحدى شركات سيّارات الأجرة في يوم من الأيّام .

- 40 .	- ٣٠٠	- 70.	- ۲۰۰	- 10.	- ۱ • •	الفئات
11	١٨	7 8	١٦	٩	٦	التكرار

مثّل البيانات في الجدول السابق بمضلع تكراري .

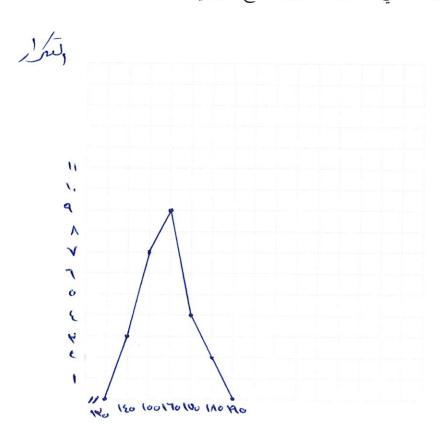


الحل:

🚺 نكمِل الجدول بإيجاد مراكز الفئات .

- ۳٥٠	- ۳۰۰	- ۲0.	- ۲۰۰	- 10.	-) • •	الفئات
11	۱۸	۲٤	١٦	٩	٦	التكرار
200	440	440	770	140	140	مراكز الفئات

- 🥮 نمثِّل مراكز الفئات على المحور الأفقي ، والتكرار على المحور الرأسي .
 - 😓 نعيِّن النقاط التي تمثل : (مركز الفئة ، التكرار) .
 - و نصِلُ بين النقاط السابقة على التوالي مستخدِمًا حافّة المسطرة.
 - 🙆 نكمل رسم المضلّع .


يبيّن الجدول التالي أطوال متعلّمي الصفّ التاسع بالسنتيمتر في إحدى المدارس:

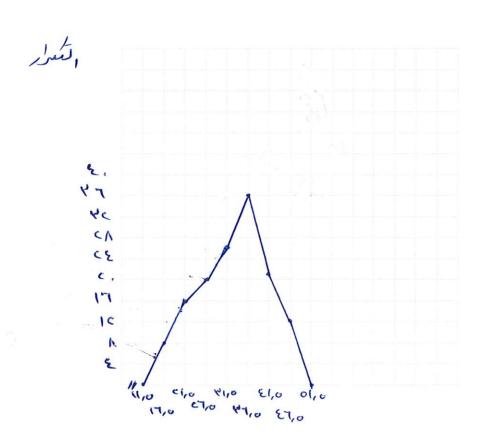
- ۱۸•	- ۱۷・	- 17.	- 10.	- 12.	الفئات
۲	٤	٩	٧	٣	التكرار
١٨٥	100	170	100	180	مراكز الفئات

- 🚺 أكمل الجدول السابق بإيجاد مراكز الفئات .
- الذين تقل أطوالهم عن ١٦٠ سم؟ الذين تقل أطوالهم عن ١٦٠ سم؟ السماء المسلم

😪 ما مركز الفئة الأكثر تكرارًا ؟هـ 🔼

🚱 مثِّل البيانات في الجدول السابق بمضلع تكراري .

مركز لفات

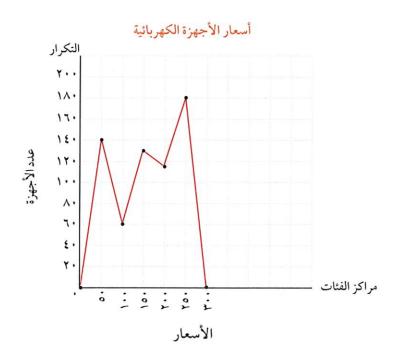


تدرّب (۳) 🚻 :

يوضّح الجدول التالي فئات الأعمار لمشاهدة برنامج تلفزيوني:

- ٤٤	- ٣9	- ٣٤	- ۲۹	- 7 8	- 19	- 1 &	الفئات
							التكرار
27,0	21,0	やて、0	٣١,٥	e7,0	د1,0	17,0	مراكز الفئات

- 🚺 أكمِل الجدول السابق بإيجاد مراكز الفئات .
- 🤪 مثِّل البيانات في الجدول السابق بمضلع تكراري .



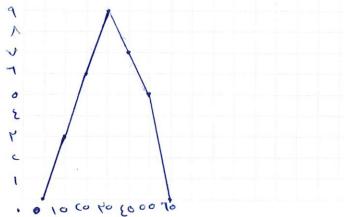
مرزلفان

تمــرُّنْ :

مثّل الشكل التالي أسعار الأجهزة الكهربائية التي بيعت خلال شهر في أحد المحلّات.

