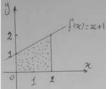
مدرسة رواد الظغرة الخاصة

رياخيات

الصف: الثاني عشر متقدم


مراجعة الوحدة السادسة القصل الدراسي الثالث

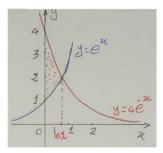
المدرس: عيسى دبورة

0504927276

إقرأ السؤال بتمعن وضع دائرة حول حرف الإجابة الصحيحة:

- 1- مساحة منطقة محصورة بين منحنيي f(x) و f(x) ≥ g(x) بشرط f(x) ≥ g(x) تعطى بالقانون :
- A- $\int_{a}^{b} (f(x) + g(x)) dx$ B- $\int_{a}^{b} (f(x) g(x)) dx$ C- $\int_{a}^{b} (g(x) f(x)) dx$ D- $\int_{a}^{b} A(x) dx$

- **A** 4
- B- -4 C- 6


-2 المساحة المبينة بالشكل تحت التمثيل البياني للدالة f(x)=x+1 هي :

- y=0 x=0 $g(x)=x^2+1$ f(x)=-2x+4 g(x)=-3
 - تساوى:

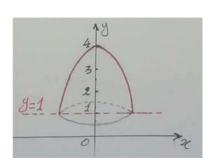
- **A-** 8.33
- **B** 3
- C- 2.33 D- 3.23
- $f(x)=x^2-1$, $g(x)=7-x^2$ مساحة المنطقة التي تحددها المنحنيات -4
 - على الفترة [2.2-] تساوى:

A- 23.33

- **B-** 21.33
- **C-** 21
- D- 22
- ري y=0 ، y=2-x ، y=x نساوي : y=0 ، y=0 ، y=0 ، y=0 نساوي :

B- 2

- x=0 , $g(x)=4e^{-x}$, $f(x)=e^{x}$ unitarity $g(x)=4e^{-x}$
 - تعطى بالتكامل:
 - A- $\int_0^{\ln 2} (e^x 4e^{-x}) dx$ B- $\int_0^{\ln} \left(\frac{4}{e^x} e^x\right) dx$
 - C- $\int_0^{ln} (e^x + 4e^{-x}) dx$ D- $\int_0^{ln} \frac{4 + e^{2x}}{e^x} dx$
- 7- حجم مجسم بطريقة الأقراص ناتج عن دوران منحني حول المحور x على الفترة [a,b] يعطى بالقانون :
- A- $\int_a^b \pi f(x^2) dx$ B- $\int_a^b \pi [f(x)]^2 dx$ C- $\int_a^b [\pi f(x)]^2 dx$ D- $\int_a^b x f^2(x) dx$


على الفترة [0,4] يساوى:

- 34
- **B** 50.26

 $f(x) = \sqrt{x}$ حجم مجسم ناتج عن دوران المنطقة التي تقع تحت المنحني -8

- C- 8π D- 25

- **A-** 16.755
- 2

y=1 ، $f(x)=4-x^2$ حجم المجسم الناتج عن دوران المنطقة المحدودة بالمنحنيات

حول المحور ٧ يعطى بالتكامل:

A-
$$\int_{1}^{4} \pi (4-x^2) dx$$
 B- $\int_{1}^{4} \pi (2-x) dx$

B-
$$\int_{1}^{4} \pi (2-x) dx$$

C-
$$\int_{1}^{4} \pi (4-y) dy$$

C-
$$\int_1^4 \pi (4-y) dy$$
 D- $\int_1^4 (3-x^2) dx$

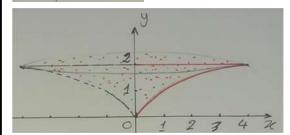
10- إذا كانت مساحة المقطع العرضي A(x)=x+2 فيكون حجم المجسم على الفترة [1,3-] هو:

