Teacher Edition Grade 5 • Volume 1

Teacher Edition

Reveal

Grade $5 \cdot \mathrm{~V}$ olume 1

Use the image on the back cover to spark student curiosity about slope. Here are some questions to help guide the conversation as students describe what they notice and wonder about this takeoff.
-What story could you tell about this image?

- What could you use to find out the angle of the plane's take-off?

Back cover: guvendemir/E+/Getty Images
mheducation.com/prek-12

Copyright © 2022 McGraw Hill
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw Hill, including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
McGraw Hill
8787 Orion Place
Columbus, OH 43240

MHID: 0-07-683919-2

Printed in the United States of America.

Contents in Brief

VOLUME 1
(1) Math IS 1A
(2) Volume 31A
(3) Place Value and Number Relationships 61A
4 Add and Subtract Decimals 91A
(5) Multiply Multi-Digit Whole Numbers. 133A
(6) Multiply Decimals 171A
(7) Divide Whole Numbers 205A
Appendix A1
Glossary G1
VOLUME 2
8 Divide Decimals 1A
9) Add and Subtract Fractions 35A
(10) Multiply Fractions 81A
(11) Divide Fractions 127A
$(12$ Measurement and Data 165A
13 Geometry 195A
14 Algebraic Thinking. 229A
Appendix A1
Glossary G1
Index 11

Welcome to Reveal Math

We are excited to share with you the Reveal Math program.
In developing Reveal Math, we had a clear vision for elementary math instruction. It was important that the program we developed incorporated key findings from recent research on best practices in math instruction. It was also important that the program reflect an emphasis on building students' social and emotional competencies as well ensuring their academic growth.

We also thought extensively about your needs teaching math and your expectations for a high-quality math curriculum. It was important to us that the program provide flexibility in instructional and implementation options to meet the range of instructional settings and the range of learners.

We were purposeful about the organization of concepts and the scope and sequence to make sure students build deep conceptual understanding and develop proficiency with essential concepts and skills.

We are confident that Reveal Math incorporates all these goals.

- The lesson model offers two instructional options for each lesson: a guided exploration that is teacher-guided and an activity-based exploration that has students exploring concepts through small group activities and drawing generalizations and understanding from the activities.
- The lesson model incorporates an initial sense-making activity that builds students' proficiency with problem solving. By focusing systematically on sense-making, students develop and refine not just their observation and questioning skills, but the foundation for mathematical modeling.
- Both instructional options focus on fostering mathematical language and rich mathematical discourse by including probing questions and prompts.
- The Math is... unit builds student agency for mathematics. Students consider their strengths in mathematics, the thinking habits of proficient "doers of mathematics," and the classroom norms that are important to a productive learning environment.
- The scope and sequence reflects the learning progressions recommended by leading mathematicians and mathematics educators. It emphasizes developing deep understanding of the grade-level concepts and fluency with skills, while also providing rich opportunities to apply concepts to solve problems.

Thank you for using Reveal Math. The Reveal Math author team

The Reveal Math Authorship

McGraw Hill's Learning Scientists teamed up with expert authors to create a program guided by validated academic research and classroom best practices.

Ralph Connelly, Ph.D.

Authority on the development of early mathematical understanding.

Annie Fetter

Advocate for student ideas and student thinking that foster strong problem solvers.

Linda Gojak, M.Ed.

Expert in both theory and practice of strong mathematics instruction.

Sharon Griffin, Ph.D.
Champion for number sense and the achievement of all students.

Susie Katt, M.Ed.
Advocate for the unique needs of our youngest mathematicians.

Ruth Harbin Miles, Ed.S.
Leader in developing teachers' math content and strategy knowledge.

Nicki Newton, Ed.D.

Expert in bringing student-focused strategies and workshops into the classroom.

John SanGiovanni, M.Ed. Leader in understanding the mathematics needs of students and teachers.

Raj Shah, Ph.D.
Champion of perseverant problemsolvers and student curiosity in mathematics.

Jeff Shih, Ph.D.
Advocate for the importance of student knowledge.

Cheryl Tobey, M.Ed.
Facilitator of strategies that drive informed instructional decisions.

Dinah Zike, M.Ed.
Creator of learning tools that make connections through visualkinesthetic techniques.

Math Is...

Unit Planner 1A
Unit Overview $1 C$
Unit Routines 1F
Math Attitude Survey 1G
Unit Opener: Math in Action 1
Unit Opener: Ignite! 2
Lessons
1-1 Math Is Mine 3A
1-2 Math Is Exploring and Thinking 7A
1-3 Math Is in My World. 11A
1-4 Math Is Explaining and Sharing 15A
1-5 Math Is Finding Patterns 19A
1-6 Math Is Ours 23A
Unit Review 27
Fluency Practice 29

Volume

Unit Planner 31A
Unit Overview 31C
Unit Routines 31F
Readiness Diagnostic 31G
Unit Opener: STEM in Action 31
Unit Opener: Ignite!. 32
Unit Resources At-A-Glance. 32A
Lessons
2-1 Understand Volume 33A
2-2 Use Unit Cubes to Determine Volume 37A
2-3 Use Formulas to Determine Volume 41A
Math Probe Volume of Rectangular Prisms. 45
2-4 Determine Volume of Composite Figures 47A
2-5 Solve Problems Involving Volume 51A
Unit Review 55
Fluency Practice. 59
Performance Task 60A
Unit Assessment 60B

Unit 3

Place Value and Number Relationships

Unit Planner 61A
Unit Overview 61C
Unit Routines 61F
Readiness Diagnostic 61G
Unit Opener: STEM in Action 61
Unit Opener: Ignite! 62
Unit Resources At-A-Glance. 62A
Lessons
3-1 Generalize Place Value 63A
3-2 Extend Place Value to Decimals. 67A
3-3 Read and Write Decimals 71A
3-4 Compare Decimals 75A
Math Probe Comparing Decimals 79
3-5 Use Place Value to Round Decimals 81A
Unit Review 85
Fluency Practice. 89
Performance Task 90A
Unit Assessment 90B

Add and Subtract Decimals

Unit Planner 91A
Unit Overview 91C
Unit Routines 91F
Readiness Diagnostic 91G
Unit Opener: STEM in Action 91
Unit Opener: Ignite!. 92
Unit Resources At-A-Glance. 92A
Lessons
4-1 Estimate Sums and Differences of Decimals 93A
Math Probe Estimating Decimal Sums and Differences 97
4-2 Represent Addition of Decimals. 99A
4-3 Represent Addition of Tenths and Hundredths 103A
4-4 Use Partial Sums to Add Decimals 107A
4-5 Represent Subtraction of Decimals 111A
4-6 Represent Subtraction of Tenths and Hundredths. 115A
4-7 Strategies to Subtract Decimals. 119A
4-8 Explain Strategies to Add and Subtract Decimals 123A
Unit Review 127
Fluency Practice. 131
Performance Task 132A
Unit Assessment 132B
Benchmark Assessment 1 132D

Multiply Multi-Digit Whole Numbers

Unit Planner 133A
Unit Overview 133C
Unit Routines 133F
Readiness Diagnostic 133G
Unit Opener: STEM in Action 133
Unit Opener: Ignite! 134
Unit Resources At-A-Glance 134A
Lessons
5-1 Understand Powers and Exponents 135A
5-2 Patterns When Multiplying a Whole Number by Powers of 10 139A
5-3 Estimate Products of Multi-Digit Factors 143A
5-4 Use Area Models to Multiply Multi-Digit Factors. 147A
5-5 Use Partial Products to Multiply Multi-Digit Factors 151A
5-6 Relate Partial Products to an Algorithm 155A
Math Probe Multiplication of 2-Digit Numbers 159
5-7 Multiply Multi-Digit Factors Fluently 161A
Unit Review 165
Fluency Practice. 169
Performance Task 170A
Unit Assessment 170B

Multiply Decimals

Unit Planner 171A
Unit Overview 171C
Unit Routines 171F
Readiness Diagnostic 171G
Unit Opener: STEM in Action 171
Unit Opener: Ignite!. 172
Unit Resources At-A-Glance. 172A
Lessons
6-1 Patterns When Multiplying Decimals by Powers of 10 173A
6-2 Estimate Products of Decimals. 177A
6-3 Represent Multiplication of Decimals 181A
Math Probe Decimal Multiplication 185
6-4 Use an Area Model to Multiply Decimals. 187A
6-5 Generalizations about Multiplying Decimals 191A
6-6 Explain Strategies to Multiply Decimals. 195A
Unit Review 199
Fluency Practice. 203
Performance Task 204A
Unit Assessment 204B

Unit 7

Divide Whole Numbers

Unit Planner 205A
Unit Overview 205C
Unit Routines 205F
Readiness Diagnostic 205G
Unit Opener: STEM in Action 205
Unit Opener: Ignite! 206
Unit Resources At-A-Glance. 206A
Lessons
7-1 Division Patterns with Multi-Digit Numbers. 207A
7-2 Estimate Quotients 211A
7-3 Relate Multiplication and Division of Multi-Digit Numbers 215A
7-4 Represent Division of 2-Digit Divisors 219A
7-5 Use Partial Quotients to Divide 223A
7-6 Divide Multi-Digit Whole Numbers. 227A
7-7 Solve Problems Involving Division 231A
Math Probe Solving Division Word Problems 235
Unit Review 237
Fluency Practice. 241
Performance Task 242A
Unit Assessment 242B
Benchmark Assessment 2 242D

Divide Decimals

Unit Planner 1A
Unit Overview 1C
Unit Routines 1F
Readiness Diagnostic 1G
Unit Opener: STEM in Action 1
Unit Opener: Ignite!. 2
Unit Resources At-A-Glance. 2A
Lessons
8-1 Division Patterns with Decimals and Powers of 10 3A
8-2 Estimate Quotients of Decimals 7A
8-3 Represent Division of Decimals by a Whole Number 11A
8-4 Divide Decimals by Whole Numbers 15A
8-5 Divide Whole Numbers by Decimals 19A
8-6 Divide Decimals by Decimals 23A
Math Probe Decimal Division 27
Unit Review 29
Fluency Practice. 33
Performance Task 34A
Unit Assessment 34B

Add and Subtract Fractions

Unit Planner 35A
Unit Overview 35C
Unit Routines 35F
Readiness Diagnostic 35G
Unit Opener: STEM in Action 35
Unit Opener: Ignite! 36
Unit Resources At-A-Glance. 36A
Lessons
9-1 Estimate Sums and Differences of Fractions. 37A
Math Probe Make an Estimate of the Sum 41
9-2 Represent Addition of Fractions with Unlike Denominators. 43A
9-3 Add Fractions with Unlike Denominators 47A
9-4 Represent Subtraction of Fractions with Unlike Denominators 51A
9-5 Subtract Fractions with Unlike Denominators. 55A
9-6 Add Mixed Numbers with Unlike Denominators 59A
9-7 Subtract Mixed Numbers with Unlike Denominators 63A
9-8 Add and Subtract Mixed Numbers with Regrouping. 67A
9-9 Solve Problems Involving Fractions and Mixed Numbers. 71A
Unit Review 75
Fluency Practice. 79
Performance Task 80A
Unit Assessment 80B

Multiply Fractions

Unit Planner 81A
Unit Overview 81C
Unit Routines 81F
Readiness Diagnostic 81G
Unit Opener: STEM in Action 81
Unit Opener: Ignite!. 82
Unit Resources At-A-Glance. 82A
Lessons
10-1 Represent Multiplication of a Whole Number by a Fraction 83A
10-2 Multiply a Whole Number by a Fraction. 87A
Math Probe Fraction Problems 91
10-3 Represent Multiplication of a Fraction by a Fraction 93A
10-4 Multiply a Fraction by a Fraction 97A
10-5 Determine the Area of Rectangles with Fractional Side Lengths 101A
10-6 Represent Multiplication of Mixed Numbers 105A
10-7 Multiply Mixed Numbers. 109A
10-8 Multiplication as Scaling. 113A
10-9 Solve Problems Involving Fractions 117A
Unit Review 121
Fluency Practice. 125
Performance Task 126A
Unit Assessment 126B
Benchmark Assessment 3 126D

Divide Fractions

Unit Planner 127A
Unit Overview 127C
Unit Routines 127F
Readiness Diagnostic 127G
Unit Opener: STEM in Action 127
Unit Opener: Ignite! 128
Unit Resources At-A-Glance. 128A
Lessons
11-1 Relate Fractions to Division 129A
11-2 Solve Problems Involving Division 133A
11-3 Represent Division of Whole Numbers by Unit Fractions 137A
11-4 Divide Whole Numbers by Unit Fractions 141A
11-5 Represent Division of Unit Fractions by Non-Zero Whole Numbers. 145A
11-6 Divide Unit Fractions by Non-Zero Whole Numbers 149A
Math Probe Which Expressions Represent the Situation? 153
11-7 Solve Problems Involving Fractions 155A
Unit Review 159
Fluency Practice. 163
Performance Task 164A
Unit Assessment 164B

Measurement and Data

Unit Planner 165A
Unit Overview 165C
Unit Routines 165F
Readiness Diagnostic 165G
Unit Opener: STEM in Action 165
Unit Opener: Ignite! 166
Unit Resources At-A-Glance. 166A
Lessons
12-1 Convert Customary Units 167A
12-2 Convert Metric Units. 171A
12-3 Solve Multi-Step Problems Involving Measurement Units 175A
12-4 Represent Measurement Data on a Line Plot 179A
12-5 Solve Problems Involving Measurement Data on Line Plots 183A
Math Probe Line Plots 187
Unit Review 189
Fluency Practice. 193
Performance Task 194A
Unit Assessment 194B

Geometry

Unit Planner 195A
Unit Overview 195C
Unit Routines 195F
Readiness Diagnostic 195G
Unit Opener: STEM in Action 195
Unit Opener: Ignite! 196
Unit Resources At-A-Glance. 196A
Lessons
13-1 Understand the Coordinate Plane 197A
13-2 Plot Ordered Pairs on the Coordinate Plane 201A
13-3 Represent Problems on a Coordinate Plane 205A
13-4 Classify Triangles by Properties 209A
13-5 Properties of Quadrilaterals 213A
Math Probe Ordered Pairs 217
13-6 Classify Quadrilaterals by Properties. 219A
Unit Review 223
Fluency Practice. 227
Performance Task 228A
Unit Assessment 228B

Algebraic Thinking

Unit Planner 229A
Unit Overview 229C
Unit Routines 229F
Readiness Diagnostic 229G
Unit Opener: STEM in Action 229
Unit Opener: Ignite!. 230
Unit Resources At-A-Glance. 230A
Lessons
14-1 Write Numerical Expressions 231A
14-2 Interpret Numerical Expressions 235A
14-3 Evaluate Numerical Expressions 239A
Math Probe Order of Operations 243
14-4 Numerical Patterns 245A
14-5 Relate Numerical Patterns 249A
14-6 Graphs of Numerical Patterns 253A
Unit Review 257
Fluency Practice. 261
Performance Task 262A
Unit Assessment 262B
Summative Assessment 262D

Reveal What Math Truly Is

Math Is...Unit: Establish Classroom Norms for the Year

The first unit in every grade, the Math Is...Unit, aims to help students and teachers see math as problem solving strategies rather than just computation. Students define a productive and positive classroom environment where all students can:

- Share ideas and collaborate freely.
- Find success in math and become doers of mathematics.
- Apply the mathematical thinking and practices to problem solving.
- Take ownership of their personal learning journey.
- Become the creative problem solvers of tomorrow.

Lesson 1

Math Is... Mine

The first lesson aims to help all students see themselves as doers of mathematics, develop a growth mindset, and take ownership of their learning within the math classroom.

Students:

- Learn about the teacher's personal math story.
- Describe their math superpowers.
- Craft their personal math story.

Lessons 2-5

Math Is... A Way of Thinking
The second through fifth lessons focus on thinking habits within the classroom. Each lesson seeks to unpack the thinking habits that are integral to problem solving. Students:

- Become mathematical thinkers.
- Apply the habits of mind of problems solving.
- Communicate effectively about math.

Lesson 6

Math Is... Ours

The sixth lesson recalls the objective of the previous lessons as students learn what a positive and productive classroom environment looks like. Together, the class defines the classroom norms and expectations for the year.

Students:

- Demonstrate a voice and choice in their classroom environment.
- Understand the behaviors and mindsets of the math classroom.

Math is... Mindset

Math Is...Prompts

Math Is...prompts are embedded throughout the Student Edition to help students build proficiency

> What can you do to work together with your classmates? with the thinking habits and classroom norms. These prompts help students to truly own their learning journey throughout the year.

Unit Resources

Assessment

The unit begins with a Readiness Diagnostic to assess student's knowledge of essential pre-requisite skills for the unit content. End-of-Unit Assessments are summative assessments for the units and include two forms of the assessment and a Performance Task. A Math Probe is integrated throughout the unit to help identify and address common misconceptions associated with the unit content.

Targeted Intervention

Intervention resources align to the beginning- and end-of-unit assessment items and are available at point of use to quickly correct misunderstanding and target gaps with small group lessons and practice sheets.

Guided Support

Materials

- Leve squave grid paper 2, theets per stivitent
- Dot stickers or self-Aticiong netes 20 per gudeen

Begin the Activily
Give eoch student dot itichers and gnd popec. Heve students place dot stokecs in the liost
3 rquares of the poo poper. Thea Nine them piace dot stickers in the 3 squares
Inmediately below the fint Item Analysis
alrayt [2] How many dote of addivios sentence. The nue repeated. What addend is : imany Nimes the addend is many times the addend is
athderth sow to wite the a

Unit 3

How Ready Am I?

Nome

1. Which number makes the equation true? $5+4=4+7$
$\begin{array}{llll}\text { A. } 3 & \text { B. } 5 & \text { C. } 4 & \text { D. } 6\end{array}$
2. Cara bougtit a package of toy cirs for each of hes 5 fiends. Each package has 4 cars. Which equation can be used to find the toral number of cars Carn bought?
A. $5+4=$? \quad B. $5+5+5+5+5=$?

frem	Dok	Lesson	Guided Support Intervention Lesson	Standard
1	1	3.4	Unknown Group Size (Equal Groups)	3.0A.A. 2
2	2	3.3	Reorder Factors	3.0A.B.5
3	1	3.1	Model Multiplication (Objects)	3.0A.A. 1
4	3	3.4	Unknown Group Sire (Equal Groups)	$3.0 \mathrm{AA}$.
5	3	3.1	Model Multiplication (Objects)	3.0A.A. 1
6	2	3.2	Model Multiplication (Arras)	3.0A.A. 1
7	1	3.2	Model Multiplication (Arrays)	3.0A.A. 1
8	2	37	Word Problens Using Equations	$3.0 \mathrm{AA.A}$
9	3	3.6	Relate Multiplication and Division Facts	$\begin{aligned} & 3.0 \mathrm{~A} . \mathrm{A} .1 \\ & 3.0 \mathrm{~A} .2 \end{aligned}$

STEM-Focused Learning

Each unit highlights a STEM career and shows real-world applications of math to help students see math as a tool to explore the world around them.

Ignite!

Each unit opens with an Ignite! activity, an interesting problem or puzzle that sparks students' interest and curiosity. With a focus on the problem-solving journey, the activity provides only enough information to open up students' thinking and motivate them to persevere through challenges or setbacks along the problem-solving journey.

The STEM Career Kid video introduces a STEM career and provides an overview of the job responsibilities.

The Math in Action videos apply the unit math content with the STEM career focus to bring the content into the real world.

Unit Resources

Explore Through a Flexible Lesson Design

The Lesson Model

Reveal Math's lesson model keeps sense-making and exploration at the heart of learning. Every lesson provides two instructional strategies to develop the math content and tailor the lesson to the needs and structure of the classroom.

Launch

Be Curious starts every lesson with the opportunity to be curious about math.

- Students focus on exploration and sense-making.
- Teachers foster students' thinking through meaningful discussion.

Explore \& Develop

Explore and Develop unpacks
the lesson content through either an activity-based or guided exploration.

- Students explore the lesson concepts and engage in meaningful discourse.
- Teachers implement effective teaching practices to make meaningful connections.

Practice and Reflect

On My Own offers opportunities for students to engage with the math and reflect on their learning.

- Students practice lesson concepts, completing the On My Own exercises.
- Teachers monitor progress and have students reflect on the lesson's learning targets.

Routines

Reveal Math integrates routines within each lesson to help students develop proficiency.

Build Fluency

Number Routines

Support the development of flexibility with numbers and fluency with operations at the start of every lesson.

MLR

Math Language Routines

Promote mathematical language use and development as part of math instruction.

Sense-Making Routines

Build sense-making as a
foundation for problem solving and mathematical modeling.

Assess

The Exit Ticket includes a daily formative assessment to check for understanding.

- Students complete a short exit ticket and reflect on their learning.
- Teachers use data to inform their daily differentiation.

Differentiate

Daily Differentiation helps support every student in their path to understanding.

- Students work on differentiated tasks to reinforce their understanding, build their proficiency, and/or extend their thinking.
- Teachers pull small groups together as needed.

Lesson Model: Launch

Clear and

 Comprehensive Objectives
LESSON 3.1
 Understand Equal Croups

Learning Targets

Every lesson has two learning targets: one based on a skill and one on metacognition.

Objectives

Lessons have three objectives to support the whole child, including:

- Content objective
- Language objective
- Social and emotional learning objective

Rigor

Every lesson identifies the targeted element of rigor.

Daily Focus on Number Sense and Fluency

The Number Routine provides a daily focus on developing fluency and efficiency of strategy. The Number Routine can be completed at any point in the day to build number sense.

Number Routine

Would You Rather?

Would you rather have the number of pennies in A or B ?

\boldsymbol{A}	\boldsymbol{a}
$50+50+400$	$200+200$
$440+10$	$300+275$
500	$125+225$

Derive Understanding by Sparking Curiosity

Sense-making routines launch every lesson, creating an equitable classroom culture where all ideas are welcome and respected. Student curiosity and ideas shared in Be Curious become the base for the day's lesson.

"All students have ideas about math that are valid and worth talking about."

Annie Fetter Contributing Author

Be Curious offers a high-ceiling/ low-floor that allows every student to explore and discuss their ideas with multiple entry points and approaches to problem-solving.

Support the Whole Child With Social and Emotional Learning Integration

Every lesson integrates a social and emotional learning objective. These objectives are based on the CASEL Social and Emotional Learning competencies.
Math is... Mindset prompts with teacher supports keep social and emotional learning at the top of students' minds as they interact with classmates at key points during the lesson.

Math is... Mindset

What can you do to be an active listener?
SEL Relationship Skills: Effective Communication
Effective communication includes active listening. Remind students that an active listener gives full attention to the speaker by looking at the speaker and providing thoughtful feedback to the speaker. As students discuss what they noticed and wondered, remind classmates to listen actively and as appropriate, provide thoughtful feedback.

Lesson Model: Explore and Develop

Two Approaches to Develop Understanding

For the lesson's main instruction, the teacher can choose between two instructional options: Guided Exploration or Activity-Based Exploration. Both options provide the same level of access to rigorous content. Integrated Effective Teaching Practices guide instruction and discourse, keeping the student at the center of the learning.

Comprehensive Supports for the Language of Math

EL

Built-in scaffolds for English
Learners to interact with math language through speaking, listening, reading, and writing.

LOM

Language of Math supports how to talk about and think about math in context of the lesson content.

MLR

Math Language Routine

 promotes mathematical language use and development as part of math instruction.
CHOOSE YOUR OPTION

Activity-Based Exploration

Students explore and use equal groups to find the total number of objects.
Materials: coumters or other countable manipulatives, yarn or string
Directions: Students will explore ways to find the total number of peaches in 5 baskets.

- Let's imagive there are live baskets and the baskets have peaches in them. How can you determine the total number of peaches in the baskets?

Students will use yarn or string to represent the baskets and counters to represent the peaches. Students may choose to place the samie number of counters in each group of a different number. Have them find the total number of peaches and record their work.

${ }^{\text {GIB }}$ Support Productive Struggle
 - How many counters are if each group?

CHOOSEYOUROPTION

Guided Exploration

Students build a understanding of one meaning of muitiplication as equal groups.

Tip Use and Connect Mathematical Representations

- Think About it: What docs each object represent?
- What could be another way to show the nuinber of baskets and the rumber of peaches in each baskel?

Discuss with students the meaning of equal groups. Ensure that students understand that equal groups have the same number of objects in each group.

- How could you explain to a friend that the peaches are in equal groups?

Identify the multiplication symbol in the equation and explain that it means groups of and can be read as multiplied by. Explain that you

Activity-Based Exploration

 Directions Sulvo whe eqpirs ware fifind ter ntel herbi id acion in 5 braust

 dimster eitblondias
 brogereit the picter sitib rycoloceloalpa the sate trantweit hw prodes sankio my crobel lozkse the sary

T5 Scppart Pruductive Sirugoth

 matn grath

 © atcion nat pup

- Whal divies rian tue surlaliolinelutat

Mothn-EPPrecition

studmin ieflect in ill ripolimer of ame laygage ulver Wikengeifoloter.

ITI Engbah Laurer Seciflohts Intreing Finserging Bugलa ibubus it andatipdivi the exerey of liqu gupn oy

 ha havesumms epplan nour eiv enow the Eep pricher are miqus yroup:

Guided Exploration

 "unitymon
 nok Mosan we wabif wetibert nome?

 sheloito undsettest the woul groien low the seve numbir of ttickhnerpup
 equirynivet

 huidet of sopaction mady

 Shistohet is div

Activity-Based Exploration allows students to explore concepts, develop and test hypotheses, and-most importantly-engage in productive struggle as they problem solve and generalize learning.

Guided Exploration follows a teacher-facilitated exploration with a question and answer format and collaboration to promote rich discourse about the concept.

Lesson Model: Practice and Reflect

Engage in Concepts Independently and Further Understanding

Practice and Reflect provides students with practice with exercises that address all elements of rigor.

Math Replay videos contain a one- to two-minute explanation of the lesson concepts.

On My Own can be completed in the print or Interactive Student Edition. It is also available in Spanish print and downloadable PDF.

Exit Ticket: Use Data to Inform Differentiation

Every lesson closes with an Exit Ticket. Differentiation recommendations reside in the Teacher Edition to make the Exit Ticket data actionable.

Exit Tickets can be completed in print or in the Digital Student Center.

Choose the multiplication equabion that goes with the model.

Reflect On Your Learning allows students to reflect on their learning daily and communicate their confidence level with the teacher.

Lesson Model: Differentiate

Create Purposeful Learning Moments Driven by Data

Differentiation within Reveal Math provides a variety of engaging, multi-modal activities in different delivery options that any student can access based on the area they need to focus on most for each lesson.

Workstations

Reinforce Understanding

How Many Xs?

Small Group Instruction

Teacher-facilitated small group mini-lesson that uses concrete modeling and discussion to reteach and build conceptual understanding.

Online Activities

Build Proficiency

Digital Station
Digital Games encourage proficiency through a fun and engaging practice environment.

Game Station

A hands-on way to engage with the lesson content and collaborate with classmates.

Extend Thinking

Application Station

Opportunity to apply unit content to real-world problems and projects through one of three categories of application cards: STEM Projects, CrossCurricular Connections, or Real World Problem-Solving Cards.

Independent Practice

Take Another Look

Assignable mini-lessons that provide actionable data to help inform instruction while supporting each student with a threepart, gradual-release activity, including:

- Model of the Concept
- Interactive Practice
- Quick Check

Spiral Review

Digital practice with mixed standards coverage for major clusters within each grade level to prepare students for end-of-year testing.

Interactive Additional Practice

Digital practice, complete with learning aids integrated into problems at point-of-use.

WebSketch Exploration

Highly visual and engaging interactive digital activities where students explore with a concept through an open-ended environment.

STEM Adventure

STEM Adventures are rich digital simulations that allow students to apply skills and concepts to solve real-world problems. Simulations deliver multiple outcomes as a result of the student's choices throughout the experience.

Reinforce Understanding
 Practice Sheet

Practice sheet focused on practicing and understanding the concepts within the lesson.

Student Practice Book

Two additional practice pages for practice and/ or homework.

Extend Thinking

Practice Sheet
Practice sheet focused
on application.

Student Resources

Print Resources Digital Center

Two-Volume Student Edition Available in print and interactive formats, the Student Editions are consumable and perforated for ease of use. Helpful Math Is...prompts remind students of how to actively apply the mathematical practices.

Student Practice Book

The Student Practice Book provides two pages of additional practice for each lesson.

- Interactive Student Edition
- Math Replay Videos
- eToolkit
- eGlossary
- STEM Career Kid Video Library
- Math In Action Video Library

Student Spanish Materials

Student Edition	- Student eBook
Student Practice Book	- Math Replay Videos
	- eGlossary
	- Family Letter

Teacher Spanish Materials

Assessment Resource Book
Application Station Cards
Game Station Resource Book

- Differentiation Resource Book
- Assessment Resource Book
- Application Station Card
- Game Station Resource Book
- Autoscored Online Assessments
- Interactive Digital Practice
- Interactive Spiral Review
- Digital Games Library
- Family Letter

Print Resources

Implementation Guide

The Implementation Guide supports implementation with a user guide, professional development resources, and overarching program information, such as lesson components, correlations, and more.

Digital Center

- Expert Insight Videos
- Program Quick Start
- Classroom Videos
- Workshop Modules
- Point of Use Videos

Two-Volume Teacher Edition

Available in print and ebook formats, the Teacher Editions provide comprehensive supports, such as Effective Teaching Practices, embedded within the instruction.

- Teacher Edition eBook
- Lesson Presentations
- Planning and Classroom Management Tools
- Unit and Lesson Downloadable Files

Assessment Resource Book

The Assessment Resource Book contains the masters for the following assessments:

- Course Diagnostic
- Unit Readiness Diagnostics
- Exit Tickets
- Unit Assessments
- Benchmark Assessments
- Math Probes
- Performance Tasks
- Summative Assessment
- Assessment PDFs
- Autoscored Online Assessments
- Course Diagnostic
- Unit Readiness Diagnostics
- Exit Tickets
- Unit Assessments
- Performance Tasks
- Benchmark Assessments
- Summative Assessment
- Targeted Intervention
- Guided Support
- Skills Support Sheets

Differentiation Resource Book

The Differentiation Resource Book provides access to the Reinforce Understanding and Extend Thinking worksheets.

Workstation Kit

The Workstation Kit supports daily differentiation and includes:

- Game Station Resource Book
- Workstation Teacher Guide
- Application Station Cards
- Manipulatives
- Digital Games
- STEM Adventures
- WebSketch Explorations
- Take Another Look Lessons
- Interactive Digital Practice
- Interactive Spiral Review
- Student Practice Book PDFs
- Spiral Review PDFs
- Reteach and Extend PDFs
- Application Station Card PDFs
- Games Station PDFs
eToolkit to include: Counters; BaseTen Blocks; Array Builder; Fraction Model; Bucket Balance; Geometry Sketch; Money; Fact Triangles; Number Line; and more!

Manipulative Kits

Manipulative Kits are available and contain the manipulatives used within the lessons.

Review the Implementation Guide

The Implementation Guide provides a wide range of information to help familiarize teachers with Reveal Math, including:

Program Design

- Product Structure and Components
- Standards
- Focus, Coherence, and Rigor
- Mathematical Practices and Processes

Major Themes

- Fluency
- Practice
- Social and Emotional Learning
- Student Agency
- Language Supports
- Routines

Implementation Support

- Unit and Lesson Walkthrough
- Digital Implementation Support

Content Overview

- Key Objectives
- Standards Correlations
- Scope and Sequence
- Social and Emotional Learning Correlations
- STEM Careers Overview

Find Professional

 Learning Resources OnlineProfessional Learning resources are provided for the teacher to reference 24/7. Resources include:

- Workshop modules to unpack key instructional moments in the classroom.
- Classroom videos that demonstrate a productive and positive classroom environment.
- Expert videos that support effective teaching practices and the content within each unit.

Prepare for a Unit

Every unit provides relevant and efficient information to help inform effective unit instruction and content. Within the Teacher Edition, the Unit Overview includes the following overview support for the unit:

- Focus, Coherence, and Rigor • Math Practice and Process
- Routines
- Social and Emotional Learning
- Effective Teaching Practices
- Language Support

Unit Overview				
Focus Mutiplicabon and Divition \qquad nel treves nomber youn		 ans flees niatr me rmal mitionerove	10 Effective Teaching Practices mevennent Tasks That Promote Problem Solving a Noponswhithos intinn \qquad \qquad \qquad termeitiondromintion	Ressoning n- Huesk acowerination cimen-ainwmationeivorndin 1 m nemen
Coherence			Math Practices and Processes Loose For and Malan Uha of Structars \qquad \qquad \qquad \qquad \qquad	
What Shadents How Larsed Teaterititemin anaw Iow? fwee levee likhes dinemenetabors , Bites divese mil liteortin livion idenatnohnctien vifurythe 	What Buiderts: Act Learing Itedentinel wherak anem lis anour mith posy=e =	What Stidens Will Lesam Whahy Eike 590 thoonilualiatanes thete wites ine-lan fras 1 (int		 tenerokin. \qquad
Rigor			[${ }^{\text {a }}$ Social and Emotional Learning	
Cencephtual Undantanding frandereminesd netion	Rocedanistell and Roncy -amentionte 4 many Eis eond jumensi moly ntivenemens	Appleation +wyop peas mine habin mben	Whet 5vilis Wir Wo Develop? \qquad 4 	 H
				Nanom

Embedded Expert Insight Videos

Experts provide practical information about the math within each unit, tips of effecting teaching, and what to look and listen for during instruction.

Behind the Math: Multiplication and Division
This professional learning video, featuring program author Linda Gojack, identifies the essential elements of teaching multiplication and division and focuses on the use of equal groups and arrays to represent and understand the relationsthip between
the two operations.
nexaron vise

Course Diagnostic

The Course Diagnostic is available in both print and digital.
Data When students complete the Course Diagnostic in the Digital Student Center, their responses are auto-scored. If students need support based on the Course Diagnostic, use the Unit Level Readiness Diagnostic Intervention Lessons.

Item Analysis

Item bok skill			Unit	Standard
1	1	Relate multiplication and division	7	4.NBT.B. 6
2	2	Add fractions with like denominators	9	4.NF.B. 3
3	2	Write whole numbers in standard form	3	4.NBT.A. 2
4	2	Subtract fractions to solve word problems 9		4.NF.B.3.d
5	2	Use place value and properties of operations to multiply multi-digit numbers	5	4.NBT.B. 5
6	2	Convert standard units of length	12	4.MD.A. 1
7	2	Use division to solve multi-step word problems	7	4.OA.A. 3
8	2	Add fractions with like denominators	9	4.NF.B. 3
9	2	Solve area word problems	2	4.MD.A. 3
10	2	Estimate quotients	7	4.NBT.B. 6
11	1	Multiply a unit fraction by a whole number 10		4.NF.B. 4
12	2	Compare fractions	9	4.NF.A. 2
13	2	Round numbers	3	4.NBT.A. 3
14	2	Compare decimals	3	4.NF.C. 7
15	2	Identify shapes by attributes	13	4.G.A. 2
16	2	Convert units of time	12	4.MD.A. 2
17	1	Add mixed numbers	9	4.NF.B.3.c
18	2	Multiply by fractions to solve word problems	10	4.NF.B.4.C
19	2	Compare decimals	3	4.NF.C. 7
20	2	Calculate area	2	4.MD.A. 3
21	2	Multiply by fractions to solve word problems	10	4.NF.B.4.c
22	2	Add mixed numbers	9	4.NF.B.3.c
23	3	Use data on a line plot to solve word problems	12	4.MD.B.4, 4.NF.B.3.C
24	2	Multiply 2-digit numbers to solve word problems	5	4.NBT.B. 5
25	2	Subtract fractions	9	4.NF.B.3.a
26	2	Represent comparison word problems with multiplication equations	5	4.OA.A. 2
27	2	Interpret the remainder in division word problems	7	4.OA.A. 3
28	1	Write a fraction as a decimal	3	4.NF.C. 6
29	3	Use data on a line plot to solve word problem	s12	$\begin{aligned} & \text { 4.MD.B.4, } \\ & \text { 4.NF.B.4 } \end{aligned}$
30	2	Identify equivalent fractions	9	4.NF.A. 1
31	1	Understand multiplication as scaling	10	4.NBT.A. 1
32	2	Use division to solve word problems	7	4.NBT.B. 6
33	2	Multiply 2-digit numbers	5	4.NBT.B. 5
34	1	Add tenths and hundredths	4	4.NF.C. 5
35	3	Use models to write division expressions	7	4.NBT.B. 6

Grade 5

Course Diagnostic

Name

1. Which equation tuas the same unknown number as $320+5=\square$?
(A.) $\square \times 5=320$
B. $5 \times 320=\square$
c. $\square \times 320=5$
D. $320 \times \square=5$
2. Look at the number line.
 Which equation matches the number line?
A. $\frac{5}{8}+\frac{3}{8}=\frac{3}{8}$
B. $\frac{4}{1}+\frac{2}{8}=\frac{6}{8}$
C. $\frac{4}{8}+\frac{3}{8}=\frac{7}{8}$
(a) $\frac{3}{1}+\frac{2}{8}-\frac{1}{2}$
3. Use the cluws to deternine the number.
I have 36 hundreds. 34 tems, and 7 ones. What number am ? 3,947
4. Fione uses $\frac{3}{10}$ kalogyam of aimonas for a snack mox She uses io kilogram of raisins.
How many more kilograms of raisins does Flona use than atmonds?
A. $\frac{1}{10}$ kilogram
(B) $\frac{2}{10}$ klogram
C. $\frac{5}{19}$ kilogram
D. $\frac{8}{10}$ kilogram
5. Which expression is equal to 37×56 ?
(A) $(30+7) \times(50+6)$
B. $(30 \times 7)+(50 \times 6)$
C. $(30+7) \times 56+30+7) \times 6$
D. $(30 \times 50)+(30 \times 7)+$ $(50 \times 6)+(7 \times 6)$
6. Garick's garden has a length of 8 yards
What is the length of his gividen in feet?
A. 11 feet
B. N 5 feet
C. 20 feet
(D) 24 feet
7. Tia has 434 postcaros in her collection divided equally among 7 boxes. She gives her brother 2 bowes of postcands in exchange For 91 of his posteards
How mary total pontcerds does Ta have now?
A. 310 posmench
B. 343 postcares
C. 401 postcards
D. 525 postcards
8. Which traction is equivalent to the expression $\frac{1}{10}+\frac{1}{10}+\frac{1}{10} ?$ (A)
9. The ares of a rectangular ployground is 112 square meters The wigth of the playground is 7 meters

What is the length, in meters, of the playground?
16 meters
10. Which number is the best estimate for the quotient of $6.213+9$?
A. 70
B. 80
C. 700
D. 800
11. What unknown fraction makes the equation $7 \times \frac{1}{3}=\square$ true? $\begin{array}{ll}\text { A. } \frac{1}{21} & \text { B. } \frac{7}{3} \\ \text { c. } \frac{21}{3} & \text { D. } \frac{21}{1}\end{array}$
12. How can you compore the fractions? Complete wth <, > or $=$
$\frac{3}{3}=<\frac{2}{3}$
13. What is 208,327 rounded to the nearest humbred? 208,300
14. Which comparison is correct?
A. $1.83>2.03$
e. $397>3.98$
C. $420=4.02$
(D. $2.16<2.31$
15. Which Sigure has at leat one acute angle. one pait of perpendicular sides and no pairs of paraitel sides?

[^0]xxxviii Course Diagnostic

Grade 5
Course Diagnostic Icontinued)
Name
16. It takes Diego $\frac{3}{4}$ nour to clean his toom

How mary minutes does it take Diego to clean his room? 45 minutes
17. What unknown nurnber makes the eqwotion $1^{\frac{5}{B}}+2^{\frac{3}{8}}=\square$ thue?
A. 3
B. 3 符
C. 4
D. $4 \frac{1}{1}$
18. Meg has $\frac{2}{3}$ cup of poitmeal for bremakast ench day. How mainy cips of natmeal does Megh have in 1 drye? Use the number line to determine your answet.

A. 4 cups
(B.) $4 \frac{2}{3}$ cups
C. $5 \frac{1}{1}$ cups
D. 8 cups
19. How can you comipare the decimats? Complete with $\langle\rangle,, 01=$ $23538>23529$
20. Look at the rectangle.

What ts the ieres of the cectanigle? 42 square centimeters
21. Konili makss candies. He uses $\frac{3}{3}$ pound of wow for ach candle. IK Kahai mokes 5 pandies, how mary pounds of wax does he need in all?
A. $1 \frac{5}{1}$ pounds
(B) ? ? pounds
C. $5 \frac{3}{8}$ pounos
D. $6 \frac{5}{2}$ pounds
22. Whet unknown number makes the equation $1 \frac{?}{6}+\square=5 \frac{2}{6}$ thye?
(A) $3 \frac{5}{6}$
a. $3 \frac{9}{6}$
C. $4 \frac{1}{5}$
D. 5_{6}^{5}
23. Thwi comparss the heights of nine buahes in fier gasten. The line plot shows the height, in feet, of each buah.

Height of Bushes (ft)

How much tallec, in feet, is the tallest bust than the shartest bush?
A. 1foot
(B) $\frac{12}{2}$ teen
C. $2^{\frac{z}{4}}$ teot
Q. 3 heet
24. Martin plays a game to practice voing on the computer for 5 days. He pleys the typing pime for 38 minutes each dify.
How many minutes does Martin pliyy in all? 228 minutes
25. What unknown traction mokes the equation $\frac{7}{12}-\frac{3}{12}=\square$ true?
A. $\frac{1}{12}$
e. $\frac{3}{女}$
(C) $\frac{2}{1}$ D. $\frac{5}{1}$
26. Lene eints P Stufberties. Pienna eats 4 tenes as many blunberries is Lena Which equation represerts the number of blueberiles Diana eite?
A. $8+4=2$
B. $4+8=12$
c. $8-4=4$
(D) $4 \times 8=32$
27. Drieri hass 46 shols to decorate some picturn famer

Il he uses 8 shells to decorate pech piclure hame, how mary pictare thames carl Dmitri decorate?
5 picture frames
4 aginuent leverpelock

Grade 5
Course Diagnostic icontinuod)
Name
28. Write $\frac{57}{100}$ in decinal notation

$$
0.57
$$

29. A mall carrier weligha some packages.

The line plit shows the weight, in pounds. of each packape.

What is the total weight af the packages that weigh $4 \frac{3}{4}$ pounda?
A. $4 \frac{3}{4}$ pounds
B. $5 \frac{2}{4}$ pounas
C. $8 \frac{3}{4}$ paunes
(D) $9 \frac{\frac{2}{2}}{2}$ pounds
30. Wmieh trartions are equivatert to $\frac{4}{6}$ Choose all tive npply
(4.) $\frac{\pi}{12}$
B. $\frac{6}{4}$
C. $\frac{3}{12}$
D. $\frac{5}{8}$
(E) $\frac{3}{3}$
31. Which number makes the statement Hue?
830.000 is \qquad times gwater than $\$ 3.000$
(A) 10
B. 100
C. 1,000
D. 10,000
32. Rakshiarta has 92 pictures fo put un scrapbouk pages.

If each page holds 4 pictures, how thary pages dees Rakshana need? 23 pages
33. What is the product of $\mathrm{B} 4 \times 327$ 2,688
34. Which expression can be used to Find the sum of $\frac{3}{i}+780$?
A. $\frac{5}{10}+3 \frac{25}{10}$
(B) $50+35$
c. $\frac{50}{100}+\frac{350}{100}$
a. $\frac{5}{15}+\frac{3}{7}$
35. Look at the baseten blocke.

Which division problem is represierted by the base-ten biocks?
A. $254+4$
B. $257+4$
C. $1056 \div 4$
(D) $1059 \div 4$

PACING: 8 days

LESSON		MATH OBJECTIVE	LANGUAGE OBJECTIVE	LEARNING OBJECTIVE
Unit Opener iowite Map It Explore how many different colors are needed to color a region so that no adjacent spaces are the same color.				
1-1	Math Is Mine	Students discuss the role of math in their and other people's lives.	Students talk about how to use math while answering Wh- questions.	Students describe their feelings and attitudes toward mathematics.
1-2	Math Is Exploring and Thinking	Students discuss approaches for making sense of a problem and determining strategies for solving it. Students look for connections among quantities.	Students talk about making sense of a problem and represent it in different ways while answering Wh - questions and using another way.	Students recognize when they feel frustration during math class.
1-3	Math Is in My World	Students consider different ways to use mathematics to represent a real-world situation.	Students explain and show realworld phenomena with mathematical models while answering Wh- questions and using visualize and represent as needed.	Students show appreciation for the different perspectives of their classmates.
1-4	Math Is Explaining and Sharing	Students refine their skills in constructing arguments to support their thinking. Students respond to the ideas and arguments of others.	Students discuss arguments to support their thinking while answering Wh- questions and using carefully as needed and able.	Students practice showing respect for classmates as they share ideas and thinking.
1-5	Math Is Finding Patterns	Students consider strategies for uncovering patterns and for using patterns to solve problems. Students consider efficient strategies derived from repeated reasoning.	Students talk about strategies for uncovering patterns and for using patterns to solve problems while answering Wh- and Yes/No questions and using the verb can as needed.	Students practice self-control as they learn to take turns when sharing ideas with a partner or in a group.
1-6	Math Is Ours	Students discuss classroom norms of interaction for a productive learning environment.	Students talk about the behaviors and mindsets that contribute to a productive learning environment while answering Wh- and $\mathrm{Yes} / \mathrm{No}$ questions and using the verb disagree and the adverb respectfully as needed.	Students make decisions about classroom norms for working productively with classmates.
Unit Review				
Fluency Practice				

Fluency Practice

1-1	Math Terms hobby	Academic Terms interview	- bowl - letter-size paper cut into quarters		Conceptual Understanding	4.OA.C. 5
1-2	strategy	analyze	- coins: nickels, dimes, and quarters		Conceptual Understanding	$\begin{aligned} & \text { 4.NF.B. } 4 \\ & \text { 4.NF.B.4.c } \end{aligned}$
1-3	grid model	visualize	- none		Conceptual Understanding	4.NF.B.3.d
1-4	fractional	critique justify defend	- none		Conceptual Understanding	4.NF.A. 2
1-5		efficient generalizations	- none		Conceptual Understanding	4.OA.C. 5
1-6		norms responsibility	- geoboards or Dot Paper Teaching Resource	- pattern blocks or Pattern Blocks 2 Teaching Resource	Conceptual Understanding	4.NF.B.3.d

Unit Overview

Focus

Understanding What Math Is

The focus of this unit is threefold:

- to build students' agency as doers of mathematics. It is important that students understand that math is not just something done in school. Math is part of our daily lives and shows up in almost every activity. It is also important that students see themselves as skilled doers of math, so helping them understand that doing math is not carrying out operations or calculations. Rather, doing math is more accurately making sense of and solving problems and finding patterns and relationships among quantities and numbers. Lesson 1-1 helps students see themselves as doers of math as they examine their attitudes towards math and their images of themselves as doers of math.
- to build students' proficiency with the habits of mind that are integral to doing mathematics. These include the thinking that makes up the problem-solving process and that is involved in finding patterns and relationships among quantities and values. Lessons 1-2 through 1-5 focus on helping students build proficiency with these habits of mind.
- to build understanding of the norms of interaction that allow for a productive math learning environment where students candevelop, refine, and enhance the habits of mind that are integral to doing math. Lesson 1-6 offers the opportunity for students to develop together the classroom norms for math for the school year.

Coherence

What Students Have Learned

- Students refined their problem-solving skills as they analyzed givens and developed solution strategies.
- Students modeled real-world situations with a range of representations.
- Students responded appropriately to their classmates' reasoning.
- Students used clear and precise language in their explanations and arguments.
- Students made generalizations after noticing patterns in operations.

What Students Are Learning

- Students build on their problem-solving skills as they consider alternative strategies for solving the problem presented.
- Students model real-world situations with a range of representations.
- Students construct arguments to critique the reasoning of classmates.
- Students use appropriate units in their calculations.
- Students make generalizations after noticing repeated calculations with operations.

What Students Will Learn

- Students extend their problem-solving skills as they consider reasonableness of their solutions.
- Students model real-world situations with equations.
- Students construct arguments to defend their thinking.
- Students use appropriate units in their calculations.
- Students develop efficient approaches for solving equations based on repeated calculations.

Rigor

Conceptual Understanding

Students refine their understanding of

- the habits of mind that are part of the problem-solving process;
- classroom norms that are integral to a productive math learning environment;
- themselves as doers of math.

Procedural Skill and Fluency

Student build proficiency with

- the habits of mind that are part of the problem-solving process;
- constructing arguments to support their mathematical thinking;
- using precise language when constructing arguments.

Application

Students apply their knowledge of

- the habits of mind that are part of the problem-solving process as they solve problems;
- themselves as doers of math to solve problems efficiently;
- the language of mathematics when engaging in mathematical discourse.

Effective Teaching Practices

Abstract

Ambitious Teaching In 2014, the National Council for Teachers of Mathematics released Principles to Actions: Ensuring Mathematical Success for All, a publication designed to support teachers in implementing "ambitious teaching," an approach to teaching that views students as able to engage productively in the problem-solving process, and encourages and values students' thinking and ideas. To implement "ambitious teaching," the authors of Principles to Actions offer eight teaching practices. These research-based practices are grounded in the goals of helping students develop sensemaking, thinking, and reasoning skills.

Each unit will highlight one of the eight teaching practices, providing an overview of what the practice means and how it helps to contribute to students' success in learning mathematics.

The eight practices are:

- Establish mathematics goals to focus learning.
- Implement tasks that promote reasoning and problem solving.
- Use and connect mathematical representations.
- Facilitate meaningful mathematical discourse.
- Pose purposeful questions.
- Build procedural fluency from conceptual understanding.
- Support productive struggle in learning mathematics.
- Elicit and use evidence of student thinking.

Math Practices and Processes

Promoting students' sense-making, thinking, and reasoning.

- In this unit, Lessons 1-2 through 1-5 focus students' learning on the mathematical habits of mind that are integral to proficiency in mathematics. Each lesson focuses on two specific habits of mind:
- Lesson 1-2 - Math Is Exploring and Thinking: Students are presented with the thinking habits that can help them make sense of a problem posed, analyze givens and unknowns, think through a solution strategy, and consider approaches to persevering when they run into road blocks in the problem-solving process. Students also consider the meaning of quantities and the relationship among the quantities and values in a problem.
- Lesson 1-3 - Math Is In My World: Students explore real-world phenomena and look to model these phenomena using the mathematics they know. Students consider the different tools they know that they can use to model the mathematics and make decisions around the appropriate tool for the problem.
- Lesson 1-4 - Math Is Explaining and Sharing: Students focus on strengthening their mathematical discourse and argumentation as they explain their reasoning about a strategy or solution. They also build discourse by responding to the reasoning of their classmates. They not only seek clarification around classmates' reasoning, but also challenge the reasoning with their own explanations and thinking.
- Lesson 1-5 - Math is Finding Patterns: Students notice patterns and repeated reasoning with numbers and operations. They analyze the patterns they notice to come up with generalizations and strategies to make computation more efficient.

Soll Social and Emotional Learning

Build Student Agency

This unit introduces students to the Math is... Mindset feature of the program. This feature is designed to build student agency by focusing on students' social and emotional learning, specifically the five competencies that make up the framework established by the Collaborative for Academic, Social, and Emotional Learning (CASEL). The five competencies are:

Self-awareness: Students learn to recognize their emotions and understand their influence on their behaviors.
Self-management: Students learn to regulate their emotions, and behaviors effectively in different situations.
Social awareness: Students develop understanding of and empathy for others from different backgrounds and cultures.
Relationship skills: Students learn to establish and maintain healthy relationships with students from different backgrounds and cultures.

Responsible decision-making: Students learn to make constructive choices about their behavior and their interactions with others.

Lesson 1 focuses on self-awareness, self-management, and responsible decision-making as students think about their attitudes toward and strengths in mathematics. As part of the lesson, students write their math biography.
Lesson 6 focuses on social awareness, relationship skills, and responsible decision-making as students discuss classroom norms for a productive learning environment. They generate a list of classroom norms and expectations for math class.

Starting in Unit 2, students will see Math Is... Mindset questions at the beginning and end of each lesson. These questions will help students build proficiency with the five competencies.

Unit Overview

Language of Math

Vocabulary

There are some math and academic terms that students should be familiar with but may warrant revisiting

- Critique (Lessons 1-4): Make sure students understand that the focus of the critique is students' reasoning, not the students themselves.
- Efficient (Lesson 1-5): Students have seen this term in previous grades, but it is an important term for them to understand. An efficient strategy is one that can be done the same way quickly.
- Fractional (Lesson 1-2): Some students may not make the connection between "fraction" and "fractional." Help them see that the two terms are related.
- Hobby (Lesson 1-1): This may be a new term for some students. Explain that a hobby is an activity that one does in their free time.
- Grid (Lesson 1-3): This may be a new term for some students although they will be introduced to the coordinate plane and coordinate grids later in the school year.

Math Language Development

A Focus on Speaking and Listening

A main emphasis of this unit is helping students become proficient doers of mathematics and that requires that students become proficient at communicating clearly and precisely. Communicating clearly and precisely involves not just strong speaking skills, but strong listening skills as well.

When students engage in active listening, they attend fully to the speaker. They concentrate on what the speaker is saying, processing the ideas being shared. Active listeners can re-state with understanding what the speaker has shared and can then respond clearly to the ideas shared.

When students engage in active speaking, they attend fully to their audience. They concentrate on what they are saying and use the reactions from the audience to determine how well the audience is understanding the ideas that speakers are sharing.

As students go through these lessons, have some students read aloud the Math Is... questions and others actively listen to the questions being asked. Have student listeners re-state the questions read and explain what the question means for them.

English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to what math is to them. Because many of the words (positive, stuck, argument), phrases (don't give up, keep trying, carry out, work together/on your own), and structures (If..., [then]...) used in this section are likely unfamiliar or unknown to ELs, students are supported in understanding and using these words so that the instruction is more accessible to them.

Lesson 1-1 - positive
Lesson 1-2 - stuck, don't give up, keep trying
Lesson 1-3-carry out
Lesson 1-4-argument
Lesson 1-5 - If, (then)....
Lesson 1-6 - work together, on your own

Unit Routines

Number Routines

Build Fluency The number routines found at the beginning of each lesson help students build number sense. They also help students develop the thinking habits of mind that are important for proficient doers of math.

Math Pictures

Purpose: Build estimating and visual discrimination skills.
Overview: Students examine an interesting photograph and answer a question about it.
Lesson 1-1: Students are presented with an image of people riding in gondolas They respond to the prompt, "What numbers can describe the picture?" Lesson 1-2: Students are shown some plastic ducks, most of which are yellow and one is purple and respond to the prompt, "What fractions can you use to describe the picture?"

Lesson 1-3: Students see an assortment of dominos and respond to the prompt, "About how many dots are on all the dominos?"
Lesson 1-4: The image shows two pea pods, one open to show the peas inside and the second closed. Students respond to the prompt, "About how many seeds are in 125 pods?"
Lesson 1-5: The image shows a stack of rolls of pennies. Students to the prompt, "If there are 50 pennies in a roll, are there more or fewer than 400 pennies in the picture?"
Lesson 1-6: The image shows decorated spheres hanging on a board. Students respond to the prompt, "About what fraction of decorations is missing?"

? Sense-Making Routines

Notice \& Wonder (Lessons 1-1, 1-2, 1-3, 1-5, 1-6)
In Lesson 1-1, students notice and wonder about a student pensively reflecting. For Lesson 1-2, students notice and wonder about two stacks of coins (one of quarters and one of dimes), each about the same height. Students may wonder which stack has the greater value. In Lesson 1-3, students notice the number of squares of each color in two 4×4 grids. They may wonder about the part of the whole that each color represents. The prompt for Lesson $1-5$ shows a sunflower. Students may notice the pattern and wonder whether there is a rule that can define the pattern. In Lesson 1-6, students wonder what students are working on and how they work together.

Which Doesn't Belong? (Lesson 1-4)

Students analyze four wholes partitioned into different-sized equal parts with different numbers of sections colored. They may notice while some have two parts colored, the fraction of the whole that is colored differs.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. These routines can also be used as formative assessment opportunities as students develop proficiency in English and mathematical language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Math Language Routines, see the Appendix.

- Lesson 1-1 - In order to cultivate conversation, students participate in MLR8: Discussion Supports.
- Lesson 1-2 - In order to optimize output, students participate in MLR7: Compare and Connect.
- Lesson 1-3 - In order to optimize output, students participate in MLR4: Info Gap.
- Lesson 1-4 - In order to optimize output, students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 1-5 - In order to support sense-making, students participate in MLR2: Collect and Display.
- Lesson 1-6 - In order to maximize linguistic and cognitive meta-awareness, students participate in MLR5: Co-Craft Questions and Problems.

Unit 1

Math Attitude Survey

Name

1. I can see math in the world around me.

2. Math is about solving equations quicidy.
l agree lm not sume

3. I am good at math

4. Math is something I will need when I grow up

5. Everyone can be good at math.

6. For me, someone who is good at math is.
7. When I get the wrong answer to a problem, I feel
8. When I don't know what to do to solve a problem, I-

You may want to have your students complete the Math Attitude Survey to get a sense of their attitudes toward math and their self-perceptions of their math strengths and weaknesses.

Consider having them review their responses periodically throughout the school year to track any changes in their attitudes or self-perceptions.

Unit Opener

Focus Question

Introduce the Focus Question: What does it mean to do math? Ask students to think about what they know about doing math.
-What do you notice about Dakota's classroom?

- What math do you see in the classroom?
-What math do you see outside the window?
Remind students that at the end of the unit, they will reflect on what they learned.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

Math in Action Video

Students can watch the Math in Action video.
Grade 5: Meet Dakota

Math in Action

IGNite!

Name

Map It

Using the fewest colors possible, color each state in the western Unied States so that no two states that share a boundary are the same color.

How many colors did you use?

Answers may vary.

Try it a second time. Can you use fewer colors?