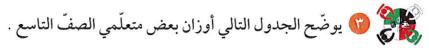
تأمّلِ الشكل ثمّ أجِب عمّا يلي:

- 🐠 ماذا يُسمّى التمثيل البياني ؟ معراج كراري
- 🥮 ما مركز الفئة الأكثر تكرارًا ؟
- 😂 ما التكرار المقابِل لمركز الفئة · ١٥٠ ؟

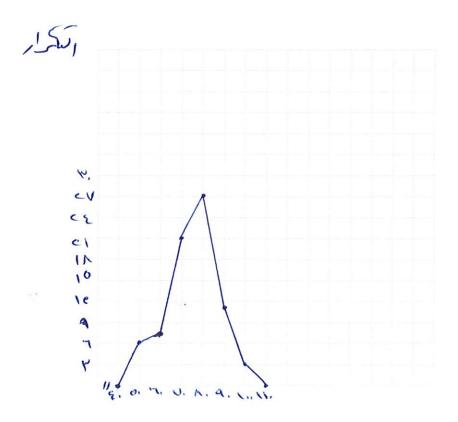


ن يوضّح الجدول التالي درجات الحرارة المسجلة لبعض دول العالم خلال أحد الأشهر.

-0.	- £ •	- ٣٠	- Y •	- 1 •	الفئات
٥	٧	٩	٦	٣	التكرار
00	80	40	Co	10	مراكز الفئات


- 🐠 أكمِل الجدول السابق بإيجاد مراكز الفئات .
- 🥮 مثِّل البيانات في الجدول السابق بمضلَّع تكراري .

oid;

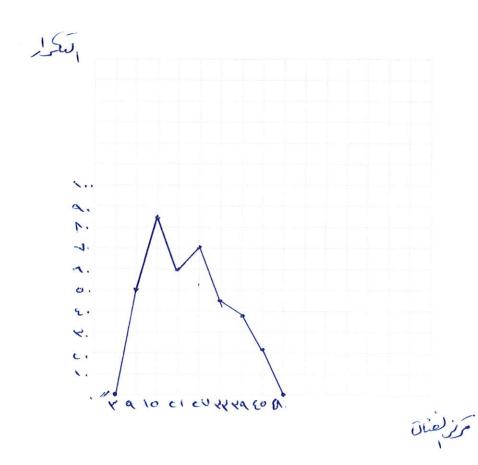

- 90	- Ao	- V o	٥٢ –	- 00	- ٤0	الفئات
٣	11	۲۷	۲۱	٧	٦	التكرار
١	٩.	6.	V .	٦.	<i>.</i>	مراكز الفئات

🚺 تأمَّلِ الجدول السابق ثمّ أجِب عمّا يلي :

- كم عدد المتعلَّمين الذين يبلغ وزنهم ٦٥ كيلوجرامًا فأكثر ؟

pleco 70 = 4+11 + cv + c1

- 🥏 أكمِل الجدول السابق بإيجاد مراكز الفئات .
- 🧁 مثِّل البيانات في الجدول السابق بمضلّع تكراري .

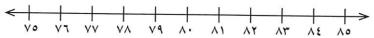

مرخ لفنان

(ق يوضّح الجدول التالي أعمار بعض زوّار مركز الشيخ جابر الأحمد الثقافي في أحد الأيّام.

- ٤٢	- ٣7	- ۳٠	- 7 8	- ۱۸	- 17	٦ –	الفئات
۲.	٣٨	٤٥	٧٢	٦.	٨٥	٥٠	التكرار
20	49	44	cu	C I	10	4	مراكز الفئات

- 🚺 تأمَّلِ الجدول السابق ثمّ أجِب عمّا يلي:
- ما طول الفئة ١٢ ؟ _______
- ما الحد الأعلى للفئة الأخيرة ؟ ٨٠٠٠
 - 🥮 أكمل الجدول السابق بإيجاد مراكز الفئات .
 - 🚭 مثِّل البيانات في الجدول السابق بمضلّع تكراري .

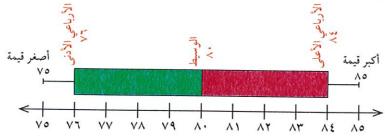
مخطَّط الصندوق ذي العارضتين Box – and – Whisker Plots


سوف تتعلّم : تحليل وتمثيل انتشار وتوزيع البيانات مستخدِمًا مخطَّط الصندوق ذي العارضتين .

