

Teacher Edition

Grade 5•V olume 2

Use the image on the back cover to spark student curiosity about slope. Here are some questions to help guide the conversation as students describe what they notice and wonder about this takeoff.
-What story could you tell about this image?
-What could you use to find out the angle of the plane's take-off?

Back cover: guvendemir/E+/Getty Images
mheducation.com/prek-12

Mc
 Graw
 Hill

Copyright © 2022 McGraw Hill

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw Hill, including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
McGraw Hill
8787 Orion Place
Columbus, OH 43240

ISBN: 978-0-07-683920-9
MHID: 0-07-683920-6
Printed in the United States of America.

Contents in Brief

VOLUME 1
(1) Math Is. 1A
(2) Volume 31A
(3) Place Value and Number Relationships 61A
(4) Add and Subtract Decimals 91A
5 Multiply Multi-Digit Whole Numbers. 133A
(6) Multiply Decimals 171A
(7) Divide Whole Numbers 205A
Appendix A1
Glossary G1
VOLUME 2
8 Divide Decimals 1A
(9) Add and Subtract Fractions 35A
(10) Multiply Fractions 81A
(11) Divide Fractions 127A
12 Measurement and Data 165A
(13) Geometry 195A
(14) Algebraic Thinking 229A
Appendix A1
Glossary G1
Index II

Welcome to Reveal Math

We are excited to share with you the Reveal Math program.
In developing Reveal Math, we had a clear vision for elementary math instruction. It was important that the program we developed incorporated key findings from recent research on best practices in math instruction. It was also important that the program reflect an emphasis on building students' social and emotional competencies as well ensuring their academic growth.
We also thought extensively about your needs teaching math and your expectations for a high-quality math curriculum. It was important to us that the program provide flexibility in instructional and implementation options to meet the range of instructional settings and the range of learners.

We were purposeful about the organization of concepts and the scope and sequence to make sure students build deep conceptual understanding and develop proficiency with essential concepts and skills.
We are confident that Reveal Math incorporates all these goals.

- The lesson model offers two instructional options for each lesson: a guided exploration that is teacher-guided and an activity-based exploration that has students exploring concepts through small group activities and drawing generalizations and understanding from the activities.
- The lesson model incorporates an initial sense-making activity that builds students' proficiency with problem solving. By focusing systematically on sense-making, students develop and refine not just their observation and questioning skills, but the foundation for mathematical modeling.
- Both instructional options focus on fostering mathematical language and rich mathematical discourse by including probing questions and prompts.
- The Math is... unit builds student agency for mathematics. Students consider their strengths in mathematics, the thinking habits of proficient "doers of mathematics," and the classroom norms that are important to a productive learning environment.
- The scope and sequence reflects the learning progressions recommended by leading mathematicians and mathematics educators. It emphasizes developing deep understanding of the grade-level concepts and fluency with skills, while also providing rich opportunities to apply concepts to solve problems.

Thank you for using Reveal Math.

The Reveal Math author team

The Reveal Math Authorship

McGraw Hill's Learning Scientists teamed up with expert authors to create a program guided by validated academic research and classroom best practices.

Ralph Connelly, Ph.D. Authority on the development of early mathematical understanding.

Annie Fetter

Advocate for student ideas and student thinking that foster strong problem solvers.

Linda Gojak, M.Ed.

Expert in both theory and practice of strong mathematics instruction.

Sharon Griffin, Ph.D.

Champion for number sense and the achievement of all students.

Susie Katt, M.Ed.
Advocate for the unique needs of our youngest mathematicians.

Ruth Harbin Miles, Ed.S.
Leader in developing teachers' math content and strategy knowledge.

Nicki Newton, Ed.D.

Expert in bringing student-focused strategies and workshops into the classroom.

John SanGiovanni, M.Ed. Leader in understanding the mathematics needs of students and teachers.

Raj Shah, Ph.D.
Champion of perseverant problemsolvers and student curiosity in mathematics.

Jeff Shih, Ph.D.
Advocate for the importance of student knowledge.

Cheryl Tobey, M.Ed.
Facilitator of strategies that drive informed instructional decisions.

Dinah Zike, M.Ed.

Creator of learning tools that make connections through visualkinesthetic techniques.

Math Is...

Unit Planner 1A
Unit Overview 1C
Unit Routines 1F
Math Attitude Survey 1G
Unit Opener: Math in Action 1
Unit Opener: Ignite!. 2
Lessons
1-1 Math Is Mine 3A
1-2 Math Is Exploring and Thinking 7A
1-3 Math Is in My World. 11A
1-4 Math Is Explaining and Sharing 15A
1-5 Math Is Finding Patterns 19A
1-6 Math Is Ours 23A
Unit Review 27
Fluency Practice. 29

Volume

Unit Planner 31A
Unit Overview 31C
Unit Routines 31F
Readiness Diagnostic 31G
Unit Opener: STEM in Action 31
Unit Opener: Ignite!. 32
Unit Resources At-A-Glance. 32A
Lessons
2-1 Understand Volume 33A
2-2 Use Unit Cubes to Determine Volume 37A
2-3 Use Formulas to Determine Volume 41A
Math Probe Volume of Rectangular Prisms. 45
2-4 Determine Volume of Composite Figures 47A
2-5 Solve Problems Involving Volume 51A
Unit Review 55
Fluency Practice. 59
Performance Task 60A
Unit Assessment 60B

Place Value and Number Relationships

Unit Planner 61A
Unit Overview 61C
Unit Routines 61F
Readiness Diagnostic 61G
Unit Opener: STEM in Action 61
Unit Opener: Ignite!. 62
Unit Resources At-A-Glance. 62A
Lessons
3-1 Generalize Place Value 63A
3-2 Extend Place Value to Decimals. 67A
3-3 Read and Write Decimals 71A
3-4 Compare Decimals 75A
Math Probe Comparing Decimals 79
3-5 Use Place Value to Round Decimals 81A
Unit Review 85
Fluency Practice. 89
Performance Task 90A
Unit Assessment 90B

Add and Subtract Decimals

Unit Planner 91A
Unit Overview 91C
Unit Routines 91F
Readiness Diagnostic 91G
Unit Opener: STEM in Action 91
Unit Opener: Ignite!. 92
Unit Resources At-A-Glance. 92A
Lessons
4-1 Estimate Sums and Differences of Decimals 93A
Math Probe Estimating Decimal Sums and Differences 97
4-2 Represent Addition of Decimals. 99A
4-3 Represent Addition of Tenths and Hundredths 103A
4-4 Use Partial Sums to Add Decimals 107A
4-5 Represent Subtraction of Decimals 111A
4-6 Represent Subtraction of Tenths and Hundredths 115A
4-7 Strategies to Subtract Decimals. 119A
4-8 Explain Strategies to Add and Subtract Decimals 123A
Unit Review 127
Fluency Practice. 131
Performance Task 132A
Unit Assessment 132B
Benchmark Assessment 1 132D

Multiply Multi-Digit Whole Numbers

Unit Planner 133A
Unit Overview 133C
Unit Routines 133F
Readiness Diagnostic 133G
Unit Opener: STEM in Action 133
Unit Opener: Ignite!. 134
Unit Resources At-A-Glance. 134A
Lessons
5-1 Understand Powers and Exponents 135A
5-2 Patterns When Multiplying a Whole Number by Powers of 10 139A
5-3 Estimate Products of Multi-Digit Factors 143A
5-4 Use Area Models to Multiply Multi-Digit Factors. 147A
5-5 Use Partial Products to Multiply Multi-Digit Factors 151A
5-6 Relate Partial Products to an Algorithm. 155A
Math Probe Multiplication of 2-Digit Numbers 159
5-7 Multiply Multi-Digit Factors Fluently 161A
Unit Review 165
Fluency Practice. 169
Performance Task 170A
Unit Assessment 170B

Multiply Decimals

Unit Planner 171A
Unit Overview 171C
Unit Routines 171F
Readiness Diagnostic 171G
Unit Opener: STEM in Action 171
Unit Opener: Ignite!. 172
Unit Resources At-A-Glance. 172A
Lessons
6-1 Patterns When Multiplying Decimals by Powers of 10 173A
6-2 Estimate Products of Decimals. 177A
6-3 Represent Multiplication of Decimals 181A
Math Probe Decimal Multiplication 185
6-4 Use an Area Model to Multiply Decimals. 187A
6-5 Generalizations about Multiplying Decimals 191A
6-6 Explain Strategies to Multiply Decimals. 195A
Unit Review 199
Fluency Practice. 203
Performance Task 204A
Unit Assessment 204B

Divide Whole Numbers

Unit Planner 205A
Unit Overview 205C
Unit Routines 205F
Readiness Diagnostic 205G
Unit Opener: STEM in Action 205
Unit Opener: Ignite!. 206
Unit Resources At-A-Glance. 206A
Lessons
7-1 Division Patterns with Multi-Digit Numbers. 207A
7-2 Estimate Quotients 211A
7-3 Relate Multiplication and Division of Multi-Digit Numbers 215A
7-4 Represent Division of 2-Digit Divisors 219A
7-5 Use Partial Quotients to Divide 223A
7-6 Divide Multi-Digit Whole Numbers 227A
7-7 Solve Problems Involving Division 231A
Math Probe Solving Division Word Problems 235
Unit Review 237
Fluency Practice. 241
Performance Task 242A
Unit Assessment 242B
Benchmark Assessment 2 242D

Divide Decimals

Unit Planner 1A
Unit Overview 1C
Unit Routines $1 F$
Readiness Diagnostic 1G
Unit Opener: STEM in Action 1
Unit Opener: Ignite!. 2
Unit Resources At-A-Glance. 2A
Lessons
8-1 Division Patterns with Decimals and Powers of 10 3A
8-2 Estimate Quotients of Decimals 7A
8-3 Represent Division of Decimals by a Whole Number 11A
8-4 Divide Decimals by Whole Numbers 15A
8-5 Divide Whole Numbers by Decimals 19A
8-6 Divide Decimals by Decimals 23A
Math Probe Decimal Division 27
Unit Review 29
Fluency Practice 33
Performance Task 34A
Unit Assessment 34B

Add and Subtract Fractions

Unit Planner 35A
Unit Overview 35C
Unit Routines 35F
Readiness Diagnostic 35G
Unit Opener: STEM in Action 35
Unit Opener: Ignite!. 36
Unit Resources At-A-Glance. 36A
Lessons
9-1 Estimate Sums and Differences of Fractions. 37A
Math Probe Make an Estimate of the Sum 41
9-2 Represent Addition of Fractions with Unlike Denominators 43A
9-3 Add Fractions with Unlike Denominators 47A
9-4 Represent Subtraction of Fractions with Unlike Denominators 51A
9-5 Subtract Fractions with Unlike Denominators. 55A
9-6 Add Mixed Numbers with Unlike Denominators 59A
9-7 Subtract Mixed Numbers with Unlike Denominators 63A
9-8 Add and Subtract Mixed Numbers with Regrouping 67A
9-9 Solve Problems Involving Fractions and Mixed Numbers. 71A
Unit Review 75
Fluency Practice. 79
Performance Task 80A
Unit Assessment 80B

Multiply Fractions

Unit Planner 81A
Unit Overview 81C
Unit Routines 81F
Readiness Diagnostic 81G
Unit Opener: STEM in Action 81
Unit Opener: Ignite!. 82
Unit Resources At-A-Glance. 82A
Lessons
10-1 Represent Multiplication of a Whole Number by a Fraction 83A
10-2 Multiply a Whole Number by a Fraction. 87A
Math Probe Fraction Problems 91
10-3 Represent Multiplication of a Fraction by a Fraction. 93A
10-4 Multiply a Fraction by a Fraction 97A
10-5 Determine the Area of Rectangles with Fractional Side Lengths. 101A
10-6 Represent Multiplication of Mixed Numbers 105A
10-7 Multiply Mixed Numbers. 109A
10-8 Multiplication as Scaling. 113A
10-9 Solve Problems Involving Fractions 117A
Unit Review 121
Fluency Practice 125
Performance Task 126A
Unit Assessment 126B
Benchmark Assessment 3 126D

Divide Fractions

Unit Planner 127A
Unit Overview 127C
Unit Routines 127F
Readiness Diagnostic 127G
Unit Opener: STEM in Action 127
Unit Opener: Ignite!. 128
Unit Resources At-A-Glance. 128A
Lessons
11-1 Relate Fractions to Division 129A
11-2 Solve Problems Involving Division 133A
11-3 Represent Division of Whole Numbers by Unit Fractions 137A
11-4 Divide Whole Numbers by Unit Fractions 141A
11-5 Represent Division of Unit Fractions by Non-Zero Whole Numbers. 145A
11-6 Divide Unit Fractions by Non-Zero Whole Numbers 149A
Math Probe Which Expressions Represent the Situation? 153
11-7 Solve Problems Involving Fractions 155A
Unit Review 159
Fluency Practice. 163
Performance Task 164A
Unit Assessment 164B

Measurement and Data

Unit Planner 165A
Unit Overview 165C
Unit Routines 165F
Readiness Diagnostic 165 G
Unit Opener: STEM in Action 165
Unit Opener: Ignite!. 166
Unit Resources At-A-Glance. 166A
Lessons
12-1 Convert Customary Units 167A
12-2 Convert Metric Units. 171A
12-3 Solve Multi-Step Problems Involving Measurement Units 175A
12-4 Represent Measurement Data on a Line Plot 179A
12-5 Solve Problems Involving Measurement Data on Line Plots 183A
Math Probe Line Plots. 187
Unit Review 189
Fluency Practice 193
Performance Task 194A
Unit Assessment 194B

Geometry

Unit Planner 195A
Unit Overview 195C
Unit Routines 195F
Readiness Diagnostic 195G
Unit Opener: STEM in Action 195
Unit Opener: Ignite!. 196
Unit Resources At-A-Glance. 196A
Lessons
13-1 Understand the Coordinate Plane 197A
13-2 Plot Ordered Pairs on the Coordinate Plane 201A
13-3 Represent Problems on a Coordinate Plane 205A
13-4 Classify Triangles by Properties 209A
13-5 Properties of Quadrilaterals 213A
Math Probe Ordered Pairs 217
13-6 Classify Quadrilaterals by Properties 219A
Unit Review 223
Fluency Practice. 227
Performance Task 228A
Unit Assessment 228B

Algebraic Thinking

Unit Planner 229A
Unit Overview 229C
Unit Routines 229F
Readiness Diagnostic 229G
Unit Opener: STEM in Action 229
Unit Opener: Ignite!. 230
Unit Resources At-A-Glance. 230A
Lessons
14-1 Write Numerical Expressions 231A
14-2 Interpret Numerical Expressions 235A
14-3 Evaluate Numerical Expressions 239A
Math Probe Order of Operations 243
14-4 Numerical Patterns 245A
14-5 Relate Numerical Patterns 249A
14-6 Graphs of Numerical Patterns 253A
Unit Review 257
Fluency Practice. 261
Performance Task 262A
Unit Assessment 262B
Summative Assessment 262D

PACING: 10 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE	SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
Unit Opener		Stand Explore division of whole numbers	by decimals using informal strategi	
8-1	Division Patterns with Decimals and Powers of 10	Students use place-value patterns to determine the quotient of a decimal divided by a power of 10 . Students use the relationship between place-value positions to explain patterns when dividing decimals by powers of 10 .	Students talk about place-value patterns when dividing decimals by powers of 10 while answering Wh- questions and using the term shift.	Students determine the strategies and analyses necessary to make informed decisions when engaging in mathematical practices.
8-2	Estimate Quotients of Decimals	Students estimate quotients of decimals using the same strategies used to estimate quotients of whole numbers. Students use estimated quotients to make predictions about a calculated solution. Students use estimated quotients to assess the reasonableness of a calculated solution.	Students discuss estimating the quotients of decimals while answering Wh- and Yes/No questions and using terms such as could and would.	Students practice strategies for persisting at a mathematical task, such as setting a small goal or setting timers for remaining focused.
	Represent Division of Decimals by a Whole Number	Students represent division of decimals with equal sharing or equal grouping.	Students discuss how to divide decimals by whole numbers while answering Wh- questions and using the modal might.	Students engage in active listening and work collaboratively with a partner to complete mathematical tasks.
8-4	Divide Decimals by Whole Numbers	Students use place-value understanding Stud and equivalent representations to divide a decimal by a whole number.	udents explain how to divide a ecimal by a whole number by answering multiple How questions using can.	Students identify and discuss the emotions experienced during math learning.
	Divide Whole Numbers by Decimals	Students use decimal grids to represent nd solve a division equation. Students multiply by a power of 10 to write an equivalent expression with a whole-number divisor to solve a division equation.	Students discuss finding quotients of whole numbers using division grids and powers of 10 , answering How and Why.	Students recognize and work to understand the emotions of others and practice empathetic responses.
8-6	Divide Decimals by Decimals	Students multiply the dividend and the divisor by a power of 10 to write an equivalent equation contining whole numbers to solve a division equation.	Students discuss multiple strategies to find quotients of decimals while answering Wh-questions.	Students set learning goals and initiate work on tasks to accomplish their goals.
Math Probe Decimal Division Select the correct quotient for division with a decimal dividend and divisor.				
Fluency Practice Unit Review				
Unit Assessment Performance Task				

FOCUS QUESTION: What strategies can I use to divide decimals?

| LESSON | KEY VOCABULARY | | MATERIALS TO GATHER | | RIGOR FOCUS |
| :--- | :--- | :--- | :--- | :--- | :--- | STANDARD

Unit Overview

Focus

Dividing Decimals

Dividing by a (positive) decimal less than 1 is not always intuitive. When children first learn about the effect of each operation, they see that addition and multiplication have answers that are generally greater than the first addend or factor, whereas subtraction and division generally have answers that are less than the minuend or dividend.

This unit opens with use of different-sized glasses and jugs to illustrate division by decimals. This is an important opportunity to help students form a concrete understanding that dividing does not always "make smaller." When you ask, for example, how many small (0.2 -liter) glasses are in a 2 -liter jug, students better understand the nature of division: not simply making numbers smaller-but finding out how many of one quantity "fit into" another.

As the unit progresses, even when size is not involved, provide frequent "how many fit into" prompts, to consistently remind students that they are to find out how many of a certain decimal are in a given number.

Models may be helpful when making informal connections to dividing a whole number by a decimal. Models may help students understand that dividing something into smaller-size pieces produces more. For example, a ruler can be used to show that twenty 0.1-centimeter segments fit into 2 centimeters. Thus $2 \div 0.1=20$ is an example where the quotient is greater than the dividend.

A strategy used to divide a number by a decimal is to multiply the dividend and the divisor by the same power of 10 so that the divisor becomes a whole number. Students can use representations to show that the quotient does not change as a result of this process. For example, students can use decimal grids to show that $1 \div 0.2=5$ (5 groups of 0.2 are in 1 full grid), and $0.60 .15=4$ $(4$ groups of 0.15 are in 0.6 grid). Those quotients can then be compared to $10 \div 2=5$ and $60 \div 15=4$ for students to conclude that the respective quotients (based on decimals and whole numbers) are the same.

Coherence

What Students Have Learned

- Students divide 4-digit dividends by 1 -digit divisors and know how to make sense of remainders. (Grade 4)
- Students use place-value understanding and properties of operations to perform multi-digit division. (Grade 4)
- Students use partial-quotient strategies to divide multi-digit numbers with single-digit divisors. (Grade 4)
- Students illustrate and explain calculations using equations, rectangular arrays, and/or area models. (Grade 4)
- Students solve real-world division problems with one-digit divisors. (Grade 4)

What Students Are Learning

- Students use strategies based on place value to divide decimals.
- Students estimate quotients of decimals.
- Students represent division of decimals by a whole number.
-Students use place-value understanding and equivalent representations to divide decimals by whole numbers.
- Students divide whole numbers by decimals using decimal grids and equivalent equations.
- Students divide decimals by decimals using area models to find partial quotients for equivalent equations.

What Students Will Learn

- Students fluently divide decimals using the standard algorithm (Grade 6).

Rigor

> Conceptual Understanding
> Students develop understanding of
> - dividing decimals by powers of 10 using strategies based on place value, properties of operations, and patterns in the quotients of powers of 10;
> - using representations and the relationship between multiplication and division to better understand division of decimals by whole numbers and decimals.

Procedural Skill and Fluency

Students build proficiency with

- writing an explanation describing patterns used when dividing with decimals;
- using decimal place value, basic facts, and division strategies by expanding their skills to include division of decimals by whole numbers; - using decimal place value, basic facts, and division strategies by expanding their skills to include division of decimals by decimals.

Application

Students apply their knowledge of

- estimating quotients to successfully solve contextual, real-world problems;
- understanding of decimal division to solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

Effective Teaching Practices

Elicit and Use Evidence of Student Thinking

As students progress through the unit, listen carefully to their answers and reasoning. Whether students get a correct solution is important, but the thought process that gets them to a solution-either correct or incorrect-is a window that provides an opportunity for greater growth and more targeted instruction.

As students learn about operations with decimals, there are multiple possibilities for errors related to understanding and execution.
Students may have misconceptions about the nature of decimals less than 1 . They may have persistent calculation errors. They may have misconceptions about place-value patterns for decimal division.
Ask frequent questions, especially those that require reasoning. Use students' responses to inform instruction and determine what kinds of practice and review might be necessary.

For example, if students begin to move in the wrong place-value direction when they divide with decimals, ask them to consider what the quantities represent. Return to the use of concrete and visual models if students do not seem comfortable describing operations and values.

Lessons 8-1 and 8-2 provide a foundation in understanding decimal division that should be revisited when students' reasoning does not show solid understanding. The base-ten place-value systemis concretely represented in cents and dollars, and estimation helps students assess the reasonableness of their calculations.

Estimation provides a wonderful window into student thinking. Students should be encouraged to share how they used compatible numbers and rounding to form estimates. They should be expected to explain, say, that although an estimate of 50 may not be very close to an exact answer of 42 , it does provide a convincing argument that answers such as 4.2 or 1.42 are not reasonable.

Math Practices and Processes

Look for and Make Use of Structure

It is possible for many students to simply memorize the rules for division with decimals and then carry out the operations successfully.
However, analyzing and understanding the structure of decimal operations provides greater reliability as students solve problems, as well as greater transference of learning to increasingly complex challenges as they progress in mathematics.
Encourage students to see division with decimals in concrete terms. Refer back to the first lesson in this unit, with powers of 10 , if students become confused. Use concrete modeling to help students remember the structure behind the numbers and equations.

Focus students' attention on the models presented in this unit. When students see equations next to the charts, they will especially recognize the place-value pattern when they divide by a decimal and then apply the pattern with increasing competence.

Use whole numbers to reinforce structure. Have students use wholenumber estimation and comparisons. Encourage students to reason and generalize about how whole-number and decimal division and the same and different.

Provide consistent opportunities for students to focus on structure.
Some suggestions include:

- Students work with partners to analyze a division problem with decimals. One partner makes a concrete model or drawing to show the division as it is written. The other partner makes a model or drawing to show a compatible division with whole numbers. Students compare and discuss their representations and answers.
- Students use place-value charts to record and analyze a division expression and explain its structure to the class.

Social and Emotional Learning

- Responsible Decision-Making - Analyze Situations (Lesson 8-1): Students make sense through analysis, which helps them make informed decisions.
- Self-Management - Self-Discipline (Lesson 8-2): Self-disciplined students can manage their impulses to focus on a mathematical task.
- Relationship Skills - Build Relationships (Lesson 8-3): Building positive relationships can help establish a strong classroom community.
- Self-Awareness - Identify Emotions (Lesson 8-4): Students who can identify and understand their own feelings and emotions can better manage the reactions to those feelings and emotions.
- Social Awareness - Empathy (Lesson 8-5): Students who can empathize with others are more able to build positive relationships.
- Self-Management - Self-Motivation (Lesson 8-6): Students who self-motivate can take initiative and persevere through challenging tasks.

Unit Overview

Language of Math

Vocabulary

Students will be using these key terms in this unit.

- Dividend - (Lesson 8-2): Students were introduced to this term in the context of division fluency. It is the number that gets divided in a division problem.
- Divisor - (Lesson 8-2): Students were introduced to this term in the context of division fluency. It is the number that divides another number in a division problem.
- Estimate - (Lesson 8-2): Students were introduced to this term in the context of solving word problems involving all four operations. Have students discuss how estimation can help them evaluate the reasonableness of a solution.
- Powers of 10 - (Lesson 8-1): This term was introduced in Unit 3 in the context of observing place-value patterns when multiplying by numbers such as $100,10,0.1$, and 0.01 . In this unit, students multiply the divisor and the dividend by the same power of 10 so that the divisor is a whole number.
- Quotient - (Lesson 8-2): Students were introduced to this term in the context of division. This is the result of dividing one number by another number.

Math Language Development

A Focus on Division Language

Students may reach grade 5 with knowledge of division terminology but without having integrated the terms into their functional vocabulary.

Emphasize the terms dividend, divisor, and quotient as you relate division expressions and equations to their corresponding representations. Help students recognize that using the correct word for each part of an expression or equation is much more efficient than using phrases such as the number that is dividing the other number (divisor), and more specific than the answer (quotient).

To help reinforce division terminology, present division problems and have students identify the terms associated with each value.

$$
\text { dividend } \div \text { divisor }=\text { quotient }
$$

The word dividend comes from the word divide. Students should be able to recognize that this is the value that they are going to divide.

Advise students that the word divisor includes the suffix "-or," which students can recognize as an indicator of action.
Present common nouns that end in "-or" or "-er" such as actor, sailor, worker, and teacher. Ask students to say what each noun means, to elicit answers such as "an actor acts" and "a teacher teaches." Then ask, "What does a divisor do?" Students should be able to reply, "A divisor divides."
Some students might note that a "divider" also divides.
Advise students that the word quotient comes from the Latin word quotiens which means "how many times". Discuss the fact that the answer to a division problem also describes the relationship in terms of how many times one number fits into another.

English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain dividing decimals. Because many of the words and phrases used in this section are likely unfamiliar or unknown to ELs, students are supported in understanding and using these words.

Number Routines

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

Decompose It

Purpose: Build flexibility with numbers.
Overview: Students generate multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. The teacher records decompositions and then facilitates a discussion of patterns in the decompositions.

About How Much

Purpose: Build estimating skills.
Overview: Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

Where Does It Go?

Purpose: Build estimating skills using benchmarks.
Overview: Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

Sense-Making Routines

- Is It Always True? (Lesson 8-1) Students discuss whether or not division always makes a number smaller.
- Notice \& Wonder: What question could you ask? (Lesson 8-2) Students are presented with an image of fabric and a statement about the theater department using the fabric for costumes.
- Notice \& Wonder: What question could you ask? (Lesson 8-3) Students are presented with an image of bills, coins, and piggy banks. Students might wonder about equal sharing and how to divide the money among the banks when the amount is not a whole number.
- Which Doesn't Belong? (Lesson 8-4) Students are presented with four numbers. Students might determine the equivalent values based on the number of different size parts.
- Notice \& Wonder: What do you notice? What do you wonder?
(Lesson 8-5) Students are presented with an image of a pile of quarters. Students might wonder if the whole pile is quarters and the value of the money in the pile.
- Notice \& Wonder: What do you notice? What do you wonder?
(Lesson 8-6) Students see four equations. Students might wonder how the quotients are the same with different dividends and divisors.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. For more information on the Mathematical Language Routines, see the Appendix.

- Lesson 8-1 - Students participate in MLR2: Collect and Display and MLR4: Info Gap so that students' oral words and phrases can be captured into a stable, collective reference and so that they have a structured and interactive opportunity to work together to solve how to represent unknown values using division.
- Lesson 8-2 - Students participate in MLR6: Three Reads so that they have a structured and interactive opportunity to list the steps they must complete in order to estimate a quotient.
- Lesson 8-3 - Students' meta-awareness can be fostered as they discuss how the tools and strategies they've learned in the past can help them solve a problem using division and decimal grids and so that students' oral and written output can be fostered as they compare and contrast different ways to solve division problems.
- Lesson 8-4 - Students participate in MLR1: Stronger and Clearer Each Time so that they have a structured and interactive opportunity to revise and refine both their ideas and their verbal and written output while dividing a decimal by a whole number.
- Lesson 8-5-Students participate in MLR7: Compare and Connect so that students' meta-awareness can be fostered as they compare and contrast different ways to solve such problems.
- Lesson 8-6 - Students participate in MLR5: Co-Craft Questions and Problems so that they can produce the language of mathematical questions related to solving division problems that include dividing decimals by powers of 10 .

Unit 8

How Ready Am I?

Name

1. Which is the quotient of $144+6$?
A. 150
. 138
C. 27
(D) 24
2. Which is the quotient of $143+5$?
A. 28 R
(B.) 28 R 3
C. 280
D. 286
3. Which is the quotient of $1.596 \div 427$
A. 37 R32
(B) 38
C. 38 R10
D. 43
4. Gerard spent $\$ 184$ on 23 tems. Each kem costs the same amount. How much was each tem?
A. $\$ 151$
(B) $\$ 8$
C. $\$ 4,232$
D. $\$ 7$
5. Which is the product of $57 \times 1,000$?
A. 57
B. 570
(C.) 5,700
D. 57,000
6. Whikt is the unknow? $0.035 \times ?=35$
A. 0.001
B. 0.01
c. 10
(D) 1000
7. A baker makes 180 plain bagels. He plans to place the bagets equally in 60 bags for a funcraiser. How many bagels will he ptace in eacti bog?
A. 30 bagels
B. 20 bagels
C. 3 bagels
D. 2 bagels
8. Mary plans to give an equal number of her 48 stickers to 7 of her friends and keep any leftover stickers for herself Which statement correctly describes how Mary will share her stickers?
A. Each friend should recove 7 stickers, iowing Mary with I sticker to keep.
E. Each friend should rocelve 7 tuickers, leaving Mary weth 0 stickers to keep.
C. Each friend should recelve 6 sticken. ledving Mary with 6 stickens to keep
D. Each friend should recpive 6 stickens, loaving Mary with 3 stickers to keep
9. Yolands knows that $43 \times 0.56=24.08$. Which is 4.3×0.56 ?

(A.) 2.408

B. 2408
C. 240.8
D. 2.408
10. A rectangular flower porden is 12 feet long and 6.4 feet wide What is the area of the flower garden?
A. 36.8 square foet
B. 72 square foet
C. 76.8 square feet
D. 768 square foet

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

Targeted Intervention

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	DOK	\$kill	Guided Support Intervention Lesson	Standard
1	1	Division of 3-digit by 1-digit number	Three-Digit Dividends (Partial Quotients)	4.NBT.B. 6
2	1	Division of 3-digit by 1-digit number with remainder	Three-Digit Dividends (Partial Quotients)	4.NBT.B. 6
3	1	Division of 4-digit by 2-digit number	Divide by 2-Digit (Partial Quotients)	5.NBT.B. 6
4	2	Division of 3-digit by 2 -digit number in a word problem	Divide by 2-Digit (Partial Quotients)	5.NBT.B. 6
5	1	Multiply decimal by power of 10	Multiply by Powers of 10 (Decimal Point)	5.NBT.A. 2
6	1	Multiply decimal by whole number	Multiply Decimals by Whole Numbers-Model	5.NBT.B. 7
7	2	Making equal groups with division by multiples of 10	Divide by Multiples of 10	5.NBT.B. 6
8	2	Interpret remainders in division	Interpret Remainders in Word Problems	4.OA.A. 3
9	1	Patterns in decimal multiplication	Multiply Decimal Numbers (Patterns)	5.NBT.B. 7
10	2	Multiply whole number by decimal	ultiply Decimals by Whole Numbers-Model	5.NBT.B. 7

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question, What strategies can I use to divide decimals?

Ask students to think about what they know about decimals, place value, and division.

- What do you already know about decimals? What do you already know about place value?
- When do you think you might need to divide with decimals?
-What do you think you will be learning in this unit?
Remind students that at the end of the unit, they will reflect back on what they learned in this unit.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Pastry Chef Saffron talks about her aspirations to be a pastry chef.
Shopping for Baking Supplies Saffron uses division to determine the price she pays for different baking supplies.

STEM Project

Students can complete the STEM Project Card during their workstation time.

STEM Adventure

Students can complete the STEM Adventure during their workstation time.

STEM Career: Pastry Chef

NiTE

Name

Lemonade Stand

You sell lemonade in these three sizes:

Small Glass 0.2 liter Regular Glass 0.25 liter Large Glass 0.75 liter You make the lemonade in jugs of these three sizes:

2-liter Jug

3-liter Jug

5-liter Jug

1. Wite some mathematical questions that come to mind about the lemonade stand.

Answers may vary.
2. Pick one size of glass and one size of jug. How mary of the glasses can be filled with a full jug of lemonade? Explain your thinking. Sample answer: If I choose the 3-Ilter jug and the 0.25 -liter glass, I think 12 glasses can be filled because four glasses can be filled with a liter of lemonade.
3. Ask a partner what sire of glass and jug they selected and how mary glarses they thought could be filled. Hove your partner explain their answec. Answers may vary.

Ignite!

Lemonade Stand

This Ignite! sets the stage for decimal division by using "friendly" decimals to allow students to apply informal strategies, such as drawing pictures or repeated subtraction, to obtain the answers.

1. Have students observe the sizes of glasses of lemonade they will sell and the sizes of jugs in which they will make the lemonade. Then have them work in pairs to do problem 1.

- Share some of your questions with the class.

2. Ask the questions below, and have students record the results in the table with problem 2. Remind students that they can draw pictures, use knowledge about fractions, and other tools to answer the questions.

- How many small glasses can be made from each of the three jug sizes? How much lemonade will be left over in each jug? Explain.
- How many regular glasses can be made from each jug? How much lemonade will be left over in each jug? Explain.
- How many large glasses can be made from each jug? How much lemonade will be left over in each jug? Explain.

3. The following questions have students explore quotients involving decimals by considering related problems involving whole numbers.

- How many 2 -liter containers could be filled from a 20 -liter tank?
- How does that answer compare to the number of 0.2 -liter glasses that are in a 2 -liter jug that you found in the table?
- How many 2 -liter containers could be filled from a 30 -liter tank? from a 50 -liter tank?

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the new terms on the front side of the card.

Foldables

Use the unit foldable with Lessons 8-1, 8-3, and 8-4.

Spiral Review

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.

Lesson	Standard
$8-1$	5.MD.C.3
$8-2$	5.NBT.B.6
$8-3$	5.NBT.A.1
$8-4$	5.NBT.A.2
$8-5$	5.MD.C.4
$8-6$	5.NBT.B. 7

Division Patterns with Decimals and Powers of 10

Learning Targets

- I can use place-value patterns to divide a decimal by a power of 10.
- I can explain patterns when dividing a decimal by a power of 10 .

Standards \diamond Major Δ supporting O Additional

Content

5.NBT.A Understand the place value system.
\diamond 5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .

Math Practices and Processes
MPP Look for and make use of structure.

Focus

Content Objectives

- Students use place-value patterns to determine the quotient of a decimal divided by a power of 10 .
- Students use the relationship between place-value positions to explain patterns when dividing decimals by powers of 10 .

Language Objectives

- Students talk about place-value patterns when dividing decimals by powers of 10 while answering Wh- questions and using the term shift.
- To support maximizing linguistic and cognitive meta-awareness and optimizing output, ELs participate in MLR2: Collect and Display and MLR4: Info Gap.

SEL Objective

- Students determine the strategies and analyses necessary to make informed decisions when engaging in mathematical practices.

Coherence

Previous multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right (Grade 4).

- Students divided milti-digit whole numbers (Unit 7).

Rigor

Conceptual Understanding

- Students develop understanding of dividing decimals by powers of 10 using strategies based on place value, properties of operations, and patterns in the quotients of powers of 10 .

Procedural Skill \& Fluency

- Students write an explanation describing patterns used when dividing with decimals.

Application

- Students apply their understanding of dividing decimals by powers of 10 to solve contextual problems.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Term
power of 10
\section*{Academic Terms}
expand
reflect
suggest

Materials

The materials may be for any part of the lesson.

- base-ten blocks
- calculator
- hundreds grids

Number Routine Decompose It © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they decompose the number 12.36 in 3 ways.

Remind students that there will be many different possible answers to the problem. As solutions are given, record them for students to evaluate and compare.

These prompts encourage students to talk about their reasoning:
-What do you notice about the number?

- How did you determine different decompositions of 12.36 ?
- How did you know that your decompositions were reasonable?
- What is another way to think about how to decompose the number?

Purpose Students think about the meanings of division to challenge some overgeneralizations that some students may have made. This lesson is their first experience with dividing by a number less than 1 .

Is It Always True?

- Is the statement always true?

See the Appendix for a full description of the sense-making routines.
Teaching Tip Some students may benefit from using manipulatives such as base-ten blocks to test their theories. Visual learners may also draw on hundred grids to explore different divisions.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how division affects a value and are based on possible comments and questions that students may make during the share out.

- If you find an example where division makes numbers less, does that mean the statement is always true?
- How many one-half oranges are in 6 oranges?
- What types of numbers do you think you can divide by? What types of numbers do you think you can divide?

Math is... Jindset

-What helps you understand a problem situation?

SE

Responsible Decision Making: Flexible Thinking As students work through the Is It Always True? routine, encourage them to analyze or think about the situation critically before they take steps toward solving. Having them consider what information they have, what question is being asked, and what tools they may use can help students make sense of the situation. This analysis can help students make more informed decisions.

Transition to Explore \& Develop

Have students think about what division represents. Guide them toward discussing how the relationship between the dividend and the divisor affects the quotient.

[^0]

C. Work Together

Oscar has $\$ 120$. 1 the has only dimes, how many dimes does he have? If he has onty perniek. how mary pennies does he hove? Exploin your thinking
12; 120; Sample answer: divide the amount of money Oscar has by the value each coin; $1.20 \div 0.10=12$; $1.20 \div 0.01=120$

(1) Pose the Problem

KLI

Collect and Display

As students discuss the questions, write key words and phrases you hear, such as shift, unknown values, relationship, pieces, and power of 10.
Display the words and phrases for student reference and use the student generated expressions to help make connections between student language and math vocabulary. Update the collection with new understandings as the lesson progresses.

Pose Purposeful Questions

-What is this problem about? How can you restate the problem in your own words?
-When have you seen problems like this before?

- How might the length of each piece and the numbers of pieces of string be related?

(2) Develop the Math

Choose the option that best

 meets your instructional goals.
MIR
 Info Gap

Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to solve the problem. Instruct Partner B to ask A what information they need, and for A to respond, explaining why they need it. Have students continue until the problem is completed.

3 Bring It Together

- How would you describe the place-value patterns when dividing a decimal by a power of 10 ?

Key Takeaway

- The relationship between place-value positions can explain patterns when dividing decimals by powers of 10 .

Work Together

Students use their knowledge of place-value patterns when dividing by 0.1 or 0.01 to find the number of dimes and pennies in a given amount.
Students can work on the activity in pairs before sharing their work.
Common Error Students may relate the number of decimal places in the divisor and/or dividend to the number of decimal places in the quotient. Invite students to ask, "Does this make sense?" if they are making this error.

LOM Language of Math

Point out to students that powers of 10 are not only numbers like 100 and 1,000 that can be written as a product of 10 multiplied by itself a number of times, but also numbers like $\frac{1}{100}$ and $\frac{1}{1,000}$ which can be written as a product of $\frac{1}{10}$ multiplied by itself a number of times.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore place-value patterns when dividing by powers of 10 and use their patterns to divide decimals by powers of 10 .

Materials: calculator

Directions: Students enter any decimal number on the calculator (e.g. 24.1), then divide their decimal by 10. Have them guess the quotient before they press the equal key. Students continue dividing by 10 mentally, challenging themselves to predict the quotient before they press the equal key. After repeatedly dividing by 10 , have them repeat the process by repeatedly dividing by 0.1.

ETP Implement Tasks That Promote Reasoning and Problem Solving

- How did you use mental math to predict the quotient?
- What happens to the digits in the quotient each time the number is divided by 10 ?
- What happens to the digits in the quotient each time the number is divided by 0.1 ?
- How could you summarize the results to predict how dividing a decimal by a power of 10 affects the decimal value?

Math is... Structure

- How does dividing by powers of 10 compare to multiplying by powers of 10 ?

Students connect dividing by powers of 10 to multiplying by them and expand their understanding of the structure of the place value system.

Activity Debrief: Have students share their findings when repeatedly dividing by 10 or 0.1 . Discuss patterns in the number of places the digits of the dividend shifted.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the missing values in the table?

Guided Exploration

Students use the relationship between place-value positions to solve division problems involving decimals divided by powers of 10 .

EIP Use and Connect Mathematical Representations

-Why should you use division to find the length of each piece?
(8. Have students justify the thinkng about dividing by 10 and 100 .

For example, ask:

- How can you write $37.5 \div 10=$? as a related multiplication equation?
- How can you use what you know about multiplying decimals by powers of 10 to solve for the unknown in that equation?
- How can you use the solution to that equation to write a related division equation to solve the original equation?
- Is it possible to use a representation to solve $37.5 \div 100$? What would be some reasons why a representation may not be the most efficient strategy?
- Think About It: How can you use multiplication to check if your answers when dividing decimals by powers of 10 are correct?

Math is... Structure

- How does dividing by powers of 10 compare to multiplying by powers of 10 ?

Students connect dividing by powers of 10 to multiplying by them and deepen their understanding of the structure of the place value system.

2. Develop the Math

Let's find the length of each piece when the 37.5 -centimeter string is cut into 10 pleces of equal length

English Learner Scaffolds

Entering/Emerging Support students' understanding of the word long as it pertains to length. Using a ruler, measure the length of a pencil. Say This pencil is [18] centimeters long Repeat the task, measuring a notebook. Say This notebook is [21] centimeters long. Then ask students to find the values on the Learn table that represent how long something is.

Developing/Expanding Support students' understanding of the word long as it pertains to length. Using a ruler, measure the length of a pencil. Say This pencil is [18] centimeters long. Repeat the task, measuring a notebook. Say This notebook is [21] centimeters long. Ask students to repeat the task, measuring an object of their choice, using long in their sentence. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to explain how they can use the relationship between place-value positions to find the length of each piece in the problem. Listen for key words and phrases such as shift/ place(s), to the right, and long. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding.

On My Own (MATH)|GO

Name
What are the quotients? Use a pattem to solve and explain your thinking.

1-2 Sample answer: As the divisor decreases by a power of 10 , the quotient increases by a power of 10 .
What is the quotientr

3. $91.4+01=\frac{914}{}$	4. $55.8+0.01=5,580$
5. $50.5+0.01=5.050$	6. $322+01=332$
7. $16.4+10=1.64$	B. $444.8 \div 100=4.448$

9. Elsha is buying a tnumpet. She we make to equal painmonts to piry for the trumpet. How much will each payment be?
$\$ 14.55$
10. Danny wnliced 5673 miles in 100 deys.

Michelle walked 5673 miles by waving 0.1 mile each day. Whe
walked for more dogs? Who waibed farther sach day? Explain
Michelle; Danny; Student explanations will vary. Sample response: Danny walked 5.673 miles each day ($567.3 \div$ $100)$. Michelle walked for 5,673 days ($567.3 \div 0.1$).
11. Aryion't bicycling club goes on a fong nide to Saturdays of every yeal. What was the averape distance they rode each trip last year?
34.55 miles

12. Error Anolysis Paul has 32.4 malititers of solution -he uses as milititer of solution for each experiment. Paul states that he can complete 3.24 trifis uping all of his sotution. How do you respond to him?
Sample answer: I disagree with Paut. Paul should move the digits to the left: $32.4 \div 0.1=324$. He can complete 324 trials with the solution.
13. Extend Your Thimking Find the value of x that makes the equation true. Explein how you know,
$7+0.01=700+x$
$x=1$; Sample answer: You can multiply 7 and 0.01 by 100 to get 700 and 1 . Both expressions will result in the same quotient.

(2) Reflect

How does the reiationship between place value postions help you divide decimels by powers of 10 ?
Answers may vary.

Math is.in Minduat

 What helped you understand a probiem stuation todey?
Practice

ETP Build Procedural Fluency from Conceptual Understanding

1 Common Error: Exercise 1 Students may apply the same pattern for dividing by powers of 10 as they do for multiplying by powers of 10 . You may wish to remind them of the inverse relationship between multiplication and division.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill and Fluency
$9-11$	2	Application
$12-13$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How does the relationship between place-value positions help you divide decimals by powers of 10 ?
Ask students to share their reflections with their classmates.

Math is... Yindset

- What helped you understand a problem situation today?

Students reflect on how they practiced responsible decision-making.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use place-value patterns to divide a decimal by a power of 10 .
- I can explain patterns when dividing a decimal by a power of 10

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK Skill	Standard
1	2	Divide decimals by powers of 10	5.NBT.A.2
2	2	Divide decimals by powers of 10	5.NBT.A.2
3	1	Divide decimals by powers of 10	5.NBT.A.2
4	2	Divide decimals by powers of 10	5.NBT.A.2

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4 Additional Practice or any of the © or activities
3 of 4 Take Another Look or any of the (B) activities

2 or fewer of 4 Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

Q Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 8.1

Exit Ticket

Name

1. Micah has $\$ 1.80$ in pennies. Which equation shews how many pennies MJoah has?
A. $1.80+0.1=180$ pennies
B. $1.80+0.1=18$ pennies
C. $1.80 \div 0.01=180$ pennies
D. $180 \div 0.01=18$ pennies
2. Marie walks 1 . 5 imles in 10 doys if she walks the same amount each doy. how many miles does she walk each day?
A. 0.185 mlle
(B.) 185 miles
C. 8.5 mies
D. 185 miles
3. Choose whether each equation is True or False.

	True	False
$35.4+0.01=3.540$	\checkmark	
$569+100=5.69$	\checkmark	
$93.4+0.1=9.34$		\checkmark
$30.2+10=3.02$	\checkmark	
$4+01=0.4$		\checkmark
$27+100=0.27$	\checkmark	

4. Logan takes a bagful of dimes to the bank. He gets $\$ 4.50$ for his dimes. How many dimes does Logan taice to the bank? 45 dimes

Reflect On Your Learning

Reinforce Understanding

Write It

Work with students in pairs as they create a diagram explaining the patterns that can be used to show decimal division problems using powers of ten as divisors. They should provide a sample problem and conclude with a summarizing sentence. Make sure students recognize that the quotient is greater than the dividend when the divisor is between 0 and 1 .

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Divide by Powers of 10 (Decimal Point)

Differentiation Resource Book, p. 77

Lesson 8.-1 - Reinforce Understanding
Division Patterns with Decimals and Powers of 10

Name

Review

You cin use your knowiedpe of place-value positions to find quotients of a decimal tivided by a powes of 10 .

$12.3+100=0.123$	$12.3+1=12.3$
$12.3 \div 10=1.23$	$12.3 \div 01=12.3$
$12.3 \div 1=12.3$	$12.3 \div 0.01=1.230$

What are the quobients? Use a pattern to solve.
2. $57.9+100=0.579$ $579 \div 10=5.79$
$579 \div 1=57.9$
$57.9+01=579$
$57.9+0.01=5,790$
2. $1.2+100=0.012$ $12 \div 10=0.12$ $12 \div 1=1.2$ $12+01=12$

What is the quotient?
3. $368 \div 10=3.68$
4. $314 \div 0.01=314$
5. $528.9+100=5.189$
6. $98.7 \div 0.1=987$
7. $48.2 \div 100=0.482$
8. $72.3 \div 0.01=7,230$

Build Proficiency

Practice It! Game Station
Divide by 0.1 and 0.01 Race
Students practice solving decimal division problems with divisors of 0.1 and 0.01 .

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 77-78

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with addition and subtraction within $1,000,000$.

Spiral Review

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 77-78

Extend Thinking

Use It! Application Station Red Block White Block Road Block
Students use a looping code to move a dog through a maze and then make their own maze and code.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 78

Lesson 8.1 - Extend Thinking
 Division Patterns with Decimals and Powers of 10

Nome
Fill in the blanks with the decimal value 100, 10, a.1, or 0.01.
2. It takes 100 pennies to equal the value of $\$ 1$. This means a penry is worth 0.01 of a $\$ 1$.
2. $\$$ takes 10 dimes to equal the value of 51 . This means a dime is worth 0.1 of ast
Evaluate (when required) and then put the following numbers in order from least to greatest.
3. $25.3 \quad 3.21 \div 10 \quad 4.21 \div 0.01 \quad 1.04 \div 0.3 \quad 35.6 \div 100$ $0.321<0.356<10.4<25.3<421$
Fill in the blanks. Show your work.
4. There are $16.78 \div 0.01$ or 1,678 pennies in $\$ 16.78$.
5. There are $5,230 \div 10$ or 523 dimes in $\$ 52.30$
6. There are $40.3 \div 0.1$ or 403 penies in $\$ 4.03$
2. There are $0.68 \div 0.01$ or 68 dimes in 56.80 .

Estimate Quotients of Decimals

Learning Targets

- I can explain how to estimate quotients of decimals.
- I can estimate quotients of decimals to determine if calculations are reasonable.
- I can use an estimated quotient to make predictions about a calculated solution.

Standards \bigcirc Major \triangle Supporting O Additional

Content

5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\diamond 5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Math Practices and Processes
MPP Reason abstractly and quantitatively.
MPP Use appropriate tools strategically.

Focus

Content Objectives

- Students estimate quotients of decimals using the same strategies used to estimate quotients of whole numbers.
- Students use estimated quotients to make predictions about and assess the reasonableness of a calculated solution.

Coherence

Previous

- Students found whole-number quotients and remainders (Grade 4).
- Students used place-valiue patterns to divide decimals by powers of 10 (Unit 8).

Language Objectives

- Students discuss estimating the quotients of decimals while answering Wh- and Yes/No questions and using terms such as could and would.
- To support sense-making, ELs participate in MLR6: Three Reads.

SEL Objective

- Students practice strategies for persisting at a mathematical task, such as setting a small goal or setting timers for remaining focused.

Rigor

Conceptual Understanding

- Students gain an understanding of estimation as a method to help determine the reasonableness of calculations involving decimal quotients.

Procedural Skill \& Fluency

- Students build their proficiency with division with decimals as they use estimation to develop skill in evaluating the reasonableness of quotients.

Application

- Students estimate decimal division using measurement in real-world contexts.

Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
dividend	negate
divisor	variation
estimate	
quotient	

Materials

The materials may be for any part of the lesson.

- calculators
- number cubes

Number Routine

 About How Much?os
5-7 min
Build Fluency Students build number sense as they estimate the value of multiplication expressions.

Remind students that this routine involves mental math only. Students should not solve for the product.

These prompts encourage students to talk about their reasoning:

- How did you find your estimate? How did you determine whether your estimates were reasonable?
- How did you round each factor? How can you round the numbers differently so that the multiplication is easier?
-Why is more than one estimate reasonable?

Purpose Students read a numberless word problem as they engage in contextual sense-making. They share thoughts on what math they see in the problem, describe the relationship between the quantities, and think about different ways to solve a comparison.

Numberless Word Problem

- What could you ask?
- What math do you use in this problem?

See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students work in pairs as they make sense of the context. Encourage them to think about quantities and their relationship.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' thinking about estimating quotients and are based on possible comments and questions that students may make during the share out.

- How do you know what operation to use to solve the problem?
- What do you need to know to determine the answer to your question?

Math is... Vindset

-What do you do to stay focused on your work?

SEI

Self-Management: Self-Discipline
Help students develop strong learning habits by providing them with opportunities to practice self-management. Before beginning the Numberless Word Problem routine, discuss ways that students will manage distractions and stay focused on their work estimating quotients of decimals. Some students may benefit from setting a goal to remain on task for a set time before taking a mental break, or considering what routines they follow that might help with their work.

Transition to Explore \& Develop

Have students share their thoughts on what they think the quantities may be in the problem. Ask them to describe the relationship between the quantities in the problem. Explain that they are going to consider the same problem but with numbers this time.

ERP Establish Mathematics Goals to Focus Learning

- Let's think about how we can use estimation strategies that we already know for estimation of quotients of whole numbers to estimate quotients of decimals.

Learn

A theater teacher is making costumes for the spring musical. Each costume uses 0.5 meter of this fabric.

About how many costumes can the teacher make using all the fabric?
The equation $29.7+0.5=$ c can represent the problem.

You can use compatible numbers to estimate quotients of decimals Sometimes, it is helpful to first mittiply by a power of 10 to write an expression with whole numbers.

Q Work Together

A cer wesh utes 2475 Ititers of soap on a weekdoy. 5.7 Itern of soap are used per car. About how many cars go to the car wash each weokdy?
Sample answer: about 50 cars

(1) Pose the Problem

EPP Pose Purposeful Questions

- What are the important facts in the problem? How did you determine which facts are important?
- Do you need an exact answer? How do you know?

Develop the Math

Choose the option that best

 meets your instructional goals.
Three Reads

1st Read: Have students underline the key numbers that will be used to solve the problem.
2nd Read: Have students write the meaning of each number in context.

$\rangle\rangle\rangle$,

 3rd Read: Have students work in pairs to create mathematical expressions estimating the quotient.
(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How is estimating quotients of decimals similar to estimating quotients of whole numbers? How is it different?
- Why is estimating quotients useful?

Key Takeaways

- Estimating quotients can help make predictions about a calculated solution.
- Estimating quotients helps assess the reasonableness of a calculated solution.
- Strategies used to estimate quotients of whole numbers, such as compatible numbers, can also be used to estimate quotients involving decimals.

Work Together

Students work together to solve a word problem involving estimating the quotient of decimals.

Common Error If students multiplyboth the dividend and divisor by 10 , make sure they understand they do not have to then divide their estimate by 10 .

LOM Language of Math

As students solve problems, make sure they refer to their estimates as estimates or estimated quotients rather than quotients or calculated quotients. It is important to use precise language in mathematics, and that is one of the practices detailed in SMP 6.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore estimating quotients by extending estimation strategies used for estimating quotients of whole numbers.

Directions: Work with students to write the division expression that represents the Pose the Problem. Have students work in pairs or small groups to estimate the quotient.

EIP Support Productive Struggle

- Do you think the quotient will be greater than or less than the dividend? Explain why.
-What could you do to make the numbers easier to work with?
-What estimatation strategies have you used to estimate the quotient of whole numbers? How can you extend those strategies to decimals?

Provide students with two possible calculated quotients, one that is correct and one that is incorrect. Ask students to use their estimate to determine which quotient is reasonable.

Math is... Quantities

- How can you determine if an estimate is less than or greater than the actual quotient?

Students make sense of quantities and their relationships in problem situations.

Activity Debrief: Have students share their strategies for estimating the quotient. Facilitate a discussion to ensure students understand that there are multiple estimation strategies, such as using compatible numbers and thinking about the relationship between multiplication and division.

Guided Exploration

Students use compatible numbers to estimate the quotients of decimals.

${ }^{\operatorname{ETP}}$ Facilitate Mathematical Meaningful Discourse

 -What estimation strategies have you used before?Have students justify the strategy using place value and the relationship between multiplication and division. Ask:- How can you write the equation $29.7 \div 0.5=q$ as a related multiplication equation?
- Explain how you use place-value patterns and the equation $q \times 0.5=29.7$ to determine the product $q \times 5$?
- How can you write $q \times 5=297$ as a related division equation?
- Since $29.7 \div 0.5=q$ and $297 \div 5=q$, what does that tell you about these expressions?
- Think About It: Why did you multiply by 10 and not a different power of 10 ?
(4. Have the students estimate the solution to $297 \div 5$. Ask:
-What compatible numbers will you use to estimate the solution? Why?

Math is... Quantities

- How can you determine if an estimate is less than or greater than the actual quotient?

Students make sense of quantities and their relationships in problem situations.
2. Develop the Math

A theater teacher is making costumes for the spring musical. Each costume uses 0.5 meter of this tabric.

Developing/Expanding Support students in understanding the term both. Pick up two classroom objects. Say, l'm holding both. Repeat the task with another set of classroom objects to demonstrate both. Ask students to use both in a sentence, using classroom objects. Then ask students to find the example of both on the Learn page. Have them say what both refers to (the two decimals).

Bridging/Reaching Ask students to use both in a sentence, demonstrating with two classroom objects. Then instruct students to work in groups to come up with synonyms for it, such as one and the other, the couple, the pair, and the two, and to share their list with the class. Allow students to use a dictionary or thesaurus if preferred.

5. $778+0.84=d$	A. $23.4+3.2=5$
A. 92 (A) 7.3 (B. 9.2 B. 73.3 C. 0.92 C. 70.3 D. 1.92 D. 780.3 7. $4.2+0.96=b$ B. $13.2+7.4=p$ A. 43.75 (A) 17 B. 33.75 B. 107 C. 4.3 C. 17.2 D. 0.43 D. 170.3	

2. Laraine has $\$ 13$ to spend.
a. If she buys only songs, about how many songs can she downioad? about 6 songs
b. It she buys only games, obout how many games can she dowiond? about 3 games

3. Error Analysis Tess caliculated that the quotient for the divesion expression $10.5+2.1$ is 0.5 . She siys that her calculation is reasonable. How do you respond to Tess? No, her calculation is not reasonable. 1 can use compatible numbers 10 and 2 to estimate that the quotient is about 5 , which is not close to 0.5 .
4. Janet has $\$ 15.37$ to spend on bus fare for school Each bus nide She takes costs $\$ 2.25$. About how mary bus ides can she take with the amourt of money she has?
Sample answer: about 6 bus rides
5. Extend Your Thinking Write a division expression with decimals that has an estimated quotiert of 6 .
Sample answer: $32.4 \div 5.1$

(2) Rellect

How did you apply what you already know about estimution to estimating the quotients of decimals?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

1. Common Misconception: Exercises 1-8 As students find estimates
for each equation, make sure they remember that they can, and should, use the numbers easiest for them. For example, when they see two digits to the right of the decimal point in 4.42 and 0.81 , they may multiply by 100 , and use the compatible numbers 442 and 81 . Or they may find it is simpler to multiply by 10 , use 44.2 and 8.1 , and round the numbers from there.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill and Fluency
$5-8$	2	Procedural Skill and Fluency
9	2	Application
10	3	Conceptual Understanding
11	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How did you apply what you already know about estimation to estimating the quotients of decimals?
Ask students to share their reflections with their classmates.

Math is... Yindset

-What helped you stay focused on your work?
Students reflect on how they practiced self-regulation.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can explain how to estimate quotients of decimals.
- I can estimate quotients of decimals to determine if calculations are reasonable.
- I can use an estimated quotient to make predictions about a calculated solution.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		pOK Skill	Standard
1	1	Estimate decimal quotients	5.NBT.B.7
2	1	Estimate decimal quotients	5.NBT.B.7
3	2	Estimate decimal quotients	5.NBT.B.7

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \mathbf{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 8-2

Exit Ticket

Name

1. Which is the most reasonabic estimate for $4153 \div 0.532$?
C. 70
B. 90
2. Which equations show a reasonable estimate for the quctient $5.32+0.09$ using powers of 10 and compatible numbers? Chosse all that apply.
(A. $5+0.1=50$
B. $540+9=60$
C. $54+9=6$
D. $50 \div 10=5$
3. Olvia buys beads to make a necklace

- She pays $\$ 1798$ for 6 star beads.
- She pays $\$ 8.98$ for 2 heart beads
- She pags $\$ 16.16$ for 9 gitter beads.
- She pays $\$ 12.32$ for 3 striped beads.

Using estimation, which type of bead costs the least per bead?
A. heart bead
B. stiped bead
C. star bead
(D) geter besd

Reflect On Your Learning

Reinforce Understanding

Roll to Round

Work with students in pairs. Students roll two number cubes and create a 2 -digit dividend by putting the greater digit in the ones place and the lesser digit in the tenths place. Then roll one number cube to create a 1 -digit divisor with the digit in tenths. Students estimate an answer. Students check their estimates by finding the quotient with a calculator. Discuss with students how the estimates related to the actual quotient.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Estimate Quotients (Decimal Numbers)

Differentiation Resource Book, p. 79

Lesson 8.2-Reinforce Understanding
Estimate Quotients of Decimals

A possible estimate for $54.2 \div 0.91$ is 60 .

Which is a reasonable quotient? Estimate the quotient of each expression and determine the reasonable calculated quotient. Show your work.

Build Proficiency

Practice It! Game Station
Estimating Quotients Bump
Students practice estimating quotients of decimals.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 79-80

Unit 8 • Divide Decimals

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with addition and subtraction within $1,000,000$.

Spiral Review

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 79-80
Estimate the quotient. Show your work. Sample answers given
3. $24.45 \div 0.8$
4. $73.4+77$
$30 ; 240 \div 8$
$9 ; 72 \div 8$
5. $1283+0.21$
6. $91 \div 2.8$
60; 1,200 $\div 20$
$3 ; 9 \div 3$
7. $83.24+9.06$
8. $65.2+0.87$
$9: 81 \div 9$
$70 ; 630 \div 9$
9. Harliet spends $\$ 0.58$ on some stickers. Each stcker conts $\$ 0.05$ About how many stickers did Haniot buy? Explain
Sample answer: about 200 stickers; $12.58 \div 0.06$ is equivalent to $1,258 \div 6$, which can be estimated by $1,200 \div 6=200$.
10. A bicgcie roce covers a distance of 64.5 klometers. There orn water stations every 76 klometers. About how many water stations ste thero along the couree? Exploin
Sample answer: about 8 water stations; $64.5 \div 7.6$ can be estimated by $64 \div 8=8$.

Extend Thinking

Use It! Application Station Red Block White Block Road Block
Students use a looping code to move a dog through a maze and then make their own maze and code.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 80

Lesson 8-2.Extend Thinking

Estimate Quotients of Decimals
Name
Write a division expression with decimals that has the estimated quotient. The first one is done for you.
Sample answers given. Check students' work.

Division Expression	Estimated Division Expression	Estimated Quotient
$58+21$	$5+2$	3
$5.39 \div 0.62$	$5.4 \div 0.6$	\%
$3.198 \div 0.401$	$3.2 \div 0.4$	8
$0.3599 \div 0.0289$	$0.36 \div 0.03$	12
$75.01 \div 14.9$	$75 \div 15$	5
$1.189 \div 0.204$	$1.2 \div 0.2$	6
$49.1 \div 6.8$	$49 \div 7$	7
$559,91 \div 141.04$	$560 \div 140$	4

Diterertison fromerw Bock

Represent Division of Decimals
 by a Whole Number

Learning Target

- I can represent division of decimals by whole numbers using equal sharing or equal grouping.

Standards \circ major Δ Supporting \circ Additional

Content

\diamond 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Math Practices and Processes
MPP Model with mathematics.
MPP Look for and express regularity in repeated reasoning.

Focus

Content Objective

- Students represent division of decimals with equal sharing or equal grouping.

Language Objectives

- Students discuss how to divide decimals by whole numbers while answering Wh- questions and using the modal might.
- To support maximizing linguistic and cognitive meta-awareness and optimize output, ELs participate in MLR7: Compare and Connect.

SEL Objective

- Students engage in active listening and work collaboratively with a partner to complete mathematical tasks.

Coherence

Previous	Now	Next
- Students found whole-number	- Students represent division of	
quotients and remainders		
(Grade 4).		- Students use place-value understanding and modeling to by a whole number. divide decimals by whole numbers (Unit 8).
- Students estimated quotients involving decimals (Unit 8).		- Students add, subtract, multiply, and divide using the standard algorithm (Grade 6).

Rigor

Conceptual Understanding

- Students use representations and the relationship between multiplication and division to better understand division of decimals by whole numbers.

Procedural Skill \& Fluency

- Students build their proficiency with division as they expand their skills to include division of decimals by whole numbers.

Application

- Students divide decimals by whole numbers in problems with real-world contexts.
Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
decimal	analyze
dividend	suggest
divisor	

Materials

The materials may be for any part of the lesson.

- bills and coins manipulatives
- index cards
- Tenths and Hundredths Representations Teaching Resource

Number Routine About How Much? (8) 5-7 min

Build Fluency
Students build number sense as they estimate the value of multiplication expressions.

Remind students that this routine involves mental math only. Students should not solve for the product.
These prompts encourage students to talk about their reasoning:

- How did you find your estimate?
- How do you determine if an estimate is reasonable?
- How did you round each factor? How did you choose to round to the nearest hundred or ten?
-Why is more than one estimate reasonable?

Purpose Students think about equal sharing and how they might divide money among banks when the amount of money is not a whole number.

Notice \& Wonder

- What question could you ask?

See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students work in small groups as they notice and wonder. Encourage students to build on one another's thinking as they discuss any questions they can ask about the image.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of representing dividing decimals by whole numbers and are based on possible comments and questions that students may make during the share out.

- If there were no coins, how could you share the dollar bills?
- If there will no dollar bills, how could you share the coins?

Math is... Yindset

- What can you do today to help build a relationship with a classmate?

SEL

 Relationship Skills: Build RelationshipsInvite students to work with a partner, possibly a new or less familiar peer for those who feel comfortable, to complete the Notice \& Wonder routine. Encourage students to actively and respectfully listen to one another as they explore and collaborate to represent division of decimals by a whole number.

Transition to Explore \& Develop

Ask questions that get students thinking about real-world situations involving dividing money in a group of people. Encourage students to think of situations where the amount of money is not a whole number, such as $\$ 5.00$, but a decimal like $\$ 5.50$. Have students think about how they would determine how to split up that amount of money in a group.
$\stackrel{E T P}{1}$ Establish Mathematics Goals to Focus Learning

- Let's think about how we can represent dividing decimals by whole numbers.

(1) Pose the Problem

Learn

Dakotah has $\$ 4.80$ and wants to put the same amount in ooch bank.
How much money should Dakotah put in each bank?

You can use a representation to help you solve the problam.

Gina has 183 kiograms of trall mix that she will put into 3 bagr, each with the same amount of trail mix. How much will each bog weigh?
0.61 kilogram

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using representations to divide a decimal by a whole number.

Materials: Tenths and Hundredths Representations Teaching Resource, bills and coins manipulatives

Directions: Make available copies of Tenths and Hundredths Representations Teaching Resource and bills and coins manipulatives. Have students work together to solve the Pose the Problem. Students may use any tool they choose to help them solve the problem.

ETP Support Productive Struggle

- How can you determine the operation you need to use to solve the problem?
-What tools can you use to help you determine the quotient?
- What are some strategies you can use to determine the quotient?
- Is the quotient greater than or less than 1? Explain why.

Math is... yodeling

- How does a representation help you understand dividing decimals by a whole number?

Students reflect on if using a representation has served its purpose to help them understand dividing a decimal by a whole number.

Activity Debrief: Have students share their strategies for determining the quotient. Encourage students to look for similarities and differences between the strategies.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use decimal grids to solve a division word problem with a decimal as the dividend and a whole number as the divisor.

EIT Use and Connect Mathematical Representations

Have the students estimate the solution. Ask:

- What power of ten will you multiply by? Why?
- What compatible numbers will you use? Why?
- How will basic facts and place-value patterns help you?
- Think About It: Why are there 5 decimal grids? Why are the decimal grids showing tenths?
Q Have students complete their own decimal grids to determine an equivalent representation of 12 tenths. Ask:
- Will you need more than one decimal grid to determine the equivalent representation of 12 tenths?
(2. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

Math is... Todeling

- How do decimal grids help you understand dividing decimals by a whole number?

Students reflect on if using decimal grids as a model has served its purpose to help them understand dividing a decimal by a whole number.

2. Develop the Math

Dakotah has $\$ 4.80$ and wants to put the same amount in each bank.

How can you determine how much money should 90 in

E English Learner Scaffolds
Entering/Emerging Support students' understanding of the adverb evenly using classroom manipulatives. Set ten counting chips on the desk. Say I'm going to split these evenly. Split into two groups of five. Demonstrate again with classroom manipulatives. Finally, test comprehension by demonstrating the task two more times, one correctly splitting the items up evenly, and one time not. Ask after each demonstration, Did I split these evenly?

Developing/Expanding Support students' understanding of the adverb evenly using classroom manipulatives. Set ten counting chips on the desk. Say I'm going to split these evenly. Split into two groups of five. Demonstrate again with classroom manipulatives. Finally, ask students to use evenly in a sentence, demonstrating with manipulatives. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to use evenly in a sentence, demonstrating with manipulatives. Then instruct students to work in groups, using a dictionary to come up with similarmeaning words, such as equally and uniformly, and to share their list with the class.

2. Six friends are going to run a relsy race that is 3.12 miles iong. Each friend wif run an equal distance. How mary miles will each friend run?

0.52 mile

10. A stroet is 5.3 mities iong Workers partition the street into 3 equal parts for a renovation project. How long is each part? 2.1 miles
11. STEM Connection Saffron measured out 6.5 cups of flour. She plans to use an equal amount of flou to make 5 batches of cupcakes. How many cups of flour will be in each batch?
1.3 cups
12. Extend Your Thinking How does knowing how to divide whole numbers holp you divide a decimal by a whole numben Explain your thiniong
Sample answer: I can use what I know about dividing whole numbers and relating division to multiplication and apply it to dividing decimals by whole numbers.

(2) Rellect

How is dividing a decimal by a whole number simbar to or different from dividing wholo numbers?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

© Common Error: Exercise 3 Some students may incorrectly represent a decimal containing 0 , like 2.04 , as 2.4 . Suggest that students check their answers by either using multiplication or repeated addition.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill and Fluency
$9-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How is dividing a decimal by a whole number similar to or different from dividing whole numbers?
Ask students to share their reflections with their classmates.

Math is... yindset

- What helped you to build a relationship with a classmate today? Students reflect on how they developed stronger relationship skills.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can represent division of decimals by whole numbers using equal sharing or equal grouping.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pok Skill			
1a	2	Represent division of decimals by a whole number	5.NBT.B.7
1b	2	Represent division of decimals by a whole number	5.NBT.B.7
1c	2	Represent division of decimals by a whole number	5.NBT.B.7
2	1	Represent division of decimals by a whole number	5.NBT.B.7
3	2	Represent division of decimals by a whole number	5.NBT.B.7

(11) Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

5 of 5
Additional Practice or any of the (3) or activities Take Another Look or any of the (B) activities
3 or fewer of 5
Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 8-3

Exit Ticket

Name

1. Brooioyn divides 2.84 kilograms of frut saiad ecually among 4 serving bowls. She wants to know how many kilograms of frut saled to put in esch bowl. She utes the decimat grids shown.

a. What amourt does each square in the grid tepresent? 0.01 kilogram or one-hundredth of a kilogram
b. How many gnd squares are in oach group? 71
C. How many lelograms of frutt salad are in oach bow? 0.71 kilogram
2. What is the quotient for $2.4+3$? Use decimal ginds to solve 0.8
3. The total length of 2 idensical boards, when placed end-to-end. is 4×6 feet. What is the length of each board? 2.08 feet

Reflect On Your Learning

Reinforce Understanding

Solve It, Keep It

Work with students in pairs. Provide each pair with expressions on index cards such as these: $3.5 \div 5,2.4 \div 3$, $3.6 \div 6,4.8 \div 4$. One student chooses a card and uses a representation to solve the problem. Encourage students to estimate the quotient to check for reasonableness. If the pair agrees on the quotient, the student keeps the card. Then the other student takes a turn until all cards have been collected.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Divide Decimals by Whole Numbers-Model

Differentiation Resource Book, p. 81

Lesson 8.3-Reinforce Understanding
Represent Division of Decimals by a Whole Number

Name

Review

You cin use decinal grids to help you find quoterts. To deternere $3.5 \div 9$ we divide 3.5 into 9 grouph.

Thore are 4 tenths in each of the 9 groups. $35 \div 9=0.4$

What is the quotient? Use decimal grids to solve.

1. $42+6=0.7$

2. $68 \div 4=1.7$

3. $081+3=0.27$

onimendion brwite locit

Build Proficiency

Practice It! Game Station
Represent Decimal Division Four in a Row Students practice representing the division of decimals by whole numbers.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 81-82

Unit 8 • Divide Decimals

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with addition and subtraction within $1,000,000$.

Spiral Review

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 81-82

Extend Thinking

Use It! Application Station

That is Tasty! Students use decimal division to size up and down a recipe. The content of this card has concepts covered later in Lesson 8-6. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 82

Divide Decimals by Whole Numbers

Learning Target

- I can use place-value understanding and equivalent representations to divide a decimal by a whole number.

Standards \circ Major Δ supporting \circ Addifitional

Content

\diamond 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\diamond 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Math Practices and Processes

MPP Use appropriate tools strategically.
MPP Look for and express regularity in repeated reasoning.

Focus

Content Objective

- Students use place-value understanding and equivalent representations to divide a decimal by a whole number.

Language Objectives

- Students explain how to divide a decimal by a whole number by answering multiple How questions using can.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students identify and discuss the emotions experienced during math learning.

Coherence

Previous

- Students found whole-number quotients and remainders (Grade 4).
- Students represented division of decimals by a whole number (Unit 8).

Now

- Students use place-value understanding and equivalent representations to divide decimals by whole numbers.

Next

- Students divide whole numbers by decimals using decimal grids and equivalent equations (Unit 8).
- Students add, subtract, multiply, and divide using the standard algorithm (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of dividing decimals as they begin to notice generalizable patterns through visual representations.

Procedural Skill \& Fluency

- Students build their proficiency for decimal place value, basic facts, and division strategies by expanding their skills to include division of decimals by whole numbers.

Application

- Students apply their understanding of dividing decimals by whole numbers to solve problems with realworld contexts.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
dividend	infer
divisor	transition
place value	
quotient	

Materials

The materials may be for any part of the lesson.

- number cubes

Number Routine

About How Much?

5-7 min
Build Fluency Students build number sense as they estimate the value of each multiplication expression.

Remind students that this routine involves mental math only. Students should not solve for the product.
These prompts encourage students to talk about their reasoning:

- How did you find your estimate? Which estimates were reasonable?
- How do you determine if an estimate is reasonable?
- How can you estimate an answer using only mental math?
- How did you think about each factor?
-Why is more than one estimate reasonable?

Purpose Students think about equivalent representations of numbers (for example, 1.2 is equivalent to 12 tenths).

Which Doesn't Belong?

-Which doesn't belong?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students work on their own to determine which doesn't belong so that they can compare their individual answers with other students' and learn about each other's thinking.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of equivalent representations and are based on possible comments and questions that students may make during the share out.

- How are the numbers similar?
- How can you represent the numbers?
- Do any of the given numbers have the same value?

How do you know?

Math is... Findset

- How can you understand your feelings?

sal

Self-Awareness: Identify Feelings and Emotions After students participate in the Which Doesn't Belong? routine, invite them to share the emotions they were experiencing. Encourage students to focus on the feelings they experience when they were successful as well as when they were not. Their work throughout the lesson with dividing decimals by whole numbers may be challenging, and they may feel upset or frustrated. Remind students that these feelings are neither right nor wrong, but how we deal with our feelings can affect success with math work. Sharing and listening can help students build understanding of their own emotions as well as the emotions of others.

Transition to Explore \& Develop

Make sure students understand that they have already used equaivalent representations to help them solve problems before, and now they will expand the use of them to division involving decimals.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can use place-value understanding and equivalent representations to divide a decimal by a whole number.

Learn

Astiey is poing to cut this plece of wood into 3 pleces of equal longth
What will be the length of each plece?

So, $0.72+3=0.24$.
Each plece of wood is 0.34 meter long
You can use place-value understanding and equivaient represertations to divide a decimal by a whole number.

Q Work Together

Amelta has 3 :0 cubic inches of potting soll that she will put into 5 seeding pots, each with the same amount of sol. How much soll will be in each pot?
0.62 cubic inch of soil

(1) Pose the Problem

EPP Pose Purposeful Questions

-What information is given to you in the problem?

- Are you dividing a decimal by a whole number or a whole number by a decimal?
- How is the problem similar to other problems you have solved?
- What ways do you know to represent dividing a decimal by a whole number?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Stronger and Clearer Each Time

Pair students and have them solve a division problem. Ask them to work individually and write about the different steps they took to determine the quotient. Then have students compare their writing with their partner, correcting when necessary. Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

EIP Elicit and Use Evidence of Student Thinking

- How can you write an equivalent representation of a decimal?
- How does understanding place value help you solve problems that involve dividing a decimal by a whole number?

Key Takeaway

- When dividing a decimal by a whole number, it is helpful to think about different ways to represent the dividend. For example, $1.2 \div 4$ can be thought of as 12 tenths $\div 4$.

Work Together

Students work together to solve a word problem that involves dividing a decimal by a whole number. Encourage students to estimate the quotient before they begin solving the problem.

Common Error Students may "get stuck" with this problem if they think of 3.1 as 31 tenths and try to share 31 in 5 groups. Remind them that can also write 3.1 as 3.10 and share 310 hundredths in 5 groups.

Language of Math

Remind students that equivalent means "equal in value or amount." Writing 1.2 as 12 tenths means the representations represent the same amount and have the same solution, but one is using a representation that allows us to divide more easily.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students analyze related division expressions to develop a strategy for dividing decimals by whole numbers.

Directions: Present students with expressions, such as $36 \div 3$, $3.6 \div 3$, and $0.36 \div 3$. In pairs or small groups, have students predict the similarities and differences of the quotients and discuss how they came to these conclusions.

After students have had time to record their prediction, have them find the quotients using previously taught strategies. Students should determine whether their prediction was true, and discuss why. Ask each student or group to create a generalization statement about dividing decimals by whole numbers to share with the class.

ETP Support Productive Struggle

- How are the expressions similar? How are they different?
- How can you use the meaning of division to help you determine the quotient?
- How can you use equivalent representations of the decimal number to help you determine the quotient?

Math is... Generalizations

- Are there generalizations you can make to help you work more efficiently?

Students attend to the detail of looking for repeated reasoning while solving problems.

Activity Debrief: Facilitate a discussion about using equivalent representations of the decimal number as a strategy for dividing a decimal by a whole number.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the length of each piece?

Guided Exploration

Students use what they already know about equivalent representations and place-value understanding to solve an equation that involves dividing a decimal by a whole number.

ETP
 Use and Connect Mathematical Representations

Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have the students estimate the solution. Ask:

- What power of ten will you multiply the dividend and divisor by? Why?
- What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
- Think About It: How can using decimal grids help you represent 0.72 and 0.24 in equivalent ways?

Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?

Math is... Generalizations

- How is using equivalent representations like using extended division facts?

Students attend to the detail of looking for repeated reasoning while solving problems.

2. Develop the Math

Ashley is going to cut this piece of wood into 3 pleces of equal length.

English Learner Scaffolds

Entering/Emerging Support students in understanding the word amount. Using materials such as sand or a liquid, fill half a jar or glass.
Then, repeat, filling half of another jar or glass of the same size. Say This [jar] has the same amount of [sand] as that jar. Repeat twice, once filling the objects with the same amount of sand or liquid, and once with a different amount. Ask Is this the same amount?

Developing/Expanding Support students in understanding the word amount. Using materials such as sand or a liquid, fill half a jar or glass. Then, water (something that can't be counted) repeat, filling half of another jar or glass of the same as well as math manipulatives such as size. Say This [jar] has the same amount of [sand] as counting chips. Have them sort the that jar. Ask students to repeat the task, using materials and manipulatives into different amount in a sentence. Provide sentence frames for containers and discuss the amounts using students who need more guidance.

Bridging/Reaching Provide students with classroom materials such as sand or amount and number; for example, These two boxes have a different amount of sand. These two containers have the same number of counters.

11. Three fiends equally sple the cost of a lange bag of popcom.
The total cost was $\$ 5.12$. How much did each person hove The totel cost way
to pay? $\$ 2.04$
12. STEM Connection Saffron is using 4.5 cups of sugar to make cookies. She is maling 5 batches How many cups of sugar wit be in esch batch? 0.9 cup
13. A piece of ribbon is 0.64 meter iong. Kyile is going to cut it into 4 equal pieces. How long wil each plece be? 0.16 meter
14. Extend Your Thinking Solve the foliowing equations
$0.24+3=0.08$
$0.24+30=0.008$
$0.24+300=0.0008$
What do you notice about the divisors and quotients?
Sample answer: The quotient decreases proportionally in place value as the divisor Increases.

(ORenect

How can you use your understanding of place value and equivaiert representations to divide decimais by whole numbers?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding
 [. Common Error: Exercises 1-6 Make sure students understand that

 once they have determined the quotient using equivalent representations, they must use their understanding of place value to represent the quotient as a decimal. For example, students may see $0.24 \div 8$ as $24 \div 8$ and give an answer of 3 . Encourage them to think about the quotient in terms of hundredths instead of simply the value of the basic division fact quotient.
Item Analysis

Item	DOK	Rigor
$1-2$	1	Conceptual Understanding
$3-8$	2	Procedural Skill and Fluency
$9-10$	2	Conceptual Understanding
$11-13$	2	Application
14	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you use your understanding of place value and equivalent representations to divide decimals by whole numbers?
Ask students to share their reflections with their classmates.

Math is... Tindset

-How have you worked to understand your feelings?
Students reflect on how they practiced self-awareness.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can use place-value understanding and equivalent representations to divide a decimal by a whole number.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK Skill	Standard
1	1	Divide decimals by whole numbers	5.NBT.B.7
2	1	Divide decimals by whole numbers	5.NBT.B.7
3	1	Divide decimals by whole numbers	5.NBT.B.7
4	2	Divide decimals by whole numbers	5.NBT.B.

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do	
4 of 4	Additional Practice or any of the (3) or activities
3 of 4	Take Another Look or any of the (3) activities
2 or fewer of 4	Small Group Intervention or any of the \boldsymbol{Q} activities
Key for Differentiation	
Q Reinforce Understanding	
(B) Build Proficiency	
(F) Extend Thinking	

Lesson 8-4

Exit Ticket

Name

1. Which is an equivalert representation of $2.4+4$?
A. 24 tens +4
B. 24 ones $\div 4$
C. 24 tenths +4
D. 24 hundredths +4
2. Which division expressions have a quotient of 0.5 ? Choose all that apply.
(A) $3.6 \div 6$
B. $0.54 \div 9$
C. $126 \div 2$. $18+3$
E. $24+4$
(F.) $4.2+7$
3. What is $0.75 \div 5$? 0.15
4. Four pounds of apples cost $\$ 3.52$. How much does one pound of apples cost? $\$ 0.88$

Reflect On Your Learning

[^1]
Reinforce Understanding

Swap It Out

Provide partners with two number cubes. Partners roll a 2-digit factor and a 1-digit factor, multiply, then rewrite the multiplication equation as a division expression with the dividend in the hundredths and a 1-digit whole-number divisor. Partners work together to solve the division expression. Repeat as time permits.

Take Another Look Lessons

Assign the interactive lesson to reinforce targeted skills.

- Divide Decimals by Whole Numbers

Differentiation Resource Book, p. 83

Lesson 8.4 - Reinforce Understanding
Divide Decimals by Whole Numbers

Review
You can use place-vabue understanding and equivalert representations to divide a decimal by a whole number. $1.82 \div 7=182$ nundrecths $\div 7$
$=26$ hundredths
$=0.26$
$182 \div 7=0.25$
Write equivalent representations for the equations and then solve.

1. $0.65+13=0.05$ 65 hundredths $\div 13$ $=5$ hundredths
2. $5.1+3=1.7$ 51 tenths $\div 3=$ 17 tenths
3. $1.44 \div 9=0.16$ 144 hundredths $\div 9$ $=16$ fundredths
4. $6.4+8=0.8$ 64 tenths $\div 8$ $=8$ tenths
5. $0.96+8=0.12$ 96 hundredths $\div 8$ $=12$ hundredths
6. $4.02+2=2.01$ 402 hundredths $\div 2$ $=201$ hundredths
7. $315+3=1.05$ 315 hundredths $\div 3$ $=105$ hundredths
8. $34.2+6=5.7$ $34.2+6=\frac{5.7}{342 \text { tenths } \div 6}$ $=57$ tenths

Build Proficiency

Practice It! Game Station
Dividing Decimals by Whole Numbers Task Cards
Students practice solving problems involving dividing decimals by whole numbers.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 83-84

Lesson 8-4

Additional Practice

Nime

Review

You can use place-value understanding and equivaient representations to divide a decimal by a whole number. Michael has a boand then is 1.44 metersiong. He wents to cot it inst 3 pieces of equal iength. How long should Michsel cut ench board? Wirte a division equation to represert the problem $1.44 \div 3=b$
Wrie an equivalent represertation-
144 hundredtis $+3=b$
144 hundredths $+3=48$ fiundredths
Each board will be 0.48 meters long.

1. Which is an equivalent
2. Which is an equivaient representation of $35+5$?
A. 35 tens $\div 5$
B. 35 ones +5
C. 35 tenths +5
D. 35 hundrectins $\div 5$ representation of $2.16+4$?
A. 216 ters +4
a. 216 ones $\div 4$
C. 216 terths +4
(D.) 216 hundrecths $\div 4$

Write an equivalent representation for the division. Then find the quotient.

```
3. }186\div
4. 0.72\div4
186 hundredths }\div6;0.31\quad72\mathrm{ hundredths }\div4;0.1
```


Own It! Digital Station

Build Fluency Games:

Assign the digital game to develop fluency with addition and subtraction within $1,000,000$.

Spiral Review

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 83-84

Write an equivalent representation for the division. Then find the quotient.	
5. $5.6+8$	6. $4.32+3$
56 tenths $\div 8 ; 0.7$	432 hundredths $\div 3 ; 1.44$
2. $115 \div 5$	B. $16.8+4$
115 hundredths $\div 5 ; 0.23$	148 tenths $\div 4 ; 3.7$
9. Grets bups 5 perss tor $\$ 3.45$. How much does each peen cost? Explain how you can use an equivalert reptesentation to help you solve. $\$ 0.69$; Sample answer: I wrote the equation $3.45 \div 5=p$; this is equivalent to 345 hundredths $\div 5$, which is 69 hundredths, or 0.69 . So each pen costs $\$ 0.69$. to. Jack buys 8 pounds of mppies for $\$ 9.52$. How much does 1 pourc of apoies corr? \$1.19	
11. A length of fibbion is 0.8 meter iong. Justine cuat the ribbon into 4 equal lengithe to wrap pieserts. How long is eact piece of ribbon? 0.2 meter	

Extend Thinking

Use It! Application Station
Leave a Trail! Students create a poster showing how they divided decimals while making trail mix. The content of this card has concepts covered later in Lesson 8-6. You may want to assign this card to students ready to explore content covered later in
 this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 84

Lesson 8-4 - Extend Thinking

Divide Decimals by Whole Numbers

Name Sort the equivalent representations based on the solutions. Show you work. The first one has been done for you.			
Expression	Work and Solution		
A. $0.72+2$	72 nundreaths $+2=36$ hunapeolns, or 0.36		
B. $384 \div 12$	384 hundredths $\div 12=$ 32 hundredths, or 0.32		
c. $1952+122$	1,952 hundredths $\div 122=$ 16 hundredths, or 0.16		
D. $375 \div 15$	375 tenths $\div 15=25$ tenths, or 2.5		
E. $1.44+9$	$\begin{aligned} & 144 \text { hundredths } \div 9=16 \text { hundredths, } \\ & \text { or } 0.16 \end{aligned}$		
F. $22.4 \div 14$	224 tenths $\div 14=16$ tenths, or 1.6		
G. $2.56 * 8$	$\begin{aligned} & 256 \text { hundredths } \div 8=32 \text { hundredths, } \\ & \text { or } 0.32 \end{aligned}$		
H. $108+3$	108 hundredths $\div 3=36$ hundredths, of 0.36		
L. $575+23$	575 tenths $\div 23=25$ tenths, or 2.5		
2. $275+11$	275 hundredths $\div 11=25$ hundredths, or 0.25		
K. $4.75+19$	$\begin{aligned} & 475 \text { hundredths } \div 19= \\ & 25 \text { hundredths, or } 0.25 \end{aligned}$		
- $576+30$	576 tenths $\div 36=16$ tenths, or 1.6		
The sovion is 0.76. C E		The solution is 0.25 . J K	$\begin{aligned} & \text { The solution is } 0.32 \text {. } \\ & \text { B G } \end{aligned}$
$\begin{aligned} & \text { The soution is } 0.36 \text {. } \\ & \text { A H } \end{aligned}$		$\begin{aligned} & \text { The solution is } 1.6 \text {. } \\ & \text { F L } \end{aligned}$	The rotution is 2.5 . D I

Divide Whole Numbers by Decimals

Learning Targets

- I can use decimal grids to represent and solve a division equation.
- I can write an equivalent equation with a whole-number divisor to solve a division equation.

Standards \odot Major \triangle Supporting O Additional

Content

\diamond 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\diamond 5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Math Practices and Processes

MPP Model with mathematics.
MPP Look for and make use of structure.

Vocabulary

Math Terms	Academic Terms
dividend	address
divisor	reflect
power of 10	
quotient	

Materials

The materials may be for any part of the lesson.

- 10×10 Grids Teaching Resource

Focus

Content Objectives

- Students use decimal grids to represent and solve a division equation.
- Students multiply by a power of 10 to write an equivalent equation with a whole-number divisor to solve a division equation.

Coherence

SEL Objective

- Students recognize and work to understand the emotions of others and practice empathetic responses.

Next

- Students divide decimals by decimals using area models to find partial quotients for equivalent equations (Unit 8). - Students add, subtract, multiply, and divide using the standard algorithm (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of place value as they relate different strategies to dividing whole numbers by decimals.

Language Objectives

- Students discuss finding quotients of whole numbers using division grids and powers of 10 , answering How and Why.
- To support cultivating conversation and maximizing linguistic and cognitive meta-awareness, ELs participate in MLR7: Compare and Connect.

Number Routine Where Does It Go?

Build Fluency Students build number sense as they determine where a given number would be located on two number lines with different endpoints.

These prompts encourage students to talk about their reasoning:

- How did you determine where the number would be located on the first number line?
- How did you use the first number line to determine where the number would go on the second number line?
- How is the whole on the second number line different from the whole on the first number line? Why does it matter?
- How can you double-check your work?

Purpose Students think about ways to determine how many "groups" there are in different scenarios.

Notice \& Wonder

-What do you notice? What do you wonder?
See the Appendix for a full description of the sense-making routines.
Teaching Tip Have students Think Pair Share. Have them individually think about the image of a pile of coins, then pair with another student and share thoughts about what they notice and wonder before sharing ideas with the class.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of dividing by a decimal, and are based on possible comments and questions that students may make during the share out.

- If you know the amount of money in the pile in dollars and cents, how could you find the amount of money in the plie in cents only?
- A quarter is worth $\$ 0.25$. How could you represent $\$ 0.25$ using cents only?
- If you know the amount of money in the pile in cents how could you find how many groups of 25 cents are in the pile?

Math is... Yindset

- How can you recognize and understand how others are feeling?

SEL Social Awareness: Empathy

Establish a classroom culture that welcomes openness and empathy by encouraging students to share and discuss their emotions and recognize the emotions of others. After students participate in the Notice \& Wonder routine, invite them to share the emotions they were experiencing. Encourage students to think about their own experiences with the emotions being shared by others. Their work throughout the lesson with dividing whole numbers by decimals may be challenging, and they may feel emotions such as happy, excited, or frustrated. Sharing and listening can help students build understanding of their own emotions as well as empathy for others.

Transition to Explore \& Develop

Ask questions that get students thinking about strategies and models used to divide by a decimal. Guide students to think about how they can explain strategies used to solve real-world problems involving decimal divisors.

ETP Establish Mathematics Goals to Focus Learning

- Let's think about how we can use decimal grids and equivalent equations to divide a whole number by a decimal.

Learn

Anna has $\$ 3$ in quarters
How many quarters does she have?

You can use decimal grids to divide a whole number by a decimat
You con also multiply by a power of 10 to divide by a decimal.
C. Work Together

A restaurant owner ordered $\overline{5}$ meters of foll to wrap sandwiches She uses 0.3 moter to wrap one sandwich:

How many sandwiches can she wrap with the foll she ordered 250 sandwiches

(1) Pose the Problem

EPP Pose Purposeful Questions

-What problems like this have you seen before?
-What strategy did you use to solve those problems? Can you use that strategy here?

- Based on what you know about mathematics, can you make a conjecture about how many quarters there are?

(2) Develop the Math

Choose the option that best meets

 your instructional goals.
MLR
 Compare and Connect

Pair students and assign them the same problem. Have one student solve it using decimal grids and the other using powers of 10 . Then have them compare their answers and approaches. Revisit this activity throughout the lesson to help students build proficiency.

(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How do decimal grids help you understand division by decimals?
- How can you rewrite an equivalent division equation using powers of 10 ?
- How can an equivalent equation help you solve a division equation?

Key Takeaways

- One strategy to divide a whole number by a decimal is to use decimal grids to represent and solve the problem.
- Another strategy to divide a whole number by a decimal is to multiply by a power of 10 to write an equivalent equation with a whole-number divisor to solve.

Work Together

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of how to find the quotient of a whole number and a decimal. Have students work on the activity individually or in pairs before asking them to explain how they found their answers.

- Common Misconception Students may think that the quotient of two numbers must be less than both numbers, but that is not true when the divisor is a number between 0 and 1 .

LOM Language of Math

The word equivalent has several meanings in mathematics. Equations that have the same solution are called equivalent. A square and a triangle that have the same area are called equivalent. It is also used in chemistry and cartography (the science of making or drawing maps).

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using a representation to divide whole numbers by decimals. They use their representation to develop other strategies for dividing whole numbers by decimals.

Materials: 10×10 Grids Teaching Resource

Directions: Provide copies of the 10×10 Grids Teaching Resource. Display division expressions, such as $3 \div 0.12$ and $3 \div 0.2$. Have students work in pairs or small groups to explore using a representation to determine each quotient.

ETP Support Productive Struggle

- How can you use the meaning of division to help you use a representation to solve?
- How can you represent the dividend? How can you represent the divisor? How is the quotient shown in the representation?

Math is... Structure

- What ideas have you learned before that were helpful in solving these problems?

Students look for and apply place-value structure to solve problems.
Activity Debrief: Have students share their representations and thinking. Facilitate a discussion to ensure students see that both the dividend and divisor were represented using an equivalent value written as hundredths, for example, 3 as 300 hundredths, 0.12 as 12 hundredths, and 0.2 as 20 hundredths. And that these values can be found by multiplying the dividend and the divisor by a power of 10 .

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine how many quarters Anna has?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students build on their understanding of division to find quotients of whole numbers divided by decimals using decimal grids.

EITR Use and Connect Mathematical Representations

Have the students estimate the solution. Ask:

- What power of ten will you multiply by? Why?
- What compatible numbers will you use? Why?
- How will basic facts and place-value patterns help you?
- Think About It: Why is it useful to use hundredths decimal grids instead of tenths decimal grids as a tool to solve this problem?
- When have you used powers of 10 to write an equivalent representation before? Why did you do it?
(1) Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

Q Have the students use mental math and/or a related multiplication equation to check the calculated solution. Ask:

- What related multiplication could you use? Why?
- How many quarters make 3 dollars? How do you know?

Math is... Structure

- How is using powers of 10 to write an equivalent equation similar to the way you round decimal quotients? How is it different?

Students step back for an overview and shift perspective.

2. Develop the Math

Anne has $\mathbf{\$ 3}$ in quarters
How many quarters does she have?
What equation can you write to represent this problem?

EL English Learner Scaffolds

Entering/Emerging Support students' understanding of the phrase [3] dollars in quarters. Put four quarters on the table. Say A quarter equals 25 cents. I have one dollar in quarters. Put four more quarters on the table. First, ask Do I have eight dollars in quarters? Then ask Do I have two dollars in quarters? Finally, work with students to find the decimal number on the Learn page that represents a quarter.

Developing/Expanding Support students' understanding of the phrase [3] dollars in quarters. Put four quarters on the table. Say A quarter equals 25 cents. I have one dollar in quarters. Put four more quarters on the table and ask students to tell you how much money you have in quarters. Provide sentence frames for students who may need more guidance.

Bridging/Reaching Ask students to explain the strategy they prefer to divide whole numbers by decimal numbers. Listen for key words and phrases such as \$3 in quarters, decimal grids, powers of 10, and groups of. Validate and provide correction as needed.

Solve each problem. Then, explain your solution.
5. Danen nas a cooler with 9 iters of lemanade.

He pours 0.3 iter of lemonade irto each gass. How macy glastes of lemonade can Darren Nip? 30 glasses; To divide 9 by 0,3 , multiply both by 10 . then divide. $9 \div 0.3=90 \div 3=30$
6. Me. Rarmirez bought a watermelon that weighs 12 pounds for a picnic. He cuts at into pieces that each weigh 15 pounds How many pleices of wetermeion can Mc. Ramirvr cul? B pieces; To divide 12 by 1.5 , multiply both by 10 , then divide. $12 \div 1.5=120 \div 15=8$
7. A grocery store got a delfyery of 24 pounds of aimonds. They package the almonds irfo containers wath 0.75 pound of atinonds in each. How mary containers can they fill with aimones? 32 containers; To divide 24 by 0.75 , multiply both by 100 , then divide. $24 \div 0.75=2.400 \div 75=32$
a. Melissa has $\$ 30$ to spend on apples from a local apple orchard. How mony pounds of apples can Melissa tuy? 24 pounds; To divide 30 by 1.25 , multiply both by 100 , then divide. $30 \div 1.25=$ $3,000 \div 125=24$

9. Error Anelysis Mario says that $28 \div 07=0.4$ Do you agree or disagree? Explain now you know.
I disagree; Sample answer: $28 \div 0.7=40$; Multiply both 28 and 0.7 by 10 , and then divide 280 by 7.
10. A cer arove 104 miles in 15 hours. If the speed of the cat wats the same far the ertire trip, how fast did the car got How do you know?
65 miles per hour; Sample answer: Multiply both 104 and 1.6 by 10 to get $1,040 \div 16=65$.
11. Wite a real-ife problem that involves dividing a decimsil by a whole number Sove the problem using a ropresentation Check students' work.
12. Eatend Your Thinking is the quatient of $52+1.04$ less than on greater than 52 ? How do you know? What is the quotient?
Less than; Sample answer: Because $\mathbf{1 . 0 4}$ is greater than 1 , the quotient is less than 52 . If the divisor was less than 1, the quotient would be greater than $52 ; 50$.

(D) Reflect

How do powers of 10 help you divide by a decimn? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

- Common Error: Exercises 1-4 Students may multiply the divisor by a power of 10 rather than multiplying both the dividend and the divisor by a power of 10. In Exercise 1, the student may multiply 0.2 by 10 only and obtain the quotient $6 \div 2=3$. Remind students that both the dividend and the divisor must be multiplied by the same nonzero number.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill and Fluency
$5-8$	2	Application
9	3	Conceptual Understanding
$10-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How do powers of 10 help you divide by a decimal?

Ask students to share their reflections with their classmates.

Math is... Yindset

-What helped you recognize and understand how others were feeling? Students reflect on how they practiced social awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use decimal grids to represent and solve a division equation.
- I can write an equivalent equation with a whole-number divisor to solve a division equation.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Math is $-\frac{\text { Mindset }}{}$

 What holped you recognare and understand how others were feeling?
Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			DOK Skill
1	1	Divide whole numbers by decimals	Standard
2	1	Divide whole numbers by decimals	5.NBT.B.7
3	2	Divide whole numbers by decimals	5.NBT.B.7

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
Additional Practice or any of the (3) or activities
2 of 3 Take Another Look or any of the (3) activities

1 or fewer of 3 Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Reinforce Understanding

Compare It!

Work with students in pairs. Provide each student with a division problem with a 1 - or 2-digit dividend and a decimal divisor such that there will be no remainder. One student should divide using decimal grids and the other should divide using powers of 10 . Have students compare results and if they have different results have them discuss. Repeat with other division problems and have partners switch roles.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Divide Whole Numbers by Decimals-Model
- Divide Whole Numbers by Decimals

Differentiation Resource Book, p. 85

Lesson 8.5 - Reinforce Understanding Divide Whole Numbers by Decimals

Use powers of 10 to help you solve to find the quotient. Show your work.

1. $8+0.4=20$
$80 \div 4=20$
2. $54+0.9=60$ $540 \div 9=60$
3. $6 \div 0.25=24$
$600 \div \mathbf{2 5}=24$
4. $30+0.15=200$ $3,000 \div 15=200$

> 5. $100 \div 2.5=\frac{40}{} 1.000 \div 25=40$ 6. $78+6.5=\frac{12}{780 \div 65=12}$ 7. $81 \div 27=\frac{30}{} 810 \div 27=30$ 8. 8. $36+0.45=\frac{80}{3600 \div 45=80}$

Practice It! Game Station

Divide by Whole Numbers Tic Tac Toe

Students practice dividing whole numbers by decimals.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 85-86

Lesson 8.5
 Additional Practice

Namse

Review

You can use powers of 10 to help you divide a whole number by a decimal.
A deti has 6 pounds of ham to make sanowiches. Ench sandwich uses 0.3 pound of tram. How mary sandwiches can be made?

Wiste a division equation to represert the problem

$$
6 \div 0.3=n
$$

Use a power of 10 so that the divhot, 0.3 is a whole number: $0.3 \times 10=3$
Muitiply the dividend by the same power of $10: 6 \times 10=60$ Wree an equivalenk equation wath the new dividend and divisor. $60+3=n$
Since $60 \div 3=20$, 1 t nust be that $6 \div 0.3=20$.
The dell can moky 20 sandivelies.

Write an equivalent division so that the divisor is a whole number Then find the quotient.

1. $4 \div 005$	2. $12 \div 0.4$
$400 \div 5 ; 80$	$120 \div 4 ; 30$
3. $10 \div 025$	4. $3 \div 0.2$
$1,000 \div 25 ; 40$	$30 \div 2 ; 15$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with addition and subtraction within $1,000,000$.

Spiral Review

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 85-86

```
Write an equivalent division so that the divisor is a whole number
Then find the quotient.
    5. 8+016
        6. }14\div0.3
    800\div16;50
                                1,400\div35;40
7. }91+1
    910\div14;65
                            8. 72 +4.5
                            720\div45; 16
9. Nancy has $6 to spend at the frut stand 5ine ines all of her money
    to buy oranges thut cost }30.35\mathrm{ per pound. How many pounch of
        ormiges did Nancy buy?
            8 pounds
```


Extend Thinking

Use It! Application Station
That is Tasty! Students use decimal
division to size up and down a recipe. The content of this card has concepts covered later in Lesson 8-6. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 86

Lesson 8.5 - Extend Thinking

Divide Whole Numbers by Decimals
Find Quotient A and B. Show your work. Then determine the comparison ($\langle,=$, or \rangle) between A and B. The first one is done for you as an example.

	Quotient A	<n=,or>	Quotient 8
1.	$\begin{aligned} & 24+0.08 \\ & 240+8 \\ & 30 \end{aligned}$	$<$	$\begin{aligned} & 15 \div 0.5 \\ & 160 \div 5 \\ & 32 \end{aligned}$
2.	$\begin{aligned} & 18+0.15 \\ & 1800 \div 15=120 \end{aligned}$	$>$	$\begin{aligned} & 36+2.25 \\ & 3.600 \div 225 \\ & =16 \end{aligned}$
3.	$\begin{aligned} & 60 \div 75 \\ & 600 \div 75=8 \end{aligned}$	=	$\begin{aligned} & 28+35 \\ & 280 \div 35=8 \end{aligned}$
4.	$\begin{aligned} & 6+0,025 \\ & 6,000 \div 25 \\ & =240 \end{aligned}$	$<$	$\begin{aligned} & 21+0.75 \\ & 2,100+75=28 \end{aligned}$
5.	$\begin{aligned} & 24+0.6 \\ & 240 \div 6=40 \end{aligned}$	$>$	$\begin{aligned} & 12+0.40 \\ & 120 \div 4=30 \text { or } \\ & 1,200 \div 40 \end{aligned}$
6.	$\begin{aligned} & 66 \div 22 \\ & 660 \div 22=30 \end{aligned}$	$<$	$\begin{aligned} & 18 \div 0.2 \\ & 180 \div 2=90 \end{aligned}$
2.	$\begin{aligned} & 35+0.07 \\ & 3.500 \div 7=500 \end{aligned}$	=	$\begin{aligned} & 3 \div 0,006 \\ & 3,000 \div 6=500 \end{aligned}$

Diferemison froveru Boct

Divide Decimals by Decimals

Learning Target

- I can write an equivalent equation containing whole numbers to solve a division equation.

Standards \diamond Major Δ Supporting O Additional

Content

\diamond 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to the hundredths.
5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Math Practices and Processes
MPP Make sense of problems and persevere in solving them.
MPP Attend to precision.

Focus

Content Objective

- Students multiply the dividend and the divisor by a power of 10 to write an equivalent equation containing whole numbers to solve a division equation.

Language Objectives

- Students discuss multiple strategies to find quotients of decimals while answering Wh- questions.
- To support optimizing output, ELs participate in MLR5: Co-Craft Questions and Problems.

SEL Objective

- Students set learning goals and initiate work on tasks to accomplish their goals.

Coherence

Previous	Now	Next
- Students found whole-number	- Students divide decimals by	
quotients and remainders		
(Grade 4).	- Students add and subtract find partial quotients for equivalions (Unit 9).	
- Students divided whole numbers by decimals using decimal grids and equivalent equations (Unit 8).		- Students add, subtract, multiply,
and divide using the standard		
algorithm (Grade 6).		

Rigor

Conceptual Understanding

- Students build on their understanding of division as they notice and use patterns in dividing a decimal by a decimal.

Procedural Skill \& Fluency

- Students build proficiency with strategies for dividing a decimal by a decimal.

Application

- Students apply their understanding of division with decimals to solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
dividend	advantage
divisor	assert
partial quotients	disadvantage
power of 10	
quotient	

Materials

The materials may be for any part of the lesson.

- Tenths and Hundredths Representations Teaching Resource

Number Routine Where Does It Go?
 5-7 min

Build Fluency Students develop number sense as they determine where a given number would be located on two number lines with different endpoints.

These prompts encourage students to talk about their reasoning:

- How did you determine where the number would be located on the first number line?
- How did you use the first number line to determine where the number would go on the second number line?
- What did you do differently with the second number line than with the first number line?
- How can you double-check your work?

Purpose Students should focus on the fact that changing both the divisor and the dividend by the same factor results in the same quotient.

Notice \& Wonder

-What do you notice? What do you wonder?
See the Appendix for a full description of the sense-making routines.
Teaching Tip Have students examine the equations in multiple ways. One way could be to use equivalent representations to state each equation, such as, "There are 2 groups of 5 tenths in 10 tenths." Another could be to find the power of 10 needed to make the last equation equivalent to each of the other equations.

ETR
 Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of dividing decimals and are based on possible comments and questions that students may make during the share out.

- What is similar about these equations?
- What is different about the equations?
- What patterns do you see?
- What other equations could you write that would continue the pattern shown?

Math is... Yindset

- What helps you want to do your best work?

EL

Self-Regulation: Working Memory
Before beginning the Notice \& Wonder routine, guide students to make their own specific and attainable goal for the day. Goals may be centered around dividing decimals by decimals or may be focused on strong behaviors, such as active listening or staying on task. Creating a personal goal can allow students to practice self-motivation as they work toward achieving that goal.

Transition to Explore \& Develop

Ask questions that get students thinking about patterns in division. Guide students to think about how they can explain strategies used to divide decimals by decimals.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can divide a decimal by a decimal by solving an equivalent equation.

(1) Pose the Problem

Learn

The equation $199.5 \div 9.5=1$ can represent the problem.
You can multiply the dividend and divisor by a power of \$0 to help you solve the equation.

Use the partial quotients strategy to oivide

The length of the pleyground is 21 meters.
To divide a decimal by a decimal you can multiply by a power of 10 . and then use partial quotents to solve.

C. Work Together

Ms. Perez has 43.5 inches of lace for some dresses. Each dress needs 8.7 inches of lace. How many dresses can Ms. Perez make? 5 dresses

Pose Purposeful Questions

- How is this similar to other problems you have solved?
- How will the length of the playground be related to its area?

(2) Develop the Math

Choose the option that best meets your instructional goals.

\square Co-Craft Questions and Problems
Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the task throughout the lesson for reinforcement.

3 Bring It Together

ETPElicit and Use Evidence of Student Thinking

- How do you use partial quotients as a strategy to divide decimals?

Key Takeaway

- One strategy to divide a decimal by a decimal is to multiply the dividend and the divisor by a power of 10 to write an equivalent equation containing whole numbers to solve.

Work Together

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of how to solve a problem involving division of a decimal by a decimal. Have students work on the activity individually or in pairs before asking them to explain how they found their answers.

Common Error Watch for students who only multiply the divisor by a power of 10 . Stress that to create an equivalent equation, both the divisor and dividend must be multiplied by the same power of 10 .

LOM Language of Math

The word area comes from the Latin word area, meaning "an empty piece of flat gound." Area can mean the amount of space a figure takes up, like "the area of a rectangle," or a geographic region, like "the hilly area of Wisconsin," or an idea or activity, like "we are becoming experts in the area of mathematics."

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using a representation to divide decimals. They use their representation to develop other strategies for dividing whole numbers by decimals.

Materials: Tenths and Hundredths Representations Teaching Resource
Directions: Provide copies of the Tenths and Hundredths
Representations Teaching Resource. Display division expressions, such as $1.2 \div 0.4$ and $2.4 \div 1.2$. Have students work in pairs or smal groups to explore using a representation to determine each quotient.

ETP Support Productive Struggle

- How did you use a representation to divide a whole number by a decimal? How can you extend that to dividing two decimals?
- How did you determine whether to use the tenths grid or the hundredths grid?
- How do the quotients of these division problems relate to the quotients of $12 \div 4$ and $24 \div 12$? Why do you think this happens?

Activity Debrief: Have students share their representations and thinking. Facilitate a discussion to ensure students see that both the dividend and divisor were represented using an equivalent value as hundredths, such as 12 tenths and 4 tenths. And that these values can be found by multiplying the dividend and the divisor by a power of 10 .

Math is... Precision

- How do you choose the power of 10 to use?

Students give carefully formulated explanations of their reasoning.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the length of the playground?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students build on their understanding of division to find quotients of decimals divided by decimals using powers of 10 , area models, and partial quotients.

ETP Use and Connect Mathematical Representations

 Have the students create the equation. Ask:- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Q Have the students estimate the solution. Ask:

- What power of ten will you multiply the dividend and divisor by? Why?
- What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
-Why do you multiply by $10{ }^{1}$?
(8. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?
- Think About It: How would this problem be different if the width was missing?

Math is... Precision

- How do you choose the power of 10 to use?

Students give carefully formulated explanations of their reasoning.

EL

English Learner Scaffolds
Entering/Emerging Support students' understanding of the word each. Use classroom objects to demonstrate. First, write $\$ 5.50$ on three notebooks, for example. Say Each notebook is $\$ 5.50$. Repeat twice, once labeling objects the same price, and once, not. Ask, Is each [book \$3.25]?

Developing/Expanding Support students' understanding of the word each. Use classroom objects to demonstrate. First, write $\$ 5.50$ on three notebooks, for example. Say Each notebook is $\$ 5.50$. Repeat twice, once labeling objects the same price, and once, not. Ask, Is each [book \$3.25]? Finally, ask students to repeat the task, using each in a sentence. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to explain the meaning of the word each, and to use it in a sentence. Allow students to interject, giving their opinions, agreeing or disagreeing, and explaining why, as well as pointing out any mistakes that they may catch. For example, No, that's not correct.... or No, each means....

8. Jess has $\$ 13.85$ in nickels. How many nickels does she have? How do you know?
277 nickels; Divide 13.85 by 0.05 by multiplying both by 100 . Then you can divide 1,385 by 5 to find the quotient $13.85 \div 0.05=277$.
9. Nina ran laps for a total of 209.2 seconds. She ran each lap in 52.3 seconds. How mary laps did she run? 4 laps
10. Sela bought 2.6 pounds of trat mix and spent $\$ 15.00$. How much does one pound of trail mix cost?
A. $\$ 5.00$
B. $\$ 5.50$
(C) $\$ 6.00$
D. $\$ 6.25$
4. Extend Your Thinking A coffee shop sels bags of coffee for $\$ 9.90$ per klogram Each Bog holds 0.5 klogram of coffee How manty bags of coffee do they sell if they eam $\$ 702.907$ Explain yoir arswer.
142 bags: Sample answer: Divide $702.9 \div 9.9=71$; $71 \div 0.5=142$

© Rellect

How can powers of 10 heip you divide a decimal by a decimen? Answers may vary.

Practice

EIP Build Procedural Fluency from Conceptual Understanding

Common Error: Exercise 2 Students may automatically multiply by 10 , not taking into account what they are trying to accomplish. Remind them that the goal is to write an equivalent equation that contains only whole numbers. That may involve multiplying by 10 or 10^{3} or 10^{4}, etc., depending upon the greatest number of decimal places that appear in the equation.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill and Fluency
5	2	Conceptual Understanding
$6-10$	2	Application
11	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can powers of 10 help you divide a decimal by a decimal? Ask students to share their reflections with their classmates.

Math is... Mindset

- What helped you want to do your best work?

Students reflect on how they practiced self-motivation.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can write an equivalent equation containing whole numbers to solve a division equation.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK Skill	Standard
1	1	Divide decimals by decimals	5.NBT.B.7
2	1	Divide decimals by decimals	5.NBT.B.7
3	2	Divide decimals by decimals	5.NBT.B.7
4	2	Divide decimals by decimals	5.NBT.B.

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do	
4 of 4	Additional Practice or any of the (3) or activities
3 of 4	Take Another Look or any of the (3) activities
2 or fewer of 4	Small Group Intervention or any of the \mathbf{B} activities
Key for Differentiation	
(B) Reinforce Understanding	
(B) Build Proficiency	
E Extend Thinking	

Reinforce Understanding

Divide with Decimals

Work with students in pairs. Students write two 2-digit numbers and multiply the numbers. Students write the product divided by one of the factors. Then they insert a decimal point before the last digit in each number, trade papers, and divide using powers of 10 , area models, and partial quotients. Help students understand how to use the place value of the dividend and divisor to determine the power of ten by which to multiply before labeling the area model.

Build Proficiency

Practice It! Game Station
Divide Decimals by Decimals Task Cards Students practice dividing decimals.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 87-88

Lesson 8.6

Additional Practice

Name

Review

You can use powers of 10 to help you divide a decimal number by another decimal number.
The area of a rectangudar garden is 512 squave meters The width of the garden is 6.4 meters. What is the length of the garden?

Write a division equation to represent the problem

```
                51.2+6.4=1
```

Use a power of 10 so that the divisot, 64, is a whole number $6.4 \times 10=64$
Multiply the dividend by the same power of 10:5t. $2 \times 10=512$ Wrte an equivalems equation with the new dividend and divisor: $512+64=h$
Since $512+64=8,4$ must be that $512 \div 6.4=8$.
The garden is 8 meters long.

Write an equivalent division so that the divisor is a whole number. Then find the quotient.

```
1. 27\div0.9 2. 2.2\div0.4
    27\div9;3
        32\div4;8
3. }9.4+4.
                                4. 24.94 +0.58
                                2,494\div58;43
```

[^2]Unit 8 • Divide Decimals

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with addition and subtraction within $1,000,000$.

Spiral Review

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 87-88

Extend Thinking

Use It! Application Station
Leave a Trail! Students create a poster showing how they divided decimals while making trail mix.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 88
 Differentiation Resource Book, p. 88

Math Probe

For each problem, use what you know about place value and division to select the correct quotient. Do not actually calculate the division.
3. Which provides the answer to $0.036+0.24 ?$
Circle your answer.
(a) 0.15
b. 0.015
c. 1.50
d. 150

Explain or show your answer. Explanations may vary.

Which provides the answer to $80.4 \div 0.67 ?$
Circle your answer,
a. 0.12
b. 12
c. 12
(d) 120

Explain or show your answer Explanations may vary.

Reflect On Your Learning

Analyze the Probe Formative Assessment

Targeted Concept Determine the quotient of a decimal divided by a decimal by using reasoning about the magnitude of the dividend and divisor and the meaning of division.

Targeted Misconceptions Some students do not apply place-value ideas to determine quotients when a decimal is divided by a decimal. They may think division always "makes smaller" without considering the magnitude of the dividend and divisor. Some students have difficulty applying strategies for whole number division and estimation to reason about the location of the decimal point in the quotient.

Authentic Student Work

Below are examples of correct student work and explanations.

Sample A

2. Which provides the answer to $3.0+3.75$? Circle your answer.
a. 80
3. 8.0
c. 0.89
d. 0.08

Explain or show your answer.
$3 \div 3=1$
$3 \div 4=.75$
0.80 is between 1 and .75

Sample B

Collect and Assess Student Work

Collect and review student response to determine possible misconceptions. See examples in If-Then chart.

IF incorrect...	HEN the student likely...
$\begin{aligned} & \text { 1. a, b, c } \\ & \text { 2.d } \\ & \text { 3.b } \end{aligned}$	overgeneralizes that the quotient is always less than the dividend. Note that this overgeneralization could lead to a correct answer for Exercise 2 (choice c).
4. a, b, c	
$\begin{aligned} & \text { 1. a } \\ & \text { 2. d } \\ & \text { 3. b } \\ & \text { 4. a } \end{aligned}$	thinks that when decimals are divided, the answer is a very small decimal (generally the smallest decimal among the answer choices).
1. C 2. b, d 3. b, c 4. a, b	overgeneralizes that when decimals are divided, the quotient will have the decimal point in the same place as the dividend or the divisor. Note that this overgeneralization could lead to correct answers for Exercise 2 (choice c) and for Exercise 3 (choice a).

Sample Misconceptions

In this case, the student chooses a quotient smaller than the dividend.

```
1. What is the quotient for
```

 \(21.76 \times 0.807\)
 Gircle your answer.
 a. 0.0272
b. 0.272
(c. 2.72

In this case, the student chooses the smallest choice.

In this case, the student incorrectly thinks about the value of the dividend and divisor.

4. Which provides the answer to $80.4+0.67$	Explain or show yout answe,
Orde yout answes. a. 0.12 b. 1.2 c 12 d. 120	$80 \div 67 \approx 1$ and sornemore 1. 2 is closest and is also like the 80.4 . Both have 1 number in tenth spot.

1. Many of the above difficulties result in a combination of correct and incorrect responses.

For correct responses, be sure to check for sound reasoning.

Take Action

Choose from the following resources or suggestions:

- Revisit decimal division activities in Lessons 8-2 through 8-6.
- Apply whole number division ideas to decimal division. For example, point out that just as $10 \div 2=$? can be thought of as "finding how many 2 s fit into 10 ," you can think of $10 \div 0.2=$? as "finding how many two-tenths fit into 10 ."
- Use decimal language that reinforces place-value understanding. For example, ensure that students read 0.35 as "thirty-five hundredths" rather than as, say, "point three five."
- Encourage students to call to mind visual images of concrete materials as a strategy for reasoning about decimal division and the placement of the decimal point.
- Do estimation activities in groups, allowing students to discuss their strategies.

Revisit the Probe After additional instruction, have students review their initial answers. Use these questions for discussion:

- Are there any answers you would like to change? Explain.
- Are there any questions that you still have about any of the exercises on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

Vocabulary Review

Item Analysis

Item	Lesson
1	$8-2$
2	$8-2$
3	$8-2$
4	$8-1$

Review

Item Analysis

Item	DOK	Lesson	Standard
5	1	$8-3$	5.NBT.B.7
6	1	$8-1$	5.NBT.A.2
7	2	$8-6$	5. NBT.B.7
8	1	$8-5$	5.NBT.B.7
9	2	$8-2$	5.NBT.B.7
10	1	$8-5$	5.NBT.B.7

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)

Item	DOK	Lesson	Standard
11	1	$8-4$	5.NBT.B.7
12	1	$8-5$	5.NBT.B.7
13	1	$8-5$	5.NBT.B.7
14	1	$8-6$	5.NBT.B.7
15	1	$8-4$	5.NBT.B.7
16	2	$8-4$	5.NBT.B.7
17	1	$8-4$	5.NBT.B.7

Performance Task

Standard: 5.NBT.B. 7
Rubric (4 points)
Parts A and B (DOK 2) - 2 points
2 POINTS Student's work reflects a proficiency with dividing whole numbers by decimals. The student's quotients are accurate.

1 POINT Student's work reflects developing proficiency with dividing whole numbers by decimals. One of the quotients is accurate.

0 POINTS Student's work reflects a poor understanding of dividing whole numbers by decimals. No quotients are correct.

Part C (DOK 2) - 2 points
2 POINTS Student's work reflects a proficiency with dividing decimals. The solution is accurate.

1 POINT Student's work reflects developing proficiency with dividing decimals. The solution is incorrect due to computational errors, not conceptual weakness.

0 POINTS Student's work reflects a poor understanding of dividing decimals. The solution is incorrect.

Reflect

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.

Performance Task

Chel Malory is making salads.
Chel Malory's Special Sidad

- 10 or spinaci
- $\frac{1}{8}$ mal onion
.6 silced strawberries
-0.7 or walnuts
- 1.4 or blue cheese
.0 .5 or vinaigrette

Part As Chet Malory is huying the blue cheese. He found two containers of Dlue cheese, one that is 4 oz and another one 7 or. Which cortainer will allow him to use the entire cortainer and how many salads can he make?
7 oz container; 5 salads
Part B: Chef Nalory has a 1.75 pound of watnuts. How mary salads could he make? Wa ne use the whole bag?
40 salads because 1.75 pounds is 28 ounces; yes because $28 \div 0.7=40$
Part C: if Chet Malory wanted to use his entire bag of walnuts, how much would he need of the other ingredients?
400 oz spinach; 5 small onions; 240 sliced
strawberries; 56 oz blue cheese; 20 oz vinaigrette

© Reflect

How is dividing decimals the same as dividing whole numbers? Answers may vary.

12 mat if fintrinaring

Fluency Check

3. $4 \times 800=$	3,200	10. $900 \times 8=$	7,200
4. $6 \times 30=$	180	T1. $7 \times 600=$	4,200
5. $600 \times 2=$	1.200	12. $90 \times 5=$	450
6. $4 \times 90=$	360	13. $2.478-247=$	2,231
7. $553-151=$	402	14. $200 \times 4=$	800
8. $20 \times 8=$	160	15. $8 \times 700=$	5,600
9. $300 \times 7=$	2,100	16. $961-432=$	529

Fluency Taik

Explain how you can use propertios of operations to find the product of a number and a muttiple of 100 .
Explanations may vary.

What patterns do you use when you multiply a number by a multiple of 10 ?
Explanations may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice multiplying by multiples of 100 .

Fluency Progression

Unit	Skill	Standard
1	Use Partial Sums to Add	4.NBT.B. 4
2	Decompose by Place Value to Subtract	4.NBT.B. 4
3	Use an Algorithm to Add	4.NBT.B. 4
4	Use an Algorithm to Subtract	4.NBT.B. 4
5	Choose a Strategy to Add	4.NBT.B. 4
6	Choose a Strategy to Subtract	4.NBT.B. 4
7	Multiply by Multiples of 10	5.NBT.B. 5
8	Multiply by Multiples of 100	5.NBT.B. 5
9	Divide Multiples of 10	5.NBT.B. 6
10	Divide Multiples of 100	5.NBT.B. 6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B. 5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B. 5
13	Choose a Strategy to Multiply	5.NBT.B. 5
14	Choose a Strategy to Multiply	5.NBT.B. 5

Fluency Expectations

Grade 4

- Add and subtract within 1,000,000.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Baseball

Students draw on their understanding of dividing decimals. Use the rubric shown to evaluate students' work.

Standards: 5.NBT.A.2, 5.NBT.B. 7
Rubric (10 points)

Part A (DOK 2) - 2 points

2 POINTS Student's work reflects a proficiency with dividing with decimals. The student was able to accurately provide 4 or 5 of the 5 answers.
1 POINT Student's work reflects a developing proficiency with dividing with decimals. The student was able to accurately provide 2 or 3 of the 5 answers.
0 POINTS Student's work reflects a weak proficiency with dividing with decimals. The student was able to accurately provide 1 or 0 of the 5 answers.

Part B (DOK 2) - 2 points

2 POINTS Student's work reflects a proficiency with dividing with decimals. The student was able to accurately calculate the answer.
1 POINT Student's work reflects a developing proficiency with dividing with decimals. A minor error in calculation resulted in an inaccurate answer.
0 POINTS Student's work reflects a weak proficiency with dividing with decimals. Multiple errors in calculation resulted in an inaccurate answer.

Parts C and D (DOK 2) - 4 points

4 POINTS Student's work reflects a proficiency with dividing with decimals. The student was able to accurately calculate the answer.

2 POINTS Student's work reflects a developing proficiency with dividing with decimals. A minor error in calculation resulted in an inaccurate answer.

0 POINTS Student's work reflects a weak proficiency with dividing with decimals. Multiple errors in calculation resulted in an inaccurate answer.

Part E (DOK 3) - 2 points

2 POINTS Student's work reflects a proficiency with how division affects the final answer. The student was able to accurately respond.
1 POINT Student's work reflects a developing proficiency with how division affects the final answer. The student was able to respond but with errors.
0 POINTS Student's work reflects a weak proficiency with how division affects the final answer. The student was not able to accurately respond.

Unit 8

Performance Task

Name

Baseball

A boseball plyyer's botting average can be found using the following formula.

```
        betting, average = = numbec of nits
```

We can also transform (or rearrange) this formula to find edofitional relationships between these quantities
number of lits $=$ botting average \times number of times at bot number of times at bat $=\frac{\text { number of hts }}{\text { batting average }}$
Part A
In the table below, fill in the missing information for each player. 5 how your work. Bltting averages are written rounded to theee oecimal places.

Player	number of Hits	number of times at Bat	Batting Average
1	52	$52 \div 0.250$ $=208$	0.750
2	96	$96 \div 0.320$ $=300$	0.320
3	49	$49 \div 0.200$ $=2.45$	0.200
4	48	$48 \div 0.400$ $=120$	0.400
5	31	$31 \div 0.155$ $=200$	0.155

Part 8

A 6* pliper had 36 nits resulting in a batting twerage of 0.788
Estimate the player's number of at bats.
Sample answer: $36 \div 0.180=3600 \div 18$

$$
=200 \text { at bats }
$$

Part C
Suppose Player 5 wants to increase their batting average to 0.275 .
If they get 35 mote nits, how maryy times at bot will the player need
to have?
Sample answer: $31+35=66$ number of hits:
$66 \div 0.275=240$ total number of times at bat.

Part D

Suppose Player 3 makes 32 more hits and now has a botting average of 0.270 . Caiculate Pleyer 3i number of times at bat
Sample answer: $49+32=81$ number of hits:
$81 \div 0.270=300$ total number of times at bat.

Part E

Pleyer 1 thinks his batting weerage increases because of the amourt of times at bat. How would you respond to player 1?
Sample answer: The amount of hits when at bat should make the batting average increase.

Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

| Item poK Lesson Glided Support |
| :---: | :---: | :---: | :--- | :--- | :--- |
| Intervention Lesson |\quad Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.

Unit 8

Unit Assessment, Form A

Name

1. Owen has $\$ 2.80$ in dimes. Which equation shows how mary dimes Owen has?
A. $280+0.01=280$ dimes
(B.) $280+0 r=28$ dimes
C. $2.80+0.01=28$ dimes
D. $280 \div 0.1=280$ dimes
2. Molanie rides her bicycie 42.4 miles in 10 days. If she rides the same amount of miles each day, how many miles does she ride each doy?
A. 0.424 mile
(B.) 4.24 miles
C. 42.4 mlon
D. 424 mian
3. Which equations show a reasonabie estimate for the cuotient $7.41 \div 0.08$ us 7 g powers of 19 and compstitie numbers? Choose al that apply
(A.) $70+1=70$
(B.) $720+8=90$
C. $72+8=9$
$70+10=7$
4. Sam is selecting a now cell phone plan. The cell phone company offers different monthly pians based on the number of gigabytes (Ge) of data avmilable

	Plen 1	Plan 2	Plan 3
Cost per Month	$\$ 4999$	$\$ 75.99$	$\$ 34.99$
Amount of Data	6 GB	9 GB	3 GB

Which plan has the lowest cost per gigabyte?
A. All the plans are the same
(B.) Plan 1
C. Plan 2
D. Plan 3
5. Which equabion is represented by the decinal grids shown?

A. $28+0.7=40$
B. $07+28=4$
C. $0.8 \div 4=0.7$
(D. $28 \div 4=07$
6. What is the quotient of $0.20 \div 57$
A. 40
B. 4
C. 0.4
(D) 0.04
7. Which is an equivalent representation of $1.8+37$
A. 18 tens $\div 3$
B. 18 ones $\div 3$
C. 堆 tenths +3
D. t8 hundreaths $\div 3$
8. Lida uses 135 pounds of meat to make 5 sandwiches. She unes the same amourt of moat in each sandwich. How much meat does Lidia use to make ench sandwich?
0.27 pound

150
Antwnent Interen Bict

Unit 8

Unit Assessment, Form A ccontinued
Name
9. What is the quotient of $2 \div 0.4$?
A. 05
(B) 5
C. 50
D. 500
10. Darius rums 15 mises. He rurs 0.2 mile pach minuto. How many minutes does it thene Darrus to run to miles?
A. 75 minutes
a. 30 minutes
C. 75 minutas
D. 150 minuter
i1. Wrich division prabiem is equivitent to $8.96 \div 0.327$
(A.) $896+32$
B. $896 \div 3.2$
C. $896+32$
D. $8.960+32$
12. Matthew completed a 26.4 mile racie in 2.2 hours. is he ran the same amours of miles eech nour, how many miles did Matthew turt each pour?
12 miles
13. Randy says $9+0.06$ has the same quotient as $90+6$. How do you respond to hims?
Sample answor: if 9 changes to 90 , then 0.06 needs to change to 0.6, not 6. These two expressions will not have the same quotient.
14. A plzzeria has 4 pounds of tomato sauce to use on the pcrzas they rake. Their iecipe calls for 0.25 pound of tometo sauce for each pizza. The pizzeria selis 10 pizzas. Will the pizreria have unough tomato sauce to mise this rumber of pizzas or will they run ouff Explain your answer,
They will have enough; Sample answer: To solve $4 \div 0.25$, I wrote the equivalent expression $400 \div 25$. The pizzeria will have enough for 16 pizzas, so the pizzeria will be able to make 10 pizzas with the available sauce.
15. Ken wants to buy tiles to cover 20 square yards of foaning. He can choose from three sizes of tiles

Tile	Area covered by 1 tile
A	0.1 square yard
B	0.25 square yand
C	0.4 square yard

Ken warts to use fower than 50 tiles. Which tiles would altow him to do this? Show your work.
Tile C; Sample answer: I divided 20 by the area covered by one tile of each size: $20 \div 0.1=200$, $20 \div 0.25=80$, and $20 \div 0.4=50$. Since 50 tiles is the only number of tiles fewer than 60 . he should buy Tile C

Form B

Uner 8
 Unit Assessment, Form B

Nino
 dinn CNe tuy

C. $480+01=45 d=\quad$ D. $486+81=409$ dicer

 seh wel?
A 7 piname
(B) 046 man
c. insmas
b. $134 \mathrm{~m}=\mathrm{e}$

A. $42+7=1$
C) $100+10-4$
(B) $120+7=5$

 Nea inct meve

	mant	Menz	Ren3
Cout per thoth	200\%	1720	32050
Bince at the Gymper Weok.	7 man	Ionata	4 am

 | c. |
| :--- | :--- |
| c. 81 |

(G) ace

A. $21=5-\gamma$
e. $20 \ln =+5$
(C) $2 \pi \mathrm{mma}+7$
D. 201 nemere +7

 siontury ine kirne me himi of tin ued 0.52 pound

 A. $372+27$
(B) $w 2+21$
C. $722+71$

- $8270+77$

 tirt methon
5 males

 Tr banaeshow mil mer.
The C: Sample answer: I divided to by the arsat cowered by one tile of each sizeer $10+0.4=100$. $0 \div 0.25=40$, anat to $+0.4=25$. Since 25 tiles is the onty number of tiles fewes than 30, she shoudd buy Tife C.

PACING: 13 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE	SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
Unit Opener ionitet Fraction Wall Students use a fraction wall to explore ways to make a fraction using fractions with different denominators.				
9-1	Estimate Sums and Differences of Fractions	Students use benchmark numbers to estimate sums and differences of fractions. Students explain how to use an estimate to predict or check the reasonableness o a calculated sum or difference of fraction	Students talk about benchmark numbers to estimate the sums and differences of fractions using greater than and less than.	Students determine how they can break a problem down to make it easier to solve.
Math Probe Make an Estimate of the Sum Students use strategies to reason about the magnitude of and addition of fractions.				
9-2	Represent Addition of Fractions with Unlike Denominators	Students use and explain how to use a representation to add fractions with unlike denominators.	Students explain how to use a representation to add fractions with unlike denominators using can.	Students exchange ideas for mathematical problem-solving with a peer and provide thoughtful and constructive feedback.
9-3	Add Fractions with Unlike Denominators	Students add and explain how to add fractions with unlike denominators.	Students explain how to add fractions Students actively listen without with unlike denominators using should. interruption as peers describe how they approached a complex mathematical task.	
9-4	Represent Subtraction of Fractions with Unlike Denominators	Students use and explain how to use a representation to subtract fractions with unlike denominators.	Students explain how to use a representation to subtract fractions with unlike denominators using can.	Students employ self-calming techniques that can be used to help manage reactions to potentially frustrating situations.
9-5	Subtract Fractions with Unlike Denominators	Students subtract and explain how to subtract fractions with unlike denominators.	Students explain how to subtract fractions with unlike denominators using can and should.	Students practice staying focused on a mathematical problem for a set time.
9-6	Add Mixed Numbers with Unlike Denominators	tudents add and explain how to add mixed numbers with unlike denominators.	Students talk about adding mixed numbers with unlike denominators using can and use.	Students identify multiple possible solutions for a given math problem.
9-7	Subtract Mixed Numbers with Unlike Denominators	Students subtract and explain ow to subtract mixed numbers with unlike denominators.	Students talk about subtracting mixed numbers with unlike denominators using can, should, same, and different	dents practice segmenting a complex mathematical task into maller achievable tasks.
9-8	Add and Subtract Mixed Numbers with Regroupin	Students add and subtract mixed numbers with regrouping.	Students talk about adding and subtracting mixed numbers with regrouping using rearrange and rename.	Students work toward completing a mathematical task independently using prior knowledge or understanding of mathematical concepts.
9-9	Solve Problems Involving Fractions and Mixed Numbers	Students solve word problems involving fractions.	Students explain how to solve word problems with fractions using can, should, reasonable, and estimate.	Students identify a problem and execute the steps necessary to solve the problem.
Unit Review Fluency Practice				
Performance Task Unit Assessment				

9-1	Math Terms benchmark number estimate	Academic Terms eliminate suggest	- fraction circles - fraction tiles - number cubes - Benchmark Fraction Number Line Teaching Resource		Application	5.NF.A. 2
9-2	denominator equivalent fractions fraction tiles like denominators numerator	correspond suggest	- Blank Open Number Line Teaching Resource - fraction tiles - ruler		Conceptual Understanding, Procedural Skill \& Fluency	5.NF.A. 1
9-3	equivalent fractions like denominator multiple	accurate condition	- fraction tiles - number cubes		Conceptual Understanding, Fluency	5.NF.A. 1
9-4	denominator equivalent fractions	establish valid	- Fraction Number Lines Teaching Resource - fraction tiles		Conceptual Understanding, Procedural Skill \& Fluency	5.NF.A. 1
9-5	denominator equivalent fractions	reflect suggest	- fractions tiles - index cards		Conceptual Understanding, Fluency	5.NF.A. 1
9-6	equivalent fractions mixed number	establish relevant	- fraction tiles - index cards		Conceptual Understanding, Procedural Skill \& Fluency	5.NF.A. 1
9-7	equivalent fractions mixed number	accurate assert	- blank spinner - fraction tiles		Conceptual Understanding, Procedural Skill \& Fluency	5.NF.A. 1
9-8	equivalent fractions mixed number	debate eliminate	- fraction tiles - index cards - rulers	- Explain and Show Your Strategies Teaching Resource	Conceptual Understanding, PSF	5.NF.A. 1
9-9	equivalent fractions mixed number	reflect suggest	- fraction circles - fraction tiles - number cubes	- Problem-Solving Tool Teaching Resource	Application	5.NF.A. 2

Unit Overview

Focus

Equivalent Fractions and Like Denominators

Students begin this unit by estimating sums and differences of fractions. Estimates are used by mathematically proficient students to check the reasonableness of answers. Since halves and ones are easy to work with, students use these benchmarks to help them estimate. They can round each number they are working with to a benchmark and get a quick idea of what the sum or difference should be. Students learn that they can round to a half if the numerator is about half of the denominator. If the numerator is very close to the denominator, the fraction rounds to 1 . If the numerator is much less than the denominator, the fraction rounds to 0 .

Students extend the work they did in Grade 4 as they work with fractions with unlike denominators. To start, they apply concepts from Grade 3 to determine how the fractions can be written using a single denominator. They know the denominator tells the unit fraction used to build it. Fractions with unlike denominators are built using different unit fractions. Students get a sense of this and what to do about it by working with physical representations, such as fraction circles and fraction tiles.

Moving from the visual/physical to symbolic manipulations, students use what they learned in Grade 4 about equivalent fractions. They use this relationship to obtain equivalent fractions with common denominators. They are exposed to problems for which only one of the fractions must be rewritten with a common denominator as well as those where both fractions need to be rewritten with a common denominator. The student's task is to find a common multiple of the denominators. After fractions are written with a common denominator, students can add and subtract fractions as they have done previously, by adding and subtracting the numerators, respectively.

They further apply this process with mixed numbers, recognizing that the fractional parts need to be expressed with a common denominator to add or subtract. However, regrouping might be necessary if the sum of the fractional parts is greater than 1 or the first fractional part in a subtraction expression is less than the second fractional part. In these cases, students regroup 1 from the fractional part or the whole part as necessary.

Coherence

What Students Have Learned

- Students compared fractions by creating common denominators or numerators. (Grade 4)
- Students added and subtracted mixed numbers with like denominators. (Grade 4)
- Students solved word problems involving addition and subtraction of fractions. (Grade 4)
- Student expressed a fraction with a denominator of 10 as an equivalent fraction with a denominator of 100. (Grade 4)

What Students Are Learning

- Students add and subtract fractions and mixed numbers with unlike denominators.
- Students solve word problems involving addition and subtraction of fractions and mixed numbers.
- Students use benchmark numbers to estimate the reasonableness of sums and differences of fractions.

What Students Will Learn

- Students solve real-world and mathematical problems by writing and solving equations with nonnegative rational constants and coefficients. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- estimating sums and differences of fractions;
- adding and subtracting fractions with unlike denominators;
- adding and subtracting mixed numbers with unlike denominators.

Procedural Skill \& Fluency

Students build proficiency with

- identifying benchmark fractions and making estimates;
- finding the sums and difference of fractions with unlike denominators;
- finding the sums and differences of mixed numbers with unlike denominators.

Application

Students apply their knowledge of

- determining the reasonableness of answers in real-world contexts;
- adding and subtracting fractions and mixed numbers to solve problems in realworld contexts.

Effective Teaching Practices

Facilitate Meaningful Mathematical Discourse

A rich learning environment includes meaningful discourse among students. In the mathematics classroom, student discourse is an interactive process of collaborative exploration, exchange of ideas, argumentation, and building of shared understanding. It is engaging, commands participation, and promotes deep learning. It is a tool the teacher uses to both ensure and confirm that learning is taking place.

Discourse can be verbal or written and enhanced through visuals. It takes place in a variety of settings-for example, whole class, small groups, and pairs-and it calls for student-student and student-teacher interaction. Student-student discourse allows students to take responsibility for their own learning and the learning of their peers. The student-teacher dynamic has the teacher playing more of a supporting role, making sure that the process follows a productive path.

Classroom discourse can be a means of engaging any element of the teaching and mathematical practices-for example, constructing arguments and critiquing the reasoning of others. It can also be used to enrich the classroom experience for English language learners.
Each lesson in this program calls for discourse using the think-pair-share model and whole-class discussion.
The teacher is a facilitator and performs the following actions-

- During pair and small-group activities, engages students as they explore and share ideas and strategies with each other.
- Observes and gathers information about what students are doing and saying and forms a plan for the whole-class discussion.
- Facilitates student-student and class discourse by creating an environment in which students are willing and eager to take ownership of their ideas.
- Makes sure the discourse stays relevant to the lesson's goals.

Math Practices and Processes

Use Appropriate Tools Strategically

Mathematical tools include physical and virtual manipulatives; drawings, graphs, and diagrams; expressions, equations, and other symbolic constructions; and calculators, math software, and other technology.

When mathematically proficient students look at a problem, they decide which tools they will use to represent and solve it. They are flexible with the choices and know the benefits of one tool versus another and of combining tools to better understand problems and justify solutions.
During the course of a lesson, the teacher should let students explore a problem on their own or in pairs using tools and approaches of their own choosing. The teacher facilitates the exploration using strategic questions while allowing students to interact, exchange ideas, and make discoveries.

A goal in teaching is to have students be able to switch between tools and/or transition from one tool to another-for example, from concrete manipulatives to equations. This flexibility is an indication that a student understands the problem and concept being explored.

- For example, in this unit, the goal is for students to be able to represent problems using fraction circles and/or tiles and sketches and to be able to manipulate these using their knowledge of addition, subtraction, and equivalent fractions. Further, students should be able to apply these representations to the writing and manipulation of equations or other symbolic/numeric constructions and to understand the connections between this work and the physical representations.

Social and Emotional Learning

- Self-Awareness - Recognize Strengths (Lesson 9-1): When students recognize their own strengths, they can see themselves as resourceful and may be more willing to attempt to problem solve and help others.
- Social Awareness - Respect Others (Lesson 9-2): When students are respectful of one another, they strengthen their class community.
- Relationship Skills - Communication (Lesson 9-3): Students who can communicate effectively are more likely to build strong relationships and contribute to a positive classroom culture.
- Self-Management - Control Impulses (Lesson 9-4): Students who can regulate their impulses and reactions are better able to navigate and solve problems.
- Social Awareness - Appreciate Diversity (Lesson 9-5): When students appreciate diversity, they create a stronger, more inclusive classroom community.
- Responsible Decision-Making - Identify Problems (Lesson 9-6): A key step in problem solving is analyzing information to identify the task.
- Relationship Skills - Teamwork (Lesson 9-7): When students work effectively as a team, they establish a stronger learning community.
- Responsible Decision-Making - Solve Problems (Lesson 9-8): Efficient problem solvers can make informed decisions that lead to solutions.
- Self-Awareness - Self-Efficacy (Lesson 9-9): Students with high self-efficacy are more likely to persevere to complete a challenging task.

Unit Overview

Language of Math

Mathematical Nouns

Students will be using these key terms in this unit:

- Benchmark number* (Lesson 9-1): Students were introduced to this term in the context of comparing fractions in Grade 4. In this unit, the benchmark numbers $0, \frac{1}{2}$ and 1 are used to estimate sums and differences of fractions and mixed numbers by finding and using estimates of the numbers being added or subtracted.
- Like denominator* (Lesson 9-2): Students were introduced to denominator in the context of fractions in Grade 3, and they worked with like denominators in Grade 4. In Grade 5, students generalize their skills with addition and subtraction of fractions, and they make and hear reference to unlike denominators, which are denominators that are not the same.

Abstract

- Mixed number* (Lesson 9-6): Students were introduced to this term in the context of addition and subtraction with mixed numbers in Grade 4. It is a number that has a whole-number part and a fraction part.

- Multiple* (Lesson 9-3): Students were introduced to this term in the context of recognizing that a whole number is a multiple of each of its factors in Grade 4. In Grade 5, students find common multiples of unlike denominators as they rewrite fractions to obtain like denominators.
*This is a new term.

Math Language Development

A Focus on Speaking

We learned our first language by listening, speaking, reading, and writing, in that order. Mathematics is like a second language, because we don't start speaking it until a few years after we start speaking our first language, and by then reading and writing get as much attention as listening and speaking. This is natural, since we are by then learning to read and write. Still, a deliberate effort should be made to engage students in speaking about mathematics right away, from the very beginning of their instruction in mathematics.

Acknowledgement of this reality is reflected in the current initiatives in math education. Discourse is cited as a critical component in our effort to give students more ownership of their learning. Teachers are called to probe student thinking and elicit verbal responses. We are further advised that our probing questions be open-ended. In this way, we ask students to dig deeper into their thoughts and their abilities to verbalize them.

By speaking their thoughts, students process their understanding more thoroughly. This helps them understand more deeply, and it builds their recall of concepts.

In this unit, seek opportunities to elicit verbal responses from students.

- There are frequent opportunities to ask students how they will represent a problem. Have them explain the representation to you before (or instead of) showing you. Math is different from everyday language in that we are accustomed to showing our thinking. We are inclined, for example, to write equations or draw pictures or graphs to explain our ideas.
- Students will be asked which equivalent fractions they can use and how they can rename fractions and mixed numbers. Have students speak their responses with explanations in descriptive terms, as if in connection to physical representations.

[E] English Language Learner

Making Inputs Comprehensible

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to adding and subtracting fractions. Because many of the words (would, since) and phrases (same-sized parts, started with, in all, spend [time]), and sentence structures (To \qquad , do \qquad so that \qquad When __, you can __, You can use __ to ___.) in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

- Lesson 9-1 - would
- Lesson 9-2 - same-sized part
- Lesson 9-3 - To__ do __ so that \qquad
- Lesson 9-4 - When __, you can _
\qquad .
- Lesson 9-5 - started with
- Lesson 9-6 - in all
- Lesson 9-7 - You can use \qquad to _.
- Lesson 9-8 - since
- Lesson 9-9- spend [time]

Number Routines

Build Fluency
The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

What's Another Way to Write It?

Purpose: Build flexibility with number sense and mental math operations. Overview: Given a number, students generate expressions using operations that, when evaluated, have the same value as the number. The teacher records expressions as students share. Students then look for relationships amongst the expressions.

Which Benchmark Is It Closest To?

Purpose: Enhance rounding and reasoning skills.
Overview: Students determine to which benchmark the given number is closest and explain their reasoning.

Would You Rather?

Purpose: Build flexibility with number sense and mental math operations; enhance decision-making.
Overview: Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

Sense-Making Routines

- Which doesn't belong? (Lessons 9-1, 9-3) In Lesson 9-1, students compare and contrast fractions to determine which does not belong. In Lesson 9-3, students identify which number in the set does not belong.
- Notice and Wonder: How are they the same? How are they different? (Lesson 9-2) Students are presented with sets of fraction tiles that each represent the same part of a whole. They describe how the sets are the same and how they are different.
- Is it always true? (Lesson 9-4) Students think about whether the relationship holds true in all cases or if it is a unique relationship.
- Notice and Wonder: What do you notice? What do you wonder? (Lessons 9-5, 9-8) In Lesson 9-5, students make observations about rows of packages of party favors. Each package has 5 items in it. In Lesson 9-8, students explore the possibility of regrouping using one whole.
- Notice and Wonder: What questions can you ask? (Lessons 9-6, 9-9) In Lesson 9-6, students start thinking about wholes first, and then counting part of the whole. In Lesson 9-9, students consider what questions could be asked about a weekly planner.
- Notice and Wonder: What question could it be? (Lesson 9-7) Students look at two representations of mixed numbers and determine what question could be answered using them.

${ }^{M 18}$ Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. These routines can also be used as formative assessment opportunities as students develop proficiency in English and mathematical language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Math Language Routines, see the Appendix.

- Lesson 9-1: To support conversation, students participate in MLR8: Discussion Supports.
- Lessons 9-2, 9-8: To optimize output, students participate in MLR1: Stronger and Clearer Each Time.
- Lessons 9-3, 9-7: To optimize output, students participate in MLR7: Compare and Connect.
- Lesson 9-4: To support sense-making, students participate in MLR2: Collect and Display.
- Lesson 9-5: In order to support sense-making, students participate in MLR8: Discussion Supports.
- Lesson 9-6: To maximize linguistic and cognitive meta-awareness, students participate in MLR5: Co-Craft Questions and Problems.
- Lesson 9-9: In order to support sense-making, students participate in MLR6: Three Reads.