Answers may vary.

Ignite!

Map It

Students explore map coloring and the four color theorem, which states that no more than four colors are needed to color areas of a map so that no two adjacent areas have the same color.

1. Explain the task to student: They will color each state in the map provided using the fewest number of colors. No two adjacent states can be the same color.

- How did you think about the problem?
-What strategy did you use?
- How did you determine the number of colors needed?

2. Have students try the second task using a different strategy.

- How did the second strategy compare to the first?

Ignite Overview

Get Ready for Ignite!

Ignite! Activities, written by Dr. Raj Shah, launch every unit in Reveal Math K-5.
These activities are designed to
Cultivate Curiosity Mathematics is as much about asking questions as it is about finding solutions. Get your students to start wondering!

Accept the Challenge Attitude is everything. Encourage your students to take on new challenges and see how far they can go.

Trial and Error Students cannot learn by watching. To make sense of math, they have to try things... and keep trying.

Embrace "Failure" Learning new things is hard. Mistakes will happen. Allow your students the freedom to make mistakes and learn from them.

Work Together There is power in a community of learners working together to discover new things. Math should not be done alone.

Just Play Students can explore, discover, conjecture. Solving problems is fun!

Dr Raj Shah

Dr. Raj Shah has always had an affinity for math. Powered by his love of math, he earned a Ph.D. in Physics in 1999, which led to a career in R\&D at Intel. In 2008, he left his job and founded Math Plus Academy, an after-school STEM enrichment program for students ages 5-14. Hismission is to introduce students and adults to the wonders of mathematics. Dr. Shah also contributes his time to Math Teacher Circles, the Julia Robinson Math Festival, and is a founding member of The Global Math Project. He believes that everyone can enjoy math, develop strong number sense, and become a perseverant problem solver.

LESSON 1-1 Math Is Mine

Learning Targets

- I can tell my math biography.
- I can recognize the ways in which we are all doers of math.

Standards \bigcirc Major \triangle Supporting \bigcirc Additional

Content

O 4.OA.C. 5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.
MPP Construct viable arguments and critique the reasoning of others.

Vocabulary

Math Terms
 hobby
 Academic Terms interview

Materials

The materials may be for any part of the lesson.

- bowl
- letter-size paper cut into quarters

Focus

Content Objective

- Students discuss the role of math in their and other people's lives.

Language Objective

- Students talk about how to use math while answering
Wh-questions.
- To support cultivating language, ELs participate in MLR8:
Discussion Supports.

SEL Objective

- Students describe their feelings and attitudes toward mathematics.

Now

- Students think about their own and others' math biographies. They reflect on the mindsets that help them be effective doers of math.

Next

- Students continue to make connections between math and the real world. They increase awareness of the mindsets that help them do math.

Coherence

- Students identified their superpowers and those of others.

Number Routine Math Pictures © ${ }^{5-7 \text { min }}$

Build Fluency Students build fluency

 with number sense as they examine a photograph and think about the numbers that can describe the picture.These prompts encourage students to talk about their reasoning:
-What can you count?
-What can you measure?

- What fractions do you see?
- What can you compare?

Rigor

Conceptual Understanding

- Students understand that we each have our own math biography. Students investigate the role of math in our lives.

Procedural Skill \& Fluency

> - Students develop proficiency
> with identifying their areas of strength in doing mathematics.

Application

- Students apply their understanding of their math biography to target areas of strength in math.

Unit 1-Math Is...

Purpose Students discuss what someone could be writing about, including one's own or another person's story.

Notice \& Wonder ${ }^{\text {TM }}$

-What do you notice?
-What do you wonder?
See Appendix for a full description of the sense-making routines.
Teaching Tip You may want to facilitate a think-pair-share in order to encourage student participation. This may help students feel more at ease sharing their initial thoughts about the image.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' thinking about why people write, what they write about, and what a writer would include in a biography or autobiography.
-Why do you think the person is writing?
-What do you think the person is writing? What genre?

- Have you ever written in a journal or diary? Have you ever written a story about your own or someone else's life?
- If you were going to write a biography or autobiography, what types of information would you want to include?
-Why is it important to share stories from our own lives?
-What can we learn from hearing stories from other people's lives?

Transition to Explore \& Develop

If students wonder how writing stories relates to math, guide the discussion to explore what thoughts, feelings, and experiences people can have in relation to math. This will be explored further in the Explore \& Develop.

EIP Establish Goals to Focus Learning

- Let's think about the thoughts and feelings people may have about math.

Learn

Math is all arpund us. We une it every diy-in school at home, and if our neighborhood. We use it when we buld projects, play games, or practice our hobbies. We al have a math story.

Let's learn about our teacher's math biography.

(2) Develop the Math

Choose the option that best meets

 your instructional goals.
3 Bring It Together

EIP Elicit Evidence of Student Thinking

- How does understanding other people's math biographies help us think about our own math biography?
- How does understanding our own math biography help us do our best work in math?

Key Takeaway

- We each have our own math biography. There are no wrong or right math biographies. Our math biographies are always evolving and changing.

Work Together

Students pose additional questions to the teacher about their math biography. When appropriate, students can be given an opportunity to answer the questions themselves in order to start thinking about their own math biographies.

Common Misconception: Students may believe that there is a right and wrong way to feel about math, as well as right and wrong math biographies. Explain that all feelings about math are valid and that all math biographies are valuable. Reframe any attitudes about emotional or academic struggle with math as opportunities for a growth mindset. Remind students that even professional mathematicians and scientists must work through math challenges.

LOM Language of Math

Encourage students to use appropriate mathematics language when discussing their math biographies. Model the appropriate language when sharing your math biography as well.

Activity-Based Exploration

Students ask questions about their teacher's math story as they make connections between one's math biography and one's identity as a doer of math. Being honest in your answers will foster an open and accepting classroom culture and support constructive math communication moving forward.

Materials: bowl, letter-size paper cut into quarters (5 quarter pages per group)

Directions: Distribute a minimum of 5 pieces of paper to each group. After you answer each question on the student page, have each group brainstorm a follow-up question they would like to ask you. Each group decides on one follow-up question and writes this down on a slip of paper and places it in the bowl. Students may take turns being the recorder and writing the question for their group. Time permitting, try to make sure that each group has at least one follow-up question answered. Any unanswered questions may remain in the bowl and be answered at another time.

Activity Debrief: Have students share what they noticed and wondered about your math biography. As they share, ask them to think about the these questions.

Math is... dindset

- How does your teacher use math during their day? When do you use math during your day?
- How does your teacher stay positive when they do math? How can you stay positive when you do math?
- What does your teacher want to learn about math? What do you want to learn about math?
- What are your teacher's strengths in math? What are your strengths in math?
- How does math help your teacher do their favorite things? How does math help you with your hobbies?

Guided Exploration

Students explore the role math plays in their teacher's and their own lives. An open-format question and answer session with the teacher may lead the conversation in a variety of directions. Help build a classroom culture of trust and acceptance by welcoming all questions and points of view shared by the students. As the teacher, be honest about your own story and accepting of students' feelings and thoughts about math.

EIP Facilitate Meaningful Discourse
 - What questions do you have about your teacher's feelings about math?
 - Can you think of ways your teacher uses math that they may not be aware of?
 - In what ways are you a doer of math in your daily life?

Have students work with a partner and ask each other questions about the other's math biography.

Math is... , indset

-When do you use math during your day?

- How can you stay positive when you do math?
-What do you want to learn about math?
-What are your strengths in math?
- How does math help you with your hobbies?

Developing/Expanding Support students' understanding of positive. Smile confidently. Say l'm being positive. Next, slouch your shoulders, slightly frowning. Say I'm not being positive. Repeat once with new gestures and ask students to tell you about each one, eliciting answers containing positive/not positive. Provide sentence prompts for students who need more guidance.

Bridging/Reaching Ask students what things make them feel positive, and what they could do more often to keep positive instead of giving up. Then ask them to think of other words they may know that could be used instead of positive, such as optimistic and cheerful. Allow students to use a thesaurus or dictionary to find more similar words as well.

Practice \& Reflect © 10 min

Practice

Build Fluency from Understanding

To help students write their math biography, have them consider these questions:

- What did you like about math last year? Why did you like that topic?
- What math topics did you find challenging last year? What made them challenging for you?
-What topics are you looking forward to learning this year?
-What is your favorite thing about math?
What are your strengths in math?
Teaching Tip Remind students that math biographies can include both positive and negative feelings and experiences with math. Thinking about our strengths and what we like about math helps develop our identity as doers of math.

Reflect

Students complete the Reflect question.

- What about my math biography do I want someone else to know? Ask students to share their reflections with their classmates.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can tell my math biography.
- I can recognize the ways in which we are all doers of math.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

LESSON 1-2

Math Is Exploring and Thinking

Learning Targets

- I can make sense of a problem and represent it in different ways.
- I can explain different ways to think about numbers.

Standards \circ major Δ supporting \circ Additional

Content

O 4.NF.B. 4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
O 4.NF.B.4.c Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.
MPP Reason abstractly and quantitatively.

Focus

Content Objectives

- Students discuss approaches for making sense of a problem and determining strategies for solving it.
- Students look for connections among quantities.

Language Objectives

- Students talk about making sense of a problem and represent it in different ways while answering $W h$ - questions and using another way.
- To support optimizing output, ELs participate in MLR7: Compare and Connect.

SEL Objective

- Students recognize when they feel frustration during math class.

Now

- Students discuss approaches for making sense of a problem and determining strategies for solving it. They relate ways to represent quantities.

Next

- Students consider strategies for constructing arguments to support their ideas and solutions. and others' math biographies. They reflected on the mindsets that help them be effective doers of math.

Procedural Skill \& Fluency

- Students build proficiency with the problem-solving process.

Application

- Students apply their understanding of the problemsolving process as they solve real-world problems.

Vocabulary

Math Terms
 strategy
 Academic Terms analyze

Materials

The materials may be for any part of the lesson.

- coins: nickels, dimes, quarters

Number Routine Math Pictures

Build Fluency Students are shown some plastic ducks, all except one of which are yellow and respond to the prompt, "What fractions can you use to describe the picture?"

These prompts encourage students to talk about their reasoning:

- How can we show the fractional part of a set?
-What does the denominator represent?

Rigor

Conceptual Understanding

- Students demonstrate understanding of the problemsolving process, with a focus on making sense of a problem and determining a viable solution plan.

Purpose Students speculate on the number and value of two stacks of coins: one of quarters and one of dimes.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See Appendix for a full description of the sense-making routines.
Teaching Tip Students may be inclined to go directly to determining the value of each stack of coins rather than spending time making observations and asking questions. You may want to share some non-math-related observations or questions to help expand the discussion beyond a simple calculation.

$\stackrel{E P R}{4}$ Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' thinking about how to approach a problem situation in order to make sense of the problem and determine a solution plan.

- Which stack has more coins?
- What explains why there are the fewer quarters yet the stacks are about the same height?
- What explains why there are the more dimes yet the stacks are about the same height?

Transition to Explore \& Develop

Ask questions that get students thinking about the different attributes of the coins - thickness, size, value - that need to be taken into consideration when determining which stack has the greater value and more coins. If students mention the greater value and thickness of the quarter compared to the dime, incorporate these ideas into the discussion; however, do not bring it up if students do not mention it. This will be explored further in the Explore \& Develop.

EIP Estabilish Goals to Focus Learning

- Let's think about the value of each coin as we determine the value of each stack.

Explore \& Develop ©20min

Learn

Lane counts the coins in hut bank. She fus polly quarters
firmes, and nickels.
How many of each coin can she have?
E. When we do math. we ise mary strategies to make sense of problems.

(1) Pose the Problem

This is the first of four lessons that introduce students to the habits of mind that are foundational to doing math. In this lesson, the focus is on making sense of problem situations, formulating a solution plan, and representing quantities in different ways.

ETP Pose Purposeful Questions

- What questions could you ask about the problem?
-What information do we have that can help us solve the problem?

(2) Develop the Math

Choose the option that best meets your instructional goals.

KLR

Compare and Connect
Pair students and ask each to write a combination of coins for a given dollar value, such as $\$ 4.00$. Have them work alone to form a combination, and then compare their combination with their partner. Revisit this activity throughout the lesson to help students build proficiency.

3 Bring It Together

EIP Elicit Evidence of Student Thinking

- If most of the coins are quarters, what does that tell you about the total number of coins?
- Could most of the coins be nickels? Explain your reasoning.

Key Takeaway

- There are different ways to solve problems, but a first step is always to make sense of the problemby asking questions about the problem. It is also important to be flexible in our thinking and implement alternate strategies as needed.

Work Together

Students solve a similar problem involving determining coins that sum to \$5.

Common Error: Students may struggle to get started with the open-endedness of the problem. Suggest students determine the number of one of the coin types and from that determine how many of the other coin types there would need to be.

Lom
 Language of Math

Encourage students to talk of the fractional and decimal value of one dollar that each coin represents.

Activity-Based Exploration

Students explore the different parts of the problem-solving process, helping them develop flexibility and strategic thinking about problems and quantities.

Directions: Students work in pairs or small groups to solve the Pose the Problem.

Display these questions for students to ask themselves as they work on the problem presented:

- What do I know about the problem?
- What questions can I ask about the problem before looking to solve it?
- What might be another way to think about the problem if my first strategy does not help me solve the problem?
- How do the values and quantities in this problem relate?

EIP

Support Productive Struggle

- How are you approaching the problem? What assumptions are you making?

Activity Debrief: Before students share their solutions, have them talk through the first two questions that were displayed.
Students should note that there are some nickels, some dimes, and some quarters in the bank.
Among the questions students might ask are, "Are the numbers of each coin equal?"
Ask students whether their first strategy for solving the problem worked, or if any student pair had to try a different strategy.

- How did you think differently about the numbers of each coin?
- How did your thinking about the values and quantities of the different coins help you solve the problem?
As students share their solutions, display some of their solutions. Then have students talk through their strategies for solving the problem, focusing especially on the decisions around how to represent the problem.

Guided Exploration

Students explore the different parts of the problem-solving process, helping them develop flexibility and strategic thinking about problems and quantities.

EP Facilitate Meaningful Discourse

Engage students in a brief discussion for the first two "When we do math,..." statements.
-What does it mean to "make sense of a problem"?
-What do we do when we make sense of a problem?

Math is... Exploring

-What else do we know about the problem?

Math is... Planning

-Why is it important to ask questions before we solve a problem?

Math is... Perseverance

- Why should we always try to find another way to think about the problem?

ETP Facilitate Meaningful Discourse

Engage students in a brief discussion of the third "When we do math,..." statement.
-What are some questions we can ask to determine the coins that are in the bank?

Math is... Quantities

- What are some other ways to think about the value of each coin?

Students can work in
pairs or small groups to determine the possible number of each coin in the bank. As students share, ask them to explain their thinking.

English Learner Scaffolds

Entering/Emerging Support students

 understanding of stuck, don't give up, and keep trying through gestures. For example, pretend to be stuck on a task. Say I'm stuck. Then say I don't give up. I keep trying. Demonstrate not giving up and "completing" the task. Then ask students to first demonstrate stuck and then don't give up/ keep trying.Developing/Expanding Support students understanding of stuck, don't give up, and keep trying through gestures. For example, pretend to be stuck on a task. Say I'm stuck. Then say I don't give up. I keep trying. Demonstrate not giving up and "completing" the task. Then ask students to demonstrate the task as well. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to think about how they handle times where they feel stuck. Do you they give up, or do they keep trying? Allow students to chime in with their thoughts. For example, That's a great way of handling.... or When I get stuck, I...because....

Practice \& Reflect © 10 min

Practice

Build Fluency from Understanding

To help students build proficiency with the habits of mind for problem solving, have them consider these questions:

- How is this problem similar to the one we did together?

How is it different?

- What questions can you ask about this problem? How are the questions similar to the ones you asked for the other problems?

Reflect

Students complete the Reflect question.

- Tell about a time when you had a problem and you didn't give up. It might be a math problem. But it might be a problem you had at home, playing a game, playing a sport, playing an instrument, drawing a picture, or doing a puzzle.
Ask students to share their reflections with their classmates.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can make sense of a problem and represent it in different ways.
- I can explain different ways to think about numbers.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Lesson 1.2

Exit Ticket
Name

1. What questions do you always ask yourseif when you start solving a problem?
Answers will vary. Check students' answers.
2. Why is it important to look at how numbers and quantibes in a probiem relate?
Answers will vary. Check students' answers.

Reflect On Your Learning

LESSON 1-3

Math Is in My World

Learning Targets

- I can represent a real-world situation using mathematics.
- I can describe tools I can use to solve a problem.

Standards \diamond Major \triangle Supporting O Additional

Content

O 4.NF.B.3.d Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

Math Practices and Processes

MPP Model with mathematics.
MPP Use appropriate tools strategically.

Vocabulary

Math Terms
 Academic Terms
 grid visualize
 model

Materials

none

Focus

Content Objective

- Students consider different ways to use mathematics to represent a real-world situation.

Language Objective

- Students explain and show real-world phenomena with mathematical models while answering $W h$ - questions and using visualize and represent as needed.
- To support optimizing output, ELs participate in MLR4: Info Gap.

SEL Objective

- Students show appreciation for the different perspectives of their classmates.

Coherence

Previous

- Students discussed and refined their problem solving skills and process. They related ways to represent quantities.

Now

- Students consider models to represent real-world situations and problems. They choose tools that are appropriate for solving a given problem.

Next

- Students refine their skill in constructing arguments and in critiquing the reasoning of their classmates.

Number Routine Math Pictures © ${ }^{5-7 \text { min }}$

Build Fluency Students are shown an image of pumpkin seeds on a tray and respond to the prompt "How could you estimate the number of seeds?"

Encourage students to talk about their reasoning:

- What are some strategies you can use to estimate the number of seeds?

Purpose Students explore two wholes composed of different colors.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See Appendix for a full description of the sense-making routines.
Teaching Tip Some students may benefit from having physical versions of the two wholes available to explore.
\square Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' thinking about how real-world situations can be modeled using mathematics.

- Which color is used most in the first square? In the second square?
- How can you know which color is used most in each square?

Transition to Explore \& Develop

Ask questions that get students thinking about comparing parts of a whole. If students comment that parts of a whole can have different shapes, incorporate that idea into the discussion; however, do not bring it up if students do not mention it. This will be explored further in the Explore \& Develop.

Establish Goals to Focus Learning

- Let's think about the different ways to represent what part of the whole each color is.

Unit 1 • Math Is..

(1) Pose the Problem

This is the second of four lessons that introduce students to the habits of mind that are foundational to doing math. In this lesson, students build proficiency with representing real-world situations with mathematics.

ETP Pose Purposeful Questions

- What do we know about the problem?
- How useful is the information presented? Explain your thinking.

(2) Develop the Math

Choose the option that best meets

 your instructional goals.
MLP

Info Gap

Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to carry out the problem. Instruct Partner B to ask Partner A what information they need, and for Partner A to respond, explaining why they need it. Have students continue until the problem is completed.

3 Bring It Together

 ETP
Elicit Evidence of Student Thinking

- How did you represent the break down of colors for the grid?
- What other representations did you consider?
- What tools did you consider using? How did you decide which tool to use?

Key Takeaway

- There are different ways to model real-world situations. We can use pictures, tables, or equations.

Work Together

After students work in groups to solve the problem, ask them to share out their solutions and their thinking about their solutions.

- Common Error: Students may forget to find equivalent fractions with 8 as the denominator and color in the incorrect number of squares to represent each color. Ask students to think about whether Amy colored in all of the squares in the grid.

LOM Language of Math

Be consistent in your use of accurate mathematical terms such as, fraction, fractional part so that students develop the habit of being precise when engaged in mathematical discourse.

Activity-Based Exploration

Students explore concepts related to modeling with mathematics. They expand understanding of the value of a mathematical model in understanding a problem or real-world phenomenon.

Materials: different-sized grids $(4 \times 4 ; 6 \times 6 ; 10 \times 10)$
Directions: Students work in pairs. Each student colors in one grid using 3 different colors. Students swap their colored grids with their partner. Each partner comes up with different ways to represent the number of squares for each color. After each student has completed their representations, they can discuss their models and their thinking.

Display these questions for students to ask themselves as they work on the problem presented:

- How can I visualize the problem?
- How can I represent the problem?
-What tools can I use to represent and solve the problem?
-Which tool might work best for me to solve the problem?

GIP

Support Productive Struggle

- How can you determine which fractional part of a whole part each color is?

Activity Debrief: Before students share their solutions, have them talk through some of the questions that were displayed. Encourage students to share how they visualize and represent the problem. As appropriate, ask them to explain why they might visualize the problem different from how they represent it. As students talk about the tools they used, make sure they explain their thinking for choosing the tools they chose. As students share their solutions, have them explain their reasoning.

Guided Exploration

Students explore concepts related to modeling with mathematics. They expand their understanding of the value of a mathematical model in understanding a problem or real-world phenomenon.

EP Facilitate Meaningful Discourse

Engage students in a brief discussion for the first "When we do math,..." statement.
-What does it mean to make a model of a problem?

- How can different models show a problem in different ways?

Math is... n My World

- What might be another way to visualize the problem?
-What might be another way to represent the problem?
Students think about how real-world problems can be both visualized and represented with mathematics. Emphasize to students the role that math plays in helping people understand aspects of real-world phenomena.

Ask students how the grid would change if two of the purple squares were changed to yellow. Students can work in pairs or small groups to update the different models.

ETP Facilitate Meaningful Discourse

Engage students in a brief discussion for the second "When we do math,..." statement.
-What tools did we use last year when working with fractions?
-What were some uses of those tools?

Math is... Choosing Tools

- What other tools might we use for this problem?

Students consider which
tools are best suited for
solving this problem.
Some may propose
fraction bars.

2. Develop the Math

When we do math, we make modets of problems to help us think about the math we need to solve the problem. Models can show a problem in different ways.

English Learner Scaffolds

Entering/Emerging Support students' understanding of carry out. Use manipulatives to carry out an operation. Say l'm carrying out an operation. Write a problem on the board and begin to solve it. Say l'm carrying out an operation. Turn to the Learn page and point to examples and non-examples of carrying out an operation. Ask each time Does this show carrying out an operation?

Developing/Expanding Support students' understanding of carry out. Use manipulatives to carry out an operation. Say l'm carrying out an operation. Write a problem on the board and begin to solve it. Say I'm carrying out an operation. Then ask students to demonstrate carrying out an operation. Be sure they say they're carrying out an operation while they do so

Bridging/Reaching Ask students to explain how to carry out a math operation of their choice. Allow students to interject, providing correction as needed. For example, I don't think you carried out the operation. For example, you didn't.... or Are you sure...?

Practice \& Reflect © 10 min

Practice

Build Fluency from Understanding

To help students build proficiency with the habits of mind for modeling with mathematics and selecting appropriate tools, have them consider these questions:

- How is this problem similar to the one we did together?

How is it different?

- How can you represent this problem?
- What other tools could you use to solve this problem?

Reflect

Students complete the Reflect question.

- What are some ways to represent a problem in math?
-What tools do I prefer to use when solving problems involving fractions?
Ask students to share their reflections with their classmates.

Learning Targets

Ask students to Reflect on the Learning Targets of the lesson.

- I can represent a real-world situation using mathematics.
- I can explain tools I can use to solve a problem.

Assess Qiomin

Exit Ticket Formative Assessment

The Exit Ticket assess students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

LESSON 1-4

Math Is Explaining and Sharing

Learning Targets

- I can construct an argument to explain my thinking.
- I can explain my thinking with clear and appropriate terms.

Standards \circ major Δ supporting \circ Additional

Content

4.NF.A. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.

Math Practices and Processes
MPP Construct arguments and critique the reasoning of others.
MPP Attend to precision.

Focus

Content Objectives

- Students refine their skills in constructing arguments to support their thinking.
- Students respond to the ideas and arguments of others.

Language Objectives

- Students discuss arguments to support their thinking while answering Wh- questions and using carefully as needed and able.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students practice showing respect for classmates as they share ideas and thinking.

Coherence

Previous

- Students considered models to represent real-world situations and problems. They choose appropriate tools for solving a given problem.

Now

- Students refine their skill in constructing arguments and in critiquing the reasoning of their classmates.

Next

- Students analyze and generate patterns.

Vocabulary

Math Terms
fractional
\section*{Academic Terms}
critique
defend
justify

Materials

none

Purpose Students explore four wholes partitioned into different parts.

Which Doesn't Belong?

- Which doesn't belong?

See Appendix for a full description of the sense-making routines.
Teaching Tip You may want to model your thinking around one solution for Which Doesn't Belong? since this is the first time students have seen this routine this year. Remind students that for this routine there are always multiple solutions, so encourage students to find as many solutions as they can.

Pose Purposeful Questions

The questions that follow may be asked in any order. They are meant to help advance students' thinking about how real-world situations can be modeled using mathematics.

- If one more section is shaded in each whole, how does that change which doesn't belong?
- If two more sections are shaded in each whole, how does that change which doesn't belong?
-What are some ways to describe the shaded part of each square?

Transition to Explore \& Develop

Ask questions that get students thinking about what part of the whole is shaded in each square. If students mention benchmark fractions, incorporate that idea into the discussion; however, do not bring it up if students do not mention it. This will be explored further in the Explore \& Develop.

ETP Establish Goals to Focus Learning

- Let's think about the different ways we can use to compare parts of a whole.

Eia Curious

 wich Doenor Beleog?

Explore \mathcal{E} Develop $\mathbb{Q}_{20 \mathrm{~min}}$

EWhen we do mith, wi laten to the arguments of others and think about what makes sense and what doesml.

(1) Pose the Problem

This is the third of four lessons that introduce students to the habits of mind that are foundational to doing math. In this lesson, students develop proficiency with constructing arguments to explain and defend their thinking and with responding to arguments of their classmates.

ETP Pose Purposeful Questions

- What do we know about the problem?
- How useful is the information presented? Explain your thinking.

2 Develop the Math

Choose the option that best meets your instructional goals.

MLR
Stronger and Clearer Each Time
Pair students and have them justify their thinking on a fraction problem like the one on the Learn page. Ask each to work individually and write what the two fractions could be and why. Then have students compare their writing and revise if needed. Revisit the task throughout the lesson for reinforcement.

3 Bring It Together

 툐
Elicit Evidence of Student Thinking

- How often were your arguments similar to your classmates'?
-What does that tell you?
- What new ideas or thinking did you gain from hearing your classmates' arguments?

Key Takeaway

- Constructing mathematical arguments and responding to the thinking and arguments of others are bothimportant parts of doing mathematics.

Work Together

As students share out their responses, ask their classmates to evaluate the reasonableness of the argument presented.

- Common Error: Students may think that there is just one argument in response to the solution presented. As students share their arguments, challenge others in the class to present a different argument.

LOM Language of Math

Be consistent in your use of the term argument so that it becomes part of your students' active math discourse.

Activity-Based Exploration

Students refine their proficiency with constructing arguments to support their reasoning around the concept of comparing fractions. Students also analyze the arguments of their classmates to assess their validity.

Directions: Students work in pairs or small groups on the task in the Pose the Problem.

Aisha has three fractions in mind.
Two are less than $1 / 2$ and one is greater than $1 / 2$.
One of the fractions is a unit fraction.
What could these fractions be?
Display these questions for students to ask themselves as they work on the problem presented:

- How can I explain your thinking?
- Do I need an exact answer or an estimate?
- How can I make sure my thinking is clear and precise?

ETP

Support Productive Struggle

- What questions can you ask yourself to determine what the three fractions could be?

Activity Debrief: Before students share their solutions, have them talk through some of the questions that were displayed. Encourage students to share how they explained their thinking, whether they used words, drawings, or equations. Students can also share how they made sure their thinking is clear and precise.

Have one group share their solution with justification followed by the other groups responding to the presented solution in a respectful way. As students share their arguments, check that they are using appropriate mathematical terms. When students respond to the argument, remind them to address specifically the argument. Offer sentence starters, such as "I agree/disagree with your argument because..."

Guided Exploration

Students explore constructing of arguments to support their reasoning around the concept of comparing fractions. Students also analyze the arguments of their classmates to assess their validity.

EIP Facilitate Meaningful Discourse

Engage students in a brief discussion for the first two "When we do math,..." statements.

- What does it mean defend our thinking?
-What are some ways to defend our thinking?

Math is... Explaining

- Which way of explaining your thinking do you find most useful?

Students reflect on the importance of explaining their thinking around mathematical strategies and processes.

Students can work in pairs or small groups to find a different solution to the problem.

Math is... Sharing

- What are some strategies we can use to determine whether an argument makes sense to use?
Students consider how to evaluate an argument.

E[P Facilitate Meaningful Discourse

Engage students in a brief discussion for the next two "Whenwe do math,..." statements.

- Why is it important to be clear and specific when we explain our thinking?

Math is... Precision

- What are some strategies for making our arguments clear and precise?

Students consider how to communicate precisely when constructing arguments.

2. Develop the Math

< When we do math, we make models of problems to help us think about the math we need to solve the problem. Models can show problem in different ways.

Bridging/Reaching Ask students to provide arguments to justify their work on an assigned math problem. Then ask students to come up with similar words for argument, such as reasoning, logic, and explanation. Allow students to use a thesaurus or dictionary to find more similar words as well.

Practice \& Reflect ©romin

Practice

Build Fluency from Understanding

To help students build proficiency with the habits of mind for constructing arguments and critiquing the reasoning of others, have them consider these questions:
-What arguments can you construct to support your thinking?
-What terms can you use in your arguments?

Reflect

Students complete the Reflect question.

- How did you create an argument and justify your thinking?
- Why do you think it is important to be precise in math?

Ask students to share their reflections with their classmates.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can construct an argument to explain my thinking.
- I can explain my thinking with clear and appropriate terms.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assess students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Lesson 1.4

Exit Ticket
Name

1. Why is it important to listen carefully when critiquing the reasoning of classmates?
Answers will vary. Check students' answers.
2. How does using mathematical terms help make your arguments more precise?
Answers will vary. Check students' answers.

Reflect On Your Learning

LESSON 1-5

Math Is Finding Patterns

Learning Targets

- I can use patterns to develop efficient strategies to solve problems.
- I can explain why patterns are useful to solve problems.

Standards \circ major Δ supporting \circ Additional

Content

O 4.0A.C. 5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

Math Practices and Processes

MPP Look for and make use of structure.
MPP Look for and express regularity in repeated reasoning.

Vocabulary

Math Terms

Academic Terms

efficient generalizations

MPP Look for and express reglarity in repeated reasoning.

Materials
none -

Purpose Students explore the different patterns that can be seen in a sunflower.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See Appendix for a full description of the sense-making routines.
Teaching Tip Students may not be used to thinking about patterns in plants or animals, so you may want to model observations and questions about the pattern that can be seen in the sunflower.

ETP
 Pose Purposeful Questions

The questions that follow can be used in any order. They are meant to help advance students' thinking about analyzing and generating patterns and are based on possible comments and questions students may make during the share out.

- What are other examples of patterns in nature?
- What are some considerations when thinking about patterns?

Transition to Explore \& Develop

Ask questions that get students thinking about patterns in our everyday lives. If students mention number patterns, incorporate those concepts into the discussion, but do not introduce number patterns otherwise. These will be explored further in the Explore \& Develop.

EIP Establish Goals to Focus Learning

- Let's think about the patterns that we see in mathematics.

Learn
 How are the equations related?
 $4 \times 12=? \quad 4 \times 12=$?
 $8 \times 12=$? $\quad 4 \times 24=$?
 $16 \times 12=$? $\quad 4 \times 48=7$

EMarth is hill of potterms and retationshios. When we do matr, we notice patterns anc relationships.

When we do math, we use patterns to solve problems efficiently Patterns can help you solve problems that are similar

20 tesson 5 - Mibshindeyhers

Unit 1 - Math Is...

(1) Pose the Problem

ME

Collect and Display

As students discuss the question, record relevant words they may use such as patterns, relationships, products, and factors. Display the words for student reference. Use the student-generated expressions to help students make connections between student language and math vocabulary.

This is the fourth of four lessons that introduce students to the habits of mind that are foundational to doing math. In this lesson, students build proficiency with analyzing patterns and making generalizations so that computation is more efficient.

(2) Develop the Math

Choose the option that best meets your instructional goals.

>>>

3 Bring It Together

Elicit Evidence of Student Thinking

- How did you use patterns to make generalizations?
- How did you use rules or generalizations to help you solve the equations efficiently?

Key Takeaway

- Patterns and relationships are foundational to mathematics. Helping students recognize the importance of looking for patterns and making use of these patterns in problem solving will help them become more proficient doers of math.

Work Together

Students' share out should focus mostly on the patterns in the equations.
[Common Error: Students may think that doubling both factors results in a product that is just double the original product. Have students work through the product when both factors are doubled by doubling first factor and solving, then doubling the second factor.

LOM Language of Math

Check students' use of terms patterns and relationships as they describe the patterns.

Activity-Based Exploration

Students explore patterns in multiplication equations. Students look to make generalizations that can lead to efficient strategies.

Directions: Students work in pairs or small groups. Each group develops a series of up to 10 multiplication equations that follow a pattern. (The equations should not have solutions.)

Groups then trade their equations with those of another group. Each group describes the pattern that the equations show and a rule for solving equations efficiently using the pattern.
Display these questions for students to ask themselves as they work on the problem presented:
-What patterns can I see in the equations?

- How can the pattern help me solve the problem?
-Can this pattern help me work more efficiently?

ETP

Support Productive Struggle

- How can you sort the equations?
- Does that help you see a pattern?

Activity Debrief: Before students share their solutions, have them talk through some of the questions that were displayed. Encourage students to share the pattern(s) they noticed in the equations. Students can also share their thinking on how the patterns they noticed helped them to solve the problem.

As groups share their solutions and their reasoning based on any patterns they noticed, encourage others to respond to the reasoning presented.

Guided Exploration

Students explore patterns in multiplication equations. Students look to make generalizations that can lead to efficient strategies.

Facilitate Meaningful Discourse

Engage students in a brief discussion for the first two "When we do math,..." statements

- How can we recognize a pattern?
-What kinds of patterns do we see in math?

Math is... Patterns

- How do we know when we see a pattern?
- How can we use the pattern to help us solve problems?

Students reflect on defining different kinds of patterns and thinking about their uses in problem solving.

Students can work in pairs or small groups to determine additional relationships between the equations.

Facilitate Meaningful Discourse

Engage students in a brief discussion for the next two "When we do math,..." statements.

- Why should we always look for patterns when solving a problem or an equation?

Math is... Ceneralizations

- Are there generalizations we can make about the patterns that can help us work more efficiently?

Students consider the applicability of generalizations to problem solving.

2. Develop the Math

When we do math, we have to defend our thinking. Sometimes we use words. Sometimes we use numbers and pictures.

English Learner Scaffolds

Entering/Emerging Support students in understanding If..., then..... Go to your desk. Point to a drawer handle and say If I pull this, it will open. Demonstrate. Repeat the task with another object. Then go to the door and point to the doorknob. Ask If I turn this, will the door open? Then open a book and ask If I close this, can I read it?

Developing/Expanding Support students in understanding lf..., then..... Go to your desk. Point to a drawer handle and say If I pull this, it will open. Demonstrate. Repeat the task with another object. Then go to the door and point to the doorknob. Ask What will happen if I turn this? Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to

 form a sentence using If...., then.... and to demonstrate. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, that's not correct because.... or No, if you..., then....
Practice \& Reflect © 10 min

Practice

Build Fluency from Understanding

To help students build proficiency with the habits of mind for analyzing
patterns and making generalizations, have them consider these questions:
-What patterns do you notice?

- How can the patterns help you solve equations more efficiently?

Reflect

Students complete the Reflect questions.

- What other patterns and relationships do you know about in math? Tell how those patterns have helped you.
- How can patterns help you solve problems or equations?

Ask students to share their reflections with their classmates.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can use patterns to develop efficient strategies to solve problems.
- I can explain why patterns are useful to solve problems.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assess students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Lesson 1.5

Exit Ticket

Name

1. What are some patterns that you notice when multiplying fractions and whole numbers?
Answers will vary. Check students' answers.
2. How can the patterns you notice help you mulliply more efficiently?
Answers will vary. Check students' answers.

Reflect On Your Learning

Anesurant Revoace look In

LESSON 1-6

Math Is Ours

Learning Targets

- I can recognize the behaviors and attitudes that support a productive classroom learning environment.
- I can identify the mindsets that help me problem solve.

Standards \circ Major Δ supporting \circ Additional

Content

O 4.NF.B.3.d Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators.

Math Practices and Processes

MPP Make sense of problems and persevere in solving them.
MPP Construct viable arguments and critique the reasoning of others.
MPP Use appropriate tools strategically.

Focus

Content Objective

- Students discuss classroom norms of interaction for a productive learning environment.

Language Objectives

- Students talk about the behaviors and mindsets that contribute to a productive learning environment while answering Wh- and Yes/No questions and using the verb disagree and the adverb respectfully as needed.
- To optimize output, ELs participate in MLR7: Compare and Contrast.

SEL Objective

- Students make decisions about classroom norms for working productively with classmates.

Coherence

Previous	Now	Next		
- Students identified the				
classroom norms that lead to				
productive math work.			\quad	- Students discuss classroom
:---				
norms of interaction for a				
productive math learning				
environment. They reflect on				
how to problem solve effectively.	\quad	- Students continue to reflect on		
:---				
the behaviors and mindsets that				
help them work collaboratively				
and independently on				
challenging math tasks.				

Rigor

Conceptual Understanding

- Students demonstrate an understanding of the expectations and agreements that promote a productive and positive learning environment

Procedural Skill \& Fluency

- Students develop proficiency in recognizing and reflecting upon the behaviors that support their work as doers of math.

Application

- Students apply their understanding of a productive learning environment to contribute to a positive classroom culture.

Number Routine Math Pictures © ${ }^{5-7 \text { min }}$

Build Fluency Students examine a photograph of decorations on hooks and estimate what fraction of the decorations are missing.

These prompts encourage students to talk about their reasoning:

- How does the word "about" in the question affect how you will find the answer?
- Is there one correct answer to this question?

Purpose Students think about behaviors of productive group work.

Notice \& Wonder

-What do you notice?
-What do you wonder?
See Appendix for a full description of the sense-making routine.
Teaching Tip You may want to facilitate a think-pair-share in order to encourage student participation. This may help students feel more at ease sharing their initial thoughts about the image.

Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' thinking about the mindsets and behaviors that facilitate group work, both in general and when learning math and are based on possible comments and questions students may make during the share out.
-What might the students be working on?

- If this image became a video (in other words, went from a still shot into a video recording), what do you think you would see and hear?
- What is hard about sharing a device with another student? What is fun about it?
- What do you like about group work? What do you like about individual work?

Transition to Explore \& Develop

Ask questions to get students thinking about the factors that help make the classroom a productive learning environment.

${ }^{\text {ETP }}$ Establish Goals to Focus Learning

- Let's think about what helps make our classroom a positive and productive place to learn.

Learn

How do we do math?
E When we do math, we otten work together

E. When we do math we solve problems.

- We matien sense of problems:
-We understand the quartities and the relationstips among the quartities
- We don't quit. If we get stuck, we look for

What can! do when I get frustrated?
-We use tools. We select the tool that works best for us.

- We look for patterns.

24 Lessen 6-MenOon

C Work Together

1. What rules should we hove when we share out thinking whth classimates? Answers may vary.
2. What can you do to help all classmates feel comfortable in math class?
Answers may vary.
3. How do we use toob resporsbly? Answers may vary.

Unit 1 - Math Is...

(1) Pose the Problem

In this lesson, students establish the classroom norms that foster the development of the mathematical habits of mind and thinking habits that have been focus of previous lessons.

3 Pose Purposeful Questions

- Think About It: How do we do math?
- What behaviors and mindsets help us do math?

(2) Develop the Math

Choose the option that best meets your instructional goals.

Compare and Contrast

Pair students and prompt them to identify and explain ways they can do math, e.g. work together, work on their own, and solve problems. Have them compare the strategies, reflect on how they are the same and different, then discuss their preferences for one or the other approach.

3 Bring It Together

Elicit Evidence of Student Thinking

-What class agreements can help us do our best math work?

- What attitudes help us as doers of math?

Key Takeaways

- For group work to be productive, we must listen attentively, share our thinking, and be respectful of others.
- To productively work on our own, we should stay focused and ask for help when we are stuck.
- A natural part of doing math isworking through challenges. Certain mindsets and behaviors can help us as we work through challenges.

Work Together

Students think further about rules and practices that support classroom math work. You may want to have students work in pairs on the activity before sharing their work.

- Common Misconception: Students may believe that successful groups do not ever disagree. Explain that disagreements can lead to new ideas and creative group problem-solving.

LOM Language of Math

Model for students appropriate mathematical language around problem solving, making clear the difference between a problem and an exercise or an assessment item.

Activity-Based Exploration

Students work in groups on an open-ended math problem and reflect upon the process of working collaboratively.

Materials:

Option 1: pattern blocks, virtual pattern blocks, or Pattern Blocks 2 Teaching Resource

Option 2: geoboards and rubber bands (1 board and 16 bands per group), virtual geoboards, or Dot Paper Teaching Resource

Directions: Groups work together on one of the following problems: Option 1: Pattern Block Challenge The hexagon is worth 1 whole. Use pattern blocks to create a design that is equal to 10 wholes.

Option 2: Geoboard Challenge Using 12 to 16 rubber bands, create a design that appears the same as you turn it, no matter which side of the geoboard is up.

As students work in groups, encourage them to observe how their groups communicate, cooperate, cultivate inclusivity, and deal with conflict.

ETP Support Productive Struggle

- How are you communicating your ideas when you disagree?
- How can you work through conflict when collaborating with others?
- Is the finished work going to the look the same as it would have if you had worked on it by yourself?

Activity Debrief: Review the classroom behaviors and skills that support productive learning. As students share, ask them to think about these questions.

Math is... Yindset

-What can you do to be an active listener?

- What can you do to stay focused on your work?
- What can you do when you feel frustrated?

PDFs of the Teaching Resources are available in the Digital Teacher Center.

Guided Exploration

Students think about what behaviors and attitudes support productive group work and individual work. They also consider strategies that help them work through challenging math problems. Model active listening and allow students to share any thoughts or feelings they have about the topics being discussed. Explore with students the role of conflict in group work and the skills students can use to work through disagreements as they arise.

EIP Facilitate Meaningful Discourse

- What are the benefits of group work? What are the challenges?
- How can we ensure that all members of a group are included?
-What does respect look like when working with others on math?
- How can we disagree while remaining respectful?
-What habits help us work independently?
- What can we do when we get stuck on a challenging math problem?

Have students discuss with a partner what they do when they get frustrated doing math.

Math is... , indset

-What can you do to be an active listener?
-What can you do to stay focused on your work?
-What can you do when you feel frustrated?

English Learner Scaffolds

Entering/Emerging Support students' understanding of work together and on your own. Work on a task by yourself. Say l'm working on my own. Have a student help you. Say We're working together. Group students, some individually and others in pairs or groups, and assign them a task. Say Point to a student who is working on their own. Then say Point to students who are working together.

Developing/Expanding Support students' understanding of work together and on your own. Work on a task by yourself. Say I'm working on my own. Have a student help you. Say We're working together. Then ask students to repeat the task, using on my own and working together. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to talk about the pros and cons of both working together and on your own and to explain their reasoning. Provide sentence prompts when necessary and suggest to students that they think of similar-meaning words and phrases that may help them with their explanations, such as individually/by myself or working in pairs/groups.

Practice \& Reflect © 10 min

Practice

Build Fluency from Understanding

To help students think about promises the class can make in order to work well together, have them consider these questions:

- Imagine you are observing a group working well together. What would you see and hear?
-What helps you focus when working on your own?
- What steps can you take when you are working on a challenging math problem?

Reflect

Students complete the Reflect question.

- What are my responsibilities to make sure we can all learn math productively?
Ask students to share their reflections with their classmates.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can recognize the behaviors and attitudes that support a productive classroom learning environment.
- I can identify the mindsets that help me problem solve.

Assess Qiomin

Exit Ticket Formative Assessment

The Exit Ticket assess students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Lesson 1.6

Exit Ticket
Name

1. How do we critique the ideas of others respectully?

Answers will vary. Check students' answers.
2. What is the most important classroom norn for math class? Answers will vary. Check students' answers.

Reflect On Your Learning

12 Insewtent Acsouke liop

Unit Review

Unit Review Name

\qquad

Vocabulary Review

1. What does it mean to defend your thinking?

Answers may vary.
2. Why is a plan to solve a problem important?

Answers may vary.
3. How can we decide which tool to use to solve a problem? Answers may vary.
4. What are some examples of ponerns in the math you did last year? Answers may vary.

Students can complete the Unit Review to review concepts presented in the unit. Students may complete the Review in their Interactive eBook in the Digital Student Center.

Fluency Practice

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice using partial sums to add.

Fluency Progression

Unit	Skill	Standard
1	Use Partial Sums to Add	4.NBT.B. 4
2	Decompose by Place Value to Subtract	4.NBT.B. 4
3	Use an Algorithm to Add	4.NBT.B. 4
4	Use an Algorithm to Subtract	4.NBT.B. 4
5	Choose a Strategy to Add	4.NBT.B. 4
6	Choose a Strategy to Subtract	4.NBT.B. 4
7	Multiply by Multiples of 10	5.NBT.B. 5
8	Multiply by Multiples of 100	5.NBT.B. 5
9	Divide Multiples of 10	5.NBT.B. 6
10	Divide Multiples of 100	5.NBT.B. 6
11	Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers)	5.NBT.B. 5
12	Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers)	5.NBT.B. 5
13	Choose a Strategy to Multiply	5.NBT.B. 5
14	Choose a Strategy to Multiply	5.NBT.B. 5

Fluency Expectations

Grade 4

- Add and subtract within 1,000,000.

Grade 5

- Multiply multi-digit whole numbers.

Grade 6

- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Unit 1

Fluency Practice

Name

Fluency Strategy

You can use partial sums to find a sum

1. Use partial sums to find the sum.

Fluency Flash
Add the two sets of blocks. Write the addition equation.

Unit 1 , Menk. 29

Fluency Check

Fluency Talk

Wite one addtion equation it makes sense to solve using partial sums. Explain how you found the sum
Explanations may vary.

When using partial sums, do you nave to add the partibl sums in a particular orden Explain
Explanations may vary.

PACING: 10 days

LESSON
MATH OBJECTIVE
LANGUAGE OBJECTIVE

SOCIAL AND EMOTIONAL LEARNING OBJECTIVE

Unit Opener Ionitel Painted Cubes Students use connecting cubes to build a cube. They relate what they build to volume.

2-1	Understand Volume	Students understand volume is a measurable attribute of 3-dimensional figures. Students understand that a rectangular prism can be packed using unit cubes with no gaps or overlaps to establish volume.
2-2	Use Unit Cubes to Determine Volume	Students determine the volume of a rectangular prism by counting unit cubes. Students determine the volume of a retangular prism by multiplying the number of unit cubes in one layer by the number of layers.
2-3	Students determine the volume of Use Formulas to Determine Volume	rectangular prisms using formulas.

Math Probe Volume of Rectangular Prisms Gather data on students' understanding of determining volume of rectangular prisms.

2-4 Determine Volume of Composite Flgures

Students determine the volume of composite solid figures.

2-5 Solve Problems Involving Volume

Students apply the volume formulas to solve real-world problems involving rectangular prisms.

- Students talk about ways to measure volume using the verb find.
- Students discuss how to determine the volume of any 3 -dimensional solid by counting unit cubes while answering Wh- questions.
- Students explain how to determine the volume of rectangular prisms using formulas while answering Wh- and Yes/No questions and using the term dimensions.

Students use prior knowledge and new understanding of mathematical concepts to complete a task, building stronger self-efficacy.

Students exchange ideas for mathematical problem-solving with a peer, listening attentively and providing thoughtful and constructive feedback.

Students practice strategies for persisting at a mathematical task, such as setting a small goal or setting timers for remaining focused.

- Students discuss how to determine the volume of composite solid figures while answering $W h$ - questions.
- Students talk about applying the volume formula to solve realworld problems using the adjective given.

Students engage in active listening and work collaboratively with a partner to complete mathematical tasks.

Students determine the strategies and analyses necessary to make informed decisions when engaging in mathematical practices.

Unit Review

Fluency Practice
Unit Assessment
Performance Task

2-1	Math Terms rectangular prism unit cube volume	Academic Terms analyze establish	- Nets Teaching Resource - centimeter cubes - marbles, beans, or other measurement units	Conceptual Understanding	$\begin{aligned} & \text { 5.MD.C. } 3 \\ & \text { 5.MD.C.3.a } \end{aligned}$
2-2	cubic unit unit cube volume	debate suggest	- centimeter cubes - Nets Teaching Resource	Conceptual Understanding Procedural Skill \& Fluency	$\begin{aligned} & \text { 5.MD.C.3.a } \\ & \text { 5.MD.C.3.b } \\ & \text { 4.MD.C. } 4 \end{aligned}$
2-3	base (of a solid) formula	assert evaluate	- cubes	Conceptual Understanding Procedural Skill \& Fluency Application	$\begin{aligned} & \text { 5.MD.C.5.a } \\ & \text { 5.MD.C.5.b } \end{aligned}$
2-4	composite solid figure formula	complex speculate	- Nets Teaching Resource - ruler - unit cubes	Conceptual Understanding Procedural Skill \& Fluency Application	5.MD.C.5.c
2-5	equation formula unknown variable	relevant valid	- Problem-Solving Tool Teaching Resource	Procedural Skill \& Fluency Application	5.MD.C.5.b

Unit Overview

Focus

Volume

In this unit, students explore measurable attributes of different figures and discover that all 3-dimensional figures have a measurable attribute of the space inside, which is called volume. They discover that volume can be measured by packing the figure with unit cubes and that there must be no gaps or overlaps of the unit cubes.

Students extend their understanding of multiplication as equal groups to discovered that the volume of a rectangular prism can be calculated by multiplying the number of unit cubes in one layer by the number of layers. Students generalize methods for calculating volume of rectangular prisms to derive the formulas $V=I \times w \times h$ and $V=B \times h$.

Students discover that volume is additive. They can calculate the volume of composite solid figures by decomposing the figure into rectangular prisms, then add the volumes.

Students apply the volume formulas to solve real-world problems, including problems involving unknown dimensions.

Coherence

What Students Have Learned

- Area Students described area as an attribute of plane figures and understood concepts of area measurement. (Grade 3)

What Students Are Learning

- Volume Students describe volume as an attribute of solid figures and understand concepts of volume measurement.
- Determining Volume Students determine volumes by counting unit cubes and using formulas.
- Composite Solid Figures Students determine volumes of composite solid figures.
- Real-World Problems Students solve realworld volume problems.

What Students Will Learn

- Volume Students find the volume of a right rectangular prism with fractional edge lengths. (Grade 6)

Rigor

Conceptual Understanding

Students develop understanding of

- volume as an attribute;
- concepts of volume measurement.

Procedural Skill and Fluency

Students build proficiency with

- counting cubes to determine volume;
- using formulas to determine volume;
- determining the volume of composite solid figures.

Application

Students apply their knowledge of - using volume formulas to solve real-world volume problems;

- decomposing figures to solve real-world volume problems.

Effective Teaching Practices

Elicit and Use Evidence of Student Thinking

Look for evidence of student thinking and evaluate their growth toward conceptual understanding. Before, during, and after learning a new skill or concept, students should be assessed to see if they are understanding the new information or if they have any misconceptions of past information. Collecting evidence of students' thinking can be as simple as asking clarifying questions or it can be as complex as having students complete an in-depth project.

Assessment is continuous because students' understanding drives instruction. Sometimes topics that have been previously covered need to be approached in a different way because students may be struggling with a prior topic that is stopping future learning from occurring.

As you encounter different concepts in these lessons, spend time using evidence of student thinking to advance instruction.

- Determine what evidence you will be looking for and how you will respond based on students' learning trajectories. Use this evidence in planning next steps in your instruction.
- Ask students why they chose a particular strategy to represent their work. Take note of their reasoning and equations in order to facilitate the share portion of the lesson.
- As students engage in mathematical discourse, determine how to respond to what they say in order to deepen their conceptual understanding.

Mathematical Practices and Processes

Model With Mathematics

Using and connecting multiple mathematical representations is an important first step in helping students build proficiency with using models in math.

When students model with mathematics, they use different representations, especially visual and concrete representations, to help them solve problems. As they model the mathematics, they build an understanding of which representations better help them reach a solution. Building proficiency with modeling the mathematics using different representations provides a strong foundation to help students become problem-solvers. Building the foundation for modeling with mathematics prepares students for their middle and high school work.

To help students build proficiency with modeling, students need opportunities to interact with different representations. Some suggestions for building proficiency include:

- Students should recognize that if a rectangular prism were packed with unit cubes, the area of the base represents the number of cubes in each layer, and the height represents the number of layers.
- Students use unit cubes to build 3-dimensional figures, allowing them to apply the mathematics necessary to solve problems.
- As students seek to determine the volume of rectangular prisms or a missing dimension given the volume, they need to consider what information they have. Encourage students to state the formula they are using and the variables whose values they know before solving for an unknown variable.

Social and Emotional Learning

What Skills Will We Develop?

- Self-Awareness: Self-Efficacy (Lesson 2-1) Students with high selfefficacy are more likely to persevere to complete a challenging task.
- Social Awareness: Appreciate Diversity (Lesson 2-2) Diversity appreciation can help students collaborate well with peers.
- Self-Management: Control Impulses (Lesson 2-3) Students who can control their impulses are more likely to persist through challenging tasks.
- Relationship Skills: Build Relationships (Lesson 2-4) Building positive relationships can help establish a strong classroom community.
- Responsible Decision-Making: Solve Problems (Lesson 2-5) Efficient problem solvers can make informed decisions that lead to solutions.

Unit Overview

Language of Math

Vocabulary

Students will be using these key terms in this unit:

- Volume* (Lesson 2-1): This is a new term. It is a measure of the amount of space occupied by a 3-dimensional figure.
- Unit cube* (Lesson 2-1): This is also new term. Students were introduced to unit squares when determining area in Grade 3.
- Cubic unit* (Lesson 2-2): This is also a new term. Students were introduced to different kinds of units when determining area in Grade 3. They may be more familiar with square units.
- Formula* (Lesson 2-3): This is also a new term. A formula is an equation that represents the relationship between two or more quantities. Students may recall the area formula used in Grade 4.
- Rectangular prism* (Lesson 2-3): This is also a new term. A rectangular prism has six rectangular faces.
- Composite solid figure* (Lesson 2-4): This is also a new term. Students found the area of composite 2-dimensional figures in Grade 3.
*This is a new term.

Math Language Development

A Focus on Listening

Listening to mathematical concepts can be extremely helpful because listening In this unit, students can listen to explanations about mathematical topics to other strategies and explanations can be eye-opening and informative. Students may have never even considered a certain approach to a problem or may discover that they did not understand the problem or concept correctly.

However, listening to other strategies and explanations can also be difficult if students do not agree with the explanations, if the explanations are more complex than they need to be, or if students cannot grasp the concepts. In these cases, students may need alternate explanations of concepts and problems or discussions about whether the strategies are correct.
in order to gain a better understanding about

- how to find volume using the terms unit cubes and cubic units correctly;
- how to find the volume of a rectangular prism using key terms;
- the decision-making process involved with decomposing figures;
- how to find unknown edge lengths;
- what strategies worked and what strategies did not work as students attempted to solve volume problems.

ㅌ. English Language Learner

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain volume. Because many of the words and phrases used in this section are likely unfamiliar or unknown, students are supported in understanding and using these words.

Lesson 2-1 - fill, pack
Lesson 2-2 - gap, overlaps
Lesson 2-3-dimensions
Lesson 2-4 - that compose it
Lesson 2-5 - given

Unit Routines

Number Routines

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency.
They also help students develop the thinking habits of mind that are important for proficient doers of math.

Would You Rather?

Purpose: Build flexility with number sense and mental math operations; enhance decision-making.
Overview: Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

Can You Make the Number?

Purpose: Build flexibility with numbers.
Overview: Students use all the given numbers to build expressions with a value matching the target number. Students can use a range of operations in their expressions. The teacher records students' expressions, then facilitates a discussion about students' expressions.

Where Does It Go?

Purpose: Build estimating skills using benchmarks.
Overview: Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

Sense-Making Routines

Notice and Wonder"': How are they the same? How are they

different? (Lessons 2-1, 2-4, 2-5) In Lesson 2-1, students discuss and share their thoughts about similarities and differences among 2-dimensional and 3-dimensional objects.

Notice and Wonder": What do you notice? What do you

wonder? (Lessons 2-2, 2-3) In Lesson 2-2, students discuss and share their thoughts about filling a space with objects so that there are no gaps or overlaps.

Math Language Routines

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. These routines can also be used as formative assessment opportunities as students develop proficiency in English and mathematical language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Mathematical Language Routines, see the Appendix.

- Lesson 2-1 - In order to support sense-making and maximize linguistic, students participate in MLR2: Collect and Display so that students' oral words and phrases can be captured into a stable, collective reference.
- Lesson 2-2 - In order to optimize output, students participate in MLR3: Critique, Correct, and Clarify so that they have an opportunity to analyze, reflect on, and develop a piece of mathematical writing that is not their own.
- Lesson 2-3 - In order to support cognitivemeta-awareness and optimize output, students participate in MLR1: Stronger and Clearer Each Time so that students have a structured and interactive opportunity to revise and refine both their ideas and their verbal and written output while solving such problems.
- Lesson 2-4 - In order to optimize output, students participate in MLR5: Co-Craft Questions and Problems so that they have a structured and interactive opportunity to create, solve, and share their own problems for determining the volume of composite solid figures.
- Lesson 2-5 - In order to cultivate conversation and optimize output, students participate in MLR8: Discussion Supports so that they can have a rich and inclusive discussion about the tools and strategies they can use to apply volume to solve real-world problems.

Readiness Diagnostic

Unit 2

How Ready Am I?

Nome

1. Which of the following figures always has two pairs of parallel sides and four tight angles?
A. triangle
B. rectangle
C. trapezold
D. paraleiogram
2. What is the area of the rectangle?