لديك البيانات التالية : ٨٤ ، ٧٧ ، ٨٥ ، ٧٧ ، ٨٠ ، ٨٠ ، ٨٠

- ٥٠ , ٨٢ , ٨٢ , ٨٧ , ٧٦ , ٧٥ (أب البيانات تصاعديًا ٧٠ , ٧٨ , ٧٨ ، ٨٠)
 - (۱) أوجِد المدى مم مم مدين المدى مدين المدى مدين المدى مدين المدي المدي المدين المدين المدين المدين المدين الم
 - 🚯 أوجد الوسيط للقيم الثلاث الصغرى
 - 🙆 أوجد الوسيط للقيم الثلاث الكبرىك. 🗛
 - 🚯 مثِّلَ على خطِّ الأعداد كلُّا ممّا يلى:

أكبر قيمة ، أصغر قيمة ، الوسيط ، الوسيط للقيم الثلاث الصغرى ، الوسيط للقيم الثلاث الكبرى .

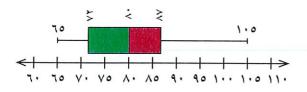

مخطَّط الصندوق ذي العارضتين هو طريقة بصرية لتوضيح قيم الوسيط لمجموعة من البيانات.

الأرباعيات هي ثلاثة أعداد تقسم مجموعة البيانات إلى أربعة أرباع . الأرباعي الأوسط هو الوسيط .

الأرباعي الأدنى هو الوسيط للنصف الأدنى من مجموعة البيانات.

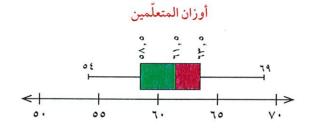
الأرباعي الأعلى هو الوسيط للنصف الأعلى من مجموعة البيانات.

يمكن تمثيل البيانات السابقة بمخطّط الصندوق ذي العارضتين كما في الشكل.


العباراتوالمفردات:
خطَّط الصندوق ذي
العارضتين
العارضتين
الأرباعيات
Quartils
الأرباعي الأدنى
Lower Quartil
الأرباعي الأعلى
الأرباعي الأعلى
Upper Quartil

تدرّب (۱) 🚻 :

يبيّن مخطَّط الصندوق ذي العارضتين عدد النقاط التي حصل عليها أحد متعلّمي الصفّ التاسع في إحدى المسابقات .


عدد النقاط التي حصل عليها المتعلّم

- أكمِل كلًّا ممّا يلي : (المِيانات هي ٦٥ البيانات هي ٦٥ الميانات هي ١٥٠ الميانات هي ١٥٠ الميانات الميا
- - 🙆 الأرباعي الأعلى هو 🔼

تدرّب (۲) 🕦 :

يبيّن مخطَّط الصندوق ذي العارضتين أوزان بعض متعلّمي الصفّ التاسع بالكيلوجرامات . أكمل كلَّا ممّا يلي :

- القيمة الصغرى للبيانات هي مسكم والقيمة الكبرى للبيانات هي معميري
 - 🤪 الأرباعي الأوسط (الوسيط) هو همال
 - 🚱 الأرباعي الأدنى هوه.، 🛆 🌣
 - الأرباعي الأعلى هو ٥٠١٨.

مثال :

يتغيّر سعر الإعلان في الصحف الكبرى وفقًا ليوم الإعلان وعدد أسطره ومساحته ، إليك بعض هذه الأسعار بالدينار :

٥، ٤، ٣، ١٥، ٦، ٧، ١٦، ٨، ٢٥، ٩، ١٠، ١٤، ٢٧، ١٦ المربق مخطَّطًا لصندوق ذي عارضتين لهذه الأسعار، بيِّن في أيّ قيم يقع النصف الأوسط للأسعار؟

الحل:

(١) رتِّب القيم تصاعديًّا:

7,3,0,7,7,0,0,1,11,31,01,71,07,77

$$Y\xi = \Psi - YV = (Y)$$

الوسيط =
$$\frac{9+9}{7}$$
 = 0, 9 دينار (٣)

(٤) نحدّد النصف الأدنى للبيانات: ٣، ٥، ٦، ٥، ٦، ٩، ٨، ٧

(٥) نحدّد النصف الأعلى للبيانات: ١٠، ١٢، ١٥، ١٥، ١٥، ٢٧، ٢٥

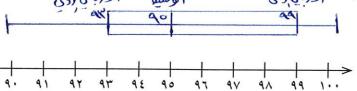
(٦) أرسم خطًّا يوضّح المدى ، ثمّ أسعار الإعلانات عيِّن عليه موقع كلَّا من : الوسيط ،

الأرباعي الأدنى ، الأرباعي الأعلى .