Unit 9

How Ready Am I?
Name

1. Which fraction is equivitent to $\frac{2}{3}$?
(A.) $\frac{8}{12}$
c. $\frac{7}{8}$
B. $\frac{3}{4}$
D. $\frac{3}{2}$
2. Which sertence is true?
A. $\frac{3}{6}<\frac{3}{8}$
(ㄷ) $5<\frac{5}{8}$
C. $\frac{3}{4}<\frac{1}{4}$
a. $\frac{6}{8}<\frac{3}{8}$
3. Which pair of tractions are both less than $\frac{1}{2}$?
A. $\frac{1}{3}$ and $\frac{2}{3}$
a. $\frac{3}{8}$ and $\frac{3}{4}$
C. $\frac{1}{6}$ and $\frac{2}{6}$
D. $\frac{1}{4}$ and $\frac{2}{4}$
4. What is the sum? $2 \frac{3}{5}+3 \frac{1}{5}=$?
A. $1 \frac{2}{5}$
a. $5 \frac{4}{10}$
c. $5 \frac{3}{5}$
(a. $5 \frac{4}{5}$
5. Wrich is equivitent to $\frac{3}{5}$?
(A) $\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$
B. $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$
C. $2+1+\frac{1}{5}$
D. $\frac{1}{2}+\frac{2}{3}$
6. Wrich is the sum $\frac{3}{12}+\frac{4}{12}$?
A. $\frac{1}{\frac{1}{2}}$
B. $\frac{7}{24}$
7. What is the diflerence?
$\frac{7}{5}-\frac{2}{5}=?$
A. $\frac{1}{10}$
E. $\frac{5}{10}$
c. $\frac{9}{5}$
(D) $\frac{5}{5}$
8. Which is $\frac{4}{15}+\frac{3}{75}$?
A. $\frac{43}{1000}$
B. $\frac{7}{106}$
c. $\frac{7}{100}$
(D. $\frac{43}{100}$
9. Joe jumped $8 \frac{3}{4}$ teet. jill jumped $6 \frac{1}{2}$ feet. How much farther od Joe jump than 孟?
A. $1 \frac{3}{4}$ feet
(B) $2 \frac{1}{4}$ feet
C. $2 \frac{1}{2}$ feet
D. $2 \frac{2}{2}$ teet
10. All plants a flower that is $3 \frac{3}{10}$ inches tall Ater bwo weeks, the plact has grown $1 \frac{2}{5}$ inches. How tall is the plant now?
A. $2 \frac{1}{55}$ inches
B. $4 \frac{5}{5}$ inches
c. $4 \frac{1}{2}$ inches
D. $4 \frac{7}{\%}$ inches

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

Targeted Intervention

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	DOK	kill	Guided Support Intervention Lesson	Standard
1	1	Identify equivalent fractions	Equivalent Fractions	4.NF.A. 1
2	2	Compare fractions	Compare Using Benchmark One Half	4.NF.A. 2
3	2	Compare fractions	Compare Using Benchmark One Half	4.NF.A. 2
4	2	Add mixed numbers	Add Mixed Numbers	4.NF.B.3.c
5	2	Decomposing fractions	uild Fractions from Unit Fractions	4.NF.B.3.b
6	2	Add fractions	Add Like Fractions	4.NF.B.3.a
7	2	Subtract fractions	Subtract Like Fractions	4.NF.B.3.a
8	2	Add fractions with denominators 10 and 100	Add Fractions in 10ths and 100ths	4.NF.C.5.a
9	1	Subtract mixed number in a word problem	ubtract Mixed Numbers	4.NF.B.3.c
10	2	Add mixed number in a word problem	dd Mixed Numbers	4.NF.B.3.c

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question: How can I add and subtract fractions?
Ask students to think about what they know about adding and subtracting fractions.

- What do you already know about adding fractions?
- What do you already know about subtracting fractions?

Remind students that at the end of the unit, they will reflect back on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Park Ranger Students watch the animation about Poppy and her aspirations to be a park ranger.
Poppy Adds Fractions Students see how Poppy uses addition of fractions to find the part of the day that has unpleasant weather.

STEM Project Card

Students can complete the STEM Project Card during their workstation time.

STEM Adventure

Students can complete the STEM Adventure during their workstation time.

STEM Career: Park Ranger

Ignite!

Fraction Wall

Students use fraction strips to explore equivalent fractions. They use the strips to informally discover the need to consider parts of the same size before adding fractions.

Materials: color pencils

1. Direct students to the student page.
-What do you notice about the strips on the page?
2. Have students explore fractions equivalent to $\frac{1}{2}$.

- How can you represent $\frac{1}{2}$ using some of the other strips?

3. Have students explore fractions equivalent to $\frac{1}{3}$.

- How can you represent $\frac{1}{3}$ using some of the other strips?

4. Have students work in pairs to explore how to make a sum of $\frac{1}{2}$ by using two parts of different sizes. Allow students time to explore and discover.

- Find as many ways as you can to make a sum of $\frac{1}{2}$ using two parts of different sizes. Shade the strips to make sure that they show $\frac{1}{2}$.

5. Help students notice that they have just added fractions with different denominators to make $\frac{1}{2}$.

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

	Activity	Description	Use After Lesson
¢	Game Station	Students build proficiency with adding and subtracting fractions and mixed numbers. - Estimating Sums and Differences Race - Adding Fractions Task Cards - Fraction Addition Concentration - Subtracting Fractions Task Cards - Fraction Subtraction Tic Tac Toe - Mixed Number Addition Concentration - Fraction and Mixed Number Addition Race - Mixed Number Addition Concentration - Subtracting Mixed Numbers Task Cards	$\begin{aligned} & 9-1 \\ & 9-2 \\ & 9-3 \\ & 9-4 \\ & 9-5 \\ & 9-6 \\ & 9-7 \\ & 9-8 \\ & 9-9 \end{aligned}$
¢	Digital Game	Submarine Plunge Students practice dividing multi-digit numbers.	9-1
Have students complete at least one of the Use It! activities for this unit.			
STEM Project Card Connection Card Real World Card		Get Moving Students design a car and measure the 9-8 distance it travels.	
		Create and Solve Students create a multi-step problem that adds and subtracts mixed numbers to solve. Then they use a digital tool to present the problem.	9-9

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.

Foldables

Use the unit foldables with Lessons 9-2 through 9-4.

Spiral Review Practice

Students can complete the Spiral Review Practice at any point during the unit as either a paper-and-pencil or digital activity.

Lesson	Standard
$9-1$	5.NBT.B.6
$9-2$	5.MD.C.5
$9-3$	5.NBT.A.3
$9-4$	5.NBT.B.5
$9-5$	5.NF.A.2
$9-6$	5.NF.A.1
$9-7$	5.NBT.A.4
$9-8$	5.NBT.B.6
$9-9$	5.NF.A.2

Estimate Sums and Differences of Fractions

Learning Targets

- I can use benchmark numbers to estimate the sums and differences of fractions.
- I can explain how to use an estimate to predict a calculated solution.
- I can explain how to use an estimate to check the reasonableness of a calculated solution.

Standards \circ Major \triangle Supporting O Additional

Content

\diamond 5.NF.A. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.

Math Practices and Processes
MPP Construct viable arguments and critique the reasoning of others.

Focus

Content Objectives

- Students use benchmark numbers to estimate sums and differences of fractions.
- Students explain how to use an estimate to predict or check the reasonableness of a calculated sum or difference of fractions.

Language Objectives

- Students talk about benchmark numbers to estimate the sums and differences of fractions using greater than and less than.
- To support cultivating conversation, ELs participate in MLR8: Discussion Supports.

SEL Objective

- Students determine how they can break a problem down to make it easier to solve.

Next

- Students use representations to understand addition of fractions having unlike denominators (Unit 9).

Rigor

Conceptual Understanding

- Students build understanding of estimation as they estimate sums and differences of fractions and determine the reasonableness of proposed answers.

Procedural Skill \& Fluency

- Students develop proficiency making estimates.

Procedural Skill \& Fluency is not a targeted element of rigor for this standard.

Application

- Students estimate sums and differences of fractions and determine the reasonableness of proposed answers in real-world contexts.

Vocabulary

Math Terms
benchmark number Academic Terms eliminate suggest estimate

Materials

The materials may be for any part of the lesson.

- fraction circles
- fraction tiles
- number cubes
- Benchmark Fraction Number Line Teaching Resource

Number Routine Which Benchmark Is It Closest To? © ${ }^{5-7 \mathrm{~mm}}$

Build Fluency Students build number sense as they determine which benchmark number each given fraction is closest to and explain their reasoning.

Students exchange ideas with each other. After each fraction is discussed, it can be moved to the appropriate benchmark. These prompts encourage students to talk about their reasoning:

- How did you look at each fraction? What did you consider about the numerator? What did you consider about the denominator?
- What did you consider about the sizes of the numerator and denominator compared to each other?

Purpose Students compare and contrast fractions to identify which doesn't belong.

Which Doesn't Belong?

-Which doesn't belong?
Teaching Tip You may want to suggest that students write the fractions that are not already simplified in their simplest form before discussing them as a class.

ER Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of using benchmark fractions to estimate the sums and differences of fractions and are based on possible comments and questions that students may make during the share out.

- How can you determine if any of the fractions are equivalent to one another?
- How can you determine which fractions are close in value to one another?

Math is... Jindset

-What are your strengths in math?

Self-Awareness - Recognize Strengths

As students determine which fraction doesn't belong, encourage them to recognize their own strengths, so they can see themselves as resourceful and may be more willing to attempt to problem solve and help others. Invite students to share their reasoning for how they identified their solutions and remind them that some questions can have more than one correct answer. As students work with estimating the sums and differences of fractions throughout the lesson, encourage them to work with other students to capitalize on the strengths of each group member.

Transition to Explore \& Develop

Ask questions that get students thinking about benchmark fractions and how certain fractions are easier to use when estimating sums and differences of fractions.

IP Establish Mathematics Goals to Focus Learning

- Let's think about how we can estimate the sums and differences of fractions using benchmark fractions.

(1) Pose the Problem

Learn

Ravi estimates that he needs $1 \frac{1}{2}$ gallons of paint. He has two cans of paint with the amount of paint shown.

Does Ravi have enough paint?
You can use a number line to help you estimatie.

Estimate the sum using benchmark numbers.
$\frac{2}{3}$ is close to $\frac{1}{2}$ and $\frac{7}{8}$ is close to 1 .

Rosishould have enough paint. He has about $1 \frac{1}{2}$ gallons of paint.
You can use benchmark numbers to estimate sums and differences of fractions. You can use estimation to check the reasonableness of a calculated solution.

Work Together

Use estimation to determine whether each solution is reasonable. Explain your reasoning. yes, both solutions are reasonable
$\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ ${ }^{\frac{2}{3}-\frac{1}{6}=\frac{1}{2}}$

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using benchmark fractions to estimate the sum of two fractions.

Materials: Benchmark Fraction Number Line Teaching Resource
Directions: Provide copies of the Benchmark Fraction Number Line Teaching Resource. Have students solve the Pose the Problem.

Support Productive Struggle

- How can you use the number line to help you estimate?
- How can you determine what benchmark number $\frac{1}{4}$ is close to on the number line?
- How can you determine what benchmark number $\frac{2}{3}$ is close to on the number line?
- How can you determine what benchmark number $\frac{7}{8}$ is close to on the number line?
- How can knowing which benchmark numbers the fractions are close to help you find an estimate?
- How can you use the number line to determine if the sum of the fractions will be less than or greater than 1 ?

Activity Debrief: Have groups of students share their work with the class. Encourage students to discuss how they used the number lines and benchmark numbers to determine their estimates.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use benchmark fractions on a number line to estimate a sum of fractions to solve a problem.

EIR Facilitate Meaningful Mathematical Discourse

- Think About It: What are some strategies you know for estimating sums?
(4) Have the students use number sense while estimating the sum of $\frac{2}{3}$ and $\frac{1}{4}$. Ask:
- How much less than 1 is $\frac{2}{3}$? Why?
- Is $\frac{1}{4}$ lesser than or greater than $\frac{1}{3}$? Why?
- Is the sum of $\frac{1}{4}$ and $\frac{2}{3}$ less than or greater than 1 ? Why?
(8) Have the students use number sense while estimating the sum of $\frac{1}{4}$ and $\frac{7}{8}$. Ask:
- Is $\frac{7}{8}$ lesser than or greater than 1 ? Why?
- Is $\frac{1}{4}$ lesser than or greater than $\frac{1}{2}$? Why?
- Is the sum of $\frac{1}{4}$ and $\frac{7}{8}$ lesser than or greater than $1 \frac{1}{2}$? Why?

Have the students use number sense while estimating the sum of $\frac{2}{3}$ and $\frac{7}{8}$. Ask:

- How much less than $1 \frac{1}{2}$ (or $\frac{12}{8}$) is $\frac{7}{8}$? Why?
- Is $\frac{2}{3}$ greater than $\frac{5}{8}$? How do you know?
- Is the sum of $\frac{2}{3}$ and $\frac{7}{8}$ less than or greater than $1 \frac{1}{2}$? Why?

Math is... Explaining

- How do you know you have checked all the pairs of cans?

Students justify their conclusions, communicate them to others, and respond to the arguments of others.

English Learner Scaffolds

Entering/Emerging

Explain which [two]. Put four containers on the desk, two with counters, and two without. Say, Let's see which two [cups] have counters. Check each container and indicate which two have counters. Repeat, putting different items in various numbers of containers and using which [three] as above. Repeat again, grouping the [four] with items on one side and the [four] without on the other. Ask, Which [four] [cups] have [crayons]? Allow pointing.

Developing/Expanding

Explain which [two]. Put four containers on the desk, two with counters, and two without. Say, Let's see which two [cups] have counters.
Check each container and indicate which two have counters. Repeat, putting different items in various numbers of containers and using which [three] as above. Repeat again, grouping the [four] with items on one side and the [four] without on the other. Ask, Which [four] [cups] have [crayons]?

Bridging/Reaching

Instruct students to read the word problem at the top of the Learn page, focusing on which two. Discuss with students what information a question with which is asking for (one or more things from a set). Discuss with students other question words and when we use them (e.g., when for time, where for place, etc.).

Name
Will the sum be greoter than 1 or less thon 17 Use the number line and explain how you can use benchmark numbers to justity.

Is the sum or difference reasonable? Use estimation to check.

5. $\frac{1}{4}+\frac{5}{6}=\frac{3}{4}$	6. $\frac{2}{5}+\frac{1}{2}=\frac{9}{5}$
Sample answer: no, the sum should be greater than 1 2. $\frac{3}{4}-\frac{3}{8}=\frac{2}{3}$	Sample answer: yes, the sum should be close to 1 but less than 1 8. $\frac{7}{10}-\frac{2}{5}=\frac{1}{2}$
Sample answer: no, the	Sample answer: yes, the
difference should be less	difference should be
than $\frac{1}{2}$	

9. Dan waters ivs plants with $\frac{2}{3}$ cup of water on Mondiy and $\frac{2}{3}$ cup of water on Friday. Doen Dan use more than t cup of water in all Explain why or whiy not.
Yes, $\frac{2}{3}$ is greater than $\frac{1}{2}$, so the sum would be greater than 1.
10. There $s \frac{3}{8}$ gallon of milic in Zelda's retrigetatoc Zeida and her suother drinik $\frac{1}{3}$ gallon of mik. Abnut how much mik is lett? Explain your answer.
About $\frac{1}{2}$ gallon of milk is left: $\frac{7}{8}$ is close to 1 but not quite and $\frac{1}{3}$ is close to $\frac{1}{2}$.
11. STEA Connection Poppy is helping ciean up a park. Her group is cleaning up $\frac{2}{5}$ of the park. Another group is cieanirig up $\frac{1}{4}$ of the park. Abcut how much of the paik should a third group clean in so that they cover the entife park?
Sample answer: about $\frac{1}{4}$ of the park

12. Extend Your Thinking How can you apply estimating the sums and differences of fractions that we less then 1 to fractions thas sre greater than 1 ?
Sample answer: Use benchmark fractions and whole numbers that are greater than 1 such as $1 \frac{1}{2}, 2$, etc. (P) Reflect

Why is estimating the sums and differences of fractions usefur? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

1. Common Misconception: Exercises 5-8 Make sure students are estimating to check the reasonableness of the solutions rather than trying to calculate the solutions themselves.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Conceptual Understanding
$5-8$	2	Procedural Skill \& Fluency
$9-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- Why is estimating the sums and differences of fractions useful? Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you use your strengths in math today?

Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use benchmark numbers to estimate the sums and differences of fractions.
- I can explain how to use an estimate to predict a calculated solution.
- I can explain how to use an estimate to check the reasonableness of a calculated solution.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pok Skill		Standard	
1	1	Estimate sums of fractions	5.NF.A.2
2	1	Estimate differences of fractions	5.NF.A.2
3	2	Estimate sums of fractions	5.NF.A.2
4	2	Estimate differences of fractions	5.NF.A.2

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	then have students do
4 of 4	Additional Practice or any of the B or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the \boldsymbol{B} activities
2 or fewer of 4	Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Benchmark Numbers

Work with students in pairs. Each student rolls two number cubes and makes a fraction with the lesser number as the numerator. Students find the benchmark number ($0, \frac{1}{2}$ or 1) closest to each fraction and add their benchmark numbers to estimate the sum of the fractions. If students have difficulty identifying the benchmark, help them to use fraction circles or fraction tiles to represent the fractions and compare them to the benchmarks.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Estimate \& Check (Benchmark Fractions)

Differentiation Resource Book, p. 89
Lesson 9-1-Reinforce Understanding
Estimate Sums and Differences of Fractions

Name

Review

You can une benchmark fractions to estimate sums and dfferences. of factions:

Wial the sum be greater than 1 or less than if Use benchmark fractions to justify your answer.

```
1. \(\frac{5}{8}+\frac{4}{5}\)
    greater than 1 ; both
    fractions are greater
    than \(\frac{1}{2}\)
        2. \(\frac{2}{5}+\frac{3}{4}\)
        less than 1; both
                                fractions are less
                                than \(\frac{1}{2}\)
```

Use estimation to determine whether each solution is reasonable.
3. $\frac{1}{2}+\frac{2}{3}=\frac{5}{6}$
no; the sum should
be greater than 1
4. $\frac{5}{6}-\frac{1}{3}=\frac{1}{2}$
yes; the difference
should be close to $\frac{1}{2}$
s $1+2=1$
yes? the sum should be
close to 1 but less than 1
6. $\frac{3}{5}-\frac{3}{10}=\frac{1}{2}$
no; the difference should
be less than $\frac{1}{2}$

Build Proficiency

Practice It! Game Station
Estimating Sums and Differences Race
Students practice estimating sums and differences of fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 89-90

7. Nerma mises $\frac{\pi}{12}$ gallon of water and $\frac{4}{5}$ galion of lemion jucce to make a beverage She neods 2 gailons of the beverage to serve of o picini. Does Noimso have enough of the beverage? Explain.
No; Sample answer: $\frac{11}{12}$ is close to 1 and $\frac{4}{5}$ is close to 1 . but since both are less than 1 , the sum is close to, but less than, 2. So she does not have enough.
a. Wiberts cooler holds $\frac{5}{6}$ pound of i co. He tils the colier wath $\frac{1}{5}$ peund pfice and says that the copler is simost thit is he carred? Explain
No; Sample answer: $\frac{5}{6}$ is closer to 1 and $\frac{1}{5}$ is closer to 0, so $\frac{1}{5}$ pound of ice is not almost $\frac{5}{6}$ pound of ice.

Staner Pucter Soak

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Extend Thinking

How Do You Say-Fractions? Students
research to find how to say words related to adding and subtracting fractions in other languages.
The content of this card has concepts covered later in Lesson 9-4. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 90

esson 29-1.Extend Thinaing
 Estimate Sums and Differences of Fractions

Student Practice Book, pp. 89-90

Use estimation with benchmark fractions to answer each question.
5. Kefi twims $\frac{2}{3}$ mile in the ntorring and $\frac{1}{6}$ mie in the evening About how mary mile(s) does Koll swim is one day? Explain Sample answer: About $\frac{1}{2}$ mile: $\frac{2}{3}$ is close to $\frac{1}{2}$. and $\frac{1}{6}$ is close to 0 .
6. Genry practices playing piano for $\frac{2}{\frac{2}{3}}$ hour on Wednesday and $\frac{1}{2}$ hour on Thundey. He soys that he prectices for $\frac{1}{2}$ hoia mote on Wednesdoy than on Thursiay is he cersect Explain. No; Sample answer: $\frac{3}{5}$ is close to $\frac{1}{2}$. Since one fraction is $\frac{1}{2}$ and the other is close to $\frac{1}{2}$, the difference should be close to.

Use It! Application Station

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Math Probe

Without actually calculating, use what you know about fractions to estimate the sum.
3. $\frac{4}{7}+\frac{6}{\pi}$

Circie the best estinate.
a. $\frac{1}{2}$
(b) 1
c. 2
d. 10
e. 18

4. $\frac{9}{20}+\frac{1}{4}$

Circle the best estimate
a. $\frac{1}{2}$
(b) $\frac{3}{4}$
c 1
d. 10
e 24

Reflect On Your Learning

Explain your choice. Explanations may vary.

Explain your choice. Explanations may vary.

Analyze The Probe Formative Assessment

Targeted Concept Use strategies to reason about the magnitude of fractions and the impact of combining two fractions by addition.

Targeted Misconceptions Some students apply ideas involving whole number addition by adding the numerators and/or the denominators as if they were whole numbers. Some students are unable reason about the magnitude of fractions in comparison to common benchmark fractions as part of a process to find an estimated sum.

Authentic Student Work

Below are examples of students' explanations.

Sample A

Sample B

3. $\frac{4}{7}+\frac{6}{11}$	Explain your choice.
I chose this because	
Circle the best	
estimate.	they are both near $1 / 2$.
a. $\frac{1}{2}$	$1 / 2+1 / 2=1$
(b. 1	
c. 2	
d. 10	
e. 18	

Collect and Assess Student Work

Collect and review student responses to determine possible misconceptions. See examples in If-Then chart.

IF incorrect...	THEN the student likely...	Sample Misconceptions
1. d 2. d 3. d 4. d	adds the two numerators and uses that result to be the estimated sum of the two fractions.	In this case, the student adds the numerators and adds the denominators but then focuses on the numerator.
$\begin{aligned} & \text { 1.a } \\ & \text { 2.b } \\ & \text { 3. a } \\ & \text { 4.a } \end{aligned}$	finds the sum by adding the numerators and adding the denominators. The student then simplifies the sum (in Exercise 1) and/ or chooses the nearest benchmark to determine the estimate (in Exercises 2-4).	In this case, the student adds the numerators and adds the denominators but then focuses on the closest benchmark.
2.a ${ }^{\text {3. }}$ a	thinks that the estimated sum of two fractions must be a fraction and cannot be a whole number.	In this case, the student doesn't consider the sizes of the fractions when determining the sum.

Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

Take Action

Choose from the following resources or suggestions:

- Revisit estimation in Lesson 9-1.
- Review that a fraction is a number with (1) a precise magnitude that can be shown using an area model and (2) a precise location on the number line. With an area model, the denominator relates to the size of pieces; the numerator relates to the number of selected pieces. With number lines, the interval length relates to the denominator; the number of jumps relates to the numerator.
- Use concrete materials to build visual images to help students compare fractions to common benchmarks. Have students select the one that best represents the fraction.
- Have students estimate sums and discuss how they determine a good estimate.

Revisit the Probe After additional instruction, have students review their initial answers to the probe. Use these questions for discussion:

- Are there any answers you would like to change? Explain.
- Are there any questions that you still have about any of the items on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Represent Addition of Fractions with
 Unlike Denominators

Learning Targets

- I can use a representation to add fractions with unlike denominators.
- I can explain how to use a representation to add fractions with unlike denominators.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\diamond 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).

Math Practices and Processes

MPP Use appropriate tools strategically.

Focus

Content Objectives

- Students use a representation to add fractions with unlike denominators.
- Students explain how to use a representation to add fractions with unlike denominators.

Coherence

Previous

- Students understood, recognized, and generated equivalent fractions (Grade 4).
- Students used benchmark fractions to estimate the sums and differences of fractions and assess the reasonableness of calculated solutions (Unit 9).

Language Objectives

- Students explain how to use a representation to add fractions with unlike denominators using can.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students exchange ideas for mathematical problemsolving with a peer and provide thoughtful and constructive feedback.

Next

- Students use equivalent fractions to add fractions having unlike denominators (Unit 9).
- Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Rigor

Conceptual Understanding

- Students develop their understanding of adding fractions with unlike denominators.

Procedural Skill \& Fluency

- Students build proficiency with equivalent fractions as they represent addition of fractions with unlike denominators.

Application

- Students explore addition of fractions in real-world contexts.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms
denominator equivalent
\section*{Academic Terms} fractions
fraction tiles
like denominators
numerator

Materials

The materials may be for any part of the lesson.

- Blank Open Number Line Teaching Resource
- fraction tiles
- ruler

Number Routine Which Benchmark Is It Closest To? © ${ }^{5-7 \mathrm{~min}}$

Build Fluency Students build numer sense as they determine which benchmark number each given fraction is closest to and explain their reasoning.

Remind students that this is a mental activity and they should not need to write anything down.
These prompts encourage students to talk about their reasoning:

- How could you tell if the fraction was between 0 and 1 , between 1 and 2, greater than 2 , or equal to one of the benchmarks?
- How did you check your answers?

Purpose Students are presented with fraction tiles that all represent the same portion of the whole $\left(\frac{7}{12}\right)$ and consider how the images are similar and different. The students share similarities and differences, some of which may be mathematical in nature, others non-mathematical.

Notice \& Wonder ${ }^{\text {TM }}$

- How are they the same?
- How are they different?

Teaching Tip You may want to have students replicate the representations with fraction tiles on their own so they can explore more thoroughly how the representations are similar and different.

ETR
 Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about representing addition of fractions having unlike denominators and are based on possible comments and questions that students may make during the share out.

- How can you determine the value of the representations?
- How do you know if the representations represent the same values?
-What operation do you think you would use to determine the values? Why?

Math is... Yindset

- How can you show others that you respect their ideas?

SEL

Social Awareness: Respect Others
As students work with partners to complete the Notice \& Wonder routine, remind them to show respect by listening attentively when others are sharing their ideas. Provide models of constructive and respectful feedback to guide students. As students share what they noticed and wondered, encourage classmates to provide thoughtful feedback to one another. Remind students that respecting others is an important part of being a member of the class community.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can represent addition of fractions having different denominators.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can represent addition of fractions having unlike denominators.

When adding fractions with unsike denominators, you generate equivaient fractions with ibe denominators before adding.
C. Work Together

What is the sum?
$\frac{1}{4}+\frac{2}{3}=\frac{11}{12}$

(1) Pose the Problem

ETP
 Pose Purposeful Questions

- When have you seen problems like this before?
-What tools might be helpful in solving the problem?

(2) Develop the Math

Choose the option that best meets your instructional goals.

MLR Stronger and Clearer Each Time

Pair students and have them work on a problem like the problem on the Learn page. Have them individually write about the steps they need to take to solve it. Then have them share their work with their partner and compare.
Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

ETP Elicit and Use Evidence of Student Thinking

- How can you add fractions having unlike denominators?
- Why do you have to use like denominators to add fractions having unlike denominators?

Key Takeaways

- When adding fractions with unlike denominators, use equivalent fractions with like denominators before adding.
- You can only add fractions that refer to the same sized part of the whole.

Work Together

Students solve an addition equation involving fractions with unlike denominators using fraction tiles.

- Common Error: Students may initially be confused because the equation in Work Together involves changing both fractions instead of just one. Encourage students to think about which numbers 3 and 4 are both factors of.

Language of Math

Tell students that equivalent means "equal in value." The word comes from the Latin aequus which means "equal" and valere which means "to be worthy." You can find the root aequus in equal, equity, and equation. You can find the root valere in valiant, valor, and valid. Knowing the meaning of common roots can help you determine the definitions of unknown words.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using a representation to add fractions that have unlike denominators.

Materials: Blank Open Number Line, ruler, fraction tiles
Directions: Have students work in small groups. Present them with the expression $\frac{3}{4}+\frac{1}{2}$. Invite students to use tools to help them represent and solve the problem.

EIP Implement Tasks That Promote Reasoning and Problem Solving

- How does your representation show the meaning of addition?
- How can you use the benchmark number 1 to help you solve this addition?
- How does knowing that $\frac{3}{4}$ can be broken apart into $\frac{1}{2}$ and $\frac{1}{4}$ help you?
- How does knowing that $\frac{1}{2}$ can be broken apart into $\frac{1}{4}$ and $\frac{1}{4}$ help you?

Math is... Choosing Tools

- Why was it helpful to use a tool to solve this problem? Students make sound decisions about when tools might be helpful, recognizing both the insight to be gained and their limitations.

Activity Debrief: Have students share their representations and solutions. Facilitate a discussion to ensure students understand that fractions can only be added when they have like denominators. If the fractions have unlike denominators, they need to use equivalent fractions with like denominators to add.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the distance from Frida's house to Skye's house?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use a representation to understand addition of fractions having unlike denominators.

ETR Use and Connect Mathematical Representations

(4) Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
Q. Have the students estimate the solution. Ask:
-What benchmark numbers will you use to estimate the solution? Why?
- Why do you rename $\frac{1}{2}$ instead of $\frac{1}{8}$?
- How can you use the relationship between 2 and 8 to determine an equivalent fraction?
- How can you add once you have renamed $\frac{1}{2}$ as $\frac{4}{8}$?

©
Have the students use their estimate to assess the
reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?

Math is... Choosing Tools

-Why was it helpful to use fraction tiles to solve this equation? Students make sound decisions about when tools might be helpful, recognizing both the insight to be gained and their limitations.

2. Develop the Math

How can you determine the distance from Frida's house to Skye's house?

What equation can you write to represent the problem?

English Learner Scaffolds

Entering/Emerging

Explain same-sized part. Show students a tens rod. Say, This has ten same-sized parts. Point to each part to confirm. Then, draw a square. Divide it into three same-sized parts. Say, This has three same-sized parts. Finally, draw two more squares. Divide one into four same-sized parts and one into multiple-sized parts. Show each, asking, Does this show same-sized parts?

Developing/Expanding

Explain same-sized part. Show students a tens rod. Say, This has ten same-sized parts. Point to each part to confirm. Then, draw a square. Divide it into three same-sized parts. Say, This has three same-sized parts. Finally, draw two more squares. Divide one into four same-sized parts and one into multiple-sized parts. Ask students to tell you which shows same-sized parts.

Bridging/Reaching

Guide students to the Learn page and ask them to review the use of same-sized part in the table. Ask students to use the phrase in their own sentence, demonstrating with prompts. For example: This [tens rod] has ten same-sized parts. Then ask students to talk about what it means if something is a same-sized part, and how a same-sized part relates to a whole (Pieces equal in size, that together form a whole).

[^3]11. Zack has this bunch of grapes He buys ancther $\frac{1}{6}$ pound of grapes. How mary pounds of grapes does Zack have now? $\frac{5}{6}$ pound
12. What is a reasonable estmate of the sum? Lusp estimntion to

 |ustify your answec. Sample answer: A reasonable estimate is $\frac{1}{2}+\frac{2}{3}=b \quad \begin{aligned} & \text { a sum a little greater than } \frac{1}{} \text { because } \frac{2}{3} \text { is } \\ & \text { close to, but greater than, } \frac{1}{2},\end{aligned}$
13. Extend Your Thinking Mornie and Amber waik together for
$\frac{1}{4}$ nile. Marnie then walks $\frac{3}{8}$ mile to her house, and Anber walks $\frac{1}{3}$ male to her house. How tar did Mamie wak? How far dd Amber walk? Marnie walked $\frac{5}{8}$ mile. Amber walked $\frac{7}{12}$ mile.
D) Reflect

How can you represent adorion of tractions wath unilke denominatos? Answers will vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

1. Common Error: Exercises 1-13 Because students know the
importance of rewriting fractions so that they have like denominators, they may sometimes forget to rewrite the numerator as well. Remind students that whatever number they multiply the denominator by, they must also multiply the numerator by that number.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Conceptual Understanding
$5-8$	2	Procedural Skill \& Fluency
$9-12$	2	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you represent addition of fractions with unlike denominators? Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you show others that you respect their ideas?

Students reflect on how they practiced social awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use a representation to add fractions with unlike denominators.
- I can explain how to use a representation to add fractions with unlike denominators.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

EXit TiCKEt \because Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pOK Skill	Standard		
1	2	Represent addition of fractions with unlike denominators	5.NF.A.1
2	2	Represent addition of fractions with unlike denominators	5.NF.A.1
3	1	Represent addition of fractions with unlike denominators	5.NF.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
Additional Practice or any of the © or activities
2 of 3 Take Another Look or any of the (3) activities

1 or fewer of 3 Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency
© Extend Thinking

Lesson 9-2

Exit Ticket

Name

1. Julian paints $\frac{2}{5}$ of the fence. Dawn paints $\frac{3}{15}$ of the fence. Use the fraction tiles. What fraction of the fence do Julion and Dawn paint in ass?

Mancivi 7

They paint $\frac{7}{10}$

 of the lence2. Nichole uses $\frac{3}{8}$ of her stickers to decorate cards. She uses $\frac{1}{4}$ of her stickers to maket a bookmark. What fraction of her stickers does Nichole use in all?
A. $\frac{4}{8}$ of her stickers
B. $\frac{4}{4}$ of her stickers
C. $\frac{5}{8}$ of her stickers
D. $\frac{4}{12}$ of her stickers
3. Which is equivalent to $\frac{1}{3}+\frac{1}{4}$?
A. $\frac{1}{12}+\frac{1}{12}$
e. $\frac{1}{2}+\frac{1}{y}$
© $\frac{4}{2}+\frac{3}{2}$
D. $\frac{4}{7}+\frac{3}{7}$

Reflect On Your Learning

0 Asesuniat Aesouct lick

Reinforce Understanding

What's in Common?

Work with students in groups. Provide fraction tiles. Students choose two tiles with different denominators. Students choose a fraction model to find common denominators and make equivalent fractions. Repeat with different denominator combinations. Make sure students recognize that they must represent the fractions with common denominators before adding them, and that they should add only the numerators while keep the denominator the same.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Add Fractions (with/without Models)
- Add Fractions-Rename Both (Models)

Differentiation Resource Book, p. 91
Lesson 9-2 - Reinforce Understanding
Represent Addition of Fractions with Unlike Denominators

Nome
Review
Consider $\frac{5}{4}+\frac{3}{3}$ Use fraction tles to solve
You can ine equivetent fractions to wethe fiactions wet Ike denominators
(7)

Treatore $\frac{5}{2}+\frac{1}{2}-\frac{1}{8}$
What equation do the fraction tilies represent? Write the equation with like denominators.

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

${ }^{2}$. $\frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{8} \frac{1}{4}$
$\frac{5}{6}+\frac{1}{3}=\frac{7}{6} \quad \frac{3}{8}+\frac{1}{4}=\frac{5}{8}$
Solve the equation using fraction tiles.

$$
\text { 3. } \frac{4}{5}+\frac{2}{2}=\frac{\frac{11}{10}}{10} \text { 5. } \frac{5}{6}+\frac{3}{3}=\frac{\frac{11}{9}}{}
$$

4. $\frac{1}{4}+\frac{5}{2}=\frac{\frac{2}{3}}{3}$ 6. $\frac{7}{3}+\frac{3}{4}-\frac{\frac{13}{8}}{}$

Build Proficiency

Practice It! Game Station
Adding Fractions Task Cards
Students practice adding fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 91-92

Lesson 9-2

Additional Practice
Name

Review

You can use fraction tiles to represent addition of fractions with unlike denominators:
Sandy uses $\frac{2}{3}$ galion of milk in the moming and $\frac{1}{6}$ pallon of milk in the evening How much of the milk does Sandy use in al??

$\frac{2}{3}$ is an equivilent
fiaction $10 \frac{4}{6}$
Now that the fractions have We denominstors. you can add them and name the sum Sandy unes $\frac{5}{6}$ gallon of mex.

What equation do the fraction tiles represent?

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 91-92

Extend Thinking

Use It! Application Station
Get Moving Students design a car and measure the distance it travels. The content of this card has concepts covered later in Lesson 9-8. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 92

Lesson $9-2$ - Extond Thinking
 Represent Addition of Fractions with Unlike Denominators

Dismentition Reworx fock

Add Fractions with Unlike Denominators

Learning Targets

- I can add fractions with unlike denominators.
- I can explain how to add fractions with unlike denominators.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\diamond 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.

Focus

Content Objectives

- Students add fractions with unlike denominators.
- Students explain how to add fractions with unlike denominators.

Language Objectives

- Students explain how to add fractions with unlike denominators using should.
- To support optimizing output, ELs participate in MLR7: Compare and Connect.

SEL Objective

- Students actively listen without interruption as peers describe how they approached a complex mathematical task.

Next

- Students use representations to understand subtraction of fractions having unlike denominators (Unit 9).
- Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of operations with fractions.

Procedural Skill \& Fluency

- Students build proficiency with equivalent fractions and develop general skills and strategies for adding fractions.

Application

- Students solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms
equivalent fractions
\section*{Academic Terms} accurate condition
\section*{like denominator} multiple

Materials

The materials may be for any part of the lesson.

- fraction tiles
- number cubes

Number Routine

 Which Benchmark Is It Closest To?Build Fluency Students build number sense as they determine which benchmark each fraction value is closest to and explain their reasoning.

These prompts encourage students to talk about their reasoning:

- How did you determine which benchmark each fraction is closest to? Which benchmark number is $\frac{1}{2}$ closest to? How did you determine which benchmark each fraction is closest to?
- Why would it be useful to use benchmark numbers to estimate the size of a fraction?
- Which benchmark number is $\frac{1}{2}$ closest to?

Purpose Students compare and contrast numbers to determine which doesn't belong.

Which Doesn't Belong?

-Which doesn't belong?
Teaching Tip You may want to have students discuss their observations and thoughts with a partner before discussing as a whole class.

IIP

Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' understanding of using equivalent fractions to add fractions having unlike denominators and are based on possible comments and questions that students may make during the share out.

- How is 12 different from the other numbers?
- How can you make 27 or 45 using 9 ?

Math is... Yindset

- How do you make sure you share your thinking clearly?

Relationship Skills: Communication
As students engage in collaborative discourse around the Which Doesn't Belong? routine, encourage them to actively and respectfully listen to one another. Invite students to think about and share what active listening looks and sounds like. As students discuss which number doesn't belong, encourage classmates to listen as well as provide thoughtful feedback. Capitalize on opportunities to also model these behaviors when students are speaking.

Transition to Explore \& Develop

Ask questions that get students thinking about using equivalent fractions to add fractions having unlike denominators.

IP Establish Mathematics Goals to Focus Learning

- Let's think about how we can use equivalent fractions to add fractions having unlike denominators.

Learn
 Paloma's mother made two pans of snacks. She will put what is left into one pan.
 What fraction of one pan is teft?

For some equations, you will find equivalent fractions for both addends.
Step \& Find a common multiple of both denominators
$\frac{1}{6}+\frac{4}{9}=$?
Muttiples of 6: 6, 12, 18, 24
Multiples of $9: 9,18,27,36$
Step 2: Wribe an equivalent fraction with a denominator of 18 for eech fraction.

Step 3: Add the fractions.
$\frac{3}{5}+\frac{8}{15}=\frac{\pi}{11} \frac{1}{18}$

There is $\frac{\pi}{18}$ of the pan left.

What other common mutiole

 could you use?To add fractions with unike denominators, rewrite each addend as an equivalent fraction so that they have like denominators.

C. Work Together

What is the sum? Explain how you found like denominators.

```
$,5,-\frac{10}{6}
```


(1) Pose the Problem

$\stackrel{\text { ETP }}{1}$
 Pose Purposeful Questions

- Do the fractions remaining in each pan have like or unlike denominators? How do you know?

(2) Develop the Math

Choose the option that best meets your instructional goals.

LR

Compare and Connect

Pair students and give them a problem similar to the one on the Learn page. Ask each to work individually to solve the equation, and then have them compare their strategies. Revisit this routine throughout the lesson to help students build proficiency.

(3) Bring It Together

EIP Elicit and Use Evidence of Student Thinking

- Why do you have to use fractions with like denominators when adding?
- Explain two strategies you can use to find like denominators.

Key Takeaways

- When adding fractions with unlike denominators, use equivalent fractions with like denominators before adding.
- One way to generate equivalent fractions is by multiplying the denominators to determine a like denominator.
- Another way to generate equivalent fractions is by determining a common multiple to identify a like denominator.

Work Together

Students solve an addition problem by rewriting the fractions as equivalent fractions with like denominators.

Common Error: In the Work Together problem, theleast common denominator is the product of the two denominators, 15 . Make sure students understand that there is no common multiple of 3 and 5 that is less than 15.

Language of Math

Explain to students that like means "having similar qualities or characteristics." They are familiar with the verb like, but in the context of like denominators it is an adjective. They can use the word in this context outside of class by, for example, saying they are of like mind as someone else with the same opinion.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore strategies for adding fractions that have unlike denominators.

Directions: Have students work together to solve the Pose the Problem. Encourage students to find at least two different ways to solve the problem.

ETR Support Productive Struggle

-What operation should you use to solve the problem?

- How do you need to rewrite the fractions in order to add them?
- How can you use multiplication to write equivalent fractions?
- Is there more than one pair of equivalent fractions you can use to find the sum?

Activity Debrief: Have students share the methods they used to solve the problem. Facilitate a discussion to ensure students understand that one method of finding like denominators is by multiplying the denominators of the addends. Another method is to look for other common multiples of the denominators.

Math is... Exploring

-What is the same about these methods? What is different? Students identify correspondences between different approaches to solving complex problems.

Guided Exploration

Students add fractions having unlike denominators by writing equivalent fractions with like denominators.

EIR Facilitate Meaningful Mathematical Discourse

Q Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(G) Have the students estimate the solution. Ask:
-What benchmark numbers will you use to estimate the solution? Why?
-Why do you need to find like denominators in order to add?
Q Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?
-Why are the sums equivalent when you used different fractions?
- Which method of finding like denominators do you prefer? Why?
- Think About It: Are there other common denominators that could have been used? Explain.

Math is... Exploring

- What is the same about these methods? What is different?

Students identify correspondences between different approaches to solving complex problems.

2. Develop the Math

What equation can we write to represent this problem?

Bridging/Reaching

Guide students to the sentence below the table on the Learn page. Discuss its meaning. Then show students 20 chips. Ask, How can I make four equal groups? Instruct them to respond using To make..., do \qquad so that. Then ask them to explain how to do something else using the same structure. Allow students to interject with their opinions/corrections, i.e., No, that's not correct. To make...

40. Oiver uses $\frac{1}{6}$ galion of water lor his outdpor plarts. He uses $\frac{1}{4}$ gailon of woter for nis indoor pinets. How many gations of water does Oliver use on all of his plarts?
$\frac{5}{12}$ gallon
11. Heather uses $\frac{2}{3}$ foot of yaun for her art proinct. She ados
onother $\frac{1}{12}$ foot to complete the prolect. How much yarn does
Heather use in ab?
$\frac{9}{12}$ foot of yarn
12. Error Analysis Ma found the sum of $\frac{2}{9}+\frac{3}{4}$.

How can you nelp Min correct her mistake?

Sample answer: $4 \times 4=16$, not 18; the correct answer is $\frac{35}{36}$.
13. Extend Your Thinking Solve the equastion using two different like denominutors is the sum the same whon you use different denontinators? Explain why or why not
$\begin{aligned} & \frac{3}{8}+\frac{7}{10}=7 \frac{3}{8}+\frac{7}{10}=\frac{30}{80}+\frac{56}{80}=\frac{86}{80}=\frac{43}{40} \\ & \frac{3}{8}+\frac{7}{10}=\frac{15}{40}+\frac{28}{40}=\frac{43}{40}\end{aligned}$
Even though the denominators are different, the fractions still represent equivalent amounts.

(2) Rellect

How can equivalent fractions help you add fractions wath unlike denominators?

Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

1. Common Error: Exercise 4 When finding like denominators, students may focus on common multiples such as 12 or 18 . Make sure students understand that sometimes, one of the denominators can serve as a like denominator.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-11$	2	Application
$12-13$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can equivalent fractions help you add fractions with unlike denominators?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you make sure you shared your thinking clearly?

Students reflect on how they developed stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can add fractions with unlike denominators.
- I can explain how to add fractions with unlike denominators.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pok Skill			Standard
1	1	Add fractions with unlike denominators	5.NF.A.1
2	1	Add fractions with unlike denominators	5.NF.A. 1
3	2	Add fractions with unlike denominators	5.NF.A. 1
4	2	Add fractions with unlike denominators	5.NF.A. 1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	hen have students do
4 of 4	Additional Practice or any of the B or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the B activities
2 or fewer of 4	Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

(Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 9-3

Exit Ticket

Name

1. Which common mutiple can you use as a like denominator to add the fractions?
$\frac{1}{6}+\frac{3}{4}$
A. 6
B. 10
2. What is the sum?
$\frac{1}{3}+\frac{1}{5}=$?
A. $\frac{1}{8}$
B. $\frac{2}{8}$
3. Richard places two sticks end to-end. One stick is $\frac{2}{5}$ foot long. The other stick is $\frac{1}{10}$ foot long. What is the total length of the two sticks?
$\frac{13}{30}$ foot
4. Jored mives $\frac{1}{3}$ cup of powdered mix with $\frac{7}{2}$ cup of water to make a drink. How many cups of the drink did Jared make? $\frac{11}{12}$ cup

Reflect On Your Learning

Anseurset Arowce flock wn

Reinforce Understanding

Add Them Up!

Work with students in pairs. Each student rolls two fraction cubes, writes an equation to add, and solves it. If students have difficulty, help them to use fraction tiles to represent the fractions, find equivalent fractions, and then write the renamed fractions in an equation.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Add Fractions (Rename Both)

Differentiation Resource Book, p. 93

Lesson $9-3$ - Reinforce Understanding

Add Fractions with Unlike Denominators
Name

Review

You can make a table to help find the lowest common muitiple for the denominatot
Consider $\frac{5}{12}+\frac{3}{8}$ a has denominstors 12 and 8.
The first number that appenes in both rows is 24 . Make equivalert fractions weth like denominators of 24 .

$$
\begin{array}{|l|l|l|l|l|}
\hline 12 & 12 & 24 & 36 & 48 \\
\hline 8 & 8 & 16 & 24 & 32 \\
\hline
\end{array}
$$

$$
\frac{5}{2}+\frac{1}{8}=\frac{5 \times 2}{2 \times 2}+\frac{3 \times 3}{8 \times 3}
$$

$$
-\frac{10}{24}+\frac{9}{24}
$$

$=\frac{10}{24}$
What is the sum? Use a table to find the lowest common mulliple.

Build Proficiency

Practice It! Game Station
Fraction Addition Concentration
Students practice adding fractions.

무
 蒝
 -

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 93-94

Lesson 9-3

Additional Practice

Name

Review

You can add fractions with unlike denominators by finding a common multiple of the denominators to use as a common denominatoc.
Oines math notebook weighs $\frac{3}{8}$ pound. His sclence notebook walghs $\frac{1}{6}$ pound. How much do Olli's two notebooks weigh together?
To solve, find $\frac{1}{8}+\frac{1}{6}$
For the denominators 8 and 6 a common mutiple is 24 Wrate equivalent fractions using 24 as the denominator.
$\frac{1}{2} \times \frac{3}{3}=\frac{9}{24} \quad \frac{1}{6} \times \frac{4}{4}=\frac{4}{24}$
$\frac{3}{8}+\frac{1}{6}=\frac{9}{24}+\frac{4}{24}=\frac{13}{24}$
Ollie's two notpbooks wigh $\frac{13}{24}$ pound together
Find the sum. Show your work. Check students" work.

\qquad
5. $\frac{1}{4}+\frac{7}{10}=\frac{\frac{19}{20}}{20}$
6. $\frac{2}{3}+\frac{1}{4}=$ \qquad

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 93-94

```
Solve the problem. Show your work. Check students' work.
    Z. Elie makes a braid from several strands of sting. Ater one Nout,
```



```
        ionger. How long is Elsie's traid atter two houm?}\frac{14}{15}\mathrm{ foot
    8. Damon mixes}\frac{3}{4}\mathrm{ gatlon of whte paint with }\frac{1}{6}\mathrm{ qullon of blue
        paint to make a light blue color How muck paint does Damon
        have? }\frac{11}{12
        have? \frac{11}{12}}\mathrm{ gallon
    9. Josue walks }\frac{1}{8}\mathrm{ mile from nis house to his tiend's house. Then
        they walk}\frac{2}{5}\mathrm{ mile form his filend's house to the park. How for did
        josue walk? \frac{19}{24}}\mathrm{ mile
*0. lisabel pours \(\frac{1}{2}\) galion of drink mix inte a ptcher that contains \(\frac{7}{1}\) gollion of woter. How much of the arink does isabel moke? \(\frac{23}{24}\) \(\underline{24}\) gallor
```



``` comung semeneractor box
```


Extend Thinking

Use It! Application Station
Create and Solve Students create a multistep problem that adds and subtracts mixed numbers to solve. Then they use a digital tool to present the problem.
The content of this card has concepts
 covered later in Lesson 9-9. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 94

```
Lesson 9-3 - Extond Thinking
Add Fractions with Unlike Denominators
Name
Fill in the milssing values to complete each equation. The first one is
done as an example. Show your work
\mathrm{ 1. }\frac{5}{6}+7=\frac{7}{15}\alpha<?
    \frac{5}{6}+\frac{2}{7}=\frac{8}{6\times3}
    \frac{5}{6}+\frac{2}{3}=\frac{2}{6\times3}
    5x3
```



```
2. 唛+3}=\frac{\square}{35
2}+\frac{3}{7}=\frac{?}{5\times7
2\times7
\frac{14}{35}+\frac{15}{35}=\frac{29}{35}
\frac{2}{5}+\frac{3}{7}=\frac{29}{35}
2. }\frac{\square}{\square}+\frac{1}{4}=\frac{\square}{40}\mathrm{ or?
\frac{9}{10}+\frac{1}{4}=\frac{?}{10\times4}
9\times4
\frac{36}{40}+\frac{10}{40}=\frac{46}{40}
\frac{9}{10}+\frac{1}{4}=\frac{46}{40}\mathrm{ or }\frac{23}{20}
rk
\[
\left\lvert\, \begin{aligned}
& 4 . \frac{\pi}{5}+\frac{\square}{2}=\frac{7}{\square} \\
& \frac{11}{5}+\frac{7}{2}=\frac{37}{5 \times 2} \\
& \frac{11 \times 2}{5 \times 2}+\frac{7 \times 5}{2 \times 5}=\frac{37}{5 \times 2} \\
& \frac{22}{10}+\frac{15003 \times 5}{10}=\frac{37}{10} \\
& \frac{11}{5}+\frac{3}{2}=\frac{37}{10} \\
& 5 . \frac{4}{3}+\frac{\square}{4}=\frac{25}{\square} \\
& \frac{4}{9}+\frac{7}{4}=\frac{25}{9 \times 4} \\
& \frac{4 \times 4}{9 \times 4}+\frac{7 \times 9}{4 \times 9}=\frac{25}{9 \times 4} \\
& \frac{15}{36}+\frac{90 r 1 \times 9}{36}=\frac{25}{36} \\
& \frac{4}{9}+\frac{1}{4}=\frac{25}{36} \\
& 6 . \frac{\square}{8}+\frac{\square}{6}=\frac{29}{24} \\
& \frac{7 \times 3}{8 \times 3}+\frac{7 \times 4}{6 \times 4}=\frac{29}{8 \times 3} \\
& \frac{3 \times 3}{8 \times 3}+\frac{5 \times 4}{6 \times 4}=\frac{29}{8 \times 3} \\
& \frac{9}{24}+\frac{20}{24}=\frac{29}{24} \\
& \frac{3}{8}+\frac{5}{6}=\frac{29}{24}
\end{aligned}\right.
\]
DSmentition Reworc Boct
```


Represent Subtraction of Fractions with Unlike Denominators

Learning Targets

- I can use a representation to subtract fractions with unlike denominators.
- I can explain how to use a representation to subtract fractions with unlike denominators.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\diamond 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).
Math Practices and Processes
MPP Model with mathematics.
MPP Look for and express regularity in repeated reasoning.

Vocabulary

Math Terms	Academic Terms
denominator	establish
equivalent	valid
fractions	

Materials

The materials may be for any part of the lesson.

- Fraction Number Lines Teaching Resource
- fraction tiles

Focus

Content Objectives

- Students use a representation to subtract fractions with unlike denominators.
- Students explain how to use a representation to subtract fractions with unlike denominators.

Coherence

Rigor

Conceptual Understanding

- Students interpret representations to develop their understanding of subtracting fractions with unlike denominators.

Previous	Now	Next
- Students understood, recognized, and generated equivalent fractions (Grade 4). - Students used equivalent fractions to add fractions having unlike denominators (Unit 9).	- Students use representations to understand subtraction of fractions having unlike denominators.	- Students use equivalent fractions to subtract fractions having unlike denominators (Unit 9). - Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Procedural Skill \& Fluency

- Students build proficiency through repeated use of representations, such as pictures, tools, and equations.

SEL Objective

- Students employ self-calming techniques that can be used to help manage reactions to potentially frustrating situations.
- To support sense-making, ELs participate in MLR2: Collect and Display.

Language Objectives

- Students explain how to use a representation to subtract fractions with unlike denominators using can.
- Students use equivalent fractions to subtract fractions having unlike denominators (Un) Sther writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Application

- Students explore subtraction of fractions in real-world contexts.
Application is not a targeted element of rigor for this standard.

Number Routine What's Another Way to Write It? © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they write three multiplication expressions to represent the number 2.5 . Record solutions for classroom discussion.

These prompts encourage students to talk about their reasoning:

- Which expression makes the most sense? Which expressions are related?
- Do you notice any patterns? Explain.
- Can you create a new expression using one of the expressions on the board? How?
- Did you use division as a strategy? Explain.

Purpose Students are presented with a statement and think about the truth of the statement. Students consider whether the relationship always holds or whether it is unique to the situation.

Is It Always True?

- Is the statement always true?

Teaching Tip You may want to provide students with some specific fractions, such as $\frac{1}{3}$ or $\frac{2}{3}$, to help them think about the question.

 Pose Purposeful QuestionsThe questions that follow may be asked in any order. They are meant to help advance students' understanding of using representations to understand subtraction of fractions having unlike denominators and are based on possible comments and questions that students may make during the share out.

- How can you rewrite a fraction having 3 as its denominator as a fraction having 6 as its denominator?
- Can you think of any fractions for which the statement would not be true?
- How many examples would you need to find to show that the statement is not always true? Why?
- How many examples would you need to find to show that the statement is always true? Why?

Math is... Yindset

-What helps you stay focused in class?

SEL Self-Management - Control Impulses

Provide opportunities for students to practice impulse control. As you transition from the Is It Always True? routine, brainstorm strategies that can help students express emotionally and behaviorally appropriate responses in times of frustration or disappointment. As students work with representing subtraction of fractions with unlike denominators, invite them to practice deep-breathing techniques or take movement breaks when necessary.

Transition to Explore \& Develop

Ask questions that get students thinking about how they might represent subtraction of fractions having unlike denominators.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can represent subtraction of fractions having unlike denominators.

When subtracting fractions with unlike denominators, you can use equivalent fractions to withe fractions with live denominators.

Q Work Together

What is the difference?
$\frac{3}{3}-\frac{1}{2}=\frac{1}{10}$

(1) Pose the Problem

KLI

Collect and Display
As students discuss the questions, record relevant words and phrases they may use such as representation, like/unlike denominators, fraction tiles, and sixths. Display the words for student reference. Use the studentgenerated expressions to help students make connections between student language and math vocabulary.

Pose Purposeful Questions
-What are the important quantites in this problem?
-What do the quantities in this problem represent?

(2) Develop the Math

Choose the option that best meets your instructional goals.

(3) Bring It Together

ETPElicit and Use Evidence of Student Thinking

- How could you explain to a friend how to subtract fractions having unlike denominators?

Key Takeaway

- When subtracting fractions with unlike denominators, it is necessary to generate equivalent fractions with like denominators before subtracting.

Work Together

Students solve a subtraction equation by representing the equation with fraction tiles and writing equivalent fractions having like denominators.

1 Common Error: Students may be focused on finding like denominators and forget to rewrite the numerator. Remind students to rewrite the numerator after rewriting the denominator.

Language of Math

Explain to students that the word denominator comes from de-, which means "from," and nominare, which means "to name". The denominator names the number of equal parts. You can find the word nominare in other words such as nominate, which means to appoint someone, or nominally, which means in name only.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using a representation to subtract fractions that have unlike denominators.

Materials: Fraction Number Lines Teaching Resource, fraction tiles
Directions: Have students work in small groups. Present them with the expression $\frac{5}{6}-\frac{1}{3}$. Invite students to use tools to help them represent and solve the problem.

EIP Implement Tasks That Promote Reasoning and Problem Solving

- How does your representation show the meaning of subtraction? - How does knowing that $\frac{5}{6}$ can be broken apart into $\frac{2}{6} \frac{2}{6}$, and $\frac{1}{6}$ help you?
- How does knowing that $\frac{1}{3}$ is equivalent to $\frac{2}{6}$ help you?

Math is... Generalizations

- How is subtracting fractions having unlike denominators similar to adding fractions having unlike denominators?

Students notice if calculations are repeated, and look both for general methods and for shortcuts.

Activity Debrief: Have students share their representations and solutions. Facilitate a discussion to ensure students understand that fractions can only be subtracted when they have like denominators. If the fractions have unlike denominators, they need to use equivalent fractions with like denominators to subtract.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the difference of the lengths of these boards?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use a representation to understand subtraction of fractions having unlike denominators.

EIR Use and Connect Mathematical Representations

(2) Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(1) Have the students estimate the solution. Ask:
- What benchmark numbers will you use to estimate the solution? Why?
- How do the fraction tiles help you understand the equation?
- Do you need to rewrite one or both of the fractions? How do you know?
-Why can you use 6 as the denominator?
- How can you subtract once you have written the equivalent fractions with like denominators?

Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?

Math is... Generalizations

- How is subtracting fractions having unlike denominators similar to adding fractions having unlike denominators?

Students notice if calculations are repeated, and look both for general methods and for shortcuts.

2. Develop the Math

How can you determine the difference of the lengths of these boards?

Bridging/Reaching

Guide students to the Learn page and point to the sentence below the table. Confirm comprehension of the sentence structure and then ask students to refer back to Lesson 3's sentence structure, To __, do __ so that __. Ask students how When __, you can __. is similar to To \qquad do \qquad so that \qquad (Both are explanations about how to do something./ Both explain how to do something.)

Name
Complete the equation with equivalent fractions that have like denominators.
2. $\frac{5}{3}-\frac{1}{2}=\frac{5}{8}-\frac{4}{8}$
2. $\frac{2}{3}-\frac{3}{6}=\frac{4}{6}-\frac{3}{6}$

3. $\frac{3}{4}-\frac{2}{3}=\frac{9}{12}-\frac{8}{12}$
4. $\frac{5}{6}-\frac{1}{4}=\frac{10}{12}-\frac{3}{12}$

What is the difference? Use a representation to solve.
5. $\frac{4}{5}-\frac{1}{2}=\frac{\frac{3}{10}}{}$
6. $\frac{7}{8}-\frac{1}{4}=\frac{5}{8}$
2. $\frac{11}{12}-\frac{1}{6}=\frac{9}{12}$ or $\frac{3}{4}$
8. $\frac{5}{6}-\frac{2}{3}=\frac{1}{6}$
9. STEM Connection Salfion has a recipe that calis for using $\frac{3}{4}$ cup of nour. She has only $\frac{1}{3}$ cup of hout How much more flour does Settron need to make the recipe?
$\frac{5}{12}$ cup of flour

10. Zoe bought $\frac{9}{10}$ pound of chemies. She ate $\frac{1}{5}$ pound in one dary How many pounds of cherries does Zoe have left? $\frac{7}{10}$ pound of cherries
11. Victoria walked her dog $\frac{5}{6}$ mile. Miguet waiked his $\operatorname{dog} \frac{3}{4}$ mile. Who walked farther? By how much mote did that peeson walk?
Victoria walked farther by $\frac{1}{12}$ mile.
12. Extend Your Thinking What is the difference? Use estimation to justify your thinking.
$\frac{7}{72}-\frac{1}{3}-\frac{1}{6}=? \frac{5}{12}$

PReflect

How can tepresentitions heip you subtract fractions with unlike denominators?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding
[. Common Error: Exercises 5-8 Students may forget to write the fractions with like denominators before subtracting.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can representations help you subtract fractions with unlike denominators?
Ask students to share their reflections with their classmates.

Math is... Mindset

-What helped you stay focused in class today?
Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use a representation to subtract fractions with unlike denominators.
- I can explain how to use a representation to subtract fractions with unlike denominators.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

EXit TiCKEt \because Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pok Skill	Standard		
1	2	Represent subtraction of fractions with unlike denominators	5.NF.A.1
2	1	Represent subtraction of fractions with unlike denominators	5.NF.A. 1
3	2	Represent subtraction of fractions with unlike denominators	5.NF.A. 1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
Additional Practice or any of the © or activities
2 of 3 Take Another Look or any of the (3) activities

1 or fewer of 3 Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 9-4

Exit Ticket

Name

1. Connor measures a caterpillar and a worm. The caterpillar is $\frac{1}{3}$ foot long. The worm is $\frac{7}{12}$ foot long. How much ionger is the worm than the caterpillar? Use the fraction tles.

D. $\frac{3}{12}$ toot
2. Which equation is shown by the fraction thes?

A. $5-\frac{3}{4}=\frac{1}{6}$ (a) ${ }_{6}^{5}-\frac{3}{4}=\frac{1}{21}$ C. $\frac{1}{4}-\frac{1}{6}=\frac{1}{2}$
D. $\frac{5}{6}-\frac{3}{4}=\frac{1}{10}$
3. Roberta has two lengith of string. One string is $\frac{1}{2}$ foot long The other string is $\frac{1}{5}$ foot long. How much longer is the first length of string?
$\frac{3}{10}$ foot
Reflect On Your Learning

Ausennemf lenouct lioct

Reinforce Understanding

Make Me Equivalent

Work with students in pairs. Provide partners with fraction tiles. Students choose two tiles with different denominators. Have students write a subtraction equation using the fractions, then solve by determining like denominators and writing equivalent fractions.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Subtract Fractions (with/without Models)
- Subtract Fractions (Model and Rename)

Differentiation Resource Book, p. 95
Lesson $9-4$ - Reinforce Understanding Represent Subtraction of Fractions with Unlike Denominators

Review
Conslder $\frac{5}{4}-\frac{3}{8}$ Use fiaction thes to solve.
You can use equivalent fractions to write factions with ilke denoninutorz

What difference equation do the fraction tiles represent. Write the equation with like denominators.

What is the difference? Use fraction tiles to help you subtract.

Build Proficiency

Practice It! Game Station
Subtracting Fractions Task Cards
Students practice subtracting fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 95-96
(esson 9-4

Additional Practice

Name

Review

You can use fraction tiles to represent subtraction of fractions with unlike denominators.
Felipe has $\frac{5}{6}$ foot of sting. Tristen has $\frac{1}{2}$ foot of sting. How much more string dces Felipe hwo than Tristen?

What subtraction equation do the fraction tiles represent?

Stheme Macirs Mod

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 95-96

Extend Thinking

Use It! Application Station
How Do You Say-Fractions? Students research to find how to say words related to adding and subtracting fractions in other languages.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 96

Lesson 94- Extend Thinking Represent Subtraction of Fractions with Unlike Denominators

DSmentaion Revera bock

Subtract Fractions with Unlike Denominators

Learning Targets

- I can subtract fractions with unlike denominators.
- I can explain how to subtract fractions with unlike denominators.

Standards \circ major Δ supporting \circ Additional

Content

\checkmark 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\diamond 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).
Math Practices and Processes
MPP Reason abstractly and quantitatively.

Focus

Content Objectives

- Students subtract fractions with unlike denominators.
- Students explain how to subtract fractions with unlike denominators.

Language Objectives

- Students explain how to subtract fractions with unlike denominators using can and should.
- To support sense-making, ELs participate in MLR8: Discussion Supports.

SEL Objective

- Students practice staying focused on a mathematical problem for a set time.

Coherence

Previous

- Students understood, recognized, and generated equivalent fractions (Grade 4).
- Students used representations to understand subtraction of fractions having unlike denominators (Unit 9).

Now

- Students use equivalent fractions to subtract fractions having unlike denominators.

Next

- Students decompose addends to add mixed numbers (Unit 9).
- Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Vocabulary

Math Terms	Academic Terms
denominator	reflect
equivalent	suggest
fractions	

Materials

The materials may be for any part of the lesson.

- fraction tiles
- index cards

Number Routine What's Another Way to Write It? © ${ }_{5-7 \text { min }}$

Build Fluency Students build number sense as they write three different addition expressions that are equivalent to 32.5 .

As solutions are given, record them for students to evaluate and compare. These prompts encourage students to talk about their reasoning:

- What type of numbers might you typically think about first?
- How do you show the sum of the values of the number's digits?
- Which two expressions are related? Do you notice any patterns? Explain.

Conceptual Understanding

- Students extend on their basic understanding of operations with fractions.

Procedural Skill \& Fluency

- Students build proficiency with equivalent fractions and develop general skills and strategies for subtracting fractions.

Application

- Students solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

Rigor

Purpose Students think about real-world examples of using multiples of a certain number.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students write down their thoughts on their own before beginning the class discussion.

ar

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about using equivalent fractions to subtract fractions having unlike denominators and are based on possible comments and questions that students may make during the share out.

- What would you need to know to determine how many toys there are?
- How many toys would there be if the number of toys in each package and the number of packages was switched?

Math is... Yindset

- How do different ideas and viewpoints help you learn better?

Social Awareness - Appreciate Diversity

Encourage students to appreciate diversity, so that they create a stronger, more inclusive classroom community. Invite students to set a class Focus Goal for the Notice \& Wonder routine by agreeing on a set time that they will, in diverse groups, focus on noticing and wondering. As students work through this time, remind them to be mindful of their collective goal.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can use equivalent fractions to subtract fractions having unlike denominators.

ETP Establish Goals to Focus Learning

- Let's think about how we can use equivalent fractions to subtract fractions having unlike denominators.

Learn

Joana started with $\frac{3}{4}$ qualt of orange juice. The amount shown is how much she has left.

How can you determine how much orange juice Joana used?
When suttracting fractions, the fractions must represent the same-sire parts of a whole.

Step 1: Find a common multiple of both denominetors.
$\frac{3}{4}-\frac{1}{3}=$ f
Multiples of 4: 4, 8, 12, 16, .
Multiples of 3:3,6, 9, 12, 15.
Step 2: Write an equivalent fraction with a denominator of 12 for each fraction.

Step 3. Subtract the fractions.

$\frac{9}{12}-\frac{4}{12}=\frac{5}{12}$
Is it possible to use a denominator

Luls used $\frac{5}{2}$ quart of orange juice.
To subtract fractions with unlke denominators, first write each fraction as an equivalent fraction so that they hive like denominators

A Work Together

Jodie is walking the Riverside Trail. She has walked $\frac{1}{2}$ mile. How much farther does she hive to walk? Explsin your solution. $\frac{3}{8}$ mile; Sample answer: I used 8 as the denominator for both fractions. $\frac{1}{2}$ is equal to $\frac{4}{8}$ and $\frac{7}{8}-\frac{4}{8}=\frac{3}{8}$

(1) Pose the Problem

MLR
 Discussion Supports

As students talk about what they'll be trying to do to solve the problem, have them pay attention to others' understandings in order to increase their ability to add and subtract fractions. Restate statements they make as a question to seek clarification and provide vocabulary or grammar prompts for students who need more guidance.

EIP Pose Purposeful Questions

- What are some representations you could you use to to help you understand this problem?
-What will those representations tell you?

(2) Develop the Math

Choose the option that best meets your instructional goals.

(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How is subtracting fractions having unlike denominators similar to adding fractions having unlike denominators? How is it different?

Key Takeaways

- When subtracting fractions with unlike denominators, it is necessary to generate equivalent fractions with like denominators before subtracting.
- One way to generate equivalent fractions is by multiplying the denominators to determine a common denominator.
- Another way to generate equivalent fractions is by determining a common multiple to identify a common denominator.

Work Together

Students solve a subtraction equation that involves fractions with unlike denominators. Suggest that students use different strategies to determine like denominators. Discuss with them why it is possible to use different like denominators while still determining the same difference.

Common Misconception: Students may think they have to find a denominator that is greater than both 2 and 8 . Remind them that one of the existing denominators may already be a common multiple that they can use as a like denominator.

Language of Math

Students may also be aware of multiple as an adjective meaning "more than one," as in "multple choice test."

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore strategies for subtracting fractions that have unlike denominators.

Directions: Have students work together to solve the Pose the Problem. Encourage students to find at least two different ways to solve the problem

Support Productive Struggle

-What operation should you use to solve the problem?

- How do you need to rewrite the fractions in order to subtract them?
- How can you use multiplication to write equivalent fractions?
- Is there more than one pair of equivalent fractions you can use to find the difference?

Math is... Quantities

- Is it possible to use a denominator other than 12 and get the same answer? Explain.
Students make sense of quantities and their relationships in problem situations.

Activity Debrief: Have students share the methods they used to solve the problem. Facilitate a discussion to ensure students understand that one method of finding like denominators is by multiplying the denominators of the fractions. Another method is to look for other common multiples of the denominators.

Guided Exploration

Students subtract fractions having unlike denominators by writing equivalent fractions with like denominators.

ETP Facilitate Meaningful Mathematical Discourse

(1) Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have the students estimate the solution. Ask:
-What benchmark numbers will you use to estimate the solution? Why?

- What multiples do 3 and 4 have in common?
- How can you write equivalent fractions?
- How can you subtract once you have written fractions with like denominators?
Q. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

Math is... Quantities

- Is it possible to use a denominator other than 12 and get the same answer? Explain.
Students make sense of quantities and their relationships in problem situations.

2. Develop the Math

Joana started with $\frac{3}{4}$ quart of orange juice. The amount shown is how much she has left.

How can you determine how much orange juice Joana used?

English Learner Scaffolds

Entering/Emerging

Explain started with. Put twenty chips on the desk. Take five and count them, and then put them away. Say, I started with twenty chips. I used five chips. I have fifteen chips left. Repeat, this time taking away seven chips. Ask, How many chips did I start with: seven or twenty? Did I use seven or thirteen chips? and Do I have seven or thirteen chips left?

Developing/Expanding

Explain started with. Put twenty chips on the desk. Take five and count them, and then put them away. Say, I started with twenty chips. I used five chips. I have fifteen chips left. Repeat, this time taking away seven chips. Ask students to complete the following sentences: I_ (started with) twenty chips. I _ (used) seven chips. I have thirteen chips \qquad (left).

Bridging/Reaching

Guide students to the Learn page and ask them to read the word problem, focusing on the words started with, left, and used. Put twenty chips on the desk. Take five and count them, and then put them away. Ask students to tell you how many chips you started with/used/have left. Then ask students to restate the meaning of the sentences in other words (You had..., You removed..., You have...remaining.).

Name
Which multiple can you use as a like denominator to subtract the fractions?

1. $\frac{7}{3}-\frac{1}{3}$	2. $\frac{4}{5}-\frac{1}{4}=$?
A. 12	A. 10
8. 16	(B. 20
C. 24	C. 24
D. 30	Q. 35

Complete the equation using fractions with like denominstors
3. $\frac{7}{5}-\frac{1}{6}=\frac{14}{18}-\frac{3}{18}$
4. $\frac{9}{10}-\frac{3}{4}=\frac{18}{20}-\frac{15}{20}$
What is the difference?
5. $\frac{7}{12}-\frac{3}{8}=\frac{5}{24}$
C. $\frac{5}{7}-\frac{1}{2}=\frac{5}{14}$
2. $\frac{5}{5}-\frac{1}{4}=\frac{7}{12}$
e. $\frac{3}{5}-\frac{1}{3}=\frac{4}{15}$
9. Miranda painted a room with a can of pairs thot had $\frac{7}{8}$ pallon in 2 . The amourta showe is how much paint is lett in the can. How muct pairs did Micanda use to pairs the room? $\frac{17}{24}$ gallon
10. Eddie had $\frac{3}{4}$ quart of water for his soccer game. By hat time. he trank $\frac{2}{5}$ quart of winter. How much water does Eddie have left? $\frac{7}{20}$ quart
f1. isabel bought this sandwich She ite $\frac{5}{8}$ foot of the sandwich. How much of the sandwich is left? $\frac{3}{40}$ foot

12. Alan is walking on a path that is $\frac{\pi}{12}$ mile long. He has walied
$\frac{7}{9}$ mile. How much farther does he have to walk?
$\frac{5}{36}$ mile
13. Extend Your Thinking Solve the equation using two different
like denominators is the difference the same when you use
different denominators? Exploin why or why not
$\frac{9}{10}-\frac{9}{6}^{\frac{9}{6}}=\frac{\frac{1}{3}}{=}=\frac{27}{30}-\frac{5}{30}=\frac{22}{30}$
$\frac{9}{10}-\frac{1}{6}=\frac{54}{60}-\frac{10}{60}=\frac{44}{60}=\frac{22}{30}$, Sample answer: Even though the denominators are different, the fractions still represent Deflect equivalent amounts.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

- Common Misconception: Exercises 1-8 Students may only find like denominators by multiplying the denominators by each other. While that is not an error, encourage students to think about multiples that both denominators have in common that may be less than the product of the two denominators, because it can make working with the numerators easier.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-12$	2	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can equivalent fractions help you subtract fractions with unlike denominators?
Ask students to share their reflections with their classmates.

Math is... yindset

-How did different ideas and viewpoints help you learn better?
Students reflect on how they practiced social awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can subtract fractions with unlike denominators.
- I can explain how to subtract fractions with unlike denominators.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item poK Skill	Standard		
1	1	Subtract fractions with unlike denominators	5.NF.A.1
2	1	Subtract fractions with unlike denominators	5.NF.A.1
3	2	Subtract fractions with unlike denominators	5.NF.A.1
4	2	Subtract fractions with unlike denominators	5.NF.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	Then have students do
4 of 4	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the \mathbf{B} activities
2 or fewer of 4	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Down to Zero

Work with students in groups. Provide students fraction tiles and cards that show fractions less than 1. One student draws two fraction cards with unlike denominators to show the group. Students use the given fractions in a subtraction equation and solve the equation. If students have difficulty, help them find equivalent fractions using fraction tiles, then use the renamed fractions to write and solve a subtraction equation.

Practice It! Game Station Fraction Subtraction Tic Tac Toe Students practice subtracting fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 97-98

Lesson 9.5

Additional Practice

Nome

Review

You can subtract fractions with unlike denominators by finding a commen multiple of the denominators to use as a common denominator.
Olie's math notebook weighs $\frac{3}{8}$ pound. His sclence notebook weighs $\frac{1}{6}$ pound. How much more does Ollie's math notebook weigh than his science notebook?
To solve, find $\frac{3}{8}-\frac{1}{6}$
For the denominators 8 and 6 a common mutiple is 24 Wrate equivalunt fractions using 24 an the denominator.
$\frac{3}{2} \times \frac{3}{3}=\frac{9}{24} \quad \frac{1}{6} \times \frac{4}{4}=\frac{4}{24}$
$\frac{3}{1}-\frac{1}{6}=\frac{9}{24}-\frac{4}{24}=\frac{5}{24}$
Ollie's math notebook veighs $\frac{5}{24}$ pound more than his science notedook.

Find the difference. Show your work. Check students' work.
$\frac{7}{15}$

5. $\frac{7}{10}-\frac{1}{4}-\frac{9}{20}$ \qquad

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 97-98

Extend Thinking

Use It! Application Station
Get Moving Students design a car and measure the distance it travels.
The content of this card has concepts covered later in Lesson 9-8. You may want to assign this card to students
 ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 98

Lesson 9-5-Extend Thinking

Subtract Fractions with Unlike Denominators

Name
Fill in the missing values to complete each equation. The first one is

Learning Targets

- I can add mixed numbers with unlike denominators.
- I can explain how to add mixed numbers with unlike denominators.

Standards \circ major Δ supporting \circ Additional

Content

\checkmark 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\diamond 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).

Math Practices and Processes

MPP Look for and make use of structure.

Focus

Content Objectives

- Students add mixed numbers with unlike denominators.
- Students explain how to add mixed numbers with unlike denominators.

Language Objectives

- Students talk about adding mixed numbers with unlike denominators using can and use.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

SEL Objective

- Students identify multiple possible solutions for a given math problem.

Next

- Students decompose mixed numbers and use fractions greater than one to subtract mixed numbers (Unit 9).
- Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Rigor

Conceptual Understanding

- Students build understanding of fraction concepts and addition of fractions and mixed numbers with unlike denominators.

Procedural Skill \& Fluency

- Students develop proficiency adding mixed numbers with unlike denominators and develop skills to handle a range of cases.

Application

- Students solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms
equivalent fractions
Academic Terms establish relevant mixed number

Materials

The materials may be for any part of the lesson.

- fraction tiles
- index cards

Number Routine What's Another Way to Write It? © ${ }^{5-7 \mathrm{~min}}$

Build Fluency Students build number sense as they write three different subtraction expressions to represent the number 27.75.

As solutions are given, record them for students to evaluate and compare. These prompts encourage students to talk about their reasoning:

- What type of subtraction expression might you think about first?
- What strategy could you use to find a minuend (or first number in the subtraction expression) for the expression?
-What strategy could you use to find a subtrahend (or second number in the subtraction expression) for the expression?
- Do you notice any patterns? Explain.

Purpose Students begin thinking about decomposing a mixed number, or how they can count the number of wholes, then parts of the whole.

Notice \& Wonder

- What question could you ask?

Teaching Tip You may want to have students write down their questions on their own before discussing as a whole class.

ETP

Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' understanding of decomposing addends to add mixed numbers and are based on possible comments and questions that students may make during the share out.

- How do quarters relate to dollars?
- How can you determine the value of the money shown?

Math is... Yindset

- What helps you know when there is a problem?

Responsible Decision-Making - Identify Problems
Elicit from students that a key step in problem solving is analyzing information to identify the task. As students work through the Notice \& Wonder routine, provide specific, constructive feedback that can help guide each student toward identifying any problems. As students work with adding mixed numbers with unlike denominators throughout the lesson, encourage them to connect and use their prior knowledge of adding fractions with unlike denominators. Encouraging use of prior knowledge can help students feel more competent and promote effective problem identification.

Transition to Explore \& Develop

Ask questions that get students thinking about decomposing addends to add mixed numbers.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can decompose addends to add mixed numbers.

(1) Pose the Problem

You can use the equation $3 \frac{1}{2}+2 \frac{1}{3}=j$ to represent the probliem

When adding mixed numbers, you add the fractions and the
whole numbers.

Q Work Together

Lorenso found the amount of juice using a difterent strategy How do you respond to Lorenzo's work?
$\frac{3}{2}+\frac{2}{3}=\frac{2}{8}+\frac{4}{4}=\frac{-x}{8}$
Sample answer: Lorenzo wrote the mixed numbers as fractions and added the fractions. This is a different strategy for adding mixed numbers.

ETP

Pose Purposeful Questions

-What information do you need to solve the problem?
Where can you find it?
-What kinds of numbers are you working with?

(2) Develop the Math

Choose the option that best meets your instructional goals.

\qquad Co-Craft Questions and Problems Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problem, have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How do you decompose a mixed number?
- Explain how you can add mixed numbers that have unlike denominators.

Key Takeaway

- The sum of mixed numbers with unlike denominators can be found by decomposing the mixed number into whole-number parts and fraction parts.

Work Together

Students explore a different strategy used to solve the same problem and respond to it.

Common Error: Students may see that ${ }^{\text {the }}$ numerators are the same in both fractions and think that Lorenzo does not need to determine equivalent fractions with like denominators. Remind students that the denominators must always be the same in order to add fractions.

LOM Language of Math

Remind students that, in math, to decompose a number means to break it down into simpler parts. The prefix de- means "off" or "from" and compose means "to make up a whole." Anything that decomposes breaks down into simpler parts that make up the whole, such as plants.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore extending the partial sums strategy to add mixed numbers.

Directions: Discuss with students how they used the partial sums strategy to add whole numbers and to add decimals.

- Do you think you can use a similar strategy to add mixed numbers? Have students work together to solve the Pose the Problem.

ETR Support Productive Struggle

-What operation is needed to solve the problem?

- Is there a way you can decompose the mixed numbers?
- Why can you change the order of the addends?
- Is your answer reasonable? How do you know?

Activity Debrief: Discuss with students that decomposing mixed numbers is one strategy for adding mixed numbers.

Math is... ?atterns

- How is decomposing mixed numbers similar to the partial sums strategy?
Students step back for an overview and shift perspective, connecting a strategy for adding mixed numbers to a strategy for adding whole numbers.

Guided Exploration

Students add mixed numbers by decomposing them into a whole number and fraction.

ETP Facilitate Meaningful Mathematical Discourse
 (Q) Have the students create the equation. Ask:
 - What should the operation be? Why?
 - How should the numbers appear in the equation? Why?
 - How should the unknown appear in the equation? Why?

(4) Have the students estimate the sum. Ask:

- Will you use whole numbers or mixed numbers to estimate the sum? Why?
- If you use mixed numbers, what benchmark fractions will you use? Why?
- Think About It: What are some strategies you used to add whole numbers?
- Why can you change the order of the addends?
- How can you add $\frac{1}{2}$ and $\frac{1}{3}$?

Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?

Math is... Patterns

- How is decomposing mixed numbers similar to the partial sums strategy?
Students step back for an overview and shift perspective, connecting a strategy for adding mixed numbers to a strategy for adding whole numbers.

2. Develop the Math

Lorenzo is making smoothles. How can you find how many cups of juice he needs?

What equation can you write that represents the problem?

English Learner Scaffolds

Entering/Emerging

Explain in all. Put 10 red chips on the desk. Say, I have 10 red chips. Put 8 blue chips on the desk. Say, I have 8 blue chips. Then count all the chips. Say, I have 18 chips in all. Repeat again with new chips. Then, repeat once more, placing 9 red chips and 6 blue chips on the desk. Ask, Do I have 6,9 , or 15 chips in all?

Developing/Expanding

Explain in all. Put 10 red chips on the desk. Say, I have 10 red chips. Put 8 blue chips on the desk. Say, I have 8 blue chips. Then count all the chips. Say, I have 18 chips in all. Repeat again with new chips. Then, repeat once more, placing 9 red chips and 6 blue chips on the desk. Ask, How many chips do I have in all?

Bridging/Reaching

Guide students to the problem at the top of the Learn page. Ask them to focus on the phrase in all. Instruct them to think of similar words they've used in the past that mean the same (altogether, total, etc.). Allow students to use a dictionary or thesaurus if desired. Then, ask students to use in all in a sentence, demonstrating with manipulatives. Provide validation and correction as needed.

Name
What is the sum? Choose the correct answer.
I. $3 \frac{3}{10}+4 \frac{3}{5}=$?

$$
\text { 2. } 1 \frac{3}{4}+5 \frac{1}{6}=\text { ? }
$$

A. $6 \frac{4}{5}$
A. $7 \frac{5}{10}$
e. $7 \frac{4}{8}$
c. $8 \frac{7}{10}$
(C) $6 \frac{11}{7}$
(D) $7 \frac{7}{10}$
D. $6 \frac{5}{6}$
What is the sum?
3. $2 \frac{2}{3}+3 \frac{1}{4}=5 \frac{11}{12}$
4. $4 \frac{1}{2}+5 \frac{1}{3}=9 \frac{5}{6}$
5. $6 \frac{3}{8}+2 \frac{1}{6}=8 \frac{13}{24}$
6. $3 \frac{7}{9}+1 \frac{3}{4}=4 \frac{35}{36}$
7. $2 \frac{1}{5}+3 \frac{1}{2}=5 \frac{7}{10}$
8. $5 \frac{1}{3}+4 \frac{2}{5}=9 \frac{\pi 1}{15}$
9. Jill bought the stramberies and blueberries shown ot a tarmers market. How many pounds of tuit did ja buy?
$3 \frac{7}{8}$ pounds

10. Tinnothy rides his bike $1 \frac{1}{2}$ miles to school. Atter school, he rides $2 \frac{2}{5}$ miles to his piano lesson, then 2 miles bock home. How mary miles does Timotry ride in all?

$$
5 \frac{9}{10} \text { miles }
$$

11. Marcus bullds the body of this snowman. He then builds the head. How tall is Marcus's snowman?
$4 \frac{19}{24}$ feet tall
12. Solve the equation,

$4 \frac{7}{10}+2 \frac{3}{4}=$?

What do you notice about the sum of the two fractions?
How can you rewrite the sum?
$6 \frac{29}{20}$; Sample answer: The sum is greater than $1 ; 7 \frac{9}{20}$
13. Extend Your Thinking The chat at the restaurant uses $6 \frac{2}{3}$ pounds
of muctrooms on Siturday. On Sunday. she uses $1 \frac{3}{8}$
more pounds of mustricoms tran she did on Satur day.
How many pounds of mishooms did the chef use in
at over the weckenof?
$14 \frac{17}{24}$ pounds

(D) Reflect

How ean yeu add moxed numbers with unilise denominators? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 1-8 Students may be focused on determining like denominators and adding the fractions, and forget to add the whole numbers and include them as part of the sum. Remind students to write out the equation with the decomposed numbers and to determine the sum of the whole numbers.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-12$	2	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you add mixed numbers with unlike denominators? Ask students to share their reflections with their classmates.

Math is... Mindset

-What helped you know when there was a problem?
Students reflect on how they practiced responsible decision-making.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can add mixed numbers with unlike denominators.
- I can explain how to add mixed numbers with unlike denominators.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item poK Skill	Standard		
1	1	Add mixed numbers with unlike denominators	5.NF.A.1
2	1	Add mixed numbers with unlike denominators	5.NF.A.1
3	2	Add mixed numbers with unlike denominators	5.NF.A.1
4	2	Add mixed numbers with unlike denominators	5.NF.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4
Additional Practice or any of the (3) or activities
3 of 4
Take Another Look or any of the Bactivities
2 or fewer of 4 Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Splitting Sticky Notes

Work with students in groups. Each student chooses three number cards. The greatest number will be the numerator, and the other two numbers will be the denominator and whole number. Students write the whole number and fraction on separate sticky notes. Students decompose the fraction into a mixed number, then add the mixed number and the whole number.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Add Unlike Mixed Numbers

Differentiation Resource Book, p. 99

Build Proficiency

Practice It! Game Station
Mixed Number Addition Concentration
Students practice adding mixed numbers.

品
 嘼
 a

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 99-100

Lesson 9.6

Additional Practice

Name

Review

You can add mixed numbers by adding the whole number parts and the fractional parts.
Myra walks $3 \frac{1}{3}$ miles on Saturday and $4 \frac{1}{4}$ miles on Sundry. How many miles does Myra wak on those two divys?
To solve, find $3 \frac{1}{3}+4 \frac{1}{4}$
Decompose the addends $3 \frac{1}{3}=3+\frac{1}{3}$ end $4 \frac{1}{4}=4+\frac{1}{4}$
Rowrite the sumx $3 \frac{1}{3}+4 \frac{1}{4}=3+\frac{1}{3}+4+\frac{1}{4}$
Crange the order of the addends so that the whole numbers ave together and the fractions are together:
$3+\frac{1}{3}+4+\frac{1}{4}=3+4+\frac{1}{3}+\frac{1}{4}$
Add the whole numbers: $3+4=7$
Add the fraction: $\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}$
Add the whole numbers and the fractions. $7+\frac{7}{12}=7 \frac{7}{12}$
Myra walked $7 \frac{7}{1}$ miles on the twe diys.
What is the sum? Show your work. Check students' work.
What is the sum? Show your work. Check students' Work.

1. $2 \frac{1}{6}+5 \frac{2}{3}=\frac{7 \frac{5}{6}}{} \quad$ 2. $8 \frac{3}{4}+3 \frac{1}{10}=11 \frac{17}{20}$	
3. $5 \frac{3}{5}+4 \frac{1}{3}=10 \frac{14}{15}$	4. $5 \frac{1}{4}+3 \frac{2}{3}=8 \frac{11}{12}$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 99-100

Extend Thinking

Use It! Application Station
Create and Solve Students create a multistep problem that adds and subtracts mixed numbers to solve. Then they use a digital tool to present the problem.
The content of this card has concepts covered later in Lesson 9-9. You may
 want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 100

Lesson 9.6 -Extend Thinking

Add Mixed Numbers with Unlike Denominators
Nome
Fill in the missing values to complete each equation. The first one is done as an example. Show your work.

1. $r_{3}^{3}+\frac{7}{3}=5 \frac{\pi}{7}$

$$
\text { 4. } \left.3 \frac{3}{7}+7\right\}=
$$

$$
\frac{1}{3}+4 \frac{1}{4}=5 \frac{11}{3 \times 4}
$$

$$
\frac{12 \times 4}{3 \times 4}+4 \frac{7 \times 3}{4 \times 3}=5 \frac{\frac{6}{3} \times 3}{3 \times 4}
$$

$$
1 \frac{1 \times x}{3 \times 4}+4 \frac{1 \times 3}{4 x}=5 \frac{3}{3}+\frac{3}{3}
$$

$$
1 \frac{8}{12}+4 \frac{3}{12}=5 \frac{\pi}{12}
$$

$$
\frac{12}{2}+4 \frac{1}{4}=5 \frac{11}{12}
$$

$$
\text { 2. } \left.7 \frac{7}{3}+4\right\}=7 \frac{7}{15}
$$

$$
3 \frac{7}{3}+4 \frac{7}{5}=7 \frac{13}{3 \times 5}
$$

$$
3 \frac{2 \times 5}{3 \times 5}+4 \frac{1 \times 3}{5 \times 3}=7 \frac{10+3}{3 \times 5}
$$

$$
3 \frac{10}{15}+4 \frac{3}{15}=7 \frac{13}{15}
$$

$$
3 \frac{2}{3}+4 \frac{1}{5}=7 \frac{13}{15}
$$

$$
\text { 3. } 5_{2}^{3}+\lambda_{7}^{7}=7 \frac{9}{16}
$$

$$
5 \frac{?}{2}+2 \frac{?}{5}=7 \frac{9}{2 \times 5}
$$

$$
5 \frac{1 \times 5}{2 \times 5}+2 \frac{2 \times 2}{5 \times 2}=7 \frac{5+4}{2 \times 5}
$$

$$
5 \frac{5}{10}+2 \frac{4}{10}=7 \frac{9}{10}
$$

$$
5 \frac{1}{2}+2 \frac{2}{5}=7 \frac{9}{10}
$$

Subtract Mixed Numbers with
 Unlike Denominators

Learning Targets

- I can subtract mixed numbers with unlike denominators.
- I can explain how to subtract mixed numbers with unlike denominators.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\diamond 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.

Focus

Content Objectives

- Students subtract mixed numbers • Students talk about subtracting with unlike denominators.
- Students explain how to subtract mixed numbers with unlike denominators.

Language Objectives

 mixed numbers with unlike denominators using can, should, same, and different.- To support optimizing output, ELs participate in MLR7:
Compare and Connect.

SEL Objective

- Students practice segmenting a complex mathematical task into smaller achievable tasks.

Coherence

Previous	Now	Next
- Students understood,	- Students decompose mixed	- Students use regrouping to add recognized, and generated end subtract mixed numbers
equivalent fractions (Grade 4). - Students decomposed addends to add mixed numbers (Unit 9).	greater than one fractions mixed numbers.	(Unit 9).
		Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$
(Grade 6).		

Rigor

Conceptual Understanding

- Students interpret and use representations to develop their understanding of subtracting mixed numbers with unlike denominators.

Procedural Skill \& Fluency

- Students build proficiency through repeated use of representations, such as pictures, tools, and equations.

Application

- Students solve problems with real-world contexts.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms
equivalent fractions
Academic Terms accurate assert mixed number

Materials

The materials may be for any part of the lesson.

- blank spinner
- fraction tiles

Number Routine Would You Rather?
 (Q) 5-7 min

Build Fluency Students build number sense and understanding of fractions as they compare the sums of two fractions.
These prompts encourage students to talk about their reasoning:

- What strategy did you use to compare the amounts?
- Did you use equivalent fractions to compare the amounts? Why or why not?

Purpose Students begin to think about the difference between two mixed numbers having unlike denominators.

Notice \& Wonder

-What could the question be?
Teaching Tip You may want to have students represent the image using their own fraction tiles to allow them to more closely examine the representation of the numbers.

ER Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about decomposing mixed numbers and using fractions greater than one to subtract mixed numbers, and are based on possible comments and questions that students may make during the share out.

- What numbers do the fraction tiles represent? How do you know?
- What kind of numbers do the fraction tiles represent? How do you know?

Math is... Jindset

-What helps you work well in a team?

SELI Relationship Skills: Teamwork

Establish a classroom culture in which students work effectively as a team, establishing a stronger learning community. Have students work as teams on the Notice \& Wonder routine with each member listing as many questions as they can. As a group, have students compare lists and discuss questions that group members have in common.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can decompose mixed numbers and use fractions greater than one to subtract mixed numbers.

Establish Mathematics Goals to Focus Learning

- Let's think about decomposing mixed numbers and using fractions greater than one to subtract mixed numbers.

You can use different strategies to subtract mived numbers with unlike denominators.

C Work Together

Marcella walks $2 \frac{2}{3}$ miles from her house to the bookstore
Jacques walks $3 \frac{5}{6}$ miles from his house to the bookstore.
How much forther does Jocques wolk?

$1 \frac{1}{6}$ miles

(1) Pose the Problem

ETP
 Pose Purposeful Questions

-What are some strategies you already know for subtracting fractions?

(2) Develop the Math

Choose the option that best

 meets your instructional goals.
Compare and Connect

Pair students and give them a problem similar to the Work Together problem on the Learn page. Ask each to work individually to solve the problem, and then have them compare their strategies. Revisit this routine throughout the lesson to help students build proficiency.

(3) Bring It Together

EIP Elicit and Use Evidence of Student Thinking

- How can you subtract mixed numbers by decomposing the mixed numbers?
- How can you subtract mixed numbers by using equivalent fractions that are greater than one?

Key Takeaway

- The difference of mixed numbers with unlike denominators can be found using strategies such as using equivalent fractions and decomposing the mixed numbers into whole-number parts and fraction parts.

Work Together

Students solve a subtraction word problem that involves fractions with unlike denominators.

4 Common Error: Students may mistakenly write the subtraction equation $2 \frac{2}{3}-3 \frac{5}{6}=$? because $2 \frac{2}{3}$ is the first number given in the problem. Encourage students to reread the problem make sure they are writing an equation that accurately represents the problem.

tom
 Language of Math

Explain to students that the mixed in mixed number comes from the Latin word miscere, which means to mingle. Knowing this word can help students determine other words that come from the same root such as miscellaneous, which means a group of things from different sources.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore strategies to subtract mixed numbers.
Directions: Discuss with students how they decomposed by place value to subtract whole numbers and to subtract decimals.

- Do you think you can use a similar strategy to subtract mixed numbers?
Have students work together to solve the Pose the Problem.
ETP Support Productive Struggle
-What operation is needed to solve this problem?
- How can you decompose $1 \frac{1}{4}$?
- Is your answer reasonable? How do you know?

After students have solved by decomposing, challenge students to find another method to solve.

ETP Support Productive Struggle

- How can you represent $2 \frac{2}{3}$ using only thirds? How can you write this as a fraction?
- How can you represent $1 \frac{1}{4}$ using only fourths? How can you write this as a fraction?
- How can you use these equivalent representation to find the difference?

Math is... Exploring

- What is the same about these methods? What is different? Students identify correspondences between different approaches to solving complex problems.

Activity Debrief: Discuss with students that decomposing is one strategy for adding mixed numbers. Another strategy is to write each mixed number as an equivalent fraction and then subtract the fractions.

Guided Exploration

Students subtract mixed numbers having unlike denominators by decomposing the mixed numbers and by writing equivalent fractions that are greater than one.

ETP Use and Connect Mathematical Representations

Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(1) Have the students estimate the difference. Ask:
- Will you use whole numbers or mixed numbers to estimate the difference? Why?
- If you use mixed numbers, what benchmark fractions will you use? Why?
- How does this decomposing strategy relate to decomposing whole numbers to subtract?
Q. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?
-What steps are involved in rewriting the mixed numbers as equivalent fractions?
- How can you subtract once you have written the mixed numbers as fractions?
- How does the solution you found using equivalent fractions greater than one compare to the solution you found by decomposing the mixed numbers?

Math is... Exploring

- What is the same about these methods? What is different? Students identify correspondences between different approaches to solving complex problems.

EL English Learner Scaffolds

Entering/Emerging

Explain You can use \qquad to \qquad Write an addition problem on the board. Say, You can use a place value chart to solve the problem. Solve the problem with a place value chart. Repeat with a new mathematical problem, using You can use
\qquad
\qquad to explain how to solve it. Then, repeat once more, asking students to answer the question: Can I use [addition] or [division] to solve the problem?

Developing/Expanding

Explain You can use \qquad o . Write an addition problem on the board. Say, You can use a place value chart to solve the problem. Solve the problem with a place value chart. Repeat with a new mathematical problem, using You can use
\qquad
\qquad to explain how to solve it. Then, repeat once more, this time asking students to complete the sentence: I can \qquad to \qquad

Bridging/Reaching

Guide students to the Learn page and ask them to review the You can use... sentence below the table. Ask students to come up with a new sentence explaining how to do something, using You can use \qquad to \qquad Allow students to interject, correcting as needed. For example, No, I don't think that's right. You can use..

Name
What is the difference? Choose the correct answer.
2. $3 \frac{2}{3}-1 \frac{1}{5}=$?
2. $6 \frac{7}{8}-5 \frac{5}{6}=$?
(A) $2 \frac{7}{15}$
A. $1 \frac{5}{24}$
e. $2 \frac{1}{5}$
(B) $1 \frac{1}{24}$
C. $2 \frac{1}{15}$
C. $1 \frac{4}{24}$
D. $2 \frac{1}{3}$
D. $1 \frac{2}{24}$

What is the difference?
3. $4 \frac{3}{4}-1 \frac{1}{3}=3 \frac{5}{12}$
4. $2 \frac{3}{5}-1 \frac{1}{2}=1 \frac{1}{10}$
5. $5 \frac{5}{9}-3 \frac{1}{6}=2 \frac{7}{18}$
6. $3 \frac{7}{10}-1 \frac{3}{2}=2 \frac{13}{40}$
7. $6 \frac{1}{2}-3 \frac{1}{3}=3 \frac{1}{6}$
8. $4 \frac{3}{8}-3 \frac{1}{5}=1 \frac{17}{40}$
9. The distance from Martin's nouse to school is shown. Arer 20 mirutec. Mattin wolhed $1 \frac{1}{3}$ miles. What distance does ne nove lett to waik? $\uparrow \frac{4}{15}$ miles

10. Mrs. Waians bought $5 \frac{1}{2}$ gallons af applef fuce for the classuoom
party She used $3 \frac{1}{3}$ gailons during the party How manny gallons
of apple fuice does Mrs. Willams hove left?
$2 \frac{1}{6}$ gallons
11. Error Analysis Bran solved this subtraction probiem:
$4 \frac{5}{6}-2 \frac{1}{4}=\frac{29}{6}-\frac{9}{4}=\frac{20}{6}$
is Brian conrect? Explisin why or why not
No. Sample answer: He did not find like denominators
when subtracting. Me should have used the like
denominator 12 to have $\frac{58}{12}-\frac{27}{12}=\frac{31}{12}$.
12. The combined weight of two wood planks is $6 \frac{3}{4}$ pounds. 1․․
the weight of one wood ptank is
shown. How many pounds is the second wood plank?
$3 \frac{1}{8}$ pounds
13. Extend Your Thinking Wite and solve a real-wofld problem invoiving subtraction of two mised numbers whose diference is less than $2 \frac{1}{2}$.
Check students' work.

(2) Reflect

How can you subtract mixed numbers with unlike denominators? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 1-8 If students choose to subtract by writing the mixed numbers as fractions greater than 1 , they may convert mixed numbers to fractions greater than 1 incorrectly. Review the process if needed.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-10$	2	Application
11	3	Conceptual Understanding
12	2	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you subtract mixed numbers with unlike denominators?

Ask students to share their reflections with their classmates.

Math is... Mindset

- What helped you work well in a team?

Students reflect on how they practiced stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can subtract mixed numbers with unlike denominators.
- I can explain how to subtract mixed numbers with unlike denominators.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item poK Skill	Standard		
1	1	Subtract mixed numbers with unlike denominators	5.NF.A.1
2	1	Subtract mixed numbers with unlike denominators	5.NF.A.1
3	2	Subtract mixed numbers with unlike denominators	5.NF.A.1
4	2	Subtract mixed numbers with unlike denominators	5.NF.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	then have students do
4 of 4	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the B activities
2 or fewer of 4	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 9-7

Exit Ticket

Name

What is the difference?

A. $10 \frac{1}{2}-3 \frac{3}{6}=$?
A. $6 \frac{2}{3}$
B. $6 \frac{5}{6}$
c. $7 \frac{1}{4}$
(a) $7 \frac{1}{6}$
2. $4 \frac{7}{2}-\frac{1}{6}=$?
A. $2 \frac{1}{2}$
(B.) $3 \frac{5}{2}$
C. $3 \frac{1}{2}$
D. $4 \frac{5}{12}$
3. Patrice jumps $7 \frac{\pi}{12}$ foet. Kevin jumps $6 \frac{1}{3}$ foet. How much farther does Patice jump than Kevin? $1 \frac{7}{12}$ feet
4. A farmer hammers a wooden stake $2 \frac{1}{2}$ feet long into the ground. When the former is finished, $1 \frac{1}{5}$ foet of the stake show above the ground. How much of the stake is in the ground? $1 \frac{3}{10}$ feet

Reflect On Your Learning

Reinforce Understanding

Subtract the Fractions

Work with students in groups. Students write mixed numbers on a blank spinner using the numbers 2,3 , and 4 as denominators. Each student spins the spinner once. Students subtract the lesser mixed number from the greater mixed number. If students have difficulty, help them to find like denominators for the fractions and represent the subtraction using fraction tiles.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Subtract Unlike Mixed Numbers

Differentiation Resource Book, p. 101

Name

What is the difference?

Build Proficiency

Practice lt! Game Station
Subtracting Mixed Numbers Task Cards
Students practice subtracting
mixed numbers.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 101-102

Lesson 9.7
 Additional Practice

Name

Review

You can subtract mixed numbers by subtracting the whole number parts and the fractional parts.
Shell jogs $4 \frac{1}{4}$ miles on Wednesday and $6 \frac{2}{3}$ miles on Saturdar. How many miles more does Stelolo jog on Satueday?
To solve, find $6 \frac{2}{3}-4 \frac{1}{4}$.
Subtract the whole number: $6 \frac{2}{3}-4=2 \frac{2}{3}$
Subtract the fraction: $2 \frac{2}{3}-\frac{1}{4}=2 \frac{1}{7} \frac{1}{5}-\frac{3}{72}=2 \frac{5}{12}$
Shells jogged $2 \frac{5}{8}$ miles more on Ssturday.
What is the difference? Show your work. Check students' work.

1. $5 \frac{2}{3}-1 \frac{1}{2}=4 \frac{1}{6}$	2. $8 \frac{3}{4}-3 \frac{1}{10}=5 \frac{13}{20}$

3. $6 \frac{3}{8}-5 \frac{1}{4}=\underline{1 \frac{1}{8}} \quad$ 4. $3 \frac{1}{10}-1 \frac{2}{5}=2 \frac{3}{10}$
4. $10 \frac{5}{6}-7 \frac{1}{4}=3 \frac{7}{12}$
5. $7 \frac{7}{9}-3 \frac{1}{3}=4 \frac{4}{9}$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 101-102

Extend Thinking

Use It! Application Station
How Do You Say-Fractions? Students research to find how to say words related to adding and subtracting fractions in other languages.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 102

Lesson 9.7-Extend Thinking Subtract Mixed Numbers with Unlike Denominators

Name
Fill in the missing values to complete each equation. The first one is done as an example. Show your work.

$$
\begin{aligned}
& \text { 2. } ?_{9}^{2}-y_{3}^{\frac{7}{3}}=5 \frac{5}{12} \\
& 5 \frac{1}{4}-1 \frac{1}{3}=5 \frac{5}{4 \times 3} \\
& 6 \frac{7 \times 3}{4 \times 3}-1 \frac{1}{2 \times 4}=5 \frac{9-4}{4 \times 3} \\
& 5 \frac{3 \times 3}{\times 3}-1 \frac{1 \times 4}{3 \times 4}=5 \frac{9}{3} \times 4 \\
& 6 \frac{9}{2}-1 \frac{4}{12}=5 \frac{5}{12} \\
& 5 \frac{3}{4}-1 \frac{1}{3}=5 \frac{5}{2} \\
& \text { 2. } 5 \frac{2}{2}-2 \vec{i}=2 \frac{5}{23} \\
& 5 \frac{7}{2}-3 \frac{7}{11}=2 \frac{5}{2 \times 11} \\
& 5 \frac{1 \times 11}{2 \times 11}-3 \frac{3 \times 2}{11 \times 2}=2 \frac{11-6}{2 \times 11} \\
& 5 \frac{11}{22}-3 \frac{6}{22}=2 \frac{5}{22} \\
& 5 \frac{1}{2}-3 \frac{3}{11}=2 \frac{5}{22} \\
& \text { 3. } \left.r_{5}^{2}-3\right\}=1 \frac{4}{15} \\
& 4 \frac{7}{5}-3 \frac{7}{3}=1 \frac{4}{5 \times 3} \\
& 4 \frac{3 \times 3}{5 \times 3}-3 \frac{1 \times 5}{3 \times 5}=1 \frac{9-5}{5 \times 3} \\
& 4 \frac{9}{15}-3 \frac{5}{15}=1 \frac{4}{15} \\
& 4 \frac{3}{5}-3 \frac{1}{3}=1 \frac{4}{15} \\
& \text { 4. } 3 \text { ? }-1 \frac{1}{2}=2 \frac{1}{1} \\
& 3 \frac{7}{7}-1 \frac{7}{2}=2 \frac{5}{7 \times 2} \\
& 3 \frac{6 \times 2}{7 \times 2}-1 \frac{1 \times 7}{2 \times 7}=2 \frac{12-7}{7 \times 2} \\
& 3 \frac{12}{14}-1 \frac{7}{14}=2 \frac{5}{14} \\
& 3 \frac{6}{7}-1 \frac{1}{2}=2 \frac{5}{14} \\
& \text { 5. } 75-1 \frac{1}{2}=2 \frac{1}{11} \\
& 3 \frac{7}{9}-1 \frac{7}{2}=2 \frac{1}{9 \times 2} \\
& 3 \frac{5 \times 2}{9 \times 2}-1 \frac{1 \times 9}{2 \times 9}=2 \frac{10-9}{9 \times 2} \\
& 3 \frac{10}{18}-1 \frac{9}{18}=2 \frac{1}{18} \\
& 3 \frac{5}{9}-1 \frac{1}{2}=2 \frac{1}{18} \\
& \text { 6. } 5 \hat{i}-\mathrm{N}_{2}^{3}=3 \frac{7}{2} \\
& 5 \frac{7}{5}-2 \frac{7}{4}=3 \frac{7}{5 \times 4} \\
& 5 \frac{3 \times 4}{5 \times 4}-2 \frac{1 \times 5}{4 \times 5}=3 \frac{12-5}{5 \times 4} \\
& 5 \frac{12}{20}-2 \frac{5}{20}=3 \frac{7}{20} \\
& 5 \frac{3}{5}-2 \frac{1}{4}=3 \frac{7}{20}
\end{aligned}
$$

DSmentiton Newact boct

Add and Subtract Mixed Numbers
 with Regrouping

Rigor

Conceptual Understanding

- Students build understanding of fraction concepts to add and subtract mixed numbers with unlike denominators.

Learning Target

- I can add and subtract mixed numbers with regrouping.

Standards \circ Major Δ supporting \bigcirc Addifional

Content

\diamond 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\checkmark 5.NF.A. 1 Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. (In general, $\frac{a}{b}+\frac{c}{d}=\frac{(a d+b c)}{b d}$).

Math Practices and Processes
MPP Look for and make use of structure.

Focus

Content Objective

- Students add and subtract mixed numbers with regrouping.

Language Objectives

- Students talk about adding and subtracting mixed numbers with regrouping using rearrange and rename.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

Coherence

Previous

- Students understood, recognized, and generated equivalent fractions (Grade 4).
- Students decomposed mixed numbers and used fractions greater than one to subtract mixed numbers (Unit 9).

SEL Objective

- Students work toward completing a mathematical task independently using prior knowledge or understanding of mathematical concepts.

Next

- Students choose and use

Now

- Students use regrouping to add and subtract mixed numbers.

Number Routine Would You Rather?

Build Fluency Students build number sense and understanding of fractions as they compare the difference of two fractions to another fraction.

These prompts encourage students to talk about their reasoning:

- What strategy did you use to compare the amounts?
- Did you use equivalent fractions to compare the amounts? Why or why not?
- How could inverse operations help with the comparison?

Procedural Skill \& Fluency

- Students develop proficiency in adding and subtracting mixed numbers for an increased range of cases.

Vocabulary

Math Terms
equivalent fractions
Academic Terms mixed number
debate eliminate

Materials

The materials may be for any part of the lesson.

- Explain and Show Your Strategies Teaching Resource
- fraction tiles
- index cards
- rulers
known strategies to solve word problems that involve addition or subtraction of mixed numbers having unlike denominators (Unit 9).
- Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ (Grade 6).

Application

- Students solve problems with real-world contexts.
Application is not a targeted element of rigor for this standard. -

Purpose Students explore parts of a whole that, when combined, create wholes.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students model what is shown in the images using their own manipulatives to deepen their understanding of how parts of a whole make up a whole.

GIP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of using regrouping to add and subtract mixed numbers and are based on possible comments and questions that students may make during the share out.
-What is missing from each part?

- How can you make wholes?

Math is... yindset

- Why is it useful to consider different possible solutions to a problem?

SEE Responsible Decision-Making: Solve Problems

As you begin the Notice \& Wonder routine, encourage students to become efficient problem solvers who can make informed decisions that lead to solutions. Discuss strategies students can use to help them focus on identifying information that is helpful in solving problems. Have students work in pairs to separate this information and information that does not help solve a problem.

Transition to Explore \& Develop

Ask questions that get students thinking about using regrouping to subtract mixed numbers.

Establish Mathematics Goals to Focus Learning

- Let's think about when we need to, and how we can, use regrouping to subtract mixed numbers.

(1) Pose the Problem

When subtracting mixed numbers, it is sometimes necussary to rename a whole as an equivaient fraction.

C. Work Together

Gia and Oren are hoving a lemonade sale. They sell $4 \frac{2}{3}$ quarts the first hour and $3 \frac{1}{2}$ quarts the second hour. How many quarts did they sell in two hours? $8 \frac{1}{6}$ quarts

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore different strategies to subtract mixed numbers that involve regrouping.

Materials: Explain and Show Your Strategies Teaching Resource
Directions: Provide copies of the Explain and Show Your Strategies Teaching Resource. Have students solve the Pose the Problem using two different strategies.

${ }^{51 P}$ Support Productive Struggle

-What strategies have you learned for subtracting mixed numbers?

- Which strategy did you use first? Why did you decide to start with that strategy?
- What happened when you decomposed to subtract? How did you determine the next steps to continue using this strategy?
- What is the same about your two strategies? What is different?

Math is... structure

- How is this regrouping similar to subtracting whole numbers? Students recognize the structure in the number system that allows them to connect regrouping whole numbers when subtracting and regrouping mixed numbers when subtracting.

Activity Debrief: Discuss with students that problems can be solved using any known strategy. Some addition and subtraction strategies may be more efficient that others due to the quantities within the problem.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students solve a subtraction equation involving mixed numbers and regrouping.

EIP Facilitate Meaningful Mathematical Discourse

Q. Have the students estimate the difference. Ask:

- Will you use whole numbers or mixed numbers to estimate the difference? Why?
- If you use mixed numbers, what benchmark fractions will you use? Why?
-Why should you regroup 1 whole into eighths?
- Why are you able to subtract using $1 \frac{9}{8}$ instead of $2 \frac{1}{8}$?

Q Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?
(A. Have students solve the equation $4 \frac{1}{8}-2 \frac{3}{4}=d$ in small groups by writing each mixed number as a fraction greater than 1 . Ask:
- What steps do you need to take to write the mixed numbers as fractions greater than 1 ?
- How does the difference compare to the difference you calculated using regrouping?

Math is... Structure

- How is this regrouping similar to subtracting whole numbers? Students recognize the structure in the number system that allows them to connect regrouping whole numbers when subtracting and regrouping mixed numbers when subtracting.

2. Develop the Math

How can you determine the difference of the lengths shown?

What equation can we

ㅌ.

English Learner Scaffolds

Entering/Emerging

Explain since. Draw a triangle. Say, This is a triangle since it has three sides. Point to the three sides. Then draw a pentagon. Say, This is a pentagon since it has five sides. Point to the five sides. Finally, draw a square and a rectangle. Say, This shape is a square since it has four equal sides. Ask students to point or say the correct shape.

Developing/Expanding

Explain since. Draw a triangle. Say, This is a triangle since it has three sides. Point to the three sides. Then draw a pentagon. Say, This is a pentagon since it has five sides. Point. Draw a square and ask students to complete the following: This shape is a square _ (since) it has four equal sides. Finally, ask students to use since in their own sentence. Provide sentence frames if needed.

Bridging/Reaching

Guide students to the Learn page and have them focus on how since is used in the table. Ask students if they can think of other words that mean the same (because, given that, etc.). Ask students to use since in a sentence of their own. Validate and correct as necessary. Then ask students to think of another way since can be used (to say when something started, e.g., I have gone to school here since the second grade.

12. Error Anelysis Peari solved this equation is Pear's solution
correct? Explain why or why not.

$$
\begin{array}{ll}
7 \frac{5}{5}-4 \frac{2}{3}=? & 7 \frac{5}{5}-4=3 \frac{5}{8} \\
& 3 \frac{5}{2}-\frac{2}{3}=3 \frac{15}{24}-\frac{6}{24}=3 \frac{1}{24}
\end{array}
$$

No. Sample answer: Pearl did not regroup and subtracted 16 from 15 ; the correct answer is $2 \frac{23}{24}$.
11. Andrea walks from her house to the store She then wallas from the store to the park. How many miles has Andrea walleed?

$4 \frac{1}{12}$ miles

12. Extend Your Thinaing Trai picks $4 \frac{2}{3}$ pounds of peaches and Sani picks $2 \frac{1}{2}$ pounds of peeches. They want to pick $20 \frac{3}{4}$ pounds of peaches alfogether. it they both pick the same amount, how many more pounds of peaches should thay pick to reach their goal?
Sample answer: $4 \frac{8}{12}+2 \frac{1}{12}=6 \frac{9}{12}, 20 \frac{9}{12}-6 \frac{9}{12}=14$,
$14 \div 2=7$: Sample answer: Trai and Sani should each pick 7 pounds of peaches.

Reflect

```
When is regrouping ruevessary when adding snd subtiacting
mived numbers?
Answers may vary.
```


Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 1-8 Students may automatically subtract the smaller fraction from the larger fraction without regrouping. Remind students to look at the equation as a whole as they subtract, and to pay attention to the order of the numbers in the subtraction equations.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
9	2	Application
10	3	Conceptual Understanding
11	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- When is regrouping necessary when adding and subtracting mixed numbers?
Ask students to share their reflections with their classmates.

Math is... Mindset

- Why was it useful to consider different possible solutions to a problem? Students reflect on how they practiced responsible decision-making.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can add and subtract mixed numbers with regrouping.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item DOK Skill	Standard		
1	1	Add mixed numbers with regrouping	5.NF.A.1
2	1	Subtract mixed numbers with regrouping	5.NF.A.1
3	2	Subtract mixed numbers with regrouping	5.NF.A.1
4	2	Add mixed numbers with regrouping	5.NF.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4	Additional Practice or any of the \boldsymbol{B} or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the \boldsymbol{B} activities
2 or fewer of 4	Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Reinforce Understanding

Calculation Race

Work with students in pairs. Each student writes a mixed number on a card. When both cards are turned over, students add the mixed numbers and subtract the mixed numbers. Together, students check their work. If students have difficulty, help them to write fractions with like denominators and, if necessary, rewrite mixed numbers by regrouping 1 as an equivalent fraction before subtracting.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Add Unlike Mixed Numbers (Regroup)
- Subtract Mixed Numbers (Regroup)

Differentiation Resource Book, p. 103
Lesson $9-8$ - Reinforce Understanding
Add and Subtract Mixed Numbers with Regrouping

Nome

Add or subtract.

1. $3 \frac{5}{6}+1 \frac{1}{2}=$ \qquad 4. $7 \frac{1}{8}-2 \frac{3}{4}=$ \qquad $5 \frac{2}{6}$ or $5 \frac{1}{3}$
2. $43-1 \frac{1}{2}=$ \qquad 5. $2 \frac{5}{12}+2 \frac{2}{18}=$ \qquad
$2 \frac{11}{14}$
3. $2 \frac{4}{5}+5 \frac{1}{3}-$ \qquad 6. $5 \frac{1}{6}-2 \frac{7}{9}=$ \qquad
$8 \frac{2}{15}$

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 103-104

Lesson 9.8

Additional Practice

Name

Review

You can add and subtract mwed numbers with regrouping
Ken walked $2 \frac{3}{4}$ miles yesterdiry. He wabked $4 \frac{2}{3}$ miles tocay.

How far did Ken walk both days?	How much farther did Ken walk today than yesterday?
To solve. find $2 \frac{3}{4}+4 \frac{2}{3}$.	To solve, find $4 \frac{2}{3}-2 \frac{3}{4}$.
Add the whole numbers $2+4=6$	Wrate the fractions using a common denominator:
Add the fractions:	$4 \frac{6}{12}-2 \frac{9}{12}$
$\frac{3}{4}+\frac{2}{3}=\frac{9}{12}+\frac{8}{12}=$	Regroup I whole as $\frac{12}{2}$
$\frac{17}{12}=1 \frac{5}{12}$	$3 \frac{20}{v}-2 \frac{9}{7}$
Add the whole number and the fiaction: $6+1 \frac{5}{12}=7 \frac{5}{12}$	Subtract the whole mumbers and the fractions: $3 \frac{20}{12}-2 \frac{9}{12}=1 \frac{11}{12}$
Ken walked $7 \frac{5}{1} \frac{5}{2}$ miles	Ken walked i $\frac{11}{12}$ miles farther
	today than yesterdoy.

What is the sum or difference? Show your work. Check students' work.

Unit 9 - Add and Subtract Fractions

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 103-104

```
Solve the problem. Show your work.
6. Moren lives }3\frac{1}{4}\mathrm{ miles trom school. Stormy lives 2 2 school. How much farther awiy trom the sctiool does Maren line then Stomm? \(\frac{9}{20}\) 20 misess
7. Mark hikes \(2 \frac{3}{5}\) kiometers to the scenic overiook. He then nikes \(1 \frac{9}{10}\) kilometers turther to the native centec How many kiometers does Mark hike? \(4 \frac{5}{10}\) or \(4 \frac{1}{2}\) wilameters
8. A length of ribbon is \(4 \frac{2}{9}\) feet long. Mirise cuts a plece of ribbon that is \(1 \frac{5}{6}\) feet long. How long is the remaining piece of ribbon? \(2 \frac{7}{18}\) teet
9. Martin buys \(2 \frac{5}{6}\) pounds of peanuts and \(4 \frac{3}{4}\) pounas of simonds. How many pounds of nits does Martin buy?
```

\qquad

``` pounds
```



``` Activity mot
```



``` Stent hacer box
```


Extend Thinking

Use lt! Application Station
Get Moving Students design a car and measure the distance it travels.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 104

Lesson 98 - Extend Thinking
 Add and Subtract Mixed Numbers with Regrouping

Nome
Find the answer to Problem A. Wrte the answer in the answer column. Then complete Problem 8 io it uses regrouphng and has the same answer as Problem A. The first one has been done for you as an example. Show your work.

Problem A	Amwer	Problem 8
$\begin{aligned} & 5 \frac{1}{8}-2 \frac{5}{6} \\ & 5 \frac{3}{24}-2 \frac{20}{24} \\ & 4 \frac{27}{24}-2 \frac{20}{24} \end{aligned}$	$2 \frac{7}{24}$	$\begin{aligned} & 4 \frac{1}{4}-7 \frac{3}{24} \\ & 4 \frac{6}{24}-7 \frac{7}{24} \end{aligned}$ Since 6 is less than 7 , we wil use regrouping. $3 \frac{19}{24}-1 \frac{23}{24}$
$\begin{aligned} & 3 \frac{2}{9}-1 \frac{2}{3} \\ & 3 \frac{2}{9}-1 \frac{6}{9} \\ & 2 \frac{11}{9}-1 \frac{6}{9} \end{aligned}$	$1 \frac{5}{9}$	$\begin{aligned} & 5 \frac{1}{6}-\square \frac{\square}{18} \\ & 4 \frac{21}{18}-3 \frac{11}{18} \\ & 5 \frac{1}{6}-3 \frac{11}{18} \end{aligned}$
$\begin{aligned} & 4 \frac{2}{3}+3 \frac{3}{4} \\ & 4 \frac{8}{12}+3 \frac{9}{12} \\ & 7 \frac{17}{12} \text { or } 8 \frac{5}{12} \end{aligned}$	$8 \frac{5}{12}$	$\begin{aligned} & 10 \frac{1}{6}-\square \frac{\square}{3} \\ & 9 \frac{14}{12}-1 \frac{9}{12} \\ & 10 \frac{1}{6}-1 \frac{3}{4} \end{aligned}$
$\begin{aligned} & 7 \frac{1}{2}-2 \frac{5}{7} \\ & 7 \frac{7}{14}-2 \frac{12}{14} \\ & 6 \frac{21}{14}-2 \frac{12}{14} \end{aligned}$	$4 \frac{9}{14}$	$\begin{aligned} & 1 \frac{5}{21}+\square \frac{\square}{42} \\ & 1 \frac{10}{42}+3 \frac{17}{42} \\ & 1 \frac{5}{21}+3 \frac{17}{42} \end{aligned}$

[^4]
Solve Problems Involving Fractions and Mixed Numbers

Learning Target

- I can solve word problems involving fractions.

Standards \bigcirc Major \triangle supporting O Additional

Content

\checkmark 5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.
\checkmark 5.NF.A. 2 Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.

Math Practices and Processes

MPP Use appropriate tools strategically.

Focus

Content Objective

- Students solve word problems involving fractions.

Language Objectives

- Students explain how to solve word problems with fractions using can, should, reasonable, and estimate.
- To support sense-making, ELs participate in MLR3: Three Reads.

SEL Objective

- Students identify a problem and execute the steps necessary to solve the problem.

Next

- Students multiply fractions strategies to solve word problems that involve addition or subtraction of mixed numbers having unlike denominators.
(Unit 10).

Application

- Students add and subtract mixed numbers involving unlike denominators to solve problems with real-world contexts.

Vocabulary

Math Terms
equivalent
Academic Terms fractions reflect mixed number

Materials

The materials may be for any part of the lesson.

- fraction circles
- fraction tiles
- number cubes
- Problem-Solving Tool Teaching Resource

Number Routine Would You Rather?
 5-7 min

Build Fluency Students build number sense and understanding of fractions as they compare the sums and differences of fractions.

These prompts encourage students to talk about their reasoning:

- What strategy did you use to make your choice?
- How did you compare the amounts?
- Did you use the same strategy for addition expressions as for subtraction expressions? Explain.

Purpose Students explore how they can solve problems by knowing how mixed numbers relate to one another.

Notice \& Wonder

- What question could you ask?

Teaching Tip You may want to have students discuss a real-world scenario that the image represents as a class before discussing the questions they can ask about it.

EIP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of choosing and using the strategies they know for adding and subtracting mixed numbers having unlike denominators, and are based on possible comments and questions that students may make during the share out.

- What kinds of numbers does answering the question you asked involve? How do you know?
- What operation does answering the question you asked involve? How do you know?
- What kind of denominators does answering the question you asked involve? How do you know?

Math is... Mindset

- How can you use your abilities and skills to be successful today?

SE

Self-Awareness: Self-Efficacy

Help students develop skills that would help them become more likely to persevere to complete a challenging task. As students begin the Notice \& Wonder routine, encourage them to first identify the problem, then think critically about what they will do to solve the problem. As you come together to collaboratively discuss the Notice \& Wonder routine, you can invite students to share how their self-efficacy helped them if they ran into roadblocks when they solved the routine.

Transition to Explore \& Develop

Ask students questions that get them thinking about choosing and using known strategies to solve real-world problems that involve fractions and mixed numbers.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can choose and use the strategies we know to solve real-world problems that involve addition and subtraction of fractions and mixed numbers.

(1) Pose the Problem

Learn

Myra runs each day and records the distances. On Thursday, she tan $1 \frac{5}{6}$ more miles than on Mondry. On Friday, she ran $1 \frac{1}{2}$ miles less than on Tuesday.
How many miles did Myra run on
Thursday and Friday?
You can write equations to solve the problem.

Day	Miles
Monday	$2 \frac{2}{3}$
Tuesday	$4 \frac{3}{3}$
Wednesdiy	$5 \frac{6}{8}$
Thursday	
Friday	

You can solve probiems involving adding and subtracting mixed numbers using strategles you know.

(A) Work Together

Yin was at the park for 5 hours. She speme $2 \frac{1}{4}$ hours playing soccer. How long did ste spend at the park not playing soccer? Justly your response: $\mathbf{2} \frac{3}{4}$ hours; Sample answer: I decomposed 5 to 4 and $\frac{4}{4}$. Then, 1 subtracted the whole numbers and the fractions. $4-2=2$, and $\frac{4}{4}-\frac{1}{4}=\frac{3}{4}$

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore known strategies to solve a real-world word problem involving mixed numbers.

Materials: Problem-Solving Tool Teaching Resource
Directions: Provide copies of the Problem-Solving Tool Teaching Resource. Have students work together to solve the Pose the Problem.

ETP Support Productive Struggle

- How do you know which operation to use?
-What equations can you write?
-What are some strategies you know for adding mixed numbers? Subtracting mixed numbers?
- How does your solution method compare to others?

Math is... Choosing Tools

- Are your calculated answers reasonable? How do you know? Students detect possible errors by strategically using estimation and other mathematical knowledge.

Activity Debrief: Have students share their solutions and strategies for solving the problem. Encourage students to find similarities and differences among the solution methods.

A PDF of the Teaching Resource is in the Digital Teacher Center.

EL
 English Learner Scaffolds

Entering/Emerging

Explain spend [time] doing something. Use a timer while you do a task, such as coloring. Stop the timer and say, I spent [45 seconds] coloring. Repeat with another task. Then write your name on the board. Have a student time you. When you're done, ask students, How long did I spend writing my name? For students who need more help, prompt students to refer to the timer.

Developing/Expanding

Explain spend [time] doing something. Use a timer while you do a task, such as coloring. Stop the timer and say, I spent [45 seconds] coloring. Repeat with another task. Then write your name on the board. Have a student time you. Ask students to complete the sentence: You (spent) 20 seconds \qquad your name. Then ask students to provide their own demonstration using spent time doing something. Provide sentence frames if needed.

Guided Exploration

Students solve a word problem involving fractions and mixed numbers by choosing and using known strategies.

EIP Facilitate Meaningful Mathematical Discourse
 - Think About It: What is an estimate for the distance Maya ran on Thursday?
 - Think About It: What is an estimate for the distance Maya ran on Friday?

Have the students solve the equation $4 \frac{3}{5}-1 \frac{1}{2}=f$ by decomposing. Ask:

- How can you decompose the mixed numbers?
- How can you find like denominators and make equivalent fractions?
- Do you need to regroup any wholes as fractions to solve?

Math is... Choosing Tools

- Are your calculated answers reasonable? How do you know? Students detect possible errors by strategically using estimation and other mathematical knowledge.

Bridging/Reaching

Check student understanding of spend [time] doing something by guiding them to the Learn page and having them focus on the Work Together problem. Ask them to use spent [time] doing something in their own sentence, demonstrating with a timer. Then ask students to talk about how long they usually spend working on certain tasks (i.e. homework, cleaning).

7. At the beginning of sumunec. Rick was $54 \frac{5}{6}$ inches tall. He grew $1 \frac{1}{4}$ incturs over the summer. How tall is he now?
$56 \frac{1}{12}$ inches
8. Andy walks his dog for $2 \frac{2}{3}$ miles on Soturcay. On Sunday, he waks his dog for $3 \frac{1}{2}$ miles. How marly mies does he walk hes dog on Saturdsy and Sundry?
$6 \frac{1}{6}$ miles
9. STEM Connection Poppy is helping to clean up a park. The trash bagg she is using can hoid up to 15 pounds. There sre $10 \frac{5}{8}$ pounds in the bag now How many more pounds of wach can Ppppy colect wth the same bag? $4 \frac{3}{8}$ pounds

10. Extend Your Thinking Wite a word problem that
involves adotion or subtraction of fractions and
enced numbers to sove. The solution to the
problem should equal a whole number. Answers may vary.

(O) Reflect

How sloes knowing how to add and subtract mixed numbers and tractions help you solve problems?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

IT Common Error: Exercise 4 Students may be confused by this problem as one of the numbers is a fraction instead of a mixed number. Remind students that they can use the same strategies they have learned when subtracting a fraction from a mixed number

Item Analysis

Item	DOK	Rigor
$1-9$	2	Application
10	3	Conceptual Understanding

Reflect

Students complete the Reflect question

- How does knowing how to add and subtract mixed numbers and fractions help you solve problems?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you use your abilities and skills to be successful today? Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Target of the lesson.

- I can solve word problems involving fractions.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pOK Skill	Standard		
1	2	Solve problems involving mixed numbers	5.NF.A.2
2	2	Solve problems involving mixed numbers	5.NF.A.2
3	2	Solve problems involving mixed numbers	5.NF.A.2
4	2	Solve problems involving mixed numbers	5.NF.A.2

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4
Additional Practice or any of the (3) or activities
3 of 4
2 or fewer of 4 Take Another Look or any of the ${ }^{3}$ activities Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 9.9

Exit Ticket

Name

1. Lucian's chicken pen is $6 \frac{7}{3}$ yards long. He makes it $1 \frac{5}{12}$ yards longec. How long is the chicken pen now?
A. $7 \frac{1}{12}$ yands
a. $7 \frac{7}{15}$ yands
C. $8 \frac{1}{2}$ yards
D. $8 \frac{7}{15}$ yards
2. Jadin has a stack of books that is $10 \frac{1}{3}$ inches tal. He removes some books to take bock to the library. Now his stack is $3 \frac{5}{8}$ inches tall. How many inches of books did Jadin remove from the stack?
A. $6 \frac{3}{8}$ inches
(B.) $6 \frac{17}{24}$ inches
c. $7 \frac{1}{\frac{1}{8}}$ inches
D. $7 \frac{7}{24}$ inches
3. LaDonna has 8 meters of string. She uses $3 \frac{7}{10}$ meters of string for her kte How many meters of string does LaDonna have lett? $4 \frac{3}{10}$ meters
4. Allson $\operatorname{ran} 8 \frac{5}{8}$ miles last week. This week she $\operatorname{ran} 7 \frac{2}{3}$ miles. How many miles did Allison tun during the last two weeks?
$16 \frac{7}{24}$ miles

Reflect On Your Learning

Reinforce Understanding

Is the Difference the Same?

Work with students in pairs. Provide fraction tiles and circles. One partner rolls three number cubes. The other partner uses the numbers rolled to make a mixed number with: a 1 -digit whole number, numerator, and denominator. Students add that number to or subtract from $7 \frac{1}{8}$ Remind students that they may need to regroup the mixed number before subtracting.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Add \& Subtract Fractions (Model)
- Add \& Subtract Fractions (Equations)

Differentiation Resource Book, p. 105
Lesson $9-9 \cdot$ Reintorce Undentanding
Solve Problems Involving
Mixed Numbers
Nome

Review

Probiems involving mixed numbers can be solved uting known strategies for addition and subtraction of newed numbers.

1. Sheriden and Natalie are shucking com. Sherldan shucks $6 \frac{5}{8}$ pounds of cam. Natelie shucks $2 \frac{1}{4}$ pounds of com less then Shoniden. How many pounds of com dio Notalio enuck? $3 \frac{7}{8}$ pounds of corn
2. Corben nuns $4 \frac{1}{2}$ miles on Monday, $6 \frac{3}{3}$ miles on Tuesday, and $5 \frac{4}{5}$ mies on Wodnordoy. How nany y totim mues did Corben run $16 \frac{6}{10}$ or $16 \frac{3}{5}$ miles
3. Rico is basing bread. He has $7 \frac{7}{9}$ cues at fiocia and he uses $3 \frac{5}{6}$ cups. How many cups of four does pe have left? $3 \frac{17}{18}$ cups of flour

Build Proficiency

Practice lt! Game Station
Fraction and Mixed Number Addition Race Students practice adding fractions and mixed numbers.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 105-106

Lesson 9-9
 Additional Practice

Name

Review

You can solve problems by adding and subtricting mixed numbers with regrouping.
Carla bought $2 \frac{7}{8}$ pounds of cashews and $4 \frac{1}{6}$ pounds of ralsins for a mixare.

How many pounds it Carla's mbature?	How many more pouinds of reisins tid Carla buy than cashows?
To solve, find $2 \frac{7}{8}+4 \frac{1}{6}$	To solve, find $4 \frac{1}{6}-2 \frac{7}{\frac{7}{8}}$
Write the fractions using a common denominator: $2 \frac{7}{8}+4 \frac{1}{6}=2 \frac{21}{24}+4 \frac{4}{24}$	Write the fractions using a commen denominator: $4 \frac{4}{24}-2 \frac{21}{24}$
Add the moxed numbers $2 \frac{21}{24}+4 \frac{4}{24}=6 \frac{25}{24}$	Regroup t whole as $\frac{24}{24}$ $3 \frac{28}{24}-2 \frac{21}{24}$
Reproup the taction $6+1 \frac{1}{24}=7 \frac{1}{24}$	Subtract the moxed mimbers: $3 \frac{28}{24}-2 \frac{21}{24}=1 \frac{7}{24}$
Carta) mature weighed $7 \frac{1}{24}$ pounds.	Carta bought $1 \frac{7}{24}$ pounds more raisins.

Solve the problem. Show your work. Check students' work.

1. Allison buys $4 \frac{1}{3}$ pounds of tomatoes: She uses $2 \frac{4}{5}$ pounds of tomatoes to make a salad. How mary pounds of tomatoes does Allison have left? $1 \frac{8}{15}$ pounds

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division of multi-digit numbers.

Spiral Review Practice

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 105-106

Extend Thinking

Use lt! Application Station
Create and Solve Students create a multi-step problem that adds and subtracts mixed numbers to solve. Then they use a digital tool to present the problem.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 106

Lesson 9.9 - Extond Thinking Solve Problems Involving Mixed Numbers

Name
Three friends are racing to see who can shuck the most corn in 20 minutes. How many pounds of corn did each friend shuck? Who won the shucking race? Show your work.

1. David shucked $4 \frac{2}{4}$ pounds of com the fratt 10 minutes and $5 \frac{4}{5}$ pounds the second 10 minutes. How many pounds of corn did David shuck in 20 minutes?
$10 \frac{11}{20}$ pounds of corn;
$4 \frac{15}{20}+5 \frac{16}{20}=9 \frac{31}{20}=10 \frac{11}{20}$
2. Heather shucked $6 \frac{5}{\text { i }}$ peuncs of con the first to minutes. She shucked $1 \frac{5}{6}$ pounds less the second 10 mithutes. How mary pounds of corn did Heather stuck in 20 minutes?
$11 \frac{5}{12}$ pounds of corn;
$6 \frac{5}{8}+6 \frac{5}{8}-1 \frac{5}{6}=12 \frac{30}{24}-1 \frac{20}{24}=11 \frac{10}{24}$
3. Kristine shucked shucked $2 \frac{5}{6}$ pounds of com every 5 minutes. How mery pounds of com did Kristine shuck in 20 minutns?
$11 \frac{\pi}{3}$ pounds of corn;
$2 \frac{5}{6}+2 \frac{5}{6}+2 \frac{5}{6}+2 \frac{5}{6}=8 \frac{20}{6}=11 \frac{2}{6}$
4. Who won the shutiong compettion? How mary pounds of com did the champion win by?
Heather won by $\frac{1}{12}$ pound.
$11 \frac{5}{12}-11 \frac{4}{12}=\frac{1}{12}$

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

Vocabulary Review

Item Analysis

Item	Lesson
1	$9-6$
2	$9-2$
3	$9-1$
4	$9-1$
5	$9-2$
6	$9-2$

Review

Item Analysis

Item	DOK	Lesson	Standard
7	1	$9-5$	5.NF.A.1
8	1	$9-5$	5.NF.A.1
9	1	$9-5$	5.NF.A.1
10	1	$9-1$	5.NF.A.2
11	2	$9-9$	5.NF.A.2
12	3	$9-1$	5.NF.A.2
13	2	$9-9$	5.NF.A.2
14	1	$9-3$	5.NF.A.1
15	1	$9-3$	5.NF.A.1
16	1	$9-3$	5.NF.A.1
17	2	$9-9$	5.NF.A.2
18	2	$9-9$	5.NF.A.2

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)

Item	DOK	Lesson	Standard
19	1	$9-4$	5.NF.A.1
20	1	$9-4$	5.NF.A.1
21	1	$9-2$	5.NF.A.1
22	2	$9-9$	5.NF.A.2
23	1	$9-2$	5.NF.A.1
24	1	$9-1$	5.NF.A.2
25	1	$9-6$	5.NF.A.1
26	1	$9-7$	5.NF.A.1
27	1	$9-6$	5.NF.A.1
28	1	$9-7$	5.NF.A.1
29	2	$9-9$	5.NF.A.2
30	2	$9-8$	5.NF.A.1

Performance Task

Standards: 5.NF.A.1, 5.NF.A. 2
Rubric (4 points)

Part A (DOK 3) $\mathbf{- 2}$ points

2 POINTS Student's work reflects proficiency with adding mixed numbers.
1 POINT Student's work reflects developing proficiency with adding mixed numbers.
0 POINTS Student's work shows weak proficiency with adding mixed numbers.

Part B (DOK 3) - $\mathbf{2}$ points
2 POINTS Student's work reflects proficiency with adding and subtracting mixed numbers.

1 POINT Student's work reflects developing proficiency with adding and subtracting mixed numbers.

0 POINTS Student's work shows weak proficiency with adding and subtracting mixed numbers.

Reflect

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.

Performance Task

Park fangers maintain trails by planting trees to stop prosion. Maya is planting sapings. or young trees, that are native to the park in order to stop erosion of the trail. She also will plant a row of shrubs.
Part At As Mays. moved her cart she quessed that the three sapongs had a total woight between 10 and 11 pouncs. What is the weight of sach of the saplings?
Sample answer: $3 \frac{1}{5}$ pounds, $2 \frac{3}{4}$ pounds, and $4 \frac{7}{10}$ pounds $=10 \frac{13}{20}$ pounds

Part lit The row of shrubs will be 20 feet long. Maya planted three
sets of shnubs. One shub needsto be $7 \frac{1}{2}$ feet from the other
shnibs. How can you use fractions to show how tar each shrub is from each other?
Sample answer: The shrubs are planted $7 \frac{1}{2}$ feet, $7 \frac{5}{6}$ feet.
and $4 \frac{2}{3}$ feet from each other.

Reflect

Describe a maslworld sthuntion in which you might need to add or subtract mioked numbers.
Answers may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice dividing multiples of 10 .

Fluency Progression

Unit	Skill	Standard
1	Use Partial Sums to Add	4. NBT.B.4
2	Decompose by Place Value to Subtract	4.NBT.B.4
3	Use an Algorithm to Add	4. NBT.B.4
4	Use an Algorithm to Subtract	4.NBT.B.4
5	Choose a Strategy to Add	4. NBT.B.4
6	Choose a Strategy to Subtract	4.NBT.B.4
7	Multiply by Multiples of 10	5.NBT.B.5
8	Multiply by Multiples of 100	5.NBT.B.5
9	Divide Multiples of 10	5.NBT.B.6
10	Divide Multiples of 100	5.NBT.B.6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B.5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B.5
13	Choose a Strategy to Multiply Choose a Strategy to Multiply	5.NBT.B.5
14		5.NBT.B.5

Fluency Expectations

Grade 4

- Add and subtract within $1,000,000$.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Valentina's Celebration

Students draw on their understanding of addition and subtraction of fractions and mixed numbers with unlike denominators. Use the rubric shown to evaluate students' work.

Standards: 5.NF.A.1, 5.NF.A. 2
Rubric (8 points)

Parts A and B (DOK 2) - 4 points

4 POINTS Student's work shows proficiency with adding/subtracting mixed numbers with unlike denominators. The student's answers and work are correct.
2 POINTS Student's work shows developing proficiency with adding/subtracting mixed numbers with unlike denominators. The student's answers or work is incorrect.
0 POINTS Student's work shows weak proficiency with adding/subtracting mixed numbers with unlike denominators. The student's answers and work are incorrect.

Part C (DOK 2) - 2 points

2 POINTS Student's work shows proficiency with adding mixed numbers with unlike denominators. The student's response and explanation are reasonable.
1 POINT Student's work shows developing proficiency with adding mixed numbers with unlike denominators. The student's response or explanation is not reasonable.
0 POINTS Student's work shows weak proficiency with adding mixed numbers with unlike denominators. The student's response and explanation are not reasonable.

Part D (DOK 2) - 2 points

2 POINTS Student's work shows proficiency with subtracting mixed numbers from whole numbers. The student's answer and work are correct.
1 POINT Student's work shows developing proficiency with subtracting mixed numbers from whole numbers. The student's answer or work is incorrect.
0 POINTS Student's work shows weak proficiency with subtracting mixed numbers from whole numbers. The student's answer and work are incorrect.

Unit 9

Performance Task

```
Name
```


Valentina's Celebration!

Valentina has seiveral things to do before her party. Part A
Valentina orives $4^{\frac{2}{3}}$ miles to the bokery to pick up muftins. Valentina then drives $5 \frac{1}{2}$ miles to the grocery stone to pick up some snacks for the party. How many miles did Volentina drive? Show two different ways to add.
$10 \frac{1}{6}$ miles; Sample Answer:
$4 \frac{2}{3}+5 \frac{1}{2}=\frac{14}{3}+\frac{11}{2}=\frac{28}{6}+\frac{33}{6}=\frac{61}{6}=10 \frac{1}{6}$
$4 \frac{2}{3}+5 \frac{1}{2}=4 \frac{4}{6}+5 \frac{3}{6}=9 \frac{7}{6}=10 \frac{1}{6}$

Part 8
Volentina still has 3 more places to go before the parfy.

Locmion	Distance (min)
The mail for tavors	$4 \frac{5}{5}$
The restaurant to pick up tood	$3 \frac{1}{12}$
Home to decorate	$8 \frac{7}{12}$

The restaurant $\operatorname{s} 1 \frac{3}{4}$ miles closer than the mall from where she is. Home is $5 \frac{1}{2}$ miles farther than the restaurart. Fill in the distances to the restaurant and to home. Show your work
Restaurant: $3 \frac{1}{12}$ miles; Home: $8 \frac{7}{12}$ miles; Sample answer:
$4 \frac{5}{6}-1 \frac{3}{4}=4 \frac{10}{12}-1 \frac{9}{12}=3 \frac{1}{12} \cdot 3 \frac{1}{12}+5 \frac{1}{2}=3 \frac{1}{12}+5 \frac{6}{12}=8 \frac{7}{12}$

Part C

Volentina makes punch to serve at her party. Duting the first nout
the guests drink $4 \frac{1}{3}$ quarts of punch and $3 \frac{1}{2}$ quarts the second hour To figure out how much total punch the guests have drank so far. Valentina uses the following strategles

$4 \frac{1}{3}+3 \frac{1}{2}=p$	$4 \frac{1}{3}+3 \frac{1}{2}=p$
$\frac{13}{3}+\frac{7}{2}=p$	$4 \frac{1}{3}+3=7 \frac{1}{3}$
$\frac{39}{6}+\frac{21}{6}=p$	$7 \frac{1}{3}+\frac{1}{2}=p$
$69=p$	$7 \frac{2}{6}+\frac{3}{6}=p$
$10=p$	$7 \frac{5}{6}=p$

How do you respond to her?
Sample Answer: The work on the left is incorrect. She mutliplied 13 times 3 instead of 13 times 2 . The work on the right is correct.

How is adding numbers with unther denominators similar to
subtracting fractions with unlike denominators? Explain
Sample Answer: The process is exactly the same. The denominators must be the same before adding or subtracting.

Part D

Duting the 3 -hour party. Volentina and her friends spend $1 \frac{1}{4}$ hours ploying basketbat. How long did they spend not playing besketball? Snow your work
$1 \frac{3}{4}$ hours; Somple Answer: $3-1 \frac{1}{4}=2 \frac{4}{4}-1 \frac{1}{4}=1 \frac{3}{4}$

Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

| Item POK Lesson Guided Support |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Intervention Lesson |\quad Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.

Unit 9

Unit Assessment, Form A

Name

1. Which sum is greater than 17
A. $\frac{1}{5}+\frac{1}{6}$
a. $\frac{1}{2}+\frac{3}{5}$
c. $\frac{5}{12}+\frac{3}{8}$
(a) $\frac{3}{5}+\frac{7}{10}$
2. Wrikt is equivalent to $\frac{1}{2}+\frac{1}{3}$?
A. $\frac{1}{6}+\frac{1}{6}$
e. $\frac{1}{5}+\frac{1}{5}$
C. $\frac{3}{5}+\frac{3}{5}$
(D) $\frac{3}{6}+\frac{2}{6}$
3. Graypon maes $\frac{1}{2}$ pound of strawberses wem $\frac{1}{4}$ pound of Dberemies Whin E the total weigre of the beries Graysan has?
A. $\frac{2}{6}$ pound
a. $\frac{3}{3}$ pound
c. $\frac{3}{6}$ pound
(a.) $\frac{3}{4}$ pound
4. Which equation is shown by the fraction tiles?
$+\frac{1}{3}+\frac{1}{2}$
t
A. $\frac{1}{2}-\frac{1}{5}=\frac{1}{10}$
B. $\frac{3}{3}-\frac{1}{2}=\frac{1}{3}$
C. $\frac{3}{5}-\frac{1}{2}=\frac{1}{5}$
(D) $\frac{3}{5}-\frac{1}{2}=\frac{1}{6}$
5. Nathaniel and Rachel are reading a book for a report. Nathaniel reads $\frac{3}{8}$ of the book. Rachel reads $\frac{1}{2}$ of the book. How much more of the book does Rnchel read than Nathanien?
A. $\frac{1}{8}$ of the book
B. $\frac{1}{4}$ of the book
c. $\frac{3}{6}$ ot the pook
D. $\frac{7}{8}$ of the book
6. Elrabeth walke $1 \frac{1}{4}$ miles to her fiend's house. Then they walk $1 \frac{7}{10}$ miles to get to the park. How far does Elizabeth wak in all?
A. $2 \frac{1}{20}$ mies
B. $2 \frac{8}{20}$ mles
C. $2 \frac{8}{4}$ miles
(D.) $2 \frac{79}{20}$ miles
7. Maja has $2 \frac{4}{5}$ yards of ribbon She uses $1 \frac{3}{4}$ yard of the ribbon to decorate her scrapbook. How much ribbon does Maja have leff?
A. $\frac{18}{20}$ yard
(B.) $\frac{1}{20}$ yards
c. $1 \frac{1}{3}$ yards
D. $2 \frac{11}{20}$ yards
a. What is the difference?

3解 $-1 \frac{3}{5}=$?
A. $1 \frac{1}{10}$ cups
(B.) $\frac{7}{55}$ cups
C. $2 \frac{3}{0}$ cups
D. 2를 cups
9. Cecily read for $\frac{\pi}{2}$ of an hour yesterday and $\frac{7}{8}$ of an hour today. For about how long dia Ceclly read in the twi days?
A. Less than thour
B. Eetween 1 hour and $1 \frac{1}{2}$ bours
C. Between $1 \frac{1}{2}$ hours and 2 hours
D. More tian 2 hours

Asisument Rnswar Bock

Unit 9

Unit Assessment, Form A (continued)
Name
10. To find $\frac{5}{8}+\frac{5}{6}$, which number may be used as a common denominator?
A. 8
B. 14
C. 24
D. 36
11. Bradiey uses $1 \frac{2}{3}$ cups of chopped nuts and $2 \frac{1}{4}$ cups of fresh berries in a granola mix. How many cups of chopped nuts and fresth berries does Bradtey use in att?
A. $3 \frac{1}{4}$ cups
e. 35^{3} cups
C. $3 \frac{7}{2}$ cups
D. $4 \frac{1}{12}$ cups
12. Cynthia pracices the plano for $2 \frac{3}{8}$ hours on Filiday and for ${ }_{3} \frac{1}{4}$ hours on Saturdig. How much langer does Cynthia pracilice the piano on Seturdey than on Friday?
$\frac{7}{8}$ hour
13. Jackie's thermos contains $\frac{1}{12}$ cup of saup. After a walk, she eats $\frac{5}{8}$ cup of the soup. Which best describes how truch soup is lett in the thermos?
A. almost none
(B.) about $\frac{1}{2}$ cup
C. about 1 cup
D. about $1 \frac{1}{2}$ cups
14. Don jumped a distance of $7 \frac{1}{3}$ teet. His younger brother jumped a dstance of $4 \frac{1}{2}$ feet and then jumped $3 \frac{\pi}{12}$ feet Who jumped farther? How much farther? Explsin how you found your answer Don's younger brother: $1 \frac{1}{12}$ feet: Sample answer: I added the lengths of the brother's two jumps: $4 \frac{1}{2}+3 \frac{11}{12}=8 \frac{5}{12}$. Since $8 \frac{5}{12}$ is greater than $7 \frac{1}{3}$, Don's brother jumped farther. To find how much farther, I subtracted $7 \frac{1}{3}$ from $8 \frac{5}{12}$ to get $1 \frac{1}{12}$.