A. 15 squars unts
B. 15 square ints
C. 18 square unts
(D) 20 square unts
3. Find the value of the expression $3 \times 2 \times 4$.
A. 9
B. 10
C. 20
(D) 24
4. Kerry draws a flgure on graph papeer.

What is the area of the figure?
A. 17 souare unts
B. 26 square inits
C. 34 square units
D. 56 square units
5. A rectangular tug is 12 feet iong and 9 feet wide What is the area of the rug?
A. 21 square foet
B. 42 square foet
C. 108 square feet
D. 118 square foot
6. Kyle is painting a cover for à storage bin. He runs out of paint. How much ares of the cover is left to paine?

A. 11 square meters
(B.) 15 square meters
C. 30 square meters
D. 35 square meters
2. Shonde wants her new garden to cover exactly 48 square foet. Which of the following dimensions could she unse for the garden?
A. 5 feet by 9 foet
B. 7 foet by 8 foet
C. 8 foet by 6 foet
D. 9 feet by 4 fees
8. Find the value of the expression $2 \times 5+3 \times 2$
A. 12
B. ${ }^{13}$
C. 15
(D) 16

14
Mesuneal livarce boce

Administer the Readiness Diagnostic to determine your students readiness for this unit.

Targeted Intervention

Use Guided Support Intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis

Item	pok S		Guided Support Intervention Lesson	Standard
1	3	Identify 2-D figures	Use Lines to Classify Shapes	4.G.A. 2
2	1	Find area of rectangles by counting tiles	Area Using Tiling and Counting	3.MD.C. 6
3	1	Evaluate expressions using Associative Property of Multiplication	Multiply Three Numbers	3.OA.B. 5
4	2	Decompose composite figures to find area	Decompose Shapes to Find Area (Grids)	3.MD.C.7.d
5	2	Use a formula to find A area	Area of Rectangles and Squares	4.MD.A. 3
6	2	Find area in composite figures	Decompose Shapes to Find Area	3.MD.C.7.d
7	2	Understand area	Area of Rectangles and Squares	4.MD.A. 3
8	1	Evaluate expressions	Reorder Factors	3.0A.B. 5
9	2	Write equations to find unknown dimension	Area of Rectangles and Squares	4.MD.A. 3
10	2	Identify finding area situations	alculate Perimeter and Area	4.MD.A. 3

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.

Unit Opener

Focus Question

Introduce the Focus Question, How can I find the volume of rectangular prisms?

Ask students to think about what they know about volume of rectangular prisms.

- Do you know what it means to find the volume of rectangular prisms?
-What do you already know about finding volume of rectangular prisms?
-What do you think you will be doing in the unit?
Remind students that at the end of the unit, they will reflect back on what they learned in this unit.

Family Letter

Each letter presents an overview of the math in the unit and home activities to support student learning.

STEM in Action

Videos

Students can watch the two STEM videos.
Ocean Engineer Hiro talks about the work of an ocean engineer.
Hiro Finds the Volume of a Waterproof Case Hiro explains how to find the volume of his camera.

STEM Project

Students can complete the STEM project during their workstation time.

Ocean Engineer

IGNiTE!

Name

Painted Cubes

Use connecting cubes to bulld each figure.

Figure 2
Figure 2 is made up of unit cubes. Suppose Figure 2 is dropped into a bucket of red paint. How many unit cubes would have
all 6 faces painted red? \qquad
exactly 5 faces painted red? 0
exactly 4 taces painted red? \qquad
exactly 3 faces painted red?
exactly 2 faces painted red?
exactly 1 face pairted red? \qquad
no faces pointed red? 1

Find the sum of the numbers of cubes you listed above. 27
Oid you account for all of the smal cuber in Figure 2? Yes

Ignite!

Painted Cubes

Students use connecting cubes to build a larger cube. They relate what they build to faces and volume.

Material: 30 connecting cubes for each group

1. Direct students to Figure 1.

- What are the dimensions of the large cube?

2. Have students work in pairs to build a $2 \times 2 \times 2$ cube using connecting cubes.

- How many connecting cubes are needed to make a $2 \times 2 \times 2$ cube?
- How could you determine the number of connecting cubes needed without counting them one-by-one?

3. Have students imagine dipping the entire $2 \times 2 \times 2$ cube into a bucket of red paint. The entire outer surface of the cube would now be red.

- For each cube, how many of its faces would be red? How many would not be red?

4. Direct students to Figure 2.

- How could you determine the total number of small cubes in Figure 2 without counting them one-by-one?
- Based on your findings for Figures 1 and 2, how could you determine the total number of small cubes needed to make $4 \times 4 \times 4$ cube?

5. Have students use connecting cubes to build a $3 \times 3 \times 3$ cube.

- Are there any connecting cubes in the cube you built that cannot be seen at all? Explain.

6. Have students answer the questions on the student page for Figure 2 for dipping a $3 \times 3 \times 3$ cube into a bucket of red paint.

- How many connecting cubes would have ... all 6 faces painted red? Where are they? exactly 5 faces painted red? Where are they? exactly 4 faces painted red? Where are they? exactly 3 faces painted red? Where are they?

Workstations

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.

Additional Resources

Use the resources below to provide additional support for this unit.

Vocabulary

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.

Foldables

Use the unit foldables with Lessons 2-3 and 2-4.

Spiral Review

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.

Lesson	Standard
$2-1$	$4 . O A . A$
$2-2$	4.NBT.A
$2-3$	4.NBT.B
$2-4$	4.NF.A
$2-5$	4.NF.B

Understand Volume

Learning Targets

- I can describe volume as an attribute of solid figures.
- I can describe how rectangular prisms can be packed using unit cubes with no gaps or overlaps.

Standards \circ major Δ supporting \circ Addifional

Content

\checkmark 5.MD.C Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.
\diamond 5.MD.C. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
\diamond 5.MD.C.3.a A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.

Mathematical Practices and Processes

MPP Attend to precision.
MPP Look for and make use of structure.

Vocabulary

Math Terms
 Academic Terms
 rectangular prism
 analyze
 unit cube establish
 volume

Materials

The materials may be for any part of the lesson.

- centimeter cubes
- marbles, beans, or other measurement units
- Nets Teaching Resource

Focus

Content Objective

- Students understand volume is a measurable attribute of 3-dimensional figures.
- Students understand that a rectangular prism can be packed using unit cubes with no gaps or overlaps to establish volume.

Language Objectives

- Students talk about ways to measure volume using the verb find.
- In order to support sense-making and maximizing linguistic, ELS will participate in MLR2: Collect and Display.

SEL Objective

- Students use prior knowledge and new understanding of mathematical concepts to complete a task, building stronger self-efficacy.

Next

- Students measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units (Unit 2).
- Students find the volume of a right rectangular prism with fractional edge lengths (Grade 6).

Number Routine Would You Rather?

Build Fluency Students build skills with multiplication and finding area as they compare measurements.
These prompts encourage students to talk about their reasoning:
-What strategies did you use in finding your answer?
-What do you know about the sizes of the yards?

Rigor

Conceptual Understanding

- Students develop understanding of volume as the amount of space taken up by a solid object.

Procedural Skill \& Fluency

- Students develop proficiency with determining volume.

Procedural skill and fluency is not a targeted element of rigor for this standard.

Application

- Students apply their understanding of volume in different situations.
Application is not a targeted element of rigor for this standard.

Purpose Students notice similarities and differences among
2-dimensional and 3-dimensional objects.

Notice \& Wonder ${ }^{\text {TM }}$

- How are they the same?
- How are they different?

Teaching Tip You may wish to have students use physical objects in the classroom, such as a tissue box, pencil box, and construction paper, to compare and contrast attributes of 2-dimensional and 3-dimensional objects.

ETP Pose Purposeful Questions

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' recognition of volume as a measurable attribute of solid figures and are based on possible comments students may make during the share out.

- How can you establish if a figure has length, width, and height?
- How can you measure a 2-dimensional figure?
- How can you measure a 3-dimensional figure?

Math is... yindset

-What do you already know that can help you with today's work?
Self-Awareness: Self-Efficacy
As students work through the Notice \& Wonder ${ }^{\text {m' }}$ routine, provide specific, constructive feedback that can help guide each student toward taskcompletion. This sense of completion can enhance feelings of self-efficacy in mathematics as well as provide models for peers. As students work with understanding volume throughout the lesson, encourage them to connect and use their prior knowledge of area. Encouraging use of prior knowlede can help students feel more competent and promote stronger self-efficacy.

Transition to Explore \& Develop

EIP Establish Goals to Focus Learning

Help focus students' attention on the attributes of the shelves and the pictures, specifically, their measurable attributes,

[^1]

Learn

(1) Pose the Problem

MLP

Collect and Display

As students discuss the questions, make a list of key words you hear, such as alike, different, width, length, dimensional, volume, and area. Display the list and use it to help students connect words they already know and math vocabulary.

EPP Pose Purposeful Questions

- What do you think are the mathematically important attributes of the figures?
- How can you use a tool to organize your answers?
-What words can you use to help you organize your answers?
- How can you use mathematical categories to solve this problem?

(2) Develop the Math

Choose the option that best meets your instructional goal.

3 Bring It Together

Elicit Evidence of Student Thinking

- How is volume similar to area? How is it different?
- Could you pack a rectangualr prism with a length of $3 \frac{1}{2}$ units using unit cubes with no gaps or overlaps? Explain why or why not.
- Can you think of figures other than rectangular prisms that could be packed using unit cubes without gaps or overlaps? Explain why theu could be packed that way.

Key Takeaways

- Volume is an attribute of 3-dimensional figures.
- Volume is the space occupied by a 3-dimensional figure.
- Rectangular prisms can be packed using unit cubes with no gaps or overlaps to establish volume.

Work Together

Students explore which figures can pack a rectangular prism without gaps. Students can work on the problem in pairs before sharing their work.

- Common Misconception: Make sure students understand that the marbles do not fill the rectangular prism completely. When packing a 3 -dimensional figure to determine volume, there must be no gaps.

$\stackrel{\text { LOM }}{1}$ Language of Math

Make sure students see the cube connections in volume. Packing with unit cubes is used to determine volume in cubic units.

Activity-Based Exploration

Students explore the concept of volume by filling a paper rectangular prism with different units, such as unit cubes, marbles, and beans.
Materials: Nets Teaching Resource, unit cubes, marbles, beans, or other measurement units

Directions: Provide each pair or small group a copy of Nets Teaching Resource and various measurement units. Demonstrate how to form rectangular prisms using the nets. Have students determine how many of each unit can fit inside the rectangular prism.

Support Productive Struggle

- How would you explain what you are trying to determine?
- Explain why there are different numbers for each unit used to fill the rectangular prism.
- What is different about the way the beans/marbles fill the rectangular prism when compared to the way the unit cubes fill the rectangular prism?

Math is... Precision

- Does an empty box have volume? Does a filled box have volume? Explain why or why not.

Students try to use clear definitions in discussion with others and in their own reasoning.

Activity Debrief: After students have completed the activity, facilitate a discussion to ensure students understand the terms volume, unit cubes, and rectangular prism.

Have students revisit the Pose the Problem question and discuss answers.

- How are these figures alike? How are they different?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students develop an understanding that 3-dimensional figures also have a measurable attribute called volume, and that volume can be measured by packing rectangular prisms with unit cubes.

EIP Pose Purposeful Questions

- Think About It: Why is the width a length?
- Think About It: Why is the height a length?

©
Have students build rectangular prisms and other figures using unit cubes with no gaps or overlaps to gain a deeper understanding of the idea of packing with unit cubes with no gaps or overlaps.

- What solid could be filled without gaps ot overlaps using cylinders? Explain why.

Math is... Precision

- Does an empty box have volume? Does a filled box have volume? Explain why or why not.

Students use clear definitions in discussion with others and in their own reasoning.

2. Develop the Math

What measurable attributes do these figures have in common?

English Learner Scaffolds

Entering/Emerging Support students in understanding the terms fill and pack. Fill a small box with similar objects, such as counting chips. Say, I'm filling the box. Shake the box so it's clear that the objects don't encompass the entire volume of the box. Next, using cubes or any like object, completely pack the box, saying, I'm packing the box. Shake the box so it's clear that the objects completely pack the entire box (there should be no movement). Repeat with new objects, both filling and completely packing the box. Ask Did I pack this box?

Developing/Expanding Support students in understanding the terms fill and pack. Fill a small box with similar objects, such as counting chips. Say I'm filling the box. Shake the box so it's clear that the objects don't encompass the entire volume of the box. Next, using cubes or any like object, completely pack the box, saying, I'm packing the box. Shake the box so it's clear that the objects completely pack the entire box (there should be no movement). Ask students to repeat the task with similar objects to demonstrate fill and pack, stating which they are doing each time. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to explain what it means to both fill and pack something. As students provide their explanations, listen for key words such as gaps, overlaps, andvolume, and prompt students to explain how they know if an object is packed or not.

Practice \& Reflect © 10 min

a. STEM Connection An ocean engineer Heeds to tie the wals of an oceanarium Does he need to Find the area of the walls or the volume? Explain why. He Niso needs to fill the tank with seawater Does he need to find the arma or volume? Explain why
Sample answer: Walls are $\mathbf{2}$-dimensional and have area. The tank is 3 -dimensional and has volume.
9. Eech rectangular prism is filied with unit cubes. Which is packed wth no gaps of overiops? Justity your feasoning

Sample answer: The one on the right is filled completely by the unit cubes. There are no gaps or overlaps.
s0. Ettend Your Thinking Can you pack a cyinder with unt cuben wehout gaps or overtbas? Exploin your thinking.
Sample answer: No. The unit cubes will leave gaps between them and the curved surface of the cylinder.

(D) Reflect

How can fexptoin volume of rectangular prisns to a triend? Answers may vary.

Practice

Build Fluency from Understanding

Common Error: Exercise 5 Students may assume that a concrete patio consists just of its surface. Point out that a concrete patio has depth in addition to length and width.

Practice Item Analysis

Item	DOK	Rigor
1	2	Conceptual Understanding
$2-7$	2	Conceptual Understanding
8	3	Conceptual Understanding
9	4	Conceptual Understanding
10	4	Conceptual Understanding

Reflect

Students complete the Reflect Question.

- How can I explain volume of rectangular prisms to a friend? Ask students to share their reflections with their classmates.

Math is... lindset

-What do you already know that can help you with today's work?
Students reflect on how they practiced self-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson.

- I can describe volume as an attribute of solid figures.
- I can describe how rectangular prisms can be packed using unit cubes with no gaps or overlaps.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to
students from the Digital Teacher Center.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item	pOK	Skill	Standard
1	1	Understand volume	5.MD.C.3.a
2	1	Understand volume	5.MD.C.3.a
3	2	Understand volume	5.MD.C.3.a

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score	then have students do
3 of 3	Additional Practice or any of the \boldsymbol{B} or \boldsymbol{B} activities
2 of 3	Take Another Look or any of the \boldsymbol{B} activities
1 or fewer of 3	Small Group Intervention or any of the \boldsymbol{Q} activities

Key for Differentiation

(B) Reinforce Understanding
(B) Build ProficiencyExtend Thinking

Take Another Look Lesson

Assign the interactive lesson to reinforce targeted skills.

- Understand Volume

Differentiation Resource Book, p. 1

-esson $2 \cdot 1$ - Reinforce Understanding

Understand Volume
Name

The space inside a triee-dimens onal figure is called volume You can fili a figure with unit cubes to dentermine the volume

Put an X next to the siluation that would be measured using unit cubes.
2 \qquad Karly is messuing the ostance she drove to schooi
2. \qquad Karly is messuring what can fit in heer lunch box. X Matt s measuring how much sand a sand bor hoks. Motis is messuing the spoce a miror we thene on the wall
4. \qquad Gwen is measuring how much of the foor a tug covers. X Gmen is messuring now much we fet ina storage ing.
5. Descrice now to thad the voume of a tabbit cange Sample answer: Measure the volume by packing the cage with unit cubes with no gaps or overlaps.

Build Proficiency

Practice It! Game Station

Volume Sort

Students explore volume.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 1-2

Lesson 2.1

Additional Practice

Name

Review

Volume is the space inside a three-dimensional figute
You can fil the invide of the ligure with unt cubes to determine Its wolume.

1. Which of these flgures has volume? Justily your ronsoning.

Sample answer: The rectangular prism and the sphere are the only two figures that are three-dimensional.
2. Tell which type of unt you would use to measure each of the following. Cnoose from length units. square unith. or cubic units
a. e piece of string length units
b. the amount of space inside a retrigerator cubic units
c. the amount of foor space a carpet covers square units

Extend Thinking

Own It! Digital Station

 Build Fluency GamesAssign the digital game to develop fluency with multiplying to find area.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 1-2

For each situation, tell whether you would measure uning length units, square units, or cublc units. Explain your reasoning.
3. Franco is measuring the amount of wall space in his foom so that he knows how much paint to buy
square units; Sample answer: Area is measured in square units.
4. Katrina wants to know how much water is inulde her fish tank. cubic units; Sample answer: Volume is measured in cubic units.
5. Pete wants to know how far he walks from home to school, length units; Sample answert Distance is measured in length units.

Use your understanding of area and volume to explain your answer.
6. Harnal warts to know how much atr is invide her balloon. She thinks that she should calcilate the area of the baloon. Herry sugpests thest she should find the volume of the balloon. Who is veriect? Explain.
Herry: Sample answer: The space inside the balloon is a measure of volume.

 ponat kas rein int inimise
showst trictice low

Use It! Application Station

You Are a Computer Programmer
Students design a computer program to find the volume of a rectangular prism. The content of this card has concepts covered later in Lesson 2-3. You may want

to assign this card to students ready
to explore content covered later
in this unit.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 2

Lesson 2.4 - Extend Thinking Understand Volume

 NompA cereal company advertises its new box that is shaped like a bowl.

1. Do these boxes have volume? Explain-

Yes; Sample explanation: Since it can be filled, it has volume.
2. Can you use und cubes to find the volume at these booper? Explain.
No; Sample answer: There will be gaps after filling it.
3. The store fis a paper bog with the new
boves. Can you uve the new boxes to lind the volume of the paper bag? Explain.
No; Sample answer: They cannot be used to measure volume. There will be gaps after the bag is filled.

4. The company wants to be able to use their boxes to find the volume of the paper bag. What shape of cereal box do you recommend? Explain
Sample answer: A unit cube that will fill the bag with no gaps or overlaps will tell the volume.

LESSON 2-2

Use Unit Cubes to Determine Volume

Learning Targets

- I can determine volume by counting unit cubes that fill a solid with no gaps or overlaps.
- I can determine volume by multiplying the number of unit cubes in one layer by the number of layers that fill a solid with no gaps or overlaps.

Standards \circ major Δ supporting \circ Additional

Content

\diamond 5.MD.C.3.a A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
\diamond 5.MD.C.3.b A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
\diamond 5.MD.C. 4 Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units.

Math Practices and Processes

MPP Look for and make use of structure.

Vocabulary

Math Terms
 cubic unit
 Academic Terms
 unit cube suggest
 volume

Materials

The materials may be for any part of the lesson.

- centimeter cubes
- Nets Teaching Resource

Focus

Content Objective

- Students determine the volume of a rectangular prism by counting unit cubes.
- Students determine the volume of a rectangular prism by multiplying the number of unit cubes in one layer by the number of layers.

Language Objectives

- Students discuss how to determine the volume of any 3 -dimensional solid by counting unit cubes while answering Wh- questions.
- In order to support optimizing output, ELs will participate in MLR3: Critique, Correct, and Clarify.

SEL Objective

- Students exchange ideas for mathematical problem-solving with a peer, listening attentively and providing thoughtful and constructive feedback.

Coherence

Previous

- Students described volume as an attribute of solid figures and understood concepts of volume measurement (Unit 2).

Now

- Students measure volume by packing prisms with unit cubes then counting, using cubic cm , cubic in, cubic ft , and improvised units.

Next

- Students use two formulas to determine the volume of a right rectangular prism with wholenumber side lengths (Unit 2).

Rigor

Conceptual Understanding

- Students understand that the volume of a right rectangular prism can be determined by counting the number of unit cubes that fill it completely with no gaps or overlaps.

Procedural Skill \& Fluency

- Students build proficiency in determining volume using multiplication.

Application

- Students start to recognize the relationship between the dimensions of a rectangular prism and how many unit cubes it takes to pack it

Application is not a targeted element of rigor for this standard.

Number Routine Would You Rather? ${ }^{5-7 \mathrm{~min}}$

Build Fluency Students build skills with multiplication and area as they compare measurements.

These prompts encourage students to talk about their reasoning:

- What information about the rugs did you use to find your answer?
- How could you use estimation to compare the areas of the rugs?

Purpose Students explore objects that fill a solid container. They consider what objects may fill the given space with no gaps or overlaps.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip It may help students visualize the scenario by distributing containers shaped like rectangular prisms or plastic cups, and have them fill the cups with objects like counting cubes.

ETP Pose Purposeful Questions

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' thinking about packing a solid to determine volume and are based on possible comments and questions students may make during the share out.

- What ways could you suggest to count the boxes in the truck?
- Do the boxes pack the truck with no gaps or overlaps? Explain why or why not.

Math is... Aindset

- How can different ideas and viewpoints help you learn better?

SEL
 Social Awareness: Appreciate Diversity

As students consider the Notice \& Wonder routine, invite them to collaborate with peers and discuss different tools/strategies/ representations/methods that they might use to determine the volume of the box. As students share their unique thought processes and ideas, emphasize the value of the differences as well as the similarities so students can understand the importance of diversity within a math context. Encourage students to listen to and build off the ideas of their peers.

Transition to Explore \& Develop

Establish Goals to Focus Learning

Ask questions that focus students' attention on the packing and counting objects to find volume and efficient ways to do that counting.

[^2]

Explore \& Develop © ${ }_{20 \text { min }}$

Learn

How can you determine the volume of thls bour

You can pack the box with unt cubes to determine the volume. A unit cube has a volume of one cubic unit.

One way to determine the volume of a 3 -dimensional figure is to pack $\$$ with unit cubes and count the cubes.

Q Work Together

How can you deternine the volume of this box? Sample answer: There are 4×3, or 12 , unit cubes in each layer. There are 5 layers and $12 \times 5=60$.

(1) Pose the Problem

EIP

Pose Purposeful Questions

- How does the picture help you understand this problem?
- Using what you know about volume, can you make a conjecture about how to find the volume of the box?
- How will the units and labels you will use correspond to the quantities in this problem?

(2) Develop the Math

Choose the option that best meets your instructional goal.

Critique, Correct, and Clarify
Make a false claim for students to critique. Draw a cube with 3×2 unit cubes and 4 layers. Solve, but add instead of multiply the layers. Say The volume of the box is 10 . Yes or No? Have the class discuss how to correct your mistake. Revisit this activity throughout the lesson.

3 Bring it Together

EIP Elicit Evidence of Student Thinking

- How is a cubic unit like a square inch? How is it different?
-When can you count unit cubes to determine the volume of a solid figure?
- What strategies can you use to find quickly the number of unit cubes that pack a rectangular prism?

Key Takeaways

- A unit cube has a volume of 1 cubic unit.
- Volume of rectangular prisms can be determined by counting the number of unit cubes that fill the rectangular prism with no gaps or overlaps.
- Volume of rectangular prisms can be found by multiplying the number of unit cubes in one layer by the number of layers that fill the prism.

Work Together

Students determine the total number of unit cubes that fill a rectangular prism when given the number of cubes in the length, width, and height.
[Common Misconception: Students may count just the number of cubes shown. Remind them that they are determining the volume of the box, so they need to imagine that the box is filled with the cubes.

OM

Language of Math

Some students may have noticed that packing unit cubes in layers like this would leave gaps if any of the dimensions of the box contained a fraction. For our purposes, rectangular prism means rectangular prism with whole number dimensions.

Activity-Based Exploration

Students explore volume of rectangular prisms by multiplying the number of unit cubes in each layer by the number of layers.

Materials: centimeter cubes, Nets Teaching Resource
Directions: Demonstrate creating a rectangular prism from nets. Have students pack the rectangular prism using centimeter cubes to determine its volume.

ETP Implement Tasks that Promote Reasoning and Problem Solving

- How might you pack a box with unit cubes? Where would you start?

After students have completed the activity, ask

- What do you notice about how the cubes are arranged in the box?
- How can you describe the relationship between the number of layers, the number of cubes in each layer, and the volume of the box?

Math is... \{tructure

- What concepts have you learned before that were useful when determining the volume?

Students relate the concepts of multiplication as equal groups (or arrays) to the calculations used to determine volume.

Activity Debrief: Have students share their strategies for counting the number of centimeter cubes needed to fill the rectangular prism. Encourage students to use precise language, such a multiplication.

Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the volume of this box?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students explore ways to determine the volume of rectangular prisms.

EPP Facilitate Meaningful Discourse

- Think About It: What do you notice about the way the unit cubes are packed?
- If the unit cubes did not fill the box completely, could you determine the volume? Explain why or why not.
(1) Have students propose strategies they have for counting the number of unit cubes that pack the box. Encourage them to debate the advantages of their strategies.
- Can you to make a layer a different way? How could you use it to find the volume of the box?

Math is... Structure

-Why can you use addition or multiplication to determine the number of unit cubes?

Students are understanding the properties in mathematics that connect repeated addition and multiplication.

2. Develop the Math

How can you measure the volume of a rectangular prism?

We can pack the figure with unit cubes to determine its volume.

E.

English Learner Scaffolds

Entering/Emerging Support students in understanding the terms gaps. Add some objects to a box, being sure not to fill it. Point to the spaces inside the box. Say There are gaps. Repeat the task again, asking, Are there gaps?

Developing/Expanding Support students in understanding the terms gaps. Add some objects to a box, being sure not to fill it. Point to the spaces inside the box. Say There are gaps. Ask students to repeat the task with similar objects provided to them. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to discuss how gaps affect the volume of an object. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, I disagree because gaps...

Practice \& Reflect © wionin

8. What equatiors could you write to determine the volume of this figure?
Sample answer: $4+4+4=12 ; 3 \times 4=12$

9. The volume of this box is 36 cubic unts. How many legens of unit cubes are in the box? Explain your thinking. 6 layers; Sample answer: There are 6 unit cubes in each layer; there are 36 unit cubes to fill the box; $36 \div 6=6$

10. Error Analysis Carlos and Kaplee are fincing the volume of this figure. Carlos sams there afe 5
layers with 8 unt cuber in each layer Kayiee says there are 4 layers with 10 unit oubes in pach layer Who is cortect? Explain
Both are correct; Sample explanation: Carlos and Kaylee are looking at the prism different ways; Carlos is describing layers from "left to right'; Kaylee is describing layers from "front to back."

(P) Reflect

> How does understanding muiliplication as atea connect to determining the volume of a 3 -dimensional figure?
> Answers may vary.

Practice

Build Fluency from Understanding

Common Misconception: Exercise 10 A layer does not have to be horizontal or the bottom. A layer can be vertical. Students should choose the orientation of the layer based on what is easiest for them to use. If it is easier to find the number of cubes in a vertical layer, then they should use that.

Practice Item Analysis

Item	DOK	Rigor
$1-4$	1	Procedural Skill \& Fluency
$5-7$	2	Procedural Skill \& Fluency
$8-10$	3	Conceptual Understanding

Reflect

Students complete the Reflect Question.

- How does understanding multiplication as an array connect to determining the volume of a 3 -dimensional figure? Ask students to share their reflections with their classmates.

Math is... Aindset

- How can different ideas and viewpoints help you learn better? Students reflect on how they practiced social-awareness.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson

- I can determine volume by counting unit cubes that fill a solid with no gaps or overlaps.
- I can determine volume by multiplying the number of unit cubes in one layer by the number of layers that fill a solid with no gaps or overlaps.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to
students from the Digital Teacher Center.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item pOK	Skill	Standard	
1	2	Count unit cubes	5.MD.C.4
2	2	Count unit cubes	5.MD.C.4
3	2	Find volume	5.MD.C.4

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
2 of 3
1 or fewer of 3
Additional Practice or any of the (B) or activities Take Another Look or any of the (B) activities

Key for Differentiation
(B) Reinforce Understanding
(B) Build ProficiencyExtend Thinking

Lesson 2.2

Exit Ticket
Name

1. How mary cubes will fill the box without gaps or overlaps?

(A) 20 cubes
B. 14 cubes
C. 10 cubes
D. 7 cubes
2. How many blocks will be needed to fill the box without gaps or overaps?

30 blocks
3. Nathan made a rectangular prism with unit cubes. What is the volume of the prism?

Volume $=24$ cubic units
Reflect On Your Learning

Reinforce Understanding

Finding Volume

Work with students in groups of three. Give each student 30 unit cubes. Have each student create a rectangular solid using some or all of the cubes then find the volume of the figure. Have students switch figures with another student and find the volume of the figure. Then have students switch again so that each student finds the volume of all three figures. If necessary, remind students that they can count the number of cubes used to find the volume.

Take Another Look Lessons

Assign the interactive lessons to reinforce targeted skills.

- Volume Using Unit Cubes
- Volume Using Multiplication

Differentiation Resource Book, p. 3

Lesson 2-2 - Reinforce Understanding

Use Unit Cubes to Determine Volume
Name
Review
Pack the aquarium with unit cubes to determine the volume.

Count the cubes that fill the bottom liyyer, Thete are 15 cubes. Muttiply by the number of tayers. There are 4 layers. $15 \times 4=60$
The volume is 60 cubic units.

Match the figure to its volume.

1 b

2 \qquad

a. 48 cubic unts
b. te cubic unts
c. 38 cubic unts
3. Determine the number of larers in box il these ace 12 cubes in each toypr and the wolume is 72 cabic units. Explain.

Sample answer: Divide the volume by the number of cubes in each layer. $72 \div 12=6$. There are 6 layers.

Build Proficiency

Practice It! Game Station

Volume Sort
Students explore volume.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 3-4

Leston 2-2

Additional Practice
Name

Review

You can find the volume of a rectangular prism by packing if with cubes.

The rectanguler posm can hold 24 unt cuoes.
The volume of the prism s 24 cubic unsts.

Find the volume of each cube.

Find the volume of each rectanguiar prism.
3. 20 cuble units
4. 36
_ rubic units

Shawe Forliculow

Extend Thinking

Own It! Digital Station

Build Fluency Games

Assign the digital game to develop fluency with multiplying to find area.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 3-4

7. Maria is packing DVDs into a thipping bax Explain how many DVDr nillat in one stipping box
32 DVDs; Sample answer: I counted the 4 DVDs in one
 layer, and then I multiplied that by 8 since there are 8 layers.
8. Mohummed drow unt coubes on a piefure of a truck to findite volume. What is the velume of the truck? Explitin.
45 cubic units; Sample answer: I counted a total of 45 unit cubes.
9. Jared warts a bidd cage with a volume of at soat 35 cubic feot for his parrot. The coge shown a on sale. Is this bird cage large enough? Explain.

Yes; The volume of the bird cage is 36 cubic feet, which is larger than 35 cubic feet.

@ Home Activity

Sudent Nucker lixik

Use It! Application Station

Harvesting Water Students plan and build a model of a rainwater harvesting reservoir. The content of this card has concepts covered later in Lesson 2-4. You may want to assign this card to students ready to explore content
 covered later in this unit.

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 4

Lesson 2-2-Extond Thinking

Use Unit Cubes to Determine Volume
Name
You have been asked to design boxes with specific volumes.

1. Box A has a volume of 24 unt cubes, Identify each possible mumber of layers and the number of cubes in each toyer.

2. Box A has a volume of 36 unit cubes, identify pach possible number ol hapers and me number of cutes in each lyyer

3. What strategy did you use to find all of the csfferent bowes?

Sample answer: : found all of the ways to multiply to get the volume.

Use Formulas to Determine Volume

Learning Targets

- I can find the volume of rectangular prisms using formulas.
- I can explain how to find the volume of rectangular prisms using formulas.

Standards $\stackrel{\text { Major }}{ } \Delta$ supporting \circ Additional

Content

\diamond 5.MD.C.5.a Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.
\checkmark 5.MD.C.5.b Apply the formulas $V=I \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.

Mathematical Practices and Processes
MPP Model with mathematics.

Focus

Content Objective

- Students determine the volume of rectangular prisms using formulas

Language Objectives

- Students explain how to determine the volume of rectangular prisms using formulas while answering $W h$ - and $\mathrm{Yes} / \mathrm{No}$ questions and using the term dimensions.
- In order to support cognitive meta-awareness and optimize output, ELs will participate in MLR1: Stronger and Clearer Each Time.

SEL Objective

- Students practice strategies for persisting at a mathematical task, such as setting a small goal or setting timers for remaining focused.

Coherence

Previous	Now	Next
- Students measured volumes by		
counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units (Unit 2).	- Students use formulas to determine the volume of a right rectangular prism with whole- number side lengths.	- Students determine the volume of composite solid figures (Unit 2).

Rigor

Conceptual Understanding

- Students use their understanding of volume to develop the formula used to calculate the volume of rectangular prisms.

Procedural Skill \& Fluency

- Students build proficiency in calculating the volume of rectangular prisms.

Application

- Students apply the formulas for volume of a rectangular prism to solve real-world problems.

Vocabulary

Math Terms Academic Terms

base (of a solid) assert
formula evaluate

Materials

The materials may be for any part of the lesson.

- cubes

Number Routine Can You Make the Number?

Build Fluency Students build number sense as they use combinations of numbers and mathematical operations to make the target number.

Remind students there is more than one solution to the problem. If they find one way, challenge them to continue to find other ways.

These prompts encourage students to talk about their reasoning:

- How many different equations did you write to make the target number?
- How many different mathematical symbols did you use?

Purpose Students notice that layers are one way of arranging objects, such as pizza boxes.

Notice \& Wonder

-What do you notice?
-What do you wonder?
Teaching Tip You may wish to have students Turn and Talk before sharing out their ideas with the whole class.

 Pose Purposeful Questions

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' abilty to generalize the strategies they used in the previous lesson and are based on possible comments students may make during the share out.

- Are the boxes rectangular prisms? How could you find the volume of one of the boxes?
- What information would you need to determine the total volume of the stack of boxes?

Math is... .indset

-What can you do to stay focused on your work?
Self-Management: Control Impulses
Provide opportunities for students to practice self-regulation. Have students discuss strategies to help maintain focus for the Notice \& Wonder routine. As you transition from the Notice \& Wonder routine, brainstorm strategies that can help students express emotionally and behaviorally appropriate responses in times of frustration or disappointment. As students work with using formulas to determine volume, invite them to practice deep-breathing techniques or take movement breaks when necessary.

Transition to Explore \& Develop

ETP Establish Goals to Focus Learning

Ask questions that focus students' attention on the techniques they have used for counting, and how they might be used to create a formula for finding the volume of a rectangular prism.

- Let's think about how we can determine and use a formula and use it to find the volume of a rectangular prism.

Learn

What are some ways to determine the volume of this rectangular prism?

You can use a volume formala to determine the volume of a rectangular prism.

C Work Together

What do you notice about the volumes of the rectangular prians? Explain whty this occurs.

They all have the same volume. Sample explanation: They all have the same dimensions; $10 \times 5 \times 2=100$

(1) Pose the Problem

EIP

Pose Purposeful Questions

-What problems like this have you done this before?
-What patterns did you see in the way you solved those problems?
-What words will you use to explain your thinking?

- How will the units and labels you will use correspond to the quantities in this problem?

(2) Develop the Math

Choose the option that best meets your instructional goal.

MLP

 Stronger and Clearer Each TimePair students and have them determine the volume of a figure. Have them individually write sentences explaining the steps they took to get the volume. Then have them share their writing with their partner and revise if necessary. Revisit throughout the lesson for reinforcement.

(3) Bring it Together

 ETP
Elicit Evidence of Student Thinking

- Explain how the $V=B \times h$ formula represents the volume of a rectangular prism.
- Explain how the $V=l \times w \times h$ formula determines the volume of a rectangular prism.

Math is... Yodeling

- How are the two formulas related?

Students are looking at the structure in mathematics that relates the length times the width and the number of cubes in the base layer.

Key Takeaway

- Two formulas can be used to determine the volume of rectangular prisms: $V=l \times w \times h$ and $\forall B \times h$.

Work Together

Students think about how using different bases for the same prism yields the same volume, and how that represents the Associate Property. Have students work on the problem in pairs before asking them to share their work.
[Common Misconception: Students may feel they need to calculate the volume of each rectangular prism to compare their volumes. Suggest to them that the volumes can be compared without determining the volumes of any of the prisms.

Language of Math
Base is a difficult term to define. Fortunately, for rectangular prisms, any face can serve as a base. This is not the case for prisms in general.

Activity-Based Exploration

Students derive the volume formulas by exploring patterns in the dimensions of rectangular prisms with the same volume.

Materials: 24 cubes per pair or small group
Directions: Have students explore different rectangular prisms that have a volume of 24 cubic units.

- What is the shortest rectangular prism you can create with a volume of 24 cubic units? Tallest?
- It is possible to create a height of each number between 1 and 24 ? If not, which heights are possible?

5 ET
 Support Productive Struggle

- How can you record your work?
- How did you determine that it is not possible to have a height of 5 units?

After students have determined all possible heights of rectangular prisms with a volume of 24 cubic units, ask them to determine all possible dimensions of the rectangular prisms.

- How did you begin to think about this problem?
- How could you prove that you have found all possible dimensions of the rectangular prisms?
- What strategy did you use to solve this problem?
- How does your strategy compare to a classmate's strategy?
- How does your thinking connect to previous mathematical concepts?

Activity Debrief: Facilitate a discussion to ensure all students understand that an efficient method of determining all possible rectangular prisms with a volume of 24 cubic units is to think about factors of 24 . From this understanding, students can derive the volume formulas.

Have students revisit the Pose the Problem question and discuss answers.
-What are some ways to determine the volume of this figure?

Guided Exploration

Students generalize the method for determining the volume of a rectangular prism discovered in the previous lesson to derive two formulas for calculating volume of rectangular prisms.

- How are slices of bread like layers? How are they different?
- Think About It: When have you multiplied length by width before? What measurable attribute were you finding when you multiplied length by width?

\oplusEnsure students understand that Base in the formula represents the area of the base of the rectangular prism (as well as the number of cubes in a layer), by having students connect the number of cubes in a layer to the area of the base of that layer.
2. Develop the Math

What do you notice about cubes in this 3 dimensional figure?

Bridging/Reaching Ask students to explain why it's important to know the dimensions of an object before trying to find its volume. As students provide their explanations, listen for key words and phrases such as height, length, width, and volume formula, and provide validation or correction as needed.

Practice \& Reflect © 10 min

8. A freeres, shaped illow a rectangular prism, is 6 feet long. 2 feet wide, and 3 feet tail. What is the volume of the freezer? 36 cubic ft
9. An Ohympic swimming pocl is 2 meters deep. What is the volume of the swifming poor? 2,500 cubic m
10. Extend Vour Thinking Do you agree of disagree with tha statement? Justily your teasoning. When the edge lengths of e rectangular prisen are doubled. the volume is also doubled. Disagree; Sample answer: When the edge lengths are doubled the volume is 8 times as much because $2 \times 2 \times 2=8$.
51. Error Analysis Cofton says that he boes not have enough information to find the volume of the ligure. Do you sqree? Explain
Yes, Sample answer: You also need to know the height of the figure to find the volume.

© Reflect

Can you use a formuas to find the volume of this rectangular prism? Explain whty or wity not. Answers may vary.

Practice

Build Fluency from Understanding

Common Error: Exercises 4-5 Students may be confused that the area of the base is given and not the number of cubes in the base layer Remind them that both are equal to the length times the width.

Practice Item Analysis

Item	DOK	Rigor
$1-2$	2	Procedural Skill \& Fluency
$3-6$	3	Procedural Skill \& Fluency
7	4	Conceptual Understanding
$8-9$	3	Application
$10-11$	4	Conceptual Understanding

Reflect

Students complete the Reflect Question.

- Does the base you use to find the volume of a rectangular prism have to be its bottom? Explain why or why not.
Ask students to share their reflections with their classmates.

Math is... Mindset

-What steps did you take to maintain focus?
Students reflect on how they practiced self-management.

Learning Targets

Ask students to reflect on the Learning Targets of the lesson

- I can find the volume of rectangular prisms using formulas.
- I can explain how to find the volume of rectangular prisms using formulas.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

Assess $Q_{10 \text { min }}$

Exit Ticket Formative Assessment

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker

Item			DOK Skill
1	2	Use volume formula	Standard
2	2	Use volume formula	5.MD.C.5.b
3	2	Use volume formula	5.MD.C.5.b

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations

If students score then have students do

3 of 3
2 of 3
1 or fewer of 3

Key for Differentiation

(B) Reinforce Understanding
(B) Build ProficiencyExtend Thinking

Reinforce Understanding

Calculate Volume

Provide students with a piece of paper showing several rectangular prisms with the length, width, and height labeled in one column and a list of calculated volume in the other. Have students calculate the volumes of the prisms and match them with the values in the volume column. Each prism should be matched with a value. If students struggle, remind them that the Distributive and Associative properties may make it easier to multiply.

Take Another Look Lessons

Assign the interactive lesson to reinforce targeted skills.

- The I $\times w \times h$ Volume Formula
- The $B \times h$ Volume Formula

Differentiation Resource Book, p. 5

Lesson 2.3 - Reinforce Understanding
Use Formulas to Determine Volume
Name

Review

There are 2 formulas you can use to find the volume of the prism.

$$
\text { Volume }=\text { length } \times \text { width } \times \text { height }
$$

$$
V=B \times h
$$

$$
V=i \times w \times h
$$

$$
V=8 \times 3
$$

$$
V=4 \times 2 \times 3
$$

$V=24$ cubic units
$V=24$ cubic units

Match each figure to its volume.

a. 72 cuble units
c. 30 cubic inits
4.
b. 200 cubic unts

d. 108 cubic units

Build Proficiency

Practice It! Game Station

Volume Showdown

Students practice using a formula to find the volume of rectangular prisms.

Interactive Additional Practice

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 5-6

Lesson 2.3

Additional Practice

Name

Review

You can calculate the volume of a rectangular prism by maltiplying its length, width, and height.

A rectangular prism has a length of 5 centimeters, a with of 2 centimeters. and a height of 3 centimeters $V=1 \times w \times h=6 \times 2 \times 3=36$ cubic cm . $V=8 \times A=12 \times 3=36$ cubic cm:

Use the given volume formula to calculate the volume of each rectangular prism. $V=l \times w \times h$

1. $V=\frac{5}{60}$ in $\times \frac{4}{} \mathrm{in} \times \frac{3}{} \mathrm{in}$.
$v=60$ cubic in

2. $V=\frac{7}{84} \mathrm{~cm} \times \frac{3}{\mathrm{~cm} \times 4} \mathrm{~cm}$

Use It! Application Station

You Are a Computer Programmer
Students design a computer program to find the volume of a rectangular prism.

Spiral Review

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Student Practice Book, pp. 5-6

Label the dimensions of each rectangular prism. Then use the volume formula to calculate the volume of each prism. $V=8 \times h$
Students should label the fength, width, and height of each prism.
3. $v=9 \times 6$

5. Use the two volume formulas, $V=1 \times w \times h$ and $V=B \times h, 10$ withe mutiplication equations for the velume of tie rectangular prism.

$$
v=6 \times 4 \times 2
$$

$$
v=24 \times 2
$$

5. Calculite the voliume of a video garme console wath the dirsersions 9 inches by ti inches by 3 inches.

$$
v=9 \text { in } \times 11 \text { in } x \quad 3
$$

$$
V=297 \text { cubicith }
$$

2. A window mir condtioner can cool a space of up to 50 nubic Imiters. The floor of a room fas an ares of 16 s ruare meters. and the telght of the wath is 3 triters. Wit the sir condevener be abte to cool the room? Explain
Yes; The volume can be calculated using the volume formula $V=B \times h$. The area of the base is 16 square meters and the height is 3 meters. The volume of the room is $V=16 \times 3=48$ cubic meters, which is within the range of the air conditioner.
Math

Math @ Home
 Activity

Extend Thinking

Websketch Exploration

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 6

Lessan 2.3-Extend Thinking

Use Formulas to Determine Volume

Name
Each item is placed in the smallest possible boi. Use the dimensions of the box to label the measurements of the objects. Then determine the volume of the bax.

Dimensions: 5 in $\times 5$ in $\times 15$ in Volume: 375 cubicin.
3.

Dimensiones. to $\mathrm{in} . \times 10 \mathrm{in} . \times 10 \mathrm{in}$ volume 1,000 cublic in.
4.

Dimpmaions: $28 \mathrm{~cm} \times 22 \mathrm{~cm} \times 22$ Dimensions $107 \mathrm{~cm} \times 7 \mathrm{~cm} \times 7$ cm
on
Volume 13.552 cubic in Volume 5.243 cubic cm
5. What dotermines the dimensions of the sinallest possiblio box tar sach ohject?
Sample answer: The longest part of the object has the same length as the box. The widest part of the object has the same width as the box. The deepest part of the object has the same depth as the box.

Math Probe

Unit 2

Volume of Rectangular Prisms
Name
Which expressions) can be used to determine the volume of the rectangular prisms shown? Select all that apply. Do not actually find the volume of the prism.

(C) 15×2
b. $5+3+2$
c. $(5 \times 2)+(3 \times 2)+(5 \times 3)$
d. $10 \times 15 \times 6$
e. $2 \times 3 \times 5$

Explain your choices) Explanations may vary.

Analyze The Probe Formative Assessment

Targeted Concept The volume of a rectangular prism may be found by multiplying the three dimensions. It may also be found by multiplying the area of the base by the height.

4 Targeted Misconceptions Some students lack understanding of volume and the relationship between area and volume. They may use addition to determine volume, confuse volume with surface area, or recognize the formula, $V=I \times w \times h$, as the only way to calculate the volume of a rectangular prism.

Authentic Student Work

Below are examples of correct student work and explanations.

Sample A

1.

Oriole al/ correct expressions.
(a. 15×2
b. $5+3+2$
c. $(5 \times 2)+(3 \times 2)+(5 \times 3)$
d. $10 \times 15 \times 6$
e. $2 \times 3 \times 5$

Sample B

Circle all correct expressions.
a. $20 \% \frac{6}{6}+10$
(b.) 60×20
c. $(10)(5) \times 20$
d. $20 \times 6 \times 10$
e. $(20 \times 8) \cdot(6 \times 10)$

Explain your choices).

$$
\begin{aligned}
& \text { I chose } A \text { and } E \\
& \text { because with } A \text { the } \\
& \text { Problem was just } \\
& \text { a Step a head from } E \text {. } \\
& \text { It was still using } \\
& \text { mol typlication of } 1, w, h \text {. }
\end{aligned}
$$

Explain your choice (s).
they are basiclly the same equation $20 \times 6 \times 10$ 20×60 60×20

Reflect On Your Learning

Collect and Assess Student Work

Collect and review student response to determine possible misconceptions. See examples in If-Then chart.

Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

Take Action

Choose from the following resources or suggestions:

- Revisit the activities on understanding and finding volume in Lessons 2-1, 2-2, and 2-3.
- Use concrete materials to construct rectangular prisms to build understanding of the meaning of volume and to develop a variety of approaches to find volume. These approaches should include counting units and determining the area of a layer, extrapolating to multiple layers that comprise the prism.
- Explore the relationship between area and volume and how knowledge of the area of a base of a prism can be used to find the volume.
- Build understanding that the volume of a rectangular prism can be represented with more than one expression-and that those expressions are equivalent.

Revisit the Probe after additional instruction. Have students review their initial answers to the probe. Use these questions for discussion:

- Are there any answers you would like to change? Which ones?
- Explain why you might want to change them.
- Are there any questions that you still have about any of the items on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Determine the Volume of Composite Figures

Learning Targets

- I can find the volume of composite figures.
- I can explain how to find the volume of composite figures.

Standards $\stackrel{\text { major }}{ } \Delta$ supporting \circ Addifitional

Content

\checkmark 5.MD.C.5.c Recognize volume as additive. Find volumes of solid figures composed of two nonoverlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.

Mathematical Practices and Processes

MPP Reason abstractly and quantitatively.
MPP Model with mathematics.

Focus

Content Objective

- Students determine the volume of composite solid figures.

Language Objectives

- Students discuss how to determine the volume of composite solid figures while answering Wh-questions.
- In order to support optimizing output, ELs will participate in MLR5: Co-Craft Questions and Problems.

Now

- Students recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms.

SEL Objective

- Students engage in active listening and work collaboratively with a partner to complete mathematical tasks.

Coherence

Previous	Now	Next
- Students found and used two	- Students recognize volume as	
formulas to determine the	additive. Find volumes of solid figures composed of two	$V=I \times w \times h$ and $V=b \times h$ for rectangular prisms to find
volume of a right rectangular prism with whole-number side lengths (Unit 2). rectangular prisms.	volumes of right rectangular prisms with whole- number edge lengths in the context of	
		solving real world and mathematical problems (Unit 2).

Rigor

Conceptual Understanding

- Students build on their understanding of volume by decomposing composite figures to calculate volume. They recognize that volume is additive and to calculate the volume of the composite figure, the volumes of each part must be added.

Procedural Skill \& Fluency

- Students build proficiency with calculating volumes of rectangular prisms by using the volume formulas.

Application

- Students build proficiency with calculating volumes of rectangular prisms by using the volume formulas.

Vocabulary

Math Terms Academic Terms
composite solid
figure
complex
speculate
formula

Materials

The materials may be for any part of the lesson.

- Nets Teaching Resource
- ruler
- unit cubes

Number Routine Can You Make the Number?

Build Fluency
Students build their
number sense as they use combinations of numbers and mathematical operations to make the target number.

Remind students there is more than one solution to the problem. If they find one way, challenge them to continue to find other ways.

These prompts encourage students to talk about their reasoning:

- What two numbers do you want to start with?
-What operation(s) could you perform to create an answer close to 21 ?
- What other number(s) from the list and which operation(s) could you use to get the number closer to 21 ?

Purpose Students discuss and share their thoughts about composite figures composed of rectangular prisms.

Notice \& Wonder

- How are they the same?
- How are they different?

Teaching Tip You may want to have students work in pairs as they look for similarities and differences. This can help build a collaborative classroom culture. It also allows for greater participation among students as they share their thinking with their partners.

EIP Pose Purposeful Questions

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' awareness of composite figures composed of rectangular prisms and are based on possible comments and questions students may make during the share out.

- How do you think the figure on the right was made?
- What do you think is the volume of the figure on the right?

Math is... sindset

-What can you do today to help build a relationship with a classmate?

Invite students to partner with a new or less familiar peer to complete the activity. Encourage students to actively and respectfully listen to one another as they explore and collaborate to identify similarities and differences.

Transition to Explore \& Develop

Erp Establish Goals to Focus Learning

Ask questions that focus students' attention on the additive nature of volume and how it could be used to determine the volume of a composite figure.

- Let's think about how we can use parts of a figure to determine the volume of the figure.

Explore \& Develop © ${ }_{20 \text { min }}$

Learn

How can you determine the volume of this figure?

You can determine the volume of the composite solid figure by adding the volumes of the rectangular prisms that compose it.

C. Work Together

Draw lines to show how you could decompose the solid. What is the volume of the figure? 9 cubic meters

(1) Pose the Problem

EIP Pose Purposeful Questions

- How are the quantities in this problem related?
- How does the picture help you make sense of those quantities?
-What words will you use to explain your thinking?
- How will the units and labels you will use correspond to the quantities in this problem?

(2) Develop the Math

Choose the option that best meets your instructional goal.

MLR
Co-Craft Questions and Problems
Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the task throughout the lesson for reinforcement.

(3) Bring It Together

EIP

Elicit Evidence of Student Thinking

- How is the process for determining the volume of a composite solid figure similar to the process of finding the area of a composite 2-dimensionsal figure? How is it different? How is it more complex?

Key Takeaway

- The process for determining the volume of acomposite solid figure is similar to the process of finding the area of a composite 2-dimensional figure.

Work Together

Students think about decomposing a composite figure into rectangular prisms to find the volume of the composite figure. Have students work on the problem in pairs before asking them to share their work.

Common Error: Students may struggle because all sides are not labeled. Point out that all the edges and faces in this figure are parallel or perpendicular. Because of that, for example, they can extrapolate the unknown edge lengths.

LOM
 Language of Math

Composite solid figures are not limited to figures composed of rectangular prisms. In Grade 1, students spent time composing solid figures of cubes, right rectangular prisms, right circular cones, right circular cylinders, etc.

Activity-Based Exploration

Students explore the concept of finding the volume of composite solid figures.
Materials: Nets Teaching Resource, ruler
Directions: Have students construct a composite solid figure that matches the figure in the Pose the Problem. Students can measure the prisms to find the dimensions of the figure.

Support Productive Struggle

- What do you notice about this figure?
- How could you decompose this figure?
-What rectangular prisms do you see?
- How is finding the volume of a composite figure similar to finding the area of a composite figure?

Math is... Connections

- Why should the volume be the same whichever way you decompose a composite figure?

Students are thinking abstractly about the volume of a figure being independent of the way it is decomposed

Activity Debrief: Have students share how they decomposed the composite solid figure and found the volume of each rectangular prism. Encourage students to explain why it was necessary to add the volumes of each rectangular prism to determine the volume of the composite solid figure. Have students revisit the Pose the Problem question and discuss answers.

- How can you determine the volume of this figure?

A PDF of the Teaching Resource is available in the Digital Teacher Center.

Guided Exploration

Students extend their understanding of decomposing 2-dimensional composite figures to find area to decomposing composite solid figures to find volume.

ETP Use and Connect Mathematical Representations

- How does this figure look familiar?
- How can the labels in the drawing of the figure help you solve the problem?
- Think About It: Why are some of the dimensions filled in and some are not?

©Have students determine the missing lengths. Ensure that students understand the length of the composite figure is 4 feet.

Have students determine the volume using a different decomposition. Show that decomposing the composite figure horizontally results in the same volume. Students may also notice that the composite solid figure can be decomposed into three rectangular prisms.

Math is... Connections

- Why should the volume be the same whichever way you decompose a composite figure?

Students are thinking abstractly about the volume of a figure being independent of the way it is decomposed.

EL

 English Learner ScaffoldsEntering/Emerging Support comprehension of the phrase that compose it. With students, look together at the sentence below the table on the Learn page. Make sure students understand that it refers to the composite solid figure. Have students move a finger from "it" back to "composite solid figure." Then explain that that compose it gives us more information about the prisms. It means that there are rectangular prisms in the composite solid figure. Be sure to accompany your explanation with comprehension supports such as pointing to visuals on the page.

Developing/Expanding Support comprehension of the phrase that compose it. With students, look together at the sentence below the table on the Learn page. Ask students what it refers to (the composite solid figure). Then ask what that compose it gives us more information about (the prisms). Explain to students that this means that there are rectangular prisms in the composite solid figure. Work with students to break down the meaning into more manageable chunks of information: This is a composite solid figure. In it are two rectangular prisms.

Bridging/Reaching Work with students to break down the meaning and purpose of the phrase that compose it. With students, look together at the sentence below the table on the Learn page. Have students discuss what they think this means. The composite solid figure has two rectangular prisms in it. You can add the volumes... to,,, Ensure that students understand that that compose it tells us more about the prisms and that it refers to the composite solid figure.

Practice \& Reflect © 10 min

Draw line(s) to show how you decomposed the figure.
What is the volume of the figure? Sample lines shown.

8. STEM Connection An ocean engineer is designing an underwater robot. The robot will hive two pieces llac the one shown. What is the volume of the robot? 360 cubic cm
9. A sign comparty made this letter ining rectengular prisms. Each pism is 12 inches by 4 inches by 4 inches. What is the volume of the letter? Exptain
576 cubic in:; Check students' explanations.

Extend Your Thinking Two rectanguiar pisms hove a combined volume of t8 cubicfeet. The volume of one prism is twice the volume of the other prism. What is the volume of each prism? Recoud your thinking 6 cubic ft and 12 cubic fi: Check students' work.