(٧) أرسم صندوقًا يبيّن ٢٧ الأرباعيات ثمّ أكتب عنوانًا . حرا الحراجيات ثمّ أكتب عنوانًا . حراج الحراجيات ثمّ أكتب عنوانًا . حراج الحراجيات المحراجيات الم

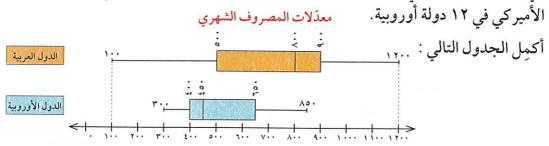
لاحظ أنّ:

يقع النصف الأوسط للأسعار بين ٦، ١٥،


تدرّب (۳) 👘 :

في مسابقة مادّة الرياضيات ، حصل أعضاء فريق إحدى المدارس المحلّية على الدرجات التالية (مرتَّبة ترتيبًا تصاعديًّا) : ٩٠ ، ٩٣ ، ٩٥ ، ٩٩ ، ٩٩ ، ٩٩ ، ٩٠ أوجد كلًّا ممّا يلي :

القيمة الصغرى للبيانات هي في القيمة الكبرى للبيانات هي



- 🥥 الأرباعي الأوسط (الوسيط) هو 🔐
 - 🤪 الأرباعي الأدني هو 👭 🖳
 - 🔞 الأرباعي الأعلى هو 🕰 🕰
- اً رسم مخطَّط الصندوق ذي العارضتين لهذه المجموعة من البيانات. الوسيم الدرباي بردي

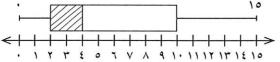
تدرّب (٤) 👘 ؛

في الشكل التالي يمثّل مخطَّط الصندوق ذي العارضتين (العلوي) بيانات معدَّل مصروف المنزل الشهري على الطعام بالدولار الأميركي في ١٢ دولة عربية ، ويمثّل مخطَّط الصندوق ذي العارضتين (السفلي) بيانات معدَّل مصروف المنزل الشهري على الطعام بالدولار

الدول الأوروبية	الدول العربية	
001= X No.	11.121.10.	المدى
eo.	٨	الوسيط
۷.,	o · ·	الأرباعي الأدنى
70.	٩,,	الأرباعي الأعلى
الأدى	الاعلى	الوسيط أقرب إلى الأرباعي
الاعلى	الأوى	الوسيط أبعد عن الأرباعي

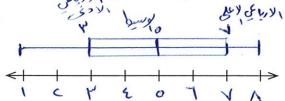
نلاحظ أنّ :

- 🐠 الدول العربية تنفق أكثر على الطعام من الدول الأوروبية .
- التفاوت في الإنفاق على الطعام في الدول العربية أكبر من التفاوت في الإنفاق على الطعام في الدول الأوروبية .


في فكر وناقِش فكر وناقِش

كيف تؤثّر القيمة المتطرّفة على طول العارضتين في مخطَّط الصندوق ذي العارضتين ؟

تمــرّن ،


- أُسِّلِ عدد من المتعلّمين في أحد فصول الصفّ التاسع عن عدد مرّات زياراتهم لمحلّات بيع الملابس الرياضية خلال فترة ما ، والنتائج موضَّحة في مخطَّط الصندوق ذي العارضتين في الشكل المقابِل . أوجد كلًّا ممّا يلى :

😂 الأرباعي الأدنى

😉 الأرباعي الأعلىد

- 😗 في مجموعة البيانات التالية : ٤ ، ٨ ، ٥ ، ٣ ، ١ ، ٧ ، ٦
- ال أوجِد كلًا ممّا يلي: بينان مرسَة ١,٧,٦,٥,٤,٥,١
 - (١) القيمة الصغرى للبيانات هي
 - (۲) القيمة الكبرى للبيانات هي
 - (٣) المدى هو الماد ٧
 - (٤) الوسيط هو 🗠 🗠
 - (٥) الأرباعي الأدني هو
 - (٦) الأرباعي الأعلى هو
- و أرسم مخطَّط الصندوق ذي العارضتين لهذه المجموعة من البيانات.