Form B

unt 9

Unit Assessment, Form B

```
4.monvenmanty
```



```
2. mman s rosmern wi i + ! !
    A i+i) (c) i + + + 
    ci+i a 京+\frac{1}{2}
```


c. § ${ }^{\text {He }}$ (0)

$t+\mid+1+$
(A) $i-\frac{1}{2}-\frac{1}{6} \quad$ a $\frac{1}{2}-\frac{1}{2}-\frac{1}{2}$
c. $\frac{1}{2}-\frac{1}{2}$ D. $\frac{1}{2}-\frac{1}{2}=\frac{1}{6}$
tememitention 0

a. Wir sivedtiserel
12-2! -7
(4) $\frac{1}{2}$ nown 1 pownd
c. 1] inum
a. 2 poand

A. ims narthos
(C) antem t bour exal? hove
c. Btrmen $1 \frac{1}{1}$ noun und 2 nown
a nuermanz hoon

 Hows en Selidiy, Hew mich Groer does Catherve posito
? kisen licurtey man za Fidiey.
$\frac{7}{8}$ hour

 Hfer fomm
A. thontrose
c. ment 100
(c) whatide
C. seart faes

PACING: 13 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE	SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
Unit Opener Ienires Folding Fractions on a Strip Students explore how much is represented when folding a strip.				
10-1	Represent Multiplication of a Students use a representation to Students discuss using representations Whole Number by a Fraction multiply a whole number by a fraction. to multiply a whole number by a fraction make using other ways and different ways.			Students identify personal traits that them good students, peers, and math learners.
10-2	Multiply a Whole Number a Fraction	Students multiply a whole number by a fraction.	Students explain multiplying a whole number by a fraction using the verbs notice and apply, and the phrase make ca a shortcut.	Students demonstrate thoughtful reflection through identifying the auses of challenges and successes while completing a mathematical task.
Math Probe Which is Greater? Students identify the quantity that is greater.				
10-3	Represent Multiplication of a Students use a representation to Fraction by a Fraction multiply a fraction by a fraction.		Students explain how to represent multiplication of a fraction by a fraction using the verbs partition and show and the nouns patterns and shortcuts.	Students offer constructive feedback to the mathematical ideas posed byothers.
10-4	Multiply a Fraction by a Fraction	Students multiply a fraction by a fraction by multiplying the numerators and multiplying the denominators.	Students talk about multiplying a fraction by a fraction by multiplying the numerators and denominators using relate.	Students analyze the components of a problem to make informed decisions when engaging in mathematical practices.
10-5	Determine the Area of Rectangles with Fractional Side Lengths	Students find the area of a rectangle with fractional side lengths by tiling. Students find the area of a rectangle with fractional side lengths by multiplying the side lengths.	Students explain how to find the area of Students discuss how a a rectangle with fractional side lengths mathematical rule or routine can using the verb tile. help develop mathematical skills and knowledge.	
10-6	Represent Multiplication of Mixed Numbers	Students use an area model to represent Students talk about using an area multiplication of mixed numbers. model to represent multiplication of Students find partial products using an mixed numbers using the terms similar perspe area model. to and different from.		Students engage in respectful discourse with peers about various ectives for approaching a mathematical challenge.
10-7	Multiply Mixed Numbers	Students use partial products to multiply mixed numbers. Students write mixed numbers as fractions to find the product.	Students discuss multiplying mixed numbers using the verb find.	Students exchange ideas for completing a mathematical task with a peer and reflect on the value of their similarities and differences.
10-8	Multiplication as Scaling	Students explain how the size of the factors impacts the size of the product without performing the multiplication.	Students explain why the product of a given number and a fraction greater than 1 results in a product greater than the given number.	Students discover and discuss personal interests related to mathematics and share these interests with peers.
10-9	Solve Word Problems Involving Fractions	Students solve word problems involving fractions.	Students talk about solving word problems involving fractions using the verb determine.	Students develop and execute a plan for mathematical problem solving.

Unit Review
 Fluency Practice

Performance Task
Unit Assessment

	Math Terms				
10-1	fraction model multiplication partition	reflect suggest	- counters - fraction circles - fraction tiles	Conceptual Understanding, Fluency	5.NF.B.4, 5.NF.B.4.a
10-2	denominator numerator	citation complex	- fraction circles - fraction tiles	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.4, 5.NF.B.4.a
10-3	fraction model multiplication	procedure speculate	- fraction circles - fraction tiles - grid paper	Conceptual Understanding, Fluency	5.NF.B.4, 5.NF.B.4.a
10-4	denominator numerator	arguably speculate	- grid paper - index cards	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.4, 5.NF.B.4.a
10-5	area square unit	expand reflect	- blank spinners - grid paper - rulers	Conceptual Understanding, Fluency	5.NF.B.4.b
10-6	area model decompose mixed number partial products	accurate establish	- blank spinners - fraction tiles - grid paper	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.4, 5.NF.B.4.a
10-7	decompose partial products	accurate transition	- grid paper	Conceptual Understanding, Fluency	5.NF.B.4, 5.NF.B.4.a
10-8	scaling	complex infer	- index cards	Conceptual Understanding	5.NF.B.5.a, 5.NF.B.5.b
10-9	equation unknown variable	assert reflect	- grid paper - Problem-Solving Tool Teaching Resource	Application	5.NF.B.6

Unit Overview

Focus

Multiplying Fractions and Multiplication as Scaling

In this unit, students review and build on their work from Grade 4, when they multiplied fractions and mixed numbers by whole numbers using models. That work is extended to give students a generalized understanding of multiplication with whole numbers, fractions, and mixed numbers in any combination.

Throughout the unit, students continue the practice of estimating to check the reasonableness of answers. They use tools such as drawings, fraction tiles, and area models to make connections to multiplication of whole numbers and to make sense of what it means to multiply fractions. Students use that understanding to develop efficient strategies.

To start, students build their understanding of multiplying a fraction by a whole number and develop two processes for approaching the concept.

Scaling is essentially the resizing of a number. Understanding this concept enables students to reason about the size of a product without having to multiply. Multiplying a number by a factor greater than 1 generates a product that is greater than the number, and multiplying a number by a factor less than 1 generates a product that is less than the number. Multiplying two (positive) fractions that are bothless than 1 generates a product less than either of the two factors. The idea that it is possible for a product to be less than one or both factors is a difficult concept.

Coherence

What Students Have Learned

- Students applied and extended previous understandings of multiplication to multiply a fraction by a whole number. (Grade 4)
- Students represented a multiple of $\frac{a}{b}$ as a multiple of $\frac{1}{b}$, and used this understanding to multiply a fraction by a whole number. In general, $n \times\left(\frac{a}{b}\right)=\frac{(n \times a)}{b}$. (Grade 4)
- Students solved word problems involving multiplication of a fraction by a whole number. (Grade 4)

What Students Are Learning

- Students multiply a fraction by a whole number or another fraction.
- Students find the area of a rectangle with fractional side lengths. Students compare the size of the product to the size of a factor based on the size of the other factor.

What Students Will Learn

Students interpret and compute quotients of fractions and solve word problems involving division of fractions by fractions. (Grade 6) - Students solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- using representations for multiplying fractions and whole numbers;
- using representations for multiplying fractions and fractions;
- using representations for multiplying mixed numbers;
- how the size of one factor impacts the size of the product relative to the other factor.

Procedural Skill \& Fluency

Students build proficiency with

- multiplying fractions and whole numbers;
- multiplying fractions and fractions;
- multiplying mixed numbers;
- using area models and partial products to multiply fractions and mixed numbers.

Application

Students apply their knowledge of

- interpreting multiplication with fractions and mixed numbers in real-world contexts;
- multiplication strategies to solve and write fraction and mixed number multiplication problems with real-world contexts.

Effective Teaching Practices

Use and Connect Mathematical Representations

Mathematics is by nature an abstract subject, so to teach, learn, or discuss it, we depend on representations to make it understandable. A representation can be visual, physical, contextual, verbal, or symbolic. A visual representation can be created individually or in small groups, and because of its recorded nature, it can then be easily shared among groups or with the whole class for discussion. These visuals often come from the use of hands-on learning materials as part of the Concrete-Representational-Abstract (C-R-A) methodology. This instructional approach involves frequent opportunities for students to create and sketch their physical setups and other graphic constructions on the way toward understanding and mastering the related symbolic manipulations.

Students will have a deep understanding of a concept when they can switch and make connections between different perspectives.

For example, to represent multiplication with fractions and mixed numbers, students will use fraction tiles, area models, and expressions and equations, and they will generate and explain problem situations in real-world contexts. As representations are suggested, used, and encountered, spend some time having students discuss them. For example-

- Have them identify representations that possess similar characteristics, such as number lines, fraction tiles, and fraction models, or arrays and area models, and have them describe the similar characteristics and how they are useful.
- Have them create a symbolic representation when given a visual and vice versa-for example, have them write an equation to represent the decomposition of a product into partial products given the area model or draw the area model given the equation.

Math Practices and Processes

Reason Abstractly and Quantitatively

Mathematics is a combination of abstract concepts and real-world applications, and the goal in teaching it is to help students work flexibly in and between both realms. All meaning in mathematics is tied to its application, so as we help students develop their understanding of concepts and their fluency with procedures, we must keep application on their minds.

To do this, we introduce concepts and procedures by way of problem situations. We expose students to problems with content that is familiar and realistic and require them to understand the quantities in a problem and how the quantities relate to the situation. With realistic content, students should then be able to use representations to describe the situation, manipulate the representations as the situation changes and understand the meaning behind the representations.

To help students build proficiency with reasoning abstractly and quantitatively, give them opportunities to interact with a variety of problems. Make it a habit to promote and display flexible thinking.

- Encourage students to make sense of the quantities and relationships in problem situations by creating a variety of representations. For multiplying fractions and mixed numbers, students will make frequent use of fraction tiles and fraction models, area models, and expressions and equations based on fraction concepts and the properties of multiplication.
- Have students explain their representations-for example, how a fraction model represents quantities or how the labeling of an area model connects to the situation.

Social and Emotional Learning

- Self-Awareness - Self-Confidence (Lesson 10-1): Self-confident students are more willing to take risks, allowing them to learn from mistakes.
- Responsible Decision-Making - Reflect (Lesson 10-2): When students reflect, they can make connections between effort and achievement.
- Relationship Skills - Social Engagement (Lesson 10-3): Engaging with others allows students to develop relationships and establish a sense of security and belonging in the classroom community.
- Responsible Decision-Making - Solve Problems (Lesson 10-4): Efficient problem solvers can make informed decisions that lead to solutions.
- Self-Management - Organizational Skills (Lesson 10-5): Organizing information and work can help students work through challenging mathematical tasks.
- Social Awareness - Develop Perspective (Lesson 10-6): Developing perspective can help students understand different ways of thinking.
- Relationship Skills - Build Relationships (Lesson 10-7): Building positive relationships can help establish a strong classroom community.
- Self-Awareness - Identify Emotions (Lesson 10-8): Students who can identify and understand their own feelings and emotions can better manage the reactions to those feelings and emotions.
- Self-Management - Goal Setting (Lesson 10-9): Setting goals can help motivate students to take initiative and stay focused.

Unit Overview

Language of Math

Mathematical Nouns

Students will be using these key terms in this unit:

- Decompose (Lesson 10-5): Students were introduced to this term in the context of addition and subtraction with whole numbers in Grade 2.
- Mixed number (Lesson 10-5): Students were also introduced to this term in the context of adding and subtracting mixed numbers in Grade 4.
- Partial Products (Lesson 10-7): Students were also introduced to this term in the context of multiplication of multi-digit whole numbers in Grade 4. They know product from Grade 3, and they learned that partial products are the products they generate by using the Distributive Property to multiply.
- Partition (Lesson 10-1): Students were also introduced to this term in the context of dividing shapes into equal shares in Grade 2. In this unit, the concept is the same but is applied to multiplication by fractions.
> - Scaling* (Lesson 10-8): Students might know scale as a device for measuring weight. In this lesson, scaling refers to the multiplicative relationship between a product and its factors. Students use the concept to determine how the size of a product will compare to the sizes of the factors withouthaving to multiply.

*This is a new term.

Math Language Development

A Focus on Writing

Writing in mathematics entails both writing mathematics and writing about mathematics-that is, writing can be used to form and execute our thoughts, reasoning, and procedures and to explain them to others.

Writing in mathematics can be a challenge. It is difficult for many students to understand the language of math and to translate math language to everyday language or everyday language to math language. Nonetheless, writing is beneficial and necessary, because it is a tool for students to organize and focus their thoughts and to preserve and share their work.

When students are writing, encourage them to include all the written tools they know of and are learning about-words, expressions, equations, and pictures. Expressions, equations, and pictures can say a lot, but make a point of having students sometimes write out the meanings of these representations and describe why they are being used. This will promote deeper learning and give you insight into students' thinking.

In this unit, students can write to:

- Describe how to estimate the quantities in a multiplication problem to generate an approximation of the solution and explain why they would do that.
- Explain the use of unit fractions as building blocks for finding products.
- Describe an algorithm for multiplying fractions and explain why it works.
- Describe strategies for translating the quantities in a problem into equations with one or more unknowns.
- Explain how to partition an area to represent multiplication of a fraction by a fraction.
- Explain what they know about multiplication with whole numbers that helps them multiply with fractions and mixed numbers.
- Explain the use of the Distributive Property in connection to an area model.

English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to multiplying fractions. Because many of the words (shade, shortcut, whether, yield, involving) and phrases (that area, whole piece, similar to, different from, you can either ___ or ___ used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

Lesson 10-1 - shade
Lesson 10-2 - shortcut
Lesson 10-3 - that area
Lesson 10-4 - whole piece
Lesson 10-5 - whether
Lesson 10-6 - similar to, different from
Lesson 10-7 - you can either \qquad or \qquad
Lesson 10-8 - yield
Lesson 10-9 - involving

Number Routines

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

Decompose It

Purpose: Build flexibility with numbers.
Overview: Students generate multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. The teacher records decompositions and then facilitates a discussion of patterns in the decompositions.

Which Benchmark Is It Closest To?

Purpose: Enhance rounding and reasoning skills.
Overview: Students determine to which benchmark the given number is closest and explain their reasoning.

Find the Pattern, Make a Pattern

Purpose: Build efficiency with recognizing and building patterns.
Overview: Students determine the rule(s) for a given pattern, then use the rule(s) to create a new pattern. The teacher records students' new patterns and facilitates a discussion to validate the pattern and its rules.

Greater Than or Less Than

Purpose: Build proficiency with number and place value sense; estimating and comparing skills.
Overview: Students use mental math to estimate or evaluate the value of given expressions and then compare the value of the expressions to a target benchmark number. Students share their solutions and thinking.

Sense-Making Routines

- Notice \& Wonder: How are they the same? How are they different? (Lesson 10-9) Students connect the context of real-world problems with different types of models.
- Notice \& Wonder: Tell me everything you can. (Lesson 10-8) Students comment on how the size of the factors impacts the size of the product.

- Notice \& Wonder: What do you notice? What do you

 wonder? (Lessons 10-1, 10-3, 10-6) In Lesson 10-1, students make observations about a model that represents the product of a fraction and a whole number. In Lesson 10-3, they represent a familiar problem using fractions instead of decimals. In Lesson 10-6, students see the decomposition of a mixed number multiplication problem.- Notice \& Wonder: What could the question be? (Lesson 10-4)

Students consider a situation for multiplying a fraction by a fraction.

- Notice \& Wonder: What do you see? (Lesson 10-5) Students notice that the area of a rectangle sometimes includes partial tiles.
- Numberless Word Problem: What math do you see? (Lesson 10-2) Students discuss a mathematical situation without numbers, including what strategies would be used to solve it.
- Numberless Word Problem: What is the question? (Lesson 10-7) Students discuss a mathematical situation without numbers, including what strategies would be used to solve it.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. These routines can also be used as formative assessment opportunities as students develop proficiency in English and mathematical language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Math Language Routines, see the Appendix.

- Lesson 10-1 - Students participate in MLR8: Discussion Supports.
- Lesson 10-2 - Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 10-3 - Students participate in MLR6: Three Reads.
- Lesson 10-4 - Students participate in MLR3: Critique, Correct, and Clarify.
- Lesson 10-5 - Students participate in MLR2: Collect and Display.
- Lesson 10-6 - Students participate in MLR4: Info Gap.
- Lesson 10-7 - Students participate in MLR7: Compare and Connect.
- Lesson 10-8 - Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 10-9 - Students participate in MLR5: Co-Craft Questions and Problems.

Readiness Diagnostic

Unilt 10

How Ready Am I?
Name

1. What is the area of the rectangle?

A. 74 square foet
. 250 square feet
C. 275 square feet
D. 300 squave foot
2. Which fraction is represented?

$\begin{array}{ll}\text { A. } \frac{7}{1} & \text { (B). } \frac{7}{2}\end{array}$
C. $\frac{8}{2}$
D. $\frac{8}{7}$
3. Which is equivalent to $\frac{3}{3}$?
(A) $3 \times \frac{1}{1}$
B. $8 \times \frac{1}{3}$
C. $3+\frac{1}{1}$
D. $3+\frac{1}{5}$
4. What is the product?
$8 \times \frac{1}{4}=$?
A. $\frac{8}{12}$
(B.) $\frac{8}{4}$
C. $\frac{9}{4}$
D. $8 \frac{1}{4}$
5. What is the product?
$12 \times \frac{3}{4}=$?
(A) $\frac{36}{4}$
B. $\frac{36}{86}$
c. $\frac{5}{4}$
D. 否
6. What mowd number is represented by the model?

A. $1 \frac{4}{5}$
(B.) $1 \frac{1}{4}$
C. $1 \frac{1}{5}$
D. $\frac{5}{8}$
7. What is the product?
$5 \times \frac{2}{5}=$?
A. $5 \frac{2}{6}$
(®) $\frac{10}{6}$
c. $\frac{7}{6}$
D. 10
8. A piece of wood measures 8 feet long and $\frac{1}{2}$ foot wide. What is the ares of the plece of wood?
A. 16 square feet
(B.) 4 square feet
C. $\frac{3}{16}$ square feot
D. $8 \frac{1}{2}$ square feet
9. What is the sum?
$\frac{3}{90}+\frac{4}{900}=$?
(A.) $\frac{4}{60}$
B. $\frac{7}{10}$
c. $\frac{7}{100}$
D. $\frac{34}{10}$
10. What is the quatient?
$358+4$
A. 90
(B.) $89 R 2$
C. $90 \mathrm{R2}$
D. 88 R6

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

Targeted Intervention

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	DOK	\$kill	Guided Support Intervention Lesson	Standard
1	1	Multiply whole numbers to find area	Area of Rectangles and Squares	4.MD.A. 3
2	1	Identify improper fractions from models	Build Fractions from 4 Unit Fractions	.NF.B. 3
3	1	Multiply to find equivalent fractions	Equivalent Fractions 4 with Multiplication	
4	1	Multiply fractions by whole numbers	Unit Fractions by Whole Number (Models)	4.NF.B. 4
5	1	Multiply fractions by whole numbers	Fraction by Whole Number (Equations)	4.NF.B. 4
6	1	Identify mixed numbers from models	Build Fractions from Unit Fractions	4.NF.B. 3
7	1	Multiply fractions by whole numbers	Fraction by Whole Number (Equations)	4.NF.B. 4
8	2	Multiply fractions by whole numbers in word problems	Multiplication in Fraction Word Problems	4.NF.B.4.c
9	1	Add fractions with denominators 10 and 100	Add Fractions in 10ths and 100ths	4.NF.C. 5
10	1	Divide 3-digit by 1 -digit T with remainder	hree-Digit Dividends (Partial Quotients)	4.NBT.B. 6

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question: How can I multiply fractions?
Ask students to think about what they know about multiplying fractions.

- What do you know about multiplying numbers?
-How is multiplication related to addition?
-What do you know about adding fractions?
Remind students that at the end of the unit, they will reflect back on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Welder Hannah discusses her aspirations to be a welder. Hannah Makes Go-Karts Hannah uses multiplication of fractions to find out how much work she can get done in a day.

STEM Project Card

Students can complete the STEM Project Card during their workstation time.

STEM Adventure

Students can complete the STEM Adventure during their workstation time.

36
 IGNiTE!

Name

Folding Fractions on a Strip

Follow the directions to fold a piece of paper to create a rectangle similar to this.

1. On a sheet of paper, label the lett edge 0 and the right edge 1.
2. Fold the paper into thirds. Label the creases A and B.
3. Fold to create a crease that is halifway between 0 and A.

Label the new crease X.
4. Fold to create a crease that is hallway betwoen B and 1 .

Label the new crease Y.

02 Igaitet - Fodong fuckios canswive

Ignite!

Folding Fractions on a Strip

Students explore how much is represented when folding a strip.

1. Direct attention to the rectangle on the student page.
-What do you notice about the rectangle?
2. Have students label a piece of paper so that the left edge is labeled as 0 and the right edge is labeled as 1 . Show students how to fold a piece of paper "like a letter" into three parts, label the creases A and B.
-What can you say about the three parts of the strip?
3. Have students fold the left edge to crease A, creating a new crease that is halfway between 0 and A . Have them mark the new crease with a line and label it X .
-What fraction of the entire strip is the part from 0 to X ? How do you know?
4. Have students fold the right edge to crease B. Have them mark the crease with a line and label it Y .

- What fraction of the entire strip is from Y to 1 ? Explain.
- Think of the strip as being a number line from 0 to 1 . What fraction would point Y be on the number line? Explain.

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the new term on the front side of the card.

Foldables

Use the unit foldables with Lessons 10-1 and 10-3.

Spiral Review

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.

Lesson	Standard
10-1	5.NBT.A. 1
10-2	5.MD.C. 3
10-3	5.NBT.A.2
10-4	5.NF.A.2
10-5	5.NF.A.1
10-6	5.NBT.B. 7
$10-7$	5.MD.C.4
$10-8$	5.NF.B.4
$10-9$	5.NF.B.5

Represent Multiplication of a Whole Number by a Fraction

Learning Targets

- I can use a representation to multiply a whole number by a fraction.
- I can explain how to use a representation to multiply a whole number by a fraction.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
\diamond 5.NF.B.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivaleafith, dedsson. the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $\frac{2}{3} \times 4$ $=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$. (In general, $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$).

Math Practices and Processes

MPP Look for and express regularity in repeated reasoning.

Focus

Content Objective

- Students use a representation to multiply a whole number by a fraction.

Language Objectives

- Students discuss using representations to multiply a whole number by a fraction using other ways and different ways.
- To support maximizing cognitive and linguistic meta-awareness, ELs participate in MLR8: Discussion Supports.

SEL Objective

- Students identify personal traits that make them good students, peers, and math learners.

Coherence
Previous

- Students multiplied a fraction by a whole number (Grade 4).
- Students multiplied decimals (Unit 6).

Rigor

Conceptual Understanding

- Students interpret different representations used when multiplying fractions by whole numbers.

Procedural Skill \& Fluency

- Students find a fraction of a whole number.

Application

- Students assess solutions to word problems.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms
fraction model
Academic Terms
reflect multiplication suggest partition

Materials

The materials may be for any part

- counters
- fraction circles
- fraction tiles

Purpose Students consider a model of $\frac{3}{4} \times 5=\frac{3 \times 5}{4}$ by showing 3 parts of 5 objects each divided into 4 equal parts.

Notice \& Wonder ${ }^{\text {TM }}$

- What do you notice?
-What do you wonder?
Teaching Tip Have students work in small groups to discuss what they think they know about the image, and share ideas about what mathematics they might be able to do to solve a problem?

ETP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how to represent multiplication of whole numbers by fractions and are based on possible comments and questions that students may make during the share out.

- How are the watermelons divided?
- How much of each watermelon is outlined?

Math is...

-Why is it important to have confidence in your work?

SEL

Self-Awareness: Self-Confidence
Throughout the Notice \& Wonder routine, provide opportunities for students to feel confident in themselves. Model and encourage giving positive feedback for sharing ideas, good effort, or creative thinking. Make sure students understand that being good students can also include being helpful peers and active members of the classroom community. Remind students that some tasks are more challenging than others, and they can demonstrate self-confidence by speaking up and asking for help if they need it. Throughout their work with multiplying fractions and whole numbers, they continue to find opportunities to allow students to give positive feedback to their classmates.

Transition to Explore \& Develop

Ask questions that get students thinking about strategies for representing fractions.

EIP Establish Mathematics Goals to Focus Learning

- Let's think about using a representation to multiply a whole number by a fraction.

(1) Pose the Problem

Learn

The width of this banner is $\frac{3}{4}$ of its length
How can you determine the width of the banner?

A represertation can help you solve the equation

The 5 wholes are partitioned into fourths. $\frac{3}{4}$ of each whole is shaded. Shade $\frac{3}{4}$ of each whole.


```
3 }\times\frac{1}{4}\mathrm{ parts }\times5\mathrm{ wholes = 15, 1
\frac{3}{4}\times5=\frac{15}{4}
The width of the banner is }\frac{5}{4}\mathrm{ , or }3\frac{3}{4}\mathrm{ feet.
```

Mamise Generalizations How could you determine the product without the representation?

You can use a represectation to mutiply a whole number by a fraction.

C. Work Together

[^5]
CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how to represent multiplication of a whole number by a fraction.

Directions: Present students with expressions, such as: $\frac{1}{3} \times 6, \frac{1}{4} \times 2, \frac{1}{4} \times 5$. In pairs or small groups, have students determine strategies for solving each expression.

ETP Support Productive Struggle

- Is the product greater than the whole number? How do you know?
- What tools can you use to help you find each product?
- How is finding $\frac{1}{3} \times 6$ similar to finding $\frac{1}{4} \times 2$? How is it different?
- How is finding $\frac{1}{4} \times 2$ similar to finding $\frac{1}{4} \times 5$? How is it different?

Math is... Generalizations

- How could you determine the product without the representation?

Students look for and use repeated reasoning or calculations to help them solve problems.

Activity Debrief: Facilitate a discussion to ensure students understand multiplication of a whole number by a fraction can be represented by taking a part of the whole number. Sometimes it is necessary to partition the whole number into equal parts.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the width of the banner?

Guided Exploration

Students extend their understanding of multiplication and fractions to represent multiplication of a whole number by a fraction.

EIP Use and Connect Mathematical Representations

- Think About It: What are some different ways you have represented fractions?
- Why do you think you represent the 5 wholes first?
- Think About It: What other ways could you represent 5 wholes?
(2) Have students represent three-fourths of each whole. Ask:
- How can you partition each whole into fourths?
-Why does that partition make fourths?
- How would you shade the partitions to show three-fourths?
- How can you determine how many fourths are shaded?
- Think About It: How can you write $\frac{15}{4}$ in another way?
(2) Have students interpret the equation $\frac{3}{4} \times 5$. Ask:
- How many wholes did you represent? What part of the multiplication equation shows that?
- How many equal parts did you partition each whole into? What part of the multiplication equation shows that?
- How many partitions of each whole did you shade? What part of the multiplication equation shows that?

Math is... ceneralizations

- How could you determine the product without the representation? Students look for and use repeated reasoning or calculations to help them solve problems.

2. Develop the Math

The width of this banner is $\frac{3}{4}$ of its length.
How can you determine the width of the banner?

What equation can you writ

English Learner Scaffolds

Entering/Emerging Ensure comprehension of shade. Draw a circle and divide it into four equal parts. Say I'm going to shade two parts. After demonstrating, draw another shape, and repeat. Finally, draw a rectangle and split it into five equal parts. Shade three, but don't provide verbal cues. After you shade the parts, ask students How many parts did I shade? 2, 3, or 5?

Developing/Expanding Ensure comprehension of shade. Draw a circle and divide it into four equal parts. Say l'm going to shade two parts. After demonstrating, draw another shape, and repeat. Finally, draw a rectangle and split it into five equal parts. Shade three, but don't provide verbal cues. After you shade the parts, ask students, How many parts did I shade?

Bridging/Reaching Ask students to look at the table on the Learn page, focusing on Shade $\frac{3}{4}$ of each whole. Then draw a circle and divide it into four equal parts, shading two. Ask, What did I do? (You shaded [two parts] of the circle). Then ask students to discuss similar words to shade (darken, color in, fill in, etc.). Allow them to use a dictionary or thesaurus if desired.

$$
\begin{aligned}
& \text { 7. Deeina is making a bracelet that is the } \\
& \text { length shown. White beeds cover } \\
& \frac{7}{10} \text { of its length. What is the length of the } \\
& \text { port of the bracelet that is strung with white beads? } \\
& \frac{63}{10} \mathrm{~cm} \text { or } 6 \frac{3}{10} \mathrm{~cm}
\end{aligned}
$$

8. Errer Anolysis Louise mimpled $\frac{4}{5} \times 6$ and tound ehe product $\frac{24}{30}$ Explin the error that Louse made. Then, find the correct produc. Sample answer: Louise did not first divide the 6 wholes into fifths. The product should be $\frac{24}{5}$.
9. The Johnson family ordered 6 pizzas. The family ate $\frac{7}{8}$ of each
pizra. How much pizra did the Jahnson tamlly eat in all?
$\frac{42}{8}$ pizzas or $5 \frac{2}{8}$ pizzas
10. Extend Your Thinking Julio and Ratael share a package of 12 markers. Jula takes $\frac{2}{3}$ of the markers. Ratael takes $\frac{1}{4}$ of the markers. How mary markers will each have? How many markers are left in the pockage?
Julio takes $\frac{24}{3}=8$ markers and Rafael takes $\frac{12}{4}=3$ markers. There is 1 marker left in the package.

(P) Reflect

Exptain now you can use a replesentation to multiply a whole number by a fraction.
Explanations may vary. confidence in your work?

Practice

ETP Build Procedural Fluency from Conceptual Understanding
[Common Error: Exercise $\mathbf{1 0}$ When finding the number of markers that Rafael takes, students may incorrectly find one-fourth of Julio's markers instead of one-fourth of the whole package. Make sure they read problems carefully.

Practice Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-7$	2	Application
8	3	Conceptual Understanding
9	2	Application
10	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- Explain how you can use a representation to multiply a whole number by a fraction.
Ask students to share their reflections with their classmates.

Math is... Yindset

-Why was it important to have confidence in your work?
Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use a representation to multiply a whole number by a fraction.
- I can explain how to use a representation to multiply a whole number by a fraction.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pOK Skill		Standard	
1	1	Multiply a whole number by a fraction using representations	5.NF.B.4.a
2	1	Multiply a whole number by a fraction using representations	5.NF.B.4.a
3	2	Multiply a whole number by a fraction using representations	5.NF.B.4.a

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
2 of 3
1 or fewer of 3
Additional Practice or any of the © or ${ }^{-3}$ activities Take Another Look or any of the (3) activities Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

B Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Make It, Write it

Have each student separate a handful of counters to make 2 unequal groups. Students write an equation showing Fraction \times Whole $=$ Part of whole. So, if students have 4 counters and separate 1 , they write $\frac{1}{4} 4=1$. Make sure students understand that the whole is the total number of counters, the part of the whole is the number of counters they separated, and the fraction is the portion of the whole the separated counters represent.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Multiply Whole Number by Fraction-Models

Differentiation Resource Book, p. 107

Lesson $10-1$ - Reinforce Understanding
 Represent Multiplication of a Whole Number by a Fraction

What multiplication equation can be written from the model? Fill in the missing values.

What is the product? Partition the rectangles to find the product:

Build Proficiency

Practice lt! Game Station
Fraction Multiplication Tic Tac Toe Students practice multiplying fractions by whole numbers.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 107-108

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 107-108

Extend Thinking

Use It! Application Station
If, Then Students use if/then statements to write a problem in which they make a true or false statement that uses multiplication of fractions.
The content of this card has concepts covered later in Lesson 10-7. You may
 want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 108

Learning Target

- I can multiply a whole number by a fraction.

Standards \circ Major Δ supporting \circ Addifitional

Content

\diamond 5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

Vocabulary

Math Terms	Academic Terms
denominator	citation
numerator	complex

Material

The materials may be for any part \diamond 5.NF.B.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivaleaflyhe dedsson. the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $\frac{2}{3} \times 4$ - fraction circles $=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$. (In general, $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$).

- fraction tiles

Math Practices and Processes

MPP Look for and and make use of structure.

Focus

Content Objective

- Students multiply a whole number by a fraction by multiplying the numerator times the whole number, and using that as the numerator in the product and the denominator of the fraction as the denominator.

Language Objectives

- Students explain multiplying a whole number by a fraction using the verbs notice and apply, and the phrase make a shortcut.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students demonstrate thoughtful reflection through identifying the causes of challenges and successes while completing a mathematical task.

Coherence

Previous	Now	Next
- Students multiplied a fraction by	- Students multiply a whole	
a whole number (Grade 4).	- Students represent number by a fraction using properties of operations.	fraction (Unit 10).
- Students used a representation to multiply a whole number by a by a fraction (Unit 10).		Students interpret and compute quotients of fractions (Grade 6).

Rigor

Conceptual Understanding

- Students expand their understanding of multiplying fractions by discovering how to multiply the numerator by the whole number to find the product.

Procedural Skill \& Fluency

- Students apply strategies to gain proficiency with multiplying fractions by whole numbers.

Application

- Students solve word problems with real-world contexts.
Application is not a targeted element of rigor for this standard.

Number Routine Find the Pattern, Make a Pattern © ${ }_{5-7 \text { min }}$

Build Fluency Students build number sense with fractions and mixed numbers as they identify the pattern rule and use the rule to find the missing numbers.
Students then create a new pattern that follows the same rule.

These prompts encourage students to talk about their reasoning:

- What pattern do you notice?
-What terms helped you determine the pattern? Explain.
- How did you determine what is missing?
- What is another way to think about the pattern?
- How do you know your new pattern follows the same rule?

Purpose Students prepare for story contexts that involve multiplying a whole number by a fraction.

Numberless Word Problem

-What is the question?
Teaching Tip Have students work in pairs to share their thoughts about the numberless word problem. They should share what operations the word problem suggests and how they could solve it.

EIP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of multiplying a whole number by a fraction and are based on possible comments and questions that students may make during the share out.

- Do you think the judges ate part or all of each pie? Why?
- How many pies were entered in the contest?

Math is... Mindset

-What helps you make decisions?

SEL Responsible Decision-Making: Reflect

When students reflect, they can make connections between effort and achievement. After working through the Numberless Word Problem routine, allow students time to thoughtfully reflect on their work. Invite them to think about what may have been challenging as well as the ways in which they were successful and why. Encourage students to also consider what parts of the Numberless Word Problem routine that they enjoyed and why.

Transition to Explore \& Develop

Ask questions that get students thinking about using properties of operations to multiply a whole number by a fraction.

$\stackrel{\operatorname{ERP}}{\square}$ Establish Mathematics Goals to Focus Learning

- Let's think about how to multiply a whole number by a fraction using properties of operations.

Learn

The judges of a baling contest ase $\frac{2}{3}$ of the 6 ples enterect.

How pies did the judges eat?
You can use properties of operations to help you solve the equation.

You can multiply a whole number by a fraction by inultiplying the numerator of the fraction and the whole number. This becomes the numerator of the product. The denominator of the fraction is the denomirator of the product.

C Work Together

A swimmer trained for a race. On each of 7 days, she swam $\frac{5}{8}$ mile. How far did she swim in those 7 days?
$\frac{35}{8}=4 \frac{3}{8}$ miles

(1) Pose the Problem

EPP Pose Purposeful Questions

- How are the quantities in this problem related?
-What models might help you make sense of these quantities? How would they help you?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Stronger and Clearer Each Time
Pair students and have them work on a problem like the problem on the Learn page. Have them individually write about how to solve the problem. Then have them share their writing with their partner and fix mistakes.
Revisit the routine throughout the lesson for reinforcement.

3 Bring It Together

Elicit and Use Evidence of Student Thinking

- How could you explain to a friend how to multiply a whole number by a fraction?

Key Takeaway

- One way to multiply a whole number by a fraction is to multiply the numerator times the whole number and use that as the numerator in the product and use the denominator of the fraction as the denominator.

Work Together

The Work Together activity focuses on students' understanding of solving word problems involving the multiplication of fractions by whole numbers.

Common Error: Some students may think that the problem is asking for how much she swam each day, instead of how far she swam in all. Make sure the students read word problems carefully.

LOM
Language of Math
Properties of operations are qualities that belong to the operation, as in, "a property of addition is that it is commutative." Similary, property is something, like land or a home, that belongs to someone, as in "my grandparents own property in the country."

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore efficient strategies for multiplying a whole number by a fraction.

Directions: Display 4 or 5 multiplication expressions involving a fraction times a whole number. Tell students that they will find each product and look for patterns.

ETP Support Productive Struggle

- What strategy did you use to find each product?
- Are your products reasonable? How do you know?
- Can you find any shortcuts to help you solve more efficiently? If so, describe them.
- What patterns do you notice when multiplying a fraction times a whole number? Why do those patterns exist?

Math is... structure

- How do you know the Associative Property of Multiplication works for fractions?

Students understand the nature of the properties they have used to multiply a whole number by a fraction.

Activity Debrief: Students should notice that one way to multiply a whole number by a fraction is to multiply the numerator times the whole number, and use that as the numerator in the product, and use the denominator of the fraction as the denominator. They can use properties of operations to explain why this occurs.

Have students revisit the Pose the Problem question and discuss answers.
. How much pie did the judges eat?

Guided Exploration

Students extend their understanding of multiplication with fractions using equations.

ETR Facilitate Meaningful Mathematical Discourse

(1) Have the students create the equation. Ask:
-What should the operation be? Why?

- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have students represent the equation $\frac{2}{3} \times 11$. Ask:

- How many wholes should you represent? Why? What part of the multiplication equation shows that?
- How many equal parts should you partition each whole into? Why? What part of the multiplication equation shows that?
- How many partitions of each whole should you shade? Why? What part of the multiplication equation shows that?
- You know that $\frac{2}{3}=2 \times \frac{1}{3}$. How do you know that $\frac{2}{3}=\frac{1}{3} \times 2$?
- Why can you rewrite $\left(\frac{1}{3} \times 2\right) \times 11$ as $\frac{1}{3} \times(2 \times 11)$? What Property do you use?
- You know that $2 \times 11=22$. Why can you rewrite $\frac{1}{3} \times(2 \times 11)$ as $22 \times \frac{1}{3}$? What Property do you use?
- How do you know that $22 \times \frac{1}{3}=\frac{22}{3}$?
(8) Have the students look for a pattern or shortcut. Ask:
-What do you notice about the numerator of the product?
- What do you notice about the denominator of the product?
- What shortcut could you use when multiplying a whole number by a fraction?

Math is... structure

- How do you know the Associative Property of Multiplication works for fractions?
Students understand the nature of the properties they have used to multiply a whole number by a fraction.

EL
 English Learner Scaffolds

Entering/Emerging Ensure understanding of shortcut. Demonstrate with 5 tens rods. Say Let's count the cubes. Start counting one at a time, but then stop and say, Wait. I know a shortcut. Count them instead by 10s. Say That was faster. Finally, write a math problem and solve it without using shortcuts. Ask Is this a shortcut? Then solve it again using a shortcut and ask Is this a shortcut?

Developing/Expanding Ensure understanding of shortcut. Demonstrate with 5 tens rods. Say Let's count the cubes. Start counting one at a time, but then stop and say, Wait. I know a shortcut. Count them instead by 10s. Say That was faster. Finally, guide students to the Learn page and point to the multiplication problem in the table. Ask Is this a shortcut?

Bridging/Reaching Ask students to review the Math IS...Generalizations question on the Learn page. Ensure comprehension by asking for the meaning of shortcut (a shorter or faster way of doing something). Allow them to use a dictionary if desired. Then ask students to identify other math shortcuts they know and explain why the shortcut works; for example, skip counting by 5 , doubles/near doubles, etc.

8. Aatael plants wegetabies in $\frac{4}{5}$ of his garden. The total area of the garden is 15 square meters. What is the ares of his garden that will not be plarted with vegetables?
$\frac{15}{5}=3$ square m
9. Bea has this length of ribbon She will use $\frac{5}{6}$ of t to wrep a present. How many Inches of ribbon will she use? $11 \frac{2}{3}$ in.
10. Timore goes to sthool for 7 hours sach diny. She spends $\frac{4}{5}$ of each doy in class. How many hours does she spend in class each school ding?
A. 4 hours
(B) $\frac{2 \pi}{5}=5 \frac{3}{5}$ nours
c. $\frac{2 \pi}{5}=4 \frac{1}{5}$ hours
D. 7 hours
44. Extend Your Thinking is the proouct of a whole number and a traction ohvoys. sometimes, or never greates than the fraction? Explain.
Sometimes greater than. Sample answer; If the whole number is greater than 1 , then the product is greater than the fraction. If the whole number is 1 , then the product is equal to the fraction. If the whole number is 0 , then then the product is less than the fraction.

(P) Rellect

How can you use equations to multiply a whole number by a faction? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

1. Common Error: Exercises 1-4 As students find the product of fractions and whole numbers, make sure that they do not multiply the denominator of the fraction by the whole number. The denominator of the product should be equal to the denominator of the fraction.

Practice Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-10$	2	Application
11	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you use equations to multiply a whole number by a fraction?
Ask students to share their reflections with their classmates.

Math is... Mindset

-What helped you make decisions today?
Students reflect on how they practiced responsible decision-making

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can multiply a whole number by a fraction.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		pOK Skill	Standard
1	1	Multiply a whole number by a fraction	5.NF.B.4.a
2	1	Multiply a whole number by a fraction	5.NF.B.4.a
3	2	Multiply a whole number by a fraction	5.NF.B.4.a
4	2	Multiply a whole number by a fraction	5.NF.B.4.a

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do
4 of $4 \quad$ Additional Practice or any of the 3 or $\operatorname{Bactivities}$
3 of 4 Take Another Look or any of the (3) activities
2 or fewer of 4
Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

(1) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 10-2

Exit Ticket

Name

1. What is the product of $\frac{3}{4} \times 97$ Complete the equation. $\frac{3}{4} \times 9=\frac{[3]}{\frac{[9]}{4}}=\frac{27}{4}$
2. What is the product of $\frac{2}{3} \times 8$?
A. $\frac{2}{24}$
B. $\frac{25}{24}$
(C. $5 \frac{1}{3}$
D. $8 \frac{7}{5}$
3. Cuincy wals a total of $\frac{5}{8}$ mile to and from school each day. How many miles does Quincy walk to and fiom school in 5 days?
A. $2 \frac{7}{3}$ miles
(B) $3 \frac{1}{8}$ miles
C. $5 \frac{5}{3} \mathrm{mlies}$
D. 8 miles
4. Sean viated his friend 16 times this month. He walked $\frac{3}{4}$ mile each time. How mary miles did Sean wakk this month to visit his friend?
12 miles

Reflect On Your Learning

Reinforce Understanding

Multiply It

Work with students in pairs. Have students solve $\frac{1}{5} 20$.
Then each student multiplies 20 by,$\frac{2}{5}$, , by ${ }^{3}$, and ${ }_{5}^{4}$ by . $\frac{5}{5}$
If students have difficulty, help them recognize that once they have the first product, they can multiply it by the numerators to find the other products. Students share their solutions and discuss any patterns they see.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Multiply Whole Number by Fraction

Differentiation Resource Book, p. 109

Lesson 10-2 + Reinforce Understanding Multiply a Whole Number by a Fraction

Review	
To find the product of whole number and a fraction, muxiply the numerator of the fraction by the whole number.	
Consider the product $\frac{3}{4} \times 5$.	
There are 5 groups of 3 shaded regions. So there are 3×5, or 15 shaded regions.	
Ench shoded region is one-fourth of a bact so the shaded regions show 15 fourths, or $\frac{15}{4}$.	
From the represantation, we sees $\frac{3}{4} \times 5=\frac{3 \times 5}{4}=\frac{15}{4}$	

What is the product Fill in the blanks to show your work.

1. $\frac{5}{5} \times 3=\frac{\frac{15}{6}}{6}$ or $\frac{5}{2}$

2. $\frac{5}{8} \times 5=\frac{\frac{25}{8}}{8}$

3. $\frac{3}{5} \times 4=\frac{\frac{12}{5}}{}$

Build Proficiency

Practice It! Game Station
Representing Fraction

Multiplication Task Cards

Students practice representing the multiplication of whole numbers by fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 109-110

Lesson 10-2

Additional Practice

Name

Review

You can multiply a fraction and a whole number by multiplying the numerator of the fraction by the whole number, and keeping the denominator the same.
Johnny waiks $\frac{3}{4}$ mile to and from school each day. How many mbes did he walk tris week it rchool met all 5 doys?
To solve, find $\frac{3}{4} \times 5$.
Multiply the numerator and the whole number: $3 \times 5=15$.
This is the numerator. Keep the denomirator the same: $\frac{3}{4} \times 5=\frac{15}{4}$. Whe the answer as a mixed number: $\frac{15}{4}=3 \frac{3}{4}$
Johnny walked $3 \frac{3}{4}$ milies to and from schoot this week.
What is the product?

1. $\frac{5}{6} \times 5=\frac{\frac{25}{6} \text { or } 4 \frac{1}{6}}{2 . \frac{1}{4} \times 9=4}$ or $2 \frac{1}{4}$
2. $\frac{3}{8} \times 6=\frac{\frac{18}{8} \text { or } 2 \frac{1}{4}}{}$
3. $\frac{2}{3} \times 8=\frac{\frac{16}{3} \text { or } 5 \frac{1}{3}}{}$

Unit 10 - Multiply Fractions

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 109-110
5. A bottle of water contains $\frac{3}{4}$ ther of watec. How nuch water do you get when you buy a package of 15 botties of water?
$\frac{45}{4}$ liters or $11 \frac{1}{4}$ liters
6. One inp around the rack covers $\frac{2}{\frac{1}{2}}$ mile. Maiy walked 8 lops. How many males did Mary walk?
$\frac{24}{5}$ miles or $4 \frac{4}{5}$ miles
7. An elephart weighs about 4 tons. A younger elephart weigts about $\frac{5}{8}$ that much. About how manyy tons does the yourger elephant weigh?
$\frac{20}{8}$ tons or $2 \frac{1}{2}$ tons
8. Margaret buys 20 pounds of flour to use for making trents for the bake sale She used $\frac{5}{5}$ of the mavilable flour. How many pounds of flour did Margaret use?
$\frac{100}{6}$ pounds or $16 \frac{2}{3}$ pounds

Extend Thinking

Use It! Application Station
This or That Students follow instructions to measure and cut materials. The content of this card has concepts covered later in Lesson 10-8. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 110
Multiply a Whole Number by a Fraction
What value completes the equation? Show your work. The first one is done as an example

Defenetision Pestivere loek

Analyze the Probe Formative Assessment

Targeted Concept Determine the product of a whole number and a fraction by reasoning about the magnitude of numbers and the meaning of multiplication within a word-problem context.

Targeted Misconceptions Some students choose an incorrect operation when solving problems. They may misinterpret the problem context or focus on "key words" that may suggest an incorrect operation. Some students misinterpret an expression for an equation.

Some students have difficulty determining an estimated magnitude of a product when working with fractions. They may overgeneralize about the size of fractions in general or misjudge the magnitude of a particular fraction. Others may simply look for a match between the numbers in the problem and the numbers in the choices without considering the effect of the operation and magnitude of the numbers involved in solving the problem.

Authentic Student Work

Below are examples of students' explanations.

Sample A

4. Ms. Garcla is making bows from ribbon. She uses $\frac{5}{i}$ yard of ribbon for each bow. How much ribbon does she need to make 9 bows?

Gircle the best estimate.
A. 3 yards
B. 5 yard
C. 7 yards
D. 8 yards

Sample B

Collect and Assess Student Work

Collect and review student responses to determine possible misconceptions. See examples in lf-Then chart.

Sample Misconceptions

2. The price of a sweatshirt is $\$ 32$. The price of a T-shirt is $\frac{3}{10}$ the price of the sweatshirt. What is the price of the T shirt?

Circle the best estimate.
A. $\$ 10$
B. $\$ 16$
C. $\$ 24$
0.331

Explain or show your thinking.

$$
\begin{aligned}
& \text { I thought it was } 31 \\
& \text { be cause it is between } \\
& 32 \text { and } 31 . \\
& 3^{2}, \frac{2}{3}=\text { between } \\
& 31=32
\end{aligned}
$$

1. a	chooses the least value, having
overgeneralized that "finding a fraction of	
2. a	a number makes smaller." Note this reasoning results in a correct response for
3. a	Exercise 2 (choice a).

1. b uses $\frac{1}{2}$ as a benchmark, not recognizing
2. $b \quad$ that there is a more precise estimate. For
3. example, in Exercise 3, half of 20 is 10
(choice b). But the problem calls for $\frac{2}{3}$ of 20 , so 14 is a better estimate (choice c). Note this reasoning results in a correct response for Exercise 1.
4. Ms. Garcia is making bows from ribbon. She uses $\frac{5}{18}$ yard of ribbon for each bow. How much ribbon does she need to make 9 bows?

Circle the best estimate.
A. 3 yards
B. 5 yards
C. 7 yards
D. 8 yards

Explain or show your thinking.

of a whole is smaller.
3. Chantal drinks $\frac{2}{3}$ cup of orange juice every morning. How many cups does she drink in 20 days?

Circle the best estimate.
A. 6 cups
(B. 10 cups
C. 14 cups
D. 19 cups

Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

Take Action

Choose from the following resources or suggestions:

- Revisit finding products in Lessons 10-1 and 10-2.
- Build skills in interpreting word problems through strategies such as acting out word problems, removing numbers from problems, or leaving the question out in order for students to predict what might be asked or what values might be given.
- Use approaches that include asking students to estimate an answer before computing, make a drawing to represent the situation, and comparing their final answer to their estimate. Include problems where only an estimated answer is needed so that students do not rely only on exact answers.
- Have students create their own word problems to share and discuss.

Revisit the Probe after additional instruction. Have students review their initial answers to the probe. Use these questions for discussion:

- Are there any answers you would like to change? Explain why you might want to change them.
- Are there any questions you still have about any of the Exercises on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Represent Multiplication of a Fraction by a Fraction

Learning Targets

- I can use a representation to multiply a fraction by a fraction.
- I can explain how to use a representation to multiply a fraction by a fraction.

Standards \bigcirc Major \triangle Supporting O Additional

Content

\diamond 5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. \diamond 5.NF.B.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivalenthfacifinn circles the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $\frac{2}{3} \times 4 \quad$ - fraction tiles $=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$. (In general, $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$).

Vocabulary

Math Terms

fraction model multiplication

Academic Terms

procedure
speculate

Materials

The materials may be for any part of the lesson.

Math Practices and Processes

MPP Reason abstractly and quantitatively.

Focus

Content Objectives

- Students use a representation to multiply a fraction by a fraction.
- Students explain how to use a representation to multiply a fraction by a fraction.

Language Objectives

- Students explain how to represent multiplication of a fraction by a fraction using the verbs partition and show and the nouns patterns and shortcuts.
- To support sense-making, ELs participate in MLR3: Three Reads.

SEL Objective

- Students offer constructive feedback to the mathematical ideas posed by others.

Coherence

Previous	Now	Next
- Students mulitplied a fraction by	• Students represent multiplication	• Students multiply a fraction by a
a whole number (Grade 4).	of a fraction by a fraction.	• Students interpret and compute - Students multiplied a whole number by a fraction (Unit 10).
		quotients of fractions (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of multiplication as they use a representation to multiply two fractions.

Procedural Skill \& Fluency

- Students build proficiency with fractions and strategies for multiplying fractions.

Application

- Students multiply fractions to solve word problems.
Application is not a targeted element of rigor for this standard.

Number Routine

 Decompose It © ${ }_{5-7 \text { min }}$Build Fluency Students build number sense as they decompose a whole number in at least three ways.

These prompts encourage students to talk about their reasoning:

- Retellthe problem in your own words. What decomposed parts are related? What patterns do you see?
- How can a pattern help you find new decomposed parts?
- What is the importance of using the word "and" when decomposing whole numbers?
- How did you use place value to help you decompose whole numbers?

Purpose Students refresh the "part of a part" idea that they were introduced to when they represented multiplying decimals by decimals.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip Have students work in pairs to discuss what they think they notice and wonder about the image, and share ideas about what mathematics they might be able to apply to it.

ETP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how to represent multiplication of fractions by fractions and are based on possible comments and questions that students may make during the share out.
-What fraction of the shelves have towels in them? How do you know?

- What fraction of the towels are red? How do you know?
- What fraction of the shelves have red towels in them? How do you know?

Math is... Yindset

- How can you work well with a classmate even when you might disagree?

SEL

Relationship Skills: Social Engagement

As students engage in collaborative discourse around the Notice \& Wonder routine, invite them to give constructive or helpful feedback to their peers. As students engage and discuss what they noticed and wondered, they are strengthening their relationship skills. Remind students that active listening and building on the ideas of others can help them connect with one another and work toward achieving shared goals.

Transition to Explore \& Develop

Ask questions that get students thinking about partitioning wholes. Guide the discussion to have the student think about how to represent fractions with different partitions. If students bring up partitions of partitions organically, bring that into the discussion, but if students do not introduce the concept during this part of the lesson, they will be reminded of it in the Explore \& Develop.

[^6]

(1) Pose the Problem

Learn

Two-thieds of a garden has flowers and $\frac{3}{4}$ of that area has sunfliowers. What fraction of the garden has sunflowers?
The equation $\frac{3}{4} \times \frac{2}{3}=5$ can be used to represent the problem. You can use a representation to help you solve the equation.

C. Work Together

Explain how the tape diagram represents $\frac{1}{3} \times \frac{3}{4}=\frac{3}{2}$.

Check students' explanations.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how to represent the multiplication of two fractions.

Materials: grid paper

Directions: Have students work together to solve the Pose the Problem. Students may use any strategy to solve

EIP Implement Tasks That Promote Reasoning and Problem Solving

- Can you draw a picture or make a representation to show the problem?
- How does your representation show $\frac{2}{3}$?
- How does your representation show $\frac{3}{4}$ of $\frac{2}{3}$?
- How does your represenation show the answer?
- How is your representation the same as other's representations? How is it different?

Math is... Quantities

- Why do you need to find the fraction of the whole when determining the product?
Students make sense of quantities and their relationships in problem situations.

Activity Debrief: Have students share their representations of products of fractions. Ensure students understanding that when representing $\frac{2}{3}$, they are showing $\frac{2}{3}$ of the whole garden. When representing $\frac{3}{4}$ of $\frac{2}{3}$, they are showing a part of a part of the garden. Finally, when determining the product, they are showing the fraction of the whole garden.

Guided Exploration

Students extend their understanding of multiplication with fractions to represent multiplication of a fraction by a fraction.

ETP Use and Connect Mathematical Representations

(2) Have the students create the equation. Ask:
-What should the operation be? Why?

- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have the students determine the fraction of the whole that represents $\frac{3}{4}$ of $\frac{2}{3}$. Ask:

- How many equal parts is the whole partitioned into? How do you know?
- How many equal parts represent $\frac{3}{4}$ of $\frac{2}{3}$? How do you know?
- What fraction of the whole represents $\frac{3}{4}$ of $\frac{2}{3}$? Explain why.
- Think About It: Explain why you need to find the fraction of the whole represented.
(2. Have the students look for a pattern or shortcut. Ask:
- What do you notice about the numerator of the product?
-What do you notice about the denominator of the product?

Math is... Puantities

-Why do you need to find the fraction of the whole? Students make sense of quantities and their relationships in problem situations.

2. Develop the Math

Two-thirds of a garden has flowers and $\frac{1}{4}$ of that area has sunfiowers

What fraction of the garden has sunflowers? What equation can you write

English Learner Scaffolds

Entering/Emerging Support students in understanding the term that area. Draw a square and divide it into three equal parts. Shade one of the parts. Point to it and say That area is shaded. Repeat again with a new drawing, and then send students to the Learn page. Point to the unshaded part. Ask Is this area shaded? Then point to the shaded parts. Ask Is that area shaded?

Developing/Expanding Support students in understanding the term that area. Draw a square and divide it into three equal parts. Shade one of the parts. Point to it and say That area is shaded. Repeat again with a new drawing, and then send students to the Learn page. Point to the shaded part and ask students to complete the sentence: __ (That area) is shaded.

Bridging/Reaching Ask students to read the word problem at the top of the Learn page. Ask them to tell you what that area refers to (the school garden). Then ask students to brainstorm similar words to area and share with the class (section, space, part, etc.). Allow students to use a dictionary or thesaurus if desired.

What is the product? Use a representation to solve.

3. $\frac{5}{8} \times \frac{7}{3}=\frac{\frac{10}{24}}{}$

6. $\frac{7}{3} \times \frac{1}{3}=\frac{7}{24}$
7. Matias prepared $\frac{2}{3}$ of the ganden for vegetables. He is plarting $\frac{3}{8}$ of the vegetable garden with potatoes. What traction of the whole garden wiri be the potito garden? $\frac{3}{8} \times \frac{2}{3}=\frac{6}{24}$
e. Harel travels $\frac{5}{8}$ mile. She $\tan \frac{2}{5}$ of that distance. How tar did Hazel Iun?
$\frac{5}{8} \times \frac{2}{5}=\frac{10}{40}=\frac{1}{4} \mathrm{mi}$
9. Jordan saved two-thirds of his earnings last month from babysting. He spent $\frac{3}{5}$ of that savings to buy new sneaken. How much of his earnings did he spend on sneokers? $\frac{3}{5} \times \frac{2}{3}=\frac{6}{15}$
10. Kevin wants to makes half of the recipe. How many cups of wainuts pieces does he use? $\begin{array}{ll}\text { A. } \frac{1}{8} \text { cup } & \text { a. } \frac{1}{4} \text { cup } \\ \text { C. } \frac{3}{8} \text { cup } & \text { D. } \frac{4}{6} \text { cup }\end{array}$

IV. Using the same recipe, how much baking sodn would Kevin reed it he makes a recipe that is $\frac{3}{4}$ of the originail recipe?
$\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}$ tsp
12. Extend Your Thinking Wil the product of $\frac{3}{9} \times \frac{4}{7}$ be the same
os the product of $\frac{1}{3} \times \frac{4}{7}$ Explain.
Yes. Sample answer: $\frac{3}{9}$ is equivalent to $\frac{1}{3}$.

© Reflect

When you multiply two fractions, is the product greater than, less than, of the same as the two fractions?
Answers may vary: you might disagree?

Practice

ETP Build Procedural Fluency from Conceptual Understanding
E Common Error: Exercises 1-6 Be sure students are shading to show a part of a part to show multiplication rather than shading to show addition. Have students use two different colors such as red and yellow so they can be sure they are making a new color to show the answer (orange).

Practice Item Analysis

Item	DOK	Rigor
$1-6$	1	Procedural Skill \& Fluency
$7-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you represent the multiplication of two fractions? Why is the product less than the two fractions?
Ask students to share their reflections with their classmates.

Math is... Yindset

- What helped you work well with a classmate even when you might disagree?
Students reflect on how they developed stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use a representation to multiply a fraction by a fraction.
- I can explain how to use a representation to multiply a fraction by a fraction.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.
Assign the OnMy Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item DOK Skill	Standard		
1	1	Multiply a fraction by a fraction using representations	5.NF.B.4.a
2	2	Multiply a fraction by a fraction using representations	5.NF.B.4.a
3	2	Multiply a fraction by a fraction using representations	5.NF.B.4.a

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
Additional Practice or any of the (B) or activities
2 of 3 Take Another Look or any of the (3) activities
1 or fewer of 3 Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation
(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 10-3

Exit Ticket

Name
2. What is the product? Use the representation to solve. $\frac{2}{3} \times \frac{4}{5}=$?

A. $\frac{6}{1}$

B.	$\frac{8}{8}$
D.	$\frac{5}{15}$

2. Jackson plants wegetables in $\frac{1}{2}$ of hia gurden. He uses $\frac{3}{4}$ of the wogtable section for pumiplins. What traction of the entie garden does Jsclson plant weth pumplins? Use a representsion to solve.
A. $\frac{1}{8}$ of the entire garden
B. $\frac{1}{4}$ of the entire garden
C. $\frac{3}{8}$ of the entire garden
D. $\frac{4}{6}$ of the entire garden
3. A dell uses rye bread for $\frac{4}{5}$ of the sandwiches ordered. Of those, $\frac{1}{1}$ ore ham sandwiches. What fraction of al the sandwiches the dell makes is a ham sandwich on rye bread? Use a ropresentation to solvo.
A. $\frac{4}{5}$ of al the sandwiches
B. $\frac{5}{7}$ of all the sandwiches
C. $\frac{4}{8}$ of all the sandwiches
D. $\frac{5}{8}$ of all the sandwiches

Reflect On Your Learning

Reinforce Understanding

Fraction Windows

Work with students in pairs. Students divide their paper into equal parts, and color some of the parts, and write the fraction represented by the colored parts. Then they combine their papers into a single image using both colors and work together to write a fraction. If students have difficulty, help them recognize that the numerator is the number of parts of each color and the denominator is the number of parts on each paper.

Build Proficiency

Practice lt! Game Station
Fraction Multiplication Task Cards Students practice representing the multiplication of fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 111-112

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Anem

Student Practice Book, pp. 111-112

Extend Thinking

Use It! Application Station
Fraction of a Fraction Students use fractions to follow and change a recipe.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 112

Lesson 10-3-Extend Thinking
 Represent Multiplication of a Fraction by a Fraction

Name
Write the equation represented by the area model. Then shade the new area model to represent the same product.

IIferestation Resercer loos

Learning Target

- I can multiply a fraction by a fraction.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

Vocabulary

Math Terms
denominator numerator
\section*{Academic Terms} arguably speculate

Materials

The materials may be for any part \diamond 5.NF.B.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivaleafithe desson. the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $\frac{2}{3} \times 4 \quad$ - grid paper $=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$. (In general, $\frac{a}{b}=\frac{c}{d} \quad \frac{a c}{b d}$). \quad index cards

Math Practices and Processes

MPP Look for and express regularity in repeated reasoning.
MPP Look for and make use of structure.

Focus

Content Objective

- Students multiply a fraction by a fraction by multiplying the numerators and multiplying the denominators.

Language Objectives

- Students talk about multiplying a fraction by a fraction by multiplying the numerators and denominators using relate.
- To support cultivating conversation, ELs participate in MLR3: Critique, Correct, and Clarify.

SEL Objective

- Students analyze the components of a problem to make informed decisions when engaging in mathematical practices.

Coherence

Previous	Now	Next
- Students multiplied a fraction by	• Students multiply a fraction by a	
a whole number (Grade 4).	fraction.	- Students determine the area of a rectangle with fractional side lengths (Unit 10).
- Students represented multiplication of a fraction by a fraction (Unit 10).		- Students interpret and compute quotients of fractions (Grade 6).

Rigor

Conceptual Understanding

- Students notice and generalize a pattern that connects the area model to an equation.

Procedural Skill \& Fluency

- Students build proficiency with representations and multiplication involving fractions.

Application

- Students solve word problems.

Application is not a targeted element of rigor for this standard.

Number Routine Decompose It ${ }_{5-7 \text { min }}$

Build Fluency Students build number sense as they decompose a fraction in at least two ways. These prompts encourage students to talk about their reasoning:

- What are you being asked to do?
- What do you notice about the fraction?
- What do you think you should do first?
- What strategy can you use to decompose the fraction?
-What patterns do you see?
- How can a pattern help you decompose a fraction in a different way?

Purpose Students consider story contexts that involve multiplying a fraction by a fraction.

Notice \& Wonder

-What could the question be?
Teaching Tip Have students work in pairs to discuss prior knowledge about similar problems.

ETP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of multiplying a fraction by a fraction and are based on possible comments and questions that students may make during the share out.
-What operations could you do with the numbers given?

- What quantities could you find that make sense in this problem?

Math is... Yindset

- How does a plan help you solve a problem?

SEL

Responsible Decision-Making: Solve Problems
As students work through the Notice \& Wonder routine, encourage them to analyze or think about the problem critically before they take steps toward solving. Having them consider what information they have, what question is being asked, and what tools they may use can help students make sense of the problem. This analysis can help students make more informed mathematical decisions.

Transition to Explore \& Develop

Ask questions that get students thinking about multiplying fractions. Guide the discussion to have the students think about how to find the product of fractions. If students bring up multiplying numerators and multiplying denominators organically, bring that into the discussion, but if students do not introduce the concept during this part of the lesson, they will be reminded of it in the Explore \& Develop.

Establish Mathematics Goals to Focus Learning

- Let's think about a strategy for multiplying fractions.

(1) Pose the Problem

Learn

Sor's mother gives him $\frac{2}{3}$ of a plece of raisin toest. He cats $\frac{t}{4}$ of what she gawe him.
What fraction of the whole piece of toast did Sol eat?

The equation $\frac{1}{4} \times \frac{2}{3}=D$ can be used to represent the problem.

You can find the product of two fractions by multiplying the numerators and muitiplying the denominators.

C. Work Together

Ewan colored $\frac{5}{6}$ of a plece of paper. He used purple to color $\frac{1}{4}$ of the portion of the paper he has colored. What fraction of the paper is purple?
$\frac{5}{24}$ of the paper

Pose Purposeful Questions

- How can you use the picture to help you understand this problem? - How can you represent this problem?

(2) Develop the Math

Choose the option that best meets your instructional goals.

MLB
Critique, Correct, and Clarify
Make a false claim for students to critique. Write the following on the board: $\frac{3}{4} \times \frac{2}{3}=\frac{3+2}{4+3}=\frac{5}{7}$. Am I correct? Ask students to correct the statement, explaining how they know it's incorrect. Revisit this routine throughout the lesson to provide reinforcement.

(3) Bring It Together

$\stackrel{\text { EIP }}{5}$ Elicit and Use Evidence of Student Thinking

- What shortcut or rule have you found for multiplying a fraction by a fraction?

Key Takeaway

- To multiply a fraction by a fraction, multiply the numerators and multiply the denominators.

Work Together

Students use equations to multply a fraction by a fraction.
Common Error: When multiplying fractions, students may only multiply numerators and keep the denominator of the first factor as they did when multiplying a fraction and a whole number. Remind them that both ned to be multiplied.

LOM
 Language of Math

Denominator is a Latin word meaning "that which names." The denominator names the partition the fraction is representing.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore efficient strategies for multiplying two fractions.
Directions: Display 4 or 5 multiplication expressions involving two fractions. Tell students that they will find each product and look for patterns.

EBP Support Productive Struggle

- What strategy did you use to find each product?
- Are your products reasonable? How do you know?
- Can you find any shortcuts to help you solve more efficiently? If so, describe them.
-What patterns do you notice when multiplying two fractions? Why do those patterns exist?

Math is... Structure

- How could you use this strategy to multiply a whole number by a fraction?
Students step back for an overview and shift perspective, allowing them to apply the strategy they have just learned to a scenario they investigated earlier.

Activity Debrief: Students should notice that one way to multiply two fractions is to multiply the numerators and multiply the denominators. These products are the numerator and denominator of the product. They can use properties of operations to explain why this occurs.

Have students revisit the Pose the Problem question and discuss answers

- How can you determine what fraction of the whole piece of toast Sol ate?

Guided Exploration

Students extend their understanding of multiplying fractions to using equations to find the product.

EIP Use and Connect Mathematical Representations
 Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have students represent the equation $\frac{1}{4} \times \frac{2}{3}$. Ask:

- What fraction of a whole should you represent? Why?
- How should you partition that fraction? Why?
- What should you shade next? Why?
- How many equal parts is the whole partitioned into?
- Think About lt: Does Sol eat more or less than $\frac{2}{3}$ of the piece of raisin toast? How do you know?

Math is... ztructure

- How could you use this strategy to multiply a whole number by a fraction?
Students step back for an overview and shift perspective, allowing them to apply the strategy they have just learned to a scenario they investigated earlier.

2. Develop the Math

Sol's mother gives him $\frac{2}{3}$ of a plece of raisin toast. He eats $\frac{1}{4}$ of what she gave him. What fraction of the whole plece of toast does Sol eat?

Developing/Expanding Explain whole piece of toast, using a piece of paper. Say This is a piece of paper. Then cut it in two. Hold one half up and say This is half a piece of paper. Show students another piece of paper. Say This is a whole piece of paper. Then send students to the Learn page and point to the picture. Have them complete the sentence: That's a \qquad (whole) piece of toast.

Bridging/Reaching Ask students to read the word problem at the top of the Learn page, focusing on the phrase whole piece of toast. Ask them to come up with other phrases that can have both whole and piece in them (whole piece of paper, whole piece of bread, whole piece of cake, etc.). For students who may need more help, provide visual cues or references.

OnMy Own MATM GO

Name
Complete the equation.

$$
\begin{array}{ll}
\text { 1. } \frac{1}{5} \times \frac{1}{5}=\frac{1 \times 1}{5 \times 5}=\frac{1}{25} & \text { 2. } \frac{2}{3} \times \frac{7}{5}=\frac{2 \times 7}{3 \times 8}=\frac{14}{24} \\
\begin{array}{ll}
\text { 3. } \frac{2}{3} \times \frac{4}{3}=\frac{8}{27} & \text { 4. } \frac{3}{7} \times \frac{4}{5}=\frac{12}{35}
\end{array}
\end{array}
$$

5. On Sundry. Aisha used $\frac{3}{4}$ of a bag of oranges to make tresh orange pice. On Monday, she used $\frac{4}{5}$ as many oranges as on Sunday. How many bags of oranges did she use on Mondery?
$\frac{3}{4} \times \frac{4}{5}=\frac{12}{20} ; \frac{12}{20}$ bag
6. Tabehs and Aly are putting together a puzzie. They have $\frac{3}{5}$ of tre purzie completed. It Tabithe put $\frac{1}{2}$ of the partly-Enished purrie togethet what fraction of the puzsle did she put toperther?

$\frac{3}{10}$ of the puzzle
7. Onciatine and her friends shared $\frac{2}{3}$ of a bag of snacks. Her friends ate $\frac{4}{5}$ of what was shared. How much of the bag of snacks dic they eat? $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}, \frac{8}{15}$ of the bag
8. Error Anelysis Joelle thinks that the product of $\frac{7}{6} \times \frac{3}{10}$ is
greater than the product of $\frac{3}{85} \times \frac{7}{50}$. How do you respond to Joelle's thinking?
$\frac{7}{8} \times \frac{3}{10}=\frac{21}{80}, \frac{3}{8} \times \frac{7}{10}=\frac{21}{80}$, The product of each pair of fractions is equal.
9. Complete the equation.

$$
\frac{1}{8} \times \frac{1}{3}=\frac{1}{24}
$$

10. STEM Connection Saffion is baking a sweet potato ple. Her recipe calls for $\frac{3}{3}$ cup of sugat. Eshe wants to make $\frac{1}{2}$ of the recpe, now much sugar will she need?
$\frac{2}{3} \times \frac{1}{2}=\frac{2}{6}=\frac{1}{3}$
11. Extend Your Thinking When you add fractions, the
denominators stog the same. But, when you mutiply fractions thoy do not. Explain why.
When you add fractions you are counting parts of the whole, 50 parts stay the same size. When you multiply, the parts may change size because you are finding part of a part.

(Peflect

How can you mutiply tractions without using a drawing? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercise 8 Students may think that because the first factor is greater in the first multiplication, the product is greater, but the products of the numerators, and the products of the denominators, are equal in both expressions.

Practice Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-7$	2	Application
8	3	Conceptual Understanding
9	1	Procedural Skill \& Fluency
10	2	Application
11	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you multiply fractions without using a drawing? Ask students to share their reflections with their classmates.

Math is... Mindset

- How has a plan helped you solve a problem?

Students reflect on how they practiced responsible decision-making.

Learning Targets

Ask students to reflect on the Learning Target of the lesson.

- I can multiply a fraction by a fraction.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formaive Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK	Skill
1	1	Multiply a fraction by a fraction	Standard
2	1	Multiply a fraction by a fraction	5.NF.B.4.a
3	2	Multiply a fraction by a fraction	5.NF.B.4.a

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

3 of 3	Additional Practice or any of the B or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \boldsymbol{B} activities
1 or fewer of 3	Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Reinforce Understanding

Flip It, Solve It!

Work with students in pairs. Write 6 fractions (for example: $\frac{1}{3}, \frac{1}{4} \frac{1}{2}$, the board. Provide notecards and multiplication charts, and have them copy one fraction onto each notecard. Students will take turns flipping over one card and multiplying it by $\frac{1}{2}$ Students discuss if they agree on the product.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Multiply Two Fractions
- Multiply Two Fractions-Word Problems

Differentiation Resource Book, p. 113

Lesson 10-4 - Reinforce Understanding Multiply a Fraction by a Fraction

Name

Review

We can mutiply the numerators and multiply the denominators to find the product of twe fraction. Consider $\frac{3}{5} \times \frac{4}{9}$.

Multiply 3 times 4 to find the numerator. Multiply 5 times. 7 to find the denominator. $\frac{3}{5} \times \frac{4}{7}=\frac{3 \times 4}{5 \times 7}$

As a resuc. $\frac{3}{5} \times \frac{4}{4}=\frac{3}{35}$
Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 113-114

Lesson 10-4

Additional Practice

Name

Review

You can multiply a fraction by a fraction by multiplying the numerators and multiplying the denominators.
Alen lives $\frac{2}{5}$ mile from the park. He ran $\frac{3}{4}$ of the way to the park, then waloed. How far old Allen run?
To solve, find $\frac{3}{4} \times \frac{2}{5}$.
Multiply the denominators of the factors to get the denominator of the product. Multiply the numerators of the factors to get the ramerator of the product.
$\frac{3}{4} \times \frac{2}{3}-\frac{3 \times 2}{2 \times 3}=\frac{6}{20}$
Alen ran $\frac{5}{20}$ mile on the way to the park.
What is the product?
i. $\frac{2}{3} \times \frac{2}{5}=\frac{\frac{6}{15}}{}$ 2. $\frac{2}{4} \times \frac{5}{7}=\frac{\frac{10}{28}}{}$
2\{x $\{x\}=\frac{\text { 最 }}{}$ 4. $\frac{1}{17} \times \frac{5}{9}=\frac{30}{7}$

What is the product?

1. ${ }_{9}^{2} \times{ }_{11}^{5}=\frac{\frac{10}{99}}{}$
2. $\frac{4}{7} \times \frac{4}{9}=\underline{\frac{16}{63}}$
3. $\frac{3}{4} \times \frac{2}{5}=\frac{6}{20}$ or $\frac{3}{10}$
4. $\frac{2}{11} \times \frac{1}{3}-\frac{2}{33}$
5. $\frac{3}{9} \times \frac{3}{4}=\frac{24}{36}$ or $\frac{2}{3}$
c. $\frac{4}{9} \times \frac{4}{9}=\frac{\frac{16}{81}}{81}$
6. $\frac{1}{5} \times \frac{7}{10}=\frac{\frac{21}{50}}{50}$
7. $6 \times \frac{5}{8}=\frac{15}{48} \circ+\frac{5}{16}$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 113-114

Extend Thinking

Use It! Application Station
If, Then Students use if/then statements
to write a problem in which they make a true or false statement that uses multiplication of fractions.
The content of this card has concepts
 covered later in Lesson 10-7. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 114

Determine the Area of Rectangles with Fractional Side Lengths

Learning Targets

- I can find the area of a rectangle with fractional side lengths by tiling it with unit squares with unit fraction side lengths.
- I can find the area of a rectangle with fractional side lengths by multiplying the side lengths.

Standards \circ Major \triangle supporting \circ Additional

Content

\diamond 5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
5.NF.B.4.b Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
Math Practices and Processes
MPP Look for and express regularity in repeated reasoning.

Focus

Content Objectives

- Students find the area of a rectangle with fractional side lengths by tiling it with unit squares.
- Students find the area of a rectangle with fractional side lengths by multiplying the side lengths.

Language Objectives

- Students explain how to find the area of a rectangle with fractional side lengths using the verb tile.
- To support sense-making, ELs participate in MLR2: Collect and Display.

Coherence

Previous

- Students multiplied a fraction by a whole number (Grade 4).
- Students multiplied a fraction by a fraction (Unit 10).

Now

- Students determine the area of a rectangle with fractional side lengths.

SEL Objective

- Students discuss how a mathematical rule or routine can help develop mathematical skills and knowledge.

Rigor

Conceptual Understanding

- Students build understanding about multiplying fractions using the concept of area.

Procedural Skill \& Fluency

- Students build proficiency multiplying fractions.

Application

- Students solve word problems.

Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
area	expand
square unit	reflect

Materials

The materials may be for any part of the lesson.

- blank spinners
- grid paper
- rulers

Number Routine Which Benchmark Is It Closest To? © ${ }^{5-7 \mathrm{~min}}$

Build Fluency Students build understanding of fractions as they compare fractions to benchmarks. Students decide which benchmark each fraction is closest to.

Remind students that exact positioning is not necessary, but they should decide between which benchmarks the fractions belong and approximately how close to the benchmarks each fraction would be.

These prompts encourage students to talk about their reasoning:
-What are you being asked to do?

- How did you know where to place each fraction along the number line?
- How can benchmarks help you compare fractions?

Purpose Students reflect on tiling a region with unit squares to find area to prepare them for tiling rectangles with fractional side lengths to find area.

Notice \& Wonder

-What do you see?
Teaching Tip Have students work in pairs to discuss what they think they notice and wonder about the image, and share ideas about what mathematics they might be able to do to solve a problem.

EIP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of find the area of a rectangle with fractional side lengths by tiling it and are based on possible comments and questions that students may make during the share out.

- How does finding area use muitiplication?
- What do you notice about the tiling of this floor that is similar to the tiling you have used to find the area of a rectangle? What is different?

Math is... Mindset

-What strategies help you work more efficiently?

SEL Self-Management: Organizational Skills

Organizing information and work can help students work through challenging mathematical tasks. Invite students to organize the rules or routines they will follow while working through the Notice \& Wonder routine. Have them list criteria they used to organize, and have groups of students compare these criteria. Ask them to discuss the pros and cons of each method, and then use the organizational pros to develop an organizational method they think will be useful in finding areas of rectangles.

Transition to Explore \& Develop

Ask questions to get students thinking about how they would find the area of the floor shown.

EIP Establish Mathematics Goals to Focus Learning

- Let's think about a strategy for finding the area of rectangles where at least one side has a fractional length.

(1) Pose the Problem

Learn

How can you find the area of this rectangle?

One Way Tlie with unit squares.

1) Another Way Use the ares formula, $A=I \times$ w
$A=4 \times 5 \frac{1}{2}$
$=4 \times\left(5+\frac{1}{2}\right)$
$=4 \times 5+4 \times \frac{1}{2}$
$=20+2$ Decompose $5 \frac{1}{2}$, Distributive Property Mutiply. Add.

How did you use the Distributive Property to count squares?

The area of the rectangle is 22 square unds.
Whether counting unit squares or using a formula. the area is the same.
Q Work Together

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how to find the area of a rectangle that has fractional side lengths.

Materials: grid paper, fraction tiles
Directions: Have students work together to solve the Pose the Problem. Students may use any strategy or tool to solve.

ETP Implement Tasks that Promote Reasoning and Problem Solving

-Can you draw a picture or representation to help you solve?

- How does your work show $5 \frac{1}{2}$ units?
- How does your work show 4 units?
- How does your work show the area of the rectangle?
- Is there another way to explain how to find the area of the rectangle?

Activity Debrief: Have students share their strategies for finding the area. Encourage students to look for similarties and differences among using grid paper to count unit squares and using fraction tiles. Compare both of these representations to using the area formula, focusing attention on using the Distributive Property to solve.

Math is... Generalizations

- How did you use the Distributive Property to count squares? Students notice if calculations are repeated. In this case that the whole and the half unit squares in the counting strategy appear in the area forrmula as the (4×5) and $\left(4 \times \frac{1}{2}\right)$ terms.

Guided Exploration

Students extend their understanding of multiplication with fractions to multiply with a mixed number to find the area of a rectangle.

EIP Use and Connect Mathematical Representations
 (2. Have the students determine how many whole unit squares they

 would use. Ask:- What are the length and width of the rectangle?
- How many rows and columns of unit squares can you use?
- How many unit squares are in that tiling or array of unit squares?
- Think About It: How do you know you can use half unit squares to tile the remaining area?

Have the students determine how many half unit squares they would use. Ask:

- How many half unit squares can you use to fill the remaining area? How do you know?
Q. Have the students determine the number of whole unit squares they used in all. Ask:
- How many whole unit squares did you use?
- How many whole unit squares are 4 half unit squares equal to?

Math is... द्धeneralizations

- How did you use the Distributive Property to count squares? Students notice if calculations are repeated. In this case that the whole and half unit squares in the counting strategy appear in the area formula as the (4×5) and $\left(4 \times \frac{1}{2}\right)$ terms.

2. Develop the Math

How can we find the area of this rectangle?
We can tile the rectangle with unit squares.
How many whole unit squares will you use?
P日

EL

English Learner Scaffolds

Entering/Emerging Explain whether. Put 20 cm cubes on the desk and count them aloud. Then sort them into groups of 2 and count by 2 . Say If I sort them into groups of 2, the total is still 20. Repeat, sorting them into groups of 5. Then say Whether I sort these into groups of 2 or 5 , the total is still 20. Ask Whether grouping by 2 or 5 , is total is still 20 . Then present the students with 10 the total the same?

Developing/Expanding Explain whether. Put cubes on the desk and count them aloud. Then sort them into groups of 2 and count by 2 . Say If $/$ sort them into groups of 2, the total is still 20. Repeat, sorting them into groups of 5 . Then say Whether I sort these into groups of 2 or 5 , the counters and the sentence frame: I sort the into groups of ___ or __, the total is the same.

Bridging/Reaching Guide students to the Learn page. Show them the sentence using whether. To ensure comprehension, ask what they think whether means (either way, no matter what, etc.). Then ask students to use whether in a sentence. Validate and make corrections to vocabulary, grammar, and meaning as needed.

Name
What is the area of the shaded rectangle?
2

2.

$\frac{1}{8}$ square in.
$\frac{6}{15}$ square ft

4.
$4 \frac{2}{3}$ square in.
\qquad
5. What is the area of a square with site lengths of $\frac{1}{3}$ inch? $\frac{1}{9}$ square in.
6. A piece of paper is $1 \frac{1}{4}$ inches long and 2 inches wide. What is the ares of the piece of paper?
$2 \frac{2}{4}$ or $2 \frac{1}{2}$ square in.
z. STEM Connection A geologist is surveying land that is $\frac{3}{4}$ mile wide by $\frac{7}{8}$ mile long, What is the ares of the fond the geologist is surveying? $\frac{21}{32}$ square mi
8. The top of a table measures $1 \frac{3}{4}$ feet by 2 feet.

What is the ares of the tabletop?
$3 \frac{2}{4}$ or $3 \frac{1}{2}$ square ft
9. A tamer plants crops in a section that is $\frac{4}{3}$ mile long by $\frac{9}{6}$ mile wide. What is the ares of the section?
$\frac{36}{50}$ square mi
10. Extend Your Thinking A square has an ares of $\frac{5}{25}$ square inches. What are the side lengths of the square? Explain your masoning $\frac{4}{5}$ in.; Sample answer: A square has sides of equal length; $4 \times 4=16$, so the numerator of the side length is $4: 5 \times 5=25$, so the denominator of the side length is 5 .
(D) Reflect

How can you find the area of rectangles with fractional side lengths? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding
E Common Error: Exercise 5 Students may have forgotten some geometry and stumble over this question. Remind them that: 1) squares are rectangles so the strategies they have learned apply to them; and 2) the side length of one side of a square is the same as all its other side lengths.

Practice Item Analysis

Item	DOR	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-9$	2	Application
10	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you find the area of rectangles with fractional side lengths? Ask students to share their reflections with their classmates.

Math is... Mindset

- What strategies helped you work more efficiently?

Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can find the area of a rectangle with fractional side lengths by tiling it with unit squares with unit fraction side lengths.
- I can find the area of a rectangle with fractional side lengths by multiplying the side lengths.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item poK Skill	Standard		
1	1	Find area of rectangles with fractional side lengths	5.NF.B.4.b
2	1	Find area of rectangles with fractional side lengths	5.NF.B.4.b
3	2	Find area of rectangles with fractional side lengths	5.NF.B.4.b

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
Additional Practice or any of the © or $\boldsymbol{\beta}$ activities Take Another Look or any of the (B) activities
1 or fewer of 3 Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 10-5

Exit Ticket

Name

1. A square tile measures $\frac{1}{6}$ foot along each side. What is the ares of the tlie?
(A) $\frac{1}{36}$ square foot
B. $\frac{4}{58}$ square foot
c. $\frac{1}{2}$ square foot
D. $\frac{4}{6}$ square foot
2. Wrich multiplication is shown by the tiles?

A. $5 \times 6=30$
B. $5 \times 6 \frac{1}{4}=30 \frac{1}{4}$
C. $5 \times 6 \frac{1}{4}=31 \frac{1}{4}$
D. $5 \times 6 \frac{1}{4}=32 \frac{1}{2}$
3. Katie measures the top of a plece of wood. It is $\frac{1}{2}$ foct long and $\frac{7}{f}$ foot wide. What is the ares of the top of the piece of wood?
A. $\frac{7}{15}$ square foot
B. 易 square foot
c. $\frac{8}{1 / 5}$ squave foot
D. $\frac{\pi}{8}$ square foen

Reflect On Your Learning

Reinforce Understanding

Areas with Mixed Numbers

Work with students in pairs. Have students fill in a blank spinner with mixed numbers with denominators of 2,3 , or 4 . Each student spins the spinner once. One student draws the length of a rectangle and labels it with number spun. The other student draws and labels the width of the rectangle. The students work together to find the area of the rectangle. Encourage students to separate the rectangle into parts and find the area of each part.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Multiply Two Fractions-Models

Differentiation Resource Book, p. 115

Lesson $10-5 \cdot$ Reinforce Understanding
Determine the Area of Rectangles with Fractional Side Lengths

Name

Review

We can deterrine the area of a rectangle by finding the number of whole unts and then finding the number of tractionst unts Convider a rectangle that is 6 units by $5 \frac{1}{2}$ unias.

There are 5 rows of 5 square untes:

$$
6 \times 5=30 \text { units }
$$

There are 6 thalt-square unts

$$
6 \times \frac{1}{2}=3 \text { units }
$$

Altogethet, there are $30+3=33$ square unts
Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 115-116

tesson 10.5

Additional Practice

Name

Review

You can find the area of a rectangle with fractional side lengths by tiling the rectangle with unit squares and multiplying the length and width.
A tectangular garden is $10 \frac{1}{2}$ feet long and 5 feet wide. What is the ares of the gardent
Find the snea of the rectangle

		$\\|$	\quadCount the lengtr: $10 \frac{1}{2}$ units
			Count the wicth: 6 units.

Multiply the lengeh and the woth to find the atea.
Number of whole square units: $6 \times 10=60$
Number of half-square units: $6 \times \frac{1}{2}=3$
Total number of square units: $60+3=63$
The ares of the garden is 63 square units.
What is the area of the rectangle?

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Aselon

Lesson 10.5 . Extend Thinking
 Determine the Area of Rectangles with Fractional Side Lengths

Fill in the requested information for the rectangle. Then draw a different rectangle with the same area. Write the multiplication equation that represents the area of the new rectangle.

1. The rectangle has the dimensions: $9 \frac{1}{2}$ units by 5 unts

2. Alls rectangular bedroom is 11 feet long and $9 \frac{1}{2}$ feet wide. What is the area of the floor in -ill's bedroom? $104 \frac{1}{2}$ square feet
3. Jake's veputable garden is if the shape of a rectangle. The gaiden is 24 feet long and $5 \frac{5}{6}$ feet wide. What is the area of Jivee's vegetable garden?

tubent Pactice lion

Extend Thinking
 E

Use It! Application Station
This or That Students follow instructions to measure and cut materials.
The content of this card has concepts covered later in Lesson 10-8. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 116

Nane

Answers will vary for 2^{-1} rectangle. and an atea of $47 \frac{1}{2}$ soware units.

Represent Multiplication of Mixed Numbers

Learning Targets

- I can use an area model to represent multiplication of mixed numbers.
- I can use an area model to find partial products when multiplying mixed numbers.

Standards \circ major Δ Supporting \circ Additional

Content

\diamond 5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
\diamond 5.NF.B.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivalentw, maferials may be for any part
the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $\frac{2}{3} \times 4$ $=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$. (In general, $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$).

Math Practices and Processes

MPP Model with mathematics.

Vocabulary

Math Terms

area model decompose mixed number partial products
accurate

Academic Term

establish

Materials

- blank spinners
- fraction tiles
- grid paper

Focus

Content Objectives

- Students use an area model to represent multiplication of mixed numbers.
- Students find partial products using an area model.

Language Objectives

- Students talk about using an area model to represent multiplication of mixed numbers using the terms similar to and different from.
- To support optimizing output, students participate in MLR3 Info Gap.

SEL Objective

- Students engage in respectful discourse with peers about various perspectives for approaching a mathematical challenge.

Next

- Students multiply mixed numbers using equations and partial products (Unit 10).
- Students interpret and compute quotients of fractions (Grade 6).

Coherence

Previous	Now	Next
- Students multiplied a fraction by	• Students multiply mixed	
a whole number (Grade 4).	numbers using area models and partial products.	- Students multiply mixed numbers using equations and partial products (Unit 10).
- Students determined the area of a rectangle with fractional side lengths (Unit 10).	- Students interpret and compute quotients of fractions (Grade 6).	

Rigor

Conceptual Understanding

- Students build understanding of multiplying mixed numbers using representations.

Procedural Skill \& Fluency

- Students build proficiency for adding fractions by using multiple strategies.

Application

- Students solve problems with real-world contexts.
Application is not a targeted element of rigor for this standard.

Number Routine Decompose It © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they decompose each decimal in at least two ways.
Record decompositions as students share with classmates.

These prompts encourage students to talk about their reasoning:

- What are you being asked to do?
- What do you notice about the numbers? What do you think you should do first?
-What strategy can you use to decompose the numbers?
- How can a pattern help you decompose a decimal in a different way?

Purpose Students are given entry into using area models to multiply mixed numbers by comparing a mixed number area model or a whole number area model.

Notice \& Wonder

- How are they the same?
- How are they different?

Teaching Tip As students notice and wonder, you may want to have them copy down the area models on a piece of paper so they can examine and compare them more easily.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of using an area model to represent multiplication of mixed numbers and are based on possible comments and questions that students may make during the share out.

- When have you used an area model before?
- What do you notice about the numbers represented in the area models?

Math is... Mindset

- How does a different perspective help you with your work?

Social Awareness: Develop Perspective

Encourage students to think about different ways to consider the Notice \&
Wonder routine. With a partner, have them share different tools/strategies/ representations/methods they can use to explore how the area models are related. Invite students to consider and build off their partner's ideas.

Transition to Explore \& Develop

Ask questions that get students thinking about how decomposing multi-digit numbers is similar to decomposing mixed numbers.

ETP Establish Mathematics Goals to Focus Learning

- Let's think about how we can use area models and partial products to multiply mixed numbers.

(1) Pose the Problem

Learn

How can you determine $6 \frac{2}{3} \times 4 \frac{1}{4}$?
You can use an area model and partiol products.

You can use an area model to represent the muitiplication of mixed numbers. Then add the partial products to determine the product:

C Work Together

Use an aree model to solve.
$4 \frac{1}{2} \times 1 \frac{3}{4}=7 \frac{7}{8}$
Check students" work.

Pose Purposeful Questions

- Based on what you know about mathematics, can you make a conjecture about how to represent the product?
- Do you think there will only be one way to determine the product? Why or why not?

(2) Develop the Math

Choose the option that best meets your instructional goals.

MLR
 Info Gap

Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to solve the problem. Instruct Partner B to ask A what information they need, and for A to respond, explaining why they need it. Have students continue until the problem is completed.

(3) Bring It Together

戊
 Elicit and Use Evidence of Student Thinking

- How can you represent multiplication of mixed numbers using an area model?
- How can you determine the partial products using an area model that represents mixed numbers?
- What are some ways you can add the partial products when they are fractions?

Key Takeaways

- An area model can be used to represent multiplication of mixed numbers.
- The partial products strategy can be extended to mixed numbers.

Work Together

Students solve a multiplication equation involving mixed numbers using an area model and partial products. Encourage students to use any known strategy to add the partial products.

Common Error: Remind students to first decompose each factor before creating their area model.

LOM
 Language of Math

Explain to students that a mixed number is called that because it is composed of more than one type of number-a whole number as well as a fraction. Similarly, mixed berries or mixed nuts are composed of more than one type of berry or nut. Encourage students to use the term mixed number throughout the lesson so that they become more familiar with it.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore area models for multiplication to extend to multiplying two mixed numbers.

Directions: Ask students to write a multiplication problem involving two 2-digit numbers and draw an area model to represent the product. Have students record as many ways as possible to decompose the factors. Invite students to share ways they decomposed the factors, focus attention on similar methods of decomposing, such as by place value.

- Do you think these methods of decomposing will work for multiplying two mixed numbers?

Have students explore different ways to decompose the factors $6 \frac{2}{3}$ and $4 \frac{1}{4}$ to find their product.

ETP

Support Productive Struggle

- How can you decompose the factors?
- How can you determine the partial products?
- How can you determine the product?
- Is your answer reasonable? How do you know?
- How is using an area model helpful when multiplying mixed numbers?

Math is... Yodeling

- How is this area model similar to or different from area models you have used before?
Students are connecting the models they have used to understand multiplication.

Activity Debrief: Discuss with students that an area model is one method they can use to multiply mixed numbers. Using this method, they can decompose each factor, find partial products, and add the partial products to calculate the product.

Guided Exploration

Students represent a multiplication equation involving mixed numbers using an area model and partial products.

ETR Facilitate Meaningful Mathematical Discourse

- Think About It: What representations did you use to multiply whole numbers?
(8) Have the students decompose the factors. Ask:
-What can you decompose a mixed number into?Have the students determine the partial products. Ask:
- What multiplication expression can you use to represent the area of each region of the area model?
- What is the partial product for each region?

Have the students add the partial products. Ask:

- What like denominator will you use?
- How will you rewrite each fraction as an equivalent fraction?

Math is... yodeling

- How is this area model similar to or different from area models you have used before?
Students are connecting the models they have used to understand multiplication.

2. Develop the Math

How can you determine $6 \frac{2}{3} \times 4 \frac{1}{4}$?
How can you represent the problem?

Developing/Expanding Explain similar to and different from. Show students similar objects. Point and say This one is similar to that one. Name similarities. Show two objects that are different. Point and say This one is different from that one. Name differences. Then have students repeat the activity with new objects, using similar to and different from. Provide sentence frames for students who need help.

Bridging/Reaching Ask students to explain the phrases similar to and different from, using classroom manipulatives to support their explanations. Allow students to interject, pointing out any mistakes that they may make in meaning or understanding. For example, No, those items are not similar to/different from each other because... or No, that's not correct because...

Name
Complete the area model. What is the product?

1. $1 \frac{1}{3} \times 1 \frac{1}{2}=2$
2. $1 \frac{3}{4} \times 4=7$

What is the producty Use an area model to solve.
$\begin{array}{ll}\text { 3. } 1 \frac{1}{4} \times 1 \frac{1}{5}=1 \frac{1}{2} & \text { 4. } \frac{3}{5} \times 4 \frac{1}{2}=2 \frac{7}{10}\end{array}$
5. $3 \frac{1}{3} \times 1 \frac{1}{2}=5$
6. $2 \frac{1}{4} \times 2 \frac{2}{3}=6$
2. Aicen made $3 \frac{2}{3}$ Dones of pasta for the basebail team's dinnect. They ate onty $\frac{1}{3}$ of that amourt. How mary bowes of pasth dit the team ear?
$1 \frac{2}{9}$ boxes
8. STEM Connaction Siaffran used $2 \frac{1}{2}$ times mote flour than sugar while baking She used $3 \frac{1}{4}$ cups of sugat. How much fiour did she use?
$8 \frac{1}{8}$ cups

9. Kayla fils ner flowerpots wh $3 \frac{1}{2}$ quarts of potting soil. Leon
has $2 \frac{1}{3}$ times as much soil as Kayla. How much potting soll does
teon have?
$8 \frac{1}{6}$ quarts
10. Extend Your Thinking How is decomposing mixed numbers different from decomposing numbers that contain decinats?
Sample answer: You decompose a mixed number so it is a whole number and then a fraction, while you decompose a number that contains a decimal by place value.

(OReflect

How can ares models help you represent multiplication of mixed numbers?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 3-6 Students may forget to include all partial products when adding to determine the final product. As they add fractions and mixed numbers, encourage them to use their area models to ensure they have included each partial product.

Practice Item Analysis

Item	DOK	Rigor
$1-6$	1	Procedural Skill \& Fluency
$7-9$	2	Application
10	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can area models help you represent multiplication of mixed numbers?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How has a different perspective helped you with your work today? Students reflect on how they practiced social awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use an area model to represent multiplication of mixed numbers.
- I can use an area model to find partial products when multiplying mixed numbers.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item poK Skill	Standard		
1	1	Represent multiplication of mixed numbers	5.NF.B.4.a
2	2	Represent multiplication of mixed numbers	5.NF.B.4.a

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

2 of 2
Additional Practice or any of the © or activities
1 of 2
0 of 2
Take Another Look or any of the (3) activities
Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 10.6

Exit Ticket

Name
. Juan uses an ares model to mutiply $9 \frac{2}{3} \times 7 \frac{5}{6}$.

Which equation shows how to find the product?
(A) $63+\frac{4}{\frac{4}{3}}+\frac{4}{8}+\frac{2}{18}=c$
a. $10+\frac{2}{2}+\frac{4}{6}+\frac{k}{2}=c$
c. $\frac{\frac{3}{3}}{}+\frac{35}{6}=c$
D. $63+\frac{10}{18}=c$
2. What is the product? Complete the ares model
$6 \frac{3}{4} \times 2 \frac{1}{5}=14 \frac{17}{20}$

Reflect On Your Learning

Reinforce Understanding

Multiply Mixed Numbers

Work with students in pairs. Students fill in a blank spinner with mixed numbers with denominators of 2,3 , or 4 . Each student spins the spinner once and multiplies the two mixed numbers using an area model and partial products. Students compare their results. If students have difficulty, help them break each mixed number into a whole number and a fraction, then multiply fractions and whole numbers to find the partial products.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Multiply Fractions/Mixed Numbers (Model)

Differentiation Resource Book, p. 117

Lesson 10-6-Reinforce Understanding
Represent Multiplication of Mixed Numbers
Name

Review		
You can use an ares model and partial products to represers the multiplication of mixed numbers.		
Consider the product $2 \frac{1}{3} \times 2 \frac{1}{4}$ unta. $2 \quad \frac{1}{4}$		Add the partiol products to determine the product
$2 \times 2 \times 2$	$\frac{1}{4}=\frac{2}{4}$	$=4+\frac{5}{76}+\frac{8}{81}+\frac{1}{72}$
$\frac{1}{3} \frac{1}{3} \times 2=\frac{2}{3}$	$\frac{1}{3} \times \frac{1}{4}=\frac{1}{12}$	$=4+$
The product of	$\times 2 \frac{1}{4} 65 \frac{1}{2}$	$\begin{aligned} & =4+1 \frac{2}{2} \\ & =5 \frac{3}{12} 0.5 \frac{1}{4} \end{aligned}$

What is the product Complete the area model to show your work.
4. $1 \frac{1}{4} \times 4 \frac{3}{3}=\frac{5 \frac{15}{16}}{}$
2. $2 \frac{1}{6} \times 3 \frac{1}{2}=7 \frac{7}{12}$

3. $6 \times 5 \frac{1}{4}=31 \frac{1}{2}$

E

Build Proficiency

Practice It! Game Station
Mixed Number Concentration
Students practice multiplying mixed numbers and fractions.

品聶 0.0

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 117-118

Lesson to-6

Additional Practice

Name

Review

You can use an area model to multiply mixed numbers.
Find the product $2 \frac{1}{3} \times 3 \frac{3}{4}$.
Use an areo mbdel

Add the four partial products: $6+1+\frac{6}{4}+\frac{3}{2}$ Add the whole numbers: $6+1=7$
Add the fractions $\frac{6}{4}+\frac{3}{6}=\frac{10}{12}+\frac{3}{12}=\frac{21}{12}=1 \frac{9}{12}$ or $1 \frac{3}{4}$
Add the whole mumbers and fractions: $7+1 \frac{3}{4}=8 \frac{3}{4}$ $50.2 \frac{1}{3} \times 3 \frac{3}{4}=8 \frac{3}{4}$.

What is the product? Complete the arpa model.

$$
2.1 \frac{13}{3} \times 1 \frac{4}{5}=3 \quad 2.2 \frac{5}{6} \times 3 \frac{1}{5}=\frac{9 \frac{1}{15}}{15}
$$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Extend Thinking

Use It! Application Station

Fraction of a Fraction Students use fractions to follow and change a recipe.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 118

Lesson 10-6-Extend Thinking
Represent Multiplication of Mixed Numbers
What equation can be written from the area model?
Complete the area model to write the equation.

	$\underline{4}$	3
	8	$\frac{4}{7}$
$\frac{1}{2}$	$\underline{2}$	$\frac{2}{14}$

3.

6. $\frac{x}{2 \times 3} \frac{7}{9}=7 \frac{5}{9}=$

Learning Targets

- I can use partial products to multiply mixed numbers.
- I can multiply mixed numbers by writing the mixed numbers as fractions and then multiplying fractions.

Standards \bigcirc Major \triangle Supporting O Additional

Content

5.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
\diamond 5.NF.B.4.a Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $\frac{2}{3} \times 4$ $=\frac{8}{3}$, and create a story context for this equation. Do the same with $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$. (In general, $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$).

Math Practices and Processes

MPP Look for and make use of structure.

Focus

Content Objectives

- Students use partial products to multiply mixed numbers by decomposing the mixed number into a whole number part and a fractional part.
- Students write mixed numbers as fractions, then multiply two fractions to find the product.

Coherence

Previous	Now	Next
- Students multiplied a fraction by	• Students multiply mixed	
a whole number (Grade 4).	numbers using equations and partial products.	Students interpret multiplication as scaling (Unit 10).
- Students multiplied mixed numbers using area models and partial products (Unit 10).		Students interpret and compute quotients of fractions (Grade 6).

Rigor

Conceptual Understanding

- Students build understanding of multiplying mixed numbers as they relate visual representations to equations.

Language Objectives

- Students discuss multiplying mixed numbers using the verb find.
- To support optimizing output, ELs participate in MLR7: Compare and Connect.

SEL Objective

- Students exchange ideas for completing a mathematical task with a peer and reflect on the value of their similarities and differences.

Number Routine Which Benchmark Is It Closest To? © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they decide which benchmarks fractions are closest to.

Remind students that exact positioning is not necessary, but that they should decide between which benchmarks the fractions belong and approximately how close to the benchmarks each fraction would be.

These prompts encourage students to talk about their reasoning:

- How can benchmarks help you compare fractions?
- How did you know where to place the dot along the number line?

Purpose Students consider story contexts that involve multiplying a mixed number by a mixed number.

Numberless Word Problem

- What is the question?

Teaching Tip You may want to have students write down their own answers and thoughts about what questions could be asked using the information given before having them share with the class.

EIR Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' understanding of choosing strategies to solve word problems involving multiplying a mixed number by a mixed number and are based on possible comments and questions that students may make during the share out.

- How would the question be different if you knew the amounts of soil?
- What kinds on numbers could be used to show the amount of soil they shoveled?

Math is... Yindset

- What are some ways to build a positive relationship with classmates?

SEL

 Relationship Skills: Build Relationships As students engage in collaborative discourse around the Numberless Word Problem routine, remind them that building relationships with others is an important part of being an effective and respectful communicator. Explain that one way to do this is by listening attentively when others are sharing their ideas about what question the numberless word problem is asking.
Transition to Explore \& Develop

Ask questions that get students thinking about how they would answer the question they posed if the problem involved amounts of soil that were mixed numbers.

[^7]
(7) Be Curious

What's the question?

To multiply mixed numbers. you can use partial products or write the miked numbers as fractions.

Q Work Together
Avt is $4 \frac{1}{2}$ years old. Her brother Ethan is $2 \frac{1}{3}$ times as old. How old is Ethan?
$10 \frac{1}{2}$ years old

(1) Pose the Problem

ERP Pose Purposeful Questions

- What are the important quantities in this problem?
- What repesentations do you know that might help you make sense of those quantities?

(2) Develop the Math

Choose the option that best meets your instructional goals.

MLR
 Compare and Connect

Pair students and assign a problem like the one on the Learn page. Instruct one student to use an area model and partial products to multiply and the other to write the mixed numbers as fractions. Then have them compare their strategies. Revisit this routine throughout the lesson as needed.

3 Bring It Together

Bir
 Elicit and Use Evidence of Student Thinking

- Which strategy for multiplying mixed numbers do you find more efficient? Why?

Key Takeaways

- Partial products can be used to multiply mixed numbers by decomposing the mixed number into a whole number part and a fractional part.
- Mixed numbers can also be written as fractions, then multiply two fractions to find the product.

Work Together

Students solve a word problem involving the multiplication of mixed numbers. Encourage students to use both an area model as well as writing the mixed numbers as fractions to solve.

Common Error: Students may mistakenly multiply the mixed numbers before renaming them as fractions, for example multiplying 4×2 and $\frac{1}{2} \times \frac{1}{3}$ to get $8 \frac{1}{6}$. Make sure students understand that neither strategy they have studied in this lesson works that way.

$\stackrel{\text { LOM }}{\sim}$ Language of Math

Make sure that students are precise as they discuss mixed numbers and fractions. A mixed number is not a fraction. A mixed number is wrtitten using a whole number part and a fraction part. Similarly, a fraction greater than 1 , if it is not written using a whole number part, is called a fraction, not a mixed number.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore different strategies for multiplying two mixed numbers.

Directions: Present students with these equations:
$1 \frac{1}{2} \times 2 \frac{3}{4}=4 \frac{1}{8} \quad \frac{3}{2} \times \frac{11}{4}=\frac{33}{8}$
Display these questions for students to consider as they analyze the equations:

- Is the product for each equation correct? How do I know?
- What is the same about these equations?
- What is different about these equations?
- How do the quantities in these equations relate?

ETP Support Productive Struggle

- How can you multiply two mixed numbers?
- How can you write a fraction that is equivalent to a mixed number?
- How can you multiply two fractions?

Math is... Structure

- Why should the products from each strategy be the same? Students step back for an overview and understand that, if strategies work, they must all yield the same results.

Activity Debrief: Have groups share what they discovered when analyzing these equations. Facilitate a discussion that there are two strategies that students can use to multiply two mixed numbers. One is using an area model to find partial products. Another is writing each mixed number as an equivalent fraction and multiplying the two fractions.

Have students revisit the Pose the Problem question and discuss answers.

- Taye shoveled $4 \frac{3}{5}$ wheelbarrows of soil. Rosa shoveled $2 \frac{1}{3}$ times as much soil as Taye. How many wheelbarrows of soil did Rosa shovel?

Guided Exploration

Students transition from using area models to multiply mixed numbers to writing mixed numbers as fractions and then multiplying.

EITP Facilitate Meaningful Mathematical Discourse

Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have the students determine the partial products. Ask:

- How will you decompose the factors? Why?
- What multiplication expression can you use to represent the area of each region of the area model?
-What is the partial product for each region?
- How will you add the partial products?
- Think About It: Why will writing each mixed number as a fraction let you solve this equation?
(1) Have the students rewrite the mixed numbers as fractions. Ask:
- How will you rewrite the mixed numbers as fractions? Why does your method work?
- Think About It: What is a shortcut for multiplying fractions?

Math is... Structure

-Why should the products from each strategy be the same?
Students step back for an overview and understand that, if strategies work, they must all yield the same results.

2. Develop the Math

Taye shoveled $4 \frac{3}{5}$ wheelbarrows of soil. Rose shoveled $2 \frac{1}{3}$ times as much soil as Taye.

How can you determine how many wheelbarrows of soll Rosa shoveled?

EL

English Learner Scaffolds

Entering/Emerging Write a multiplication problem with mixed numbers on the board. Then say I can either use an area model and partial products (demonstrate this) or write the mixed number as fractions (demonstrate this too) to multiply mixed numbers (point back to the multiplication problem). Guide students to this same sentence on the Learn page, pointing to what each part refers to on the page.

Developing/Expanding Write a multiplication problem with mixed numbers on the board. Then say I can either use an area model and partial products (demonstrate this) or write the mixed number as fractions (demonstrate this too) to multiply mixed numbers (point back to the multiplication problem). Guide students to this same sentence on the Learn page and have them point to what each part refers to on the page.

Bridging/Reaching Guide students to the Learn page and point them to the sentence To multiply mixed numbers, you can either use... Ask them to restate the meaning of the sentence (You have a choice of doing it this one way or this other way.). Validate or correct as necessary and then ask students to present two ways of solving a math problem using the structure You can either \qquad or \qquad

On My Own		(RATH)\|GO
Name		
What is the product? 1. $2 \frac{3}{5} \times 1 \frac{1}{3}=3 \frac{7}{15}$	2. $1 \frac{3}{4} \times 3 \frac{1}{3}=5 \frac{5}{6}$	
3. $2 \frac{2}{4} \times 3 \frac{1}{2}=8 \frac{3}{4}$	4. $1 \frac{1}{3} \times 4 \frac{2}{3}=6 \frac{2}{9}$	
5. $3 \frac{3}{4} \times 2 \frac{1}{2}=9 \frac{3}{8}$	5. $2 \frac{2}{5} \times 4 \frac{1}{4}=10 \frac{1}{5}$	
2. $5 \frac{1}{4} \times 2 \frac{3}{4}=14 \frac{3}{32}$	$2 \frac{1}{4} \times 3 \frac{3}{5}=8 \frac{1}{10}$	

2. The weight of Natale's backpack is shown. Her brother's
backpack weighs $2 \frac{1}{4}$ times that much. How much does Natalie's brother's backpock weigh?
15 pounds

3. The street Michele ilves on is $1 \frac{1}{2}$ miles fong. The street Lucas
ilves on is $1 \frac{2}{5}$ times as long as Michelle's street. How iong is the street Lucas lives on?
$2 \frac{1}{10}$ miles
4. Bensan bought this much dog food last week. This week he bought $2 \frac{1}{3}$ times as much as last week. How mary pounds of dog food did Benson buy this week? $8 \frac{1}{6}$ pounds
5. A rectangle has a length of $1 \frac{1}{3}$ yards and a wifth of $5 \frac{1}{4}$ yards.

What is the areas of the rectangie?
7 square yards
13. Error Analysls Bernardo solved the following problem. Did Bernardo mutiply conectly? Explain why or why not. $5 \frac{1}{2} \times \frac{2}{3}=5 \frac{2}{6}$
No; he muitiplied only the fractions and did not multiply the whole number and $\frac{2}{3}$, the correct answer is $3 \frac{2}{3}$,
34. Eatend Vour Thinking Wiil the product of mixed numbers aways be greater than the factors? How do you know?
Yes. Sample answer: mixed numbers include whole numbers that are greater than $\mathbf{1}$, sa when factors that are greater than 1 are multiplied by each other, the product will be greater than either factor.

(2)Reflect

How can you mutiply mowd numbers using fractions? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[1] Common Error: Exercises 1-8 If students multiply the mixed numbers by rewriting them as fractions, make sure students remain adept at converting mixed numbers into fractions greater than 1 . The conversion can be a source of "cascading" calculation errors.

Practice Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-12$	2	Application
$13-14$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you multiply mixed numbers using fractions?

Ask students to share their reflections with their classmates.

Math is... Mindset

-What helped you build a positive relationship with classmates? Students reflect on how they developed stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use partial products to multiply mixed numbers.
- I can multiply mixed numbers by writing the mixed numbers as fractions and then multiplying fractions.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK	Skill
1	1	Multiply mixed numbers	Standard
2	1	Multiply mixed numbers	5.NF.B.4.a
3	2	Multiply mixed numbers	5.NF.B.4.a

Data Use students' scores on the Exit Ticket to assign the
differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \mathbf{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Mixed Numbers Multiplication

Work with students in pairs. Each partner should write a mixed number, then both partners write a multiplication equation with the mixed numbers. Partners should solve using area models and partial products, and then should solve by writing the mixed numbers as equivalent fractions. Encourage students to discuss which strategy they prefer.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Multiplication of Mixed Numbers
- Multiply Mixed Numbers
- Multiply Fractions/Mixed Numbers

Differentiation Resource Book, p. 119
Lesson 10.7-Extend Thinking
Multiply Mixed Numbers
Nume
What two mixed numbers result in the product given? Rewarte the mixed numbers as fractions to help you find a possible equation. There may be more than one correct answer. The first one is done for you.

1. $3 \frac{2}{2} \times 2 \frac{7}{7}=9 \frac{\pi}{\frac{1}{2}}$
$3 \frac{1}{2} \times 2 \frac{7}{1}=\frac{18}{8}$ $\frac{5+7}{2} \times \frac{12+7}{6}=\frac{7 \times 17}{12}$ $\frac{5+1}{2} \times \frac{12+3}{6}=\frac{7 \times 17}{12}$ $\frac{7}{2} \times \frac{7}{8}=\frac{79}{82}$ $3 \frac{1}{2} \times 2 \frac{5}{6}=9 \frac{\pi}{2}$
2.

$1 \frac{7}{7} \times 2 \frac{7}{2}=\frac{65}{14}$
$\frac{7+6}{7} \times \frac{4+1}{2}=\frac{13 \times 5}{14}$ $1 \frac{6}{7} \times 2 \frac{1}{2}=4 \frac{9}{14}$

$$
\begin{aligned}
& \text { 3. } 2 \frac{\square}{8} \times 2 \square=6 \frac{5}{72} \\
& 2 \frac{7}{8} \times 2 \frac{7}{9}=\frac{437}{72} \\
& \frac{16+3}{8} \times \frac{18+5}{9}=\frac{19 \times 23}{72} \\
& 2 \frac{3}{8} \times 2 \frac{5}{9}=6 \frac{5}{72}
\end{aligned}
$$

Interactive Additional Practice

Assign the digital version
of the Student Practice Book.

Student Practice Book, pp. 119-120

Lesson $10-7$
 Additional Practice

Name

Review

You can multiply mixed numbers by rewriting each mised number as a fraction greater than 1.
A rectangular gorden is $3 \frac{1}{2}$ yards long and $2 \frac{1}{4}$ yarchs wide. What is the ares of the garden?
To solve, find the product $3 \frac{1}{2} \times 2 \frac{1}{4}$
Write each mbed number as if fraction greater than 1
$3 \frac{1}{2}=\frac{7}{2}$ and $2 \frac{1}{4}=\frac{2}{4}$
Multiply the fractions and write the answer as a mised number $\frac{7}{2} \times \frac{9}{4}=\frac{63}{8}=7 \frac{7}{8}$
The area of the ganden is $7 \frac{7}{8}$ square yarts.

$$
\begin{array}{ll}
\text { What is the product? } & \text { 2. } 1 \frac{5}{3} \times 2 \frac{2}{3}=4 \frac{1}{3} \\
\begin{array}{ll}
\text { 1. } 3 \frac{1}{2} \times 1 \frac{1}{5}=\frac{1}{4} & \text { 4. } 4 \frac{3}{4} \times 5 \frac{1}{5}=\frac{2}{15}
\end{array} \\
\begin{array}{ll}
\text { 5. } 4 \frac{2}{2} \times 2 \frac{13}{20} & \text { 6. } 2 \frac{1}{5} \times 2 \frac{3}{5}
\end{array} & 6 \frac{2}{9}
\end{array}
$$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 119-120

Extend Thinking

Use It! Application Station

If, Then Students use if/then statements to write a problem in which they make a true or false statement that uses multiplication of fractions.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 120

Lesson 10.7- Extend Thinking Multiply Mixed Numbers

Norse
What two miked numbers result in the product given? Rewrite the mixed numbers as fractions to help you find a possible equation. There may be more than one correct answer. The first one is done for you.
2. $\left.3 \frac{j}{j} \times 2\right\}=9 \frac{\pi}{7}$
$3 \frac{7}{2} \times 2 \frac{1}{6}=\frac{19}{19}$
$\frac{5+7}{2} \times \frac{12+7}{6}=\frac{7 \times 12}{2}$
$\frac{6+1}{2} \times \frac{12+5}{6}=\frac{7 \times 11}{12}$
$\frac{7}{2} \times \frac{7}{6}=\frac{79}{12}$
$3 \frac{1}{2} \times 2 \frac{5}{6}=9 \frac{7}{7}$
2.

$1 \frac{7}{7} \times 2 \frac{7}{2}=\frac{65}{14}$
$\frac{7+6}{7} \times \frac{4+1}{2}=\frac{13 \times 5}{14}$
$1 \frac{6}{7} \times 2 \frac{1}{2}=4 \frac{9}{14}$
3. $2 \frac{\square}{8} \times 2 \square=6 \frac{5}{72}$
$2 \frac{7}{8} \times 2 \frac{7}{9}=\frac{437}{72}$
$\frac{16+3}{8} \times \frac{18+5}{9}=\frac{19 \times 23}{72}$
$2 \frac{3}{8} \times 2 \frac{5}{9}=6 \frac{5}{72}$
4. $2 \frac{\square}{\square} \times \frac{\square}{3}=10 \frac{4}{15}$
$2 \frac{7}{5} \times 3 \frac{7}{3}=\frac{154}{15}$
$\frac{10+4}{5} \times \frac{9+2}{3}=\frac{14 \times 11}{10}$
$2 \frac{4}{5} \times 3 \frac{2}{3}=10 \frac{4}{15}$

Learning Targets

- I can explain how the size of the factors impacts the size of the product without performing the multiplication.
- I can explain why the product of a given number and a fraction greater than 1 is greater than the given number and why the product of a given number and a fraction less than 1 is less than the given number.

Standards - Major Δ Supporting O Additional

Content

\diamond 5.NF.B.5 Interpret multiplication as scaling (resizing), by:
\diamond 5.NF.B.5.a Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
\diamond 5.NF.B.5.b Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number; explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $\frac{a}{b}=\frac{n \times a}{n \times b}$ to the effect of multiplying $\frac{a}{b}$ by 1 .

Math Practices and Processes

MPP Model with mathematics.

Focus

Content Objectives

- Students explain how the size of the factors impacts the size of the product without performing the multiplication.
- Students explain how the product of a given number and a fraction is related to the size of the fraction.

Language Objectives

- Students explain why the product of a given number and a fraction is related to the size of the fraction.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students discover and discuss personal interests related to mathematics and share these interests with peers.

Coherence

Previous

- Students interpreted multiplication as a comparison (Grade 4).
- Students multiplied mixed numbers using equations and partial products (Unit 10).

Now

- Students interpret multiplication as scaling.

Next

- Students solve problems involving fractions (Unit 10).
- Students understand ratio concepts and language (Grade 6).

Rigor

Conceptual Understanding

- Students build understanding of multiplication as they determine how the size of one factor impacts the size of the product relative to the other factor.

Procedural Skill \& Fluency

- Students build proficiency interpreting multiplication.
Procedural Skill \& Fluency is not a targeted element of rigor for this standard.

Application

- Students interpret multiplication with fractions and mixed numbers in real-world contexts.

Application is not a targeted element of rigor for this standard.

Vocabulary

Math Term
scaling
\section*{Academic Terms}
complex
infer

Materials

The materials may be for any part of the lesson.

- index cards

Number Routine Greater Than or Less Than e ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they determine whether an addition expression is greater than or less than the benchmark of 10,000 .

Remind students that this is a mental activity, and that exact answers are not needed.

These prompts encourage students to talk about their reasoning:

- How did you determine the value of each expression?
- How did you know that your estimates were reasonable?
- Who thought about it in a different way? What is another way to think about the estimate? What is the value of each expression?

Purpose Students see that the size of the factors impacts the size of their product, in preparation for justifying and understanding why this is so.

Notice \& Wonder

- How are they the same?
- How are they different?

Teaching Tip You may want to have students discuss what they notice and wonder about the equation in pairs before discussing as a whole class.

GIP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of how the size of the factors impacts the size of the product in a multiplication equation and are based on possible comments and questions that students may make during the share out.

- What changes in the equations? What stays the same?
- Why do you think the equations on the right have products that are greater than the equations on the left?

Math is... Mindset

- What makes you feel excited when doing math?

Self-Awareness: Identify Emotions

Give students opportunities to share about themselves to reinforce their sense of identity and their emotions. As students work collaboratively to complete the Notice \& Wonder routine, invite them to share an emotion they feel related to math. Encourage them to think about how that emotion can help them with their work as they understand multiplication as scaling.

Transition to Explore \& Develop

Ask questions that get students thinking about multiplying fractions that are less than 1 and multiplying fractions that are greater than 1 by whole numbers.

Establish Mathematics Goals to Focus Learning

- Let's think about how our knowledge of multiplying fractions can help us explain how the size of factors impacts the size of their product.

(1) Pose the Problem

Learn

Simon walked $\frac{2}{3}$ as tar as Miguel. Ming wabked $1 \frac{1}{2}$ times as far as Miguel. How can you can determine who walked the shortest distance and who walked the longest distance?
You can represent the problem using a tape diogram.

Simon walbed the shoctest distance.

Ming walked the longest distance.
You can explain how the stee of the factors impacts the sige of the product without performing multiplication.

Meth is. Modeling How does a tape diagram help you compare two distances when the Sistances ase unknown?

C Work Together

Jesse's mother tutors some students on Monday evenings. On Wednesdiy, she tutors $2 \frac{3}{4}$ times as mary students after school Wili the number of ntudents futored on Wednesday be greater than or less than on Mondiy? Explain how you know.
Greater; Sample answer: $2 \frac{3}{4}$ is greater than 1, so the product will be greater than the number on Monday.

Pose Purposeful Questions

-What are you trying to determine?

- Do you know how far Miguel walked?
- How can the information given help you solve the problem?

(2) Develop the Math

Choose the option that best meets your instructional goals.

MLR

Stronger and Clearer Each Time

Pair students and have them work on a problem like the problem on the Learn page. Have them individually write about how to solve the problem. Then have them share their writing with their partner and fix mistakes. Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

$\stackrel{E T P]}{N}$ Elicit and Use Evidence of Student Thinking

- How can you use what you know about fractions to explain what the size of a product will be?

Key Takeaways

- How the size of the factors impacts the size of the product can be described without performing the multiplication.
- The product of a given number and a fraction greater than than 1 results in a product greater than the given number, and the product of a given number and a fraction less than 1 results in a product less than the given number.

Work Together

Students solve a word problem involving scaling. Encourage students to use a tape diagram to represent the problem.

Common Misconception: Students may think that they need to know how many students Jesse's mother tutors on Monday in order to know if there are more students on Monday or Wednesday. Remind students that they can determine the answer using only one factor, by thinking about if that factor is greater than or less than 1.

Language of Math

Students may be familiar with scale models. A scale model has a scale. For example, some scale model cars are $\frac{1}{18}$ th scale. If the real car is 18 feet long, the scale model car will be $18 \times \frac{1}{18}=1$ foot long. Models of small objects will have a scale greater than 1 to make their small details easily seen.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how the size of factors impacts the size of a product in a multiplication equation.

Directions: Have students work together to solve the Pose the Problem.

E ETP Implement Tasks that Promote Reasoning and Problem Solving

- What do you know about the problem?
- What questions can you ask about the problem before looking to solve it?
- How do the values and quantities in the problem relate?
- How are you approaching the problem?
-What assumptions can you make to help you solve the problem?

Math is... Todeling

- How can a representation help you compare two quantities when the quantities are unknown?
Students are considering if the representation has or has not served its purpose.

Activity Debrief: Have groups share how they worked through the problem and what they discovered about how the size of the factors impacts the size of the products in a multiplication equation.

Guided Exploration

Students learn how to explain the size of a product using the size of factors in a multiplication equation.
m

Facilitate Meaningful Mathematical Discourse

Ask students to share their generalizations about the comparison of Miguel's and Simon's distances. Make sure they justify their conclusions, communicate them to others, and respond to the arguments of others. Most importantly make sure they ask useful questions to clarify or improve each other's arguments. Ask:

- How can you check if your generalization is true?

Ask students to share their generalizations about the comparison of Miguel's and Ming's distances. Make sure they justify their conclusions, communicate them to others, and respond to the arguments of others. Most importantly make sure they ask useful questions to clarify or improve each other's arguments. Ask:

- How can you check if your generalization is true?
- Think About It: Why were you able to solve the problem without multiplying?

Math is... Todeling

- How does a tape diagram help you compare two distances when the distances are unknown?
Students are considering if the representation has or has not served its purpose.

2. Develop the Math

Simon waked $\frac{2}{3}$ as for as Miguel. Ming walked $1 \frac{1}{2}$ times as far as Miguel.

How can you determine who walked the shortest distance and who walked the longest distance?

Developing/Expanding Ensure understanding of yield. Write a multiplication problem involving a number multiplied by a fraction less than 1 . While pointing, say Any number multiplied by a fraction less than 1 yields a product that is less than the first factor. Repeat with a number multiplied by a fraction greater than 1. Then instruct students to go to the Learn page and read the sentences with yields, pointing to what each part is referring to on the page.

Bridging/Reaching Guide students to the Learn page and have them focus on the sentences that use yields. Ask them to tell you what they think it means (produces, results in, etc.). Then ask them to use yield in their own sentence. Allow students to interject, agreeing or disagreeing and providing correction when necessary. For example, I don't think you used yield correctly. or Are you sure that results in....

On My Own

MATH) GO
Name

1. Which traction will result in a 2 . Which fraction will resurt in a pioduct that is greater than $\frac{3}{4}$? $\frac{3}{4} x$ $\stackrel{8}{\frac{8}{7} \times}$ \qquad (A) $\frac{5}{7}$
B. $\frac{\square}{6}$
C. $\frac{10}{7}$
D. $\frac{8}{6}$
2. Which expression han a product that is greater than the second tactor? select all thwt apply
A. $\frac{3}{4} \times \frac{2}{7}$
(C) $\frac{2}{1} \times 7 \frac{15}{7}$
(C.) $26 \times \frac{3}{2}$
a. $\frac{9}{10} \times 5$

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 1-4 Students may think that numbers greater than 1 are actually less than 1 because they are written as fractions instead of mixed numbers. Encourage students to notice which fractions could be written as mixed numbers to help them determine whether or not the numbers are greater than 1 .

Practice Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-9$	2	Application
10	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you explain what the size of a product will be if you know the sizes of the factors?
Ask students to share their reflections with their classmates.

Math is... Mindset

-What made you feel excited when doing math?
Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can explain how the size of the factors impacts the size of the product without performing the multiplication.
- I can explain why the product of a given number and a fraction greater than 1 is greater than the given number and why the product of a given number and a fraction less than 1 is less than the given number.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK
Skill		Standard
1	1	Multiplication as scaling
2	1	Multiplication as scaling

Data Use students' scores on the Exit Ticket to assign the
differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \mathbf{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Factor Up 1

Students each create 2 cards with a fraction, 2 with a mixed number, and 2 with a whole number from 1 to 10 . Shuffle the fraction and mixed number cards and place them face down. Do the same with the whole number cards. Draw 1 card from each pile and predict the relative size of the product compared to each factor. If students have difficulty, encourage them to think about whether they are multiplying by a number less than 1 or greater than 1.

Build Proficiency

Practice It! Game Station

Product Size Sort

Students practice determining whether products involving fractions are greater than or less than factors.

Interactive Additional Practice

Assign the digital version
of the Student Practice Book.

Student Practice Book, pp. 121-122

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDF of the Spiral Review from the Digital Teacher Center.

Extend Thinking

Use It! Application Station
This or That Students follow instructions to measure and cut materials.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 122

Lesson 10.8 - Extend Thinking Multiplication as Scaling

Name

1. Blat is $\frac{7}{2}$ times as old as Dylan. Abight is $\frac{1}{2}$ times as old as Bryce Felipe is $1 \frac{1}{3}$ tines as aid as Elsa. Dylan is $1 \frac{1}{4}$ times as old as Colin Bryce is $\frac{5}{6}$ times as old as Colin. Create tape diagrams to show at of their ages and last the people in order from youngest to oldest. Eam Abigail Abigail, Bryce, Colin, Embryce Elsa, Dylan, Felipe; titi Colin diagrams may vary
 \longrightarrow Felipe
2. Suppose today is Coins' burnday, and he is exactly 18 years old Find the ages of the other people and record them in the table Show your work.

Abigail	Bryce	Collin	Dylan	Elea	Felipe
$7 \frac{1}{2}$	15	18	$22 \frac{1}{2}$	$19 \frac{11}{16}$	$26 \frac{1}{4}$

Bryce is $\frac{5}{6} \times 18=15$ years old. Abigail is $\frac{1}{2} \times 15=$ $7 \frac{1}{2}$ years old. Dylan is $18 \times 1 \frac{1}{4}=22 \frac{1}{2}$ years old. Elsa is $\frac{7}{8} \times 22 \frac{1}{2}=19 \frac{11}{16}$ years old. Felipe is $19 \frac{11}{16}$ $\times 1 \frac{1}{3}=26 \frac{1}{4}$ years old.
3. Tony is $\frac{3}{4}$ times as old as Frances. Sheila is $\frac{5}{4}$ times as old iss Leonard Leonard is $\frac{4}{5}$ times as old as Tory. Use tape diagrams to solve. What do you notice?
Finances Tony and Sheila are the same age.

Student Practice Book, pp. 121-122

 Activity

Solve Problems Involving Fractions

Learning Target

- I can solve word problems involving fractions.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.B Apply and extend previous understandings of multiplication and division.
\diamond 5.NF.B. 6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.

Focus

Content Objective

- Students solve word problems involving fractions.

Language Objectives

- Students talk about solving word problems involving fractions using the verb determine.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

SEL Objective

- Students develop and execute a plan for mathematical problem solving.

Coherence

Previous

- Students multiplied or divided to solve word problems involving multiplicative comparison (Grade 4).
- Students interpreted multiplication as scaling (Unit 10).

Now	Next
- Students choose and use known	- Students relate fractions to
methods to solve problems	division and divide fractions
involving fractions.	(Unit 11).
	- Students solve word problems
	involving division of fractions by
fractions (Grade 6),	

Rigor

Conceptual Understanding

- Students build on their understanding of fraction and mixed number multiplication by solving real-world problems.
Conceptual Understanding is not a targeted element of rigor for this standard.

Procedural Skill \& Fluency

- Students build proficiency with strategies for multiplying fractions and mixed numbers.
Procedural Skill \& Fluency is not a targeted element of rigor for this standard.

Application

- Students apply their understanding of multiplication strategies to solve and write fraction and mixed number multiplication problems with real-world contexts.

Vocabulary

Math Terms	Academic Term
equation	assert
unknown	reflect
variable	

Materials

The materials may be for any part of the lesson.

- grid paper
- Problem-Solving Tool Teaching Resource

Number Routine Greater Than or Less Than © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they determine whether addition expressions are greater than or less than the benchmarks $\frac{1}{2}$ and 1 .
Remind students that this is a mental activity, and that exact answers are not needed.

These prompts encourage students to talk about their reasoning:

- How did you determine the value of each expression?
- How did you know that your estimates were reasonable?
- Who thought about it in a different way?
- What is another way to think about the expressions?

Purpose Students begin to recognize that real-world problems involving multiplication of fractions demand different models and strategies based on context.

Notice \& Wonder

- How are they the same?
- How are they different?

Teaching Tip You may want to have students discuss their responses in pairs or small groups before discussing with the class as a whole.

EIP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of how they can solve real-world word problems involving fractions and are based on possible comments and questions that students may make during the share out.

- How would you model each of the three scenarios?
- What would be the same about each model? What would be different?

Math is... yindset

- What goal do you want to accomplish today?

SEl Self-Regulation: Goal Setting

As students begin the Notice \& Wonder routine, have them think about or develop goals to solve the problem. Have them consider what they will do first to help them work through exploring how to model different multiplication equations with fractions. You can invite students to write or draw out goals to help them organize their work. Throughout the lesson, students may also find it helpful to develop goals for their problem-solving work with solving problems involving fractions.

Transition to Explore \& Develop

Ask students to think about the strategies they know for multiplying fractions and how they can be applied to real-world problems.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can solve real-world problems involving multiplication of fractions.

Learn

In Joriat's clinss. $\frac{2}{3}$ of the students are boys. The teacher asked $\frac{3}{4}$ of the boys to bring bottled water for a party.
How can you deternine what fraction of the students are bringing water? You can use a representation to help you solve the problem.

You can use an area model to solve the equation.

You can use any strategy you know to solve problems involving multiplying fractions

Q Work Together

Victor has $\$ 57$. He spends $\frac{2}{3}$ of his money on a game. How much money did Victor spend on the game?
$\$ 38$

(1) Pose the Problem

Pose Purposeful Questions

- Do you need to know how many students are in Joziah's class? Why or why not?
- Do you need to find out what fraction of the boys are bringing water? Why or why not?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Co-Craft Questions and Problems

Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of fout to check solutions and correct any mistakes that may have been made. Revisit the routine throughout the lesson for reinforcement.

3 Bring It Together

EIP Elicit and Use Evidence of Student Thinking

- How would you choose a multiplication strategy you already know to solve a problem?
- How would you use a multiplication strategy you already know to solve a problem?

Key Takeaway

- Problems involving fractions can be solved using known strategies for multiplication of fractions.

Work Together

Students solve a word problem involving the multiplication of fractions. Have students choose a known strategy.

Common Misconception: Students may be tempted to use an area model since the example used one. Have students describe the type of numbers involved in the problem, and recall strategies that they know for problems involving those types of numbers.

LOM
 Language of Math

Remind students that the word strategy means "a plan designed to achieve an overall aim." They can choose a strategy to solve math problems just as they would choose a strategy when playing a game, writing an essay, or cleaning a room.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore solving word problems involving fractions.
Materials: Problem-Solving Tool Teaching Resource
Directions: Provide copies of the Problem-Solving Tool Teaching Resource. Have students work together to solve the Pose the Problem.

ETP Support Productive Struggle

- How do you know what equation to write?
-What strategies do you know of that you can use to solve the problem?
-Which strategy do you prefer to use? Explain.
- How can you represent each factor?
- How can you determine the product?

Math is... Perseverance

- How could you use another method to check your solution to this problem?

Students check their answers to problems using a different method.
Activity Debrief: Have students share their solutions and strategies for solving the problem. Encourage students to find similarities and differences among the solution methods.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use multiplication strategies that are familiar to them to solve problems involving the multiplication of fractions.

ETR Use and Connect Mathematical Representations

Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(2. Have students represent the equation $\frac{2}{3} \times \frac{3}{4}$. Ask:
- How could you represent the whole class?
- What fraction of Joziah's whole class are boys? What fraction of a whole should you represent? Why?
-What fraction of those boys are bringing bottled water? How can you represent that?
Q Have students find the fraction of the whole class bringing bottled water. Ask:
- Why do you have to partition the whole?
- How can you partition the whole to find out what fraction of the whole class is bringing bottled water?
- How many equal parts is the whole partitioned into?
- Think About It: Is there another way you could write the calculated product?

Math is... Perseverance

- How could you use another method to check your solution to this problem?

Students check their answers to problems using a different method.
2. Develop the Math

In Joziah's class, $\frac{2}{3}$ of the students are boys.
The teacher asked $\frac{3}{4}$ of the boys to bring bottled water for a party.

How can you determine what fraction of the students are bringing wate

English Learner Scaffolds

Entering/Emerging Support students in understanding involving. Say Let's look at equations involving adding. Show or write different addition equations. Then say Let's look at equations involving subtracting. Show or write different subtraction problems. Then write one equation using division and one equation using multiplication. Point to each and ask Is this an equation involving dividing or multiplying?

Developing/Expanding Support students in understanding involving. Say Let's look at equations involving adding. Show or write different addition equations. Then say Let's look at equations involving subtracting. Show or write different subtraction problems. Then show or write division equations. Ask students to complete the sentence: These are equations
\qquad (involving) dividing.

Bridging/Reaching Ensure understanding of involving by asking students to review the sentence on the Learn page and restate the meaning of it in their own words. Then have them write different equations and talk about them using involving.

6. STEM Connection Saffran has a bag of flour that cortains 8 cups of floux. The bagis is $\frac{6}{7}$ Nuil Suffion uses $\frac{1}{3}$ of the bag to make a batch of muttins How many cups of flour does Sation use? $2 \frac{2}{7}$ cups of flour

2. Maya has a flower garden in her garden. $\frac{7}{3}$ of the fowers are roses. Of the roses. $\frac{5}{6}$ are pink. How many of the flowers in. Maya's garden are plink roses?

$$
\frac{5}{9} \text { are pink roses }
$$

8. One finh-grade class donated $1 \frac{3}{4}$ boxes of canned goods to the food partry. Another 椎h-grade class donited $2 \frac{1}{2}$ times as many bokes of canned goods. How mary boxes did the secone thth-grade class donste?
$4 \frac{3}{8}$ boxes
9. Danier has a collection of stickers. Of his collection, $\frac{4}{y}$ of the stickers are round. Of the round stickers, $\frac{1}{4}$ are red. How many of Danier's sticher collection is red and round? $\frac{1}{7}$ of the collection
10. Extend Your Thinking White and solve a word problem
involving mutiplying two fractions that are both less than I.
Answers may vary.
(P) Reflect
[^8]
Practice

ETP Build Procedural Fluency from Conceptual Understanding Common Error: Exercise 3 Students may find $\frac{1}{5}$ of the total pages rather than $\frac{1}{5}$ of the pages that Connor read. Make sure they read the problem carefully.

Practice Item Analysis

Item	DOK	Rigor
$1-9$	2	Application
10	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you solve real world problems involving multiplication of fractions?
Ask students to share their reflections with their classmates.

Math is... Mindset

-What goal did you accomplish today?
Students reflect on how they practiced self-regulation.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can solve word problems involving fractions.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK Skill	Standard
1	2	Solve problems involving fractions	5.NF.B.6
2	2	Solve problems involving fractions	5.NF.B.6
3	2	Solve problems involving fractions	5.NF.B.6
4	2	Solve problems involving fractions	5.NF.B. 6

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

4 of 4
Additional Practice or any of the (3) or © activities Take Another Look or any of the (B) activities Small Group Intervention or any of the \boldsymbol{Q} activities

2 or fewer of 4

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Fraction Word Problem

Work with students in pairs. Each student in a pair writes a word problem that requires fraction multiplication to solve. Students then solve each other's problems. If students struggle, help them to draw area models to show what they are multiplying.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Multiply Fractions/Mixed Numbers (Model)
- Multiply Fractions/Mixed Numbers

Differentiation Resource Book, p. 123

Lesson $10-9$ - Reinforce Understanding
Solve Problems Involving Fractions
Nume

Review

Use one of the stratogies learned to solve word proaiems involving fractions. One ootion is to whte mixed numbers is flactions. Mark is $1 \frac{3}{5}$ times as tall as Sorn, who is $3 \frac{3}{4}$ feet tal.
How thal is Mnk?

Markis $5 \frac{1}{4}$ feet tat

Solve eech problem using one of the strategies you leamed.

1. in n local mimas shete. दु of the erimas are dogs. or the dogn. $\frac{1}{4}$ avpuppees what tarcion of tre asimut at the encere ave puppies? $\frac{1}{6}$ of the animals are puppies
2 A painting is $2 \frac{4}{5}$ feet ong and $1 \frac{1}{2}$ wide What is the area of the paiting?
$4 \frac{1}{5}$ square feet
2. Esther tan a bog of rice that hodes 10 cups of nce when fill The $\operatorname{bag} 5 \frac{3}{4}$ thil. Esther usee $\frac{3}{8}$ of the rico in the bag to make a batch of paela How many cups of rice does Euther use? $2 \frac{13}{16}$ cups of rice
 $5 \frac{1}{7}$ feet tall
3. $\frac{4}{5}$ of the students in a class hawe sibings. Of the studorits who have siblinge $\frac{1}{3}$ have an oider brothec what tracion of the studerta in the class have an older brother?
$\frac{4}{15}$ of the students

Build Proficiency

Practice It! Game Station
Fraction Problem Race Students multiply fractions to solve problems.

Interactive Additional Practice

Assign the digital version
of the Student Practice Book.

Student Practice Book, pp. 123-124

```
Lesson 50-9
Additional Practice
Nome
```


Review

```
You can solve problems involving multiplication of fractions and mixed numbers.
Mrs. Adier has a poster that is \(14 \frac{1}{2}\) inches iong and \(8 \frac{1}{2}\) inches wide. What is the area of the poster?
```



```
1. Bella is pairting a sign that is \(4 \frac{3}{4}\) feet long and \(3 \frac{1}{2}\) feot wide. What is the area of the sign?
```



```
square teet
2. Ariana ilves \(\frac{5}{8}\) mile from school. Fred lives \(\frac{3}{4}\) the distance from school as Aiana. How far does Fred live from the school? \(\frac{15}{32}\) mile
```


Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying multi-digit numbers.

Extend Thinking

Use It! Application Station
Fraction of a Fraction Students use fractions to follow and change a recipe.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 124

erson 10.9 - Ertend Thinking
 Solve Problems Involving Fractions

Nimse
Solve each problem, Show your work.

1. In Library A $\frac{3}{5}$ of the books are fiction. Of the fiction books. $\frac{3}{5}$ ore from the mystery genre. Of the books in the mystery genee. $\frac{2}{3}$ are from the whodunit subgenve. What fraction of the books in the ilbrery are from the whodunit subgenve? $\frac{3}{5} \times \frac{7}{18}=\frac{7}{30}$ and $\frac{7}{30} \times \frac{2}{9}=\frac{7}{135}, \frac{7}{135}$ of the library books
2. It there are 27,000 books in Library A. and $\frac{3}{9}$ of the whodunt books are checked out. How many whocurit books me avnilable to cherck out?
$27,000 \times \frac{7}{135}=1,400$ whodunit books, and $\frac{2}{7} \times 1,400=400$ books are checked out. So there are $1,400-400=1,000$ whodunit books left that can be checked out.
3. $\frac{3}{5}$ of the non-fiction bopka in Library A are biographies and $\frac{1}{9}$ of the biographies are about a US. President. How many books in LBrary A are biographiec about a US. President?
$\frac{2}{5} \times \frac{3}{10}=\frac{3}{25}$ and $\frac{3}{25} \times \frac{1}{9}=\frac{1}{75}$. So there are $\frac{1}{75} \times 27,000=360$ books about U.S. Presidents.
4. Litracy 8 has $1 \frac{2}{3}$ mort biogrephies about a U.S. Priesitent then Library A and hat of those books are checked out. How marny Blographies about a US. Prevident aie checked out from Llorary 8 ? $360 \times 1 \frac{2}{3}=600$ and $\frac{1}{2} \times 600=300,300$
biographies about a U.S. President are checked out from Library \mathbf{B}.

$$
1+1+0
$$

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

Vocabulary Review

Item Analysis

Item	Lesson
1	$10-2$
2	$10-5$
3	$10-2$
4	$10-1$
5	$10-6$
6	$10-7$
7	$10-8$

Review

Item Analysis

Item	DOK	Lesson	Standard
8	1	$10-2$	5.NF.B.4.a
9	2	$10-9$	5.NF.B.6
10	1	$10-2$	5.NF.B.4.a
11	2	$10-9$	5.NF.B.6
12	1	$10-3$	5.NF.B.4.a
13	1	$10-4$	5.NF.B.4.a
14	1	$10-3$	5.NF.B.4.a
15	2	$10-9$	5.NF.B.6

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)

Item	DOK	Lesson	Standard
16	1	$10-7$	5.NF.B.4.a
17	2	$10-9$	5.NF.B.6
18	1	$10-5$	5.NF.B.4.b
19	1	$10-5$	5.NF.B.4.b
20	1	$10-6$	5.NF.B.4.a
21	2	$10-9$	5.NF.B.6
22	2	$10-9$	5.NF.B.6
23	2	$10-9$	5.NF.B.6

Performance Task

Hamak \& welding thee ditienent types of fectangular shaped thibles Part at The coffee tabie has alengen of $4 \frac{1}{2}$ feet and a width of $3 \frac{3}{4}$ feet. The side table is $\frac{4}{5}$ the area of the coflee table. What is the area of the side trable?
$10 \frac{1}{8}$ square feet

Part a: The area of the patio table is $2 \frac{1}{5}$ times the area of the side table What is the area of the patio table?
$22 \frac{11}{40}$ square feet

Part Cr it took her $1 \frac{1}{9}$ times as long to weld the coftee table as it did to weld the side table. in took her $\frac{7}{12}$ times as long to weld the patio table as it did to weld the side table. Place in order from least to groatest the amounts of time it took Hannah to weld the tathes patio table, side table, coffee table

(P) Reflect

How does the size of the factors indicite whether the product wll be less than both factors, less than one of the factors, or less than nether of the tactors?
Answers may vary.

123-124

Fluency Check

What is the product or quotient?			
4. $4 \times 800=$	3,200	11. $900 \times 7=$	6,300
5. $180 \div 6=$	30	12. $2.400+6=$	400
6. $600 \times 4=$	2.400	13. $5.600+8=$	700
2. $240+3=$	80	14. $4,900+7=$	700
8. $3.600+4=$	900	15. $480+8=$	60
2. $1800+9=$	200	16. $270+3=$	90
10. $300 \times 8=$	2,400	17. $2,300 \div 3=$	700

Fluency Talk

Exptain how you can use place value to find the quotient of a mutiple of 100 and a number.
Explanations may vary.

How is dividing a muttiple of a 10 by a number similar to mutiplying a number by a mutiple of 70 ?
Explanations may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice dividing multiples of 100 .

Fluency Progression

Unit	Skill	Standard
1	Use Partial Sums to Add	4.NBT.B. 4
2	Decompose by Place Value to Subtract	4.NBT.B. 4
3	Use an Algorithm to Add	4.NBT.B. 4
4	Use an Algorithm to Subtract	4.NBT.B. 4
5	Choose a Strategy to Add	4.NBT.B. 4
6	Choose a Strategy to Subtract	4.NBT.B. 4
7	Multiply by Multiples of 10	5.NBT.B. 5
8	Multiply by Multiples of 100	5.NBT.B. 5
9	Divide Multiples of 10	5.NBT.B. 6
10	Divide Multiples of 100	5.NBT.B. 6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B. 5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B. 5
13	Choose a Strategy to Multiply	5.NBT.B. 5
14	Choose a Strategy to Multiply	5.NBT.B. 5

Fluency Expectations

Grade 4

- Add and subtract within $1,000,000$.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Animal Rescue

Students draw on their understanding of multiplying with fractions. Use the rubric shown to evaluate students' work.

Standards: 5.NF.B.4, 5.NF.B.4.a, 5.NF.B.4.b, 5.NF.B. 6
Rubric (12 points)

Part A (DOK 2) - 4 points

4 POINTS Student's work reflects a proficiency with multiplying a fraction by a fraction and by a whole number. The student's answers and work are correct.
2 POINTS Student's work reflects a developing proficiency with multiplying a fraction by a fraction and by a whole number. Some of student's answers and work are incorrect.
0 POINTS Student's work reflects a weak proficiency with multiplying a fraction by a fraction and by a whole number. The student's answers and work are incorrect.

Parts B and E (DOK 2) - 4 points
4 POINTS Student's work reflects a proficiency with multiplying mixed numbers. The student's answer and work are correct.
2 POINTS Student's work reflects a developing proficiency with multiplying mixed numbers. The student's answer or work is incorrect.
0 POINTS Student's work reflects a weak proficiency with multiplying mixed numbers. The student's answer and work are incorrect.

Part C (DOK 2) - 2 points

2 POINTS Student's work reflects a proficiency with using multiplication for scaling. The student accurately lists the adoption fees from least to greatest.
1 POINT Student's work reflects a developing proficiency with using multiplication for scaling. The student has minor issues accurately listing the adoption fees from least to greatest.

0 POINTS Student's work reflects a weak proficiency with using multiplication for scaling. The student was unable to accurately list the adoption fees from least to greatest.

Part D (DOK 2) - 2 points

2 POINTS Student's work reflects a proficiency with multiplying a fraction by a whole number. The student's answers and work are correct.
1 POINT Student's work reflects a developing proficiency with multiplying a fraction by a whole number. Some of student's answers and work are incorrect.
0 POINTS Student's work reflects a weak proficiency with multiplying a fraction by a whole number. The student's answers and work are incorrect.

Unit 10

Performance Task

Name

Animal Rescue

At the locel animul rescue, there are cumently 150 animas awalable for adoption. The rescue categorizes the animals as shown in the table

Age	Canine	Folline
Less than 6 months	Puppy	Citten
6 montts or older	Dog	Cat

Part A
Of the anmals avalable for edoption. $\frac{2}{3}$ ere canines. Ot the canines availeble for adoption, $\frac{1}{4}$ mre puppies. Whet fraction of att the animaks avalable for adoption are puppies? How many pupples are there at the arimat rescue? Whit fraction of all the animals avalimbes for adoptions are dogs? How many dogs are there of the animol rescue? Show your work.
$\frac{2}{3} \times \frac{1}{4}=\frac{1}{6}$, so $\frac{1}{6}$ of the animals are puppies. $\frac{1}{6} \times 150=25$, so there are 25 puppies at the animal rescue. $\frac{2}{3} \times \frac{3}{4}=\frac{1}{2}$, so $\frac{1}{2}$ of the animals are dogs. $\frac{1}{2} \times 150=75$, so there are 75 dogs.