(e) Reflect

```
How is finding the volume of composite figures similar to finding the area of componte figures?

\section*{Practice}

\section*{Build Fluency from Understanding}

Common Error: Exercises 4-5 Students may not include units.
Remind them that including correct units in an answer is as important as doing correct calculations.

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline 1 & 2 & Conceptual Understanding \\
\(2-7\) & 3 & Procedural Skill \& Fluency \\
8 & 3 & Application \\
\(9-10\) & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect Question.
- How is finding the volume of composite figures similar to finding the area of composite figures?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- What did you do to help build a relationship with a classmate?

Students reflect on how they developed stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can find the volume of composite figures.
- I can explain how to find the volume of composite figures.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item & pOK Skill & Standard \\
\hline 1 & 2 & Find volume of composite figures & 5.MD.C.5.C \\
2 & 2 & Find volume of composite figures & 5.MD.C.5.C \\
3 & 2 & Find volume of composite figures & 5.MD.C.5.C \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations
\begin{tabular}{l|l} 
If students score & Then have students do \\
\hline 3 of 3 & Additional Practice or any of the \(B\) or \(\boldsymbol{B}\) activities \\
2 of 3 & Take Another Look or any of the \(B\) activities \\
1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(3) Build Proficiency

E Extend Thinking


Lesson 2-4
Exit Ticket
Name
1. Find the volume of the composite figure.

\[
\begin{aligned}
& \text { The volume of the figure } \\
& \text { is } \quad 32 \text { cubic units. }
\end{aligned}
\]
2. Hannah uies two boxes to cieate a set of stails for her dog What is the volume of the set of stairs?


The volume of the stairs
is 1.800 cubic inches.
3. Which expression shows how to find the volume of the compesite Sigure?


Reflect On Your Learning


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Find the Dimensions}

Work with students in pairs. Give each student 24 unit cubes. Have each student use some or all of the cubes to create a composite figure, sketch the figure, and label the dimensions. Then have students switch sketches with their partners and use the labeled sketches to find the volume of each figure. Encourage students to determine how the figures could be divided into two rectangular prisms and what the dimensions of each prism would be. Students can check each other's work by identifying the number of unit cubes used.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Recognize Volume as Additive


Differentiation Resource Book, p. 7

\section*{-osson \(2-4\) - Reinforce Understanding \\ Determine the Volume of Composite Figures}


Find the volume of each figure. Draw line(s) to show how you decomposed the figure.


\section*{Build Proficiency}

\section*{Practice It! Game Station}

Additive Volume Task Cards
Student practice finding the volume of composite figures.

\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.

Student Practice Book, pp. 7-8

\section*{Lesson 2.4}

Additional Practice
Name

\section*{Review}

You can find the volume of a composite solid figure by decomposing the figure, finding the volume of each solid figure. and then adding to find the total volume

The composite solid figure can be decomposed into rectanguiar proms with volumes of 36 cubic units and 48 ciblic units. The total volume of the composte solid tigure is \(36+48=84\) cubic unts.


Find the volume of each composite solid figure.


Find the volume of each figure. Draw line(s) to show how you decomposed the figure.


\section*{Extend Thinking}

\section*{Use It! Application Station}

Harvesting Water Students plan and build a model of a rainwater harvesting reservoir.


\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 8

\section*{Lesson 24 - Extend Thimexing Determine the Volume of Composite Figures}

\section*{Name}

Sam and Kelly were given the dimensions of concrete benches. Each builds the benches using 2 blocks of concrete. The diagrams show how each person builds the bench.
1. Calculate how much concreter was used for wach.


Volume 396 cubic ft


Volumer. 396 cubic ft
2. Compare the wips the benches were buit. How are they dithe? How bee they different?
Sample answer: They are the same size, and they are each made from 2 pieces. They decompose the bench differently.
3. Compare the amounts of concrete used for aach bench They use the same amount of concrete.
4. What can you conclude about how the decompostion of the benches offects the amount of concrete used? Explan why.
Sample answer: How the bench is decompased does not affect the amount of concrete. The benches are identical in size, and, therefore, have the same volume.

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 7-8
```

5. Find the volume of concrete used
to cteote these steps. Explam
your work.
Top Prism
V=40}\times20\times8=6,400\mathrm{ cubk in
Bottom Prism:
V=40}\times30\times8=9,600 \mathrm{ aibic in
Total Volume
V=6,400}+9,600=16,000 \mathrm{ cubkin.
16,000 cublc in.; Sample answer: I decomposed the steps into one prism with a volume of $40 \mathrm{in} . \times$ $20 \mathrm{in} . \times 3 \mathrm{in}$. $=6,400$ cubic in . and another prism with a volume of $40 \mathrm{in}, \times 30 \mathrm{in} . \times 3 \mathrm{in},=9,600$ cubic in. The total volume is 6,400 cubic in. + 9,600 cubic in. $=16,000$ cubic in.
6. The shape of an entertairment center is nown Catculato tr yolume. Explain your work. 28,500 cuble in.;
```


\section*{Own It! Digital Station}

Build Fluency Games
Assign the digital game to develop fluency with multiplying to find area.

Sample answer: I decomposed the entertalnment center into one prism with a volume of \(30 \mathrm{in} . \times 15\) in. \(\times 5\) in. \(=2,250\) cubic in. and another prism with a volume of \(70 \mathrm{in} . \times 15 \mathrm{in} . \times 25 \mathrm{in} .=26,250\) cubic in. The tatal volume is 2,250 cubic in. + 26,250 cubic in. \(=28,500\) cublic in.

Math
@ Home Activity




\section*{Solve Problems Involving Volume}

\section*{Learning Targets}
- I can solve problems involving volume.
- I can describe how to solve problems involving volume.

\section*{Standards \(\circ\) major \(\triangle\) supporting \(\circ\) Addifional}

\section*{Content}
\(\diamond\) 5.MD.C.5.b Apply the formulas \(V=l \times w \times h\) and \(V=b \times h\) for rectangular prisms to find volumes of right rectangular prisms with whole- number edge lengths in the context of solving real world and mathematical problems.

\section*{Mathematical Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Reason abstractly and quantitatively.

\section*{Focus}

\section*{Content Objective}
- Students apply the volume formulas to solve real-world problems involving rectangular prisms.

\section*{Coherence}

\section*{Previous}
- Students applied the area and perimeter formulas for rectangles in real world and mathematical problems (Grade 4).
- Students recognized volume as additive. Found volumes of solid figures composed of two non-overlapping right rectangular prisms (Unit 2).

\section*{Language Objectives}
- Students talk about applying the volume formula to solve real-world problems using the adjective given.
- In order to support cultivating conversation, ELs will participate in MLR8: Discussion Supports.

\section*{SEL Objective}
- Students determine the strategies and analyses necessary to make informed decisions when engaging in mathematical practices.

\section*{Rigor}

\section*{Conceptual Understanding}
- Students continue to build on their understanding of volume. They relate volume to multiplication and addition and solve real-world problems involving volume.

Conceptual understanding is not a targeted element of rigor for this standard.

\section*{Now}
- Students apply the formulas \(V=I \times w \times h\) and \(V=b \times h\) for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.

\section*{Next}
- Students recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left (Unit 3).
- Students find the volume of a right rectangular prism with fractional edge lengths (Grade 6).

\section*{Number Routine Where Does It Go?}

\section*{Build Fluency Students build} estimation skills and spatial reasoning as they determine a number's position on a number line relative to two other numbers.

These prompts encourage students to talk about their reasoning:
- With what number would you label the center of each number line?
-Where does 532 fall with respect to the center of each number line?
- How can you be sure that 532 can be plotted on each line?

Purpose Students share and discuss volume of real-world objects, and that objects may have the same volume but different dimensions.

\section*{Notice \& Wonder}
- How are they the same?
- How are they different?

Teaching Tip You may wish to have students Think-Pair-Share before inviting volunteers to share what they notice about the different containers.

\section*{EIP \\ Pose Purposeful Questions}

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' awareness of volume of real-world objects, and that objects may have the same volume but different dimensions and are based on possible comments and questions students may make during the share out.
- How can two rectangular prisms with the different dimensions have the same volume?
- If you know the product of three factors and you know two of the factors, how can you determine the factor you do not know?

\section*{Math is... Mindset}
- How can creative thinking help you solve a problem?
\(\square\) Responsible Decision-Making: Solve Problems Help students develop responsible decision-making skills by providing them opportunities to practice problem solving. As students begin the Notice \& Wonder routine, encourage them to first identify the problem, then think critically about what they will do to solve the problem. As students work through the Notice \& Wonder routine, have them think about alternative ways to find objects that have the same volume but different dimensions. Encourage students to use a different strategy to check their answer or identify multiple possible answers/solutions. As you come together to collaboratively discuss the Notice \& Wonder routine, you can invite students to share their problem-solving processes.

\section*{Transition to Explore \& Develop}

\section*{ETP Establish Goals to Focus Learning}

Ask questions that focus students' attention on using the volume formulas to solve real-world problems.

\footnotetext{
- Let's think about using the volume formulas we know to help us solve real-world problems.
}


\section*{Learn}

A fish tank has a volume of 24 cubic feet. How can you determine the height of the fish tank?

\author{
Math is.: Quantities \\ How can you describe the relationship \\ between the given quantities?
}


You can use a volume formula to solve problems.
\begin{tabular}{|c|c|}
\hline The volume of the tarik is 24 cubic feet. The base is 8 square feet. & To solve the equation, write a related division equation. \\
\hline \(V=8 \times h\) & \(24=8 \times h\) \\
\hline \multirow[t]{3}{*}{\(24=8 \times h\)} & \(24+8=n\) \\
\hline & \(24+8=3\) \\
\hline & The fish tank has a height of 3 feet. \\
\hline
\end{tabular}

When solving problems involving volume, you can use the given information to help you determine which volume formula to use.

\section*{Q. Work Together}


\section*{(1) Pose the Problem}

\section*{GIP}

\section*{Pose Purposeful Questions}
- What quantities in this problem are relevant? Why?
- How could a drawing help you make sense of those quantities?
- How could a formula or tool help you solve this problem?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goal.}

\section*{MLR}

Discussion Supports
As students engage in discussing the answers to the questions, restate statements they make as a question to seek clarification. Encourage students to challenge each other's ideas when warranted, as well as to elaborate on their ideas and give examples.

\section*{3 Bring It Together}

\section*{IP}

\section*{Elicit Evidence of Student Thinking}
- How can you check that an unknown dimension you found is valid?
- If you know the height and volume of a rectangular prism, explain how you could find the area of its base.
- Describe how the length, width, height, and volume of a rectangular prism are related.

\section*{Key Takeaway}
- The volume formulas for rectangular prisms can be used to solve real-world problems.

\section*{Work Together}

Students think about using volume formulas to determine the missing dimension in a real-world problem. Have students work on the problem in pairs before asking them to share their work.

Common Error: Students may use the wrong unit in their answer, e.g., 2 cubic inches. Remind them that they are trying to determine the height, which is the length of one of the edges of the box, and that length is measured in units, like inches.

\section*{Lom}

\section*{Language of Math}

Students may be familiar with context from their literacy classes. That term is used in mathematics also. Students use the context of a real-world problem to write an equation that relates the quantities in the problem and to check if their answer makes sense.

\section*{Activity-Based Exploration}

Students apply the volume formula to solve real-world problems.
Materials: Problem-Solving Tool Teaching Resource
Directions: Distribute copies of the Problem-Solving Tool Teaching Resource to each student or pairs. Have students solve the Pose the Problem.

\section*{Math is... Quantities}
- How can you describe the relationship between the given quantities?

Students are making sense of quantities and their relationships.

\section*{ETP Implement Tasks that Promote Reasoning and Problem Solving}
-What formula did you use to solve the problem?
-What is another formula you could have used?
- Why might you use one formula and not another?

Activity Debrief: After students solve the problem, have students discuss answers and check students' understanding.

A PDF of the Teaching Resource is available in the Digital Teacher Center.


> English Learner Scaffolds
> Entering/Emerging Support students in understanding the meaning of the word given as it pertains to the lesson. Point to 24 cubic feet in the problem on the Learn page. Say The volume of the fish task is given. Next, point to the fish tank and ask What other quantity is given? (8 square ft).

Developing/Expanding Support students in understanding the meaning of the word given as it pertains to the lesson. Point to 24 cubic feet in the problem on the Learn page. Say The volume of the fish task is given. Then, without pointing at or gesturing towards the fish tank, ask students to tell you what other quantity is given.

\section*{Guided Exploration}

Students apply the volume formula to solve real-world problems.

\section*{Math is... Quantities}
- How can you describe the relationship between the given quantities?

Students are making sense of quantities and their relationships.

\section*{Facilitate Meaningful Discourse}
- Think About It: Why doesn't the formula \(V=I \times w \times h\) help solve this problem?
- Does the related division equation \(24 \div h=8\) help you solve the problem? Why or why not?

QHave students work in pairs or small groups to discuss strategies to solve unknown factor problems. Invite volunteers to share their strategies. Encourage students to compare the strategy they used to their classmates' strategies.
- Explain why the answer is 3 feet and not 3 cubic feet.

\section*{2. Develop the Math}

Let's think about what you know
What measurements are you given? What measurements are unknown?


Bridging/Reaching Encourage students to explain how given quantities can help them to find the volume, height, or base of an object. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, I disagree because... or No, given quantities...

\section*{Practice \& Reflect ©romin}

5. Errer Analyals Desmond soid that the volume of the sandboxis to cubic feet. Do you agree with Desmond's solution? Explain your thinking. Sample reponse: I disagree with his solution. The volume of the
 sandbox is \(\mathbf{3 2}\) cubic ft . Desmond added the dimensions, rather than multiplying.
6. Lisa is bullding a rectangular planter that is 2 feer wide, 4 feet fang and 1 toot high She has 3 cubic feet of soll How much more soil does she need to fill the planter? Explain,
5 cubic ft more; Sample explanation: \(V=2 \times 4 \times 1\); \(V=8\) cubic feet; \(8-3=5\)
2. The aquarium tank has a volume of 320 cubic meters. What is the wictit of the tanke 5 how your work. 10 m : Sample work:
\(8 \times w \times 4=320\); \(32 \times w=320 ; 32 \times 10=320\)

8. Eatend Yoar Thinkling Rachef is heiping build a rectanguiar sanobox with a volume of 60 eubic feet ang a neight of 3 feet. What ate the possible lengths and widt's of the sandbox? Sample answer: 1 ft by \(20 \mathrm{ft} ; 2 \mathrm{ft}\) by \(10 \mathrm{ft}: 4 \mathrm{ft}\) by 5 ft

\section*{(2) Reflect}

How did yau thini like a mathematician io solve inese probiems? Answers may vary.

\footnotetext{

}

\section*{Practice}

\section*{Build Fluency from Understanding}

Common Error: Exercise 6 Students may try to find an unknown dimension for this problem. Point out to them that not all real-world problems involving volume are those types of problems. This is a two-step problem. Suggest that students do it in chunks by finding the volume first.

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline 1 & 2 & Conceptual Understanding \\
\(2-3\) & 2 & Procedural Skill \& Fluency \\
\(4-6\) & 4 & Procedural Skill \& Fluency \\
7 & 3 & Application \\
8 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect Question.
- How did you think like a mathematician to solve these problems? Ask students to share their reflections with their classmates.

\section*{Math is. Mindset}
- How did creative thinking help you solve a problem?

Students reflect on how they practiced responsible decision-making.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can solve problems involving volume.
- I can describe how to solve problems involving volume.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess Q \(_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|l|}{ Item } & DOK Skill & Standard \\
\hline 1 & 3 & Solve problems involving volume & 5.MD.C.5 \\
2 & 3 & Solve problems involving volume & 5.MD.C.5 \\
3 & 3 & Solve problems involving volume & 5.MD.C.5 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{|l|l|}
\hline If students score & Then have students do \\
\hline 3 of 3 & Additional Practice or any of the \(\boldsymbol{B}\) or \(\boldsymbol{B}\) activities \\
2 of 3 & Take Another Look or any of the \(\mathbf{B}\) activities \\
\hline 1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{Q}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
( Reinforce Understanding
B
Build ProficiencyExtend Thinking



\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Solve Volume Problems


Differentiated Resource Book, p. 9

\section*{Lesson 2.5 - Reinforce Understanding}

Solve Problems Involving Volume
Name

\section*{Review}

The box Joe jumps out of has a volume of 640 cubic inches.
How can you determine the height of the box?


The ves ative has arime sen:

Uwe the formuia \(V=B \times h\)
\(640=64 \times h\)
Ask yourseit: Whar times 64 equols 640 ?
\(640 \div 64=10\)
The height of Jock's box is 10 inches.
1. The base of the popcorn box is 28 square inches. The popcom box holds 252 cubic inches of popcom What is the helght of the popcom box? 9 Inches
2. The volume of a toolbox is 480 cubic inches. What is the wiatn? Explain 8 in. \(; 6 \times 10 \times 8=480\), so the width has to be 8 in .

3. Alex has 3,120 mubic centimeters of gaining cartridges to store in a box The bors height is 5 centimeters and the area of its base is 600 square centimeters. Will the cartridges filit the bex completely? Explain.
Sample answer: No, the volume of the box is 3,000 cubic centimeters, which is less than the cartridges.

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Volume Situation Concentration
Students solve word problems involving volume.


\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 9-10

\section*{lesson 2.5}

\section*{Additional Practice}

Name

\section*{Review}

You can solve problems involving volume by using the formulas \(V=I \times w \times h\) and \(V=B \times h\).

The unkenown length of the rectangular grism can be found ty substhuling the values for the volume, widtr, and height into the volume formula.
\[
V=1 \times w \times h
\]
\[
968=1 \times 4 \times 6
\]
\[
968=1 \times 24
\]

\(58+24=1\)
\(7=1\)
The unkenown length is 7 centimoters

\section*{Solve.}
1. The volume of the dresser is 24 cublic levt How tall is the dresser? Exploin.
4 ft ; Sample answer: The area of the base is \(2 \times 3=6\). Since \(V=\) \(B \times h, 24=6 \times h\), and so \(h=24\) \(\div 6=4\).
2. The volume of the tectangulor prism is 432 cubic inches. What is the with of the prism?
9 in.; Sample answer:


Since \(V=i \times w \times h, 432=12 \times w \times 4\). Then 432 \(=48 \times w\) and so \(w=432 \div 48=9\).
sumethacker lod.

Unit 2 • Volume

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplying to find area.


\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 9-10
3. A treezer hus a volume of 54 cubic /pet it has a length a/f 6 feet and a height of 3 feet. What is the width of the freezer? Explain.
3 ft : Sample answer: 1 used the volume formula to solve.
\[
\begin{aligned}
54 & =6 \times w \times 3 \\
54 & =18 \times w \\
54 \div 18 & =w \\
3 & =w
\end{aligned}
\]
4. Andren has a container in the shope of a rectangular pilam that she unes for btieberry picing if the bivecerres fill ine container to a height of 15 cemtimetors, what is the volume of the bluaberies in the cortainenf Show yout work


6,000 cubic \(\mathrm{cm}: V=20 \times 20 \times 15=6,000\) cubic cm
5. A katchen isiand has a volumet of 42 cubic foet. Use the diversibes given in the fiqure to. find the missing dimension Explein
3 ft : Sample answer: I decomposed the figure into one prism with dimensions
4 ft by 2 ft by 3 ff (volume of \(24 \mathrm{cu} . \mathrm{ft}\) ) and another prism with the dimensions 2 ft by? ft by 3 ft . Since the total volume is \(\mathbf{4 2} \mathbf{~ c u}\). f , the volume of the second prism is \(42-24=18 \mathrm{cu} . \mathrm{ft}\). Then I found the missing dimension \(=3 \mathrm{ft}\) using volume.

\section*{Use It! Application Station}

Developing and Using Models Students
create a scale model of a kitchen cabinet.


\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.

Differentiated Resource Book, p. 10

\section*{Lessan 2.5-Extend Thinking}

\section*{Solve Problems Involving Volume}

Name
The volume of a tissue box is 48 cubic inches. The area of the base of the box is 12 square inches.
1. Cartos says the height of the tissue boe must be 4 inches is he comet?
Explain
Yes. Sample answer: The area of the base times the height equals the volume, and \(12 \times 4=48\).
2. Deanna sog that the only possolie lengit \(\qquad\)
 at the tasuen box is 4 inches and wee ony pomiole widh is 3 inches. is she corect? Explain
No. Sample answer: This is only one of the possible dimensions for the length and width of the base. There are other numbers that muttiply to 12 , so the length and width could be other measures.
3. List all the possible side lengths for the base

1 in . by \(12 \mathrm{in.}\),2 in . by 6 in , and 3 in . by 4 in .
4. What are nill of the passtile dimensions for a tistue bor with an ares of the base 12 square inches and a valume of 48 cubic inches?
1 in . by 12 in . by \(4 \mathrm{in} . ; 2 \mathrm{in}\). by 6 in . by 4 inn .: 3 in . by 4 in . by 4 in .
5. How many passible tissive beces are there weth a bimes with an area of is square incles ane a volume of 60 ciutic inches? Explain 2; Sample explanation: The height must be 4 inches, and there are two ways to get \(15,1 \times 15\) and \(3 \times 5\).

\section*{Unit Review}

9. Which equation repiesents the different ways to find the volume of these figures?
man \(2-8\)


Promen B:
\[
(4 \times 3) \times 2=4 \times(3 \times 2)
\]
\((3 \times 4) \times 2=(4 \times 3)+2\)
C. \(3 \times(4 \times 2)=(3 \times 4) \times(3 \times 2)\)
b. \(3 \times(4+2)=3 \times 4)+(3 \times 2)\)

A rectangular poot is 42 feet long 15 feet wide, and 4 feet high. it is ed with water to s depth of 3

C. 630 cubic feet
(D.) 4890 cubic feet

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{l|l|}
\hline Item & Lesson \\
\hline 1 & \(2-4\) \\
2 & \(2-1\) \\
3 & \(2-1\) \\
4 & \(2-2\) \\
5 & \(2-3\) \\
6 & \(2-1\) \\
\hline
\end{tabular}

\section*{Review}

Item Analysis
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 7 & 2 & \(2-3\) & 5.MD.C.4 \\
8 & 2 & \(2-2\) & 5.MD.C.4 \\
9 & 3 & \(2-3\) & 5.MD.C.5.a \\
10 & 2 & \(2-5\) & 5.MD.C.5.b \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

\section*{Item Analysis (continued)}
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 11 & 3 & \(2-3\) & 5.MD.C.5.a \\
12 & 2 & \(2-4\) & 5.MD.C.5.c \\
13 & 2 & \(2-4\) & 5.MD.C.5.C \\
14 & 3 & \(2-4\) & 5.MD.C.5.C \\
\hline
\end{tabular}


\section*{Performance Task}

An ocean engineer places cube-shaped crates on a ship as shown in the figure.


Part A: One studert saw the boxes and said that the figue has a volume of 7 cubic units. Is the stident conrect Explein your thinking. No; Sample answer: The student did not count the cubes that were hidden under the top layer. The figure has a volume of 10 cubic units.

Part Br The ocean engineer adds more crates so that the ligure becomes a rectangular prism that has a length of 3 units, a width of 3 units, and a holght of 2 unts. How many mote chites does the ocean engineer add? Show your work and explain your answer. 8 more crates; Sample answer: The volume of the figure the engineer wants is \(3 \times 3 \times 2=18\), or 18 cubic units. There are already 10 cubic units, so they need 8 more crates.

\section*{(D) Reflect}

Describe two ways to determine the volume of rectanguter priams
Answers may vary.


Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students review decomposing by place value to build fluency with subtracting.

Fluency Progression
\begin{tabular}{|l|l|l|}
\hline Unit & Skill & Standard \\
\hline \(\mathbf{1}\) & Use Partial Sums to Add & 4.NBT.B.4 \\
\hline \(\mathbf{2}\) & Decompose by Place Value to Subtract & 4.NBT.B.4 \\
\hline \(\mathbf{3}\) & Use an Algorithm to Add & 4.NBT.B.4 \\
\hline \(\mathbf{4}\) & Use an Algorithm to Subtract & 4.NBT.B.4 \\
\hline 5 & Choose a Strategy to Add & 4.NBT.B.4 \\
\hline 6 & Choose a Strategy to Subtract & 4.NBT.B.4 \\
\hline 7 & Multiply by Multiples of 10 & 5.NBT.B.5 \\
\hline 8 & Multiply by Multiples of 100 & 5.NBT.B.5 \\
\hline 9 & Divide Multiples of 10 & 5.NBT.B.6 \\
\hline 10 & Divide Multiples of 100 & 5.NBT.B.6 \\
\hline 11 & \begin{tabular}{l} 
Use an Algorithm to Multiply (2- and 3-Digit
\end{tabular} & 5.NBT.B.5 \\
\hline 12 & \begin{tabular}{l} 
Numbers by 1-Digit Numbers) \\
Use an Algorithm to Multiply (2-Digit Numbers \\
by 2-Digit Numbers)
\end{tabular} & 5.NBT.B.5 \\
\hline 13 & \begin{tabular}{l} 
Choose a Strategy to Multiply \\
Choose a Strategy to Multiply
\end{tabular} & 5.NBT.B.5 \\
\hline 14 & 5.NBT.B.5 \\
\hline
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Performance Task}

\section*{Field Trip to the Science Center}

Students draw on their understanding of volume. Use the rubric shown to evaluate students' work.

Standards: 5.MD.C.3, 5.MD.C.3.a, 5.MD.C.4, 5.MD.C.5, 5.MD.C.5.c Rubric (10 points)

Part A (DOK 1) - \(\mathbf{2}\) points
2 POINTS Student's work identifies which person best shows the volume. The student's explanation is reasonable.

1 POINT Student either identifies the correct person or has a reasonable explanation.
0 POINTS Student does not identify the correct person. The student's explanation is not reasonable.

\section*{Part B (DOK 3) - \(\mathbf{2}\) points}

2 POINTS Student's work identifies best arrangement for calculating volume. The student's explanation is reasonable.
1 POINT Student either identifies best arrangement for calculating volume or has a reasonable explanation.
0 POINTS Student does not identify the best arrangement for calculating volume. The student's explanation is not reasonable.

\section*{Part C (DOK 2) - 2 points}

2 POINTS Student's explanation is reasonable. Student's work shows proficiency in finding the volume of a composite figure.
1 POINT Student's explanation is reasonable. Student's work reflects developing proficiency in finding the volume of a composite figure and an inaccurate solution is due to computational errors, rather than conceptual weaknesses.
0 POINTS Student's work shows weak proficiency in finding volume of composite figures. The student's solution is incorrect.

\section*{Part D (DOK 2) - 2 points}

2 POINTS Student's work shows proficiency in calculating volume of a figure. The student's explanation is reasonable.
1 POINT Student's explanation is reasonable. Student's work reflects developing proficiency in finding the volume of a figure and an inaccurate solution is due to computational errors, rather than conceptual weaknesses.
0 POINTS Student's work shows weak proficiency with volume. The student's solution is incorrect.

Part E (DOK 3) -2 points
2 POINTS Student's work shows proficiency in calculating volume of a figure. The student's explanation is reasonable.
1 POINT Student's explanation is reasonable. Student's work reflects developing proficiency in finding the volume of a figure. The student's solution is inaccurate due to computational errors, rather than conceptual weakness.
0 POINTS Student's work shows weak proficiency in calculating volume of a figure. The student's explanation is inaccurate.

\section*{Unit 2}

\section*{Performance Task}

\section*{Name}

\section*{Field Trip to the Science Center}

A fitth-gude class wert on a field trip to the Science Certer. At the fist station, the students fil different cortainers with plastic cubes. Part A
Jake and Marty both fill the same sere containet.


Alse


Key (1) - touse unt

Which atudent best shows the volume of the container? Explain.
Sample answer: Jake shows the volume best because there are no gaps.

\section*{Part 8}

Which arrangement of cubes fiom Part A malioes it easier to calculate the volume? Why is the second arrangement of cubes the same volume, but not the same shape?
Sample answer: Jake's arrangement makes it easier to calculate the volume. The second arrangement is the same volume because it is the same number of cubes.

Part C
At the second station, there is a touch tank where students can touch offerent sear creatures Look at the dagram of the touch tanik.


How wovld you explain, so that a friend could understand how to find the volume of the tpoch taik? Then, Find the volume of the touch tiank in cubic incher. Show yout wark.
Sample answer: Decompose the tank into three rectangular prisms. Find the volume of each and then, add them together. The volume of the tank is 108,000 cubic inches.

\section*{Part D}

At the third station, students can fili their uwn box with sand to perform an experiment. The boxes measure 3 inches wide. 2 inches long. and 5 inches high. If Danieive atready has 10 cubic inches of soll in her box, how fuch more does she need fat tit hes box? Shaw your work and explain.
The volume of the box is 30 cubic inches. Subtract the 10 cubic inches she already has to get that she needs 20 cubic inches more.

\section*{Part E}

At the last station, a dispiay case in the shape of a box is shown that has a volume of 100 cubic meters List 2 cifferent sets of dimansions that would result in a volume of 100 cuble meters. Snow your work and explain.
Sample answer: \(2 \times 2 \times 25\) or \(4 \times 5 \times 5\); When you multiply the length, width, and height in both cases, the result is 100 . Check students' drawings.

22

\section*{Unit Assessment}

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{|lllll|}
\hline Item poK Lesson Guided Support \\
Intervention Lesson
\end{tabular}\(\quad\) Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit 2}

\section*{Unit 2 Assessment, Form A}

Name
1. Whach of these figures has volume? Choose al that apply.


C

(b)

2. For which stastion would you measure using unit cubes?
A. the amount of floor space covered by a carpet
B. the distance between fwo classtooms
C. the amourt of wall space taken up by a window
(D) the arount of space indide a box
3. Mya is filing a jurnping pit with foam blocis. The area of the bottom of the pit is 168 square feet. If the height of the jumping pit is 4 feet. what is the volume of the pr ?
A. 172 cubic feet
(B)
72 cubic feet
c. \(1 \mathbf{3 4 4}\) cubic feet
D. 2.688 cubic feet
4. What is the volume of the figure?

A. 54 cubic unts
B. 56 cubic unit:
C. 58 cubic units
D. 60 cubic units
5. Which rectangular prams have a volume of 72 cubic unis? Choose al that apply.

(B)

(D)

6. Seth partinlly flls a rectangular prism witt unt cubes, as shown


The volume of the rectangular arism is \(\mathbf{4 5}\) _ cubic unts.
7. The volume of a rectangular prism is 80 cubic inches. Which coulo de the dimensions of the prism? Choose all that apply
A. length \(=40\) inches, width \(=15\) inches, height \(=25\) inches
(B.) length \(=8\) inches, width \(=5\) inches, height \(=2\) inches
C. length \(=10\) inches. width \(=2\) inches, height \(=4\) inches
D. length \(=30\) inches, width \(=20\) inches, height \(=30\) inches
(E.) iencth \(=20\) inches, width \(=4\) inches, height \(=1\) inch

Unit 2
Unit 2 Assessment, Form A Icontinuedi
Name
8. Lydia's schoct box is 70 inches long, 8 inches wide, and 4 inches high. What is the volume sf the school box?
A. 22 cuble inches
B. 24 cuble inches
C. 320 cubicinches
D. 480 cubic inches

A. 288 cubic inches
B. 153 cubil inchers
C. 105 mubic inches
D. 288 cubic inches
10. A toy chest has a volume of 48 cubic fout. How tall is the toy chast?


The toy chest is \(\mathbf{4}\). feet tail
11. The two gift bowes have a pombined volume of 108 cubic centimeters The dimensions of Gift Box A we half the dimensions of Git Bax B


Which statement about the gith boxes is true?
A. The volume of Git Box A is 7 cubic cm , and the volume of Gin Box B is 14 cubic cm
B. The volume of Gia Box A is 12 cubic cm, and the volume of GAt Box iB is 64 cubic cm.The volume of Git Box A is 12 cubic cm, and the volume of Git Box \(B\) is 96 cutic cm .
D. The volume of Gitt Box A is 36 cubk cm, and the valume of Gitt Box B is 72 cublic cm
12. Janelle and Robert each buld a figure issing certimeter cubes.


Janele says that her figure has grester volume than Robprf's figure because it is taber. Is Janeile correct? Explain.
No, Both figures have the same volurne. Sample answer: Janelle's figure is \(2 \times 6 \times 3=36\) cubic cm . Robert's figure is \(6 \times 6 \times 1=36\) cubic \(\mathbf{c m}\). Even though Janelle's figure is taller, it has the same volume as Robert's figure.

\section*{Form B}

\section*{Unt 2}

\section*{Unit 2 Assessment, Form B}
+ Now











it







No, toth njures hivie the same voturne. Sainpte answen Janeile's figure is \(2 \times 6 \times 3=36\) rubic om Roberts flyure is \(5 \times 6 \times 1=36\) cubic com. Even though Robert's figure fias the Bligger bese, it has the same vohime as lanelle> Figume

\section*{Place Value and Number Relationships}

\section*{PACING: 12 days}

LESSON
Unit Opener ionite Number Lines Estimate decimal locations on open number lines.

SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
\begin{tabular}{|c|c|c|c|c|}
\hline 3-1 & Generalize Place Value & \begin{tabular}{l}
Students relate the value of a digit in a multi-digit whole number in one place value position to that of the same digit in the place to its right. \\
Students relate the value of a digit in a multi-digit whole number in one place value position to that of the same digit in the place to its left.
\end{tabular} & Students explain how the value of a digit compares to that of the same digit in a different placevalue position while answering Wh- and yes/no questions and using the academic term relationship. & Students identify personal traits that make them good students, peers, and math learners. \\
\hline 3-2 & Extend Place Value to Decimals & \begin{tabular}{l}
Students relate the value of a digit in a decimal in one place value position to that of the same digit in the place to its right. \\
Students relate the value of a digit in a decimal in one place value position to that of the same digit in the place to its left.
\end{tabular} & Students discuss how the value of a digit in a decimal compares to that of the same digit in a different decimal place-value position, using the terms hundredths and tenths. & Students discuss and practice strategies for managing stressful situations. \\
\hline 3-3 & Read and Write Decimals & Students read and write decimals to the thousandths place in standard form, expanded form, and word form. & Students explain how to read and write decimals to the thousandths place while making sure to include and. & Students actively listen without interruption as peers describe how they approached a complex mathematical task. \\
\hline 3-4 & Compare Decimals & Students compare two decimals to the thousandths place using place value and record the comparison using appropriate symbols. & Students explain how to use place value and number lines to compare two decimals, using the terms greater than, less than, and equal to. & Students engage in respectful discourse with peers about various perspectives for approaching a mathematical challenge. \\
\hline
\end{tabular}

Math Probe Comparing Decimals Compare two decimals by reasoning about the digits and their values based on place-value positions.
\begin{tabular}{ll} 
3-5 \begin{tabular}{l} 
Use Place Value \\
to Round Decimals
\end{tabular} & \begin{tabular}{l} 
Students round decimals to any \\
place value position. \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
for roundents identify situations that call \\
the place to whimals to round determine
\end{tabular}
\end{tabular}

Students identify place values to the nearest whole and tenths place using about.

Students demonstrate thoughtful reflection through identifying the causes of challenges and successes while completing a mathematical task.

\section*{Unit Review \\ Fluency Practice \\ Unit Assessment \\ Performance Task}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 3-1 & \begin{tabular}{l}
Math Terms \\
digit \\
place value \\
place-value chart
\end{tabular} & Academic Terms cite relationship & \begin{tabular}{l}
- Place-Value Chart to Millions Teaching Resource \\
- \(10 \times 10\) Grids Teaching Resource
\end{tabular} & Conceptual Understanding & 5.NBT.A. 1 \\
\hline 3-2 & \begin{tabular}{l}
decimal \\
decimal point \\
tenth \\
hundredth \\
thousandth
\end{tabular} & contradiction infer & \begin{tabular}{l}
- blank number cubes \\
- number cubes
\end{tabular} & Conceptual Understanding & 5.NBT.A. 1 \\
\hline 3-3 & expanded form standard form word form & expand quality & \begin{tabular}{l}
- Decimal Forms Teaching Resources \\
- number cubes
\end{tabular} & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.A.3.a \\
\hline 3-4 & \[
\begin{aligned}
& \text { greater than }(>) \\
& \text { less than }(<)
\end{aligned}
\] & address negate & - number cube & Conceptual Understanding & 5.NBT.A.3.b \\
\hline 3-5 & estimate round & prove variation & - Number Cards 0-10 Teaching Resource - number cubes & \begin{tabular}{l}
Conceptual \\
Understanding \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.A. 4 \\
\hline
\end{tabular}

\section*{Unit Overview}

\section*{Focus}

\section*{Decimal Concepts}

Our number system is called a base-10 place-value system because it takes 10 of one unit to equal 1 unit in the place-value position to the left of the given unit.

Students in Grade 5 have several years of experience with whole-number place value and fraction concepts, and in Grade 4 they began to investigate decimals in tenths and hundredths. They learn that it takes 10 hundredths to equal 1 tenth, and it takes 10 tenths to equal 1.

As students learn more about decimals, they need every opportunity to tie current learning to established understanding. Lesson 3-1 of this unit reviews whole-number place value. Students are asked questions such as: "What pattern do you see as you move from one place to another?" "How does the value of the 3 in the thousands place compare to the value of the 3 in the hundreds place?"

Students learn that the value of a digit in a decimal, as its value in a whole number, depends upon its place in the number. So, the value of a digit is 10 times what it would be in the place to its right, and its value is \(\frac{1}{10}\) what it would be to its left.

As students progress through the unit, you may want to provide them with place-value charts and digits cards to give them frequent opportunities to experience concrete correspondences among place values.

\section*{Coherence}

\section*{What Students Have Learned}
- Whole Number Place Value Students recognized that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. (Grade 4)
- Volume Students understood volume. (Grade 5, Unit 2)

\section*{What Students Are Learning}
- Decimal Place Value Students understand decimal place value.
- Reading and Writing Decimals Students read • and write decimals in number, word, and expanded form.
Comparing Decimals Students compare decimals using the same strategies used for whole numbers.
- Rounding Decimals Students round decimals using the same strategies used for whole numbers.

\section*{What Students Will Learn}
- Add and Subtract Decimals Students will add and subtract decimals. (Grade 5, Unit 4)
Add, Subtract, Multiply, and Divide Multi-
Digit Decimals Students will fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (Grade 6)

\section*{Rigor}

\section*{Conceptual Understanding}

Students develop understanding of
- understanding decimal place value;
- using place value understanding to read and write decimals to the thousandths place;
- using number sense to extend place value concepts to rounding decimals;
- using rounding strategies to understand and use to solve problems.

\section*{Procedural Skill and Fluency}

Students build proficiency with - comparing and rounding decimals.

\section*{Application}

Students apply their knowledge of - understanding decimals to solve problems with real-world contexts;
- comparing and rounding decimals to solve problems with real-world contexts;
Application is not a targeted element of rigor for the standards in this unit.

\section*{Pose Purposeful Questions}

Purposeful questioning facilitates effective assessment of what students know, helps advance their reasoning skills, and reinforces current learning while building bridges to future learning.

The power of purposeful questions can be as simple as the difference between asking "What answer did you get?" and "How did you find the solution?" The answer to the first question is a single number, which is either right or wrong. The answer to the second question describes a process of reasoning and action. The first is an end in itself, while the second reinforces strategies that have been used, with application to future problems and solutions.

Use the Explore \& Develop questions to assess students' understanding and encourage discussion.

As the lessons progress, focus on process-oriented questioning. Look for questions that will lead to connections between known concepts and new concepts, and among different aspects of current learning, such as multiple representations of decimals.

Questions focused on reasoning and process can be adapted to meet the needs of all students. Provide conceptual scaffolding as needed by breaking questions into parts. Provide verbal scaffolding by providing sentence frames for English learners.

\section*{Math Practices and Processes}

\section*{Look For and Make Use of Structure}

We use a base-ten number system, in which we can move from one place-value position to the next by multiplying or dividing by 10 .

As students learn about decimals, they are applying and deepening their understanding of how place value works. They should already be comfortable with multiplying whole numbers by 10, 100, and 1,000. Helping them recall and practice that structure will help them gain facility with the parallel relationships among decimals.

To encourage proficiency, encourage students to find and describe structure in their own words, using their own reasoning, as much as possible.

\section*{Some suggestions include:}
- Students work in pairs or groups in which each student chooses a different way to represent a decimal or series of decimals.
- Students discuss the similarities and differences between place value to the left of the decimal point and place values to the right of the decimal point.
- Students describe the structure of powers of 10 , using general words and providing a specific number series as an example.
- Students write a verbal description of each place in a number with at least three places on each side of the decimal point.

\section*{Social and Emotional Learning}

\section*{What Skills Will We Develop?}
- Self-Awareness: Self-Confidence (Lesson 3-1): Self-confident students are more willing to take risks, allowing them to learn from mistakes.
- Self-Management: Manage Stress (Lesson 3-2): Students who can regulate their stress are resilient and better prepared for academic success.
- Relationship Skills: Communication (Lesson 3-3): Students who can communicate effectively are more likely to build strong relationships and contribute to a positive classroom culture.

Social Awareness: Develop Perspective (Lesson 3-4): Developing perspective can help students understand different ways of thinking.
- Responsible Decision-Making: Reflection (Lesson 3-5): When students reflect, they can make connections between effort and achievement.

\section*{Unit Overview}

\section*{Language of Math}

\section*{Vocabulary}

Students will be using these key terms in this unit:
- Decimal (Lesson 4-2): Students were introduced to decimals in Grade 4. Draw a connection between the root dec- (ten) and our base-ten number system. Students may be familiar with the word decade, which uses the same root.
- Thousandths* (Lesson 4-2): Tenths and hundredths were introduced in Grade 4; thousandths is a new term. Students may need reinforcement with the -ths ending to distinguish the terms from tens, hundreds, and thousands.
*This is a new term.

\section*{Math Language Development}

\section*{A Focus on Decimal Vocabulary}

Mathematical understanding and language usage may require different skills, but they can work together in students' learning of math concepts.

When learners can describe what they are learning, or teach someone else what they have learned themselves, the concepts are reinforced. Also, in describing an operation or conclusion, learners might discover a mistake in their own reasoning that they now have an opportunity to correct.

Using precise terminology-the correct word or phrase for each conceptalso reinforces learning. For example, when students are referring to the decimal point, make sure they say, "decimal point" rather than simply, "decimal."

Consistently model usage of the vocabulary from each lesson, and provide consistent opportunities for students to use each word in discussion and answers to questions.

Help English learners develop fluency with math vocabulary by providing sentence frames and prompts. Frames and prompts should focus on the target vocabulary or concept, while limiting the need for the learner to articulate the less specific parts of a sentence

Throughout this unit, make sure that students know how to refer to tenths, hundredths, and thousandths, and how to read decimals. You may want to point out that the decimal place values are not "symmetric" with respect to the decimal point. Rather, they are "symmetric" with respect to the ones place. So, 713.524 is read, "seven hundred thirteen and five hundred twenty-four thousandths." Some students incorrectly read it as, "seven hundred thirteen and five hundred twenty-four hundredths (because "hundreds contain three digits"-and there are three digits to the right of the decimal point). The decimal point is read "and" to separate the whole number portion from the decimal portion.

\section*{ \\ English Language Learner}

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to place value and number relationships. Because many of the words (related, compare, estimate, about) and phrases (one/another way, the same as, greater/less than) used in this unit are likely unfamiliar or unknown to ELs, students are supported in understanding and using these words so that instruction is more accessible to them

Lesson 3-1 - one way, another way
Lesson 3-2 - related
Lesson 3-3 - the same as
Lesson 3-4 - greater than, less than, compare
Lesson 3-5 - estimate, about

\section*{Unit Routines}

\section*{Number Routines}

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

\section*{Where Does It Go?}

Purpose: Build estimating skills using benchmarks.
Overview: Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

\section*{Decompose It!}

Purpose: Build flexibility with numbers.
Overview: Students generate multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. The teacher records decompositions and then facilitates a discussion of patterns in the decompositions.

\section*{Find the Pattern, Make a Pattern}

Purpose: Build efficiency with recognizing and building patterns.
Overview: Students determine the rule(s) for a given pattern, then use the rule(s) to create a new pattern. The teacher records students' new patterns and facilitates a discussion to validate the pattern and its rules.

\section*{? Sense-Making Routines}
- Which Doesn't Belong? (Lesson 3-1) For this Which Doesn't Belong? routine, students compare and contrast whole numbers. The purpose of this Which Doesn't Belong? is to get students to extend their understanding of whole-number place value and understand the realtionships among place values to the right and left.
- Notice \& Wonder: What do you notice? What do you wonder? (Lessons 3-2, 3-3) In Lesson 3-2, students discuss partiallyfilled decimal grids. The purpose of this Notice \& Wonder extend students' understanding of whole-number place value to decimals.

\section*{Notice \& Wonder: How are they the same? How are they}
different? (Lesson 3-4) Students compare and contrast the weights of backpacks. The purpose of this Notice \& Wonder is to get students thinking about comparing decimals and how what they already know about whole-number place value that can help them compare decimals.
- Notice \& Wonder: What do you notice? What do you wonder? (Lesson \(3-5)\) Students share thoughts on the estimated cost of popcorn. The purpose of this Notice \& Wonder is to get students thinking about rounding decimals and how what they already know about wholenumber place value that can help them round decimals.

\section*{Mrs Math Language Routines}

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. These routines can also be used as formative assessment opportunities as students develop proficiency in English and mathematical language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Math Language Routines, see the Appendix.
- Lesson 3-1 Students participate in MLR3: Critique, Correct, and Clarify.
- Lesson 3-2 Students participate in MLR2: Collect and Display.
- Lesson 3-3 Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 3-4 Students participate in MLR8: Discussion Supports.
- Lesson 3-5 Students participate in MLR5: Co-Craft Questions and Problems.

\section*{Readiness Diagnostic}

\section*{Unit 3}

\section*{How Ready Am I?}

Name
1. What is the mumber flity thousand, two huncred siv woitten in standsad form?
A. 52.600
B. 52.006
C. 50.260
(D.) 50,206
2. What is the product? \(10 \times 7,000\)
A. 70,000
B. 7,000
C. 700
D. 70
3. Which statement is not true?
A. \(15.15<15.20\)
B. \(101<0.86\)
C. \(1.6275<1.628 .4\) D. \(35.7>34.9\)
4. Which of these represents 0.06 ?

c.

D.

5. Which of these shows 204.970 in expanded form?
A. \(2 \times 10.000+4 \times 1000+9 \times 10+7 \times 10\)
(B. \(2 \times 100.000+4 \times 1.000+9 \times 100+7 \times 10\)
C. \(2 \times 100.000+4 \times 10.000+9 \times 100+7 \times 10\)
D. \(2 \times 10,000+4 \times 1.000+9 \times 100+7 \times 10\)
6. Which number is ten times greater than \(40^{7}\)
C. 400
B. 40
2. Which number has an 8 in the ten thousands place, a 7 in the
(A.) \(184,259.73\)
B. \(389.274,61\)
C. \(805,261,79\)
D. 846.21357
8. Charley solved a mutiplication problem and got 800 for his arsser. He then checked his work and found that the answer was actually 8,000 . How many times greater is the value of 8 in 8,000 than the value of 8 in 800 ?
A. \(\frac{1}{100}\) as much
B. 10 times as much
C. \(\frac{1}{10}\) as much
D. 1000 times as much
9. Pitcher A contains six-tenths of a liter of milik. Pitcher B comtains eight-hundredths of a lier of malk. Which statement about the pitchers is true?
A. Pitcher \(B\) contains more milk than Pitcher \(A\) because \(0.08>0.6\).
B. Pitcher A contains more malk than Pitcher B because \(0.6>0.08\).
C. Pitcher B cortains more milk than Pitcher A because \(0.8>0.06\)
D. Plicher \(A\) contains more millk than Pifther \(B\) because \(0.06>0.8\).
10. Which number rounds to 800 when rounded to the nearest hundred?
A. 738
(B.) 753
c. 855
D. 882


Administer the Readiness Diagnostic to determine your students' readiness for this unit.

\section*{Targeted Intervention}

Use Guided Support Intervention lessons available in the Digital Teacher Center to provide targeted intervention.
\begin{tabular}{|c|c|c|c|c|}
\hline Item & DOK \$ & \$kill & Guided Support Intervention Lesson & Standard \\
\hline 1 & 1 & Write multi-digit numbers in standard form & Standard \& Word Form through 999,999 & 4.NBT.A. 2 \\
\hline 2 & 1 & Multiply by factor of 10 & Ten Times as Great & 4.NBT.A. 1 \\
\hline 3 & 2 & Compare decimals to hundredths & Compare Fractions \& Decimals in 100ths & 4.NF.C. 7 \\
\hline 4 & 1 & Represent decimals on a decimal grid & Decimal Fractions in 100ths & 4.NF.C. 6 \\
\hline 5 & 1 & Write multi-digit numbers in expanded form & Expanded Form through 999,999 & 4.NBT.A. 2 \\
\hline 6 & 2 & Number sense & Ten Times as Great & 4.NBT.A. 1 \\
\hline 7 & 2 & Place value & Compare \& Order Numbers through 999,999 & 4.NBT.A. 2 \\
\hline 8 & 2 & Place value & Ten Times as Great & 4.NBT.A. 1 \\
\hline 9 & 2 & Compare decimals to hundredths & Compare Fractions \& Decimals in 100ths & 4.NF.C. 7 \\
\hline 10 & 2 & Round multi-digit numbers & Round to Any Place & 4.NBT.A. 3 \\
\hline
\end{tabular}

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit Opener}

\section*{Focus Question}

Introduce the Focus Question, How can I extend my knowledge of place value to understand decimals?

Ask students to think about what they know about decimals.
-What do you already know about decimals?
- What can decimals be used for?
- What do you already know about place value?
-What do think you will be doing in the unit?
Remind students that at the end of the unit, they will reflect back on what they learned.

\section*{Family Letter}

Each letter presents an overview of the math in the unit and home activities to support student learning.

\section*{STEM in Action}

\section*{Videos}

Students can watch the two STEM videos.
STEM Career: Astronomer Haley talks about the work of astronomers.
Haley Researches Comets Haley explains the place value positions of decimals.

\section*{STEM Project Card}

Students can complete the STEM project during their workstation time.

\section*{STEM Adventure}

Students can complete the STEM adventure during their workstation time.


STEM Career: Astronomer


\section*{Haley Researches Comets}



\section*{Ignite!}

\section*{Number Lines}

Students develop number sense by estimating decimal locations on an open number line.
1. Have students work in pairs to discuss and record their ideas for Exercises 1-2. Then have students share ideas with the class.
-What sort of real-world situations might the numbers represent?
-What do you notice about the numbers?
2. Have students complete Exercise 3, writing each number as a whole number, fraction, or mixed number. You may want to mention that fractions with a denominator of 10 or 100 are called decimal fractions.
3. In Exercise 4, have students work in pairs to find an estimated location on the number line for each number.
- What tick marks would be useful to add to the number line before plotting the points.
4. After students graph the points, have them tour the class to view the other students' work. Ask them note similarities and differences among the number lines.
5. Have students share what they observed with the class. Discuss any misconceptions.
6. Ask students to read the numbers from smallest to greatest. Encourage them to read the numbers correctly. For example, students should read 1.2 as one and twotenths (rather than, say, as one point two).
- Explain why is 1.2 equal to 1.20 .
- How would you determine which two numbers are closest together (excluding the two numbers that are equal)?

\section*{Unit Resources At-A-Clance}

\section*{Workstations}

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.


\section*{Additional Resources}

Use the resources below to provide additional support for this unit.

\section*{Vocabulary}

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.


\section*{Foldables}

Use the unit foldable with Lessons 3-2 and 3-3.
\[
78 \div 10=\underline{7.8} .8
\]

\section*{Spiral Review}

Students can complete the Spiral Review Practice at any point during the unit as either a paper-and-pencil or digital activity.
\begin{tabular}{|l|l|}
\hline Lesson & Standard \\
\hline \(3-1\) & 4.NF.C \\
\(3-2\) & 4.OA.A \\
\(3-3\) & 4.NBT.A \\
\(3-4\) & 4.NBT.B \\
\(3-5\) & 4.NF.A \\
\hline
\end{tabular}

\section*{Learning Targets}
- I can recognize that the value of a digit represents ten times as much as it represents in a place to its right.
- I can recognize that the value of a digit represents one-tenth as much as the place to its left.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.A Understand the place value system.
\(\checkmark\) 5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objectives}
- Students relate the value of a digit in a multi-digit whole number in one place value position to that of the same digit in the place to its right.
- Students relate the value of a digit in a multi-digit whole number in one place value position to that of the same digit in the place to its left.

\section*{Language Objectives}
- Students explain how the value of a digit compares to that of the same digit in a different placevalue position while answering Wh- and yes/no questions and using the academic term relationship.
- In order to support cultivating conversation, ELs will participate in MLR3: Critique, Correct, and Clarify.

\section*{SEL Objective}
- Students identify personal traits that make them good students, peers, and math learners.

\section*{Coherence}

\section*{Previous}
- Students recognized that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. (Grade 4)

\section*{Now}
- Students recognize that in a multi-digit whole number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left.

\section*{Next}
- Students recognize that in a decimal number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left. (Unit 3)

\section*{Vocabulary}

\author{
Math Terms \\ digit \\ place value \\ Academic Terms \\ place-value chart
}

\section*{Materials}

The materials may be for any part of the lesson.
- Place-Value Charts to Millions Teaching Resource
- \(10 \times 10\) Grids Teaching Resource
- index cards

\section*{Number Routine Where Does it Go?}

Build Fluency Students determine the location of a decimal on two number lines with different marked endpoints.

Remind students that this is an estimation activity, and exact locations are not needed.

These prompts encourage students to talk about their reasoning:
- What do you notice about the two marked endpoints?
- Will the point you mark on the top number line appear right above the point you mark on the bottom number line? Explain.
- What point on the second number line might you mark before you estimate where 0.3 should go?
- How do you know your answers are reasonable?

\section*{Procedural Skill \& Fluency}
- Students will gain some early experience developing proficiency.

Procedural skill and fluency is not a targeted element of rigor for this standard.

\section*{Application}
- Several problems are presented in a real-world context, and the applications for understanding place value will be further explored later in the unit.
Application is not a targeted element of rigor for this standard.

\section*{Conceptual Understanding}
- Students build on place-value concepts by comparing the value of a digit in one place-value position with the value of the same digit in another place-value position when the digits are adjacent or several places away.

Purpose Students compare and contrast numbers, thinking about the value each digit in a whole number represents.

\section*{Which Doesn't Belong}
-Which doesn't belong?
Teaching Tip Place-value charts may guide students towards comparing and contrasting these numbers by place value.

\section*{ETP}

\section*{Pose Purposeful Questions}

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' thinking about the value each digit in a whole number represents and are based on possible comments and questions students may make during the share out.
- Which numbers have a 7 in the tens place? Explain what the digit 7 represents in those numbers.
- For the number that does not have a 7 in the tens place, explain what each digit 7 represents in that number.

\section*{Math is... Mindset}
- How can you give positive feedback to your classmates today?

\section*{Self-Awareness: Self-Confidence}

Throughout the Which Doesn't Belong? routine, provide opportunities for students to feel confident in themselves. Model and encourage giving positive feedback for sharing ideas, good effort, or creative thinking. Make sure students understand that being good students can also include being helpful peers and active members of the classroom community. Remind students that some tasks are more challenging than others, and they can demonstrate self-confidence by speaking up and asking for help if they need it. Throughout their work with eneralizing place value, continue to find other opportunities to allow students to give positive feedback to their classmates.

\section*{Transition to Explore \& Develop}

Ask questions that focus students' attention on the value of each digit in a whole number.

\section*{ETP Establish Goals to Focus Learning}
- Let's think about what each digit in a number represents and compare them.


\section*{Learn}

What are some ways to describe the relationship between the values of the
 digits in the number shown?

You can describe the relationship between the place-value positions.
POne Wiy Relte 7.000 to 700

\(7,000=10 \times 700\)
Each 7 is ten times the value of the 7 to the right.
1 Another Way Relate 700 to 7,000 .


Each 7 is \(\frac{1}{50}\) the value of the 7 to the left.
A digit represents 10 times as much as it represents in the place to the right. it also represents \(\frac{1}{10}\) the value of what it represents in the place to its left.

\section*{D Work Together}

What are two different wiys to descibe the relationship between the values of each digit 4 in 449.035?

Sample answer: 400,000 is 10 times 40,000 ; 40,000 is \(\frac{1}{10}\) of 400,000

4 Lement Cometirkever

\section*{(1) Pose the Problem}

\section*{EIP}

\section*{Pose Purposeful Questions}
- How does the place-value chart help you understand the problem?
- What patterns that you have seen before can help you solve this problem?
- Explain why the value of each digit is not 7 .

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

Critique, Correct, and Clarify
Make a false claim for students to critique. Write 5,555 on the board. Say the 5 in the thousands place is \(\frac{1}{10}\) the value of the 5 in the hundreds place. Ask, Is this statement correct or incorrect? How do you know? Have the class discuss how to correct your mistake.

\section*{3 Bring It Together}

\section*{ETP Elicit Evidence of Student Thinking}
- How would you explain the relationships among the digits in a multi-digit whole number?

\section*{Key Takeaway}
- A digit in one place in a multi-digit whole number represents 10 times as much as it represents in the place to the right and \(\frac{1}{10}\) of what it represents in the place to its left.

\section*{Work Together}

Students describe the relationships between the hundred thousands and ten thousands places. Make sure that students can describe the relationship in both directions. Students can work on the problem in pairs before sharing their work.
- Common Misconception Students may think that the 9 should represent \(\frac{1}{10}\) as much as the 4 in the ten thousands place. Make sure they understand that the relationships discussed in this lesson are for the same digit. So, for example, a digit in one place represents 10 times as much as that same digit would represent in the place to the right.

\section*{Language of Math}

A digit and the value it represents are different things. 6 is never \(\frac{1}{10}\) or ten times 6 . The value a 6 represents in one place is 10 times or \(\frac{1}{10}\) of the value a 6 represents in a place to its ight or left in that number.

\section*{Activity-Based Exploration}

Students explore the relationship between place-value positions.
Materials: \(10 \times 10\) Grids Teaching Resource
Directions: Before comparing the values of each digit 7 in the Pose the Problem, have students take a closer look at the value of each place-value position. Provide multiple copies of \(10 \times 10\) Grids Teaching Resource to each pair or small group. Have students model \(1,000,100,10\), and 1.

\section*{EIP Support Productive Struggle}
- Did you notice a pattern when determining how to use the \(10 \times 10\) grids to model the numbers?
- How did you determine how many \(10 \times 10\) grids are needed to make 1,000 ? Is there an operation you can use to explain this relationship?
- How did you determine how to partition the \(10 \times 10\) grid to show 10 ? How can you explain this relationship using a fraction?

\section*{Math is... \{́ructure}
- What ideas have you learned before that were helpful in understanding this relationship?

Students are looking for and using the patterns they have already discovered in the structure of the base-ten system.

Activity Debrief: Have pairs or small groups share their strategies for determining how to model each number. Encourage students to use mathematically precise language, such as 10 times or one-tenth when describing their strategies.
Have students revisit the Pose the Problem question and discuss answers.
- What are some ways to describe the relationship between the values of the digits in the number shown?

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students extend their understanding of whole-number place value to the relationships place values represent to the right and to the left.

\section*{EPP Use and Connect Mathematical Representations}
- How does a place-value chart help you understand the problem?
- Are you partitioning the thousand into equal parts? How does that help you describe the relationship as a fraction?
- Think About It: How can you show that 1 is \(\frac{1}{10}\) of 10 ?
- How could another model, like expanded form, help you understand the problem?Have students state as many relationships in 7,777 as they can.

\section*{Math is... Ytructure}
- What ideas have you learned before that were helpful in understanding this relationship?

Students are looking for and using the patterns they have already discovered in the structure of the base-ten system.


\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding the meaning of the word way. Using manipulatives, show students one way of doing a familiar task, such as grouping. Say, This is one way. Then, using the manipulatives again, show students another way of doing that task. Say, This is another way. Then, to confirm comprehension, show students one way of doing a new task. Say, This is one way. Show me another way.

Developing/Expanding Support students in understanding the meaning of the word way. Using manipulatives, show students one way of doing a familiar task. Say, This is one way. Then, using the manipulatives again, show students another way of doing that task. Say, This is another way. Then, to confirm comprehension, ask students to show you two ways to do a task of their choice, prompting them to use one way and another way in their descriptions.

Bridging/Reaching Ask students to explain the different strategies they can use to understand the problem. Support students with relevant language as needed, such as one way and another way.

\section*{Practice \& Reflect © 10 min}
On My Own
Name
Use the place-value chart to complete the sentence.
1. The value of the 6 in the hundreds place is 10 times the value of the 6 in the tens place.
\begin{tabular}{|l|l|l|l|l|l|}
\hline & 3 & 2 & 5 & 5 & 5 \\
\hline & 7 & 3 & 6 & 1 & 0 \\
\hline
\end{tabular}
Complete the sentences to describe the relationship between the values of each digit 4 and each digit 9 in the number 447.699 .
2. The value of the digit 4 in the ten thousands place is \(\overline{10}\) the value of the digt 4 in the hundred thousands place.
3. The value of the digit 9 in the tens place is 10 times the value of the digit 9 in the ones place.
Is each statement true or false?
4. The digit 3 in 5,630 , is 10 times the volue of the digtt 3 in 34.2 false
5. The digit 3 in 5,630 , is \(\frac{1}{10}\) the value of the digil 3 in 342 true
6. The digit 3 in 5.630 . is 10 times the volue of the 3 in 13 . true
7. The digit 3 in 5.630 is \(\frac{1}{10}\) the value of the digit 3 in 13 false
8. On Tuesday, 600 people attended a play at the Chidren's Theater. The same play had 6.000 attendees on Saturday When you compare 600 attendees to 6,000 athendees, 600 is
9. How does the value of the 2 in tive hundred thousands place relate to the vilue of the 2 in the tel

thousanas place?
Sample answer: 200,000 is 10 times the value of 20,000 .
20. How does the value of the 7 in the thousands place telate to the value of ithe 7 in the ien thousands place?


Sample answer: 7,000 is \(\frac{1}{10}\) the value of 70,000 .
55. STEM Connection Studies show that the first atservition of Halley's comet was in 466 B.C. What are two diflerent ways to descrlbe the relationship between the digits 5 in 466?
Sample answer: 60 is 10 times 6:
6 is \(\frac{1}{10}\) of 60 .
12. Extend Your Thinking Witer a number so thet the digit 5 has
a value of 5,000 and is \(\frac{1}{10}\) the vatue of the digit in the ten
thousands place.
Sample answer: 855,482

\section*{(P) Reflect}

How did I think like a mathematician today?
Answers may vary.

\section*{Practice}

\section*{Build Fluency from Understanding}

Common Error: Exercise 8 Students may look only at the first digit in each number, which is a 6 , and not see the \(\frac{1}{10}\) relationship. Remind them that they need to look at the value of the digit 6 .

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-3\) & 2 & Procedural Skill \& Fluency \\
\(4-7\) & 3 & Conceptual Understanding \\
8 & 3 & Application \\
\(9-10\) & 3 & Conceptual Understanding \\
11 & 3 & Application \\
12 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did I think like a mathematician today?

Ask students to share their reflections with their classmates.

\section*{Math is... lindset}
- How did you give positive feedback to your classmates today?

Students reflect on how they practiced self-awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can recognize that the value of a digit represents ten times as much as it represents in a place to its right.
- I can recognize that the value of a digit represents one-tenth as much as the place to its left.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{3}{|l|}{ Item DOK Skill } & Standard \\
\hline 1 & 2 & Compare the value of digits & 5.NBT.A.1 \\
2 & 2 & Compare the value of digits & 5.NBT.A.1 \\
3 & 2 & Compare the value of digits & 5.NBT.A.1 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}
\begin{tabular}{ll}
3 of 3 & Additional Practice or any of the \(\operatorname{Ba}\) or activities \\
2 of 3 & Take Another Look or any of the \(\operatorname{Bactivities}\) \\
1 or fewer of 3 & Small Group Intervention or any of the \(\boldsymbol{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build ProficiencyExtend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{That's the Way!}

Distribute two index cards marked " \(\times 10\) " and " \(\times \frac{1}{10}\) " to each student. Display a large number that includes a blank space for one of the digits. Draw an arrow below a digit that is adjacent to the blank space. Ask students to raise the card that shows the multiplication that they would have to be performed to "move" that digit to the blank space. Have students explain their thinking. Repeat with other numbers and arrows. If students have difficulty, ask them to multiply 20 by 10 and describe the result, and then divide by 20 by 10 and describe the result.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- One-Tenth as Much
- Digits to the Left and Right


Differentiation Resource Book, p. 11

\section*{Lesson 3-1 - Reinforce Understanding}

\section*{Ceneralize Place Value}

Name

\section*{Review}

Compare the \(5 s \sin 35.512\).

\section*{35,512}

The value of the 5 in the thousands place is to times the value of the 5 in the hundreds place.
The value of the 5 in the handreds place is \(\frac{9}{10}\) the value of the 5 in the thousands place.
1. How does an 8 in the hundreds place compare with an 8 in the thousands place? Sample answer: An 8 in the hundreds place is \(\frac{1}{10}\) the value of an 8 in the thousands place; an 8 in the thousands place is 10 times the value of an 8 in the hundreds place.

Write one relationship comparing the value of the 3 s in each pair of numbers.
2. 3,575 and 5.389

Sample answer: The 3 in 3,576 is 10 times the value of the 3 in 5,389 ; the 3 in 5,389 is \(\frac{1}{10}\) the value of the 3 in 3.576.
3. 4,023 and 6,731

4,023 and 6.731
Sample answer: The 3 in 4,023 is \(\frac{1}{10}\) the value of the 3 in 6.731; the 3 in 6.731 is 10 times the value of the 3 in 4,023.

Dinerefuncen Rewsece Boed

\section*{Build Proficiency}

\section*{Practice It! Game Station}

\section*{Value of a Digit Sort}

Students practice comparing the values of digits in adjacent places within whole numbers.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 11-12

\section*{Lesson 3.1}

\section*{Additional Practice}

Name
Review
You can recognire that the value of a digit represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) as much as it represents in the place to its left.

How does the value of the digit 4 in the thousands place compare to the yatue of the dight 4 in the bundreds place?


The value of the digit 4 in the thousands place is 4,000 . The value of the digt 4 in the hursdreds place is \(400,4,000\) is 10 times as much as 400.400 is \(\frac{1}{10}\) the value of 4,000 .
1. Compare the value of the dipt 3 in the ten thousancs place to the digit 3 in the thousands place.
The value of the digit 3 in the ten thousarads place is 10 times as much

is \(\frac{10}{\text { es the value of the digit } 3 \text { is }}\)
the thousands place.
The digt 3 in the thousands place is \(\frac{1}{10}\) times
the value of the 3 in the tere thousarnds places.

\section*{Extend Thinking}

Own It! Digital Station Build Fluency Games

Assign the digital game to develop fluency with adding and subtracting within \(1,000,000\).


\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 11-12
2. Compare the value of the dight in wach number.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Thousands Period} & \multicolumn{3}{|c|}{Ones Period} \\
\hline Nabiob & tan & son & mesous & ten & anc \\
\hline 9 & 1 & 4 & 5 & 7 & 2 \\
\hline & & 9 & 3 & 6 & 7 \\
\hline
\end{tabular}

The valuer of the digt 7 in the tens place is 10 times as much as the value of the digit 7 in the ones_ place
3. A toacher has 600 stickers. 60 of the stickers are smat How much of the orighat 500 stickers do the 60 small stickers represent?
The 60 small stickers represent \(\frac{1}{10}\) the value of all the stickers.
4. Which of the following are correct? Choose at that apply:
(A) The digh 3 in 9.328 is 10 times as much as the digit 3 in \(7,031\).
(B) The digit 3 in 9.328 is \(\frac{1}{36}\) the vilue as the digit 3 in 3.054 .
(C) The dight 3 in 9.328 is 10 tines as much an the digh 3 in 1.039 .
D. The digit 3 in 9,328 is \(\frac{1}{16}\) the vilue as the digt 3 in 4,330 .
E. The dipt 3 in 9.328 is 10 tirres as much as the digit 3 in 4.253 .

\section*{Use It! Application Station}

On Your Mark, Get Set, Go! Students
create a list of times in a swimming meet and compare the times to the results of Olympic swimming events. The content of this card has concepts covered later in Lesson 3-4. You may
 want to assign this card to students ready to explore content covered later in this unit.

\section*{STEM Activity}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 12

\section*{Lesson 3.1-Extend Thinking}

\section*{Ceneralize Place Value}

\section*{Name}

Cartec. Unds, Jovan, and Giopia all collect marbies. The number of marties that each has is shown in the table.
\begin{tabular}{|l|l|}
\hline Name & Number of Marbles \\
\hline Conter & 3.000 \\
\hline Lincs & 300.000 \\
\hline Jovan & 30 \\
\hline Gloria & 300 \\
\hline
\end{tabular}
1. Compare the number of marbies thir Lindin has to the number of mables that Carter has
Linda has 100 times the number of marbles that Carter has.
2. Wha has \(\frac{1}{100}\) the number of marbles that Cater has? Jovan
3. Who has to00 times the rumber of marbles that Gioria has? Linda
4. Dino has 30,000 marbles. How does the number of marbles Dino has compare with the number of maibles that:
a. Carter has?

Dino has 10 times the number of marbles that Carter has.
b. Jovan han?

Dino has 1,000 times the number of marbles
that Jovan has.
Dheretiston Revezcy Hoek

\section*{Extend Place Value to Decimals}

\section*{Learning Targets}
- I can extend the place value relationship to decimal numbers.
- I can explain the relationship of place values in decimal numbers.

\section*{Standards \(\circ_{\text {major }} \Delta\) supporting \(\circ\) Additional}

\section*{Content}
5.NBT.A Understand the place value system.
\(\diamond\) 5.NBT.A. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left.

\section*{Math Practices and Processes}

MPP Model with mathematics.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objective}
- Students relate the value of a digit in a decimal in one place value position to that of the same digit in the place to its right or left.

\section*{Language Objectives}
- Students discuss how the value of a digit in a decimal compares to that of the same digit in a different decimal place-value position, using the terms hundredths and tenths.
- In order to support sensemaking, ELs will participate in MLR2: Collect and Display.

\section*{SEL Objective}
- Students discuss and practice strategies for managing stressful situations.

\section*{Now}
- Students recognize that in a multi-digit decimal number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left.

\section*{Next}
- Students read and write decimals to thousandths using standard form, word form, and expanded form. (Unit 3)

\section*{Coherence}

Previous
- Students recognized that in a multi-digit whole number, a digit in one place represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left. (Unit 3)

\section*{Procedural Skill \& Fluency}
- Students have some early experiences developing proficiency.
Procedural skill and fluency is not a targeted element of rigor for this standard.

\section*{Application}
- Students apply their understanding of place value to solve contextual problems.
Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ decimal \\ decimal point \\ Academic Terms \\ tenth \\ hundredth \\ thousandth
}

\section*{Materials}

The materials may be for any part of the lesson.
- blank number cubes
- number cubes

\section*{Number Routine Decompose lt! © \({ }^{5-7 \text { min }}\)}

Build Fluency Students strengthen place-value understanding by decomposing decimal numbers. Students are given a decimal and break it apart in three different ways such that the sum of the parts is equal to the original decimal.

Remind students that there is more than one solution to the problem. As solutions are given, record them for students to evaluate and compare.

These prompts encourage students to talk about their reasoning:
> - What strategy to break apart a decimal do you typically think about first?
> - How could you break apart this number to show the sum of the values of the digits? What do you call that decomposition of the number?
> - How can a pattern help you find new "break aparts?"

Purpose Students share thinking about patterns among 1, \(\frac{1}{10}\) and \(\frac{1}{100}\).

\section*{Notice \& Wonder \({ }^{\text {TM }}\)}
- What do you notice?
-What do you wonder?
Teaching Tip You may want to have students record things they notice and wonder before sharing their ideas with the class.

\section*{Pose Purposeful Questions}

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' noticing of the representations presented and are based on possible comments and questions students may make during the share out.
- How does the amount shaded change from square to square?
- Have you seen this type of representation before? If so, when did you use it?

\section*{Math is... , indset}
-What are some ways you can avoid or manage stress?

\section*{SEL Self-Management: Manage Stress}

After students have completed the Notice \& Wonder routine, invite them to share what may have caused them stress. For example, students may have experienced stress if they did not understand a peer's reasoning for the patterns they notice or struggled with describing the patterns they noticed. Discuss ways students can avoid that stress in the future as well as how they can manage or relieve it now. Strategies such as developing a manageable plan, getting organized, taking breaks, and asking for help can help students manage emotional reactions to stress.

\section*{Transition to Explore \& Develop}

Ask questions that focus students' attention on the part of the whole square that is shaded.

\section*{ETP Establish Goals to Focus Learning}
- Let's think about what part of the squares are shaded and ways we can represent place value in decimal numbers.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

Keagan thinks that the value of each digat I is the same.

How can you help Keagan make sense
 of this number?


The value of the digit 1 depends
on its potition in the number.


A digt in one place in a decimal number represents 10 times as much as it represents in the ploce to its right. it also represents \(\frac{1}{50}\) the value of what it represents in the place to its left.

\section*{C. Work Together}

What are fwo different wiys to describe the relationship between the 0.8 and 0.08 ?
Sample answer: 0.8 is ten times 0.08 ;
0.08 is \(\frac{1}{10}\) of 0.8


\section*{(1) Pose the Problem}

\section*{\(\xrightarrow{M L R}\)}

\section*{Collect and Display}

As students discuss the questions, write key words and phrases you hear, such as decimal point, fraction, tenth, hundredth, thousandth, and patterns. Display the words and phrases for student reference and use the student-generated expressions to help make connections between student language and math vocabulary. Update the collection with new understandings as the lesson progresses.

\section*{Pose Purposeful Questions}
- What does the place-value chart tell you?
- What mathematical patterns about whole number place value do you know? Explain how you could use them to improve Keagan's thinking.
- Could other models or tools help improve Keagan's thinking? Explain how.

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{3 Bring It Together}

\section*{Elicit Evidence of Student Thinking}
- Explain the pattern you see in place values as you move to the right in a decimal number. Explain the pattern you see in place values as you move to the left.
- How could you describe the relationship between hundredths and thousandths? Tenths and thousandths? Ones and thousandths?

\section*{Key Takeaways}
- The relationship between adjacent place value positions in decimal numbers is the same as in whole numbers. A digit in one place in a decimal number represents 10 times as much as it represents in the place to its right and \(\frac{1}{10}\) of what it represents in the place to its left.
- Thousandths are \(\frac{1}{1,000}\) of one whole.

\section*{Work Together}

Students describe the relationships among the tenths and hundredths places in a decimal number in both directions. Students can work on the problem in pairs before sharing their work.

Common Misconception Students may think that tenths, hundredths, thousandths go from right to left as tens, hundreds, thousands do for the whole number part of a decimal. Point out that to the right of the decimal point, they go the opposite way.

Language of Math
Decimal is from the Latin word decem meaning ten. Students should see ten's role in place value. Other words from the same root are December (which was the tenth month) and decagon (a 10-sided polygon).

\section*{Activity-Based Exploration}

Students construct arguments to support their thinking about the values of the digits in decimal numbers.

Directions: Have students work in pairs or small groups to construct arguments to support their responses to Pose the Problem. Explain to students that they need to have at least two examples to support their arguments. Suggest that they may want to make use of baseten blocks, drawings, or a place-value chart in their arguments.

\section*{\({ }^{E T P}\) Implement Tasks that Support Reasoning and Problem Solving}
- What do you notice about the value of a digit when it is in different place-value positions in a number?
- How does the place-value chart help explain the relationship of the values of a digit in different positions in a number?
-What relationship did you notice between the values of the digits in your examples?

\section*{Math is... 2atterns}
- How is the name of the position related to the fractional part of the whole?

Students are seeing the connections between the name of the place and the fraction that represents it.

Activity Debrief: Have students share their arguments. Look for examples such as the digit 1 in the tenths place has a value of 0.1 , which is \(\frac{1}{10}\) the value of the digit 1 in the ones place. Encourage students to use precise language, such as decimal, decimal point, tenths, hundredths, and thousandths.

\section*{Guided Exploration}

Students extend their understanding of whole-number place value to decimal numbers.

\section*{Facilitate Meaningful Discourse}
- Why do 0.1 and \(\frac{1}{10}\) represent the same quantity?
- Think About It: How does the representation show that 0.1 is \(\frac{1}{10}\) of 1 ?
- Think About It: How does the representation show that 0.01 is \(\frac{1}{10}\) of 0.1 ?

\(\theta\)Have students discuss patterns representing the tenths and hundredths, such as partitioning into 10 equal parts and shading 1 of those parts.

\section*{Math is... ?atterns}
- How is the name of the position related to the fractional part of the whole?

Students are seeing the connections between the name of the place and the fraction that represents it.
- How could you explain to Keagan the difference between the digit 1 and the values of each digit 1 in 1.111 ?

\section*{2. Develop the Math}

We know that a digit in its place represents \(\frac{1}{10}\) of what it represents in the place to its left.


\section*{English Learner Scaffolds}

\section*{Entering/Emerging Support students in} understanding the meaning of the word related. Using manipulatives, show two objects that are related in some way. Say I'm going to show you how these items are related to each other. Then explain to students how the items are related. Show another pair of objects that are related somehow. Give one statement that correctly explains how the objects are related to each other, and one statement that does not. Ask students after each sentence, Did I explain how they are related to each other?

\section*{Developing/Expanding Support students in} understanding the meaning of the word related. Using manipulatives, show two objects that are related in some way. Say I'm going to show you how these items are related to each other. Then explain to students how the items are related. Show another pair of objects that are related somehow. Give one statement that correctly explains how the objects are related to each other, and one statement that does not. Ask students after each sentence, Did I explain how they are related to each other? Ask them to explain how they know and provide a sentence frame for students who may need more help or prompting.

\section*{Bridging/Reaching To support} students in answering the questions, ask them to explain how two objects of their choice can berelated to each other. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, that doesn't show how they relate to each other... or No, that's not correct because...

\section*{Practice \& Reflect © 10 min}

9. Error Anolysis Toby writes the number 23.2 and says that the value of the digit 2 in the ters piace is to times the waiue of the digit 2 in the tertths place. How do you iespond to pim? Sample answer: I do not agree, 20 is not 10 times 0.2; 20 is 10 times 2; the value of the tens place is 10 times the value of the ones place.
10. For which numbers is the value of the digt 8 ten times the value of the digt 8 in the number 4.984?
(A) 3.814
(B) 5.820
C. 6982
D. 8.492
11. STEM Connection The world's biggest submarine can seil at a speed of sbout 255 miles per hour on the surface. How can you describe the relationship between 5 and 0.5 ?
Sample answer: \(\mathbf{5}\) is ten times 0.5 ; 0.5 is \(\frac{1}{10}\) of 5

12. Extend Your Thinking Using only the digits 1.4, ind 5, write a number so that the value of the digit 5 is ten times the value of the digit 5 in the number 1.45 . Whe another number so that the value of the digit 4 is \(\frac{2}{10}\) the value of the digit 4 in 145 .
Sample answer: 1.54

\section*{Reflect}

How is the rebationship butween the values of digits in a decimal the same as the relationship between the values of digits in a whole number?
Answers may vary.

\section*{Practice}

\section*{EPP Build Fluency from Understanding}
[Common Error: Exercises 3-6 Students may extend 10 times to \(\frac{1}{10}\) times. While correct ( \(\frac{1}{10}\) of a number is \(\frac{1}{10}\) times that number), students are not aware of why yet. Encourage the use of \(\frac{1}{10}\) of.

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-6\) & 2 & Procedural Skill \& Fluency \\
\(7-8\) & 3 & Conceptual Understanding \\
9 & 4 & Conceptual Understanding \\
10 & 3 & Conceptual Understanding \\
11 & 3 & Application \\
12 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How is the relationship between the values of digits in a decimal the relationship between the values of digits in a whole number?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
-What are some ways you can avoid or manage stress?

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can extend the place value relationship to decimal numbers.
- I can explain the relationship of place values in decimal numbers.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|cc|l|l|}
\hline \multicolumn{2}{|c|}{ Item pok Skill } & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Compare the value of digits \\
of decimals
\end{tabular} & 5.NBT.A.1 \\
\hline 2 & 2 & \begin{tabular}{l} 
Compare the value of digits \\
of decimals
\end{tabular} & 5.NBT.A.1 \\
\hline 3 & 2 & \begin{tabular}{l} 
Compare the value of digits \\
of decimals
\end{tabular} & 5.NBT.A.1 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

If students score then have students do
3 of \(3 \quad\) Additional Practice or any of the \(B\) or \(\boldsymbol{\Theta}\) activities
2 of 3 Take Another Look or any of the \(B\) activities
1 or fewer of 3 Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency
© Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Is It a Challenge or Not?}

Work with students in small groups. Each student writes 0.0 on a piece of paper. The first student rolls a number cube and writes the number rolled as a digit to the left or right, then rolls an "operation cube" that has \(\times 10\) and \(\times \frac{1}{10}\) on its faces. That student rewrites the number, moving the digit to the appropriate place. Help the group discuss how to confirms the answer. The next student repeats this process. If students have difficulty, encourage them to think about whether the product will be greater than or less than the original number.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- One-Tenth \& 10 Times as Much (Decimals)


Differentiation Resource Book, p. 13

\section*{Lesson 3-2-Reinforce Understanding}

\section*{Extend Place Value to Decimals}

Name

\section*{Review}

Compare the 9 s in 9.987 .

\subsection*{9.987}

The value of the 9 in the ones piace is 10 times the value of the 9 in the tenths place.
The valive of the 9 in the tenths place is \(\frac{1}{10}\) the walue of the 9 in the ones place.
1. How do the 7 sin the number 5779 combere to one anothen? Sample answer: The 7 in the tenths place is 10 times the value of the \(\mathbf{7}\) in the hundredths place; the 7 in the hundredths place is \(\frac{1}{10}\) the value of the 7 in the tenths place.
2. How do the 2 's in the number 2235 compare to one another? Sample answer: The \(\mathbf{2}\) in the ones place is 10 times the value of the 2 in the tenths place; the 2 in the tenths place is \(\frac{1}{10}\) the value of the 2 in the ones place.
3. How does the 3 in 6.983 compare to the 3 in 2 ,138? Sample answer: The 3 in 6.983 is \(\frac{1}{10}\) the value of the 3 in 2.138; the \(\mathbf{3}\) in 2.138 is 10 times the value of the 3 in 6.983.

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Place Value with Decimals Sort
Students practice comparing the values of digits in adjacent places within decimal numbers.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 13-14

Lesson 3-2
Additional Practice
Name

\section*{Review}

You can use place value to find the relationships between. decimal values.

Using the number 1.66, compare the value of the digt 5 in the tenths place to the value of the digit 6 in the handreaths place.
\begin{tabular}{|c|c|c|c|c|c|}
\hline henderds & tent & - \({ }^{\text {anes }}\) & tenthe & hatoith & Hamenes \\
\hline & & 1 & (6) & (6) & \\
\hline
\end{tabular}

The value of the ctigit 6 in the tentins pace is 10 times the value of the sfigit 6 in the hundreaths place.
The value of the digit 6 in the hundiedths place is \(\frac{1}{10}\) the value of the digt 6 in the tenths place
4. Leandra reconds the weights 7.00 pounds, 0.70 ppund, and 0.07 pound. Use this information to complete each sentence. The weight 0.70 pound is \(\frac{\frac{1}{10}}{10}\) times as much as 7.00 pouncls
The weight 070 pound is \(\frac{10}{}\) times as much as 0.07 pound.
2. Marva swims elght
 value of the digit 8 in each tome.


Unit 3 • Place Value and Number Relationships

\section*{Extend Thinking}

\section*{Use It! Application Station}

State Sales Tax Student investigate and compare state sales tax rates. The content of this card has concepts covered later in Lesson 3-5. You may want to assign this card to students ready to explore content covered later


\section*{Own It! Digital Station} Build Fluency Games
Assign the digital game to develop fluency with adding and subtracting within \(1,000,000\).


\section*{in this unit.}

\section*{STEM Activity}

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 14

\section*{Lesson 3-2-Extend Thinking}

Extend Place Value to Decimals
Nome
Melinda. Penelope, Donovan, and Alexander are practicing for a race. The tabie shows the distance atch of them ran this week
\begin{tabular}{|l|l|}
\hline Name & Distance in Miles \\
\hline Motinds & 6.271 \\
\hline Ponelope & 21.867 \\
\hline Donovan & 7.128 \\
\hline Alexander & 18.562 \\
\hline
\end{tabular}
1. Whose distance has the number 2 wath a value 100 times the value of the number 2 in Alexander's distance? Melinda
2. Whose distance has the number 1 whi a value \(\frac{1}{100}\) the value of the number f in Donovan's distance? Melinda
3. How does the 2 in the distance Penelope ran compare with the 2 in the distance Donovan ran? The 2 in the distance Penelope ran is 1,000 times the value of the 2 in the distance Donovan ran.
4. How does the 6 in the distance Ponolope ran compore with the 6 in the dstance Mesinda ran? The 6 in the distance Penelope ran is \(\frac{1}{100}\) the value of the 6 in the distance Melinda ran.
5. Diego is also practiong for the race. The number of miles he rary has a 7 with the value to times the value of the 7 in the distance Melinde rar, a 2 with the value \(\frac{1}{1000}\) the value of the 2 in the distance Penelope ran, an 8 with the value 1,000 times the value of the 8 in the distance Donovin tan, and is 5 with the vatue Fó, distance Diego ian? Sample answer: 8.725 miles

Math
@ Home Activity





\section*{Read and Write Decimals}

\section*{Learning Targets}
- I can read and write decimals to thousandths using standard form, expanded form, and word form.
- I can make sense of decimals to the thousandths place.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
5.NBT.A Understand the place value system.
\(\diamond\) 5.NBT.A.3.a Read and write decimals to thousandths using base-ten numerals, number names, and expanded form.

\section*{Math Practices and Processes}

MPP Construct viable arguments and critique the reasoning of others.
MPP Attend to precision.

\section*{Focus}

\section*{Content Objective}
- Students read and write decimals to the thousandths place in standard form, expanded form, and word form.

\section*{Language Objectives}
- Students explain how to read and write decimals to the thousandths place while make sure to include and.
- In order to support maximizing meta-awareness, ELs will participate in MLR1: Stronger and Clearer Each Time.

\section*{SEL Objective}
- Students actively listen without interruption as peers describe how they approached a complex mathematical task.

\section*{Coherence}

\section*{Previous}
- Students wrote multi-digit whole numbers using standard form, word form, and expanded form. (Grade 4)
- Students explain the relationship of the value of digits in different place value positions. (Unit 3)

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of place-value patterns to read and write decimals to the thousandths place.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with decimals to the thousandths.

\section*{Application}
- Students apply understanding of decimals to solve real-world problems.
Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms \\ expanded form \\ Academic Terms \\ standard form expand \\ word form}

\section*{Materials}

The materials may be for any part of the lesson.
- Decimal Forms Teaching Resource
- number cubes

\section*{Number Routine Decompose It! © 5-7 min}

Build Fluency Students build placevalue understanding as they decompose decimal numbers. Students decompose the given decimal in at least three different ways.

As students offer solutions, record them for students to evaluate and compare.
These prompts encourage students to talk about their reasoning:
- What strategy to break apart a decimal do you typically think about first?
- How could you decompose this number to show the sum of the values of the digits? What do you call that decomposition of the number?
- What pattern do you see as you compare the value relationship between two adjacentplaces?
- How can a pattern help you find new "break aparts?"

Purpose Students discuss decimal numbers, thinking about ways to read and write decimal numbers.

\section*{Notice \& Wonder \({ }^{\text {m" }}\)}
-What do you notice?
-What do you wonder?
Teaching Tip Encourage students to add onto another student's idea. This promotes opportunities for participation from a variety of students. You can ask questions, such as Would someone like to add on? to help elicit more discussion when few students are talking.

\section*{ETP \\ Pose Purposeful Questions}

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' thinking about ways to read and write decimal numbers and are based on possible comments and questions students may make during the share out.
- How can you read the weight of the strawberries?
- If the decimal point were changed to a comma, do you think the number is a reasonable weight for the strawberries?

\section*{Math is... yindset}
-Why is active listening important?

\section*{SEL}

Relationship Skills: Communication
As students engage in collaborative discourse around the Notice \& Wonder routine, encourage them to actively and respectfully listen to one another. Invite students to think about and share what active listening looks and sounds like. As students discuss reading and writing decimals, encourage classmates to listen as well as provide thoughtful feedback. Capitalize on opportunities to also model these behaviors when students are speaking.

\section*{Transition to Explore \& Develop}

Ask questions that focus students' attention on ways to read and write decimal numbers.
ETP Establish Goals to Focus Learning
- Let's think about ways to read and write decimal numbers.


\section*{Learn}

How can you read the mass of the strawberries?

You can use a place-value chart to help you identify the value of each digt.


Reading and writing decimal numbers follows the same patterns as reading and weiting whole numbers.

\section*{Q Work Together}
```