🚯 ارسم مخطط الصندوق ذي العارضتين لمجموعة البيانات التالية :

. T. . . 755 . VA9 . VY . . VA. . AAF . TYE . VVO . V

العبارات والمفردات:

Random Experiment

Event

Odds

Fair Games

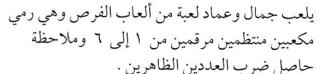
Probability

تجربة عشوائية

ترجيح

الإحتيال

الترجيح والعدالة – الاحتمال Odds and Fairness - Probability



سوف تتعلُّم: إيجاد ترجيح وقوع حدث ما ، واحتمال وقوع حدث ما .

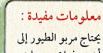
يربح جمال نقطة إذا كان حاصل ضرب العددين الظاهرين عددًا فرديًا، ويربح عماد نقطة إذا كان حاصل ضرب العددين الظاهرين عددًا زوجيًا. بتكرار اللعبة ١٠ مرات لكل لاعب، الفائز هو اللاعب الذي يحصل على أكبر عدد من النقاط.

- 🐠 حدد أيهما لديه فرصة أكبر للفوز ؟ اشرح ذلك .
 - 🕜 هل هذه اللعبة عادلة ؟ فسّر إجابتك .

مثال (١):

اكتب النواتج الممكنة في كل من التجارب العشوائية التالية :

🐠 رمي مكعب منتظم مرقم من ١ إلى ٦ مرة واحدة.


الحل:

النواتج الممكنة هي : ١ ، ٢ ، ٣ ، ٤ ، ٥ ، ٦ .

🥮 رمى قطعة نقود معدنية مرة واحدة .

الحل:

النواتج الممكنة هي : صورة ، كتابة .

أن يعرفوا ترجيحات ظهور صفات وراثية معينة لدى صغار

يمكننا استخدام كلمة ترجيح لوصف فرصة وقوع حدث ما .

ترجيح حدث ما هو نسبة عدد نواتج وقوع الحدث إلى عدد نواتج عدم وقوعه .

عدد نواتج وقوع الحدث ترجيح حدث ما = عدد نواتج عدم وقوع الحدث

مثال (۲):

أوجد ترجيح ظهور العدد ٢ عند رمي مكعب منتظم مرقم من ١ إلى ٦ مرة واحدة . الحل :

عدد نواتج (ظهور العدد ٢) = ١

عدد نواتج (عدم ظهور العدد ٢) = ٥

 $(1:0] = \frac{3 + (3)}{3} = \frac{3 + (3)}{3} = \frac{3 + (3)}{3} = \frac{1}{3}$ أو (1:0]

تدرّب (۱) 👘 :

أوجد ترجيح سحب قرص أزرق من حقيبة تحتوي على قرصين أزرقي اللون و م أقراص حمراء اللون و ٤ أقراص بيضاء اللون .

عدد نواتج (سحب قرص أزرق) = :
عدد نواتج (عدم سحب قرص أزرق) =
ر جیح (سحب قرص أزرق) =
910 =

تدرّب (۲) 🚻 ،

أوجد ترجيح كل حدث مما يلي:

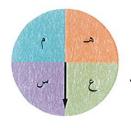
فلهور صورة عند رمي قطعة نقودمعدنية مرة واحدة .

<i>c</i> .	1 - 1
	,

ظهور العدد (۲ أو ٥) عند رمي
 مكعب منتظم مرقم من ١ إلى ٦
 مرة واحدة .

						-
(<u> </u>	-	1	75	5	
			C		ح	

اللعبة التي يكون فيها عدد نواتج وقوع الحدث مساويًا لعدد نواتج عدم وقوعه تسمى لعبة عادلة أي أن اللعبة التي يكون ترجيح الفوز فيها متساويًا لجميع اللاعبين (تكافؤ الفرص) تسمى لعبة عادلة.


مثال (٣):

يلعب كل من عبد الله وخالد وعيسى لعبة المكعّبات المرقمة من ١ إلى ٦. يحصل عبد الله على نقطة إذا ظهر على المكعّب العدد ١. يحصل خالد على نقطة إذا ظهر على المكعب عدد زوجي . يحصل عيسى على نقطة إذا ظهر على المكعّب العدد (٣ أو ٥). أوجد ترجيح الفوز لكل لاعب ، ثم اذكر ما إذا كانت اللعبة عادلة أم غير عادلة .