Part B
For the canines that aye dogs, 1 is recommended that the kennel lor the dogs is at least 63 foer wide by $9 \frac{1}{2}$ feet deep. Determine the minimum ares of the floor for each kennel in ft^{2}. Show you work.
$64 \frac{1}{8}$ square feet; $6 \frac{3}{4} \times 9 \frac{1}{2}=\left(6+\frac{3}{4}\right) \times\left(9+\frac{1}{2}\right)=$ $54+3+6 \frac{3}{4}+\frac{3}{8}=57+6 \frac{6}{8}+\frac{3}{8}=57+6 \frac{9}{8}=57+7 \frac{1}{8}$

Part C

The adoption fee for kitbens is $\frac{1}{2}$ as mych as the adoption fee for puppios. The adoption fee for cats is $\frac{3}{10}$ the cost of kottens. The adoption fee for dogs is 2 times the adootion lee of cets. Order the adoption foes from least to greatest. Use a diagram to mopresent the problem.

Part D

If the adoption price for a katen is $\$ 100$, what are the adoption prices of cats, dogs, and pupples? Show your work
The price for puppies will be $100 \times 2=\$ 200$. The price for cats will be $100 \times \frac{3}{10}=\$ 30$. The price for dogs will be $30 \times 2=\$ 60$

Parte

The table shows the Itwinimum recommended dally food amourt for dogs based an their weight. How many cups of dog food will an B0-pound dog require in a year?

Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

| Item poK Lesson Glided Support |
| :---: | :---: | :---: | :--- | :--- | :--- |
| Intervention Lesson | Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.

Unit 10

Unit Assessment, Form A

Name

1. What is the product? Use a representation to solve.
$\frac{3}{3} \times 4=$?
A. $\frac{7}{8}$
(B.) $\frac{8}{7}$
c. $\frac{0}{28}$
D. $\frac{2}{2}$
2. What is the product? $3 \frac{1}{4} \times 2 \frac{3}{4}=$?
A. 6
B. $6 \frac{3}{16}$
C. $8 \frac{3}{16}$
(D) $8 \frac{5}{5}$
3. What is the area of the rectangle?

A. $25 \frac{2}{3}$ square feet
B. $32 \frac{1}{6}$ square foet
C. $34 \frac{5}{6}$ square feet
D. $36 \frac{5}{6}$ square foet
4. Which expressions have a product that is less than the first
factor? Choose all that apply
(A.) $2 \times \frac{3}{4}$
(a) $7 \times \frac{2}{8}$
c. $15 \times \frac{5}{4}$
D. $5 \times \frac{10}{5}$
5. Which is the product?
$\frac{2}{3} \times \frac{3}{6}=$?
A. $\frac{5}{30}$
(B.) $\frac{6}{30}$
c. $\frac{1}{73}$
D. $\frac{5}{13}$
6. Mc. Cipriano spends $\frac{1}{3}$ of his time at schoci teoching biology. Of that time, he spends $\frac{\text { ? an class discussion. What fraction of his }}{\text { an }}$ time at school does Ma. Cipriano spend on biology class discuision? $\frac{2}{15}$ of his time at school
7. Kim worked for 9 hours yesterdsy. She ate lunch affer working $\frac{1}{3}$ of her hours. How many hours did Kim work before she ate lunch?
A. 1 hour
B. 2 hours
C. 3 hours
D. 6 hours
8. Which multiplication equation is shown by the moder?

(A) $\frac{2}{5} \times 4=\frac{8}{5}$
B. $\frac{2}{5} \times 4=\frac{8}{80}$
c. $\frac{2}{3} \times 4=\frac{8}{12}$
D. $\frac{2}{3} \times 4=\frac{8}{3}$

194
Averyment Reverention

Unit 10

Unit Assessment，Form A（continuwd）

Name

9．What is the product？
$6 \frac{1}{3} \times 2 \frac{2}{3}=7$
A． 18
（B） $16 \frac{8}{9}$
c． $17 \frac{3}{6}$
D． $12 \frac{2}{8}$

10．What is the arca of the rectangle？

$15 \frac{3}{4}$ square feet
it．What is the protuch Une the tepiesentation to solve．
${ }^{2} \times \frac{1}{3}=7$

（A．）$\frac{6}{15}$
8．$\frac{9}{12}$
c．${ }^{5}$
D．$\frac{6}{7}$

12．Skye picks $3 \frac{1}{2}$ pits of bivebertien Kate picks $2 \frac{1}{4}$ umes at many pirts as Sike．How mary pints af blueberies soes Kaie pick？
A． $5 \frac{3}{4}$ pints
B． 6 首 pints
（C．） $7 \frac{7}{8}$ pints
D． 8 pints

13．There are 4 peopie on the midrtle－school reiny team Each of them nues f mile．What is the total distance that the teams nuns？ Explain how you found you answet：
$\frac{4}{3}$ miles or $1 \frac{1}{3}$ miles；Sample answer：I multiplied 4 times the numerator 1 from $\frac{1}{3}$ and that equals 4 for the numerator of the answer．Then I used the denominator from $\frac{1}{3}$ as the denominator for the answer．

14．Aory uses buttons for a project．Of the buttons．$\frac{1}{2}$ of them are round．Of the round buittors．$\frac{2}{3}$ Iswe holes What fraction of the buttons that Rory usel ate tound with holes？Explain yout answer usiry．the area model．

$\frac{2}{3}$
$\frac{2}{6}$ or $\frac{1}{3}$ of the buttons；Sample answer：$\frac{2}{3}$ is the right two columns of the whole．$\frac{1}{2}$ is the bottom row of the whole． So the whole has 6 equal parts．The overtap shows $\frac{2}{3}$ of $\frac{1}{2}$ ．This section is 2 parts out of the 6 parts in the whole rectangle that represents all the buttons．

15．Mrs．Mishier unes carpet squares to cover the foor．One carpet square measures $1 \frac{1}{2}$ feer by $1 \frac{1}{2}$ feot．if Mrs．Mishler uses 15 csipet squares，what is the total ares of the flopr？Show your work．
$33 \frac{3}{4}$ square feet：Sample answer：Area of carpet square： $1 \frac{1}{2} \times 1 \frac{1}{2}=A ; \frac{3}{2} \times \frac{3}{2}=\frac{9}{4}=2 \frac{1}{4}$ ，Total area of the floor $2 \frac{1}{4} \times 15=A ; \frac{9}{4} \times 15=\frac{135}{4}=33 \frac{3}{4}$

Ausumenilorsura Pock

Form B

Uni to

Unit Assessment，Form B

（4）
a
c．
a．à
2．minevopract $1 \times 2 \mid=1$

（0）$=\frac{1}{3}$	a． 13
c． 8 年	a．+1

2．minn Nowneticumonve

A．A｜lamonter

c． 0 linerim

（a）$\times 1$
c．＊＊
E 7×1
（b）$\times 1$

）

（2） $3 \times 5-1$
e $\{\times 5=$ 受
C．$\frac{1}{2} \times 2=\frac{1}{1}$
－$\frac{1}{6} \times 3=\frac{1}{1}$

（4） 10 杽

the inel
2． 6 damers
c．\square_{1}^{2} avens

（c） 0 II
40 वाल calumens of the whole．$\frac{1}{6}$ is the top tow of the whate． So eno whole has 40 equal partc．The ovenkep thown of cह This seationis 7 parts evit of the 40 pars in the whole rectangle that represents all the broed loaves．

26 \％or 26 ？spuisere centimetess：Somple anvien？
 Total ares of the menaies $1 \frac{7}{9} * 15=A: \frac{19}{5}=15=$ $\frac{240}{6}=26 \frac{5}{5}$
at

Benchmark Assessment 3

The Benchmark Assessment 3 is available in both print and digital.
Data When students complete the Benchmark Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

Item	DOK	Skill	Standard
1	3	Interpret multiplication of fractions as scaling	5.NF.B. 5
2	2	Solve addition word problems involving fractions	5.NF.A. 2
3	2	Compare decimals	5.NBT.A.3.b
4	2	Divide multi-digit numbers	5.NBT.B. 6
5	2	Represent multiplication of fractions and whole numbers	5.NF.B. 4
6	2	Divide decimals	5.NBT.B. 7
7	2	Subtract fractions	5.NF.A. 1
8	2	Multiply decimals	5.NBT.B. 7
9	2	Add decimals	5.NBT.B. 7
10	2	Use area models to multiply	5.NBT.B. 5
11	2	Solve volume word problems	5.MD.C. 5
12	3	Interpret multiplication of fractions as scaling	5.NF.B. 5
13	2	Solve addition word problems involving fractions	5.NF.A. 2
14	2	Solve division word problems involving decimals	5.NBT.B. 7
15	2	Round decimals	5.NBT.A. 4
16a 2		Use partial products to multiply	5.NBT.B. 5
16 b 2		Multiply multi-digit numbers	5.NBT.B. 5
17	2	Use place-value patterns to divide decimals	5.NBT.B. 7
18	2	Represent subtraction of decimals	5.NBT.B. 7
19	2	Solve division word problems	5.NBT.B. 6
202		Solve multiplication word problems involving fractions	5.NF.B.6
21a 2		Represent subtraction of fractions	5.NF.A. 1
21b 2		Subtract fractions	5.NF.A. 1

Assign the digital Benchmark Assessment to students or download and print PDFs from the Digital Teacher Center.

Grade 5

Benchmark Assessment 3

Name

1. Is the value of ench expression less than or greater than 4?

	less than 4	grester than 4
$4 \times \frac{1}{2}$	\checkmark	
$4 \times \frac{2}{3}$	\checkmark	
$4 \times \frac{3}{3}$	\checkmark	
$4 \times \frac{5}{4}$		\checkmark
$4 \times \frac{5}{8}$	\checkmark	
$4 \times \frac{5}{5}$		\checkmark

2. A swemming pool is being flied wath water using two hoses. Hose A can fal $\frac{3}{7}$ of the pool in one hour. Hose 8 can $\frac{2}{2} \frac{2}{9}$ of the pool in one hoiz
If both the hoses are used to fil the pool at the same time, what fraction of the pool will be flled in one bour?
A. $\frac{5}{63}$ of the poot
B. $\frac{2}{2}$ of the poot
C. $\frac{z}{9}$ of the pool
D. $\frac{4 t}{63}$ of the poot
3. Which number makes the comparison tue? $30.53>\square$
(A.) 30.491
B. 30.74
C. 30.542
D. 30.6
4. Look at the equation.

What number goes in the box to make the equation true? 120
5. Which figure best represents $\frac{1}{3} \times 3$?

(B.)

D.

6. Graciela uses powers of 10 to write a whole-number equation to find the quotient of $0.3+0.06$. Fill in the misting numbers in Gracieli's equations
$0.3 \times 10^{2}=30$
$0.06 \times 10^{2}=6$
$0.3+0.08=30-6=5$
7. What is the dimerence of $\frac{5}{7}-\frac{2}{7}$?
A. $\frac{3}{4}$
B. ${ }^{3}$
(c. $\frac{n}{7}$
D. $\frac{4}{7}$

Grade 5
Benchmark Assessment 3 (continued)
Name
B. What is the product?
6.5×0.04
A. 0.026
(B.) 0.26
C. 260
D. 26.0
9. Which expression can be used to find the sum of $703+0.547$
A. $12+0.07$
B. $012+0.04$
C. $7+0.8+0.04$
(D.) $7+0.5+0.07$
10. Humberto uses an ares modes to solve a multiplication problem.

What product does the ares model represent? $49 \times 83=4,067$
11. Jana buys a rectangular storage crate thot has a volume of 12 cubs fieet.
Which dimensions could Janeis storage crate be?
Choose all that apply.
A. 2 feet $\times 2$ feet $\times 8$ feot
(B.)
3 foet $\times 2$ foet $\times 2$ foet
4 foet $\times 3$ foet $\times 1$ foot
D. 6 foet $\times 2$ foet $\times 4$ foet
(E.)
foot $\times 6$ foet $\times 2$ feet
12. Bead the following sithtemert
$12 \times$ b is grevter than 12 , but less than 24
Which value of b makes this statement true?
A. $\frac{1}{2}$
B. $\frac{2}{3}$
(C.) $\frac{1}{2}$
D. $2 \frac{1}{3}$
13. Rita walks $\frac{2}{5}$ mile 10 the store. Then she waks $\frac{3}{7}$ mile to the community center.
How far does Rito wak altogether?
A. $\frac{5}{35}$ mle
(B) $\frac{20}{5}$ mib
C. $\frac{5}{12}$ mile
D. $\frac{\square}{12}$ mile
14. Stu has 2 怆 pounds of ground beef to mioke 6 burger patsies He uses the same amount of ground beef for each patty:
How much ground beef does Stu use to make sach burger patty?
0.365 pound
15. What is 223754 tounded to the nearept tonth?
223.8

16a. What are the partial products of 45×34 ? Choose all that apply.
(A) 20
B. 120
C. 150
(D) 160
E. 200
(5) 1200

16b. What is the product?
$45 \times 34=1.530$

Grade 5
Benchmark Assessment 3 (continued)

Name

12. Write the quotient for each division problem
$0.053+0.0 \mathrm{t}=5.3$
$18+0.01=180$
$0.002+01=0.02$
$4+01=40$
13. Look st the number line.

14. There are 4,572 people at a stadium. Tive same number of people are suting in each of 12 sections in the stadium.

How many people are sitting in each section?
A. 4,584 people
B. 4,560 people
C. 381 people
D. 306 people
20. John travels $7 \frac{5}{6}$ miles to reach school. Abert travels $\frac{1}{3}$ the number of miles John travels to ieach the same school.
How far does Abert travel to school?
(A.) $2 \frac{11}{7}$ miles
B. $7 \frac{5}{\text { 需 milos }}$
C. $7 \frac{1}{2}$ mies
D. $8 \frac{1}{6}$ miles
21. Look of the fraction tile model.

a. Which expression does the model represent?
A. $\frac{1}{2}+\frac{2}{13}$
(ㅅ) $\frac{1}{2}-\frac{3}{8}$
c. $\frac{1}{2}+\frac{3}{24}$
D. $\frac{1}{2}-\frac{3}{24}$
b. What is the value of the unknown in the moder? $\frac{1}{8}$

PACING: 10 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE	SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
Unit Opener iowitel Number Strings Students use patterns to divide with fractions.				
11-1	Relate Fractions to Division Students represent the quotient to a division equation as a fraction or mixed number.		Students talk about relating fractions to division with the gerund using.	Students discuss and practice positive strategies for managing emotional reactions to stressful situations.
11-2	Solve Problems Involving Division	Students determine whether a quotient should be written with a remainder or as a mixed number.	Students discuss whether a quotient should be written with a remainder or as a mixed number using apply.	Students exercise creativity by solving a problem using more than one approach.
11-3	Represent Division of Whole Numbers by Unit Fractions	Students use representations to divide whole numbers by unit fractions.	Students talk about using representations to divide whole numbers by unit fractions using can and should.	Students collaborate with peers to solve a mathematical problem.
11-4	Divide Whole Numbers by Unit Fractions	Students use the meaning of multiplication as equal groups to divide whole numbers by unit fractions.	Students discuss if a calculated quotient is correct using a related multiplication equation using should, might, and could.	Students identify and use mathematical tools to organize work.
11-5	Represent Division of Unit Fractions by Non-Zero Whole Numbers	Students use representations to divide unit fractions by non-zero whole numbers.	Students explain how to use representations to divide unit fractions by non-zero whole numbers using similar and related.	Students determine the representations and analyses necessary to make informed decisions when engaging in mathematical practices.
11-6	Divide Unit Fractions by Non-Zero Whole Numbers	Students extend their nderstanding that dividing by a whole is the same as multiplying by a unit fraction to divide unit fractions by whole numbers.	Students explain if a calculated quotient is correct using different and related.	Students demonstrate self-awareness of personal strengths and areas of challenge in mathematics.
Math Probe Which Expressions Represent the Situation\$tudents choose expressions that can be used to solve problems involving division and fractions.				
11-7	Solve Problems Involving Fractions	Students solve word problems involving division of fractions using strategies such as using fraction models.	Students discuss solving word problems involving division of fractions using different strategies, using another way.	Students advocate for their mathematical problem solving and adjust their understanding based on constructive feedback.
Unit Review Fluency Practice				
Unit Assessment Performance Task				

LESSON	KEY VOCABU		MATERIALS TO GATHER	RIGOR FOCUS	STANDARD
11-1	Math Terms denominator dividend divisor numerator quotient	Academic Terms prove reflect	- fraction circles - number cubes	Conceptual Understanding, Application	5.NF.B. 3
11-2	mixed number quotient remainder	analyze reflect	- number cards - Problem-Solving Tool Teaching Resource	Application	5.NF.B. 3
11-3	division fraction model unit fraction	evaluate reflect	- fraction circles - fraction tiles - number cube	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.7, 5.NF.B.7.b
11-4	dividend division divisor unit fraction	arguably speculate	- spinners - Unit Fractions \& Whole Numbers Teaching Resource	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.7, 5.NF.B.7.b
11-5	division fraction model unit fraction	analyze suggest	- Dividing Fractions Puzzle Pieces Teaching Resource	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.7, 5.NF.B.7.a
11-6	dividend division divisor unit fraction	accurate evaluate	- fraction circles - Unit Fractions and Whole Numbers Teaching Resource	Conceptual Understanding, Procedural Skill \& Fluency	5.NF.B.7, 5.NF.B.7.a
11-7	equation unknown variable	establish relevant	- Problem-Solving Tool Teaching Resource	Conceptual Understanding, Procedural Skill \& Fluency, Application	5.NF.B.7, 5.NF.B.7.c

Unit Overview

Focus

Divide Fractions

This unit builds on earlier work with division and fractions to establish that a fraction describes an indicated division. Students divide fractions, limited to division of a whole number by a unit fraction and division of a unit fraction by a non-zero whole number. They explore situations involving equal sharing division and equal grouping division. Students use models to help determine quotients. Formal procedures for dividing fractions and mixed numbers are developed in Grade 6. In making connections between division and fractions, students write equations with fractions to describe division situations.

Students use different representations when they find the quotient of a unit fraction divided by a whole number in equal-sharing situations.

They observe patterns, but some still have difficulty comprehending how a quotient can be greater than the dividend. The use of simple models illustrates how dividing a whole number (the dividend) by a unit fraction (the divisor) involves finding the number of small pieces that fit into a larger piece (the whole). In such situations, the number of little pieces that fit in is greater than the dividend. A common misconception is that students may interpret a problem such as $8 \div \frac{1}{4}$ as 8 being equally divided into 4 parts. To verify their results, students can use the relationship between multiplication and division to check their answers.

Coherence

What Students Have Learned

- Students used the four operations to solve word problems. (Grade 4)
- Students interpreted a multiplication equation as a comparison. (Grade 4)
- Students multiplied or divided to solve word problems. (Grade 4)
- Students multiplied a fraction by a whole number. (Grade 4)

What Students Are Learning

- Students interpret a fraction as division of the numerator by the denominator.
- Students divide unit fractions by whole numbers and whole numbers by unit fractions. Students divide a unit fraction by a non-zero whole number.
- Students divide a whole number by a unit fraction.
- Students solve real-world problems involving division with unit fractions and whole numbers.

What Students Will Learn

- Students use ratio language to describe a ratio relationship between two quantities. (Grade 6)

Students understand the concept of a unit rate and describe a ratio relationship. (Grade 6)

Students compute quotients of fractions. (Grade 6)

- Students solve word problems involving division of fractions. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- fractions as division of the numerator by the denominator;
- dividing unit fractions by non-zero whole numbers;
- dividing whole numbers by unit fractions.

Procedural Skill \& Fluency

Students build proficiency with

- dividing unit fractions by non-zero whole numbers;
- dividing whole numbers by unit fractions.

Application

Students apply their knowledge of

- dividing unit fractions by non-zero whole numbers and whole number by unit fractions to solve real-world problems.

Effective Teaching Practices

Implement Tasks That Promote Reasoning and Problem Solving

This unit presents opportunities for students to use reasoning to make sense of quantities and operations. The lessons present division with unit fractions in a concrete, visual way, encouraging analysis and deep understanding.

As you progress through the lessons, make sure that students look closely at the visual models and fully understand what they represent. When dividing, ask students to explain how the visual representation shows the equal-sharing process throughout each step.
This in-depth and repeated analysis gives students the best chance of taking meaning from the step-by-step representations as they are developed, and to transfer their understanding as they make their own visual models.
To promote reasoning, provide problems that students have already completed.
To promote reasoning, provide problems that students have already completed.

When a problem presents itself where the solution strategy is dividing a whole number by a fraction, ask students to predict how the quotient will be affected by dividing a larger or smaller whole number by the same unit fraction. Similarly, have them predict how the quotient will be affected if the same whole number is divided by a larger or smaller unit fraction.

When students develop their own representations, ask them to explain the reasoning behind each step. Have students discuss representations and solutions with partners, small groups, and the full class to provide varied levels of independence and style of explanation. Explaining their own reasoning helps solidify students' awareness of their own strategies and helps them discover any gaps in their understanding of concepts and procedures.

As students solve problems and explain their reasoning, encourage them to share differences in how they perceive problems and representations.

Math Practices and Processes

Look for and Express Regularity in Repeated Reasoning

Encourage students to take note of how their solution to one problem relates to the next problem. Students should notice, for example, that each time they divide a unit fraction by a non-zero whole number, they can predict how the visual representation will look and that the quotient will be less than the dividend. On the other hand, each time they divide a whole number by a unit fraction (other than by $\frac{1}{1}$), the quotient will be greater than the dividend.

Throughout the unit, students express regularity in repeated reasoning when they apply to fractions the do-undo relationship between division and multiplication that they have used with whole numbers. They write a related multiplication equation for a division equation, knowing that the related equation expresses the same relationship by using the numbers from the same fact family.

Provide consistent opportunities for students to build their reasoning skills.
Some suggestions include:

- Students in pairs examine two problems that both require dividing a fraction by a non-zero whole number. Each partner represents the problem visually and writes an equation. Then, partners explain their reasoning to one another.
- Students in pairs examine these two problems: one dividing a unit fraction by a non-zero whole number; the other dividing the same whole number by the same unit fraction. Each partner represents the problem visually and with an equation, and then partners discuss any patterns that they notice.
- Students show division with a fraction using fraction tiles. Then, individual students represent the same division using another representation. Students explain how their representations are the same and how they are different.

Social and Emotional Learning

Self-Management - Manage Stress (Lesson 11-1): Students who can regulate their stress are resilient and better prepared for academic success.
Self-Awareness - Recognize Strengths (Lesson 11-2): When students recognize their own strengths, they can see themselves as resourceful and may be more willing to attempt to problem solve and help others.
Social Awareness - Respect Others (Lesson 11-3): When students are respectful of one another, they strengthen their class community.
Self-Management - Organizational Skills (Lesson 11-4): Organizing information and work can help students work through challenging mathematical tasks.

Responsible Decision-Making - Evaluate (Lesson 11-5): When students evaluate their own logic and reasoning, they can develop understanding that helps them make informed decisions.

Self-Awareness - Accurate Self-Perception (Lesson 11-6): Having accurate self-perception allows students to determine areas of strength as well as areas in which they need to focus and practice.
Relationship Skills - Communication (Lesson 11-7): Students who can communicate effectively are more likely to build strong relationships and contribute to a positive classroom culture.

Unit Overview

${ }^{\text {Lom }}$ Language of Math

Vocabulary

Students will be using these key terms in this unit:

- Denominator (Lesson 11-1): Students were introduced to this term in Grade 3. Emphasize that the denominator tells the number by which the whole has been divided into equal parts.
- Dividend (Lesson 11-1): Students were also introduced to this term with of division of whole numbers. Encourage them to use division terminology consistently and discuss the meaning of each word.
- Divisor (Lesson 11-1): Students were also introduced to this term with division. Encourage them to notice the action meaning of divisor; the -or ending indicates that this word applies to the active part of an equation, the number doing the dividing.
- Numerator (Lesson 11-1): Students were also introduced to this term in Grade 3. Emphasize that the numerator tells how many fractional parts are under consideration.
- Quotient (Lesson 11-1): Students were also introduced to this term with division. Help students remember which term is the quotient- mention that the dividend and divisor, the two "D words," are on one side of the equation; the quotient is on the other side.

Math Language Development

A Focus on Fraction and Division Vocabulary

Throughout this unit, students will use many mathematical terms with which they should already be familiar.

Emphasize terminology in the context of division with fractions. Although students are familiar with terms such as quotient and numerator, encourage them to use those terms consistently as they work with division and fractions.

The idea that the quotient for a division problem can be a fraction may be new to many students.
Encourage students to use language such as $\frac{3}{4}$ means 3 divided by 4 or 3 divided into 4 equal groups to promote the connection.

Many students believe that division means "to make smaller." Although dividing a unit fraction by a whole number (greater than 1) "makes smaller" because the unit fraction is split into equal groups, emphasize that dividing a whole number (greater than 1) by a unit
fraction (less than 1) results in a quotient that is greater than the whole number because we are finding how many copies of the unit fraction are needed to make the whole number.

Some suggestions include:

- Have pairs write a division equation and make a drawing showing objects represented by the division. Have students label the equation and drawing with the terms dividend, divisor, and quotient. Have them write a related multiplication equation, labeling the factors and the product.
- Have students write a division problem such as $3 \div 4$ (where the dividend is less than the divisor). Then have them draw a representation to show the quotient as the fraction. Have students make connections between the dividend 3 and the numerator 3 , and between the divisor 4 and the denominator 4. Repeat with a division problem where the dividend is greater than the divisor.

English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to dividing fractions. Because many of the words (pour, faces) and phrases (full sheets, 5 -foot board, serving size, share among, can be rewritten) used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

Lesson 11-1 - pour
Lesson 11-2 - full sheets
Lesson 11-3 - 5 -foot board
Lesson 11-4 - serving size
Lesson 11-5 - share among equally
Lesson 11-6 - can be rewritten
Lesson 11-7 - faces

Number Routines

Build Fluency
The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

Greater Than or Less Than
Purpose: Build proficiency with number and place value sense.
Overview: Students use mental math to estimate or evaluate the value of given expressions and then compare the value of the expressions to a target benchmark number. Students share their solutions and thinking.

Where Does It Go?

Purpose: Build estimating skills using benchmarks.
Overview: Students place a target number on number lines with different endpoints and justify their placement.

About How Much?

Purpose: Build estimating skills.
Overview: Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

What's Another Way to Write It?
Purpose: Build flexibility with number sense and mental math operations.
Overview: Given a number, students generate expressions using operations that, when evaluated, have the same value as the number. The teacher records expressions as students share. Students then look for relationships amongst the expressions.

Sense-Making Routines

- Is it always true? (Lesson 11-6) Students think about the meanings of multiplication and division and determine whether the relationship is unique or holds for every situation.
- Notice \& Wonder: How are they the same? How are they different? (Lesson 11-7) Students think about whether the context of the problem can be represented by a whole number divided by a whole number, whole number divided by a fraction, or a fraction divided by a non-zero whole number.

- Notice \& Wonder: What do you notice? What do you wonder?

(Lessons 11-1, 11-3, 11-4) In Lesson 11-1, students notice a whole being broken into parts to make equal shares. In Lesson 11-3, students connect division of whole numbers by unit fractions to real-world situations. In Lesson 11-4, students think about grouping fractional parts to make wholes.

- Numberless Word Problem (Lesson 11-2) Students are presented with a problem that would involve division if it had numbers. Students then consider a solution strategy and what numbers could be in the problem.
- Which doesn't belong? (Lesson 11-5) Students explore unit fractions being partitioned into equal parts.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. For more information on the Math Language Routines, see the Appendix.

- Lesson 11-1: Students participate in MLR7: Compare and Connect so that students' oral and written output can be fostered as they compare different ways to solve and represent division problems.
- Lesson 11-2: Students participate in MLR1: Stronger and Clearer Each Time so that they have a structured and interactive opportunity to revise and refine their ideas while representing and solving division problems.
- Lesson 11-3: Students participate in MLR2: Collect and Display so that students' oral words and phrases can be captured into a stable, collective reference as they discuss dividing whole numbers by unit fractions.
- Lesson 11-4: Students participate in MLR8: Discussion Supports so that students' meta-awareness can be fostered as they discuss what they know in order to divide whole numbers by unit fractions.
- Lesson 11-5: Students participate in MLR3: Critique, Correct, and Clarify so that they have an opportunity to analyze, reflect on, and develop a piece of mathematical writing pertaining to dividing unit fractions by non-zero whole numbers that is not their own.
- Lesson 11-7: Students participate in MLR5: Co-Craft Questions and Problems so that they can produce the language of mathematical questions related to dividing fractions.

Unit 11

How Ready Am I?

Name

1. Which best describes $\frac{3}{5}$?
A. 3 groups of 5 objects
B. 5 groups of 3 objects
C. 3 wholes divided into 5 equal shares
D. 5 wholes divided into 3 equal shares
2. Which fraction represents 5 ?
A. $\frac{5}{5}$
(B.) $\frac{19}{2}$
3. Mary has 48 carts She puts them into 5 ples. How many cards are left over?
A. 9 conds
B. 6 cards
C. 3 cards
D. 5 cards
4. Which mived number is equivalent to $\frac{13}{4}$?
A. $2 \frac{3}{4}$ B. $3 \frac{1}{7}$
5. Which fraction is equivalent to $6 \frac{3}{5}$?
A. $\frac{14}{5}$
C. $\frac{23}{3}$
(D) $\frac{32}{5}$
6. Which is the product $\frac{1}{3} \times 47$
A. $\frac{1}{12}$
(C. $\frac{4}{3}$
B. $\frac{4}{12}$
7. Which is the product $4 \times \frac{3}{5}$?
$\begin{array}{ll}\text { A. } 4 \frac{2}{5} & \text { (B. } \frac{8}{5} \\ \text { C. } \frac{8}{26} & \text { D. } \frac{1}{10}\end{array}$
8. Which is the area of the rectangle?
$\frac{1}{\frac{1}{i n} .\{ } \frac{2 \mathrm{in} .}{\square}$
A. $\frac{1}{3}$ square inch
C. $2 \frac{1}{3}$ square inches
9. Which is the product of $\frac{3}{5} \times \frac{3}{5}$?
(a) ${ }^{2}$
B. $\frac{9}{5}$
c. $\frac{6}{5}$
D. $\frac{6}{5}$
10. Which is the product of $\frac{3}{8} \times \frac{3}{4}$?
A. $\frac{6}{12}$
B. $\frac{9}{8}$
c. $\frac{12}{24}$
(D. $\frac{9}{32}$
B. $\frac{2}{3}$ square inch D. $4 \frac{2}{3}$ square inches

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

Targeted Intervention

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	DOK	kill	Guided Support Intervention Lesson	Standard
1	1	Understand fractions as equal groups	Understand Unit Fractions	3.NF.A. 1
2	1	Represent whole numbers as fractions	Fractions with Numerators Greater Than 1	3.NF.A.3.c
3	2	Interpret remainders	Interpret Remainders in Word Problems	4.OA.A. 3
4	1	Change fractions to mixed numbers	Decompose Fractions into Sums	4.NF.B. 3
5	1	Change mixed numbers to fractions	Decompose Fractions into Sums	4.NF.B. 3
6	1	Multiply fractions by whole numbers	Unit Fraction By Whole Number (Models)	4.NF.B.4.b
7	1	Multiply fractions by whole numbers	Fraction by Whole Number (Models)	4.NF.B.4.b
8	1	Multiply fractions by whole numbers	Fraction by Whole Number (Models)	4.NF.B.4.b
9	1	Multiply fractions by fractions	Multiply Two Fractions	5.NF.B. 4
10	1	Multiply fractions by fractions	Multiply Two Fractions	5.NF.B. 4

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question: How can I divide fractions? Ask students to think about what they know about dividing fractions.
-What does it mean to divide?

- What do you know about fractions?

Remind students that at the end of the unit, they will reflect back on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Robotics Engineer Antonio about his aspirations to be robotics engineer.
Antonio Divides Fractions Students watch to see how Antonio uses division of a whole number by a unit fraction to determine how long a robot's batteries will last.

STEM Project Card

Students can complete the STEM project during their workstation time.

STEM Adventure

Students can complete the STEM adventure during their workstation time.

STEM Career: Robotics Engineer

Antonio Divides Fractions

Ignite!

Number Strings

Students analyze number strings to set the stage for learning how to divide with unit fractions.

1. Mention that a number string is a set of related math problems. Direct students to Part 1 on the Student Edition page.
2. Have students study the answers for patterns.

- What do you notice about the dividends, divisors, and quotients in problems a-d?

3. Now ask students to examine problem e in Part 1.

- Why is $\frac{1}{2}$ the divisor in problem e?
- Describe a strategy to solve problem e.

4. Have students use the patterns they discovered in the number string to solve problems f and g . As needed, assist students.
5. Explore a common misconception about division.
-When you divide, do you think that the quotient will always be less than or equal to the dividend? Explain.

- How do the quotients in problems e-g of Part 1 compare to their dividends?
- Why do you suppose the quotients in problems e-g are each greater than their dividend, 8 ?

6. Have students use the ruler at the bottom of the page to consider the problem $5 \div \frac{1}{2}$

- Do you think the quotient for $5 \div \frac{1}{2}$ will be greater than 5 ? Use the ruler to help you find how many $\frac{1}{2}$-inch segments fit into 5 .

7. Have students complete Part 2, problems a-d. Then ask students to look for patterns.

- What do you notice about the divisors, dividends, and quotients in problems a-d?

8. Ask students to complete the rest of Part 2.

- Use the patterns you have discovered to solve problems e-h. How is problem e different from the problems $\mathrm{a}-\mathrm{d}$?

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.

Foldables

Use the unit foldables with Lessons 11-3 and 11-5.

Spiral Review

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.

Lesson	Standard
$11-1$	5.NF.B.6
$11-2$	5.NF.B. 4
$11-3$	5.NF.B. 5
$11-4$	5.NF.B.3
$11-5$	5.MD.C. 5
$11-6$	5.NF.B. 7
$11-7$	5.NF.A.1

Relate Fractions to Division

Learning Targets

- I can represent the quotient of a division equation as a fraction or mixed number.
- I can explain why the quotient of a division equation can always be expressed as a fraction.
- I can explain why division of whole numbers can be written as a multiplication expression.

Standards \diamond Major \triangle Supporting O Additional

Content

\checkmark 5.NF.B.3 Interpret a fraction as division of the numerator by the denominator ($\left.\frac{a}{b}=a \div b\right)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Math Practices and Processes
MPP Model with mathematics.

Vocabulary

Math Terms	Academic Terms
denominator	prove
dividend	reflect
divisor	
numerator	
quotient	

Materials

The materials may be for any part of the lesson.

- fraction circles
- number cubes

Number Routine Greater Than or Less Than © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they determine whether estimated sums of fractions are greater than or less than a benchmark.

Remind students that this is a mental activity, and that exact sums are not needed.

These prompts encourage students to talk about their reasoning:

- What do you notice about the fractions in each expression?
- What is the same and different about the two expressions?
- What strategy did you use to estimate the size of each fraction and of each sum?
- How do you know if your estimate is reasonable?

Purpose Students explore how they can divide wholes into parts to make equal shares.

Notice \& Wonder ${ }^{\text {™ }}$

-What do you notice?
-What do you wonder?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students discuss with partners if they have ever experienced a situation like the one shown in the image.

ETP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of relating fractions to division and are based on possible comments and questions that students may make during the share out.

- Can the people share the sandwiches now? Why or why not?
- How do you think the people could share the sandwiches?

Math is... Yindset

-What are some ways you can avoid stress?

SEL Self-Management: Manage Stress

After students have completed the Notice \& Wonder routine, invite them to share what may have caused them stress. For example, students may have experienced stress if they did not understand a peer's reasoning for making equal parts or struggled with thinking about how to make equal parts. Discuss ways students can avoid that stress in the future as well as how they can manage or relieve it now. Strategies such as developing a manageable plan, getting organized, taking breaks, and asking for help can help students manage emotional reactions to stress.

Transition to Explore \& Develop

Ask questions that get students thinking about the connections among making equal shares, fractions, and division.
ETP Establish Mathematics Goals to Focus Learning

- Let's think about how we can relate division and fractions.

Learn

A farmer pous 5 gollions of woter ecually into 4 buckets How can you determine the amount of water in each bucket?
A division equation can represent the problem.

A fraction $\frac{g}{b}$ means the satse as $\sigma \div b$.

Q Work Together

A baker has 3 pounds of oats. He pouns the oats equally into 5 bags. What is the weight of oats in each bag?
$\frac{3}{5} \mathrm{lb}$

30 Inven 1 - Alate fivions winten

(1) Pose the Problem

EPP Pose Purposeful Questions

-What are you trying to determine?

- Do you need to know the capacity of the buckets? Why or why not?
- How can you figure out what operation to use?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Compare and Connect
Pair students and give them an equation to solve similar to the one on the Learn page. Instruct one student to represent by equal sharing and the other by partitioning. Then have them compare their strategies. Revisit this activity throughout the lesson to help students build proficiency.

(3) Bring It Together

- How can you determine the quotient of whole numbers using a fraction?
- How can you determine the quotient of whole numbers using multiplication?

Key Takeaways

- A fraction $\frac{a}{b}$ can be interpreted as meaning $a \div b$.
- The quotient of a division equation can be represented as a fraction or mixed number.
- Division of whole numbers is the same as multiplying by a unit fraction; the denominator of the unit fraction is the same as the divisor.

Work Together

Students solve a problem involving division that can be written as a fraction by interpreting division as a fraction, by partitioning, or by equal shares. Have students attempt all 3 approaches.

Common Error: Students may initially be confused as the amount they are dividing is less than the amount they are dividing by. Remind them that they can still write a division equation or fraction that is equal to a number less than 1.

LOM Language of Math

Explain to students that division comes from the Latin word dividere, which means "to force apart." Students can use their knowledge of the word's origin to determine the meaning of other words that come from dividere, such as divisive or individual.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how to express a division equation involving whole numbers using fraction circles and equations.

Materials: fraction tiles or fraction circles
Directions: Distribute a set of fraction tiles or circles to each pair of students. Have students solve the Pose the Problem using any strategy they choose.

Math is... Todeling

- How can a representation help you understand this problem? Students consider what a model tells them and assess how it will or will not help them.

ETR Support Productive Struggle
- How do you know which number to represent as the numerator?
- How do you know which number to represent as the denominator?
-What does the fraction tell you about how many gallons of water are in each bucket?
- Are there other ways you could write the fraction?

Activity Debrief: Invite students to share the steps they took to explore the problem and solution. Have students discuss and share how their work is similar and different from each other's work. Facilitate a discussion to ensure students understand that any division of whole numbers can be written as a fraction and vice versa. In addition, they understand dividing by a whole number is the same as multiplying by a unit fraction with the whole number as the denominator.

Guided Exploration

Students explore how division of whole numbers can be related to fractions.

ETR Use and Connect Mathematical Representations
Q. Have the students perform the equal sharing. Ask:

- If you put 1 gallon into each bucket, what do you notice?
- How can you share the remaining water?
- What fraction can you use to partition the remaining water?
-What is the total amount of water in each bucket?
Have the students perform the partitioning. Ask:
- Into how many equal parts should you partition each gallon of water? How do you know?
- How can you represent the number of gallons in each bucket?
- How many one-fourths will be in each bucket?
- Think About It: How can you show 5 one-fourths using a multiplication expression?
- Think About It: How is partitioning similar to equal sharing? How is it different?

Q Have students think about the two representations of $5 \div 4$. Ask:

- What equation was the result of the first representation?
-What equation was the result of the second representation?
- How are the equations the same? How are they different? What conclusions can you draw?

Math is... Todeling

- How can a representation help you understand this problem? Students consider what a model tells them and assess how it will or will not help them.

2. Develop the Math

A farmer pours 5 gallons of water equally into 4 buckets. How can you determine the amount of water in each bucket?

How can you represent the problem?

[^9]Developing/Expanding Ensure comprehension of pour. Draw a picture of a person pouring water into a glass and say, [She's] pouring water. Next, mime pouring and ask, What am I doing?

Bridging/Reaching Instruct students to name things that can be poured; for example, water, milk, paint, sand, sugar, etc. Then, ask them to categorize their items by liquid or solid; for example, solids: sand, sugar, etc., and liquids: water, milk, paint, etc. Allow students to look items up in a dictionary, if desired.

a. Abj pours the sime amount of aquartum pebbles from this bag into each of 3 aquariuns. What is the weight of the peboles in each aquartum?
$\frac{7}{3}$ pounds or $2 \frac{1}{3}$ pounds

11. What is the anknown divisor? Explain how you know.
\qquad $=\frac{2}{3}$
3; Sample answer: In a fraction, the divisor is the denominator.
12. Errer Anelysis Spencer dilides 6 pounds of food from the food dife irto 3 boxes. He says each bor has $\frac{3}{6}$ pounds of food. is he night? How do you know? No, Sample answer: Spencer divided 3 pounds of food into 6 boxes instead of 6 pounds into 3 boxes. The correct answer is $\frac{6}{3}$ or 2 .
13. Extend Your Thinking Write a word probiem irvolving divaion in which the quotient is $\frac{8}{5}$. Answers will vary but should involve groups of 8 that need to be divided into 5 parts.

(R) Reflect

How is a fraction another way to wite a divicion expression? Answers may vary.

Practice

EIP Build Prodcedural Fluency from Conceptual Understanding

- Common Error: Exercises 2-7 Students may not pay attention to the operation symbols in each equation and miss that some of the numbers are being multiplied, not divided. Encourage them to pay attention to the symbols and to think about how multiplication relates to division of whole numbers.

Item Analysis

Item	DOK	Rigor
1	2	Application
$2-7$	2	Procedural Skill and Fluency
$8-10$	2	Application
$11-13$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How is a fraction another way to write a division expression? Ask students to share their reflections with their classmates.

Math is... Mindset

- What did you do to avoid stress today?

Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can represent the quotient of a division equation as a fraction or mixed number.
- I can explain why the quotient of a division equation can always be expressed as a fraction.
- I can explain why division of whole numbers can be written as a multiplication expression.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK Skill	Standard
1	1	Match division to fractions	5.NF.B.3
2	2	Relate fractions to division	5.NF.B.3
3	2	Relate fractions to division	5.NF.B.3

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	Ihen have students do
3 of 3	Additional Practice or any of the B or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the B activities
1 or fewer of 3	Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

B Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Reinforce Understanding

Roll It, Write It, Show It!

Give students one number cube and a partially completed (1 filled) equation frame. Students roll once to determine the unknown divisor and the denominator to complete the equation using fraction circles, if needed. If students have difficulty, encourage them to think about the division sentences as corresponding multiplication sentences. Repeat with additional examples with 2 filled.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Quotient Fractions (Models)

Differentiation Resource Book, p. 125

Lesson 11-1-Reinforce Understanding Relate Fractions to Division

What is the division equation? Fill in the missing values.

Build Proficiency

Practice It! Game Station
Fractions as Division Four in a Row Students practice solving fraction word problems using division.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 125-126

Lesson 11-1

Additional Practice

Name

Review

You can interpret a fraction as another way to write a division expression.
Jynishn cuts a wooden board that is 4 feet long into 3 equai sections. What is the length of each plece of wood?
To solve, find $4+3$
Draw 4 wholes and oivide each Irto 3 equal pleces.

The total for each row is the quotient. Since each row contains 4 one-thirds of a foot, the length of each piece is $\frac{4}{3}$ or $1 \frac{1}{3}$ feet iong $4+3=\frac{4}{3}$ or $1 \frac{1}{3}$

What division expression is represented by the fraction?
2. 곤 $12 \div 5$
2. $\frac{1}{4} 1 \div 4$
3. 3 青 $3 \div 8$
4. $\frac{9}{2} 9 \div 2$

Unit 11 • Divide Fractions

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using area models.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 125-126

Extend Thinking

Use It! Application Station
Can You Hear Me? Students compare and contrast face-to-face and online communication.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 126

Lesson $15-1$ - Extend Thinking Relate Fractions to Division

Name
Donna created some perfume and divided it up equally among her 3 sisters and some of her friends. The representation shows how Donna divided up her perfume. Use the representation to answer the following problems,

1. Donna split her pertume up among 8 people
2. Dorna shared her perfume with 5 of her friendr.
3. Donna mode 12 ounces of perfume to share
4. How much perfume would Donna's saters get if she only thared her perfume with them? 4 ounces
5. How much perfume wauld Donna's friends get It she only shared her pertime whth them? $2 \frac{2}{5}$ ounces
6. How much pertume would Donna need to make so that each person yot $2 \frac{5}{8}$ ounces of perfume each? 21 ounces

Learning Target

- I can determine whether a quotient should be written with a remainder or as a mixed number.

Standards \circ Major \triangle Supporting O Additional

Content

\diamond 5.NF.B. 3 Interpret a fraction as division of the numerator by the denominator $\left(\frac{a}{b}=a \div b\right)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.

Focus

Content Objective

- Students determine whether a quotient should be written with a remainder or as a mixed number.

Language Objectives

- Students discuss whether a quotient should be written with a remainder or as a mixed number using the verb apply.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students exercise creativity by solving a problem using more than one approach.

Coherence

Previous

- Students found whole-number quotients and remainders with up to four-digit dividends and one-digit divisors (Grade 4).
- Students extended their understanding of fractions to understand fractions as division (Unit 11).

Now

- Students solve word problems and determine if the quotient should be written with a remainder or as a mixed number based on the context of the problem.

Next

- Students represent division of a whole numbers by unit fractions (Unit 11).
- Students understand the concept of a unit rate associated with a ratio and use rate language in the context of a ratio relationship (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of division and mixed numbers by determining how they should write a quotient for division problems.

Procedural Skill \& Fluency

- Students build their fluency with division as they practice strategies and skills for dividing whole numbers.

Application

- Students apply their understanding of division to solve problems with real-world contexts.
Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
mixed number	analyze
quotient	reflect
remainder	

Materials

The materials may be for any part of the lesson.

- number cards
- Problem-Solving Tool Teaching Resource

Number Routine What's Another Way to Write It? © ${ }^{5-7 \mathrm{~min}}$

Build Fluency Students build number sense as they are given a number and asked to write addition expressions that are equivalent to the target fraction. Students' suggestions are recorded for discussion.

These prompts encourage students to talk about their reasoning:

- Explain your first step in writing a sum.
- Explain how two of your expressions are related. What patterns do you notice?
- How can we use \qquad 's
expression to create a new expression?
- If you wrote an expression with more than two addends, what was your thinking?

Purpose Students focus on the context of a problem to make sense of it.

Numberless Word Problem

-What math do you see in this problem?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students write down their own thoughts about the numberless word problem before beginning a class discussion.

 Pose Purposeful QuestionsThe questions that follow may be asked in any order. They are meant to help advance students' understanding of how the context of a word problem can impact the answer and are based on possible comments and questions that students may make during the share out.
-What do you need to know to be able to solve this problem?
-What are some possible results of how the sheets are handed out?

Math is... Jindset

- How can your strengths in other areas help you in math?

SEL
 Self-Awareness: Recognize Strengths

As students work through the Numberless Word Problem routine, encourage students to recognize their own strengths. As a result, they can see themselves as resourceful and may be more willing to attempt to problem solve and help others. As a class, discuss some student strengths and how they helped work through the routine.

Transition to Explore \& Develop

Ask questions that get students thinking about how the answer to a division problem can depend on when things can be divided equally and when they cannot.
ErP Establish Mathematics Goals to Focus Learning

- Let's think about how we need to consider the context of a division problem to find the answer.

(1) Pose the Problem

Learn

Me. Gomez gives each of 12 groups of students the same amount of paper from a ream of paper.

How many sheets of paper will Mr. Gomex give each group?
A division equation can represent the probiem.

When solving division word probiems, it is important to determine whether the quotient should be written with a remainder or as a mixed number.

C. Work Together

Mrs. Pierson gove each of her 25 fitth-grade students the same number of colored pencils. There were 480 colored pencils in the set. How many colored pencils did Mrs. Plerson give each child?
19, with 5 remaining

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how the context of a word problem impacts the quotient.

Materials: Problem-Solving Tool Teaching Resource
Directions: Provide copies of the Problem-Solving Tool Teaching Resource. Have students work together to solve the Pose the Problem.

ETP Support Productive Struggle

- How do you know which operation to use?
-What strategies do you know for solving a division problem?
- If there is a remainder, how does that remainder apply to the context of the problem?
- What happens if Mr. Gomez only wants to give out full sheets of paper?
- What happens if Mr. Gomez does not want any leftover paper and gives out partial sheets of paper to the students?

Math is... Serseverance

- Why are you not finished with a problem after you have found the remainder?
Students explain that they are not finished until they interpret the remainder in the context of the problem.

Activity Debrief: Invite students to share their findings with others. Encourage students to think about how their solution applies to the context of the problem.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students explore how they can use the context of a word problem to know whether to write the quotient with a remainder or as a mixed number.

ETP Facilitate Meaningful Mathematical Discourse
 Have the students create the equation. Ask:
 - What should the operation be? Why?
 - How should the numbers appear in the equation? Why?
 - How should the unknown appear in the equation? Why?
 - Think About It: What strategy would you use to solve $500 \div 12=p$? Explain why.

Q Have the students estimate the solution. Ask:

- What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
Q. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?
- Think About It: Why can't Mr. Gomez share the remaining 8 full sheets?Have the students discuss their understanding of how the context of a division problem affects how to write the quotient. Have students share and compare their ideas. Make sure they ask useful questions that improve each other's ideas. Ask:
- How does the context help you determine whether the quotient should be written with a remainder or whether the quotient should be written as a mixed number?

Math is... Perseverance

- Why are you not finished with a problem after you have found the remainder?
Students explain that they are not finished until they interpret the remainder in the context of the problem.

EL English Learner Scaffolds

Entering/Emerging Ensure understanding of full sheets. Hand out two full sheets of lined paper or white printer paper. Say, These are full sheets. Then, ask students to cut one of their sheets. Using one student's half sheets, hold both halves up. Say, These are half sheets. Show students two sheets of construction paper, one full and one cut in half. Ask, Which is a full sheet? Allow pointing.

Developing/Expanding Ensure understanding of full sheets. Hand out two full sheets of lined paper or white printer paper. Say, These are full sheets. Then, ask students to cut one of their sheets. Using one student's half sheets, hold both halves up. Say, These are half sheets. Pick up a sheet of construction paper. Hold it up and ask, What is this? Expect at least a full sheet as the answer.

Bridging/Reaching Ask students to show you full sheets of paper that they have in their desks (i.e. notebook paper, loose-leaf, etc.). Then, have them concentrate on both full and sheet and think of other words they may know that mean the same; for example, full: entire, whole, uncut; sheet: page, piece of paper. Allow students to use a dictionary, if desired.

2. There were 210 balioons at a tair. Each of the 50 chadren that attended the falk got the same number of balloons. How many balloons did each child ger?
4 balloons; there were 10 left over
3. Dawn made 50 bracelets. 5he gave each of her 12 trienus the same number of bracelets. thow many braceiets de Dawn give to each of ker friendst She gave 4 bracetets to each of her friends; 2 were left over.

Would you write the quotient for the problem with a remainder or
as a mixed number?
4. Equal amounts of juice are 5. The same number of books poured into difterent glasses. must be put on each shelt.
A. temaindet
(B.) mixed number
6. A dog is fed the same amount of food every day A. remainder
(B.) mixed number
7. Someone gives out the same number of flowers to each of 5 thends
(A) remainder
maed number

Practice

EIP Build Procedural Fluency from Conceptual Understanding

1 Common Error: Exercises 4-7 Students may think that they cannot answer the question without knowing the exact amounts being divided. Remind students to think only about the context, and whether something can be divided into fractional units or not.

Item Analysis

Item	DOK	Rigor
$1-3$	2	Application
$4-7$	2	Conceptual Understanding
$8-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How do you know if a quotient should be written with a remainder or as a mixed number?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How have your strengths in other areas helped you in math?

Students reflect on how they practiced self-awareness.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can determine whether a quotient should be written with a remainder or as a mixed number.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			pOK
Skill		Standard	
1	2	Interpret remainders in division	5.NF.B.7
2	2	Interpret remainders in division	5.NF.B.7
3	2	Interpret remainders in division	5.NF.B.7
4	2	Interpret remainders in division	5.NF.B. 7

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

4 of 4
3 of 4 Additional Practice or any of the \mathbf{B} or \mathbf{E} activities

2 or fewer of 4 Take Another Look or any of the (3) activities Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(a) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 11-2

Exit Ticket

Name
Would you write the quotient for the problem with a remainder or as a mixed number?

1. Benta walked a certain number of miles last week. She walked the same number of miles each day.
A. mixed number
B. remainder
2. Denise made some necloces. She gave the same number of necklaces to her triends.
A. mixed numberremaincer
3. A school orders 400 new deskes for its 18 classtooms. Each classroom gets the same nurtber of deties. The school gives the greatest number of desks possible to each room. Which best describes how many desks each classroom gets?
A. 20 deslis wath 40 destes
B. $22 \frac{4}{3}$ desks left over
C. 22 desks with 4 desks
D. 23 desks
4. A patcher holds 48 frid ounces of lemonade. Neete pours on equal amount into each of 5 glasses uncil the pitcher is empty. How much lemonade does Neefo pour Imfo each glass?
$9 \frac{3}{5}$ fluid ounces

Reflect On Your Learning

Reinforce Understanding

It's a Problem

Work with students in pairs. Students pick two number cards and write a division equation with the greater number as the dividend and the lesser number as the divisor. One student comes up with a context for the problem, and the other student should solve the problem. If students have difficulty determining the context, ask the questions "What unit will this be measured in?" and "Would that unit make sense as a mixed number?"

Take Another Look Lesson

Assign the interactive lesson
to reinforce targeted skills.

- Quotient Fractions
(Word Problems)

Differentiation Resource Book, p. 127

Lesson 11-2-Reinforce Understanding
Solve Problems Involving Division
Name

Review

You can tas context to determinu whether to write a quotient with a remainder ot as a mixed number.
Fignu has 30 paperback tiooks. She gives each of her 4 frimends the siame number of books. How many books dd she give sach frena?

$$
30+4=7 R 2
$$

Flonal gives sach friend 7 books and hes 2 books remaining

Andy is dividing 30 peunds of flour equally among 4 bags How many pounde of flour rioes he pat in each bag?

$$
30+4=7 \frac{7}{4}=7 \frac{1}{2}
$$

Andy puts $7 \frac{1}{2}$ pounds of flour in each bog.

What is the quotient? Determine whether the answer should be written with a remainder or as a mixed number.

1. Gemin ran a total of 49 miles the lant now veeks. He tan the same thumber of milies enach day. How many miles did Givin nan each doy't Gavin $\operatorname{ran} 3 \frac{1}{2}$ miles each day.
2. Anpela has 100 eggs to sell at irarket. She packages the eggs in cartons which hola 12 eggs each. How many cantors does she have to sell at markot?
Angela has 8 cartons to sell and 4 eggs left over.
3. Chrs has 50 pounds of deer sausoge. He puts an-equat amoumt inta 18 bagr. How much ssusage will be in each bag? Each bag has $2 \frac{7}{9}$ pounds of deer sausage.
4. Else made 72 bookmarks for her book club. She gove each of the 15 members the same number of booknaks. How many bookmans did each clebb member get?
Each club member received 4 bookmarks and Elyse had 12 left over.

Build Proficiency

Practice It! Game Station
Fractions as Division Four In a Row Students practice solving fraction word problems using division.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 127-128

Lesson H -2

Additional Practice

N sme

Review

You can determine whether the quotient should be written with a remainder or as a mixed number.
A pitcher holds $\mathbf{4 2}$ fuid ounces of iemonade. Hevene pours an equel amoure into each of 5 giasses until the pitcher is empty: How much iemonade does Heiene pour into each glass?
To solvo, find $42+5$
With a remwindee, $42 \div 5=8 R 2$.
As a mived number. $42+5=8 \frac{7}{5}$
Since tractional parts of fluid oiances can be poured, witte the answer as a mixed number.
Helene poureg $8 \frac{2}{\mathrm{~g}}$ fluid ounces into eacr glass.
How would you write the quotient for the problem?

1. Colle waleod if certain number of miles last weick. She walkod the same number of miles rach day. How many mles did she wax each day?
(A)
as a moved number
a. With a remainder
C. either woy is appropriate
2. Debble made some bracelets. She gave the same number of braceiets to her friends. How many bracelets did she give to ench triend?
A. as a mised number
B. with a remainder
C. elther woy is appropriate

Unit 11 • Divide Fractions

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using area models.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 127-128
3. A O-4llometer race is divided into 3 equal sections. How long is each section of the race?
$3 \frac{1}{3}$ kitometers
4. A teacher orders a box of 100 pencis to give to the students. Each of the 18 students receives the same number of pencas. How mary pencls does each student ger? 5 pencils, with 10 pencils remaining
5. A lence is 40 yardr long. Fence posts are placed so that there are 6 equal sections. How tar apart are the tence posts?
$6 \frac{4}{6}$ or $6 \frac{2}{3}$ yards apart
6. A grocer has 50 peaches to sell. He packapes them in groups of 3. How mary packages does the grocer make?

16 packages with 2 peaches left over

 narth menerapsees: most

Extend Thinking

Use It! Application Station How Fast Is Your Robot? Students create a robot and measure the distance it travels. They experiment with techniques to increase the distance and speed. The content of this card has concepts covered later in Lesson 11-4. You may want to assign this card to
 students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 128

Lesson 11-2-Extend Thinking
 Solve Problems Involving Division

Name
Fran has 275 pens. $\frac{3}{5}$ of the pens are block ink. The remaining pens are blue ink. Altogether, these 275 pens weigh 54 ounces.

1. If Fran gives an equat number of the black pens to each of ther 12 thiends, now many block pens will each friend recelve? $13 ; 275 \times \frac{3}{5}=165$ black pens. $165 \div 12=13$ R 9 .
2. "Fran gives an equal number of the blue pens to each of her six tomily members. how many blue pers wall Fian hove lett?
2; $275-165=110$ blue pens. $110 \div 6=18$ R2
3. How many pens wa fan nove let over t the dividen the puns up eventy. wethout regard to coloc between her filinds ind tamiy? $5: 275 \div 18=15$ R 5.
4. Fran is thinking about maling hec best triend some pers. i Fron divides up af of the pens eveny between ner 12 trencs. now much wit her best trienoss package of pens weight $4 \frac{1}{2}$ ounces; $54 \div 12=4 \frac{1}{2}$
5. Fran is thinking about mailing an equat number of the 275 pens to each of her 4 siblings. How much will each package weigh? $13 \frac{1}{2}$ ounces: $54 \div 4=13 \frac{1}{2}$
6. How much does one pen weigh?
$\frac{54}{275}$ ounces

Represent Division of Whole Numbers by Unit Fractions

Learning Target

- I can use a representation to divide whole numbers by unit fractions.

Standards \circ Major Δ Supporting O Additional

Content

\diamond 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
\diamond 5.NF.B.7.b Interpret division of a whole number by a unit fraction, and compute such quotients.
For example, create a story context for $4 \div \frac{1}{5}$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div \frac{1}{5}=20$ because $20 \times \frac{1}{5}=4$.
Math Practices and Processes
MPP Model with mathematics.

Focus

Content Objective

- Students use representations to divide whole numbers by unit fractions.

Language Objectives

- Students talk about using representation to divide whole numbers by unit fractions using can and should.
- To support sense-making, ELs participate in MLR2: Collect and Display.

SEL Objective

- Students collaborate with peers to solve a mathematical problem.

Coherence

Previous	Now	Next
- Students multiplied fractions by whole numbers (Grade 4). - Students solved word problems and determined how to write the quotient (Unit 11).	- Students represent division of whole numbers by unit fractions.	- Students use the relationship of multiplication and division to divide whole numbers by unit fractions (Unit 11). - Students divide fractions by fractions and understand rate and ratio concepts (Grade 6).

Rigor

Conceptual Understanding

- Students build their understanding of division of whole numbers by unit fractions as they relate the concept to different representations.

Procedural Skill \& Fluency

- Students build their fluency with multiplication and division as they develop strategies and skills for dividing whole numbers by unit fractions.

Application

- Students apply their understanding of division to solve problems with real-world contexts.
Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
division	evaluate
fraction model	reflect
unit fraction	

Materials

The materials may be for any part of the lesson.

- fraction circles
- fraction tiles
- number cube

Number Routine What's Another Way to Write It? © ${ }^{5-7 \text { min }}$ Build Fluency Students build number sense as they write subtraction expressions to represent a given difference expressed as a fraction.

These prompts encourage students to talk about their reasoning:

- How can you use your understanding of inverse relationships to find two expressions within the same fact family?
- What is another way to write an expression thought about it in a different way?
- Is it necessary for all of the numbers used to have the same denominator? Explain.

Purpose Students connect division of whole numbers by unit fractions to real-world situations.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students share their ideas and questions with a partner before discussing with the class as a whole.

EIP
 Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of how they can represent dividing a whole number by a unit fraction and are based on possible comments and questions that students may make during the share out.
-What wholes do you see? Explain.

- What parts do you see? Explain.

Math is... Yindset

-What behaviors show respect towards someone?

SEL

Social Awareness: Respect Others
As students work through the Notice \& Wonder routine, invite them to be conscious of being respectful of their peers by listening to them, accepting the value of their ideas, and being willing to be either a leader or allowing others to lead. When students are respectful of one another, they strengthen their class community.

Transition to Explore \& Develop

Ask questions that get students thinking about how they could represent dividing a whole number by a unit fraction.

IP Establish Mathematics Goals to Focus Learning

- Let's think about how we can use representations to divide whole numbers by unit fractions.

A represertation can nelp you divide a whole number by a unit fraction.

C Work Together

Joey has a 5 -foot bcard. He cuts the board into pleces that are each $\frac{1}{3}$ foot long. How many $\frac{1}{3}$ foot boards will Jocy have? Use the number line to help you solve.

Joey will have $15 \frac{1}{3}$ foot boards.

(1) Pose the Problem

KLI

Collect and Display

As students discuss the questions, record relevant words and phrases they may use such as fraction model, represent, and partition. Display the words for student reference. Use the student-generated expressions to help students make connections between student language and math vocabulary.

EIP Pose Purposeful Questions

-What are some ways you can explain what $6 \div 2$ means?

- What strategies have you used in the past to represent division of whole numbers?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Bring It Together

- How can you use a fraction model to represent division of whole numbers by unit fractions?
- How do you use the representation help you determine the quotient?

Key Takeaway

- Fraction models can be used to represent division of whole numbers by unit fractions.

Work Together

Students solve a word problem involving division of a whole number by a fraction using a number line instead of partitioning.

Common Error: Students may think they need to partition the whole 5 feet into 3 shares to get $5 \div 3=\frac{5}{3}$. Point out that this question asks "How many one-thirds are in 5 ?" which can be written $5 \div \frac{1}{3}$.

tom
 Language of Math

Explain to students that partition is a verb that means to break something up into parts. It is also a noun. A partition is a light movable wall or screen that can divide a room into smaller rooms. Partition comes from the Latin word partiri, meaning "divide into parts."

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore extending the meaning of division to divide a whole number by a unit fraction.

Directions: Present a division expression, such as $1,288 \div 23$. Have students discuss with a partner the meaning of division, such as finding how many groups of 23 can be made from 1,288. Present the expression $3 \div \frac{1}{2}$. Encourage students to think about how they can use the meaning of division to help them divide a whole number by a unit fraction.
[18] Support Productive Struggle
-What tools can you use to represent the division?

- How can you represent the dividend?
- How can you represent the divisor?
- How does your representation show the quotient?

Math is... n My World

- Describe other examples of when you might need to find how many fractional parts are in a whole.
Students apply the mathematics they know to solve problems arising in everyday life.

Activity Debrief: Invite students to discuss their findings and the representations they explored. Facilitate a discussion to ensure students understand that the meaning of division is the same when dividing whole numbers by unit fractions.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the number of cards Meghan can make?

Guided Exploration

Students represent division of a whole numbers by unit fractions.
Err Use and Connect Mathematical Representations
(4) Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

1 Have the students estimate the solution. Ask:

- Should the number of one-fourths in 6 be less than or greater than 6? Why?
- How does that help you estimate the solution?
-What do the 6 wholes in the fraction model represent? Explain why.
-Why should you partition the wholes?
- Think About It: How does the number of $\frac{1}{4}$ s compare to the number of wholes? Explain why.

Math is... 斤 My World

- Describe other examples of when you might need to find how many fractional parts are in a whole.
Students apply the mathematics they know to solve problems arising in everyday life.

2. Develop the Math

Meghan has 6 sheets of paper. She uses $\frac{1}{4}$ sheet of paper to make a card.

How can you determine the number of cards Meghan can make?

[^10]Developing/Expanding Ensure comprehension of 5 -foot board. Measure your classroom door. Say, This is a [7-foot] door. It's [seven] feet tall. Write "7-foot door." Then, measure another object such as a bulletin board. Say, This is an [8-foot] board. It's [eight] feet long. Finally, ask students to measure an object and use x-foot (object) to describe it.

Bridging/Reaching Instruct students to review the Work Together problem on the Learn page. Have them focus on 5 -foot board. Then, have students measure classroom objects, using x-foot (object) in complete sentences to describe the objects. Finally, ask students to explore other similar terms that require a hyphen, such as 6-hr school day and 2-hour drive.

[^11] He wites an equation to help him determine how many presents he can wrap using al of the paper. is Kevin correct? Explain your thinsing. No, Kevin multiplied instead of divided. He can wrap 15 presents.
11. Mrs. Lopez has 2 large plrzas for her class to share. Each slice is $\frac{1}{8}$ of the pizza. How many slices of pizze does Mrs. Loperz hivu? 16 slices; Check students' work
12. A house painter pours the paint from this 5 -gallon can into smaller cars that each hold $\frac{1}{2}$ gallon. How many small cans wil he fis? Use a fraction model to justily your answer 10 small cans; Check students' work

13. A baker tas 4 pounds of flour She divides it evenly into bags that hold $\frac{1}{3}$ pound each Show how many bags the baker can fif using a traction model. 12 bags; Check students' work
14. Extend Your Thinking Find a whole number and unit traction whose quotient is 24
Sample answer: $8 \div \frac{1}{3}=24$

(2) Reflect

How does using representations help you undentand division of a whole number by a unit fraction?
Answers may vary.

[^12]
Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 1-8 Students may lose track of how many partitions they have made in the whole as they count, especially with greater numbers like in exercise 3 . Encourage students to write how many partitions are in each whole above the representation, and add them when they have counted each one.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
9	2	Application
10	3	Conceptual Understanding
$11-13$	2	Application
14	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How does using representations help you understand division of a whole number by a unit fraction?
Ask students to share their reflections with their classmates.

Math is... Yindset

- How did you use behaviors that show respect towards someone? Students reflect on how they practiced social awareness.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can use a representation to divide whole numbers by unit fractions.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item DOK Skill		Standard	
1	2	Divide whole number by unit fraction with representation	5.NF.B.7.c
2	2	Divide whole number by unit fraction with representation	5.NF.B.7.C
3	2	Divide whole number by unit fraction with representation	5.NF.B.7.C
4	2	Divide whole number by unit fraction with representation	5.NF.B.7.C

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	then have students do
4 of 4	Additional Practice or any of the B or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the B activities
2 or fewer of 4	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 11-3

Exit Ticket

Name

1. Luca has 4 tortilas. She cuts each toriila to make tortilla chips. Each chip is $\frac{1}{8}$ of a tortila. How mary toetilia chips can Lucio make? Use the representation to solve.

32 tortilla chips
2. A pizzeria serves its slices of pizza as $\frac{1}{6}$ of a whole pizza. How many stices of pirzs can the pizzerio serve from 2 whole pizzas? Use the representation to solve

12 slices of pizza
3. Marco makes 5 cups of tral mik that he divides among sneck Dags. He puts $\frac{1}{4}$ cup of tral mox irto each snack bag. How mary snack bags of trail mix does Marco make? 20 snack bags
4. Parla has a length of ribbon 6 feet long. She cuts the tibbon into $\frac{1}{2}$ toot iong pieces. How many pieces of ribbon does Perla have? 12 pieces of ribbon Reflect On Your Learning

Reinforce Understanding

Roll It, Draw It, Solve It!

Work with students in pairs. Provide a number cube and fraction tiles or fraction circles. One student rolls for a dividend to divide by $\frac{1}{2}$. Both players use the manipulatives to show the problem. Then they write and solve. If students have difficulty, help them recognize that the number of halves will be two times the dividend.

Build Proficiency

Practice It! Game Station
Represent Division of Whole Numbers by Unit Fractions Concentration
Students practice solving fraction division problems by matching pictures, expressions, and answers.

므즟昭 믐

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 129-130

Lesson 15-3

Additional Practice

Name

Review

You can use a representation to find the quotient of a whole number divided by a unit fraction.
Rosanna has 5 inge pieces of fabici. To make a quilt, she neends to cut each large plece of fabric into 5 pieses or $\frac{1}{5}$ s. How many smater pieces of fabric wil she have?
To solve, find $5 \div \frac{1}{5}$.
Use a ropresentation to find the quctient. Draw 5 wholes Divide each whole into $\frac{1}{51}$

There are 25 pleces that are $\frac{1}{5}$ of a whole.
Rosanns will hwo 25 smaler pleces of fabric
What is the quotient? Use a representation to solve.
Check students' work.

1. $3 \div \frac{1}{8}=24$	2. $8+\frac{1}{5}=40$
3. $4+\frac{1}{4}=\frac{16}{}$	4. $2+\frac{1}{8}=12$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using area models.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 129-130

Extend Thinking

Use It! Application Station
Potluck with a Twist Students use whole numbers, fractions, and division to create a 14 -dish menu for a potluck. The content of this card has concepts covered later in Lesson 11-7. You may want to assign this card to students ready to make sense of content
 covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 130

Divide Whole Numbers by Unit Fractions

Learning Targets

- I can use the meaning of multiplication as equal groups to divide whole numbers by unit fractions.
- I can check if a calculated quotient is correct using a related multiplication equation.

Standards \diamond Major \triangle Supporting O Additional

Content

\diamond 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
\diamond 5.NF.B.7.b Interpret division of a whole number by a unit fraction, and compute such quotients.
For example, create a story context for $4 \div \frac{1}{5}$, and use a visual fraction model to show the quotient.
Use the relationship between multiplication and division to explain that $4 \div \frac{1}{5}=20$ because
$20 \times \frac{1}{5}=4$.

Math Practices and Processes

MPP Attend to precision.

Focus

Content Objectives

- Students use the meaning of multiplication as equal groups to divide whole numbers by unit fractions.
- Students check the quotient using a related multiplication equation.

Language Objectives

- Students discuss if a calculated quotient is correct using a related multiplication equation using should, might, and could.
- To support maximizing cognitive and linguistic meta-awareness, ELs participate in MLR8: Discussion Supports.

SEL Objective

- Students identify and use mathematical tools to organize work.

Coherence

Rigor

Conceptual Understanding

- Students build on their understanding of the relationship between multiplication and division as they justify the quotient of a whole number divided by a unit fraction.

Procedural Skill \& Fluency

- Students build proficiency by solving problems involving a whole number divided by a unit fraction using pictures, words, and numbers.

Application

- Students apply their understanding of dividing a whole number by a unit fraction in solving problems in real-life contexts.
Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
dividend	arguably
division	speculate
divisor	
unit fraction	

Materials

The materials may be for any part of the lesson.

- spinners
- Unit Fractions \& Whole Numbers Teaching Resource

Number Routine About How Much?
 5-7 min

Build Fluency Students build number sense as they estimate the sum of two fractions and the sum of two mixed numbers.

Students complete a think-pair-share, and the teacher records the estimates. These prompts encourage students to talk about their reasoning:

- What are you being asked to find? What do you notice about the numbers?
- What strategy can you use to solve the problems? How did you determine your estimate?
- What did you do first? What did you do next? How could this have been done another way?

Purpose Students begin to think about grouping fractional parts to make wholes.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students write down the fractions they associate with each image before beginning class discussion.

EIP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of using the relationship between multiplication and division to divide whole numbers by unit fractions and are based on possible comments and questions that students may make during the share out.

- How can you find how many parts make up each whole?
- How do you know which fraction each image represents?

Math is... Yindset

- How do you organize your work to be successful?

SEL

Self-Management: Organizational Skills
As students complete the Notice \& Wonder routine, invite them to share how they organized their work or what they noticed about how you organized your work. You may have written down what students noticed and wondered as two organized lists. Invite students to discuss the tools they may use to organize their work while dividing wholes by fractions,
such as number lines or fraction tiles. Encourage them to think about why each tool may be helpful for their work with dividing wholes by fractions.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can use the relationship between multiplication and division to divide whole numbers by unit fractions.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can use the relationship between multiplication and division to divide whole numbers by unit fractions.

Learn

A serving site of almonds is $\frac{1}{4}$ cup.
How many servings are in this bag of almonds?
A division equation represents the problem


```
You can use mutiplication to determine now many one-fourths are in 10.
There are }4\mathrm{ one-fourths in each whole
and t0 }\times4,\mathrm{ or 40 one-fourths, in
10 wholes.
10 \div\frac{1}{4}=40
```



```
There are 40 servings in the bag of almonds.
Use mutiplication to check the answer.
\[
40 \times \frac{1}{4}=\frac{49}{4}=10
\]
The calculated quotient is correct.
```

Math in Precision What is the difference between checking an answer and assessing its reasonableness?

You can use the relationship between mutiplication and division to divide a whole number by a unit fraction. You can check the answer using a related mullipication equation.

Q. Work Together

Mika wrote $15 \div \frac{1}{3}=5$. How can you help Mika understand dividing by unt fractions?
Sample answer: There are 3 thirds in each whole; so $15 \div \frac{1}{3}$ is the same as $15 \times 3=45$. The quotient is 45 , not 5 .

(1) Pose the Problem

MLR

Discussion Supports

As students talk about what they know, have them pay attention to others' understandings in order to increase their ability to work through multiplication equations with a calculated quotient. Restate statements they make as a question to seek clarification and provide vocabulary or grammar prompts for students who need more guidance.

EIP Pose Purposeful Questions

- How can you explain the relationship between multiplication and division?
- How can you represent division of whole numbers by unit fractions?

(2) Develop the Math

Choose the option that best meets your instructional goals.

3 Bring It Together

- How does the relationship between multiplication and division help you divide whole numbers by unit fractions?
- How can you use multiplication to check that a calculated quotient is correct?

Key Takeaway

- The relationship between multiplication and division can be used to divide whole numbers by unit fractions.

Work Together

Students work together to correct the quotient of a division equation and explain dividing whole numbers by unit fractions.

Common Error: If students think that Mika's work is correct, ask them to think about how dividing by a unit fraction is different from multiplying by a unit fraction.

rom
 Language of Math

Explain to students that the word dividend comes from the Latin word dividendum, meaning "thing to be divided."

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore efficient strategies for dividing a whole number by a unit fraction.

Materials: Unit Fractions and Whole Numbers Teaching Resource
Directions: Provide copies of Unit Fractions and Whole Numbers. Students will write a division equation using a whole number as the dividend and a unit fraction as the divisor. Tell students that they will find each quotient and look for patterns.

EIR Support Productive Struggle

- How many groups of the unit fraction are needed to make 1 whole? 2 wholes?
- What patterns do you notice when dividing a whole number by a unit fraction?
- How does thinking about groups of help you divide whole numbers by unit fractions?

Activity Debrief: Students should notice that the quotient is the product of the dividend and the denominator of the divisor. Facilitate a discussion about using a related multiplication equation to check their work.

Math is... 2recision

- What is the difference between checking an answer and assessing its reasonableness?
Students discuss the difference between a check, which determines if a calculated result is correct, and assessing the reasonableness of a calculated answer (often done by rounding or compatible numbers),

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine how many servings are in this bag of almonds?
The PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use the relationship between multiplication and division to divide whole numbers by unit fractions.

ETR Facilitate Meaningful Mathematical Discourse

(4. Have the students create the equation. Ask:
-What should the operation be? Why?

- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(A) Have the students estimate the solution. Ask:
- Should the number of $\frac{1}{4} \mathrm{~s}$ in 10 be less than or greater than 10 ? Why?
- How does that help you estimate the solution?
- How does the bar diagram help you understand how to solve the problem?
(2. Have the students draw bar diagrams to help and assist them solve the problem. Ask:
- How many bars should you use? Why?
- How should the bars be partitioned? Why?
- How can these bar diagrams help you solve the problem?
- Think About It: How are division by fractions and division by whole numbers similar?

Math is... Drecision

- What is the difference between checking an answer and assessing its reasonableness?

Students discuss the difference between a check, which determines if a calculated result is correct, and assessing the reasonableness of a calculated answer (often done by rounding or compatible numbers).

2. Develop the Math

A serving size of almonds is cup. How can you determine how many servings are in this bag of almonds?

English Learner Scaffolds

Entering/Emerging Explain serving (size). Draw a bag of nuts and a bottle of juice. Label each as having 8 servings. Draw serving sizes next to them: $\frac{1}{2}$ cup for the nuts and $\frac{3}{4}$ cup for the juice. Point to the bag of nuts. Say, This bag has eight servings. Point to the $\frac{1}{2}$ cup. Say, Each serving is $\frac{1}{2}$ a cup. Repeat with the juice. Show students the Learn page and ask, What is the serving size: 10 cups or $\frac{1}{4}$ cup?

Developing/Expanding Explain serving (size). Draw a bag of nuts and a bottle of juice. Label each as having 8 servings. Draw serving sizes next to them: $\frac{1}{2}$ cup for the nuts and $\frac{3}{4}$ cup for the juice. Point to the bag of nuts. Say, This bag has eight servings. Point to the $\frac{1}{2}$ cup. Say, Each serving is $\frac{1}{2}$ a cup. Repeat with the juice. Show students the Learn page and ask, What is the serving size of the almonds?

Bridging/Reaching Ask students to read the problem on the Learn page. Ask them to explain the meaning of serving size. To help aid them in their explanation, prompt them to use a dictionary or thesaurus to look up similar words for serving size (portion, amount, quantity).

12. Mia niked 4 miles. There were trall markers every $\frac{1}{10}$ mble How many trail makers did Mia see during her hike? 40 markers
13. STEM Connection Poppy is visiting a park that is 15 acres. The park is dividod into sections that are each $\frac{1}{3}$ ocre. How many sections does the park have? $15 \div \frac{1}{3}=45$
14. Jixenh has to gations of punch. He pours the punch irto pitchers that each hoid $\frac{1}{2}$ galion. How many pichers does Javon use? 20 pitchers
15. Exteed Your Thliaking When a whole number a divided by a
fraction that is less than 1 , wilt the quotient always be greater
than the whole number? Explain why or why not.
Yes. Sample answer: The whole number is being divided into more parts, so the quotient will be greater.

(OReflect

How does using the relationship between multiplicmion and division help you divide whole numbers by fractions?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

Common Error: Exercises 1-9 When the dividend is a multiple of the denominator of the unit fraction, some students may divide the dividend by that denominator. For example, in exercise 2, they may divide 6 by 3 to obtain 2. Encourage students to use a representation to show how many one-thirds are in 6 .

Item Analysis

Item	DOK	Rigor
$1-9$	1	Procedural Skill \& Fluency
$10-14$	2	Application
15	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How does using the relationship between multiplication and division help you divide whole numbers by fractions?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How have you organized your work to be successful?

Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets and of the lesson.

- I can use the meaning of multiplication as equal groups to divide whole numbers by unit fractions.
- I can check if a calculated quotient is correct using a related multiplication equation.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Math is. Mindset

How have you omparised your work to be succensful?

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			
1	1	DOK Skill	Standard
2	1	Divide whole numbers by unit fractions	5.NF.B.7.b
3	2	Divide whole numbers by unit fractions	5.NF.B.7.b
4	2	Divactions	5.NF.B.7.b

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4
Additional Practice or any of the (B) or © activities
3 of 4 Take Another Look or any of the (3) activities
2 or fewer of 4 Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 11-4

Exit Ticket

Name
Which is the quotient?
2. $6+\frac{1}{8}$
A. $\frac{3}{4}$
(B.) 48
C. $\frac{5}{8}$
D. $\frac{1}{48}$
2. $8+\frac{1}{6}$
(A) 40
B. $\frac{3}{5}$
c. $\frac{1}{25}$
D. $\frac{5}{8}$
3. Heather's garden is 5 yards long. Shen plants a row of tulip Dulbs in her garden. She plants each bulb $\frac{1}{4}$ yord apart. How mary tullip buibs can Heather plant in the row? 20 tulip bulbs
4. Raiden has 2 Iters of bubble mio. He divides up the bubbie mix by pouring it into smaler bottles. Raiden fills each small bottle whth $\frac{1}{5}$ iter of bubble mix. How many small bottes will he fir? 10 small bottles

Reflect On Your Learning

Reinforce Understanding

Divide the Whole

Write the numbers $2,3,4$, and 8 in the spaces on a spinner. Each student spins the spinner twice. The first spin represents the whole number; the second spin represents the denominator of a unit fraction. Each student writes a division equation for the numbers. Students switch equations, find the quotient, and share their strategy. If students have difficulty, help them represent the problem by using drawings, number lines, or fraction tiles.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Divide Whole Numbers by Unit Fractions

Differentiation Resource Book, p. 131

Lesson 11-4 - Reinforce Understanding
Divide Whole Numbers by Unit Fractions
Name

What is the quotient? Use a related multiplication equation to check your answer. Show your work.

```
4. }10+\frac{1}{8}=8
    Check: 80 < \frac{1}{8}}=10\mathrm{ .
2. }5+\frac{1}{3}=1
    Check: }15\times\frac{1}{3}=5
3. 7+\frac{1}{4}=28
    Check: 28 \times < 
        4. }9+\frac{1}{10}=9
        Check: }\overline{90\times\frac{1}{10}}=
        5. 15+\frac{1}{5}=75
        Check: }75\times\frac{1}{5}=15\mathrm{ .
            6. 12+\frac{1}{7}=84
        Check: }\overline{84\times\frac{1}{7}}=12\mathrm{ .
7. How many quattercups ate in t cup of Hour? 4
8. How many sices are in 3 ples, il each slice is t
```


Build Proficiency

Practice It! Game Station Dividing Whole Numbers by Unit
Fractions Bingo Students practice
solving expressions involving fractions by playing bingo.

3

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 131-132

Lesson 11-4

Additional Practice

Name

Review

You can use multiplication to find the quotient of a whole number divided by a unit fraction.
A baker hat a 4 -pound bing of flow. A recupe isses $\frac{1}{5}$ pound of flour. How many times can the boker make the recope?
To solve. find $\mathbf{4}+\frac{1}{5}$.
There are $5 \frac{1}{5}$ pounds in each pound of flout.

So there are $4 \times 5=20 \frac{1}{5}$-pounds in 4 pounds.
The baker can make the recipe 20 Iimes.
What is the quotient?

$$
\begin{array}{ll}
1.9+\frac{1}{1}=72 & 2.11+\frac{1}{6}=55 \\
3.6+\frac{1}{4}=24 & 4.5+\frac{1}{6}=30 \\
\text { 5. } 3+\frac{1}{2}=6 & \text { 6. } 8+\frac{1}{2}=24
\end{array}
$$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using area models.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 131-132

Extend Thinking

Use It! Application Station
How Fast Is Your Robot? Students create a robot and measure the distance it travels. They experiment with techniques to increase the distance and speed.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 132

Lesson 11.4 - Extend Thinking
Divide Whole Numbers by Unit Fractions
Name
Match the division statement in Column A with the answer statement in Column 8 and fill in the divisor. The first one is done for you. Answers may vary.

Represent Division of Unit Fractions by Non-Zero Whole Numbers

Learning Target

- I can use a representation to divide unit fractions by non-zero whole numbers.

Standards \diamond Major \triangle supporting O Additional

Content

\diamond 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
\diamond 5.NF.B.7.a Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $\frac{1}{3} \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $\frac{1}{3} \div 4=\frac{1}{12}$ because $\frac{1}{12} \times 4=\frac{1}{3}$.

Math Practices and Processes

MPP Reason abstractly and quantitatively.

Focus

Content Objective

- Students use representations to divide unit fractions by non-zero whole numbers.

Language Objectives

- Students explain how to use representations to divide unit fractions by non-zero whole numbers using similar and related.
- To support cultivating conversation ELs participate in MLR3: Critique, Correct, and Clarify.

SEL Objective

- Students determine the representations and analyses necessary to make informed decisions when engaging in mathematical practices.

Coherence

Previous	Now	Next		
- Students multiplied a fraction by	- Students represent division of			
a whole number (Grade 4).				unit fractions by non-zero whole
:---	\quad	- Students use the relationship		
:---				
between multiplication and				
- Students used the relationship to divide unit fractions				
between multiplication and				
division to divide whole numbers				
by unit fractions (Unit 11).	\quad	numbers.		
:---				
by whole numbers (Unit 11).				

Rigor

Conceptual Understanding

- Students extend their understanding of division with fractions by representing division of unit fractions by non-zero whole numbers.

Procedural Skill \& Fluency

- Students evaluate representations used to divide fractions by non-zero whole numbers.

Application

- Students apply their understanding of dividing fractions by non-zero whole numbers to solve problems.
Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms
division fraction model
Academic Terms
analyze
suggest unit fraction

Material

The materials may be for any part of the lesson.

[^13]
Number Routine About How Much?
 (1) 5
 5-7 min

Build Fluency Students build number sense and estimation skills as they estimate differences involving fractions and mixed numbers.

Students share their estimates with partners and reason with classmates. The teacher records estimates and discloses the actual differences. These prompts encourage students to talk about their reasoning:
-What are you asked to find?

- What do you notice about the numbers? What do you think you should do first?
-What strategies did you use to determine your estimates?

Purpose Students explore unit fractions being partitioned into equal parts.

Which Doesn't Belong?

-Which doesn't belong?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students model the images by themselves with fraction tiles to give them a more hands-on experience with the activity.

 Pose Purposeful QuestionsThe questions that follow may be asked in any order. They are meant to help advance students' exploration of using representations to divide unit fractions by non-zero whole numbers and are based on possible comments and questions that students may make during the share out.

- How can you know what the shaded parts represent?
- How can you know how the shaded parts are divided?

Math is... Yindset

-What consequences might there be for your decisions?

SEL Responsible Decision-Making: Evaluate

As students begin the Which doesn't belong? routine, have them think about different ways to evaluate the image. As they evaluate the image, encourage them to think about different attributes or characteristics so that they can develop understanding that helps them make informed decisions.

Transition to Explore \& Develop

Ask questions that get students thinking about using representations to divide unit fractions by non-zero whole numbers.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can use representations to divide unit fractions by non-zero whole numbers.

Learn
A farmer divides $\frac{1}{5}$ acre into 3 equal sections to plant vegetables
What fraction of an acre is each section?
A division equation represents the problem
You can use a fraction model to help you solve the equation.
$\frac{1}{5}+3=a$
Represent $\frac{1}{5}$ of a whole.

Partion the $\frac{1}{5}$ into 3 equal sections.

\frac{1}{5}+3=\frac{1}{15}
\frac{1}{5}+3=\frac{1}{15}
Each section will be \frac{1}{15}}\mathrm{ acre
Each section will be \frac{1}{15}}\mathrm{ acre
How is representing a fraction of
How is representing a fraction of
a fraction similar to representiog
a fraction similar to representiog
a fraction of a whole?
a fraction of a whole?
C Work Together
C Work Together
Peter has }\frac{1}{4}\mathrm{ gallon of water. He equally shares the water between his
Peter has }\frac{1}{4}\mathrm{ gallon of water. He equally shares the water between his
2 dogs. How much water will each dog get?
2 dogs. How much water will each dog get?
\frac{1}{8}}\mathrm{ gallon
\frac{1}{8}}\mathrm{ gallon

(1) Pose the Problem

EPP Pose Purposeful Questions

- What strategies in the past have you used to represent division involving fractions?
- Do you think the sections will be greater than $\frac{1}{5}$ acre? Why or why not?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Critique, Correct, and Clarify
Make a false claim for students to critique. Write the following on the board: $\frac{1}{5} \div 4=\frac{4}{5}$. Am I correct? Ask students to correct the statement, explaining how they know it's incorrect. Revisit this routine throughout the lesson to provide reinforcement.

3 Bring It Together

ETP Elicit and Use Evidence of Student Thinking

- How can you use a fraction model to represent division of unit fractions by non-zero whole numbers?
- How can you use the representation to help you determine the quotient?

Key Takeaway

- Fraction models can be used to divide unit fractions by non-zero whole numbers.

Work Together

Students solve a word problem involving division of a unit fraction by a non-zero whole number.

Common Error: Make sure students understand they cannot start by just representing $\frac{1}{4}$. They need to show a whole, and then partition the whole into $\frac{1}{4}$ s. They will partition each $\frac{1}{4}$ of that whole into 2 sections to solve the problem, which is why this step is important.

LOM Language of Math

Explain to students that quotient comes from the Latin quotiens, which means "how many times." Finding the quotient involves finding how many times the divisor goes into the dividend.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using representations to divide unit fractions by non-zero whole numbers.

Materials: Dividing Fractions Puzzle Pieces Teaching Resource
Directions: Provide copies of the Dividing Fractions Puzzle Pieces Teaching Resource. In pairs or small groups, invite students to find matches with the puzzle pieces. Encourage students to use representations to help them make matches.

ETR Support Productive Struggle

- How can you use the meaning of division to help you create a representation?
- How does your representation show the dividend?
- How does your representation show the divisor?
- How does your representation show the quotient?

Math is... Connections

- How is representing a fraction of a fraction similar to representing a fraction of a whole?

Students connect their understanding of representing part of a whole to part of a fraction.

Activity Debrief: Have students share their representations to explore the concept of division of unit fractions by non-zero whole numbers.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the fraction of an acre for each section?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students represent division of unit fractions by non-zero whole numbers.

ETP Facilitate Meaningful Mathematical Discourse

8 Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

8 Have the students estimate the solution. Ask:

- Should the each of the 3 equal shares of $\frac{1}{5}$ be less than or greater than $\frac{1}{5}$? Why?
- How does that help you estimate the solution?
- Think About It: Why are 3 equal shares of the whole, and not just the $\frac{1}{5}$, shown in the model?
- How can you know that each share is $\frac{1}{15}$ of the whole?

Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?

Math is... Connections

- How is representing a fraction of a fraction similar to representing a fraction of a whole?
Students connect their understanding of representing part of a whole to part of a fraction.

2. Develop the Math

A farmer divides $\frac{1}{5}$ acre into 3 equal sections to plant vegetables. How can you determine the fraction of an acre for each section?

What equation can you write to represent the problem?

Developing/Expanding Ensure students' comprehension of share among equally. Put enough counters in a group so that you can pass out 2-3 to each student. Say, l'm going to share the counters among us equally. Pass them out so that each student has the same number. Repeat with new items to share among the class equally. Ask, What did I do? Provide sentence frames for students who need more guidance.

Bridging/Reaching Have students read the Work Together problem on the Learn page, focusing on the phrase share among equally. Then give students a number of counters. Tell them to share them among the students equally, saying what they're doing. Have them restate in their own words; for example, I'm distributing them evenly.

8. Raymond nas $\frac{1}{3}$ gallon of watec. He shares the woter equally amang his 3 hamsters. How much water will each namster get? $\frac{1}{9}$ gallon
9. A baker olvides $\frac{1}{2}$ pound of whest four equily for 3 loaves of bread. What fraction of a pound is in each loat? $\frac{1}{6}$ pound
10. STEM Connection Artonio is trying to determine the speed of his robot before his next competition He moasures that the robot moves $\frac{1}{2}$ foot in 5 seconds. How tar does his robot mowe ebch second? $\frac{1}{10}$ foot

15. Extend Your Thimking How is dividing unit fractions by whole numbers smilar to dividing whole numbers by unit fractions? How is defferert? Sample answer: They are similar because both involve breaking up a whole into smaller pieces; because we start with a dividend that is a unit fraction, the quotient is less than the dividend instead of greater.

(2)Rellect

How can a representation help you divide a unt fraction ty whale number?
 Answers will vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[1. Common Error: Exercise 9 Students may divide by 3 instead of 4 if
they do not realize that Juanita is also getting a share of the nuts. Make sure students read each word problem carefully before they begin to solve it.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
$9-12$	2	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can a representation help you divide a unit fraction by a whole number?
Ask students to share their reflections with their classmates.

Math is... Mindset

-What consequences were there for your decisions?
Students reflect on how they practiced responsible decision-making.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can use a representation to divide unit fractions by non-zero whole numbers.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item DOK Skill	Standards		
1	2	Divide unit fractions by whole numbers with representation	5.NF.B.7.a
2	2	Divide unit fractions by whole numbers with representation	5.NF.B.7.C
3	2	Divide unit fractions by whole numbers with representation	5.NF.B.7.C

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
Additional Practice or any of the © or activities
2 of 3
1 or fewer of 3 Take Another Look or any of the (3) activities Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 11-5

Exit Ticket

Name

1. Which division equation is shown by the moder?

A. $\frac{1}{3}+4=\frac{1}{12}$
(B) $\frac{1}{4}+3=\frac{1}{12}$
C. $\frac{1}{4}+3=\frac{1}{3}$
D. $\frac{1}{4}+3=\frac{3}{8}$
2. Ashlyn rols $\frac{1}{2}$ pound of bread douph into 4 bals. What is the weight of ench bal of bread dough? Use the represertation to solve.

$\frac{1}{8}$ pound
3. A frog covers a distance of $\frac{1}{2}$ meter in 3 hops. If each hop covered the same distance, which is the distance the frog hopped esech time?
(A.) $\frac{1}{6}$ meter
B. $\frac{1}{5}$ meter
c. $\frac{2}{3}$ meter
D. $\frac{3}{2}$ meters

Reflect On Your Learning

Reinforce Understanding

What's the Story?

Work with students in pairs. Have students write a word problem to match the expression $\frac{1}{6}$ 3. Then have students trade word problems with a partner and solve. Have them compare and discuss their word problems and representations. Encourage students to check their work by multiplying the quotient by the divisor. Remind students that since they are dividing a number into smaller parts, the quotient must be less than the dividend.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Divide Unit Fractions by Whole Numbers

Differentiation Resource Book, p. 133

Lesson $11-5 \cdot$ Reinforce Understanding
Represent Division of Unit Fractions by Non-Zero Whole Numbers

Name
Review

What is the quotient? Use the fraction model to solve,

Build Proficiency

Practice It! Game Station
Fraction Division Match, Concentration, and Showdown Students practice matching expressions, word problems, representations, and answers.

$\square \square$ *末 $\square \square$ $\square \square \square$

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 133-134

Lesson 11-5

Additional Practice

Name

Review

You can use a representation to find the quotient of a unit fraction divided by a whole number.
Elelinda intes $\frac{1}{2}$ of her flower garden far roses. She plants 4
tosobushes, giving each an equal amount of the garden. What fraction of Belinda's hower garden wil be used for each rosebush?
To solve, find $\frac{1}{2}+4$
Use a represertation to find the quotient.

What is the quotient? Use a representation to solve.

$$
\begin{array}{ll}
\text { Check students' work. } \\
\begin{array}{ll}
\text { 2. } \frac{1}{6}+4=\frac{1}{24} & \text { 2. } \frac{1}{4}+2=\frac{1}{8} \\
\text { 3. } \frac{1}{5}+5=\frac{1}{45} & \text { 4. } \frac{1}{5}+3=\frac{1}{15}
\end{array}
\end{array}
$$

Unit 11 • Divide Fractions

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using area models.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 133-134

Extend Thinking

Use It! Application Station
Can You Hear Me? Students compare and contrast face-to-face and online communication.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 134

Name
What division statements give the quotient in the Answer column? Complete the fraction models to represent the quotient in the Answer column and write the division statement for each model. The first one is done for you.

Diferrisoin fromers bock

Divide Unit Fractions by Non-Zero
 Whole Numbers

Learning Targets

- I can divide unit fractions by non-zero whole numbers.
- I can check if a calculated quotient is correct using a related multiplication equation.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
\diamond 5.NF.B.7.a Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $\frac{1}{3} \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $\frac{1}{3} \div 4=\frac{1}{12}$ because $\frac{1}{12} \times 4=\frac{1}{3}$.

Math Practices and Processes

MPP Look for and make use of structure.

Focus

Content Objectives

- Students extend their understanding that dividing by a whole is the same as multiplying by a unit fraction to divide unit fractions by whole numbers.
- Students check if a calculated quotient is correct using a related multiplication equation.

Language Objectives

- Students explain if a calculated quotient is correct using different and related.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

Coherence

Previous	Now	Next
- Students multiplied a fraction by	- Students use the relationship	- Students use strategies to solve
a whole number (Grade 4). - Students represented division of unit fractions by non-zero whole numbers (Unit 11).	division to divide unit fractions word problems by non-zero whole numbers.	involving fractions and whole numbers (Unit 11).
		- Students divide fractions by fractions (Grade 6).

Rigor

Conceptual Understanding

- Students build their understanding of dividing unit fractions by non-zero whole numbers by using multiplication to justify their solutions.

Procedural Skill \& Fluency

- Students interpret multiplication equations to solve related division equations.

SEL Objective

- Students demonstrate self-awareness of personal strengths and areas of challenge in mathematics.

Number Routine

 Where Does It Go?Build Fluency Students build number sense and fraction understanding as they draw a point for the same mixed number on two different number lines-one number line with marked endpoints 0 and 10 ; the other with marked endpoints 0 and 8 .

These prompts encourage students to talk about their reasoning:

- How are the number lines similar? How are they different?
- How did you determine where to place the point on each number line?

Purpose Students think about the relationship between multiplication and division to divide unit fractions by non-zero whole numbers.

Is It Always True?

- Is the statement always true?

See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students work in small groups to discuss whether the statement is always true before discussing as a class. Remind them they only need to find one instance where it is not true to say that it is not always true.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of how to use the relationship between multiplication and division to divide unit fractions by non-zero whole numbers and are based on possible comments and questions that students may make during the share out.
-What could $3 \div 4$ represent?
-What could $\frac{1}{4} \times 3$ represent?

- How can you tell if something is always true?

Math is... Yindset

-What strengths will you rely on to be successful today?

Self-Awareness: Accurate Self-Perception
As students begin to think about the relationship between multiplication and division in the Is it always true? routine, encourage them to make connections to concepts they are more familiar or comfortable with, such as dividing and multiplying whole numbers. They can also use more familiar strategies to check their answers. As students continue to divide unit fractions by whole numbers, differentiate instruction to provide opportunities for students to experience success and gratification as well as encounter appropriate amounts of productive struggle.

Transition to Explore \& Develop

Ask questions that get students thinking about how the relationship between multiplication and division can help them divide unit fractions by non-zero whole numbers.

EIR Establish Mathematics Goals to Focus Learning

- Let's think about how we can use the relationship between multiplication and division to divide unit fractions by non-zero whole numbers.

Learn

Ms. Myers pours an equal amount of mik in each of 6 cups.
If she pours all of the milk, how can you determine what fraction of a gallon is in each cup?
A division equation can represent the problem.

Division of a unit fraction by a non-zero whole number can be rewritten as multiplication by a unit fraction

C. Work Together

> Explion uty $\frac{1}{5}+3=\frac{1}{15}$.
> becouse $\frac{1}{5} \times \frac{1}{3}=\frac{1}{15}$

(1) Pose the Problem

EPP Pose Purposeful Questions

- How can you explain the relationship between multiplication and division?
- How can you represent division of unit fractions by non-zero whole numbers?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Stronger and Clearer Each Time
Pair students and have them work on a problem like the problem on the Learn page. Have them individually write about how to solve the problem. Then have them share their writing with their partner and fix mistakes. Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

GIP
 Elicit and Use Evidence of Student Thinking

- How does the relationship between multiplication and division help you divide unit fractions by non-zero whole numbers?
- How can you use multiplication to check that a calculated quotient is correct?

Key Takeaway

- The relationship between multiplication and division can be used to divide unit fractions by non-zero whole numbers.

Work Together

Students explain why the quotient of a division equation is accurate by using multiplication. Encourage students to solve the problem by rewriting the equation as multiplication of a unit fraction, then checking the answer by multiplying the quotient by 3 .

Common Error: Students may explain the equation using a representation. Ask them to also use a multiplication equation to demonstrate why the equation is true.

Language of Math

Explain to students that the multiplication and division equations are related when they are part of the same fact family, just as people are related when they are part of the same family.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore efficient strategies for dividing a unit fraction by a non-zero whole number.

Materials: Unit Fractions and Whole Numbers Teaching Resource
Directions: Provide copies of Unit Fractions and Whole Numbers. Students will write a division equation using a unit fraction as the dividend and a whole number as the divisor. Tell students that they will find each quotient and look for patterns.

ETR Support Productive Struggle

-What patterns do you notice when dividing a unit fraction by a whole number?

- How does dividing by a whole number compare to multiplying by a unit fraction whose denominator is that whole number?

Activity Debrief: Students should notice that the quotient is the product of the dividend and a unit fraction whose denominator is the whole number. Facilitate a discussion about using a related multiplication equation to check their work.

Math is... Structure

- If an equation is true, why are all the equations related to it true? Students understand the structure of mathematics that allows them to use the truth of an equation to establish the truth of a related equation and to check an answer.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine what fraction of a gallon is in each cup? A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use the relationship between multiplication and division to divide unit fractions by non-zero whole numbers.

Fire Facilitate Meaningful Mathematical Discourse

Q Have the students create the equation. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Have the students estimate the solution. Ask:

- Should the each of the 6 equal shares of $\frac{1}{2}$ be less than or greater than $\frac{1}{2}$? Why?
- How does that help you estimate the solution?

Q Make sure students understand the division expression and the multiplication expression represent the same quantity.
-What does $\frac{1}{2} \div 6$ represent?
-What does $\frac{1}{6} \times \frac{1}{2}$ represent?

- Think About It: How do you know that $\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$?

Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:

- Is the calculated solution reasonable? Why or why not?

Math is... Structure

- If an equation is true, why are all the equations related to it true? Students understand the structure of mathematics that allows them to use the truth of an equation to establish the truth of a related equation and to check an answer.

2. Develop the Math

Ms. Myers pours an equal amount of milik in each of 6 cups. if she pours all of the milk, how can you determine what

English Learner Scaffolds

Entering/Emerging Ensure understanding of can be. Use a pencil to write something. Write it messily. Say, This can be rewritten to be neater. Rewrite it more neatly. Stack a pile of books on the table. Say, These can be restacked. Stack them differently. Finally, group 12 counters into 3 groups of 4. Ask, Can these be regrouped? Then place just one counter on the table and ask, Can this be regrouped?

Developing/Expanding Ensure understanding of can be. Use a pencil to write something. Write it messily. Say, This can be rewritten to be neater. Rewrite it more neatly. Stack a pile of books on the table. Say, These can be restacked. Stack them differently. Finally, group 12 counters into 3 groups of 4. Ask, What can be done with these? Provide the frame They \qquad regrouped, if needed.

Bridging/Reaching Guide students to the Learn page and ask them to focus on the sentence containing can be rewritten. Have them restate the meaning in their own words using again instead of re-. Provide the sentence starter You can ... Have students share other words they know with the prefix re- where the meaning is to do something again (redo, regroup, etc.).

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 1-8 Students may mistakenly divide the whole number by the fraction. Remind students to pay attention to the order in which each equation is written, and that the placement of the dividend and divisor are not interchangeable.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Conceptual Understanding
$5-8$	1	Procedural Skill \& Fluency
9	2	Application
10	3	Conceptual Understanding
$11-12$	3	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How did you think like a mathematician today?

Ask students to share their reflections with their classmates.

Math is... Mindset

-What strengths did you rely on to be successful today? Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can divide unit fractions by non-zero whole numbers.
- I can check if a calculated quotient is correct using a related multiplication equation.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pOK Skill		Standard	
1	1	Divide unit fractions by whole numbers	5.NF.B.7.a
2	1	Divide unit fractions by whole numbers	5.NF.B.7.a
3	2	Divide unit fractions by whole numbers	5.NF.B.7.c
4	2	Divide unit fractions by whole numbers	5.NF.B.7.c

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

4 of 4
Additional Practice or any of the © or $\boldsymbol{\beta}$ activities
3 of $4 \quad$ Take Another Look or any of the ${ }^{3}$ activities
2 or fewer of 4 Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 11-6

Exit Ticket

Name
Which is the quotient?

1. $\frac{1}{3} \div 5$?
A. 15
c. $\frac{5}{3}$
(D) $\frac{1}{15}$
2. $\frac{1}{4}+8 ?$
(A) $\frac{1}{32}$
e. $\frac{1}{2}$
C. 2
D. 32
3. Sonys buys $\frac{1}{2}$ pound of lunch meat She uses the lunch meat to make 2 sandwiches. How much lunch meat does Sonya use on each sandwich?
$\frac{1}{4}$ pound
4. Som walks $\frac{1}{4}$ mile in 3 minutes. How far does Sam wolk each minute?
$\frac{1}{12}$ mile

Reflect On Your Learning

Reinforce Understanding

Divide It Up!

Work with students in groups. Students roll a number cube for the denominator and roll again for the whole number. Students then solve by rewriting the division problem as a multiplication problem. If students have difficulty, encourage them to model the problem using area to see that the number of unit fractions that it takes to fill the whole number is equal to the product of the whole number and the denominator of the fraction.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Divide Unit Fractions in Word Problems

Differentiation Resource Book, p. 135

Lesson 11.6 - Reinforce Understanding
Divide Unit Fractions by Non-Zero
Whole Numbers
Name

What is the quotient? Rewrite the division equation as a multiplication equation and then solve.

Build Proficiency

Practice It! Game Station
Fraction Division Bingo Students practice solving expressions involving fractions by playing bingo.

3

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 135-136

Lesson T156

Additional Practice

Name

Review

You can use multiplication to find the quotient of a unit fraction divided by a whole number.
Me. Torres has $\frac{1}{j}$ of a large container of gue to divide equalif among 2 smaller containers. How much of the glue in the large cortainer will be put into each small container?
To solve, find $\frac{1}{3}+2$.
Use multiplication to find the quotient
Dividing by 2 is the sare as mutiplyang by $\frac{1}{2}$
$\frac{1}{3}+2=\frac{1}{3} \times \frac{1}{2}=\frac{1}{6}$
Each small container can hold $\frac{1}{6}$ of the gion from the linger container.
What is the quotient?

$$
\begin{array}{ll}
2 \cdot \frac{1}{5}+7=\frac{1}{35} & 2 \frac{1}{8}+3=\frac{1}{24} \\
3 \cdot \frac{1}{6}+9=\frac{1}{54} & 4 \cdot \frac{1}{3}+5=\frac{1}{15} \\
5 \cdot \frac{1}{24}+6=\frac{1}{24} & 6 \cdot \frac{1}{6}+2=\frac{1}{18}
\end{array}
$$

area models.

Spiral Review

 Center.
Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher

Student Practice Book, pp. 135-136
7. Greta draws a line that is $\frac{1}{2}$ foot long. She divides the line ivto 4 equal sections. What is the lenger of each section?

foot

Extend Thinking

How Fast Is Your Robot? Students create a robot and measure the distance it travels. They experiment with techniques to increase the distance and speed.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 136

Lesson 11.6-Extend Thinking
 Divide Unit Fractions by Non-Zero Whole Numbers

Nanse
Complete each division equation. Then rewrite as a multiplication equation.

1. $\begin{aligned} & \frac{1}{3} \\ & \frac{1}{3} \times \frac{1}{8}=\frac{1}{24}\end{aligned}$	6. $\begin{aligned} & \frac{1}{8}+11=\frac{\frac{1}{88}}{1} \\ & \frac{1}{8} \times \frac{1}{11}=\frac{1}{88} \end{aligned}$
$\text { 2. } \frac{1}{\frac{1}{5}} \frac{5}{\frac{1}{15} \times \frac{1}{5}=\frac{1}{75}}=\frac{1}{75}$	7. $\frac{\frac{1}{6}}{\frac{1}{6} \times \frac{1}{10}=\frac{1}{60}}=\frac{1}{60}$
3. $\frac{1}{9}+6=\frac{\frac{1}{54}}{\frac{1}{9} \times \frac{1}{6}=\frac{1}{54}}$	8. $\frac{\frac{1}{13}+\frac{4}{\frac{1}{13}} \times \frac{1}{4}=\frac{1}{52}}{=\frac{1}{52}}$
4. $\frac{\frac{1}{7}}{\frac{1}{7} \times \frac{1}{5}=\frac{1}{35}} \div 5=\frac{1}{35}$	9. $\begin{aligned} & \frac{1}{14} \div 2=\frac{1}{28} \\ & \frac{1}{14} \times \frac{1}{2}=\frac{1}{28} \end{aligned}$
5. $\frac{1}{4}+\frac{9}{\frac{1}{4} \times \frac{1}{9}=\frac{1}{36}}=\frac{1}{36}$	เง. $\frac{\frac{1}{7}}{\frac{1}{7} \times \frac{1}{6}=\frac{1}{42}} \div 6=\frac{1}{42}$

Rewrite the multiplication problem as a division problem. Activity

Use It! Application Station

Joseph lives $\frac{1}{5}$ mile from school He can walk to schoot in 5 minutes. How tar does Joseph walk each minute? $\frac{1}{25}$ mile
9. Karlie stiri has $\frac{1}{3}$ of her book left to read. She plans to read the same amourt each of the next 5 days. How much of the book does Karlie plan to read each day?
\qquad $\frac{1}{15}$ of the book
10. A pitcher of lemonade is $\frac{1}{2}$ full. Remy pours the lemonade equally irto 3 cups. What traction of a full pacher of lemonade gets poured into each cup?

Shana
14. $\begin{aligned} & \frac{1}{1} \times \frac{1}{5}=\frac{1}{40} \\ & \frac{1}{8} \div 5=\frac{1}{40}\end{aligned}$

$$
\left\lvert\, \begin{gathered}
12 \frac{1}{11} \times \frac{1}{2}=\frac{1}{16} \\
\frac{1}{11}+8=\frac{1}{88}
\end{gathered}\right.
$$

Unit 11

Which Expressions Represent the Situation?

Name
Read each problem. Circle the expression or expressions that could be used to solve the problem. Do not actually solve the problem.

1. Mis has $\frac{1}{2}$ pound of cheese to be spit coually into 6 smai boven. Which expression or expressions could be used to find the weight of the cheese in each box?
Circle at correct choices.

$$
\begin{array}{ll}
\text { a. } \frac{1}{2} \times 6 & \text { a } \frac{1}{2}+\frac{1}{6} \\
\text { ()ㅏ } \frac{1}{2}+6 & \text { e. } 6+\frac{1}{2} \\
\text { e } \frac{1}{2}+\frac{1}{6} & \text { (ㄱ) } \frac{1}{6} \times \frac{1}{2}
\end{array}
$$

Explain your choiceial Explanations may very.
2. The price of a wart is $\frac{1}{3}$ the prise of a jacket. The price of the jeckert is $\$ 45$. Which expression or expressions can be used to find tre price of a scart?
Circle avi conect choices

(a) $45+3$	d. $\frac{1}{3}+45$
(b) $\frac{1}{3} \times 45$	e. $45+\frac{1}{3}$
c. $\frac{1}{3}+45$	c. $45-\frac{1}{3}$

Explain your choicelst Explanations may vary.

Analyze the Probe Formative Assessment

Targeted Concept Identify expressions that represent a problem situation involving multiplication or division with a whole number and a unit fraction. Understand that more than one expression can be used to describe a problem situation.

Targeted Misconceptions Some students apply a "keyword" strategy to determine the operation-which can lead them off track. Some students think that the sequence of terms within an expression must match the sequence in which the values appear in the given word problem. Other students may not recognize equivalent expressions or think that a given problem can only be represented with one expression.

Authentic Student Work

Below are examples of students' explanations.

Sample A

Sample B

3. Girde all correct choices.

Collect and Assess Student Work

Collect and review student responses to determine possible misconceptions. See examples in lf-Then chart.

IF incorrect... \dagger	HEN the student likely...	Sample Misconceptions	
1. c 2. d, f	does not interpret the situation as a relationship that can be represented with multiplication or division, but instead identifies the operation as addition or subtraction.	In this case, the student understands the correct answer but has difficulty choosing the expressions that represent the situation.	
3. a		3. Circle alf correct choices $\begin{array}{ll} \text { a. } 16-4) & \text { d. } \frac{1}{3} \times 16 \\ \text { e. } 16.06 & \text { e. } \frac{1}{15} \times 4 \\ c .4+16 & \text { e. } 16+\frac{1}{4} \end{array}$	Eplain your choice(s). a) $16 .-3-4-4-4,4$ sach b) soma c) quof 16,4 eoch 0) $16 \div \frac{1}{4}$: Thank 4 ach also
1. a, d	thinks that the sequence of terms in an expression must match the sequence in which the values appear in the word problem. Note that this misconception could lead to a correct answer for Exercise 1 (choice b) and a correct answer for Exercise 2 (choice b).	In this case, the student looked for the numbers in the order shown in the problem.	
2. C			Explain your choice(s). I elimanated answers that wasn't divide. $z)=$ checked the Numbers.
1. d, e	identifies a division relationship, but chooses an expression that contains the reciprocal of the divisor (in Exercise 1, choice d; in Exercise 3, choice f); OR transposes the divisor and the dividend (in Exercise 1, choice e; in Exercise 3, choice b).	In this case, the student chooses all division expressions.	
3. b, f		2. Orcle alf correct cholces. a. $45+3$ (4. $\frac{1}{3}+45^{3}$ b. $\frac{1}{3} \times 45$ e. $45+\frac{1}{3}$ C. $\frac{1}{3}+45$ t. $45-\frac{1}{3}$	Explain your choice(s). These was the closest to the two numbers going in order.
Chooses only one expression for each Exercise	does not identify equivalent expressions or thinks there is only one expression that can represent a given situation.		
Many of the above difficulties result in a combination of correct and incorrect responses. For correct responses, be sure to check for sound reasoning.			

Take Action

Choose from the following resources or suggestions:

- Revisit the activities in Lessons 11-2 through 11-5 that relate to writing expressions to describe division situations.
- Provide problems where the quantities have been removed to promote reasoning and estimation about the problem context.
- Use concrete and visual representations to build understanding of equivalent expressions that model a given problem.
- Focus on language that promotes conceptual understanding of division and multiplication. A division problem such $3 \div \frac{1}{8}$ may be thought of as How many $\frac{1}{8}$ s fit into 3? Multiplication can be thought of as groups of.
- Build understanding of the structure of word problems by having students sort a collection of problems based on common structures such as equal groups or compare situations.

Revisit the Probe After additional instruction, have students review their initial answers to the probe. Use these questionsfor discussion:

- Are there any answers you would like to change? Explain.
- Are there any questions that you still have about any of the exercises on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Learning Target

- I can solve word problems involving division of fractions.

Standards \diamond Major \triangle supporting O Additional

Content

\diamond 5.NF.B. 7 Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
\diamond 5.NF.B.7.c Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $\frac{1}{2} \mathrm{lb}$ of chocolate equally? How many $\frac{1}{3}$-cup servings are in 2 cups of raisins?

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.

Focus

Content Objective

- Students solve word problems involving division of fractions using strategies such as using fraction models or the relationship between multiplication and division.

Coherence

Previous

- Students applied previous understandings of multiplication to multiply a fraction by a whole number (Grade 4).
- Students used the relationship between multiplication and division to divide unit fractions by whole numbers (Unit 11).

Language Objectives

- Students discuss solving word problems involving division of fractions using another way.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

SEL Objective

- Students advocate for their mathematical problem solving and adjust their understanding based on constructive feedback.

Rigor

Conceptual Understanding

- Students extend their understanding of operations with fractions by solving word problems.

Procedural Skill \& Fluency

- Students build fluency in interpreting word problems and finding the solutions using operations involving fractions and whole numbers.

Application

- Students apply their

 understanding of operations with fractions and whole numbers to solve problems with real-world contexts.
Vocabulary

Math Terms	Academic Terms
equation	establish
unknown	relevant
variable	

Material

The materials may be for any part of the lesson.

- Problem-Solving Tool Teaching Resource

Number Routine Where Does It Go?

5-7 min

Build Fluency Students build number sense as they draw a point for a decimal number 23.54 on two different number lines marked with different end points.

These prompts encourage students to talk about their reasoning:

- What did you notice about each number line?
- How did you determine where to place the point for 23.54 on each number line?
- How did you think about each number line before placing each point?
- Why do the points appear to be located in about the same position on each number line? How can that be correct?

Purpose Students think about the context of word problems involving division and fractions and how that affects their solution strategy.

Notice \& Wonder

- How are they the same?
- How are they different?

See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students write down on their own what they notice is the same and different before beginning discussion as a class.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' ability to choose and use strategies to solve division word problems that involve fractions and whole numbers and are based on possible comments and questions that students may make during the share out.

- How do you know which operation to use to solve each problem?
-What types of numbers does each situation involve?

Math is... Jindset

- How can you show that you are listening attentively?

SEB

Relationship Skills: Communication
After students work through the Notice \& Wonder routine independently, have them share their reasoning with a partner and communicate their chosen strategy. If students have used different strategies to determine how the problems are similar and different, invite them to work together to understand one another's reasoning. Remind students that strong learners are willing to learn from not only communication by their teachers but also their peers.

Transition to Explore \& Develop

Ask questions that get students thinking about choosing and using strategies to solve division word problems that involve fractions and whole numbers.

ETP Establish Mathematics Goals to Focus Learning

- Let's think about choosing and using strategies to solve division word problems that involve fractions and whole numbers.

Learn

Elizabeth uses all of the ribbon to decorate 5 boxes so that 4 of the faces of the boxes have the same amount of ribbon.

How long will the ribbon on each face be?
You can use strategies you know to solve the problem
You can write and solve an equation to determine how much ribbon she will use for each box.
$3 \div 6=b$
$3+6=\frac{3}{6}=\frac{1}{2}$
Exploin another way
Explain another way you could hive solved $3+6=B$

She wit use $\frac{1}{2}$ foct of ribbon on each box

Then you can write an equation to determine the length of the ribibon on ebch face.
$\frac{1}{2}+4=r$
$\frac{1}{2}+4=\frac{1}{B}$
Elzabeth will use $\frac{1}{8}$ foot of tibbon on vach face.
You can use known strategies to solve problems involving division of une fractions.

Ca Work Together

Martha has 5 muffins. To now many triends can she give $\frac{1}{4}$ of a mutfin? 20 friends

(1) Pose the Problem

EPP Pose Purposeful Questions

- How can you make sense of this problem?
-What do think a plan for solving this problem would be?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Co-Craft Questions and Problems Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

EEP] Elicit and Use Evidence of Student Thinking

- How do you choose a strategy to solve a division word problem that involves fractions and whole numbers?
- What are some strategies you know that you can use to solve division word problems that involve fractions and whole numbers?

Key Takeaway

- Problems involving division of unit fractions can be solved using known strategies, such as using fraction models or the relationship between multiplication and division.

Work Together

Students work together to solve a word problem involving division of a whole number by a unit fraction.

- Common Error: Because students divided a unit fraction by a whole number in the Pose the Problem, they may automatically begin to do the same in the Work Together. Remind students to read the problem carefully, using representations such as fraction models to help them understand the problem, and only then determine how they will solve the problem.

Language of Math

People can buy a small part of ownership in a company; this small part is called a share. Often, some of the company's profits is divided equally among the people who own shares. That amount that are divided equally is called a dividend.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore solving problems involving division of fractions.
Materials: Problem-Solving Tool Teaching Resource
Directions: Distribute copies of the Problem-Solving Tool Teaching Resource. Have students work together to solve the Pose the Problem.

EIP Support Productive Struggle

- How can you represent the problem?
-What strategies do you know for dividing whole numbers?
- How does the context of the problem help you know how to solve it?
- How does your solution method compare to others?

Math is... Exploring

- Explain another way you could have solved $4 \div 8=b$.

Students understand other approaches to solving problems.

Activity Debrief: Have students share their solutions and strategies for solving the problem. Encourage students to find similarities and differences among the solution methods.

A PDF of the Activity-Based Exploration is available in the Digital Teacher Center.

English Learner Scaffolds

Entering/Emerging Ensure understanding of faces as in "faces of a box." Demonstrate using a manipulative with faces, such as a cube or box. Count the faces. Say, This has [six] faces. Then, point to three of its faces. Say, I pointed to three of its faces. Point again to two of its faces. Ask, How many faces did I point to? [6] or [2]?

Developing/Expanding Ensure understanding of faces as in "faces of a box." Demonstrate using a manipulative with faces, such as a cube or box. Count the faces. Say, This has [six] faces. Then point to three of its faces. Say, I pointed to three of its faces. Point again to two of its faces. Ask, How many faces did I point to? Expect the use of faces in students' responses.

Guided Exploration

Students choose and use strategies to solve a multi-step word problem that involves fractions and whole numbers.

EIP Facilitate Meaningful Mathematical Discourse
 8 Have the students solve the equation for how much ribbon will

 be used on each box. Ask:- What kind of division equation is $4 \div 8$?
- How can you solve the equation?
- Should the quotient be less than or greater than 4? How do you know?
- Think About It: How can you check if $4 \div 8=\frac{1}{2}$ is correct?

Have the students create the equation for the length of ribbon on each face. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(8) Have the students solve the equation for how much ribbon will be used on each box. Ask:
- What kind of division equation is $\frac{1}{2} \div 4$?
- How can you solve the equation?
- Should the quotient be less than or greater than $\frac{1}{2}$? How do you know?

Math is... -xploring

- Explain another way you could have solved $4 \div 8=b$.

Students understand other approaches to solving problems.

2. Develop the Math

Elizabeth uses all of the ribbon to decorate 8 boxes so that 4 of the faces of the boxes have the same amount of ribbon. How long will the ribbon on each face be?

Bridging/Reaching Ask students to review the problem at the top of the Learn page. Have them focus on the word face. Instruct students to look for objects in the class that have six faces (box, cube, etc.). Finally, ask them if they can think of other words that can be used in its place (surface, side, etc.). Allow them to use a dictionary if desired.

On My Own

(MATH)|GO
Name

1. Sonya ia making muffins. The recipe uses $\frac{1}{2}$ cup of fow end makes 12 mini mutfina. How many cups of sour should Sorya use to make 6 mutins?
A. $\frac{1}{24}$ cup
(B) $\frac{1}{4}$ cup
c. $\frac{1}{6}$ cup
D. $\frac{1}{12}$ cup
2. STEM Connection Saffon hes 4 cups of chocolate ctips. She has a muttin recipe that cats for $\frac{1}{8}$ rup of chocolate chips per mulfin. How many muttins can Sattron make?
32 muffins

3. Ne, Kine is making vegetable soup. Hes recipe makes 12 seivings and uses $\frac{1}{3}$ pound of pess. How many pounds of peas does he need to make 5 servings?

$$
\text { A. } \frac{1}{36} \text { pound (B) } \frac{1}{6} \text { pound } \quad \text { C. } \frac{1}{4} \text { pound } \quad \text { D. } 4 \text { pounds }
$$

4. M. Jorge is alviding 4 pounds of gardening soll equaly for 5 poted plants. How mary pounds of soll will be in each pot? $\frac{4}{5}$ pound
5. A zoo kas 5 pounds of trit and 3 pounds of tettuce to divide equally among 3 porilas. How many total pounds of frift and lettuce will each gorilla get?
$\frac{5}{3}$ pounds fruit and 1 pound lettuce
6. A telay tace is $\frac{1}{2}$ mile long. How tar does each person rum it there are 3 members on the team? $\frac{1}{6}$ mile
7. Shaun is naking 3 bags of trail mix, He has $\frac{1}{5}$ pound of dred cranberries to divide equalily among the bagi. How many pounds of dried cranberries will be in each bos?

$$
\begin{array}{llll}
\text { A. } \frac{1}{15} \text { pound } & \text { B. } \frac{3}{5} \text { pound } & \text { C. } \frac{1}{3} \text { pound } & \text { D. } 15 \text { pounds }
\end{array}
$$

8. Lucy brings 4 cakes to the boke sale Each piect of cake is $\frac{1}{6}$ of the whole. How mary pieces of cake does she have? Wite and solve the equation.
$4 \div \frac{1}{6}=24$ pieces
9. Mise made 60 cookies. He divided the cookies equally among his 8 friends and kept the rest for himsel! How mary cookies did Mike give his ffiends, and how many did he keep?
He gave 7 cookies to each friend and kept 4 to himself.
10. Ingrid buys this plece of cheese. She uses eoval amourts of it to make 3 sandwiches, How much cheese is on each sandwich?
$\frac{1}{12}$ pound

11. Extend Your Thinking Write a division word problem that involves a unt fraction. Then, solve ic. Check students' work.

(2) Reflect

Whit strategy do you like to use to solve real-world problems involing What strategy do you ike to use to solve real-
the division of tractions? Explain your answer. Answers may vary. ettertively?

Practice

EIP Build Procedural Fluency from Conceptual Understanding
[Common Error: Exercise 1 Students may see that the recipe is being cut in half and try to divide by $\frac{1}{2}$. Encourage students to think about how they divide when splitting something in 2 equally.

Item Analysis

Item	DOK	Rigor
$1-10$	2	Application
11	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- What strategy do you like to use to solve real-world problems involving the division of fractions? Explain your answer.
Ask students to share their reflections with their classmates.

Math is... lindset

- How have you shown that you were listening attentively?

Students reflect on how they developed stronger relationship skills.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can solve word problems involving division of fractions.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		pOK Skill	Standard
1	2	Solve problems involving fractions	5.NF.B.7.c
2	2	Solve problems involving fractions	5.NF.B.7.c
3	2	Solve problems involving fractions	5.NF.B.7.c
4	2	Solve problems involving fractions	5.NF.B.7.C

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

4 of 4
Additional Practice or any of the (3) or activities
3 of $4 \quad$ Take Another Look or any of the ${ }^{3}$ activities
2 or fewer of 4 Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 11-7

Exit Ticket

Name

1. Dwayne completely covers $\frac{1}{3}$ of a bulletin board wath 6 pictures. Each picture is the same sire. What part of the entre bulletin board does each picture cover?
$\frac{1}{18}$ of the bulletin board
2. A dell has 12 pounds of turkey. The dell uses $\frac{1}{4}$ pound of tarkey on each sandwich. How many sandwiches can be made using the availabie turkey?
48 sandwiches
3. Miton has 20 fiuld ounces of watec. He pours $\frac{1}{3}$ fluid ounce into each cua. How many cups did he use? 60 cups
4. Maxine is making tail mic. The recipe uses $\frac{1}{2}$ cup of peanuts to make to servings. How many cups of peanuts should Maxine use to make 5 servings?
$\frac{1}{4}$ cup

Reflect On Your Learning

Reinforce Understanding

Write ' n ’ Solve!

Work with students in pairs. Have each student write a word problem involving division with a whole number and a fraction. Then have the students trade problems and solve.fistudents have difficulty, help them to draw bar diagrams and write equations. Have students check their solutions using multiplication.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills

- Divide Unit Fractions in Word Problems

Differentiation Resource Book, p. 137

Lesson 11.7- Reinforce Understanding
Solve Problems Involving Fractions

Review Be carchil when sotiong problems irvoling Givision of unit tractions		
Dividing a Whole Number bya Whote Number	6 foot of rope cut into 10 equal pieces. How long is each plece?	$\begin{aligned} & 6+10=\frac{5}{10} \\ & \text { or } \frac{2}{5} \end{aligned}$
Dividing a Whole Number by a Unat Fiaction	One dime is $\frac{1}{15}$ of e dollat. How many dimes in $\mathbf{5 8 . 0 0 7}$	$\begin{aligned} & 5+\frac{1}{10}=6 \times 10 \\ & =60 \end{aligned}$
Dividing a Unit Fraction tya Whole Number	A $\frac{1}{6}$ acre gaiden piot is divided into 10 equat sire fiower beds. How blg is each fiower bed?	$\begin{aligned} & \frac{1}{5}+10=\frac{1}{6} \times \frac{1}{50} \\ & =\frac{1}{66} \end{aligned}$

Solve each problem, Show your work.

1. A chicken noodie soup recipe calls tor \& cup of chooped ponily and maves 6 sengros. How muct cloppes parsiey k in esch seeming? $\frac{1}{4} \div 6=\frac{1}{24}$ cup of chopped parsley per serving.
2. Water is divaing 6 pounds of flour equaly among 8 containiners. How many nounds of tiour will be in sach container? $6 \div 8=\frac{6}{8}=\frac{3}{4}$ pounds of flour in each container.
3. Mary has 4 pounds of pulled pork and 9 pounds of brisket to. dindee equaly among five customers. How mary total pevids of ench type of ment will each uistomer gent $4 \div 5=\frac{4}{5}$ pounds of pulted pork and $9 \div 5=\frac{9}{5}$ pounds of brisket for each customer.
4. 500 hass 5 aps ot erange fuce. Ste has a smiocitive recipe which cala for j cup of orange luice per smoothie. How many ynnothies can 500 makev? $5 \div \frac{1}{3}=5 \times 3=15$ smoothies can be made from the orange juice Soo has available.

Build Proficiency

Practice It! Game Station
Dividing Fractions Race Students practice dividing fractions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 137-138

Lesson 11-7

Additional Practice

Name

Review

You can use strategies you know to help you solve problems Involving division.
A sandwich shog uses $\frac{1}{4}$ pound of lunch meat on its sandwiches. Yesterday, the sandwech shop used 20 pounds of lunch meat. How many sandwiches wore served yesterday?
To solve. find $20 \div \frac{1}{4}$
There are lour $\frac{1}{4} \mathrm{~s}$ in each whale.
$50.20 \times 4=80$.
The sandwich shop served 80 sandwiches yosterday

1. Deanne covers $\frac{1}{3}$ of her notebook cover with 5 stickers. Each sticker is the same size. What part of the entire notebock cover does éch stickur cover?

2. Marvin uses a mix and some water to make 54 Siuid ounces of frut punch. He pours an equal amourt into 8 glasses for himself and seven friends. How much frut punch does each porson get? $6 \frac{3}{4}$ fivid ounces

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying using area models.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 137-138
3. A baker has 10 pounds of flour on hand. Each batch of cookies needs $\frac{1}{2}$ pound of flout. How many batches of cookies can the bater mata using the ivitable flow?

20 batctes
4. Maxine hos 2 pounds of raisins. She places an equal amount into each of 15 snack bags How many pounds of rosins are in each snack bog?
$\frac{2}{15}$ $\frac{2}{5}$ poun
5. Andrea has 50 perenriats to plant She plants the fowers in 5 equat fowx using es many flowers as possible. How many permnints ate in each row? How miny aret let umplarted?
8 perennials in each row:
\qquad _ perennialas left unpianted
6. Mathew has $\frac{1}{3}$ pound of traf mik the evts att of a in 4 vaial servings during his hike. How much trail mix does Misthew eat in one seming?
\qquad $\frac{1}{2}$ pound

 Nodrmion

Extend Thinking

Use It! Application Station

Potluck with a Twist Students use whole numbers, fractions, and division to create a 14-dish menu for a potluck.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 138

Lesson 11-7- Extend Thinking

Solve Problems Involving Fractions

Name

1. Stephanie has a recipe to make muftins. The recipe uses $\frac{1}{4}$ cup of meked butter and makes 12 muttins. How many cups of meted butter should Stephanio use to maxe 4 numtins? $\frac{1}{4} \div 3=\frac{1}{12}$ cup of melted butter
2. Astick of butter is $\frac{1}{2}$ cup. What fraction of a stick of butter would Steptraribo neod to makew 4 mutfine? $\frac{1}{2}+\frac{1}{12}=6$, meaning she needs $\frac{1}{6}$ of a stick of butter
3. Ari has tour stichs of buter. How many muttins can Ali make weth tour sticks of butter?
Ari has $4 \times \frac{1}{2}=2$ cups of butter. One muffin
takes $\frac{1}{4} \div 12=\frac{1}{48}$ cup of butter. Ari can make
$2 \div \frac{1}{48}=96$ muffins.
4. Ai made 8 batches of 12 mulfins and wants to give each of his 18 friends the same number of muifins. How meny muttins does each of ths triends recelve?
Ari made $8 \times 12=96$ muffins. $96 \div 14=6 R 12$. Each friend receives 6 muffins and Ari has 12 muffins left over.
5. A variation for the mutlin recipe cals for adding $\frac{1}{3}$ cop of reasins to mabe 12 multhns. How mary cups of taisins will each mutin cortain) $\frac{1}{3} \times \frac{1}{12}=\frac{1}{36}$ cup of raisins per muffin.

Students can complete the Unit Review to prepare for the Unit
Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

Vocabulary Review

Item Analysis

Item	Lesson
1	$11-2$
2	$11-3$
3	$11-1$
4	$11-1$
5	$11-1$
6	$11-7$
7	$11-1$
8	$11-2$

Review

Item Analysis

Item	DOK	Lesson	Standard
9	2	$11-2$	5.NF.B.7.c
10	2	$11-1$	5.NF.B.7
11	2	$11-2$	5.NF.B.7.c
12	1	$11-3$	5.NF.B.7,
			5.NF.B.7.b
13	2	$11-4$	5.NF.B.7,
14	2	$11-4$	5.NF.B.7.b

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)

Item	DOK	Lesson	Standard
15	1	11-4	5.NF.B.7, 5.NF.B.7.b
16	1	11-4	5.NF.B.7, 5.NF.B.7.b
17	1	11-4	5.NF.B.7, 5.NF.B.7.b
18	2	11-6	5.NF.B.7, 5.NF.B.7.a
19	1	11-2	5.NF.B. 7
20	1	11-5	5.NF.B.7, 5.NF.B.7.a
21	1	11-5	5.NF.B.7, 5.NF.B.7.a

Performance Task

Standard: 5.NF.B.3, 5.NF.B.7, 5.NF.B.7.a, 5.NF.B.7.b, 5.NF.B.7.c
Rubric (6 points)

Part A (DOK 2) - $\mathbf{2}$ points

2 POINTS Student's work reflects proficiency with dividing a whole number by a fraction.
1 POINT Student's work reflects developing proficiency with dividing a whole number by a fraction.
0 POINTS Student's work shows weak proficiency with dividing a whole number by a fraction.

Part B (DOK 2) $\mathbf{- 2} 2$ points

2 POINTS Student's work reflects proficiency with dividing a fraction by a fraction.

1 POINT Student's work reflects developing proficiency with dividing a fraction by a fraction.
0 POINTS Student's work shows weak proficiency with dividing a fraction by a fraction.

Part C (DOK 2) - 2 points
2 POINTS Student's work reflects proficiency with dividing an improper fraction by a fraction.
1 POINT Student's work reflects developing proficiency with dividing an improper fraction by a fraction.
0 POINTS Student's work shows weak proficiency with dividing an improper fraction by a fraction.

Reflect

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.

Performance Task

Antonio is programming a robet to pick trest trut and ploce it into separnte containers by wight for customers to take nome.
Part At The robot picks 2 pounds of strawberies and puts $\frac{1}{5}$ pound
in each container. How many contioners of strmweries wit the
tobot fill?
10 containers
Part B: The robot picks $\frac{1}{2}$ pound of blueberries and puts $\frac{1}{9}$ pound in each cortainer. How many comtaners of blueberies will the robot tul?
3 containers
Part C: The robot picks $\frac{11}{4}$ pounds of taspoeries and puts $\frac{1}{6}$ pounc in eich containet. How mary cortminers of taspbernes will the robot fris Will the robot be able to put the sane amoumt of taspberies in mach contaner? Expisin your answer
No; Sample answer: The robot will fill 16 full containers and then 1 container with half of the amount or $\frac{1}{12}$ pound.

(3) Reflect

How might you divide tractions by fractions in the real worla? Answers may vary.

Fluency Check

What is the product or quotient?

3. $4,500+5=$	900	9. $350+7=$	50
4. $2.800 \div 4=$	700	10. $240 \div 4=$	60
5. $480+6=$	80	11. $3 \cdot 200+8=$	400
6. $160+4=$	40	12. $180 \div 9=$	20
$\begin{array}{r} 35 \\ \times \quad 8 \\ \hline 280 \end{array}$		13. $\begin{array}{r}652 \\ \times \quad 7 \\ \hline 4,564\end{array}$	
8. $\begin{array}{r}456 \\ \times \quad 8 \\ \hline 3.648\end{array}$		14. $\begin{array}{r}289 \\ \times \quad 6 \\ \hline 1,734\end{array}$	

Fluency Talk

How can you multply a 3 -digt number by a 1 -digt number? Explanations may vary.

How can you divide a mutiple of 100 ? Explanations may vary.

Fluency practice helps students develop procedural fluency; that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice using an algorithm to multiply.

Fluency Progression

Unit	Focus	Standard
1	Use Partial Sums to Add	4.NBT.B. 4
2	Decompose by Place Value to Subtract	4.NBT.B. 4
3	Use an Algorithm to Add	4.NBT.B. 4
4	Use an Algorithm to Subtract	4.NBT.B. 4
5	Choose a Strategy to Add	4.NBT.B. 4
6	Choose a Strategy to Subtract	4.NBT.B. 4
7	Multiply by Multiples of 10	5.NBT.B. 5
8	Multiply by Multiples of 100	5.NBT.B. 5
9	Divide Multiples of 10	5.NBT.B. 6
10	Divide Multiples of 100	5.NBT.B. 6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B. 5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B. 5
13	Choose a Strategy to Multiply	5.NBT.B. 5
14	Choose a Strategy to Multiply	5.NBT.B. 5

Fluency Expectations

Grade 4

- Add and subtract within $1,000,000$.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Field Day Fun!

Students draw on their understanding of solving problems involving division with fractions. Use the rubric shown to evaluate students' work.

Standard: 5.NF.B.3, 5.NF.B. 7
Rubric (10 points)

Part A (DOK 2) - $\mathbf{2}$ points

2 POINTS Student's work shows proficiency representing quotients as a fraction. The student's answer and explanation are accurate.
1 POINT Student's work shows developing proficiency representing quotients as a fraction. The student's answer or explanation is not accurate.
0 POINTS Student's work shows weak proficiency representing quotients as a fraction. The student's answer and explanation are not accurate.

Parts B, C, E (DOK 2) - 6 points

6 POINTS Student's work shows proficiency with solving division word problems involving fractions. The student's answer and work are correct.

3 POINTS Student's work shows developing proficiency with solving division word problems involving fractions. The student's answer or work is incorrect.

0 POINTS Student's work shows weak proficiency with solving division word problems involving fractions. The student's answer and work are incorrect.

Part D (DOK 3) - $\mathbf{2}$ points
2 POINTS Student's work shows proficiency with determining if a quotient should be written as a remainder. The student's answer is correct and the explanations are reasonable.
1 POINT Student's work shows developing proficiency with determining if a quotient should be written as a remainder. The student's answer is incorrect or the explanations are not reasonable.

0 POINTS Student's work shows weak proficiency with determining if a quotient should be written as a remainder. The student's answer is incorrect and the explanations are not reasonable.

Unit 11

Performance Task

Name

Field Day Fun!

The Sth grade is having their yearly field day competition.
Part A
For the first event, each of the 8 teams will need a bucket of sand it there are 6 pounds of sand, what weight of sand will each team got? Write an equation and solve. Explain your work.
$\frac{3}{4}$ pound; Sample Answer: $p=6 \div 8 . p=\frac{3}{4}$. Divide the weight of the sand by the number of teams.

Part B

For the second event, a team of students runs 2 times around the track if each student rues $\frac{1}{10}$ of the track how many students do they need on each team? Use a representation to some. 20 students; Check students' drawings.

```
Part C
For the third event, student teams will bunny hop \frac{1}{4}}\mathrm{ of the way
around the track. If there are 6 students on a team, how far will sach
person go? Show your work.
\frac{1}{24}}\mathrm{ of the way around the track; Sample Answer:
\frac{1}{4}}\div6=\frac{1}{24
```


Part D

For showing great spoetsmansilo. Mrs. Garcia rewarded her studeets by letting them pick from a prize box. The prize box has 81 prizes that include special pencls, notepads, stickers, and smat toys. if there are 24 students in the class, what is the greatest number of preves each student can pickit everyone is to get the some amount? Explain your answer.
3 prizes; $81 \div 24=3$ R9; The remainder isn't used since not all the students will get another prize.

Should the quotient be witten as a mised number or with a remainder? Explain how to know.
Sample answer: The quotient shouldn't be written as a mixed number because each prize cannot be divided into parts.

Parte

Mr. Johinson brought healthy snackes for his class to enjoy after the field day fun. Mr. Johnson nes 50 large granola bars. He wants to glve $\frac{1}{2}$ of a granola bar to each studert. How many students will get $\frac{1}{2}$ of a granola bar? Write an equation and solve.
100 students; Sample answer: $50 \div \frac{1}{2}=s ; s=100$

Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

Item	pok	esson ©	lided Support Intervention Lesson	Standard
1	2	11-1	Quotient Fractions (Models)	5.NF.B. 3
2	2	11-1	Quotient Fractions (Models)	5.NF.B. 3
3	2	11-2	Quotient Fractions (Word Problems)	5.NF.B. 7
4	2	11-2	Quotient Fractions (Word Problems)	5.NF.B. 7
5	2	$\begin{aligned} & 11-3, \\ & 11-7 \end{aligned}$	Divide Whole Numbers by Unit Fractions	5.NF.B.7.b, 5.NF.B.7.c
6	2	$\begin{aligned} & 11-4, \\ & 11-7 \end{aligned}$	Divide Whole Numbers by Unit Fractions	5.NF.B.7.b, 5.NF.B.7.c
7	1	11-4	Divide Whole Numbers by Unit Fractions	5.NF.B.7.b
8	2	$\begin{aligned} & 11-6, \\ & 11-7 \end{aligned}$	Divide Unit Fractions in Word Problems	5.NF.B.7.a, 5.NF.B.7.c
9	1	11-5	Divide Unit Fractions by Whole Numbers	5.NF.B.7.a
10	1	11-6	Divide Unit Fractions in Word Problems	5.NF.B.7.a
11	1	11-1	Quotient Fractions (Models)	5.NF.B. 3
12	2	11-2	Quotient Fractions (Word Problems)	5.NF.B. 7
13	2	$\begin{aligned} & \text { 11-6, } \\ & 11-7 \end{aligned}$	Divide Unit Fractions in Word Problems	5.NF.B.7.a, 5.NF.B.7.c
14	3	$\begin{aligned} & 11-4, \\ & 11-7 \\ & \hline \end{aligned}$	Divide Whole Numbers by Unit Fractions	5.NF.B.7.b, 5.NF.B.7.c

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.

Unit 11

Unit Assessment, Form A

1. A vet feeds 8 dogs every week uning 3 pounds of dog tood. it each dog gets the same mmount. how many pounds of dog food does each dog get every week?
(A.) $\frac{3}{8}$ pound
B. $\frac{1}{1}$ poundos
C. 5 pounds
D. 24 pounds
2. There are 7 chidren in urion's swim class. They nave 9 cups of grapes to divide equally annong them. Wrich fraction shows how many cups of gropes each enid recenes?
A. $\frac{2}{9}$ cup
B. $\frac{7}{9}$ cup
C. $\frac{9}{2}$ oups
(a) frups
3. A tencher orders a set of 50 new penois for her 15 studeets. Each student gets the same number of pencts. The teacher gives the greates number of pencils possible to ench whetert. Which best describes how many pencis pach student gets?
A. 2 penclis with 20 pencls left over
B. 3 pencils wath 5 pencis left over
C. $3 \frac{5}{5}$ pencis
D. 4 pencis
4. A picher folds 64 suid ounces of juick. Akem pours an equal amburt into each of 6 glasses until the patcher is empty. How much juice does Abeem pout into each grass?
A. $\frac{6}{64}$ fluid ounces
B. 10 fluid ouncus with 4 fild ounces left ove
C. $10 \frac{4}{6}$ thlid ounces
D. 14 fluid ounces
5. A restaunant serves its alices of pirza as $\frac{1}{8}$ of a whole para How many sices of pizra can the restiurant serve from 3 whole pirzas? Une the representation to solve.

6. A local radio station gives weather updotes every $\frac{1}{5}$ nour. How many weather updites does the radio announcer give during a 4-hour shift?
A. $\frac{4}{5}$ weather upcate
B. $\frac{5}{4}$ weather updites
C. 9 weather updates
D. 20 woather updates
7. What is the quotient?
$4 \div \frac{1}{9}$
(4) 28
a. $\frac{4}{7}$
c. $\frac{7}{4}$
D. $\frac{1}{28}$

In Fe/dinand's flower garden, $\frac{1}{4}$ of the Sowers are toses. He plants 3 different colors of rases. What fuaction of Ferdinand's
fiower garden is each color of the roses?
(a) $\frac{1}{2}$
B. $\frac{3}{4}$
c. $\frac{3}{2}$
D. $\frac{12}{1}$

270
Agenvent lenare Bas

Unit 11
Unit Assessment, Form A continued
Name
9. Which division equation is representited by the model?

(A) $\frac{1}{2}+2=\frac{1}{4}$
B. $\frac{1}{2}+2=\frac{1}{2}$
C. $2+\frac{1}{2}=4$
D. $2+\frac{1}{2}=\frac{1}{4}$
10. What is the quatient?
$\frac{1}{4}+5$
$\frac{1}{24}$
th. Which sivision equation is shown by the moder?

A. $15+\frac{1}{5}=3$
(B.) $3+15=\frac{1}{5}$
c. $\frac{1}{5}+3=\frac{1}{15}$
D. $15+3=\frac{1}{5}$
12. Caila made 30 necinaces to sell at o cratt show. She sold the same number of neckaces each of the 6 diys of the show. Did Calita sell aff of her neckdaces? Explain.
No; Sample answer: $80 \div 6=13$ R2, so she could have sold at most 13 necklaces each day, but then she would have 2 necklaces left over. To sell all of her necklaces, she would have had to sell $13 \frac{2}{6}$ or $13 \frac{1}{3}$ necklaces each day, but it is not possible to sell $\frac{1}{3}$ of a necklace.
13. Heidi fas $\frac{1}{5}$ of a novel lef to tead. She wants to finish the novel by mading the same amount each day for the next 2 days. How much of the novel gnovid Heed read each dom? Expiah
$\frac{1}{10}$ of the novel: Sample answer: Over 2 days, she should read $\frac{1}{5} \div 2=\frac{1}{10}$ of the novel each day.
14. The midise school stubent councl has 10 cups of condeti to decorate the tables for the banquet. They plan to ise $\frac{1}{3}$ cup of contetti on each tabie. If they use $\frac{1}{4}$ cup of confention wach table instead of $\frac{1}{3}$ cup of confert. how mary more tables can they decontale? Explain.
10 more tables; Sample answer: Using $\frac{1}{3}$ cup allows $10 \div \frac{1}{3}=30$ tables to be decorated. Using $\frac{1}{4}$ cup allows $10 \div \frac{1}{4}=40$ tables to be decorated. Then $40-30=10$, so 10 more tables can be decorated.

Form B

Une 11

Unit Assessment, Form B

\qquad

(A) \}round
a Isenos
c. thowe a repicind

A. Yooint a. lporet

 sescy.

c. $n \frac{1}{2}$ hasemaly
a. Ahmertiost

A. द्र

(C) I ? Lear neven
n. olluearye

x Waintloment
$8+1$
$\begin{array}{ll}\text { a } 1 & \text { (c) } 24 \\ \text { c. } 1 & \text { o. } \frac{1}{24}\end{array}$

 trek notar If pethen
$\begin{array}{ll}\text { (a) } & \text { a } 1 \\ c \cdot & \text { a. }\end{array}$
as $=$ neme

puove ve ena temt nhad \Rightarrow I powe
20 more bewtic Sample arnewer: Univy $\frac{1}{6}$ pound
altews $10 \div \frac{1}{5}=60$ bewis to be sarved. Uuing
pound allows $10+\frac{1}{8}=80$ bowls to be sarved.
Then $50-60=20$ so 20 more bowls can
be served.
球

PACING: 9 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE

Unit Overview

Focus

Data and Line Plots

In Kindergarten and Grade 1, students become familiar with categorical data and ways to display it, such as picture graphs and bar graphs. In Grade 2, they are introduced to measurement data. They generate measurement data by measuring and recording lengths to the nearest whole unit and represent the data on a line plot. In Grade 3, they work with measurements in fractions of a unit, and in Grades 4 and 5, they create line plots for a variety of data sets and solve problems based on the data using operations appropriate for the grade. A line plot uses an appropriately scaled number line to present the values of the measurements in a data set. Each measurement is represented by an X or dot placed above the number line, directly over the location of its value.

The line plot is an efficient way to display, compare, and interpret the data. When students are proficient at constructing line plots, they can be presented with line plots for a variety of measurement contexts and asked to interpret them. The work in this unit has connections to the fraction expectations for Grade 5, which also call for solving problems using computations with fractions and mixed numbers.

Students also learn that the same measure can be expressed in different units. Students learn to convert between units within a measurement system using their previously-learned skills in multiplication and division.

Coherence

What Students Have Learned

- Students have learned the measurement units and expressed the same measure in different units. (Grade 4)
- Students have used the four operations to solve problems involving measurement. (Grade 4)
- Students have made a line plot to display fractional units of measures. (Grade 4)
- Students have solved problems using data from line plots. (Grade 4)

What Students Are Learning

- Students convert measures within a given system.
- Students solve problems using measurement conversions.