Cary wrote 0.83 in expanded form using
multiplication. is her work correct? Expluin
your reasoning
Yes Check students'
explanations.

```


\section*{(1) Pose the Problem}

\section*{ETP Pose Purposeful Questions}
- Based on what you already know, can you make a conjecture about how to read the decimal? Explain what you base your conjecture on.
- What tool might you use to help you read the decimal? Why do you think it would help you?
- Explain how you could use patterns about place value to help you read the decimal.

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

Stronger and Clearer Each Time
Ask students to write about how a place-value chart can help them identify the value of digits in decimals. Then have students share their writing with a partner, comparing

\section*{3 Bring It Together} ETP Elicit and Use Evidence of Student Thinking
- What is the last word in the word form for 34.27? Explain why.
- In word form, how are place values the same before and after the and? How are they different?
- Billy said expanded form can be written using just multiplication. Is he correct? Explain why or why not.

\section*{Key Takeaways}
- Reading and writing decimals to thousandths inword form follows the same pattern as reading and writing numbers to 999, but are always followed by the least place value position.
- The word and indicates the location of the decimal point when reading and writing decimals in word form.
- Expanded form can be written using multiplication to show the value of each digit.

\section*{Work Together}

Students explore writing a decimal in expanded form using multiplication. Students can work on the problem in pairs before sharing their work.
- Common Misconception Students may be confused by the use of multiplication in this expanded form, and may need a quick refresh on multiplying a fraction by a whole number. Remind them that \(\frac{6}{10}\) is the same as \(6 \times \frac{1}{10}\).

Language of Math
Any zero digits that occur to the right of the last non-zero digit in a decimal number are called trailing zeros. Five and four-hundred fifty thousandths, 5.450 , has a trailing zero. 007 has two leading zeros.

\section*{Activity-Based Exploration}

Students use their understanding of different forms of whole numbers to identify different forms of decimals.
Materials: Decimal Forms Teaching Resource
Directions: Cut and distribute each pair or small group a set of Decimal Forms Teaching Resource. Students should match the standard form, word form, and expanded form for each decimal.

\section*{Support Productive Struggle}
- What knowledge can you use to help you get started?
- When have you used word form or expanded form before?
- What if you started with a different number?
- What patterns do you see in the word form of each decimal number?
- What is the same about the expanded form of a decimal number and the expanded form of a whole number? What is different?

\section*{Math is... Precision}
- Why is it important to include and when reading a decimal number?

Students practice communicating precisely to others.
Activity Debrief: After students have completed the activity, display their work for a gallery walk. Have students compare solutions. Facilitate a discussion to identify patterns to develop an understanding of writing decimals in different forms.

Have students revisit the Pose the Problem question and discuss answers.
- How can we read the mass of the strawberries?

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students extend their understanding of word form, standard form, and expanded form to decimal numbers.

> EIP Use and Connect Mathematical Representations
> - Why is thirty-four and six hundred eighteen tenths incorrect?
> - How are word form, standard form, and expanded form for decimal numbers the same as they are for whole numbers? How are they different?
> - Describe the patterns you see in the denominators of the fractions in the expanded form of a decimal number using fractions.

\((1)\)Have students share strategies for writing a number given in expanded form in standard form. Make sure they can explain their strategies clearly and that they can understand other students' strategies.

\section*{Math is... Precision}
- Why is it important to include and when reading a decimal number?

Students practice communicating precisely to others.

\section*{2. Develop the Math}

We can use a place-value chart to help identify the value of each digit. What is the value of 3 in the tens place?

English Learner Scaffolds
Entering/Emerging Support students' understanding of the phrase the same as using manipulatives. Show students two objects that are exactly the same. Say This one is the same as that one. Show two objects that are related but different from each other. Point to one of the objects and say This one is not the same as that one. They have differences.

\section*{Developing/Expanding Support students'} understanding of the phrase the same as using manipulatives.
Choose two pairs of objects, one pair being exactly the same, and one pair being different. Ask students to choose the pair of objects that are the same and explain how they know. Provide a sentence frame as needed.

\section*{Bridging/Reaching Ask students to} explain how different forms for decimals are the same for whole numbers. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding.
For example, I disagree because... or No, that's not correct because...

\section*{Practice \& Reflect © 10 min}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OnMy Own HATH1} \\
\hline \multicolumn{3}{|l|}{Name} \\
\hline \multicolumn{3}{|l|}{What is the word form of the decimal?} \\
\hline 2. 8.2 eight and two tenths & 2. 8.02 eight and two hundredths & \\
\hline 3. 0.82 eighty-two hundredths & 4. 0.082 eighty-two thousandths & \\
\hline \multicolumn{3}{|l|}{What is the standard form of the decimar?} \\
\hline 5. \(0.9+0.03+0.0070 .937\) & 6. \(20+0.7+0.08+0006\) & \\
\hline & 20.786 & \\
\hline 7. \(5+0.01+0.0095 .019\) & 8. \(7+\frac{4}{10}+\frac{5}{1000} 7.405\) & \\
\hline \multicolumn{3}{|l|}{What is each decimal in standard form?} \\
\hline 9. ninety-three and six.thcusandits & \multicolumn{2}{|l|}{10. three and eight hundred forty-six theusandits} \\
\hline \(93.006 ; 90+3+0.006\) & \multicolumn{2}{|l|}{\[
3.846 ; 3+0.8+0.04
\]} \\
\hline 1. two hundred twelve and ffteen thousancths & \multicolumn{2}{|l|}{12. seven hundred fify-one thousandths} \\
\hline \[
\begin{aligned}
& 212.015 ; 200+10+ \\
& 2+0.01+0.005
\end{aligned}
\] & \multicolumn{2}{|l|}{\(0.751 ; 0.7+0.05+0.001\)} \\
\hline \multicolumn{3}{|r|}{} \\
\hline
\end{tabular}
13. STEM Connection The Andromeda galaxy bo 2537 million light years from Earth. How cen you write this decimal number in expanded form and a word form?
\(2+0.5+0.03+0.007 ;\)
two and five hundred thirty-seven
thousandths
14. Kole wrote the decimal 34.82 in word form as thiny-four egh huncred twent-one thousandths: is be correct? Explain why or why not.
No: Sample answer: Kole forgot to add "and" after thirty-four.
15. Extend Vour Thinking Wite the word forms of 321,578 and 321578 . What is the same? Explain why those smilarities exist Sample answer: Both have three hundred twenty-one because both have the digits 321 in either the thousands period or ones period; both have five hundred seventy-eight because both have the digits 578 in either the ones period or in the decimal positions.

\section*{(1) Reflect}

How is place value used when writing decimal numbers in expanded form?
Answers may vary.

\section*{Practice}

\section*{Em \\ Build Fluency from Understanding}

Common Error: Exercise 7 Students may think that there is only a 1 and 9 in the decimal part of the number and write 5.19. Make sure they remember that thousandths have 3 decimal places and that they need to include a zero.

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-12\) & 2 & Procedural Skill \& Fluency \\
13 & 3 & Application \\
\(14-15\) & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How is place value used when writing decimal numbers in expanded form?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
-What have you done to be an active listener today?
Students reflect on how they developed stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can read and write decimals to thousandths using standard form, expanded form, and word form.
- I can make sense of decimals to the thousandths place.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|l|}{ Item } & pOK Skill & Standard \\
\hline 1 & 1 & Write decimals in word form & 5.NBT.A.3.a \\
\hline 2 & 2 & Write decimals in standard form & 5.NBT.A.3.a \\
\hline 3 & 2 & Write decimals in expanded form & 5.NBT.A.3.a \\
4 & 2 & Write decimals in standard form & 5.NBT.A.3.a \\
\hline 5 & 2 & Match fractions and decimal fractions & 5.NBT.A.3.a \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{|c|c|}
\hline If & do \\
\hline 5 of 5 & Additional Practice or any of the (3) or E \(^{\text {activities }}\) \\
\hline 4 of 5 & Take Another Look or any of the (3) activities \\
\hline 3 or fewer of 5 & Small Group Intervention or any of the \(\mathbf{Q}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Roll and Expand}

Provide pairs of students with a number cube. Have the students roll three numbers. They record each roll, placing the decimal point so the decimal is to the hundredths. Students then work together to write the decimal in expanded form. Make sure students understand the meaning of the decimal point and the value of each digit. After five successful turns, have students roll four numbers. This time, ask them to place the decimal point so the decimal is to the thousandths. Then have them write each decimal in expanded form.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Standard \& Word Form (Large Numbers)
- Expanded Form of Decimal Powers of Ten


Differentiation Resource Book, p. 15

\section*{Lesson 3-3-Reinforce Understanding}

\section*{Read and Write Decimals}

Name

\section*{Review}

Decimal numbers can be written in standard form, word form, and expanded form.
Standard form: 12.528 Word form: twelve and five hundred twenty-eigne" thousandths
Expanded form: \(10+2+0.5+0.02+0.008\)
\(10+2+\frac{5}{10}+\frac{2}{100}+\frac{8}{10000}\)
Write each of the expressions in standard form.
1. Iorly-two and seventy-three hundredths \(\mathbf{4 2 . 7 3}\)
2. \(58+01+0.03+0.00958 .139\)

Write each of the expressions in word form.
3. 89.058 eighty-nine and fifty-eight thousandths
4. \(70+1+\frac{4}{10}+\frac{3}{100}+\frac{7}{1000}\)
seventy-one and four hundred thirty-seven
thousandths
Write each of the expressions in expanded form.
5. ninety-seven and tive hundred forty- eight thousanaths \(90+7+0.5+0.04+0.008\) or \(90+7+\frac{5}{10}+\frac{4}{100}+\frac{8}{1000}\)
6. \(2.0642+0.06+0.004\) or \(2+\frac{6}{100}+\frac{4}{1000}\)

DNerentubce Rowevte Boci

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Reading and Writing Decimals Concentration Students practice matching the word form, standard form, and expanded form of decimal numbers.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 15-16

Lesson 3-3
Additional Practice
Name
Review
You can write decimals to the thousandths using standard form, expanded form, and word form.
\begin{tabular}{|c|c|c|c|c|}
\hline man & sen & Hems & mentem & - \\
\hline 2 & 7 & 5 & 4 & 9 \\
\hline
\end{tabular}

In the chart. 27.549 is witten in standard form. Whthe the number in exponded form and word form
Remember to write the decimal point as "and" when wring the number in word form.
twenty-sevven and five hundred forty-nine thousangths When writing the number in expanded form, muttiply each digt by es place value in decimal form.
\((2 \times 10)+17 \times 4+15 \times a 0+14 \times 0.0 \phi)+9 \times 0.007)\)
1. A plece of ribbon is 3.75 fevt long. Witie 3.75 in expansed form using fractions. 7
\(\qquad\) \(+\frac{5}{100}\)
2. Wite 59407 in expanded form. Use the place-value chart to lind the value of each digt.
\begin{tabular}{|c|c|c|c|c|}
\hline tms & -m & tman & masmen & mamen \\
\hline 5 & 9 & 1 & 0 & 7 \\
\hline \multicolumn{5}{|l|}{\(50+9+0.1+0.007\)} \\
\hline \multirow[t]{2}{*}{50} & & & \(\frac{1}{10}\) & \(\frac{7}{1.000}\) \\
\hline & & & + & \\
\hline
\end{tabular}

Unit 3 • Place Value and Number Relationships

\section*{Extend Thinking}

Own It! Digital Station

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtracting within \(1,000,000\).

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 15-16
3. Wite each decirnsi in word form
a. \(135=\) thirteen and five tenths
b. \(135=\) one and thirty-five hundredths
c. \(0.135=\) one hundred thirty-five thousandths
d. \(0.013=\) thirteen thousandths
4. Wrie nach decimal in standerd form
a. two and nine tentris \(=\quad 2.9\)
b. twenty-ine and six lundredtens \(=29.06\)
c. six and twenty five brousanaths \(=6.025\)
d. eight hundred forty-ane thousandths \(=0.841\)
5. Wite the standard form ef each number witten in expanded form
a. \(3+\frac{8}{10}+\frac{2}{1000}=3.802\)
b. \(30+8+\frac{9}{100}=38.09\)
c. \(70+0.08+0.002=70.082\)
d. \(1+0.5+0.09=1.59\)
6. Colby says thot \(\frac{27}{100}\) written in wora form is twenty-seven thousingthe. Do you sgree? Explain
No; Sample answer: Since the denominator is 100 , the fraction written in word form is twenty-seven hundredths.






\section*{Use It! Application Station}

How Far? Students research stars and create a model or drawing showing the stars and their distances from Earth. The content of this card has concepts covered later in Lesson 3-5. You may want to assign this card to students ready to explore content covered later in this unit.

\section*{STEM Activity}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 16
Lesson 3-3-Extend Thinking
Read and Write Decimals
Name
The table shows the weight of Martin's textbooks
\begin{tabular}{|l|l|}
\hline Textbook & Weight (1b) \\
\hline Math & \(3+\frac{2}{10}+\frac{8}{100}\) \\
\hline English & 3.208 \\
\hline Hatary & \(3+0.02+0.008\) \\
\hline SCience & \begin{tabular}{l} 
Vree and twenty-eight \\
hundrecths
\end{tabular} \\
\hline
\end{tabular}
1. Which two books weigh the sarne anount? the math and science books
2. Which booktsy weightst 3.28 pounds? the math and science books
3. Which book(s) weigh(0) 3.028 pounds? the history book
4. Which book(s) hashave a 2 in the tenths place? the math book, English book, and the science book
5. Which book(s) has/have a 2 in the hundreaths place? the history book
6. Which book( \((3)\) has/have an 8 in the hundredths place? the math and science books

\section*{Compare Decimals}

\section*{Learning Target}
- I can compare two decimals to the thousandths place using place value.

\section*{Standards \(\circ\) Major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.A Understand the place value system.
\(\checkmark\) 5.NBT.A.3.b Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.

\section*{Math Practices and Processes}

MPP Reason abstractly and quantitatively.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objective}
- Students compare two decimals to the thousandths place using place value and record the comparison using appropriate symbols.

\section*{Language Objectives}
- Students explain how to use place value and number lines to compare two decimals, using the terms greater than, less than, and equal to.
- In order to support cultivating conversation, ELs will participate in MLR8: Discuss Supports.

\section*{SEL Objective}
- Students engage in respectful discourse with peers about various perspectives for approaching a mathematical challenge.

\section*{Next}
- Students use place value understanding to round decimals to any place. (Unit 3)

\section*{Procedural Skill \& Fluency}
- Students build proficiency in comparing decimals to the thousandths place using \(>,<\), and \(=\) symbols to record the results of comparisons.
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students apply their \\
understanding of decimals to \\
compare decimals.
\end{tabular}\(\quad\)\begin{tabular}{l} 
- Students use place value \\
understanding to round \\
decimals to any place. (Unit 3)
\end{tabular}

\section*{Application}
- Students apply their knowledge of using patterns to compare decimals based on real-world contexts.

Application is not a targeted element of rigor for this standard.

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build on their number sense by examining patterns that extend place-value concepts from previous lessons to decimals in the thousandths.

\section*{Vocabulary}

\author{
Math Terms Academic Terms \\ greater than ( \(>\) ) address \\ less than (<) negate
}

\section*{Materials}

The materials may be for any part of the lesson.
- number cube

\section*{Number Routine Find the Pattern, Make a Pattern © \({ }^{5-7 \text { min }}\)}

Build Fluency Students build number sense as they determine a pattern and find missing terms. Students then create a new sequence that follows the pattern but uses different numbers.

Remind students that there is more than one way to create a new sequence based on the pattern.

These prompts encourage students to talk about their reasoning:
- What did you notice first?
- What did you do first? What did you do next? How do you know your pattern works?
- How did you choose your numbers for the new pattern?

Purpose Students compare and contrast backpacks, thinking about how to compare decimal numbers.

\section*{Notice \& Wonder \({ }^{\text {TM }}\)}
- How are they the same?
- How are they different?

Teaching Tip You may want to implement a Turn and Talk routine, which allows students to think about the problem and then turn to a classmate to talk about their thinking. This provides students an opportunity to engage in student-to-student discourse before sharing ideas with the whole group.

\section*{ETP Pose Purposeful Questions}

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' thinking about how to compare decimal numbers and are based on possible comments and questions students may make during the share out.
- How are the place values of the numbers similar? How are they different?
- How did you decide that the bags have different weights?

\section*{Math is... Sindset}
- How can you recognize and respond to the emotions of others?

\section*{SEL \\ Social Awareness: Develop Perspective}

After the Notice \& Wonder routine, invite students to share and discuss the emotions they have experienced as they compared the weights of the bookbags. Collectively discuss how these emotions may make them feel or behave. Engaging in open discourse about their feelings can help students recognize, understand, and respond appropriately to the emotions of others

\section*{Transition to Explore \& Develop}

Ask questions that focus students' attention on how to compare decimal numbers.


\section*{Learn}

Which bag weighs more?

Compare the digits in each place starting
 with the greatest place value position.


Math is. \(\boldsymbol{\rightarrow}\) Thinking Why was it not necessary to compare the hundredths place?
\(3.281>3.095\). So. the purple bag weighs more than the red bag
You can compare decimals the soime way you compare mult-digt numbers.

\section*{C. Work Together}

3.281 (8) 3.9


\section*{(1) Pose the Problem}

\section*{MLP}

Discussion Supports
As students engage in discussing the answers to the questions, prompt them to think about how what they learned about comparing whole numbers can help them to compare decimal numbers. Encourage students to challenge each other's ideas when warranted, as well as to elaborate on their ideas and give examples.

\section*{Pose Purposeful Questions}
- Based on what you know, can you make a conjecture about how to compare decimal numbers? Explain how you would do it and why you think it would work.
-What tools do you think would help you compare decimal numbers? Explain why you think they would help.
-What symbols do you think are used to compare decimal numbers? Explain why.

\section*{(2) Develop the Math}

\section*{Choose the option that best meets} your instructional goals.

\section*{>>>}

\section*{3 Bring It Together}

\section*{툐}

\author{
Elicit Evidence of Student Thinking
}
- How would you explain to a friend how to use a place-value chart to compare decimal numbers?

\section*{Key Takeaway}
- Comparing decimals follows the same process as comparing multidigit numbers; one compares digits in the same place value position starting with the greatest place value.

\section*{Work Together}

Students use place value to compare decimal numbers. Students can work on the problem in pairs before sharing their work. Ask students to write the comparison statement they have found another way.
- Common Misconception Students may be confused by there being no digits in the hundredths or thousandths places in the lower number. It may help them to write 3.9 as 3.900 and compare, 281 thousandths to 900 thousandths.

\section*{\(\stackrel{\text { LOM }}{\sim}\) Language of Math}

Exercise 9 provides an opportunity to discuss metric prefixes and their relationships and how they are similar to place value. A kilometer is 1,000 meters. A centimeter is \(\frac{1}{100}\) of a meter.

\section*{Activity-Based Exploration}

Students extend their understanding of comparing whole numbers using place value to decimal numbers.

Materials: number cube
Directions: Each student rolls a number cube five times. Students use those five digits to create the greatest possible number that includes a digit in each position from tens to thousandths. If time permits, have students complete the activity to create the least possible number.

> ETP Implement Tasks that Support Reasoning and Problem Solving
> - What strategies did you use to determine the best position for each digit? Will your strategy always work?
> - How would you change your strategy if you could not use the same digit twice?
> - How would you change your strategy if you could not use the same digit as your partner?

Math is... Thinking
- How did your understanding of place value relationships help you determine the best position for each digit?

Students are making sense of quantities and their relationships.
Activity Debrief: Have students share their strategies for creating the greatest possible decimal. Identify similarities in their strategies, such as placing the greatest digit in the greatest place value position. Have students revisit the Pose the Problem question and discuss answers.
- Which bag weighs more?

\section*{Guided Exploration}

Students extend their understanding of comparing whole numbers using place value to decimal numbers.

\section*{EPP Pose Purposeful Questions}
- What different ways can you write the comparison statement? How are they the same? How are they different? Explain your reasoning.
- Think About It: Are there other models or tools you could use to compare decimal numbers? How could writing them in expanded form help?

\(\Theta\)Have students work in pairs or groups to share tips or mnemonic devices to remember whether to use > or < in a comparison statement, e.g., one side of the sign is bigger... that side goes by the greater number.

\section*{Math is... Thinking}
-Why was it not necessary to compare to the hundredths place? Students are making sense of quantities and their relationships.

\section*{2. Develop the Math}

Let's think about how we compared whole numbers. How would you compare these whole numbers?

\section*{English Learner Scaffolds}

Entering/Emerging Use manipulatives such as counting chips to support students' understanding of the terms greater than, less than, and compare. Put two unequal groups of counting chips on the table. Say, l'm going to compare these two groups. Count each group and say the numbers aloud. Point to the group with more and say This group has more chips. [5] is greater than [3]. Point to the group with fewer chips and say This group has fewer chips. [3] is less than [5]. Repeat the task, and ask Is [4] greater than or less than [6]?

Developing/Expanding Use manipulatives such as counting chips to support students' understanding of the terms greater than, less than, and compare. Put two unequal groups of counting chips on the table. Say I'm going to compare these two groups. Count each group and say the numbers aloud. Point to the group with more and say This group has more chips. [5] is greater than [3]. Point to the group with fewer chips and say This group has fewer chips. [3] is less than [5]. Have students repeat the task, using the counting chips, by having them compare two groups using greater than or less than.

Bridging/Reaching To support students in responding to questions regarding comparing digits, ask students to explain the meaning of the word compare and how it relates to decimal numbers. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No , to compare means to.... and, No, you compare the numbers by....

\section*{Practice \& Reflect © wiomin}

10. Error Anolysis An istronomer calculated that a comet traveled 192.40 kilometers. The astronomer wrote 192.4 kilometers on a chart. How do you respond to the astronomer?
Sample answer: I agree with the astronomer because \(192.40=192.4\).
51. Whe a comparson statement that compares the speed of a quarter horse to the speed of a tion.
Sample answer: \(88.5>80.5\)

12. Which of the following comparisons are the?
```

