### Phy40-Lesson 4 Velocity in the Position-Time graph

- 1. Differentiate between speed and velocity.
- 2. Represent mathematically, the average velocity as,

$$v = \frac{\Delta x}{\Delta t} = \frac{x_f - x_i}{t_f - t_i}$$

Hence use the equation of motion;

$$x_f = vt + x_i$$

3. Interpret the slope of a position-time graph as the average velocity and the absolute value as the average speed

| 4. | Explain | how | average | velocity | is different | from | instantane | ous |
|----|---------|-----|---------|----------|--------------|------|------------|-----|
| ve | locity  |     |         |          |              |      |            |     |

- 5. Explain the meaning of the slope of a position-time graph that is upward or downward and above or below the x-axis.
- 6. Interpret the position of an object after a time interval by using;

$$x_f = vt + x_i$$

Where, v= slope

 $x_i = y - intercept$ 

#### Differentiate between speed and velocity.

Average Velocity of an object is its displacement divided by the corresponding time interval  $\triangle_{x=x_{c}-x_{i}}$ 

$$v_{avg} = \frac{\Delta x}{\Delta t}$$

The SI unit of velocity is m/s Velocity is a vector quantity.

Speed on the other hand is defined as the distance covered divided by the corresponding time interval

$$s = \frac{\mathrm{d}}{\Delta t}$$

Speed is also measured in m/s Speed is a scalar quantity.

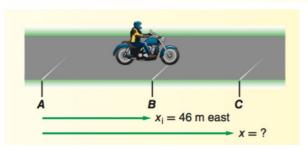
| Velocity             | Speed                  |
|----------------------|------------------------|
| 1) $V = \Delta x$    | 1) 5= distance<br>time |
| 2) Vector            | 2) scalar              |
| 3) measured in [m/s] | 3) measured in [m/s]   |
|                      |                        |

1. If Steve throws the football 50 meters in 3 seconds, what is the average speed of the football?

$$S = \frac{d}{d} = \frac{50}{3} = 16.6 = 20 \,\text{m/s}$$

2. If it takes Ashley 3 seconds to run from the batters box to first base at an average speed of 6.5 meters per second, what is the distance she covers in that time?

$$d = 5xt = 6.5 \times 3 = 19.5 = 20 \text{ m}$$


3. Bart ran 5000 meters from the cops and an average speed of 6 meters/second before he got caught. How long did he run?

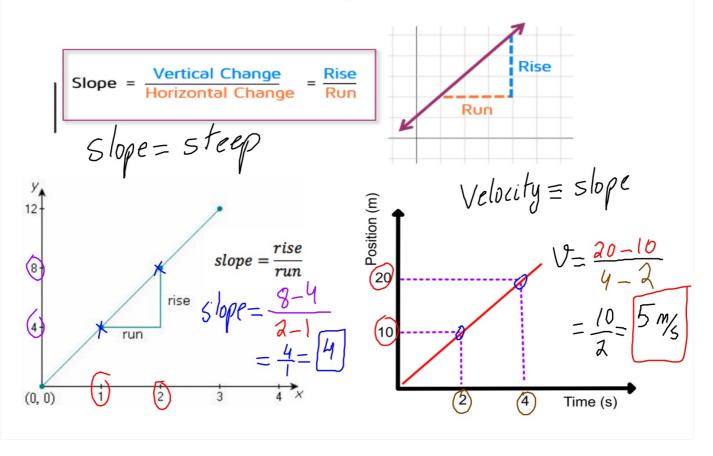
$$t = \frac{d}{s} - \frac{5000}{6} - 833.3 = 800 s$$

Find the 
$$x_f = vt + x_i$$

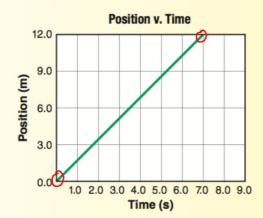
$$x_f = vt + x_i$$

**POSITION** The figure shows a motorcyclist traveling east along a straight road. After passing point B, the cyclist continues to travel at an average velocity of 12 m/s east and arrives at point C 3.0 s later. What is the position of point C?




$$V_{avg} = 12 \, \text{m/s} \quad \text{east}$$

$$\Delta t = 3.0 \, \text{s}$$

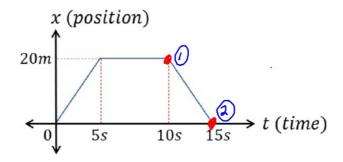

$$X_{c} = ??$$

$$X_c = 9.t + x_B$$
  
=  $12(3.0) + 46$   
=  $36 + 46 = 82$  m

# Interpret the slope of a position-time graph as the average velocity and the absolute value as the average speed

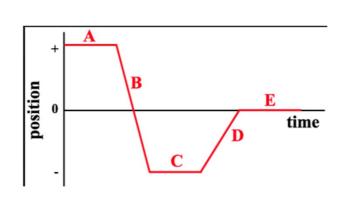


**AVERAGE VELOCITY** The graph at the right describes the straight-line motion of a student riding her skateboard along a smooth, pedestrian-free sidewalk. What is her average velocity? What is her average speed?




$$\frac{0}{7.0-0.0} = \frac{12.0-0.0}{7.0-0.0} = \frac{12.0}{7.0} = \frac{1.7}{7.0} \frac{\text{m/s}}{\text{s}}$$

$$5 = \frac{d}{t} = \frac{12.0}{7.0}$$


$$= \frac{1,7 \, \text{m/s}}{1}$$

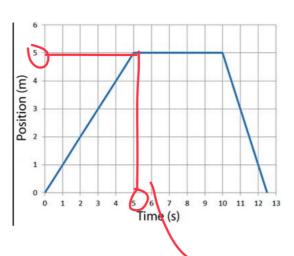
Explain the meaning of the slope of a position-time graph that is upward or downward and above or below the x-axis.



Calculate the average velocity between [0s and 5s], [5s and 10s], [10s and 15s]

$$\begin{bmatrix}
 105 - 30 \\
 \hline
 15 - 10
 \end{bmatrix}
 = \frac{0 - 20 - 20}{5}
 = \frac{-40}{5}$$




Describe the motion of A, B, C, D, and E

A: At Rest

B: negative velocity / moving to the left at a constant speed. E: At Rest

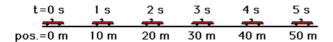
D: positive velocity / moving right at

a constant speed.

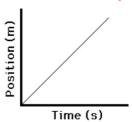


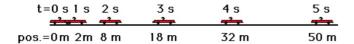
When is the object at rest?

between 55 and 105

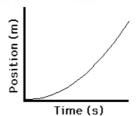

When is the object moving in the positive direction? at what speed?

between 05 and 55. S=d=5=1 m/s


At what time interval does the object move fastest?


From 10s to 12.5s because the line is the steepest

## Explain how average velocity is different from instantaneous velocity




# Constant Velocity Positive Velocity





# Positive Velocity Changing Velocity (acceleration)



### Average velocity

Is calculated

For a time interval

ex, [0s -> 5s]

[10s -> 20s]

Instanteneous velocity

Is the velocity at a certain time.

exp at t=2s