Students make a line plot of measurement data expressed in fractions of units.
Students operate with fractions to solve problems involving information presented in a line plot.

What Students Will Learn

- Students identify statistical questions. (Grade 6)
- Students describe data by its center, spread, and overall shape. (Grade 6)
- Students display numerical data in plots on a number line. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- converting among customary units of measure;
- converting among metric units of measure;
- using statistical representations to display fractional data.

Procedural Skill \& Fluency

Students build proficiency with

- multiplying and dividing to convert units of measure;
- solving multi-step problems involving unit conversions;
- representing data on a number line using a line plot;
- interpreting data represented in a line plot.

Application

Students apply their knowledge of - multiplying and dividing with fractions to convert among units of measure;

- relative sizes of units of measure to solve problems with real-world contexts;
- data to represent data from a real-world context on a number line;
- fractional operations to solve problems involving data on line plots in real-world contexts.

Effective Teaching Practices

Support Productive Struggle in Learning Mathematics

Struggle is part of learning. This is especially true in mathematics. It is a well-known truth, and in response, teachers might believe they do students a favor by taking out the struggle. However, learning without some struggle is probably not deep learning.

Productive struggle promotes the deep learning we seek for students, because it forces a more thorough, active kind of engagement. A major role of the teacher is to understand this and make sure his or her students understand it too. Too often students believe their struggle means they are just not good at math. In fact, they might have already been influenced by adults to believe this. Teachers can correct this by encouraging students to reject the idea that they are just not good at math and to see struggle as an opportunity to learn. Students must believe it is true, and teachers can show them that it is true by engaging them correctly.

As a facilitator, help students accept and engage themselves in productive struggle.

For example-

- Anticipate what students might struggle with and be ready to help them know the struggle is normal. Remind them of their prior work when they create scales for line plots and when they encounter unlike denominators.
- If students struggle unproductively, provide tools such as fraction circles.
- Give students the sense that questions indicate hard work and participation.
- Encourage students to talk with each other and recognize each other's good efforts. Create a culture in which students are advocates for each other.
- Students started working with line plots in Grade 2 , so they have a good foundation for handling struggles now. Allow them some time to do so. Issues are likely to be associated with the introduction of fraction data.

Math Practices and Processes

Make Sense of Problems and Persevere in Solving Them

This practice goes hand in hand with the teaching practice of supporting productive struggle. The connection is the idea that perseverance is the key to success.

Students need to thoroughly consider a problem and understand what is being asked. Proficient students identify the givens and how they relate to each other and what the problem is asking for. They form an idea of what the solution may look like and seek representations that might help them find it. They recognize that there could be more than one way to solve a problem, so they consider alternative approaches when possible.

Proficient students know how to use problem-solving strategies such as drawing pictures, solving analogous or simpler problems, and looking for patterns. They recognize that it might be necessary to change course
along the way. They check their solution against an estimate or alternative approach when possible, and they ask themselves whether their solution makes sense.

Solving problems involving data on a line plot requires students to both interpret the plot and determine the operations to use. This might slow students in finding a starting point. If necessary, focus them on the mechanics of the line plot first, making sure they can describe what it means. Then have them address the problem and what it asks for.

Students will need to handle unlike denominators. Note whether they wait to convert to like fractions when needed or if they convert the tick labels on the line plot. In some cases, one might be more efficient than the other.

When students divide, have them revisit the concept of fractions as division if necessary.

Social and Emotional Learning

Self-Awareness - Self-Efficacy (Lesson 12-1): Students with high selfefficacy are more likely to persevere to complete a challenging task.
Self-Management - Self-Motivation (Lesson 12-2): Students who self-motivate can take initiative and persevere through challenging tasks.
Responsible Decision-Making - Analyze Situations (Lesson 12-3):
Students make sense through analysis, which helps them make informed decisions.

Relationship Skills - Social Engagement (Lesson 12-4): Engaging with others allows students to develop relationships and establish a sense of security and belonging in the classroom community.
Social Awareness - Appreciate Diversity (Lesson 12-5): When students appreciate diversity, they create a stronger, more inclusive classroom community.

Unit Overview

Language of Math

Mathematical Nouns

- Convert* (Lesson 12-1) Students are introduced to the term as they learn to change a measure from one unit to another within a measurement system. They do not convert between the metric and customary measurement systems.
- Data* (Lesson 12-4) Students are familiar with the concept of data from their earliest work with it in Kindergarten but have not been formally introduced to the term until now. Data are numbers or symbols, sometimes collected from a survey or experiment, to show information. Data is plural.
- Line plot (Lesson 12-1) Students were introduced to this term in the context of displaying measurement data in Grade 2, and they encountered it again in Grades 3 and 4. A line plot is a method of displaying a set of measurement data. It uses a number line to present the values of the measurements, each measurement being depicted as an X or dot placed directly over the corresponding location for that value on the number line. When the plot uses dots to mark the measurements, it can be called a dot plot.
- Outlier* (Lesson 12-4) An outlier is a piece of data that doesn't fitwithin the pattern of the rest of the data. It is usually an extreme value that can skew the interpretation or summary of the data.
*This is a new term.

Math Language Development

A Focus on Reading

In many respects, reading in math can be similar to reading in any academic discipline. In any discipline, students read for comprehension. They seek to learn new ideas, and they must learn and incorporate new vocabulary. In some ways, reading in math is different and requires different strategies. Consider these unique characteristics of mathematics text.

- Math text is conceptually dense.
- A single sentence might communicate multiple layers of content.
- Math text looks different. It includes prose, equations, graphs, tables, symbols, and other means for communicating ideas.
- Math ideas are developed logically, with the conclusion at the end.
- Math is a language that uses common words but with different meanings.

As a facilitator, interact with students before, while, and after they read a passage or problem.

Before reading-

- If the passage or problem has a title or other telling features, ask students to inspect them briefly and predict what the text passage or problem is about.

While reading-

- Have students restate the content in their own words and address possible comprehension issues.
- Have students notice the ways that new ideas are built on familiar ones-for example, have them recall prior work placing and labeling tick marks for displays of whole number tasks.

After reading-

- Check with students that the problem or passage makes sense to them.
- Help students make connections to similar problems they have solved before.

English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to measurement and data. Because many of the words (mixture, so, enough) and phrases (make sense of, whether) used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

Lesson 12-1 - mixture
Lesson 12-2 - make sense of
Lesson 12-3 - enough
Lesson 12-4 - whether
Lesson 12-5 - so (that)

Number Routines

Build Fluency
The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the habits of mind that are important for proficient doers of math.

Find the Pattern, Make a Pattern

Purpose: Build efficiency with recognizing and building patterns.
Overview: Students determine the rule(s) for a given pattern, then use the rule(s) to create a new pattern. The teacher records students' new patterns and facilitates a discussion to validate the pattern and its rules.

Decompose It

Purpose: Build flexibility with numbers.
Overview: Students generate multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. The teacher records decompositions and then facilitates a discussion of patterns in the decompositions.

Which Benchmark Is It Closest To?

Purpose: Enhance rounding and reasoning skills.
Overview: Students determine to which benchmark the given number is closest and explain their reasoning.

Sense-Making Routines

Notice \& Wonder

- Notice \& Wonder: Tell me everything you can. (Lesson 12-1) Students observe different-sized containers.
- Notice \& Wonder: What do you see? (Lesson 12-2) Students see a balanced scale with a large object on one side and lots of smaller objects on the other side.
- Which doesn't belong? (Lesson 12-3) Students see several unit conversions and compare them to see how they can group them to find one that doesn't belong.
- Numberless Graph: What's the question? (Lesson 12-4) Students see a line plot without labels and discuss what they can know about the data and what the data could represent.
- Notice \& Wonder (Lesson 12-5) Students see many bowls on a table with various numbers of tomatoes in each bowl.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. For more information on the Math Language Routines, see the Appendix.

- Lesson 12-1 - Students participate in MLR8: Discussion Supports so that students' meta-awareness can be fostered as they discuss what they know in order to solve a problem that involves converting customary units.
- Lesson 12-2 - Students participate in MLR7: Compare and Connect so that students' oral and written output can be fostered as they compare and contrast different ways to convert metric units.
- Lesson 12-3 - Students participate in MLR2: Collect and Display so that students' oral words and phrases can be captured into a stable, collective reference when relating units of measure.
- Lesson 12-4 - Students participate in MLR1: Stronger and Clearer Each Time so that they have a structured and interactive opportunity to revise and refine both their ideas and their verbal and written output while representing data on a line plot.
- Lesson 12-5 - Students participate in MLR5: Co-Craft Questions and Problems so that they can produce the language of mathematical questions related to solving problems involving data on line plots.

Readiness Diagnostic

Unit 12

How Ready Am I?

Name

1. Barb fils a botrie with 1 liter of water How many milliliters of water are in the bottie?
A. 10 milititers
B. 100 millitaers
C. 1000 miniters
D. 10,000 mimiters
2. The height of a room is 2.8 meters. How many centimeters is this?
A. 0.028 centimeter
B. 0.28 centimeter
C. 280 centimeters
D. 2.800 centimeters
3. Which statement is true?
A. There are 100 milimuters in 1 meter
B. There are 1.000 centimeters in 1 kilometer.
C. There are 1,000 meters in 1 kiometes.
D. There are 10 corsimeters in 1 meter.
4. A football ployer gained 9 yards. How mary feet is this?
A. 3 feet
B. 12 teet
C. 18 teet
D. 27 feet
5. Sonya bought 2 gallons of bottied water. How many querts of wister did Sonya buy?
A. 1 quart
B. 4 quarts
C. 6 quarts
(a) 8 quarts
6. The running time of a movie is 3 hours. How many minutes is the running time of the movie?
A. 3 minutes
B. 60 minutes
C. 180 minutes
D. 310 minutes
7. Which is the quotient $74+1.000$?
(A.) 0.074
B. 074
C. 74
D. 74,000
8. Which is the quotient $6.5+10$?
A. 0.065
(B) 0.65
C. 65
D. 650

Use the line plot to answer questions 9 and to.

Apple Weights (pounds)
9. How many apples were welighed?
A. 3 apples
B. 6 apples
D. 10 apples
10. Which weight occurs most often?
(A.) $\frac{1}{4}$ pound
B. $\frac{1}{2}$ pound
C. $\frac{3}{4}$ pound

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

Targeted Intervention

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	DOK Skill	Guided Support Intervention Lesson	Standard	
1	2	Convert metric units	Metric Units of Liquid Volume	4.MD.A.1
2	2	Convert metric units	Metric Units of Length 3	1
4	2	Identify metric conversions Convert customary units Customary Units of	Metric Units of Length Length	4.MD.M.A.1

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question: How can I convert measurement units and represent measurement data?
Ask students to think about what they know about measurement data.

- What types of measurements have you made before?
-What units have you used to measure?
- What kinds of data have you used?
- What graphs have you used to represent data?

Remind students that at the end of the unit, they will reflect back on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Construction Manager Finn describes his aspirations to be a construction manager.
Finn Buys Drywall Students see how Finn uses a line plot to keep track of drywall thickness.

STEM Project

Students can complete the STEM Project Card during their workstation time.

STEM Adventure

Students can complete the STEM Adventure during their workstation time.

STEM Career: Construction Manager

ตジít!

Name

Which Sums Occur Least and Most?

Listen for directions.

Ignite!

Which Sums Occur Least and Most?

Students roll a pair of number cubes and explore how often each sum occurs. The data can be visualized with a line plot later in the unit.

Materials: number cubes marked 1-6
Pose the following experiment.

- Suppose you roll two number cubes marked 1-6 many times. After each roll, you find the sum of the two numbers that appear. What are the possible sums that can be rolled?
- Do you think each sum will occur about the same number of times?

1. Give each pair of students two number cubes marked 1-6.

Roll a pair of number cubes 50 times and record a tally mark in Column B for each sum that is rolled. After the 50 rolls, record the number of times each sum occurred in Column C .
2. Ask students to analyze their results.

- What do you notice about the results?
- Are you surprised by your results?

3. Have students combine their data with other groups of students.

- Combine your data with two other groups, and record the combined results in Column D. What do you notice about your combined results?

4. Have students conjecture about the data.

- Explain why sums of 2 and 12 occur least often.
- Explain why sums of 6,7 , and 8 occur more often than the other sums.

You may want to combine the data from the entire class to see if there are any changes in the sums that appeared most and least frequently.

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use them.

	Activity	Description	Use After Lesson
	Game Station	Students build proficiency with converting measurement units and creating line plots. - Product Size Sort - Convert Metric Units Race - Metric Units of Measurement Race - Create a Line Plot Task Cards - Line Plot Task Cards	$\begin{aligned} & 12-1 \\ & 12-2 \\ & 12-3 \\ & 12-4 \\ & 12-5 \end{aligned}$
¢	Digital Game	Space Race Students practice finding volume.	12-1
	Have students comple STEM Project Card	at least one of the Use It! activities for this unit. Environmentally Friendly Students use measurements to create 5 environmentally friendly home improvements.	12-3
	Connection Card	City of Trees Students create a line plot for plant growth data.	12-5
	Real World Card	Find a Pattern and Repeat Students use a repeat function to loop computer code.	12-1

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the new terms on the front side of the card.

Foldables

Use the unit foldables with Lessons 12-4 and 12-5.

Spiral Review

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.

Lesson	Standard
$12-1$	5.NF.B.3
$12-2$	5.NF.B. 7
$12-3$	5.NF.B.6
$12-4$	5.NF.B.5
$12-5$	5.NF.B.4

Learning Targets

- I can convert customary units of measure and time.
- I can explain which operation to use when converting.

Standards \circ major Δ supporting \circ Additional

Content

Δ 5.MD.A Convert like measurement units within a given measurement system.
\triangle 5.MD.A. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.
MPP Use appropriate tools strategically.

Focus

Content Objectives

- Students use the relationship between customary units of measurement to convert measurements.
- Students use the relationship between units of time to convert measurements.

Language Objectives

- Students discuss the relationship between customary units of measurement and time to convert measurements using decide.
- To support maximizing cognitive and linguistic meta-awareness, ELs participate in MLR8: Discussion Supports.

SEL Objective

- Students foster personal curiosity about mathematics by relating a mathematical concept to their own lives and interests.

Coherence

Previous	Now	Next
- Students converted	- Students use the relationships	
measurements within a single		
between customary units of		
system of measurement (Grade 4).	measurement and units of time to convert measurements.	Students use the relationships between metric units of mass, length, or capacity to convert measurements (Unit 12).

Rigor

Conceptual Understanding

- Students use understanding of multiplication and division with fractions to convert among customary units of measure.
Conceptual understanding is not a targeted element of rigor for this standard.

Procedural Skill \& Fluency

- Students develop proficiency with multiplying and dividing to convert among customary units of measure.

Application

- Students apply knowledge of multiplying and dividing with fractions to convert among customary units of measure.

Vocabulary

Math Terms
capacity
Academic Terms
convert
accurate
customary system
length
weight

Materials

The materials may be for any part of the lesson.

- Customary Conversion Tables Teaching Resource
- Customary Measurement Cards

Teaching Resource

Number Routine

 Find the Pattern, Make a Pattern © ${ }^{5-7 \text { min }}$Build Fluency Students build number sense as they determine the rule for a pattern and use it to find missing terms.
Students then use the same rule to make a new number sequence with different numbers.

These prompts encourage students to talk about their reasoning:

- How did you think about the pattern?
- What did you notice about the numbers?
- How did you create your own sequence of numbers?
- How do you know that your sequence follows thesame rule?

Purpose Students begin thinking about the correspondences among containers with varying capacity.

Notice \& Wonder ${ }^{[T /}$

- Tell me everything you can.

See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students talk in small pairs about similarities and differences they notice about the containers before discussing as a class.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about the relationships among the capacities of the containers and are based on possible comments and questions that students may make during the share out.

- What could help you understand how the capacities of these containers are related?
- What are some ways you can describe the relationship between the capacities of these containers?

Math is... Jindset

-What behaviors have helped you be successful in the past?

SEL

Self-Awareness: Self-Efficacy

Students with high self-efficacy are more likely to persevere to complete a challenging task. As students participate in the Notice \& Wonder routine, encourage them to relate units of measure to their own lives. Invite them to consider when they have had to test the efficacy of several different methods that could be used to solve a problem.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can convert smaller units of measure to larger units of measure, and vice versa.

- Let's think about how we can use multiplication and division to convert customary units of length, capacity, and weight, and units of time.

\#ie curious
re they different?

You can use mutiplication or division to convert customary units of measurement and units of time.
C Work Together
A school hosts a waik for charity that is 4 miles long. How long is the walk in yards?
7,040 yards

(1) Pose the Problem

MLR
 Discussion Supports

As students talk about what they know, have them pay attention to others' understandings in order to increase their ability to work through converting customary units. Restate statements they make as a question to seek clarification and provide vocabulary or grammar prompts for students who need more guidance.

EMP Pose Purposeful Questions

- Do you think the number of pints will be greater than or less than the number of cups? Why?
- How do you know if the number of minutes will be greater than or less than the minutes in an hour?

(2) Develop the Math

Choose the option that best meets your instructional goals.

3 Bring It Together

Elicit and Use Evidence of Student Thinking

- How do you know when to use multiplication to convert customary units of measure?
- How do you know when to use division to convert customary units of measure?
- How does knowing the relationships between different customary units of measure help you convert among the units?

Key Takeaway

- Multiplication and division are used to convert among different customary units of length, capacity, weight, and units of time.

Work Together

Students use division to convert miles to yards using multiplication or division.

E Common Error Students will often use the wrong operation. Make sure they keep in mind that converting from a longer distance unit like miles to a shorter one like yards should result in more of the shorter unit.

Language of Math

Explain to students that customary means "according to the customs or practices of a particular place." The units of measure taught in this lesson are customary in the United States, while most other countries use metric units of measure.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore converting customary units of measure.
Materials: Customary Conversion Tables Teaching Resource, Customary Measurement Cards Teaching Resource

Directions: Have students match Customary Measurement Cards that represent the same quantity. After students have matched each measurement card, have them write a multiplication and division equation that represents each conversion.

> ETP Implement Tasks That Promote Reasoning and Problem Solving
> - How did you begin to think about this task? How did you organize your information/thinking?
> - How did you determine the factors and product of your multiplication equations?
> - How did you determine the dividend, divisor, and quotient of your division equations?
> - When you convert a smaller unit to a larger unit, are more or fewer of the larger units needed? Explain why.

Math is... Choosing Tools

- Can you draw a picture or make a model that supports your equations?

Students use tools to deepen their understanding of mathematical relationships.

Activity Debrief: Have groups share and explain their matches and equations.

Have students revisit the Pose the Problem question and discuss answers.

- How can you find how many pints of yogurt Mikayla needs and how many minutes she needs to refrigerate the mixture?

PDFs of the Teaching Resources are available in the Digital Teacher Center.

Guided Exploration

Students learn how to convert units of capacity and time using multiplication and division. You may wish to provide copies of the Customary Conversion Tables Teaching Resource for students to use.

ETP Use and Connect Mathematical Representations

(2. Before creating a bar diagram that solves the problem, have the students create a bar diagram showing the relationship between a pint and cups. Ask:

- Are there a greater number of cups in a pint or pints in a cup? How do you know?
- How will this bar diagram help you create a bar diagram that heps you solve the problem?

Q Make sure students understand that when a conversion to a smaller unit is made, more of the smaller units are needed, and vice versa. Ask:
-When you convert a larger unit to a smaller unit, are more or fewer of the smaller units needed? Explain why.

- When you convert a smaller unit to a larger unit, are more or fewer of the larger units needed? Explain why.
- Think About It: Why should you use division to convert cups to pints?
- Think About It: Why should you use multiplication to convert hours to minutes?

Math is... Choosing Tools

- How can a bar diagram help you decide which operation to use? Students recognize the insight to be gained from the tools they choose and use.

2. Develop the Math

Mikayla is making frozen yogurt.
How can you find how many pints of yogurt Mikayla needs and how many minutes she needs to refrigerate the micture?

English Learner Scaffolds

Entering/Emerging Ensure understanding of mixture. First, make sure students understand what yogurt is. Point to all of the ingredients and say, using a stirring gesture, Yogurt is a mixture of all of these things. Point to them again and say These make yogurt. Yogurt is a mixture. Check by pointing to either just one ingredient or all of them and asking is this a mixture?

Developing/Expanding Ensure understanding of mixture. First, make sure students understand what yogurt is. Point to all of the ingredients and say, using a stirring gesture, Yogurt is a mixture of all of these things. Point to them again and say These make yogurt. Yogurt is a mixture. Check by asking What is yogurt? (a mixture)

Bridging/Reaching Ask students to talk about common mixtures they may make or have at home (iced tea, ice cream, etc.). Then have them brainstorm and list similar words to mixture and share their list with the class (mix, blend, etc.). Allow students to use a dictionary or thesaurus if desired.

[^14]15. Extend Your Thinking A tope is 100 inches long What is the length in feet and inches? Explain your reesoning 8 ft 4 in.; Sample answer: $100 \div 12=8$ with a remainder of 4 , so there are 8 feet and 4 inches remaining.

Pellect

> How can you use multiplication and division to convert amang different customary unis of ineasure?
> Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding
[Common Error: Exercise 9 Students may simply compare 84 and 30 without considering the units used to determine each measurement quantity. Remind students that when comparing, the units must be the same.

Item Analysis

Item	DOK	Rigor
$1-2$	1	Conceptual Understanding
$3-8$	1	Procedural Skill \& Fluency
$9-14$	2	Application
15	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you use multiplication and division to convert among different customary units of measure?
Ask students to share their reflections with their classmates.

Math is... Mindset

- What behaviors have helped you be successful in the past?

Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can convert customary units of measure and time.
- I can explain which operation to use when converting.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		pOK Skill	Standard
1	1	Understand how to convert customary units	5.MD.A. 1
2	1	Convert customary units	5.MD.A.1
3	2	Convert customary units	5.MD.A. 1
4	2	Convert customary units	5.MD.A. 1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4	Additional Practice or any of the \bar{B} or \boldsymbol{A} activities
3 of 4	Take Another Look or any of the B activities
2 or fewer of 4	Small Group Intervention or any of the \mathbb{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Customary Conversion Tables

Work with students in pairs. Using the Customary Conversion Tables Teaching Resource, one student should present the other with a specific customary measurement. The other student should convert the measurement to a smaller or larger unit of measure. If students have difficulty, ask whether they are moving from smaller to larger or larger to smaller units, and whether they should use multiplication or division to make the conversion.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Length Conversions
- Weight and Mass Conversions
- Liquid Volume Conversions

Differentiation Resource Book, p. 139

Lesson $12-1$ - Reinforce Understanding
Convert Customary Units
Nomue

Which operation should you use for the conversion?
Explain your answer.

| 1. dape to mimutes |
| :---: | :---: |
| multiplication; finding |
| smaller units |\(\quad \begin{gathered}2 cupt to cuarts

division; finding

larger units\end{gathered}\)
Match the measurement in Column A to its equlvalent measurement in Column B.

Build Proficiency

Practice It! Game Station
Product Sort Size Students practice

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 139-140

Lesson 12.1

Additional Practice

Nanse

Review

You can use multiplication or division to convert sustomary unts of measuremert and inds of time
To convent from a largar mensure to a smaler mosiure, mutiph bocause there wal be more of the amaber unit.
To convert fiom a smaler miessure to a larger measue, divide benchuse there wai be fewer of the largar unt.
Wise equivilert mansures in yards and in inches for 6 feet. Une the equivalent measures

tyard $=3$ feer	1\%oot =
Divide since the comversion is from foet to yards:	Mutiply since the conversion as from foet to inches:
$5+3=2$	$6 \times 12=72$

So 6 teet is equivalert to 2 yards and to 72 inches.
Which operation do you use for the conversion?
2. houns to minstes multiplication
2. galons to quarts multiplication
3. ounces to pounds division
4. inches to feet division

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with finding volume.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 139-140

What is the equivalent measure?
5. $120 \mathrm{~min}=2 \mathrm{~h}$
6. $3 \mathrm{lb}=48$ or
7. $48 \mathrm{mo}=4 \mathrm{yr}$
8. $10 \mathrm{n}=120 \mathrm{~h}$
9. $2 \mathrm{gow}=8$ ot
10. $\frac{2}{3} n=40 \mathrm{~min}$
14. A football team has to advance 10 yards to gut a liest down. How many feet is this? 30 feet
12. The runining time for a movie is t80 minutes. How many hours long is the movie? 3 hours
13. Betty bought 2 gailons of mik Jane bought 6 guarts of mik. Who bought more? How much mote? Betty; 2 quarts more

Extend Thinking

Use It! Application Station
Find a Pattern and Repeat Students use a repeat function to loop computer code.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 140

Lasson 12.4 - Extend Thinking Convert Customary Units

Nome
How can you complete the conversions? Pill in the table to show how. The first one is done for you as an example. Show your work.

Learning Targets

- I can convert metric units of measure.
- I can explain which operation to use when converting.

Standards \diamond Major \triangle Supporting O Additional

Content

\triangle 5.MD.A Convert like measurement units within a given measurement system.
\triangle 5.MD.A. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.
MPP Model with mathematics.

Focus

Content Objective

- Students use the relationship between metric units of measurement to convert measurements.

Language Objectives

- Students discuss the relationship between metric units of measurements to convert measurements using help.
- To support optimizing output, ELs participate in MLR7: Compare and Connect.

SEL Objective

- Students explain their thinking for how they solved a mathematical problem, including how a correct solution was found or what caused confusion and why.

Coherence

Previous	Now	
- Students converted measurements within a single system of measurement (Grade 4). - Students used the relationships between customary units of measurement and units of time to convert measurements (Unit 12).	- Students use the relationships between metric units of mass, length, or capacity to convert measurements.	- Students solve multi-step problems involving metric and customary unit conversions (Unit 12).

Rigor

Conceptual Understanding

- Students use multiplication and division to convert among metric units of measure.

Conceptual understanding is not a targeted element of rigor for this standard.

Procedural Skill \& Fluency

- Students develop proficiency with multiplying and dividing to convert among metric units of measure.

Application

- Students apply knowledge of multiplying and dividing with fractions to convert among metric units of measure.

Vocabulary

Math Terms	Academic Terms
capacity	emphasize
convert	note
length	
mass	
metric system	

Materials

The materials may be for any part of the lesson.

- base-ten blocks (ones and tens only)
- Metric Conversion Tables

Teaching Resource

- number cubes

Number Routine Find the Pattern, Make a Pattern © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they determine the rule for a pattern and use it to find missing terms. Students then use the same rule to make a new number sequence with different numbers.

These prompts encourage students to talk about their reasoning:

- How did you determine the rule that was used for the given sequence?
- How did you figure out the missing numbers in the sequence?
- What other sequence of numbers would follow the same rule?
- How do you know that your sequence follows the rule?

Purpose Students begin to understand how they can express equal amounts using different metric units of measure.

Notice \& Wonder

-What do you see?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students write down their own thoughts and questions about the image before having them discuss as a class.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about how to express equal amounts using different units and are based on possible comments and questions that students may make during the share out.

- What are some different units of measure you could use to express weight or mass?
- How can you express equal amounts in different ways?

Math is... Yindset

-What helps you be motivated to do your best work?

SEL
 Self-Management: Self-Motivation

After students work through the Notice \& Wonder routine, have them share with a partner what motivated them to choose what they saw in the diagram. Encourage students to think about how they made sense of the image or what caused confusion as they worked to understand the image. As students move on to work with converting metric units of measure, encourage them to reflect on their work by asking themselves to compare how their motivations might differ from those of other students.

Transition to Explore \& Develop
Ask questions that get students thinking about how they can convert larger units of mass to smaller units and vice versa.

ERP Establish Mathematics Goals to Focus Learning

- Let's think about how we can use multiplication and division to convert metric units of measurement.

(1) Pose the Problem

C Work Together

Sample answer: Because there are $1,000 \mathrm{~mL}$ in a liter, Wade divides by 1,000 to find the number of liters. A milliliter is $\frac{1}{1,000}$ of a liter, so Ally multiplies by $\frac{1}{1,000}$. me tenmen - Cimerwhechen

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore measuring objects using base-ten blocks.
Materials: base-ten blocks (ones and tens only)
Directions: Have students measure the length of various objects using the ones cubes only. After students have measured lengths using the ones cubes, have students predict the length of their objects using the tens rods only to measure. Students can then test their predictions by measuring the objects using the tens rods.

ETP Implement Tasks That Promote Reasoning and Problem Solving

- Based on your measurement with the ones cubes, what can you predict about the measurement using the tens rods?
- How does the relationship between the ones cube and the tens rod help you make a prediction?
- How is this task similar to converting units of measure?

Math is... Yodeling

- How can you use an equation to represent the relationship between the measurement with ones cubes and the measurement with tens rods?
Students use mathematics to decontextualize a problem.
Activity Debrief: Have groups of students share how they worked through the problem, including the representations they used and any solutions they found. Explain that the metric system is based on powers of 10 similar to the base-ten number system.

Have students revisit the Pose the Problem question and discuss answers. You may wish to provide copies of the Metric Conversion Tables Teaching Resource for students to use.

- How can you determine the mass of the bag in kilograms?

Guided Exploration

Students use division to convert metric units of measurement. You may wish to provide copies of the Metric Conversion Tables Teaching Resource for students to use.

FIP Facilitate Meaningful Mathematical Discourse

- Think About It: Why should you use division to convert grams to kilograms?
(8. Discuss the nature of metric conversions and how they are similar to and different from customary conversions. Ask:
- What kind of number will you always multiply or divide by when converting metric units? How do you know?
- How is converting metric units similar to converting customary units? How is it different?

Math is... Modeling

- How does the bar diagram help you make sense of the problem? Students are mapping relationships using diagrams and analyzing those relationships mathematically to draw conclusions.

English Learner Scaffolds

Entering/Emerging Ensure comprehension of make sense of. Write an equation on the board. Say Let's make sense of this problem. Use tens rods to help you solve the problem while saying I'm making sense of this problem. Repeat with another problem and another tool. Repeat once more, this time asking students What can I use to make sense of this problem? Give them two tools to choose from.

Developing/Expanding Ensure comprehension of make sense of. Write an equation on the board. Say Let's make sense of this problem. Use tens rods to help you solve the problem while saying I'm making sense of this problem. Repeat with another problem and another tool. Repeat once more, this time asking students How can I make sense of this problem? Provide a sentence from to those who need it.

Bridging/Reaching Ask students what they do to try to help make sense of a math problem they don't understand (I use counters, I use a chart, I group items by..., etc.). Allow students to interject, giving their own opinions and providing corrections when needed. For example, That's not how I try to make sense of a problem. I.... or When l'm trying to make sense of

Practice

Build Procedural Fluency from Conceptual Understanding

[1. Common Error: Exercise 13 Students may mistakenly answer 7,500 by multiplying 75×100. Remind students to read the problem carefully and that when multiplying a decimal by a power of 10 , the digits shift the same number of places as the exponent or the number of zeros.

Item Analysis

Item	DOK	Rigor
$1-2$	1	Conceptual Understanding
$3-8$	1	Procedural Skill \& Fluency
9	2	Application
10	2	Conceptual Understanding
$11-14$	2	Application
15	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you use multiplication and division to convert metric units of measure?

Ask students to share their reflections with their classmates.

Math is... Mindset

- What helped to motivate you to do your best work?

Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can convert metric units of measure.
- I can explain which operation to use when converting.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item	pOK	Skill	Standard
1	1	Understand how to convert metric units	5.MD.A. 1
2	1	Convert metric units	5.MD.A.1
3	2	Convert metric units	5.MD.A. 1
4	2	Convert metric units	5.MD.A. 1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4
Additional Practice or any of the © or activities
3 of 4 Take Another Look or any of the (3) activities

2 or fewer of 4 Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Metric Conversions

Work with students in pairs. One student rolls two number cubes and writes a measurement of grams, meters, or liters times a power of 10 . That student gives the measurement to the other student, who converts it to a smaller or larger unit of measurement. If students have difficulty ask whether they are moving from smaller to larger or larger to smaller units, and whether they should use multiplication or division to make the conversion.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Length Conversions Word Problems
- Mass or Weight Conversions Word Problems
- Liquid Volume Conversions

Word Problems

Differentiation Resource Book, p. 141

Lesson 12-2 - Reinforee Understanding
Convert Metric Units
Namu

Which operation should you use for the conversion? Explain your answer.

1. ilters to miviliters imultiplication; I am
2. metirs to killometars division: I am finding a larger unit. finding a smaller unit.

B

Build Proficiency

Practice It! Game Station

Convert Metric Units Race Students practice using metric conversions to solve problems.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 141-142

Lesson 12.2

Additional Practice

Name

Review

You can use multiplication or division to convert metric units of mass, leogth, or capacity.
To corvert from a larger measule to a smaller measure, mutiply because there will be more at the smailer unit.
To corvert from a smaler measure to a larger measure, divide because there will be fewer of the larger unit.
Wrate equivalent metsures in moters and in mallimeters for 45 censimeters.
Une the equivalent measures.
1 meter $=100$ centimeters Divide since the conversion is from contimeters to meters. maimeiers Mublipy since the conversion a $45+300=0.45$ \qquad from contimeters to mismetees:

So 45 tentmeress is equivaient to 0.85 met 450 milimeters.

Which operation do you use for the conversion?

1. kilograms to grams multiplication
2. minnees to liters division
3. meters to klameters division
4. gams to milligrams muitiplication

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with finding volume.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 141-142

Extend Thinking

Use It! Application Station
City of Trees Students create a line plot for plant growth data.
The content of this card has concepts covered later in Lesson 12-5. You may want to assign this card to students ready to explore content covered later in this unit.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 142

Lesson 12.2 - Extend Thinking
 Convert Metric Units

Name
How can you complete the conversions? Fill in the table to show how. The first one is done for you as an example. Show your work.

1.	400 milimeters	40 contimeters	0,4 meters
	$40 \times 10=400$		$40+100=0.40$
2.	$\begin{aligned} & \overline{6,500}^{\text {centimeters }} \\ & 65 \times 100 \end{aligned}$	65 metors	$\begin{aligned} & \text { kilometers } \\ & \overline{0.065 ;} \\ & 65 \div 1,000 \end{aligned}$
3.	7.400 miminers	$7.4 ;$ iters $7,400 \div 1,000$	$\overline{0.0074:}$ $7.4 \div 1,000$
4.	milligans $3,100,000 ;$ $3,100 \times 1,000$	$\begin{aligned} & \quad \text { grams } \\ & 3,100 ; \\ & 3.1 \times 1,000 \end{aligned}$	31 klograms
5.	$\begin{aligned} & 520,000 ; \\ & 520 \times 1,000 \end{aligned}$	520 mem	$\begin{aligned} & \overline{0.52 ;} \\ & 520 \div 1,000 \end{aligned}$
6.	$\begin{aligned} & \hline \text { millimeters } \\ & 8,100 ; \\ & 810 \times 10 \end{aligned}$		8.1 meters
7.	H2000 millizers	$\begin{aligned} & \text { iters } \\ & 11 ;, 000 \div 1,000 \end{aligned}$	
8.	milligramis $9,200,000 ;$ $9,200 \times 1,000$	$\begin{aligned} & \quad \text { grams } \\ & 9.200 ; \\ & 9.2 \times 1,000 \end{aligned}$	92 kiograms

Solve Multi-Step Problems Involving Measurement Units

Learning Target

- I can solve multi-step problems by identifying and answering a hidden question and using that answer to solve the initial problem.

Standards \circ Major Δ Supporting \circ Additional

Content

\triangle 5.MD.A Convert like measurement units within a given measurement system.
\triangle 5.MD.A. 1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.
MPP Look for and express regularity in repeated reasoning.

Focus

Content Objective

- Students solve multi-step problems by identifying and answering a hidden question and using that answer to solve the initial problem.

Language Objectives

- Students discuss solving multi-step problems using make sense of and determine.
- To support sense-making, ELs participate in MLR2: Collect and Display.

SEL Objective

- Students describe the logic and reasoning used to make a mathematical decision.

Coherence

Previous

- Students used the four operations to solve word problems involving measurement units (Grade 4).
- Students used the relationships between metric units of mass, length, or capacity to convert measurements (Unit 12).

Rigor

Conceptual Understanding

- Students deepen their understanding of multiplying fractions and converting units of measurement.

Conceptual Understanding is not a specific element of rigor for this standard.

Procedural Skill \& Fluency

- Students build their proficiency with multiplication involving whole numbers and fractions, and in converting units of measurement.

Application

- Students apply knowledge of relative size of unit of measurement and multiplication and division to solve problems with real-world contexts.

Vocabulary

Math Term Academic Terms convert analyze

Materials

The materials may be for any part of the lesson.

- Customary Conversion Tables Teaching Resource
- index cards
- Metric Conversation Tables Teaching Resource
- Problem-Solving Tool Teaching Resource

Number Routine Decompose It © ${ }^{5-7 \text { min }}$

Build Fluency Students build fluency with fractions as they use equivalent fractions and addition and/ or subtraction concepts to decompose a mixed number in different ways.

These prompts encourage students to talk about their reasoning:

- What do you notice about the number? In what way is the number composed?
- What strategy did you use to solve the problem? What did you do first? Next?
- How did one way of decomposing the number help you think of other ways to decompose the number?
- How can you use a pattern to think of more ways to decompose the number?

Purpose Students begin thinking about multi-step problems involving conversions of units.

Which Doesn't Belong?

-Which doesn't belong?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students discuss their thinking with partners before sharing as a whole class.

ETP

Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' exploration of multi-step problems involving conversions of units and are based on possible comments and questions that students may make during the share out.

- Which conversions are between customary units? Metric units?
-What do the units in each conversion measure?
- What units are smaller than quarts? Larger than cups?

Math is... Yindset

-What helps you make sense of a situation?

SEL.

Responsible Decision-Making: Analyze Situations
As students work through the Which doesn't belong? routine, have them write, draw, or speak to each of the steps of their logic and reasoning. This can help students analyze their thought processes as they analyze situations, choose appropriate strategies, and identify solutions.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can solve multi-step word problems involving measurement conversions.
$\stackrel{\text { EIP }}{ }$ Establish Mathematics Goals to Focus Learning

- Let's think about how we can solve multi-step problems involving conversions of units of measure.

(1) Pose the Problem

Learn

Annie's mother needs to have enough water to fill 6 water bottles. Each bottie holds 475 mililiters of wates Which water jug should Annie's mother use?

You can comert unies of measurement to help you soive the problem

How many mililiters of water does Annie's mother need to fill all the botties?		Which water jug should she use?	
$\times 16$$\longrightarrow$		milditers to 偪ers $-\rightarrow$ smoll to lorge unes	
$16 \times 475=$?	475	You divide to convert.	
	-16	$7.600 \div 1000=76$	
Arnie's mother needs	$\begin{array}{r} 2850 \\ +4750 \\ \hline 7600 \end{array}$	Arnie's mother needs 76 liters of water, so she should use the	
7600 milisiters of water.		9.4.ung.	Math in. Perseverance
Nowing how to convert un help you solve problems	of mean has have	vent	How cen you make sense of the problem?

mutipie steps.

Q Work Together

John ordered a 2 -yard long sandwich for his party. His guests ate $\frac{2}{3}$ of the sandwich. How many inches of sandwich are left?
24 inches

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore solving multi-step word problems involving units of measurement.

Materials: Problem-Solving Tool Teaching Resource

Directions: Distribute copies of the Problem-Solving Tool Teaching Resource to each student or pairs. Have students solve the Pose the Problem. You may wish to provide copies of the Customary Conversion Tables Teaching Resource and the Metric Conversion Tables Teaching Resource.

Math is... Perseverance

- How can you make sense of the problem?

Students understand the meaning of the problem and realize they will have to persevere through more than one step to solve it.

Support Productive Struggle

- How can you represent the information given in the problem?
-What do you need to determine before solving the problem?
- How can you determine which operation you should use first?
- How can you use the relationship between milliliters and liters to solve the problem?

Activity Debrief: Have groups share the plans they made before solving the problem as well as the steps they took to solve the problem. Encourage students to explain their thinking behind each step they took to solve the problem.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students use what they know about converting units of measurement to solve a multi-step word problem. You may wish to provide copies of the Customary Conversion Tables Teaching Resource and the Metric Conversion Tables Teaching Resource.

ETP Facilitate Meaningful Mathematical Discourse

Encourage students to make and share plans for solving the problem. Make sure they ask useful questions to improve each other's ideas. Ask:

- What are the steps you would perform to solve this problem?
- Can you understand other students' plans?
- How are their plans similar to yours? How are they different?
- Think About It: Why should you use multiplication to find the total number of milliliters?
- Think About It: Why should you use division to convert milliliters to liters?
- Think About It: How can you use what you know about division patterns to find the quotient $7,600 \div 1,000$?

Math is... Perseverance

- How can you make sense of the problem?

Students understand the meaning of a problem and realize they will need to persevere through more than one step to solve it.

English Learner Scaffolds

Entering/Emerging Ensure understanding of enough. Show a container and more than enough manipulatives to fill it. Say I think I have enough (cubes) to fill this container. Fill it. Nod and say I had enough cubes. Then show a larger container. Ask Do I have enough to fill this? Put the (cubes) in. Shake your head and say I didn't have enough (cubes). Repeat again, asking Do I have enough (cubes) to fill the container?

Developing/Expanding Ensure understanding of enough. Show a container and more than enough manipulatives to fill it. Say I think I have enough (cubes) to fill this container. Fill it. Nod and say I had enough cubes. Then show a larger container. Ask Do I have enough to fill this? Put the (cubes) in. Shake your head and say I didn't have enough (cubes). Repeat again and say Tell me about the (cubes) and container. Expect a response with enough.

Bridging/Reaching Ensure

 comprehension of enough. Then have students come up with similar words and phrases for have enough (plenty, sufficient, right amount). Then ask students to come up with other words that are often paired with enough (good enough, long enough, etc.) and to tell the class what they mean. Allow students to use a dictionary or thesaurus if desired.
7. Bran is waking to his fiend's house that is 2.6 kalometers awry. He stops when he is $\frac{7}{3}$ of the way there. How many meters does he still heve to walk?
325 m
8. Nell is aiming to drink the amount of water stown per doy. El 3 pm , she is $\frac{3}{4}$ of the way to her goal. How mary more fluld ounces does she noed to drirk to reach her goal? 16 fl oz

9. Tyler wants to send his cousin 5 books that are oach 1,500 grams He has a box that can hoid up to 5 kiograms Wie lyer be able to use the boxkn has? Explain
No. Sample answer: He will need a bigger box because the total mass of the books is 7.5 kilograms.
10. Gina is groweng a houseplant. When she measures it of the boginning of the manth, it is 3 teot tall. When she moasiares it at the end of the month, it is $\dagger \frac{1}{4}$ the sire it was at the beginning of the month. How many inches aid the houseplant grow? 9 in.
11. Extend Your Thinking Crista has 3 gailons of wotec. Jiylen has 35 pirts of wates. Who has more water? Explain your reasoning Jaylen; Sample answer: 3 gallons is the same as 24 pints, and $36>24$.

(3) Reflect

How can you solve mult-step wond probiems involving units of messurement?
Answers may vary. sense of a situation?

Practice

EIP Build Procedural Fluency from Conceptual Understanding

1. Common Error: Exercises 1-10 Make sure students understand which unit of measurement they should be using to express their answers. For example, in Exercise 1, the length is given in yards but students are asked to give their answer in feet.

Item Analysis

Item	DOK	Rigor
$1-10$	2	Application
11	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you solve multi-step word problems involving units of measurement?
Ask students to share their reflections with their classmates.

Math is... Mindset

- What helped you make sense of a situation?

Students reflect on how they practiced responsible decision-making.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can solve multi-step problems by identifying and answering a hidden question and using that answer to solve the initial problem.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pok Skill	Standard		
1	2	Solve multi-step word problems with conversions	5.MD.A. 1
2	2	Solve multi-step word problems with conversion	5.MD.A.1
3	2	Solve multi-step word problems with conversions	5.MD.A.1
4	2	Solve multi-step word problems with conversions	5.MD.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

4 of 4	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
3 of 4	Take Another Look or any of the \mathbf{B} activities
2 or fewer of 4	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency
(Extend Thinking

Reinforce Understanding

Find Your Match!

Show students the sentence " \qquad $\mathrm{L}=$ \qquad mL."

Have each student fill in the blanks in 4 different ways. Then have students write each of their numbers on index cards. Mix up and then lay out the cards and have students take turns trying to make a match that shows a true conversion. If necessary, remind students that one liter is equivalent to 1,000 milliliters, so the number fo milliliters must be 1,000 times the equivalent number of liters.

Build Proficiency

Practice It! Game Station
Metric Units of Measurement Race
Students practice using metric conversions to solve problems.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 143-144

Lesson 12-3

Additional Practice

Name

Review

You can convert units of measurement to neip you solve problens that Hove muitiole steps.
Kithrym has a hew spool of ribtion thit holds a fotal length of 25 meters of ribbon, 5he uses 225 centimeters of ribbon to wrap some gift boxes. How much ribbon does Kattryn have leff? To solve, find 2.5 meters -225 centimeters.
First coevert 2.5 meters to an equivalere measure in centimeters: $2.5 \times 100=250.302 .5 \mathrm{~m}=250 \mathrm{~cm}$
Then subtract $250 \mathrm{~cm}-225 \mathrm{~cm}=25 \mathrm{~cm}$
Kithiyn has 25 cm of ribbon left.

1. Zach has a plcher that holds 15 L of lemonade. Each cup holds 280 mL . of lemonade. He pours aut 5 glasses for himseif and 4 Miends. How much lemonade will be bet in the piches? Sample answer: 100 mL .
[^15]
Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with finding volume.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 143-144

```
3. A biaing troli is 3.2 kan long. From the start of the trail the bridge is 1.4 km along the trail. Once at the bridge, a watertal is 900 m farthec. How tar is it from the watertal to the end of the trail? Sample answers: 0.9 km or 900 m
```

4. A cefi uses 4 ounces of meat on each of its sandwichies. How many sandwiches can be made trom 5 pounds of meat? 20 sandwicties

Extend Thinking

Use It! Application Station
Environmentally Friendly Students use measurements to create five environmentally friendly home improvements.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 144

Lesson 12.3-Extond Thinking
 Solve Multi-Step Problems Involving Measurement Units

Nome

Five friends are preparing for a hike. It is recommended that hikers carry a maximum of 30 pounds. Keri's backpack weighs 35 pounds. How can you use this information to solve the word problem? Show your work.

1. Justin fan flve 12 -ounce water botthes in his backeack, and his gear weighs $\frac{9}{10}$ that of Kerr's. How many witter bottles must Justin take out so that his backpack is wathin the recommened weight? 2 bottles; Sample answer: $35 \times \frac{9}{10}=31.5$. He is 1.5 ib or $1.5 \times 16=24$ oz over, which is 2 botties.
2. Abigal's gean welghs $\frac{4}{5}$ that of Kerls. it she carries Kerl's evecss gear and an addrional 12 -ounce water borte, how many ounces over oe under the recommended weight will her gear be?
20 oz under; Sample answer: $35 \times \frac{4}{5}=28 \mathrm{lb}$; $28 \times 16=448 \mathrm{oz}, 448+12=460 ; 30 \times 16=$ 480 oz: $480-460=20 \mathrm{oz}$.
3. Finn's gear weighs $\frac{5}{8}$ that of Ker's. Finn is collecting rock samples during the hike How many ounces of rock sample can Finn carry home and keep his backpock wthin the recommended weight?
130 oz; Sample answer: $35 \times \frac{5}{8}=21.875 \mathrm{lb}$; $30-21.875=8.125 \mathrm{lb} ; 8.125 \times 16=130 \mathrm{oz}$.
4. Floyd's gear weighs 72 ounces more Finn's. How many 0.84 ounce granpla bars can Floyd add to his pack and lonep his pock within the recommended wieight?
69 bars: Sample answer: $21.875 \times 16=350$ oz: $350+72=422 ; 30 \mathrm{lb}=480 \mathrm{oz} ; 480-422 \mathrm{co}$ $58 \mathrm{oz} ; 58 \div 0.84=69 \frac{4}{84} ; 5069$ whole bars.

Represent Measurement Data on a Line Plot

Learning Targets

- I can create line plots of data sets involving measurement data.
- I can interpret line plots.

Standards \circ Major Δ supporting \circ Addifitional

Content

\triangle 5.MD.B Represent and interpret data.
\triangle 5.MD.B. 2 Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Use operations on fractions for this grade to solve problems involving information presented in line plots.

Math Practices and Processes

MPP Model with mathematics.
MPP Use appropriate tools strategically.

Focus

Content Objectives

- Students create a line plot to display a data set involving measurement.
- Students interpret line plots.

Coherence

Previous

- Students displayed a data set of measurements in fractions of a unit on line plots and solved problems by using information presented in line plots (Grade 4).
- Students solved multi-step problems involving unit conversions (Unit 12).

Language Objectives

- Students discuss line plots using the modals might, can, and could.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students recognize and build upon personal mathematical strengths of self and others within the classroom math community.

Next

- Students solve real-world problems with data in fractional measurements on a line plot using operations (Unit 12).
- Students develop understanding of statistical variability and summarize and describe distributions (Grade 6).

Rigor

Conceptual Understanding

- Students use understanding of relationships between fractional values and how various statistical representations are used to better understand a data set.
Conceptual understanding is not a specific element or rigor for this standard.

Procedural Skill \& Fluency

- Students represent measurement data by labeling a number line and placing an X to represent each data value above the number line.

Application

Students apply measurement concepts and number sense to organize, represent, and interpret data within real-world contexts.

Vocabulary

Math Terms	Academic Terms
data	accurate
line plot	reflect
outlier	

Materials

The materials may be for any part of the lesson.

- dry spaghetti noodles
- Water Remaining Line Plot Teaching
Resource

Which Benchmark Is It Closest To?

Build Fluency Students build understanding of fractions as they identify the closest benchmark numbers to given fractions.

These prompts encourage students to talk about their reasoning:

- Retell the problem in your own words. What do you notice about the numbers?
- How can you tell which benchmark to choose?
- How do the benchmarks help you understand and compare the fractions?
- How could putting the numbers in order from greatest to least help you place them on the number line?

Purpose Students begin thinking about how measurements are represented in line plots and what conclusions can be drawn from them about the measurements.

Numberless Graph

-What is the question?
Teaching Tip You may want to have students take a few minutes to jot down various questions they have about the line plot before discussing as a class.

EIP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of line plots and are based on possible comments and questions that students may make during the share out.
-What does the title tell you about the line plot?
-What do you think the Xs represent?

Math is... Mindset

-What helps you be part of the classroom community?

SEL

Relationship Skills: Social Engagement

Help students identify and understand the value of socially engaging with other students within the class community. As students collaborate in small groups to complete the Numberless Word Problem routine, invite each student to acknowledge the value of each group member. As students think about what questions they could ask, have them identify their peers' as well as their own contributions to the collaborative group effort.

Transition to Explore \& Develop

Ask questions that get students thinking about the information they can learn from a line plot.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can interpret information that is represented on a line plot.

Learn

Ryan filled cups with the same amourt of water and set them out in a room. The next day, he messured the amourt of water remaining in each cup
The table shows his findings.
How many cups had 2 tablespoons
or more of water remaining?
You can create a lne plot to interpret the data.

You can use line plots to see how many measurements there are and how the measurements are grouped together:
C. Work Together

How does the line plot show which measurement occurred most often?
The measurement $\frac{1}{2}$ has 4 Xs , which is more than any other measurement.

(1) Pose the Problem

EPP Pose Purposeful Questions

-Why would you represent data?
-What are some ways you represented data in the past?

- How is data represented in a line plot?

(2) Develop the Math

Choose the option that best meets

 your instructional goals.
Stronger and Clearer Each Time

Pair students and have them work on a problem like the problem on the Learn page. Have them individually write how to solve the problem. Then have them share their writing with their partner and fix mistakes. Revisit the routine throughout the lesson for reinforcement.

3 Bring It Together

Elicit and Use Evidence of Student Thinking

- What information is shown in a line plot?
- What are some conclusions about data you can make by interpreting a line plot?

Key Takeaway

- Line plots can be used to display data sets that involve measurement.

Work Together

Students use the line plot to determine which measurement occurred most often.

1. Common Misconception Students often confuse the meanings of the labels on the number line in a line plot and the number of X s above them. Many will conclude, in this example, that $2 \frac{1}{4}$ occurred most often because it is the greatest number on the number line, or that 1 occurred most often because there is 1 X over the greatest number on the number line. Remind them that each X represents a time that the label on the number line appeared in the data set.

LOM Language of Math

Tell students that the correct pronunciation of data is "day-tah, " not "dah-tah." Also point out that a line plot contains data, which is plural. One piece of data is called a datum. More than one bacterium are bacteria. More than one datum are data.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore interpreting data from a line plot.
Materials: Water Remaining Line Plot Teaching Resource
Directions: Distribute copies of the Water Remaining Line Plot Teaching Resource to each student or pairs. Have students solve the Pose the Problem.

ETP Support Productive Struggle

- How do you know what the numbers on the line plot mean?
- How do you know what the X s in the line plot represent?
- Why do some numbers not have any X above them?
- How can you know how many cups of water are represented in the line plot?
- What can you learn about how water evaporates from the line plot?

Math is... n My World

- When might a line plot be useful to you outside of class? Students apply the mathematics they know to solve problems arising in everyday life.

Activity Debrief: Invite students to discuss as a class the statements they made about the line plot. Make sure students support their statements with information that can be found on the line plot.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students explore how they can make statements about measurements that are represented in a line plot

EIP Use and Connect Mathematical Representations

- How do you know what the Xs represent?
- Why might it be important to know how many cups are represented?
- Think About It: How is a line plot similar to other representations of measurements that you know?
- How could knowing where the measurements are grouped be helpful in analyzing the data?

Have students discuss the nature of outliers in data.

- What might have caused that cup to be an outlier?
- Do you think you should ignore outliers when you interpret data? Why or why not?

Math is... n My World

-When might a line plot be useful to you outside of class?
Students apply the mathematics they know to solve problems arising in everyday life.

2. Develop the Math

We can use the data shown in the line plot to describe the results.

How can you determine the number of cups that were used in the experiment?

Fe

El

 English Learner ScaffoldsEntering/Emerging Ensure understanding of whether. Put 24 centimeter cubes on the desk. Say, Let's see whether there are more than 20 cubes. Count and confirm. Then say, Let's see whether we have enough counters to fill this container. Put them in a container too big to fill. Then, put 3 tens rods on the desk. Say, Tell me whether we have more than 30 cubes. (yes/no)

Developing/Expanding Ensure understanding of whether. Put 24 centimeter cubes on the desk. Say, Let's see whether there are more than 20 cubes. Count and confirm. Then say, Let's see whether we have enough counters to fill this container. Put them in a container too big to fill. Then, put 3 tens rods on the desk. Ask, What can we do to know whether we have more than 30 cubes?

Bridging/Reaching Ask students to use whether in a sentence. For example, I will go to the store whether it is raining or not. Validate and make corrections to vocabulary, grammar, and meaning as needed.

9. Create a line plot to regcesent the dato.

10. How did you know how to label the measurements on the ine piot?
Sample answer: Some of the measurements are in eighths, so I fabeled each tick mark counting by eighths.
12. Are thene any muasurements with no Xs above them? Explain.
There are no Xs above
$6,6 \frac{1}{4}, 6 \frac{5}{8}$, or 7 ; there are no pencils of those lengths.

Reflect

How can you use line plots to intecpret measurements?

 Answers may vary.
Practice

ETP Build Procedural Fluency from Conceptual Understanding
[Common Error: Exercise 9 Students may initially be confused by how to space the measurements in the line plot as the fractions have different denominators. Encourage students to first find a common denominator for all of the measurements before determining how to label and space the measurements on the line plot.

Item Analysis

Item	DOK	Rigor
$1-8$	1	Application
$9-12$	2	Procedural Skill \& Fluency
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you use line plots to interpret measurements?

Ask students to share their reflections with their classmates.

Math is... Mindset

- How were you part of the classroom community?

Students reflect on how they developed stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can create line plots of data sets involving measurement data.
- I can interpret line plots.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			DOK Skill
1	2	Interpret a line plot	Standard
2	2	Interpret a line plot	5.MD.B.2
3	2	Interpret a line plot	5.MD.B.2

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

3 of 3	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \mathbf{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

Spaghetti Fractions

Have students break 6-8 strands of uncooked spaghetti in 2 pieces, aiming for halves. Help the students measure the length of the pieces to the nearest eighth of an inch. Then work together to make a line plot with their combined data. Discuss with students how they can identify the most common spaghetti length. Make sure students understand that the most common length has the most marks shown on the line plot.

Build Proficiency

Practice It! Game Station
Create a Line Plot Task Cards Students practice finding equivalent fractions on a number line.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 145-146

Lesson 12-4

Additional Practice

Name

Review

You can create a ine plot from a set of dota and uve it to make observations about the data.
The times, in hours, that Kaylee practices the piano are shown. Which tene or timer occurs most often?
$\frac{1}{4}, 5 \frac{1}{2}, 1, \frac{1}{2}, \frac{3}{4}, 1$
To solve, make a line plot of the data.
Make a number line showing ab of the possible times. Use an \times to mark one occurrence.

Piano Practice Times (hours)

Since there are 3 X urly above 1 , the time that otcias most often is thous.

Use the lline plot above for questions 1 and 2.

1. How many times did Knylee prnctice for 1 hour or more? 4 timus
2. How many times did Kayle practice for exactly $1 \frac{1}{4}$ nours? Explain

0 times; Sample answer: There are no X above $1 \frac{1}{4}$ on the line plot.

This line plot shows the hours a week spent reading by a group of students. Use the line plot to answer the questions.

1. How many students are represented on the line plot? 20
2. What is the longest time spent reading per week? 4 hours
3. How many stuclents read more than 3 hours? 5 students
4. What is the shortest time spent reading per week? $1 \frac{1}{4}$ hours
5. What is the most commion time spent reading? $1 \frac{1}{2}$ hours
6. How mary students read for $3 \frac{1}{2}$ hours? none or 0 students

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with finding volume.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 145-146

A group of filends picked blueberies. The weights, in pounds, of the amounts of blueberties each serson picked are listed.
$\frac{3}{4}, \frac{1}{4}, 1 \frac{3}{4} \cdot 2 \frac{3}{4} \cdot 1, \frac{3}{4} \cdot \frac{1}{4} \cdot 1, \frac{3}{4} \cdot 2,1$
3. Make a line plot of the data. Weight of Blueberries (pounds)

4. How mary triends wese in the group? 12 tiends
5. Which weigh or welohts of bluebernes were picked most ofter? $\frac{3}{4}$ pound(t)
6. How many triends picked an amount of blueberries that weighed more than $\frac{1}{2}$ pounds? $\frac{3}{}$ fiends
7. What is the heaviest weight of blueberries that one person pickec? 2 pounds

 Sencmatiotor

Extend Thinking

Use It! Application Station
Find a Pattern and Repeat Students use a repeat function to loop computer code.

STEM Adventure

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 146

Losson 12-4-Extond Thinking
 Represent Measurement Data on a Line Plot

Name
Nicole used some data to start making this line plot. The plot shows the hours a week spent reading by a group of students. However, she has not yet graphed all her data. Help her finish the line plot and then answer the questions.

t. There should be fwice as mary marks for $) \frac{1}{4}$ hours as what is curently marked.
2. There should be two more marks for 3 hours then what is marked for $2 \frac{1}{4}$ hourz.
3. There should be one less mark for $2 \frac{3}{4}$ hours than what is now marked for $1 \frac{1}{4}$ hourl.
4. There is $\frac{1}{5}$ of the marks now shown for 3 hours marked for thout
5. How many students are tepresented on the line plot? 22
6. How many students readi iess than 2 hours? 8 students
7. How many students road 3 hours or more? 7 students
8. Are there any outlions? Yes; the student that read for 4 hours.
9. How many students read for 2 hours? none or O students
10. What was the most cormman length of time spent ieading? 3 hours

Solve Problems Involving Measurement Data on Line Plots

Learning Target

- I can solve problems using data in a line plot and perform operations on the data.

Standards \circ Major Δ supporting \circ Addifitional

Content

\triangle 5.MD.B Represent and interpret data.
\triangle 5.MD.B. 2 Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Use operations on fractions for this grade to solve problems involving information presented in line plots.

Math Practices and Processes

MPP Reason abstractly and quantitatively.
MPP Attend to precision.

Focus

Content Objective

- Students solve problems using data in a line plot and performing operations on the data.

Language Objectives

- Students discuss solving problems using operations and line plot data using amount and the superlatives greatest and least.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

SEL Objective

Students acknowledge different representations that can be used to complete a mathematical task, and reflect on the value of the similarities and differences.

Coherence

Previous

- Students displayed a data set of measurements in fractions of a unit and solved problems by using information presented in line plots (Grade 4).
- Students represented and interpreted measurement data to eighths on a line plot (Unit 12).

Now

- Students solve real-world problems involving data in fractional measurements on a line plot using operations.

Next

- Students display numerical data in dot plots, histograms, and box plots and understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape (Grade 6).

Rigor

Conceptual Understanding

- Students extend their understanding of line plots and fraction operations to solve problems.
Conceptual understanding is not a specific element of rigor for this standard.

Procedural Skill \& Fluency

- Students build procedural skills and proficiency with fraction operations and fluency in interpreting data on line plots to solve problems.

Application

- Students apply their understanding of fraction operations and their interpretation of data on line plots to solve problems with real-world context.

Vocabulary

Math Terms Academic Term
data
emphasize
line plot

Materials

The materials may be for any part of the lesson.

- blank number cubes
- index cards
- Problem-Solving Tool Teaching Resource

Number Routine Which Benchmark Is It Closest To?
 ($5-7 \mathrm{~min}$

Build Fluency Students build understanding of decimals as they identify the closest benchmark numbers to given decimals.

These prompts encourage students to talk about their reasoning:

- What are you being asked to do?
-What do you notice about the benchmarks? What patterns do you see?
- What do you notice about the given decimals? What did you think about the decimal?
- How did you determine the closest benchmark for the decimal?
- Which decimals were the most challenging to link to a benchmark? Why?
- How are decimals related to fractions?

Purpose Students begin to think about how they can redistribute groups to make equal amounts.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See the Appendix for a full description of the sense-making routines.
Teaching Tip You may want to have students draw groupings that match the objects in the image so that they can study the groups more closely.

ETP
 Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of interpreting information provided visually and are based on possible comments and questions that students may make during the share out.

- How can you know how many tomatoes there are in all?
- How would you be able to regroup the tomatoes to make equal groups in each bowl? What steps would you take?

Math is... Mindset

- How can you show others that you value their ideas?

SEL
 Social Awareness: Appreciate Diversity

As students consider the Notice \& Wonder routine, invite them to discuss different strategies they might use to redistribute to make equal groups. As students share their unique thought processes and ideas, emphasize the value of the differences as well as the similarities so students can understand and appreciate the importance of diversity.

Transition to Explore \& Develop

Ask questions that get students thinking about how they can solve problems using data in a line plot and perform operations on the data.
$\stackrel{E R P}{5}$ Establish Mathematics Goals to Focus Learning

- Let's think about how we can use information in line plots to solve problems.

(1) Pose the Problem

Learn

A tortila moker put $4 \frac{1}{2}$ cups of com meal in ten bowts. The line plot shows the amount of com meal in each of nine bowls

Corn Meal in Each Bowl (in cups)

```
Determine the amount of corn meal in each of the nine bowls.
2 bowls have \frac{1}{8}}\mathrm{ cup each.
2 bowls have }\frac{1}{4}\mathrm{ cup each.
3 bowls haw }\frac{1}{2}\mathrm{ cup each.
Mmath Is.M Quantities
$ bowl has }\frac{3}{4}\mathrm{ cup.
    What could be another
1 bowl has 1 cup.
\frac{2}{8}+\frac{4}{8}+\frac{12}{8}+\frac{5}{8}+\frac{8}{8}=\frac{32}{8}=4
way to add the amounts
of comn meal?
The nine bowls have 4 cups of corn meal.
Subtract to determine the amount of corn meal in the tenth bowl.
\(4 \frac{1}{2}-4=\frac{1}{2}\)
The tenth bowl has \(\frac{1}{2}\) cup of corn meal
```

You can solve problems by interpreting information given in ine piots and then performing operations.

Q Work Together

Based on the line plot above, what is the difference between the greatest amount of flour in a bowl and the least amount of flour in a bow? Explain your answer.
$\frac{7}{8} \mathrm{c}:$ Sample answer: $1-\frac{1}{8}=\frac{7}{8}$

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using information given in a line plot to solve problems.

Materials: Problem-Solving Tool Teaching Resource
Directions: Distribute copies of the Problem-Solving Tool Teaching
Resource to each student or pairs. Have students solve the Pose the Problem.

ETP Support Productive Struggle

-What information do you need to find first?
-What strategies can you use to find the total amount of flour?

- How did you determine the total number of bowls?
- Is your answer reasonable? How do you know?

Math is... Quantities

- Why do you use division to find out how much flour should go in each bowl?

Students make sense of quantities and their relationships in problem situations.

Activity Debrief: Have groups share the plans they made before solving the problem as well as the steps they took to solve the problem. Encourage students to explain their thinking behind each step they took to solve the problem.

A PDF of the Teaching Resources are available in the Digital Teacher Center.

Guided Exploration

Students interpret information given in a line plot and use that information to solve a problem.

EIP Facilitate Meaningful Mathematical Discourse
 Encourage students to make and share plans for solving the problem. Make sure they ask useful questions to improve each other's ideas. Ask:

-What are the steps you would perform to solve this problem?

- Can you understand other students' plans?
- How are their plans similar to yours? How are they different?

Have the students create an equation for the amount of flour. Ask:

- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
- How does the equation represent the amount of flour in all the bowls?
- Think About It: What equation using addition only could you use to represent the amount of flour?

2. Have the students determine the number of bowls. Ask:

- How does the line plot help you determine the number of bowls of flour?

Math is... Quantities

- Why do you use division to find out how much flour should go in each bowl?

Students make sense of quantities and their relationships in problem situations.

2. Develop the Math

The line plot shows the amount of flour in each bowl. The flour needs to be redistributed so each bowl contains the same amount.
 English Learner Scaffolds

Entering/Emerging Support students' understanding of so (that). Put thirty chips into two groups of 15 . Say I need to regroup these so there are three groups of ten. Regroup. Continue using the chips to regroup, using so in your sentences. Finally, test student comprehension and give students twelve chips. Say, Group these so there are four groups of three.

Developing/Expanding Support students' understanding of so (that). Put thirty chips into two groups of 15. Say, I need to regroup these so there are three groups of ten. Regroup. Continue using the chips to regroup, using so in your sentences. Finally, ask students to demonstrate the task using their own manipulatives and so in their sentences. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ensure comprehension of so by asking students to group 15 chips so there are 3 chips per group. After they demonstrate, ask students to talk about other ways so is used. For example, to indicate a large amount like so much; or to indicate a result like I have a lot of homework tonight, so I can't watch TV). Allow students to use a dictionary if desired.

Nomse
The line plot shows the weights of various mice.
Use the line plot to answer the questions.

1. What is the combined
2. What is the combined weight wright of the 4 lightest mice? of the mice that weigh
$1 \frac{1}{8}$ oz of the mice that weigh
$\frac{3}{4}$ ouncess? $3 \frac{3}{4} \mathrm{oz}$
3. What is the combined
4. Whit is the difference in weight weight of all the mice? $8 \frac{1}{4} o z$ What and the lightest mouse? 1 oz

The line plot shows the amount of rain that fell each day in a week. Use the line plot to answer the questions.

5. What was the total amount of rairtall in inches during the week? 3 in.
2. On the doys t rained, what is the difference between the greatest and least amount of raindal? $\frac{1}{2} \mathrm{in}$.
6. How mary days did it ran during the week? 6 days
8. It the same amount of rein fath the following woek, what is the total amount of taintail over two wepks? 6 in .

The line plot shows how much water each player drank during
a basketball game. Use the line plot to answer the questions.

9. How many players drank water during the basketbad game? 16 players
*0. Whar is the difference between the greatest amount of woter drank and the leost of water drank and the leost
omoint of water drank? $\frac{3}{4}$ gal
11. Errer Analysis Tony wants to lind the total amount pf water ptryers drank truring the game
$\frac{1}{4}+\frac{3}{8}+\frac{1}{2}+\frac{5}{8}+\frac{3}{4}+\frac{7}{8}+1=4 \frac{3}{8}$ gallons
is Toay's work correct? Explein why or why not
No, it is not correct. Sample answer: He did not multiply the number of gallons by the number of tick marks. The correct amount is $9 \frac{3}{4}$ gallons.
12. Extend Your Thinking Why is being atbe to solve problems involving data on Ine plots helpful for analyzing data?
Sampte answer: Sotving probtems Involving data on line plots can help us find sums, differences, etc. which gives important information and can help explain information or give predictions about certain things.

Drefiect

How can you use data displayed on a line plot to solve problems? Answers may vary.

$$
\begin{aligned}
& \text { Moth N._ Mindset } \\
& \text { How did you show others that }
\end{aligned}
$$ you walue thet idens?

Practice

EIP Build Procedural Fluency from Conceptual Understanding

T Common Error: Exercise 1 Make sure students understand that they need to find the combined weight of the 4 lightest mice, not just the mice who weigh the least.

Item Analysis

Item	DOK	Rigor
$1-10$	2	Application
$11-12$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you use data represented on a line plot to solve problems? Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you show others that you value their ideas?

Students reflect on how they practiced social awareness.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can solve problems using data in a line plot and perform operations on the data.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item	DOK Skill	Standard	
1a	2	Solve problems involving a line plot	$5 . M D . B .2$
1b	2	Solve problems involving a line plot	$5 . M D . B .2$
2	2	Solve problems involving a line plot	$5 . M D . B .2$

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	then have students do
3 of 3	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \boldsymbol{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

B Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Reinforce Understanding

Line Plot Fun!

Work with students in pairs. Provide a number cube labeled with fraction measurements and 2-4 prepared line plot (index) cards with the same 6 fraction measurements. One student rolls the number cube. The other records an X above the value on a line plot card. After 10 rolls, students find the combined total of values. If students have difficulty, help them group the numbers with the same value and multiply to find the total, then add the products.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Line Plots with Operations (Halves)
- Line Plots with Operations (Quarters)
- Line Plots with Operations (Eighths)

Differentiation Resource Book, p. 147

Lesson 12.5 - Reinforce Understanding
Solve Problems Involving Measurement Data on Line Plots
Name

The line plot shows the amount of liquid (in liters) contained in several beakers. Use the line plot to answer the questions.

1. What is the totim armount of liguid comeined is the beakenl? 22 Hters
2. How much more licuid is in the 5 beakers contalining the most liquid than is in the 5 beakers cortaining the least liquid? 8 liters
3. If the liquid is reditributed equally, how much will each beaker hold?

$$
\frac{1}{10} \text { il iters }
$$

Build Proficiency

Practice It! Game Station
Line Plot Task Cards Student practice creating and describing a line plot with fractional values.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 147-148

Lesson 12.5

Additional Practice

Nsme

Review

You can solve problems by irterpeeting information given in line plots and then performing operstions
Brett mabes a line piot showing the amounts of water, in cups, that he drinis throughout the dig. What is the lotal amourt of water, in cups, that Breti drinks during the day?

To solve, add the amounts represented by each x. Use multiplication to help.
$\frac{1}{2}+15 \times \frac{3}{4} i+1+\left\lvert\, 2 \times 1 \frac{1}{4}=\frac{1}{2}+\frac{15}{4}+1+\frac{10}{4}\right.$
Using a common denaminator, $\frac{2}{4}+\frac{15}{4}+\frac{4}{4}+\frac{10}{4}=\frac{31}{4}$
As a mixed number. $\frac{31}{4}=7 \frac{3}{4}$.
Brett drank $7 \frac{3}{4}$ cups of water throughout the clay.
Use the line plot above for questions 1 and 2.

1. What is the difference berween the gregtest amourt of water Bret drank and the least? $\frac{3}{4}$ cup

How many tines dia Brett get a drink of water during the day? 9 times

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with finding volume.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 147-148

3. Fot how many dsys did semt tecord his time spent practicing?
4. What is the difference between the grentest amount of time Sem spent praclicing and the loast amount of trine Som spent practicing? $\frac{3}{4}$ hour
5. How much time did Sem spend practicing the gutm during the weok $5 \frac{1}{4}$
6. Next week. Sem plans to spend the same iumount of sime practicing but pliens to spend an equal amount of time each doy. How much time should Sem spand practicing anch dry? $\frac{3}{4}$ $\frac{3}{4}$ hour(s)

Extend Thinking

Use It! Application Station
City of Trees Students create a line plot for plant growth data.

STEM Adveture

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 148

Lesson 12.5 - Extond Thinking Solve Problems Involving Measurement Data on Line Plots

Name

Maurlce used some data to start making this line plot. It shows the amount of liquid (in liters) contained in several beakers. However, he has not yet graphed all his data. Help him finish the line plot and then answer the questions.

1. There should be four times as
many marks for $\frac{2}{5} \mathrm{~L}$ as what
is maked for $\frac{3}{5} \mathrm{~L}$.
2. There should be ohe mare mark for 1 L than what is now marked for 佮 L
3. There should be one less mark for $\frac{3}{5}$ L than what is now marked tor $1 \frac{2}{5} \mathrm{~L}$.
4. There should be fivico as many marks for $2 L$ as there are for $\frac{2}{5} \mathrm{~L}$
5. How many total isers of woter are there in the beakers? 26 Iters
6. If the liquid is redistributed equally, how much well ench beaker hold? $1 \frac{3}{10}$ ilters
7. How mary beskers hold more than 1 iter? How mary iters are in these beakery? 12 beakers; $19 \frac{-3}{5}$ ITters
8. How many boakors hold less than 1 liter? How many liters are in these beakers? 3 beakers; $1 \frac{2}{5}$ liters
9. How many beakers are ampty? 0
10. Which problems would be affected by empty beakers? \#5, \#6, \#8, \#9

Math Probe

For a science assignment, Candice tracked the amount of sugar that she consumed at lunch for 15 days. She recarded the data in a line plot.

Sugar Consumed (in teaspoons)

Circle true or false.

3. On the diys that Condice tracked 2 teaspocis of suyer on less, she carsumed a total of less then 7 teaspoons of suger
Tive
Explain your choice. Explanations may vary.
4. During the 15 dirs. Candice corisumed more then 24 teaspoons of supar in al

Explain your choice. Explanations may vary.

Reflect On Your Learning

Analyze the Probe Formative Assessment

Targeted Concept Interpret a line plot and use operations with fractions to solve problems involving information presented in the line plot.

Targeted Misconceptions Some students have difficulty interpreting the meaning of the numbers along the scale of a line plot in connection with the meaning of each X that is marked above those numbers. They may think that the number of numbers listed along the scale reflects the total number of data points. Some students have difficultly estimating or determining sums and differences involving mixed numbers.

Authentic Student Work

Below are examples of students' explanations.

Sample A

1. What is the difference between the greatest amount of sugar and the least amount of sugar that Candice consumed at lunch?
(20) $2 \frac{1}{4}-1 \frac{1}{4}=$?
(b. $2 \frac{1}{4}-1 \frac{1}{8}=$?
c. $1 \frac{1}{2}-1 \frac{3}{\frac{1}{2}}=$?

Explain your choice.
Well what the model is say-ing $21 / 4$ are the highect amount and the $13 / 8$ is the lowest.

Sample B

4. During the 15 days, Candice consumed more than 24 teaspoons of sugar in all.

False

Collect and Assess Student Work

Collect and review student responses to determine possible misconceptions. See examples in If-Then chart.

Sample Misconceptions

In this case, the student uses the numbers of data points shown by the Xs .

In this case, the student focuses on the three numbers on the scale rather than the data points.

In this case, the student incorrectly judges the results.

	On the days that Candice tracked 1: teaspoon of sugar or less, the consumed a total of less than 7 teaspoons of sugar. The) False		Explain your choice.
			beca u se a bove
			$1 \frac{3}{8} \text { which } 1$
			believe is more

In this case, the student only focuses on the numbers in the scale.

4. During the 15 days,	Explain your choice.
Candice consumed more	$1-\frac{3}{8}+1 \frac{1}{2}+1 \frac{5}{8}+1 \frac{3}{4}+2$
than 24 teaspoons of sugar	
in all.	$2 \frac{1}{8}+2 \frac{1}{4}<24$
True False	

Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

Take Action

Choose from the following resources or suggestions:

- Provide opportunities for students to work through the cycle of determining a question, collecting data about the question through measuring, organizing the collected data using a line plot, and interpreting the results.
- Provide opportunities for students to compare line plots with other types of graphs.
- Show two or more related line plots and true statements about each set of data. Have students match statements to the correct line plot.
- Provide several data sets and line plots. Ask students to determine which line plot represents which data set. Have students tell how they determined the matches.

Revisit the Probe After additional instruction. Have students review their initial answers to the probe. Use these questions for discussion:

- Are there any answers you would like to change? Explain why you might want to change them.
- Are there any questions that you still have about any of the exercises on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Unit Review Name

Vocabulary Review

Choose the correct word(s) to complete the sentence.

copacily	customary system	length	metric syatem
convert	dita	line piot	weight

5. information coltected from sis survey or expetiment is calied data manarot
6. The metric system is the measurement system based on powers of 10 with unts such as metec, gram, and itec. Leveri 1 2n
7. To convert a measurement to another measurement means to change the unit of measure used but not the cuantity or amount Lemer
8. The capacity is the ancurt a contsiner can hold
9. A measuwnemt syistem that includes units such as foot. pound. and quat is the Customary system nuen bs
10. A. line plot is a type of graph that uses columins of X_{s} or dots above a number line to show data, samon lee
11. Mass measures the armount of mitter in an object. Lames oa
12. Length is a neasure of distance, vemen da

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

Vocabulary Review

Item Analysis

Item	Lesson
1	$12-4$
2	$12-2$
3	$12-4$
4	$12-1$
5	$12-1$
6	$12-1$
7	$12-4$
8	$12-1$
9	$12-2$
10	$12-1$

Review

Item Analysis

Item	DOK	Lesson	Standard
11	3	$12-1$	5.MD.A.1
12	3	$12-2$	5.MD.A.1
13	2	$12-3$	5.MD.A.1
14	2	$12-1$	5.MD.A.1
15	2	$12-3$	5.MD.A.1
16	1	$12-2$	5.MD.A.1
17	3	$12-3$	5.MD.A.1
18	2	$12-3$	5.MD.A.1
19	2	$12-3$	5.MD.A.1

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)

Item	DOK	Lesson	Standard
20	1	$12-4$	$5 . M D . B .2$
21	1	$12-4$	$5 . M D . B .2$
22	1	$12-4$	$5 . M D . B .2$
23	1	$12-4$	$5 . M D . B .2$
24	1	$12-4$	$5 . M D . B .2$
25	1	$12-4$	$5 . M D . B .2$
26	2	$12-4$	$5 . M D . B .2$
27	2	$12-4$	$5 . M D . B .2$
28	2	$12-5$	$5 . M D . B .2$
29	2	$12-5$	5.MD.B.2

Performance Task

Standard: 5.MD.A.1, 5.MD.B. 2
Rubric (4 points)

Part A (DOK 2) - $\mathbf{2}$ points

2 Student's work reflects a proficiency with converting units.
1 Student's work reflects developing proficiency with converting units.
0 Student's work reflects weak proficiency with converting units.

Part B (DOK 1) - 2 points

2 Student's work reflects a proficiency with making line plots.
1 Student's work reflects developing proficiency with making line plots.
0 Student's work reflects weak proficiency with making line plots.

Reflect

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.

Performance Task

A town is redesigning a park. It will include a tree house.
Port A: The tree house, that the architict deigned has a rectangular foor. He will use wooden tiles that are 20 centimeters wide and 40 centimeters long how many thes will he reed for a fioor thot is 4 meters wide and 8 meters ling?
Check students' work; 400 tiles
Part B: The archtect plans to use wooden boards to bulld the walls.
The bosids will be dirterent Sengtns. The construction manager needs to see whit size bodrds he cuntently has to octermine what he needs to purchase. Creste a line plot to show his carremt invertacy listed in the thble.

Currem trwentery	
Length freeti	Total
$8 \frac{1}{4}$	4
7	1
$7 \frac{3}{4}$	2
$6 \frac{3}{4}$	3
$7 \frac{1}{4}$	1
8	2

(2) Reflect

How can you use line plots to maxe decisions about a date set? Answers may very.

Fluency Check

What is the product or quotient?

Fluency Talk
Explain to a friend what partisl products are. Explanations may vary.

How can you mult ply a 3 -digit number by a single-digit factor? Explanations may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice using an algorithm to multiply 2 -digit numbers by 2 -digit numbers.

Fluency Progression

Unit	Skill	Standard
1	Use Partial Sums to Add	4.NBT.B. 4
2	Decompose by Place Value to Subtract	4.NBT.B. 4
3	Use an Algorithm to Add	4.NBT.B. 4
4	Use an Algorithm to Subtract	4.NBT.B. 4
5	Choose a Strategy to Add	4.NBT.B. 4
6	Choose a Strategy to Subtract	4.NBT.B. 4
7	Multiply by Multiples of 10	5.NBT.B. 5
8	Multiply by Multiples of 100	5.NBT.B. 5
9	Divide Multiples of 10	5.NBT.B. 6
10	Divide Multiples of 100	5.NBT.B. 6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B. 5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B. 5
13	Choose a Strategy to Multiply	5.NBT.B. 5
14	Choose a Strategy to Multiply	5.NBT.B. 5

Fluency Expectations

Grade 4

- Add and subtract within $1,000,000$.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Track and Field

Students draw on their understanding of line plots and converting measurement. Use the rubric shown to evaluate students' work.

Standard: 5.MD.A.1, 5.MD.B. 2
Rubric (8 points)

Part A (DOK 2) - 2 points

2 POINTS Student's work reflects proficiency with interpreting line plots and performing operations with the data. The student's answers are correct.
1 POINT Student's work reflects developing proficiency with interpreting line plots and performing operations with the data. One of the student's answers is incorrect.
0 POINTS Student's work reflects weak proficiency with interpreting line plots and performing operations with the data. The student's answers are incorrect.

Part B (DOK 3) - 2 points

2 POINTS Student's work reflects proficiency with solving multi-step problems. The student's answer and work are accurate, and their explanation is reasonable.
1 POINT Student's work reflects developing proficiency with solving multi-step problems. Either the student's answer and work are not accurate, or their explanation is not reasonable.
0 POINTS Student's work reflects weak proficiency with solving multi-step problems. The student's answer and work are not accurate, and their explanation is not reasonable.

Part C (DOK 3) - 2 points
2 POINTS Student's work reflects proficiency with using multiplication and division to convert among metric units. The student's explanation is reasonable.
1 POINT Student's work reflects developing proficiency with using multiplication and division to convert among metric units. The student's explanation is partially reasonable.
0 POINTS Student's work reflects weak proficiency with using multiplication and division to convert among metric units. The student's explanation is not reasonable.

Part D (DOK 2) - 2 points

2 POINTS Student's work reflects proficiency with converting customary units. The student's answer and work are accurate.
1 POINT Student's work reflects developing proficiency with converting customary units. Either the student's answer or work is not accurate.
0 POINTS Student's work reflects weak proficiency with converting customary units. The student's answer and work are not accurate.

Unit 12

Performance Task

Name

Track and Field

Metric Caty High School is hosting a track and fleld event for local athletes.
Part A
In preparation for the event, Josephine runs every morning before going to school. The following repvesents the fraction of a mle she complesed each morning

How does that line plot show which distance occurred most often? 1 mile has the most X_{5}
Find the tatal diotance Josephine runs. Show your work.
Sample Answer: $7 \frac{5}{8}$ miles; $\frac{1}{4}+\frac{1}{2}+\frac{5}{8}+\left(2 \times \frac{3}{4}\right)+\left(2 \times \frac{7}{8}\right)$
$+(3 \times 1) ; \frac{2}{8}+\frac{4}{8}+\frac{5}{8}+\frac{12}{8}+\frac{14}{8}+3 ; \frac{37}{8}+3=7 \frac{5}{8}$
Part B
The local sports store is providing a spectal water bottie as a gitt to each participating athlete Each bottie holds 500 miniters of water. if there are 23 athletes competing at the event, wal a 10 -iter jug of water be enough to fil each bottle before the evont starts? Show your work and explain.
Sample answer: No, a 10-liter jug will not provide enough water.
23 bottles $\times 500$ milliliters $=11,500$ milliliters needed. $\mathbf{1 1 , 5 0 0}$ milliliters $=\mathbf{1 1 . 5}$ liters

Ausument leowce fiod 23 s

Part C

The discus used in the trowing event weighs 2,000 grams. Marcus and Wiam converted 2,000 grama to kilograms using different methods. Haw would you respond to them?

Marcus' work:	Miriam's workc
$2,000 \mathrm{~g}=7 \mathrm{~kg}$	$2,000 \mathrm{~g}=7 \mathrm{~kg}$
$2,000 \times \frac{1}{10,00}=$	$2,000+1,000=2$
$2,009=2$	$2,000 \mathrm{~g}=2 \mathrm{~kg}$
$2.000 \mathrm{~g}=2 \mathrm{~kg}$	

Sample Answer: Both are correct. Marcus used the fact a gram is $\frac{1}{1,000}$ of a kilogram and multiplied the weight in grams by the factor $\frac{1}{1,000}$. Miriam used the fact that 1,000 grams is equal to 1 kilogram and divided the weight in grams by 1,000 to determine the weight in kilograms.

Part D

The iongest datance event is the 6 mie race if an andete completes
this event, how can you determine the race's length in feet? Show
your work.
1 foot $(\mathrm{ft})=12$ inches (im)
1 yand $(\mathrm{yc})=3$ t
1 mile $(\mathrm{m} / \mathrm{m})=1,760 \mathrm{yd}$
Sample answer: $6 \times 1,760=10,560$ yards
$10,560 \times 3=31,680$ feet
6 miles $=31,680$ foet

Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

| Item poK Lesson Guided Support |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Intervention Lesson |\quad Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.

Unit 12

Unit Assessment, Form A

Name

1. Sam's dog has a mass of 5.83 illograms. How mary grams is the
mass of Sam's dog?

A. 0.583 gram	B. 58.3 grams
C. 583 grams	(D. 5.830 grams

2. Which measures are equivalent to 6 quarts? Choose all that apply.
(A.) 15 gallions
(C. 24 cups
(B.) 12 pints
E. 96 cups
(E.) 192 fivid ounces
3. Gellian read for $1 \frac{1}{4}$ hours. For how many minutes did Gillian read?
A. 90 minutes
(B.) 75 minutes
C. 45 minutes
D. 15 minutes
4. Indira jumped a distance of 284 centimeters. How many meters inthis?
A. 0.284 moter
(B.) 2.84 meters
C. 28.4 moters
D. 2,840 meters
5. A cersmic tile is 9 inches long on each side. A wall is 9 tiles toll How macy feet tall is the wall?
A. 6 feet
(B.) $6 \frac{3}{4}$ feet
C. $7 \frac{1}{4}$ foet
D. 18 foen

Amenven liveven Boit 237

$$
\begin{aligned}
& \text { 6. Felicia has a plece of riboon } 2 \text { meters long. She cuts off a piece } \\
& 48 \text { centimeters long to make a bow. How many centimeters of } \\
& \text { ribbon does Felicia have lett? } \\
& \begin{array}{ll}
\text { A. } 1952 \text { centimeters } & \text { (B. } 152 \text { centimeters } \\
\text { C. } 15.2 \text { centimeters } & \text { D. } 1.152 \text { centimeters }
\end{array}
\end{aligned}
$$

7. The distance around a feid is 500 yards. Zane jogs around the fieid $3 \frac{1}{2}$ times. How many feet does Zane jog?
A. 583 feet
B. 1750 feet
C. 5.250 feet
D. 15,705 feet
8. Gary measures the height of sunflower seedings before he plonts them.

Heights of Sunflower Seedlings (inches)
a. How mary suintiower seedings are represented on the line plot?
A. 5
B. 8
$\begin{array}{ll}\text { c. } 16 & \text { (D.) }\end{array}$
b. Which measurement or measurements occured most otten?
(A) $2 \frac{1}{2}$ inches
B. $2 \frac{5}{1}$ inches and $3 \frac{2}{8}$ inches
C. 3 inches
D. $2 \frac{3}{4}$ inches and $3 \frac{1}{8}$ inches

23
Asieivest hesouct lock

Unit 12

Unit Assessment, Form A continued
Name
9. Colette weights the bags of peanuts the store recnives from the warehouse.

a. What is the difference befween the heiviest bag of pebinuts and the lightest bag of peanuts? $\frac{5}{8}$ pound
b. How many pounds of peanuts are there in all? 4 pounds
10. Creste e line piot to represent the date in the table.

11. Al, Ben and Cal each measured their own helght. Their mensures are shown in the tabie

Persen	Helght
Ai	1,980 milimeters
Ben	185 centimeters
Cai	16 meters

From shortest to talest what is the order? Explain
Cal, Ben, Al; Sample answer: Choose one unit, such as centimeters, and convert all measures to this unit. 1,980 millimeters $=198$ centimeters and 1.6 meters $=160$ centimeters. From shortest to tallest, the measures are $160 \mathrm{~cm}, 185 \mathrm{~cm}$, and 198 cm , so the order is Cal, Ben, AI.
12. A cooler contains 5 gallons of fruit punch. Affer Brian fils hes drink bottie, there are 76 cups left of fruit punch in the cooler How mary cups of fruit punch fit in Braris drink bottie? Explain your answer
4 cups; Sample answer: I multiplied the number of gallons by 16 to get the amount in cups. 5 gallons $=80$ cups. I subtract the amount left from the 80 cups: $80-76=4$.

Form B

Une 12
 Unit Assessment, Form B

 Cers nd

(A) 23×1 maviver	ai. 2011 nalyam
C. isfraloger	D. 0277 magam

(C) so ner
a Br pan
(c) 25 pition
Q) 20 yons
 tof ivivi morton Uित patod

atro?

2. Anserisin7nops umgo

 $\begin{array}{ll}\text { A. } 1 & \text { B. } 0 \\ \text { (C) }=1 & \text { a. }\end{array}$
 A. $+\frac{1}{3}$ wates. 0 ; mom maty wow
(B) 1 inver
c. J mannele 7i reno
a. $1 \frac{1}{4} \mathrm{Eaf}$

30 Names

 6 cups Sample artwwer: I multiplied the mumber of gallons by 16 to get the amount in cups. 5 qailons $=80$ cups. I mutrract the amount lien tron the 80 सupc $80-64=16$.

PACING: 10 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE	SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
Unit Opener		Students explore polygons made from congruent connecting squares.		
13-1	Understand the Coordinate Plane	Students identify and describe features of a coordinate grid. Students use a coordinate plane to determine the ordered pair associated with a point.	Students discuss how they can describe features of the coordinate plane using related, find, and ordered pair.	Students collaborate with peers and contribute to group effort to achieve a collective mathematical goal.
13-2	Plot Ordered Pairs on the Coordinate Plane	Students plot ordered pairs on a coordinate plane.	Students explain how they can plot ordered pairs on a coordinate plane using the verbs draw and label.	Students set a focused mathematical goal and make a plan for achieving that goal.
13-3	Represent Problems on a Coordinate Plane	Students plot points that represent real-world situations. Students interpret coordinate values of points in the context of the situation.	Students talk about plotting points on the coordinate plane when given real-world data using the verbs draw and label.	Students identify and use mathematical tools to organize work.
	Classify Triangles by Properties	Students classify triangles into categories and subcategories based on their properties. Students organize the categories and subcategories into a hierarchy.	Students talk about classifying triangles using the same, different, and share.	Students identify and discuss the emotions experienced during math learning.
$13-5$	Properties of Quadrilaterals	Students name quadrilaterals based on their properties.	Students explain how to identify quadrilaterals based on their properties with know and makes.	Students practice behavioral flexibility while working with peers to complete a challenging mathematical task.
Math Probe Ordered Pairs Students plot points on a coordinate plane.				
13-6	Classify Quadrilaterals by Properties	Students classify quadrilaterals into categories and subcategories based on their properties. Students organize the categories and subcategories into a hierarchy.	Students explain how to classify quadrilaterals into categories and subcategories based on their properties using use and share.	Students identify the information that is needed or most useful in order to complete a mathematical task.
Unit Review Fluency Practice				
Unit Assessment Performance Task				

MATERIALS TO GATHER
RIGOR FOCUS STANDARD

13-1	Math Terms		Academic Terms		Conceptual Understanding, Fluency	5.G.A. 1
	coordinate plane ordered pair origin	x-axis x-coordinate y-axis y-coordinate	correspond emphasize	- Understanding the Coordinate Plane Teaching Resource		
13-2	coordinate plane ordered pair origin	x-axis x-coordinate y-axis y-coordinate	correspond quality	- blank number cubes - Coordinate Plane Teaching Resource	Conceptual Understanding, Fluency	5.G.A. 1
13-3	origin x-axis x-coordinate	y-axis y-coordinate	accurate interpret	- Coordinate Plane Teaching Resource	Procedural Skill \& Fluency	5.G.A. 2
13-4	category equilateral triangle hierarchy	isosceles triangle operty scalene triangle subcategory	evaluate suggest	- plastic straws - Properties of Triangles Teaching Resource	Conceptual Understanding	$\begin{aligned} & \text { 5.G.B.3, } \\ & \text { 5.G.B. } 4 \end{aligned}$
13-5	attribute parallelogram property quadrilateral	rectangle rhombus square trapezoid	establish quality	- Classifying Quadrilaterals Teaching Resource	Conceptual Understanding	5.G.B. 4
13-6	hierarchy parallelogram quadrilateral rectangle	rhombus square trapezoid Venn diagram	accurate analyze	- Venn Diagram Teaching Resource	ProceduralSkill \& Fluency	$\begin{aligned} & \text { 5.G.B.3, } \\ & \text { 5.G.B. } \end{aligned}$

Unit Overview

Focus

Coordinate Plane and Polygons

Using an ordered pair of numbers called coordinates identifies the location of a point on the coordinate plane. The point of intersection of the two axes on a coordinate plane has coordinates $(0,0)$ and is called the origin. By convention, the horizontal axis is called the x-axis; the vertical axis, the y-axis. The first coordinate in an ordered pair, the x-coordinate, tells the point's distance from the origin along the x-axis. The second coordinate, the y-coordinate, tells the point's distance from the origin along the y-axis. Students graph ordered pairs, interpret coordinate values of points in the context of a situation, and draw a line to connect points. Students make predictions about data points that are not specifically graphed on a line.

Then students build on their earlier work of classifying two-dimensional shapes based on properties. Students now look for structure as they classify two-dimensional figures in a hierarchy.

A hierarchy classifies figures into categories according to properties. Most often, a hierarchy includes a diagram showing relationships among categories and subcategories-with the most general category at the top. Each subcategory is more specific than the one above it-and has all the properties of the category above, with at least one additional property. Students build hierarchies of two-dimensional triangles and quadrilaterals. Triangles are sorted and classified by the lengths of their sides (equilateral, isosceles, scalene) and the sizes of their angles (acute, right, obtuse). A special case is noted as an isosceles triangle is one with at least two sides that are the same length, which makes an equilateral triangle a special case, or subcategory of isosceles.

Quadrilaterals are placed into hierarchies based on side length, congruency, and angle type. These hierarchies reinforce an understanding as to why a given polygon might have multiple names.

Coherence

What Students Have Learned

- Students classified two-dimensional figures based on whether or not it has parallel lines or angles of a particular size. (Grade 4)
- Students identified right triangles. (Grade 4)
- Students used graphical displays to show data. (Grade 4)

What Students Are Learning

- Students understand hierarchies and how the attributes of a category also apply to all of the subcategories.
Students classify triangles and quadrilaterals based on properties.
- Students graph points on the coordinate plane.

What Students Will Learn

- Students draw polygons in a coordinate plane and find the lengths of size given the coordinates of vertices. (Grade 6)
-Students extend the coordinate plane to include rational numbers, including negative numbers. (Grade 6)
- Students graph points in all four quadrants of the coordinate plane and find distances between them. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- the coordinate plane, its parts, and how to plot points on it;
- the attributes used to classify twodimensional figures in a hierarchy.

Procedural Skill \& Fluency

Students build proficiency with

- plotting points on a coordinate plane;
- representing problems by graphing on a coordinate plane;
- classifying 2-dimensional figures in a hierarchy based on properties.

Application

Students apply their knowledge of

- representing real-world problems by graphing in the first quadrant of the coordinate plane;
- interpreting coordinate values of points in the context of a situation.

Application is not a targeted element of rigor for the standards in this unit.

Effective Teaching Practices

Pose Purposeful Questions

Throughout instruction, purposeful questions draw students into the task and enables them to focus on what is important. Challenge students by posing questions that require more than one-word or short-phrase answers. Instead, ask them to explain their thinking or justify their solution method. Often students expect the questions from teachers to guide them to the exact answers. However, purposeful questioning does not guide them to a correct answer but rather steers them towards better mathematical reasoning. Students should show confidence in their own mathematical abilities and want to advance their own reasoning.

In order to pose purposeful questions throughout a lesson, consider the learning goal of the lesson and what will best allow students to express their thinking and reasoning in reply.

Throughout this unit, questioning should revolve around getting students to use their inductive and deductive reasoning to apply that hierarchy to classify figures.

For any question posed, consider the student responses it might elicit. If there is a way for a student to provide a minimal low-level response to the question or if there is a way for a student to misinterpret the question, refine it with more precision of language. By vetting the questions ahead of time, students will be challenged to focus on their task and the process it takes to arrive at an answer.

Posing purposeful questions will elicit not only what students know, but also what they understand about 2-dimensional figures. While they know much about them from previous grades, a purposeful line of questioning will expand their knowledge, providing them with a framework upon which to build.

Math Practices and Processes

Look for and Make Use of Structure

By seeking patterns and structure while learning, students will become more proficient in their abilities. Instead of memorizing several individual facts, students learn patterns and structure to minimize the number of facts that must be remembered.
Structure allows students to view their mathematical studies from a higher level. They can see the big picture rather than just the details. The structure gives them tools they can use to summarize what they have learned. Making use of the structure empowers students to see an overview and understand how mathematical knowledge builds upon itself. Then, when learning a new topic or skill, they do not feel like they are starting from scratch. They recognize what they already know and how they are adding to that knowledge.
Without the structure, every mathematical task is a new one.

A hierarchy of figures, by definition, provides a structure upon which students will build their understanding of two-dimensional figures. As students progress through mathematics, they begin with recognizing two-dimensional shapes. Then they learn their attributes and compare them to one another. As they age, students learn a greater number of attributes and classifications for the same shapes that they have been working with throughout the elementary grades. In this module, students use this knowledge of structure to classify figures in hierarchies.

The structure of the hierarchy guides students to identify the number of ways a figure could be classified. For example, going up the hierarchy of quadrilaterals, a square is a rhombus, rectangle, parallelogram, and quadrilateral.

Social and Emotional Learning

What Skills Will We Develop?

- Relationship Skills - Teamwork (Lesson 13-1): When students work effectively as a team, they establish a stronger learning community.
- Responsible Decision-Making - Reflect: (Lesson 13-2): When students reflect, they can make connections between effort and achievement.
- Self-Management - Organizational Skills (Lesson 13-3): Organizing information and work can help students work through challenging mathematical tasks.
- Self-Awareness - Accurate Self-Perception (Lesson 13-4): Having accurate self-perception allows students to determine areas of strength as well as areas in which they need to focus and practice.
- Social Awareness - Develop Perspective (Lesson 13-5): Developing perspective can help students understand different ways of thinking.
- Responsible Decision-Making - Evaluate (Lesson 13-6): When students evaluate their own logic and reasoning, they can develop understanding that helps them make informed decisions.

Unit Overview

Language of Math

Classification Words

Students will use these key terms in this unit:

- Coordinate plane* (Lesson 13-1): The coordinate plane is formed by a horizontal number line and a vertical number line meeting at a right angle.
- Equilateral, scalene, and isosceles triangle* (Lesson 13-4): Students were introduced to these terms in the context of classifying triangles in Grade 4. Ask students to think about other attributes they can use to categorize triangles.
- Hierarchy of figures* (Lesson 13-4): While students have used characteristics to classify figures in previous grades, this term organizes their method of classification.
- Ordered pair* (Lesson 13-1): An ordered pair indicates the x-coordinate of the point, then the y-coordinate of the point, in that order.
- Origin ${ }^{*}$ (Lesson 13-1): The point on the coordinate plane where the x-axis and y-axis meet, (0,0), is called the origin.
- Subcategory* (Lesson 13-4): It describes a group that has common properties with a larger category.
- Venn diagram* (Lesson 13-6): This is a diagram that shows the relationships between items.
- \boldsymbol{x}-axis* (Lesson 13-1): This is the horizontal axis on the coordinate plane.
- \boldsymbol{y}-axis* (Lesson 13-1): This is the vertical axis on the coordinate plane.
*This is a new term.

Math Language Development

A Focus on Speaking

When speaking about mathematics, students need to learn to be precise with their choice of words. In mathematics, specific terms relay images to the listener, and with a lack of precision, the wrong image can be depicted. Using precise language also simplifies the discussion because it eliminates the need to use extraneous or excessive words.

When communicating with teachers and peers about mathematical tasks, students should practice using good choices of vocabulary to be sure that their questions and/or their solutions are well-communicated. The precision of spoken language will eliminate much unnecessary confusion and focus students on the exact task at hand.

In this unit, students can use accurate and precise language to describe two-dimensional figures. They can use their new vocabulary to classify polygons with more specific attributes than just the number of sides. They can speak about polygons as:

- Regular or irregular Regular polygons have all sides congruent and all angles congruent.
- Triangles Triangles can be classified based on the number of sides or the types of angles. They can be further described by using both classifications, sides and angles.
- Quadrilaterals Two broad categories in the hierarchy of quadrilaterals include trapezoids and parallelograms. Students will use familiar descriptions such as rectangle, rhombus, or square, to further classify the parallelograms.

Any description that students give for a figure should be accurate enough that a picture of that figure could be drawn by the listener.

English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to geometry. Because many of the words (location, seconds, minutes) and phrases (how to get from \qquad to \qquad at least, properties, shared properties) used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

- Lesson 13-1 - location

- Lesson 13-2 - how to get from \qquad to \qquad
- Lesson 13-3 - seconds, minutes
- Lesson 13-4 - at least
- Lesson 13-5 - properties
- Lesson 13-6 - shared properties

Number Routines

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

Find the Missing Values

Purpose: Build identification of patterns and efficiency with solving equations while examining a list of related equations.
Overview: Students analyze a series of equations to look for patterns that they can use to determine the missing values in the equations. As students share their analyses and solutions, the teacher can reveal the missing values.

Greater Than or Less Than

Purpose: Build proficiency with number and place value sense; estimating and comparing skills.
Overview: Students use mental math to estimate or evaluate the value of given expressions and then compare the value of the expressions to a target benchmark number. Students share their solutions and thinking.

Would You Rather?

Purpose: Build flexibility with number sense and mental math operations; enhance decision-making.
Overview: Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

Sense-Making Routines

- Notice \& Wonder: What do you notice? What do you wonder?

 (Lessons 13-1, 13-2, 13-6) In Lesson 13-1, students observe a coordinate grid in a real-world context. In Lesson 13-2, students are presented with a coordinate grid that displays a two-variable relationship in a real-world context. In Lesson 13-6, students view the hierarchy of quadrilaterals to help them understand the relationship of the types of quadrilaterals.- Notice \& Wonder: What questions can you ask? (Lesson 13-3) Students connect to real-world situations as they see the math in the story, quantities, and the relationships.
- Notice \& Wonder: What could the question be? (Lessons 13-4, 13-5) Students explore the concept of defining attributes by looking at examples and non-examples of triangles in Lesson 13-4 and quadrilaterals in Lesson 13-5.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. For more information on the Math Language Routines, see the Appendix.

- Lesson 13-1 - Students participate in MLR8: Discussion Supports so that they can have a rich and inclusive discussion about coordinate planes.
- Lesson 13-2- Students participate in MLR1: Stronger and Clearer Each Time so that they can improve communication output.
- Lesson 13-3 - Students participate in MLR2: Collect and Display so that students' oral expressions can be captured into a stable, collective reference as they discuss representing problems on a coordinate plane.
- Lesson 13-4 - Students participate in MLR3: Critique, Correct, and Clarify so that they have an opportunity to analyze, reflect on, and develop a piece of mathematical writing about classifying triangles.
- Lesson 13-5 - Students participate in MLR1: Stronger and Clearer Each Time so that they have a structured and interactive opportunity to revise and refine their ideas while showing properties of quadrilaterals.
- Lesson 13-6 - Students participate in MLR5: Co-Craft Questions and Problems so that they can produce the language of mathematical questions related to classifying quadrilaterals by properties.

Readiness Diagnostic

Unit 13
How Ready Am I?
Nome
Use the number line for questions 1-4.

1. Which letter is 4 unts to the right of A ?
A. D
(B.) E
C. F
D. G
2. Which letter is 2 units to the right of D ?
A. B
B. E
(C.) F
D. G
3. How many units to the right of B is + ?
A. 5
(B) 6
C. 7
D. 8
4. Which poir of letters is 3 unts apart?
A. A and C
B. B and G
C. Dand F
D. E and H
5. Is the angle right, acute, or obtuse?

(A) riph
B. acute
C. obtuse
6. A triangle has two sides the same length and one side a different length. Which best describes the triangle?
A. equiliternal
(B) inosceles
C. scalene
7. A rectangle has how many pairs of parallel sides?
A. 0 pairs
B. 1 pait
C. 2 pairs
D. 4 pairs
B. A rectangle has how many pairs of perpendicular sides?
A. 0 pairs
B. I poir
C. 2 pairs
(D) 4 pairs

Use the shape below for questions 9 and 10.

9. How mary pairs of paralel sides does the shape have?
A. Opairs
B. 1 pair
C. 2 poirs
D. 4 pairy
10. How many pairs of perpendicular sides does the shape have?
(A) 0 pairs
B. I pair
C. 2 pairs
D. 4 pairs

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

Targeted Intervention

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	DOK	kill	Guided Support Intervention Lesson	Standard
1	1	Interpret a number line Graph Whole Numbers		2.MD.B. 6
2	1	Interpret a number line Graph Whole Numbers		2.MD.B. 6
3	1	Interpret a number line Graph Whole Numbers		2.MD.B. 6
4	1	Interpret a number line Graph Whole Numbers		2.MD.B. 6
5	1	Classify an angle	Angle Types	4.MD.C. 5
6	2	Identify triangles by side Recognize Triangles lengths by Sides		4.G.A. 2
7	1	Identify parallel lines in Use Lines to Classify a shape Shapes		4.G.A. 2
8	1	Identify perpendicular lines in a shape	Use Lines to Classify Shapes	4.G.A. 2
9	1	Identify parallel lines in Use Lines to Classify a shape Shapes		4.G.A. 2
10	1	Identify perpendicular lines in a shape	Use Lines to Classify Shapes	4.G.A. 2

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question: How can I use the coordinate plane and identify and classify 2-dimensional figures?

Ask students to think about what they know about 2-dimensional figures and graphing?

- What have you graphed before?
- What do you already know about 2-dimensional figures?

Remind students that at the end of the unit, they will reflect back on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Architectural Drafter Students listen as Sam describes his aspirations to be an architect.
Sam Designs Windows Students watch to see how Sam uses twodimensional figures to sketch a window.

STEM Project Card

Students can complete the STEM Project Card during their workstation time.

Sam Designs Windows

Ignite!

Tetrominoes

Students explore the polygons that are made from congruent connecting squares as an introduction to properties of 2-dimensional shapes.

Materials: square tiles or connecting cubes; color pencils

1. Describe domino. Explain that the word triomino comes from tri- + domino.

- What do you suppose is a triomino?

2. Have students work in pairs to explore making more triominoes.

- Try to draw or use tiles to make more triominoes. Be sure that each square shares at least one full side with another square.
- Are you able to find triominoes that are different from those on the student page?

3. Explain that if a figure can be rotated (turned) or flipped to look like another figure, we consider two figures to be the same shape. So, it is possible to make only two triominoes.
4. Have students explore making tetrominoes.

- A tetromino is made of four squares of the same size, where each square shares at least one full side with another square. Work to use tiles to make all possible tetrominoes. After you find a tetromino, draw it on the grid paper. You may want to shade each different tetromino in a different color.

5. Have students share their results to conclude that there are five possible tetrominoes. Discuss how rotating or flipping a figure demonstrates how two figures that may look different are actually the same shape.
6. Use questions such as these to promote a discussion on how students can classify the tetrominoes.

- How are the shapes similar? How are they different?
- Are there any familiar shapes?
- Which shapes have four sides? Which have six sides? Which have eight sides?

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.

Foldables

Use the unit foldables with Lessons 13-5 and 13-6.

Spiral Review

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.

Lesson	Standard
$13-1$	5,NF.A.1
$13-2$	5.NF.A.2
$13-3$	5.NF.B.3
$13-4$	5.NF.B. 7
$13-5$	5.NF.B.6
$13-6$	5.NBT.B.5

Understand the Coordinate Plane

Learning Targets

- I can identify and describe features of a coordinate plane.
- I can use a coordinate plane to determine the ordered pair associated with a given point.

Standards \bigcirc Major Δ Supporting O Additional

Content

O 5.G.A. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

Math Practices and Processes

MPP Construct viable arguments and critique the reasoning of others.

Vocabulary

Math Terms
coordinate plane
Academic Terms
ordered pair
correspond
origin
x-axis
x-coordinate
y-axis
y-coordinate

Material

The materials may be for any part of the lesson.

- Understanding the Coordinate Plane Teaching Resource

Focus

Content Objectives

- Students identify and describe features of the coordinate plane.
- Students use the coordinate plane to determine the ordered pair associated with a point.

Language Objectives

- Students discuss how to describe the coordinate plane using related, find, and ordered pair.
- To support cultivating conversation, ELs participate in MLR8: Discussion Supports.

SEL Objective

- Students collaborate with peers and contribute to group effort to achieve a collective mathematical goal.

Coherence

Previous	Now	Next
	- Students understand the coordinate plane and find the ordered pair for a given point.	- Students plot points on the coordinate plane (Unit 13). - Students understand rational and negative numbers as points on the number line and extend number line diagrams and coordinate axes to them (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of algebra to write ordered pairs that represent points on the coordinate plane.

Procedural Skill \& Fluency

- Students build proficiency with using the coordinate plane to determine ordered pairs that represent points on the coordinate plane.

Application

- Students apply their understanding of ordered pairs to solve problems.

Application is not a targeted element of rigor for this standard.

Number Routine Greater Than or Less Than © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they estimate differences for each fraction subtraction expression, then compare each expression to a target fraction

These prompts encourage students to talk about their reasoning:

- What was your strategy for estimating the differences?
- How did you evaluate each expression?
- How did you know if your estimate was greater than or less than the target fraction?
- Why is it useful to compare values to $\frac{1}{2}$?
- How do you know that your estimate is reasonable?

Purpose Students study a real-world context that could be represented using the coordinate plane.

Notice \& Wonder ${ }^{\text {rTM }}$

-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students discuss if they have ever used an app or game that looked like the image, and if so, how they could move from one spot to another.

ETP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of the coordinate plane and are based on possible comments and questions that students may make during the share out.

- How could you describe the location of each coin using rows and columns?
- How are the locations of the coins using rows and columns similar? How are they different?

Math is... Yindset

- How can working as a team help you achieve your goal?

Relationship Skills: Teamwork

Establish a positive classroom culture by providing students opportunities to work together to complete collective tasks. As students notice and wonder, encourage them to work together and build off the ideas of their peers. Invite students to participate in different ways so that each student can actively contribute to the team effort and establish a stronger learning community.

Transition to Explore \& Develop

Guide students to think about what kind of representations they could use to describe the location of points A and B. As they make proposals, have them discuss the benefits and possible drawbacks of the representation.
${ }^{\text {EIP }}$ Establish Mathematics Goals to Focus Learning

- Let's think about a way we can represent these coins.

(1) Pose the Problem

MLR
 Discussion Supports

As students discuss the two questions, have them focus on the following: what they're trying to represent and what they already know. Restate statements they make as a question to seek clarification and provide vocabulary or grammar prompts for students who need more guidance.

EIP Pose Purposeful Questions

-What are you trying to represent?
-What information do you know about A and B ?

(2) Develop the Math

Choose the option that best meets your instructional goals.

(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How could you describe the coordinate plane to a friend?
- How can you determine the ordered pair that describes a point on the coordinate plane?

Key Takeaways

- The coordinate plane uses two perpendicular number lines. Their point of intersection is called the origin.
- The horizontal line is the x-axis, and the vertical line is the y-axis.
- The location of a point in the coordinate plane is indicated by two coordinates: the x-coordinate, which is its position relative to the x-axis, and the y-coordinate, which is its position relative to the y-axis. These two coordinates are called an ordered pair. The ordered pair for the origin is $(0,0)$.
- The x-coordinate of the point is always the first number in the ordered pair, and the y-coordinate is always the second number.

Work Together

Students work to name the ordered pairs of 4 points on the coordinate plane.

1. Common Error: Students may mix up the x-axis and the y-axis as they determine the ordered pairs for each point. Emphasize that the x-axis is the horizontal number line, and it will be helpful for them to find the x-coordinate first as that will be the first coordinate they name in the ordered pair. The y-axis is the vertical number line, and they should find the y-coordinate second.

LOM
 Language of Math

Students may be aware of the word origin from other contexts. An origin is the place or point where something begins. In effect, the coordinate plane begins at the origin. In the next lesson, students will see the origin is the point used to begin plotting any other point.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore describing locations on the coordinate plane.
Materials: Understanding the Coordinate Plane Teaching Resource
Directions: Provide copies of the Understanding the Coordinate Plane Teaching Resource. Explain to students that their task is to describe the location of each object.

ETP Support Productive Struggle

- What information do you think you need to accurately describe the location of an object?
- What do you think the labels along the edges represent?
-Can you use those labels to help you describe a location?
Activity Debrief: Have students share their descriptions of each object. Focus attention on different ways of describing, for example, some students may describe using the y-axis first, rather than the x-axis. Facilitate a discussion to ensure students understand what a coordinate plane is and how it can be used, as well as that ordered pairs can be used to describe locations on the coordinate plane.

Math is... Explaining

-Why does an ordered pair need to be ordered?
Students build a logical progression of statements to explore the truth of a statement.

Have students revisit the Pose the Problem question and discuss answers.

- How can you represent the locations of A and B ?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students understand the coordinate plane and find the ordered pair for a given point.

ETR Use and Connect Mathematical Representations

- How are the locations of the points in the coordinate plane related to their locations in the grid on the game?
- Think About It: Explain why $(0,0)$ is the ordered pair that represents the origin.Have students determine the ordered pair that represents point B. Ask:
- How can you find the x-coordinate?
- How can you find the y-coordinate?
- How can you write the ordered pair?

Math is... Explaining

- Why does an ordered pair need to be ordered?

Students build a logical progression of statements to explore the truth of a statement.

2. Develop the Math

We can represent where the symbols are on the grid using the coordinate plane.

The coordinate plane is formed by a horizontal number line and a vertical number line meetin at a right angle.

English Learner Scaffolds

Entering/Emerging Ensure understanding of location. Say Let's find the location of classroom objects. Point to the bookshelf. Say The location of the [class dictionary] is the bookshelf. Repeat with another object/location. Then repeat once more with another object/location, asking Is the location of my [stapler] my desk or the closet? Accept pointing.

Developing/Expanding Ensure understanding of location. Say Let's find the location of classroom objects. Point to the bookshelf. Say The location of the [class dictionary] is the bookshelf. Repeat with another object/location. Then repeat once more with another object/ location, asking What is the location of my stapler?

Bridging/Reaching Guide students to the top of Learn page. Tell them to read the word problem, focusing on location. Ask them to use it in a sentence that tells the class where something is. For example: The location of my backpack is the closet. Then ask students to brainstorm similar words they may already know (position, place, spot, placement, etc.). Allow students to use a dictionary or thesaurus if desired.
 Nome

Use the coordinate plane to answer exercises 1-7.

1. What ordered pair describes point W? $(4,4)$
2. What ordered pair describes point X ? $(2,6)$

3. What ordered pair describes point \because ? $(3,1)$
4. What ordered pair describes point Z? $(5,0)$
5. What ordered pair describes the origin? $(0,0)$
6. How did you find the x-coordinate for each orcered pain?

Sample answer: I drew a tine from the point to where it intersects with the x-axis and found the x-coordinate.
2. How did you find the y-coordinate lor each ordervd pair?

Sample answer: I drew a line from the point to where it intersects with the y-axis and found the y-coordinate.

Charlie gove his friends these locations for a scavenger hunt. What are the ordered pairs that describe the locations on the

 coordinate plane?8. Point $A(3,3)$
9. Point $\theta(5,2)$
10. Point C $(\mathbf{2}, 1)$

11. Error Analysis Charfie tells his triends that point D is at $(5,4)$ His thends go to the wrong spot. Explain why.
Sample answer: He put the coordinates in the wrong order. The ordered pair for point D should be $(4,5)$.
12. Extend Your Thinking A new point, E, is two units from point A.

Give two possible ordered poirs for E.
Sample answer: $(3,5)$ or $(1,3)$.

Reflect

How can you determine the ordered palr that describes a point on the coordinute plane?
Answers may vary.

Practice

EIP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercise 4 Students may be confused by the fact that point Z is on the x-axis. Remind students that, as with the ordered pair for the origin (0,0), 0 is an acceptable coordinate. However, make sure students understand that 0 is the y-coordinate, not the x-coordinate.

Item Analysis

Item	DOK	Rigor
$1-5$	1	Procedural Skill \& Fluency
$6-7$	2	Conceptual Understanding
$8-10$	2	Application
$11-12$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you determine the ordered pair that represents a point on the coordinate plane?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How did working as a team help you achieve your goal?

Students reflect on how they developed stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can identify and describe features of a coordinate plane.
- I can use a coordinate plane to determine the ordered pair associated with a given point.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item	pOK	Skill	Standard
1	1	Identify coordinates of points	5.G.A. 1
2	1	Identify coordinates of points	5.G.A. 1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score Then have students do

2 of 2
1 of 2
0 of 2 Additional Practice or any of the (3) or © activities Take Another Look or any of the Bactivities Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 13-1

Exit Ticket

Nam

1. Use the coordinate plane to answer the questions.

What ordered pair represents point A ?
\qquad
What ordered pair
represents point B ?
$7 \quad 5$
2. Choose whether the ordered pail for each point is Correct or Not Correct.

Reflect On Your Learning

Reinforce Understanding

Find the Point

Work with students in small groups. Students each use a 10 by 10 section of the coordinate plane to mark a point. Students show the group, and the other students write the ordered pair for the point. Students compare results and use what they know about the coordinate plane to justify their answers. Make sure students recognize that the first number represents the horizontal position and the second number represents the vertical position.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Points on the Coordinate Plane

Differentiation Resource Book, p. 149

Lesson 13.1 - Reinforce Understanding
Understand the Coordinate Plane
Review
You can represent a poitt on the coordinite plane using an ordoered palit

Consider Point A. From the origin, it is 0 units to the right. From the origin, it la up 8 units. The ocdered pair for point A is $(0,8)$
Consider Point B. Fiom the origin, it is 5 units to the right. From the origin. atir up 9 unita. The ordered pair for point B is (5, 9).

Use the coordinate plane from the review section. What are the coordinates of the point given?

1. point $C(8,10)$	7. poirt $/(5,3)$
2. point $D(3,5)$	8. poirt $J(4,0)$
3. point $E(1,7)$	9. point $K(7,1)$
4. point $F(6,7)$	10. point $L(9,2)$
5. point $G(1,1)$	TL. Which point is on the x-axis? J
6. point $H(2,1)$	12. Which point is on the y-axes? A

6. point H (2,1)
pitreeckitos leveron fioor

Build Proficiency

Practice It! Game Station
Coordinate Plane Race
Student practice identifying the ordered pairs represented by points on the coordinate plane.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 149-150

Lesson 13.9

Additional Practice

Name

Review

You can represent a point on a coordinate plane using an ordered pail.

What ordend poir tepreserts the point on the coordinate plane where A is iocated?

An ordered pair is of the form $(x$-cpordinate, y coordinate)
The ordered pair $(3,4)$ repteserts point A
What is the ordered pair that represents the point on the coordinate plane?

1.	R	$(6,5)$
2.	S	$(3,2)$
3.	T	$(1,6)$
4.	U	$(5,2)$
5.	V	$(4,4)$
6.	W	$(1,4)$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division with multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 149-150

Extend Thinking

Use It! Application Station
How Was That Created? Students use Venn diagrams to research the properties of triangles and quadrilaterals in artwork. The content of this card has concepts covered later in Lesson 13-6. You may
 want to assign this card to students ready to explore content covered later in this unit.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 150

Leston $13 \cdot 4$ - Extend Thinking Understand the Coordinate Plane

Norme What point satisfies the condition given?

${ }^{\text {ar }}$	4	${ }^{5}$
$8 \cdot$		
\%		
		6.
4		
${ }^{3}$		
${ }_{2}$		-t
${ }^{1}$		

1. Which point has the same y-coordinate as point F ? B
2. Which point has the same encoordinate as point F ? R
3. Which point has the same y-coordinute as point $\$ 7$ A
4. Which point is located on the $x-a x a ?$
1
Which point is located on the y-axls N
5. Which point has the same x-coordinate as point M ? G
6. For which point is the x-coordinote 4 ? A
7. Which point can be found by courting 3 units up from the x-mxis? M
8. Which poird has the same x-coordinate as the point (2,6)
E
9. What two words do the points spell? brain game

Plot Ordered Pairs on the Coordinate Plane

Learning Target

- I can plot ordered pairs on a coordinate plane.

Standards \circ Major Δ supporting O Additional

Content

O5.G.A. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate)

Math Practices and Processes

MPP Use appropriate tools strategically.

Focus

Content Objective

- Students plot ordered pairs on a coordinate plane.

Coherence

Previous

- Students understood the coordinate plane and found the ordered pair for a given point (Unit 13).

Language Objectives

- Students explain how they can plot ordered pairs using the verbs draw and label.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students set a focused mathematical goal and make a plan for achieving that goal.

Now

- Students plot points on the coordinate plane given ordered pairs.

Next

- Students plot data points from real-world situations on the coordinate plane and use it to interpret the data (Unit 13).
- Students understand rational and negative numbers as points on the number line and extend number line diagrams and coordinate axes to them (Grade 6).

Rigor

Conceptual Understanding

- Students understand that any point within the coordinate plane can be defined using a pair of numbers which indicate how far to travel from the origin.

Procedural Skill \& Fluency

- Students plot points on the coordinate plane by counting units from the x and y-axis.

Application

- Students use points on the coordinate plane to represent real world situations.

Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms
coordinate plane
Academic Terms
ordered pair
correspond
origin
x-axis
x-coordinate
y-axis
y-coordinate

Materials

The materials may be for any part of the lesson.
-blank number cubes

- Coordinate Plane Teaching Resource

Number Routine Greater Than or Less Than © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they estimate differences for each fraction subtraction expression and compare each expression to a target fraction

These prompts encourage students to talk about their reasoning:

- What was your strategy for estimating the differences?
- How did you know if your estimate was greater than or less than the target fraction?
- How did you evaluate each expression?
- How do you know that your estimate is reasonable?

Purpose Students explore the relationships the coordinate plane can communicate.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students discuss the qualities of each animal they see in the plane with a partner before discussing what they notice and wonder about the plane as a class.

GIP

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of plotting points on the coordinate plane given ordered pairs and are based on possible comments and questions that students may make during the share out.

- How do you know what is represented on each axis?
- What does it mean if an animal is to the right on the "furry" axis and low on the "big" axis?
-What does it mean if an animal is to the left on the "furry" axis and high on the "big" axis?
- Where would you put a dog on this coordinate plane? Why?

Math is... Yindset

- How can being flexible in your thinking help you make good decisions?

SEL

Responsible Decision-Making: Reflect
Before students begin the Notice \& Wonder routine, invite them to share or write down a plan for how they will work toward answering the questions. Encourage students to reflect on how their planning and solving relate to plotting points on the coordinate plane.

Transition to Explore \& Develop

Ask students to think about how they would plot points on the coordinate plane given ordered pairs.

ERP Establish Mathematics Goals to Focus Learning

- Let's think about how we can plot points on the coordinate plane when given an ordered pair.

(1) Pose the Problem

Learn

How can you determine the location of Sam's House and School on a coordinate plane?

Place	Ordered Poir\|
Sam's House	$[2,1)$
School	$[5,5)$
Park	$(2,5)$
Jeremy's House	$(5,1)$

The x-coordinate for Sam's House is 2. Start at the origin and go right 2 units on the x-axis
The y-coordinate for Sam's House is t, go up 1 unit.
Draw the point at $(2,1)$ and tabel it 'Sam's House."

You can follow the same process to piot the point (5,5) for Schook

Math is.in Choosing Tools
How many units right and
up do you go to get from
Sam's House to Schoon?

Work Together

What steps would you take to plot the points for the Park and Jeremy's House?

Sample answer: From the origin, go right 2 and up 5 and label Park; from the origin, go right 5 and up 1 and label Jeremy's House.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore using ordered pairs to plot points on the coordinate plane.

Materials: Coordinate Plane Teaching Resource
Directions: Provide copies of the Coordinate Plane Teaching Resource. Have students work together to solve the Pose the Problem.

ETP Support Productive Struggle

-What does the ordered pair tell you?

- Where should you start when plotting points on a coordinate plane?
- How can you determine how many units right to go on the x-axis to plot Sam's House?
- How can you determine how many units up to go on the y-axis to plot Sam's House?

Math is... Choosing Tools

- How many units right and up do you go to get from Sam's House to school?
Students use the coordinate plane as a tool to help them solve a problem.

Activity Debrief: Have students share their solutions. Encourage students to defend their solutions using mathematically precise language.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students plot points on the coordinate plane when given ordered pairs.

Use and Connect Mathematical Representations

-Why should you start at the origin?

- How do you know what the x-coordinate for Sam's house is?
- How do you know what the y-coordinate for Sam's house is?
- Think About It: How would the location on the coordinate plane be different if the ordered pair for Sam's house was (1, 2)? Why?
(8) Have the students plot and label the point $(5,5)$. Ask:
- How many units to the right should you go on the x-axis? Why?
- How many units up should you go on the y-axis? Why?
- How should you draw the point?
- How should you label the point?

Math is... Choosing Tools

- How many units right and up do you go to get from Sam's house to school?
Students use the coordinate plane as a tool to help them solve a problem.

2. Develop the Math

How can you determine the location of Sam's House and School on a coordinate plane?

We can plot the points in the table on the coordinate plane.

English Learner Scaffolds

Entering/Emerging Explain how to get from _to to Say I'm going to show you how to get from the desk to the closet. Show them by walking the route. Repeat again with new points A and B. Then repeat once more and ask Did I show you how to get from the [door] to the [bookshelf] or how to get from the [bookshelf] to the [door]?

Developing/Expanding Explain how to get from to \qquad Say I'm going to show you how to review the Math Is...In My World get from the desk to the closet. Show them by walking the route. Repeat again with new points A and B. Then ask students to show you how to get from a new point A and B that they choose, and to then complete the following sentence: I showed you \qquad the [door] to the [bookshelf].

Bridging/Reaching Ask students to question on the Learn page. Ask students to explain how to get from different points A and B in the classroom. Allow students to interject, making corrections if necessary. For example, No, you didn't show to get from the closet to the door - you showed how to get from the door to the closet.

Plot and label the point for each place shown in the table.

Pace	Ordered Par
Ployground	$(4,6)$
Post Office	$(1,2)$
Fire Station	$[5,3)$
Jurs House	$(2,4)$

```
1. Playground
2 Post OHice
3. Fine Station
4. Jar's Houne
```


Plot and label the point for each ordered pair.
5. $\mathrm{ATH}, 21$
6. $M(4,3)$
7. $P(5,4]$
8. $Q(1.5)$

Plot and label the point for each ordered pair.

9. P(O. 이

ง0. $5(4,0)$
14. 70.6
12. 443,5)

13. Extend Your Thinking Plot the points
(1, 3), (1, 6) (5, 6), and (5, 3). Drow a line to connect the points in the order in which you plotted them. What is the length and width of the shope?
length is 4 units; width is 3 units

(Peflect

How can you plot points on the coordinate plane when given an oidered pair?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 9-11 Students may be confused by the use of 0 as a coordinate. Remind students that a coordinate of 0 means they are moving 0 units along that axis and will plot the point on the x-axis if the y-coordinate is 0 , or on the y-axis if the x-coordinate is 0 .

Item Analysis

Item	DOK	Rigor
$1-4$	2	Application
$5-12$	1	Procedural Skill \& Fluency
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you plot points on the coordinate plane when given an ordered pair?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How has being flexible in your thinking helped you make good decisions?
Students reflect on how they practiced self-regulation.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can plot ordered pairs on a coordinate plane.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital TeacherCenter.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item	POK Skill	Standard	
1	1	Plot points on a coordinate plane	5.G.A. 1
2	2	Label points on a coordinate plane	5.G.A. 1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	then have students do
2 of 2	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
1 of 2	Take Another Look or any of the B activities
0 of 2	Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 13-2

Exit Ticket

Name

1. How can you plot the point (5. 2) on a coordinate plane? Start at the origin
\qquad units to the right. Move 2 units up.
2. Chris uses the table to make a map of where his favorke zoo animals are located.

Label the animal to the correct point on the coordinate piane to show the location of each zoo animal.

Reflect On Your Learning

Reinforce Understanding

Plot 'n Roll

Work with students in small groups. Provide each student with a number cube and coordinate plane. Have a student roll twice to create an ordered pair. Then every student plots the point. Have students describe how they plotted the point. Make sure students understand that the first number represents the horizontal position and the second number represents the vertical position.

Build Proficiency

Practice It! Game Station

Coordinate Plane Task Cards

Students practice plotting ordered pairs on the coordinate plane.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 151-152

Lesson 13.2

Additional Practice

Name

Review

You can plot a point on a coordinate plane if you are given an ordered pali.

How do you plet point A it (4, 3) on the cocrdinate plane?

Toy rosesinate is a end the r-ceensingte is S. Fine the mign now 4 wintr to the notet alsng the ravic rhen mour up s unc

Label point A at (4, 3)
Plot the point for each ordered pair. Label with the given letter.
2. $A(5,3)$
2. $B(4,1)$
3. $C(2.5)$
4. $D(2.2)$
5. $E(4,5)$
6. $F(5,2)$
7. $G(0,4)$
8. H(3,4)
2. 12.11
10. $J(3,3)$

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division with multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 151-152

Extend Thinking

Use It! Application Station
Is This for Real? Students research and use the TAARP method to determine website credibility.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 152

Lesson 13.2-Extend Thinking Plot Ordered Pairs on the Coordinate Plane

Name

Write the coordinate paik, Then plet and label the points. Connect your points in the sequence HFGHIHKLHMNH.

1. Plot point F at $(2,4)$
2. Foint G has the same x-coordinate as point F, and point G has a y-coordinate of 8, Gis at (2,8)
3. Point H is 5 unts form the x-owis. The x-coordinate and the y-coordinate of point Hire the same. HE or $(5,5)$
4. Point is 3 unds from the y-axis. The x-coordinate and the recoidinute of point / are the same. /is at $[3,3)$.
5. Piot point Jat (4., 其)
6. Point K has the same y-coordinate as point δ, and point K has an x-coordinete of $6 . \mathrm{K}$ is ot $(6,1)$
7. Poirt (has the same y coordirste as point K and point L hos an x-coordinate of 7.2 is at $(7,3)$.
8. Point M has the save y ccoordinate as point F. and point M has an x-coordinste of $8, M$ is $\mathrm{mt}(8,4)$
9. Poire N has the same x-coordinate as point M. The x-coordinate and the y coordinate of point N are the same. N is at $(8,8)$.

Represent Problems on a Coordinate Plane

Learning Targets

- I can plot points that represent real-world situations.
- I can interpret coordinate values of points in the context of the situation.

Standards \circ major Δ supporting \circ Additional

Content

O.G.A Graph points on the coordinate plane to solve real-world and mathematical problems.

O 5.G.A. 2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Math Practices and Processes
MPP Model with mathematics.

Focus

Content Objectives

- Students plot points that represent real-world situations.
- Students interpret coordinate values of points in the context of the situation.

Coherence

Previous

- Students plotted points on the coordinate plane given ordered pairs (Unit 13).

Language Objectives

- Students talk about plotting points when given real-world data using draw and label.
- To support sense-making, ELs participate in MLR2: Collect and Display.

SEL Objective

- Students identify and use mathematical tools to organize work.

Now

- Students plot data points from real-world situations on the coordinate plane and use it to interpret the data.

Next

- Students classify triangles into categories based on attributes, and understand the categories and subcategories using a hierarchy (Unit 13).
- Students use the coordinate plane to draw polygons and find their side lengths, and apply these techniques in the context of solving real-world and mathematical problems (Grade 6).

Rigor

Conceptual Understanding

- Students plot and understand points on the coordinate plane. Conceptual Understanding is not a targeted element of rigor for this standard.

Procedural Skill \& Fluency

- Students build proficiency in their use of the coordinate plane by plotting points to represent and solve problems.

Application

- Students solve problems with real-world contexts.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
ordered pair	accurate
x-axis	speculate
x-coordinate	
y-axis	
y-coordinate	

Materials

The materials may be for any part of the lesson.

- Coordinate Plane Teaching Resource
- transparent spinner

Number Routine Find the Missing Values © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they use solved equations to find unknown values in related equations. Reveal answers one level at a time after students discuss solutions.

Remind students that this is a mental activity and that they should look for patterns.
These prompts encourage students to talk about their reasoning:

- What do you know about adding fractions?
- How does each equation connect to the equation to the right?
- How does each equation connect to the equation below it?
- How can the pattern help you add fractions and mixed numbers using only mental math?

Purpose Students connect to real-world situations to think about representing the story, quantities, and relationships.

Notice \& Wonder

- What question could you ask?

Teaching Tip You may want to have students discuss their questions with a partner and attempt to answer them before discussing students' question as a whole class.

ERP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of plotting data points from real-world situations on the coordinate plane and are based on possible comments and questions that students may make during the share out.
-What story could you tell about this image?
-What could you use to describe where an elevator is?

- How can you describe which direction the elevators might be going?

Math is... Mindset

- What strategies help you work more efficiently?

SEL Self-Management: Organizational Skills

As students complete the Notice \& Wonder routine, invite them to share how they organized their work or what they noticed about how you organized your work. For example, you may have written down the questions students asked in an organized list. Invite students to discuss the tools they may use to organize their work while representing problems on the coordinate plane. Encourage them to think about why this tool may be helpful for their work with representing problems on the coordinate plane.

Transition to Explore \& Develop

Explain that the coordinate plane is a representation. Have students discuss ways in which they think it could be used. Ask questions that get students thinking about how the coordinate plane can represent realworld situations.

ETP Establish Mathematics Goals to Focus Learning

- Let's think about how we can plot data from real-world situations on the coordinate plane and use it to interpret the data.

Learn

Alyath is at the 30 th fioor of a bullding While wating for the elevator, she collected the dota shown in the table.

How many minutes will it take the elevator to reach Allyah's foor?

You can wite the times and corresponding location of the elfvator as ordered palks.

Ordered
Pair
$(0,0)$
$[1,5)$
$(2,10)$
$(3,15)$
$(4,20)$

Then, plot the ordered pairs on the coordinate plane. Draw a line to show the pattern.

It will take 6 minutes for the elevator to reach Alyah's floor.

Work Together

This graph represents the beginniog of a rollercoaster ride. What do you think happened between 2 seconds and 4 seconds?
Sample answer: The rollercoaster was climbing, and then dropped.

(1) Pose the Problem

MLR
 Collect and Display

As students discuss the questions, record relevant words and phrases they may use such as conclusions, data, corresponding floors, and ordered pairs. Display the words for student reference. Use the student-generated expressions to help students make connections between student language and math vocabulary.

EMP Pose Purposeful Questions
-What information is presented in the table?

- How does the information in the table help you understand the location of the elevator at different times?

(2) Develop the Math

Choose the option that best meets your instructional goals.

3 Bring It Together

Elicit and Use Evidence of Student Thinking

- How can you plot points on the coordinate plane when given data in a table?
- How can you interpret data represented on the coordinate plane?

Key Takeaway

- Points on a coordinate plane can be used to represent and interpret real-world situations.

Work Together

Students work together to interpret data represented on the coordinate plane.
Common Misconception: Students may think that they should only be describing what happens at 3 seconds. Remind them that, in order to fully understand the data represented on the coordinate plane, it isimportant to look at what happens over a range of time.

tom

Language of Math
Ask students to discuss how they use the word interpret in other class subjects. Remind students that in math, we interpret information by explaining something that is not represented in words.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore making conclusions about real-world data after plotting the data points on the coordinate plane.

Materials: Coordinate Plane Teaching Resource
Directions: Provide copies of the Coordinate Plane Teaching Resource. Have students work together to solve the Pose the Problem.

ETP Support Productive Struggle

- How can you use the data in the table to plot points on the coordinate plane?
-How should you label each axis?
- What does each point tell you about the location of the elevator?
- At which floor did the elevator start?
- Based on the data, which is the highest floor the elevator went to?
-What other conclusions can you make from this data?

Math is... Todeling

- How does plotting points on the coordinate plane help you understand data?
Students identify important quantities in a practical situation and map their relationships using tools, such as diagrams, two-way tables, graphs, flowcharts, and formulas.

Activity Debrief: Have groups share how they represented the data on the coordinate plane as well as any conclusions they were able to draw from the representation of the data.

A PDF of the Teaching Resource is available in the Teacher Digital Center.

Guided Exploration

Students plot points on the coordinate plane when given real-world data in a table and make conclusions about the data.

ETP Facilitate Meaningful Mathematical Discourse

- How can you determine which should be the x-coordinates and which should be the y-coordinates?
-Why does the order of the pairs matter?Work with the students to plot the points. Have the students label the x-axis by ones and the y-axis by fives. Explain that they can do this to make the graph easier to draw and interpret. As students plot the points using the ordered pairs, ask:
- How many units to the right should you go on the x-axis? Why?
- How many units up should you go on the y-axis? Why?
-How should you draw the point?
- How should you label the point?
- Think About It: Why do you think connecting the points will help you interpret the data?
- Think About It: When was the elevator going up? When was it going down? How do you know?

Math is... Yodeling

- How does plotting points on the coordinate plane help you understand data?
Students identify important quantities in a practical situation and map their relationships using tools such as diagrams, two-way tables, graphs, flowcharts, and formulas.

2. Develop the Math

This table shows what floor an elevator is on at the beginning of each minute.

What conclusions can

English Learner Scaffolds

Entering/Emerging Explain seconds/minutes. Using a stopwatch, complete a task that takes over a minute; for example, putting away books. Show students the seconds and say This took me [62] seconds to complete. Pause, then say There are 60 seconds in a minute. So it took me one minute and two seconds to complete. Repeat with another task and ask Did it take me [47] seconds or [47] minutes to complete?

Developing/Expanding Explain seconds/

 minutes. Using a stopwatch, complete a task that takes over a minute. For example, putting away books. Show students the seconds and say This took me [62] seconds to complete. Pause, then say There are 60 seconds in a minute. So it took me one minute and two seconds to complete. Repeat with another task and ask How many seconds did it take me to finish this task? How many minutes?Bridging/Reaching Ensure understanding of seconds and minutes. Ask students to explain how seconds relates to minutes (60 seconds in one minute). Then have them tell you how long it takes them to do some routine daily tasks, using seconds for tasks that take less than a minute, and minutes for tasks that take longer. Validate and provide correction as necessary.

On My Own

(MATA \mid GO
Nome

1. The table shows the time It took for a inh-grade student to go down the stice it a park and their helght from the pround while poing down the slide White the time and corresponding heights as ordered pairs.
$(0,7) ;(1,5):(2,4):(3,3) ;$ (4, 2); $(5,1)$

Thme (escondi)	Heipht Preet
0	7
1	5
2	4
3	3
4	2
5	1

2. Plot and connect the poirts on a coordinute plane
Check students' work.
3. How tallis the sider? 7 feet tall

4. How lang isoes it take for the student to go down the slide? 5 seconds
5. What isappens between 0 seconds and 1 second? The student goes down 2 feet.
6. Where is the student atter 5 seconds? 1 foot off the ground height of a plant over severat weeks and records at in the table. The plant is 14 inches tall before she begins reconding. Wite the weeks and comesponding helights as ondered poirs.
$(1,16) ;(2,20) ;(3,22) ;(4,22) ;$
$(5,28) ;(6,32)$

Week	Helent inaman
1	16
2	20
3	22
4	22
5	28
6	32

B. Plot and connect the points on the coordinate plane.
Check students' work.
9. How much does the plant grow between Weeks tand 2?
4 inches
10. Whet happens between Weeks 3 and 4 ? The plant remains the same height.

11. How much does the plant grow between before Poppy begine recording and Week 6 ?
18 inches
12. Extend Your Thinking What are some real-wonld situations you could interpret from points represented on a coordinate plisne? Sample answers: growth of students' height over time, distance a car travels on a road trip per day

How are data preserted on a coordinate plane helptul for understanding real-wond situations?

Mathis. Mindset

Answers may vary.

Practice

EIP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercise 7 Because there is no "Week 0" in the table, students may think they do not need to plot a point having an x-coordinate of 0 . Remind them to reread the problem and think about the information that is given about the height of the plant before Week 1.

Item Analysis

Item	DOK	Rigor
$1-2$	1	Procedural Skill \& Fluency
$3-6$	2	Application
$7-8$	1	Procedural Skill \& Fluency
$9-11$	2	Application
12	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How is data presented on a coordinate plane helpful for understanding real-world situations?
Ask students to share their reflections with their classmates.

Math is... Mindset

-What strategies helped you work more efficiently?
Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can plot points that represent real-world situations.
- I can interpret coordinate values of points in the context of the situation.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item DOK Skill			Standard
1	2	Solve problems from a coordinate plane	$5 . G . A .2$
2	2	Solve problems from a coordinate plane	$5 . G . A .2$
3	2	Solve problems from a coordinate plane	$5 . G . A .2$

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the B or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \boldsymbol{B} activities
1 or fewer of 3	Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 13-3

Exit Ticket

Nime

2. How many more harmers were soid on Day 6 than on Disy 5?
A. 5 hammers
(B.) 25 hammers
C. 35 hammers
D. 60 hammeri

3. Which statements about Autumn's hammer seles ave true? Choose all that apply
(A) Auturnn sells 25 mote hammers on Day 9 than on Day 2
B. The most bammers that Autumn sells in a day is 80
C. The point (8,15) means that Auturnv sells 8 hammers on Day 15
D. Autumn sells the same number of hammers on Day 3 and Day 8.
(E.) Autumn sells 40 hammers on Day 7

Reflect On Your Learning

Reinforce Understanding

Spin 'n Plot

Students take turns spinning a spinner labeled 1 through 8 twice to create an ordered pair. The other students plot the point on the coordinate plane. The student who spun then describes how to locate the point from the origin as the others check their work. Make sure students realize that they can start with either the x or the y-coordinate, as long as they use the correct direction for each coordinate.

Build Proficiency

Practice It! Game Station
Coordinate Plane Representation Race
Students practice interpreting information shown on the coordinate plane.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 153-154

Lesson 13.3

Additional Practice

Name

Review

You can interpret points on a coordinate grid to help you understand real-world problems.

The graph shows the number of pages Connie read over 7 dayl. On which doy did Connie read the greatest number of pages?

The bigher: poist Dibng bie races, 5 thens thequestest Ninser of popes mese
on me doy The on sne Aoy The
t-sopringle of
n-soprancte of not
point an ine graph is s.

$$
\text { Connie read the greatest number of pages on Day } 3 .
$$

Use the graph above for questions 1-3.

1. How many pages did Connie read on Day 2?

4
_pages
2. On which diyfsy did Connie read 2 pages? Dryis 1 and 5
3. Wrut does the point (6, C) mean?

Sample answer; Connie did not read any pages on Day 6.

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division with multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 153-154

Extend Thinking

Use It! Application Station Drafting Tools for Accuracy Students create their own drafting triangles and create a model of a covered bridge.
The content of this card has concepts covered later in Lesson 13-5. You may
 want to assign this card to students ready to explore content covered later in this unit.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 154

Leston 13.3-Extend Thinking
 Represent Problems on a Coordinate Plane

Name
A jogger runs from home to the store and then back. The table shows the distance from home the jogger is as time passes. Plot and connect the points on the coordinate plane to answer the questions-

Time (min)	Distance (milles)
0	0
10	0.4
20	1
30	1.5
40	1.5
50	1.2
60	0.7
70	0

1. What is the total dstance of the jogger's run? 3 milles
2. How long did it take the runner to run to the corner 380 minutes
3. How long was the jogger at the corner store? 10 minutes
4. How for did the jogger run in the first 20 minutes? 1 mile
5. How far did the jogger run in the last 20 minutss? $\mathbf{1 . 2}$ miles
6. How can you tell that the jogper tan fastest during the lant 10 minutes? it is where the line is steepest.
7. When wes the josger running the stweyr The jogger was running the slowest right after leaving the corner store
8. How far away from home was the nurner ather 60 minutes? 0.7 miles
9. How far away from the store was the funner after 60 minutes? 0.8 miles

Classify Triangles by Properties

Learning Targets

- I can classify triangles based on their properties into categories and subcategories.
- I can use properties of triangles to prove or disprove statements about triangles.

Standards \diamond Major Δ supporting O Additional

Content

O 5.G.B Classify two-dimensional figures into categories based on their properties.
O 5.G.B. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
O 5.G.B. 4 Classify two-dimensional figures in a hierarchy based on properties.
Math Practices and Processes
MPP Model with mathematics.

Focus

Content Objectives

- Students classify triangles into categories and subcategories based on their properties.
- Students organize the categories and subcategories into a hierarchy.

Language Objectives

- Students classify triangles using the same, different, and share.
- To support cultivating conversation ELs participate in MLR3: Critique, Correct, and Clarify.

SEL Objective

- Students identify and discuss the emotions experienced during math learning.

Coherence

Previous

- Students classified twodimensional figures based on their sides or angles, and recognized and identified right triangles (Grade 4).
- Students plotted data points from real-world situations on the coordinate plane and used it to interpret the data (Unit 13).

Now

- Students classify triangles into categories based on minimal defining attributes, and understand the categories and subcategories using a hierarchy.

Next

- Students classify quadrilaterals into categories based on minimal defining attributes (Unit 13).

Vocabulary

Math Terms	Academic Terms
category	evaluate
equilateral	suggest
triangle	
hierarchy	
isosceles triangle	
property	
scalene triangle	
subcategory	

Materials

The materials may be for any part of the lesson.

- plastic straws
- Properties of Triangles Teaching Resource
 \section*{\title{
Number Routine
 \section*{\title{
Number Routine

 Would You Rather?

 Would You Rather?

 (1) 5-7 min
}}

 (1) 5-7 min
}}

Build Fluency Students develop
number sense as they compare products of fractions and whole numbers to whole numbers.

These prompts encourage students to
talk about their reasoning:

- What strategies did you use to choose the boxes?
- How did you decide whether to calculate or estimate a product?

Rigor

Conceptual Understanding

- Students extend their understanding of triangles through exploration of their properties.

Procedural Skill \& Fluency

- Students evaluate properties of triangles by creating a hierarchy.

Procedural Skill \& Fluency is not a targeted element of rigor for this standard.

Application

- Students apply their understanding of triangles to sort triangles into groups.
Application is not a targeted element of rigor for this standard.

Purpose Students explore the mathematical concept of defining attributes.

Notice \& Wonder

-What could the question be?
Teaching Tip Before students begin discussing the image, you may want to have them discuss what they already know about triangles.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about the properties of shapes and are based on possible comments and questions that students may make during the share out.

- What do you notice about the shapes in "Examples"?
- What do you notice about the shapes in "Non-examples"?
- How can you describe what the shapes have in common?
- What kind of information would help you know more about the triangles? Explain.

Math is... lindset

- How do your skills or interests help you with your work?

SEL Self-Awareness: Accurate Self-Perception

After students participate in the Notice \& Wonder routine, invite them to share the self-perception they were experiencing. Encourage students to focus on the feelings they experienced when they were successful as well as when they were not. Their work throughout the lesson with classifying triangles by properties may be challenging, and they may feel unsuccessful. Remind students that these self-perceptions are neither right nor wrong, but how we deal with these perceptions can affect success with math work. Sharing and listening can help students build understanding of their own self-perceptions as well as the self-perceptions of others.

Transition to Explore \& Develop

Ask questions that make students begin thinking about what makes a triangle look like it does.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can classify triangles into categories based on their properties, and how we can organize those categories.

Learn

What are some ways you can classify triangles?
You can sort the triangles into categories based on their properties.