A. 0.773>1.773
(B) }101020=101.0
C. 0.04<0.4
D. 0.321<0.0123

```
13. Extend Your Thinking Use the digits \(5,7,8\), and 9 to create the greatest possibie decimal number
(9) 8 7 5

\section*{© nethect}

How is comparing decimats similar to comparing whole numbers? Answers may vary.

\section*{Practice}

\section*{ETB \\ Build Fluency from Understanding}

Common Error: Exercises 1-6 Students often neglect the whole number part of decimal numbers and will conclude that \(6.55<5.66\) because the first decimal place in 5.66 is greater. Make sure they compare the whole number part first, and, if they are different, the comparison can be made without looking at the decimal part at all.

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-6\) & 2 & Procedural Skill \& Fluency \\
\(7-8\) & 3 & Application \\
10 & 4 & Application \\
11 & 3 & Application \\
12 & 3 & Conceptual Understanding \\
13 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How is comparing decimals similar to comparing whole numbers? Ask students to share their reflections with their classmates.

\section*{Math is... Tindset}
- How did you recognize and respond to the emotions of others?

Students reflect on how they practiced social awareness.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can compare two decimals to the thousandths place using place value.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflet on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|ccl|l|}
\hline Item pOK Skill & Standard \\
\hline 1 & 2 & Compare decimals & 5.NBT.A.3.b \\
2 & 2 & Compare decimals & 5.NBT.A.3.b \\
3 & 3 & Compare decimals & 5.NBT.A.3.b \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{l|l|}
\hline If students score then have students do \\
\hline 3 of 3 & Additional Practice or any of the \(B\) or \(\boldsymbol{B}\) activities \\
2 of 3 & Take Another Look or any of the \(B\) activities \\
\hline 1 of 3 & Small Group Intervention or any of the \(\boldsymbol{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
© Reinforce UnderstandingBuild ProficiencyExtend Thinking


\section*{Lesson 3-4}

Exit Ticket
Name
1. is each comparison True or Faise?
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & True & False \\
\hline \(0.8<0.79\) & & \(\checkmark\) \\
\hline \(0.17=0.017\) & & \(\checkmark\) \\
\hline \(0.113>0.109\) & \(\checkmark\) & \\
\hline \(0.222<0.31\) & \(\checkmark\) & \\
\hline
\end{tabular}
2. The table shows the amount of rainfall over 4 days.
\begin{tabular}{|l|c|}
\hline Day & Amount of Rainfall \((\mathrm{cm})\) \\
\hline Monday & 2.35 \\
\hline Tuesday & 2.09 \\
\hline Wednesday & 2.41 \\
\hline Thursday & 2.4 \\
\hline
\end{tabular}

How can you compare the decimals? Complete with \(>,<\), or \(=\)
a. 235 (8) 209
b. 209 (8) 2.41
c. 2.41 © 2.4
d. \(235<2.4\)
3. Sam swims one length of the pool in 48.51 seconds. Jason swirns one length of the pool in 48.46 seconds. Who swims faster? Jason

Reflect On Your Learning



\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Compare Decimal Numbers in Tenths
- Compare Decimal Numbers (100ths)


Differentiation Resource Book, p. 17

\section*{Lesson 3.4 - Reinforce Understanding}

Compare Decimals

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Decimal Showdown
Students practice comparing decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 17-18

\section*{Lesson 3-4}

Additional Practice
Name

\section*{Review}

You can compare two decimals to the thousandths place.
culu runs a mile in 9.375 minutes, and Kindra runs a mile in 9.376 minutes. Compare the two decimals.
9. 375

Une up the numbers of the decimal point so all the place values will be lined ip. Both numbers have 9 ones. 3 tenths, and 7 hundrecths.
 place are different, compare those fwa digits.
1. Efren has 0.3 ounce of water and 0.38 ounce of salt. Line up the numbers on the decimal point to determine which amourt is less than the other amount.

> 0.3
> 0.38

03 ounce (c) 038 ounce
2. Write thirty-seven and forty-nime hundredths in standard form. 37.49
is the number greater than or less than 37,45 ?
thirty-seven and forty-nine hundiedtrs \(>37.45\)

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to build fluency with adding and subtracting within \(1,000,000\).

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


\section*{Use It! Application Station}

On Your Mark, Get Set, Go! Students create a list of times in a swimming meet and compare the times to the results of Olympic swimming events.

\section*{STEM Activity}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 18

\section*{Lesson 3-4 - Extend Thinking}

\section*{Compare Decimals}

Name
The table shows the distance Kendal drove each day on his trip.
\begin{tabular}{|c|c|}
\hline Day & Distance (miles) \\
\hline Monday & \(200+50+8+0.5+0.03\) \\
\hline Tuesday & 258.6 \\
\hline Wednesiay & two-hundred fifty-eight and four hundred six thousandths \\
\hline Thursdoy & \(200+40+9+0.8+0.009\) \\
\hline Findoy & two-lwndred forty-mine and nine tention \\
\hline
\end{tabular}
1. On which day did Kendal dirve the least number of miles? Thursday
2. On which day did kendal drive ple greatest number of mies? Tuesday
3. Did Kendal drive more or less miles on Monday than the did on Tuesdiay? less
4. Wite a comparhan statement using the distances Kendal travised on Tuesday and Wednesday. Wite the numbers in standard form and use \(<,>\) or \(=\)
Sample answer: \(258.6>258.406 ; 258.406<258.6\)
5. Whte a comparison statemert ining the distances Kender traveled on Thusdoy and Filday. Write the numbers in standard form and use \(<,>\) or \(=\)
Sample answer: \(249.809<249.9 ; 249.9>249.809\)
6. Put the distances Kendai drove in order from least to greatest in stindard form 249.809; 249.9; 258.406; 258.53; 258.6

Math @ Home Activity

 hentims
3. Wrate a decimal that is equai to 1.5. Explesin your answes Sample answer: 1.50 is equal to 1.5 because Inserting a 0 to the right of 5 does not change the value of the decimal.
4. Which of the following are correct? Choose all that apply (A) \(0.05>0.009\)
B. \(126<1258\)
(C) \(2999=29.990\)
(D) \(37.48>37.467\)
E. \(5.908=5.980\)
5. Lotinda has \$ \(\mathbf{5 0} 89\) in her pigay bank. Tri has \(\$ 10.88\) in his
\(\$ 10.81 \bigcirc \$ 10.818\)
6. Lincaln bikes 24.28 miles on Mondry and 24.385 mies on Tuesday. Compare the distances
\(24.28 \bigcirc 24.385\)
7. Jowet and Karf are playing a game. Jewel has 15.42 points Karl has 15.428 points. Compare the number of poirts. Whe has the greater number of poirts?
\(15.42 \bigodot 15.428\)
Karl has the greater number of points
8. Zins is 4.25 feet tall Her cousin Sam is 4.75 feet tall Compare the heights. Who is tulter?
\(4.25 \geqslant 4.175\)
Zina is taller.

\section*{Math Probe}


\section*{Analyze the Probe Formative Assessment}

Targeted Concept Compare two decimals by reasoning about the digits and their values based on place-value positions.
[1] Targeted Misconceptions Compare two decimals by reasoning about the digits and their values based on place-value positions.

\section*{Authentic Student Work}

Below are examples of correct student work and explanations.

\section*{Sample A}
\begin{tabular}{|c|c|}
\hline \[
0.47=0.470
\] & Explain or show why you chose that symbol. \\
\hline Circle the symbol that goes in the \(\Xi\). & samething really live. 4 and . 40 \\
\hline  &  \\
\hline
\end{tabular}

Sample B


\section*{Collect and Assess Student Work}

Collect and review student response to determine possible misconceptions. See examples in If-Then chart.
\begin{tabular}{ll} 
IF incorrect... & THEN the student likely... \\
1. \(>\) & \begin{tabular}{l} 
thinks that the decimal that contains more \\
digits to the right of the decimal point is the
\end{tabular} \\
\(2 .<\) & \begin{tabular}{l} 
greater decimal. This student does not \\
compare decimals by first considering the \\
digits in the greatest place-value position.
\end{tabular} \\
Note that this misconception leads to the \\
correct answer for Exercise 3.
\end{tabular}
3. > thinks that the decimal that contains more digits to the right of the decimal point is the smaller decimal. The student reasons that because 0.4 extends only to the tenths place, it is therefore greater than 0.575 that extends to the thousandths place (because thousandths are smaller than tenths). This student does not compare decimals by first considering the digits in the greatest place-value position. Note that this misconception leads to the correct answers for Exercises 1 and 2.
1. \(=\quad\) thinks that inserting a 0 to the left of a digit
4. \(>\) or \(<\)
in the decimal portion of a number does not change the number's value; OR
does not realize that annexing a 0 to the right of a decimal does not change its value. For example, in Exercise 4, a 0 can be annexed to the right of 0.47 without changing its value ( \(0.47=0.470\) ). However, in Exercise 1 , inserting a 0 to the left of the 3 in 0.35 changes its value \((0.035 \neq 0.35)\).

Sample Misconceptions


Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

\section*{Take Action}

Choose from the following resources or suggestions:
- Revisit a place-value chart, number lines, and other representations in Lessons 3-2 and 3-3 to build decimal place-value ideas and the comparison of decimals.
- Support students in representing decimals with money and interpreting the meaning of digits in various place-value positions.
- Build place-value ideas by using language that reinforces place value. For example, rather than reading 3.45 as three point four five, students should read it as three and forty-five hundredths.
- Provide a variety of decimals with 0 s in different locations. Discuss cases where inserting a 0 changes the value of a number (such as the 0 in 1.405) and cases where it does not (such as the 0 in 1.450).

Revisit the Probe after additional instruction. Have students review their initial answers to the Probe. Use these questions for discussion:
- Are there any answers you would like to change? Explain why you might want to change them.
- Are there any questions that you still have about any of the exercises on this Probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Use Place Value to Round Decimals}

\section*{Learning Targets}
- I can use rounding strategies to round decimals.
- I can explain how to apply rounding strategies to decimals.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.A Understand the place value system.
\(\checkmark\) 5.NBT.A. 4 Use place value understanding to round decimals to any place.
Math Practices and Processes
MPP Attend to precision.
MPP Look for and express regualrity in repeated reasoning.

\section*{Vocabulary}

\section*{Math Terms \\ round \\ Academic Terms prove \\ estimate variation}

\section*{Materials}

The materials may be for any part of the lesson.
- number cubes
- Number Cards 0-10 Teaching Resource

\section*{Focus}

\section*{Content Objectives}
- Students round decimals to any place value position.
- Students identify situations that call for rounding decimals and determine the place to which to round.

\section*{Language Objectives}
- Students identify place values to the nearest whole and tenths place using about.
- In order to support optimizing output, ELs will participate in MLR5: Co-Craft Questions and Problems.

\section*{SEL Objective}
- Students demonstrate thoughtful reflection through identifying the causes of challenges and successes while completing a mathematical task.

\section*{Coherence}
\begin{tabular}{l|l|l|}
\hline Previous & Now & Next \\
- Students used place value & - Students use place value \\
understanding to round multi- \\
undending to round decimals & • Students add and subtract \\
decimals. (Unit 4) \\
(to any place.
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students learn that rounding decimals can make them easier to understand and use to solve problems.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with rounding decimals using a place value.

\section*{Application}
- Students apply their understanding of rounding decimals based on real-world contexts.
Application is not a targeted element of rigor for this standard.

\section*{Number Routine Find the Pattern, Make a Pattern © \({ }^{5-7 \text { min }}\)}

Build Fluency Students build number sense as they determine the pattern and find missing terms. Students then create a new sequence that follows the pattern but uses different numbers.

These prompts encourage students to talk about their reasoning:
- How do you know your pattern works?
- How did you choose your numbers for the new pattern?
- Will other numbers fit into this pattern? Explain.

Purpose Students share thoughts on estimated cost of popcorn.

\section*{Notice \& Wonder \({ }^{\text {™ }}\)}
-What do you notice?
-What do you wonder?
Teaching Tip You may want to encourage other students to repeat other's ideas by asking Can you repeat what they just said in your own words?

\section*{Pose Purposeful Questions}

The questions that follow are not intended to be asked in the sequence presented. They are meant to help advance students' thinking about how to round decimal numbers and are based on possible comments and questions students may make during the share out.
-Why do you think they are using the word about?
- What do you think the cost of the popcorn might be?

\section*{Math is... Yindset}
- What was challenging for you? What have you enjoyed?

\section*{SEL Responsible Decision-Making: Reflection}

After working through the Notice \& Wonder routine, allow students time to thoughtfully reflect on their work. Invite them to think about what may have been challenging as well as the ways in which they were successful and why. Encourage students to also consider what parts of the Notice \& Wonder routine that they enjoyed and why.

\section*{Transition to Explore \& Develop}

Ask questions that focus students' attention on thinking about how to round decimal numbers.

\section*{Establish Goals to Focus Learning}
- Let's think about how to round decimal numbers.


\section*{EBe Curious}

What do you notice?
What do you vonder?


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

Mays and ber sister want to buy a medium popcorn
About how much money do they need?
You can round decimals to get a good estimate.


Rounding to the nearest tenths gives a better estimate. Maya and her sister need about \(\$ 5.50\) to buy a medium popcom

You can round decimats using number lines or place vasie to make reasonabie estimates. Think about how precise the estimate needs to be when deciding to which place you should round to.

\section*{Q Work Together}

What is the weight of the pumpkin rounded to the nearest whole number? nearest fenth? \(9 \mathrm{lb} ; 8.6 \mathrm{lb}\)



\section*{Activity-Based Exploration}

Students look for patterns when rounding decimals.
Material: Number Cards 0-10 Teaching Resource
Directions: Using only the digits \(0-9\), each student selects one card to create a decimal number between 4 and 5 . Students will sort their decimals into two categories; decimals that are closer to 4 and decimals that are closer to 5 .

\section*{Implement Tasks that Support Reasoning and Problem Solving}
- What strategies did you use to determine whether your decimal number was closer to 4 or closer to 5 ? Will it always work?
-What generalizations can you make about decimal numbers that are closer to 4 than to 5 ?
- How can you use your generalizations to write rules for rounding decimals?

\section*{Math is... Precision}
-What language can you use to explain your generalizations to others?

Students are thinking about precise language when explaining their reasoning

Activity Debrief: Have students look for patterns of decimals that are closer to 4 and decimals that are closer to 5 . Discuss methods for rounding decimals.

Have students revisit the Pose the Problem question and discuss answers.

> - About how much money do they need?

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students extend their understanding of rounding whole numbers using place value to decimal numbers.

\section*{\({ }^{E P}\) Facilitate Meaningful Discourse}
- Think About It: What are some tools and strategies you used to help round whole numbers?
- Think About It: What if the price of the medium popcorn was \(\$ 5.65\), would you round to \(\$ 5.00\) or \(\$ 6.00\) ?
- Think About It: Is \(\$ 5.50\) a useful estimate?

Have students explain why \(\$ 5.00\) is a good estimate, even though it is not useful for this problem.

\section*{Math is... Precision}
- What do you notice about the estimate when rounding to lesser place value positions?
Students are thinking about the degree of precision appropriate for a problem context.

\section*{English Learner Scaffolds}

Entering/Emerging Support students in their comprehension of the word about as it is used when estimating. Put \(\$ 4.65\) on the table. Say, I'm going to give an estimate. This is about \(\$ 5.00\). Then count the money. Say This is \(\$ 4.65\). That's close to, or about, \(\$ 5.00\). Repeat the task again with a new amount, giving both the estimated amount using the word about, and the actual amount. Ask students, Which number is the estimate?

Developing/Expanding Support students in their comprehension of the word about as it is used in estimating. Put \(\$ 4.65\) on the table. Say l'm going to give an estimate. This is about \(\$ 5.00\). Then count the money. Say This is \(\$ 4.65\). That's close to, or about, \(\$ 5.00\). Repeat the task again with a new amount, giving both the estimated amount using the word about, and the actual amount. Ask students which number is the estimate and to explain how they know. Provide sentence frames to students who need more prompting or support.

Bridging/Reaching To support students in using the word about when expressing an estimate. Ask students to talk about similar-meaning words that they may have already learned in the past that are appropriate for both math and everyday language. Examples may include approximately, not exactly, close to, and around.

\section*{Practice \& Reflect © 10 min}

1. The masses of five diflerent dogs are shown. Round each mass to the nearest whote number
23; 25; 27; 26; 27

12. STEM Conneetion The mass of the sun takes up about \(99.86 \%\) of the mass of our solar system What is 99.86 rounded to the neparest tenth? 99.9

13. Which of the following numbers are cioser to 100 ? Which are closer to 99 ?

99039987994999279972
99.87, 99.72 are closer to 100; 99.03, 99.49, 99.27 are closer to 99
14. Extend Your Thinking The price of a containec of orange luice. rounded to the nearest one is \(\$ 3.00\). Between what two mounts could the actual price be? Between \$2.50 and \$3.49

\section*{(P) Reflect}

How is rounding decimals similar to rounding whoie numbers? Answers may vary.

\section*{Practice}

\section*{Build Fluency from Understanding}

Common Error: Exercises 5-8 Students may incorrectly identify the range in which the decimal numbers fall on a number line. Writing the decimal in expanded form and focusing on the value of the digit in the tenths place can help students identify the lesser end point of the range.

\section*{Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 2 & Procedural Skill \& Fluency \\
\(9-10\) & 3 & Conceptual Understanding \\
\(11-12\) & 3 & Application \\
13 & 3 & Conceptual Understanding \\
14 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How is rounding decimals similar to rounding whole numbers? Ask students to share their reflections with their classmates.

\section*{Math is... lindset}
- What have you done well today? What did you do that helped you? Students reflect on how they practiced responsible decision-making.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use rounding strategies to round decimals.
- I can explain how to apply rounding strategies to decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|c|}{ Item } & DOK & Skill \\
\hline \(1-2\) & 1 & Round decimals & Standard \\
\hline 3 & 2 & Round decimals & 5.NBT.A.4 \\
\hline \(4-7\) & 2 & Round decimals & 5.NBT.A.4 \\
\hline 8 & 2 & Round decimals & 5.NBT.A.4 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

If students score then have students do

8 of 8
7 of 8
6 or fewer of 8

Additional Practice or any of the \({ }^{(3)}\) or activities
Take Another Look or any of the (B) activities Small Group Intervention or any of the \(\boldsymbol{B}\) activities

\section*{Key for Differentiation}
(B) Reinforce UnderstandingBuild ProficiencyExtend Thinking



\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Round Decimals to Nearest Whole > 1
- Round Decimals to Nearest
 Tenth > 1

\section*{Practice It! Game Station}

Rounding Decimals Four in a Row
Students practice rounding decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 19-20

Lesson 3-5
Additional Practice
Name
Review
You can round decimals.
Marg has \(\mathbf{4} .875\) feet of tope. Round the length of the rope to the nearest tenth:

14.875 feet rounded to the nearest tenth is 14.9 leet.
1. Round each decimal to the nearest whole numbec.
\begin{tabular}{lll} 
a. 0.948 & 1 & b. 34.972 \\
c. \(4.013-4\) & d. \(48.671-49\) \\
a. \(9.05-9\) & f. \(56.143-56\) \\
a. \(12.489-12\) & h. \(65.701-67\) \\
L. \(20.87-21\) & j. \(79.862-80\) \\
k. \(26.187-26\) & L. \(92.557-93\) \\
\hline
\end{tabular}
2. Round each decimal to the given place value
a. Round 1.521 to the nearest terith. 1.5
b. Round 4.037 to the nearest hundredth. 4.04
c. Round 19.232 to the nearest tenth 19.2
d. Round 41691 to the nearest hundrodth. \(\mathbf{4 1 . 6 9}\)
e. Round 83.888 to the noarest tenth. 83.9 Scutern Prosten doot

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtracting within \(1,000,000\).

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 19-20
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{a. 0143} & tenths: 0.1 \\
\hline & hundreaths 0.14 \\
\hline \multirow[t]{2}{*}{b. 10.976} & ones 11 \\
\hline & nundreaths 10.98 \\
\hline \multirow[t]{2}{*}{C. 39483} & ones: 39 \\
\hline & tentins 39.2 \\
\hline \multirow[t]{2}{*}{d. 71565} & tenters: 71.6 \\
\hline & hundredths \(\mathbf{7 1 . 5 7}\) \\
\hline
\end{tabular}
4. A puppy weighs 10.49 pounds. To the nearest fentit, abour how much does the puppy welgh)
10.5 pounds
5. Dona says that 35.284 rounded to the rearest hundiedth is 35.29 Do you sqree? Explain.
No; Sample answer: I dlsagree because 35.284 rounded to the nearest hundredth is 35.28 .
6. There is \(\$ 78.69 \mathrm{in}\) a checking account. The amount neods to be rounded to the nearest whole dollar. Whaty says there is about \(\$ 78\) in the account, and Tu shys there 5 about \(\$ 79\) in the account Who is correct? Erpiain.
Tu; Sample answer: Since \(\$ 78.69\) is closer to \(\$ 79\) than to \(\$ 78\), the amount rounded to the nearest whole dollar is \(\$ 79\).

\section*{Use It! Application Station}

State Sales Tax Student investigate and compare state sales tax rates.

\section*{STEM Activity}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 20

\section*{Lesson 3-5-Extend Thinking}

\section*{Use Place Value to Round Decimals}

Nome
Quentin armes 632.074 miles trom Socramenta, Confornio to Las Vegns, Nevada one day and then drives 632.32 miles from Las Vegan to Santa Fe . New Mexico the next day.
1. a. When rounded to the nearest whole number, which day did Quentin dive the geater distance? They are the same.
b. When rounded to the nearest tenth, which day did Cuentin dive the greater distance? the second day
2. a. Round the distance Quentin traveled on the first day to the nemest terth \(\qquad\) 632.
b. Round the distance Quentin traviled on the first diay to the nearest hundreath. \(\quad 632.07\)
c. Which number is groater? \(\quad 632.1\)
3. It the distance Cuentin tyaveied on the first day was rounded to 632.074 . what is a possible distance be could nave traveled on that day?
Sample answer: 632.0735 (any number that is less than 632.0745 and equal to or greater than 632.0735 )
4. It the dostance Quentin usweled on the second day was tounded to 63232 . What is a possibie distance he could have traveled on that day?
Sample answer: \(\mathbf{6 3 2 . 3 2 4 \text { (any number that is less }}\) than 632.325 and equal to or greater than 632.315)


\section*{Review}
2. Which statement conectly compares values of the digt 8 in 284,560 and 128.7737 L-mial
A. The value of the digit B in 284,560 is \(\frac{1}{25}\) the value of the digit 8 in 128,773 .
(B.) The value of the digit 8 in 284,560 is 10 times the value of the digit 8 in 128,773 .
C. The value of the digit 8 in 284,560 is to.000 times the value of the aigt 8 in 128733
B. Complete the sertence, sesum 1 a in standard form, the number thirty-sir and eight hundred fourteen thousandths is wirten as 36.814
9. Determine whether each comparison is tree or folse.

\begin{tabular}{|l|c|c|}
\hline & Trwe & Falce \\
\hline \(0.49<0.5\) & \(\checkmark\) & \\
\hline \(0.304>0.333\) & & \(\checkmark\) \\
\hline \(0.019<0.09\) & \(\checkmark\) & \\
\hline \(0.08>0.81\) & & \(\checkmark\) \\
\hline \(0.71<0.11\) & & \(\checkmark\) \\
\hline \(0.68=0.068\) & & \(\checkmark\) \\
\hline
\end{tabular}
to. Complete each sertence. trembin
0.737 rounded to the nearest hundredth is 0.74
0.737 rounded to the nearest tenth is 0.7
11. Do the numbers round to 81 when rounded to the nearest tenth?
Choose yer or no. lumur 35
\begin{tabular}{|l|c|c|}
\hline & \(Y\) Mis & No \\
\hline 7.99 & & \(\checkmark\) \\
\hline 8.62 & & \(\checkmark\) \\
\hline 8.074 & \(\checkmark\) & \\
\hline 8.13 & \(\checkmark\) & \\
\hline 8.012 & & \(\checkmark\) \\
\hline
\end{tabular}
12. The table show the lengths of the tracks at Valley High School and Fantside High Schoot sum 1 an
\begin{tabular}{|c|c|}
\hline School & Lengith of Trock (in meters) \\
\hline Valley HS. & 398.25 \\
\hline Eestside H.S. & 398.09 \\
\hline
\end{tabular}

Wrte a comparison using \(>,<\) or \(=\). Sample answer: \(398.25>398.09\)

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{|l|l|}
\hline Item & Lesson \\
\hline 1 & \(3-2\) \\
2 & \(3-2\) \\
3 & \(3-2\) \\
4 & \(3-1\) \\
5 & \(3-2\) \\
6 & \(3-2\) \\
\hline
\end{tabular}

\section*{Review}

Item Analysis
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 7 & 2 & \(3-1\) & 5.NBT.A.1 \\
8 & 2 & \(3-3\) & 5.NBT.A.3.a \\
9 & 2 & \(3-4\) & 5.NBT.A.3.b \\
10 & 2 & \(3-5\) & 5.NBT.A.4 \\
11 & 2 & \(3-5\) & 5.NBT.A.4 \\
\hline 12 & 2 & \(3-4\) & 5.NBT.A.3.b \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.
Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 13 & 2 & \(3-2\) & 5.NBT.A.1 \\
14 & 2 & \(3-2\) & 5.NBT.A.1 \\
14 & 2 & \(3-2\) & 5.NBT.A.1 \\
16 & 2 & \(3-3\) & 5.NBT.A.3.a \\
17 & 2 & \(3-3\) & 5.NBT.A.3.a \\
\hline 18 & 2 & \(3-3\) & 5.NBT.A.3.a \\
19 & 2 & \(3-5\) & 5.NBT.A.4 \\
\hline 20 & 2 & \(3-3\) & 5.NBT.A.3.a \\
\hline
\end{tabular}

\section*{Performance Task}

Standards: 5.NBT.A.3.a; 5.NBT.A.3.b

\section*{Rubric (4 points)}

\section*{Part A - 2 points}

2 POINTS Student's work reflects a proficiency in reading and writing decimals. The student can write a number in word and expanded form.
1 POINT Students work reflects developing proficiency in reading and writing decimals. The student can write a number in either word or expanded form.
0 POINTS Student's work reflects a poor understanding in reading and writing decimals. The student cannot write a number in word or expanded form.

\section*{Part B-2 points}

2 POINTS Student's work reflects a proficiency in comparing decimals. The student's solution is accurate and can explain their answer.
1 POINT Student's work reflects developing proficiency in comparing decimals. The student's solution may be accurate but may not be able to explain their answer.
0 POINTS Student's work reflects a weak understanding of comparing decimals. The student's solution is inaccurate, and they are not able explain their answer.

\section*{Reflect}

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.


\section*{Performance Task}

There are eight planets in our solar system. Each planet orbits the sursat different speeds. Some planets have no moons and some planets have multiple moonst

PART A. The table shows length of time at takes Jupiter and Saturn to orbit the Sum in relation to Earth's orbit. Complete the table to show the word form and the expanded form of each speed.


PART B. Jupiter has 67 confirmed moons. Ench moon orbits at different speeds. One moon takes 259.22 Earth divys to orbit Jupter and another one takés 259.653 Earth caym Use >.<. or \(=\) to compare the orbit speeds. Explain your answor.
259.22 < 259.653; Sample answer: 0.6 is greater than 0.2

\section*{(2) Reflect}

Explain how place value helps you understand the relationship between decimay places
Answers may vary.
at men . Antumensin


Fluency Check


\section*{Fluency Talk}

Explain to a friend how you know if you heve to regroup when adding using an alocithm.
Answers may vary.

How is adding using partial sums similar to adding using an algorithm?
Answers may vary.
so. Man - Pueripret

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice using an algorithm to add.
Fluency Progression
\begin{tabular}{|c|c|c|}
\hline Unit & Skill & Standard \\
\hline 1 & Use Partial Sums to Add & 4.NBT.B. 4 \\
\hline 2 & Decompose by Place Value to Subtract & 4.NBT.B. 4 \\
\hline 3 & Use an Algorithm to Add & 4.NBT.B. 4 \\
\hline 4 & Use an Algorithm to Subtract & 4.NBT.B. 4 \\
\hline 5 & Choose a Strategy to Add & 4.NBT.B. 4 \\
\hline 6 & Choose a Strategy to Subtract & 4.NBT.B. 4 \\
\hline 7 & Multiply by Multiples of 10 & 5.NBT.B. 5 \\
\hline 8 & Multiply by Multiples of 100 & 5.NBT.B. 5 \\
\hline 9 & Divide Multiples of 10 & 5.NBT.B. 6 \\
\hline 10 & Divide Multiples of 100 & 5.NBT.B. 6 \\
\hline 11 & Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers) & 5.NBT.B. 5 \\
\hline 12 & Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers) & 5.NBT.B. 5 \\
\hline 13 & Choose a Strategy to Multiply & 5.NBT.B. 5 \\
\hline 14 & Choose a Strategy to Multiply & 5.NBT.B. 5 \\
\hline
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Performance Task}

\section*{A Trip to the Movies}

Student draw on their understanding of decimal place value and number relationships. Use the rubric shown to evaluate students' work.

Standards 5.NBT.A.1, 5.NBT.A.3.a, 5.NBT.A.3.b, 5.NBT.A. 4
Rubric (10 points)
Part A (DOK 2) - \(\mathbf{2}\) points
2 POINTS Student's explanation reflects a proficiency with understanding rounding in context.
1 POINT Student's explanation reflects developing proficiency with understanding rounding products in context.

0 POINTS Student's explanation reflects a poor understanding of rounding products in context.

Part B (DOK 3) \(\mathbf{- 2}\) points
2 POINTS Student's work shows proficiency in extending place value to decimals. The student's explanation is reasonable.

1 POINT Student's work shows developing proficiency in extending place value to decimals. The student's explanation is reasonable.

0 POINTS Student's work shows weak proficiency in extending place value to decimals. The student's explanation is incorrect.

Part C (DOK 2) \(\mathbf{- 2}\) points
2 POINTS Student's work identifies correct range of place values for rounding decimals. The student's explanation is reasonable.

1 POINT Student either identifies correct range of place values for rounding decimals or has a reasonable explanation.

0 POINTS Student does not identify the correct range of place values for rounding decimals. The student's explanation is not reasonable.

Part D (DOK 2) - 2 points
2 POINTS Student's work shows proficiency in generalizing place value. The student's explanation is reasonable.

1 POINT Student's work shows developing proficiency in generalizing place value. The student's explanation is reasonable.

0 POINTS Student's work shows weak proficiency in generalizing place value. The student's explanation is incorrect.

\section*{Part E (DOK 4) - 2 points}

2 POINTS Student's explanation shows proficiency in generalizing place value.

1 POINT Student's explanation shows developing proficiency in generalizing place value.

0 POINTS Student's explanation does not show proficiency in generalizing place value.

\section*{Unit 3}

\section*{Performance Task}

\section*{Nome}

\section*{A Trip to the Movies}

Jackson and Frarik go to a movie Before finding a sest, they stop by the sinacks counter

\section*{Part A}

Jackson estimates a large diric costs about \$5. The actual price is \(\$ 5,75\). Is Jockson's estimate reasonable? Explain your answer. Sample answer: No because \(\$ 5\) would not be enough to purchase a large drink. \(\$ 6\) would have been a much more reasonable guess in this instance, as it would be more than enough.

\section*{Part 8}

Jackson pays \(\$ 9.79\) for his snacks, while Frank pays \(\$ 7.62\). Snow two different ways to describe the retationship between the values of the digh 7 in each numbec. Explain your answer.
Sample answer: The 7 in the tenths place of \(\$ 9.79\)
is \(\frac{1}{10}\) the value of the 7 in the ones place of \(\$ 7.62\).
The 7 in the ones place of \(\$ 7.62\) is 10 times the value of 7 in the tenths place of \(\$ 9.79\).

Part C
Jackson and Frank hove \(\$ 30\) combined and the tickets cost \(\$ 14.99\) each, Do Jackson and Frank hsve enough money for their shacks and movie tickets? Use rounding of decimals to explsin your answer.
Sample answer: After rounding, they will spend all \(\$ 30\) on tickets and will not have enough money left to purchase snacks.

\section*{Part D}

Last week, the movie theater sold 13.819 tickets. This week, the movie theater sels 13.694 tickets. When determining which week sold more tickets, why is it not necessary to compare the digits in the tens place? Explain your answet

Sample answer: The values in the respective hundred's places differ. \(8>6\)

\section*{Part E}

Jackson's and Frank's ticiet stubs each have a tive-digh code Jocksor's five-dight code has the digit 8 in the thousands place which has a value ten times greater than the digt 8 in Franic's code. The digit 6 in Frank's code has a value of 60,000 , which is one thundred times the value of the 6 in Jackson's code. Write an example of a five-digit code that fits the description for each boy using only the digits \(0,1,2,3,4\), and 5 one time each for the remaining places. Whose code is greater? Explain your answer. Sample answer: Jackson - 58.643, Frank - 62.810 ; A fully correct response will be any five-digit number with the underlined digits in the given places. The value of the digit 6 in Frank's code is greater than any possible given digit that could be used in the ten thousands place of Jackson's code. So, Frank's code is greater.

\section*{Unit Assessment}

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{llllll|}
\hline Item DOK Lesson Guided Support \\
Intervention Lesson
\end{tabular}\(\quad\) Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit 3}

\section*{Unit Assessment, Form A}
\[
\begin{aligned}
& \text { 1. Which statement about the digts in the number } 39.906 \text { is true? } \\
& \begin{array}{ll}
\text { A. The value of the digt } 9 \text { in the } & \text { B. The value of the digit } 9 \text { in the } \\
\text { thousands place is } 10 \text { times } & \text { thousands place is } \frac{1}{10} \text { the } \\
\text { the value of the digit } 9 \text { in the } & \text { value of the digt } 9 \text { in the } \\
\text { hundreds place. } & \text { Dindreds place } \\
\text { C. The vatue of the digit } 9 \text { in the } & \text { The value of the digit } 9 \text { in the } \\
\text { thousands place is } 100 \text { tines } & \text { thousands place has the sarne } \\
\text { the value of the digit } 9 \text { in the } & \text { value as the cigit } 9 \text { in the } \\
\text { hundreds place } &
\end{array}
\end{aligned}
\]
2. How can you wite the number in standard form?

In standard form, the number nine hundredt two and fity-one thousandthe is written 902.051
3. Look at the digit 7 in the numbers given in the place-value chart.
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & Len Mevineta & Sowsem & turdeth & tens & -m \\
\hline 7 & 9 & 7 & 2 & 6 & 4 \\
\hline & 7 & 0 & 1 & 3 & 8 \\
\hline
\end{tabular}

Which statement is true? Choose all that apply.
(A.) 70,000 is \(\frac{1}{10}\) of 700,000
B. 2,000 is 10 times 700,000
C. 70,000 is \(\frac{1}{10}\) of 7,000
(D. 70.000 is \(\frac{1}{10}\) of 700,000
(E.) 70,000 is 10 times 7,000
4. Use the place value chart to complote the statement
\begin{tabular}{|c|c|c|c|c|c|}
\hline handest & tuen & enes & teite & tunevith & Evanama \\
\hline 4 & 6 & 5 & 5 & 5 & 1 \\
\hline
\end{tabular}

The value of the digt 5 in the tentlas place is \(\frac{1}{10}\) the vasie of the digit 5 in the \(\qquad\) place.
(A)
B. Tentin
C. nundreaths
5. It each compaison True or False?
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & True & False \\
\hline \(0.12<0.2\) & \(\checkmark\) & \\
\hline \(0.407>0.446\) & & \(\checkmark\) \\
\hline \(0.089<0.09\) & \(\checkmark\) & \\
\hline \(0.61>0.06\) & \(\checkmark\) & \\
\hline \(0.555<0.55\) & & \(\checkmark\) \\
\hline \(0.34=0.034\) & & \(\checkmark\) \\
\hline
\end{tabular}
6. A centimeter is 0.01 meter. A millimeter is 0.001 meter.

How does the length of 1 centimeter compare to the length of 1 millimeter? Explnin your antwer
1 centimeter is 10 times the length of 1 millimeter; Sample answer: The digit 1 in 0.01 is ten times the value of the digit 1 in 0.001 . So 1 centimeter is 10 times the length of 1 millimeter.
2. What is the expanded form of 405,0727
A. \(40+5+\frac{7}{100}+\frac{2}{1000}\)
B. \(40+5+\frac{7}{10}+\frac{2}{100}\)
C. \(400+5+\frac{7}{10}+\frac{2}{100}\)
(D. \(400+5+\frac{7}{100}+\frac{2}{2000}\)

\section*{Unit 3}

Unit Assessment. Form A icontinued)
Name
8. Do the rambers tound to 5.3 wten rounded to the nearest tenth? Chosse Yes or No for each number
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & Yes & No \\
\hline 5.26 & \(\checkmark\) & \\
\hline 5.38 & & \(\checkmark\) \\
\hline 5.227 & & \(\checkmark\) \\
\hline 5.308 & \(\checkmark\) & \\
\hline 5.251 & \(\checkmark\) & \\
\hline
\end{tabular}
9. What is the decimal form of each fraction? Draw a line to match Not all decimals will be used.

03

10. The table shows the time il took Kara and Soo to each run the 100 -meter ensh,
\begin{tabular}{|l|c|}
\hline Student & Time (secends) \\
\hline Kara & 14.09 \\
\hline Soo & 14.22 \\
\hline
\end{tabular}

Which student ran faster? Explain now you know
Kara; Sample answer: Since 14.09 has 0 tenths and 14.22 has 2 tenths, 14.09 is less than 14.22. The lesser time indicates the faster runner, so Kara ran faster than Soo.

\section*{How can you round the number?}
t. 0.291 rounded to the nearest termitis 0.3 .
12. 0.291 rounded to the nearest hindredth is 0.29
13. Which is the correct word form for 302.07
A. thirty-two and seven hundrecths
a. three hunctred two and suven terths
C. three hundred two and seven hundreaths
D. Three hundred fwo and sever thoisanctits
14. Rounded to the nearest to dobder, Holy spent about \(\$ 30.00\) ot the ttore. Which could be the exact amount af her purchases? Choose all thest apply
A. 32395
(B.) \(\$ 28.25\)
C. \(\$ 32.88\)
D. 335.45
E. \(\$ 38.25\)
15. Henil reasoned that the digt 6 in the thousancths place rounded the number to 8.45 , and so the digit 5 in the hundredths place pounds the number to 8.5 to the nearegt temin. ts Henvi cortect? Expinin
No; Sample answer: To round to the nearest tenth, look only at the digit in the hundredths place. Since the digit is \(4,8.446\) rounds to 8.4.

\section*{Form B}

\section*{uni 3}

Unit Assessment. Form B

\[
\begin{aligned}
& \text {-monemas aimed }
\end{aligned}
\]
- maculditas 1009
En Ne vide at merigh 4
mitrianotiacs

2 Noe tas ron mila the nower in thond tive
 wilem 6.051
1. biok il
\begin{tabular}{|c|c|c|c|c|c|}
\hline marta & -\% & \(\square\) & - & - & - \\
\hline 0 & 0 & 6 & 2 & 7 & 0 \\
\hline & 1 & 2 & 9 & 2 & 4 \\
\hline
\end{tabular}

(4) 20 H , \(=1200\)
(C) \(\operatorname{sen} n v=0200\)
(C) \(7001 \operatorname{lin}_{n}^{1}=12000\)
- \(\min \frac{1}{6}\) " 23
1. \(200 \mathrm{~s} 10 \mathrm{y}=2000\)




I milinereter is to the Impth of 1 centimeters Sensple



(A) \(100+1+\frac{1}{30}+\frac{1}{1000}\)
a. \(100+1+\frac{1}{n}+\frac{2}{\infty}\)
c \(=1+2+\frac{1}{\infty}+\frac{3}{\infty}\)
c. \(10+1+\frac{3}{0}+200\)

4 -


 Aortie A: Somple anewee Sinen 935 has 3 terths and 908 has 0 fenthe 9.36 is greater tham 9.08 . The greatis number egrevents the greater dititaice, so Marble A traveled forthe than Marble ei.


\section*{- 355 as}
5. 52035


 ton
Noc Somple answer To round top the nearest temah, foov anky at tiow digit in the humdretths places. Since then digh is \(4,12.448\) revinds to 12.4 .

\section*{Add and Subtract Decimals}

\section*{PACING: 14 days}

\section*{SOCIAL AND EMOTIONAL} LEARNING OBJECTIVE

Unit Opener ieviret How Far? Estimate the width of the classroom using the number of steps.

4-1 Estimate Sums and Students estimate decimal sums Differences of Decimals and differences using the same strategies used with whole number sums and differences.

Students discuss estimating sums and differences of decimals while answering Wh- questions and using the verb rounding.

Students set a focused mathematical goal and make a plan for achieving that goal.

Math Probe Estimating Decimal Sums and Differences Use estimation to determine if the sum of two decimal numbers is greater than or less than a benchmark number.
\begin{tabular}{|c|c|c|c|c|}
\hline 4-2 & Represent Addition of Decimals & Students use decimal grids to represent addition of decimals with the same number of decimal places. & Students discuss using decimal grids to represent addition of decimals while answering Wh- and Yes/No questions. & Students identify and discuss the emotions experienced during math learning. \\
\hline 4-3 & Represent Addition of Tenths and Hundredths & Students use decimal grids to epresent addition of decimals with different numbers of decimal places. & Students discuss using decimal grids to add decimals while answering \(W h\) - questions and using the adjective similar. & Students collaborate with peers to complete a mathematical task and offer constructive feedback to the idea posed by others. \\
\hline 4-4 & Use Partial Sums to Add Decimals & Students use addition strategies they know, such as partial sums, to add decimals. & Students discuss addition strategies, such as partial sums, to add decimals while answering Wh- questions. & Students recognize and work to understand the emotions of others and practice empathetic responses. \\
\hline 4-5 & Represent Subtraction of Decimals & Students use decimal grids to represent subtraction of decimals with the same number of decimal places. & Students explain how to use decimal grids to represent subtraction of decimals while answering \(W h\) - and using how much. & Students collaborate with peers and contribute to group effort to achieve a collective mathematical goal. \\
\hline 4-6 & Represent Subtraction of Tenths and Hundredths & Students use decimal grids to represent subtraction of decimals with different numbers of decimal places. & Students discuss using patterns to solve problems while answering Wh - questions and using longer. & Students break down a situation to identify the problem at hand. \\
\hline 4-7 & \begin{tabular}{l}
Strategies to \\
Subtract Decimals
\end{tabular} & Students can use subtraction strategies they know, such as partial differences, to subtract decimals. & Students discuss using subtraction strategies while answering Wh- and Yes/No questions and using adjectives such as efficient and easier. & Students recognize personal strengths through thoughtful self-reflection. \\
\hline \(4-8\) & Explain Strategies to Add and Subtract Decimals & Students can explain their choice of strategy to solve. & Students discuss their choice of strategy to solve a problem while answering Wh- questions and using the adjective efficient. & Students exchange ideas for mathematical problem-solving with a peer, listening attentively and providing feedback. \\
\hline \multicolumn{5}{|l|}{Unit Review Fluency Practice} \\
\hline \multicolumn{5}{|l|}{Unit Assessment Performance Task} \\
\hline
\end{tabular}
\begin{tabular}{l|} 
LESSON \\
4-1 \\
\hline Math Probe
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4-2 & decimal grid hundredths tenths & benefit drawback evaluate & \begin{tabular}{l}
- number cube \\
- Tenths and Hundredths Teaching Resource
\end{tabular} & & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline 4-3 & decimal grid & \begin{tabular}{l}
debate \\
infer
\end{tabular} & \begin{tabular}{l}
- base-ten blocks \\
- decimal grid \\
- \(10 \times 10\) Teaching Resource
\end{tabular} & - index cards & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline 4-4 & decompose partial sums & emphasize procedure & - Decimal Cards Teaching Resource & & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline 4-5 & decimal grid & \begin{tabular}{l}
assert \\
prove
\end{tabular} & \begin{tabular}{l}
- Blank Number Lines Teaching Resource \\
- number cubes
\end{tabular} & - Tenths and Hundredths Teaching Resource & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline 4-6 & decimal grid & accurate evaluate & - Decimal Grids Teaching Resource & - \(10 \times 10\) Teaching Resource & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline 4-7 & decompose & analyze prove & - Blank Open Number Lines Teaching Resource & - Decimal Cards Teaching Resource & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline 4-8 & decomposition partial sums & evaluate procedure & - Explain and Show Your Strategies Teaching Resource & & Conceptual Understanding Procedural Skill \& Fluency & 5.NBT.B. 7 \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Unit Overview}

\section*{Focus}

\section*{Adding and Subtracting Decimals}

As students approach learning to add and subtract decimals, they are equipped with the understanding of whole-number operations and decimal place value. They have experience with using number lines, grids, and other visual representations to help them add and subtract. Students build on this prior knowledge as they develop strategies for adding and subtracting decimals.

The explorations with multiple representations provide students opportunities to visualize and internalize how decimals behave during addition and subtraction. This allows for a much deeper understanding than merely memorizing and applying algorithms.

Students estimate sums and differences by using rounded numbers and compatible numbers. Estimation strategies are taught prior to finding exact results so that students have tools to use to check for reasonableness.

Students learn to find exact sums and differences using multiple representations including tenths and hundredths grids and number lines. Students also learn how to decompose decimals to perform operations on their parts.

Allow students plenty of time to explore the strategies in each lesson. When they ultimately use the standard algorithm for each decimal operation, this learning will give them a foundation of deeper understanding.

\section*{Coherence}

\section*{What Students Have Learned}

\section*{- Add and Subtract Whole Numbers}

Students fluently added and subtracted multi-digit whole numbers using the standard algorithm. (Grade 4)
- Understand Decimal Place Value Students extended place-value understanding to decimals. (Grade 5, Unit 3)

\section*{What Students Are Learning}
- Estimate Sums and Differences of Decimals

Students use and describe place-value strategies to estimate sums and differences of decimals.
- Use Representations to Add and Subtract

Decimals Students use representations including decimal grids and number lines to add and subtract decimals.
- Use Strategies to Add and Subtract

Decimals Students use strategies including decomposition, partial sums, and partial differences to add and subtract decimals.

\section*{What Students Will Learn}

\section*{- Multiply Multi-Digit Whole Numbers}

Students will fluently multiply multi-digit whole numbers. (Grade 5, Unit 5)
- Add, Subtract, Multiply, and Divide

Multi-Digit Decimals Students will fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation. (Grade 6)

\section*{Rigor}

\section*{Conceptual Understanding}

Students develop understanding of:
- using place-value understanding to estimate sums and differences of decimals;
- using representations to add and subtract decimals;
- using strategies to add and subtract decimals.

\section*{Procedural Skill and Fluency}

Student build proficiency with:
- procedures for estimating sums and differences of decimals;
- adding and subtracting decimals.

\section*{Application}

Students apply their knowledge of:
- estimating sums and differences of decimals to solve problems with real-world contexts;
- adding and subtracting decimals to solve problems with real-world contexts;
Application is not a targeted element of rigor for the standards in this unit.

\section*{Effective Teaching Practices}

\section*{Build Procedural Fluency from Conceptual Understanding}

It can be tempting to revert to reliance upon memorization of rules and rigid application of those rules. After all, many students have been taught to "line up the decimal points and add or subtract as usual" and succeeded in their math classes.

Students will, however, develop greater fluency and more transferrable skills and understanding when they are allowed and encouraged to explore concepts on a deeper level.

In the early grades, children learn to count, add, and subtract whole numbers by using concrete representations.

Teachers would not expect, for example, for children to learn \(2+3=5\) as a purely abstract concept. Instead, children are presented with a group of two objects and a group of three objects-and are then allowed to count the five objects. Only after this concrete understanding has been established are childre guided toward using only the numerical representation of addition within 5 .

In the same way, when students work with decimals or fractions, they should be encouraged to explore the fractional parts represented by the numerals and how those parts are taken apart or put together.

When students work with decimals or fractions, too much focus on procedure can lead to lack of conceptual foundation. In contrast, students who focus more on conceptual understanding are often able to articulate procedural explanations based on their own experience. As such, encourage students to use visual representations for decimals whenever possibleeven in situations where a problem may be presented with numerals only.

Guide students to continue using estimation for checking their sums and differences, and to maintain their understanding of the magnitude of the numbers they are adding and subtracting. Estimation plays a key role in helping students avoid errors involving place value and the placement of the decimal point.

\section*{Math Practices and Processes}

\section*{Use Appropriate Tools Strategically}

This unit provides varied tools and representations to help students understand what is happening when decimals are added and subtracted.

Each student has a unique way of learning and may gravitate toward one or another type of representation or strategy. For example, some students may relate better to decimal grids than to number lines, while others may find it easier to decompose and add than to use a visual representation for each decimal.

Encourage students to gain fluency in using every tool and strategy available to them. Explain that although they may develop preferences, each visual representation may prove valuable - and they will not be able to determine their favorites without experiencing each. In particular, to gain overall fluency, there is value in encouraging students to use tools with which they are least comfortable. Students should be encouraged to compare and contrast how each tool shows numbers and operations.

Some suggestions for using tools strategically and choosing appropriate tools include:
- Students work with partners to solve a decimal addition or subtraction problem. Each partner chooses a method and completes the operation. Partners articulate their strategies to one another, including evaluating and comparing tools.
- Students are given a number line that shows a decimal addition or subtraction. Students use the information on the number line to write one or more matching equations.
- Students are given a decimal addition or subtraction problem and are asked to discuss as a class the tools they would choose and explain the reasoning behind their choices.

\section*{Social and Emotional Learning}

\section*{What Skills Will We Develop}
- Self-Management - Goal Setting (Lesson 4-1): Setting goals can help motivate students to take initiative and stay focused.
- Self-Awareness - Identify Emotions (Lesson 4-2): Students who can identify and understand their own feelings and emotions can better manage the reactions to those feelings and emotions.
- Relationship Skills - Social Engagement (Lesson 4-3): Engaging with others allows students to develop relationships and establish a sense of security and belonging in the classroom community.
- Social-Awareness - Empathy (Lesson 4-4): Students who can empathize with others are more able to build positive relationships.
- Relationship Skills - Teamwork (Lesson 4-5): When students work effectively as a team, they establish a stronger learning community.
- Responsible Decision-Making - Identify Problems (Lesson 4-6): A key step in problem solving is analyzing information to identify the task.
- Self-Awareness - Recognize Strengths (Lesson 4-7): When students recognize their own strengths, they can see themselves as resourceful and may be more willing to attempt to problem solve and help others.
- Social Awareness - Respect Others (Lesson 4-8): When students are respectful of one another, they strengthen their class community.

\section*{Unit Overview}

\section*{Language of Math}

\section*{Mathematical Nouns}

Students will be using these key terms in this unit:
- Estimate (Lesson 4-1): This is a review term, which students should be familiar with. Ask students to explain how they have used estimation in the past to better understand number relationships and to help check if a solution is reasonable.
- Round (Lesson 4-1): Students have used this term throughout previous grades. In the context of estimation, students round decimals to the nearest whole number. Students should recognize the difference between rounding and using compatible numbers.
- Decompose addends (Lesson 4-4) Students should be familiar with decomposing numbers from earlier grades. Remind them of the meaning of addends and how decomposing addends can facilitate finding a sum, especially as they apply this strategy to using partial sums in decimal addition.

\section*{Math Language Development}

\section*{A Focus on Estimation Vocabulary}

Help students identify the methods and steps they use in estimation.
Ask students to discuss the difference between the words exact and approximation, and between determine and guess. Have them use the word estimate as a verb in a sentence. Have them use the word estimate as a noun and the word about in a sentence. Also have them use the words calculate and exactly in a sentence.

Guide students to articulate that estimating enables us to quickly determine a "ballpark" result that is close to the actual answer. Students should explain why different estimation strategies may produce different estimates that are all reasonable.

Students may be familiar with the expressions wild guess and educated guess. Explain that estimation involves using a sound strategy to make an educated guess whereas a wild guess generally does not involve a strategy that would produce a reasonable result.

This module includes other terminology that refines students' understanding of estimation.

Students have used the term benchmark before. Encourage them to think of benchmarks in concrete terms: markings on a measurement line with which they can compare other numbers.

The terms round, halfway point, and target number should need little explanation, but help students attend to their meaning and use them in sentences when describing an estimation process.

\section*{English Language Learner}

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to adding and subtracting decimals. Because many of the words (weight, cost, lengths, farther) and phrases (take up, how far, how much more, the difference) used in this section are likely unfamiliar or unknown, students are supported in understanding and using these words so that the instruction is more accessible.

Lesson 4-1 - take up
Lesson 4-2 - how far
Lesson 4-3 - weight, lb.
Lesson 4-4 - cost (n)
Lesson 4-5 - how much more
Lesson 4-6 - lengths
Lesson 4-7 - the difference
Lesson 4-8 - farther

\section*{Unit Routines}

\section*{Number Routines}

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

\section*{About How Much?}

Purpose: Build estimating skills.
Overview: Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

\section*{Would You Rather?}

Purpose: Build flexibility with number sense and mental math operations; enhance decision-making.
Overview: Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

\section*{Which Benchmark Is It Closest To?}

Purpose: Enhance rounding and reasoning skills.
Overview: Students determine to which benchmark the given number is closest and explain their reasoning.

\section*{Can You Make the Number?}

Purpose: Build flexible thinking and efficiency with operations.
Overview: Students use all the given numbers to build expressions with a value matching the target number. Students can use a range of operations in their expressions. The teacher records students' expressions, then facilitates a discussion about students' expressions.

\section*{Sense-Making Routines}

\section*{Notice \& Wonder: What do you notice? What do you wonder? (Lessons} 4-1, 4-5, 4-6) In Lesson 4-1, students notice and wonder about the relationship between different amounts of data storage on a cell phone. The prompt for Lesson \(4-5\) has students noticing and wondering about relating pixel art on a decimal grid to decimals. In Lesson 4-6, students notice and wonder about what decimals represent and the similarities and differences between decimals with a different number of decimal places.

Numberless Word Problem (Lessons 4-2, 4-8) In Lesson 4-2, students discuss and share their thoughts about a map and the numbers included on a map. In Lesson 4-8, students think about the strategies and operations they can use to solve the problem.

\section*{Notice \& Wonder: How are they the same? How are they}
different? (Lesson 4-3) Students consider the same decimal represented as tenths and as hundredths on grids. The decimal grids give students the opportunity to visualize tenths and hundredths on concrete models before they use the decimal grids to add them in the lesson.

Which Doesn't Belong? (Lessons 4-4, 4-7) In Lesson 4-4, students think about the meaning of decimals and ways to represent decimals. In Lesson \(4-7\), students look for connections among whole-number addition and subtraction equations.

\section*{Math Language Routines}

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. For more information on the Math Language Routines, see the Appendix.
- Lesson 4-1 - Students participate in MLR8: Discussion Supports.
- Lesson 4-2 - Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 4-3 - Students participate in MLR2: Collect and Display.
- Lesson 4-4 - Students participate in MLR7: Compare and Connect.
- Lesson 4-5 - Students participate in MLR4: Information Gap.
- Lesson 4-6 - Students participate in MLR3: Critique, Correct, and Clarify.
- Lesson 4-7 - Students participate in MLR7: Compare and Connect.
- Lesson 4-8 - Students participate in MLR5: Co-Craft Questions and Problems.

\section*{Readiness Diagnostic}

\section*{Unit 4}

\section*{How Ready Am I?}

Name
1. Which shows 74.38 in expanded form?
A. \(7+4+0.38\)
e. \(70+4+0.03+08\)
C. \(70+4+0.3+0.8\)
(D. \(70+4+0.3+0.03\)
2. Which decimal gid represents 0.26 ?

3. The table shows the population of fwo nelghboring towns
\begin{tabular}{|c|c|}
\hline Town & Population \\
\hline Oakvilv & 428,714 \\
\hline Clarence & 56.529 \\
\hline
\end{tabular}

What is the totsil population of the rwo towns?
A. 584,243
B. 585.243
C. 485,243
D. 484,243
4. The box office receipts show that 728 people attendod the Fridsy performance of the school musical. There were 45 fower people who athonded the Suturdey performance. How mary people attonded the two performances?
(A)
B. 683
c. 1501
D. 1,456
5. In the number 5.294 , which digt is in the hundredtins place?
A. 5
E. 4
C. 2
(D.) 9
6. Which number is 1.350 .000 when tounded to the nesent ten thousand?
A. \(1,362,408\)
B. \(1,355,729\)
C. 1339.999
(D) 1385890
2. Kieran's webste recorded 17,293 hts in Jananry and 14,605 hits in February. Which of these is closest to the total number of hts the website received during these two manths?
A. 33,000
(B.) 32,000
c. 31,000
D. 30,000
8. Trevor has \(\$ 3,242\) in his swings accourt. If Trevor wethdraws \(\$ 550\) for a new computer, what will be the balance in his sivings account?
A. 32.712
(B.) \(\$ 2.692\)
C. \(\$ 2.792\)
D. \(\$ 2.31\)
9. A delivery service has 2.010 packages to deliver today. By 3.00 p.m. thete wete 429 packages still to be delivered. How mary packages were delivered before \(3: 00 \mathrm{pm}\).?
(A.) 1,581 packages
B. 1.577 packages
C. 1.671 packages
D. 1.681 packages
10. Fiona sels her produce it a farm stand. The table shows the amourt of money she has made so far this week
\begin{tabular}{|c|c|}
\hline Day & Sales \\
\hline Mondry & \(\$ 49\) \\
\hline Tuenday & \(\$ 63\) \\
\hline Wednesday & \(\$ 94\) \\
\hline Thursday & \(\$ 91\) \\
\hline
\end{tabular}

How much money does Fiona still need to make in order to reach her goal of \(\$ 350\) for the week?
A. \(\$ \$ 63\)
B. \(\$ 137\)
C. \(\$ 63\)
D. \(\$ 77\)

50
Answonmet frowict boct

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

\section*{Targeted Intervention}

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

\section*{Item Analysis}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & DOK & Skill & Guided Support Intervention Lesson & Standard \\
\hline 1 & 1 & Write decimals in expanded form & Expanded Form of Decimal Powers of Ten & 5.NBT.A. 3 \\
\hline 2 & 1 & Identify decimal grid representation & Expanded Form of Decimal Powers of Ten & 5.NBT.A.3.a \\
\hline 3 & 2 & Add whole numbers to hundred thousands & Add Multi-Digit Numbers & 4.NBT.B. 4 \\
\hline 4 & 2 & Subtraction and addition of whole numbers to thousands & \begin{tabular}{l}
Multi-Step Word \\
Problems with \\
Addition and \\
Subtraction
\end{tabular} & 4.0A.A. 3 \\
\hline 5 & 1 & Identify place value of a digit & Expanded Form of Decimal Powers of Ten & 5.NBT.A.3.a \\
\hline 6 & 2 & Round numbers to ten thousands & Round to Any Place & 4.NBT.A. 3 \\
\hline 7 & 2 & Estimate sums & Reasonableness in One-Step Word Problems & 4.0A.A. 3 \\
\hline 8 & 2 & Subtract whole numbers & Subtract Multi-Digit Numbers & 4.NBT.B. 4 \\
\hline 9 & 2 & Subtract whole numbers & Subtract Multi-Digit Numbers & 4.NBT.B. 4 \\
\hline 10 & 2 & Add and subtract whole numbers & \begin{tabular}{l}
Multi-Step Word \\
Problems with \\
Addition and \\
Subtraction
\end{tabular} & 4.OA.A. 3 \\
\hline
\end{tabular}

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit Opener}

\section*{Focus Question}

Introduce the Focus Question: How do I add and subtract decimals? Ask students to think about what they know about decimals.
-What do you already know about decimals?
- When do you think you might need to add and subtract with decimals?
-What do you think you will be learning in the Unit?
Remind students that at the end of the unit, they will reflect back on what they learned in this unit.

\section*{Family Letter}

Each letter presents an overview of the math in the unit and home activities to support student learning.

\section*{STEM in Action}

\section*{Videos}

Students can watch the two STEM videos.
STEM Career: Veterinarian Ruby talks about the work of veterinarians.
Ruby Subtracts Decimals Ruby explains how to subtract decimals.

\section*{STEM Project Card}

Students can complete the STEM Project Card during their workstation time.


STEM Career: Veterinarian


\section*{Ruby Subtracts Decimals}


\section*{IGNiTE!}
Name

\section*{How Far? Answers may vary.}
A. Malek a guess: How mary steps do you think it would take you to walk across the width of our classroom? \(\qquad\) _ steps What number of steps would delinitely be too great?
\(\qquad\)
a. Record the number of steps for each student who walked across the room.
\begin{tabular}{rrr} 
steps & steps & steps \\
steps & steps & steps \\
steps & steps & steps \\
\hline steps & steps & steps
\end{tabular}
C. Why do you suppose each student did not wak the same number of steps?
D. A comman step length for a fith grader is 19 feet. Use this information, along with one of the step-counts listed in Part E. to estimate the width or the room in feet.
Estimated width of the room: \(\qquad\)
E. The actual width of the classroom, given to you by your teacher, is fiet Describe bow close your estimate was to the actual distance.
92 beviet - How Fal

\section*{Ignite!}

\section*{How Far?}

Students review addition, rounding, and estimation. They also apply nonstandard units of measurement and decimals in preparation for their work with adding and subtracting decimals.
1. Before beginning the activity, measure the width of the classroom to the nearest tenth of a foot.
2. Have students observe the four walls of the classroom.
- How could you measure the width of our classroom without any standard measuring tools such as a ruler or meter stick?
3. Explain that the earliest known units used to measure length were body parts, such as the cubit (the length of the forearm from the elbow to the tip of the middle finger). Explain that the use of an actual foot is how the standard foot came into being. Mention that one unit that people often use to measure distance is the length of their step when they walk (either from heel to heel or from toe to toe).
- Make a guess as to how many steps it would take for you to walk across the width of the classroom. Record your guess in Part A, and answer the rest of the questions in Part A.
4. Have up to twelve students, representing varying heights, measure the width of the classroom by walking across the room and counting their steps. Record the measurements on the board to the nearest number of complete steps. Have students record the measurements in Part B.
- What do you notice about the measurements?
5. Have students complete and discuss Part C.
6. Inform students that a common step length for a fifth grader is 1.9 feet. Then have them complete Part D. Have students share their strategies.
-Why do you suppose our estimates are not all the same?
7. Have students discuss which estimates they prefer. Then reveal the actual width of the classroom and have students complete Part E.

\section*{Workstations}

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.


\section*{Additional Resources}

Use the resources below to provide additional support for this unit.

\section*{Vocabulary}

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the key terms on the front side of the card.


\section*{Foldables}

Use the unit foldable with Lessons 4-2 and 4-3.


\section*{Spiral Review}

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.
\begin{tabular}{|l|l|}
\hline Lesson & Standard \\
\hline \(4-1\) & 5.MD.C.3 \\
\(4-2\) & 5.MD.C.4 \\
\(4-3\) & 5.MD.C.5 \\
\(4-4\) & 5.NBT.A. 1 \\
\(4-5\) & 5.NBT.A.3 \\
\(4-6\) & 5.NBT.A.4 \\
\(4-7\) & 5.MD.C.4 \\
\(4-8\) & 5.NBT.B. 7 \\
\hline
\end{tabular}

\section*{Estimate Sums and Differences of Decimals}

\section*{Learning Targets}
- I can estimate sums and differences of decimals.
- I can explain how to estimate sums and differences of decimals.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(O\) Additional}

\section*{Content}
5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Reason abstractly and quantitatively.
MPP Use appropriate tools strategically.
MPP Attend to precision.

\section*{Focus}

\section*{Content Objectives}
- Students estimate sums and differences of decimals using the same strategies used to estimate sums and differences of whole numbers.
- Students describe why estimation is useful.

\section*{Language Objectives}
- Students discuss estimating sums and differences of decimals while answering \(W h\) - questions and using the verb rounding as needed.
- To support maximizing cognitive and linguistic meta-awareness, ELs participate in MLR8: Discussion Supports.

\section*{SEL Objective}
- Students set a focused mathematical goal and make a plan for achieving that goal.

\section*{Coherence}

\section*{Previous}
- Students fluently added and subtracted multi-digit whole numbers using the standard algorithm (Grade 4).
- Students generalized their understanding of place value in decimals (Unit 3).
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students use place-value & - Students use representations to \\
strategies to estimate sums and & \begin{tabular}{l} 
add with decimals and explain \\
their strategies (Unit 4).
\end{tabular} \\
differences of decimals. & - Students fluently add, subtract, \\
- \begin{tabular}{l} 
multiply, and divide multi-digit
\end{tabular} \\
& \begin{tabular}{l} 
decimals using the standard \\
algorithm (Grade 6).
\end{tabular} \\
\hline
\end{tabular}

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build on their understanding of decimals and begin to understand operations with decimals by estimating sums and differences.

\section*{Procedural Skill \& Fluency}
- Students build fluency with place-value concepts and learn procedures for estimating sums and differences of decimals.

\section*{Application}
- Students estimate sums and differences of decimals to solve problems with real-world contexts.
Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms \\ decimal \\ Academic Terms \\ analyze \\ infer \\ reasonable}

\section*{Materials}

The materials may be for any part of the lesson.
- Decimal Cards Teaching Resource

\section*{Number Routine About How Much?}

Q 5-7 min
Build Fluency Students are given three expressions involving subtraction and are asked to estimate each difference.

Remind students that this is a mental activity, and that exact answers are not needed.

These prompts encourage students to talk about their reasoning:
- How did you estimate the differences?
- How else could you estimate the differences?
- Are the calculated answers reasonable? Why or why not?

Purpose Students explore various quantities shown in a real-world context.

\section*{Notice \& Wonder}
-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students work in pairs as they notice and wonder. This can help build a collaborative classroom culture. It also allows for greater participation among students as they share their thinking with their partners.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about estimating sums and differences of decimals and are based on possible comments or questions that students may make during the share out.
- About how many gigabytes are used for photos? Explain your reasoning.
- About how many gigabytes are used for music? Explain your reasoning.
- Which is using more gigabytes, photos or music? Explain your reasoning.
- Is more than 16 gigabytes being used by photos and music? Explain your reasoning.

\section*{Math is... Mindset}
-What goal do you want to achieve today?
Self-Management: Goal Setting
Before students begin the Notice \& Wonder routine, invite them to share or write down one mathematical goal they have for the day. Have students create a plan for how they will work toward achieving their goal. Encourage students to focus their goals around estimating sums and differences of decimals.

\section*{Transition to Explore \& Develop}

Ask questions to get students thinking about how they have used estimation previously. Guide students to think about how estimation might relate to operations with decimals.

\section*{Establish Mathematics Goals to Focus Learning}
- Let's think about why estimating sums and differences is helpful and what strategies we can use to estimate sums and sifferences of decimals.


\section*{Explore \(\mathcal{E}\) Develop \(Q_{20 \mathrm{~min}}\)}

\section*{Learn}

A phone has 32 gigatytes of storage. Photoi take up 8.25 gigabytes of this storape, and music tokes up 3.62 gigabytes.

How can you determine about how many gigabytes of storage are left?


First. estimate how much storage the photos and music take up.
\begin{tabular}{ll}
\begin{tabular}{l} 
Use rounding to estimate the sum. \\
\(8.25 \quad 3.62\)
\end{tabular} & \begin{tabular}{l} 
Math is.i Choosing Tools \\
8 \\
8
\end{tabular}\(+4=12\)
\end{tabular} \begin{tabular}{l} 
What stategies do we \\
know for estimating sums?
\end{tabular}

The photos and music take up about 12 gigabytes of storage
Next. use compatiole numbers to estimate the difference.


The phone has about 20 gigabytes of storage left.
Strategies used to estimate sums and stferences of whole numbers
con also be used to estimate sums and offerences of decimals Estimiting helps assess the reasonableness of caiculated solutions.

\section*{Q Work Together}



\section*{(1) Pose the Problem}

\section*{MLP}

\section*{Discussion Supports}

As students talk about how they know what's needed to solve the problem, restate statements they make as a question to seek clarification and provide vocabulary or grammar prompts for students who need more guidance.

\section*{EIP Pose Purposeful Questions}
-Will you need an exact answer or an estimate to solve the problem? Explain how you know.
- Which operations are needed to solve the problem? Explain how you know.

\section*{(2) Develop the Math}

Choose the option that best meets your instructional goals.

\section*{(3) Bring It Together}

\section*{Ere} Elicit and Use Evidence of Student Thinking
- How can you determine if an answer you calculated is reasonable?
- How is estimating sums and differences of decimals similar to estimating sums and differences of whole numbers?

\section*{Key Takeaways}
- Estimating sums and differences of decimals helps assess the reasonableness of the calculated solution.
- Strategies used to estimate sums and differences of whole numbers can also be used to estimate sums and differences of decimals.

\section*{Work Together}

Students work together to think about how to estimate a difference using decimal numbers. After students estimate the difference, have them share and explain the strategies they chose and how they chose them.

Common Error Students often are not sure which place to round when estimating by rounding. Point out that rounding to the nearet one will product a better estimate than rounding to the nearest ten.

\section*{Lom \\ Language of Math}

Students may not remember common words or phrases used to identify if a problem is asking them to add or subtract. Review words such as all together, in total, combine, and remain. Have students identify what words could be used with addition or subtraction problems.

\section*{Activity-Based Exploration}

Students explore estimating sums or differences of decimals.
Material: Decimal Cards Teaching Resource
Directions: Students select two decimal cards and write an addition expression. Repeat with new decimal cards until students have 5 addition expressions. Have students order the sums of their addition expressions from least to greatest. Students should use estimation and number sense when ordering the sums. If time permits, have students repeat by ordering subtraction expressions.

\section*{Math is... Choosing Tools \\ -What strategies do you know for estimating sums?}

Students are thinking about the strategies they will use to aid and assist them in solving the problem.

ETP
Implement Tasks That Promote Reasoning and Problem Solving
- What strategy did you use to determine whether a sum would be greater than or less than another sum?
- How did you organize your thinking?
- Did you adjust your thinking or strategy after you started? If so, what made you adjust your thinking or strategy?

Activity Debrief: Have students share their addition expressions ordered from least to greatest. Encourage students to challenge their classmates' decisions around ordering their sums. Ask students to share their strategies for estimating the sums so that they were able to order the expressions.

Have students revisit the Pose the Problem question and discuss answers.
- How can you determine about how many gigabytes of storage is left?

The PDF of the Teaching Resource is available in the Digital Teacher Center.

\section*{Guided Exploration}

Students extend strategies they learned for estimating sums and differences of whole numbers to estimating sums and differences of decimals.

\section*{EIP Facilitate Meaningful Mathematical Discourse}
-What steps do you need to take to solve this problem?
- What operation do you use to find about how much storage the photos and music take up? How do you know?
- Could you have used \(3.62+8.25=s\) to represent the amount of storage used by photos and music? Explain why.
- Think About It: When would an estimate be more useful than an exact answer?
- Explain why rounding to the nearest tenth would give a more precise estimate than rounding to the nearest whole number.

Q After students have explored estimating the sum by rounding, have students estimate the sum using compatible numbers. Remind students that compatible numbers are numbers that are easy to work with mentally. Have students compare and contrast the estimate by rounding to the estimate by compatible numbers.
- What would be the estimated difference if you used rounding to estimate?

\section*{Math is... Choosing Tools}
-What strategies do you know for estimating sums?
Students are thinking about the strategies they will use to aid and assist them in solving the problem.

\section*{2. Develop the Math}

A phone has 32 gigabytes of storage.

How can we determine
about many gigabytes
of storage is leff?


Bridging/Reaching Ask students which objects take up the most space and the least space in their desks. Then ask students to express the same idea using occupy with most/least. Validate and correct answers as necessary and provide sentence prompts for students who may need some extra help.

50. The path around a lake is part stone and part dit About how long is the poth around the lake? Sample answer: about 166 m

11. Marciss family is drivirg 354.3 miles to his grandmother's nouse. They hive diven 2097 miles, About how many more miles does Marcas's family have left to drive? 'Sample answer: about 144 mi
12. The winner of a skateboarding competition scored 8783 points The second-place skateboarder stored 8150 points. About how anany more points did the winner score than the second-plece sicateboarder? Sample answer: about 6 more points
13. Aaron has 13 meters of red yam and 165 meters of purple yarn. Aaron says he has 2.95 meters of yain, is his answer reasomable? Explain Yes. Sample answer: Aaron has about 2 meters of purple yarn and 1 meter of red yarn.
14. Extend Your Thinding Chales had \(\$ 2000\) to spend at the roo. His ticket cost \(\$ 1125\), and he spent \(\$ 4.39\) for lurich. Charkes says. he spert about \(\$ 1500\) so tar Charles thintes he has enough moriey to buy a \(\$ 4.99\) sounenie Do you agree with Charles' Explain. No. Sample answer: \(11+4=15\), but 15 is less than the actual sum; he has less than \(\$ 5\) to spend.

\section*{©Reflect}

How would you explain to a friend how to estimate the sum of two decimals? Answers may vary.


\section*{Practice}

\section*{ETP Build Procedural Fluency from Conceptual Understanding}
[1 Common Misconception: Exercises 1-8 Students may think there is only one "correct" estimate to these problems. Remind them that their estimates and the estimates of their classmates may, and will, be different since they are based on different estimation strategies.

Item Analysis
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 2 & Procedural Skill and Fluency \\
\(9-13\) & 3 & Application \\
14 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How would you explain to a friend how to estimate the sum of two decimals?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have you worked to achieve your goal today?

Students reflect on how they practiced self-management.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can estimate sums and differences of decimals.
- I can explain how to estimate sums and differences of decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{3}{|l|}{ Item } & pok skill \\
\hline 1 & 2 & Estimate difference of decimals & Standard \\
\hline 2 & 2 & Estimate sum of decimals & 5.NBT.B.7 \\
3 & 2 & Estimate difference of decimals & 5.NBT.B.7 \\
4 & 3 & Estimate sum of decimals & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{l|l|}
\hline If students score & Then have students do \\
\hline 4 of 4 & Additional Practice or any of the \(\boldsymbol{B}\) or \(\boldsymbol{B}\) activities \\
3 of 4 & Take Another Look or any of the \(\boldsymbol{B}\) activities \\
2 or fewer of 4 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce UnderstandingBuild ProficiencyExtend Thinking


\section*{Reinforce Understanding}

\section*{What are the Compatible Numbers?}

Provide students with digit cards and calculators. Each student is dealt two cards to create addends in tenths.

Students use compatible numbers to estimate the sum of their two numbers. If necessary, remind students to look for ways to adjust the numbers to get sums or differences that end in 5 or 10 . Students add with a calculator and compare whether the calculated sum is close to their estimated sum. Repeat the activity several times.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Estimate Sums and Differences of Decimals


Differentiation Resource Book, p. 21

\section*{Lesson 4.1- Reinforce Understanding \\ Estimate Sums and Differences of Decimals}

Name

\section*{Review}

When estimating sums and differences of decimak, you can found each decimal number to the nearest whole numbec. \(146!+12.79=\) ? Found each of the decimal numbers Qounding wo we nement 14 : \(61 \rightarrow\) rounds up \(\rightarrow 15\) since 6 is \(\quad\) new monber wal ne be greater then 5
\(12.29 \rightarrow\) iounds down \(\rightarrow 12\) since 2 is less than 5 Now add the whole numbers.
```