A- 12

B- 41.33

D- 13.5

11- حجم المجسم الناتج من دوران المنطقة المحدودة بواسطة


Y=0 , y=2-x , x=0 مو : ول المحور Y=3 هو

$$A = \frac{\pi}{3}$$

$$\frac{52}{3}\pi$$

$$\frac{C}{2}$$

A-
$$\frac{\pi}{3}$$
 B- $\frac{52}{3}\pi$ C- $\frac{7\pi}{3}$ D- $\frac{28}{3}\pi$

12- حجم مجسم متكون من دوران المنطقة المحدودة بالتمثيلات البيانية

: حول المحور
$$y$$
 هو X=0 , $f(x)=\sqrt{x}$, $y=2$

$$A-\frac{32\pi}{5}$$

A-
$$\frac{32\pi}{5}$$
 B- $\frac{32\pi}{7}$ C- $\frac{22\pi}{15}$ D- $\frac{8\pi}{3}$

$$\frac{\text{C}}{15}$$

$$\frac{\mathbf{D}}{3}$$

13- حجم المجسم المتكون من دوران المنطقة المحدودة بالتمثيلين البيانيين

$$y=x^2$$
 , $y=-x$ عول المحور

A-
$$\frac{7\pi}{6}$$
 B- $\frac{\pi}{6}$ C- 3 D- $\frac{6\pi}{7}$

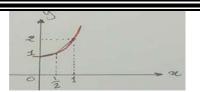
$$\frac{\mathbf{B}}{6}$$

$$\frac{6\pi}{7}$$

14- حجم المجسم المتكون من دوران المنطقة المحصورة بين التمثيلين

$$x=2$$
 و $y=0$ و $y=2-x^2$

15- الحجم المتكون من دوران المنطقة المحدودة بالتمثيلين


y=0 ، y=3-x ، Y=x+1 محول المحور y=2 يساوي :

A-
$$\frac{32}{3}\pi$$
 B- $\frac{38}{3}\pi$ C- $\frac{28}{3}\pi$ D- $\frac{112}{3}\pi$

$$\frac{8}{2}$$

$$\frac{C}{2}$$
 $\frac{28}{2}$ π

$$\frac{112}{3}\tau$$

- 16- تقدير طول القوس من منحني الدالة $y=x^2+1$ على الفترة [0,1] عندما n=2 هو :
- **A-** 1.64
- **B-** 2.47 **C-** 2 **D-** 1.46
- ساوي: $y=\sin x$ الفترة [0 , π] يساوي:
- **∧** 3.82

- **B-** 1.57
- C- 2.7
- .: والقوس الحقيقي لجزء من المنحني $y=x^4$ على الفترة y=18

A− 4.44

- **B** 3.8
- **C-** 1.6
- 19- مساحة السطح الناتج من دوران التمثيل البياني y=2-x على الفترة [1,2] حول x=1 هو:
- $A-2\sqrt{2}\pi$
- \mathbf{B} $\sqrt{2}\pi$
- \mathbf{C} $4\sqrt{2}\pi$
- : هو [-1,1] على الفترة $y = e^x + e^{-x}$ على الفترة [-1,1] هو
- **A** $e + \frac{1}{a}$
- **B-** 4.7
- **C-** 2e
- 21- لحساب مساحة سطح ناتج عن دوران منحني الدالة f(x) على الفترة [a,b] نستخدم القانون:
- A- $\int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} dx$
- **B** $\int_a^b 2\pi \sqrt{1 + f'(x^2)} dx$
- C- $\int_a^b 2\pi f(x) \sqrt{1 + f'(x^2)} dx$

- **D-** $\int_{a}^{b} \pi f(x) \sqrt{1 + f'(x)^2} dx$
- 22- مساحة السطح الناتج من تدوير $y=x+x^2$ على الفترة [0,3] يعطى بالتكامل:
- $\int_0^3 2\pi (x^2 + x) \sqrt{4x^2 + 4x} dx$
- B- $\int_0^3 2\pi (x^2 + x) \sqrt{4x^2 2} dx$
- C- $\int_0^3 2\pi x(x+1)\sqrt{4x^2+4x+2}dx$
- D- $\int_0^3 2\pi \sqrt{1 + (1 + 2x)^2} dx$
- 23- مساحة السطح الناتج من دوران منحني الدالة $y=x^4$ على الفترة [0,1] تساوي :