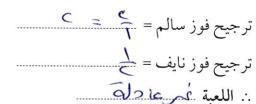
الحل:

ترجیح فوز عبد الله = $\frac{7}{6}$ ، ترجیح فوز خالد = $\frac{7}{7}$ ، ترجیح فوز عیسی = $\frac{7}{4}$ = $\frac{7}{4}$:. اختلف ترجیح الفوز من لاعب لآخر ، لذلك تكون اللعبة غیر عادلة .

تدرّب (۳) 🚺 ،

تتبادل كل من عائشة وهناء ومنيرة وسارة تدوير المؤشر في الشكل المقابل ، على أن تحصل كل لاعبة على نقطة إذا توقف المؤشر عند الحرف الأول من اسمها ، أوجد ترجيح الفوز لكل لاعبة ، ثم اذكر ما إذا كانت اللعبة عادلة أم غير عادلة .

 المعبه عادله	2:1=	1:000
	S11 - 1	2 560
	٤:١ <u>- ا</u>	0,6
	کے : ا ا	ō no


تدرّب (٤) 🚻 :

في كل لعبة ، حدّد ترجيح فوز كل لاعب ، ثم اذكر ما إذا كانت اللعبة عادلة أم غير عادلة .

آل ترمي نوف وحنان قطعة نقود معدنية . تفوز نوف بنقطة إذا ظهرت صورة ، وتفوز حنان بنقطة إذا ظهرت كتابة .

ترجيح فوز نوف = كل حما المسلم المسلم

وي الدّوّارة المقابلة يدير سالم ونايف المؤشر الدوار . يفوز سالم بنقطة إذا توقف المؤشر في توقف المؤشر في المنطقة الزرقاء ، ويفوز نايف بنقطة إذا توقف المؤشر في المنطقة البيضاء .

.. المحبه المحمد المحم

٣ تفوز إيمان بنقطة.

احتمال وقوع حدث (١):

تدرّب (٥) 🜓 :

يحتوي صندوق على ٧ أقلام صفراء، ٣ أقلام خضراء، ٤ أقلام زرقاء. إذا تم اختيار قلم واحد عشوائيًا، فأوجد كلًا مما يلي:

﴾ ل (أزرق) ك ح = ك	
﴾ ل (أصفر) <u>لم حل</u> ا (ا أنه) ^{الم}	
ل (ليس أخضر) <u>بلا</u>	
﴾ ل (أحمر) <u></u>	

تدرّب (۲) 👘 :

في تجربة إلقاء مكعب منتظم مرقم من ١ إلى ٦ مرة واحدة ، أكمل ما يلي :

- 🐠 عدد النواتج الممكنة = ٦
- 😪 عدد نواتج الحدث ۱ (ظهور عدد فردي) =
- - = (P) J S
 - ج = اب الم
 - ا = الحدث ا = المحدث ا = المحدث ا
 - c = <u>----- ا</u> = ب الحدث ب ترجيح الحدث

مثال (٤):

إذا كان ترجيح حدث ما هو ٣ : ١٠ ، أوجد احتمال وقوع هذا الحدث.

الحل:

- : ترجيح الحدث هو ٣: ١٠
- .: عدد نواتج وقوع الحدث = ٣

عدد نواتج عدم وقوع الحدث = ١٠

- "" = "" + "" = "" + "" = "" : عدد النواتج الممكنة = "" + "" = "" = "" : ...
 - $\frac{\pi}{1\pi} = \frac{\pi}{1}$:. احتمال وقوع هذا الحدث

:		(V)	تدرّب
	1	()	

ما هو ٧: ١، فما هو احتمال وقوع هذا الحدث؟ كر هو ١: ١	جیح حدث رکر حربہ	إذا كان تر- -
اعدد نوارج و قوی جرک ۱	(=.)	
1 (1) 9 geo est 7 1 2015		
1- 1+V 05/2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ررنواك	. د
1- Cit 8 900 Urp 1		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

تدرّب (۸) 🚺 :

إذا كان احتمال وقوع حدث ما هو ق ، فما هو ترجيح هذا البحدث؟
عدد زوائج و موع لحرث ٢ عدد نوائج عدم و فوه الرب عدد موائج عدم و فوه الرب عدد موائج عدم و فوه المحدث عدد بروائج في محدث و بروائج و

فكر وناقش فكر وناقش

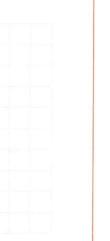
إذا كان احتمال وقوع حدث ما يساوي $\frac{1}{7}$. فما ترجيح هذا الحدث ؟