 15+12=27
    ```
\(14.61+12.29\) is about 27

Estimate the sum or difference. Round to the nearest whole number
1. Javier and his brother have a bag of trail mix that weighs 6.38 pounds. They eat 172 pounds of the brail mix. About how much vail mor is left in the bag? \(6-2=4\), about 4 pounds
2. Greta and Johanna are piciong strawberries at a farm. Greta picis 10.67 pounch and Johanne plices 13.08 pounds. About how many pounds of striwberries did Gretn and Johanna pick? \(11+13=24\), about 24 pounds
3. Cole needs 16.75 pounds of apples to make trul bars. He has 5.32 pounds of apples. About how many pounds of apples does he need to purchase at the grocery store?
\(17-5=12\), about 12 pounds

\section*{Build Proficiency}

\section*{Practice It Game Station \\ Estimating Sums and Differences of \\ Decimals Race}

Students practice estimating sums and differences of decimals.

\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 21-22

\section*{Lesson 4-1}

Additional Practice
Name

\section*{Review}

You can estimate sums and differences of decimals.
Serh has \(\$ 50\) ie spend at a store. He purchases a sweoter that costs \(\$ 18.75\) and a shit that costs \(\$ 9.05\) Abour how much will Seth have left to soend?
First estimate the sum \(18.75+9.05\) to find how much Seth spends Use rounding tis estimate each amount.


Then subtract to find the amourt he has left: \(50-28=22\). Seth will have about 522 left to spend

Estimate each sum or difference. Sample answers are shown.
1. \(8.41+2 \pi 7=\) ?
2. \(14.18+2108=\) ? \(8+3=11\)
\(14+21=35\)
3. \(14.38-4.85=\) ? \(14-5=9\)
4. \(78.58-4972=7\) \(80-50=30\)
5. \(112+779=7\)
\(11+8=19\)
6. \(24.51+19.09=\) ?
\(25+19=44\)
7. \(33.12-15.8=\) ?
\(33-17=16\)
8. \(64.47-28.01=\) ?
\(64-28=36\)

Unit 4 - Add and Subtract Decimals

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtracting decimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 21-22

\section*{Solve anch problem.}
9. Melicont watlkod 174 miles yesterday. She walked 219 miles todiay About how mary mies did Milicent walk both deys?
Sample answer; about 4 miles
10. A Sower was plarted that was 5.3 cm tall. After one month, the flower was 1272 cm\(\} a l\). About how many centimeters did the flower grow durng the month?
Sample answer: about 8 centimeters
11. Danier has \(\$ 20.39\) in his wallet. He buys some food and pays \(\$ 8.76\) Will he have ondugh money laft to buy a hat that costs \(\$ 12.00\) ? Explair.
No; Sample answer: He will have about \(\$ 20-\$ 9=\$ 11\) left, so he will not have enough money to buy the hat.
12. Penny has \(\$ 35.00\) to spend at the store She buys a hat for \(\$ 14.99\) and a scart for \(\$ 9.99\). About how much moncy wall she kave let?? Explan:
Sample answer: About \(\$ 10\); she spends about \(\$ 15+\$ 10=\$ 25\), and so will have about \(\$ 35-\$ 25=\$ 10\) left.





\section*{Extend Thinking}

\section*{Use It! Application Station}

Balancing a Checkbook Students
research checking accounts and practice balancing a checkbook.

The content of this card has concepts covered later in Lesson 4-7. You may
 want to assign this card to students ready to explore content covered later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 22

\section*{Lesson 41 -Etend Thinking \\ Estimate Sums and Differences of Decimals}

Nume
1. Carter has a \(\$ 20\) git cara to use for dowmloading music. He wants to spend es much as he cen of the gift card without going ower and also purchase the most albums.
The cost of the alboms Carter wants to cowniond are:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(A\) & 日 & C & D & \(E\) & \(F\) & \(G\) \\
\hline\(\$ 5.94\) & \(\$ 4.21\) & \(\$ 5.57\) & \(\$ 4.58\) & \(\$ 4.42\) & \(\$ 3.77\) & \(\$ 5.72\) \\
\hline
\end{tabular}

What is the greatest number of afbums Cortet can buy? Round esch price to the rwarest whole dollar and make your seliections. Justify your choices.
Sample answor: Round to the nearest whote dollar:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(A\) & \(\mathbf{B}\) & C & D & \(\mathbf{E}\) & F & \(\mathbf{G}\) \\
\hline\(\$ 6\) & \(\$ 4\) & \(\$ 6\) & \(\$ 5\) & \(\$ 4\) & \(\$ 4\) & \(\$ 6\) \\
\hline
\end{tabular}

Carter should buy albums A. B, D, and E because \(\$ 6+\$ 4+\$ 5+\$ 4=\$ 19\). Any more albums would put him over the \(\$ 20\) limit.
2. Round the cost of each album to the nearest temen of a dolar. How many albums can Carter buy now?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A & B & C & D & E & F & G \\
\hline\(\$ 5.9\) & \(\$ 4.2\) & \(\$ 5.6\) & \(\$ 4.6\) & \(\$ 4.4\) & \(\$ 3.8\) & \(\$ 5.8\) \\
\hline
\end{tabular}

Sample answer: Carter can stilif only buy 4 albums: A, C, D, and F.
3. Which nethod would you preter? Wiy? Sample answer: I would round to the nearest tenth of a dollar because that gives you a sum closer to the actual sum.

\section*{Math Probe}

\section*{Unit 4 \\ Estimating Decimal Sums and Differences}

Name
For each problem, use what you know about decimals and estimation to choose the better answer. Do not perform the exact addition or subtraction.
1. \(0.04+0.603\)

Circle a or b to show the better estimate

\section*{(a)}
less than 1
b. greater than 1

Explain or show your thinking Explanations may vary.
2. \(0.99+0.009\)

Calicle a or b to show the
better estimate.
a. less than 1greater than 1

Explain or show your thinking: Explanations may vary.

For each problem, use what you know about decimals and estimation to choose the better answer. Do not perform the exact addition or subtraction.
3. \(0.67=0.085\)

Circle a or b to show the
better estimate.
a. less than \(\frac{1}{2}\)
(b.) greater than \(\frac{1}{2}\)
\(\qquad\)
4. \(1587-0.89\)

Circle \(\mathbf{a}\) or \(\mathbf{b}\) to show the
better estimate.
a. less thin \(\frac{1}{2}\)
(b)
greater than \(\frac{1}{2}\)

Explain or show your thinking. Explanations may vary.

Explain or show your thinking. Explanations may vary.

Reflect On Your Learning


\section*{Analyze the Probe Formative Assessment}

Targeted Concept Determine approximate sums and differences by reasoning about the magnitude of decimals to compare decimal sums and differences to common benchmarks.

Targeted Misconceptions Some students have conceptual misunderstandings with decimal place-value ideas required for reasoning about the size of a decimal. Some students have difficulty comparing decimals to common decimal benchmarks such as 0.5 or 0.25 . Watch for students who show exact calculations in their explanations rather than using reasoning about the estimates without actually calculating.

\section*{Authentic Student Work}

Below are examples of correct student work and explanations.

\section*{Sample A}


\section*{Sample B}
4. \(1.587-0.89\)

Circle \(\mathbf{a}\) or \(\mathbf{b}\) to show the better estimate.
a. less than \(\frac{1}{2}\)
b. greater than \(\frac{1}{2}\)

Explain or show your thinking.
b. because still doesnit take awry

Iwhole. \(\frac{1.5^{+}}{.5^{+}}\)

\section*{Collect and Assess Student Work}

Collect and review student response to determine possible misconceptions. See examples in If-Then chart.


Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

\section*{Take Action}

Choose from the following resources or suggestions:
- Revisit the activities for rounding decimals and estimating decimal sums and differences in Lesson 4-1.
- Help students develop visual images of decimal place-value ideas by using base-ten blocks. When base-ten blocks are used to represent decimals, you may want a large cube to be worth 1 , a flat to be worth 0.1 , a rod to be worth 0.01 , and a small cube to be worth 0.001 .
- Do estimation activities in small and large groups, providing opportunities for students to discuss their reasoning strategies.

Revisit the Probe after additional instruction. Have students review their initial answers to the probe. Use these questions for discussion:
- Are there any answers you would like to change? Explain why you might want to change them.
- Are there any questions that you still have about any of the items on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{LESSON 4-2}

\section*{Represent Addition of Decimals}

\section*{Learning Targets}
- I can represent addition of decimals using decimal grids.
- I can represent addition of tenths and hundredths.

\section*{Standards \(\bigcirc\) Major \(\Delta\) Supporting \(O\) Additional}

\section*{Content}
5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Model with mathematics.
MPP Use appropriate tools strategically.

\section*{Vocabulary}

\section*{Math Terms \\ decimal grid \\ hundredths \\ tenths \\ Academic Terms \\ benefit drawback evaluate}

\section*{Materials}

The materials may be for any part of the lesson.
- number cube
- Tenths and Hundredths Teaching Resource

\section*{Focus}

\section*{Content Objective}
- Students use decimal grids to represent addition of decimals with the same number of places.

\section*{Language Objectives}
- Students discuss using decimal grids to represent addition of decimals while answering Wh- and Yes/No questions.
- Support optimizing output, MLR1: Stronger and Clearer Each Time.

\section*{SEL Objective}
- Students identify and discuss the emotions experienced during math learning.

\section*{Now}
- Students use representations to add decimals.
- Students describe and explain their strategies for adding decimals.

\section*{Next}
- Students add decimals using drawings and strategies based on place value (Unit 4).
- Students add, subtract, multiply, and divide decimals using the standard algorithm (Grade 6).

\section*{Number Routine About How Much?}
```

(3) 5-7 min

```

Build Fluency Students estimate sums involving 3 -digit whole numbers.

Remind students that this is a mental activity, and that exact answers are not needed.

These prompts encourage students to talk about their reasoning:
- How did you estimate the sums?
- Is there more than one way to estimate a sum? Explain.
- How can you tell if an estimate is reasonable?

\section*{Rigor}

\section*{Conceptual Understanding}
- Students create and use representations to build their understanding of addition with decimals.

\section*{Procedural Skill \& Fluency}
- Students build fluency with place-value concepts and start to develop skills for adding decimals.

\section*{Application}
- Students represent addition of decimals to solve problems in real-world contexts.
Application is not a targeted element of rigor for this standard.

\section*{Coherence}
- Students fluently added and subtracted multi-digit whole numbers using the standard algorithm (Grade 4).
- Students estimated sums and differences of decimals and explained estimation strategies (Unit 4).

Purpose Students explore what a map can tell them. They consider how numbers might be incorporated into the map.

\section*{Numberless Word Problem}
-What could you ask?
-What math do you use in this problem?
Teaching Tip You may want to have students to create a list of questions individually first. Then have them form small discussion groups where they can share their questions about the map.

\section*{ETP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' thinking about using decimal grids to represent additon of decimals and are based on possible comments and questions that students might make during the share out.
-What information can you learn from the map?
-What questions could you ask about the map?
-What information would you need to answer your questions?
- How could you find the total distance of the route shown?

\section*{Math is... yindset}
- How can my math skills or interests help me with my work?

\section*{SEL}

Self-Awareness: Identify Emotions
Give students opportunities to share about themselves to reinforce their sense of identity and belonging. As students work collaboratively to complete the Numberless Word Problem routine, invite them to share a personal skill or interest related to math. Encourage them to think about how that skill can help them with their work on adding decimals today.

\section*{Transition to Explore \& Develop}

Ask questions to get students thinking about determining the total distance of the route. Ask them to think about what operations would be used to determine the total distance. Guide students to think about the different kinds of tools they can use to solve distance questions.
ETP Establish Mathematics Goals to Focus Learning
- Let's think about how we can use decimal grids to represent addition of decimals.


\section*{Explore \& Develop © 20 min}

\section*{Learn}

Dejo drew a map showing the diatonces she walleed
How can you determine how far Deja walks from home to the bookstore, then to the playground? How can you determine how far she walks from the playground to the school, then to the park?


Deja waked 0.5 mile.


\section*{C. Work Together}

Rene bought potatoes and tumips. How much do the potatoes and turnips weigh? Use decimat arids to solve. 1.2 kg


\section*{(1) Pose the Problem}

\section*{Pose Purposeful Questions}
- What are the problems asking you to find? How do you know?
- How can you find the distance from Deja's home to the bookstore?
- How do you know how far it is from the bookstore to the playground?
-Which operation will you use to determine the answer? How do you know?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets} your instructional goals.

\section*{KLR}

\section*{Stronger and Clearer Each Time}

Pair students and have them solve an addition equation involving decimals using decimal grids. Ask each to work individually and write about how they solved the problem. Then have students share their writing with their partner, comparing their sentences, and if needed, make corrections. Revisit the task throughout the lesson for reinforcement.

\section*{3 Bring It Together}

ERP Elicit and Use Evidence of Student Thinking
- How could you explain to a friend how to represent addition of decimals?

\section*{Key Takeaway}
- Addition of decimals can be represented using concrete models or drawings, such as decimal grids.

\section*{Work Together}

You may wish to provide copies of the Tenths and Hundredths Teaching Resource for students to use as they solve this problem. Have students to explain how they determined which grid to use to represent 0.9 and 0.3 .
- Common Misconception Students may think that each small square is a tenth or that each column is a hundredth in a decimal grid. Remind students that the big square represents the whole. Since there are 10 columns and 100 little squares, each column represents 0.1 and each little square represents 0.01 .

\section*{LOM Language of Math}

Encourage students to read each addend using mathematically precise language, such as nine tenths and not informal language, such as zero point nine. Using precise language can help students understand the value of the quantities, which can then be used to help assess reasonableness of answers.

\section*{Activity-Based Exploration}

Students will write addition expressions and then use models to add the decimals.

Materials: number cube (labeled 1-6), Tenths and Hundredths Teaching Resource

Directions: Have students roll the number cube once to create a decimal number to the tenths with a 0 in the ones place. Students roll again to make another decimal number to the tenths. Have students work together to use decimal grids to find the sum of the decimals. Repeat by rolling two number cubes and using the digits to make a decimal number to the hundredths.

\section*{ETP Support Productive Struggle}
- How did you determine which grid to use to represent the problem?
- Could you have used the hundredths grid to show tenths? Explain why or why not.
- Explain how you know that is the sum.
- How can you show that your calculated sum is reasonable?

\section*{Math is... Choosing Tools}
- How are decimal grids helpful in determining the sum of two decimals?

Students are explaining the process for choosing and using decimal grids as tools to aid and assist them in solving an addition problem.

Activity Debrief: After students work through their solutions, encourage them to share their strategies and answers with others. Have students revisit the Pose the Problem question and discuss their answers.
- How can you determine how far Deja walks from home to the bookstore, then to the playground?
- How can you determine how far she walks from the playground to the school, then to the park?

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students use concrete models or drawings, such as decimal grids, to add decimal numbers with the same number of decimal places.

\section*{ETP Use and Connect Mathematical Representations}
- How do you know that the equation you wrote for the problem is correct?

\(\theta\)Provide copies of the Tenths and Hundredths Teaching Resource. Have students shade the decimals grids as they work through determining the distance from the playground to the school, then to the park.

\section*{Math is... Choosing Tools}
- How are decimal grids helpful in determining the sum of two decimals?
- How do the decimal grids represent the amounts in the problem?
- Think About It: Are there tools other than decimal grids you could use to solve the problem? Explain how you would use them.

Students are explaining the process for choosing and using decimal grids as tools to aid and assist them in solving an addition problem.


EL

\section*{English Learner Scaffolds}

\section*{Entering/Emerging Support students'} understanding of how far. Standing by your desk, point to your door and say Let's see how far the door is from the desk. Measure and say The door is [ten feet] from the desk. Repeat with new objects. Then prompt students to find the distance between two classroom objects. Ask How far is the [bookshelf] from [the closet]?

Developing/Expanding Support students' understanding of how far. Standing by your desk, point to your door and say Let's see how far the door is from the desk. Measure and say The door is [ten feet] from the desk. Repeat with new objects. Then prompt students to choose two classroom items to measure distance and have pairs take turns asking and answering about the distance.

Bridging/Reaching Have students work with maps, either real or drawn, and ask them to talk about how far different places are from a central location. Validate or correct as necessary.

\section*{Practice \& Reflect © wiomin}


\section*{Practice}

\section*{ETP Build Procedural Fluency from Conceptual Understanding}
- Common Error: Exercise 7 Students may incorrectly try to add tenths instead of hundredths. They may assume that since there is only one non-zero digit, that they are adding tenths instead of hundredths. Remind students that the zeros are not just placeholders. Encourage them to say each addend aloud before modeling it on a decimal grid.

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 2 & Procedural Skill and Fluency \\
\(5-11\) & 2 & Conceptual Understanding \\
12 & 3 & Application \\
13 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did using decimal grids help you add decimals?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did my math skills or interests help me with my work today? Students reflect on how they practiced self-awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can represent addition of decimals using decimal grids.
- I can represent addition of tenths and hundredths.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess © \({ }^{\text {momin }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

Exit Ticket Skill Tracker
\begin{tabular}{lll|l|}
\hline Item DOK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Add decimals with the same number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B. 7 \\
\hline 2 & 2 & \begin{tabular}{l} 
Add decimals with the same number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B.7 \\
\hline 3 & 2 & \begin{tabular}{l} 
Add decimals with the same number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B. 7 \\
\hline 4 & 3 & \begin{tabular}{l} 
Add decimals with the same number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B. 7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{If students score then have students do} \\
\hline 4 of 4 & Additional Practice or any of the \(\mathbf{B}\) or \({ }^{\text {a }}\) activities \\
\hline 3 of 4 & Take Another Look or any of the (3) activities \\
\hline 2 or fewer of 4 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline \multicolumn{2}{|l|}{Key for Differentiation} \\
\hline \multicolumn{2}{|l|}{( Reinforce Understanding} \\
\hline \multicolumn{2}{|l|}{(B) Build Proficiency} \\
\hline ( Extend Thinking & \\
\hline
\end{tabular}

\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Move It}

Use two hundredths number lines from 0 to 2 . Roll two number cubes to create a decimal in hundredths. Decompose the decimal and show the decimal on a decimal grid. So, if 0.52 is rolled, students may shade 0.5 on one grid and 0.02 on the other, or shade 0.52 on one decimal grid. Make sure students understand the relationships between hundredths, tenths, and ones. Students build on each other's moves. Play ends when 2 full grids are shaded. Then students may repeat the activity.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Model Adding Decimals


Differentiation Resource Book, p. 23

\section*{Lesson 4-2 - Reinforce Understanding}

\section*{Represent Addition with Decimals}

Name

\section*{Review}

Use simplified drawing of terths and hundredths to fina the sum of decimak.
Add. \(0.22+0.48\)
You can draw a ine to represert 0.1 .
You can draw is smail circle ta represent 001 .
To udd \(0.22+0.48\), use simplified drawing.

Exchange 10 small circles for one line to rogroup
\(\stackrel{*}{* * *}-1\)
\(0.22+0.48=0.70\)

Add the decimals using slimplified drawing. Then write the sum as a decimal.
1. \(0.61+0.18\)



Ollimention frewice Bold

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Represent Addition of Decimals Task Cards
Students practice representing the addition of decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 23-24

Lesson 4-2
Additional Practice
Name

\section*{Review}

You can add decimals using decimal grids.
Derison rurs 0.4 mile and walks 0.5 mile. Dahlia nuers 0.63 mll and walks 0.74 mile. How for does each person travel?
Use an addinion equation to represent the ploblom, Use decimal grids to tolve the equation. Combine the grids to find the totat.

Denston Dapila


Densison travels 0.9 mile. Dahla travels 1.37 miles.
Use decimal grids to solve each equation. Sample shading shown.
1. \(0.3+0.3=0.4\)
2. \(0 n+0.07=0.18\)

3. \(0.24+0.87=111\)
4. \(0.5+0.9=1.4\)

shder frictice bod

Unit 4 • Add and Subtract Decimals

\section*{Extend Thinking}


The weight of the swordtail fish is

\section*{Use It! Application Station Cost of Living Depends on Where You Live} Students use equations to compare the cost of living in rural towns and urban cities.

The content of this card has concepts covered later in Lesson 4-8. You may want to assign this card to students ready to explore content covered later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 24

\section*{Lesson 4-2 - Extend Thinking}

\section*{Represent Addition with Decimals}

Nome:
1. Robert takes care of the 4 Neon Tetra fish in his aquarium, He must find the total weight of the fish to determine how much food to feed them.
\begin{tabular}{|c|c|c|c|c|}
\hline Narne of Fish & Neo & Lights & Tet & Ran \\
\hline Weight (gram) & 0.18 & 0.26 & 0.21 & 0.23 \\
\hline
\end{tabular}

Find the total weight of the fish in his aquarlum using the hundreds grid. Snow your work.


The total weight is 0.88 gram.
2. Robert has 3 koi fists in the pond in his backyiusd. The fish weigh 0.28 pound, 0.34 pound. and 0.36 pound. Find the total weight of thee koi using the hundreds grid. Show your wonk


The weight of the koi fish is 0.98 pound.
3. Robert's counin han 3 swordtall fish in an aquarium. The fish weigh 0.23 pound, 019 pound, and 0.25 pound. Find the total weight of the sworatail fish using the hundreds gid. Show your woik
 0.67 pound.

Math @ Home Activity




9. Write the addition equation represented by the decinal grids

\(0.56+0.82=1.38\)

Vanessa uses ribbon to make a wreath She uses 0.25 meter of red ribbon and 0.68 meter of plue ribbon. How much rlbbon does she use for the wroath?

0.93 meter

\section*{Own It! Digital Station} Build Fluency Games

Assign the digital game to develop fluency with adding and subtracting decimals.



DNimenticon fenorsifoss

\section*{LESSON 4-3}

\section*{Represent Addition of Tenths and Hundredths}

\section*{Learning Targets}
- I can explain how to use various strategies to add decimals.
- I can demonstrate how to use various strategies to add decimals.

\section*{Standards \(\bigcirc\) Major \(\Delta\) supporting \(O\) Additional}

\section*{Content}
5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Attend to precision.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objective}
- Students use decimal grids to represent addition of decimals with different number of decimal places.

\section*{Language Objectives}
- Students discuss using decimal grids to add decimals while answering Wh- questions and using the adjective similar.
- Support sense-making, MLR2: Collect and Display.

\section*{SEL Objective}
- Students collaborate with peers to complete a mathematical task and offer constructive feedback to the mathematical ideas posed by others.

\section*{Coherence}

\section*{Previous}
- Students added and subtracted whole numbers using the standard algorithm (Grade 4).
- Students used representations to add decimals with the same number of decimal places (Unit 4)
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students add decimals in & \begin{tabular}{l} 
- Students use addition strategies \\
to add decimals (Unit 4).
\end{tabular} \\
hundredths using concrete \\
models, drawings, and strategies \\
based on place value.
\end{tabular} \begin{tabular}{l} 
- Students add, subtract, multiply, \\
and divide decimals using the \\
standard algorithm (Grade 6).
\end{tabular}

\section*{Vocabulary}

\section*{Math Term \\ decimal grid \\ Academic Terms debate \\ infer}

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks
- decimal grid
- index cards

\section*{Number Routine Would You Rather?}

Build Fluency Students build number sense as they compare numbers to products of multiplication expressions,

These prompts encourage students to talk about their reasoning:
- What strategies did you use to find your answers?
- How could you use estimation to compare the amounts?

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of place value, decimals, and operations with decimals.

\section*{Procedural Skill \& Fluency}
- Students build fluency with place-value concepts and develop their skills for adding decimals.

\section*{Application}
- Students represent addition of decimals to solve problems in real-world contexts.
Application is not a specific element of rigor for this standard.

Purpose Students consider how each decimal is represented on the decimal grids to identify similarities and differences.

\section*{Notice \& Wonder}
- How are they the same?
- How are they different?

Teaching Tip You may want to have students use their own decimal grids to display the numbers. This can help reinforce what each grid represents.

\section*{ETP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about representing addition of tenths and hundredths on decimals grids, and are based on possible comments and questions that students may make during the share out.
-What do you notice about the decimal grids?
-What do you think the shaded parts of the decimal grids represent?
- Do you think both decimal grids are shaded equally? Explain.

\section*{Math is... Yindset}
-Why should you value the ideas of others?

\section*{SEL}

Social Engagement: Value Ideas of Others
As students engage in collaborative discourse about the Notice \& Wonder routine, remind them that valuing ideas of others is an important part of being an effective and respectful communicator. Explain that one way to do this is by listening attentively when other sare sharing their ideas about what how the decimals are the same and how they are different.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about the uses of decimal grids. Guide students think about how decimal grids can be used to represernt addition. Students may recall that there are other ways to visually represent math problems, such as using number lines.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Lets think about how decimal grids could be useful when representing addition problems that involve decimals that have a different number of decimal places.


\section*{Learn}

How can you determine
the sum of \(0.7+0.687\)


You can use decimal grids to help you determine the sum:


\section*{Q Work Together}


\section*{(1) Pose the Problem}

\section*{MLP}

Collect and Display
As students discuss the questions, record relevant words and phrases they may use such as represent, shade, less than, and greater than. Display the words for student reference. Use the student-generated expressions to help students make connections between student language and math vocabulary.

\section*{13 Pose Purposeful Questions}
- Is this question asking to add or subtract? How do you know?
- Do you think the sum will be less than or greater than 1? Why?

\section*{(2) Develop the Math}

Choose the option that best meets your instructional goals.

\section*{3 Bring It Together}

\section*{SIP}

\section*{Elicit and Use Evidence of Student Thinking}
- How is representing and solving addition of decimals having different numbers of decimal places similar to representing and solving addition of decimals having the same of decimals places? How is it different?

\section*{Key Takeaway}
- Addition of decimals with different numbers of decimal places can be represented using concrete models or drawings, such as decimal grids.

\section*{Work Together}

You may wish to provide Decimal Grids Teaching Resource for students to use for the Work Together. Have students share their thinking when determining how to represent 0.6 using a grid that shows hundredths.

ECommon Misconception When students see words or phrases such as more, all together, total, combine, increased by, plus, and sum, they may assume the problem is looking for a solution that requires addition but that is not always the case. Remind students that they need to carefully consider the meaning of the language in a problem before deciding what operations to use.

\section*{LOM Language of Math}

Ask students what they look for in a problem to decide that its solution requires addition. They may say they look for particular words. While some addition contexts are communicated using words and phrases such as "more," "all together," "in total," "combine," "increased by," "plus," and "sum," remind students that they need to carefully consider the meaning of the language in a problem before deciding what operations to use.

\section*{Activity-Based Exploration}

Students will explore using decimal grids to solve addition equations involving decimal with tenths and hundredths.

Materials: \(10 \times 10\) Teaching Resource
Directions: Provide copies of the \(10 \times 10\) Teaching
Resource to each pair or small group. Have students solve the Pose the Problem.

\section*{ETP Support Productive Struggle}
- How did you determine how to represent 0.7 on a decimal grid showing hundredths?
- Will your strategy for adding tenths and hundredths on a decimal grid always work?
- Is there another way to solve the problem?
- How can you prove that your solution is correct?

\section*{Math is... Structure}
- How is adding decimals similar to adding whole numbers?

Students are thinking about and discussing the structure of mathematics that makes adding decimals and adding whole numbers almost identical processes.

Activity Debrief: After groups work through their solutions, encourage them to share their decimal grids and answers with others. Facilitate a discussion to ensure students understand that when using representation to add tenths and hundredths, it is necessary to represent the tenths as an equivalent hundredths.

The PDF of the Teaching Resource is available in the Digital Teacher Center.

\section*{Guided Exploration}

Students extend strategies they learned in Grade 4 for adding decimal fractions. They also think about the different strategies they could use to find their solutions.

Provide \(10 \times 10\) Teaching Resource for students to shade decimal grids as they work through the problem together. Encourage students to shade the two decimal values within the same grid. Students should shade an additional grid only when the first one is completely shaded.

EIP Use and Connect Mathematical Representations
- Think About It: How many hundredths should be shaded to show 0.7?
- What are some other strategies you could use to find your answer?
- How could you use estimation to help you assess the reasonableness of your calculated solution?
- How did the different number of decimal places in the numbers affect the solution strategy?

\section*{Math is... Structure}
- How is adding decimals similar to adding whole numbers?

Students are thinking about and discussing the structure of mathematics that makes adding decimals and adding whole numbers almost identical processes.

\section*{2. Develop the Math}

We can use decimal grids to solve the equation. How can you show 0.7 on the hundredths grid?


\section*{English Learner Scaffolds}

Entering/Emerging Ensure students know what weight means by weighing classroom objects between 1-3 pounds. First, weigh a book. Say This weighs one and a half pounds. The weight is one and a half pounds. Be sure to point out that Ib on the Learn page is short for pound. Repeat with another object. Then weighing other objects, ask What is the weight of this-[two pounds] or [three pounds]?

Developing/Expanding Ensure students know what weight means by weighing classroom objects between 1-3 pounds. First, weigh a book. Say This weighs one and a half pounds. The weight is one and a half pounds. Be sure to point out that \(l b\) on the Learn page is short for pound. Repeat with another object. Then, ask students to weigh other objects and tell you their weight.

Bridging/Reaching Ensure comprehension of the words weigh, weight, and pound by asking students to weigh objects and tell you their weight. Then discuss with students other weight measurements such as ounces, grams, etc. Finally, ask students to work together to sort the words into two groups: metric and imperial, and to include abbreviations of measurements that they know, such as \(l b, o z\), and \(g\).

\section*{Practice \& Reflect © 10 min}

9. Adrian jumped 0.25 meter down a sidewalk. He jumped again and went an additional 0.3 meter. What is the total diatance that Adrian jumped? Show your work. 0.55 m
20. VI bought 14 pounds of pecans and 0.79 pound of alinonds What is the total weight of the nues \(V\) bought? 2.19 lb
11. Error Analysis Ase represented the expression \(0.32+0.4\) on this decimal grid. How do you respond to Abe? Sampte answer: This model correctly shows 0.32 , but shows 0.32 added instead of 0.4 . Abe should shade 8 additional squares.
12. Extend Your Thinking Sage has a faress goos of traveling 1.6 miles vach day. She bikes 0.3 mite, She then runs another 12 mies. Then, she swims 0.25 mile Did Sapp resch her gool? Explain now you can use a decimal grid to Find your answee.
Yes; Sample answer: by using \(10 \times 10\) number grids and shading 30 squares, 120 squares, and 25 squares, I saw that Sage traveled 1.75 miles, which is more than 1.6 milles.

\section*{(D) Reflect}

How do you therik like a mathomatician when adding decimais? Answers may vary.

\section*{Practice}

\section*{ETP Build Procedural Fluency from Conceptual Understanding}
- Common Error: Exercise 5 Students may focus on adding only the tenths place and forget to add the hundredths place on the decimal grid. Remind students that the second decimal place after the decimal relates to hundredths. Also, encourage them to say the decimals out loud in order to remember to add all of the numbers.

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 1 & Procedural Skill and Fluency \\
\(9-10\) & 3 & Application \\
\(11-12\) & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How do you think like a mathematician when adding decimals?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have you worked to show others that you value their ideas? Students reflect on how they develped stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain how to use various strategies to add decimals.
- I can demonstrate how to use various strategies to add decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess © \({ }^{\text {minin }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{cc|c|l|}
\hline Item pOK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Add decimals with different number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B.7 \\
\hline 2 & 2 & \begin{tabular}{l} 
Add decimals with different number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B. 7 \\
\hline 3 & 3 & \begin{tabular}{l} 
Add decimals with different number of \\
decimal places using decimal grids
\end{tabular} & 5.NBT.B. 7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score Then have students do}

3 of 3
2 of 3
1 or fewer of 3 Additional Practice or any of the © or activities Take Another Look or any of the (B) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency

Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Addition Relay}

Create a set of index cards labeled \(0.14,0.72,0.08,0.4\), and 0.56 . Have a student draw two cards and add their numbers. Another student draws a card and adds its number to the sum. Continue until all cards have been drawn. Help students to use decimal grids, if necessary, to model the addition. Repeat with new numbers if students need further reinforcement.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Represent Adding and Subtracting (Tenths and Hundredths)


Differentiation Resource Book, p. 25

\section*{Lesson 4-3-Reintorce Understanding \\ Represent Addition of Tenths and Hundredths}

Name


Add the decimals using simplified drawing.

4. \(019+6.05=6.24\)


\section*{Build Proficiency}

\section*{Practice It! Game Station}

Add Tenths and Hundredths Race
Students practice adding decimals.

\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 25-26

Lesson 4-3
Additional Practice
Name

\section*{Review}

You can add tenths and hundredths using decimal grids.
The dstance between a school and a playground is 0.8 mile There is a parking lot tarther down the road. The destance betweer the playground and the parking lot is 0.45 mile. What is the distance botween the school and the parking for?
You can represent the problem with the equation \(0.8+0.45=d\). Think of the number of teaths as is numbes of hundrectics. 8 tentes \(=80\) hundredths. and \(0.8=0.80\). Use decimal grids to add


The distance between the school and the parking for is 1.25 miles.
Use decimal grids to find each sum. Ex. 1-2 sample shading shown.
\(\begin{array}{ll}\text { 1. } 0.7+0.09=0.79 & \text { 2. } 0.32+0.5=0.82\end{array}\)


Unit 4 • Add and Subtract Decimals

\section*{E}

\section*{Extend Thinking}

\section*{Use It! Application Station}

Let's Get Organized! Students use decimals to measure and create organizers. The content of this card has concepts covered later in Lesson 4-8. You may want to assign this card to students ready to explore content
 covered later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 26

\section*{Lesson 4-3 - Extend Thinking \\ Represent Addition of Tenths and Hundredths}

Neme

2. Then in another week, Clenna picked wild strawberies. How many pounds of strawberries did she pick? Add the weights in the table using the hundreds grids to find the ariswer Show your work.
\begin{tabular}{|l|l|l|l|}
\hline 0.59 pound & 13 pounds & 268 pounds & 205 pounds \\
\hline
\end{tabular}


\section*{Use Particl Sums to Add Decimals}

\section*{Learning Targets}
- I can use strategies to add decimals.
- I can explain the strategy I use to add decimals.

\section*{Standards \(\bigcirc\) Major \(\Delta\) supporting \(O\) Additional}

\section*{Content}
5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\checkmark\) 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Construct viable arguments and critique the reasoning of others.
MPP Model with mathematics.

\section*{Focus}

\section*{Content Objective}
- Students use addition strategies they know, such as partial sums, to add decimals.

\section*{Language Objectives}
- Students talk about addition strategies they know, such as partial sums, to add decimals while answering \(W h\) - questions.
- To support optimizing output, ELs participate in MLRT: Compare and Connect.

\section*{SEL Objective}
- Students recognize and work to understand the emotions of others and practice empathetic responses.

Coherence

\section*{Previous}
- Students fluently added and subtracted multi-digit whole numbers using the standard algorithm (Grade 4).
- Students added decimals in hundredths using concrete models, drawings, and strategies based on place value (Unit 4).
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students extend their & - Students extend their \\
understanding of addition & understanding of decimals by \\
strategies to add decimals. & representing subtraction of \\
& decimals (Unit 4). \\
& - Students fluently add, subtract, \\
& multiply, and divide multi-digit \\
& decimals using the standard \\
& algorithm for each operation \\
& (Grade 6).
\end{tabular}

\section*{Vocabulary}

\section*{Math Terms \\ decompose \\ Academic Terms \\ emphasize \\ procedure}

\section*{Materials}

The materials may be for any part of the lesson.
- Decimal Cards Teaching Resource

\section*{Number Routine Would You Rather?}

Build Fluency Students build number sense as they compare numbers to products of multiplication expressions.

These prompts encourage students to talk about their reasoning:
- What strategies did you use to find your answers?
- How can you use estimation to compare the distances?

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of addition as they use strategies to add decimals.

\section*{Procedural Skill \& Fluency}
- Students build proficiency in using decomposed numbers to represent decimal addition.

\section*{Application}
- Students are expected to apply their understanding of addition strategies to add decimals with real-world contexts.
Application is not a specific element of rigor for this standard.

Unit 4-Add and Subtract Decimals

Purpose Students compare and contrast different expressions to determine which does not belong.

\section*{Which Doesn't Belong?}
-Which doesn't belong?
Teaching Tip You may want to have students work in pairs as they look at the expressions. This will allow students to collaborate and share ideas.

\section*{\(\stackrel{\text { ETP }}{1}\) Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' exploration of choosing and using strategies they know to add dedicmals and are based on possible comments and questions that students may make during the share out.
-What types of numbers are represented by the expressions?
- What is similar about all the expressions?
- Can you determine a reason for each expression to not belong?

\section*{Math is... Yindset}
- How can you recognize and respond to the emotions of others?

\section*{SEL \\ Social Awareness: Empathy}

Establish a classroom culture that welcomes openness and empathy by encouraging students to share and discuss their emotions. After students participate in the Which Doesn't Belong? routine, invite them to share the emotions they were experiencing. Encourage students to think about their own experiences with the emotions being shared. Their work throughout the lesson with adding decimals may be challenging, and they may feel emotions such as happy, excited, or frustrated. Sharing and listening can help students build understanding of their own emotions as well as empathy for others.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about adding decimals. Ask them to think about ways to add, without using the standard algorithm. Guide students to think about the different strategies they can use to add decimals.
ETP Establish Mathematics Goals to Focus Learning
- Let's think about how we can choose and use strategies we know to add decimals.


\section*{Learn}

How can you determine the fotal cost of the helicopter and robot?

Math h._Modeling
What equation can you use
to represent the problem?
You can use partial sums to determine the total cost.


We can decompose decimals different ways to find partial sums.
C Work Together

\section*{(1) Pose the Problem}

\section*{ETP}

\section*{Pose Purposeful Questions}
- Can you describe the problem in your own words?
- Do you have all of the information needed to solve the problem? How do you know?

\section*{Math is... Modeling}
-What equation can you use to represent the problem?
Students are using an equation as a representation to help them better understand the problem.

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

\section*{Compare and Connect}

Pair students and give them an equation to solve similar to the one on the Learn page. Instruct one student to decompose by place value and the other into whole numbers and decimals. Then have them compare their strategies. Revisit this activity throughout the lesson to help students build proficiency.

\section*{(3) Bring It Together}

\section*{GIP}

Elicit and Use Evidence of Student Thinking
-What are some ways to decompose decimals?
- How can you use decomposing decimals to help you add decimals?
- How is this strategy to add decimals similar to the strategies you used to add whole numbers?

\section*{Key Takeaways}
- Finding partial sums and then adding the partial sums to determine the total is one addition strategy.
- Strategies used to add decimals are the same as those used to add whole numbers.

\section*{Work Together}

Have students explain how they used partial sums to solve the problem. Invite volunteers who decomposed differently to share their work. Have students look for similiarities among the different methods.
- Common Error Students may incorrectly decompose by place value. For example, students may add \(0.6+0.3+0.08\), instead of \(0.06+\) \(0.08+0.3\), when writing the partial sums for \(23.06+16.38\).

\section*{Lom Language of Math}

The term decompose is a verb. Ask students to think of some words or phrases that may be used in place of the term. Let students practice using the word correctly to describe their strategies for adding decimals.

\section*{Activity-Based Exploration}

Students explore different ways to decompose decimal addends.

\section*{Materials: Decimal Cards Teaching Resource}

Directions: Ask students to write an addition problem involving two 3-digit whole numbers and solve the addition using as many different strategies as they can. Invite students to share different strategies they used, focus attention on methods using decomposition, such as partial sums.
- Do you think these strategies will work to add decimals?

Provide copies of the Decimal Cards Teaching Resource. Have students select two decimals to write an addition expression. Students should find different ways to decompose the addends to find partial sums.

\section*{ETP Support Productive Struggle}
- How can you apply your method of decomposing whole numbers to decomposing decimals?
- Is your answer reasonable? How do you know?
- How is finding partial sums when adding decimals similar to finding partial sums when adding whole numbers?

Activity Debrief: Discuss with students that partial sums is one strategy they can use to add decimals. Using this strategy, they can use place value to decompose each addend, find the partial sums, and then add partial sums to calculate the sum of the decimals.

Have students revisit the Pose the Problem question and discuss answers.
- How can you determine the total cost of the helicopter and robot?

A PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students extend their understanding of using partial sums to add whole numbers to using partial sums to add decimal numbers.

EIP Facilitate Meaningful Mathematical Discussion
- How can you find an estimate for the sum? What is your estimate?
- Think About It: How did you use use partial sums when adding whole numbers?
- How does your understanding of place value and expanded form help you decompose decimal numbers?
(2. Have students discuss different ways to find the partial sums. Ask:
- Which place would you start with? Why?
- Why do you get the same sum if you start with different places?
- How can you assess the reasonableness of the calculated answer?
- How would you decide which strategy to use to add decimals?


\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of cost. First, choose a classroom object, such as a book. Write a price on a sticker or piece of paper and put it on the object. Say It's \(\$ 5.00\). The cost is \(\$ 5.00\). Repeat the task with a different classroom object. Say It's \(\$ 1.50\). Then prompt them to complete the following sentence saying the correct cost aloud: The \(\qquad\) is \(\$ 1.50\).

\section*{Developing/Expanding Support students'} understanding of cost. Choose an object. Say It's \(\$ 5.00\). The cost is \(\$ 5.00\). Repeat the task with a new object. Say It's \(\$ 1.50\). Prompt students to restate using cost. Finally, ask students to repeat the task, choosing a new object to put a price tag on, and stating its cost.

\section*{Bridging/Reaching Ensure}
comprehension of the meaning of cost. Then have students brainstorm other verbs associated with money such as buy and sell.

\section*{Practice \& Reflect ©iomin}

50. STEM Counection A veterinarlan records the amounts of medication she dispenses over the coulse of three doys. How maty milliters of medication does she dispinnet Show your work.
\(105.85 \mathrm{~mL}: 32+46+20+7+\)
\(0.5+0.2+0.1+0.05=105.85\)
11. Harry adds the fwo decimals, 80.51 and 4397 . He states that the sum cannot be greater than 125. Do you agree? Why or why not?
I agree: Sample answer: If you round each decimal to the nearest whole number, the sum is 125 ; which is greater than the actual sum because both estimations were rounded up.
12. Error Analysis Scort asds \(54.37+19.28\) by wrting
\(50+10+4+9+0.3+0.2+0.07+0.03+0.05\)
of Scotr's work correct? Why or why not?
Yes, his work is correct. Sample answer: Scott decomposed the addends by place value, He also decomposed 0,08 into the sum of \(0.03+0.05\) so that 0.03 could be added to 0.07 to make 0.1.
13. Extend Your Thinking How can you use adotion prooerties to solve ths equation efficientil?
\(019+0.5+0.81=x\)
Sample answer: Rewrite the sum as \(0.19+0.81+0.5\). Add the first two numbers: \(0.19+0.81=1\). Then, add the third number: \(1+0.5=1.5\).

\section*{OReflect}

Describe two ways to decompose decimals to find partial sums. Answers may vary.

\section*{Practice}

\section*{Build Procedural Fluency from Conceptual Understanding}
[1 Common Error: Exercises 3-6 Students may use place value incorrectly when decomposing decimals. For example, students may decompose 8.4 as \(8+0.04\).

Item Analysis
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-6\) & 2 & Procedural Skill and Fluency \\
\(7-10\) & 3 & Application \\
\(11-13\) & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- Describe two ways to decompose decimals to find partial sums. Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have you worked to recognize and respond to the emotions of others?
Students reflect on how they practiced social awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use strategies to add decimals.
- I can explain the strategy I use to add decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item & DOK Skill & Standard \\
\hline 1 & 2 & Add decimals using strategies & 5.NBT.B.7 \\
2 & 2 & Add decimals using strategies & 5.NBT.B.7 \\
3 & 3 & Add decimals using strategies & 5.NBT.B.7 \\
4 & 3 & Add decimals using strategies & 5.NBT.B.7 \\
5 & 3 & Add decimals using strategies & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

5 of \(5 \quad\) Additional Practice or any of the \(\operatorname{Br}\) or activities
4 of 5 Take Another Look or any of the \({ }^{(3)}\) activities
3 or fewer of \(5 \quad\) Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{Reinforce Understanding}

\section*{Adding Decimals}

Work with students in pairs. Have the students write eight 3-digit numbers, each with a decimal point after the first digit, in sectors on paper that is placed below a transparent spinner. Then have each student spin the spinner once. Have one student add the two numbers using decomposition by place value and the other student add using decomposition into whole numbers and decimals. Make sure students understand that both strategies will always give the same sum. Then have students spin two more numbers and switch roles.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Adding and Subtracting (Partial Sums and Differences)


Differentiation Resource Book, p. 27

\section*{Lesson 4-4-Reinforce Understanding}

\section*{Use Partial Sums to Add Decimals}

Name

\section*{Review}

Add \(52.4+873\)
Wite each number in expandod form
\((50+2+0.4)+(8+0.7+0.03)\)
Line up pisce value by place value to make it easy to add
\(50+2+0.4\)
\(+\quad 8+07+0.03\)
\(50+10+11+0.03\)
\(=60+1.1+0.03=61.13\)
Use partial sums to add.
\((52+0.4)+(6+0.7+0.03)\)
Add place values.
\(52+0.4\)
\(+8+07+0.03\)
\(60+1.1+0.03=8.13\)
Use place value to add. Show your work.
1. \(48.5+6.72=55.22\)
2. \(30.68+95=40.18\)
\(48+0.5\)
\(30+0.6+0.08\)
\(+6+0.7+0.02\)
\(+9+0.5\)
\(39+1.1+0.08=40.18\)
\(54+1.2+0.02\)
\(=54+1.22\)

\section*{Build Proficiency}

Practice It! Game Station

\section*{Decimal Addition Tic Tac Toe}

Students practice adding decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 27-28

Lesson 4-4
Additional Practice
Name

\section*{Review}

You can decompose numbers to add decimals.
Frankin has 16.25 pounds of apples and 12.05 pounds of oranges. Find the total weight of the frut Franklin has.
The equation \(16.25+12.05=f\) iepresents the situation Decompose both addends by place value or by whole numbers and decimale. Then add the partial sums.


Use partial sums to add.
1. \(3.16+8.4 \quad 11.56\)
2. \(1785+0.518 .35\)
3. \(25.42+16.71 \mathbf{4 2 . 1 3}\)
4. \(70.94+59.01 \quad 129.95\)

Unit 4 • Add and Subtract Decimals

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtracting decimals.


\section*{Use It! Application Station Cost of Living Depends on Where You Live} Students use equations to compare the cost of living in rural towns and urban cities. The content of this card has concepts covered later in Lesson 4-8. You may want to assign this card to students
 ready to explore content covered
later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 28

\section*{Lesson 4-4 - Extend Thinking}

\section*{Add Decimals}

Neme
The Drama Club and Coding Club are heving a contest for their schools volunteer program. The table shows the activities and the number of heors each thb volunteered.
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \begin{tabular}{c} 
Picking \\
up \\
Litter
\end{tabular} & \begin{tabular}{c} 
Sorting \\
Recyclables
\end{tabular} & \begin{tabular}{c} 
Visiting \\
Nursing \\
Home
\end{tabular} & \begin{tabular}{c} 
Animal \\
Shelter \\
Companion
\end{tabular} \\
\hline Orama & 34.5 & 2.56 & 18 & 24.85 & 12.04 \\
\hline Coding & 26.43 & 1.18 & 4.92 & 2154 & 23 \\
\hline
\end{tabular}
1. How many hours did the Drams Club volunteen? Explain how you used a strategy to Find the sum.