A- 3.75

B- 2

- **C-** 3.43
- D- 4
- 24- أطلق جسم من ارتفاع £ 30 مع سرعة متجهة نزولاً 5 ft/sec فتكون الشروط الابتدائية هي :
- A- y(0)=30 ft , y'(0)=5ft/sec
- B- y(0)=30 ft y'(0)=-5 ft/sec
- C- y(0)=30 m, y'(0)=-5 ft/sec
- D- y(0)=5 ft, y'(0)=30 ft/sec

25- يسقط غطاس من ارتفاع 30 ft فوق سطح الماء:

a- السرعة المتجهة (v(t في اللحظة t هي :

A- -16 t^2+c

 $B-32t^2+c$

C- -32t

D- 32t+30

b- الزمن الذي استغرقه الغطاس للوصول إلى الماء:

A- 1.37 sec

B- 1.87sec

C- 2sec

D- -1.37 sec

c سرعة الغطاس لحظة اصطدامه بالماء:

<u>A</u>--0.03 B- -42.84

C- 43.84

D- 0.03

 \wedge y(0)=0 m, y'(0)=0 m/sec

B- y(0)=90 ft, y'(0)=0 m/sec

C- y(0)=90 m, y'(0)=0 m/sec

D- y(0)=-90 m, y'(0)=-90 m/sec

27- اطلقت قذيفة من الأرض بشكل رأسي بسرعة متجهة ابتدائية 20 m/sec (نتجاهل مقاومة الهواء) عندئذٍ:

a- معادلة السرعة المتجهة:

A- -9.8t

B- 9.8t+20

C- -9,8t-20

D- -9.8t +20

b- القيمة العظمى لارتفاع القذيفة:

№ 20.4

B- 10

C- -19.99

D- 19.99

c- زمن بقاء القذيفة في الهواء:

^- -4.08sec

B- 4.08sec

C- 2.04sec

D- 4.8sec

28- تعمل قوة قدر ها b B على تمدد نابض £ 0.25 فيكون الشغل المبذول في تمدد النابض 6 in أكثر من طوله الطبيعي

A- W= 0.32 ft/lb B- W= 3ft/lb C- W= 32 ft/lb D- W= 3.2 ft/lb

29- يرفع عامل كتلة وزنها 50 kg مسافة 0.8 m فيكون الشغل المبذول:

A- 4 kg/m

D- 40 kg/m

30 – أحدثت قوة N 5على تمدد نابض 0.04 m أوجد الشغل المبذول في تمدد النابض 8 cm زيادة على الطول الطبيعي

^- 400 N/m

B- 0.4 N/m

C- 40 N/m D- 0.004 N/m

: هي [0, π] على الفترة $f(x) = \frac{1}{2} \sin x$ على الدالة -31

دالة واحدية -D ليست دالة أصلية -B دالة أصلية -B دالة أصلية -D دالة الست دال

32 – الدالة F(x)= 2x³+x على الفترة [1, 0] هي :

دالة نسبية - B ليست دالة نسبية

دالة D- pdf دالة تربيعية D- pdf

: ما التي تجعل الدالة $f(x) = ce^{-4x}$ على الدالة C مية -33

A- 0.4

B- 40.7

C- 5.65

D- 4.07

: والله pdf على [1,2] على و $f(x) = \frac{8c}{\sqrt{4-4x^2}}$ الدالة C على الدالة و 34

A- 0.0027

B - -0.0087

 $C- 27 \times 10^4$ $D- 27 \times 10^{-3}$

. [0,0.1] على μ على pdf دالة μ على الدالة μ على =35 دالة pdf دالة والدالة μ على الدالة الدالة μ

A- 0.08

B- 0.0008 **C-** 8

D- 8x10⁻⁶

بالتوفيق والنجلج