Co Work Together

Are the following statements otwoys true, sometimes thue, or never mue? Explain. Check students' explanations. An acute triangle is an equilateral tiangle. sometimes true An isosceles right triangle is an isosceles triangle. always true

(1) Pose the Problem

EIP Pose Purposeful Questions

- How can you define the word properties in your own words?
-What are some ways you can classify shapes?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Critique, Correct, and Clarify

Make a false claim for students to critique. Write the following on the board: A scalene triangle has three sides of equal length. Am I correct? Ask students to correct the statement, explaining how they know it's incorrect. Revisit this routine throughout the lesson to provide reinforcement.

(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How do you know if a triangle can be classified as scalene, isosceles, or equilateral?
-What is similar about categories and subcategories in a hierarchy? What is different?

Key Takeaways

- A property of a triangle is a defining attribute that remains the same for all triangles in that category.
- Properties of triangles include number of sides, number of angles, length of sides, and measures of angles.
- Triangles can be organized into a hierarchy based on the shared properties of groups of triangles.
- All triangles in a category share a set of properties.

Work Together

Students work together to determine if some sentences about triangles are always, sometimes, or never true.

Common Error: Students may think they need to know the degrees of the angles of a triangle in order to answer if an acute triangle is always, sometimes, or never an equilateral triangle. Make sure students understand that this Work Together is about classifying triangles by category and not evaluating specific triangles.

Lom Language of Math

A subcategory is "a part of" another category or "under" another category. The prefix sub- means "under" or "contained in." Have students think about other words with the prefix sub- to help them understand where in a hierarchy a subcategory can be found. A submarine operates under water, and a subcommittee is composed of some members of a larger committee.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore the properties of triangles and classify triangles based on their properties

Materials: Properties of Triangles Teaching Resource
Directions: Provide copies of the Properties of Triangles Teaching Resource. Have students work together to solve the Pose the Problem. Before students begin sorting and classifying the triangles, facilitate a discussion to ensure students understand the meaning of the tick marks

ETP Support Productive Struggle

-What do all of the triangles have in common?

- How are some triangles different from others?

Activity Debrief: Have groups of students share how they sorted the triangles and discuss the properties of triangles that they used to sort them. Facilitate a discussion to ensure students understand the terms category and properties. Encourage students to label their categories as scalene triangles, isosceles triangles, and equilateral triangles. Have students review the hierarchy on the student page. Facilitate a discussion about subcategories.

Math is... Todeling

- Why is Equilateral Triangles under Isosceles Triangles in the hierarchy?
Students analyze the relationships represented in diagrams mathematically to draw conclusions.

A PDF of the Teaching Resource is available in the Teacher Digital Center.

Guided Exploration

Students classify triangles into categories based on minima defining attributes, and understand the categories and subcategories using a hierarchy.

FIP Facilitate Meaningful Mathematical Discourse

- Think About lt: How many properties do all triangles share? What are they?
- Think About lt: Are all members of a subcategory members of the category above it? Why or why not?
Ask:
-What properties do all scalene triangles share with all triangles?
- What properties do all scalene triangles share that all triangles do not?
- Think About It: Why are the categories for scalene triangles and isosceles triangles not connected in the hierarchy?
- How is Isosceles Triangles a category and a subcategory?
(8) Ask:
-What properties do all equilateral triangles share with all triangles?
- What properties do all equilateral triangles share that all isosceles triangles do not?

Math is... todeling

- Why is Equilateral Triangles under Isosceles Triangles in the hierarchy?
Students analyze the relationships represented in diagrams mathematically to draw conclusions.

2. Develop the Math

We can sort the triangles into categories.
Categories are groups whose members have shared properties. A property is an attribute. that defines a figure.

[al

English Learner Scaffolds
Entering/Emerging Explain at least. Turn to the Learn page. Point to the relevant parts of the isosceles triangle while saying Isosceles triangles must have at least two sides that are equal in length. They can't have just one. Then draw three triangles, one with no equal sides, one with two, and one with three. For each, ask Does this triangle have at least two equal sides?

Developing/Expanding Explain at least. Turn to the Learn page. Point to the relevant parts of the isosceles triangle while saying Isosceles triangles must have at least two sides that are equal in length. They can't have just one. Then draw three triangles, one with no equal sides, one with two, and one with three. For each, say Tell me about this triangle. Provide the frame It is (not) an isosceles triangle because \qquad

Bridging/Reaching Guide students to the Learn page and ask them to read the sentence on isosceles triangles, focusing on at least. Ask them to explain what it means (not less than, at the minimum) and compare it to the meanings of the least/least (smallest in amount or extent). Validate and correct as needed.

Name
Classify each triangle by using their properties.
1.

3.
isosceles; right

equilateral or isosceles; acute

scalene; obtuse

isosceles; acute

equilateral or isosceles; acute
unit u - Ceamery 27
9. What is a property of al triangles?

They are closed polygons with 3 sides.
10. What is a property of scalene triangles?

They have 3 sides of 3 different lengths.
th. What is a property of isosceles trimgles?
They have at least 2 sides of the same length.
12. What is a property of equilateral tilangles?

They have 3 sides of the same length.
13. Error Analysis Tina categorizes this triongle as an equitateral triangie and says it Cannot be categorited. as an sosceles triangle. How can you hetp Tina carrect her thinking?
Sample answer: An equilateral triangle is a subcategory of an isosceles triangle, so it goes in both the category and subcategory.
14. Extend Your Thinking Draw examples of an isosceles triangle. an equileteral tilangle, and a scalene Uliangle. Use tick marks to show sides of the same length.
Check students' drawings.

(P) Reflect

[^16]

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item DOK Skill			Standard
1	2	Classify triangles based on side lengths	5.G.B. 4
2	1	Classify triangles based on side lengths	5.G.B. 4
3	2	Classify triangles based on side lengths	5.G.B. 4

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \bar{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the $\overline{3}$ activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

© Reinforce Understanding
B Build Proficiency
E Extend Thinking

Lesson 13-4

Exit Ticket

Name

1. Damien draws a triangle that has the length of one side equal to 5 inches, one side that has a length that is less than 5 inches. and one side that has a length that is greater than 5 inches. Which best describes Damien's triangle?
A. scalene
a. isosceles
C. equilateral
2. Mia drew the triangle shown.

Which best describes Mia's triangle?
A. scalene
(B.) isosceles
C. equilateral
3. Ned draws a triangle so that all of the sides nave the same length. Which describes Ned's triangle? Choose all that apply
A. The triangle is scalene
B. The viangle is isosceles.
C. The triangle is equitateral

Reflect On Your Learning

Reinforce Understanding

Pick-Up Triangles

Students take turns holding and releasing a bundle of plastic straws. The student looks for triangles formed when releasing the straws and names the type of triangles based on their properties. Other students must verify each triangle and its name. Each time, make sure the students agree that the triangle is scalene, isosceles, or equilateral before repeating the process.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Recognize Triangles by Angles
- Recognize Triangles by Sides

Differentiation Resource Book, p. 155

Lesson $13-4$ - Reinforce Understanding Classify Triangles by Properties

Nume
Review
Triangles can be classifed by the number of sides that are equat.

How can you classity the triangle shown?

Oitrembitos lesexo ifico

Build Proficiency

Practice It! Game Station
Classifying Triangles Four in a Row
Students practice classifying triangles.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 155-156

Lesson 13-4

Additional Practice

Name

Review

You can classify triangles as scalene, isosceles, or equilateral based on the number of sides that have equal length.
Scalene trangles have no sides the same length.
isoscefes triangles hive at least two sides the same length. Equilateral triangles hive all tiree sldes the same length.
The tick marks show sides that have equal length.
Scalene

Classify the triangle using the terms scolene, isosceles. and equilloteral.

isosceles

isosceles, equilateral

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division with multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 155-156

Extend Thinking

Use It! Application Station
Is This for Real? Students research and use the TAARP method to determine website credibility.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 156

Lesson $13-4$ - Extend Thinking
 Classify Triangles by Properties

Name
Which selection best describes the length of the 3^{*} side for the triangle givent
A. 5 m
C. ether 5 m or 7 m
B. 7 m
D. nether 6 mor 7 m

1. scalene triangle 2 m .6 m , and B
2. isosceles triangle

7 m .7 m and C
3. equitateral triangle

6 m .6 m and A
4. scalene triangle

3 m .5 m , and C m

> 5. Scalene triangle $6 \mathrm{~m}, 7 \mathrm{~m}$, and D
> 6. isouceles triangle
> $6 \mathrm{~m}, 7 \mathrm{~m}$, and C
> 7. isosceles triangle
> $3 \mathrm{~m}, 7 \mathrm{~m}, \mathrm{~B}$
> 8. aquibateral triangle
> $7 \mathrm{~m}, 7 \mathrm{~m}$ and

What is the least number of side lengths that must be changed in order to change the triangle classification?
9. To change an isorceles tiangle into an sicullateral triangle, change 1 side lengthis)
10. To turn an isosceles triangle into a scalene triangle change 1 side lengthai
f1. To turn an equilateral trianglo into an isoscules triangle. change 0 or 1 side lengthis)
12. Tofiurn a scalene biangle irto an equilateral triangle, changes 2 tide length(s)

Learning Target

- I can name quadrilaterals based on their properties.

Standards \circ Major Δ supporting \circ Addifitional

Content

O 5.G.B Classify two-dimensional figures into categories based on their properties.
O 5.G.B. 4 Classify two-dimensional figures in a hierarchy based on properties.
Math Practices and Processes
MPP Look for and make use of structure.

Focus

Content Objective

- Students name quadrilaterals based on their properties.

Language Objectives

- Students explain how to identify quadrilaterals based on their properties with know and makes.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students practice behavioral flexibility while working with peers to complete a challenging mathematical task.

Coherence

Previous

- Students classified twodimensional figures based on their sides or angles, and recognized and identified right triangles (Grade 4).
- Students classified triangles into categories based on minimal defining attributes, and understand the categories and subcategories using a hierarchy (Unit 13).

Now	Next		
- Students classify quadrilaterals			
into categories based on minimal			
defining attributes.		\quad	- Students understand the
:---			
categories and subcategories of			
quadriaterals using a hierarchy			
(Unit 13).			

Rigor

Conceptual Understanding

- Students extend their understanding of quadrilaterals by working with quadrilaterals of various shapes and sizes.

Procedural Skill \& Fluency

- Students begin to develop proficiency with identifying properties of quadrilaterals.
Procedural Skill \& Fluency is not a targeted element of rigor for this standard.

Application

- Students apply their understanding of properties of quadrilaterals to identify them.
Application is not a targeted element of rigor for this standard.

Vocabulary

Math Terms	Academic Terms
attribute	establish
parallelogram	quality
property	
quadrilateral	
rectangle	
rhombus	
square	
trapezoid	

Materials

The materials may be for any part of the lesson.

- Classifying Quadrilaterals Teaching Resource

Number Routine Would You Rather?
 5-7 min

Build Fluency Students develop number sense as they compare the values of expressions involving fractions.

These prompts encourage students to talk about their reasoning:

- What strategies did you use to compare the file sizes?
- How did you decide whether to calculate or estimate?

Purpose Students explore the mathematical concept of defining attributes of quadrilaterals.

Notice \& Wonder

-What could the question be?
Teaching Tip Before students begin discussing the image, you may want to have them look for objects that have 4 sides around the classroom to start thinking about the defining attributes of quadrilaterals.

ERP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of the defining attributes of quadrilaterals and are based on possible comments and questions that students may make during the share out.

- Why do you think some shapes are labeled as "Examples"?
- Why do you think some shapes are labeled as "Non-Examples"?
- How can you describe what the shapes in "Examples" have in common?
- How can you describe what the shapes in "Non-Examples" have in common?
-What more do you want to know about the shapes?

Math is... Mindset

- How do you show that you understand your partner's point of view?

SEL

Social Awareness: Develop Perspective
Developing perspective can help students understand different ways of thinking. After students engage in collaborative discourse around the Notice \& Wonder routine, invite them to share how their ideas may have changed throughout the group discussion. Encourage students to think about how hearing the ideas of their peers may have helped them reach a new or different understanding of quadrilaterals. Use this discussion to encourage students to be open to the ideas and suggestions of their peers and remind them that their behavioral flexibility can allow them to learn from one another.

Transition to Explore \& Develop

Encourage students to think about what all the shapes in the image have in common. Have them describe how they are alike and how they are different.

Learn

How many different kinds of quadrilaterals can you make with line segment $A B$ as one of the sides?

You can identity quadriaterals by their properties

What are the properties of a square?
Sample answer: A square is a parallelogram with 4 sides that has 2 pairs of parallel sides, 4 sides of equal length, and 4 right angles.

(1) Pose the Problem

ETP
 Pose Purposeful Questions

- How can you define a quadrilateral?
- How can the line segment be part of a quadrilateral?
- What kinds of quadrilaterals do you know now?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Stronger and Clearer Each Time

Pair students and have them work on a problem like the problem on the Learn page. Have them individually write about how to answer the problem. Then have them share their writing with their partner and fix mistakes. Revisit the routine throughout the lesson for reinforcement.

(3) Bring It Together

EIP Elicit and Use Evidence of Student Thinking

- Are size or color properties of quadrilaterals? Why or why not?
- What properties do quadrilaterals have?

Key Takeaways

- A property of a quadrilateral is a defining attribute that remains the same for all quadrilaterals in that category.
- Properties of quadrilaterals include number of sides, number of angles, length of sides, measures of angles, and relationship of lines within the shape (parallel, perpendicular, intersecting).

Work Together

Students work together to describe the properties of a square.
I Common Error: Students may initially leaveout that a square always has 4 right angles. Ask students what quality distinguishes a square from a rhombus to elicit this part of the answer.

LOM Language of Math

Explain to students that quad means "four" and lateral means "side." So, the word quadrilateral means "a four-sided shape." Remind students that they can use word parts to determine the meaning of unknown words, in math or in other contexts.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore classifying quadrilaterals into categories based on minimal defining attributes.

Materials: Classifying Quadrilaterals Teaching Resource
Directions: Provide copies of the Classifying Quadrilaterals Teaching Resource. Before students begin classifying the quadrilaterals, facilitate a discussion to ensure students understand the meaning of the parallel marks.

ETR Support Productive Struggle

- What do all of the quadrilaterals have in common?
- How are some quadrilaterals the same as others?
- How are some quadrilaterals different from others?

Math is... Structure

- How can you compare the attributes of quadrilaterals and triangles?
Students look closely at the properties that define categories.
Activity Debrief: Have groups of students share the different properties of each quadrilateral that they discussed. Facilitate a discussion that outlines the minimal defining attributes of each quadrilateral, such as a rectangle is a parallelogram with four right angles.

Have students revisit the Pose the Problem question and discuss answers.

- How many different types of quadrilaterals can you make with line segment $A B$ as one of the sides?

A PDF of the Teaching Resource is available in the Teacher Digital Center.

Guided Exploration

Students classify quadrilaterals into categories based on minimal defining attributes.

${ }^{\text {ETP }}$ Facilitate Meaningful Mathematical Discourse

-What makes a trapezoid different from a quadrilateral?
-What makes a parallelogram different from a quadrilateral?

- What makes a parallelogram different from a trapezoid?

(2)
Have the students use the figure to determine the properties of a rectangle. Ask:

- How many sides does this figure have? How do you know?
- How many pairs of parallel sides does this figure have? How do you know?
- How many right angles does this figure have? How do you know?

(1)
Have the students use the figure to determine the properties of a rhombus. Ask:

- How many sides does this figure have? How do you know?
- How many pairs of parallel sides does this figure have? How do you know?
- How many right angles does this figure have? How do you know?
- How many sides of the same length does this figure have? How do you know?

Math is... Structure

- How can you compare the attributes of quadrilaterals and triangles?
Students look closely at the properties that define categories.

English Learner Scaffolds

Entering/Emerging Explain properties.
Demonstrate reading a book. Say, Some of the properties of this book are its color, its weight, and that it will burn. Repeat with new examples. Then, ask students to use the examples to explain that a property is a characteristic of something that can be used to identify it.

Developing/Expanding Explain properties. Demonstrate reading a book. Say, Some of the properties of this book are its color, its weight, and that it will burn. Repeat with new examples. Then, ask students to use the examples to explain that a property is a characteristic of something that can be used to identify it. Ask students to complete the sentence: Length of sides and measure of angles are are examples of
\qquad (properties)

Bridging/Reaching Guide students to the Learn page and ask them to review the term properties. Ask them if they are familiar with one meaning of property as something that someone owns. Ask them to use the examples on this page to describe another meaning of property. (a characteristic that can be used to identify something). Once comprehension is validated, ask students to list properties of some of the shapes on the Learn page.

9. STEM Connection Sam is draning a picture of a house he sees. One of the front windows has 2 sets of parathet sides, 4 right angles, and 2 sides of different lengths. What is the shape of the wincows? The windows are shaped like rectangles.
40. How is a squate different from a hombus?

A square has 4 right angles, while a rhombus does not.
11. How is a parallelogram offerent from a momous? A parallelogram does not have 4 equal sides while a rhombus does. 12. What are the properties of a trapezold?

A trapezoid is a polygon with 4 sides with 1 pair of parallel sides.
13. Extend Your Thinking Haw are ail quadrlateras the same? How are they different?
Sample answer: All quadrilaterals have 4 sides and 4 angles. They can differ in the number of equal side lengths, angle size, and number of parallel sides.

(2) Reflect

How can knowing the properties of quadraterals helo you identily quadrlaterals? Answers may vary. point of view?

parallol sides.

Practice

ETP Build Procedural Fluency Conceptual from Understanding

[1. Common Error: Exercises 2, 7 Students may be confused by a shape that has no parallel sides or sides of the same length. Ask students what they can call any polygon whose only property is "has 4 sides."

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
9	2	Application
$10-12$	2	Conceptual Understanding
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can knowing the properties of quadrilaterals help you identify quadrilaterals?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you show that you understand your partner's point of view? Students reflect on how they practiced social awareness.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can name quadrilaterals based on their properties.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			DOK Skill
1	2	Properties of quadrilaterals	Standard
2	1	Properties of quadrilaterals	5.G.B.4
3	2	Properties of quadrilaterals	5.G.B.4

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \boldsymbol{B} or \boldsymbol{C} activities
2 of 3	Take Another Look or any of the $\operatorname{Bactivities~}$
1 or fewer of 3	Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

Q Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 13-5

Exit Ticket

Name

1. Elliott draws a 4 -sided shape that has two pais of parallel sides that hove the same length, but the lengths of one pair is different from the lengths of the other paic. Wrich are true about Elliotr's shope? Choose al that apoly
(A.) The shape is a quadriateral
B. The shape is a trapezoid.
C. The shape is a paralleiogram.
D. The shape is a thombus.
E. The shape is a rectangle
F. The shape is a square.
2. Which shapes have two pairs of paralel sides? Choose al that apply
(A.) parallelogram
(B) mambus
E. triangle
3. Which statements are true about a trapezoif? Choose all that apply. A. A traperoid has 4 sides
B. A trapezoid has 2 pairs of parallel sides.
C. A trapezoid has all 4 sides the same length
D. A trapezoid has 1 pair of parallel sides.
E. A trapezoid has 4 right angles

Reflect On Your Learning

Reinforce Understanding

What Shape Is It?

Work with students in groups. Have a student describe the properties of a specific type of quadrilateral. Then have the other students write down the name of the figure described. After each student has written an answer, work with the group to discuss the properties of the quadrilateral and come to a conclusion about which quadrilateral(s) might have been described.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Recognize Quadrilaterals
- Describe Quadrilaterals

Differentiation Resource Book, p. 157

Lesson 13.5 - Reinforce Undenstanding
Properties of Quadrilaterals
Name

Review

Oundrimerah can be named by they properties.

What is the shape of the figure?

2. $\xrightarrow{\text { quadrilateral }}$

Draw figure from the description and then classify the figure.
5. perallologram whe 4 sides of \mid 6. 4sided figute with one equat length and no right
angles
thombus
$\rightarrow 7$ paic of parallet sides trapezold

Build Proficiency

Practice It! Game Station
2-Dimensional Figures Sort
Students practice classifying 2-dimensional figures.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 157-158

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division with multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 157-158

1. What we some properties thut a quadriateral may heve? List as many as you can.
Sample answer:
A quadrilateral must have 4 sides. A quadrilateral may have one pair of parallel sides.
A quadrilateral may have two pairs of parattel sides.
A quadrilateral may have one pair of sides the same length.
A quadrilateral may have two pairs of sides the same length.
A quadritateral may have all four sides the same length.
A quadrlateral may have four right angles.
2. How is a nombus simber to a square?

Both have all four sides the same length.
3. How is a tectangle similar to a paratelogiam?

Both have two pairs of sides the same length and two pairs of sides that are parallel.
4. How is a traperoid anterent from a paraltiologram?

A trapezoid has only one pair of parallel sides whereas a parallelogram must have two pairs of parallel sides. 5. How is a rectangle viemiar to a square?

Both have two pairs of sides the same length, two pairs of sides that are parallel, and four right angles.
6. How is a triperoid simiar to a rectangle?

Both have four sides.

Extend Thinking

Use It! Application Station Drafting Tools for Accuracy Students create their own drafting triangles and create a model of a covered bridge.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 158

Lesson 13.5 - Extend Thinking Properties of Quadrilaterals

Narso
Draw the shape on the coordinate plane using the points given. What are the coordinates of the missing point(s) of the quadrilateral described?

Math Probe

Analyze the Probe Formative Assessment

Targeted Concept Points in the coordinate plane are described as an ordered pair comprised of the x - and y-coordinates of the point's location. The location of a plane figure can also be described using the coordinates of its vertices.

Targeted Misconceptions Some students interchange the x - and y-coordinates or confuse the x - and y-axes. Students who have measurement difficulties may incorrectly count along the axes or make labeling errors. This is especially true when not all values along the axes are labeled.

Authentic Student Work

Below are examples of correct students work and explanations.

Sample A

1. Point X
a. $(9,7)$
(b) $(7,9)$
C. $(6,8)$
d. $(8,10)$
e. None of the above
2. Point X

Sample B
2. Point Y
a. $(12,12)$
b. $(14,14)$
(c.) $(13,13)$
d. $(7,7)$
e. None of the above

2. Point Y

Theyare both right between 12 and 14 (x, y) $(13,13)$

Collect and Assess Student Work

Collect and review student responses to determine possible misconceptions. See examples in If-Then chart.

IF incorrect... \dagger	THEN the student likely...	Sample Misconceptions
$\begin{aligned} & \text { 1. a } \\ & \text { 3. c } \\ & \text { 4. b } \end{aligned}$	has the x - and y-axes interchanged, or lists the coordinate as (y, x) rather than as (x, y).	In this case, the student interchanges the order. 1. Point X 1. Point X C. $(9,7)$ b. $(7,9)$ c. $(6,8)$ d. $(8,10)$ e. None of the above
1. c, d 2. a, b, d 3. b, d 4. b, d	misinterprets the interval shown on the axes, counts incorrectly or "rounds" up or down to the closest whole number, or counts the spaces.	In this case, the student counts the lines, ignoring the scale. 3. Point Z 3. Point Z a. $(14,6)$ count over 7 lines (6. (7)3) c. $(6,14)$ Thengoup 3 lines d. $(3,7)$ e. None of the above
$\begin{aligned} & \text { 1. e } \\ & \text { 2. e } \\ & \text { 3. e } \\ & \text { 4.e } \end{aligned}$	is not able to correctly name the point and has a different method for describing the points than any of those described above. In Exercise 4, the student may not know what a parallelogram looks like.	In this case, the student drew a rhombus rather than a parallelogram.
Many of the above difficulties result in a combination of correct and incorrect responses. For correct responses, be sure to check for sound reasoning.		

Take Action

Choose from the following resources or suggestions:

- Revisit the graphing activities in Lessons 13-2 and 13-3.
- Have students locate points on horizontal and vertical number lines where some of the locations are not labeled. Connect the number lines to the coordinate plane. Watch for students who count hash marks rather than the intervals between hash marks.
- Create a coordinate plane on the classroom floor and have students walk on it to plot and name ordered pairs.
- Have students create mystery shapes on a coordinate grid and then provide their list of ordered pairs and instructions for a partner to use to construct the mystery shapes.
- Use color-coding to distinguish the two axes. Have students develop and share strategies for recalling which axis is which.

Revisit the Probe After additional instruction, have students review their initial answers to the probe. Use these questions for discussion:

- Are there any answers you would like to change? Explain.
- Are there any questions that you still have about any of the items on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Classify Quadrilaterals by Properties

Learning Targets

- I can classify quadrilaterals based on their properties into categories and subcategories.
- I can use properties of quadrilaterals to prove or disprove statements about quadrilaterals.

Standards \circ major Δ supporting \circ Additional

Content

O 5.G.B Classify two-dimensional figures into categories based on their properties.
O 5.G.B. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
O 5.G.B. 4 Classify two-dimensional figures in a hierarchy based on properties.
Math Practices and Processes
MPP Model with mathematics.

Focus

Content Objectives

- Students classify quadrilaterals into categories and subcategories based on their properties.
- Students organize the categories and subcategories into a hierarchy

Language Objectives

- Students explain how to classify quadrilaterals based on their properties using use and share.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

SEL Objective

- Students identify the information that is needed or most useful in order to complete a mathematical task.

Coherence

Previous

- Students classified twodimensional figures based on their sides or angles, and recognized and identified right triangles (Grade 4).
- Students classified quadrilaterals into categories based on minimal defining attributes (Unit 13).

Now

- Students understand the categories and subcategories of quadrilaterals using a hierarchy.

Next

- Students generate two numerical patterns using two given rules, form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on the coordinate plane (Unit 14).

Application

- Students apply their understanding of quadrilaterals to sort quadrilaterals into groups.
Application is not a targeted element of rigor for this standard.

Rigor

Conceptual Understanding

- Students extend their understanding of quadrilaterals by classifying quadrilaterals of various shapes and sizes.
Conceptual Understanding is not a targeted element of rigor for this standard.

Procedural Skill \& Fluency

- Students begin to develop proficiency with classifying quadrilaterals based on their properties.

Vocabulary

Math Terms	Academic Terms
hierarchy	accurate
parallelogram	analyze
quadrilateral	
rectangle	
rhombus	
square	
trapezoid	
Venn diagram	

Materials

The materials may be for any part of the lesson.

- Venn Diagram Teaching Resource

Build Fluency Students develop number sense as they compare the values of expressions involving fractions.

These prompts encourage students to talk about their reasoning:

- What strategies did you use to compare the amounts?
- How did you decide whether to calculate or estimate?
- What is another way to compare the amounts?

Purpose Students explore the relationships among the categories and subcategories of quadrilaterals.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip You may want to remind students of the definitions of hierarchy, category, and subcategory before they begin their discussion.

Gir

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of the hierarchy of quadrilaterals and are based on possible comments and questions that students may make during the share out.

- How do you know what to call the type of relationship shown in the image?
-Why do you think the categories are organized in this way?
-What are the properties of the shapes listed in this image?

Math is... Yindset

-What helps you know that you have made good decisions?

SEL Responsible Decision-Making: Evaluate

Help students develop strong learning habits by providing them opportunities to practice evaluating their decision-making skills. As students consider the Notice \& Wonder routine, invite them to evaluate and share what information is most useful to identify the mathematical task at hand.

Transition to Explore \& Develop

Ask questions that get students thinking about how a hierarchy can show the relationship among quadrilaterals.

ETP Establish Mathematics Goals to Focus Learning

- Let's think about how we can organize the categories and subcategories of quadrilaterals using a hierarchy.

(1) Pose the Problem

Quadrlaterals can be classified into categories and subcategories based on their stared properties.
You can use a Venn diagram to show a hierarchy.

ine tempen : cimevowinglaty hiowlet

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore categories and subcategories of quadrilaterals to develop a hierarchy.

Materials: Venn Diagram Teaching Resource
Directions: Provide copies of the Venn Diagram Teaching Resource. Have students work together to solve the Pose the Problem.

ETP Support Productive Struggle

- Which category of quadrilaterals has a property that none of the other quadrilaterals have? Where do you think that category is placed on the Venn diagram?
- Which categories of quadrilaterals share some properties? How does the Venn diagram show shared properties?
- Which category of quadrilaterals shares all of the properties of two different categories? Where do you think that category is placed on the Venn diagram?

Math is... Todeling

-How are the representations for hierarchies of figures similar? How are they different?
Students map relationships using tools such as diagrams, two-way tables, graphs, flowcharts, and formulas.

Activity Debrief: Have students share their Venn diagrams and discuss how the Venn diagram represents the hierarchy of quadrilaterals.

A PDF of the Teaching Resources are available in the Teacher Digital Center.

Guided Exploration

Students explore the categories and subcategories of quadrilaterals using a hierarchy.

EIP Use and Connect Mathematical Representations

Q While discussing trapezoids, ask:

- What properties do all trapezoids share with all quadrilaterals?

While discussing parallelograms, ask:

- What properties do all parallelograms share that all quadrilaterals do not?
A. While discussing rectangles, ask:
- What properties do all rectangles share that all quadrilaterals do not?
- What properties do all rectangles share with all parallelograms?
- Is Rectangles also a subcategory of Quadrilaterals? Why or why not?

While discussing squares, ask:

- Why are squares also quadrilaterals, parallelograms, rhombuses, and rectangles?
-Why are squares not trapezoids?

Math is... Modeling

- How are the representations for hierarchies of figures similar? How are they different?
Students map relationships using tools such as diagrams, two-way tables, graphs, flowcharts, and formulas.

2. Develop the Math

Like triangles, quadrilaterals can be classified into categories and subcategories based on their shared properties. We can use a Venn diagram to represent a hierarchy.

English Learner Scaffolds

Entering/Emerging Explain shared properties, Show a picture of a square and rectangle. Say Let's talk about their shared properties. Point to each shape and say They both are rectangles. Then point out the four sides on each shape and say They both have four sides. Point to the four sides. Repeat with new shapes listing different features and asking Are these shared properties?

Developing/Expanding Explain shared properties. Show a picture of a square and rectangle. Say Let's talk about their shared properties. Point to each shape and say They both are rectangles. Then point out the four sides on each shape and say They both have four sides. Repeat with new shapes and ask students to tell you their shared properties. Provide sentence frames or guidance as necessary.

Bridging/Reaching Guide students to the Learn page and have students read the sentence about shared properties below the table. Ask students what they think that means (same features, etc.). Then show students different shapes and ask them to say what their shared properties are. Validate and correct as necessary.

On My Own

MATH GO

Name
Use the figures for Exercises 1-8. Identify the figures that could be classified into pach subcategory.

1. quadrilatecas

Figures A, B, C, D, E, F, G, H
3. puratielograms

Figures B, C, D, F, H
5. rhambuses D, H
Figures B, D, H
2. traperoids

Figures A, G
rectangles
Figures B, C
7. How did you know now to classify anch shape? Exp Sample answer: I classified the shapes based on number of parallel sides, number of sides of equal length, and number of right angles.
a. Did you classify any shopes into more than one category? If sa, explin why. Yes; Sample answer: All parallelograms are quadrilaterals so those shapes are in both categories; all rectangles are parallelograms so Shape C is in both categories; all rhombuses are parallelograms so those shapes are in both categories; and all squares are thombuses so Shape B is in both categories.
9. STEM Connection Harwa is felping cut some sheets of metal. Shir needs to cut them so that they have 4 sides with two pairs of parallel sides. Some need to have 4 right angles and some do not. How can she classify the sheets of metal?
The sheets with 4 right angles can be classified as rectangles and the sheets without right angles can be classified as parallelograms.
10. Which quactrleterals always have 4 right anglens? squares and rectangles
11. Which quadriteterals alwoys have exactly 1 palr of parallel sides? trapezoids
42. Which quadileterals always thave 4 sides of equal length? rhombuses and squares
13. Fxtend Vour Thinking Why can a rectangle also be called a paralelogram?
A rectangle has all the properties of a parallelogram.

D) Reflect

How can knowing the hiefarcfly of quadriateralk help you descibe

```
their properties?
```

Answers may vary.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pOK Skill		Standard	
1	1	Identify quadrilaterals in relation to other quadrilaterals	5.G.B.3
2	2	Identify quadrilaterals in relation to other quadrilaterals	5.G.B.3
3	2	Identify quadrilaterals in relation to other quadrilaterals	5.G.B.3

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3

1 or fewer of 3 Additional Practice or any of the (3) or © activities Take Another Look or any of the (B) activities Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 13.6

Exit Ticket

Name

1. Which shape is not a paralielogram?
A. thombus
rectange
C. square
(D. trapezold
2. Which statements are true about a squwe? Choose all that apply
A. A square is also a quadribte
B. A square is also a traperoid.
C. A square is also a trapezoid.
A square is aiso a thombus.
(E. A square is also a rectengle.
3. Choose whether each stotement is True or False.

Every square is aliso a rectangle	True	\checkmark

Reflect On Your Learning

Reinforce Understanding

All or Some

Work with students in pairs. Provide the prompts "All \qquad have __" and "Some are \qquad " Partners complete the first sentence with a figure and a property of that figure and complete the second sentence with a second figure. For example: All quadrilaterals have 4 sides. Some quadrilaterals are squares. Make sure students recognize that different figures may have the same attribute.

Build Proficiency

Practice It! Game Station

Hierarchy Sort

Students create a hierarchy of 2-dimensional figures.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 159-160

Lesson 13.6
 Additional Practice

Decide whether the statement is TRUE or FALSE.

1. All rectangles are paralelograms. true

2. Ail ihombuses are squares.	false
3. All squares are rectangles	true

4. A tropezoid can never be a patallelogram \qquad

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop division with multi-digit numbers.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 159-160
5. A quadrilateral has two pers of sides that are paraliel. Tha quadrlateral also has four right angles. What shope covid it be? square, rectangle, or paraltelogram
6. A quadrilateral has one pair of parallel sides. The quadrlateral aso has one right angle. What shape could it be? trapezold
2. A quadrilateral has all four sides the same length. The quadikateral does not have any right angles. What shape could it be? rhombus of paraftetogram
a. A quadillateral has two pairs of sides that are the same length, but ill four sides ate not the same length The quadrilateral does not have any right angles. What shape could it be? parallelogram
9. Jesse draws a quadrilateral so that two sides measure 8 inches and the other two sides measure 5 inchis. The shape has all right angles. What shape could a be? rectangle or parallelogram

Extend Thinking

Use It! Application Station
How Was That Created? Students use
Venn diagrams to research the properties of triangles and quadrilaterals in artwork.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 160

Lesson 13.6 - Extend Thinking
 Classify Quadrilaterals by Properties

Narse
Is the statement olvoys true, sometimes true, or never true?

1. A square is a mombus. always true
2. A traperoid is a rectangle never thue
3. A quadriateral is a parallelogram sometimes true
4. A thombus is a paralelogram. always trie
5. A paralelogram is a thambus. Sometimes true
6. A trapezoid is a garallelogram. never thue
7. A rhombus is a trapezoid. never true
8. A trapezoid is a quadrlateral. always true
9. A rectangle is a nquare sometimes true
10. A square is parallelogram. always true

What classification(s) make the statement true.
Write all that apply. Order may vary.
11. A square, rhombus and rectangle are always parallelograms.
12. A tropezoid is never a paraleiogram
13. A quadrilateral, parallelogram, and rhombus are sometimes a rectangle
14. A trapezoid, parallelogram, square rhombus, and rectangle are alwiys quadillaterals.
15. A square is always a rectangle.

Unit Review Name

Vocabulary Review

Choose the correct word(s) to complete each sentence.

coordinste plane parallelogram	subcategory	x-axis	
ordered patr	square	trapezoid	yaxis

1. A Square is a rectangle with four sides of equa length samin 0 s
2. The ordered pair $[2,7$ names the x-coordinate and p-coordinate of a point on the coordinate plane numen 3
3. A trapezoid is a quadrilateral with exactly one pair of parallel sides. $1=0$ nes
4. The $\quad x$-axis is the horkontal number line on the coordinate plane. Iman is
5. The ordered pair (0.0 , 0) represents the \qquad of
6. A subcategory is a subvet of shopes of a category that share a certain property. I wor 134
7. The y-axis _ is the vertical number lne on the coordinate planer tions 8 t
8. The coordinate plane is formed by a norzontai number line and a vertical number line intersecting and forming a right angle. Amustry
9. A paraftelogram is a quadrilateral with two pairs of pacallet sides tevor 13 sh

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Students Center.

Vocabulary Review

Item Analysis

Item	Lesson
1	$13-5$
2	$13-1$
3	$13-5$
4	$13-1$
5	$13-1$
6	$13-4$
7	$13-1$
8	$13-1$
9	$13-5$

Review

Item Analysis

Item	DOK	Lesson	Standard
10	1	$13-1$	$5 . G . A .1$
11	1	$13-1$	$5 . G . A .1$
12	1	$13-1$	$5 . G . A .1$
13	1	$13-1$	$5 . G . A .1$
14	1	$13-1$	$5 . G . A .1$
15	1	$13-2$	$5 . G . A .1$
16	1	$13-2$	$5 . G . A .1$

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)

Item	DOK	Lesson	Standard
17a	2	$13-3$	$5 . G . A .2$
17b	2	$13-3$	$5 . G . A .2$
18	2	$13-4$	$5 . G . B .3,5 . G . B .4$
19	1	$13-6$	$5 . G . B .3,5 . G . B .4$
20	3	$13-6$	$5 . G . B .3,5 . G . B .4$

Performance Task

Standards: 5.G.A.1, 5.G.A.2, 5.G.B.3, 5.G.B. 4
Rubric (4 points)

Part A (DOK 2) - $\mathbf{2}$ points

2 POINTS Student's work reflects proficiency with plotting points on a coordinate plane and classifying a quadrilateral.
1 POINT Student's work reflects developing proficiency with plotting points on a coordinate plane and classifying a quadrilateral.
0 POINTS Student's work shows weak proficiency with plotting points on a coordinate plane and classifying a quadrilateral.

Part B (DOK 3) - $\mathbf{2}$ points
2 POINTS Student's work reflects proficiency with classifying twodimensional figures.
1 POINTS Student's work reflects developing proficiency with classifying two-dimensional figures.
0 POINTS Student's work shows weak proficiency with classifying two-dimensional figures.

Reflect

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.

Performance Task

An architect is designing a new attilutic center that includes both buldings and fleids.
Part A: Tive architect started to draw a sloptch of the soccer fied The length is 12 units, and the widt is 8 units. What are the coordinutes of the four comers of the soccer field?

$(1,1),(1,9),(13,9),(13,1)$
Pert E: The indoor wem.

What are all of the names that describe the area that is not bant of the locker rooms? How de you know?
parallelogram, rectangle, rhombus, square; it has 4 sides of equal length and 4 right angles.

(3) Reflect

How can I use a hierarchy dingram to understand tho properteof shapes?
Answers may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice choosing a strategy to multiply.

Fluency Progression

Unit	Skill	Standard
1	Use Partial Sums to Add	4.NBT.B. 4
2	Decompose by Place Value to Subtract	4.NBT.B. 4
3	Use an Algorithm to Add	4.NBT.B. 4
4	Use an Algorithm to Subtract	4.NBT.B. 4
5	Choose a Strategy to Add	4.NBT.B. 4
6	Choose a Strategy to Subtract	4.NBT.B. 4
7	Multiply by Multiples of 10	5.NBT.B. 5
8	Multiply by Multiples of 100	5.NBT.B. 5
9	Divide Multiples of 10	5.NBT.B. 6
10	Divide Multiples of 100	5.NBT.B. 6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B. 5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B. 5
13	Choose a Strategy to Multiply	5.NBT.B. 5
14	Choose a Strategy to Multiply	5.NBT.B. 5

Fluency Expectations

Grade 4

- Add and subtract within 1,000,000.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Shapes and the Coordinate Plane

Students draw on their understanding of the coordinate plane, classifying triangles, and classifying quadrilaterals. Use the rubric shown to evaluate students' work.

Standards: 5.G.A.1, 5.G.A.2, 5.G.B.3, 5.G.B. 4
Rubric (10 points)

Parts A and B (DOK 3) - 4 points

4 POINTS Student's work reflects a proficiency with plotting ordered pairs and classifying triangles/quadrilaterals. The student was able to plot the point(s) and give an accurate location for the point(s).
2 POINTS Student's work reflects a developing proficiency with plotting ordered pairs and classifying triangles/quadrilaterals. The student was either unable to plot the point(s) or give an accurate location for the point(s).
0 POINTS Student's work reflects a weak proficiency with plotting ordered pairs and classifying triangles/quadrilaterals. The student was unable to plot the point(s) and give an accurate location for the point(s).

Part C (DOK 1) - 2 points

2 POINTS Student's work reflects a proficiency with plotting on the coordinate plane. The student accurately plotted the points and labeled the axes.

1 POINT Student's work reflects a developing proficiency with plotting on the coordinate plane. The student labeled the axes but did not plot all the points accurately.

0 POINTS Student's work reflects a weak proficiency with plotting on the coordinate plane. The student did not plot the points accurately or label the axes.

Part D (DOK 3) - 2 points

2 POINTS Student's work reflects a proficiency with analyzing the coordinate plane. The student's explanation is accurate.
1 POINT Student's work reflects a developing proficiency with analyzing the coordinate plane. The student's explanation is partially accurate.
0 POINTS Student's work reflects a weak proficiency with analyzing the coordinate plane. The student's explanation is not accurate.

Part E (DOK 3) - 2 points

2 POINTS Student's work reflects a proficiency with classifying quadrilaterals. The student's drawing and explanation are accurate.

1 POINT Student's work reflects a developing proficiency with classifying quadrilaterals. Either the student's drawing or explanation is not accurate.

0 POINTS Student's work reflects a weak proficiency with classifying quadrilaterals. The student's drawing and explanation are not accurate.

Unit 13

Performance Task

Name

Shapes and the Coordinate Plane
Part A
Napy is tying to draw an wosceses trianglet. He is given point A at $(-4,-2)$ and point 8 at $(2,-2)$ Plot thesse two points, then help Nail maky the isorceles triangle ABC by ploting point C. Give your coordinates for poirt C. It must be on the grid provided.
Student should give any point on the grid with -1 as the x-coordinate. Example given on the grid has point C at $(-1,5)$.

Part 8

Miguel is trying in draw a rectangle. He is glven paint D at $(-3,5)$ and point E et $(5,5)$ Plot these two points, then help Miguei mave the rectangle DEFG by plotting points F and G. Give you coordinutes for points F and G. They must be on the grid provided.

Student should give any two points on the grid with one having 5 as the x-coordinate and the other having -3 as the x-coordinate with their y-coordinates the same. Examples given on the grid have point F at $(5,-4)$ and point G at $(-3,-4)$.

Anenelifinarofloct 25

Part C

The table shows the witth and corresponding ares of rectangles whose perimeter is 12 inches. Use the table to piot ordered pairs Mowe sure to label the aves. Comnect the points to help you interptes the dota.

Wiath (lin)	Area $\left(\mathrm{m}^{\mathbf{}}\right)$
0	0
1	5
2	8
3	9
4	8
5	5
6	0

Part D

For the rectangles in Part C. can poe nave an area of to in ${ }^{3}$? Explain.
The rectangle cannot have an area of $10 \mathrm{in}^{2}$. The highest point on the graph has a y-coordinate value of 9 . The maximum area the rectangle can have is $9 \mathrm{in}^{2}$.

Part E

Nall and Migued are considering a particutar shape Nal identifies the shape as a mectangle. Miguel identifies the shape as a hombus They are both correct. How can this be? Whal properties does the shape have if both Nail and Miguet are comect? include a diagram of the shape with your explanation.
In order for the shape to be classified as a rectangle, which is a parallelogram with all right angles, and also a rhombus, which is a parallelogram with all four sides the same length, it must be a square.
254 Anmenem llarice Brat

Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

| Item poK Lesson Guided Support |
| :--- | :--- | :--- | :--- | :--- |
| Intervention Lesson |\quad Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.

Unit 13

Unit Assessment, Form A
Name

1. Which ordered pair represents point R ?

(A)
B. 14.31
c. $(3,0)$
D. $(0,4)$
2. Which coordinate plane shows the points $M(0,3)$ and $N(5.1)$ plotted comectly?

D.

dumuenil havake bod. 250
3. Which statements are true about the locotion of the point (5, 7) on a coordnate plane? Choose all that apply
(A.) It is located 5 units right and 3 units up from the origin
B. It is focated 5 units up and 3 units right from the origin.
C. It is located 5 unts right of the y-axis and 3 unts up from the x-axis
D. It is located 3 unts tight of the y-axis and 5 units up from the π-dans.

Use the coordinate plane for questions 4-6.
4. On which diny were the most prineers solo?
A. Dary 3
(B) Day 6
C. Ding 9
D. Dany 60
5. Haw many more printers were soid on Day 4 than on Day 3?
A. 15 printers
B. 25 pionters
C. 30 printers
D. 45 printers
6. Which statemerts about the printer sales are true? Choose sil that apply.
A. 50 fewer printers were sole on Day 10
 than on Dry 9
B. Exacty 55 pinters were sold on three different days
C. The point $(7,40)$ represents that 7 printers were soid on Day 40
D. The fewest printers woie soid on Day 3 and Day 8.
E. The number of printers sold increased from Day 4 to Day 5.

Unit 13

Unit Assessment. Form A (consinued)
Name
7. Daniel draws a triangle that has the length of one side equa to 18 centimeters, one side that has a length less than ta certimeters, and one side that has a longth gropter than 48 certimeters. Which best describes Daniel's triangle?
(A) scalone
B. isosceles
C. equilatoral
8. Wisch statement is true about triangles?
A. A scisene triangle may aso be an isosceles triangle.
B. An equilaterar triangle may abo be a scalene triangle.
C. An isosceles triangle may also be an equitoteral trangle.
9. Foye draws a 4 -sided shape that has one poir of parallel sides that are both 15 centimeters. The side lengths of the other pair of paraliel sides are both 8 centimeters. Which statements are true about Faye's shappe? Choose all that apply.
(A) The shape is a quadritateral.
(B.) The shape is a paralielogiam:
C. The shape is a traperoic.
D. The shape is a rectangle
E. The shope is a rhombus
F. The shape is a square
10. Which itatements are true about a inombus? Choose all that apply
(A) A ihnmbis has 4 sides
(B.) A thambus has all sides the same iength
C. Arrembus has 1 pair of panallel vides
(D.) A mambus has 2 pairs of paralel siden:
11. Which statereents are true sbout a rectangle? Choose at that apply.
A. A rectangle is also a trapezold
B. A rectangle is also a quadrilateral.
C. A rectangle is alvo a peralleiogram.
D. A rectangle is aiso a thombur.
E. A rectangle is also as seuare
12. Which sfatemects are true nbout a square? Choope al that apply.
(A. A square in nlso a runditaterne
(B. A square is olso a paralalogram
C. A square s ailso a mombis
D. A square is siso o fectangle.
E. A squate is also a traperoid.
13. Whot are the relationships among quauirilaterais, trapezoids and parallalograms? Explain.
Samplo answer: Trapezoids and paraltelograms are both quadrilaterals because they both have four sides. Trapezoids are not parallelograms because they have only one pair of parallel sides, and parallelograms must have two pairs of parallel sides.

Form B

Uns 13

Unit Assessment, Form B

\qquad

1. michorbibid ant myenem noer inf

$\begin{array}{llll}\text { A. } 0.21 & \text { B. } 2.31 & \text { C. } 1.01 & \text { (0) } 3.2\end{array}$
 pobed tonnoy!

©

2. How enay mase pieviten wet witer

a. 55 maturn
(0) EF cevamin
c. 25 cransor 0. EC cithuma

colvidar nibir Clowse wive moviv.

 man or Dove

 5000

 man 7

20 n-

 Hyal Nern v youe Coche al nue npoy
A. trainsoe as stoper
4. Theveien es mory
\& fieutervauneost
(a) The wheo is spantivogum
R. Thesumer watholss.

(b) A iniflur nes ie wer tre wect vog

PACING: 10 days

LESSON		LATH OBJECTIVE	LANGUAGE OBJECTIVE

[^17]
FOCUS QUESTION: How can I begin to think about algebra?

LESSON	KEY VOCABULARY		MATERIALS TO GATHER	RIGOR FOCUS	STANDARD
14-1	Math Terms expression grouping symbol numerical expression parentheses	Academic Terms reflect suggest	- number cubes	Conceptual Understanding	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
14-2	expression grouping symbol numerical expression parentheses	complex valid	- index cards	Conceptual Understanding	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.0A.A. } \end{aligned}$
14-3	evaluate order of operations	accurate contradiction	- cardstock	Conceptual Understanding, Procedural Skill \& Fluency	5.0A.A. 1
14-4	corresponding term numerical pattern rule (of a pattern)	emphasize transition	- two-color counters	Conceptual Understanding, Procedural Skill \& Fluency	5.OA.B. 3
14-5	corresponding term numerical pattern rule (of a pattern)	accurate inference	- number cubes	Conceptual Understanding, Procedural Skill \& Fluency	5.OA.B. 3
14-6	corresponding term numerical pattern	analyze speculate	- blank cubes - Coordinate Plane Teaching Resource - index cards	Conceptual Understanding, Procedural Skill \& Fluency	5.OA.B. 3

Unit Overview

Focus

Order of Operations and Patterns on the Coordinate Plane

When evaluating expressions, the order of operations is needed so that everyone gets the same result. It is important for students to understand that we use grouping symbols when we want to do operations in an order that is different from what is required by the Order of Operations. Grouping symbols are also used to help clarify the order of operations when an expression contains many numbers and operations.

In this unit, students generate and extend numerical patterns and identify relationships between each set of corresponding terms.

A numerical pattern is an arrangement of numbers where the next number in the arrangement can be predicted based on a rule. A rule for a numerical pattern is a statement that describes how the numbers are related. A sequence is a list of numbers that follow a rule. A term is a number in a sequence. Corresponding terms are terms that appear in the same position in their respective patterns.

Consider the pattern shown.

Term	Pattern \mathbf{A}	Pattern B
1	3	9
2	6	18
3	9	27
4	12	36
5	$?$	$?$

In the pattern, 9 and 27 are corresponding terms because eachis the third term in their pattern. The terms in Pattern B are 3 times as great as the corresponding terms in Pattern A. The rule for Pattern A is "Add 3" (Term 5 is 15); the rule for Pattern B is "Add 9" (Term 5 is 45). Using rules and tables to compare and extend two patterns sets the stage for graphing two patterns on a coordinate plane.

Coherence

What Students Have Learned

- Expressions Students evaluated simple numerical expressions. (Grade 4)
- Expressions Students used a given rule to extend a pattern. (Grade 4)
- Patterns Students explained features of patterns that are not obvious based on the rule. (Grade 4)

What Students Are Learning

- Expressions Students evaluate numerical expressions with grouping symbols.
Expressions Students write numerical expressions without evaluating them.
Patterns Students generate two numerical patterns from rules, graph them, and identify the relationship between them.

What Students Will Learn

- Expressions Students will write, read, and evaluate algebraic expressions. (Grade 6)
- Expressions Students will generate equivalent expressions by applying the order of operations. (Grade 6)
- Patterns Students will use variables to represent real-world quantities that change in relationship to one another. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- Writing numerical expressions;
- Using grouping symbols in expressions;
- Generating two numerical patterns from given rules;
- Graphing two numerical patterns from given rules.

Procedural Skill \& Fluency

Students build proficiency with

- Writing numerical expressions;
- Generating two numerical patterns from given rules;
- Graphing corresponding terms from numerical patterns.

Application

Students apply their knowledge of

- Expressions and patterns to solve real-world problems.

Application is not a targeted element of rigor for the standards in this unit.

Effective Teaching Practices

Use and Connect Mathematical Representations

In teaching mathematics, it is important to provide students with various representations and approaches to help students gain understanding of the concepts. As students approach concepts from different aspects, they begin to see connections between the written and verbal words and the physical, visual, and symbolic representations. Different types of representations speak differently to students of varying learning styles.

In the early grades, students learn about patterns by physically making them, such as standing, sitting, standing, sitting, etc. As students approach the concept of patterns from different modalities, they develop a broader understanding.

In this unit, students are learning to translate verbal and written expressions to numerical expressions and translate rules to number patterns. Students locate and describe points on the coordinate plane. Students are learning to interpret data on grids and tables.

When students learn to use and connect mathematical representations, they show a deeper understanding of the concepts and become better problem solvers.

- Use numerical expressions in problems to encourage students to discuss what the parts of the expression represent. Then reverse the activity to have students provide situations.
- Have students connect the data in a tablewith information on a coordinate grid. Have students form conclusions based on the table and compare the utility of displaying information using the different representations.

Math Practices and Processes

Attend to Precision

As students grow in their communication skills, they learn to use more clear and precise language in written and spoken terms. As students develop more understanding of concepts and skills, they develop a more precise vocabulary when referring to the mathematical concepts, diagrams, and figures.

Students use appropriate terminology when referring to expressions, patterns, sequences, graphs, and coordinate planes. They must be careful about identifying a rule for a sequence of numbers in a pattern or identifying the corresponding terms in a pattern.
Remind students that as they work, it is important to pay attention to details, use numbers and symbols precisely, and check that all numbers in a pattern follow the rule. Students need to attend to precision when plotting points and specifying locations of points. If students are not accurate, incorrect information may be communicated.

To help students build proficiency attending to precision, provide them with many opportunities to interact with others and different types of problems.

- Have students create situations in which other students must write numeric expressions to show how they interpret the situation.
- Have students identify a sequence of numbers in which others must identify the rule used.
- Have students plot ordered pairs on the coordinate grid. Make sure they understand that different levels of precision are needed for different purposes.
- Encourage students to communicate their ideas. Accurate communication promotes accurate conclusions.

Social and Emotional Learning

What Skills Will We Develop?

- Relationship Skills - Communication (Lesson 14-1): Students who can communicate effectively are more likely to build strong relationships and contribute to a positive classroom culture.
- Social Awareness - Empathy (Lesson 14-2): Students who can empathize with others are more able to build positive relationships.
- Self-Management - Self-Discipline (Lesson 14-3): Self-disciplined students can manage their impulses to focus on a mathematical task.
- Self-Awareness - Recognize Strengths (Lesson 14-4): When students recognize their own strengths, they can see themselves as resourceful and may be more willing to attempt to problem solve and help others.
- Social Awareness - Respect Others (Lesson 14-5): When students are respectful of one another, they strengthen their class community.
- Responsible Decision-Making - Ethical Responsibility (Lesson 14-6): Understanding rules and routines of the classroom environment can help students be responsible contributors to the learning community.

Unit Overview

Language of Math

Vocabulary

Students will use these key terms in this unit:

- Corresponding terms* (Lesson 14-4): Related terms in each of two numerical patterns are called corresponding terms. They have the same term number.
- Evaluate* (Lesson 14-3) To evaluate an expression means to find its value.
- Grouping symbols* (Lessons 14-1): Grouping symbols are used in numerical expressions to designate the order in which the operations should be completed. Parentheses, brackets, and braces are all types of grouping symbols.

Numerical expression* (Lesson 14-1): A numerical expression contains numbers and operation or grouping symbols, but no unknown values.

- Numerical patterns* (Lesson 14-4): Students learn about numeric patterns in primary grades when skip counting, counting multiples, and identifying odd and even numbers.
- Order of Operations* (Lesson 14-3): A set of rules which gives the order in which operations are solved in an expression.
- Parentheses* (Lessons 14-1): A type of grouping symbol () used in numerical expressions.
- Rule* (Lesson 14-4): Used to determine the terms in a pattern such as "add 5."
*This is a new term.

Math Language Development

A Focus on Reading

Reading in mathematics uses more than just words to convey a situation or a problem. Students must learn to adapt how they read to what they are reading and why they are reading it. Because of this, reading for math requires different strategies.

Reading in math is not always looking at words on a page going from left to right and comprehending the situation. It is often reading numbers and symbols, moving both horizontally and vertically in one problem. It is translating words into symbols, scanning information on a graph or a grid to interpret the meaning, or analyzing a diagram or graphic to understand and use to solve problems.
The meaning of a point on a grid or bar on a graph often depends on both its horizontal and vertical position. Keeping in mind the complexity of the math language, it is important to help students develop reading strategies to understand the math and make sense of the problems.

- Help students connect with prior knowledge by asking if they have read similar problems in another lesson.
- Have students discuss with classmates how to interpret a numerical expression based on a given situation.
- Have students take turns reading math rules or scenarios and have classmates write a numerical pattern and justify it for their classmates.
- Work with students to help them develop the vocabulary that relates to and describes operations and the parts of addition, subtraction, multiplication and division problems. Write and label expressions using these names. Then, post these labeled expressions for students to reference as they work.
- Have students write and then read descriptions of how to create ordered pairs from data and plot them as points on a coordinate plane. Have students share their graphs with classmates.

[E] English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to algebraic thinking. Because many of the words (ordered, order, expression, corresponding) and phrases (to ___ , use You can ___ using \quad Use ___ to \quad U_ write as __ \quad in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

Lesson 14-1 - ordered, order
Lesson 14-2 - expression
Lesson 14-3 - to ___ use___
Lesson 14-4 - You can ___ using \qquad
Lesson 14-5 - corresponding
Lesson 14-6 - write \qquad as

Number Routines

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

Can You Make the Number?

Purpose: Build flexible thinking and efficiency with operations.
Overview: Students use all the given numbers to build expressions with a value matching the target number. Students can use a range of operations in their expressions. The teacher records students' expressions, then facilitates a discussion about students' expressions.

What's Another Way to Write It?

Purpose: Build flexibility with number sense and mental math operations.
Overview: Given a number, students generate expressions using operations that, when evaluated, have the same value as the number. The teacher records expressions as students share. Students then look for relationships amongst the expressions.

Would You Rather?

Purpose: Build flexibility with number sense and mental math operations and enhance decision-making.

Overview: Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

Sense-Making Routines

- Notice \& Wonder: How are they the same? How are they different? (Lesson 14-2) Students are presented with 3 expressions and consider how the expressions are similar and different.
- Notice \& Wonder: What do you notice? What do you wonder? (Lesson 14-5) Students observe two numerical patterns.
- Notice \& Wonder: What do you see? (Lesson 14-3) Students discuss different ways to think about an image.
- Notice \& Wonder: What questions can you ask? (Lesson 14-4) Students seek to understand the relationships in the image of a mathematical pattern.
- Numberless Graph: What math do you see? (Lesson 14-6)

Students think about how the relationship between two patterns is shown in a graph.

- Numberless Word Problem: What math do you see in this problem? (Lesson 14-1) Students develop a better understanding of the problem itself by analyzing it without numbers.

M18 Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Math Language Routines, see the Appendix.

- Lesson 14-1: Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 14-2: Students participate in MLR5: Co-Craft Questions and Problems.
- Lesson 14-3: Students participate in MLR7: Compare and Connect.
- Lesson 14-4: Students participate in MLR2: Collect and Display.
- Lesson 14-5: Students participate in MLR4: Information Gap.
- Lesson 14-6: Students participate in MLR6: Three Reads.

Readiness Diagnostic

Unit 14

How Ready Am I?

Name

1. Which ordared pair represents point D ?
A. (t. 1)
(t.2)
C. 2.21
(D) $(2,1)$
2. Pete buys 3 bags of apples. Each bag has 8 apples. He and some friends eat 10 of the apples. How many apples are lee?
A. 1 apple
B. 4 apples
C. 14 apples
D. 34 apples
3. A classroom has 4 tows weth 5 desks in each row. In the fitth row there are only 3 deaks. How many desiss are in the classroom?
A. 27 desks
(B) 23 desis
C. 20 deskes
D. 12 desks
4. Which ruie descroes the pottern? $1,2,4,8,16,32,64$
A. Add 1
B. Add 4
C. Multipy by 2
D. Multiply by 4
5. Which are the next three terms in the sequence? $40,36,32,28,24$
A. $18,12.6$
(B)
$20.16,12$
C. $22.20,18$
D. $28,32,36$
6. Which are the first flive terms in the pattem?

Start wath 5, add 3
A. $3,6,9,12,15$
B. $3,8,13,18,23$
(C) $5,8,11,14,17$
D. $5,10,15,20.25$
7. Which pattern gives numbers that have aternate odd and even numbers?
(A) Start with 4 , odd 3
B. Stort wah 3 , add 4
C. Start wath 5. mutliply by 2
D. Start wat 1 muliply by 3
8. Which pattern gives numbers that are all odd numbers?
A. Start with 2 . mutiply by 3
B. Start with 23, add 3
C. Start with 52 , suttract 6
(D) Start wath 65, subtract 4
9. What is the 6ith term in the pattern?

Start with 4, add 7
A. 11
B. 32D. 46
10. What is the Sth term in the pottern?

Start with 73. subtriat 5
A. 48
(B) 53
C. 58
D. 93

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question: How can I begin to think about algebra?
Ask students to think about what they know about algebra?

- What do you know about variables and expressions?
-What do you know about graphing on the coordinate plane?
Remind students that at the end of the unit, they will reflect back on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
STEM Career: Photonics Engineer Students watch as Malik talks about his aspirations to be a photonics engineer.
Malik Uses a Graph Students watch as Malik and photonics engineers use graphs to help them do their work.

STEM Project Card

Students can complete the STEM project during their workstation time.

Photonics Engineer

IGNjTE!

Name

5-4-3-2-1 Challenge

Use each of the mumbers $5,4,3,2$, and 1 -and any of the operations-10 obtain the numbers 1-10. When necessary, use rings or some other method to clarily the numbers on which an operation is to be performsed. Sample answers are shown.
$4=(5+4 \div 3+2-1$
$5=5 \times 4 \div 3+2+1$
$6=(5+4 \div 3 \times 2 \times 1$
$7=(5-4 \times 3 \times 2+1$
$8=5+4-3+2 \times 1$
$9=5+4+3-2-1$
$10=5+4+3-2 \times 1$
230 lopitel - 5-4-3-2-1 Challerpe

Ignite!

5-4-3-2-1 Challenge

Students explore how expressions can be interpreted in different ways when the intended order in which the operations should be performed is not clear. Students work on a challenge that sets the stage for work with order of operations.

1. Ask students to consider the following expression and think about how it could lead to confusion.

- Consider the expression $5+7 \times 3$. In what order would you have to perform the operations to get an answer of 26 ?
- What other result could you get if you performed the operations in a different order? Explain.
- Do you think it would be a good idea if expressions could have different answers depending on the order you choose to perform the operations?

2. Have students work in pairs to do the 5-4-3-2-1 Challenge on the student page.

- The challenge is to use each of the numbers $5,4,3,2$, and 1 , along with any operations, to get each number $1-10$. Notice that the first two have been done for you.
- Explain why $1=5-4+3-2-1$.
- In the second problem, a ring is drawn to clarify the two numbers that are to be multiplied, rather than performing a string of operations beginning with $5+4$. Explain how the answer 2 is found.
- See how many numbers from 3 through 10 you can produce. You may decide that in some cases you need to communicate which numbers go with which operation to avoid confusion. In those cases, use rings or some other method to group the operation with its intended numbers.

3. Have students share and compare their solutions to bring out multiple ways to produce some of the numbers.

You may wish to revisit this Ignite! later in the unit when parenthesis are introduced with order of operations.

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.

Foldables

Use the unit foldables with Lesson 14-6.

Spiral Review

Students can complete the Spiral Review Practice at any point during the unit as either a paper-and-pencil or digital activity.

Lesson	Standard
$14-1$	5.NBT.A.3
$14-2$	5.NBT.A.4
$14-3$	5.NBT.B.6
$14-4$	5.NF.B.4
$14-5$	5.NF.B.5
$14-6$	5.NF.B. 7

Learning Target

- I can write numerical expressions to represent calculations that are described using written statements.

Standards \circ major Δ Supporting \circ Additional

Content

O 5.0A.A Write and interpret numerical expressions.
5.0A.A.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
O 5.0A.A. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.

Math Practices and Processes

MPP Attend to precision.

Focus

Content Objective

- Students write numerical expressions to represent calculations that are described using written statements.

Language Objectives

- Students explain how to write numerical expressions to represent a given word problem using should, could, and use.
- To support optimizing output, ELs participate in MLR1:
Stronger and Clearer Each Time.

SEL Objective

- Students exchange ideas for completing a mathematical task with a peer and reflect on the value of their similarities and differences.

Coherence

Previous	Now	Next
	- Students write numerical expressions to represent calculations that are described using written statements.	• Students interpret numerical expressions without evaluating the expression (Unit 14).
		• Students write, read, evaluate, and generate and identify equivalent expressions in which letters stand for numbers (Grade 6).

Rigor

Conceptual Understanding

- Students build on their understanding of expressions as they begin to notice equations are two connected expressions.

Procedural Skill \& Fluency

- Students build procedural skill when interpreting numerical expressions.
Procedural Skill \& Fluency is not a specific element of rigor for this standard.

Application

- Students apply understanding of numerical expressions when interpreting problems.
Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms

expression
Academic Terms
grouping symbol
reflect
numerical
expression
parentheses

Material

The materials may be for any part of the lesson.

- number cubes

Number Routine Would You Rather?

5-7 min

Build Fluency Students develop number sense as they compare products of fractions and whole numbers.

These prompts encourage students to talk about their reasoning:

- What strategies did you use to solve the problem?
- How can you tell how many sandwiches each expression represents?

Purpose Students develop a better understanding of the underlying structure of a problem.

Numberless Word Problem

-What math do you see in this problem?
Teaching Tip You may want to have students write the math that they see on their own before beginning class discussion, that they can then revisit as they work their way through the problem in this lesson.

ETR
 Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of writing numerical expressions and are based on possible comments and questions that students may make during the share out.

- What kind of information would you need to know in order to solve this problem? Explain.
- How can you determine which operation you could use to solve this problem? How did you reach that conclusion?

Math is... Mindset

-Why is it important to speak clearly and concisely?

SEL Relationship Skills: Communication

As students engage in collaborative discourse around the Numberless Word Problem routine, remind them that valuing the ideas of others is an important part of being an effective and respectful communicator. Students who can communicate effectively are more likely to build strong relationships and contribute to a positive classroom culture. Explain that one way to do this is by listening attentively when others are sharing their ideas about what math they see in the problem.

Transition to Explore \& Develop

Help students make a connection between words and symbols. Ask questions that get students thinking about how they might be able to represent words with mathematical symbols.

Establish Mathematics Goals to Focus Learning

- Let's think about how we can write numerical expressions that are described using words.

(1) Pose the Problem

Learn

The school secretary will order 9 bowes of highlighters.

How can you show the number of yellow and pink highlighters that will be in the order?

This numerical expression shows the number of yeliow and pink highlighters that will be in the order.

You can use numbers-operation symbots, such as $t,-, x$, and +-and grouping symbols, such as parentheses, to write numerical expressions.

C. Work Together

What numerical expressions represent the description? Add 35 and 72 . Then mutiply by 12 .
$(35+72) \times 12$ or $12 \times(35+72)$

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore interpreting numerical expressions as verbal descriptions.

Directions: Have students work in pairs. Each student writes a numerical expression that uses at least two operations. Then, pairs work together to create a verbal description that can be represented by each numerical expression. Remind students that they should not evaluate the numerical expressions, but rather only describe them.

ETP Support Productive Struggle

-What operation will you use in your numerical expression?
-What numbers will you use in your numerical expression?

- Are there any quantities that are grouped together? How is this shown in the numerical expression? How is this shown in the description?

Math is... Precision

- How is an equation similar to an expression? How is it different? Students communicate precisely to others.

Activity Debrief: Have students share the numerical expressions and descriptions they wrote. Ask students how they knew when some quantities needed to be grouped together. Explain that grouping symbols, such as parentheses, can be used.

Have students revisit the Pose the Problem question and discuss answers.

- How can you show the number of yellow and pink highlighters that will be in the order?

Guided Exploration

Students write a numerical expression to represent a given word problem.

EIR Use and Connect Mathematical Representations

- Think About It: Why is multiplication used to show the number of yellow highlighters?
- How is an equation made of expressions?

8 Have the students create the numerical expression that shows the number of pink highlighters. Ask:

- What should the operation be? Why?
- How should the numbers appear in the numerical expression? Why?
- Should there be an equal sign in the numerical expression? Why or why not?
- Think About It: How do you know $(9 \times 6)+(9 \times 6)$ is a numerical expression?

Math is... Srecision

- How is an equation similar to an expression? How is it different?
Students communicate precisely to others.

2. Develop the Math

The school secretary will order 9 boves of highlighters.

How can you show the number of yellow and

English Learner Scaffolds

Entering/Emerging Explain ordered/order. Tell students I'm hungry. (Rub your stomach.) I'm going to order a pizza and a drink. Pretend to order on the phone. After completing the order, say I ordered a pizza and a drink. Then say A pizza and soda were included in the order. Repeat with a new order, and ask Were [sandwiches] or [chicken] included in the order?

Developing/Expanding Explain ordered/order. Tell students I'm hungry. (Rub your stomach.) I'm going to order a pizza and a drink. Pretend to order on the phone. After completing the order, say I ordered a pizza and a drink. Then say A pizza and soda were included in the order. Repeat with a new order and ask students to complete the following sentence: [Sandwiches] were included in the \qquad (order).

Bridging/Reaching Guide students to the Learn page and ask them to review ordered on the page. Then ask students to explain the meaning of the verb order as it pertains to the Learn lesson (request something). Discuss with students the other meaning of order (arrange).

9. Error Analysls Chrigtine is planting 48 morigolds, She will plant 12 of the flowers in pots and the rest in rows of 4 plants each. She wrote this numerical expression to represent the number of plants in pach row
$48-(12+4)$
How do you respond to Christine?
The grouping symbols should be around 48-12 because that is the difference you need to find before dividing by 4 .
50. The school catetevia is making shack packs. Each pack will have the number of
carrot sticks and celery sticks shown. Whes mumerical expression represents how many canot sticks and celery sticks are needed
to make 25 spack packs?
Sample answer: $(25 \times 4)+(25 \times 3)$
51. The principai is making 50 new student packets. Each packet cortains 12 pencis and 5 pens. What numerical expression represerts how many pencls and pens the pincipal needs to make the packets?
Sample answer: $(12+5) \times 50$
12. Katie makes 49 cookes She gives 4 to her sister and then divides the cookies up equaly to give to her 9 triends. What numerical expression fepresents how many cookies each of her friends will ger?
$(49-4) \div 9$
13. Extend Your Thinking Write your own description and numerical expression.
Sample answer: $(3+2) \times(5+10)$; the sum of three and two, times the sum of five and ten.

(ereflect

Practice

EIP Build Procedural Fluency from Conceptual Understanding

[1 Common Error: Exercise 4 Students may think that they should be subtracting 16.9 from the sum of 4.8 and 5.6 . Encourage them to reread the description and ask, In what order should you write the expression?

Item Analysis

Item	DOK	Rigor
$1-8$	1	Procedural Skill \& Fluency
9	3	Conceptual Understanding
$10-12$	2	Application
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How did you think like a mathematician while writing numerical expressions?
Ask students to share their reflections with their classmates.

Math is... Yindset

- How did speaking clearly and concisely help you share your ideas? Students reflect on how they developed stronger relationship skills.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can write numerical expressions to represent calculations that are described using written statements.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pok skill			Standard
1	2	Determine numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
2	2	Determine numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
3	2	Write numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.0A.A. } \end{aligned}$

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \boldsymbol{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \mathbf{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Lesson 14-1

Exit Ticket

Name

A coach buys 5 boxes of yogurt for team snacks. Each box contains 6 strawberry yogurts, 4 blueberry yogurts, and 8 vanilla yogurts.

1. Which is the numerical expression that represents the total number of strawberry and vanilla yogurts the coach buys?
A. $(5 \times 5)+(5 \times 4)$
(B.) $(5 \times 6)+(5 \times 8)$
C. $6+8 \times 5$
D. $5 \times 5+8$
2. Which is the numerical expression that represents the total number of strawberry and blueberry yopurts the coach buys?
A. $6+4 \times 5$
B. $(5 \times 8)+(5 \times 4)$
C. $5 \times 6+4$
(D.) $(5 \times 6)+(5 \times 4)$
3. Katie makes gitt baskets. She has 134 scented soaps. She finds that 6 soaps are broken and can't be used. It she uses 8 scected soaps in each gift basket, wite an expression that shows the number of gilt baskets Katie will be able to make from the nombroken soops.
$(134-6) \div 8$

Reflect On Your Learning

Reinforce Understanding

Roll It, Write It!

Work with students in small groups. Write 2 numerical expressions to use as a scaffold. Have a volunteer roll 4 number cubes and complete the scaffold with those 4 digits. Then have students take turns saying the expression in words. Make sure students understand that there may be more than one correct way to read an expression.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Write Numerical Expressions

Differentiation Resource Book, p. 161
Lesson $14-1$ - Reinforce Understanding
Write Numerical Expressions
Name

$72+19-3)$ is the numencal expression for the description Subtract 3 from 9 . Then divide 72 by the difference.

Match the devcription with its numerical expression.

Deseription	Numerikal Expression
Subtract 2 from 3 . Then divide 12 by the difference.	$12-(2+3)$
Subtuact 2 from 3. Then divide by 12 .	$(3-2)+12$
Mutiply 2 by 3 . Divide 12 by 2 . Then suttiact the puobert from the product	$(2+3) \times 12$
Divide 2 by 3 Thus multiply the quotient by 12	$12 \div 3) \times 12$
Add 2 and 3. Then multiply by 12.	(2×3)-(12+2)
Subtract 3 from 12. Then add the difforence to 2.	$12+(3-2)$
Muriply 2 by 3 Divide 12 by 2 . Then subtract the product fiom the quotient	$(12+2)-(2 \times 3)$
Divide 2 by 3 . Then subtrect the quotient from 12.	$(2)-3)+2$

5

Build Proficiency

Practice It! Game Station
Numerical Expressions Concentration Students practice matching situations with numerical expressions.

品聶 our

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 161-162

Lesson 14.1

Additional Practice

Name

Review

You can use numbers, operation symbols, such as $t,-\times$, and ts, and grouping symbols, such as (), to write numerical expressions.
Ouarissa cuts ug some oranges into 30 stices. She gives 2 sicet to her sister and thin divides the remaining slices equally among 4 fiends. Wite a numetical oxpression to repressent how mary ordinge slices oach fiend will get.
Finst, subtract 2 from $30-30-2$
Then divide the resut by $4:(30-2)+4$
Each frend will receme the number of orange sices represented by the rimerical exprestion $(30-2)+4$.

What numerical expression represents the description?

1. Multiply 5 and 2 . Then add 5. 2. Subtract 2 from A. Multiply the $6 \times 7+5$ or $(6 \times 7)+5$ diference by 3 $(8-2) \times 3$
2. Aad 4 and 2 . Then divide 4 by the sum $44 \div(4+7)$
3. Divide t18 by 3. Multiply 4 and 5 Then add the quotient and the product. $(18 \div 3)+(4 \times 5)$

Own It! Digital Station

Build Fluency Games

Assign the digital page to develop an understanding of the order of operations.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Ascion

Astign 1

Student Practice Book, pp. 161-162
5. Each bogg of nuts and rakims contains 6 ources of nuts and 4 ounces of raisins. Wrile a numerical expression to represent how many ounces of nuts and rainins are needod to make 20 bags of nuts and rabins.
$(20 \times 6)+(20 \times 4)$
6. Kristin cuts several apples into 46 slices She gives 6 to her brother and then divides the temaining apple wices equally among her 5 tionat. Whte a numencol toxpresstion to tepresert how many apple alces ench of her filiends wis get.
$(46-6) \div 5$
7. Grets plants her fowers in 5 rows of 8 plants, and then plants the remaining 3 Howeis in another row. Wite a numerical expression to represent how many flowers Greta plarted.
$(5 \times 8)+3$
8. A set of pens contains pens that withe with different colors of ink: 4 blue. 3 black. 2 red, and 1 purple. Write a hamerical expression to represent how many pens a teecher will have if 12 sets of pens ate ordered.
$(12 \times 4)+(12 \times 3)+(12 \times 2)+(12 \times 1)$

 spociont

Stever Pucter fook

Extend Thinking

Use It! Application Station

A Rule Created That? Students use coordinate planes and coordinate pairs to create 3-D art.
The content of this card has concepts covered later in Lesson 14-6. You may want to assign this card to students
 ready to explore content covered later in this unit.

Websketch Exploration

Assign a websketch
exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 162
Lesson 14-1-Extend Thinking

Write Numerical Expressions

Nome
Match the equivalent expressions, In column B, write how you could know the descriptions are equivalent expressions without fully solving them. Sample answers are shown

| Column A |
| :--- | :--- |
| Subtact 3 fom 7 . Then
 multiply the difference by 8. |
| Add 2 and 6 . Then divide
 72 by the sum. |

DSmatiaton Resact Bock

Interpret Numerical Expressions

Learning Target

- I can interpret numerical expressions without evaluating them.

Standards \bigcirc Major Δ supporting O Additional

Content

5.0A.A Write and interpret numerical expressions.
5.0A.A.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
O 5.0A.A. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by $2^{\prime \prime}$ as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.

Math Practices and Processes

MPP Look for and make use of structure.

Focus

Content Objective

- Students interpret numerical expressions without evaluating the numerical expression.

Language Objectives

- Students discuss interpreting numerical expressions without evaluating the numerical expression using similar, different, and notice.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

Coherence

Previous

- Students wrote numerical expressions to represent calculations that are described using written statements (Unit 14).

SEL Objective

- Students recognize and respond appropriately to the emotions of others during collaborative math work.

Next

- Students use the order of operations to evaluate numerical expressions (Unit 14).
- Students write, read, evaluate, and generate and identify equivalent

Number Routine What's Another Way to Write It? © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they write three sums to represent the given fraction.

These prompts encourage students to talk about their reasoning:

- How did you determine numbers that have the given sum?
- How can you check your answers to be sure that they are correct?
- How are the different expressions with the same sum related?
- Whatis another way to think about the problem?

Rigor

Conceptual Understanding

- Students develop their understanding for how a numerical expression can represent the relationship between several values in a real-world context.

Procedural Skill \& Fluency

- Students gain proficiency as they practice interpreting numerical expressions.

Procedural Skill \& Fluency is not a specific element of rigor for this standard.

Application

- All of the numerical expressions are interpreted within a real-world context.

Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms
expression
Academic Terms
grouping symbol valid
numerical
expression
parentheses

Material

The materials may be for any part of the lesson.

- index cards expressions in which letters stand for numbers (Grade 6).

Purpose Students are presented with three numerical expressions and consider how the numerical expressions are similar and different.

Notice \& Wonder ${ }^{\text {rTM }}$

- How are they the same?
- How are they different?

Teaching Tip Make sure students are not attempting to calculate each numerical expression. Rather, they should be exploring the numbers and symbols in each numerical expression and how they are similar to and different from one another.

 Pose Purposeful QuestionsThe questions that follow may be asked in any order. They are meant to help advance students' understanding of interpreting numerical expressions without evaluating them and are based on possible comments and questions that students may make during the share out.

- How do the numbers in the numerical expressions tell you what is similar and different about the numerical expressions?
- What do you notice about the operation symbols in each numerical expression?
- What do notice about the grouping symbols in each numerical expression?

Math is... Gindset

- How do you show you understand how others are feeling?

Social Awareness: Empathy

After the Notice \& Wonder routine, invite students to share and discuss the emotions they have experienced as they worked to determine how the expressions were similar and how they were different. Collectively discuss how these emotions may make them feel or behave with empathy. Engaging in open discourse about their feelings can help students recognize, understand, and respond with empathy to the emotions of others.

Transition to Explore \& Develop

Guide students to think about how numerical expressions can be alike and how they can be different. Ask questions that get students thinking about what numerical expressions represent.

[^18]

Q Work Together
Interpret the numerical expressions.
Compare the expressions using $><$, or = Explain your reasoning. $(1.525+1.583)+12(8) 1.525+1.583$
Sample answer: both expressions show the sum of 1,525 and 1,583 , but the first expression also divides that sum by a number greater than 1 .

(1) Pose the Problem

ERP Pose Purposeful Questions

- What do you know about grouping symbols?
- Based on what you know about mathematics, can you make a conjecture?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Co-Craft Questions and Problems

Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of four to check solutions and correct any mistakes.

(3) Bring It Together

 GTP Elicit and Use Evidence of Student Thinking- How can you use the symbols in numerical expressions to interpret them?
- How can you compare numerical expressions by interpreting them?

Key Takeaways

- Numerical expressions show a relationship between and among quantities.
- Numerical expressions can be interpreted in terms of the relationship between and among quantities.

Work Together

Students may think the numerical expression on the left is greater because it contains multiple operations. Remind students to think about what happens during each operation and whether the result will begreater or lesser.

Common Misconception: Students may attempt to solve the problem by evaluating the numerical expressions. Remind them that they can solve the problem without evaluating by interpreting the numerical expressions.

LOM Language of Math

Students may have seen interpret in a non-math context. An interpreter translates one language to another. When you interpret expressions you translate from symbols to words.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore how two numerical expressions are similar and different.

Directions: Have students work together to solve the Pose the Problem. Encourage students to use their understandings of parentheses, operations, and quantities to determine whether the numerical expressions represent the same value. Students should not evaluate the numerical expressions.

ETP Support Productive Struggle

- How can you describe what is happening in each numerical expression?
- How are your descriptions of the numerical expressions different?
- How can your descriptions of the numerical expressions help you compare them?

Math is... Structure

- How does looking at the parts of a numerical expression help you interpret it?
Students see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

Activity Debrief: Have students share the similarities and differences they discovered. Ask if any groups were able to make valid comparisons of the numerical expressions without evaluating.

Guided Exploration

Students explore how expressions are different by interpreting them.

Facilitate Meaningful Mathematical Discourse

(1)

Have the students determine the similarities. Ask:

- What do you notice about the numbers in the numerical expressions?
- What do you notice about the operations in the numerical expressions?Have the students determine the differences. Ask:
- What do you notice about the grouping symbols in the numerical expressions?
-Why are $(10 \times 18)+4$ and $10 \times(18+4)$ numerical expressions and not equations?
- Think About It: What do the grouping symbols tell you about the numerical expression $(10 \times 18)+4$?
- Think About It: Why can you not interpret $(10 \times 18)+4$ as ten times eighteen plus four?

Math is... Structure

- How does looking at the parts of a numerical expression help you interpret it?
Students see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

English Learner Scaffolds

Entering/Emerging Explain the meaning of expression, as used in the lesson. Ask students what other meanings of expression they know. Have them mention facial expressions and make some of them. Tell students that there are other meanings of expression, and ask, What types of feelings can you express? Elicit from students that the meaning of expression in the lesson is quite different from the other meanings of expression.

Developing/Expanding Explain the meaning of expression, as used in the lesson. Ask students what other meanings of expression they know. Have them mention facial expressions and make some of them. Tell students that there are other meanings of expression, and ask, What types of feelings can you express? Elicit from students that the meaning of expression in the lesson is quite different from the other meanings of expression. Provide students with cards with numbers and operational signs on them and have them form expressions.

Bridging/Reaching Guide students to the Learn page and have them identify several expressions. Ask, Why are these expressions? Ask students what other meanings of expression they know. Have them mention facial expressions and expressing feelings. Ask, What types of feelings can you express? Elicit from students that the meaning of expression in the lesson is quite different from the other meanings of expression. Have students work with partners to write examples of numerical expressions.

OnMy Own Hernd orte	
Name	
Write the description for each numerical expression.	
1. $(9 \times 1$ 17) -5	2. $9 \times(98-5)$
Subtract 5 from the product of 9 and 18 .	Subtract 5 from 18, then multiply the difference by 9 .
3. $80 \div(20 \times 4)$	4. $(80)+20) \times 4$
Divide 80 by the product of 20 and 4 .	Multiply the quatient of 80 divided by 20 by 4 .

5. $120+12 \geqslant(200+121-9$
6. $50.5 \times 72(>)(50.5-4.8) \times 7.2$ Sample answer: The quotient Sample answer: The 50.5 is of $120 \div 12$ is reduced by 9 in reduced by 4.8 in the the second expression. reduced by 4.8 in the
7. $5 \frac{3}{4} \times\left(2 \frac{1}{8}+3 \frac{1}{2}\right) \cong\left(5 \frac{3}{4} \times 2 \frac{1}{8}\right)+\left(5 \frac{3}{4} \times 3 \frac{1}{2}\right)$

Sample answer: Distributive Property; $5 \frac{3}{4}$ is multiplied by both addends.
8. A store ordered 4.500 T-shirts and 4,500 sungiosses. Without doing any catrulations, which costs more? Explain your reasoring

sunglasses; Sample answer: Because $22>15$, the product of 4,500 and 22 is greater than the product of 4.500 and 15 .

Determine whether Expression A is 5 times as much as
Expression B. Place a checkmark in the Yes or No column.
9.

Expreceion A	Expresion B	Yes	No
$\left.5 \times 17 \frac{1}{4} \times 4 \frac{5}{3}\right)$	1 $\frac{1}{4} \times 4 \frac{5}{\text { 最 }}$	\checkmark	
$(5 \times 4.39)+(5 \times 8.99)$	$4.39+8.99$	\checkmark	
$(65 \times 5) \times 2$	$165 \times 21 \times 5$		\checkmark
$13,492-2.482] \times 5$	3,492-2.432	v	
$(895+345)+5$	$895+345$		\checkmark
$6.71 \times(3.28 \times 5.15)$	671×328		\checkmark

15. Eatend Your Thinking Write a wood problem that could be lepreserted by each numevical expression
$8 \times(4+2) \quad(8 \times 4)+2$
Explain why the way the expressions ane grouped imgacts with
happens in the woid problem.
Answers may vary.

(P) Reflect

How can you interpret numerieal expressions without evaluating them? Answers may vary.

Practice

EIP Build Procedural Fluency from Conceptual Understanding

E Common Error: Exercise 11 Students may be confused by the fact
that the same operation is used twice in an expression. Encourage
students to think about how the interpretation will change depending on the grouping.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-7$	2	Conceptual Understanding
8	2	Application
$9-14$	2	Procedural Skill \& Fluency
15	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you interpret numerical expressions without evaluating them?
Ask students to share their reflections with their classmates.

Math is... Sindset

- How did you show you understand how others are feeling?

Students reflect on how they practiced social awareness.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can interpret numerical expressions without evaluating them.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Item DOK Skill			Standard
1	1	Interpret numerical expressions	$\begin{aligned} & \text { 5.0A.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
2	1	Compare numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.0A.A. } \end{aligned}$
3	1	Compare numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
4	1	Compare numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.0A.A. } \end{aligned}$
5	1	Compare numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.0A.A. } \end{aligned}$
6	1	Compare numerical expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
7	1	Interpret numerical expressions	$\begin{aligned} & \text { 5.0A.A.1, } \\ & \text { 5.0A.A. } \end{aligned}$

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

7 of 7	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
6 of 7	Take Another Look or any of the \mathbf{B} activities
5 or fewer of 7	Small Group Intervention or any of the \mathbf{Q} activities

Key for Differentiation

© Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Reinforce Understanding

Telexpressions

Work with students in groups of 4 . Have students sit in a line or in a circle. Give the first student a 3-number expression on an index card. He or she writes the expression in words. The second student writes an expression based on the first player's written description. The next student writes a description, and the next writes an expression. Discuss whether the final expression matches the original expression and why or why not.

Practice It! Game Station
Numerical Expressions Task Cards
Students practice writing situations that could be described by arithmetic expressions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 163-164

Lesson 14.2

Additional Practice

Name

Review

You can understand the relationship between numbers by interpreting the numerical expressions.
What is the same about the numerical expressions $(20+4)+6$ and $20 \div(4+6) \%$ What is differens?
The numerical expressions are the same in that both use the same rumbers, 20,4 , and 6 , the same operations, divhion and addition and both use grouping symnots
The grouping symbots, however, make the numerical expressions difterent because different numbers are grouped together:
The numerical empression $(20 \div 4)+6$ means to divide 20 by 4 . then add 6. The rumerical expression $20+(4+6)$ means to divide 20 by the sum of 4 and 6

Write the description for each numerical expression.

1. $(1) \times 91+5$

Sample answer: The product of 11 and 9 . then add 5.
3. $20-(12+4)$ Sample answer: The quotient of 12 and 4 subtracted from 20.
2. $\pi \times(9+5)$ Sample answer: Multiply 11 by the sum of 9 and 5.
4. $(20-12)+4$ Sample answer: The difference of 20 and 12, and the result divided by 4.

Own It! Digital Station

Build Fluency Games

Assign the digital page to develop an understanding of the order of operations.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 163-164

Compare the expressions using $\gg,<$, or $=$, Explain your reasoning.
5. $60 \div 10<(60+10)+7$ Sample answer: The quotient $60 \div 10$ is increased by 7 in the second expression.

6. $40 \times 6.5 \geqslant(40-8) \times 8.5$ Sample answer: The factor 40 is reduced by 8 in the second expression.
7. $5 \times\left(4+3 \frac{1}{2}{ }^{2} \Theta(5 \times 4)+15 \times 3 \frac{1}{2}\right)$

Sample answer: Distributive Property; 5 is multiplied by both addends.
8. $20 \times 151-42(2) 20 \times 15$

Sample answer: The product 20×15 is reduced by 42 in the first expression.
Tell how the value of the first numerical expression compores to the value of the second numerical expression.
9. $512+259$ and $(512+259) \times 3$

Sample answer: The second expression is 3 times the first expression.
10. $[28 \times 43]+12$ and 28×43

Sample answer: The first expression is 12 more than the second expression.
11. $(36+4)-3$ and $36+4$

Sample answer: The first expression is 3 less than the second expression. Activity

Sebor Pratcer fore

Extend Thinking

Use It! Application Station
Earning an Income Students research 5 jobs and incomes, create a table, and plot the results on a coordinate plane. The content of this card has concepts covered later in Lesson 14-6. You may want to assign this card to students
 ready to explore content covered later in this unit.

Websketch Exploration

Assign a websketch
exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 164

Lesson 14-2. Extend Thinking

Interpret Numerical Expressions

Name
Which expression is greatest? Rewrite the numerical expressions in order from least to greatest.

12

2

3.

4.

5.

7. $58 \times 12,(88 \times(12 \div 34$ and $(18 \times 12) \div 3$ $(18 \times(12 \div 3)<(18 \times 12) \div 3<18 \times 12$

Evaluate Numerical Expressions

Learning Target

- I can use the order of operations to evaluate numerical expressions.

Standards \bigcirc Major \triangle supporting O Additional

Content

O 5.0A.A Write and interpret numerical expressions.
5.0A.A. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

Math Practices and Processes
MPP Use appropriate tools strategically.

Focus

Content Objective

- Students use the order of operations to evaluate numerical expressions.

Language Objectives

- Students talk about using the order of operations to evaluate numerical expressions using the verb help.
- To support optimizing output, ELs participate in MLR7: Compare and Connect

SEL Objective

- Students demonstrate selfdiscipline through working through distractions to complete a mathematical task.

Coherence

Previous

- Students interpreted numerical expressions without evaluating the numerical expression (Unit 14).

Now

- Students use the order of operations to evaluate numerical expressions.

Next

- Students generate two numerical patterns using rules and identify apparent relationships between corresponding terms in the patterns (Unit 14).

Rigor

Conceptual Understanding

- Students gain understanding that not following an order will produce contradictory answers, but using the order of operations consistently produces a single value for a numerical expression.

Procedural Skill \& Fluency

- Students gain fluency and skill with the order of operations and handling grouping symbols as they follow the steps repeatedly with support throughout the lesson.

Application

- Several of the numerical expressions are presented in a real-world context.

Application is not a specific element of rigor for this standard.

Vocabulary

Math Terms
evaluate order of
\section*{Academic Terms} contradiction operations

Material

The materials may be for any part of the lesson.

- cardstock

Number Routine What's Another Way to Write It? 5-7 min

Build Fluency Students build number sense as they write 3 differences to represent the number $\frac{1}{2}$.
These prompts encourage students to talk about their reasoning:

- How did you determine numbers that have a difference of $\frac{1}{2}$?
- How can you check your answers to be sure that they are correct?
- How are the subtraction expressions that have a difference of $\frac{1}{2}$ related?
- What is a different way to think about the problem?

Purpose Students discuss different ways to think about an image.

Notice \& Wonder

-What do you see?
Teaching Tip You may want to have students draw pictures that represent how they see the picture before beginning a discussion as a whole class.

ETP Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of using the order of operations to evaluate numerical expressions and are based on possible comments and questions that students may make during the share out.

- How can you describe the image?
- How can you describe the image in another way?
- How does the placement of the dice impact how you describe them?

Math is... Mindset

- What helps you get started on your work?

SEL

Self-Management: Self-Discipline
Help students develop strong learning habits by providing them opportunities to practice self-management. Before beginning the Notice \& Wonder routine, discuss ways that students will manage distractions and stay focused on their work describing what they see.

Transition to Explore \& Develop

Ask questions that get students thinking about the specific order in which some activities have to take place. For example, they must put socks on before they put shoes on. Guide students to think about how we might need a specific order to do things in math.
 Establish Mathematics Goals to Focus Learning

- Let's think about the order of the steps we take to evaluate a numerical expression.

Learn
Two sturfents evaluated $6+\beta \times 8) \div 4$.
What might explain why their answers are different?
When you eva uate expressions. you need to
 follow certain steps.
Step I Evaluate any expressions inside grouping symbols. liket porentheses.

Step 2 Perform any multiplication or division in order from left to right.

Step 3 Perform any addition or subtraction in order from left to right.

$$
6+6=12
$$

One student did not follow order of operations.

When you evaluate numerical

 expressions, you need to pertorm operations in a specific order, called order of operations.A Work Tegether
Is the evaluation of $10 \times 3+2$ the same as the evaluation of $(50 \times 31+27$ Explain.
Yes. Sample answer: Both expressions equal 32 . Grouping numbers is not necessary unless the grouping changes the order of operations.

(1) Pose the Problem

EPP Pose Purposeful Questions

- How can you interpret this numerical expression?
- Do you know any mathematical rules you can use to solve this problem?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Compare and Connect

Pair students and give them a problem similar to the Work Together problem on the Learn page. Ask each to work individually, evaluating a numerical expression, and then have them compare their strategies. Revisit this routine

(3) Bring It Together

 ETP
Elicit and Use Evidence of Student Thinking

- How would you explain how the order of operations works to a friend?
- How can the order of operations help you evaluate a numerical expression?

Key Takeaway

- There is an order in which operations must be carried out when evaluating numerical expressions.

Work Together

Students work together to evaluate a numerical expression containing all four operations.

- Common Error: Students may be confused as to where to start as there are no grouping symbols in this numerical expression. Remind them to think of the order in which they must perform the operations.Ask what they should do if there are no numerical expressions in grouping symbols.

$\stackrel{\text { Lom }}{\sim}$ Language of Math

Students may wonder why they need to work from left to right when performing multiplication and division, and then addition and subtraction. Explain that evaluating a numerical expression is like reading a book: they must read from left to right in order to understand what is being said. But, math is like its own language, because they cannot just work from left to right, but must perform the operations in the correct order.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore the importance of the order of operations when evaluating numerical expressions.

Directions: Have students work together to evaluate the numerical expression presented in the Pose the Problem.

ETP Support Productive Struggle

- Can you write a verbal description to help you evaluate the numerical expression?
- How do the parentheses impact the description?
- Which operation did you perform first?
- How is your method the same as others? How is it different?
- Did you arrive as the same result as either student shown in the problem?

Activity Debrief: Have students share the steps they took to evaluate the numerical expression. Ask students to explain if they took different steps and arrived at different answers. Present to students the order of operations. Explain that they must follow this order when evaluating numerical expressions to calculate an accurate answer.

Math is... Choosing Tools

- How does the order of operations help you evaluate numerical expressions?
Students make sound decisions about when a tool might be helpful, recognizing both the insight to be gained and its limitations.

Guided Exploration

Students learn to evaluate numerical expressions using the order of operations.

EIP Facilitate Meaningful Mathematical Discourse

- Think About It: Why do you think operations have to be performed in a specific order?
- How can you use what you already know about grouping symbols to predict the order of operations?Have the students perform an error analysis. Ask:
- How do you think the one student got $7 \frac{1}{2}$?
- How did that student follow the order of operations incorrectly?
- How does this problem help you understand why the order of operations is important?

Math is... Choosing Tools

- How does the order of operations help you evaluate numerical expressions?
Students make sound decisions about when a tool might be helpful, recognizing both the insight to be gained and its limitations.

2. Develop the Math

We need to follow the order of operations to correctly evaluate the numerical expression.

$$
6+(3 \times 8)+4
$$

What should we do first?

Entering/Emerging Explain To \qquad use \qquad Write an addition problem on the board. Say To solve the problem, use a place value chart. Solve the problem with a place value chart. Repeat with a new mathematical problem, using To \qquad use __ to explain how to solve it. Then repeat once more, asking students to answer the question Did I use [counters] or [grouping] to solve the sentence: the problem? counters.

Developing/Expanding Explain To \qquad use. Write an addition problem on the board. Say To solve the problem, use a place value chart. Solve the sentence To evaluate a numerical e problem with a place value chart. Repeat with expression, use the order of operations. a new mathematical problem, using $T 0$, use__ to explain how to solve it. Then repeat once more, this time asking students to complete something, using To sentence explaini \qquad use \qquad Allow
(To) solve the problem \qquad (use) students to interject, correcting as needed. For example, No, I don't think that's right. To solve the problem, use a place value chart.

Name
Which operation will you perform first to evaluate the expression? Explain your reasoning. Explanations may vary.

1. $25-5 \times(4-3)$
subtraction

$$
\text { 2. } 37+8 \div 2-5
$$

division
3. $\frac{3}{4} \times 12 \frac{1}{2}+6 \frac{1}{4}$
addition
4. $100 \times 4+6-10$ multiplication

What is the solutiont Show your work. Check students' work.
5. $3+7 \times 2=17$
6. $13+77 \times 2=20$
7. $56 \div 8-3+2 \times 5=14$
8. $56+(8-3+2) \times 5=40$
9. $2 \frac{3}{8}+1 \frac{1}{4} \times 6 \frac{3}{4}-\frac{1}{2}=10 \frac{5}{16}$
10. $58 \times 1675+3.25) \div 2=29$
11. Which numerical expression is equai to 8 ?
12. Which numberical expression is
A. $24 \div 6 \times 4+7$ ecuast to I?

- $-124 \times 6) \times 4+7$
A. $96+12 \times 4+2$
B. $(24+6) \times 4+7$
(B) $96+(12 \times 4)+2$
(C) $24 \div(6 \times 4)+7$
C. $96+(12 \times 4+2)$
D. $24+6 \times(4+7)$
D. $96 \div 12 \times 14+21$

13. Error Analysis Irenna evalusted this expression. How can
vou help Brenna correct her thinking?
Sample answer: Brenna multiplied
$36+2 \times 9+3=\frac{2}{3}$ first when she should have performed division and multiplication from left to right first; the answer is 54 .
14. Extend Your Thinking Evaluate the expression. Then, expiain how the use of grouping symbols could change the expression and how you evaluate it
$6 \div 2+9+3$
Sample answer: As written, the expression is equal to 6. Grouping symbols would change it only if there were parentheses around $2+9$; Then, the answer would be $\frac{2}{11}$.

(2) Refiect

Why is following the order of operations important when evaluating numerical explessions?
Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercise 1 Students may think that, because they are supposed to solve multiplication and division before addition and subtraction, they should multiply or divide before performing any addition or subtraction inside the grouping symbols. Remind students that evaluating numerical expressions in the grouping symbols is the first step in the order of operations, regardless of the operation.

Item Analysis

Item	DOK	Rigor
$1-4$	1	Conceptual Understanding
$5-12$	2	Procedural Skill \& Fluency
$13-14$	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- Why is following the order of operations important when evaluating numerical expressions?
Ask students to share their reflections with their classmates.

Math is... Mindset

- What helped you get started on your work?

Students reflect on how they practiced self-management.

Learning Target

Ask students to reflect on the Learning Target of the lesson.

- I can use the order of operations to evaluate numerical expressions.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item	DOK Skill	Standard	
1	1	Evaluate numerical expressions	5.OA.A.1
2	1	Evaluate numerical expressions	5.OA.A.1
3	1	Evaluate numerical expressions	5.OA.A. 1
4	1	Evaluate numerical expressions	5.OA.A. 1
5	1	Evaluate numerical expressions	5.OA.A.1

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do
5 of 5
Additional Practice or any of the ${ }^{\text {B }}$ or © activities

4 of 5 Take Another Look or any of the (B) activities
3 or fewer of 5 Small Group Intervention or any of the \boldsymbol{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 14-3

Exit Ticket

Name

Which is the solutiont

1. $10+8+2=$
A. 9
B. 13D. 16
2. $30+5+(9-2) \times 7=$
A. 91
(B) 55
C. 49
D. 1
3. What is the solution? $20-8+2 \times 4=4$
4. Which operation will you perform lirst to evaluate the expression?
$600+5+54 \times 9$
(A.) division
B. addition
C. multiplication
5. Which numencal expression represents 64?
(A.) $7-2 \times 3+7 \times 9$
B. $(7-2) \times 3+7 \times 9$
C. $(7-4) \times 6+7 \times 9$
D. $(7-6) \times 7+4 \times 9$

Reflect On Your Learning

Reinforce Understanding

Call the Doctor!

Write expressions with three operations and one set of grouping symbols on card stock cut into the shapes of gingerbread people. Give three students "Dr. Grouping," "Dr. Multiplydivide," and "Dr. Addsubtract" name tags. Each of these student takes turns evaluating the patient (expression) and completing the operations in the doctor's name. Make sure students understand the correct order of operations before they proceed.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Parentheses
- Understand Order of Operations
- Apply Order of Operations

Differentiation Resource Book, p. 165
Losson 14.3 - Reinforce Understanding
Evaluate Numerical Expressions
Nnme

Sa, by the order of operations, $21-(76+8)+3 \times 2=5$.
Match the expression in Column A to its answer in Column B.

[^19]
Build Proficiency

Practice It! Game Station

Order of Operations Showdown

Students practice evaluating numerical expressions.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 165-166

Lesson 14.3

Additional Practice

Nome

Review

You can evaluate a numerical expression using the order
of operations.
Evalupte the numerical expression $4+6 \times 10-31$
Evaluate watin grouping symbols first.
$4+6 \times(50-3)=4+6 \times 7$
Perform any mutiplecation or division, in order from left to ilght.
$4+6 \times 7=4+42$
Perform any addition or subtraction, in order from left to right.
$4+42=46$
The numencal mpression $4+6 \times(10-3)$ evaluates to be 46 .
Which operation will you perform first to evaluate the expression? Explain your reasoning. Sample answers are given.

1. $32+7 \times(8-3)$ subtraction; do any operation within grouping symbols first
2. $8+2 \times 4+6$
division: perform multiplication and division in order from left to right
3. $42+10+5-2$ division; multiplication and division is performed before addition or subtraction
4. $10-5+100 \times 4$ multiplication; multiplication and division is performed before addition or subtraction

Own It! Digital Station

Build Fluency Games

Assign the digital page to develop an understanding of the order of operations.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 165-166

Evaluate the numerical expression.	
5. $10-5+27$	6. $6+12 \div 6.8$
7. $(3+4) \times 321$	8. $15-(2+7)+17$
9. $24+2 \times 6+173$	10. $8+(2 \times 2)+13$
11. $2 \times 9-8+111$	12. $14-16+7)+45$
13. $42 \div 6-3+4 \times 524$	
14. $4+36 \div(6 \div 3+4) \times 534$	
15. $5 \times(12-2 \times 5)+36+(10-6+2) 16$	
	Mascer box

Extend Thinking

Use It! Application Station
Color by Number Students use grid paper to create designs and numerical expressions.

Websketch Exploration

Assign a websketch
exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 166
Lesson $14-3$ - Extend Thinking

Evaluate Numerical Expressions

Name
Introduce () in the numerical expression to make the equations true.
If no () are needed. say so. Show your work to evaluate the numerical expression.

1. $12+6 \times 2+$

$12+6 \times 2+1=5$	$12+(6 \times 2)+1=2$	$12 \div 6 \times(2+1)=6$
no () needed;	$12 \div 12+1$	$12 \div 6 \times 3$
$2 \times 2+1$	$=1+1=2$	$=2 \times 3=6$
$=4+1=5$		

2. $2+20 \div 2 \times 5$

$2+20)+2 \times 5=55$	$2+20+2 \times 5=52$	$2+20 \div 0 \times 5)=4$
$22 \div 2 \times 5$		
$=11 \times 5=55$	no () needed;	$2+20 \div 10$
$2+10 \times 5$	$=2+2=4$	
$=2+50=52$		

3. $16-4+9-3$

| $16-(4+9)-3=0$ |
| :--- | :--- | :--- |
| $16-13-3$ |
| $=3-3=0$ |\quad| $16-(4+9-3)=6$ |
| :--- |
| $16-(13-3)$ |
| $=16-10=6$ |\quad| $16-4+9-3=18$ |
| :--- |
| no () needed; |
| $12+9-3$ |
| $=21-3=18$ |

4. $36+2 \times 18+3$

Analyze the Probe Formative Assessment

Students determine which operation is evaluated first based on the order of operations. They circle one of 4 choices and justify their answers. Remind students not to actually perform the evaluation.

Targeted Concept Determine the operation to evaluate based on understanding the order of operations.

1 Targeted Misconceptions Some students do not correctly apply order of operations when evaluating a numerical expression. Some will evaluate from left to right regardless of the operation. Some will evaluate multiplication before division or addition before subtraction regardless of the order the operations appear in the expression. Students also sometimes think the answer will always be the same no matter the order in which the operations are evaluated.

Authentic Student Work

Below are examples of students' explanations.

Sample A

1. $4+3 \times 9-1$	Explain or show your thinking.
Which expression should be evaluated First? a. $4+3$ (b.) 3×9	Bec ause you have to start with multiplication. Then you and and subtract.
C. 9-1	
d. Doesn't matter which expression is evaluated first	

Sample B

Collect and Assess Student Work

Collect and review student responses to determine possible misconceptions. See examples in If-Then chart.

IF incorrect...	THEN the student likely...	Sample Misconceptions			
$\begin{aligned} & \text { 1. a } \\ & \text { 3. a } \\ & \text { 4. a } \end{aligned}$	evaluates expressions from left to right. Note that this incorrect application leads to a correct answer for Exercise 2 (choice a).	In this case, the student 1. $4+3 \times 9-1$ Which eqression should be evaluated firs? a. $4+3$ b. 3×9 c. 9-1 d. Doesn't matter which expression is evaluated first	aluated left to right ignoring the signs. Explain or show your thinking. I started at the begiming.		
$\begin{aligned} & \text { 2. b } \\ & \text { 3. a } \\ & \text { 4. } \mathrm{c} \end{aligned}$	evaluates multiplication before division or addition before subtraction.	In this case, the student 2. $24 \div 6 \times 2+4$ Which expression should be evaluated frst? a. $24 \div 6$ (b. 6×2 C. $2+4$ d. Doesnt matter which is done first	luates multiplication before division. Explain or show your thinking. The order goes $x \div+\times 50 \quad 6 \times 2=5$ first.		
1. d 2. d 3. ${ }^{\text {d }}$ 4.d	thinks changing the order of operations does not impact the result.	In this case, the student fo thinking the order does n 3. $8+3 \times(4-1)$ Which expression should be evaluated first? a. $8+3$ b. 3×4 C. 4-1 d. Doesnt matter which is evaluated first	uses on multiplication only while evaluating the expression matter. Explain or show your thinking. $\\| \times 4 \times 44$ or $4 \times \\|=44$ it doesn't mather. Ther just minus 1.		
Many of the abo For correct resp	ve difficulties result in a combination of corre ponses, be sure to check for sound reasoning.	dincorrect responses.			

Take Action

Choose from the following resources or suggestions:

- Revisit order of operations activities in Lessons 14-1 through 14-4.
- To build understanding of grouping and operation symbols and the order of operations, ask students to write a story problem that matches a given expression.
- Rather than have students evaluate expressions, provide opportunities for students to sort expressions based on which operation is evaluated first. Include discussion and justification opportunities throughout the sort.
- Include sorts that require students to match story problem contexts and/ or written statements with expressions.

Revisit the Probe After additional instruction, have students review their initial answers. Use these questions for discussion:

- Are there any answers you would like to change? Explain.
- Are there any questions that you still have about any of the items on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Learning Targets

- I can generate two numerical patterns using two given rules.
- I can identify relationships between corresponding terms in the generated number patterns.

Standards \circ major Δ supporting \circ Additional

Content

5.0A.B Analyze patterns and relationships.

O 5.0A.B.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.
Math Practices and Processes
MPP Reason abstractly and quantitatively.

Vocabulary

Math Terms	Academic Terms
corresponding	emphasize
term	transition
numerical pattern	
rule (of a pattern)	

Material

The materials may be for any part of the lesson.

- two-color counters

Focus

Content Objectives

- Students generate two numerical patterns that follow two given rules.
- Students identify relationships between corresponding terms in the generated number patterns.

Language Objectives

- Students discuss relationships between corresponding terms in number patterns using the verbs represent and determine.
- To support sense-making, ELs participate in MLR2: Collect and Display.

SEL Objective

- Students exercise creativity by solving a problem using more than one approach.

Coherence

Previous

- Students generated a number or shape pattern that follows a given rule and identified apparent features of the pattern that were not explicit in the rule itself (Grade 4).
- Students used the order of operations to evaluate numerical expressions (Unit 14).

Now

- Students generate two numerical patterns using rules and identify apparent relationships between corresponding terms in the patterns.

Rigor

Conceptual Understanding

- Students build on their understanding of algebra as they use expressions to identify relationships between corresponding terms.

Procedural Skill \& Fluency

- Students build proficiency with generating patterns using pattern rules to extend patterns and find corresponding terms.

Application

- Students apply understanding of patterns to solve problems.
Application is not a specific element of rigor for this standard.

Students must use all four numbers but can only use each number once in the combination. Encourage students to try to find more than one solution.

These prompts encourage students to talk about their reasoning:

- What number combination did you try first? How did you think about the numbers?
- What worked well for you? Where did you struggle?
- What was your strategy for getting to the target number?

Purpose Students explore relationships in a mathematical situation.

Notice \& Wonder

- What question could you ask?

Teaching Tip You may want to provide students with counters of different colors so that they can model a relationship shown in the image on their own.

FIT Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of relationships between mathematical patterns and are based on possible comments and questions that students may make during the share out.

- How can you describe a relationship between the blue and green counters?
-What do you think would happen if a fifth group of blue and green counters were added? Explain your conclusion.

Math is... Jindset

-What are your strengths in math?

SEL Self-Awareness: Recognize Strengths

Before students begin the Notice \& Wonder routine, invite them to think about their personal areas of strength in math. In addition to specific math skills, students may also acknowledge personal strengths that can help them with their math learning, such as listening, staying focused, or explaining. As students work with numerical patterns throughout the lesson, model giving positive feedback to help them acknowledge their personal strengths. Encourage students to recognize and acknowledge the strengths of their peers.

Transition to Explore \& Develop

Ask questions that get students thinking about what a pattern is. As they discuss patterns, see if they naturally describe how patterns are formed. If not, they will learn more about this in the Develop section of the lesson.

$\stackrel{E T R}{[1 / E s t a b l i s h ~ M a t h e m a t i c s ~ G o a l s ~ t o ~ F o c u s ~ L e a r n i n g ~}$

- Let's think about how two patterns can be related.

Learn
Alex and Jenna participate in a st-up challenge. They both do 0 sit-ups on the first day. Each day after the first day. Alex adds 2 sit-ups to the number she did the previous diy and Jenna adds 6 st-ups to the number she did the previous day.
How many sit-ups will Jenna do on the day that Alex does 20 sit-ups?
You can use mumerical patterns to help you solve the problem.

Each day is a term in the pattem. The matching terms are corresponding terms

```
camesponding temes
```


The number of sit-ups Jenna does is always 3 times the number of sit-up Alex does.

Use the retationstip to solve the problem.

$20 \times 3=60$
Jenns does 60 sit-ups on the day that Alex does 20.

You can Identity a relationship between corresponding terms in two numerical patterns.

Q Work Together

On the day that Jonna did 54 sit-ups in a day, how mary st-ups did Alex do?
18 sit-ups
we Lumen : Nurnex fans

(1) Pose the Problem

MLR
 Collect and Display

As students discuss the questions, record relevant words and phrases they may use such as numerical patterns, rule, relationship between, generate, and corresponding terms. Display the words for student reference. Use the student-generated expressions to help students make connections between student language and math vocabulary.

EMP Pose Purposeful Questions

-What tools can you use to represent the information you have?

- What information do you have about the number of sit-ups each girl adds each day? How can you use this information?

(2) Develop the Math

Choose the option that best meets your instructional goals.

(3) Bring It Together

Elicit and Use Evidence of Student Thinking

- How do you use a pattern's rule to determine the terms in the pattern?
- How can you determine a relationship between corresponding terms in two numerical patterns?

Key Takeaways

- A numerical pattern is defined by a rule.
- Numerical patterns can be generated by the rule that defines them.
- There are often relationships between corresponding terms in numerical patterns.

Work Together

Students use the numerical patterns and rules they established during the Pose the Problem to answerhow many sit-ups Alex did when given the number of sit-ups Jenna did.

Common Error: Students may think they need to multiply 54 by 3 as that was the operation they used in the Pose the Problem. Encourage students to pay attention as they read the Work Together problem to determine what they are trying to find. Ask: How can you describe a relationship between the number of sit-ups Jenna does and the number of sit-ups Alex does?

LOMLanguage of Math
Throughout the lesson, emphasize that correspond means "to be in agreement or conformity." Students will hear the word correspond in other contexts as well, for example, the number of desks in a classroom may correspond to the number of students in the class.

Activity-Based Exploration

Students explore numerical patterns to solve a problem.
Directions: Have students work together to solve the Pose the Problem.

Support Productive Struggle

- How can you find the number of sit-ups Alex did each day?
- How can you find the number of sit-ups Jenna did each day?
- Is there a relationship between Alex's sit-ups and Jenna's sit-ups? If so, describe it.
-Can you use that relationship to help you solve the problem?

Math is... Connections

- How is the relationship connected to the rules for Alex's and Jenna's numeric patterns?
Students make sense of quantities and their relationships in problem situations.

Activity Debrief: Have students share their solutions methods for solving the problem. Encourage students to identify similarities and differences among the solution methods.

Guided Exploration

Students generate two numerical patterns using their rules and identify an apparent relationship between corresponding terms in the patterns in order to solve a problem.

Facilitate Meaningful Mathematical Discourse

- How is a numerical pattern similar to other patterns you know?

Have the students determine the terms in Jenna's numerical pattern. Ask:

- What is the rule for Jenna's numerical pattern? How do you know?
- If you know the number of sit-ups Jenna does on a day, what is the number of sit-ups she does on the next day?
- Think About It: Why are 12 in Alex's pattern and 36 in Jenna's pattern corresponding terms?

Math is... Connections

- How is the relationship you found connected to the rules for Alex's and Jenna's numeric patterns?
Students make sense of quantities and their relationships in problem situations.

2. Develop the Math

They both do 0 sit-ups on the first day. Each day after the first day. Alex adds 2 sit-ups to the number she did during the previous day and Jenna adds 6 sit-ups to the number she did during the previous day.

Developing/Expanding Explain You can _ using _. Write a problem on the board. Say You can solve this problem using tens rods. Demonstrate. Repeat with other problems and math tools, this time asking How can I solve this problem? (using a [number line])

Bridging/Reaching Guide students to the Learn page and ask them to review the sentence You can generate numerical patterns using rules. Ask students to come up with their own sentence using this structure; for example, You can solve addition problems using tens rods. Validate and correct as needed.

Use Numerical Patterns A and 8 for Exercises 9-12.

Numerical Pattem A: 0. 2. 4. 5, $3,10.12$
Numerical Pattem A: 0. 6. 12. 18, 24, 30.36
9. What is the ruie for Pattern A ? add 2
74. What is a rebationsnip between the sorrusponding terms in ther two
numerical patterns?
Multiply the number in Pattern A by 3 and the product is the number in Pattern B.
13. Extend Your Thinking Wite fwo numerical patterns where
a reiationsthp between the conesponding terms is to muitiply by
5. Start at 0 and write the fost five terms for eact numevicail
pattern and the rule for each numerical pattern.
Sample answer: $0,2,4,6,8$ and $0,12,24,36,48$; The rule for the first numerical pattern is add 2 ; The rule for the second numerical pattern is add 12.

D) Reflect

How can you explain the relationships befweten numencal patterm? Answers may vary.

Practice

ETP Build Procedural Fluency from Conceptual Understanding

If Common Error: Exercise 8 Make sure students solve this problem not by using the relationship they wrote in item 6 (multiply by 4) but rather the inverse of that relationship (divide by 4), as they are starting with a term in Tyler's pattern and finding Quentin's corresponding term.

Item Analysis

Item	DOK	Rigor
$1-8$	2	Application
$9-12$	2	Procedural Skill \& Fluency
13	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How can you explain the relationships between numerical patterns? Ask students to share their reflections with their classmates.

Math is... Mindset

- How have you used your strengths today? What can you work to improve?
Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can generate two numerical patterns using two given rules.
- I can identify relationships between corresponding terms in the generated number patterns.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			pOK Skill
1	2	Understand numerical patterns	Standard
2	2	Understand numerical patterns	5.OA.B.3
3	2	Understand numerical patterns	5.OA.B.3
4	2	Apply numerical patterns	5.OA.B.3

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do
4 of $4 \quad$ Additional Practice or any of the $\boldsymbol{3}$ or $\boldsymbol{3}$ activities
3 of $4 \quad$ Take Another Look or any of the (3) activities
2 or fewer of 4
Small Group Intervention or any of the \mathbb{B} activities

Key for Differentiation

(1) Reinforce Understanding
(B) Build Proficiency

Extend Thinking

Lesson 14-4

Exit Ticket

Name
Darryl and Lena paint ceramic animals. On the first day, they paint 0 animals. Each day after the first day, Darryl paints 2 more animals than he did the previous day and Lena paints 4 more animals than she did the previous day.

1. What ore the first five terms in Darryrs numerical pattern?

$0,2,4,6,8$

2. What are the first five terms in Lena's numerical pattern? $0,4,8,12,16$
3. What is the relationship between corresponding terms in the two numerical patterns?
A. Multiply the number in Lena's pattem by 2. The product is the number in Darryrs pattern.
(B) Multiply the number in Daryr's pattern by 2 . The pooduct is the number in Lena's pattern.
C. Add 2 to Darryfs pattern. The sum is the number in Lena's pattern
D. Add 2 to Lena's pattern. The sum is the number in Darryl's pattern.
4. On the day when Lena paints 24 animals, how marry animals does Darryl pains?
A. 6 animats
(B.) 12 animals
D. 48 animals
C. 24 animals

Reflect On Your Learning

Reinforce Understanding

What's My Pattern?

Work with students in groups. Have one student write a simple pattern rule using addition (such as +4), but does not share the rule. Ask another student to say, "Number in is \qquad -" followed by a number. The first student applies the rule and writes the "number out." Students continue until the group can identify the pattern rule. If students struggle finding the rule, ask "What can you add to the first number to get to the second number?"

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Create and Analyze the Pattern

Differentiation Resource Book, p. 167

Lesson $14-4$ - Reinforce Understanding
Numerical Patterns
Name

Review

Use Numerical Patterns A and B for Exercises 1-5.
Numeical Patrorn A $0,3,5,9,12,15,18,21$ Numeical Pattorn Bi: $0,9,18,27,36,54,63$

1. What is the nile for Pattom A Add 3
2. What is the rive for Pathem By? Add 9
3. What is the relotionahip between the corresponding torms in the two patems?
Multiply the number in Pattern A by 3.
4. When the number in Pottern A is. 25 , what wit the number be in Pattorn 87
75
5. When the number in Faittern 8 is 90 , what will the number be in Patioen 18?
30
Dhymben Maycillod

Build Proficiency

Practice It! Game Station
Numerical Patterns Task Cards
Students practice identifying pattern rules and finding missing terms.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 167-168

Lesson 14-4

Additional Practice

Nome

Review

You can generate numerical patterns using rules and identify a relationship between corresponding terms in two numerical pattems.
Erika and Leo wre picking apples The first minute they each pick 0 apples. Then each minute dffec, Erika adds 4 apples to ner baskent and Leo odos 8 apples to His basket. When Erika has 16 apples in her basket how miny apples wil Leo hive in his bosket? Number of apples in Erika's basket ejch minute: 0, 4, 8, 12, 16, 20 Number of apples in Leo's basket eact minute. Q. 8, 76, 24, 32. 40 When Erilss has 16 apples in her baskot. Leo will have 32 apples in his basket.

Refer to the numeric patterns for Erika and Leo above.

1. What is the rule for the number of apples in Erka's baskept? Add 4
2. What is the rute for the number of apples in Leo's bosket? Add 8
3. What is the telationship between corresponding terms in the two potterns? Sample answer: The number of apples in Leo's basket is 2 times the number of apples in Erika's basket.
4. When teo nas 48 apples in his casket. How many apples wali Erika heve in her basket? 24 apples

Own It! Digital Station

Build Fluency Games

Assign the digital page to develop an understanding of the order of operations.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 167-168

5. Wite the fint six ferms of the numencal pattorn that starts at 0 and follows the nie Add 3 . 0, 3, 6, 9, 12, 15
6. Write the first six terms of the numetical pattern that starts at 0 and follows the rie Add $60,6,12,18,24,30$
7. Compare the numeical patterns. What is the retationstip between corresponding terms in the twa potterns? Sample answer: The terms in the second pattern are 2 times the numbers in the first pattern.

Rodney counts the value of his pennies. Diane counts the value of her nickels. They both start with 0 coins worth 0 cents.

Value of Rodney's pennies: $0,1,2,3,4,5,6$
Value of Diane's nickels: $0,5,10,15,20,25,30$
B. Wiat is the rule for Rodney's partern7 Add 1
9. What is the rule for Dione's pattern? Add 5
10. What we the rent three numbers in Rociney's potfern? 7,8,9
11. What are the nex theee numbers in Diane's patiem $35,40,45$
12. What is the relationstip between corresponding terns in the two patterns?
Sample answer: The value of Diane's coins is 5 times the value of Rodney's colns.
13. When Dione has 40 ceots, what wili be the value of Rodneys cons? 8 cents
14. When Rodney has 10 cents. what wil be the value of Diane's coins? 50 certs

Extend Thinking

Use It! Application Station

A Rule Created That? Students use coordinate planes and coordinate pairs to create 3-D art.
The content of this card has concepts covered later in Lesson 14-6. You may want to assign this card to students
 ready to explore content covered later in this unit.

Websketch Exploration

Assign a websketch
exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 168

Lesson 14.4-Extend Thinking
 Numerical Patterns

Name
In a certain game, players earn 3 tickets for every level completed after Level 1 . Piayers do not recelve any tickets for completing Level t . however they must complete Level 1 before attempting Level 2 .

1. Whte the number of tickets awarded atter comploting each of the following levels.
\qquad
Level 2: 3
Level3: 6

2. Write the rule for the pattern. Add 3
3. How many tickets are awarded aftet completing Levei to? 27
4. How can you find the number of ticketo mwarded after compieting Lovel 100 ?
Sample answer: multiply the number of tickets by 3 then subtract $3 ; 100 \times 3-3=297$
In a simillar game, players earn 5 tickets for every level completed, Including Level 1.
5. Write the number of tickets owarged after completing each of the following levels.

Level f	$\frac{5}{10}$	Level 3
Level 2	$\frac{15}{10}$	Level 4

Wevel $2=\frac{10}{\text { Level 4 }}$
2. How many tickots are awneded affer completing Level 10 ? 50
a. How can you find the number of tickets awarded after completing 300 ievels? Sample answer: muitiply the number of tickets by $5 ; 100 \times 5=500$

Learning Targets

- I can arrange corresponding terms in two numerical patterns in a table.
- I can describe a relationship between corresponding terms in two numerical patterns.

Standards ○ Major Δ Supporting O Additional

Content

5.0A.B Analyze patterns and relationships

O 5.0A.B.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

Math Practices and Processes
MPP Look for and make use of structure.

Vocabulary

Math Terms
corresponding term
Academic Terms
accurate inference
numerical pattern
rule (of a pattern)

Material

The materials may be for any part of the lesson.

- number cubes

Focus

Content Objectives

- Students use a table to arrange corresponding terms in two numerical patterns.
- Students describe a relationship between corresponding terms in two numerical patterns.

Coherence

Previous
- Students generated a number or
shape pattern that follows a given
rule and identified apparent
features of the pattern that were no
explicit in the rule itself (Grade 4).
- Students generated two numerical
patterns using rules and identified
apparent relationships between
corresponding terms in the
patterns (Unit 14).
Rigor
Conceptual Understanding
- Students build understanding of
algebra as they use expressions
to describe relationships
between corresponding terms.

Language Objectives

- Students discuss relationships between corresponding terms in two numerical patterns using the verbs identify and use.
- To support optimizing output, students participate in MLR4: Info Gap.

SEL Objective

- Students self-motivate and sustain engagement to work independently to complete a challenging mathematical task.

Next

- Students form ordered pairs using corresponding terms from two numerical patterns, plot them on the coordinate plane, and use the graph to make conjecture (Unit 14).
- Students represent and analyze quantitative relationships between dependent and independent variables (Grade 6).

Number Routine Can You Make the Number? © ${ }^{5-7 \text { min }}$

Build Fluency Students build number sense as they use $0.1,0.3,0.5$, and 0.7 in any order and using any operations to make the target number 25 .

Students must use all four numbers but can only use each number once in the combination. Encourage students to look for more than one solution.

These prompts encourage students to talk about their reasoning:

- What was your strategy for getting to the target number?
- How could you make the target number if you didn't need to use all the numbers or if you could use them more than once?

Procedural Skill \& Fluency

- Students build proficiency with using pattern rules to extend patterns and find corresponding terms.

Application

- Students apply understanding of patterns to solve problems.

Application is not a specific element of rigor for this standard.

Now

- Students use a table to assist them in finding an apparent relationship between corresponding terms in two numerical patterns.

Purpose Students focus on studying and comparing numerical patterns.

Notice \& Wonder

- What do you notice?
-What do you wonder?
Teaching Tip You may want to relate the numerical patterns to a real-world scenario, as in the previous lesson, to help students think more concretely about the patterns

EIR Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' exploration of how numerical patterns may be related and are based on possible comments and questions that students may make during the share out.
-What do you notice about each pattern?

- How can you describe a relationship between the patterns?
-What tools did you use to help you find a relationship between the two patterns?

Math is... Yindset

- How do you show others you respect their ideas?

SEL Social Awareness: Respect Others

Begin the Notice \& Wonder routine with a short time period for students to work with a partner. Invite students to think about strategies that can help them stay on task and work with others. In addition to developing a sense of respect for others, students will also be able to practice discipline, motivation, and focus.

Transition to Explore \& Develop

Ask students to tell you all they know about the numerical patterns. Guide students to find a relationship between the patterns, if it comes up organically. These questions will get students thinking about a relationship between the numerical patterns.
ErP Establish Mathematics Goals to Focus Learning

- Let's think about tools that can help us find a relationship between corresponding terms in two numerical patterns.

Learn

Pattern A starts at 0 and adds 1 to each term.
Pattern B starts at 0 and adds 5 to eoch term.
How can you determine a relationship between corresponding
terms of these numerical patterns?
You can use a table to identify a relationship botween the patterns.

$\begin{gathered} \text { Potterm A } \\ +1 \end{gathered}$	$\text { Pattem } \mathrm{B}$ $+5$ corres	Each term in Pottern 8 is 5 times as much as its corresponding term in Pattem A. You can use this relationghip to determine unkenown terms.
0	0 0	
1	5	Math is Structure How are the terms in Pattern A relased to their corresponding terms in Pattern B?
2	10	
3	15	
4	20	
If 10 is a term in Pattern A , what is its conresponding term in Pattern B?$10 \times 5=t$$t=50$		If 70 is a term in Pottern B, what is is corresponding teem in Pattem A? $c \times 5=70$

You can organive numerical patterns in a table to heip you identify and describe relationstijps between corresponding terms.

C. Work Together

```
How can you detarmine a relationship between corresponding terms of
these two numerical patterns?
Pattern A starts at 0 and adds 3 to each term.
Pattern B starts at 0 and adds 6 to each term.
The terms in Pattern B are 2 times as much as the terms in Pattern A.
```


(1) Pose the Problem

EPP Pose Purposeful Questions

- How can knowing the rules for the numerical patterns help you determine a relationship between the corresponding terms?
-What tools do you know for representing numerical patterns?
- Why might you need to know a relationship between corresponding terms in numerical patterns?

(2) Develop the Math

Choose the option that best meets your instructional goals.

${ }^{\text {MLR }}$ Info Gap

Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to carry out the problem. Instruct Partner B to ask A what information they need, and for A to respond, explaining why they need it. Have students continue until the problem is completed.

(3) Bring It Together

- How is organizing numerical patterns in a table helpful?
- How can you determine unknown terms in a pattern using a relationship between corresponding terms?

Key Takeaway

- Organizing numerical patterns in a table can help identify relationships between corresponding terms.

Work Together

Students generate two numerical patterns when given the rules for each pattern and describe a relationship between corresponding terms in the patterns.

- Common Error: If students do not write out the first few terms in each pattern, they may think a relationship between the terms is that adding 3 to the terms in Pattern A is how to determine the corresponding terms in Pattern B. Make sure students write out the terms in each pattern in a table to see a relationship between several corresponding terms.

LOM
 Language of Math

Ask students to define rule, and to explain how that word is used in the classroom. Review the math definition of rule and have students discuss similarities between the two definitions. Remind students that, just like they follow classroom rules, terms in a pattern follow the pattern's rule.

CHOOSE YOUR OPTION

Activity-Based Exploration

Students generate numerical patterns when given rules and explore how they can describe a relationship between the patterns.

Directions: Have students work together to solve the Pose the Problem

ETR Support Productive Struggle

-What tools can you use to represent the patterns?

- How can using tools help you understand the patterns and look for relationships?
- How can you identify corresponding terms in the patterns? Explain why this is important.
- What is a relationship between the corresponding terms?

Math is... Structure

- How are the terms in Pattern A related to their corresponding terms in Pattern B ?
Students can step back for an overview and shift perspective and view the apparent relationship in the "other direction," and make inferences about "inverses."

Activity Debrief: Have groups share their numerical patterns and the apparent relationships they discovered. Encourage students to show how they displayed the patterns and why they choose to use that method of organizing the corresponding terms. After students have shared their relationships, have them use their relationship to answer these questions.

- If 10 is a term in Pattern A, what is the corresponding term in Pattern B?
- If 70 is a term in Pattern B, what is the corresponding term in Pattern A?

Guided Exploration

Students generate numerical patterns when given rules, and use a table to assist them in describing the relationship between corresponding terms in the patterns. Students use that relationship to determine unknown terms when given a corresponding term.

GTPUse and Connect Mathematical Representations Have the students determine the first 5 terms in the patterns. Ask:
-What is the first term in each pattern? How do you know?

- How do you determine the next 4 terms?
- Think About It: How does a table help you identify a relationship?
(4) Have the students check their corresponding terms using another method (such as using the pattern rules to extend the Patterns). Make sure students communicate precisely, understand the approaches of others, and ask useful questions to improve each others' ideas. Ask:
- What is another way to find the term in Pattern B that corresponds to 10 in Pattern A?
- What is another way to find the term in Pattern A that corresponds to 70 in Pattern B ?

Math is... Structure

- How are the terms in Pattern A related to their corresponding terms in Pattern B?
Students can step back for an overview and shift perspective and view the apparent relationship in the "other direction," and make inferences about "inverses."

2. Develop the Math

We can use a table to identify a relationship between corresponding terms. Let's determine the first 5 terms in each pattern.

English Learner Scaffolds

Entering/Emerging Ensure understanding of corresponding as it pertains to the lesson. Guide students to the Learn page and show them the Patterns table. Point to the 0 in Pattern B's column. Say Zero is the corresponding term to zero (pointing to each as you say the number). Repeat with 5 and 1 . Then ask students What is the corresponding term for 3 : 10 or 15 ?

Developing/Expanding Ensure understanding of corresponding as it pertains to the lesson. Guide students to the Learn page and show them the Patterns table. Point to the 0 in Pattern B's column. Say Zero is the corresponding term to zero (pointing to each as you say the number). Repeat with 5 and 1 . Then ask students What is the corresponding term for 3?

Bridging/Reaching Guide students to the Learn page and have them focus on the Patterns table. Ask them to name the corresponding term for each term in Pattern A. Then ask students to brainstorm other words for corresponding (parallel, similar, etc.). Allow them to use a dictionary or thesaurus if desired.

On My Own
 MATH

Name
Describe a relationship between corresponding terms in Patterns A and B.

1. Pattern A starts at O and adds 4 to each term. Pattein B starts at 0 and adds 2 to each term. The terms in Pattern A are 2 times as much as the corresponding terms in Pattern B.
2. Pattem A starts at 0 and adas 3 to each term. Pattern E starts at O and adds 9 to each term
The terms in Pattern B are 3 times as much as the corresponding terms in Pattern A.
3. Pattern A stants at 0 and ndds 20 to each term Patten it starts it 0 and adds 5 to each term.
The terms in Pattern A are 4 times as much as the terms in Pattern B.

Use the table to answer Exercises 4-6.
4. Fill in the unixnown terms in the table
5. What is a relationship between the corresponding terms in Patterns A and a?
Multiply the term in pattern A by 4
 and the product is the term in Pattern B,
6. If a term in Pattem A is 20, what will be its corresponding term in Pattern 日? 80
2. Pattern A stants int 0 and adds 1 to each term. Patterm E slarts at 0 and adds 6 to each term. if 5 a a term in Pattemn A. what is its corresponding term in Pattem B7 30
8. Patern A starts a: 0 and addt 4 to nach term. Pattern B starts at 0 and adds 8 to each tem. if 24 is a term in Pattern A, what is its corraspending term in Pattern B? 48
9. Pattern A starts at O and adds 3 to each term. Pattern B starts it 0 and adds 12 to each term it 72 is a term in Pattern 8 , what is its corresponding term in Puttern $A\rangle 18$
10. STEM Connection Saffron is baking bread. She wrote these numerical patterns to record the amount of water and fiour needed
Woter in cups) 3, 4, 5, 6.
Flour (in cupit) 5. 8, 10, 12.
How many cups of water is needed when uting 48 cups of four? 24 cups of water

12. Ertend Your Thinking A relationship behween terms is that a term in Pattern A is $\frac{5}{4}$ times as much as its corresponding term in Prittern \& What could be the rules for each numencal pattern? Sample answer: The rule for Pattern A is add 5; the rule for Pattern B is add 4 .
(P) Reflect

[^20] respect theil ideas?

Practice

EIP Build Procedural Fluency from Conceptual Understanding

[Common Error: Exercises 7-9 Students may struggle to answer these questions without first writing out several terms in each pattern. Encourage students to use a table to help them find the apparent relationships.

Item Analysis

Item	DOK	Rigor
$1-3$	1	Procedural Skill \& Fluency
$4-6$	2	Conceptual Understanding
$7-9$	2	Procedural Skill \& Fluency
10	2	Application
11	3	Conceptual Understanding

Reflect

Students complete the Reflect question.

- How does knowing the rules of two numerical patterns help you determine an unknown corresponding term?
Ask students to share their reflections with their classmates.

Math is... Mindset

- How did you show others you respect their ideas?

Students reflect on how they developed stronger relationship skills.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can arrange corresponding terms in two numerical patterns in a table.
- I can describe a relationship between corresponding terms in two numerical patterns.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item		DOK	Skill
1	1	Relate numerical patterns	Standard
2	1	Relate numerical patterns	5.OA.B.3
3	2	Relate numerical patterns	5.OA.B.3

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3	Additional Practice or any of the \mathbf{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \mathbf{B} activities
1 or fewer of 3	Small Group Intervention or any of the \mathbf{B} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

Reinforce Understanding

What's the Pattern?

Each student rolls a number cube and generates a pattern with a rule starting at 0 and adding that number to create the first 5 terms in the pattern. Students should then compare their numerical patterns and discuss a relationship between corresponding terms in the patterns. If students describe a relationship using addition rather than multiplication, encourage them to find a relationship that works for every pair of terms in the same way.

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Corresponding Terms as Ordered Pairs

Differentiation Resource Book, p. 169

Lesson 14.5 - Reinforce Understanding Relate Numerical Patterns

Name
Review
A table can help you see the relationship
Pattern A: $0,3,6 \quad$ Pattern B: $0.9,18$

A: add 3	Operations	B: add 9
0	+0 or $\times / 3=$	0
3	+6 or $\times 3=$	9
5	+12 or $\times 13$	98

Use the table to answer Exercises 1-3.

1. Fill in the misuing terms in the table.
2. What is the relationiship between the corresponding terms in Patterns A and B ? Multiply the terms in Pattern A by 5.
3. When the term in Pattem A is 100. what will be the term in Pattern B ? 500
Use the table to answer Exercises 4-6.
4. Fill in the missing terms in the tabie.
5. What is the relationship between the ferms in the table?
Add 10 to the terms in Pattern A
6. When the teim in Pattern A is 100 whon will be the teim in Pattern E? 110

Dheretere Mowe Iod

Build Proficiency

Practice It! Game Station
Patterns on the Coordinate Plane Concentration
Students match situations, tables, and graphs.

므즟 즘 믐

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 169-170

Lesson 14.5

Additional Practice

Name

Review

You can organize numerical patterns in a table to help you identify and describe relationships between corresponding terms and use this relationship to determine unknown terms,
Pattern A starts at 0 and adds 2 to each term
Pattem B starts at 0 and adds B to wach herm
What is the corresponding term in Pattern B when the torm in Patiem A is 14?
Maies a table to show the first 5 terms in each patterm,

Pattern A	0	2	4	6	3
Pattern B	0	B	16	24	32

Notice that the terms in Pattern 8 are 4 times the corresponding terms in Pattert A.
When 4 is the ferm in Pattem A, the cotresponding term in Pathem
Eis $14 \times 4=56$.
Refer to the numeric patterns A and B above.

1. When the term in Partern A is 22 , what will be the corresponding term in Pattern B7 88
2. When the serm in Pattern A is 48 , whyt will be the comesponding term in Pattero A> 12
3. When the term in Pattem ie is 200 , what well be the corresponding term in Pattem A? 50
4. Whan the term in Pattern A is 100 , what will be the corresponding term in Pathern B? 400

Own It! Digital Station

Build Fluency Games

Assign the digital page to develop an understanding of the order of operations.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Student Practice Book, pp. 169-170

```
Use the patterns for problems 5-8.
Pattern A: Starts at 0 and adds 3 to ench term.
Pattern B: Starts at O and adds 9 to ench term.
5. Complete the table that shown the tist sax terms of the
    numerical potterts
        |Pattorn A 
6. What is the relatonshipp between the terms in Pattem B and tre
    corresponding terrs in Pattern A)
    The terms in Pattern B are 3 times the
    corresponding terms in Pattern A.
7. When the term in Pattem A is 21, what wal bo the coresponiding
    term in Pattern: 的}6
8. When the term in Pattern & is 90, what wall be the cornesponding
    tevm in Pasteen AP 30
9. A recipe requires 2 cunces of flour for every 6 ounces of water A
    baker uses 12 ounces of flout. How many ounces of water should
    the boker use? 36 cunces
10. A rostaurant uses 3 eggs in owery omelet sevved. How mary
    omelots were served if 24 nggy were used? 8}\mathrm{ omelets
```



```
    tron,ym
        Sesem mucter boser
``` Activity the ofternitum

Sesear hacter fock

\section*{Extend Thinking}

Use It! Application Station
Earning an Income Students research 5 jobs and incomes, create a table, and plot the results on a coordinate plane. The content of this card has concepts covered later in Lesson 14-6. You may want to assign this card to students
 ready to explore content covered later in this unit.

\section*{Websketch Exploration}

Assign a websketch
exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 170

\section*{Lesson 14.5 - Extend Thinking Relate Numerical Patterns}

Name
A baseball trading card company is running a special edition of card sets by packaging 2 classic player cards with every 4 current ployer cards.
1. Create a table that shows the relationship betweon the two type of cards by listing the number of current player cards and the corresponding number of number classic player cards.

\begin{tabular}{|c|c|}
\hline \# Classic Ployer Cards & OCurtent Player Cards \\
\hline 6 & 12 \\
\hline 8 & 15 \\
\hline 44 & 28 \\
\hline
\end{tabular}
2. What is the rule for the number of currient ployer carts? add 4
3. What is the rule for the number of classic player cards? add 2
4. What is the relationship botween the torms in the table? Divide the number of current player cards by 2.
5. How many classic ploying cards will a special edition set thet contains 64 of the current player carcs? 32
6. is it possible for a specisi edition set to contain exactly 10 of the current player cards? Explain how you know
No; the number of current player cards must be a muitiple of 4 , and 10 is not a multiple of 4 .

\section*{Graphs of Numerical Patterns}

\section*{Learning Targets}
- I can form ordered pairs consisting of corresponding terms from two numerical patterns.
- I can plot those ordered pairs on the coordinate plane.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
5.0A.B Analyze patterns and relationships

O 5.0A.B.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.

\section*{Math Practices and Processes}

MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objective}
- Students plot ordered pairs consisting of the corresponding terms from two numerical patterns.

\section*{Language Objectives}
- Students explain how to plot ordered pairs of corresponding terms from two numerical patterns using can and should.
- To support sense-making, ELs participate in MLR3: Three Reads.

\section*{SEL Objective}
- Students discuss alternative strategies/methods for solving a mathematical problem and the value of flexible thinking.

\section*{Coherence}

\section*{Previous}
- Students generated a number or shape pattern that follows a given rule and identified apparent features of the pattern that were not explicit in the rule itself (Grade 4).
- Students used a table to assist them in finding an apparent relationship between corresponding terms in two numerical patterns (Unit 14).

\section*{Next}
- Students represent and analyze quantitative relationships between dependent and independent variables (Grade 6).

\section*{Rigor}

\section*{Conceptual Understanding}
- Students extend understanding by plotting ordered pairs and interpreting relationships between corresponding terms.

\section*{Procedural Skill \& Fluency}
- Students develop proficiency with plotting points accurately and interpreting data shown on coordinate planes.

\section*{Application}
- Students solve problems with real-world contexts.
Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ corresponding \\ term \\ Academic Terms \\ analyze \\ numerical pattern
}

\section*{Materials}

The materials may be for any part of the lesson.
- blank cubes
- Coordinate Plane teaching resource
- index cards

\section*{Number Routine Can You Make the Number? © \({ }_{5-7 \text { min }}\)}

Build Fluency Students build number sense as they use \(0.1,0.5,0.7\), and 0.9 in any order and with any operations in a numerical expression to make the target number 0.68.

Students must use all four numbers but can only use each number once.
Encourage students to look for more than one solution.

These prompts encourage students to talk about their reasoning:
- What are some ways to think about 0.68 ?
- How did you use the order of operations? Why did you use grouping symbols? How is this helpful?

Purpose Students think about how a relationship between two patterns can be plotted on the coordinate plane.

\section*{Numberless Graph}
-What math do you see?
Teaching Tip You may want to review with students all of the components of the coordinate plane before they begin class discussion.

\section*{ETP \\ Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' exploration of how a graph can show a relationship between two patterns and are based on possible comments and questions that students may make during the share out.
-Why do you think the points are joined by a line?
- What conjectures can you make about any other points from this example that would be plotted on that coordinate plane?

\section*{Math is... Mindset}
- How do you act with your classmates to build safe classroom culture?

\section*{SEL}

Responsible Decision-Making: Ethical Responsibility
As students work through the Numberless Graph routine, have them think about the rules and routines of the classroom environment. Understanding these rules and routines of the classroom environment can help students be responsible contributors to the learning community. Remind them that thinking ethically can help them work responsibly through challenging problems.

\section*{Transition to Explore \& Develop}

Question students to determine if they can relate the graph to two numerical patterns. Encourage them to tell you all they know about the relationships between numerical patterns.

\section*{Establish Mathematics Goals to Focus Learning}
- Let's think about how we can use the coordinate plane to understand a relationship between two numerical patterns.

\section*{Learn}

Martin wants to rent a bike for 7 doys. The cost to rent a blee is \(\$ 20\) each day.

How can you determine how much it should cost Martin to rent a bike for 7 days?

You can make a 2 -column table
The first column shows the number of days of a rentac.

The second column shows the cost of the bike rental.

Renting a bike for 7 days costs \(\$ 140\).

\section*{C Work Together}

How much should a cost for Martin to rent a bike for \(4 \frac{1}{2}\) days? Explain your reasoning.
\$90; Sample answer: You can use the relationship, \(4 \frac{1}{2} \times 20=90\).

\section*{(1) Pose the Problem}

\section*{EPP Pose Purposeful Questions}
-What do you notice about the information given in the table?
- What information do you want to find?
- How can you use the information given in the table to think about the problem?

\section*{(2) Develop the Math}

Choose the option that best meets your instructional goals.

\section*{Three Reads}

1st read: Instruct students to look at the Work Together problem on the Learn page. Ensure students understand the situation and key words: rent, amounts, and charges. 2nd read: Focus students' attention on the How can... question.
3rd read: Instruct students to brainstorm ways to solve the problem.

\section*{(3) Bring It Together}

EIP Elicit and Use Evidence of Student Thinking
- How can you graph two numerical patterns on the coordinate plane?

\section*{Key Takeaway}
- Ordered pairs can be formed using corresponding terms from two numerical patterns and graphed on the coordinate plane.

\section*{Work Together}

Students work together to solve a problem involving an unknown term by using a corresponding term. Have students use a relationship and/or graph to explain their reasoning.

Common Error: Students may be confused as to how to solve the problem as \(4 \frac{1}{2}\) is not one of the terms of the pattern. Point out that finding a relationship allows you to make conjectures about values not in the patterns.

\section*{LOM \\ Language of Math}

Students may be aware of coordinate as a verb meaning organize or match, also. Point out that the noun (as in \(x\)-coordinate) and the verb are spelled the same but pronounced differently.

\section*{CHOOSE YOUR OPTION}

\section*{Activity-Based Exploration}

Students explore how they can represent numerical patterns on the coordinate plane.

Materials: Coordinate Plane Teaching Resource
Directions: Provide copies of the Coordinate Plane Teaching Resource. Have students work together to solve the Pose the Problem.

\section*{Support Productive Struggle}
- How can you describe the rules in the numerical patterns?
- How can you describe a relationship between corresponding terms in the numerical patterns?
- How can you write the corresponding terms as ordered pairs?
- How can you plot the points to represent the ordered pairs?

\section*{Math is... Choosing Tools}
- How might writing the corresponding terms as ordered pairs help you solve this problem?
Students make sound decisions about when a tool like the coordinate plane might be helpful, recognizing both the insight to be gained from it and its limitations.
-What do you notice about the graph of these numerical patterns?
Activity Debrief: Have students share their solutions to the problem. Ensure students understand that another way to represent numerical patterns is to form and plot ordered pairs using the corresponding terms.

\section*{Guided Exploration}

Students form ordered pairs using corresponding terms from two numerical patterns, plot them on the coordinate plane, and analyze the graph to draw conclusions.

\section*{ETP Facilitate Meaningful Mathematical Discourse}

Have the students write the ordered pairs. Ask:
-What should the \(x\) - and \(y\)-coordinates be?
Q Have the students use the Coordinate Plane Teaching Resource to plot the ordered pairs. Ask:
- What label and numbers should go on the \(x\)-axis?
-What label and numbers should go on the \(y\)-axis?
- How can you plot each point?
- Think About It: Is there another way you can find the cost for 7 days? Explain how.

Q Have the students speculate about the linear functions they will learn about in Grade 6. Ask:
- What do you notice about the segments joining the points?
- Do you think other points having this relationship will be on this line?
- How could the line help you predict what other costs might be?

\section*{Math is... choosing Tools}
- How might writing the corresponding terms as ordered pairs help you solve this problem?
Students make sound decisions about when a tool like the coordinate plane might be helpful, recognizing both the insight to be gained from it and its limitations.

\section*{English Learner Scaffolds}

Entering/Emerging Explain write \(\qquad\) as _Guide students to the Learn page and have them look at the Bikes and Trikes Rental table. Point to the 1 and 20. Say We can write corresponding terms as ordered pairs. Write them corres as ordered pairs. Repeat with 2 and 40 . Then point to 3 and 80 and ask Can we write 3 and 80 as ordered pairs? Point to 3 and 60 and ask Can we write 3 and 60 as ordered pairs?

Developing/Expanding Explain write \(\qquad\) as Guide students to the Learn page and have them look at the Bikes and Trikes Rental table. Point to the 1 and 20. Say We can write rresponding terms as ordered pairs. Write them ord as ordered pairs. Repeat with 2 and 40. Then ask students to complete the sentence: We can
\(\qquad\) (write) 3 and 60 as \(\qquad\) (ordered pairs)

Bridging/Reaching Guide students to the Learn page and ask students to focus on the sentence structure of You can write the corresponding terms as red pairs. Then ask students to think about what they've learned this year and to come up with a sentence with the same structure. For example: You can write fractions as decimals. Provide prompts for students who need more guidance.

2. STEM Connection Malik fearns that the light from a laser is stronger when the curtert is stronget. He is helping to make a laser where the rule for the current is add 10 , and the rule for the Ight strength is add 2 . Write the corresponding terms in a table. and then plot the points on the coordinate plane.

Extend Your Thinking How does graphing numprical petturns helo you understand the relationship between the patterns? Answers may vary.