تمــرَّنْ ،

🚺 أوجد ترجيح كل حدث مما يلي :
🐠 (ظهور كتابة) عند رمي قطعة نقود معدنية مرة واحدة 🅌 🕳 📗
🤪 الحصول على (عدد أكبر من أو يساوي ٢) عند رمي مكعب منتظم مرقم من
۱ إلى ٦ مرة واحدة ٢
﴾ (سحب کرة خضراء) من حقيبة تحتوي على ٤ كرات خضراء و ٣ كرات
حمراء
🕜 أوجد ترجيح الفوز في كل حالة ، ثم اذكر ما إذا كانت اللعبة عادلة أم لا :
🐠 عند رمي قطعة نقو د معدنية ، يحصل سالم على نقطة إذا ظهرت صورة
ويحصل سعود على نقطة إذا ظهرت كتابة .
ر می موزیا ا
1= 1 200 jg 24 F
a) skall,
عند رمي مكعب منتظم مرقم من ١ إلى ٦ ، تحصل حصة على نقطة إذا ظهر
العدد ١ وتحصل عبير على نقطة إذا ظهر العدد (٢ أو ٣ أو ٤ أو ٥)
وتحصل هدى على نقطة إذا ظهر العدد ٦.
- gep jeg gep
C= E se jée Jup j
L Sip jo zeps
able réarel, ct
1-11-10
🔞 أوجد احتمال وقوع كل حدث مما يلي :
ا في مند رمي قطعة نقود معدنية مرة واحدةــــــــــــــــــــــــــــــــ
يا الحصول على (عدد أكبر من أو يساوي ٢) عند رمي مكعب منتظم مرقم من
١ إلى ٦ مرة واحدة
﴾ ﴿ سحب كرة خضراء) من حقيبة تحتوي على ٤ كرات خضراء و ٣ كرات
حمراء

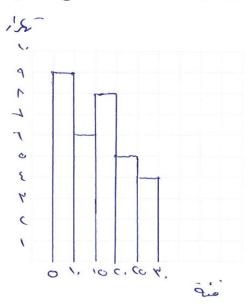
🚯 أو جد احتمال (سحب كرة سوداء) من حقيبة تحتوي على مجموعة كرات في
كلِّ من الحالات التالية :
آ ۲ صفراء ، ٤ سوداء ، ۱ حمراء <u>ك</u>
😌 ٥ سوداء 💍 <u> </u>
۲ خضراء ۲
💿 يمارس ٢٥ متعلمًا في الصف التاسع رياضات مختلفة ، منهم ١٠ يمارسون رياضة
كرة السلة فقط، ٨ يمارسون رياضة كرة القدم فقط والباقون يمارسون رياضة
الجري فقط . اختير متعلم عشوائيًا .
ما احتمال أن يكون هذا المتعلم:
🚺 ممارسًا كرة السلة : 🗽 💳 😅
😭 لا يمارس رياضة الجري: 🎎 🛁
ممارسًا كرة القدم أو رياضة الجري : <u>الحجمة الجري على المجري المج</u>
🚯 أوجد احتمال وقوع الأحداث التي ترجيحها كما يلي :
1:1
<u> </u>
4:11
<u>00</u> {{:00 }}
إذا كان احتمال وقوع حدثًا ما هو
<u>0</u> = £10

مراجعة الوحدة الخامسة Revision Unit Five


أوّلًا: التمارين المقالية

🐠 من الجدول التكراري التالي :

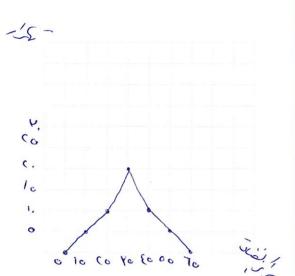
- ۲0	- Y •	- 10	- \ •	- 0	الفئات
٤	٥	٨	٦	٩	التكرار
c-1,0	دد ۱۵	12,0	10,0	1,0	مراكز الفئات

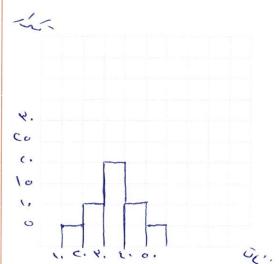

🐠 أكمل الجدول السابق بإيجاد مراكز الفئات .

🥏 مثِّل البيانات السابقة بمدرَّج تكراري .

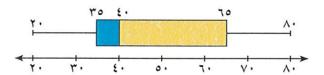
🔗 مثِّل البيانات السابقة بمضلّع تكراري .