\section*{(2) Reflect}

How can you plot ordered pairs consisting of corresponding terms from two patterns?
Answers may vary.

\section*{Practice}

\section*{ETP Build Procedural Fluency from Conceptual Understanding}

1 Common Error: Exercise 1 Make sure students do not mix up the \(x\)-coordinate and \(y\)-coordinate for each ordered pair as they plot the points. Remind students that the \(x\)-axis is the horizontal axis, and the \(y\)-axis is the vertical axis.

\section*{Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4,6\) & 1 & Procedural Skill \& Fluency \\
5,7 & 2 & Application \\
8 & 2 & Application \\
9 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you plot ordered pairs consisting of corresponding terms from two patterns?
Ask students to share their reflections with their classmates.

\section*{Math is... Yindset}
- How did you and your classmates build a safe classroom culture? Students reflect on how they developed stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can form ordered pairs consisting of corresponding terms from two numerical patterns.
- I can plot those ordered pairs on the coordinate plane.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{ccl|l|}
\hline \multicolumn{3}{|c|}{ Item pok Skill } & Standard \\
\hline 1 & 2 & \begin{tabular}{l}
Develop ordered pairs to graph \\
numerical patterns
\end{tabular} & 5.OA.B.3 \\
2 & 2 & Graph numerical patterns & 5.OA.B.3 \\
3 & 2 & Interpret graphs of numerical patterns & 5.OA.B.3 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{ll}
If students score & then have students do \\
\hline 3 of 3 & Additional Practice or any of the \(\mathbf{B}\) or \(\boldsymbol{\beta}\) activities \\
2 of 3 & Take Another Look or any of the \(\mathbf{B}\) activities \\
1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
© Reinforce Understanding
(B) Build Proficiency

E Extend Thinking

\section*{Lesson 14-6}

\section*{Exit Ticket}

Name
Nate is going bowling. He wants to know how many games he can
afford to bowl. The cost of each game is shown in the table.
1. Write the corresponding terms as ordered pairs
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Bowling Costs } \\
\hline Number of Games & Cent (\$) & Ordered Pair \\
\hline 0 & 0 & \((0,0)\) \\
\hline 1 & 5 & \((1,5)\) \\
\hline 2 & 10 & \((2,10)\) \\
\hline 3 & 15 & \((3,15)\) \\
\hline
\end{tabular}
2. Nate plots the ordered palis on the coordinate plane Are his plots correct? Choose Yes or No.
(A) Ye
B. No

3. Nate can spend \(\$ 20\) on bowling. How many games can Nate bowl?
(A)
4 games
B. 5 games
C. 15 games
D. 100 games

Reflect On Your Learning

\section*{Reinforce Understanding}

\section*{Lining Up Points!}

Provide a cube labeled with 6 different rules and a chart with \(x\)-coordinates listed on an index card. Each student rolls the cube and uses the rule to fill in the \(y\)-coordinates on the chart. Then each student plots the points on the coordinate plane in a unique color. Have students discuss relationships that they see between the sets of colored points. Help students recognize that all of the rules resulted in straight lines.

\section*{Take Another Look Lesson}

Assign the interactive lesson
to reinforce targeted skills.
- Graph Ordered Pairs

Differentiation Resource Book, p. 171

Lesson 14 -6 - Reinforce Undenstanding Graphs of Numerical Patterns

Name

\section*{Review}

You can graph corresponding terms from two numerical patterns as ordered pairs on a coordinate planes.
\begin{tabular}{|c|c|c|}
\hline Pattern A & Patsern B & Ordered Poir \\
\hline 0 & 0 & \((0,0)\) \\
\hline 1 & 2 & \((1,2)\) \\
\hline 7 & \(?\) & \(?\) \\
\hline 3 & 6 & \((3,6)\) \\
\hline
\end{tabular}

The graph shaws the missing values as the point (2, 4)
Use the table to answer Exercises 1-3.
\begin{tabular}{|c|c|c|}
\hline & & \\
Pantem A & Pattern a & Ordered Palt \\
\hline 0 & 0 & \((0,0)\) \\
\hline 2 & 20 & \((2,20)\) \\
\hline 4 & 40 & \((4,40)\) \\
\hline 6 & 60 & \((6,60)\) \\
\hline
\end{tabular}

1. Write the ordered paiss and plot the points on the graph.
2. Use the graph to predict the value of Partions 8 when Pattern \(A\) is equal to 3 Wite your answer as a coordirate pait \((3,30)\)
3. What is the felationship botween the coresponding terms? multiply Pattern A by 10

\section*{Build Proficiency}

Practice It! Game Station
Patterns on the Coordinate Plane Concentration
Students match situations, tables, and graphs.

\section*{므즟略 믐}

\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 171-172

\section*{Additional Practice}

Name

Review
You can plot corresponding terms from numerical patterns as ordered pairs on a coordinate plane and use the data to solve problems.
The table shows the number of hours driven on a car trip and the rumber of miles traveled. The erdered pairs are graphed on the coordinate plane
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Number \\
of hours
\end{tabular} & \begin{tabular}{c}
Number \\
of miles
\end{tabular} & \begin{tabular}{c}
Ordered \\
palr
\end{tabular} \\
\hline 1 & 40 & \((1.40)\) \\
\hline 2 & 80 & \((2,80)\) \\
\hline 3 & 120 & \((3,120)\) \\
\hline 4 & 160 & \((4,160)\) \\
\hline 5 & 200 & \((5,200)\) \\
\hline
\end{tabular}

How many hours will it take to travel 240 miles?
Extend the line of the graph. Wher the Ine reaches 240 miles. along the \(y\)-axis, the \(x\)-coordinate of the point will be 6
it will take 6 tours to travel 240 miles.
Refer to the data above for problems 1-4.
1. How many mles were traeied after 3 hours? 120 miles
2. How mony hours did it take to travet 80 milies? 2 hours
3. What is the relvtionship botwien the number of hourn spert triveling and the number of miles friveled? Multiply the number of hours traveled by 40 .
4. Atter 10 hours, how many miles will be traveled? 400 miles

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital page to develop an understanding of the order of operations.

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review Practice from the Digital Teacher Center.

Any

\section*{Extend Thinking}

Use It! Application Station
Color by Number Students use grid paper to create designs and numerical expressions.

\section*{Websketch Exploration}

Assign a websketch
exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 172
Lessen 14-6-Extend Thinking Graphs of Numerical Patterns
Name
The Santiago family is filling their car with gas at Gary's Gas Station. The costs per gallons of gas are shown on the graph.

Use the graph to answer the questions.

1. Fill in the tabla for the first 4 galions:
2. How much will it cost to fill a tark with 5 gallons of gal?
\(\qquad\)
3. How much it will cost to fill a tank with 10 gollons ef gas? \(\$ 30\)
4. What is the ruie for the Cost column in
\begin{tabular}{|c|c|}
\hline Gallons & Cost (\((\boldsymbol{)}\)) \\
\hline 0 & 0 \\
\hline 1 & 3 \\
\hline 2 & 6 \\
\hline 3 & 9 \\
\hline 4 & 12 \\
\hline
\end{tabular} the tabie? add 3
5. What is the relatonship betwepn the number of gallons and the cost of gas? Multiply the number of gallons by 3 .
6. Haw much does gas cost per gollon at Garys Gas Station? \$3.00 per gallon
2. How many Gallons of ges can be purchased wat \(\$ 507\) Explain how you found your answer.
16 gallons; 10 gallons costs \(\$ 30\) and 6 gallons cost \(\$ 18 . \$ 30+\$ 18=\$ 48\) and \(10 \mathrm{~g}+6 \mathrm{~g}=16 \mathrm{~g} ;\) so you can buy 16 gallons of gas with \(\$ 50\).

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Students Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{|l|l|}
\hline Item & Lesson \\
\hline 1 & \(14-5\) \\
2 & \(14-1\) \\
3 & \(14-3\) \\
4 & \(14-3\) \\
5 & \(14-3\) \\
6 & \(14-4\) \\
7 & \(14-2\) \\
8 & \(14-5\) \\
9 & \(14-2\) \\
\hline
\end{tabular}

\section*{Review}

\section*{Item Analysis}
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 10 & 1 & \(14-1\) & \(5.0 A . A .1,5 . O A . A .2\) \\
11 & 1 & \(14-3\) & \(5.0 A . A .1\) \\
12 & 2 & \(14-5\) & \(5.0 A . B .3\) \\
13 & 1 & \(14-2\) & 5.OA.A.1, 5.OA.A.2 \\
14 & 1 & \(14-1\) & 5.OA.A.1, 5.OA.A.2 \\
14 & 1 & \(14-2\) & 5.OA.A.1, 5.OA.A.2 \\
16 & 1 & \(14-3\) & 5.0A.A.1 \\
17 & 1 & \(14-3\) & 5.OA.A.1 \\
18 & 2 & \(14-4\) & 5.OA.B.3 \\
19 & 1 & \(14-2\) & 5.OA.A.1, 5.OA.A.2 \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 20 a & 2 & \(14-5\) & 5.OA.B.3 \\
20b & 2 & \(14-6\) & 5.OA.B.3 \\
21 & 1 & \(14-1\) & 5.OA.A.1, 5.OA.A.2 \\
22 & 1 & \(14-2\) & 5.OA.A.1, 5.OA.A.2 \\
23 & 1 & \(14-1\) & 5.OA.A.1, 5.OA.A.2 \\
24 & 1 & \(14-3\) & 5.OA.A.1 \\
25 & 1 & \(14-4\) & 5.OA.B.3 \\
26 & 1 & \(14-3\) & 5.OA.A.1 \\
\hline
\end{tabular}

\section*{Performance Task}

Standards: 5.0A.A.1, 5.0A.A.2, 5.0A.B. 3
Rubric (2 points)

\section*{Part A (DOK 2) - 2 points}

2 POINTS Student's work reflects proficiency with using expressions and patterns.
1 POINT Student's work reflects developing proficiency with using expressions and patterns.
0 POINTS Student's work shows weak proficiency with using expressions and patterns.

Part B (DOK 2) - 2 points
2 POINTS Student's work reflects proficiency with using expressions and patterns.
1 POINTS Student's work reflects developing proficiency with using expressions and patterns.
0 POINTS Student's work shows weak proficiency with using expressions and patterns.

\section*{Reflect}

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.

\section*{Performance Task}

Moik has programmed a light atiow for a concert that will be planed against a rectangulor shaped screen above the stage.
Part A: Each time he flashes lights. Malk flashes red lights 2 nore times and blue lights 3 more times. Start at 0 and wite the next 4 terms of the sequences 10 the red ind blue ights
red lights: \(0,2,4,6,8, \ldots\)
blue lights: \(0,3,6,9,12, \ldots\)
Part B: The table shows the norizontal and vertical ontances of a photograpir in teet from the bottom left cornet as if moves across the screen.
\begin{tabular}{|c|c|}
\hline Horlzontal Distance itn & Verticmin Distancer im \\
\hline\(D\) & 0 \\
\hline 1 & 4 \\
\hline 2 & 8 \\
\hline 3 & 12 \\
\hline
\end{tabular}

What is the rule for the Horizortal Datance and Vertical Distance? What is the relationship between the cortesponding terms in the Horizontal and Vertical Distances?
Horizontal Distance: add 1 , Vertical Distance: add 4. Multiply the horizontal distance by 4 to find the corresponding term in vertical distances.

\section*{(2) Refleet}

How can i use expressions to find a retationship bertween two sets of number potterns?
Answers may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice choosing a strategy to multiply.

\section*{Fluency Progression}
\begin{tabular}{|l|l|l|}
\hline Unit & Skill & Standard \\
\hline 1 & Use Partial Sums to Add & 4.NBT.B.4 \\
\hline 2 & Decompose by Place Value to Subtract & 4.NBT.B.4 \\
\hline 3 & Use an Algorithm to Add & 4.NBT.B.4 \\
4 & Use an Algorithm to Subtract & 4.NBT.B.4 \\
5 & Choose a Strategy to Add & 4.NBT.B.4 \\
\hline 6 & Choose a Strategy to Subtract & 4.NBT.B.4 \\
7 & Multiply by Multiples of 10 & 5.NBT.B.5 \\
\hline 8 & Multiply by Multiples of 100 & 5.NBT.B.5 \\
\hline 9 & Divide Multiples of 10 & 5.NBT.B.6 \\
\hline 10 & \begin{tabular}{l}
Divide Multiples of 100
\end{tabular} & 5.NBT.B.6 \\
\hline 11 & \begin{tabular}{l}
Use an Algorithm to Multiply (2- and 3-Digit
\end{tabular} & 5.NBT.B.5 \\
\hline 12 & \begin{tabular}{l}
Numbers by 1-Digit Numbers) \\
Use an Algorithm to Multiply (2-Digit Numbers \\
by 2-Digit Numbers)
\end{tabular} & 5.NBT.B.5 \\
\hline 13 & \begin{tabular}{l}
Choose a Strategy to Multiply
\end{tabular} & 5.NBT.B.5 \\
\hline \(\mathbf{1 4}\) & Choose a Strategy to Multiply & 5.NBT.B.5 \\
\hline
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Invoicing}

Students draw on their understanding of numerical expressions and patterns. Use the rubric shown to evaluate students' work.

Standards: 5.OA.A.1, 5.OA.B. 3
Rubric (8 points)

\section*{Part A (DOK 2) -2 points}

2 POINTS Student's work reflects a proficiency with interpreting numerical expressions. The student's explanation is accurate.
1 POINT Student's work reflects a developing proficiency with interpreting numerical expressions. The student's explanation is incomplete or contains a minor error.
0 POINTS Student's work reflects a weak proficiency with interpreting numerical expressions. The student's explanation is inaccurate.

\section*{Part B (DOK 1) - \(\mathbf{2}\) points}

2 POINTS Student's work reflects a proficiency with evaluating numerical expressions. The student's answer and calculation are accurate.
1 POINT Student's work reflects a developing proficiency with evaluating numerical expressions. The student's answer is inaccurate due to a minor error in calculation.
0 POINTS Student's work reflects a weak proficiency with evaluating numerical expressions. The student's answer is incorrect due to several errors in calculation.

\section*{Part C (DOK 3) - \(\mathbf{2}\) points}

2 POINTS Student's work reflects a proficiency with describing rules in patterns and relationships between corresponding terms. The student's rules and relationship descriptions are accurate.
1 POINT Student's work reflects a developing proficiency with describing rules in patterns and relationships between corresponding terms. The student's rules or relationship description is inaccurate.

0 POINTS Student's work reflects a weak proficiency with describing rules in patterns and relationships between corresponding terms. The student's rules and relationship descriptions are inaccurate.

\section*{Part D (DOK 2) - 2 points}

2 POINTS Student's work reflects a proficiency with graphing ordered pairs. The student accurately graphs the coordinates and has the correct cost to purchase 7 of Lure F.
1 POINT Student's work reflects a developing proficiency with graphing ordered pairs. The student had an error in graphing the coordinates or the cost to purchase 7 of Lure F is incorrect.
0 POINTS Student's work reflects a weak proficiency with graphing ordered pairs. The student inaccurately graphs the coordinates and the cost to purchase 7 of Lure F is incorrect.

\section*{Unit 14}

\section*{Performance Task}

Name

\section*{Invoicing}

Dwight is calculating an invoice for is customer who is buying some of his fishing lures. The table shows the type of lure and ats noumal price.
\begin{tabular}{|c|c|}
\hline Lure Type & Normal Price \\
\hline A & \(\$ 5\) each \\
\hline B & \(\$ 3\) each \\
\hline C & \(\$ 6\) each \\
\hline D & \(\$ 5\) each \\
\hline E & \(\$ 4\) each \\
\hline
\end{tabular}

Part A
Dwight is totaling the cost for the customec. He writes the following expression. Fromi the expression, what was the customer's ordec? \(5(7+97+10 \times 6+8(3+4)\)
The customer ordered 7 of lure \(A, 9\) of lure \(D, 10\) of lure \(C\), 8 of lure B and 8 of lure E . Another possible answer is the customer ordered 7 of lure D, 9 of lure \(A, 10\) of lure C, 8 of lure B and 8 of lure E.
```

Part B
Help Dwight calculate the total for the customer's invoice
Show your work.
\$196;5(7+9)+10\times6+8(3+4)=5\times16+10\times6+8
\times7
=80+60+56
=140+56
=196

## Part C

A week later. Dwight introduces Lure F for sale in his store. Describe the rules in eoch numerical patters and the relationshig between the corresponding terms in the patterns.

Pattern 1	Pattern 2
Number of Lure F	Total Cost (\$)
2	$\$ 14$
5	$\$ 35$
8	$\$ 56$
$\pi 1$	$\$ 77$
14	$\$ 98$

The rule for the pattern 1 is to add 3 to each term. The rule for pattern 2 is to add 21 to each term. The relationship between the corresponding terms in the patterns is to multiple the term of pattern 1 by 7 to get the corresponding term in pattern 2.

Part D
Graph the table from Part C on the grid provided. Be sure to label the axes. Using your graph. how much will it cost to purchase 7 of Lure F? 49

## Unit Assessments

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

## Item Analysis

Item		sson G.	uided Support Intervention Lesson	Standard
1	1	14-1	Write Numerical Expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
2	2	14-1	Write Numerical Expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
3	1	14-2	Interpret the Magnitude of Expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
4	2	14-2	Interpret the Magnitude of Expressions	$\begin{aligned} & \text { 5.OA.A.1, } \\ & \text { 5.OA.A. } \end{aligned}$
5	1	14-3	Apply Order of Operations	5.OA.A. 1
6	1	14-3	Apply Order of Operations	5.OA.A. 1
7	2	14-2	Interpret the Magnitude of Expressions	5.OA.A. 2
8	2	14-4	Create and Analyze the Pattern	5.OA.B. 3
9	2	14-4	Create and Analyze the Pattern	5.OA.B. 3
10	2	14-6	Graph Ordered Pairs	5.OA.B. 3
11	2	14-6	Graph Ordered Pairs	5.OA.B. 3
12	2	14-6	Graph Ordered Pairs	5.OA.B. 3
13	1	14-5	Corresponding Terms as Ordered Pairs	5.OA.B. 3
14	2	14-5	Corresponding Terms as Ordered Pairs	5.OA.B. 3
15	3	14-3	Understand Order of Operations	5.OA.A. 1

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


## Unit 14

## Unit Assessment, Form A

Name

1. Which numerical expression represents the description? Add 3 and 5. Then subtract the sum from 20
A. $3+5-20$

## B. $(2+5)-20$

C. $20-3+5$
(D) $20-(3+5)$
2. Cary makes snack bags using peanuts and ralisins. He maws 5 ounces of peanuts with 3 cunces of raisins. Which expretsion can be used to find how many ounces of peanuts and rasins Cary uses to make 6 snack bags?
A. $6 \times 5+3$
B. $6 \times 3+5$
C. $6+5 \times 3$
D. $16 \times 5)+(6 \times 3)$
3. Which correctiy describes the expression $15-(3 \times 4)$ ?
A. subtract 3 from 15 , then muniply by 4
B. find the product of 3 and 4 , then subtract 15
C. multiply 3 and 4 , then subtract the product fram 15
D. multiply 15 and 4 , then subtract 3
4. Write the description for the numeriosi expression
$7 \times(12-8)$
Subtract 8 from 12, then multiply by 7.
5. Which is the solution?
$5+8+2=$
A. 7
B. 10
C. 11
D. 12
6. What is the solution?
$6+12+7 \times 7=14$
7. Which situation can be reprosented by the numerical exprossion?
$5 \times 3+2$
A. Gertrude bought 6 hats that each cost 3 sollars and a poir of sunglaspes that coat 2 collars
B. Gertride bought 6 hats and 2 palss of sungiasses that each cost 3 dollars.
C. Gertrude bought a hat that costa 6 dollais and 3 phirs of sunglasses that each cost 2 dollars.
D. Gertrude bought 3 hats and 2 pairs of sunglasses that each cost 6 dolers

Ken and Tamika are bullding a puzzie. On the first day, Ken and Tamika did not put together aryy of the purzle pleces. Each day after the first day, Ken fits in 12 more pieces than he did the previous day and Tamilka fits in 6 more pleces than she did on the previous day.
8. What are the lisst flive tevms in Tamika's numerical postem?
A. $0,12,24,36,48$
B. $0,12,25,48,96$
(C) $0,6,12,18,24$
D. $0,5,12,24,48$
9. On the day when Ken has fie in 60 puzzie pleces, how many purzie pleces has Tamika fit in?
A. 6 pieces
B. 18 pleces
C. 30 pieces
D. 120 pieces

## Unit 14

Unit Assessment. Form A icontinuedi
Name
Nicolaus is making bowls out of clay. He wants to know the number of bowis he can make with the amount of clay he has.
10. What the comesponcing terms as ordered pairs and plot them on the coordinate plane.

Cley Bowls		
Number   of Bewts	Amount of   Clay   (poundy)	Ordered Pair
0	0	$(0,0)$
1	4	$(1,4)$
2	8	$(2,8)$
3	12	$(3,12)$
4	15	$(4,16)$


11. Which is the rule for showing the retabonstrip between the number of bowls and the number of pounds of clay used?
A. Add 1
B. Add 4
C. Multioly by 4
D. Muliply by 2
12. Ncolasa makes 5 bowis How many pounds of dioy does he use?
A. 5 pounds
B. 12 pounds
C. 16 pouncts
(D) 20 pounds
13. Which describes the retationship between the corresponding terms in Patterns $A$ and $B$ ?
Pattern A starts at 0 and adds 4 to each term Pattern 8 starts of 0 and adds 8 to ench term.
A. The fernss in Pattimatiare 4 more ftan the comesponding terms in Pattern A .
B. The terms in Pattern 8 are 8 more than the canespondirag ferms in Pattern $A$.
C. The terns in Pathern $B$ are 2 times as much is the corresponding teims in Pattern $A$
D. The terms in Pottern 目 are 4 times as much in the corresporicing terms in Pattern $A$.
14. Kurni makes a bracelet that uase 4 ied beads for every 2 blue beads One bracelet Kem mabes uses 12 red blods. How many blue beeds are on the bracelet?
(A.) 5 blues buads
E. No blue beads
C. 18 blue beads
D. 24 blue beads
15. What is the solution? Explain now to use order of operations to soive:
$72+(3+6)-4 \times 2$
0 ; Sample answer: According to the Order of Operations we solve within the parentheses first: $72 \div(3+6)-4 \times 2=72 \div 9-4 \times 2$
Then multiply and divide from left to right:
$8-4 \times 2=8-8$. Then add and subtract from left to right: $8-8=0$.

## Form B

## Uint is

## Unit Assessment, Form B



A. $i+3-18 \quad$ ie $i+\pi-3$
c. $x-1+8$
(D) $=-14+8$


cavs ins stmun Provs teget.
A. $5 \times 2+1$
(B) $5 \times 10+1+0 \times 6$
C. $9+1 \times 5$

D $1 \times \times 0+1$



c. ternophoer wa nes tron named if
B. matob Munds then wosiet?
4. Ww reaweontiction neorewner
$5 \times|0|-8$
Suhtract lif fiom 10, than multiply by 5

1. Wicruprevinup
$\mathrm{B}+\mathrm{C+2=}$ (
( ) $\#$ cis $\quad$ D. 18





2. Hervve for ive tima iofincourery





$\mathrm{mm} \longrightarrow=$


 a. A il

5 Aar


A. apouss

1. 470 me
a. pipue mere
2*|f(-3) $+24+$.
G6c Simpte answer: Accarding to the Order of operations we solve wahin the parentheses finit: $10 \times(8-2)+24+4=10 \times 6+24+4$. Then mattiply and thitde from teet to right
$60+24+4=60+6$. Then add and sutrract trum lef to right $60+6=56$.

## Summative Assessment

The Summative Assessment is available in both print and digital.
Data When students complete the Summative Assessment in the Digital Student Center, their responses are auto-scored.

Item Analysis

Item pok Skill			Standard
1	2	Multiply multi-digit numbers	5.NBT.B. 5
2	2	Use data from a line plot to solve word problems5.MD.B. 2	
3	2	Multiply multi-digit numbers	5.NBT.B. 5
4	2	Determine area with fraction side lengths	5.NF.B. 4
5	2	Estimate products of decimals	5.NBT.B. 7
6	2	Evaluate expressions with parentheses	5.OA.A. 1
7	1	Plot ordered pairs on the coordinate plane	5.G.A. 2
8	3	Interpret multiplication of fractions as scaling	5.NF.B. 5
9	2	Determine volume using unit cubes	5.MD.C. 4
10	2	Add fractions	5.NF.A. 2
11	2	Estimate quotients	5.NBT.B. 6
12	2	Relate fractions to division	5.NF.B. 3
13	1	Read and write decimals	5.NBT.A.3.a
14	2	Represent multiplication of fractions and whole numbers	5.NF.B. 4
15	3	Classify quadrilaterals	5.G.B. 4
16	2	Divide decimals	5.NBT.B. 7
17	2	Multiply multi-digit numbers	5.NBT.B. 5
18	2	Interpret numerical expressions	5.0A.A. 2
19	2	Estimate sums of decimals	5.NBT.B. 7
20	2	Subtract decimals	5.NBT.B. 7
21	2	Multiply decimals by powers of 10	5.NBT.A. 1
22a 2		Use partial quotients to divide	5.NBT.B. 6
22b 2		Divide multi-digit numbers	5.NBT.B. 6
23	2	Multiply decimals	5.NBT.B. 7
24	2	Estimate quotients of decimals	5.NBT.B. 7
25	1	Solve volume word problems	5.MD.C. 5
26	2	Solve measurement conversion word problems	5.MD.A. 1
27	1	Add decimals	5.NBT.B. 7
28	2	Round decimals	5.NBT.A. 4
29	2	Multiply mixed numbers by whole numbers	5.NF.B. 6
30	2	Multiply decimals	5.NBT.B. 7
31	2	Subtract mixed numbers	5.NF.A. 1
32	3	Form ordered pairs from patterns	5.OA.B. 3
33	2	Divide whole numbers by fractions	5.NF.B. 7
34	2	Add mixed numbers	5.NF.A. 1
35	2	Relate multiplication and division	5.NBT.B. 6

## Grade 5

## Summative Assessment

## Name

1. Which correctly shows how to use partial products to mutiply $235 \times 127$
A. $(12+200) \times(12+30) \times(12+5)$
e. $12 \times 2+12 \times 3+12 \times 5$
C. $10 \times 200 \times 10 \times 30 \times 10 \times 5 \times 2 \times 200 \times 2 \times 30 \times 2 \times 5$
(D. $(10 \times 200)+(10 \times 30)+(10 \times 5)+(2 \times 200)+(2 \times 30)$ $+(2 \times 5)$
2. Hiro walks each day for 11 days. He records the distance. in males, on the line plot shown


What is the difference betwoen the longest distance and shomest distance that Hiro walks?

3. What is the product?
$56 \times 604=33,824$
4. Look at the rectangle.

What is the area. in square feet, of the rectangle?
$\frac{15}{40}$ square feet
5. What is the best estimate of the product of $0.62 \times 0.38$ ?
A. 9.8

(B.) 0.24
C. 18
D. 2.4
6. What is the value of $(11 \times 14)-(12 \times 97$ ? 46
7. Plot the poirt $(4,5)$ on the coordinate plune.

8. Which value of $k$ makes each statement true?

$\qquad$$10 \times k$ is greater than 0 but less than 10. $\checkmark=\frac{3}{3}$    $8 \times k$ is greater than 0 but less than 8. $\checkmark$    $6 \times k$ is greater than 6 but less than 12.     $4 \times k$ is greater than 4 but less than 8  $\checkmark$

202
Anement hicomet boe

Grade 5

## Summative Assessment cominued

## Nivme

2. Janal unes unit cubus to kilo box. The first liyer al unit cubes is 4 une cuites lorg and 6 une cubss wide
Ithe voume of the box is 72 cubic urils, how many leyers of unt cubes ooes flimal put in the bort 3 layers
3. Whan st the value of $\frac{3}{4}+\frac{5}{7} 7$ Fill in the misiling nimbets to solvi.
$\frac{2}{4}+\frac{5}{7}=\frac{21}{28}+\frac{20}{28}$
$\frac{3}{4}+\frac{5}{7}=\frac{41}{\frac{48}{13}}$
$\frac{3}{4}+\frac{5}{7}=\frac{13}{28}$
4. Which quovent is the best extimate of $3,002+$ all
A. 70
(B) 90
C. 100
D. QD
5. Which expiession is uquivitent to the fariton $\frac{a}{23}$
A. $4 \times 32$
B. $32 \times 4$
C. $3+4$
(D) $4+32$
6. White Five and thith seven thousondths is o decimal. 5.037
7. Which figure iepresents tre proouct of $\frac{2}{12} \times 3$ ?

A. |  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |

c.

15. Which of theses statereents abou a iectangle is aivocys bue?
A. A rectengle is a membus and a square
B. A vectangle is a patalulogrem and a squane
C. A restangle os a cquaciliciera and a partalisichemen
D. A rectangle io is cquadilateral and af fiombus
16. What is the quofient?
$0.36 \div 0.02=12$
17. Which thethad can be used mutiply $932 \times 17$
(A) $(2000 \times 11)+(30 \times 11)+(2 \times 11)$
B. $(900 \times 80 \times 2) \times 11$
C. $(900+11) \times(80+\pi 1 \times(2+11)$
D. $(900+11) \times(02+H)$
18. Which stitemert best describes the mpiession $3 \times 140+77$
A. Thiee times forty plus soven
B. Forty jalus sefven divibed by thee
C. Three times the sum of tarty and seiven
D. Three times the difference if forfy and sever
19. Nera biked 4.74 miks befole work and 517 mans aher work Pound each numbei to the nearest lenth to find ir rebsonable. esternaty lor the titai number of mies Nesa biuerd

$$
4.7+5.2=9.9-\text { miles }
$$

20. What at the difference of $708-5.52 ?$ 1.56
21. Fiotella has $\$ 0.50$. Guen has 10 times as much rooney How much marey does Gwen havi?
A. $\$ .05$
B. $\$ 0.50$
(C) $\$ 5.00$
D. 55000

4 Asprones levivuct Book

Grade 5
Summative Assessment (cortinued)
Name
22. Beathice uses partial quettients tie solve 37245
$5 \longdiv { 3 7 2 }$

$-\frac{350}{22}$	
$-\frac{20}{2}$	70   -74

a. Fill in the massing numbarn to Show now Beathice cac solve the protilen.
b. Wrat is the muotient? $32+5=74$ \& 2
23. What is the product of $42 \times 0.8$ ? Fie in the roasing number. to solve.
$42 \times 08=42 \times 8 \times \quad 0.1$ $42 \times 0.8=33.6$
24. Which estimate is most reasorabie for the quotient it $38.64+62$ ?
A. 5
B. 4
(C.)
a. 2
25. Hons wraps a gift boi that has a town of ta spuere inctres and a fieight of 5 inches what is the colume, in cubk inches of the get tax Hers wnips?
90 cubic inches
26. Vickie muven 2 gaions of lefforiacle She gours tie emorsude equally into 4 pichers Hiww much lemoradi, in cugs. is en secti pachert
A. 7 cupos
B. Acups
c. 6 oups
(D) scups
27. Tina uses gartial sums to add ह. 45 +5.95 Fili in thes mins rumber s to complete ner equations.
$8+5=33$ $0.4+0.9=13$ $0.05+0.06=011$ $13+13+0 n=14.41$
28. Me tillei weiles al number on the board Ine number rouncead to the herarest hundiedtr is 300 . When of these could the Mt Tille's mumber?
A. 299
(B.) 299999
C. 30001
D. 3001
29. Melani does homework for $1 \frac{5}{6}$ Hicuns. Hevidi does homewarik for twice as $\operatorname{long}$ as Meiane How long, in Nourt, does Hoidi do nemmere?
$3 \frac{4}{6}$ hours of equivaient
30. Uve the laci $5 \times 7=42$ to bililin the correct prodicts
$0.5 \times 0.07=0.042$
$6 \times 07=4.2$
$0.006 \times 70=0.42$
31. Which equation shews il prarnct way to subtract $2 \frac{4}{5}-1 \frac{1}{3}$ ?
A. $\frac{34}{6}-\frac{11}{2}-\frac{19}{2}$
B. $\frac{2}{6}-\frac{7}{6}=\frac{10}{6}$
C. $\frac{10}{3}-\frac{4}{-\frac{1}{2}}=\frac{9}{2}$
() $\frac{5}{6}-\frac{8}{6}=\frac{9}{6}$
32. Caitos generites Pitierns W and 2 taing these mies:

- Paptem W Start wath 0 and add 7
- Pottern 2-5tart wath 0 aner 3mbtract 4.
Which eef of artered palss is penerated fram carespondirg feime of Pietion W and 2 ?
A. $10,01,(-7,42,(-14,8),(-22,12)$
(B.) $10,01,(7,-t), 14,-52,(21,-12)$
C. $10,-4),(7,-62,(14,-12)$ 121, 16
D. (7, 0), (14, $-41,(27,-3)$ (28, - 42 )

33. Bery has a teot ot string to trabe keychalns. if he uses $\frac{-}{2}$ foot of string for each keychain how many lotychairs can Seni make? 8 keychains
34. Look at the ecruation
$2 \frac{3}{10}+\frac{1}{100}=2+1+\frac{\square}{100}+\frac{1}{50}$ Whit number goes in the por to make the equation true? 30
35. Which equation has the same Unknown as
$1.448 \div 28=\square$
(A) $28 \times \square=1.48$
B. $1,148 \times \square=28$
C. $\square+1,143=28$
D. $\square+1,143=28$

## Appendix

Sense-Making Routines ..... A2
Number Routines ..... A3
Math Language Routines ..... A4
Key Concepts and Learning Objectives ..... A6

## Appendix

## [ Sense-Making Routines

## Notice \& Wonder ${ }^{\text {m" }}$

Students are presented with an image or situation and are asked to share what they notice and wonder about the image or situation. Students are encouraged to notice and wonder about both math-related and non-math-related aspects of the image or situation.

This is primarily a whole-class, discussion-based brainstorming activity, one in which the noticings and wonderings of one student help spark additional noticings and wonderings among other students. To increase student participation in this whole-class brainstorming activity, allow students adequate time to write or draw any noticings and wonderings. This will help students control their impulses and expand their thinking. As you record students' thoughts, thank or acknowledge each student equally. Record all student suggestions. However, resist praising, restating, clarifying, or asking questions.
As students share, the teacher may want to record students' noticings and wonderings for all to see and to avoid redundancy of ideas. Allow for some non-math-related observations and questions, but eventually pose questions to get students thinking about a math focus. The support in the Teacher Edition offers prompts that can focus students' thinking on a math focus.

These activities are low floor-high ceiling activities and it is important that all students feel comfortable participating and valued for their participation.

Variations of the Notice \& Wonder routine include:

- Tell me everything you can.
- What question could you ask?
-What could the question be?


## How are they the same? How are they different?

In this variation of the routine, students are presented with two or more images or situations and consider how the images or situations are similar and different. The students share similarities and differences, some of which may be mathematical in nature, others non-mathematical.

As with the Notice \& Wonder routine, this is also primarily a whole-class, discussion-based activity. As students can share both mathematical and non-mathematical similarities and differences, the teacher can record these for reference. If students do not bring up the intended math focus, prompts in the Teacher Edition can get students thinking about the focus.

## Which Doesn't Belong?

Students are presented with a series of images, quantities, or numbers - usually four, and think about the question, "Which doesn't belong?" The activity has been designed to have multiple responses depending on which criteria or attribute the student is considering. Students are encouraged to think about as many different ways to identify the one that does not belong.

As students share their responses, they should be encouraged to share their reasoning for which one does not belong.

Guidance in the Teacher Edition can help the teacher direct students' thinking to the specific math focus for the lesson.

## Is It Always True?

Students are presented with one or more images or situations and think about the relationship among the objects in the image or situation. Students then consider whether the relationship always holds or whether it/they are unique to the image or situation.

As with the other sense-making routines, this is primarily a whole-class, discussion-based brainstorming activity, one in which students share their thoughts around the generalizability of the relationship and their reasoning for their claims. As with other routines, allow students adequate time for them to reason through their own thinking. Students should be encouraged to write down or draw their thoughts and reasoning. This additional think time allows students to process the information presented.

Guidance in the Teacher Edition can help the teacher direct students' thinking to the specific math focus for the lesson that the sense-making routine is targeting.

## Numberless Word Problems

Students are presented with a scenario or problem situation that suggests operations, but with no numbers. That is, instead of specifying quantities, the scenario or problem would indicate "some." For example, "Some dogs are in the dog park. Some dogs come into the dog park. Then some dogs leave the dog park." Students are expected to make sense of what is being described in the situation and explain which operations it represents. Without numbers, students are able to develop a better understanding of the underlying structure of the problem itself.

The prompts in the Teacher Edition offer options to extend and expand the discussion about the situation presented.

## Number Routines

## About How Much?

Purpose Build estimating skills.
Overview Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

## Can You Make the Number?

Purpose Build flexible thinking and efficiency with operations.
Overview Students use all the given numbers to build expressions with a value of the given target number. Students can use a range of operations in their expressions. The teacher records students' expressions, then facilitates a discussion about students' expressions.

## Decompose It

Purpose Build flexibility with numbers.
Overview Students come up with multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. Teacher records decompositions then facilitates a discussion of patterns in the decompositions.

## Find the Missing Values

Purpose Build their identification of patterns and their efficiency with solving equations as they examine a list of related equations.
Overview Students analyze a series of equations to look for patterns that they can use to determine the missing values in the equations. As students share their analyses and solutions, the teacher can reveal the missing values.

## Find the Pattern, Make a Pattern

Purpose Build efficiency with recognizing and building patterns.
Overview Students determine the rule(s) for a given pattern, then use the rule(s) to continue the pattern or create a new pattern. The teacher records students' new patterns and facilitates a discussion to validate the pattern and its rules.

## Greater Than, Less Than

Purpose Build proficiency with number and place value sense; estimating and comparing skills.

Overview Students use mental math to estimate or evaluate the value of given expressions and then compare the value of the expressions to a target benchmark number. Students share their solutions and thinking.

## Math Pictures

Purpose Build number sense and mathematical awareness.
Overview Students respond to a prompt about an image.

## What's Another Way to Write It?

Purpose Build flexibility with number sense and mental math operations.
Overview Given an expression, students come up with alternative expressions using the same or different operations that, when evaluated, have the same value. The teacher records expressions as students share. Students then look for relationships amongst the shared expressions.

## Where Does It Go?

Purpose Build estimating skills using benchmarks.
Overview Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

## Which Benchmark Is It Closest To?

Purpose Enhance rounding and reasoning skills.
Overview Students determine to which benchmark the given number is closest and explain their reasoning.

## Would You Rather?

Purpose Build flexibility with number sense and mental math operations; enhance decision-making.
Overview Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

## Math Language Routines

## MLR 1 Stronger and Clearer Each Time

Purpose To provide opportunities for students to revise and refine both their ideas and their verbal and written output (Zwiers, 2014).

Successive Pair Shares Students respond to a prompt either verbally or in writing. Then, students share their responses and their reasoning through successive pair shares, refining and revising their response after each pair share. Student-pairs are expected to provide details and to press their partners to provide details around their thinking. Students revise their responses after each pair share, incorporating as appropriate new ideas or language.
Convince Yourself, a Friend, a Skeptic Students think about an argument for three different audiences. They first justify the argument in a way that makes sense to them, then they explain what they know and think and how they know their argument is true to a classmate. For their third audience, students explain why they know their argument is true to a different classmate. Students' arguments may include words, pictures, numbers, and examples. Students should be prepared to offer counter-arguments.

## MLR 2 Collect and Display

Purpose To help students build vocabulary and language when engaging in mathematical discourse.
Gather and Show Student Discourse (Dieckmann, 2017) While students are working in pairs or small groups, the teacher circulates and listens to student talk, capturing common or important words and phrases. The teacher organizes words and phrases captured in a visual display that the teacher and students can reference throughout the unit of study. The teacher can update and add to the visual display to show refinement in language students are using to discuss key concepts.
Number Talks (Humphreys \& Parker, 2015) Number Talks have four parts: (1) Students are presented with a numeracy problem that they consider without written solution for a few minutes; (2) Students share their strategy for solving and their thinking about their strategy; (3) As students share their strategies and thinking, the teacher creates a visual display of students' strategies and thinking, noting common or important words or phrases shared; (4) The teacher facilitates a discussion analyzing the strategies and thinking, their benefits and drawbacks in different types of situations.

## MLR 3 Critique, Correct, and Clarify

Purpose To have students analyze and reflect on a written or verbal mathematical argument.

Critique a Partial or Flawed Response The teacher presents a partial or flawed argument, explanation, or solution and has students come up ways to complete or fix the argument. Students can work individually or in pairs to propose improvements and/or additions to the argument. Students share their responses with a partner and based on feedback from their partner, they refine and revise their responses.
Always, Sometimes, Never The teacher presents a mathematical statement that students analyze to decide whether it is always, sometimes, or never true. If possible, the teacher presents the statement in a graphic organizer that can then be used to assess students' reasoning.

## MLR 4 Information Gap

Purpose To create a need for students to communicate (Gibbons, 2002).
Info Gap Cards Each student-pair has two cards, Student A has Card A with the problem statement and Student B has Card B with data or information needed to solve the problem. Student A asks Student B for specific information that is needed to solve the problem. Before providing the information, Student $B$ asks Student $A$ to justify the need for information before providing the information requested (if available). Student A then explains how he or she will use the information to solve the problem.
Info Gap Games Student-pairs play a guessing or matching game. Student A shares the information and Student B uses his or her understanding of math concepts to guess what Student A is describing. For example, Student A may identify objects in the classroom that share a shape and Student $B$ guesses the shape.

## MLR 5 Co-Craft Questions and Problems

Purpose To allow students to use conversation skills and mathematical language to generate questions, problems, and situations.
Co-Craft Questions The teacher presents a scenario or part of a problem context and students come up with math-related questions that could be asked about the situation. Student-pairs share their questions, comparing and contrasting the questions each asked. The teacher can then facilitate a share-out of questions from the class, after which the actual question students will look to answer is revealed.
Co-Craft Problems Student-pairs work together to co-create problems. Student-pairs then solve their problems, and trade problems with another student-pair. Student-pairs solve the problems of others, checking their solution against that of the co-creators.
Co-Craft Situations The teacher presents a mathematical representation with no labels. Students work individually to write a story or scenario that matches the representation. Students then work with a partner to share their scenarios or situations, each explaining how their situations reflect the mathematical representation. Based on feedback from their partners, students revise their situations, adding details as appropriate.

## MLR 6 Three Reads

Purpose To ensure that students make sense of problem situations and equip them with tools used to negotiate meaning (Kelemanik, Lucenta \& Creighton, 2016).

Three Reads Students read a problem situation or scenario three times, each time with a different focus (1) Students read for comprehension, to understand the problem situation; (2) Students focus on the language used to present the mathematics with the goal of understanding what mathematics is most appropriate to use; (3) students think about which strategy or solution method would be appropriate.
Values/Units Chart (1) Students read through text and underline any words or phrases that represent a known or unknown value or amount. (2) They list these numbers, unknowns, and variables in the left column of their graphic organizer (Values). (3) After reading a second time, students write the meaning of the values in the right column of the graphic organizer (Units). (4) After the third read, students work in pairs to create mathematical expressions using only the right column.

## MLR 7 Compare and Connect

Purpose To foster students' meta-awareness as they identify, compare, and contrast different mathematical approaches, representations, concepts, examples, and language.
Compare and Contrast Solution Strategies Students are given a problem to solve on their own. Students are then paired up and share their solution strategies with their partners, relating and connecting their partner's approach to their own approach. Some options include:

1. Divide and conquer Set students in pairs before they solve the problem. Each pair decides on two different ways to solve the problem; one partner does one way and the other partner does the other way.
2. What is similar, what is different After student-pairs share solution strategies, they identify what is similar and what is different about the approaches. Students can also discuss what worked with each approach.
3. Mathematical focus Student-pairs focus on specific mathematical relationships, operations, quantities and values.
Which One Doesn't Belong? Students are provided with sets of four numbers, equations, expressions, graphs, or geometric figures. Working in pairs, students decide together how to group the sets so that three of the items fit within a category they have created and one does not. Both partners should be prepared to explain to a different group how they agreed on a category and justify which item did not fit.

## MLR 8 Discussion Supports

Purpose To facilitate rich discussions about mathematical ideas, representations, contexts, and strategies (Chapin, O'Connor, \& Anderson, 2009).

Whole Class Discussion Supports During whole class discussion, the teacher can use these strategies to support mathematical discourse:

- Restating The teacher restates students' ideas as questions to clarify meaning and model appropriate mathematical language
- Press for Details The teacher asks students to elaborate on an idea, expand an argument, or give an example.
- Think Alouds The teacher talks through their thinking about a mathematical concept.
- Use multiple modalities The teacher uses different modalities to show concepts.
- Choral responses The teacher has students practice common or important words or phrases through choral repetition.

Numbered Heads Together (1) The teacher has students count off by 4 s (or the number of students he or she wants to have in a group. (2) The teacher then presents a question or problem and has students work in their groups according to their number to come up with an explanation or justification. (3) Each group reporter shares the group explanation and/or agree or disagree with the previous group reporter. Other members of the group are not allowed to talk or write, but the reporter can use the notes from the group discussion. The correct answer, if there is one, is revealed once all groups have presented.

## Key Concepts and Learning Objectives

## KEY CONCEPT Habits of Mind and Classroom Norms for Productive

## Math Learning

- Students make sense of problems and quantities and represent them different ways. (Unit 1)
- Students represent a real-world situation using mathematics. (Unit 1)
- Students construct an argument to explain their thinking with clear and appropriate terms. (Unit 1)
- Students use patterns to develop efficient strategies to solve problems. (Unit 1)
- Students tell their math biography and recognize the behaviors and attitudes that support a productive learning environment. (Unit 1)


## KEY CONCEPT Operations with Fractions

- Students add, subtract, and multiply fractions, including mixed numbers, with unlike denominators. (Units 9, 10)
- Students find the area of a rectangle with fractional side lengths. (Unit 10)
- Students describe multiplication as scaling. (Unit 10)
- Students divide unit fractions by whole numbers and whole numbers by unit fractions. (Unit 11)


## KEY CONCEPT Operations with Whole Numbers and Decimals

- Students describe the relationship between place value positions. (Unit 3)
- Students use an algorithm to multiply whole numbers. (Unit 5)
- Students divide multi-digit dividends by 2-digit divisors. (Unit 7)
- Students add, subtract, multiply, or divide decimals. (Units 4, 6, 8)
- Students solve word problems involving operations with whole numbers or decimals. (Units 4, 5, 6, 7, 8)


## KEY CONCEPT Measurement and Data

- Students describe volume is an attribute of solid figures. (Unit 2)
- Students measure volume by counting unit cubes. (Unit 2)
- Students calculate the volume of rectangular prisms using formulas. (Unit 2)
- Students find the volume of composite solid figures. (Unit 2)
- Students convert measurement units within a given measurement system. (Unit 12)
- Students interpret data on a line plot. (Unit 12)


## KEY CONCEPT Geometry

- Students identify and describe features of a coordinate plane. (Unit 13)
- Students graph points on the coordinate plane to solve problems. (Unit 13)
- Students classify 2-dimensional figures into categories based on their properties. (Unit 13)


## KEY CONCEPT Algebraic Thinking

- Students write numerical expressions to represent calculations that are described using written statements. (Unit 14)
- Students interpret numerical expressions without evaluating them. (Unit 14)
- Students use the order of operations to evaluate numerical expressions. (Unit 14)
- Students generate two numerical patterns using two given rules. (Unit 14)
- Students identify apparent relationships between corresponding terms in the generated number patterns. (Unit 14)



Key Terms are in italics.
1: = Volume 1 pages
$2:=$ Volume 2 pages

## A

About How Much?, 1:93A, 1:99A, 1:133F, 1:143A, 1:171F, 1:177A, 1:181A, 2:1F, 2:7A, 2:11A, 2:15A, 2:127F, 2:141A, 2:145A, A3

## Academic terms

accurate, 1:115A, 1:135A, 1:143A, 1:207A, 2:47A, 2:63A, 2:105A, 2:109A, 2:149A, 2:167A, 2:179A, 2:205A, 2:219A, 2:239A, 2:249A
address, 1:75A, 1:227A, 2:19A
advantage, 1:227A, 2:23A
analyze, 1:7A, 1:33A, 1:93A, 1:119A, 1:151A, 1:161A, 1:173A, 1:215A, 2:11A, 2:133A, 2:145A, 2:175A, 2:219A, 2:253A
arguably, 2:97A, 2:141A
assert, 1:41A, 1:111A, 1:191A, 2:23A, 2:63A, 2:117A
benefit, 1:99A
citation, 2:87A
cite, 1:63A, 1:139A, 1:177A
complement, 1:187A
complex, 1:47A, 1:181A, 2:87A, 2:113A, 2:235A
condition, 1:223A, 2:47A
contradiction, 1:67A, 2:239A
correspond, 2:43A, 2:197A, 2:201A
critique, 1:15A
debate, 1:37A, 1:103A, 1:147A, 2:67A
defend, 1:15A
disadvantage, 2:23A
drawback, 1:99A, 1:223A
efficient, 1:19A
eliminate, 2:37A, 2:67A
emphasize, 1:107A, 2:171A, 2:183A, 2:197A, 2:245A
establish, 1:33A, 1:139A, 1:215A, 2:51A, 2:59A,
2:105A, 2:155A, 2:213A
evaluate, 1:41A, 1:99A, 1:115A, 1:123A, 1:187A,
1:207A, 2:137A, 2:149A, 2:209A
expand, 1:71A, 1:191A, 2:3A, 2:101A
formula, 1:51A
generalizations, 1:19A
infer, 1:67A, 1:93A, 1:103A
infer/inference, 1:67A, 1:93A, 1:103A, 2:15A, 2:113A, 2:167A, 2:249A
interview, 1:3A
justify, 1:15A
negate, 1:75A, 1:181A, 2:7A
norms, 1:23A
note, 1:161A, 1:231A, 2:171A
powers of 10, 1:139A
procedure, 1:107A, 1:123A, 1:155A, 2:93A
prove, 1:81A, 1:111A, 1:119A, 1:135A, 1:155A, 2:129A
quality, 1:71A, 2:201A, 2:213A
reasonable, 1:93A
reflect, 1:173A, 1:219A, 2:3A, 2:19A, 2:55A, 2:71A, 2:83A, 2:101A, 2:117A, 2:129A, 2:133A, 2:137A, 2:179A, 2:231A
relationship, 1:63A
relevant, 1:51A, 1:143A, 1:195A, 2:59A, 2:155A
responsibility, 1:23A
speculate, 1:47A, 1:147A, 1:177A, 1:219A, 2:93A,
2:97A, 2:141A, 2:205A, 2:253A
suggest, 1:37A, 1:151A, 1:195A, 1:211A, 2:3A, 2:11A, 2:37A, 2:43A, 2:55A, 2:71A, 2:83A, 2:145A, 2:209A, 2:231A
transition, 1:161A, 1:231A, 2:15A, 2:109A, 2:245A unknown, 1:51A
valid, 2:51A, 2:235A
variable, 1:51A
variation, 1:81A, 1:211A, 2:7A
visualize, 1:11A
Activity-Based Exploration. See Choose Your Option
Activity debrief, 1:5A, 1:9A, 1:13A, 1:17A, 1:21A, 1:25A,
1:34A, 1:38A, 1:42A, 1:48A, 1:52A, 1:64A, 1:68A, 1:72A, 1:76A, 1:82A, 1:94A, 1:100A, 1:104A, 1:108A, 1:112A, 1:116A, 1:120A, 1:124A, 1:136A, 1:140A, 1:144A, 1:148A, 1:152A, 1:156A, 1:162A, 1:174A, 1:178A, 1:182A, 1:188A, 1:192A, 1:196A, 1:208A, 1:212A, 1:216A, 1:220A, 1:224A, 1:228A, 1:232A, 2:4A, 2:8A, 2:12A, 2:16A, 2:20A, 2:24A, 2:38A, $2: 44 \mathrm{~A}, 2: 48 \mathrm{~A}, 2: 52 \mathrm{~A}, 2: 56 \mathrm{~A}, 2: 60 \mathrm{~A}, 2: 64 \mathrm{~A}, 2: 68 \mathrm{~A}, 2: 72 \mathrm{~A}$, 2:84A, 2:88A, 2:94A, 2:98A, 2:102A, 2:106A, 2:110A, $2: 114 \mathrm{~A}, 2: 118 \mathrm{~A}, 2: 130 \mathrm{~A}, 2: 134 \mathrm{~A}, 2: 138 \mathrm{~A}, 2: 142 \mathrm{~A}, 2: 146 \mathrm{~A}$, 2:150A, 2:156A, 2:168A, 2:172A, 2:176A, 2:180A, 2:184A, 2:198A, 2:202A, 2:206A, 2:210A, 2:214A, 2:220A, 2:232A, $2: 236 \mathrm{~A}, 2: 240 \mathrm{~A}, 2: 246 \mathrm{~A}, 2: 250 \mathrm{~A}, 2: 254 \mathrm{~A}$

## Addition

decimals
estimating, 1:93-1:96, 1:97-1:98
in expanded form, 1:72
modeling, 1:99-1:102
real-world problems, 1:124A
strategies for, 1:103-1:106, 1:107-1:110, 1:123-1:126
to tenths and hundredths, 1:99-1:102
fluency, 1:169-1:170, 1:203-1:204, 1:241-1:242
within $1,000,000,2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}$, 2:22C, 2:26C
fractions
estimating, 2:37-2:40
with unlike denominators, 2:43-2:46, 2:47-2:50
word problems, 2:71-2:74
mixed numbers
with regrouping, 2:67-2:70
with unlike denominators, 2:59-2:62
word problems, 2:71-2:74
multi-digit numbers, 1:89-1:90, 1:131-1:132,
1:169-1:170, 1:203-1:204, 1:241-1:242
partial sums, 1:29-1:30
3-digit numbers, 1:29-1:30, 1:59-1:60
use algorithm for, 1:89-1:90
writing equations, 1:29-1:30
Algebraic thinking, 2:229C
numerical expressions
interpreting, 2:235-2:238
order of operations, 2:239-2:242
showing relationships between/among
quantities, 2:235-2:238
writing, 2:231-2:234
numerical patterns, 2:249-2:252
generating with two given rules, 2:245-2:248
identify relationship between corresponding
terms, 2:245-2:248
ordered pairs from, 2:253-2:256
Algorithms, multiplication, 1:155-1:158, 1:161-1:164, 1:228A

## Angles

of quadrilaterals, 2:213-2:216
of triangles, 2:209-2:212
Application. See Rigor
Application stations. See Use It! Application Station
Area
with decimals, 1:172
with fractional side lengths, 2:101-2:104
multiplication fluency, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C
Area models
division
with 1- and 2-digit divisors, 1:220A
decomposing to form partial products, 1:148A, 1:188A
determining partial products with, 1:188
to find quotient, 1:219-1:222
partial quotients, 1:221-1:222
multiplication
3-digit numbers, 1:149-1:150
multi-digit, 1:147-1:150
partial products, 1:187-1:190
partial products of decimals, 1:148
partial products, of mixed numbers, 2:105-2:108
real-world decimal problems, 1:196
real-world problems, 1:196
Assessment
benchmark assessment, 1:132D-132E,
1:242D-242E, 2:126D-126E
collect and assess student work, 1:46A, 1:80A,
1:98A, 1:160A, 1:186A, 1:236A, 2:28A, 2:42A,
2:92A, 2:154A, 2:188A, 2:218A, 2:244A
formative assessment
analyze the probe, 1:45-1:46, 1:79-1:80, 1:97-
1:98, 1:159-1:160, 1:185-1:186, 1:235-1:236,
2:27-2:28, 2:41-2:42, 2:91-2:92, 2:153-2:154,
2:187-2:188, 2:217-2:218, 2:243-2:244
exit ticket, 1:6A, 1:10A, 1:14A, 1:18A, 1:22A, 1:26A,
1:36A, 1:40A, 1:44A, 1:50A, 1:54A, 1:66A, 1:70A,
1:74A, 1:78A, 1:84A, 1:96A, 1:102A, 1:106A,
1:110A, 1:114A, 1:118A, 1:122A, 1:126A, 1:138A,
1:142A, 1:146A, 1:150A, 1:154A, 1:158A, 1:164A,
1:176A, 1:180A, 1:184A, 1:190A, 1:194A, 1:198A,
1:210A, 1:214A, 1:218A, 1:222A, 1:226A, 1:230A,
1:234A, 2:6A, 2:10A, 2:14A, 2:18A, 2:22A,
2:26A, $2: 40 \mathrm{~A}, 2: 46 \mathrm{~A}, 2: 50 \mathrm{~A}, 2: 54 \mathrm{~A}, 2: 58 \mathrm{~A}$,
2:62A, 2:66A, 2:70A, 2:74A, 2:86A, 2:90A,
2:96A, 2:100A, 2:104A, 2:108A, 2:112A, 2:116A,
2:120A, 2:132A, 2:136A, 2:140A, 2:144A,
2:148A, 2:152A, 2:158A, 2:170A, 2:174A,
2:178A, 2:182A, 2:186A, 2:200A, 2:204A,
2:208A, 2:212A, 2:216A, 2:222A, 2:234A,
2:238A, 2:242A, 2:248A, 2:252A, 2:256A
metacognitive check, 1:6A, 1:10A, 1:14A, 1:18A, 1:22A, 1:26A, 1:36A, 1:40A, 1:44A, 1:46A, 1:50A, 1:54A, $1: 66 \mathrm{~A}, 1: 70 \mathrm{~A}, 1: 74 \mathrm{~A}, 1: 78 \mathrm{~A}, 1: 80 \mathrm{~A}, 1: 84 \mathrm{~A}, 1: 96 \mathrm{~A}, 1: 98 \mathrm{~A}$, 1:102A, 1:106A, 1:110A, 1:114A, 1:118A, 1:122A, 1:126A, 1:138A, 1:142A, 1:146A, 1:150A, 1:154A, 1:158A, 1:160A, 1:164A, 1:176A, 1:180A, 1:184A, 1:186A, 1:190A, 1:194A, 1:198A, 1:210A, 1:214A, 1:218A, 1:222A, 1:226A, 1:230A, 1:234A, 1:236A, 2:6A, 2:10A, 2:14A, 2:18A, 2:22A, 2:26A, 2:28A, 2:40A, 2:42A, 2:46A, 2:50A, 2:54A, 2:58A, 2:62A, 2:66A, 2:70A, 2:74A, 2:86A, 2:90A, 2:92A, 2:96A, 2:100A, 2:104A, 2:108A, 2:112A, 2:116A, 2:120A, 2:132A, 2:136A, 2:140A, 2:144A, 2:148A, 2:152A, 2:154A, 2:158A, 2:170A, 2:174A, 2:178A, 2:182A, 2:186A, 2:188A, 2:200A, 2:204A, 2:208A, 2:212A, 2:216A, 2:218A, 2:222A, 2:234A, 2:238A, 2:242A, 2:244A, 2:248A, 2:252A, 2:256A performance task rubric, 1:57-1:58, 1:60A,
1:87-1:88, 1:90A, 1:129-1:130, 1:132A, 1:167-1:168, 1:170A, 1:201-1:202, 1:204A, 1:239-1:240, 1:242A, 2:31-2:32, 2:34A, 2:77-2:78, 2:80A, 2:123-2:124, 2:126A, 2:161-2:162, 2:164A, 2:191-2:192, 2:194A, 2:225-2:226, 2:228A, 2:259-2:260, 2:262A practice item analysis, 1:35-1:36, 1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:65-1:66, 1:691:70, 1:73-1:74, 1:77-1:78, 1:83-1:84, 1:95-1:96, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:2211:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 2:5-2:6, 2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:107-2:108, 2:111-2:112, 2:115-2:116, 2:1192:120, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:143-2:144, 2:147-2:148, 2:151-2:152, 2:1572:158, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:181-2:182, 2:185-2:186, 2:199-2:200, 2:2032:204, 2:207-2:208, 2:211-2:212, 2:215-2:216, 2:221-2:222, 2:233-2:234, 2:237-2:238, 2:2412:242, 2:247-2:248, 2:251-2:252, 2:255-2:256 Readiness Diagnostic, 1:31G, 1:61G, 1:91G, 1:133G, 1:171G, 1:205G, 2:1G, 2:35G, 2:81G, 2:127G, 2:165G, 2:195G, 2:229G
spiral review, 1:32A, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:62A, 1:66C, 1:70C, 1:74C, 1:78C, 1:84C, 1:92A, 1:96C, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:134A, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:172A, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:206A, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C, $2: 2 \mathrm{~A}, 2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}, 2: 22 \mathrm{C}$, 2:26C, 2:36A, 2:40C, 2:46C, 2:50C, 2:54C, 2:58C, $2: 62 \mathrm{C}, 2: 66 \mathrm{C}, 2: 70 \mathrm{C}, 2: 74 \mathrm{C}, 2: 82 \mathrm{~A}, 2: 86 \mathrm{C}, 2: 90 \mathrm{C}$, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, 2:120C, 2:128A, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C, 2:166A, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:196A, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:230A, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C
summative assessment, 2:262D-262E unit assessments, 1:60B-60C, 1:90B-90C, 1:132B-132C, 1:170B-170C, 1:204B-204C, 1:242B-242C, 2:34B-34C, 2:80B-80C, 2:126B-126C, 2:164B-164C, 2:194B-194C, 2:228B-228C, 2:262B-262C
unit review, 1:27-1:28, 1:55-1:58, 1:85-1:88, 1:127-1:130, 1:165-1:168, 1:199-1:202, 1:237-1:240, 2:29-2:32, 2:75-2:78, 2:121-2:124, 2:159-2:162, 2:189-2:192, 2:223-2:226, 2:257-2:260
Attributes
of quadrilaterals, 2:213-2:216, 2:219-2:222
of triangles, 2:209-2:212

## B

Behaviors for math, 1:23-1:26
Benchmark Assessment, 1:132D-132E, 1:242D-242E, 2:126D-126E

Benchmark numbers, fractions, 2:37-2:40
Biography, math, 1:3-1:6
Build fluency. See Fluency; Number Routines
Build proficiency. See Differentiated Learning

## C

Can You Make the Number?, 1:31F, 1:41A, 1:47A, 1:91F, 1:119A, 1:123A, 2:229F, 2:245A, 2:249A, 2:253A, A3

Capacity, converting customary units, 2:167-2:170, 2:171-2:174

## Categories

of quadrilaterals, 2:219-2:222
of triangles, 2:209-2:212
Choose Your Option
addition
of decimals, 1:99A, 1:103A, 1:107A, 1:123A
decimals, estimating, 1:93A
fractions, estimating, 2:37A
fractions with unlike denominators, 2:43A, 2:47A
fraction word problems, 2:71A
mixed numbers with regrouping, 2:67A
mixed numbers with unlike denominators, 2:59A
mixed numbers word problems, 2:71A
algebraic thinking
numerical expressions, 2:231A, 2:235A, 2:239A
numerical patterns, 2:245A, 2:249A, 2:253A
algorithms, multiplication, 1:155A, 1:161A
angles
of quadrilaterals, 2:213A
of triangles, 2:209A
area, with fractional side lengths, 2:101A
area models
multi-digit multiplication, 1:147A
partial product of decimals, 1:187A
partial product of mixed numbers, $2: 105 \mathrm{~A}$
attributes
of quadrilaterals, 2:213A, 2:219A
of triangles, 2:209A
base 10 , writing powers of 10 with, $1: 135 \mathrm{~A}$
benchmark numbers, to estimate fractions, 2:37A
capacity, converting customary units, 2:167A, 2:171A categories
of quadrilaterals, 2:219A
of triangles, 2:209A
common multiple
adding fractions with unlike denominators, 2:47A
adding mixed numbers with regrouping, 2:67A
adding mixed numbers with unlike
denominators, 2:59A
subtracting fractions with unlike denominators, 2:55A
subtracting mixed numbers with regrouping, 2:67A
subtracting mixed numbers with unlike denominators, 2:63A
compatible numbers, estimating quotients of decimals, 2:7A
composite figures, volume of, 1:47A
coordinate plane
ordered pairs, numerical patterns forming, 2:253A
plotting ordered pairs on, 2:201A
real-world situations on, interpreting, 2:205A
understanding, 2:197A
corresponding terms
ordered pairs from, 2:253A
relationship between, 2:245A, 2:249A
customary units
capacity, 2:167A
converting, 2:167A
length, 2:167A
multi-step problems, 2:175A
time, 2:167A
weight, 2:167A
data
on coordinate plane, interpreting, 2:205A
measurement, on line plots, 2:179
solving problems involving, 2:183A
decimals
addition, 1:99A, 1:103A, 1:107A, 1:123A
dividing by powers of 10 , place value patterns of, 2:3A
dividing by whole numbers, 2:11A, 2:15A
dividing decimals by decimals, 2:23A
equivalent whole numbers equations, 2:23A
estimating products of, 1:177A
estimating quotients of, 2:7A
in expanded form, 1:71A
multiplication, 1:181A, 1:191A, 1:195A
partial product, 1:187A
patterns in multiplying by power of $10,1: 173 \mathrm{~A}$
place-value of, 1:63A, 1:67A
reading and writing, 1:71A
rounding, 1:81A
in standard form, 1:71A
subtraction, 1:111A, 1:119A, 1:123A
in thousandths place, 1:75A
whole numbers divided by, 2:19A
in word form, 1:71A
division
by 10 , patterns in, 1:207A
converting customary units, 2:167A
converting metric units, 2:171A
decimals by decimals, 2:23A
decimals by powers of 10 , place value patterns of, 2:3A
decimals by whole numbers, 2:11A, 2:15A
dividing whole number by unit fractions, $2: 137 \mathrm{~A}$, 2:141A
estimate quotient of multi-digit numbers, 1:211A
fractions related to, 2:129A, 2:141A
fraction word problems, 2:133A, 2:155A
multiplication relating to, 1:215A, $2: 155 \mathrm{~A}$
partial quotients, 1:219A, 1:223A, 1:227A
2-digit divisors, 1:215A
unit fractions by non-zero whole numbers, 2:145A, 2:149A
unit fractions related to, 2:129A
whole numbers by decimals, 2:19A
word problems with remainders, 1:231A
equal sharing, dividing decimals by whole numbers, 2:11A
equations, with volume, 1:51A
equilateral triangles, 2:209A
equivalent fractions
adding fractions with unlike denominators, 2:43A, 2:47A
adding mixed numbers with regrouping, 2:67A
adding mixed numbers with unlike
denominators, 2:59A
subtracting fractions with unlike denominators, 2:51A, 2:55A
subtracting mixed numbers with regrouping, 2:67A
subtracting mixed numbers with unlike denominators, 2:63 A
equivalent representations
dividing decimals by decimals, 2:23A
dividing decimals by whole numbers, 2:15A
dividing whole numbers by decimals, 2:19A
estimating
checking reasonability of calculated solutions, 2:37A
to predict calculates solutions, 2:37A
products of multi-digit numbers, $1: 143 \mathrm{~A}$
products of two decimals, 1:177A
quotient of multi-digit numbers, 1:211A
quotients of decimals, 2:7A
sums and differences of decimals, 1:93A
sums and differences of fractions, 2:37A
expanded form, decimals, 1:71A
explaining
adding fractions with unlike denominators, 2:47A
adding fractions with unlike denominators,
using representation, 2:43A
adding mixed numbers with regrouping, 2:67A
adding mixed numbers with unlike denominators, 2:59A
converting customary units, 2:167A
converting metric units, 2:171A
dividing decimals by powers of 10 , place value patterns of, 2:3A
estimating fractions to check reasonable solutions, 2:37A
estimating quotients of decimals, 2:7A
multiply fraction by fractions, 2:93A, 2:97A
multiplying whole numbers by fractions, 2:83A, 2:87A
quotient as fractions or mixed numbers, 2:129A
scaling of multiplying fractions, 2:113A
subtracting fractions with unlike denominators, 2:51A, 2:55A
subtracting mixed numbers with regrouping, 2:67A
subtracting mixed numbers with unlike denominators, 2:63A
exponents, writing powers of 10 with, 1:135A
formulas, rectangular prism volume, 1:41A
fraction model
dividing unit fractions by non-zero whole
numbers, 2:145A, 2:149A
dividing whole number by unit fractions, 2:137A, 2:141A
division word problems, 2:155A
fractions
adding with unlike denominators, 2:43A, 2:47A
dividing whole number by, 2:137A, 2:141A
division related to, 2:129A, 2:141A
division word problems, 2:133A, 2:155A
estimating sums and differences of, 2:37A
multiply fraction by, 2:93A, 2:97A
multiplying, 2:117A
multiplying area with fractional side lengths, 2:101A
multiplying whole numbers by, 2:83A, 2:87A
non-zero whole number divided by, 2:145A, 2:149A
as quotients, 2:129A, 2:133A
scaling when multiplying, $2: 113 \mathrm{~A}$
subtracting with unlike denominators, 2:55A
subtracting with unlike denominators, using
representation, 2:51A
word problems, 2:71A, 2:117A
writing mixed numbers as, to multiply, 2:109A
generalizations, multiplying decimals, 1:191A geometry
coordinate plane, 2:197A, 2:201A, 2:205A, 2:253A
quadrilaterals, classifying, 2:219A
quadrilaterals, properties of, 2:213A
triangles, 2:209A
grouping symbols, 2:231A
hierarchy of figures
quadrilaterals, 2:219A
triangles, 2:209A
isosceles triangles, 2:209A
least common denominator
adding fractions with unlike denominators, 2:47A
adding mixed numbers with regrouping, 2:67A
adding mixed numbers with unlike
denominators, 2:59 A
subtracting fractions with unlike denominators, 2:55A
subtracting mixed numbers with regrouping, 2:67A
subtracting mixed numbers with unlike denominators, 2:63
length
converting customary units, 2:167A
converting metric units, $2: 171 \mathrm{~A}$
line plots
interpreting, 2:179A, 2:183A
measurement data on, 2:179A
solving problems involving, 2:183A
liquid volume, converting metric units, $2: 171 \mathrm{~A}$
mass, converting metric units, 2:171A
math biography, telling, 1:3A
mathematical arguments, crafting, 1:15A, 1:19A
measurement data, on line plots, 2:179 A
measurement units, multi-step problems, 2:175A
metric units
capacity, 2:171A
converting, 2:171A
length, 2:171A
liquid volume, 2:171A
mass, 2:171A
multi-step problems, 2:175A
weight, 2:171A
mixed numbers
adding with regrouping, 2:67A
adding with unlike denominators, 2:59A
partial product, area models finding, 2:105A
partial product to multiply, 2:109A
as quotients, 2:129A, 2:133A
subtracting with regrouping, 2:67A
subtracting with unlike denominators, 2:63A
word problems, 2:71A
multi-digit numbers
estimate products of, 1:143A
estimate quotient of, 1:211A
multiplication algorithm, 1:161A
multiplication with area models, 1:147A
multiplication
algorithms, 1:155A, 1:161A
area models, 1:147A
area with fractional side lengths, 2:101A
converting customary units, 2:167A
converting metric units, 2:171A
decimals, 1:181A, 1:191A, 1:195A
division relating to, 1:215A, 2:155A
estimating, multi-digit numbers, 1:143A
estimating products of decimals, 1:177A
factors impact on products, 2:113A
fraction by fraction, 2:93A, 2:97A
fractions, 2:117A
measuring volume, 1:37A
mixed numbers, 2:105A, 2:109A
partial product, 1:147A, 1:151A, 1:187A
power of 10 with decimals, 1:173A
power of 10 with exponents, $1: 139 \mathrm{~A}$
powers of 10 , writing expressions with, 1:135A
whole number by fraction, 2:83A, 2:87A
multi-step problems, involving measurement units, 2:175A
number lines
adding fractions with unlike denominators,
2:43A, 2:47A
adding mixed numbers with regrouping, 2:67A
adding mixed numbers with unlike
denominators, 2:59A
benchmark fractions, estimating on, 2:37A
subtracting fractions with unlike denominators,
2:51A, 2:55A
subtracting mixed numbers with regrouping, 2:67A
subtracting mixed numbers with unlike denominators, 2:63 A
numerical expressions
evaluating with order of operations, 2:239A
interpreting, 2:235A
showing relationships between/among
quantities, 2:235A
writing, 2:231A
numerical patterns
arrange corresponding terms (in a table), 2:249A
generating with two given rules, 2:245A
graph ordered pairs, 2:253A
identify relationship between corresponding terms, 2:245A, 2:249A
ordered pairs from, 2:253A
relationships between patterns, 2:249A
ordered pairs, 2:197A, 2:201A, 2:205A, 2:253A
order of operations, evaluating numerical
expressions with, 2:239A
outlier, 2:179A
parallelograms, 2:213A, 2:219A
partial product
mixed numbers, area models finding, 2:105A
multi-digit multiplication, 1:147A, 1:151A
multiplying two decimals, 1:187A
multiply mixed numbers, 2:109A
partial quotients
calculating quotient with, 1:219A
dividing with remainders, 1:227A
recording using strategy, 1:223A
partitioning
dividing unit fractions by non-zero whole numbers, 2:145A, 2:149A
dividing whole numbers by unit fractions, 2:137A, 2:141A
multiplying whole numbers by fractions, 2:83A, 2:87A
patterns
dividing by $10,1: 207 \mathrm{~A}$
dividing decimals by power of $10,2: 3 \mathrm{~A}$
multiplying decimals, 1:191A
numerical, 2:245A, 2:249A, 2:253A
power of 10 , multiplication, 1:139A
power of 10 , multiplying decimals, 1:173A
place-value
of decimals, 1:63A, 1:67A, 1:75A
dividing decimals by power of $10,2: 3 \mathrm{~A}$
dividing decimals by whole numbers, $2: 15 \mathrm{~A}$
multiplying decimals, generalizations, 1:191A
of whole numbers, 1:63A
power of 10
dividing decimals, place value patterns of, 2:3A
dividing decimals by decimals, 2:23A
dividing whole numbers by decimals, 2:19A
multiplication patterns, decimals, 1:173A
multiplication with exponents, 1:139A
writing exponents with, 1:135A, 1:139A
writing multiplication expression with, 1:135A
predicting solutions, estimating quotients of
decimals, 2:7A
problems, representing, 1:7A
problem solving mindset, 1:23A
productive behaviors and attitudes, 1:23A
properties, of triangles, 2:209A
properties of operations, multiplying decimals, 1:191A quadrilaterals
classifying, categories and subcategories, 2:219A
properties of, 2:213A
quotients
checking dividing fraction with related multiplication, 2:141A
dividing by 10 , patterns in, 1:207A
as fractions or mixed numbers, 2:129A, 2:133 A
multi-digit division, estimating, 1:211A
partial quotients, solving with, 1:219A
rectangles, 2:213A, 2:219A
multiplying area with fractional side lengths, 2:101A
rhombus, 2:213A, 2:219A
rounding numbers, decimals, 1:81A
scalene triangle, 2:209A
scaling, fraction multiplication, $2: 113 \mathrm{~A}$
squares, 2:213A, 2:219A
standard form, decimals, 1:71A
subcategories
of quadrilaterals, 2:219A
of triangles, 2:209A
subtraction
of decimals, 1:111A, 1:119A, 1:123A
estimating decimals, 1:93A
fractions, estimating, 2:37A
fractions with unlike denominators, 2:51A, 2:55A
fraction word problems, 2:71A
hundredths from tenths, 1:115A
mixed numbers with regrouping, 2:67A
mixed numbers with unlike denominators, 2:63A
mixed numbers word problems, 2:71A
tenths from hundredths, 1:115A
time, converting customary units, 2:167A
trapezoid, 2:213A, 2:219A
triangles: classify, categories and subcategories, 2:209A
unit fractions
dividing whole number by, 2:137A, 2:141A
division related to, 2:129A
non-zero whole number divided by, 2:145A, 2:149A
Venn diagram, 2:219A
verbal descriptions, of numerical expressions, 2:231A
volume
of composite figures, 1:47A
formulas for, 1:41A
as solid figure attribute, 1:33A
solve problems involving, 1:51A
unit cubes, measuring, 1:37A
weight, converting customary units, 2:167A
whole numbers
dividing by decimals, 2:19A
dividing decimals by, 2:11A, 2:15A
equivalent decimal equations, 2:23A
multi-digit multiplication, 1:147A
multiplying fraction by, 2:83A, 2:87A
place value of, 1:63A
unit fractions divided by, 2:137A, 2:141A
unit fractions dividing, 2:145A, 2:149A
word problems
decimals, 1:71A
dividing fractions, 2:155A
division with fraction/mixed number quotients, 2:133A
division with remainders, 1:231A
fractions, 2:71A, 2:117A
mixed numbers, 2:71A
multi-step problems, 2:175A
writing, numerical expression, 2:231A
written statements, numerical expressions, 2:231A
$x$-axis, 2:197A, 2:201A, 2:205A
$x$-coordinate, 2:197A, 2:201A, 2:205A
$y$-axis, 2:197A, 2:201A, 2:205A
$y$-coordinate, 2:197A, 2:201A, 2:205A
Coherence, 1:1C, 1:3A, 1:7A, 1:11A, 1:15A, 1:19A, 1:23A,
1:31C, 1:33A, 1:37A, 1:41A, 1:47A, 1:51A, 1:61C, 1:63A,
1:67A, 1:71A, 1:75A, 1:81A, 1:91C, 1:93A, 1:99A, 1:103A,
1:107A, 1:111A, 1:115A, 1:119A, 1:123A, 1:133C, 1:135A,
1:139A, 1:143A, 1:147A, 1:151A, 1:155A, 1:161A, 1:171C,
1:173A, 1:177A, 1:181A, 1:187A, 1:191A, 1:195A, 1:205C,
1:207A, 1:211A, 1:215A, 1:219A, 1:223A, 1:227A, 1:231A,
2:1C, 2:3A, 2:7A, 2:11A, 2:15A, 2:19A, 2:23A, 2:35C,
2:37A, $2: 43 \mathrm{~A}, 2: 47 \mathrm{~A}, 2: 51 \mathrm{~A}, 2: 55 \mathrm{~A}, 2: 59 \mathrm{~A}, 2: 63 \mathrm{~A}$,
2:67A, 2:71A, 2:81C, 2:83A, 2:87A, 2:93A, 2:97A,
2:101A, 2:105A, 2:109A, 2:113A, 2:117A, 2:127C, 2:129A,
2:133A, 2:137A, 2:141A, 2:145A, 2:149A, 2:155A, 2:165C,
2:167A, 2:171A, 2:175A, 2:179A, 2:183A, 2:195C, 2:197A,
2:201A, 2:205A, 2:209A, 2:213A, 2:219A, 2:229C,
2:231A, 2:235A, 2:239A, 2:245A, 2:249A, 2:253A

## Common error

algorithms, on decimal grids, 1:157-1:158
area models, partial quotients, 1:221-1:222
arguments and solutions, 1:16-1:17
base, meaning of, 1:43-1:44
basic division, 1:208
coordinate plane, data on, 2:207-2:208
correct number of zeros, 1:212
customary units, converting, 2:168, 2:169-2:170
decimals
comparing, 1:77-1:78
on decimal grids, 1:105-1:106, 1:117-1:118, 2:12
decimal places and zeros, 1:116
decimal point, 1:174
decompose and multiplying, 1:193-1:194
decomposing with place-value, 1:109-1:110
division, 2:4
estimating, 2:8
moving decimal points, 1:192
range on number line, 1:83-1:84
in the thousandths, 1:73-1:74
zeros in, 1:101-1:102, 2:13-2:14
decomposing by place-value, 1:108, 1:188
decomposing decimals, 1:189-1:190
division
decimals, 2:16
determining remainders, 1:229-1:230
equivalent representations, 2:17-2:18
fractions, 2:138, 2:143-2:144
fractions as, 2:130
order of operations, 2:151-2:152
place-value patterns, 1:209-1:210
power of 10, 2:21-2:22
quotients as fractions/mixed numbers, 2:134
remainder, 1:233-1:234
unit fractions, 2:142, 2:146, 2:147-2:148, 2:150, 2:156, 2:157-2:158
doubling factors, 1:20-1:21
equivalent equations, $2: 24$
equivalent fractions, 1:12-1:13, 2:38
estimating multiplication, 1:145-1:146
extrapolate side lengths, 1:48
fractions
division, 2:135-2:136
multiplication, 2:85-2:86, 2:89-2:90, 2:94, 2:98, 2:99-2:100
scaling, 2:115-2:116
with unlike denominators, 2:44
whole numbers as, 2:72
front-end estimation, 1:213-1:214
geometric figures, squares, 2:103-2:104
including units correctly, 1:49-1:50, 1:52
"internal" zero, 1:156
least common denominator, 2:48
like denominators, 2:49-2:50, 2:52
line plots, 2:181-2:182, 2:184, 2:185-2:186
metric units, converting, 2:173-2:174
mixed numbers, 2:60, 2:61-2:62, 2:64, 2:65-2:66,
2:110, 2:111-2:112
multiplication, decomposing factors, 2:106
multiplication factors, 1:216
multi-step problems, 2:176, 2:177-2:178
notation, 1:175-1:176
numerical expressions, 2:232, 2:233-2:234,
2:237-2:238, 2:240
numerical patterns, 2:246, 2:247-2:248, 2:250,
2:251-2:252, 2:254
open-ended problems, 1:8-1:9
operations symbols, 2:131-2:132
ordered pairs, 2:255-2:256
labeling, 2:202
order of, 2:198
zero, 2:199-2:200, 2:203-2:204
order of operations, 2:241-2:242
parallelograms, 2:220
partial product, 2:107-2:108
partial quotients
adding together, 1:224, 1:228
division, 1:225-1:226
partitioning, fractions, 2:139-2:140
patterns, in subtraction, 1:121-1:122
place-value, 1:65-1:66
comparing mass, 1:112
decomposing decimals with, 1:109-1:110
multiplication algorithm, 1:163-1:164
multiplying decimals, 1:197-1:198
partial product, 1:152
power of 10, 1:136, 1:137-1:138, 1:141-1:142, 2:5-2:6, 2:25-2:26
quadrilaterals, 2:214, 2:215-2:216,
2:221-2:222
regrouping, 2:68, 2:69-2:70
rounding decimals, 1:178
rounding factors, 1:179-1:180
rounding numbers, 1:94
rounding quotients, 1:232
solving division, 1:217-1:218
subtraction
fractions, 2:73-2:74
fractions with unlike denominators, 2:53-2:54
key phrases, 1:113-1:114
patterns of, 1:121-1:122
in the thousandths, multiplication, 2:95-2:96
triangles, 2:210, 2:211-2:212
two-step problems, 1:53-1:54
volume, 1:35-1:36
word problems, 2:88
fractions, 2:119-2:120
wrong operation, 1:125-1:126
Common misconceptions
adding zeros patterns, 1:140
coordinate plane, data on, 2:206
decimals
decimal grids, 1:100, 1:183-1:184
place-value, 1:69-1:70
rounding, 1:82
in thousandths place, 1:76
decomposing
to multiply, 1:148
by place-value, 1:120
determining volume, 1:34, 1:38, 1:42
disagreements, 1:24-1:25
division
decimals, 2:20
estimating, 2:9-2:10
partial quotients, dividing, 1:220
estimating, 1:95-1:96, 2:39-2:40
fractions, area of rectangle, 2:102
"internal" zero, 1:196
layers, orientation of, 1:39-1:40
least common denominator, 2:56, 2:57-2:58
line plots, 2:180
math biography, 1:4-1:5
meaning of math language, 1:104
metric units, converting, 2:172
multiplication
area models, 3 -digit numbers, 1:149-1:150
fractions, 2:118
multiplying factors, 1:182
multiplying fractions, 1:72
partial products, placeholders in, 1:153-1:154
numerical expressions, 2:236
partitions, 2:84
place-value, 1:64
of decimals, 1:68
in multiplication, 1:162
"rules" of compatible numbers, 1:144
scaling, 2:114
strategies, 1:124

## Common multiple

addition
fractions with unlike denominators, 2:47-2:50
mixed numbers with regrouping, 2:67-2:70
mixed numbers with unlike denominators, 2:59-2:62
subtraction
fractions with unlike denominators, 2:55-2:58
mixed numbers with regrouping, 2:67-2:70
mixed numbers with unlike denominators, 2:63-2:66

## Compatible numbers

decimals, estimating products of, 1:178
decimals, estimating quotients of, 2:7-2:10
multi-digit division, estimating, 1:212
multi-digit numbers, estimating, 1:144
Composite figures, volume of, 1:47-1:50
Conceptual understanding. See Rigor
Congruent connecting squares, 2:196

## Connection Card

City of Trees, 2:166A, 2:174C, 2:186C
Color by Number, 2:230A, 2:242C, 2:256C
Cost of Living Depends on Where You Live, 1:92A, 1:102C, 1:110C, 1:118C
Estimate High School Density, 1:206A, 1:214C, 1:226C
Fraction of a Fraction, 2:82A, 2:96C, 2:108C, 2:120C
Harvesting Water, 1:32A, 1:40C, 1:50C
How Do You Say-Fractions? 2:36A, 2:40C, 2:54C, 2:66C
How Was That Created? 2:196A, 2:200C, 2:222C
Leave a Trail! 2:2A, 2:18C, 2:26C
Potluck with a Twist, 2:128A, 2:140C, 2:158C
School Spirit, 1:172A, 1:180C, 1:190C
Washington Color School Movement - Color Field Painting, 1:134A, 1:138C, 1:150C
On Your Mark, Get Set, Go! 1:62A, 1:66C, 1:78C, 1:96C
Coordinate plane, 2:195C
ordered pairs, numerical patterns forming, 2:253-2:256
patterns on, 2:229C
plotting ordered pairs on, 2:201-2:204, 2:217-2:218
real-world situations on, interpreting, 2:205-2:208
understanding, 2:197-2:200
Corresponding terms
ordered pairs from, 2:253-2:256
relationship between, 2:245-2:248, 2:249-2:252
Cubes, faces, 1:32
Customary units
capacity, 2:167-2:170
converting, 2:167-2:170
length, 2:167-2:170
multi-step problems, 2:175-2:178
time, 2:167-2:170
weight, 2:167-2:170

## D

Data
collecting, 2:166
on coordinate plane, interpreting, 2:205-2:208
line plots, 2:165C
measurement, on line plots, 2:179-2:182
solving problems involving, 2:183-2:186
Decimal grids, dividing whole numbers by
decimals, 2:19-2:22

## Decimals

addition, 1:91C
estimating, 1:93-1:96, 1:97-1:98
real-world problems, 1:124A
strategies for, 1:103-1:106, 1:107-1:110, 1:123-1:126
to tenths and hundredths, 1:99-1:102
concepts of, 1:61C
decompose to solve, 1:107-1:110, 1:119-1:122
division, 2:1C, 2:2, 2:27-2:28
by decimals, 2:23-2:26
powers of 10 , place value patterns of, 2:3-2:6
whole numbers, $2: 11-2: 14,2: 15-2: 18,2: 19-2: 22$
equivalent whole numbers equations, 2:23-2:26
estimating on number lines, 1:62
multiplication, 1:171C, 1:185-1:186
of area, 1:172
on decimal grids, 1:181-1:184 of decimals by power of 10, 1:173-1:176 estimating products of, 1:177-1:180
estimating quotients of, 2:7-2:10
modeling, 1:181-1:184
partial product, 1:187-1:190
place-value patterns, 1:191-1:194 properties of operations patterns, 1:191-1:194 strategies for, 1:195-1:198
place-value of, 1:63-1:66, 1:67-1:70, 1:75-1:78
reading and writing
in expanded form, 1:71-1:74
in standard form, 1:71-1:74
in word form, 1:71-1:74
real-world problems, 1:124A, 1:196
rounding, 1:81-1:84
subtraction, 1:91C
estimating, 1:93-1:96, 1:97-1:98
of hundreds, 1:111-1:114
real-world problems, 1:124A
strategies for, 1:119-1:122, 1:123-1:126
of tenths, 1:111-1:114
tenths, 1:68
thousandths, 1:68, 1:75-1:78
Decompose It, 1:61F, 1:67A, 1:71A, 1:205F, 1:227A, 1:231A, 2:1F, 2:3A, 2:81F, 2:93A, 2:97A, 2:105A, 2:165F, 2:175A, A3

## Decomposing numbers

by place-value, 1:59-1:60, 1:107-1:110, 1:119-1:122 whole numbers and decimals, 1:107-1:110, 1:119-1:122

## Depth of knowledge

benchmark assessment, 1:132D, 1:242D, 2:126D performance task, 1:60A, 1:90A, 1:132A, 1:170A, 1:204A, 1:242A, 2:34A, 2:80A, 2:126A, 2:164A, 2:194A, 2:228A, 2:262A
practice \& reflect, 1:35-1:36, 1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:65-1:66, 1:69-1:70, $1: 73-1: 74,1: 77-1: 78,1: 83-1: 84,1: 95-1: 96$, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:221-1:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 2:5-2:6, 2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:1072:108, 2:111-2:112, 2:115-2:116, 2:119-2:120, 2:131-2:132, 2:135-2:136, 2:139-2:140,

2:143-2:144, 2:147-2:148, 2:151-2:152, 2:1572:158, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:181-2:182, 2:185-2:186, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:211-2:212, 2:215-2:216, 2:221-2:222, 2:233-2:234, 2:237-2:238, 2:241-2:242, 2:247-2:248, 2:251-2:252, 2:255-2:256
summative assessment, 2:262D
Develop the Math, choose your option, 1:8-1:9A, 1:12-1:13A, 1:16-1:17A, 1:20-1:21A, 1:24-1:25A, $1: 34-34 \mathrm{~A}, 1: 38-38 \mathrm{~A}, 1: 42-42 \mathrm{~A}, 1: 48-48 \mathrm{~A}, 1: 52-52 \mathrm{~A}$, 1:64-64A, 1:68-68A, 1:72-72A, 1:76-76A, 1:82-82A, 1:94-94A, 1:100-100A, 1:104-104A, 1:108-108A, 1:112-112A, 1:116-116A, 1:120-120A, 1:124-124A, 1:136136A, 1:140-140A, 1:144-144A, 1:148-148A, 1:152-152A, 1:156-156A, 1:162-162A, 1:174-174A, 1:178-178A, 1:182-182A, 1:188-188A, 1:192-192A, 1:196-196A, 1:208-208A, 1:212-212A, 1:216-216A, 1:220-220A, 1:224-224A, 1:228-228A, 1:232-232A, 2:4-4A, 2:8-8A, 2:12-12A, 2:16-16A, 2:20-20A, 2:24-24A, 2:38-38A, 2:44-44A, 2:48-48A, 2:52-52A, 2:56-56A, 2:60-60A, 2:64-64A, 2:68-68A, 2:72-72A, 2:84-84A, 2:88-88A, 2:94-94A, 2:98-98A, 2:102-102A, 2:106106A, 2:110-110A, 2:114-114A, 2:118-118A, 2:130-130A, 2:134-134A, 2:138-138A, 2:142-142A, 2:146-146A, 2:150-150A, 2:156-156A, 2:168-168A, 2:172-172A, 2:176-176A, 2:180-180A, 2:184-184A, 2:198-198A, 2:202-202A, 2:206-206A, 2:210-210A, 2:214-214A, 2:220-220A, 2:232-232A, 2:236-236A, 2:240-240A, 2:246-246A, 2:250-250A, 2:254-254A

## Differentiated Learning

build proficiency. see also Own It! Digital Station;
Practice It! Game Station; Spiral review interactive additional practice, 1:36B, 1:40B, 1:44B, 1:50B, 1:54B, 1:66B, 1:70B, 1:74B, 1:78B, 1:84B, 1:96B, 1:102B, 1:106B, 1:110B, 1:114B, 1:118B, 1:122B, 1:126B, 1:138B, 1:142B, 1:146B, 1:150B, 1:154B, 1:158B, 1:164B, 1:176B, 1:180B, 1:184B, 1:190B, 1:194B, 1:198B, 1:210B, 1:214B, 1:218B, 1:222B, 1:226B, 1:230B, 1:234B, 2:6B, 2:10B, 2:14B, 2:18B, 2:22B, 2:26B, 2:40B, 2:46B, 2:50B, 2:54B, 2:58B, 2:62B, 2:66B, 2:70B, 2:74B, 2:86B, 2:90B, 2:96B, 2:100B, 2:104B, 2:108B, 2:112B, 2:116B, 2:120B, 2:132B, 2:136B, 2:140B, 2:144B, 2:148B, 2:152B, 2:158B, 2:170B, 2:174B, 2:178B, 2:182B, 2:186B, 2:200B, 2:204B, 2:208B, 2:212B, 2:216B, 2:222B, 2:234B, 2:238B, 2:242B, 2:248B, 2:252B, 2:256B
Student Practice Book, 1:36B-36C, 1:40B-40C,
$1: 44 B-44 \mathrm{C}, 1: 50 \mathrm{~B}-50 \mathrm{C}, 1: 54 \mathrm{~B}-54 \mathrm{C}$, $1: 66 \mathrm{~B}-66 \mathrm{C}, 1: 70 \mathrm{~B}-70 \mathrm{C}, 1: 74 \mathrm{~B}-74 \mathrm{C}$, $1: 78 \mathrm{~B}-78 \mathrm{C}, 1: 84 \mathrm{~B}-84 \mathrm{C}, 1: 96 \mathrm{~B}-96 \mathrm{C}$, 1:102B-102C, 1:106B-106C, 1:110B-110C, 1:114B-144C, 1:118B-118C, 1:122B-122C, 1:126B-126C, 1:138B-138C, 1:142B-142C, 1:146B-146C, 1:150B-150C, 1:154B-158C, 1:158B-158C, 1:164B-164C, 1:176B-176C, 1:180B-180C, 1:184B-184C, 1:190B-190C, $1: 194 B-194 C, 1: 198 B-198 C, 1: 210 B-210 C$, 1:214B-214C, 1:218B-218C, 1:222B-222C, 1:226B-226C, 1:230B-230C, 1:234B-234C, $2: 6 \mathrm{~B}-6 \mathrm{C}, 2: 10 \mathrm{~B}-10 \mathrm{C}, 2: 14 \mathrm{~B}-14 \mathrm{C}, 2: 18 \mathrm{~B}-18 \mathrm{C}$,

2:22B-22C, 2:26B-26C, 2:40B-40C, 2:46B-46C, 2:50B-50C, 2:54B-54C, $2: 58 \mathrm{~B}-58 \mathrm{C}, 2: 62 \mathrm{~B}-62 \mathrm{C}, 2: 66 \mathrm{~B}-66 \mathrm{C}$, 2:70B-70C, 2:74B-74C, 2:86B-86C, 2:90B-90C, 2:96B-96C, 2:100B-100C, 2:104B-104C, 2:108B-108C, 2:112B-112C, 2:116B-116C, 2:120B-120C, 2:132B-132C, 2:136B-136C, 2:140B-140C, 2:144B-144C, $2: 148 \mathrm{~B}-148 \mathrm{C}, 2: 152 \mathrm{~B}-152 \mathrm{C}, 2: 158 \mathrm{~B}-158 \mathrm{C}$, 2:170B-170C, 2:174B-174C, 2:178B-178C, 2:182B-182C, 2:186B-186C, 2:200B-200C, 2:204B-204C, $2: 208 \mathrm{~B}-208 \mathrm{C}, 2: 212 \mathrm{~B}-212 \mathrm{C}$, 2:216B-216C, 2:222B-222C, 2:234B-234C, 2:238B-238C, 2:242B-242C, 2:248B-248C, 2:252B-252C, 2:256B-256C
exit ticket recommendations, 1:36A, 1:40A, 1:44A, 1:50A, 1:54A, 1:66A, 1:70A, 1:74A, 1:78A, 1:84A, 1:96A, 1:102A, 1:106A, 1:110A, 1:114A, 1:118A, 1:122A, 1:126A, 1:138A, 1:142A, 1:146A, 1:150A, 1:154A, 1:158A, 1:164A, 1:176A, 1:180A, 1:184A, 1:190A, 1:194A, 1:198A, 1:210A, 1:214A, 1:218A, 1:222A, 1:226A, 1:230A, 1:234A, 2:6A, 2:10A, 2:14A, 2:18A, 2:22A, 2:26A, 2:40A, 2:46A, 2:50A, 2:54A, 2:58A, 2:62A, 2:66A, 2:70A, 2:74A, 2:86A, 2:90A, 2:96A, 2:100A, 2:104A, 2:108A, 2:112A, 2:116A, 2:120A, 2:132A, 2:136A, 2:140A, 2:144A, 2:148A, 2:152A, 2:158A, $2: 170 \mathrm{~A}, 2: 174 \mathrm{~A}, 2: 178 \mathrm{~A}, 2: 182 \mathrm{~A}, 2: 186 \mathrm{~A}$, 2:200A, 2:204A, 2:208A, 2:212A, 2:216A, 2:222A, 2:234A, 2:238A, 2:242A, 2:248A, 2:252A, 2:256A extend thinking. see also STEM Adventure; Use It! Application Station; Websketch Exploration Differentiated Resource Book, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:66C, 1:70C, 1:74C, 1:78C, $1: 84 \mathrm{C}, 1: 96 \mathrm{C}, 1: 102 \mathrm{C}, 1: 106 \mathrm{C}, 1: 110 \mathrm{C}, 1: 114 \mathrm{C}$, 1:118C, 1:122C, 1:126C, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:210C, 1:214C, $1: 218 \mathrm{C}, 1: 222 \mathrm{C}, 1: 226 \mathrm{C}, 1: 230 \mathrm{C}, 1: 234 \mathrm{C}, 2: 6 \mathrm{C}$, 2:10C, $2: 14 \mathrm{C}, 2: 18 \mathrm{C}, 2: 22 \mathrm{C}, 2: 26 \mathrm{C}, 2: 40 \mathrm{C}$, $2: 46 \mathrm{C}, 2: 50 \mathrm{C}, 2: 54 \mathrm{C}, 2: 58 \mathrm{C}, 2: 62 \mathrm{C}, 2: 66 \mathrm{C}$, 2:70C, 2:74C, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, 2:120C, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C
reinforce understanding. see also Small Groups Differentiated Resource Book, 1:36B, 1:40B, 1:44B, 1:50B, 1:54B, 1:66B, 1:70B, 1:74B, 1:78B, 1:84B, 1:96B, 1:102B, 1:106B, 1:110B, 1:114B, 1:118B, 1:122B, 1:126B, 1:138B, 1:142B, 1:146B, 1:150B, 1:154B, 1:158B, 1:164B, 1:176B, 1:180B, 1:184B, 1:190B, 1:194B, 1:198B, 1:210B, 1:214B, 1:218B, 1:222B, 1:226B, 1:230B, 1:234B, 2:6B, 2:10B, 2:14B, 2:18B, 2:22B, 2:26B, 2:40B, 2:46B, 2:50B, 2:54B, 2:58B, 2:62B, 2:66B, 2:70B, 2:74B, 2:86B, 2:90B, 2:96B, 2:100B, 2:104B, 2:108B, 2:112B, 2:116B, 2:120B, 2:132B, 2:136B, 2:140B, 2:144B, 2:148B, 2:152B, 2:158B, 2:170B, 2:174B, 2:178B, 2:182B, 2:186B, 2:200B, 2:204B, 2:208B, 2:212B, 2:216B, 2:222B, 2:234B, 2:238B, 2:242B, 2:248B, 2:252B, 2:256B

Take Another Look lesson, 1:36B, 1:40B, 1:44B, 1:50B, 1:54B, 1:66B, 1:70B, 1:74B, 1:78B, 1:84B, 1:96B, 1:102B, 1:106B, 1:110B, 1:114B, 1:118B, 1:122B, 1:126B, 1:138B, 1:142B, 1:146B, 1:150B, 1:154B, 1:158B, 1:164B, 1:176B, 1:180B, 1:184B, 1:190B, 1:194B, 1:198B, 1:210B, 1:214B, 1:218B, 1:222B, 1:226B, 1:230B, 1:234B, 2:6B, 2:10B, 2:14B, 2:18B, 2:22B, 2:26B, 2:40B, 2:46B, 2:50B, 2:54B, 2:58B, 2:62B, 2:66B, 2:70B, 2:74B, 2:86B, 2:90B, 2:96B, 2:100B, 2:104B, 2:108B, 2:112B, 2:116B, 2:120B, 2:132B, 2:136B, 2:140B, 2:144B, 2:148B, 2:152B, 2:158B, 2:170B, 2:174B, 2:178B, 2:182B, 2:186B, 2:200B, 2:204B, 2:208B, 2:212B, 2:216B, 2:222B, 2:234B, 2:238B, 2:242B, 2:248B, 2:252B, 2:256B
unit overview, 1:32A, 1:62A, 1:92A, 1:134A, 1:172A, 1:206A, 2:2A, 2:36A, 2:82A, 2:128A, 2:166A, 2:196A, 2:230A
Digital Resources. See also Digital Student Center; Digital Teacher Center
digital games, 1:32A, 1:62A, 1:92A, 1:134A, 1:172A, 1:206A, 2:2A, 2:36A, 2:82A, 2:128A, 2:166A, 2:196A, 2:230A
Digital Station, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:66C, 1:70C, 1:74C, 1:78C, 1:84C, 1:96C, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, $1: 230 \mathrm{C}, 1: 234 \mathrm{C}, 2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}, 2: 22 \mathrm{C}$, 2:26C, 2:40C, 2:46C, 2:50C, 2:54C, 2:58C, 2:62C, 2:66C, $2: 70 \mathrm{C}, 2: 74 \mathrm{C}, 2: 86 \mathrm{C}, 2: 90 \mathrm{C}, 2: 96 \mathrm{C}$, 2:100C, $2: 104 \mathrm{C}, 2: 108 \mathrm{C}, 2: 112 \mathrm{C}, 2: 116 \mathrm{C}, 2: 120 \mathrm{C}$, 2:132C, 2:136C, $2: 140 \mathrm{C}, 2: 144 \mathrm{C}, 2: 148 \mathrm{C}, 2: 152 \mathrm{C}$, 2:158C, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:200C, $2: 204 \mathrm{C}, 2: 208 \mathrm{C}, 2: 212 \mathrm{C}, 2: 216 \mathrm{C}, 2: 222 \mathrm{C}$, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C interactive additional practice, 1:36B, 1:40B, 1:44B, 1:50B, 1:54B, 1:66B, 1:70B, 1:74B, 1:78B, 1:84B, 1:96B, 1:102B, 1:106B, 1:110B, 1:114B, 1:118B, 1:122B, 1:126B, 1:138B, 1:142B, 1:146B, 1:150B, 1:154B, 1:158B, 1:164B, 1:176B, 1:180B, 1:184B, 1:190B, 1:194B, 1:198B, 1:210B, 1:214B, 1:218B, 1:222B, 1:226B, 1:230B, 1:234B, 2:6B, 2:10B, 2:14B, 2:18B, 2:22B, 2:26B, 2:40B, 2:46B, 2:50B, 2:54B, 2:58B, 2:62B, 2:66B, 2:70B, 2:74B, 2:86B, 2:90B, 2:96B, 2:100B, 2:104B, 2:108B, 2:112B, 2:116B, 2:120B, 2:132B, 2:136B, 2:140B, 2:144B, 2:148B, 2:152B, 2:158B, 2:170B, 2:174B, 2:178B, 2:182B, 2:186B, 2:200B, 2:204B, 2:208B, 2:212B, 2:216B, 2:222B, 2:234B, 2:238B, 2:242B, 2:248B, 2:252B, 2:256B
Is It Always True? 1:171F, 1:191, 2:1F, 2:3, 2:35F, 2:51, 2:127F, 2:149, A2
Notice \& Wonder, 1:3, 1:7, 1:11, 1:15, 1:19, 1:23, 1:33, 1:37, 1:41, 1:47, 1:51, 1:67, 1:71, 1:75, 1:81, 1:93, 1:99, 1:103, 1:111, 1:115, 1:139, 1:143, 1:147, 1:151, 1:155, 1:161, 1:173, 1:177, 1:181, 1:207, 1:211, 1:215, 1:219, A2, 2:1F, 2:7, 2:11, 2:19, 2:23, 2:35F, 2:43, 2:55, 2:59, 2:63, 2:67, 2:71, 2:81F, 2:83, 2:93, 2:97, 2:101, 2:105, 2:113, 2:117, 2:129, 2:133, 2:137, 2:141, 2:155, 2:167, 2:171, 2:183, 2:195F, 2:197, 2:201, 2:205, 2:209, 2:213, 2:235, 2:239, 2:245, 2:249, A2

Numberless Word Problems, 1:91F, 1:99, 1:123, 1:171F, 1:177, 1:195, 1:205F, 1:223, 1:227, 1:231, 2:81F, 2:87, 2:109, 2:127F, 2:133, 2:165F, 2:179, 2:219, 2:229F, 2:231, 2:253, A2 spiral review, 1:32A, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:62A, 1:66C, 1:70C, 1:74C, 1:78C, 1:84C, 1:92A, 1:96C, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:134A, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:172A, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:206A, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, $1: 234 \mathrm{C}, 2: 2 \mathrm{~A}, 2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}, 2: 22 \mathrm{C}$, 2:26C, $2: 36 \mathrm{~A}, 2: 40 \mathrm{C}, 2: 46 \mathrm{C}, 2: 50 \mathrm{C}, 2: 54 \mathrm{C}, 2: 58 \mathrm{C}$, 2:62C, 2:66C, 2:70C, 2:74C, 2:82A, 2:86C, 2:90C, 2:96C, $2: 100 \mathrm{C}, 2: 104 \mathrm{C}, 2: 108 \mathrm{C}, 2: 112 \mathrm{C}, 2: 116 \mathrm{C}$, 2:120C, 2:128A, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C, 2:166A, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:196A, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:230A, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C
STEM Adventure, 1:171, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:205, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C, 2:1, 2:6C, 2:10C, 2:14C, $2: 18 \mathrm{C}, 2: 22 \mathrm{C}, 2: 26 \mathrm{C}, 2: 40 \mathrm{C}, 2: 46 \mathrm{C}$, 2:50C, 2:54C, 2:58C, 2:62C, 2:66C, $2: 70 \mathrm{C}, 2: 74 \mathrm{C}$, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, $2: 120 \mathrm{C}, 2: 132 \mathrm{C}, 2: 136 \mathrm{C}, 2: 140 \mathrm{C}$, 2:144C, 2:148C, 2:152C, 2:158C, 2:165, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C
STEM in Action videos, 1:1, 1:31, 1:61, 1:91, 1:133, 1:171, 1:205, 2:1, 2:35, 2:81, 2:127, 2:165, 2:195, 2:229 Take Another Look lesson, 1:36B, 1:40B, 1:44B, 1:50B, 1:54B, 1:66B, 1:70B, 1:74B, 1:78B, 1:84B, 1:96B, 1:102B, 1:106B, 1:110B, 1:114B, 1:118B, 1:122B, 1:126B, 1:138B, 1:142B, 1:146B, 1:150B, 1:154B, 1:158B, 1:164B, 1:176B, 1:180B, 1:184B, 1:190B, 1:194B, 1:198B, 1:210B, 1:214B, 1:218B, 1:222B, 1:226B, 1:230B, 1:234B, 2:6B, 2:10B, 2:14B, 2:18B, 2:22B, 2:26B, 2:40B, 2:46B, 2:50B, 2:54B, 2:58B, 2:62B, 2:66B, 2:70B, 2:74B, 2:86B, 2:90B, 2:96B, 2:100B, 2:104B, 2:108B, 2:112B, 2:116B, 2:120B, 2:132B, 2:136B, 2:140B, 2:144B, 2:148B, 2:152B, 2:158B, 2:170B, 2:174B, 2:178B, 2:182B, 2:186B, 2:200B, 2:204B, 2:208B, 2:212B, 2:216B, 2:222B, 2:234B, 2:238B, 2:242B, 2:248B, 2:252B, 2:256B unit assessments, 1:60B, 1:90B, 1:132B, 1:170B, 1:204B, 1:242B, 2:34B, 2:80B, 2:126B, 2:164B, 2:194B, 2:228B, 2:262B
Websketch Exploration, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:66C, 1:70C, 1:74C, 1:78C, 1:84C, 1:96C, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:133, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 2:195, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:229, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C Which Doesn't Belong? 1:1F, 1:15, 1:61F, 1:63, 1:91F, 1:107, 1:119, 1:133F, 1:135, 1:171F, 1:187, 2:1F, 2:15, 2:35F, 2:37, 2:47, 2:127F, 2:145, 2:165F, 2:175, A2
Digital Station. See Own It! Digital Station

## Digital Student Center

Math Replay video, 1:35-1:36, 1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:55-1:56, 1:65-1:66, 1:691:70, 1:73-1:74, 1:77-1:78, 1:83-1:84, 1:85-1:86,

1:95-1:96, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:127-1:128, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:165-1:166, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:199-1:200, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:2211:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 1:237-1:238, 2:5-2:6, 2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:29-2:30, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:75-2:76, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:1072:108, 2:111-2:112, 2:115-2:116, 2:119-2:120, 2:121-2:122, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:143-2:144, 2:147-2:148, 2:151-2:152, 2:157-2:158, 2:159-2:160, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:1812:182, 2:185-2:186, 2:189-2:190, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:211-2:212, 2:215-2:216, 2:221-2:222, 2:223-2:224, 2:2332:234, 2:237-2:238, 2:241-2:242, 2:247-2:248, 2:251-2:252, 2:255-2:256, 2:257-2:258 unit assessments, 1:60B, 1:90B, 1:132B, 1:170B, 1:204B, 1:242B, 2:34B, 2:80B, 2:126B, 2:164B, 2:194B, 2:228B, 2:262B

## Digital Teacher Center

benchmark assessment, 1:132D, 1:242D, 2:126D Math Attitude Survey, 1:1G
On My Own practice, 1:35-1:36, 1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:65-1:66, 1:691:70, 1:73-1:74, 1:77-1:78, 1:83-1:84, 1:95-1:96, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:221-1:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 2:5-2:6, 2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:107-2:108, 2:111-2:112, 2:115-2:116, 2:119-2:120, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:143-2:144, 2:1472:148, 2:151-2:152, 2:157-2:158, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:181-2:182, 2:1852:186, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:211-2:212, 2:215-2:216, 2:221-2:222, 2:2332:234, 2:237-2:238, 2:241-2:242, 2:247-2:248, 2:251-2:252, 2:255-2:256
Readiness Diagnostic, 1:31G, 1:61G, 1:91G, 1:133G, 1:171G, 1:205G, 2:1G, 2:35G, 2:81G, 2:127G, 2:165G, 2:195G, 2:229G
summative assessment, 2:262D
unit assessments, 1:60B, 1:90B, 1:132B, 1:170B, 1:204B, 1:242B, 2:34B, 2:80B, 2:126B, 2:164B, 2:194B, 2:228B, 2:262B
Unit Review practice, 1:55-1:56, 1:85-1:86, 1:127-1:128, 1:165-1:166, 1:199-1:200, 1:237-1:238, 2:29-2:30, 2:75-2:76, 2:121-2:122, 2:159-2:160, 2:189-2:190, 2:223-2:224, 2:257-2:258

## Division

converting customary units, 2:167-2:170
converting metric units, 2:171-2:174
decimals, 2:1C, 2:2, 2:27-2:28
decimals by decimals, 2:23-2:26
powers of 10 , place value patterns of, 2:3-2:6
whole numbers, 2:11-2:14, 2:15-2:18, 2:19-2:22
estimate, quotient of multi-digit numbers, 1:211-1:214
fractions, 2:127C
fractions related to, 2:129-2:132, 2:141-2:144 fraction word problems, 2:155-2:158
multi-digit numbers, $2: 40 \mathrm{C}, 2: 46 \mathrm{C}, 2: 50 \mathrm{C}, 2: 54 \mathrm{C}$,
2:62C, 2:66C, 2:70C, 2:74C, 2:170C
fluency, 2:178C, 2:200C, 2:204C, 2:208C,
2:212C, 2:216C, 2:222C
whole numbers, 1:205C
multiples of 10, 2:79-2:80
multiples of 100, 2:125-2:126
multiplication relating to, 1:215-1:218, 2:155-2:158 partial quotients
to calculate quotient, 1:219-1:222
record, 1:223-1:226
with remainders, 1:227-1:230
patterns, by 10s, 1:207-1:210
reviewing, 1:206
2-digit divisors, 1:215-1:218
unit fractions, 2:153-2:154
by non-zero whole numbers, 2:145-2:148, 2:149-2:152
related to, 2:129-2:132
whole number by unit fractions, 2:137-2:140, 2:141-2:144
word problems, 1:235-1:236
quotients, as fractions or mixed numbers,
2:133-2:136
with remainders, 1:231-1:234

## E

Effective Teaching Practices, 2:5-2:6
Build Procedural Fluency from Conceptual Understanding, 1:6, 1:10, 1:14, 1:18, 1:22, 1:35-1:36, 1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:65-1:66, 1:69-1:70, 1:73-1:74, 1:77-1:78, 1:831:84, 1:91D, 1:95-1:96, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, $1: 125-1: 126,1: 137-1: 138,1: 141-1: 142,1: 145-1: 146$, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:205D, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:221-1:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:39-2:40, 2:452:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:107-2:108, 2:111-2:112, 2:115-2:116, 2:119-2:120, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:1432:144, 2:147-2:148, 2:151-2:152, 2:157-2:158, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:1812:182, 2:185-2:186, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:211-2:212, 2:215-2:216, 2:2212:222, 2:233-2:234, 2:237-2:238, 2:241-2:242, 2:247-2:248, 2:251-2:252, 2:255-2:256

Elicit and Use Evidence of Student Thinking, 1:8-1:9 1:12-1:13, 1:16-1:17, 1:20-1:21, 1:24-1:25, 1:31D, $1: 34,1: 38,1: 42,1: 48,1: 52,1: 64,1: 68,1: 72,1: 76$, 1:82, 1:94, 1:100, 1:104, 1:108, 1:112, 1:116, 1:120, $1: 124,1: 136,1: 140,1: 144,1: 148,1: 152,1: 156,1: 162$, 1:174, 1:178, 1:182, 1:188, 1:192, 1:196, 1:208, 1:212, 1:216, 1:220, 1:224, 1:228, 1:232, 2:1D, 2:4, 2:8, 2:12, 2:16, 2:20, 2:24, 2:38, 2:44, 2:48, 2:52, 2:56, 2:60, 2:64, 2:68, 2:72, 2:84, 2:88, 2:94, 2:98, 2:102, 2:106, 2:110, 2:114, 2:118, 2:130, 2:134, 2:138, 2:142, 2:146, 2:150, 2:156, 2:168, 2:172, 2:176, 2:180, 2:184, 2:198, 2:202, 2:206, 2:210, 2:214, 2:220, 2:232, 2:236, 2:240, 2:246 2:250, 2:254
Establish Mathematics Goals to Focus Learning, 1:3, 1:7, 1:11, 1:15, 1:19, 1:23, 1:33, 1:37, 1:41, 1:47, 1:51, 1:63, 1:67, 1:71, 1:75, 1:81, 1:93, 1:99, 1:103, 1:107, 1:111, 1:115, 1:119, 1:123, 1:135, 1:139, 1:143, 1:147, 1:151, 1:155, 1:161, 1:173, 1:181, 1:187, 1:191, 1:195, 1:207, 1:211, 1:215, 1:219, 1:223, 1:227, 1:231, 2:3, 2:7, 2:11, 2:15, 2:19, 2:23, 2:37, 2:43, 2:47, 2:51, 2:55, 2:59, 2:63, 2:67, 2:71, 2:83, 2:87, 2:93, 2:97, 2:101, 2:105, 2:109, 2:113, 2:117, 2:129, 2:133, 2:137, 2:141, 2:145, 2:149, 2:155, 2:167, 2:171, 2:175, 2:179, 2:183, 2:197, 2:205, 2:209, 2:213, 2:219, 2:231, 2:235, 2:239, 2:245, 2:249, 2:253
Facilitate Meaningful Mathematical Discourse, 1:5A, 1:9A, 1:13A, 1:17A, 1:21A, 1:25A, 1:38A, 1:52A, 1:68A, 1:82A, 1:94A, 1:108A, 1:120A, 1:136A, 1:144A, 1:162A, 1:171D, 1:174A, 1:178A, 1:192A, 1:196A, 1:208A, 1:212A, 1:216A, 1:228A, 1:232A, 2:8A, 2:35D, 2:48A, 2:56A, 2:60A, 2:68A, 2:72A, 2:88A, 2:106A, 2:110A, 2:114A, 2:134A, 2:142A, 2:146A, 2:150A, 2:156A, 2:172A, 2:176A, 2:184A, 2:206A, 2:210A, 2:214A, 2:236A, 2:240A, 2:246A, 2:254A Implement Tasks That Promote Reasoning and Problem Solving, 1:38A, 1:52A, 1:68A, 1:76A, 1:82A, 1:94A, 1:136A, 1:140A, 1:152A, 1:174A, 1:208A, 1:216A, 1:220A, 1:224A, 2:4A, 2:44A, 2:52A, 2:94A, 2:102A, 2:114A, 2:127D, 2:168A, 2:172A
Pose Purposeful Questions, 1:3, 1:7, 1:8-1:9, 1:11, 1:12-1:13, 1:15, 1:16-1:17, 1:19, 1:20-1:21, 1:23, $1: 24-1: 25,1: 33,1: 34,1: 34 \mathrm{~A}, 1: 37,1: 38,1: 41,1: 42$, 1:47, 1:48, 1:51, 1:52, 1:61D, 1:63, 1:64, 1:67, 1:68, 1:71, 1:72, 1:75, 1:76, 1:76A, 1:81, 1:82, 1:93, 1:94, 1:99, 1:100, 1:103, 1:104, 1:107, 1:108, 1:111, 1:112, 1:115, 1:116, 1:119, 1:120, 1:123, 1:124, 1:135, 1:136, 1:139, 1:140, 1:143, 1:144, 1:147, 1:148, 1:151, 1:152, 1:155, 1:156, 1:161, 1:162, 1:173, 1:174, 1:177, 1:178, 1:181, 1:182, 1:187, 1:188, 1:191, 1:192, 1:195, 1:196, 1:207, 1:208, 1:211, 1:212, 1:215, 1:216, 1:219, 1:220, 1:223, 1:224, 1:227, 1:228, 1:231, 1:232, 2:3, 2:4, 2:7, 2:8, 2:11, 2:12, 2:15, 2:16, 2:19, 2:20, 2:23, 2:24, 2:37, 2:38, 2:38A, 2:43, 2:44, 2:47, 2:48, 2:51, 2:52, 2:55, 2:56, 2:59, 2:60, 2:63, 2:64, 2:67, 2:68, 2:71, 2:72, 2:83, 2:84, 2:87, 2:88, 2:93, 2:94, 2:97, 2:98, 2:101, 2:102, 2:105, 2:106, 2:109, 2:110, 2:110A, 2:113, 2:114, 2:117, 2:118, 2:129, 2:130, 2:133, 2:134, 2:137, 2:138, 2:141, 2:142, 2:145, 2:146, 2:149, 2:150, 2:155, 2:156, 2:167, 2:168, 2:171, 2:172, 2:175, 2:176, 2:179, 2:180, 2:183, 2:184, 2:195D, 2:197, 2:198, 2:201, 2:202, 2:205, 2:206, 2:209, 2:210, 2:213, 2:214, 2:219,

2:220, 2:231, 2:232, 2:235, 2:236, 2:239, 2:240, 2:245, 2:246, 2:249, 2:250, 2:253, 2:254 Support Productive Struggle in Learning Mathematics, 1:9A, 1:13A, 1:17A, 1:21A, 1:25A, 1:34A, 1:42A, 1:48A, 1:64A, 1:72A, 1:100A, 1:104A, 1:108A, 1:112A, 1:116A, 1:120A, 1:124A, 1:144A, 1:148A, 1:156A, 1:162A, 1:178A, 1:182A, 1:188A, 1:192A, 1:196A, 1:212A, 1:228A, 1:232A, 2:8A, 2:12A, 2:16A, 2:20A, 2:24A, $2: 38 \mathrm{~A}, 2: 48 \mathrm{~A}, 2: 56 \mathrm{~A}, 2: 60 \mathrm{~A}, 2: 64 \mathrm{~A}$, 2:68A, $2: 72 \mathrm{~A}, 2: 84 \mathrm{~A}, 2: 88 \mathrm{~A}, 2: 98 \mathrm{~A}, 2: 106 \mathrm{~A}$, 2:118A, 2:130A, 2:134A, 2:138A, 2:142A, 2:146A, 2:150A, 2:156A, 2:165D, 2:176A, 2:180A, 2:184A, 2:198A, 2:202A, 2:206A, 2:210A, 2:214A, 2:220A, 2:232A, 2:236A, 2:240A, 2:246A, 2:250A, 2:254A
Use and Connect Mathematical Representations, 1:42A, 1:48A, 1:64A, 1:72A, 1:100A, 1:104A, 1:112A, 1:116A, 1:124A, 1:133D, 1:140A, 1:148A, 1:152A, 1:156A, 1:182A, 1:188A, 1:220A, 1:224A, 2:4A, 2:12A, 2:16A, 2:20A, 2:24A, 2:44A, 2:52A, 2:64A, 2:81D, 2:84A, 2:94A, 2:98A, 2:102A, 2:118A, 2:130A, $2: 138 \mathrm{~A}, 2: 168 \mathrm{~A}, 2: 180 \mathrm{~A}, 2: 198 \mathrm{~A}, 2: 202 \mathrm{~A}$, 2:220A, 2:229D, 2:232A, 2:250A

English Language Learners (ELL), 1:1E, 1:31E, 1:61E, 1:91E, 1:133E, 1:171E, 1:205E, 2:1E, 2:35E, 2:81E, 2:127E, 2:165E, 2:195E, 2:229E

English Learner Scaffolds, 1:5A, 1:9A, 1:13A, 1:17A, 1:21A, 1:25A, 1:34A, 1:38A, 1:42A, 1:48A, 1:52A, 1:64A, $1: 68 \mathrm{~A}, 1: 72 \mathrm{~A}, 1: 76 \mathrm{~A}, 1: 82 \mathrm{~A}, 1: 94 \mathrm{~A}, 1: 100 \mathrm{~A}, 1: 104 \mathrm{~A}, 1: 108 \mathrm{~A}$, 1:112A, 1:116A, 1:120A, 1:124A, 1:136A, 1:140A, 1:144A, 1:148A, 1:152A, 1:156A, 1:162A, 1:174A, 1:178A, 1:182A, 1:188A, 1:192A, 1:196A, 1:208A, 1:212A, 1:216A, 1:220A, 1:224A, 1:228A, 1:232A, 2:4A, 2:8A, 2:12A, 2:16A, 2:20A, 2:24A, 2:38A, 2:44A, 2:48A, 2:52A, 2:56A, $2: 60 \mathrm{~A}, 2: 64 \mathrm{~A}, 2: 68 \mathrm{~A}, 2: 72 \mathrm{~A}, 2: 84 \mathrm{~A}, 2: 88 \mathrm{~A}, 2: 94 \mathrm{~A}$, 2:98A, 2:102A, 2:106A, 2:110A, 2:114A, 2:118A, 2:130A, 2:134A, 2:138A, 2:142A, 2:146A, 2:150A, 2:156A, 2:168A, 2:172A, 2:176A, 2:180A, 2:184A, 2:198A, 2:202A, 2:206A, 2:210A, 2:214A, 2:220A, 2:232A, 2:236A, 2:240A, 2:246A, 2:250A, 2:254A
Equal sharing, dividing decimals by whole numbers, 2:11-2:14

Equilateral triangles, 2:209-2:212
Equivalent fractions, 2:35C
addition
fractions with unlike denominators, 2:47-2:50
mixed numbers with regrouping, 2:67-2:70
mixed numbers with unlike denominators,
2:59-2:62
with unlike denominators, 2:43-2:46
modeling, 2:36
subtraction
mixed numbers with regrouping, 2:67-2:70 mixed numbers with unlike denominators, 2:63-2:66
with unlike denominators, 2:51-2:54, 2:55-2:58
Equivalent representations
dividing decimals by decimals, 2:23-2:26
dividing decimals by whole numbers, 2:15-2:18
dividing whole numbers by decimals, 2:19-2:22
Estimating
checking reasonableness of calculated solutions, 2:37-2:40, 2:37A, 2:39-2:40
decimals, 1:94
addition, 1:93-1:96, 1:97-1:98
estimating products of, 1:177-1:180
on number lines, 1:62
products of, 1:177-1:180
quotients of, 2:7-2:10
subtraction, 1:93-1:96
sums and differences, 1:93-1:96, 2:37-2:40
fractions
addition, 2:37-2:40
subtraction, 2:37-2:40
sums and differences of, 2:37-2:40, 2:41-2:42
multi-digit numbers
division, 1:211-1:214
estimate products of, 1:143-1:146
multiplication, 1:143-1:146
products of, 1:143A, 1:145-1:146
quotient of, 1:211-1:214
multiplication, 1:152, 1:162
multi-digit numbers, 1:143-1:146
products of two decimals, 1:177-1:180
number lines
decimals, 1:62
estimating fractions, 2:37-2:40
to predict calculates solutions, 2:37A, 2:39-2:40
predicting solutions, 1:178, 2:7-2:10, 2:37-2:40
reviewing, 1:92, 1:134, 1:172
rounding numbers
multi-digit numbers, 1:144
products of decimals, 1:178
strategies for, 1:178
Exit Ticket. See Assessment: formative assessment
Expanded form, decimals, 1:71-1:74
Exponents, writing powers of 10 with, 1:135-1:138
Extend thinking. See Differentiated Learning

## F

Family Letter, 1:1, : ::31, 1:61, 1:91, 1:1:33, 1:171, 1:205, 2:1, 2:35, 2:81, 2:127, 2:165, 2:195, 2:229

Find the Missing Values, $1: 171 \mathrm{~F}, 1: 187 \mathrm{~A}, 1: 191 \mathrm{~A}, 2: 195 \mathrm{~F}$, 2:205A, A3
Find the Pattern, Make a Pattern, 1:61F, 1:75A, 1:81A, 1:133F, 1:135A, 1:139A, 1:205F, 1:219A, 1:223A, 2:81F, 2:83A, 2:87A, 2:165F, 2:167A, 2:171A, A3
Fluency. See also Differentiated Learning
addition, 1:169-1:170, 1:203-1:204, 1:241-1:242
within $1,000,000,2: 6 \mathrm{C}, 2: 10 \mathrm{C}, ~ 2: 14 \mathrm{C}, ~ 2: 18 \mathrm{C}$, 2:22C, 2:26C
expectations, practice, and progressions, 1:29-1:30, 1:59-1:60, 1:89-1:90, 1:131-1:132,
1:169-1:170, 1:203-1:204, 1:241-1:242,
2:33-2:34, 2:79-2:80, 2:125-2:126, 2:163-2:164,
2:193-2:194, 2:227-2:228, 2:261-2:262
multi-digit numbers
division, 2:178C, 2:200C, 2:204C, 2:208C,
2:212C, 2:216C, 2:222C
multiplication, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, 2:120C
multiplication
of area, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C area models, 2:132C, 2:136C, 2:140C, 2:144C,
2:148C, 2:152C, 2:158C
multi-digit numbers, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, 2:120C
order of operations, 2:230, 2:234C, 2:238C,
2:242C, 2:243-2:244, 2:248C, 2:252C, 2:256C
subtraction, 1:241-1:242, 2:26C
within $1,000,000,2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}$, 2:22C
volume, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C
Focus
algebraic thinking, 2:229C
content, language, and social emotional learning objectives, $1: 3 \mathrm{~A}, 1: 7 \mathrm{~A}, 1: 11 \mathrm{~A}, 1: 1: 15 \mathrm{~A}, 1: 19 \mathrm{~A}, 1: 23 \mathrm{~A}$, $1: 33 \mathrm{~A}, 1: 37 \mathrm{~A}, 1: 41 \mathrm{~A}, 1: 47 \mathrm{~A}, 1: 51 \mathrm{~A}, 1: 63 \mathrm{~A}, 1: 67 \mathrm{~A}$, 1:71A, 1:75A, 1:81A, 1:93A, 1:99A, 1:103A, 1:107A, 1:1111, 1:115A, 1:119A, 1:123A, 1:135A, 1:139A, 1:143A, 1:147A, $1: 151 \mathrm{~A}, 1: 155 \mathrm{~A}, 1: 161 \mathrm{~A}, 1: 173 \mathrm{~A}, 1: 1777 \mathrm{~A}, 1: 181 \mathrm{~A}$, 1:187A, 1:191A, 1:195A, 1:207A, 1:211A, 1:215A, 1:219A, 1:223A, 1:227A, 1:231A, 2:3A, 2:7A, 2:11A, 2:15A, 2:19A, 2:23A, 2:37A, 2:43A, 2:47A, 2:51A, 2:55A, 2:59A, 2:63A, 2:67A, 2:71A, 2:83A, 2:87A, 2:93A, 2:97A, 2:101A, 2:105A, 2:109A, 2:113A, 2:117A, 2:129A, 2:133A, 2:137A, 2:141A, 2:145A, 2:149A, 2:155A, 2:167A, 2:171A, 2:175A, 2:179A, 2:183A, 2:197A, 2:201A, 2:205A, 2:209A, 2:213A 2:219A, 2:231A, 2:235A, 2:239A, 2:245A, 2:249A, 2:253A
coordinate plane, 2:195C, 2:229C
data, 2:165C
decimals
adding and subtracting, 1:91C
concepts of, 1:61C
dividing, 2:1C
multiplying, 1:171C
division
fractions, 2:127C
of multi-digit whole numbers, 1:205C
fractions
addition and subtraction, 2:35C
division, 2:127C
equivalent fractions, 2:35C
multiplication, 2:81C
line plots, 2:165C
multi-digit numbers
dividing, 1:205C
multiplication of, 1:133C
multiplication
of decimals, 1:171C
fractions, 2:81C
of multi-digit whole numbers, 1:133C
order of operations, 2:229C
polygons, 2:195C
scaling, 2:81C
understanding what math is, 1:1C
volume, 1:31C
whole numbers
multi-digit division of, 1:205C
multi-digit multiplication of, 1:133
Focus Question, 1:31, 1:61, 1:91, 1:133, 1:171, 1:205, 2:1, 2:35, 2:81, 2:127, 2:165, 2:195, 2:229

Formative assessment. See Assessment: formative assessment
Formulas, volume, 1:41-1:44

## Fraction model

dividing unit fractions by non-zero whole numbers, 2:145-2:148, 2:149-2:152
dividing whole number by unit fractions,
2:137-2:140, 2:141-2:144
division word problems, 2:155-2:158
Fractions, 2:35C. See also Mixed numbers;
Unit fractions
addition, with unlike denominators, 2:43-2:46, 2:47-2:50
comparing, 1:16-1:17
denominator, representing, 1:7A
dividing whole number by, 2:137-2:140
division, 2:127C
non-zero whole number divided by,
2:145-2:148, 2:149-2:152
whole number by, 2:141-2:144
word problems, 2:155-2:158
division related to, 2:129-2:132, 2:141-2:144
division word problems, 2:133-2:136
equivalent fractions, 2:36
modeling, 1:11-1:14
estimating, sums and differences of, 2:37-2:40, 2:41-2:42
fractional part of set, 1:7A
on line plots, 2:187-2:188
modeling, 1:11-1:14, 1:15-1:18
multiplication, 1:8-1:9, 1:12-1:13, 1:72, 2:81C, 2:117-2:120
area with fractional side lengths, 2:101-2:104
factors impact on products, 2:113-2:116
fraction by, 2:93-2:96, 2:97-2:100
whole numbers by, 2:83-2:86, 2:87-2:90
partitioned wholes, 1:15-1:18
as quotients, 2:129-2:132, 2:133-2:136
representing, 2:82
subtraction, with unlike denominators, 2:51-2:54, 2:55-2:58
word problems, 2:71-2:74, 2:117-2:120
writing mixed numbers as, to multiply, 2:109-2:112
Front-end estimation, 1:178

## G

Game station. See Practice It! Game Station

## Geometry

area, with fractional side lengths, 2:103-2:104
composite figures, volume of, 1:47-1:50
coordinate plane, 2:253-2:256
plotting ordered pairs on, 2:201-2:204,
2:217-2:218
real-world situations on, interpreting, 2:205-2:208
understanding, 2:197-2:200
cubes, faces of, 1:32
quadrilaterals
classifying, categories and subcategories, 2:219-2:222
properties of, 2:213-2:216
rectangles, $2: 213 \mathrm{~A}$
classifying, 2:219-2:222
multiplying area with fractional side lengths, 2:101-2:104
properties of, 2:213-2:216
rectangular prisms, volume of, 1:37-1:40, 1:41-1:44
three-dimensional objects, similarities and differences of, 1:33-1:36
triangles, 2:209-2:212
two-dimensional shapes, similarities and differences of, 1:33-1:36

Greater Than or Less Than, 1:133F, 1:147A, 1:151A,
1:155A, 2:81F, 2:113A, 2:117A, 2:127F, 2:129A, 2:195F,
2:197A, 2:201A, A3
Grids
0.5 cm grid paper, 1:187A
$4 \times 4$ Grids, 1:7A
$6 \times 6$ Grids, $1: 7 \mathrm{~A}$
$10 \times 10$ Grids, 1:7A, 1:63A, 1:64A, 1:104A, 1:116A, 1:181A, 1:182A
decimal grids, 1:99-1:102, 1:103A, 1:104-104A,
1:105-1:106, 1:112, 1:115A, 1:116-116A, 1:117-1:118,
1:157-1:158, 1:181-1:184, 1:195A, 2:25-2:26
modeling with, 1:11-1:14
Grouping symbols, 2:231-2:234
Guided Exploration. See Choose Your Option

## H

## Hierarchy of figures

quadrilaterals, 2:219-2:222
triangles, 2:209-2:212
How are they the same? How are they
different?. See Sense-Making Routines

Ignite!
Area and Decimal Multiplication, 1:172
Division Puzzles, 1:206
5-4-3-2-1 Challenge, 2:230
Folding Fractions on a Strip, 2:82
Fraction Wall, 2:36
How Far? 1:92
Lemonade Stand, 2:2
Map It, 1:2
Mile-High Pennies, 1:134
Number Lines, 1:62
Number Strings, 2:128
Painted Cubes, 1:32
Tetrominoes, 2:196
Which Sums Occur Least and Most? 2:166

## Independent Work

Differentiated Resource Book, 1:36B-36C, $1: 40 \mathrm{~B}-40 \mathrm{C}, 1: 44 \mathrm{~B}-44 \mathrm{C}, 1: 50 \mathrm{~B}-50 \mathrm{C}, 1: 54 \mathrm{~B}-54 \mathrm{C}$, 1:66B-66C, 1:70B-70C, 1:74B-74C, 1:78B-78C, 1:84B-84C, 1:96B-96C, 1:102B-102C, 1:106B-106C, 1:110B-110C, 1:114B-144C, 1:118B-118C, 1:122B-122C, 1:126B-126C, 1:138B-138C, 1:142B-142C, 1:146B-146C, 1:150B-150C, 1:154B-158C, 1:158B-158C, 1:164B-164C, 1:176B-176C, 1:180B-180C, 1:184B-184C, 1:190B-190C, 1:194B-194C, 1:198B-198C, 1:210B-210C, 1:214B-214C, $1: 218 \mathrm{~B}-218 \mathrm{C}, 1: 222 \mathrm{~B}-222 \mathrm{C}, 1: 226 \mathrm{~B}-226 \mathrm{C}$, 1:230B-230C, 1:234B-234C

Student Practice Book, 1:36B-36C, 1:40B-40C, 1:44B-44C, 1:50B-50C, 1:54B-54C, 1:66B-66C, $1: 70 \mathrm{~B}-70 \mathrm{C}, 1: 74 \mathrm{~B}-74 \mathrm{C}, 1: 78 \mathrm{~B}-78 \mathrm{C}, 1: 84 \mathrm{~B}-84 \mathrm{C}$, 1:96B-96C, 1:102B-102C, 1:106B-106C, 1:110B-110C, 1:114B-144C, 1:118B-118C, 1:122B-122C, 1:126B-126C, 1:138B-138C, 1:142B-142C, 1:146B-146C, 1:150B-150C, 1:154B-158C, 1:158B-158C, 1:164B-164C, 1:176B-176C, 1:180B-180C, 1:184B-184C, 1:190B-190C, 1:194B-194C, 1:198B-198C, 1:210B-210C, 1:214B-214C, 1:218B-218C, 1:222B-222C, 1:226B-226C, 1:230B-230C, 1:234B-234C

Independent Work: Differentiated Resource Book,
Student Practice Book, 2:6B-6C, 2:14B-14C,
2:18B-18C, 2:22B-22C, 2:26B-26C, 2:40B-40C,
$2: 46 \mathrm{~B}-46 \mathrm{C}, 2: 50 \mathrm{~B}-50 \mathrm{C}, 2: 54 \mathrm{~B}-54 \mathrm{C}, 2: 58 \mathrm{~B}-58 \mathrm{C}$,
2:62B-62C, 2:66B-66C, 2:70B-70C, 2:74B-74C,
2:86B-86C, 2:90B-90C, 2:96B-96C, 2:100B-100C, 2:104B-104C, 2:108B-108C, 2:112B-112C, 2:116B-116C, 2:120B-120C, 2:132B-132C, 2:136B-136C,
2:140B-140C, 2:144B-144C, 2:148B-148C,
2:152B-152C, 2:158B-158C, 2:170B-170C,
2:174B-174C, 2:178B-178C, 2:182B-182C,
2:186B-186C, 2:200B-200C, 2:204B-204C,
2:208B-208C, 2:212B-212C, 2:216B-216C,
2:222B-222C, $2: 234 \mathrm{~B}-234 \mathrm{C}, 2: 238 \mathrm{~B}-238 \mathrm{C}$,
2:242B-242C, 2:248B-248C, 2:252B-252C, 2:256B-256C
Independent Work: Differentiated Resource Book,
Student Practice Book, 2:10B-10C
Is It Always True?, 1:171F, 1:191, A2
Isosceles triangles, 2:209-2:212

## K

Key takeaways, A6
addition
decimals, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:125-1:126
decimals, estimating, 1:95-1:96
fractions, estimating, 2:39-2:40
fractions with unlike denominators, 2:45-2:46, 2:49-2:50
fraction word problems, 2:73-2:74
mixed numbers with regrouping, 2:69-2:70
mixed numbers with unlike denominators, 2:61-2:62
mixed numbers word problems, 2:73-2:74
algebraic thinking
numerical expressions, 2:233-2:234,
2:237-2:238, 2:241-2:242
numerical patterns, 2:247-2:248, 2:251-2:252, 2:255-2:256
algorithms, multiplication, 1:157-1:158, 1:163-1:164 angles
of quadrilaterals, 2:215-2:216
of triangles, 2:211-2:212
area, with fractional side lengths, 2:103-2:104
area models
multi-digit multiplication, 1:149-1:150
partial product of decimals, 1:189-1:190
partial product of mixed numbers, 2:107-2:108
attributes
of quadrilaterals, 2:215-2:216, 2:221-2:222
of triangles, 2:211-2:212
base 10 , writing powers of 10 with, 1:137-1:138
benchmark numbers, to estimate fractions,
2:39-2:40
capacity, converting customary units, 2:169-2:170, 2:173-2:174
categories
of quadrilaterals, 2:221-2:222
of triangles, 2:211-2:212
common multiple
adding fractions with unlike denominators, 2:49-2:50
adding mixed numbers with regrouping, 2:69-2:70
adding mixed numbers with unlike
denominators, 2:61-2:62
subtracting fractions with unlike denominators, 2:57-2:58
subtracting mixed numbers with regrouping, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:65-2:66
compatible numbers, estimating quotients of decimals, 2:9-2:10
composite figures, volume of, 1:49-1:50
coordinate plane
ordered pairs, numerical patterns forming, 2:255-2:256
plotting ordered pairs on, 2:203-2:204
real-world situations on, interpreting,
2:207-2:208
understanding, 2:199-2:200
corresponding terms
ordered pairs from, 2:255-2:256
relationship between, 2:247-2:248,
2:251-2:252
customary units
capacity, 2:169-2:170
converting, 2:169-2:170
length, 2:169-2:170
multi-step problems, 2:177-2:178
time, 2:169-2:170
weight, 2:169-2:170
data
on coordinate plane, interpreting, 2:207-2:208
measurement, on line plots, 2:181-2:182
solving problems involving, 2:185-2:186
decimals
addition, 1:101-1:102, 1:105-1:106, 1:109-1:110,
1:125-1:126
dividing by powers of 10 , place value patterns of, 2:5-2:6
dividing by whole numbers, 2:13-2:14, 2:17-2:18
dividing decimals by decimals, 2:25-2:26
equivalent whole numbers equations,
2:25-2:26
estimating products of, 1:179-1:180
estimating quotients of, 2:9-2:10
in expanded form, 1:73-1:74
multiplication, 1:183-1:184, 1:193-1:194,
1:197-1:198
partial product, 1:189-1:190
patterns in multiplying by power of 10 , 1:175-1:176
place-value of, 1:65-1:66, 1:69-1:70
reading and writing, 1:73-1:74
rounding, 1:83-1:84, 2:103-2:104
in standard form, 1:73-1:74
subtraction, 1:113-1:114, 1:121-1:122, 1:125-1:126
in thousandths place, 1:77-1:78
whole numbers divided by, 2:21-2:22
in word form, 1:73-1:74
denominator
adding fractions with unlike denominators, 2:49-2:50
adding mixed numbers with regrouping, 2:69-2:70
adding mixed numbers with unlike denominators, 2:61-2:62
subtracting fractions with unlike denominators, 2:57-2:58
subtracting mixed numbers with regrouping, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:65-2:66
division
by 10 , patterns in, 1:209-1:210
converting customary units, 2:169-2:170
converting metric units, 2:173-2:174
decimals by decimals, 2:25-2:26
decimals by powers of 10 , place value patterns of, 2:5-2:6
decimals by whole numbers, 2:13-2:14, 2:17-2:18
dividing whole number by unit fractions, 2:139-2:140, 2:143-2:144
estimate quotient of multi-digit numbers, 1:213-1:214
fractions related to, 2:131-2:132, 2:143-2:144
fraction word problems, 2:135-2:136, 2:157-2:158
multiplication relating to, 1:217-1:218, 2:157-2:158
partial quotients, 1:221-1:222, 1:229-1:230
2-digit divisors, 1:217-1:218
unit fractions by non-zero whole numbers, 2:147-2:148, 2:151-2:152
unit fractions related to, 2:131-2:132
whole numbers by decimals, 2:21-2:22
word problems with remainders, 1:233-1:234
equal sharing, dividing decimals by whole numbers, 2:13-2:14
equilateral triangles, 2:211-2:212
equivalent fractions
adding fractions with unlike denominators,
2:45-2:46, 2:49-2:50
adding mixed numbers with regrouping, 2:69-2:70
adding mixed numbers with unlike
denominators, 2:61-2:62
subtracting fractions with unlike denominators, 2:53-2:54, 2:57-2:58
subtracting mixed numbers with regrouping, 2:69-2:70
subtracting mixed numbers with unlike
denominators, 2:65-2:66
equivalent representations
dividing decimals by decimals, 2:25-2:26
dividing decimals by whole numbers, 2:17-2:18
dividing whole numbers by decimals, 2:21-2:22
estimating
checking reasonability of calculated solutions, 2:39-2:40
to predict calculated solutions, 2:39-2:40
products of multi-digit numbers, 1:145-1:146
products of two decimals, 1:179-1:180
quotient of multi-digit numbers, 1:213-1:214
quotients of decimals, 2:9-2:10
sums and differences of decimals, 1:95-1:96
sums and differences of fractions, 2:39-2:40
explaining
adding fractions with unlike denominators, 2:49-2:50
adding fractions with unlike denominators, using representation, 2:45-2:46
adding mixed numbers with regrouping, 2:69-2:70
adding mixed numbers with unlike denominators, 2:61-2:62
converting customary units, 2:169-2:170
converting metric units, 2:173-2:174
dividing decimals by powers of 10 , place value patterns of, 2:5-2:6
estimating fractions to check reasonable solutions, 2:39-2:40
estimating quotients of decimals, 2:9-2:10
multiply fraction by fractions, 2:95-2:96, 2:99-2:100
multiplying whole numbers by fractions, 2:85-2:86, 2:89-2:90
quotient as fractions or mixed numbers, 2:131-2:132
scaling of multiplying fractions, 2:115-2:116
subtracting fractions with unlike denominators, 2:53-2:54, 2:57-2:58
subtracting mixed numbers with regrouping, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:65-2:66
exponents, writing powers of 10 with, 1:137-1:138
formulas, rectangular prism volume, 1:43-1:44
fraction model
dividing unit fractions by non-zero whole
numbers, 2:147-2:148, 2:151-2:152
dividing whole number by unit fractions,
2:139-2:140, 2:143-2:144
division word problems, 2:157-2:158
fractions
adding with unlike denominators, 2:45-2:46, 2:49-2:50
dividing whole number by, 2:139-2:140, 2:143-2:144
division related to, 2:131-2:132, 2:143-2:144
division word problems, 2:135-2:136,

## 2:157-2:158

estimating sums and differences of, 2:39-2:40
multiply fraction by, 2:95-2:96, 2:99-2:100
multiplying, 2:119-2:120
multiplying area with fractional side lengths, 2:103-2:104
multiplying whole numbers by, 2:85-2:86, 2:89-2:90
non-zero whole number divided by, 2:147-2:148, 2:151-2:152
as quotients, 2:131-2:132, 2:135-2:136
scaling when multiplying, 2:115-2:116
subtracting with unlike denominators, 2:57-2:58
subtracting with unlike denominators, using
representation, 2:53-2:54
word problems, 2:73-2:74, 2:119-2:120
writing mixed numbers as, to multiply, 2:111-2:112
generalizations, multiplying decimals, 1:193-1:194
geometry
coordinate plane, 2:199-2:200, 2:203-2:204,
2:207-2:208, 2:255-2:256
quadrilaterals, classifying, 2:221-2:222
quadrilaterals, properties of, 2:215-2:216
triangles, 2:211-2:212
grouping symbols, 2:233-2:234
hierarchy of figures
quadrilaterals, 2:221-2:222
triangles, 2:211-2:212
isosceles triangles, 2:211-2:212
length
converting customary units, 2:169-2:170
converting metric units, 2:173-2:174
line plots
interpreting, 2:181-2:182, 2:185-2:186
measurement data on, 2:181-2:182
outlier, 2:181-2:182
solving problems involving, 2:185-2:186
liquid volume, converting metric units, 2:173-2:174
mass, converting metric units, 2:173-2:174
math biography, telling, 1:6
mathematical arguments, crafting, 1:18
measurement data, on line plots, 2:181-2:182
measurement units, multi-step problems,
2:177-2:178
metric units
capacity, 2:173-2:174
converting, 2:173-2:174
length, $2: 173-2: 174$
liquid volume, 2:173-2:174
mass, 2:173-2:174
multi-step problems, 2:177-2:178
weight, 2:173-2:174
mixed numbers
adding with regrouping, 2:69-2:70
adding with unlike denominators, 2:61-2:62
partial product, area models finding, 2:107-2:108
partial product to multiply, 2:111-2:112
as quotients, 2:131-2:132, 2:135-2:136
subtracting with regrouping, 2:69-2:70
subtracting with unlike denominators,
2:65-2:66
word problems, 2:73-2:74
modeling
decimals, 1:101-1:102
dividing decimals by decimals, 2:25-2:26
dividing decimals by whole numbers, 2:13-2:14, 2:17-2:18
dividing fractions word problems, 2:157-2:158
dividing unit fractions by non-zero whole
numbers, 2:147-2:148, 2:151-2:152
dividing whole number by unit fractions, 2:139-2:140, 2:143-2:144
dividing whole numbers by decimals, 2:21-2:22
real-world problems, 1:14
multi-digit numbers
estimate products of, 1:145-1:146
estimate quotient of, 1:213-1:214
multiplication algorithm, 1:163-1:164
multiplication with area models, 1:149-1:150
multiplication with partial products, 1:153-1:154
multiplication
algorithms, 1:157-1:158, 1:163-1:164
area models, 1:149-1:150
area with fractional side lengths, 2:103-2:104
converting customary units, 2:169-2:170
converting metric units, 2:173-2:174
decimals, 1:183-1:184, 1:193-1:194, 1:197-1:198
division relating to, 1:217-1:218, 2:157-2:158
estimating, multi-digit numbers, 1:145-1:146
estimating products of decimals, 1:179-1:180
factors impact on products, 2:115-2:116
fraction by fraction, 2:95-2:96, 2:99-2:100
fractions, 2:119-2:120
mixed numbers, $2: 107-2: 108,2: 111-2: 112$
partial product, 1:149-1:150, 1:153-1:154, 1:189-1:190
power of 10 with decimals, 1:175-1:176
power of 10 with exponents, 1:141-1:142
powers of 10 , writing expressions with, 1:137-1:138
whole number by fraction, 2:85-2:86, 2:89-2:90
multi-step problems, involving measurement units,
2:177-2:178
number lines
adding fractions with unlike denominators,
2:45-2:46, 2:49-2:50
adding mixed numbers with regrouping, 2:69-2:70
adding mixed numbers with unlike denominators, 2:61-2:62
benchmark fractions, estimating on, 2:39-2:40
subtracting fractions with unlike denominators,
2:53-2:54, 2:57-2:58
subtracting mixed numbers with regrouping, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:65-2:66
numerical expressions
evaluating with order of operations, 2:241-2:242
interpreting, 2:237-2:238
showing relationships between/among quantities, 2:237-2:238
writing, 2:233-2:234
numerical patterns
arrange corresponding terms (in a table), 2:251-2:252
generating with two given rules, 2:247-2:248
graph ordered pairs, 2:255-2:256
identify relationship between corresponding
terms, 2:247-2:248, 2:251-2:252
ordered pairs from, 2:255-2:256
relationships between patterns, 2:251-2:252
ordered pairs, 2:199-2:200, 2:203-2:204,
2:207-2:208, 2:255-2:256
order of operations, evaluating numerical
expressions with, 2:241-2:242
outlier, 2:181-2:182
parallelograms, 2:215-2:216, 2:221-2:222
partial product
mixed numbers, area models finding, 2:107-2:108
multi-digit multiplication, 1:149-1:150, 1:153-1:154
multiplying two decimals, 1:189-1:190
multiply mixed numbers, 2:111-2:112
partial quotients
calculating quotient with, 1:221-1:222
dividing with remainders, 1:229-1:230
partitioning
dividing unit fractions by non-zero whole numbers, 2:147-2:148, 2:151-2:152
dividing whole numbers by unit fractions, 2:139-2:140, 2:143-2:144
multiplying whole numbers by fractions, 2:85-2:86, 2:89-2:90
patterns
dividing by 10, 1:209-1:210
dividing decimals by power of $10,2: 5-2: 6$
multiplying decimals, patterns, 1:193-1:194
multiplying with powers of 10, 1:139-1:142
numerical, 2:247-2:248, 2:251-2:252, 2:255-2:256
power of 10, multiplication, 1:141-1:142
power of 10 , multiplying decimals, 1:175-1:176
solving problems with, 1:22
place-value
of decimals, 1:65-1:66, 1:69-1:70, 1:77-1:78
dividing decimals by power of $10,2: 5-2: 6$
dividing decimals by whole numbers, 2:17-2:18
multiplying decimals, generalizations, 1:193-1:194
power of 10
dividing decimals, place value patterns of, 2:5-2:6
dividing decimals by decimals, 2:25-2:26
dividing whole numbers by decimals, 2:21-2:22
multiplication patterns, 1:139-1:142
multiplication patterns, decimals, 1:175-1:176
multiplication with exponents, 1:141-1:142
writing exponents with, 1:137-1:138, 1:141-1:142
writing multiplication expression with, 1:137-1:138
predicting solutions, estimating quotients of
decimals, 2:9-2:10
problems, representing, 1:10
problem-solving mindset, 1:26
productive behaviors and attitudes, 1:26
properties, of triangles, 2:211-2:212
properties of operations, multiplying decimals, 1:193-1:194
quadrilaterals
classifying, categories and subcategories, 2:221-2:222
properties of, 2:215-2:216
quotients
checking division with related multiplication, 2:143-2:144
dividing by 10 , patterns in, 1:209-1:210
as fractions or mixed numbers, 2:131-2:132,
2:135-2:136
multi-digit division, estimating, 1:213-1:214
partial quotients, solving with, 1:221-1:222
rectangles, 2:215-2:216, 2:221-2:222
multiplying area with fractional side lengths, 2:103-2:104
rhombus, 2:215-2:216, 2:221-2:222
rounding numbers, decimals, 1:83-1:84,
2:103-2:104
scalene triangle, 2:211-2:212
scaling, fraction multiplication, 2:115-2:116
squares, 2:215-2:216, 2:221-2:222
subcategories
of quadrilaterals, 2:221-2:222
of triangles, 2:211-2:212
subtraction
of decimals, 1:113-1:114, 1:121-1:122, 1:125-1:126
estimating decimals, 1:95-1:96
fractions, estimating, 2:39-2:40
fractions with unlike denominators, 2:53-2:54, 2:57-2:58
fraction word problems, 2:73-2:74
hundredths from tenths, 1:117-1:118
mixed numbers with regrouping, 2:69-2:70
mixed numbers with unlike denominators, 2:65-2:66
mixed numbers word problems, 2:73-2:74
tenths from hundredths, 1:117-1:118
time, converting customary units, 2:169-2:170
trapezoid, 2:215-2:216, 2:221-2:222
triangles: classify, categories and subcategories,
2:211-2:212
unit fractions
dividing whole number by, 2:139-2:140,
2:143-2:144
division related to, 2:131-2:132
non-zero whole number divided by, 2:147-2:148,
2:151-2:152
Venn diagram, 2:221-2:222
verbal descriptions, of numerical expressions, 2:233-2:234
volume
of composite figures, 1:49-1:50
formulas for, 1:43-1:44
as solid figure attribute, 1:35-1:36
solve problems involving, 1:53-1:54
unit cubes, measuring, 1:39-1:40
weight, converting customary units, 2:169-2:170
whole numbers
dividing by decimals, 2:21-2:22
dividing decimals by, 2:13-2:14, 2:17-2:18
equivalent decimal equations, 2:25-2:26
multi-digit multiplication, 1:149-1:150
multiplying fraction by, 2:85-2:86, 2:89-2:90
place-value of, 1:65-1:66
unit fractions divided by, 2:139-2:140, 2:143-2:144
unit fractions dividing, 2:147-2:148, 2:151-2:152
word problems
dividing fractions, 2:157-2:158
division with fraction/mixed number quotients,
2:135-2:136
division with remainders, 1:233-1:234
fractions, 2:73-2:74, 2:119-2:120
mixed numbers, 2:73-2:74
multi-step problems, 2:177-2:178
writing, numerical expression, 2:233-2:234 written statements, numerical expressions, 2:233-2:234
$x$-axis, 2:199-2:200, 2:203-2:204, 2:207-2:208
$x$-coordinate, 2:203-2:204, 2:207-2:208
$y$-axis, 2:199-2:200, 2:203-2:204, 2:207-2:208
$y$-coordinate, 2:199-2:200, 2:203-2:204, 2:207-2:208

Language objectives, $1: 1 \mathrm{~A}, 1: 31 \mathrm{~A}, 1: 61 \mathrm{~A}, 1: 91 \mathrm{~A}, 1: 133 \mathrm{~A}$, 1:171A, 1:205A, 2:1A, 2:35A, 2:81A, 2:127A, 2:165A, 2:195A, 2:229A. See also Focus

## Language of Math

accurate mathematical terms, 1:12-1:13, 1:16-1:17, 1:20-1:21
addition and subtraction words, 1:94
appropriate mathematical language, 1:24-1:25
correct pronunciation, data, 2:180
decimal names, 1:192
definition of
algorithms, 1:156
base, 1:42
benchmark, 2:38
compatible, 1:212
composite solid figures, 1:48, 1:52, 2:52
congruent, 2:220
convert, 2:172
coordinate, 2:254
correspond, 2:246
cubic units, 1:34
customary, 2:168
decimals, 1:68
decompose, 1:108, 1:148, 2:60
difference, 1:116
equivalent, 2:16, 2:20
estimating and rounding, 1:82
exponents, 1:136
expressions, 2:232
factors, 1:216
gridiron, 1:182
interpret, 2:184, 2:206, 2:236
like, 2:48
metric prefixes, 1:76
mixed numbers, 2:64, 2:106
obelus, 1:224
origin, 2:198
partial, 1:152, 1:220
partial product, 1:188
partitions, 2:84
place-value, 1:64
plot, 2:202
power, 1:174
power of 10, 2:4
properties, 2:88
quadrilaterals, 2:214
quotients, 1:208
real-world estimating, 1:178
rectangular prism, 1:38
regrouping, 1:162, 2:68
related, 2:150
related equations, 1:120
remainder, 1:228, 1:232, 2:134
represent, 2:94
representation, 1:124
rule, 2:250
scale models, 2:114
share, 2:156
strategy, 1:196, 2:118
subcategory, 2:210
subitizing, 1:144
trailing zeros, 1:72
estimates or estimated quotients, 2:8
fractional and decimal values, 1:8-1:9, 1:12-1:13
Latin meanings
area, 2:24
denominator, 2:98
dividend, 2:142
division, 2:130
fraction, 2:72
numerator, 2:102
partition, 2:138
quotients, 2:146
Latin roots, 2:44
mathematically precise language, 1:100
mathematical nouns, 1:91E, 2:165E
math terms
benchmark numbers, 2:35E
like denominators, 2:35E
mixed numbers, 2:35E
multiple, 2:35E
meaning of math language, 1:104
more than one, 2:56
multiple of 10 vs . power of 10, 1:140
numerical expression, reading, 2:240
prefixes
centi-, 2:176
milli-, 2:176
suffixes, -or, 2:12
use precise language, 2:110
using appropriate language, 1:8-1:9
using key terms, 1:112
vocabulary, unit overview, 1:1E, 1:31E, 1:61E, 1:133E,
1:171E, 1:205E, 2:1E, 2:35E, 2:81E, 2:127E, 2:165E,
2:195E, 2:229E
Learning targets, A6
addition
of decimals, 1:99A, 1:101-1:102, 1:103A, 1:105-1:106, 1:107A, 1:109-1:110, 1:123A, 1:125-1:126
decimals, estimating, 1:93A, 1:95-1:96
fractions, estimating, 2:37A, 2:39-2:40
fractions with unlike denominators, 2:43A, 2:45-2:46, 2:47A, 2:49-2:50
fraction word problems, 2:71A, 2:73-2:74
mixed numbers with regrouping, 2:67A, 2:69-2:70
mixed numbers with unlike denominators, 2:59A, 2:61-2:62
mixed numbers word problems, 2:71A 2:73-2:74
algebraic thinking
numerical expressions, 2:231A,
2:233-2:234, 2:235A, 2:237-2:238, 2:239A, 2:241-2:242
numerical patterns, 2:245A, 2:247-2:248, 2:249A, 2:251-2:252, 2:253A, 2:255-2:256
algorithms, multiplication, 1:155A, 1:157-1:158, 1:161A, 1:163-1:164
angles
of quadrilaterals, 2:213A, 2:215-2:216
of triangles, 2:209A, 2:211-2:212
area, with fractional side lengths, 2:101A, 2:103-2:104
area models
multi-digit multiplication, 1:147A, 1:149-1:150
partial product of decimals, 1:187A, 1:189-1:190 partial product of mixed numbers, 2:105A, 2:107-2:108
attributes
of quadrilaterals, 2:213A, 2:215-2:216, 2:219A, 2:221-2:222
of triangles, 2:209A, 2:211-2:212
base 10 , writing powers of 10 with, $1: 135 \mathrm{~A}$, 1:137-1:138
benchmark numbers, to estimate fractions, 2:37A, 2:39-2:40
capacity, converting customary units, $2: 167 \mathrm{~A}$, 2:169-2:170, 2:171A, 2:173-2:174
categories
of quadrilaterals, 2:219A, 2:221-2:222
of triangles, 2:209A, 2:211-2:212
common multiple
adding fractions with unlike denominators, 2:47A, 2:49-2:50
adding mixed numbers with regrouping, 2:67A, 2:69-2:70
adding mixed numbers with unlike
denominators, 2:59A, 2:61-2:62
subtracting fractions with unlike denominators, 2:55A, 2:57-2:58
subtracting mixed numbers with regrouping, 2:67A, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:63A, 2:65-2:66
compatible numbers, estimating quotients of decimals, 2:7A, 2:9-2:10
composite figures, volume of, 1:47A, 1:49-1:50
coordinate plane
ordered pairs, numerical patterns forming, 2:253A, 2:255-2:256
plotting ordered pairs on, 2:201A, 2:203-2:204
real-world situations on, interpreting, 2:205A, 2:207-2:208
understanding, 2:197A, 2:199-2:200
corresponding terms
ordered pairs from, 2:253A, 2:255-2:256
relationship between, $2: 245 \mathrm{~A}, 2: 247-2: 248$, 2:249A, 2:251-2:252
customary units
capacity, 2:167A, 2:169-2:170
converting, 2:167A, 2:169-2:170
length, 2:167A, 2:169-2:170
multi-step problems, 2:175A, 2:177-2:178
time, 2:167A, 2:169-2:170
weight, 2:167A, 2:169-2:170
data
on coordinate plane, interpreting, 2:205A, 2:207-2:208
measurement, on line plots, 2:179A, 2:181-2:182
solving problems involving, 2:183A, 2:185-2:186
decimals
addition, 1:99A, 1:101-1:102, 1:103A, 1:105-1:106, 1:107A, 1:109-1:110, 1:123A, 1:125-1:126 dividing by powers of 10 , place value patterns of, 2:3A, 2:5-2:6
dividing by whole numbers, $2: 11 \mathrm{~A}, 2: 13-2: 14$, 2:15A, 2:17-2:18
dividing decimals by decimals, 2:23A, 2:25-2:26
equivalent whole numbers equations, 2:23A, 2:25-2:26
estimating products of, 1:177A, 1:179-1:180
estimating quotients of, 2:7A, 2:9-2:10
in expanded form, 1:71A, 1:73-1:74
multiplication, 1:181A, 1:183-1:184, 1:191A,
1:193-1:194, 1:195A, 1:197-1:198
partial product, 1:187A, 1:189-1:190
patterns in multiplying by power of $10,1: 173 \mathrm{~A}$, 1:175-1:176
place-value of, 1:63A, 1:65-1:66, 1:67A, 1:69-1:70
reading and writing, 1:71A, 1:73-1:74
rounding, 1:81A, 1:83-1:84, 2:103-2:104
in standard form, 1:71A, 1:73-1:74
subtraction, 1:111A, 1:113-1:114, 1:119A,
1:121-1:122, 1:123A, 1:125-1:126
in thousandths place, 1:75A, 1:77-1:78
whole numbers divided by, 2:19A, 2:21-2:22
in word form, 1:71A, 1:73-1:74
denominator
adding fractions with unlike denominators, 2:47A, 2:49-2:50
adding mixed numbers with regrouping, 2:67A, 2:69-2:70
adding mixed numbers with unlike
denominators, 2:59A, 2:61-2:62
subtracting fractions with unlike denominators, 2:55A, 2:57-2:58
subtracting mixed numbers with regrouping, 2:67A, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:63A, 2:65-2:66
division
by 10, patterns in, 1:207A, 1:209-1:210
converting customary units, 2:167A, 2:169-2:170
converting metric units, 2:171A, 2:173-2:174
decimals by decimals, 2:23A, 2:25-2:26
decimals by powers of 10 , place value patterns of, 2:3A, 2:5-2:6
decimals by whole numbers, $2: 11 \mathrm{~A}, 2: 13-2: 14$, 2:15A, 2:17-2:18
dividing whole number by unit fractions, 2:137A, 2:139-2:140, 2:141A, 2:143-2:144
estimate quotient of multi-digit numbers, $1: 211 \mathrm{~A}$, 1:213-1:214
fractions related to, 2:129A, 2:131-2:132, 2:141A, 2:143-2:144
fraction word problems, 2:133A, 2:135-2:136, 2:155A, 2:157-2:158
multiplication relating to, 1:215A, 1:217-1:218, 2:155A, 2:157-2:158
partial quotients, 1:219A, 1:221-1:222, 1:223A, 1:227A, 1:229-1:230
two-digit divisors, 1:215A, 1:217-1:218
unit fractions by non-zero whole numbers,
2:145A, 2:147-2:148, 2:149A, 2:151-2:152
unit fractions related to, 2:129A, 2:131-2:132
whole numbers by decimals, 2:19A, 2:21-2:22
word problems with remainders, 1:231A,
1:233-1:234
equal sharing, dividing decimals by whole numbers, 2:11A, 2:13-2:14
equations, with volume, 1:51A
equilateral triangles, 2:209A, 2:211-2:212
equivalent fractions
adding fractions with unlike denominators,
2:43A, 2:45-2:46, 2:47A, 2:49-2:50
adding mixed numbers with regrouping, 2:67A,
2:69-2:70
adding mixed numbers with unlike
denominators, 2:59A, 2:61-2:62
subtracting fractions with unlike denominators,
2:51A, 2:53-2:54, 2:55A, 2:57-2:58
subtracting mixed numbers with regrouping, 2:67A, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:63A, 2:65-2:66
equivalent representations
dividing decimals by decimals, 2:23A,
2:25-2:26
dividing decimals by whole numbers, $2: 15 \mathrm{~A}$, 2:17-2:18
dividing whole numbers by decimals, 2:19A, 2:21-2:22
estimating
checking reasonability of calculated solutions, 2:37A, 2:39-2:40
to predict calculates solutions, 2:37A, 2:39-2:40
products of multi-digit numbers, 1:143A, 1:145-1:146
products of two decimals, 1:177A, 1:179-1:180
quotient of multi-digit numbers, 1:211A,

## 1:213-1:214

quotients of decimals, 2:7A, 2:9-2:10
sums and differences of decimals, 1:93A, 1:95-1:96
sums and differences of fractions, 2:37A, 2:39-2:40
expanded form, decimals, 1:71A
explaining
adding fractions with unlike denominators,
2:47A, 2:49-2:50
adding fractions with unlike denominators,
using representation, 2:43A, 2:45-2:46
adding mixed numbers with regrouping, $2: 67 \mathrm{~A}$,
2:69-2:70
adding mixed numbers with unlike
denominators, 2:59A, 2:61-2:62
converting customary units, 2:167A, 2:169-2:170
converting metric units, 2:171A, 2:173-2:174 dividing decimals by powers of 10 , place value patterns of, 2:3A, 2:5-2:6
estimating fractions to check reasonable solutions, 2:37A, 2:39-2:40
estimating quotients of decimals, 2:7A, 2:9-2:10
multiplying fraction by fraction, 2:93A,
2:95-2:96, 2:97A, 2:99-2:100
multiplying whole numbers by fractions, 2:83A, 2:85-2:86, 2:87A, 2:89-2:90
quotient as fractions or mixed numbers, 2:129A, 2:131-2:132
scaling of multiplying fractions, 2:113A,
2:115-2:116
subtracting fractions with unlike denominators, 2:51A, 2:53-2:54, 2:55A, 2:57-2:58
subtracting mixed numbers with regrouping, 2:67A, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:63A, 2:65-2:66
exponents, writing powers of 10 with, $1: 135 \mathrm{~A}$,
1:137-1:138
formulas, rectangular prism volume, 1:41A,
1:43-1:44
fraction model
dividing unit fractions by non-zero whole numbers, 2:145A, 2:147-2:148, 2:149A, 2:151-2:152
dividing whole number by unit fractions, 2:137A,
2:139-2:140, 2:141A, 2:143-2:144
division word problems, 2:155A, 2:157-2:158
fractions
adding with unlike denominators, 2:43A,
2:45-2:46, 2:47A, 2:49-2:50
dividing whole number by, 2:137A, 2:139-2:140, 2:141A, 2:143-2:144
division related to, 2:129A, 2:131-2:132, 2:141A, 2:143-2:144
division word problems, 2:133A, 2:135-2:136, 2:155A, 2:157-2:158
estimating sums and differences of, 2:37A, 2:39-2:40
multiply fraction by, 2:93A, 2:95-2:96, 2:97A, 2:99-2:100
multiplying, 2:117A, 2:119-2:120
multiplying area with fractional side lengths,
2:101A, 2:103-2:104
multiplying whole numbers by, 2:83A,
2:85-2:86, 2:87A, 2:89-2:90
non-zero whole number divided by, 2:145A,
2:147-2:148, 2:149A, 2:151-2:152
as quotients, 2:129A, 2:131-2:132, 2:133A, 2:135-2:136
scaling when multiplying, 2:113A, 2:115-2:116
subtracting with unlike denominators, 2:55A, 2:57-2:58
subtracting with unlike denominators, using representation, 2:51A, 2:53-2:54
word problems, 2:71A, 2:73-2:74, 2:117A, 2:119-2:120
writing mixed numbers as, to multiply, 2:109A, 2:111-2:112
generalizations, multiplying decimals, 1:191A,
1:193-1:194
geometry
coordinate plane, 2:197A, 2:199-2:200, 2:201A,
2:203-2:204, 2:205A, 2:207-2:208, 2:253A,
2:255-2:256
quadrilaterals, classifying, 2:219A, 2:221-2:222
quadrilaterals, properties of, 2:213A,
2:215-2:216
triangles, 2:209A, 2:211-2:212
grouping symbols, 2:231A, 2:233-2:234
hierarchy of figures
quadrilaterals, 2:219A, 2:221-2:222
triangles, 2:209A, 2:211-2:212
isosceles triangles, 2:209A, 2:211-2:212length
converting customary units, 2:167A, 2:169-2:170
converting metric units, 2:171A, 2:173-2:174
line plots
interpreting, 2:179A, 2:181-2:182, 2:183A, 2:185-2:186
measurement data on, 2:179A, 2:181-2:182
outlier, 2:179A, 2:181-2:182
solving problems involving, 2:183A, 2:185-2:186
liquid volume, converting metric units, $2: 171 \mathrm{~A}$, 2:173-2:174
mass, converting metric units, 2:171A, 2:173-2:174
math biography, telling, 1:3A, 1:6
mathematical arguments, crafting, 1:15A, 1:18, 1:19A
measurement data, on line plots, 2:179A, 2:181-2:182
measurement units, multi-step problems, 2:175A,
2:177-2:178
metric units
capacity, 2:171A, 2:173-2:174
converting, 2:171A, 2:173-2:174
length, 2:171A, 2:173-2:174
liquid volume, 2:171A, 2:173-2:174
mass, 2:171A, 2:173-2:174
multi-step problems, 2:175A, 2:177-2:178
weight, 2:171A, 2:173-2:174
mixed numbers
adding with regrouping, 2:67A, 2:69-2:70
adding with unlike denominators, 2:59A, 2:61-2:62
partial product, area models finding, 2:105A, 2:107-2:108
partial product to multiply, 2:109A, 2:111-2:112
as quotients, 2:129A, 2:131-2:132, 2:133A, 2:135-2:136
subtracting with regrouping, 2:67A, 2:69-2:70
subtracting with unlike denominators, 2:63A, 2:65-2:66
word problems, 2:71A, 2:73-2:74
modeling
decimals, 1:99A, 1:101-1:102
dividing decimals by decimals, 2:23A, 2:25-2:26
dividing decimals by whole numbers, $2: 11 \mathrm{~A}$, 2:13-2:14, 2:15A, 2:17-2:18
dividing fractions word problems, 2:155A, 2:157-2:158
dividing unit fractions by non-zero whole numbers, 2:145A, 2:147-2:148, 2:149A, 2:151-2:152
dividing whole number by unit fractions, 2:137A, 2:139-2:140, 2:141A, 2:143-2:144
dividing whole numbers by decimals, 2:19A, 2:21-2:22
real-world problems, 1:11A, 1:14
multi-digit numbers
estimate products of, 1:143A, 1:145-1:146
estimate quotient of, 1:211A, 1:213-1:214
multiplication algorithm, 1:161A, 1:163-1:164
multiplication with area models, 1:147A, 1:149-1:150
multiplication with partial products, 1:153-1:154
multiplication
algorithms, 1:155A, 1:157-1:158, 1:161A, 1:163-1:164
area models, 1:147A, 1:149-1:150
area with fractional side lengths, 2:101A, 2:103-2:104
converting customary units, 2:167A, 2:169-2:170
converting metric units, 2:171A, 2:173-2:174
decimals, 1:181A, 1:183-1:184, 1:191A,
1:193-1:194, 1:195A, 1:197-1:198
division relating to, 1:215A, 1:217-1:218, 2:155A, 2:157-2:158
estimating, multi-digit numbers, 1:143A, 1:145-1:146
estimating products of decimals, 1:177A, 1:179-1:180
factors impact on products, 2:113A, 2:115-2:116
fraction by fraction, 2:93A, 2:95-2:96, 2:97A, 2:99-2:100
fractions, 2:117A, 2:119-2:120
measuring volume, 1:37A
mixed numbers, 2:105A, 2:107-2:108, 2:109A, 2:111-2:112
partial product, 1:147A, 1:149-1:150, 1:151A,
1:153-1:154, 1:187A, 1:189-1:190
power of 10 with decimals, 1:173A, 1:175-1:176
power of 10 with exponents, 1:139A, 1:141-1:142
powers of 10 , writing expressions with, 1:135A, 1:137-1:138
whole number by fraction, 2:83A, 2:85-2:86, 2:87A, 2:89-2:90
multi-step problems, involving measurement units,
2:175A, 2:177-2:178
number lines
adding fractions with unlike denominators, 2:43A, 2:45-2:46, 2:47A, 2:49-2:50
adding mixed numbers with regrouping, 2:67A, 2:69-2:70
adding mixed numbers with unlike denominators, 2:59A, 2:61-2:62
benchmark fractions, estimating on, 2:37A, 2:39-2:40
subtracting fractions with unlike denominators, 2:51A, 2:53-2:54, 2:55A, 2:57-2:58
subtracting mixed numbers with regrouping, 2:67A, 2:69-2:70
subtracting mixed numbers with unlike denominators, 2:63A, 2:65-2:66
numerical expressions
evaluating with order of operations, 2:239A, 2:241-2:242
interpreting, 2:235A, 2:237-2:238
showing relationships between/among
quantities, 2:235A, 2:237-2:238
writing, 2:231A, 2:233-2:234
numerical patterns
arrange corresponding terms (in a table),
2:249A, 2:251-2:252
generating with two given rules, $2: 245 \mathrm{~A}$, 2:247-2:248
graph ordered pairs, 2:253A, 2:255-2:256
identify relationship between corresponding
terms, 2:245A, 2:247-2:248, 2:249A,
2:251-2:252
ordered pairs from, 2:253A, 2:255-2:256
relationships between patterns, 2:249A, 2:251-2:252
ordered pairs, 2:197A, 2:199-2:200, 2:201A, 2:203-2:204, 2:205A, 2:207-2:208, 2:253A,
2:255-2:256
order of operations, evaluating numerical
expressions with, 2:239A, 2:241-2:242
outlier, 2:179A, 2:181-2:182
parallelograms, 2:213A, 2:215-2:216, 2:219A,
2:221-2:222
partial product
mixed numbers, area models finding, 2:105A,
2:107-2:108
multi-digit multiplication, 1:147A, 1:149-1:150, 1:151A, 1:153-1:154
multiplying two decimals, 1:187A, 1:189-1:190
multiply mixed numbers, 2:109A, 2:111-2:112
partial quotients
calculating quotient with, 1:219A, 1:221-1:222
dividing with remainders, 1:227A, 1:229-1:230
recording using strategy, 1:223A
partitioning
dividing unit fractions by non-zero whole
numbers, 2:145A, 2:147-2:148, 2:149A,
2:151-2:152
dividing whole numbers by unit fractions,
2:137A, 2:139-2:140, 2:141A, 2:143-2:144
multiplying whole numbers by fractions, $2: 83 \mathrm{~A}$,
2:85-2:86, 2:87A, 2:89-2:90
patterns
dividing by $10,1: 207 \mathrm{~A}, 1: 209-1: 210$
dividing decimals by power of $10,2: 3 \mathrm{~A}, 2: 5-2: 6$
multiplying decimals, 1:191A
multiplying decimals, patterns, 1:193-1:194
multiplying with powers of 10, 1:139-1:142
numerical, 2:245A, 2:247-2:248, 2:249A,
2:251-2:252, 2:253A, 2:255-2:256
power of 10 , multiplication, 1:139A, 1:141-1:142
power of 10 , multiplying decimals, 1:173A,
1:175-1:176
solving problems with, 1:22
place-value
of decimals, 1:63A, 1:65-1:66, 1:67A, 1:69-1:70,
1:75A, 1:77-1:78
dividing decimals by power of $10,2: 3 \mathrm{~A}, 2: 5-2: 6$
dividing decimals by whole numbers, $2: 15 \mathrm{~A}$, 2:17-2:18
multiplying decimals, generalizations, 1:191A, 1:193-1:194
of whole numbers, 1:63A
power of 10
dividing decimals, place value patterns of, 2:3A, 2:5-2:6
dividing decimals by decimals, 2:23A,
2:25-2:26
dividing whole numbers by decimals, 2:19A, 2:21-2:22
multiplication patterns, 1:139-1:142
multiplication patterns, decimals, 1:173A,
1:175-1:176
multiplication with exponents, 1:139A, 1:141-1:142 writing exponents with, 1:135A, 1:137-1:138, 1:139A, 1:141-1:142
writing multiplication expression with, 1:135A, 1:137-1:138
predicting solutions, estimating quotients of
decimals, 2:7A, 2:9-2:10
problems, representing, 1:7A, 1:10
problem solving mindset, 1:23A, 1:26
productive behaviors and attitudes, 1:23A, 1:26
properties, of triangles, 2:209A, 2:211-2:212
properties of operations, multiplying decimals,
1:191A, 1:193-1:194
quadrilaterals
classifying, categories and subcategories,
2:219A, 2:221-2:222
properties of, 2:213A, 2:215-2:216
quotients
checking dividing fraction with related multiplication, 2:141A
checking division with related multiplication, 2:143-2:144
dividing by 10, patterns in, 1:207A, 1:209-1:210
as fractions or mixed numbers, 2:129A,
2:131-2:132, 2:133A, 2:135-2:136
multi-digit division, estimating, 1:211A, 1:213-1:214
partial quotients, solving with, 1:219A, 1:221-1:222
rectangles, 2:213A, 2:215-2:216, 2:219A, 2:221-2:222
multiplying area with fractional side lengths, 2:101A, 2:103-2:104
rhombus, 2:213A, 2:215-2:216, 2:219A,
2:221-2:222
rounding numbers, decimals, 1:81A, 1:83-1:84, 2:103-2:104
scalene triangle, 2:209A, 2:211-2:212
scaling, fraction multiplication, 2:113A, 2:115-2:116
squares, 2:213A, 2:215-2:216, 2:219A, 2:221-2:222
standard form, decimals, 1:71A
subcategories
of quadrilaterals, 2:219A, 2:221-2:222
of triangles, 2:209A, 2:211-2:212
subtraction
of decimals, 1:111A, 1:113-1:114, 1:119A,
1:121-1:122, 1:123A, 1:125-1:126
estimating decimals, 1:93A, 1:95-1:96
fractions, estimating, 2:37A, 2:39-2:40
fractions with unlike denominators, 2:51A,
2:53-2:54, 2:55A, 2:57-2:58
fraction word problems, 2:71A, 2:73-2:74
hundredths from tenths, 1:115A, 1:117-1:118
mixed numbers with regrouping, 2:67A, 2:69-2:70
mixed numbers with unlike denominators, 2:63A, 2:65-2:66
mixed numbers word problems, 2:71A, 2:73-2:74
tenths from hundredths, 1:115A, 1:117-1:118
time, converting customary units, 2:167A, 2:169-2:170
trapezoid, 2:213A, 2:215-2:216, 2:219A,
2:221-2:222
triangles: classify, categories and subcategories,
2:209A, 2:211-2:212
unit fractions
dividing whole number by, 2:137A, 2:139-2:140, 2:141A, 2:143-2:144
division related to, 2:129A, 2:131-2:132 non-zero whole number divided by, 2:145A, 2:147-2:148, 2:149A, 2:151-2:152
Venn diagram, 2:219A, 2:221-2:222
verbal descriptions, of numerical expressions, 2:231A, 2:233-2:234
volume
of composite figures, 1:47A, 1:49-1:50
formulas for, 1:41A, 1:43-1:44
as solid figure attribute, 1:33A, 1:35-1:36
solve problems involving, 1:51A, 1:53-1:54
unit cubes, measuring, 1:37A, 1:39-1:40
weight, converting customary units, $2: 167 \mathrm{~A}$, 2:169-2:170
whole numbers
dividing by decimals, 2:19A, 2:21-2:22
dividing decimals by, 2:11A, 2:13-2:14, 2:15A, 2:17-2:18
equivalent decimal equations, 2:23A, 2:25-2:26
multi-digit multiplication, 1:147A, 1:149-1:150
multiplying fraction by, 2:83A, 2:85-2:86, 2:87A, 2:89-2:90
place-value of, 1:63A, 1:65-1:66
unit fractions divided by, 2:137A, 2:139-2:140, 2:141A, 2:143-2:144
unit fractions dividing, 2:145A, 2:147-2:148, 2:149A, 2:151-2:152
word problems
decimals, 1:71A
dividing fractions, 2:155A, 2:157-2:158
division with fraction/mixed number quotients, 2:133A, 2:135-2:136
division with remainders, 1:231A, 1:233-1:234
fractions, 2:71A, 2:73-2:74, 2:117A, 2:119-2:120
mixed numbers, 2:71A, 2:73-2:74
multi-step problems, 2:175A, 2:177-2:178
writing, numerical expression, 2:231A, 2:233-2:234
written statements, numerical expressions, 2:231A, 2:233-2:234
$x$-axis, 2:197A, 2:199-2:200, 2:201A, 2:203-2:204, 2:205A, 2:207-2:208
$x$-coordinate, 2:197A, 2:201A, 2:203-2:204, 2:205A, 2:207-2:208
$y$-axis, 2:197A, 2:199-2:200, 2:201A, 2:203-2:204, 2:205A, 2:207-2:208
$y$-coordinate, 2:197A, 2:199-2:200, 2:201A,
2:203-2:204, 2:205A, 2:207-2:208
Length
converting customary units, 2:167-2:170
converting metric units, 2:171-2:174
Lesson overview, 1:3A, 1:7A, 1:11A, 1:15A, 1:19A, 1:23A,
1:33A, 1:37A, 1:41A, 1:47A, 1:51A, 1:63A, 1:67A, 1:71A,
1:75A, 1:81A, 1:93A, 1:99A, 1:103A, 1:107A, 1:111A, 1:115A,
1:119A, 1:123A, 1:135A, 1:139A, 1:143A, 1:147A, 1:151A,
1:155A, 1:161A, 1:173A, 1:177A, 1:181A, 1:187A, 1:191A,
1:195A, 1:207A, 1:211A, 1:215A, 1:219A, 1:223A, 1:227A, 1:231A, 2:3A, 2:7A, 2:11A, 2:15A, 2:19A, 2:23A, 2:37A, 2:43A, 2:47A, 2:51A, 2:55A, 2:59A, 2:63A, 2:67A, 2:71A, 2:83A, 2:87A, 2:93A, 2:97A, 2:101A, 2:105A, 2:109A, 2:113A, 2:117A, 2:129A, 2:133A, 2:137A, 2:141A, 2:145A, 2:149A, 2:155A, 2:167A, 2:171A, 2:175A, 2:179A, 2:183A, 2:197A, 2:201A, 2:205A, 2:209A, 2:213A, 2:219A, 2:231A, 2:235A, 2:239A, 2:245A, 2:249A, 2:253A

## Line plots

data, 2:165C
interpreting, 2:179-2:182, 2:183-2:186
measurement data on, 2:179-2:182
outlier, 2:179-2:182
solving problems involving, 2:183-2:186, 2:187-2:188
Liquid volume, converting metric units, 2:171-2:174

## M

Map It, 1:2
Mass, converting metric units, 2:171-2:174

## Materials

0.5 cm grid paper, 1:187A
calculators, 1:139A, 1:140A, 1:143A, 1:173A, 1:174A,
1:219A, 2:3A, 2:4A, 2:7A
cardstock, 2:239A
grid paper, 2:93A, 2:94A, 2:97A, 2:101A, 2:102A, 2:105A, 2:109A, 2:117A
index cards, 1:63A, 1:103A, 1:139A, 1:143A, 1:207A, 2:11A, 2:55A, 2:59A, 2:67A, 2:97A, 2:113A, 2:175A, 2:183A, 2:235A, 2:253A
manipulatives
base-ten blocks, 1:103A, 1:155A, 1:156A, 1:187A,
1:207A, 1:208A, 1:215A, 1:219A, 1:227A, 2:3A,
2:171A, 2:172A
bills and coins, 2:11A, 2:12A
blank cubes, 2:253A
blank number cubes, 1:67A, 2:183A
blank spinners, 2:63A, 2:101A, 2:105A
bowl and paper, 1:3A, 1:5A
centimeter blocks, 1:136A
centimeter cubes, 1:33A, 1:37A, 1:38A
coins, 1:7A
connecting cubes, 2:196
counters, 2:83A
decimal grids, 1:195A
digit cards, 1:211A
fraction circles, 2:37A, 2:71A, 2:83A, 2:87A,
2:93A, 2:129A, 2:130A, 2:137A, 2:149A, 2:155A
fraction tiles, 2:37A, 2:43A, 2:44A, 2:47A, 2:51A,
2:52A, 2:55A, 2:59A, 2:63A, 2:67A, 2:71A,
2:83A, 2:87A, 2:93A, 2:102A, 2:105A, 2:137A
geoboards, 1:23A
grids $(4 \times 4,6 \times 6,10 \times 10)$, 1:7A
hundreds grids, 2:3A
measurement units, 1:33A, 1:34A
number cards, 2:133 A
number cubes, 1:67A, 1:71A, 1:75A, 1:76A, 1:81A,
1:82A, 1:99A, 1:100A, 1:111A, 1:112A, 1:135A,
1:143A, 1:144A, 1:151A, 1:155A, 1:161A, 1:173A,
1:177A, 1:181A, 1:207A, 1:215A, 1:216A, 2:7A,
2:37A, 2:47A, 2:71A, 2:129A, 2:130A, 2:137A,
2:171A, 2:231A, 2:249A
pattern blocks, 1:23A, 1:25A
plastic straws, 2:209A
spinners, 1:161A, 2:141A
square tiles, 2:196
transparent spinner, 2:205A
two-color counters, 2:245A
unit cubes, 1:34A, 1:41A, 1:42A, 1:47A, 2:67A
rulers, 1:47A, 1:48A, 2:43A, 2:44A, 2:67A, 2:101A
scissors, 1:172

Teaching Resource
Benchmark Fraction Number Line, 2:37A, 2:38A
Blank Number Lines, 1:111A, 1:112A
Blank Open Number Lines, 1:119A, 1:120A,
1:177A, 1:181A, 1:182A, 2:43A, 2:44A
Blank Partial Quotients, 1:223A
Classifying Quadrilaterals, 2:213A, 2:214A
Coordinate Plane, 2:201A, 2:202A, 2:205A, 2:206A, 2:253A, 2:254A
Customary Conversion Tables, 2:167A, 2:168A, 2:175A
Customary Measurement Cards, 2:167A, 2:168A
Decimal Cards, 1:93A, 1:94A, 1:107A, 1:108A, 1:119A, 1:120A
Decimal Forms, 1:71A, 1:72A
Decimal Grids, 1:103A, 1:115A
Dividing Fractions Puzzle Pieces, 2:146A, 2:149A
Dot Paper, 1:23A, 1:25A
Explain and Show Your Strategies, 1:123A, 1:124A, 2:67A, 2:68A
Fraction Number Lines, 2:51A, 2:52A
Metric Conversions Tables, 2:171A, 2:175A
Multiplication Algorithm, 1:1614, 1:162A
Nets, 1:33A, 1:34A, 1:37A, 1:38A, 1:47A, 1:48A
Number Cards 0-10, 1:81A, 1:82A
Pattern Blocks 2, 1:23A, 1:25A
Place-Value Charts to Millions, 1:63A, 1:173A
Problem-Solving Tool, 1:51A, 1:52A, 1:232A, 2:71A, 2:72A, 2:117A, 2:118A, 2:133A, 2:134A,
2:156A, 2:175A, 2:176A, 2:183A, 2:184A
Properties of Triangles, 2:209A
Show and Explain Your Strategies, 1:195A, 1:196A, 1:212A
$10 \times 10$ Grids, 1:63A, 1:64A, 1:104A, 1:116A, 1:181A, 1:182A, 2:19A
Tenths and Hundredths, 1:99A, 1:100A, 1:111A, 1:112A, 2:11A, 2:12A
Tenths and Hundredths Representations, 2:23A, 2:24A
Understanding the Coordinate Plane, 2:197A, 2:198A
Unit Fractions and Whole Numbers, 2:142A, 2:145A, 2:149A
Venn Diagram, 2:219A, 2:220A
Math Attitude Survey, 1:1G
Math biography. See Biography, math
Mathematical standards. See Standards
Math is...
Choosing Tools, 1:12-1:13A, 1:94-94A, 1:100-100A, 1:120-120A, 1:124-124A, $1: 144-144 \mathrm{~A}, 1: 178-178 \mathrm{~A}$, 1:212-212A, 1:228-228A, 2:44-44A, 2:72-72A,
2:168-168A, 2:202-202A, 2:254-254A
Connections, 1:48-48A, 2:146-146A, 2:246-246A
Explaining, 2:38-38A, 2:198-198A
Explaining and Sharing, 1:15-1:18
Exploring, 1:8-1:9A, 1:196-196A, 2:48-48A, 2:64-64A, 2:156-156A
Generalizations, 1:20-1:21A, 1:152-152A, 1:156-156A, 1:162-162A, 1:192-192A, 1:216-216A, 1:224-224A, 2:16-16A, 2:52-52A, 2:84-84A, 2:102-102A, 2:240-240A
Mindset, 1:4-1:5A, 1:24-1:25A, 1:33, 1:37, 1:41, 1:43$1: 44,1: 47,1: 49-1: 50,1: 51,1: 53-1: 54,1: 63,1: 67,1: 71$,

1:73-1:74, 1:75, 1:77-1:78, 1:81, 1:83-1:84, 1:93, 1:99, 1:103, 1:105-1:106, 1:107, 1:109-1:110, 1:111, 1:113-1:114, 1:115, $1: 117-1: 118,1: 1119,1: 121-1: 122$, 1:123, 1:125-1:126, 1:135, 1:137-1:138, 1:139, 1:143, $1: 145-1: 146,1: 147,1: 149-1: 150,1: 151,1: 153-1: 154$, 1:155, 1:157-1:158, 1:161, 1:163-1:164, 1:173, 1:175$1: 176,1: 1777,1: 181,1: 183-1: 184,1: 187,1: 189-1: 190$, 1:191, 1:193-1:194, 1:195, 1:197-1:198, 1:207, 1:209$1: 210,1: 211,1: 215,1: 217-1: 218,1: 219,1: 221-1: 222$, 1:223, 1:225-1:226, 1:227, 1:229-1:230, 1:231, 1:233-1:234, 2:3, 2:5-2:6, 2:7, 2:11, 2:13-2:14, 2:15, 2:17-2:18, 2:19, 2:21-2:22, 2:23, 2:25-2:26, 2:37, 2:43, 2:47, 2:49-2:50, 2:51, 2:53-2:54, 2:55, 2:57-2:58, 2:59, 2:63, 2:65-2:66, 2:67, 2:692:70, 2:71, 2:73-2:74, 2:83, 2:87, 2:93, 2:95-2:96, 2:97, 2:99-2:100, 2:101, 2:103-2:104, 2:105, 2:107-2:108, 2:109, 2:111-2:112, 2:113, 2:115-2:116, 2:117, 2:119-2:120, 2:129, 2:133, 2:137, 2:139-2:140, 2:141, 2:143-2:144, 2:145, 2:147-2:148, 2:149, 2:151-2:152, 2:155, 2:157-2:158, 2:167, 2:1692:170, 2:171, 2:175, 2:177-2:178, 2:179, 2:181-2:182, 2:183, 2:185-2:186, 2:197, 2:199-2:200, 2:201, 2:205, 2:207-2:208, 2:209, 2:211-2:212, 2:213, 2:215-2:216, 2:219, 2:221-2:222, 2:231, 2:2332:234, 2:235, 2:239, 2:241-2:242, 2:245, 2:2472:248, 2:249, 2:251-2:252, 2:253, 2:255-2:256 Mine, 1:3-1:6
Modeling, 1:42, 1:108-108A, 1:148-148A, 1:182-182A, 1:188-188A, 1:220-220A, 2:12-12A, 2:106-106A, 2:114-114A, 2:130-130A, 2:172-172A, 2:206-206A, 2:210-210A, 2:220-220A
In My World, 1:12-1:13A, 2:138-138A, 2:180-180A
Patterns, 1:20-1:21A, 1:68-68A, 1:136-136A, 2:60-60A
Perseverance, 1:8-1:9A, 1:116-116A, 2:118-118A, 2:134-134A, 2:176-176A
Planning, 1:8-1:9A, 1:232-232A
Precision, 1:16-1:17A, 1:34-34A, 1:38-38A, 1:72-72A, 1:82-82A, 1:112-112A, 2:24-24A, 2:142-142A
Quantities, 1:8-1:9A, 1:52-52A, 2:8-8A, 2:56-56A, 2:94-94A, 2:184-184A
Sharing, 1:16-1:17A
Structure, 1:64-64A, 1:104-104A, 1:140-140A,
1:174-174A, 1:208-208A, 2:4-4A, 2:20-20A, 2:68-68A, 2:88-88A, 2:98-98A, 2:110-110A, 2:150-150A, 2:214-214A, 2:232-232A,
2:236-236A, 2:250-250A
Thinking, 1:76-76A
Math Language Development
focus on decimal vocabulary, 1:61E
focus on division language, 2:1E
focus on estimation vocabulary, 1:91E
focus on fraction and division vocabulary, 2:127E
focus on listening, 1:1E, 1:31E, 1:205E
focus on reading, 1:171E, 2:165E, 2:229E
focus on speaking, 1:1E, 1:133E, 2:35E, 2:195E
focus on writing, 2:81E

## Math Language Routines

Co-Craft Questions and Problems, 1:17, 1:31F, 1:4848A, 1:61F, 1:82-82A, 1:91F, 1:124-124A, 1:133F, 1:162-162A, 1:171F, 1:178-178A, 1:205F, 1:228-228A, 2:17, 2:24-24A, 2:35F, 2:60-60A, 2:81F, 2:118118A, 2:127F, 2:156-156A, 2:165F, 2:184-184A, 2:195F, 2:220-220A, 2:229F, 2:236-236A, A4

Collect and Display, 1:17, 1:20-1:21, 1:31F, 1:34, 1:61F, 1:68, 1:91F, 1:104, 1:171F, 1:205F, 1:216, 2:17, 2:4, 2:35F, 2:52, 2:81F, 2:102, 2:127F, 2:138, 2:165F, 2:176, 2:195F, 2:206, 2:229F, 2:246, A4
Compare and Connect, $1: 1 \mathrm{FF}, 1: 8-1: 9,1: 12-1: 13,1: 91 \mathrm{~F}$, 1:108-108A, 1:120-120A, 1:133F, 1:144-144A, 1:171F, 1:188-188A, 1:205F, 1:212-212A, 2:1F, 2:12-12A, 2:20-20A, 2:35F, 2:48-48A, 2:64-64A, 2:81F, 2:110-110A, 2:127F, 2:130-130A, 2:165F, 2:172-172A, 2:229F, 2:240-240A, A5
Critique, Correct, and Clarify, 1:31F, 1:38-38A, $1: 61 F, 1: 64,1: 91 \mathrm{~F}, 1: 116-116 \mathrm{~A}, 1: 133 \mathrm{~F}, 1: 152-152 \mathrm{~A}$, 1:192-192A, 2:81F, 2:98-98A, 2:127F, 2:146-146A, 2:195F, 2:210-210A, A4
Discussion Supports, 1:1F, 1:8-1:9, 1:31F, 1:52-52A, 1::61F, 1:76, 1:91F, 1:94, 1:171F, 1:205F, 1:208, 2:17, 2:12, 2:35F, 2:38, 2:56, 2:81F, 2:84, 2:127F, 2:142, 2:165F, 2:168, 2:195F, 2:198, A5
Information Gap, 1:1F, 1:12-1:13, 1:91F, 1:112-112A, 1:133F, 1:148-148A, 1:205F, 1:224-224A, 2:1F, 2:44A, 2:81F, 2:106-106A, 2:229F, 2:250-250A, A4 Stronger and Clearer Each Time, 1:1F, 1:16-1:17, 1:31F, 1:42-42A, 1:61F, 1:72-72A, 1:91F, 1:100100A, 1:133F, 1:140-140A, 1:156-156A, 1:171F, 1:174-174A, 1:196-196A, 1:205F, 1:220-220A, 2:1F, 2:16-16A, 2:35F, 2:44-44A, 2:68-68A, 2:81F, 2:88-88A, 2:114-114A, 2:127F, 2:134-134A, 2:150-150A, 2:165F, 2:180-180A, 2:195F, 2:202202A, 2:214-214A, 2:229F, 2:232-232A, A4
Three Reads, $1: 133 \mathrm{~F}, 1: 1136-136 \mathrm{~A}, 1: 171 \mathrm{~F}, 1: 182-182 \mathrm{~A}$, 1:205F, 1:232-232A, 2:1F, 2:8-8A, 2:35F, 2:72-72A, 2:81F, 2:94, 2:229F, 2:254-254A, A5
Math objectives, 1:1A, 1:31A, 1::11A, 1:91A, 1:133A, 1:171A, 1:205A, 2:1A, 2:35A, 2:81A, 2:127A, 2:165A, 2:195A, 2:229A. See also Focus
Math Pictures, $1: 1 \mathrm{~F}, 1: 3 \mathrm{~A}, 1: 7 \mathrm{~A}, 1: 11 \mathrm{~A}, 1: 15 \mathrm{~A}, 1: 19 \mathrm{~A}$, 1:23A, A3

## Math Practices and Processes

Attend to Precision, 1:15A, 1:33A, 1:81A, 1:93A, 1:171D, 1:173A, 1:205D, 2:23A, 2:141A, 2:183A, 2:229D, 2:231A
Construct Viable Arguments and Critique the Reasoning of Others, $1: 3 \mathrm{~A}, 1: 15 \mathrm{~A}, 1: 23 \mathrm{~A}, 1: 107 \mathrm{~A}$, 1:119A, 1:139A, 1:195A, 2:37A, 2:197A
Look For and Express Regularity in Repeated Reasoning, 1:19A, 1:133D, 1:147A, 1:155A, 1:161A, 1:215A, 1:223A, 2:11A, 2:15A, 2:51A, 2:83A, 2:97A, 2:101A, 2:127D, 2:175A
Look For and Make Use of Structure, 1:19A, 1:33A, 1:37A, 1:61D, 1:63A, 1:67A, 1:81A, 1:135A, 1:147A, 1:151A, 1:173A, 1:191A, 1:207A, 1:219A, 2:1D, 2:3A, 2:19A, 2:59A, 2:67A, 2:87A, 2:97A, 2:109A, 2:149A, 2:195D, 2:213A, 2:235A, 2:249A
Make Sense of Problems and Persevere in Solving Them, $1: 3 \mathrm{~A}, 1: 7 \mathrm{~A}, 1: 23 \mathrm{~A}, 1: 51 \mathrm{~A}, 1: 63 \mathrm{~A}, 1: 115 \mathrm{~A}, 1: 123 \mathrm{~A}$, 1:147A, 1:155A, 1:161A, 1:195A, 1:223A, 1:227A, 1:231A, 2:23A, 2:47A, 2:63A, 2:117A, 2:133A, 2:149A, 2:155A, 2:165D, 2:167A, 2:171A, 2:175A Model with Mathematics, 1:11A, 1:31D, 1:41A, 1:47A, $1: 67 \mathrm{~A}, 1: 71 \mathrm{~A}, 1: 99 \mathrm{~A}, 1: 103 \mathrm{~A}, 1: 107 \mathrm{~A}, 1: 111 \mathrm{~A}, 1: 115 \mathrm{~A}$, 1:181A, 1:187A, 1:219A, 2:11A, 2:19A, 2:51A, 2:105A, 2:113A, 2:129A, 2:137A, 2:171A, 2:179A, 2:205A, 2:209A, 2:219A

Reason Abstractly and Quantitatively, 1:7A, 1:47A, 1:51A, 1:75A, 1:93A, 1:111A, 1:177, 1:177A, 1:207A, 1:211A, 1:231A, 2:7A, 2:55A, 2:81D, 2:93A, 2:145A, 2:183A, 2:245A
Use Appropriate Tools Strategically, 1:11A, 1:23A, 1:75A, 1:91D, 1:93A, 1:99A, 1:119A, 1:123A, 1:143A, 1:151A, 1:177A, 1:181A, 1:187A, 1:227A, 2:7A, 2:15A, 2:35D, 2:43A, 2:71A, 2:167A, 2:179A, 2:201A, 2:239A, 2:253A

## Math Probe

Comparing Decimals, 1:79-1:80A
Decimal Division, 2:27-2:28
Decimal Multiplication, 1:185-1:186A
Estimating Decimal Sums and Differences, 1:97-1:98A
Fraction Problems, 2:91-2:92A
Line Plots, 2:187-2:188A
Make an Estimate of the Sum, 2:41-2:42A
Multiplication of 2-Digit Numbers, 1:159-1:160A
Ordered Pairs, 2:217-2:218A
Order of Operations, 2:243-2:244A
Solving Division Word Problems, 1:235-1:236A
Volume of Rectangular Prisms, 1:45-1:46A
Which Expressions Represent the Situation? 2:153-2:154A

## Math terms

algorithms, 1:133E, 1:155A, 1:161A
area, 1:187A, 2:101A
area models, 1:147A, 1:151A, 1:187A, 1:191A,
1:195A, 2:105A
attributes, 2:213A
base, 1:41A, 1:133E, 1:135A, 1:139A
benchmark numbers, 2:37A
capacity, 2:167A, 2:171A
category, 2:209A
composite solid figure, 1:47A
convert, 2:165E, 2:167A, 2:171A, 2:175A
coordinate plane, 2:195E, 2:197A, 2:201A
corresponding terms, 2:229E, 2:245A, 2:249A, 2:253A
cubic units, 1:37A
customary units, 2:167A
data, 2:165E, 2:179A, 2:183A
decimal grids, 1:99A, 1:103A, 1:111A, 1:115A, 1:181A, 1:195A
decimal point, 1:67A
decimals, 1:61E, 1:67A, 1:93A, 2:11A
decompose, 1:107A, 1:119A, 1:147A, 1:187A, 2:81E,
2:105A, 2:109A
decompose addends, 1:91E, 2:127E
decomposition, 1:123A, 1:195A
denominator, 2:43A, 2:51A, 2:55A, 2:87A, 2:97A, 2:127E, 2:129A
digit, 1:63A, 1:191A
dividend, 1:205E, 1:207A, 1:215A, 2:1E, 2:7A, 2:11A, 2:15A, 2:19A, 2:23A, 2:127E, 2:129A, 2:141A, 2:149A
division, 2:137A, 2:141A, 2:145A, 2:149A divisor, 1:205E, 1:207A, 2:1E, 2:7A, 2:11A, 2:15A, 2:19A, 2:23A, 2:127E, 2:129A, 2:141A, 2:149A equation, 1:51A
equations, 1:51A, 2:117A, 2:155A
equilateral triangles, 2:195E, 2:209A
equivalent fractions, 2:43A, 2:47A, 2:51A, 2:55A, 2:59A, 2:63A, 2:67A, 2:71A
estimate, 1:81A, 1:91E, 1:93A, 1:133E, 1:143A, 1:171E, 1:177A, 1:205E, 1:211A, 2:1E, 2:7A, 2:37A
evaluate, 2:229E, 2:239A
expanded form, 1:71A
exponential form, 1:133E, 1:135A
exponents, 1:133E, 1:135A, 1:139A, 1:171E, 1:173A
expression, 2:231A, 2:235A
factor, 1:139A, 1:173A
factors, 1:139A, 1:173A
formula, 1:41A, 1:47A
fractional, 1:15A
fraction model, 2:83A, 2:93A, 2:137A, 2:145A
fraction tiles, 2:43A
greater than (>), 1:75A
grid, 1:11A
grouping symbols, 2:229E, 2:231A, 2:235A
hierarchy of figures, $2: 195 \mathrm{E}, 2: 209 \mathrm{~A}, 2: 219 \mathrm{~A}$
hobby, 1:3A
hundredths, 1:67A, 1:99A
isosceles triangles, 2:195E, 2:209A
length, 2:167A, 2:171A
less than (<), 1:75A
like denominators, 2:43A, 2:47A
line plots, 2:165E, 2:179A, 2:183A
mass, 2:171A
metric units, 2:171A
mixed numbers, 2:59A, 2:63A, 2:67A, 2:71A, 2:81E, 2:105A, 2:133A
modeling, 1:11A
multiple, 2:47A
multiplication, 2:83A, 2:93A
numerator, 2:43A, 2:87A, 2:97A, 2:127E, 2:129A
numerical expression, 2:229E, 2:231A, 2:235A
numerical patterns, 2:229E, 2:245A, 2:249A, 2:253A
ordered pairs, 2:195E, 2:197A, 2:201A, 2:205A
order of operations, 2:229E, 2:239A
origin, 2:195E, 2:197A, 2:201A
outlier, 2:165E, 2:179A
parallelograms, 2:213A, 2:219A
parentheses, 2:229E, 2:231A, 2:235A
partial, 1:227A
partial products, 1:133E, 1:147A, 1:151A, 1:155A,
1:161A, 1:171E, 1:187A, 1:191A, 1:195A, 1:205E,
1:219A, 1:223A, 2:81E, 2:105A, 2:109A
partial quotients, 1:223A, 2:23A
partial sums, 1:107A, 1:123A
partition, 1:181A, 2:81E, 2:83A
place-value, 1:63A, 2:15A
place-value chart, 1:63A
power of 10, 1:133E, 1:135A, 1:139A, 2:1E, 2:3A,
2:19A, 2:23A
product, 1:173A
property, 2:209A, 2:213A
quadrilaterals, 2:213A, 2:219A
quotients, 1:205E, 1:207A, 1:227A, 2:1E, 2:7A, 2:15A, 2:19A, 2:23A, 2:127E, 2:129A, 2:133A
range, 1:171E, 1:177A
rectangles, 2:213A, 2:219A
rectangular prism, 1:33A
regroup, 1:155A, 1:161A
remainder, 1:205E, 1:227A, 1:231A, 2:133A
rhombus, 2:213A, 2:219A
round, 1:81A, 1:91E, 1:133E, 1:143A, 1:177A
rule, 2:229E, 2:245A, 2:249A
scalene triangle, 2:195E, 2:209A
scaling, 2:81E, 2:113A
squares, 2:213A, 2:219A
square units, 2:101A
standard form, 1:71A
strategy, 1:7A
subcategory, 2:195E, 2:209A
tenths, 1:67A, 1:99A
thousandths, 1:61E, 1:67A
trapezoid, 2:213A, 2:219A
unit cubes, 1:33A, 1:37A
unit fractions, 2:137A, 2:141A, 2:145A, 2:149A
unknown, 1:195A, 2:117A, 2:155A
valid, 1:51A
variable, 2:117A, 2:155A
Venn diagram, 2:195E, 2:219A
volume, 1:33A, 1:37A
weight, 2:167A
word form, 1:71A
x-axis, 2:195E, 2:197A, 2:201A, 2:205A
x-coordinate, 2:197A, 2:201A, 2:205A
y-axis, 2:195E, 2:197A, 2:201A, 2:205A
y-coordinate, 2:197A, 2:201A, 2:205A

## Measurement

nonstandard units, 1:92
volume
of composite figures, 1:47-1:50
cubic units, 1:34-1:36
formulas for, 1:41-1:44
rectangular prism, 1:34-1:36
with unit cubes, 1:37-1:40
Measurement data, on line plots, 2:179-2:182
Measurement units, multi-step
problems, 2:175-2:178

## Metric units

capacity, 2:171-2:174
converting, 2:171-2:174
length, 2:171-2:174
liquid volume, 2:171-2:174
mass, 2:171-2:174
multi-step problems, 2:175-2:178
weight, 2:171-2:174
Mindset, 1:5A, 1:8-1:9, 1:9A, 1:12-1:13
Mixed numbers. See also Fractions
addition
with regrouping, 2:67-2:70
with unlike denominators, 2:59-2:62
partial product
area models finding, 2:105-2:108
to multiply, 2:109-2:112
as quotients, 2:129-2:132, 2:133-2:136
subtraction
with regrouping, 2:67-2:70
with unlike denominators, 2:63-2:66
word problems, 2:71-2:74

## Modeling

decimals, on decimal grids, 1:99-1:102, 1:104, 1:112, 1:116, 1:181-1:184, 2:19-2:22
division
decimals by decimals, 2:23-2:26
decimals by whole numbers, 2:11-2:14, 2:15-2:18
fraction word problems, 2:155-2:158
unit fractions by non-zero whole numbers,
2:145-2:148, 2:149-2:152
whole number by unit fraction, 2:137-2:140
whole number by unit fractions, 2:141-2:144
powers of 10, 1:136A
real-world problems, 1:11-1:14
subtraction, of decimals, 1:112
Money, problems with, 1:8-1:9, 1:12-1:13
Multi-digit numbers
addition of, 1:89-1:90, 1:131-1:132, 1:169-1:170,
1:203-1:204
division, 1:205C
estimate quotient of, 1:211-1:214
estimating
division, 1:211-1:214
multiplication, 1:143-1:146
multiplication, 1:133C, 1:241-1:242
with algorithms, 1:161-1:164
with area models, 1:147-1:150
estimate products of, 1:143-1:146
fluency, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C,
2:108C, 2:112C, 2:116C, 2:120C
with partial products, 1:147-1:150, 1:151-1:154
subtraction, 1:89-1:90, 1:131-1:132, 1:169-1:170, 1:203-1:204
Multiples of 10, division, 2:79-2:80
Multiples of 100, division, 2:125-2:126

## Multiplication

algorithms, 1:155-1:158, 1:161-1:164, 1:228A, 2:193-2:194
area
with decimals, 1:172
with fractional side lengths, 2:101-2:104
area models
fluency, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C
multi-digit numbers, 1:147-1:150
choosing strategies for, 2:227-2:228
converting customary units, 2:167-2:170
converting metric units, 2:171-2:174
decimals, 1:171C, 1:185-1:186
of area, 1:172
on decimal grids, 1:181-1:184
estimating products of, 1:177-1:180
in expanded form, 1:72
modeling, 1:181-1:184
place-value patterns, 1:191-1:194
by power of 10, 1:173-1:176
properties of operations patterns, 1:191-1:194
strategies for, 1:195-1:198
division relating to, 1:215-1:218, 2:155-2:158 estimating
products of multi-digit numbers, 1:143-1:146
products of two decimals, 1:177-1:180
fractions, 1:8-1:9, 1:12-1:13, 1:72, 2:81C, 2:117-2:120
fraction by, 2:93-2:96, 2:97-2:100
whole number by, 2:83-2:86, 2:87-2:90
mixed numbers, 2:109-2:112
area models finding partial products, 2:105-2:108
multi-digit numbers
fluency, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, 2:120C
whole numbers, 1:133C
multiples of 10, 1:241-1:242
multiples of 100, 2:33-2:34
partial product
of decimals, 1:187-1:190
multi-digit numbers, 1:147-1:150, 1:151-1:154
patterns in, 1:20-1:22
power of 10, 1:135-1:138
decimals, 1:173-1:176
with exponents, 1:139-1:142
patterns of, 1:139-1:142
writing expressions, 1:135-1:138
reviewing, 1:134, 1:172
scaling, factors impact on products, 2:113-2:116
strategies for, 2:261-2:262
3-digits by 1 -digit numbers, 2:163-2:164
2-digit numbers, 1:159-1:160
2-digits by 1 -digit numbers, 2:163-2:164
2-digits by 2-digit numbers, 2:193-2:194
volume
calculating, 1:37-1:40, 1:45-1:46A
of composite figures, 1:47-1:50
equations, 1:51-1:54
formulas for, 1:41-1:44
whole numbers, fraction by, 2:83-2:86, 2:87-2:90
Multi-step problems, involving measurement units, 2:175-2:178

Nonstandard units, applying, 1:92
Notice \& Wonder. See Sense-Making Routines
Numberless Word Problems. See Sense-Making Routines

## Number lines

addition
adding fractions with unlike denominators, 2:43-2:46
mixed numbers with regrouping, 2:67-2:70 mixed numbers with unlike denominators, 2:59-2:62
decimals, estimating, 1:62
fractions
adding with unlike denominators, 2:47-2:50
estimating sums and differences of, 2:37-2:40
subtraction
fractions with unlike denominators, 2:51-2:54
mixed numbers with regrouping, 2:67-2:70
mixed numbers with unlike denominators, 2:63-2:66
with unlike denominators, 2:55-2:58
Number relationships, 1:64-1:66. See also
Place-value

## Number Routines

About How Much? 1:91F, 1:93A, 1:99A, 1:133F,
1:143A, 1:171F, 1:177A, 1:181A, 2:1F, 2:7A, 2:11A,
2:15A, 2:127F, 2:141A, 2:145A, A3
Can You Make the Number? 1:31F, 1:41A, 1:47A, 1:91F, 1:119A, 1:123A, 2:229F, 2:245A, 2:249A, 2:253A, A3

Decompose It, 1:61F, 1:67A, 1:71A, 1:205F, 1:227A, 1:231A, 2:1F, 2:3A, 2:81F, 2:93A, 2:97A, 2:105A, 2:165F, 2:175A, A3
Find the Missing Values, 1:171F, 1:187A, 1:191A, 2:195F, 2:205A, A3
Find the Pattern, Make a Pattern, 1:61F, 1:75A, 1:81A 1:133F, 1:135A, 1:139A, 1:205F, 1:219A, 1:223A, 2:81F, 2:83A, 2:87A, 2:165F, 2:167A, 2:171A, A3
Greater Than or Less Than, 1:133F, 1:147A, 1:151A, 1:155A, 2:81F, 2:113A, 2:117A, 2:127F, 2:129A, 2:195F, 2:197A, 2:201A, A3
Math Pictures, 1:1F, 1:3A, 1:7A, 1:11A, 1:15A, 1:19A, 1:23A, A3
What's Another Way to Write It? 1:133F, 1:161A, 1:171F, 1:173A, 2:35F, 2:51A, 2:55A, 2:59A, 2:127F, 2:133A, 2:137A, 2:229F, 2:235A, 2:239A, A3
Where Does It Go? 1:31F, 1:51A, 1:61F, 1:63A, 1:171F, 1:195A, 1:205F, 1:207A, 2:1F, 2:19A, 2:23A, 2:127F, 2:149A, 2:155A, A3
Which Benchmark Is It Closest To? 1:91F, 1:111A, 1:115A, 1:205F, 1:211A, 1:215A, 2:35F, 2:37A, 2:43A, 2:47A, 2:81F, 2:101A, 2:109A, 2:165F, 2:179A, 2:183A, A3
Would You Rather? 1:31F, 1:33A, 1:37A, 1:91F, 1:103A, 1:107A, 2:35F, 2:63A, 2:67A, 2:71A, 2:195F, 2:209A, 2:213A, 2:219A, 2:229F, 2:231A, A3
Numbers, different ways to think about, 1:7-1:10
Number sense, fluency, 1:3A
Number strings, analyzing, 2:128

## Numerical expressions

evaluating with order of operations, 2:239-2:242
interpreting, 2:235-2:238
showing relationships between/among quantities,
2:235-2:238
writing, 2:231-2:234

## Numerical patterns

arrange corresponding terms (in a table), 2:249-2:252
form ordered pairs from, 2:253-2:256
generating with two given rules, 2:245-2:248
graph ordered pairs, 2:253-2:256
identify relationship between corresponding terms, 2:245-2:248, 2:249-2:252
relationships between patterns, 2:249-2:252
0
Ordered pairs, 2:197-2:200, 2:201-2:204,
2:205-2:208, 2:217-2:218, 2:253-2:256
Order of operations, 2:229C
evaluating numerical expressions with, 2:239-2:242
fluency, 2:230, 2:234C, 2:238C, 2:242C, 2:243-2:244, 2:248C, 2:252C, 2:256C
Outlier, 2:179-2:182

## Own It! Digital Station

addition and subtraction fluency, 2:26C decimals, 1:96C, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:142C, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C within $1,000,000,1: 66 \mathrm{C}, 1: 70 \mathrm{C}, 1: 74 \mathrm{C}, 1: 78 \mathrm{C}$, $1: 84 \mathrm{C}, 2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}, 2: 22 \mathrm{C}$
digital games
Batting Practice, 1:92A, 1:206A
Dino Dig, 1:32A, 1:134A, 2:128A
Factory Sort, 1:62A, 2:2A
Mad Lab Mix Up, 1:172A, 2:82A
Operation Station, 2:230A
Space Race, 2:166A
Submarine Plunge, 2:36A, 2:196A
division fluency, multi-digit numbers, 2:40C, 2:46C, 2:50C, 2:54C, 2:58C, 2:62C, 2:66C, 2:70C, 2:74C, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C multiplication fluency
area, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C
area models, 1:138C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C
multi-digit numbers, 1:176C, 1:180C, 1:184C,
1:190C, 1:194C, 1:198C, 2:86C, 2:90C, 2:96C,
$2: 100 \mathrm{C}, 2: 104 \mathrm{C}, 2: 108 \mathrm{C}, 2: 112 \mathrm{C}, 2: 116 \mathrm{C}, 2: 120 \mathrm{C}$ order of operations fluency, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C volume fluency, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C

Pacing. See Unit Planner
Parallelograms, 2:213-2:216, 2:219-2:222

## Partial product

mixed numbers
area models finding, 2:105-2:108
multiplication, 2:109-2:112
multiplication
of multi-digit numbers, 1:147-1:150, 1:151-1:154, 1:187-1:190
of two decimals, 1:187-1:190
Partial quotients
1- and 2-digit numbers, 1:228
adding together, 1:224, 1:228
area models, 1:221-1:222
calculating quotient with, 1:219-1:222
division, 1:225-1:226
with 2-digit divisor, 1:224
with remainders, 1:227-1:230
recording, 1:223-1:226

## Partitioning

division
unit fractions by non-zero whole numbers, 2:145-2:148, 2:149-2:152
whole number by unit fraction, 2:137-2:140, 2:141-2:144
multiplication, whole number by fraction,
2:83-2:86, 2:87-2:90
Patterns
division, by 10s, 1:207-1:210
exploring, 1:19
in multiplication, 1:20-1:22
of decimals, 1:173-1:176, 1:191-1:194
of powers of 10, 1:139-1:142, 1:173-1:176
numerical, 2:245-2:248, 2:249-2:252,
2:253-2:256
of power of 10, 1:135-1:138, 2:3-2:6
in rectangular prism volumes, 1:42A

## Performance task

Animal Rescue, 2:126A
Baseball, 2:34A
Cell Phone Shopping, 1:132A
Field Day Fun! 2:164A
Invoicing, 2:262A
Locked Cashbox, 1:242A
Movie Theaters, 1:170A
rubrics, 1:57-1:58, 1:87-1:88, 1:129-1:130,
1:167-1:168, 1:201-1:202, 1:239-1:240, 2:31-2:32,
2:77-2:78, 2:123-2:124, 2:161-2:162, 2:191-2:192,
2:225-2:226, 2:259-2:260
Science Center Field Trip, 1:60A
Shapes and the Coordinate Plane, 2:228A
Track and Field, 2:194A
A Trip to the Movies, 1:90A
Valentina's Celebration, 2:80A
Welcome to the Neighborhood! 1:204A
Place-value
decimals
decompose to solve, 1:107-1:110, 1:119-1:122
generalizations about multiplying, 1:191-1:194
relationships of, 1:67-1:70
in thousandths place, 1:75-1:78
decompose
to add decimals, 1:107-1:110
to find difference, 1:59-1:60
to subtract decimals, 1:119-1:122
division
decimals by power of 10, 2:3-2:6
decimals by whole numbers, 2:15-2:18
number relationships, 1:64-1:66
patterns, dividing by $10,1: 207-1: 210$
whole numbers, 1:63-1:66
Polygons, 2:195C
from congruent connecting squares, 2:196
Power of 10
division
decimals by decimals, 2:23-2:26
whole numbers by decimals, 2:19-2:22
multiplication
of decimals, patterns in, 1:173-1:176
patterns of, 1:139-1:142
written with exponents, 1:139-1:142
writing
base 10 and exponents, 1:135-1:138
with exponents, 1:139-1:142
multiplication expression, 1:135-1:138
Practice item analysis. See Assessment
Practice It! Game Station
Bingo
Dividing Whole Numbers by Unit Fractions, 2:128A, 2:144B
Estimating Decimal Products, 1:172A, 1:180B
Estimating Products, 1:134A, 1:146B
Fraction Division, 2:128A, 2:152B
Bump
Dividing with Remainders, 1:206A, 1:234B
Estimating Quotients, 2:2A, 2:10B
Concentration
Fraction Addition, 2:36A, 2:50B
Fraction Division, 2:128A, 2:148B

Mixed Number, 2:82A, 2:108B
Mixed Number Addition, 2:36A, 2:62B, 2:70B
Numerical Expressions, 2:230A, 2:234B
Partial Products, 1:134A, 1:154B
Patterns on the Coordinate Plane, 2:230A, 2:252B, 2:256B
Powers of 10, 1:134A, 1:138B
Reading and Writing Decimals, 1:62A, 1:74B
Representing Division of Whole Numbers by Unit Fractions, 2:128A, 2:140B
Volume Situation, 1:32A, 1:54B
Four in a Row
Classifying Triangles, 2:196A, 2:212B
Fractions as Division, 2:128A, 2:132B, 2:136B
Represent Decimal Division, 2:2A, 2:14B
Represent Subtraction of Decimals, 1:114B
Rounding Decimals, 1:62A, 1:84B
Match, Fraction Division, 2:128A, 2:148B
Race
Add or Subtract Decimals Word Problems, 1:92A, 1:126B
Add Tenths and Hundredths, 1:92A, 1:106B
Convert Metric Units, 2:166A, 2:174B
Coordinate Plane, 2:196A, 2:200B
Coordinate Plane Representation, 2:196A, 2:208B
Divide by 0.1 and $0.01,2: 2 \mathrm{~A}, 2: 6 \mathrm{~B}$
Dividing Fractions, 2:128A, 2:158B
Division with 2-Digit Divisors, 1:206A, 1:226B
Estimating Sums and Differences, 2:36A, 2:40B
Estimating Sums and Differences of Decimals, 1:92A, 1:96B
Fraction and Mixed Number Addition, 2:36A, 2:66B
Fraction Problems, 2:82A, 2:120B
Metric Units of Measurement, 2:166A, 2:178B
Subtract Tens and Hundredths, 1:118B
Subtract Tenths and Hundredths, 1:92A
Showdown
Decimal Multiplication, 1:172A, 1:176B
Decimals, 1:62A
Estimating Quotients, 1:206A, 1:214B
Fraction Division, 2:128A, 2:148B
Fraction Multiplication, 2:82A, 2:100B
Multiplication, 1:134A, 1:164B, 1:172A
Order of Operations, 2:230A, 2:242B
Remainder, 1:206A, 1:230B
Volume, 1:32A, 1:44B
Sorts
Hierarchy, 2:196A, 2:222B
Place-value with Decimals, 1:62A, 1:70B
Product Size, 2:82A, 2:116B, 2:166A, 2:170B
2-Dimensional Figures, 2:196A, 2:216B
Value of a Digit, 1:62A, 1:66B
Volume, 1:32A, 1:36B, 1:40B
Task Cards
Adding Fractions, 2:36A, 2:46B
Additive Volume, 1:32A, 1:50B, 1:78B
Area Model, 1:134A, 1:150B
Area with Fractions, 2:82A, 2:112B
Coordinate Plane, 2:196A, 2:204B
Create a Line Plot, 2:166A, 2:182B
Decimal Multiplication, 1:172A, 1:184B
Divide Decimals by Decimals, 2:2A, 2:26B

Dividing Decimals by Whole Numbers, 2:2A, 2:18B
Division with 2-Digit Divisors, 1:206A, 1:222B
Fraction Multiplication, 2:82A, 2:96B
Line Plot, 2:166A, 2:186B
Mixed Number, 2:82A, 2:104B
Multiplication Standard Algorithm, 1:134A, 1:158B
Numerical Expressions, 2:230A, 2:238B
Numerical Patterns, 2:230A, 2:248B
Related Decimal Multiplication, 1:172A, 1:194B, 1:198B
Represent Addition of Decimals, 1:92A, 1:102B
Representing Fraction Multiplication,
2:82A, 2:90B
Represent Subtraction of Decimals, 1:92A
Subtracting Fractions, 2:36A, 2:54B
Subtracting Mixed Numbers, 2:36A, 2:74B
Tic Tac Toe
Decimal Addition, 1:92A, 1:110B
Decimal Multiplication, 1:172A, 1:190B
Decimal Subtraction, 1:92A, 1:122B
Divide Whole Numbers by Decimals, 2:2A, 2:22B
Fraction Multiplication, 2:82A, 2:86B
Fraction Subtraction, 2:36A, 2:58B
Multi-Digit, 1:206A, 1:210B, 1:218B
Multiplying by $10,1: 134 \mathrm{~A}, 1: 142 \mathrm{~B}$
Predicting solutions, estimating quotients of decimals, 2:7-2:10

## Problems

with money, 1:8-1:9, 1:12-1:13
open-ended, 1:8-1:9, 1:25A
real-world problems, modeling, 1:11-1:14
representing in different ways, 1:7-1:10
solving process, 1:9A
mindset for, 1:23A, 1:26
tools for, 1:11-1:14
using patterns, 1:22
Procedural skill and fluency. See Rigor
Productive group work behaviors, 1:23-1:26
Properties, of triangles, 2:209-2:212
Properties of operations, multiplying
decimals, 1:191-1:194

## Q

Quadrilaterals
classifying, categories and subcategories, 2:219-2:222
properties of, 2:213-2:216

## Questions

focus. see Focus Question
reflect, 1:6, 1:10, 1:14, 1:18, 1:22, 1:26, 1:35-1:36,
1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:57$1: 58,1: 65-1: 66,1: 69-1: 70,1: 73-1: 74,1: 77-1: 78$, $1: 83-1: 84,1: 87-1: 88,1: 95-1: 96,1: 101-1: 102$, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:129-1:130, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:167-1:168, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:201-1:202, 1:209-1:210, 1:2131:214, 1:217-1:218, 1:221-1:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 1:239-1:240, 2:5-2:6,

2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:31-2:32, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:77-2:78, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:107-2:108, 2:111-2:112, 2:1152:116, 2:119-2:120, 2:123-2:124, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:143-2:144, 2:1472:148, 2:151-2:152, 2:157-2:158, 2:161-2:162, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:1812:182, 2:185-2:186, 2:191-2:192, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:211-2:212, 2:2152:216, 2:221-2:222, 2:225-2:226, 2:233-2:234, 2:237-2:238, 2:241-2:242, 2:247-2:248, 2:251-2:252, 2:255-2:256, 2:259-2:260

## Quotients

checking dividing fractions with related multiplication, 2:141-2:144
determining partial quotients, 1:219-1:222
as fractions or mixed numbers, 2:129-2:132, 2:133-2:136
partial quotients
1- and 2-digit numbers, 1:228
adding together, 1:224, 1:228
area models, 1:221-1:222
calculating quotient with, 1:219-1:222
divide with 2-digit divisor, 1:224
division, 1:225-1:226
division, with remainders, 1:227-1:230
recording, 1:223-1:226
patterns, by 10s, 1:207-1:210
rounding, 1:232

## R

Readiness Diagnostic, 1:31G, 1:61G, 1:91G, 1:133G, 1:171G, 1:205G, 2:1G, 2:35G, 2:81G, 2:127G, 2:165G, 2:195G, 2:229G

## Real World Card

Balance a Checkbook, 1:92A, 1:114C, 1:122C
Can You Hear Me? 2:128A, 2:132C, 2:148C
Create and Solve, $2: 36 \mathrm{~A}, 2: 46 \mathrm{C}, 2: 50 \mathrm{C}, 2: 62 \mathrm{C}, 2: 74 \mathrm{C}$
Earning an Income, 2:230A, 2:238C, 2:252C
Find a Pattern and Repeat, 2:166A, 2:170C, 2:182C
If, Then, 2:82A, 2:86C, 2:100C, 2:112C
Is This for Real? 2:196A, 2:204C, 2:212C
Let's Celebrate, 1:134A, 1:146C, 1:158C
Move to the Left, Now Right! 1:172A, 1:176C, 1:184C
Online Learning: Is It Safe? 1:206A, 1:210C, 1:222C,
1:230C
Red Block White Block Road Block, 2:2A, 2:6C, 2:10C, 2:36A
State Sales Tax, 1:62A, 1:70C, 1:84C
You Are a Computer Programmer, 1:32A, 1:36C, 1:44C
Rectangles, 2:213A, 2:215-2:216
area, with fractional side lengths, 2:101-2:104
classifying, 2:219-2:222
properties of, 2:213-2:216
Rectangular prisms, volume of, 1:34-1:36, 1:37-1:40, 1:45-1:46A
formulas for, 1:41-1:44
unit cubes measuring, 1:34-1:36

Reflect, 1:6, 1:10, 1:14, 1:18, 1:22, 1:26, 1:35-1:36, 1:39-1:40, 1:43-1:44, 1:49-1:50, 1:53-1:54, 1:57-1:58, $1: 65-1: 66,1: 69-1: 70,1: 73-1: 74,1: 77-1: 78,1: 83-1: 84$, 1:87-1:88, 1:95-1:96, 1:101-1:102, 1:105-1:106, 1:1091:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:129-1:130, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:1491:150, 1:153-1:154, 1:157-1:158, 1:163-1:164, 1:167-1:168, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:201-1:202, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:221-1:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 1:239-1:240, 2:5-2:6, 2:92:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:312:32, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:732:74, 2:77-2:78, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:107-2:108, 2:111-2:112, 2:115-2:116, 2:119-2:120, 2:123-2:124, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:143-2:144, 2:147-2:148, 2:151-2:152, 2:157-2:158, 2:161-2:162, 2:169-2:170, 2:173-2:174, 2:177-2:178, 2:181-2:182, 2:185-2:186, 2:191-2:192, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:211-2:212, 2:215-2:216, 2:221-2:222, 2:225-2:226, 2:233-2:234, 2:237-2:238, 2:241-2:242, 2:2472:248, 2:251-2:252, 2:255-2:256, 2:259-2:260
Reinforce understanding. See Differentiated Learning
Relationship skills, 1:1D
advocacy, 1:91D, 1:111, 2:127D, 2:155
build relationship, 1:31D, 1:47, 2:1D, 2:11
effective communication, 1:61D, 1:71, 2:35D, 2:47
engage with others, 1:133D, 1:155, 2:81D, 2:93
identity and belonging, 1:171D, 1:177, 2:165D, 2:183
teamwork, 1:205D, 1:215, 2:195D, 2:197
value ideas of others, 1:91D, 1:103, 2:81D, 2:109, 2:229D, 2:231

## Resources

Foldables, 1:32A, 1:62A, 1:92A, 1:134A, 1:172A, 1:206A, 2:2A, 2:36A, 2:82A, 2:128A, 2:166A, 2:196A, 2:230A
place-value charts, 1:64-1:66
Teaching Resource
Benchmark Fraction Number Line, 2:37A, 2:38A
Blank Number Lines, 1:111A, 1:112A
Blank Open Number Lines, 1:119A, 1:120A,
1:177A, 1:181A, 1:182A, 2:43A, 2:44A
Blank Partial Quotients, 1:223A
Classifying Quadrilaterals, 2:213A, 2:214A
Coordinate Plane, 2:201A, 2:202A, 2:205A,
2:206A, 2:253A, 2:254A
Customary Conversion Tables, 2:167A, 2:168A, 2:175A
Customary Measurement Cards, 2:167A, 2:168A Decimal Cards, 1:93A, 1:94A, 1:107A, 1:108A, 1:119A, 1:120A
Decimal Forms, 1:71A, 1:72A
Decimal Grids, 1:103A, 1:115A
Dividing Fractions Puzzle Pieces, 2:146A, 2:149A
Dot Paper, 1:23A, 1:25A
Explain and Show Your Strategies, 1:123A, 1:124A, 2:67A, 2:68A
Fraction Number Lines, 2:51A, 2:52A
Metric Conversions Tables, 2:171A, 2:175A
Multiplication Algorithm, 1:161A, 1:162A
Nets, 1:33A, 1:34A, 1:37A, 1:38A, 1:47A, 1:48A

Number Cards 0-10, 1:81A, 1:82A
Pattern Blocks 2, 1:23A, 1:25A
Place-Value Charts to Millions, 1:63A, 1:173A
Problem-Solving Tool, 1:51A, 1:52A, 1:232A, 2:71A, 2:72A, 2:117A, 2:118A, 2:133A, 2:134A, 2:156A, 2:175A, 2:176A, 2:183A, 2:184A
Properties of Triangles, 2:209A
Show and Explain Your Strategies, 1:195A, 1:196A, 1:212A
$10 \times 10$ Grids, 1:63A, 1:64A, 1:104A, 1:116A, 1:181A, 1:182A, 2:19A
Tenths and Hundredths, 1:99A, 1:100A, 1:111A, 1:112A, 2:11A, 2:12A
Tenths and Hundredths Representations, 2:23A, 2:24A
Understanding the Coordinate Plane, 2:197A, 2:198A
Unit Fractions and Whole Numbers, 2:142A, 2:145A, 2:149A
Venn Diagram, 2:219A, 2:220A
vocabulary cards, 1:32A, 1:62A, 1:92A, 1:134A, 1:172A, 1:206A, 2:2A, 2:36A, 2:82A, 2:128A, 2:166A, 2:196A, 2:230A. see also Digital Resources
Responsible decision-making, 1:1D
analysis, 1:171D, 1:191, 2:127D, 2:145
analyze problems, 2:81D, 2:97
flexible thinking, 1:133D, 1:143, 2:1D, 2:3, 2:229D, 2:253
identify problems, 1:91D, 1:115, 1:205D, 1:231, 2:195D, 2:219
identify solutions, 2:35D
logic and reasoning, 1:205D, 1:219, 2:165D, 2:175 problem-solving, 1:31D, 1:51, 2:35D
recognizing others' emotions and responding, 1:61D reflect, 1:81
reflection, 2:81D, 2:87
Review, 1:27-1:28, 1:55-1:56, 1:85-1:86, 1:127-1:128, 1:165-1:166, 1:199-1:200, 1:237-1:238, 2:29-2:30, 2:75-2:76, 2:121-2:122, 2:159-2:160, 2:189-2:190, 2:223-2:224, 2:257-2:258
Rhombus, 2:213-2:216, 2:219-2:222
Rigor, 1:1C, 1:3A, 1:7A, 1:11A, 1:15A, 1:19A, 1:23A, 1:31C, 1:33A, 1:35-1:36, 1:37A, 1:39-1:40, 1:41A, 1:43-1:44, $1: 47 \mathrm{~A}, 1: 49-1: 50,1: 51 \mathrm{~A}, 1: 53-1: 54,1: 61 \mathrm{C}, 1: 63 \mathrm{~A}, 1: 65-$ 1:66, 1:67A, 1:69-1:70, 1:71A, 1:73-1:74, 1:75A, 1:77-1:78, 1:81A, 1:83-1:84, 1:91C, 1:93A, 1:95-1:96, 1:99A, 1:1011:102, 1:103A, 1:105-1:106, 1:107A, 1:109-1:110, 1:111A, 1:113-1:114, 1:115A, 1:117-1:118, 1:119A, 1:121-1:122, 1:123A, 1:125-1:126, 1:133C, 1:135A, 1:137-1:138, 1:139A, 1:1411:142, 1:143A, 1:145-1:146, 1:147A, 1:149-1:150, 1:151A, 1:153-1:154, 1:155A, 1:157-1:158, 1:161A, 1:163-1:164, 1:171C, 1:173A, 1:175-1:176, 1:177A, 1:179-1:180, 1:181A, 1:183-1:184, 1:187A, 1:189-1:190, 1:191A, 1:193-1:194, 1:195A, 1:197-1:198, 1:205C, 1:207A, 1:209-1:210, 1:211A, 1:213-1:214, 1:215A, 1:217-1:218, 1:219A, 1:221-1:222, 1:223A, 1:225-1:226, 1:227A, 1:229-1:230, 1:231A, 1:233-1:234, 2:1C, 2:3A, 2:5-2:6, 2:7A, 2:9-2:10, 2:11A, 2:13-2:14, 2:15A, 2:17-2:18, 2:19A, 2:21-2:22, 2:23A, 2:25-2:26, 2:35C, 2:37A, 2:39-2:40, 2:43A, 2:45-2:46, 2:47A, $2: 49-2: 50,2: 51 \mathrm{~A}, 2: 53-2: 54,2: 55 \mathrm{~A}, 2: 57-2: 58$, 2:59A, 2:61-2:62, 2:63A, 2:65-2:66, 2:67A, 2:69-2:70, 2:71A, 2:73-2:74, 2:81C, 2:83A, 2:85-2:86, 2:87A, 2:89-2:90, 2:93A, 2:95-2:96, 2:97A, 2:99-2:100,

2:101A, 2:103-2:104, 2:105A, 2:107-2:108, 2:109A, 2:111-2:112, 2:113A, 2:115-2:116, 2:117A, 2:119-2:120, 2:127C, 2:129A, 2:131-2:132, 2:133A, 2:135-2:136, 2:137A, 2:139-2:140, 2:141A, 2:143-2:144, 2:145A, 2:147-2:148, 2:149A, 2:151-2:152, 2:155A, 2:157-2:158, 2:165C, 2:167A, 2:169-2:170, 2:171A, 2:173-2:174, 2:175A, 2:177-2:178, 2:179A, 2:181-2:182, 2:183A, 2:1852:186, 2:195C, 2:197A, 2:199-2:200, 2:201A, 2:2032:204, 2:205A, 2:207-2:208, 2:209A, 2:211-2:212, 2:213A, 2:215-2:216, 2:219A, 2:221-2:222, 2:229C, 2:231A, 2:233-2:234, 2:235A, 2:237-2:238, 2:239A, 2:241-2:242, 2:245A, 2:247-2:248, 2:249A, 2:2512:252, 2:253A, 2:255-2:256. See also Unit Planner

## Rounding numbers

decimals, 1:81-1:84, 1:178
estimating multi-digit numbers, 1:144
estimating products of decimals, 1:178
factors, 1:179-1:180
quotients, 1:232
reviewing, 1:92
Routines. See Math Language Routines; Number Routines; Sense-Making Routines; Unit Routines
Rubrics, performance task, 1:57-1:58, 1:60A, 1:871:88, 1:90A, 1:129-1:130, 1:132A, 1:167-1:168, 1:170A, 1:201-1:202, 1:204A, 1:239-1:240, 1:242A, 2:31-2:32, 2:34A, 2:77-2:78, 2:80A, 2:123-2:124, 2:126A, 2:1612:162, 2:164A, 2:191-2:192, 2:194A, 2:225-2:226, 2:228A, 2:259-2:260, 2:262A

## s

Scalene triangle, 2:209-2:212
Scaling, 2:81C
factions, multiplication of, 2:113-2:116
Self-awareness, 1:1D
accurate self-perception, 1:133D, 2:127D, 2:149
creative thinking, 1:171D, 1:181, 2:127D, 2:133
curiosity, 1:205D, 1:207, 2:165D, 2:167
flexible behavior, 1:37
identify feelings and emotions, 2:1D, 2:15, 2:195D, 2:209
identity and belonging, 1:91D, 1:99, 2:81D, 2:113
recognize strengths, 2:35D, 2:37, 2:229D, 2:245
self-confidence, 1:61D, 1:63, 2:81D, 2:83
self-efficacy, 1:31D, 1:33, 2:35D, 2:59, 2:71
self-perception, 1:133D, 1:135, 1:171D
social problem solving, 1:173
Self-management, 1:1D

## Self-regulation

focus attention, 1:91D, 1:119, 2:35D, 2:67
goal-setting, 1:91D, 1:93, 2:195D, 2:201
independence, 1:171D, 1:187, 2:229D, 2:249
initiative, 1:205D, 1:211
maintain focus, 1:31D, 1:41, 1:133D, 1:139, 2:35D, 2:55
manage emotions, 2:1D, 2:7
manage reactions, 2:35D, 2:51
manage stress, 1:61D, 1:67, 2:127D, 2:129
metacognition, 2:165D, 2:171
organization, 1:133D, 1:161, 2:127D, 2:141, 2:195D, 2:205
planning and problem solving, 2:81D, 2:117
rules and routines, 2:81D, 2:101
self-discipline, 1:133D, 1:151, 2:229D, 2:239
task persistence, 1:205D, 1:227
working memory, 2:1D, 2:23

## Sense-Making Routines

Is It Always True? 1:171F, 1:191, 2:1F, 2:3, 2:35F, 2:51, 2:127F, 2:149, A2
Notice \& Wonder, A2
How are they the same? How are they different? 1:31F, 1:33, 1:47, 1:51, 1:61F, 1:91F, 1:103, 1:133F, 1:139, 1:161, 1:171F, 1:181, 1:211, 2:35F, 2:43, 2:81F, 2:105, 2:117, 2:127F, 2:155, 2:229F, 2:235
Tell me everything you can., 1:205F, 1:219, 2:81F, 2:165F, 2:167
What could the question be? 2:81F, 2:97, 2:195F, 2:209, 2:213
What do you notice? What do you wonder? 1:1F, 1:3, 1:7, 1:11, 1:19, 1:23, 1:31F, 1:37, 1:41, 1:61F, 1:67, 1:71, 1:75, 1:91F, 1:93, 1:111, 1:115, 1:133F, 1:143, 1:151, 1:155, 1:171F, 1:173, 1:205F, 1:215, 2:1F, 2:19, 2:23, 2:35F, 2:55, 2:67, 2:81F, 2:83, 2:93, 2:127F, 2:129, 2:137, 2:141, 2:165F, 2:183, 2:195F, 2:197, 2:201, 2:219, 2:229F, 2:239, 2:249 What do you see? 1:133F, 1:147, 2:81F, 2:101, 2:165F, 2:171, 2:229F, 2:245
What question could it be? 2:35F, 2:63
What question could you ask? 1:205F, 1:207, 2:1F, 2:7, 2:11, 2:35F, 2:59, 2:71, 2:195F, 2:205, 2:229F
Numberless Word Problems, 1:91F, 1:99, 1:123,
1:171F, 1:177, 1:195, 1:205F, 1:223, 1:227, 1:231,
2:81F, 2:87, 2:109, 2:127F, 2:133, 2:165F, 2:179, 2:229F, 2:231, 2:253, A2
Which Doesn't Belong? 1:1F, 1:15, 1:61F, 1:63, 1:91F,
1:107, 1:119, 1:133F, 1:135, 1:171F, 1:187, 2:1F, 2:15,
2:35F, 2:37, 2:47, 2:127F, 2:145, 2:165F, 2:175, A2
Similarities and differences
of composite figures, 1:47, 2:67
of three-dimensional objects, 1:33-1:36
of two-dimensional shapes, 1:33-1:36
of volume in objects, 1:51

## Small Groups

Adding Decimals, 1:110B
Addition Relay, 1:106B
Add Them Up! 2:50B
All or Some, 2:222B
Apply It! 1:198B, 1:222B
Areas with Mixed Numbers, 2:104B
Benchmark Numbers, 2:40B
Calculating Volume, 1:44B
Calculation Race, 2:70B
Call the Doctor! 2:242B
Compare It! 2:22B
Customary Conversion Tables, 2:170B
Distribute the Factor, 1:154B
Divide It Up! 2:152B
Divide the Whole, 2:144B
Divide with Decimals, 2:26B
Down to Zero, 2:58B
Factor Up 1, 2:116B
Fill It In, 1:190B
Fill It In and Predict, 1:194B
Finding Volume, 1:40B
Find the Dimensions, 1:50B
Find the Point, 2:200B
Find Your Match! 2:178B

Flip It, 1:214B, 2:238B
Flip It, Solve It! 2:100B
Fraction Windows, 2:96B
Fraction Word Problems, 2:120B
How Much More? 1:118B
Is It a Challenge or Not? 1:70B
Is the Difference the Same? 2:74B
Is the Product Reasonable? 1:146B
It's a Problem, 2:136B
Line Plot Fun! 2:186B
Lining Up Points! 2:256B
Little Boxes, 1:36B
Make It, Write It, 2:86B
Make Me Equivalent, 2:54B
Metric Conversions, 2:174B
Mixed Numbers Multiplication, 2:112B
Move It, 1:102B
Multiplication Challenge, 1:150B
Multiply It, 2:90B
Multiply Mixed Numbers 1, 2:108B
Multiply Whole Numbers and Decimals, 1:184B
Multiply with Decimals! 1:176B
Partial Quotients Division, 1:230B
Pass It On! 1:226B
Pick-Up Triangles, 2:212B
Place-value Slide, 1:142B
Place-value War, 1:78B
Plot 'n Roll, 2:204B
Quality over Quantity, 1:122B
Raise the Bar, 1:126B
Ready to Fly, 1:54B
Reasonable Estimates! 1:180B
Remainders, 1:234B
On a Roll! 1:84B
Roll and Expand, 1:74B
Roll It, Draw It, Solve It! 2:140B
Roll It, Subtract It! 1:114B
Roll It, Write It! 2:234B
Roll It, Write It, Show It! 2:132B
Roll It and Write It, 1:138B
Roll to Multiply, 1:158B
Roll to Round, 2:10B
Solve It, Keep It, 2:14B
Spaghetti Fractions, 2:182B
Spin 'n Plot, 2:208B
Spin ' $n$ ' Roll for Products! 1:164B
Splitting Sticky Notes, 2:62B
Subtract the Fractions, 2:66B
Swap It, 1:218B
Swap It Out, 2:18B
Ten and Hundred Patterns, 1:210B
That's the Way! 1:66B
What are the Compatible Numbers? 1:96B
What Shape Is It? 2:216B
What's in Common? 2:46B
What's My Pattern? 2:248B
What's the Pattern? 2:252B
What's the Story? 2:148B
Write It, 2:6B
Write ' $n$ ' Solve! 2:158B

## Social and Emotional Learning

objectives, 1:1A, 1:31A, 1:61A, 1:91A, 1:133A, 1:171A, 1:205A, 2:1A, 2:35A, 2:81A, 2:127A, 2:165A, 2:195A, 2:229A. see also Focus
relationship skills, 1:1D
advocacy, 1:91D, 1:111, 2:127D, 2:155
build relationship, 1:31D, 1:47, 2:1D, 2:11
effective communication, 1:61D, 1:71, 2:35D, 2:47
engage with others, 1:133D, 1:155, 2:81D, 2:93
identity and belonging, 1:171D, 1:177, 2:165D, 2:183
teamwork, 1:205D, 1:215, 2:195D, 2:197
value ideas of others, 2:81D, 2:109, 2:229D, 2:231
responsible decision-making, 1:1D
analysis, 1:171D, 1:191, 2:127D, 2:145
analyze problems, 2:81D, 2:97
flexible thinking, 1:133D, 1:143, 2:1D, 2:3, 2:229D, 2:253
identify problems, 1:91D, 1:115, 1:205D, 1:231, 2:195D, 2:219
identify solutions, 2:35D
logic and reasoning, 1:205D, 1:219, 2:165D, 2:175
problem-solving, 1:31D, 1:51, 2:35D
recognizing others' emotions and responding, 1:61D
reflect, 1:81
reflection, 2:81D, 2:87
self-awareness, 1:1D
accurate self-perception, 1:133D, 2:127D, 2:149
creative thinking, 1:171D, 1:181, 2:127D, 2:133
curiosity, 1:205D, 1:207, 2:165D, 2:167
flexible behavior, 1:37
identify feelings and emotions, 2:1D, 2:15, 2:195D, 2:209
identity and belonging, 1:91D, 1:99, 2:81D, 2:113
recognize strengths, 2:35D, 2:37, 2:229D, 2:245
self-confidence, 1:61D, 1:63, 2:81D, 2:83
self-efficacy, 1:31D, 1:33, 2:35D, 2:59, 2:71
self-perception, 1:133D, 1:135, 1:171D
social problem solving, 1:173
self-management, 1:1D
self-regulation
focus attention, 1:91D, 1:119, 2:35D, 2:67
goal-setting, 1:91D, 1:93, 2:195D, 2:201
independence, 1:171D, 1:187, 2:229D, 2:249
initiative, 1:205D, 1:211
maintain focus, 1:31D, 1:41, 1:133D, 1:139, 2:35D, 2:55
manage emotions, 2:1D, 2:7
manage reactions, 2:35D, 2:51
manage stress, 1:61D, 1:67, 2:127D, 2:129
metacognition, 2:165D, 2:171
organization, 1:133D, 1:161, 2:127D, 2:141, 2:195D, 2:205
planning and problem solving, 2:81D, 2:117
rules and routines, 2:81D, 2:101
self-discipline, 1:133D, 1:151, 2:229D, 2:239
task persistence, 1:205D, 1:227
working memory, 2:1D, 2:23
social awareness, 1:1D
develop perspective, 1:133D, 1:147, 2:81D, 2:105
empathy, 1:91D, 1:107, 2:63
flexible behavior, 1:31D, 1:205D, 1:223,
2:195D, 2:213
recognize emotions of others, 1:61D, 1:75, 2:1D, 2:19, 2:229D, 2:235
respect, 1:91D, 1:123, 2:35D, 2:43
social problem solving, 1:171D, 2:127D, 2:137
value diversity, 1:171D, 1:195, 2:165D, 2:179

Social awareness
develop perspective, 1:133D, 1:147, 2:81D, 2:105
empathy, 1:91D, 1:107, 2:63
flexible behavior, 1:31D, 1:205D, 1:223, 2:195D, 2:213
recognize emotions of others, 1:61D, 1:75, 2:1D, 2:19, 2:229D, 2:235
respect, 1:91D, 1:123, 2:35D, 2:43
social problem solving, 1:171D, 2:127D, 2:137
value diversity, 1:171D, 1:195, 2:165D, 2:179
Spiral review, 1:32A, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, $1: 62 \mathrm{~A}, 1: 66 \mathrm{C}, 1: 70 \mathrm{C}, 1: 74 \mathrm{C}, 1: 78 \mathrm{C}, 1: 84 \mathrm{C}, 1: 92 \mathrm{~A}, 1: 96 \mathrm{C}$, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:134A, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:172A, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:206A, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C, 2:2A, 2:6C, 2:10C, 2:14C, 2:18C, 2:22C, 2:26C, $2: 36 \mathrm{~A}, 2: 40 \mathrm{C}, 2: 46 \mathrm{C}, 2: 50 \mathrm{C}, 2: 54 \mathrm{C}, 2: 58 \mathrm{C}$, 2:62C, 2:66C, 2:70C, 2:74C, 2:82A, 2:86C, 2:90C, 2:96C, $2: 100 \mathrm{C}, 2: 104 \mathrm{C}, 2: 108 \mathrm{C}, 2: 112 \mathrm{C}, 2: 116 \mathrm{C}, 2: 120 \mathrm{C}$, 2:128A, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C, 2:166A, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:196A, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, $2: 222 \mathrm{C}, 2: 230 \mathrm{~A}, 2: 234 \mathrm{C}, 2: 238 \mathrm{C}, 2: 242 \mathrm{C}$, 2:248C, 2:252C, 2:256C
Squares, 2:213-2:216, 2:219-2:222
Standard form, decimals, 1:71-1:74
Standards. See also Math Practices and Processes benchmark assessment, 1:132D, 1:242D, 2:126D exit ticket skills tracker, 1:36A, 1:40A, 1:44A, 1:50A 1:54A, 1:66A, 1:70A, 1:74A, 1:78A, 1:84A, 1:96A, 1:102A, 1:106A, 1:110A, 1:114A, 1:118A, 1:122A, 1:126A, 1:138A, 1:142A, 1:146A, 1:150A, 1:154A, 1:158A, 1:164A, 1:176A, 1:180A, 1:184A, 1:190A, 1:194A, 1:198A, 1:210A, 1:214A, 1:218A, 1:222A, 1:226A, 1:230A, 1:234A, 2:6A, 2:10A, 2:14A, 2:18A, 2:22A, 2:26A, 2:40A, 2:46A, 2:50A, 2:54A, 2:58A, 2:62A, 2:66A, $2: 70 \mathrm{~A}, 2: 74 \mathrm{~A}, 2: 86 \mathrm{~A}, 2: 90 \mathrm{~A}, 2: 96 \mathrm{~A}$, 2:100A, 2:104A, 2:108A, 2:112A, 2:116A, 2:120A, 2:132A, 2:136A, 2:140A, 2:144A, 2:148A, 2:152A, 2:158A, 2:170A, 2:174A, 2:178A, 2:182A, 2:186A, 2:200A, 2:204A, 2:208A, 2:212A, 2:216A, 2:222A, 2:234A, 2:238A, 2:242A, 2:248A, 2:252A, 2:256A fluency progressions, 1:29-1:30, 1:59-1:60, 1:891:90, 1:131-1:132, 1:169-1:170, 1:203-1:204, 1:2411:242, 2:33-2:34, 2:79-2:80, 2:125-2:126, 2:163-2:164, 2:193-2:194, 2:227-2:228, 2:261-2:262
lesson overview, 1:3A, 1:7A, 1:11A, 1:15A, 1:19A, 1:23A, 1:33A, 1:37A, 1:41A, 1:47A, 1:51A, 1:63A, 1:67A, 1:71A, 1:75A, 1:81A, 1:93A, 1:99A, 1:103A, 1:107A, 1:111A, 1:115A, 1:119A, 1:123A, 1:135A, 1:139A, 1:143A, 1:147A, 1:151A, 1:155A, 1:161A, 1:173A, 1:177A, 1:181A, 1:187A, 1:191A, 1:195A, 1:207A, 1:211A, 1:215A, 1:219A, 1:223A, 1:227A, 1:231A, 2:3A, 2:7A, 2:11A, 2:15A, 2:19A, 2:23A, 2:37A, 2:43A, 2:47A, 2:51A, 2:55A, 2:59A, 2:63A, 2:67A, 2:71A, 2:83A, 2:87A, 2:93A, 2:97A, 2:101A, 2:105A, 2:109A, 2:113A, 2:117A, 2:129A, 2:133A, 2:137A, 2:141A, 2:145A, 2:149A, 2:155A, 2:167A, 2:171A, 2:175A, 2:179A, 2:183A, 2:197A, 2:201A, 2:205A, 2:209A, 2:213A, 2:219A, 2:231A, 2:235A, 2:239A, 2:245A, 2:249A, 2:253A
performance task, 1:57-1:58, 1:60A, 1:87-1:88, 1:90A, 1:129-1:130, 1:132A, 1:167-1:168, 1:170A, 1:201-1:202, 1:204A, 1:239-1:240, 1:242A, 2:31-2:32, 2:34A, 2:77-2:78, 2:80A, 2:123-2:124, 2:126A, 2:161-2:162, 2:164A, 2:191-2:192, 2:194A, 2:225-2:226, 2:228A, 2:259-2:260, 2:262A readiness diagnostic, 1:31G, 1:61G, 1:91G, 1:133G, 1:171G, 1:205G, 2:1G, 2:35G, 2:81G, 2:127G, 2:165G, 2:195G, 2:229G
spiral review, 1:32A, 1:62A, 1:92A, 1:134A, 1:172A, 1:206A, 2:2A, 2:36A, 2:82A, 2:128A, 2:166A, 2:196A, 2:230A
summative assessment, 2:262D
unit assessments, 1:60B, 1:90B, 1:132B, 1:170B, 1:204B, 1:242B, 2:34B, 2:80B, 2:126B, 2:164B, 2:194B, 2:228B, 2:262B
unit planner, 1:1B, 1:31B, 1:61B, 1:91B, 1:133B, 1:171B, 1:205B, 2:1B, 2:35B, 2:81B, 2:127B, 2:165B, 2:195B, 2:229B unit review, 1:27-1:28, 1:55-1:58, 1:85-1:88 1:127-1:130, 1:165-1:168, 1:199-1:202, 1:2371:240, 2:29-2:32, 2:75-2:78, 2:121-2:124, 2:1592:162, 2:189-2:192, 2:223-2:226, 2:257-2:260 vocabulary review, 1:27-1:28, 1:55-1:56, 1:85-1:86, 1:127-1:128, 1:165-1:166, 1:199-1:200, 1:2371:238, 2:29-2:30, 2:75-2:76, 2:121-2:122, 2:1592:160, 2:189-2:190, 2:223-2:224, 2:257-2:258

Standards for Mathematical Practices and
Processes. See Math Practices and Processes
STEM Adventure, 1:91, 1:171, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:205, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C, 2:1, 2:6C, 2:10C, 2:14C, 2:18C, 2:22C, 2:26C, 2:35, 2:40C, 2:46C, 2:50C, 2:54C, $2: 58 \mathrm{C}, 2: 62 \mathrm{C}, 2: 66 \mathrm{C}, 2: 70 \mathrm{C}, 2: 74 \mathrm{C}, 2: 81,2: 86 \mathrm{C}, 2: 90 \mathrm{C}$, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, 2:120C, 2:127, 2:132C, 2:136C, 2:140C, 2:144C, 2:148C, 2:152C, 2:158C, 2:165, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C

## STEM Career videos

Architectural Drafter, 2:195
Astronomer, 1:61
Computer Programmer, 1:205
Construction Manager, 2:165
Entomologist, 1:133
Geologist, 1:171
Ocean Engineer, 1:31
Park Ranger, 2:35
Pastry Chef, 2:1
Photonics Engineer, 2:229
Robotics Engineer, 2:127
Veterinarian, 1:91
Welder, 2:81
STEM Expedition, 1:31, 1:61
STEM in Action
Antonio Divides Fractions, 2:127
Counting Ladybugs, 1:133
Finn Buys Drywall, 2:165
Grace Designs a Game, 1:205
Haley Researches Comets, 1:61
Hannah Makes Go-Karts, 2:81
Hiro Finds the Volume of a Waterproof Case, 1:31
Malik Uses a Graph, 2:229
Maya Finds the Weight of a Boulder, 1:171

Meet Dakota, 1:1
Poppy Adds Fractions, 2:35
Ruby Subtracts Decimals, 1:91
Sam Designs Windows, 2:195
Shopping for Baking Supplies, 2:1

## STEM Project Card

Developing and Using Models, 1:31, 1:32A, 1:54C, 1:61, 1:91
Drafting Tools for Accuracy, 2:195, 2:196A, 2:208C, 2:216C
Environmentally Friendly, 2:165, 2:166A, 2:178C
Get Moving, 2:35, 2:36A, 2:46C, 2:58C, 2:70C
How Far? 1:62A, 1:74C
How Fast Is Your Robot? 2:127, 2:128A, 2:136C, 2:144C, 2:152C
Let's Get Organized! 1:92A, 1:106C, 1:126C
Make a Pulley System, 1:133, 1:134A, 1:142C, 1:154C, 1:164C
Rock Garden, 1:171, 1:172A, 1:194C, 1:198C
A Rule Created That? 2:229, 2:230A, 2:234C, 2:248C
That Is Astronomical, 1:205, 1:206A, 1:218C, 1:234C
That is Tasty! 2:1, 2:2A, 2:14C, 2:22C
This or That, 2:81, 2:82A, 2:90C, 2:104C, 2:116C

## Subcategories

of quadrilaterals, 2:219-2:222
of triangles, 2:209-2:212

## Subtraction

decimals
estimating, 1:93-1:96, 1:97-1:98
of hundreds, 1:111-1:114
real-world problems, 1:124A
strategies for, 1:119-1:122, 1:123-1:126
of tenths, 1:111-1:114
decompose place-value, 1:59-1:60
fluency, 1:241-1:242, 2:26C
within $1,000,000,2: 6 \mathrm{C}, 2: 10 \mathrm{C}, 2: 14 \mathrm{C}, 2: 18 \mathrm{C}, 2: 22 \mathrm{C}$

## fractions

estimating, 2:37-2:40
with unlike denominators, 2:55-2:58
with unlike denominators, using representation, 2:51-2:54
word problems, 2:71-2:74
hundredths from tenths, 1:115-1:118
mixed numbers
mixed numbers word problems, 2:71-2:74
with regrouping, 2:67-2:70
with unlike denominators, 2:63-2:66
multi-digit numbers, 1:89-1:90, 1:131-1:132, 1:169-
1:170, 1:203-1:204, 1:241-1:242, 2:193-2:194
tenths from hundredths, 1:115-1:118
3-digit numbers, 1:59-1:60
use algorithm for, 1:131-1:122
Summative Assessment, 2:262D-262E

## T

Take Action, 1:46A, 1:80A, 1:98A, 1:160A, 1:186A, 1:236A, $2: 28 \mathrm{~A}, 2: 42 \mathrm{~A}, 2: 92 \mathrm{~A}, 2: 154 \mathrm{~A}, 2: 188 \mathrm{~A}, 2: 218 \mathrm{~A}, 2: 244 \mathrm{~A}$
Tally marks, modeling with, 1:11-1:14
Targeted concept
algorithms, 2-digit multiplication, 1:159-1:160
coordinate plane, 2:217-2:218
decimals
comparing, 1:79-1:80
division, 2:27-2:28
estimating sums and differences, 1:97-1:98
multiplication, 1:185-1:186
division
unit fractions, 2:153-2:154
word problems, 1:235-1:236
fractions, estimating sums of, 2:41-2:42
line plots, 2:187-2:188
multiplication, fractions, 2:91-2:92
order of operations, 2:243-2:244
rectangular prism, volume of, 1:45-1:46
Targeted Intervention, 1:31G, 1:61G, 1:91G, 1:133G, 1:171G, 1:205G, 2:1G, 2:35G, 2:81G, 2:127G, 2:165G, 2:195G, 2:229G
Targeted misconception
area versus volume, 1:45-1:46
decimals
comparing, 1:79-1:80
place-value, 1:97-1:98
division, word problems, 1:235-1:236
fractions, estimating sums of, 2:41-2:42
line plots, 2:187-2:188
multiplication
2-digit numbers, 1:159-1:160
decimals, 1:185-1:186
fractions, 2:91-2:92
order of operations, 2:243-2:244
place value, decimal division, 2:27-2:28
word problems, keyword strategy, 2:153-2:154
$x$ - and $y$-coordinates, 2:217-2:218

## Teaching Resource

Benchmark Fraction Number Line, 2:37A, 2:38A
Blank Number Lines, 1:111A, 1:112A
Blank Open Number Lines, 1:119A, 1:120A, 1:177A, 1:181A, 1:182A, 2:43A, 2:44A
Blank Partial Quotients, 1:223A
Classifying Quadrilaterals, 2:213A, 2:214A
Coordinate Plane, 2:201A, 2:202A, 2:205A, 2:206A, 2:253A, 2:254A
Customary Conversion Tables, 2:167A, 2:168A, 2:175A
Customary Measurement Cards, 2:167A, 2:168A
Decimal Cards, 1:93A, 1:94A, 1:107A, 1:108A, 1:119A, 1:120A
Decimal Forms, 1:71A, 1:72A
Decimal Grids, 1:103A, 1:115A
Dividing Fractions Puzzle Pieces, 2:146A, 2:149A
Dot Paper, 1:23A, 1:25A
Explain and Show Your Strategies, 1:123A, 1:124A, 2:67A, 2:68A
Fraction Number Lines, 2:51A, 2:52A
Metric Conversions Tables, 2:171A, 2:175A
Multiplication Algorithm, 1:161A, 1:162A
Nets, 1:33A, 1:34A, 1:37A, 1:38A, 1:47A, 1:48A
Number Cards 0-10, 1:81A, 1:82A
Pattern Blocks 2, 1:23A, 1:25A
Place-Value Charts to Millions, 1:63A, 1:173A
Problem-Solving Tool, 1:51A, 1:52A, 1:232A, 2:71A, 2:72A, 2:117A, 2:118A, 2:133A, 2:134A, 2:156A,
2:175A, 2:176A, 2:183A, 2:184A
Properties of Triangles, 2:209A

Show and Explain Your Strategies, 1:195A, 1:196A, 1:212A
$10 \times 10$ Grids, 1:63A, 1:64A, 1:104A, 1:116A, 1:181A, 1:182A, 2:19A
Tenths and Hundredths, 1:99A, 1:100A, 1:111A, 1:112A, 2:11A, 2:12A
Tenths and Hundredths Representations, 2:23A, 2:24A
Understanding the Coordinate Plane, 2:197A, 2:198A
Unit Fractions and Whole Numbers, 2:142A, 2:145A, 2:149A
Venn Diagram, 2:219A, 2:220A
Teaching Tip
area models, 1:147
copy area models, 2:105
copy equations, 1:155
decimal grids, 1:103
discuss image, 2:209
discussion, 1:231
discuss observations, 2:47, 2:175
discuss similarities and differences, 1:161
divide class, 1:139
draw models of image, 2:183
draw on prior knowledge, 1:207
draw picture, 2:239
estimating products, 1:143
examine equations multiple ways, 2:23
expand discussion, 1:7
explore without calculating, 2:235
fractions in simplest form, 2:37
group participation, 1:71
math biography, 1:6
model observations, 1:15, 1:19
model relationships, 2:245
model the image, 2:145
physical models, 1:11, 1:33
place-value charts, 1:63
real-word scenarios, 2:71, 2:249
real-world models, 2:197, 2:213
recording observations, 1:67
repeat other's ideas, 1:81
replicate representations, 2:43
represent the image, 2:63
review all components, 2:253
review definitions, 2:219
share ideas, 2:137
small discussion group, 1:99, 1:177
specific examples, 2:51
student models, 2:67
think-pair-share, 1:3, 1:23, 1:51, 1:181, 2:19
turn and talk, 1:41, 1:75
using manipulatives, 2:3
visualizing volume, 1:37
work independently, 2:15
work in pairs (partners), 1:47, 1:93, 1:107, 1:111, 1:115, 1:123, 1:151, 1:173, 1:187, 1:195, 1:215, 1:219, 1:223, 1:227, 2:7, 2:87, 2:93, 2:97, 2:101, 2:113, 2:129, 2:167, 2:201, 2:205
work in small groups, 1:135, 1:191, 2:11, 2:83, 2:117, 2:149
work on their own, 1:211
write associated fractions, 2:141
write down questions, 2:179
write down thoughts, 2:55, 2:59, 2:109, 2:133,
2:155, 2:171
write related equations, 1:119
writing the math, 2:231
Tell me everything you can. See Sense-Making Routines
Thinking, justifying, 1:16-1:17
3-digit numbers. See also Multi-digit numbers
addition of, 1:59-1:60, 1:89-1:90
subtraction of, 1:59-1:60, 1:89-1:90
3-dimensional objects
composite figures, volume of, 1:47-1:50
rectangular prisms, 1:37-1:40
volume, measuring, 1:34-1:36
volume of, 1:41-1:44
similarities and differences of, 1:33-1:36
Time, converting customary units, 2:167-2:170
Tools, solving problems with, 1:11-1:14
Trapezoid, 2:213-2:216, 2:219-2:222
Triangles: classify, categories and
subcategories, 2:209-2:212
2-digit numbers
division, 1:219-1:222
multiplication, 1:159-1:160, 2:193-2:194
2-dimensional shapes
composite figures, 1:48A
similarities and differences of, 1:33-1:36

## U

Understanding what math is, 1:1C
Unit assessments, 1:60B-60C, 1:90B-90C,
1:132B-132C, 1:170B-170C, 1:204B-204C, 1:242B-242C,
2:34B-34C, 2:80B-80C, 2:126B-126C, 2:164B-164C, 2:194B-194C, 2:228B-228C, 2:262B-262C
Unit fractions. See also Fractions
dividing whole number by, 2:137-2:140, 2:141-2:144
division related to, 2:129-2:132
non-zero whole number divided by, 2:145-2:148, 2:149-2:152
Unit Openers, 1:1-1:2, 1:31-1:32, 1:61-1:62, 1:91-1:92,
1:133-1:134, 1:171-1:172, 1:205-1:206, 2:1-2:2,
2:35-2:36, 2:81-2:82, 2:127-2:128, 2:165-2:166,
2:195-2:196, 2:229-2:230
Unit Performance Task. See Performance task
Unit Planner, 1:1A-1B, 1:31A-31B, 1:61A-31B,
1:91A-91B, 1:133A-133B, 1:171A-171B, 1:205A-205B,
$2: 1 \mathrm{~A}-1 \mathrm{~B}, 2: 35 \mathrm{~A}-35 \mathrm{~B}, 2: 81 \mathrm{~A}-81 \mathrm{~B}, 2: 127 \mathrm{~A}-127 \mathrm{~B}$,
2:165A-165B, 2:195A-195B, 2:229A-229B
Unit Routines, 1:1F, 1:31F, 1:61F, 1:91F, 1:133F, 1:171F,
1:205F, 2:1F, 2:35F, 2:81F, 2:127F, 2:165F, 2:195F,

## 2:229F, A2-4

Use It! Application Station
Connection Card
City of Trees, 2:166A, 2:174C, 2:186C
Color by Number, 2:230A, 2:242C, 2:256C
Cost of Living Depends on Where You Live,
1:92A, 1:102C, 1:110C, 1:118C
Estimate High School Density, 1:206A, 1:214C, 1:226C
Fraction of a Fraction, 2:82A, 2:96C, 2:108C, 2:120C

Harvesting Water, 1:32A, 1:40C, 1:50C
How Do You Say-Fractions? 2:36A, 2:40C, 2:54C, 2:66C
How Was That Created? 2:196A, 2:200C, 2:222C
Leave a Trail! 2:2A, 2:18C, 2:26C
Potluck with a Twist, 2:128A, 2:140C, 2:158C
School Spirit, 1:172A, 1:180C, 1:190C
Washington Color School Movement - Color
Field Painting, 1:134A, 1:138C, 1:150C
On Your Mark, Get Set, Go! 1:62A, 1:66C, 1:78C, 1:96C
Real World Card
Balance a Checkbook, 1:92A, 1:114C, 1:122C
Can You Hear Me? 2:128A, 2:132C, 2:148C
Create and Solve, 2:36A, 2:50C, 2:62C, 2:74C
Earning an Income, 2:230A, 2:238C, 2:252C
Find a Pattern and Repeat, 2:166A, 2:170C, 2:182C
If, Then, 2:82A, 2:86C, 2:100C, 2:112C
Is This for Real? 2:196A, 2:204C, 2:212C
Let's Celebrate, 1:134A, 1:146C, 1:158C
Move to the Left, Now Right! 1:172A, 1:176C, 1:184C
Online Learning: Is It Safe? 1:206A, 1:210C, 1:222C, 1:230C
Red Block White Block Road Block, 2:2A, 2:6C, 2:10C
State Sales Tax, 1:62A, 1:70C, 1:84C
You Are a Computer Programmer, 1:32A, 1:36C, 1:44C
STEM Project Card
Developing and Using Models, 1:31, 1:32A, 1:54C, 1:61, 1:91
Drafting Tools for Accuracy, 2:196A, 2:208C, 2:216C
Environmentally Friendly, 2:166A, 2:178C
Get Moving, 2:36A, 2:46C, 2:58C, 2:70C
How Far? 1:62A, 1:74C
How Fast Is Your Robot? 2:128A, 2:136C, 2:144C, 2:152C
Let's Get Organized! 1:92A, 1:106C, 1:126C
Make a Pulley System, 1:133, 1:134A, 1:142C, 1:154C, 1:164C
Rock Garden, 1:171, 1:172A, 1:194C, 1:198C
A Rule Created That? 2:230A, 2:234C, 2:248C
That Is Astronomical, 1:205, 1:206A, 1:218C, 1:234C
That is Tasty! 2:2A, 2:14C, 2:22C
This or That, 2:82A, 2:90C, 2:104C, 2:116C

## $v$

Venn diagram, 2:219-2:222
Verbal descriptions, of numerical
expressions, 2:231-2:234

## Videos

Math in Action, Meet Dakota, 1:1
Math Replay, 1:35-1:36, 1:39-1:40, 1:43-1:44, $1: 49-1: 50,1: 53-1: 54,1: 55-1: 56,1: 65-1: 66,1: 69-$ 1:70, 1:73-1:74, 1:77-1:78, 1:83-1:84, 1:85-1:86, 1:95-1:96, 1:101-1:102, 1:105-1:106, 1:109-1:110, 1:113-1:114, 1:117-1:118, 1:121-1:122, 1:125-1:126, 1:127-1:128, 1:137-1:138, 1:141-1:142, 1:145-1:146, 1:149-1:150, 1:153-1:154, 1:157-1:158, 1:163-1:164,

1:165-1:166, 1:175-1:176, 1:179-1:180, 1:183-1:184, 1:189-1:190, 1:193-1:194, 1:197-1:198, 1:199-1:200, 1:209-1:210, 1:213-1:214, 1:217-1:218, 1:221-1:222, 1:225-1:226, 1:229-1:230, 1:233-1:234, 1:2371:238, 2:5-2:6, 2:9-2:10, 2:13-2:14, 2:17-2:18, 2:21-2:22, 2:25-2:26, 2:29-2:30, 2:39-2:40, 2:45-2:46, 2:49-2:50, 2:53-2:54, 2:57-2:58, 2:61-2:62, 2:65-2:66, 2:69-2:70, 2:73-2:74, 2:75-2:76, 2:85-2:86, 2:89-2:90, 2:95-2:96, 2:99-2:100, 2:103-2:104, 2:107-2:108, 2:1112:112, 2:115-2:116, 2:119-2:120, 2:121-2:122, 2:131-2:132, 2:135-2:136, 2:139-2:140, 2:1432:144, 2:147-2:148, 2:151-2:152, 2:157-2:158, 2:159-2:160, 2:169-2:170, 2:173-2:174, 2:1772:178, 2:181-2:182, 2:185-2:186, 2:189-2:190, 2:199-2:200, 2:203-2:204, 2:207-2:208, 2:2112:212, 2:215-2:216, 2:221-2:222, 2:223-2:224, 2:233-2:234, 2:237-2:238, 2:241-2:242, 2:2472:248, 2:251-2:252, 2:255-2:256, 2:257-2:258 STEM Career

Architectural Drafter, 2:195
Astronomer, 1:61
Computer Programmer, 1:205
Construction Manager, 2:165
Entomologist, 1:133
Geologist, 1:171
Ocean Engineer, 1:31
Park Ranger, 2:35
Pastry Chef, 2:1
Photonics Engineer, 2:229
Robotics Engineer, 2:127
Veterinarian, 1:91
Welder, 2:81
STEM in Action
Antonio Divides Fractions, 2:127
Counting Ladybugs, 1:133
Finn Buys Drywall, 2:165
Grace Designs a Game, 1:205
Haley Researches Comets, 1:61
Hannah Makes Go-Karts, 2:81
Hiro Finds the Volume of a Waterproof Case, 1:31
Malik Uses a Graph, 2:229
Maya Finds the Weight of a Boulder, 1:171
Poppy Adds Fractions, 2:35
Ruby Subtracts Decimals, 1:91
Sam Designs Windows, 2:195
Shopping for Baking Supplies, 2:1

## Vocabulary

academic terms
accurate, 1:115A, 1:135A, 1:143A, 1:207A, 2:47A, 2:63A, $2: 105 \mathrm{~A}, 2: 109 \mathrm{~A}, 2: 149 \mathrm{~A}, 2: 167 \mathrm{~A}, 2: 179 \mathrm{~A}$, 2:205A, 2:219A, 2:239A, 2:249A
address, 1:75A, 1:227A, 2:19A
advantage, 1:227A, 2:23A
analyze, 1:7A, 1:33A, 1:93A, 1:119A, 1:151A, 1:161A, 1:173A, 1:215A, 2:11A, 2:133A, 2:145A, 2:175A, 2:219A, 2:253A
arguably, 2:97A, 2:141A
assert, 1:41A, 1:111A, 1:191A, 2:23A, 2:63A, 2:117A
benefit, 1:99A
citation, 2:87A
cite, 1:63A, 1:139A, 1:177A
complement, 1:187A
complex, 1:47A, 1:181A, 2:87A, 2:113A, 2:235A
condition, 1:223A, 2:47A
contradiction, 1:67A, 2:239A
correspond, 2:43A, 2:197A, 2:201A
critique, 1:15A
debate, 1:37A, 1:103A, 1:147A, 2:67A
defend, 1:15A
disadvantage, 2:23A
drawback, 1:99A, 1:223A
efficient, 1:19A
eliminate, 2:37A, 2:67A
emphasize, 1:107A, 2:171A, 2:183A, 2:197A, 2:245A
establish, 1:33A, 1:139A, 1:215A, 2:51A, 2:59A,
2:105A, 2:155A, 2:213A
evaluate, 1:41A, 1:99A, 1:115A, 1:123A, 1:187A,
1:207A, 2:137A, 2:149A, 2:209A
expand, 1:71A, 1:191A, 2:3A, 2:101A
formula, 1:51A
generalizations, 1:19A
infer/inference, 1:67A, 1:93A, 1:103A, 2:15A,
2:113A, 2:167A, 2:249A
interview, 1:3A
justify, 1:15A
negate, 1:75A, 1:181A, 2:7A
norms, 1:23A
note, 1:161A, 1:231A, 2:171A
powers of 10, 1:139A
procedure, 1:107A, 1:123A, 1:155A, 2:93A
prove, 1:81A, 1:111A, 1:119A, 1:135A, 1:155A, 2:129A
quality, 1:71A, 2:201A, 2:213A
reasonable, 1:93A
reflect, 1:173A, 1:219A, 2:3A, 2:19A, 2:55A, 2:71A, 2:83A, 2:101A, 2:117A, 2:129A, 2:133A, 2:137A, 2:179A, 2:231A
relationship, 1:63A
relevant, 1:51A, 1:143A, 1:195A, 2:59A, 2:155A
responsibility, 1:23A
speculate, 1:47A, 1:147A, 1:177A, 1:219A, 2:93A,
2:97A, 2:141A, 2:205A, 2:253A
suggest, 1:37A, 1:151A, 1:195A, 1:211A, 2:3A,
2:11A, 2:37A, 2:43A, 2:55A, 2:71A, 2:83A,
2:145A, 2:209A, 2:231A
transition, 1:161A, 1:231A, 2:15A, 2:109A, 2:245A
unknown, 1:51A
valid, 2:51A, 2:235A
variable, 1:51A
variation, 1:81A, 1:211A, 2:7A
visualize, 1:11A
math terms
algorithms, 1:133E, 1:155A, 1:161A
area, 1:187A, 2:101A
area models, 1:147A, 1:151A, 1:187A, 1:191A,
1:195A, 2:105A
attributes, 2:213A
base, 1:41A, 1:133E, 1:135A, 1:139A
benchmark numbers, 2:37A
capacity, 2:167A, 2:171A
category, 2:209A
composite solid figure, 1:47A
convert, 2:165E, 2:167A, 2:171A, 2:175A
coordinate plane, 2:195E, 2:197A, 2:201A
corresponding terms, 2:229E, 2:245A, 2:249A, 2:253A
cubic units, 1:37A
customary units, 2:167A
data, 2:165E, 2:179A, 2:183A
decimal grids, 1:99A, 1:103A, 1:111A, 1:115A,
1:181A, 1:195A
decimal point, 1:67A
decimals, 1:61E, 1:67A, 1:93A, 2:11A
decompose, 1:107A, 1:119A, 1:147A, 1:187A, 2:81E, 2:105A, 2:109A
decompose addends, 1:91E, 2:127E
decomposition, 1:123A, 1:195A
denominator, 2:43A, 2:51A, 2:55A, 2:87A, 2:97A, 2:127E, 2:129A
digit, 1:63A, 1:191A
dividend, 1:205E, 1:207A, 1:215A, 2:1E, 2:7A,
2:11A, 2:15A, 2:19A, 2:23A, 2:127E, 2:129A,
2:141A, 2:149A
division, 2:137A, 2:141A, 2:145A, 2:149A
divisor, 1:205E, 1:207A, 2:1E, 2:7A, 2:11A, 2:15A,
2:19A, 2:23A, 2:127E, 2:129A, 2:141A, 2:149A
equations, 1:51A, 2:117A, 2:155A
equilateral triangles, 2:195E, 2:209A
equivalent fractions, 2:43A, 2:47A, 2:51A, 2:55A,
2:59A, 2:63A, 2:67A, 2:71A
estimate, 1:81A, 1:91E, 1:93A, 1:133E, 1:143A,
1:171E, 1:177A, 1:205E, 1:211A, 2:1E, 2:7A, 2:37A
evaluate, 2:229E, 2:239A
expanded form, 1:71A
exponential form, 1:133E, 1:135A
exponents, 1:133E, 1:135A, 1:139A, 1:171E, 1:173A
expression, 2:231A, 2:235A
factor, 1:139A, 1:173A
formula, 1:41A, 1:47A
fractional, 1:15A
fraction model, 2:83A, 2:93A, 2:137A, 2:145A
fraction tiles, 2:43A
greater than $(>), 1: 75 \mathrm{~A}$
grid, 1:11A
grouping symbols, 2:229E, 2:231A, 2:235A
hierarchy of figures, 2:195E, 2:209A, 2:219A
hobby, 1:3A
hundredths, 1:67A, 1:99A
isosceles triangles, 2:195E, 2:209A
length, 2:167A, 2:171A
less than (<), 1:75A
like denominators, 2:43A, 2:47A
line plots, 2:165E, 2:179A, 2:183A
mass, 2:171A
metric units, 2:171A
mixed numbers, 2:59A, 2:63A, 2:67A, 2:71A,
2:81E, 2:105A, 2:133A
modeling, 1:11A
multiple, 2:47A
multiplication, 2:83A, 2:93A
numerator, 2:43A, 2:87A, 2:97A, 2:127E, 2:129A
numerical expression, 2:229E, 2:231A, 2:235A numerical patterns, 2:229E, 2:245A, 2:249A, 2:253A
ordered pairs, 2:195E, 2:197A, 2:201A, 2:205A
order of operations, 2:229E, 2:239A
origin, $2: 195 \mathrm{E}, 2: 197 \mathrm{~A}, 2: 201 \mathrm{~A}$
outlier, 2:165E, 2:179A
parallelograms, 2:213A, 2:219A
parentheses, 2:229E, 2:231A, 2:235A
partial, 1:227A

## Index

partial products, 1:133E, 1:147A, 1:151A, 1:155A,
1:161A, 1:171E, 1:187A, 1:191A, 1:195A, 1:205E,
1:219A, 1:223A, 2:81E, 2:105A, 2:109A
partial quotients, 1:223A, 2:23A
partial sums, 1:107A, 1:123A
partition, 1:181A, 2:81E, 2:83A
place-value, 1:63A, 2:15A
place-value chart, 1:63A
power of 10, 1:133E, 1:135A, 2:1E, 2:3A, 2:19A, 2:23A
product, 1:173A
property, 2:209A, 2:213A
quadrilaterals, 2:213A, 2:219 A
quotients, 1:205E, 1:207A, 1:227A, 2:1E, 2:7A,
2:15A, 2:19A, 2:23A, 2:127E, 2:129A, 2:133A
range, 1:171E, $1: 1777 \mathrm{~A}$
rectangles, 2:213A, 2:219A
rectangular prism, 1:33A
regroup, $1: 155 \mathrm{~A}, 1: 161 \mathrm{~A}$
remainder, 1:205E, 1:227A, 1:231A, 2:133A
rhombus, 2:213A, 2:219A
round, 1:81A, 1:91E, 1:133E, 1:143A, 1:1777
rule, 2:229E, 2:245A, 2:249A
scalene triangle, 2:195E, 2:209A
scaling, 2:81E, 2:113A
squares, 2:213A, 2:219A
square units, 2:101A
standard form, 1:71A
strategy, 1:7A
subcategory, 2:195E, 2:209A
tenths, 1:67A, 1:99A
thousandths, 1:61E, 1:67A
trapezoid, 2:213A, 2:219A
unit cubes, 1:33A, 1:37A
unit fractions, 2:137A, 2:141A, 2:145A, 2:149A
unknown, 1:195A, 2:117A, 2:155A
valid, 1:51A
variable, 2:117A, 2:155A
Venn diagram, 2:195E, 2:219A
volume, 1:33A, 1:37A
weight, 2:167A
word form, 1:71A
x-axis, 2:195E, 2:197A, 2:201A, 2:205A
$x$-coordinate, 2:197A, 2:201A, 2:205A
y-axis, 2:195E, 2:197A, 2:201A, 2:205A
$y$-coordinate, 2:197A, 2:201A, 2:205A
review, 1:27-1:28, 1:55-1:56, 1:85-1:86, 1:127-
1:128, 1:165-1:166, 1:199-1:200, 1:237-1:238,
2:29-2:30, 2:75-2:76, 2:121-2:122, 2:159-2:160, 2:189-2:190, 2:223-2:224, 2:257-2:258
Volume, 1:31C
calculating
formulas for, 1:41-1:44
with unit cubes, 1:37-1:40
of composite figures, 1:47-1:50
fluency, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C
relating models to, 1:32
of solid figures, attributes, 1:33A
solve equations with, 1:51-1:54

## W

Websketch Exploration, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:66C, 1:70C, 1:74C, 1:78C, 1:84C, 1:96C, 1:102C, 1:106C, 1:110C, 1:114C, 1:118C, 1:122C, 1:126C, 1:133,

1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 2:195, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:229, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C
Weight, converting customary units, $2: 167-2: 170$
What do you notice? What do you wonder?. See Sense-Making Routines
What's Another Way to Write It?, $1: 133 \mathrm{~F}, 1: 1161 \mathrm{~A}, 1: 171 \mathrm{~F}$, 1:173A, 2:35F, 2:51A, 2:55A, 2:59A, 2:127F, 2:133A, 2:137A, 2:229F, 2:235A, 2:239A, A3
Where Does It Go?, 1:31F, 1:51A, 1:61F, 1:63A, 1:171F, 1:195A, 1:205F, 1:207A, 2:1F, 2:19A, 2:23A, 2:127F, 2:149A, 2:155A, A3
Which Benchmark Is It Closest To?, 1:91F, 1:111A, 1:115A, 1:205F, 1:211A, 1:215A, 2:35F, 2:37A, 2:43A, 2:47A, 2:81F, $2: 101 \mathrm{~A}, 2: 109 \mathrm{~A}, 2: 165 \mathrm{~F}, 2: 179 \mathrm{~A}, 2: 183 \mathrm{~A}, \mathrm{~A} 3$
Which Doesn't Belong?. See Sense-Making Routines
Whole numbers
compare and contrast, 1:63
decimals, relationship between, 1:68
decompose to solve, 1:107-1:110, 1:119-1:122
division, decimals, 2:11-2:14, 2:15-2:18, 2:19-2:22
equivalent decimal equations, 2:23-2:26
fractions, multiplying, using representations, 2:83-2:86
multi-digit division of, 1:205C
multiplication of, 1:133C, 1:147-1:150
multiplication
fraction by, 2:87-2:90
powers of 10, 1:139-1:142
place-value of, 1:63-1:66
unit fractions divided by, 2:137-2:140, 2:141-2:144
unit fractions dividing, 2:145-2:148, 2:149-2:152
Word form, decimals, 1:71-1:74
Word problems
decimals, 1:71A
adding or subtracting, 1:92A, 1:126B
division, 1:235-1:236
quotients, as fractions or mixed numbers, 2:133-2:136
unit fractions, 2:153-2:154, 2:155-2:158
division with remainders, 1:231-1:234
fractions, 2:71-2:74, 2:117-2:120
mixed numbers, 2:71-2:74
multi-step problems, 2:175-2:178
Numberless Word Problems, 1:91F, 1:99, 1:123,
1:171F, 1:177, 1:195, 1:205F, 1:223, 1:227, 1:231, 2:81F, 2:87, 2:109, 2:127F, 2:133, 2:165F, 2:179,
2:229F, 2:231, 2:253, A2

## Workstations

Own It! Digital Station, 1:32A, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:62A, 1:66C, 1:70C, 1:74C, 1:78C, 1:84C, 1:92A, 1:96C, $1: 102 \mathrm{C}, 1: 106 \mathrm{C}, 1: 110 \mathrm{C}, 1: 114 \mathrm{C}$, $1: 118 \mathrm{C}, 1: 122 \mathrm{C}, 1: 126 \mathrm{C}, 1: 134 \mathrm{~A}, 1: 138 \mathrm{C}, 1: 142 \mathrm{C}$, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:172A, 1:176C, 1:180C, 1:184C, 1:190C, 1:194C, 1:198C, 1:206A, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C, 2:2A, 2:6C, 2:10C, 2:14C, 2:18C, 2:22C, 2:26C, 2:36A, 2:40C, 2:46C, 2:50C, 2:54C, 2:58C, 2:62C, 2:66C, 2:70C, 2:74C, 2:82A, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C,
2:116C, 2:120C, 2:128A, 2:132C, 2:136C, 2:140C,

2:144C, 2:148C, 2:152C, 2:158C, 2:166A, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:196A, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:230A, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C Practice It! Game Station, $1: 32 \mathrm{~A}, 1: 36 \mathrm{~B}, 1: 40 \mathrm{~B}, 1: 44 \mathrm{~B}$, 1:50B, 1:54B, 1:62A, 1:66B, 1:70B, 1:74B, 1:78B, 1:84B, 1:92A, 1:96B, 1:102B, 1:106B, 1:110B, 1:114B, 1:118B, 1:122B, 1:126B, 1:134A, 1:138B, 1:142B, 1:146B, 1:150B, 1:154B, 1:158B, 1:164B, 1:172A, 1:176B, $1: 180 \mathrm{~B}, 1: 184 \mathrm{~B}, 1: 190 \mathrm{~B}, 1: 194 \mathrm{~B}, 1: 198 \mathrm{~B}$, 1:206A, 1:210B, 1:214B, 1:218B, 1:222B, 1:226B, 1:230B, 1:234B, 2:2A, 2:6B, 2:10B, 2:14B, 2:18B, 2:22B, 2:26B, 2:36A, 2:40B, 2:46B, 2:50B, 2:54B, 2:58B, 2:62B, 2:66B, 2:70B, 2:74B, 2:82A, 2:86B, 2:90B, 2:96B, 2:100B, 2:104B, 2:108B, 2:112B, 2:116B, $2: 120 \mathrm{~B}, 2: 128 \mathrm{~A}, 2: 132 \mathrm{~B}, 2: 136 \mathrm{~B}, 2: 140 \mathrm{~B}$, 2:144B, 2:148B, 2:152B, 2:158B, 2:166A, 2:170B, 2:174B, 2:178B, 2:182B, 2:186B, 2:196A, 2:200B, 2:204B, 2:208B, 2:212B, 2:216B, 2:222B, 2:230A, 2:234B, 2:238B, 2:242B, 2:248B, 2:252B, 2:256B Use It! Application Station, 1:32A, 1:36C, 1:40C, 1:44C, 1:50C, 1:54C, 1:62A, 1:66C, 1:70C, 1:74C, 1:78C, $1: 84 \mathrm{C}, 1: 92 \mathrm{~A}, 1: 96 \mathrm{C}, 1: 102 \mathrm{C}, 1: 106 \mathrm{C}, 1: 110 \mathrm{C}, 1: 114 \mathrm{C}$, 1:118C, 1:122C, 1:126C, 1:134A, 1:138C, 1:142C, 1:146C, 1:150C, 1:154C, 1:158C, 1:164C, 1:172A, $1: 176 \mathrm{C}, 1: 180 \mathrm{C}, 1: 184 \mathrm{C}, 1: 190 \mathrm{C}, 1: 194 \mathrm{C}, 1: 198 \mathrm{C}$, 1:206A, 1:210C, 1:214C, 1:218C, 1:222C, 1:226C, 1:230C, 1:234C, 2:2A, 2:6C, 2:10C, 2:14C, 2:18C, 2:22C, 2:26C, 2:36A, 2:40C, 2:46C, 2:50C, 2:54C, 2:58C, 2:62C, 2:66C, 2:70C, 2:74C, 2:82A, 2:86C, 2:90C, 2:96C, 2:100C, 2:104C, 2:108C, 2:112C, 2:116C, $2: 120 \mathrm{C}, 2: 128 \mathrm{~A}, 2: 132 \mathrm{C}, 2: 136 \mathrm{C}, ~ 2: 140 \mathrm{C}$, 2:144C, 2:148C, 2:152C, 2:158C, 2:166A, 2:170C, 2:174C, 2:178C, 2:182C, 2:186C, 2:196A, 2:200C, 2:204C, 2:208C, 2:212C, 2:216C, 2:222C, 2:230A, 2:234C, 2:238C, 2:242C, 2:248C, 2:252C, 2:256C
Work Together, 1:8-1:9, 1:12-1:13, 1:16-1:17, 1:20-1:21, 1:24-1:25, 1:34, 1:38, 1:42, 1:48, 1:52, 1:64, 1:68, 1:72, $1: 76,1: 82,1: 94,1: 100,1: 104,1: 108,1: 112,1: 1116,1: 120$, $1: 124,1: 136,1: 140,1: 144,1: 148,1: 152,1: 156,1: 162,1: 174$, $1: 178,1: 182,1: 188,1: 192,1: 196,1: 208,1: 212,1: 216,1: 220$, 1:224, 1:228, 1:232, 2:4, 2:8, 2:12, 2:16, 2:20, 2:24, 2:38, 2:44, 2:48, 2:52, 2:56, 2:60, 2:64, 2:68, 2:72, 2:84, 2:88, 2:94, 2:98, 2:102, 2:106, 2:110, 2:114, 2:118, 2:130, 2:134, 2:138, 2:142, 2:146, 2:150, 2:156, 2:168, 2:172, 2:176, 2:180, 2:184, 2:198, 2:202, 2:206, 2:210, 2:214, 2:220, 2:232, 2:236, 2:240, 2:246, 2:250, 2:254
Would You Rather?, 1:31F, 1:33A, 1:37A, 1:91F, 1:103A, 1:107A, 2:35F, 2:63A, 2:67A, 2:71A, 2:195F, 2:209A, 2:213A, 2:219A, 2:229F, 2:231A, A3
Writing, numerical expression, 2:231-2:234
Written statements, numerical
expressions, 2:231-2:234

## X

$X$-axis, 2:197-2:200, 2:201-2:204, 2:205-2:208
$X$-coordinate, 2:201-2:204, 2:205-2:208
$\boldsymbol{Y}$-axis, 2:197-2:200, 2:201-2:204, 2:205-2:208
$\boldsymbol{Y}$-coordinate, 2:197-2:200, 2:201-2:204, 2:205-2:208



[^0]:    ERP Establish Mathematics Goals to Focus Learning

    - Let's think about how place-value patterns can help us solve problems involving division of decimals by powers of 10 .

[^1]:    44 Anenvert tencerallot

[^2]:    Dinembision trowect boce

[^3]:    9. Emily drinses $\frac{2}{5}$ fiter of water duaing the first quarter of her baskartball game She drinks $\frac{1}{2}$ iter during the second quarter. How ratry thers of witer does Enly dillk Guring the tirst two quarters? $\frac{9}{10}$ liter
    10. Matias has $\frac{1}{8}$ cup of ammonds for a bag of trai mac. He adds $\frac{3}{4}$ cup of cashews is there more or less than 1 cup of nuts in the trail mix? Explain your thinking. less than I cup; Sample answer: $\frac{1}{8}$ is less than $\frac{1}{4}$ so $\frac{3}{4}+\frac{1}{8}$ is less than 1.
[^4]:    DSmutaton Resurce bock

[^5]:    

[^6]:    ETP Establish Mathematics Goals to Focus Learning

    - Let's think about using a representation to multiply a fraction by a fraction.

[^7]:    EIP Establish Mathematics Goals to Focus Learning

    - Let's think about how we can multiply mixed numbers.

[^8]:    How can you solve real world problerra involving inulificication of tractions?
    Answers may vary.

[^9]:    English Learner Scaffolds

    Entering/Emerging Ensure comprehension of pour. Draw a picture of a person pouring water into a glass and say, [She's] pouring water. Next, mime holding a cup and ask, Am I pouring? Then mime pouring and ask, again Am I pouring?

[^10]:    EEEnglish Learner Scaffolds

    Entering/Emerging Ensure students' comprehension of 5 -foot board. Measure your classroom door. Say, This is a [7-foot] door. It's [seven] feet tall. Then, measure another object, such as a bulletin board. Say, This is an [8-foot] board. It's [eight] feet long. Guide students to the Work Together problem on the Learn page. Ask, How long is the board? (five feet).

[^11]:    10. Error Anelysis Kevin hes a 5 feet length of wrapping paper He uses a $\frac{1}{3}$ foot length of wrapping paper for each present.

    $$
    5 \div \frac{1}{3}=\frac{5}{3}
    $$

[^12]:    

[^13]:    - Dividing Fractions Puzzle Pieces Teaching Resource

[^14]:    11. During a reading contest, Mike read for a totai of 120 hours How many days is equal to 120 nours? 5 days
    12. Amty's dog weighs 272 ounces. How meny pounds does her dog weigh? 17 lb
    13. Lauten goes for a wak that is $\frac{7}{8}$ mile long. How many feet did
    she walk? $4,620 \mathrm{ft}$ she waik? $4,620 \mathrm{ft}$
    14. STEA Connection Fing seeds to cht a piece of wood that is 144 inches lorg. He thindes ? would be basier to measure the piece of wood in yards. What is the longth in yards? Exploin your answer.
    4 yd; Sample answer: $144 \div 36=4$
[^15]:    2. A bag of apples weighs 3 pounds. Each apple weighs 6 ounces How many apples are in the bag? 8 apples
[^16]:    How can lonowing the properties of triangles be helpful when classifying triangles?
    Answers may vary.

[^17]:    Unit Assessment

[^18]:    EIP Establish Mathematics Goals to Focus Learning

    - Let's think about how we can interpret numerical expressions.

[^19]:    Dhrmetar hexpulloct

[^20]:    How does knowing the rules of two nunterical pattems help you determine an unknown zorresponding term?
    Answers may vary.