3



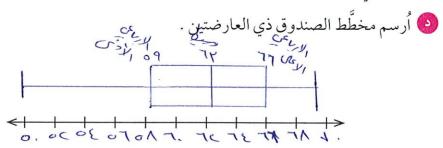


🕜 من الجدول التكراري التالي :


- 0 •	- ٤٠	- ٣٠	- Y •	-) •	الفئات
0	١.	۲.	١.	٥	التكرار
00	م ه	40	CO	10	مراكز الفئات

- 🕕 أكمل الجدول السابق بإيجاد مراكز الفئات .
- 😞 مثِّل البيانات السابقة بالمدرَّج التكراري . 😓 مثِّل البيانات السابقة بالمضلّع التكراري .

🚳 يبيّن مخطَّط الصندوق ذي العارضتين مجموعة من البيانات ، أوجِد كلًّا مما يلي :



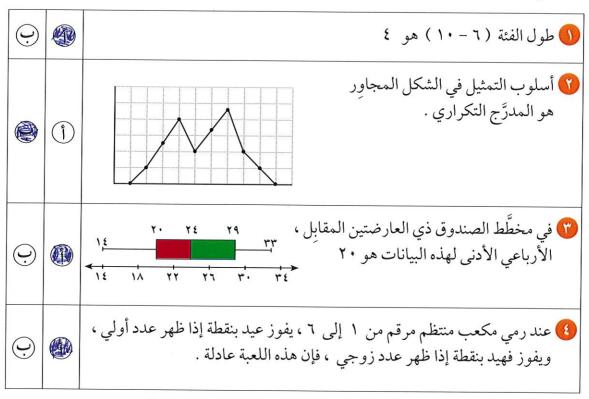
- الوسيط = محم
- 😭 الأرباعي الأدنى = كيسسس
- 🐠 الأرباعي الأعلى = عيالة

- 1 lle mud =
- الأرباعي الأدنى = كرباعي الأدنى
- 🚱 الأرباعي الأعلى =

🧿 أوجد احتمال وقوع الأحداث التي ترجيحها كالتالي :

٣: ٤ 🦃	(0:1 1
7	7

الله يحتوي كيس على ٦ كرات زرقاء و ٣ كرات خضراء و ٥ كرات حمراء و ٥ كرات و ٥ كرات حمراء و ٥ كرات و ٥ كر


سحبت كرة واحدة عشوائيًا. أُوجد كلًّا مما يلي:

<u> </u>
😓 ل (بيضاء) 😓 🛴
الست خضراء) المحالة ال
🗿 ترجیح (سحب کرة زرقاء) 🔁 = 📆
ه ترجیح (سحب کرة حمراء) <u>6 = ح</u>

ثانيًا: التمارين الموضوعية

أوّلًا: في البنود التالية ، ظلِّل أ إذا كانت العبارة صحيحة ، وظلِّل ب إذا كانت العبارة غير صحيحة .

ثانيًا: لكلّ بند من البنود التالية أربعة اختيارات، واحد فقط منها صحيح، ظلِّل الدائرة الدالّة على الإجابة الصحيحة.

- Y \	- ۲۲	- ۱۸	- 1 &	الفئات
١.	١٨	١٨	٦	التكرار

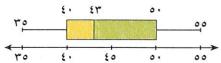
👩 مركز الفئة الثالثة هو:

37

YO (3)

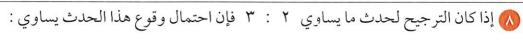
ج ۲۲

۲۰ 🥺


11 (1)

🕥 في البيانات الإحصائية إذا كان مركزا فئتين متتاليتين هما ١٥، ٢٥ على الترتيب، فإنّ طول الفئة يساوى:

10 💬 — 1.


ج. ۲۰

- Y. (b) {. (c) {\(\frac{1}{2} \) \(\frac{1}{2}

- <u>ه</u> (ع)
 - $\frac{\pi}{r}$ \Rightarrow $\frac{r}{m}$ \Rightarrow $\frac{r}{m}$
 - اذا كان احتمال وقوع حدث ما $\frac{V}{11}$ فإن ترجيح هذا الحدث هو :
- 1A:V 3 \(\xi : V \(\frac{1}{2} \) \(\text{1} : \xi \)
- ᠾ ترجيح ظهور العدد (٣ أو ٤) عند رمي مكعب منتظم مرقم من ١ إلى ٦ مرة واحدة هو :