75,75 hours. Sample answer; I used partial sums: \(34+2+1+24+12=73 ; 0.5+0.56+0.8+\) \(0.85+0.04=2.75 ; 73+2.75=75.75\)
2. How many nours dia the Coang Club volunteer? Explain how you used a strategy to find the sum.
77.07 hours, Sample answer: 1 used partial sums: \(26+1+4+21+23=75 ; 0.43+0.18+0.92+\) \(0.54=2.07: 75+2.07=77.07\)
3. Which club won the contest? How do you know?

The Coding Club won. Sample answer: I compared their total number of hours that they volunteered and looked for the greater number. \(77.07>75.75\)
5. A cily had 6.95 inches of snow fall on Tuesdoy and 8.25 inches of snow fall on Wedinesdiey. How much snow fell meer the two-day penind? 15.2 inches
6. A plant grew 7,3 centimetens one month and 1215 certimoters the next morth. By now many centimeters did the plant grow over the two-mnorth period? 19.45 centimeters
7. On a bike trip, the group rode 48.52 miles the first day and 576 mles the second day. How far did the group ride during the tirst two dayn of the trip? 106.12 miles
8. Jerpmy wants to save up \(\$ 10\) to buy a potter. He earned \(\$ 6.32\) last week by coliecting and selling aluminum cans. He earned \(\$ 3.58\) thik week. Has Jeremry earned enough manny to bay the poster? Explain.

No ; Sample answer: He has earned only \(\$ 9.90\), which is less than \(\$ 10\).
© Home Activity



 Cop neberavi dowing

\section*{LESSON 4-5}

\section*{Represent Subtraction of Decimals}

\section*{Learning Targets}
- I can represent subtraction of decimals less than 1 containing tenths.
- I can represent subtraction of decimals less than 1 containing hundredths.

\section*{Standards \(\bigcirc\) Major \(\triangle\) Supporting \(O\) Additional}

\section*{Content}
5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Reason abstractly and quantitatively.
MPP Model with mathematics.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objective}
- Students use decimal grids to represent subtraction of decimals with the same number of decimal places.

\section*{Language Objectives}
- Students explain how to use decimal grids to represent subtraction of decimals while answering Wh - and using how much as needed.
- Support optimizing output, MLR4: Info Gap.

\section*{SEL Objective}
- Students collaborate with peers and contribute to group effort to achieve a collective mathematical goal.

\section*{Next}
- Students use decimal grids to subtract (Unit 4).
- Students add, subtract, multiply, and divide decimals using the standard algorithm (Grade 6).

\section*{Coherence}

\section*{Previous}
- Students fluently added and subtracted multi-digit whole numbers using the standard algorithm (Grade 4).
- Students used addition strategies to add decimals (Unit 4).
\(\left.\begin{array}{|l|l|}\hline \text { Now } & \text { Next } \\
\text { - Students extend their } \\
\text { understanding of decimals } \\
\text { by representing subtraction } \\
\text { of decimals. }\end{array} \quad \begin{array}{l}\text { - Students use decimal grids to } \\
\text { subtract (Unit 4). }\end{array}\right\}\)\begin{tabular}{l} 
- Students add, subtract, multiply, \\
and divide decimals using the \\
standard algorithm (Grade 6).
\end{tabular}

\section*{Rigor}

\section*{Conceptual Understanding}
- Students create and use representations to build their understanding of subtraction with decimals.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with place-value skills and start to develop skills for subtracting decimals through hundredths.

\section*{Application}
- Students use decimal grids to represent subtraction of decimals with the same number of decimal places.
Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Term \\ decimal grid \\ Academic Terms \\ assert \\ prove}

\section*{Materials}

The materials may be for any part of the lesson.
- Blank Number Lines Teaching Resource
- number cubes
- Tenths and Hundredths

Teaching Resource

\section*{Number Routine Which Benchmark Is It Closest To? © \({ }^{5-7 \text { min }}\)}

Build Fluency Students build fluency as they find the benchmark numbers nearest to a decimal.

These prompts encourage students to talk about their reasoning:
- What did you think about first when you observed one of the decimals?
- Once you know that a decimal is located between two benchmarks, how do you decide which benchmark it is closer to?
- Is there more than one possible benchmark for 0.5? Explain.
- How is this exercise similar to rounding? How is it different?

Purpose Students discuss real-world applications of showing decimals on a decimal grid.

\section*{Notice \& Wonder}
-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students work in pairs as they brainstorm questions. This can help build a collaborative classroom culture. It also allows for greater participation among students as they share their thinking with their partners.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' thinking about representing subtraction of decimals and are based on possible comments and questions that students may make during the share out.
- How could you find how many more blue squares there are than orange squares?
- Explain when you have seen a grid like this before.
- What decimal could the yellow squares represent? Explain why.

\section*{Math is... Yindset}
- How can you justify your thinking?

\section*{SEL \\ Relationship Skills: Teamwork}

After students work through the Notice \& Wonder routine independently, have them share their reasoning with a partner and advocate for their chosen representation. If students have used different representations to Notice \& Wonder, or found different solutions, invite them to work together to understand one another's reasoning. Remind students that strong learners are willing to learn from not only their teachers but also their peers.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about representing subtraction of decimals.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's talk about ways we can represent subtraction of decimals.


\section*{Explore \& Develop ©romin}

\section*{Learn}

The table shows the decimals represented by dfferent colors on a decimal grid.

How can you determine how much more is shaded red than green? Yellow than purple?
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Color } & Dreimal \\
\hline Red & 0.4 \\
\hline Green & 0.2 \\
\hline Yellow & 0.36 \\
\hline Purplo & 0.04 \\
\hline
\end{tabular}

Use a number line to find how much more is shaded red than green.


There is 0.2 more shaded red than green
Use a decimal grid to find how much more is shaded yellow than purple \(0.36-0.04=y\)


Math is. C Precision
How is each quantity shown on the decimal grid?

There is 0.32 more shaded yeliow than purple
You can use a number tine or decimal grid to subtract decimals

\section*{Q Work Together}

How much greater is the mass of an emu
egg than a chicken egg? Explain. 0.56 kg : 62 squares of a decimal grid are shaded, then 6 of the shaded squares are marked with an x , leaving 56 shaded squares. 006 ty Enu egs
0.62 kg


\section*{1 Pose the Problem}

\section*{\(31 P\)}

\section*{Pose Purposeful Questions}
- What operation does this problem call for? Why do you think that?
- How do you think you might represent the information you have?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

Info Gap
Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to carry out the problem. Instruct Partner B to ask A what information they need, and for A to respond, explaining why they need it. Have students continue until the problem is completed.

\section*{3 Bring It Together} ETP

\author{
Elicit and Use Evidence of Student Thinking
}
-What are some ways you can represent and solve decimal subtraction problems? Which way do you prefer? Why?
- How is using a representation to subtract decimals similar to using representations to add decimals? How is it different?

\section*{Key Takeaway}
- Subtraction of decimals can be represented using concrete models or drawings, such as decimal grids.

\section*{Work Together}

You may wish to provide copies of the Tenths and Hundredths Teaching Resource or Blank Open Number Lines Teaching Resource for students to use as they solve the Work Together problem.
- Common Error Students may get distracted by the 6 s in different places in the two masses. Remind them to be careful to consider not just the digit, but the place a digit is in, and the value a digit represents.

\section*{Language of Math}

Students need multiple opportunities to use key terms so they become part of their active vocabulary. Ask students questions that require the use of tenths, hundredths, and variable.

\section*{Activity-Based Exploration}

Students will write subtraction expressions and then use models to subtract the decimals.

Materials: number cube (labeled 1-6), Blank Number Lines Teaching Resource, Tenths and Hundredths Teaching Resource

Directions: Have students roll the number cube to create a decimal number to the tenths with a 0 in the ones place. Roll again to make another decimal number to the tenths. Students write a subtraction expression using the two decimal numbers. Students use decimal grids or number lines to find the difference. Repeat by rolling two number cubes and using the digits to make a decimal number to the hundredths.

\section*{ETP}

\section*{Support Productive Struggle}
- How did you determine which tool to use to represent the problem?
- Could you have used the hundredths grid to show subtraction of decimals in the tenths? Explain why or why not.
- Explain how you know what you found is the difference
- How can you show that your calculated difference is reasonable?

\section*{Math is... Todeling}
- How is each quantity shown on the decimal grid?

Students discuss how they use decimal grids to represent decimal numbers and decimal subtraction.

Activity Debrief: After students work through their solutions, encourage them to share their strategies and answers with others.

Have students revisit the Pose the Problem question and discuss answers.
- How can you determine how much more is shaded red than green? Yellow than purple?

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students use number lines or decimal grids to represent subtraction equations involving decimals to the tenths or hundredths.

EITP Use and Connect Mathematical Representations
- Think About It: What have you used to represent subtraction of whole numbers?
(4) Provide copies of Blank Number Lines and Tenths and Hundredths to students. Ask:
- Which tool would you choose to solve the equation? Why?
- How could you use that tool?
- How will you label the number line? How do you know?
- Where will you place each known value on the number line?
- How can you find the difference between these two decimal numbers on the number line? Is there more than one way?

©Discuss with students that there are two ways to show subtraction on a number line. One way is by plotting both known values and counting the difference between those points. Another way is starting at the greater known value and counting back the lesser known value. Ask:
-What are the similarities and differences of these methods?
Q1 Have students use Tenths and Hundredths to solve 0.36-0.04.
-Why did you use the hundredths decimal grid? Could you have used the tenths decimal grid?

\section*{Math is... odeling}
- How is each quantity shown on the decimal grid?

Students discuss how they use decimal grids to represent decimal numbers and decimal subtraction.

\section*{2. Develop the Math}


\section*{English Learner Scaffolds}

Entering/Emerging Ensure understanding of How much more... Cut two pieces of string, different sizes. Give the longer piece to a student. Ask How much more do you have? Measure both pieces and say You have [10 more inches]. Repeat the task again and ask How much more do you have? Give two choices: the correct answer and a distractor that represents the full length of the longer piece.

Developing/Expanding Ensure understanding of How much more... Cut two pieces of yarn, different sizes. Give the longer piece to a student. Ask How much more do you have? Measure both strings and say You have [10 more inches]. Repeat the task again with two new pieces and ask How much more do you have? Expect a full sentence response.

Bridging/Reaching Ask students to say what method they like to use to determine how much more of something there is: a number line or decimal grid. Ask them to explain why Allow students to interject and make corrections as needed. For example: / don't agree. I prefer to use...because.... or I don't think using.... I think....

\section*{Practice \& Reflect © \({ }^{10 \mathrm{~min}}\)}

8. STEM Connection An ocean engineer is comparing the weight of two different screws. The lest screw weighs 0 .8 gram. The second screw weighs 0.25 gram How much more does the second screw weigh? 0.07 g
9. Kameton \(\tan 075\) kilometer on Monday She tan 0.42 kiometer on Tuesday. How much tarther dd Kameroa min on Monday than Tuesday? 0.34 km
50. Henry found a seashell that has a mass of 0.55 kilogram. Kale ound a seashell that has a mass 0.34 kilogram less than 'Wonry's seashett What is the mass of Kate's seashatr 0.21 kg
14. Griffin and Lucy are growing suntiowers. Gilfin's surflower is 0.19 meter taller than Lucy's sunhower: Gritfin's suntiower is 0.98 meter tull. How fall is Lucy's sunflower? 0.79 m
12. Extend Your Thinking Explain how ising modeis to Find \(2.35-1.08\) is similar to using models to find \(235-108\). Sample answer: To model \(2.35-1.08\), you shade the same numbers of squares and take away the same number of squares as when you model \(235-108\).

\section*{Reflect}

How do decimal grids and number lines help you subtract decimals? Answers will vary.

\section*{Practice}

\section*{Build Porcedural Fluency from Conceptual Understanding}

Common Error: Exercise 8 Students may add instead of subtract because the word "more" is in the question. Remind students that "how much more than" indicates a subtraction problem.

Item Analysis
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-6\) & 2 & Procedural Skill and Fluency \\
\(7-11\) & 3 & Application \\
12 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How do decimal grids and number lines help you subtract decimals? Ask students to share their reflections with their classmates.

\section*{Math is... Iindset}
- How have you worked to understand your partner's thinking?

Students reflect on how they developed stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can represent subtraction of decimals less than 1 containing tenths.
- I can represent subtraction of decimals less than 1 containing hundredths.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Subtract decimals with the same \\
number of decimal places using \\
decimal grids
\end{tabular} & 5.NBT.B.7 \\
\hline 2 & 2 & \begin{tabular}{l} 
Subtract decimals with the same \\
number of decimal places using \\
decimal grids
\end{tabular} & 5.NBT.B.7 \\
\hline 4 & 3 & \begin{tabular}{l} 
Subtract decimals with the same \\
number of decimal places using \\
decimal grids
\end{tabular} & 5.NBT.B.7 \\
\hline \begin{tabular}{l} 
Subtract decimals with the same \\
number of decimal places using \\
decimal grids
\end{tabular} & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{lll}
\hline \multicolumn{2}{l|}{ If students score then have students do } \\
\hline 4 of 4 & Additional Practice or any of the \(B\) or \(\boldsymbol{B}\) activities \\
3 of 4 & Take Another Look or any of the \(B\) activities \\
2 or fewer of 4 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
( Reinforce Understanding
B Build Proficiency
© Extend Thinking


\section*{Reinforce Understanding}

\section*{Roll It，Subtract It！}

Work with students in pairs．One student rolls a number cube and writes the digit rolled as a decimal in tenths．Both students subtract the decimal from 0．7．Help students to use a decimal grid or a number line as needed．Repeat with another roll．Once students are comfortable working with tenths，have them roll twice to create a decimal in hundredths，then subtract from 0．7．

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills．
－Model Subtracting
Decimal Numbers


Differentiation Resource Book，p． 29
Lesson 4.5 －Reinforce Understanding
Represent Subtraction with Decimals
Name

\section*{Review}

Use a simpified ofrawing to tind the difference of decimal numbers． Subtract \(0.58-0.41\) ．
休林：
Staring tip Sher oss ond toen
\(0.58-0.41=0.77\)
Subtract the decimals using a simplified drawing．

1． \(0.82-0.37=0.45\)
2． \(0.25-0.05=0.19\)䠉

5．Joanne is 019 meters taler than Lablah．Joanne is 0.98 meter tai． How tall is Laiah？ 0.79 meters tall

6．Stetan ran 0.73 kiometer on Monday He ran 0.68 kilometer on Tuesday．How much tarther did Seeton min on Monday than Tuescoy？ 0.05 kilometers

Practice It！Game Station
Represent Subtraction of Decimals Task Cards
Students practice representing subtraction of decimals．


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book．


Student Practice Book，pp．29－30

Lesson 4－5
Additional Practice
Name


Unit 4 • Add and Subtract Decimals

\section*{Extend Thinking}

\section*{Own It! Digital Station}

Build Fluency Games
Assign the digital game to develop fluency with adding and subtracting decimals.


\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 29-30

Use a decimal grid to solve each equation.
3. \(0.31-0.24=0.07\)
4. \(0.8-0.4=0.4\)


Solve.
5. Janelle has a lengeh of string that is 0.8 meter liong. She cuts off a piece that is 0.5 meter long. How long is the piece of string that remains? 0.3 meter
6. Joe walks 0.42 kilometer to school. Pete walks 0.57 ki . 0 meter to school. How much farther does Joe have to walk than Pete to get. to schoon? 0.25 kilometer
2. On Friday, 0.7 inch of rain fet On Saturday, the amount of rain that tell was 0.2 inch less than the amount that fet on Friday. How much rain fell on 5 eturday? 0,5 inch
8. Avelina has 0.83 G8 of space lett on her memory cand. She sdids photos that take up an additional 0.24 GE of space. How much space is left on the memary caid? 0.59 GB
wefrarcod parky





\section*{Use It! Application Station}

Balancing a Checkbook Students
research checking accounts and practice balancing a checkbook. The content of this card has concepts covered later in Lesson 4-7. You may want to assign this card to students
 ready to explore content covered later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 30

\section*{Lesvon 4.5 - Extend Thinking}

Represent Subtraction with Decimals
Nome
1. Use a hundred grid to find the difterence between the maboimum depth of Lake Tangaryika and the maximum depths of each of the other bodies of water shown in the table.
\begin{tabular}{|l|c|c|}
\hline Body of Water & \begin{tabular}{c} 
Maximum \\
depth (mi)
\end{tabular} & \begin{tabular}{c} 
Difference wi \\
Tanganyilaa
\end{tabular} \\
\hline Lake Tangarylia & 0.91 & 0.00 \\
\hline San Martin Labat & 0.32 & 0.59 \\
\hline Lake Chelan & 0.28 & 0.63 \\
\hline Crater Lalee & 0.37 & 0.54 \\
\hline Caspian Sea & 0.27 & 0.64 \\
\hline
\end{tabular}

2. The Great Sat Lebe has a marimum depth ot \(0 \times 0\) nectometer A scubs tiver dove 0.05 hectometers down, then dove 0.03 hectometers. How far was the diver from the bottom of the lake?? Snow your work. 0.02 hectometers


\section*{LESSON 4-6}

\section*{Represent Subtraction of Tenths \\ and Hundredths}

\section*{Learning Targets}
- I can subtract tenths from hundredths.
- I can subtract hundredths from tenths.

\section*{Standards \(\bigcirc\) Major \(\Delta\) supporting \(O\) Additional}

\section*{Content}
5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Model with mathematics.

Focus

\section*{Content Objective}
- Students use decimal grids to represent subtraction of decimals with different number of decimal places.

\section*{Language Objectives}
- Students discuss using patterns to solve problems while answering Wh- questions and using longer than and more.
- Cultivate conversation, MLR3: Critique, Correct, and Clarify.

\section*{SEL Objective}
- Students break down a situation to identify the problem at hand.

\section*{Next}
- Students subtract decimals by decomposing the number being subtracted (Unit 4).
- Students add, subtract, multiply, and divide decimals using the standard algorithm (Grade 6).

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build on their understanding of subtraction of decimals by using decimal grids to represent subtraction.

\section*{Procedural Skill \& Fluency}
- Students build proficiency breaking down decimals into whole parts and decimal parts and writing equivalent names for decimals.

\section*{Application}
- Students represent subtraction of decimals to solve problems with real-world contexts.
Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Term}
decimal grid

\section*{Academic Terms}
accurate
evaluate

\section*{Materials}

The materials may be for any part of the lesson.
- Decimal Grids Teaching Resource

\section*{Number Routine Which Benchmark Is It Closest To? © \({ }^{5-7 \mathrm{~min}}\)}

Build Fluency Students build fluency as they decide which benchmark each decimal is closest to.

These prompts encourage students to talk about their reasoning:
- How did you determine the nearest benchmark number for each decimal?
- Why did you choose the strategy that you used?
- Is there more than one possible benchmark for 1.5? Explain.
- Once you know that a decimal is located between two benchmarks, how do you decide to which benchmark it is closer?

Purpose Students think about decimals used to represent the lengths of insects.

\section*{Notice \& Wonder}
-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students work in pairs to discuss what they notice about the numbers.

\section*{Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of using decimal grids to represent subtraction of tenths and hundredths and are based on possible comments and questiuons that students may make during the share out.
- How are these numbers similar? How are they different?
- How could you represent these numbers?
- How could you represent each of these numbers using the same type of decimal grid?

\section*{Math is... Yindset}
- How can you identify the information needed to solve a problem?

\section*{SEL}

Responsible Decision-Making: Identify Problems
Help students develop strong learning habits by providing them opportunities to practice responsible decision-making skills. As students consider the Notice \& Wonder routine, invite them to share what information is most useful to identify the mathematical task at hand.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about subtracting decimals with different number of decimal places. Ask them to think about ways to subtract, without using the standard algorithm. Guide students to think about the different strategies they can use to subtract decimals.

\section*{EIP Establish Mathematics Goals to Focus Learning}
- Let's think about how we can use decimal grids and other representaions to represent subtraction of tenths and hundredths.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

The table shows different lengths of insects

How can you find how much longer the ant is than the aphid? The beetie than the ladybug?
\begin{tabular}{|l|c|}
\hline Insect & Length (omi) \\
\hline Bertie & 0.7 \\
\hline Ant & 0.64 \\
\hline Ladybug & 0.43 \\
\hline Aphid & 0.3 \\
\hline
\end{tabular}

You can use subtraction to find the differences in length.


Sometimes you need to corvert tenths to hundredths to heip solve subtraction equations involving decimals.

\section*{© Work Together}

Marcus is using a decimal grid to solve \(0.93-0.6=r\).
How can he show subtracting 0.6?
Explain your reasoning.
He can draw an X on 60 of the shaded squares. Sample explanation: 0.6 is the same as 0.60 .


\section*{1 Pose the Problem}

\section*{IP. Pose Purposeful Questions}
- How did you represent subtraction of decimals in earlier problems?
- How is subtraction of these decimals different from decimal subtraction that you have performed in the past?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}


\section*{Critique, Correct, and Clarify}

Make a false claim for students to critique. Write
\(0.04-0.01=0.03\). Point to the equation and say This equation is correct. Yes or No? Ask students to correct the statement. Revisit this routine throughout the lesson

\section*{3 Bring It Together} \(\stackrel{\text { Erp }}{\text { ETP }}\)

\author{
Elicit and Use Evidence of Student Thinking
}
- How is the way you use decimal grids to subtract decimals having different numbers of decimal places similar to how you used them the subtract decimals having the same number of decimal places?
- How is it different?

\section*{Key Takeaway}
- Subtraction of decimals with different number of decimal places can be represented using concrete models or drawings, such as decimal grids.

\section*{Work Together}

You may wish to provide copies of the Decimal Grids Teaching Resource to have students represent the subtraction using a decimal grid.

Common Error Students may subtract 0.06 instead of 0.6 . Have them pay close attention to decimal places and zeros.

\section*{Language of Math}

The term difference is a noun. Ask students to think of real-world situations where this word is used. Have students compare this meaning to the mathematical meaning of the word. Let students practice using the word correctly when subtracting decimals, using decimal grids.

\section*{Activity-Based Exploration}

Students explore using decimal grids to solve subtraction equations involving decimals with tenths and hundredths.

Materials: \(10 \times 10\) Teaching Resource
Directions: Provide copies of the \(10 \times 10\) Teaching Resource to each pair or small group. Have students solve the Pose the Problem.

\section*{ETP \\ Support Productive Struggle}
- How did you determine how to represent 0.3 on a decimal grid showing hundredths?
- Will your strategy for subtracting tenths and hundredths on a decimal grid always work?
- Is there another way to solve the problem?

\section*{Math is... Perseverance}
- How can you use addition to check that the answer is correct?

Students verify that their plans work by checking their answer using another method.

Activity Debrief: After groups work through their solutions, encourage them to share their decimal grids and answers with others. Facilitate a discussion to ensure students understand that when using representations to subtract tenths and hundredths, it is necessary to represent the tenths as an equivalent hundredths.

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students extend their understanding of representing subtraction of decimals with different number of decimal places.

\section*{EIP Use and Connect Mathematical Representations}

Have the students create the equation.
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Q Have the students estimate the solution.
- Will you use rounding or compatible numbers to estimate the solution? Why?
- How does using a decimal grid to model subtraction of decimals with different numbers of decimal places help you understand the problem?
- Think About It: How can you use equivalent fractions to justify that \(0.3=0.30\) ?

\section*{Math is... Perseverance}
- How can you use addition to check that the answer is correct?

Students verify that their plans work by checking their answer using another method.

\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding lengths. Put three pencils on the desk, different sizes. Say Let's find the lengths of the pencils. Measure each pencil and say The length is (5 inches) for each. Repeat with new objects. Finally, show students three more objects and ask them What are the lengths? Prompt students to measure each object and say the lengths aloud.

Developing/Expanding Support students in understanding lengths. Put three pencils on the desk, different sizes. Say Let's find the lengths of the pencils. Measure each pencil and say The length is (5 inches) for each. Repeat with new objects. Then ask students to choose three more objects and to tell you their lengths.

Bridging/Reaching Ask students to talk about the different measurements for length that they know. For example, miles, kilometers, inches, etc. Then have them sort them into two groups: metric and standard. Discuss with students the abbreviations we use for each. Validate or correct student vocabulary and grammar as needed.

\section*{Practice \& Reflect © 10 min}


\section*{Practice}

\section*{ETP Build Procedural Fluency from Conceptual Understanding}

1 Common Error: Exercise 1 Students may represent the 0.1 as one colored square in the grid instead of ten because they do not equate 0.1 with ten hundredths. Remind students that the first place after the decimal represents tenths. For some students, using grids to make and compare representations for one one-hundredth and one-tenth may be helpful.

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 2 & Procedural Skill and Fluency \\
\hline \(9-10\) & 3 & Application \\
\(11-12\) & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did decimal grids help you subtract decimals with different numbers of decimal places?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did you practice responsible decision making?

Students reflect on how they practiced responsible decision-making.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can subtract tenths from hundredths.
- I can subtract hundredths from tenths.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|c|c|c|c|}
\hline & OK & & Standard \\
\hline 1 & 2 & Subtract decimals with different number of decimal places using decimal grids & 5.NBT.B. 7 \\
\hline 2 & 2 & Subtract decimals with different number of decimal places using decimal grids & 5.NBT.B. 7 \\
\hline 3 & 3 & Subtract decimals with different number of decimal places using decimal grids & 5.NBT.B. 7 \\
\hline 4 & 3 & Subtract decimals with different number of decimal places using decimal grids & 5.NBT.B. 7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations
\begin{tabular}{l|l|}
\hline \multicolumn{2}{|l|}{ If students score } \\
\hline Ihen have students do \\
\hline 4 of 4 & Additional Practice or any of the \(B\) or \(\boldsymbol{B}\) activities \\
\hline 3 of 4 & Take Another Look or any of the \(B\) activities \\
2 or fewer of 4 & Small Group Intervention or any of the \(B\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
( R Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{How Much More?}

Have students use decimal grids to represent an amount of money between \(\$ 1.00\) and \(\$ 2.00\). Give them a price of an item that is less than \(\$ 1.00\). Have students then use the decimal grids to determine how much more money they have than the cost of the item. Remind students to place the decimal point correctly in their answers. Repeat for different item prices.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Represent Adding and Subtracting (Tenths and Hundredths)


Differentiation Resource Book, p. 31

\section*{Lesson 4.5 - Reviforce Undertanding \\ Represent Subtraction of Tenths and Hundredths}

Name

\section*{Review}

Use a simplified drawing to find the difference of decimal numbers. Subtract 3.6-0.25.

\(3.6-0.25=3.35\)
Subtract the decimals using a simplified drawing.
4. \(78-0.36=7.44\)

2. \(6.09-4.2=1.89\)

3. \(5.9-19=3.26\)

4. \(3.54-0.27=3.27\)



\section*{Build Proficiency}

Practice It! Game Station
Subtract Tens and Hundredths Race
Students practice subtracting decimals.

\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 31-32

Lesson 4-6
Additional Practice
Name

\section*{Review}

You can subtract decimals that have different place values.
Emma waiks 0.9 mie on Soturday and 0.62 mile on Sundivy. How much tarther does Emims walk on Saturdey than on Sundicy? You can represent the problem with the equation \(0.9-0.62=\mathrm{d}\). Think of the number of tenths as a number of hundredth: 9 tenths \(=90\) hundredths, and \(0,9=0.90\) Use decimel gids to subtract.


Emme walks 0.28 mile more on Saturday then Sundoy.
Use decimal grids to solve each equation.
4. \(0.5-0.04=0.46\)
2. \(0.66-0.3=0.36\)

3. \(w 7-0.6=0.57\)


Sudent Frestec ibock

Unit 4•Add and Subtract Decimals

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtractingdecimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 31-32


\section*{Extend Thinking}

\section*{Use It! Application Station Cost of Living Depends on Where You Live} Students use equations to compare the cost of living in rural towns and urban cities. The content of this card has concepts covered later in Lesson 4-8. You may want to assign this card to students
 ready to explore content covered later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 32

\section*{Lesson 4.6-Extend Thinking}

Strategies to Subtract Decimals
Neme
1. Mount Everest is about 5.5 inles tat. A list of mountains and their heights ate shown in the table. Use grids to find how many of each mountain would iti in Mount Everest. Complete the lable. Show your work.
\begin{tabular}{|l|c|c|}
\hline Mountain & Height \((\mathrm{mi})\) & \begin{tabular}{l} 
Number of Times \\
in Mount Everest
\end{tabular} \\
\hline Mt Manstieic & 0.83 & 6 \\
\hline Pices Pcak & 2.67 & 2 \\
\hline Canter Dome & 0.92 & 5 \\
\hline Mt Weshington & 1.19 & 4 \\
\hline My Monadnocx & 0.6 & 9 \\
\hline
\end{tabular}


\section*{LESSON 4-7}

\section*{Strategies to Subtract Decimals}

\section*{Learning Targets}
- I can use strategies to subtract decimals.
- I can explain the strategy I use to subtract decimals.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(O\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Construct viable arguments and critique the reasoning of others.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objective}
- Students can use subtraction strategies they know, such as partial differences and the relationship between addition and subtraction, to subtract decimals.

\section*{Language Objectives}
- Students discuss subtraction strategies while answering Wh- and Yes/No questions and using adjectives such as efficient and easier.
- Support optimizing output, MLR7: Compare and Connect.

\section*{SEL Objective}
- Students recognize personal strengths through thoughtful self-reflection.

\section*{Coherence}

\section*{Previous \\ - Students added and subtracted} whole numbers using the standard algorithm (Grade 3).
- Students used representations to subtract tenths and hundredths (Unit 4).
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students subtract decimals & - Students use adding and \\
by decomposing the number & \begin{tabular}{l} 
subtracting decimals to solve \\
being subtracted.
\end{tabular} \\
\begin{tabular}{l} 
real-world problems (Unit 4). \\
- Students connect subtraction to \\
addition by counting up on a
\end{tabular} & \begin{tabular}{l} 
- Students add, subtract, multiply, \\
and divide decimals using the \\
number line to find the \\
difference.
\end{tabular} \\
standard algorithm (Grade 6).
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of subtraction as they notice similarities between subtracting whole numbers and subtracting decimals.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with subtraction facts and strategies for subtracting decimals.

\section*{Application}
- Students use subtraction strategies, such as partial differences to subtract decimals
Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Term \\ decompose \\ Academic Terms analyze \\ prove}

\section*{Materials}

The materials may be for any part of the lesson.

\author{
- Blank Open Number Lines Teaching Resource
}
- Decimal Cards Teaching Resource

> Number Routine Can You Make the Number? © \({ }^{5-7 \text { min }}\)

Build Fluency Students build number sense and procedural fluency as they determine combinations of numbers using different operations to make the target number 10 .

Remind students that each number can only be used once, but operations can be used as many times as they want.

Sample answers include ( \(4 \times 2+8-6\) )
\(\div 1,(4+6+8) \div 2+1,(6-4) \div 2+1+\) \(8,6 \div(4 \div 2+1)+8,4-(6 \div 2)+1+8\), and \((4 \div 2) \times 8-(6 \times 1)\).

These prompts encourage students to talk about their reasoning:
- What is a different way to make the target number?
- How is order of operations used in making 10 ?
- How can we make the target number using all four operations?

Purpose Students look for connections among whole-number addition and subtraction equations.

\section*{Which Doesn't Belong?}
- Which doesn't belong?

Teaching Tip You may want to have students write related addition and/or subtraction equations for each equation.

\section*{Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of what strategies could be used to subtract decimals and are based on possible comments and questions that students may make during the share out.
- How could you assess if the calculated sums and differences given are reasonable?
- Which of the equations are related? How do you know?
- What strategies would you have used to solve these addition and subtraction equations?

\section*{Math is... Yindset}
- How can you stay focused on your math work?

\section*{SEL}

Self-Awareness: Recognize Strengths
Before students begin the Which Doesn't Belong routine, invite them to think about their personal areas of strength in math. In addition to specific math skills, students may also acknowledge personal strengths that can help them with their learning, such as listening, staying focused, or explaining. As students work with strategies to subtract decimals throughout the lesson, model giving positive feedback to help them acknowledge their personal strengths. Encourage students to recognize and acknowledge the strengths of their peers.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about the uses of estimates. Guide the discussion to have students think about how to subtract decimal numbers. If students bring up decomposing the number or representing the number with pictures organically, bring that into the discussion, but if students do not introduce the concept during this part of the lesson, they will be reminded of it in the Explore \& Develop.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about strategies we can use to subtract decimals.



Find the difference and exploin your strategy. 57-32.64
24.36; Check students' strategies.


\section*{(1) Pose the Problem}

\section*{EPP Pose Purposeful Questions}
- What representations did you use to understand subtraction of whole numbers?
-What strategies did you use to subtract whole numbers?
- How did you choose what strategy you used to subtract whole numbers?

\section*{2 Develop the Math}

Choose the option that best meets your instructional goals.

\section*{MLR}

\section*{Compare and Connect}

Pair students and give them an equation to solve similar to the one on the Learn page. Instruct one student to solve using partial differences and the other using counting. Then have them compare their strategies. Revisit this activity throughout the lesson to help students build proficiency.

\section*{3 Bring It Together}

Elicit and Use Evidence of Student Thinking
- How would you explain how to decompose number to subtract decimals to a friend?
- How does a related equation help you subtract decimals?
- How are the strategies used to subtract decimals the same as the strategies used to subtract whole numbers? How are they different?

\section*{Key Takeaways}
- One subtraction strategy is to decompose one decimal by place value and then subtract the decomposed parts from the total.
- Rewriting a subtraction equation as a related addition equation is another strategy for finding the difference.
- Strategies used to subtract decimals are the same as those used to subtract whole numbers.

\section*{Work Together}

You may wish to provide copies of Blank Open Number Lines Teaching Resource for students to use as they solve the Work Together problem.

ECommon Misconception Students may want to decompose both the decimal numbers to subtract, which can result in a negative partial difference that students are not yet prepared to handle. Remind students that, during problem solving, they should ask themselves "Do I need to try a different way to solve this?" and persevere with another plan when they encounter something they are not yet prepared to handle.

\section*{tom}

Language of Math
Have students connect related equations to people who are related to them.

\section*{Activity-Based Exploration}

Students explore different strategies to subtract decimal numbers.

\section*{Materials: Blank Open Number Lines, Decimal Cards}

Directions: Ask students to write a subtraction problem involving two 3-digit whole numbers and solve the subtraction using as many strategies as they can. Invite students to share what they used.
- Do you think these strategies will work to subtract decimals?

Provide copies of Decimal Cards and Blank Open Number Lines. Have students select two decimals to write a subtraction expression. Students explore applying their strategies to subtract decimals.

\section*{ETP Support Productive Struggle}
- How can you apply your method of decomposing whole numbers to decomposing decimals?
- How is decomposing to subtract decimals similar to decomposing to subtract whole numbers? How is it different?
- How is counting on to subtract decimals similar to counting on to subtract whole numbers? How is it different?

\section*{Math is... Choosing Tools}
- Is your calculated answer reasonable? How do you know?

Students detect possible errors by strategically using estimation and other mathematical knowledge.

Activity Debrief: Discuss with students that decomposing and counting on are strategies they can use to solve subtraction problems involving decimals.

Have students revisit the Pose the Problem question and discuss answers.
- How can you determine how much more precipitation Olympia, Washington receives than Salem, Oregon?

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students extend strategies they learned for subtracting whole numbers by decomposing the second number. They also connect subtraction to addition by counting up on a number line to find the difference between decimals.

\section*{EIP Facilitate Meaningful Mathematical Discourse}

Have the students estimate the solution. Ask:
-Will you use rounding or compatible numbers to estimate? Why?
- Think About It: What strategies do you know for subtracting whole numbers?
- Think About It: Will you get the same answer if you decompose 19.29 into 19 and 0.29 ? Explain.

Have the students create the equation.
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(2. Have the students estimate the solution.
- Will you use rounding or compatible numbers to estimate? Why?
- Think About It: How did you use counting on to find the difference of whole numbers?
- Does one of the strategies seem more efficient than the other? Why?
- Describe a situation where it would be easier to use one of the strategies than the other.

\section*{Math is... Choosing Tools}
- Is your calculated answer reasonable? How do you know?

Students detect possible errors by strategically using estimation and other mathematical knowledge.

\section*{2. Develop the Math}


\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of the difference. Put 30 counters on the desk. Say I have 30 counters. Then say I'm going to take away 17. Remove 17. Say I'm going to find the difference. Count the 13 counters left. Say The difference is 13 . Repeat twice, and after the third time, instead of providing the difference, say Find the difference. Correct as needed.

Developing/Expanding Support students' understanding of the difference. Put 30 counters on the desk. Say I have 30 counters. Then say, I'm going to take away 17. Remove 17. Say I'm going to find the difference. Count the 13 counters left. Say The difference is 13. Repeat twice, and then ask students to repeat the task themselves.
Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to discuss the different meanings and uses of difference. For example, the difference between two quantities, the difference in appearance or use between two objects, differences of opinion or meaning, etc. Validate and correct student vocabulary and grammar as needed and allow students to use a dictionary if desired.

\section*{Practice \& Reflect © \({ }^{10 \mathrm{~min}}\)}

9. STEM Connectian A veterinarian weighed a dog at a checkup. tes weight was 22.47 kilograms. When the dog came beck for another checkup. \(k\) weighed 19.62 kJograms. How much weight afld the dog lose? Snow your work
2.85 kg

10. Casey lives on the east side of town and is 25.9 kilometers from the hockey arena. Terry lives on the west side of town and is 1875 klometers from the hockey arena. How much farther awoy from the hockey arena does Casey ive tian Terry? 7.15 km
41. Find a pettern in this list of numbers. Then. list the next thiee numbers in the pattern
\(0.33 .0 .66,0.59,0.52,0.45,0.38\)
12. Extend Your Thinking Natalie said that the difference between 30.8 and 3.8 \& 27 . Explain to Natale how you know that this statement is not teasonable and what a reasonable answer would be Sample answer: I rounded each number to the nearest whole number and subtracted. \(31-4=27\). Then, I knew the answer should be around 27 , not 2.7 .

\section*{© Reflect}

How did yoo decide which strotegy to use? Answers may vary.

\section*{Practice}

\section*{Build Procedural Fluency from Conceptual Understanding}
[1] Common Error: Exercise 11 Students may need a hint that the pattern involves subtraction.

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 2 & Procedural Skill and Fluency \\
\(9-10\) & 3 & Application \\
\(11-12\) & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did you decide which strategy to use?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have you stayed focused on your math work?

Students reflect on how they practiced self-awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use strategies to subtract decimals.
- I can explain the strategy I use to subtract decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item & DOK Skill & Standard \\
\hline 1 & 3 & Subtracting decimals using strategies & 5.NBT.B.7 \\
2 & 3 & Subtracting decimals using strategies & 5.NBT.B.7 \\
3 & 3 & Subtracting decimals using strategies & 5.NBT.B.7 \\
4 & 3 & Subtracting decimals using strategies & 5.NBT.B.7 \\
5 & 3 & Subtracting decimals using strategies & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score Then have students do}

5 of 5 Additional Practice or any of the (3) or © activities Take Another Look or any of the (B) activities
3 or fewer of 5 Small Group Intervention or any of the \(\mathbf{B}\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency
© Extend Thinking



\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Adding and Subtracting (Partial Sums and Differences)


Differentiation Resource Book, p. 33

\section*{Lerson 4-7 - Reinforce Understanding}

Strategies to Subtract Decimals
Name

\section*{Review}

Use portial differences to find the difference.
\begin{tabular}{ll}
\(36.2-4.98=?\) & \begin{tabular}{l} 
Decompose 4.98 \\
and subtract.
\end{tabular} \\
\(36.2-4=32.2\) \\
\(32.2-0.9=31.3\) \\
\(31.3-0.08=31.22\)
\end{tabular}

Find the difference. Show your work.
1. \(75.3-9.06=66.24 \quad\) 3. \(84.2-19.05=65.15\)
\[
75.3-9=66.3 \quad 84.2-19=65.2
\]
\(66.3-0.06=66.24 \quad 65.2-0.05=65.15\)
The difference is 66.24 . The difference is 65.15 .
\(\begin{array}{ll}\text { 2. } 40.82-51=35.12 & \text { 4. } 40.58-3.9=36.68\end{array}\)
\(40.82-5=35.82 \quad 40.58-3=37.58\)
\(35.82-0.7=35.12 \quad 37.58-0.9=36.68\)
The difference is 35.12 . The difference is 36.68 .
5. A voterinalan weighed a dog at a checkup its woight was 8.26 klograms. When the dog cime back for another checkup It weighed 9.55 kllograms. How much wolght ded the dog gain?
Show your work
1.29 kilograms

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Decimal Subtraction Tic Tac Toe
Students practice subtracting decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 33-34

Lesson 4-7
Additional Practice
Name

\section*{Review}

You cin use strategles to subtract decimals.
Charla has \(\$ 2174\), snd Ciain has \(\$ 13.20\). How much more money does Charla have than Claif?
To solve. find \(\$ 21.74-\mathbf{\$ 1 3 . 2 0}\).
\begin{tabular}{l}
\hline Use partiol differences. \\
Decompose 13.20 by \\
place wolue and subtract. \\
\(21.74-10=11.74\) \\
\(1774-3=8.74\) \\
\(8.74-0.2=8.54\) \\
\hline
\end{tabular}


Cnarlia has \(\$ 8.54\) more than Clivi.
Find each difference. Show your work.
2. \(4.74-19=2.84\)
2. \(88-0.67=8.13\)
3. \(4.53-1736=24.17\)
4. \(55.91-16.9=39.01\)

Unit 4 • Add and Subtract Decimals

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtractingdecimals.


\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 33-34

Find each difference. Explain your method.
5. \(34.92-15.75=19.17\)

Sample answer:
decomposed \(15.75 .34 .92-10=24.92\) :
\(24.92-5=19.92 ; 19.92-0.7=19.22 ;\)
\(19.22-0.05=19.17\).
6. \(73.56-12.84=10.32\) Sample answer:
I counted on from 12.84: 12.84 \(+10=22.84\);
\(22.84+0.16=23 ; 23+0.16=23.16 ;\)
then \(10+0.16+0.16=10.32\).
Solve.
7. A box of books weighs 423 gocunds. After tiking out some of the bocks, the bios now wwighs 25.75 pouncs. What is the welight of tive books thar were thees out of the box \(\$ 16.63\) pounds
8. Noetie nas haked 138 kllonteters along the trail from the nature centor. The wnterfat is 3.2 kilometers from the nature center. How much karther does NowSe hive lef to hike to get to the winterfair? 1.82 kilometers

\section*{Use It! Application Station}

Balancing a Checkbook Students research checking accounts and practice balancing a checkbook.


\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 34

\section*{Lesson 4-7 - Extend Thinking}

Strategies to Subtract Decimals
Name
Sarah is saving money to buy a video game that costs 552.47 , incliding tax The table shows how much Sarah has saved civer ite past morth doing reguter chores und extra chores.
\begin{tabular}{|l|c|c|c|c|}
\hline & Week 1 & Week 2 & Week 3 & Week 4 \\
\hline Chores (\$) & 8.50 & 8.50 & 8.50 & 8.50 \\
\hline Extra chores (\$) & 4.33 & 0.81 & 2.46 & 0.90 \\
\hline
\end{tabular}
1. How much mome money ooes 5 Sarah need to save to purchase the video game? Explain how you used a strategy to find the answer. Sample answer: First, I added the amount of money she has saved. Sarah has saved \(\$ 42.50\). Then I subtracted the total saved from \(\$ \mathbf{5 2 , 4 7}\). Sarah needs \(\$ 9.97\) more to purchase the video game.
2. Sarat plans to bur the video game in 1 moser weok How much will she need to eain tiom doing etta chores to be able to buy the game? Explain how yeu used a stattogy to find the answer.
Sample answer: Sarah has \(\$ 42.50\) and will earn \(\$ 8.50\) next week. \(\$ 42.50+\$ 8.50=\$ 51\). Subtract
 Sarah will have to earn \(\$ 1.47\) doing extre chores.
3. Searal decodes to wat two week to buy o video game. How much money doea she nave let over? Explini now you used a sthtegy to fird the arrswe:
Sample answen Sarah has \(\$ 42.50\) and will earn \(\$ 8.50\) next week and \(\$ 8.50\) the following week. \(\$ 42.50+\$ 9.50+\$ 8.50=\$ 59.50\). Subtract the cost of the video game from this amount: \(\mathbf{\$ 5 9 . 5 0}\) \(-\$ 52.47=\$ 7.03\). Sarah will have \(\$ 7.03\) left over.

\title{
Explain Strategies to Add and Subtract Decimals
}

\section*{Learning Targets}
- I can explain strategies for adding and subtracting decimals.
- I can add and subtract decimals to solve problems.

\section*{Standards \(\circ\) Major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\checkmark\) 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objective}
- Students can explain their choice of strategy to solve.

\section*{Language Objectives}
- Students talk about their choice of strategy to solve a problem while answering Wh- questions and using the adjective efficient.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

\section*{SEL Objective}
- Students exchange ideas for mathematical problem-solving with a peer, listening attentively and providing thoughtful and constructive feedback.

\section*{Next}
- Students fluently multiply multi-digit whole numbers (Unit 5).
- Students fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm (Grade 6).

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build on their understanding of adding and subtracting decimals as they use representations and models to explain the strategy used to find the sum or difference of decimals.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with strategies for adding and subtracting decimals.

\section*{Application}
- Students apply their understanding of addition and subtraction of decimals to solve problems with real-world contexts.

Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ decomposition \\ Academic Terms \\ evaluate \\ partial sums procedure
}

\section*{Materials}

The materials may be for any part of the lesson.
- Explain and Show Your Strategies Teaching Resource

\section*{Number Routine Can You Make the Number? \({ }^{5-7 \text { min }}\)}

\section*{Build Fluency Students build number} sense and procedural fluency as they determine combinations of the numbers using different operations to make the target number 16.

Remind students that there is more than one solution to the problem.
Remind students that each number can only be used once, but operations can be used as many times as they want.

Sample answers include
\((8-6) \times(4 \times 2) \times 1\),
\((6+8+4-2) \times 1\), and
\(((4+2) \div 6+1) \times 8\).
These prompts encourage students to talk about their reasoning:
- What is a different way to get the target number?
- How can we make the target number using all four operations?

Purpose Students think about a numberless word problem and the strategies they might use to solve it.

\section*{Numberless Word Problem}
-What could you ask?
-What math do you use in this problem?
Teaching Tip You may want to have students work in pairs to discuss the numberless word problem.
EIP Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' thinking about choosing and using strategies to add and subtract decimals and are based on possible comments and questions that students may make during the share out.
- What strategy would you use to solve this problem if it involved whole numbers only?
- How would your strategy change, if the problem involved decimals?

\section*{Math is... Yindset}
- How can you show others you respect their ideas?

\section*{Social Awareness: Respect Other}

As students work with partners to complete the Numberless Word Problem routine, remind them to show respect by listening attentively when others are sharing their ideas. Provide models of constructive and respectful feedback to guide students. As students share what they know and do not know about the problem, encourage classmates to provide thoughtful feedback to one another. Remind students that respecting others is an important part of being a member of the class community.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about strategies and models used to add and subtract decimals. Guide students to think about how they can explain strategies used to solve real-world problems involving decimal sums and differences.

EsP Establish Mathematics Goals to Focus Learning
- Let's think about choosing and using strategies to add and subtract decimals.


\section*{\(\square\) Bec Curion}

Rose is participating in a bike-a-thon.
She stops to eot ot a rest stop after riding a certain
distance. How much farther does Rose have to go?

\section*{Learn}

Rose is participating in a 50 -kiometer babe-a-thon she stops to eat at a rest stop after 30.2 kilometers. How much farther does Rose have to go?


You can use different strategies to add or suberact decimals. Select the strategy that is most efficient based on the quamities in the problem.

\section*{Q. Work Together}

\footnotetext{
Snck downioaded two games that cost 54.99 each. Find the total cost, not including tax, using two different strategies.
\$9.98: Check students' work.
}

\section*{(1) Pose the Problem}

\section*{EIP Pose Purposeful Questions}
- How do you know what operation is needed to solve the problem?
- In what ways can you represent this problem?
- What strategies have you learned? Which one would you use to solve this problem?

\section*{2 Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{Co-Craft Questions and Problems}

Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the routine throughout the lesson for reinforcement.

\section*{3 Bring It Together}

\section*{EIP Elicit and Use Evidence of Student Thinking}
- How do you choose which strategy you use when solving a problem involving the addition or subtraction of decimals?

\section*{Key Takeaway}
- Any of the addition or subtraction strategies can be used to determine a sum or difference.

\section*{Work Together}

You may wish to provide copies of the Show and Explain YourStrategies Teaching Resource for students to use to solve the Work Together problem.
Common Misconception Students may assume the only strategies they can use are ones explicitly discussed in the lessons. Students could use the adjusting numbers strategy, by seeing that the cost of each game is \(\$ 0.01\) less than \(\$ 5\). So, the sum must be \(\$ 0.02\) less than \(\$ 10\).

\section*{Lom}

Language of Math
The term representation is a noun. Ask students to think of real-world situations where this word is used. Have students relate this meaning to a mathematical representation. Let students practice using the word correctly when explaining how to represent and solve problems involving decimal sums and differences.

\section*{Activity-Based Exploration}

Students explore different strategies to solve real-world problems involving decimals.

Materials: Explain and Show Your Strategies Teaching Resource
Directions: Provide copies of the Explain and Show Your Strategies Teaching Resource. Have students solve the Pose the Problem using two different strategies.

\section*{Support Productive Struggle}
- Which strategy did you use first? Why did you decide to start with that strategy?
- Was there a strategy that didn't work? Why do you think it didn't work?
- What is the same about your two strategies? What is different?

\section*{Math is... Choosing Tools}
- Explain why you find one strategy more efficient than another.

Students make decisions about when tools might be helpful, recognizing both the knowledge to be gained and their limitations.

Activity Debrief: Discuss with students that problems can be solved using any known strategy. Some addition and subtraction strategies may be more efficient than others due to the quantities within the problem.

The PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of farther. Place two objects such as two chairs across from your desk, with one chair being farther away than the other. Point to the chair that's farther away from you and say, That chair is farther. Repeat with two more pairs of objects. Then, choose two more pairs of objects, and ask students, Which [book] is farther?

Developing/Expanding Support students' understanding of farther. Place two objects across from your desk, with one being farther away than the other. Point to the object that's farther away and say That (chair) is farther. Repeat with two more pairs of objects. Then prompt students to choose two objects to compare and tell you which one is farther away from where they're standing.

\section*{Guided Exploration}

Students extend their understanding of adding and subtracting decimals by using various strategies.

\section*{EIP Use and Connect Mathematical Representations - How does the bar diagram represent the problem?}
(G) Have students create the equations.
- How should the numbers appear in the equations? Why?
- How should the unknown appear in the equations? Why?

(1)Offer different eTools that the students may use to aid and assist them in finding the solution. Have students work with a partner to discuss strategies for solving. Ask:
- Which tool would you use? Explain why.
- Think About It: Which strategies would not be efficient for solving \(50-30.2=d\) ?

\section*{Math is... Choosing Tools}
- Explain why you find one strategy more efficient than another.

Students make decisions about when tools might be helpful, recognizing both the knowledge to be gained and their limitations.

\section*{2. Develop the Math}

Rose is participating in a 50 -kilometer bike-athon. She stops to eat at a rest stop after 30.2 kilometers. How much farther does Rose have to go?

What is a tool can you use t


Bridging/Reaching Have students compare and contrast the words far and farther and close and closer, and how they relate to distance. Allow students to interject, agreeing or disagreeing. For example, Are you sure farther means... or I'm not sure about that. I think that if something is closer....

\section*{Practice \& Reflect © 10 min}


\section*{9. STEM Connection}

An oceonographer recorded the time spent scuba diving last week. How much more tige wis spert scibn diving on Monday then on Wednesdiby? 5.31 min

10. A rectangular poster in a stadium measures 13.25 meters on two sides and 9.5 meters on two sides. What is the perimetes of the poster? 45.5 m
11. Extend Your Thinking How would you find the sum of 175 and 125 ? Explain how to use a similar strategy to find the sum of \(17 \%+125\)
Sample answer: You can add \(75+25\) to make 100 , then add \(100+100+100\) to find a sum of 300 . You can add \(0.75+0.25\) to make 1 , then add \(1+1+1\) to find a sum of 3 .
12. The science clutr raised money to clean the beach. Thay spent \(\$ 2975\) on trash bags and \(\$ 74,75\) on waterproof boots. They still hive 547 left How muich did they ralse?
\(\$ 151.50\)

\section*{Reflect}

How did you think like a mathematician when selecting which strategy to use?
Answers will vary.

\section*{Practice}

\section*{Build Porcedural Fluency from Conceptual Understanding}
[1 Common Error: Exercises 7-10 Students may use the wrong operation to solve. For example, for Exercise 8, students may solve \(13.4+11.25\). Students may also incorrectly decompose a decimal. In Exercise 7, students may incorrectly break apart 15.6 as the sum of \(15+0.06\).

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-6\) & 2 & Procedural Skill and Fluency \\
\(7-10\) & 3 & Application \\
11 & 4 & Conceptual Understanding \\
12 & 3 & Application \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did you think like a mathematician when selecting which strategy to use?
Ask students to share their reflections with their classmates.

\section*{Math is... Yindset}
- How have you shown others you respect their ideas?

Students reflect on how they practiced social awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain strategies for adding and subtracting decimals.
- I can add and subtract decimals to solve problems.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{4}{|l|}{ Item } \\
\hline 1 & 3 & ROK Skill & Standard \\
\hline 2 & 3 & Explain strategy to add decimals & 5.NBT.B.7 \\
3 & 3 & Explain strategy to add decimals & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{l|l|}
\hline If students score & Then have students do \\
\hline 3 of 3 & Additional Practice or any of the \(\boldsymbol{B}\) or \(\boldsymbol{B}\) activities \\
2 of 3 & Take Another Look or any of the \(\mathbf{B}\) activities \\
1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce UnderstandingBuild ProficiencyExtend Thinking


\section*{Reinforce Understanding}

\section*{Raise the Bar}

Provide students with a bar diagram that represents a decimal sum or difference such as \(4.2+11.5\) or 15.1-3.7. Each student writes the addition or subtraction expression that goes with the bar diagram and a real-world problem that may be represented by the model. If students have difficulty getting started, ask them what numbers are involved and whether they are combining the numbers (adding) or separating the numbers (subtracting). Have students share their expression and problem with the group. Have the group discuss strategies to use to solve each problem.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Represent Adding and Subtracting (Tenths and Hundredths)
- Adding and Subtracting (Partial Sums and Differences)


Differentiation Resource Book, p. 35

\section*{Lesson 4.8 - Rentitare Understanding \\ Explain Strategies to Add and Subtract Decimals}

Name

\section*{Review}

You can use partial oifferences to subuact decimel numbers 6734-9.47
Decompose by 9.47 piace value and subtroct
\(6734-9=5834\)
\(58.34-0.4=57.94\)
\(5794-0.07=5787\)
Sa. \(67.34-9.47=57.87\)
Solve each equation. Show your work.



\section*{Build Proficiency}

\section*{Practice It! Game Station}

Add or Subtract Decimal Word Problem Race
Students practice adding and subtracting decimals to solve word problems.

\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 35-36

Lesson 4-8
Additional Practice
Name


Solve each equation. Explain hew you determined which strategy to use. Check students' explanation.
t. \(583+28=8.63\)
2. \(9.4-6.58=2.82\)

Unit 4 • Add and Subtract Decimals

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with adding and subtracting decimals.

\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 35-36

\section*{Solve. Explain the strategy used to solve.}

Check students' explanations.
3. A dog drinks 2.2 liters of water eatch diry and a cat drinies 0.86 ther of witer each day. How many liters of water do the dog and cat drink in all? 3.06 liters
4. The length of one earthworm is 6.7 centimeters the lenget of a second eartiworm is 5.47 centimeters. How much longer is the frst earthworm than the second enathworm?
1.23 centimeters
5. A gavdener ordered 13.25 kilograms of graval for a project. The gardener had to order an additional 11.9 kilograms of gravel to complete the project. How much gravel was needed? 25.15 kilograms
6. Truman buys 34,7 meters of foncing to enclose his pond. He uses only 29.56 meters of the fencing. How much fencing is left over? 5.14 meters

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking


Differentiation Resource Book, p. 36

\section*{Lesson 4.8-Extend Thinking \\ Explain Strategies to Add and Subtract Decimals}

Nome
Solve each probiem Expluin your answer and tell why you chose each stratogy.
1. imani has 7704 grams of yogur and granoin. The granola weighs 27.04 grams. How much does the yogurt weigh? Sample answer: I used partial differences because the decimal amounts were the same. \(77.04-27=50.04 ; 50.04-0.04=50\). The yogurt weighs 50 grams.
2. Benjamin spent \(\$ 758\) on notebooks and \(\$ 10.32\) on binders he handed the saiesclerk \(\$ 20\). How much change did Berjumin recelve? Sample answer: I used decomposition because I saw \(0.68+0.32\) is a whole number. \(10+7=17\); \(0.6+0.3=0.9 ; 0.08+0.02=0.10 .17+0.9+\) \(0.1=18\). Next subtract to find the change. \(20-\) \(18=2\). Benjamin will receive \(\$ 2\) in change.
3. Lait year Bonnie's favorte smothie cost \(\$ 2.37\). This year thas same smpothie costs \(\$ 2.43\). What was the increase in price? Sample answer: I counted up because both amounts were very close in value. \(38,39,40\), \(41,42,43\); The increase in price is \(\$ 0.06\).
4. Ciers has 1 gaiton of lemonade. Seventerths of the lemonade as water. The rest is lemonade mix. What part of the gation is mix? Sample answer: Subtract the water from the gallon of lemonade to find the answer: \(1-0.7=1.0-0.7\) \(=0.3\). The amount of lemonade mix is 0.3 gallon,

\section*{Unit Review}


Students can complete the Unit Review to prepare for the Unit
Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{|l|l|}
\hline Item & Lesson \\
\hline 1 & \(4-1\) \\
2 & \(4-4\) \\
3 & \(4-2\) \\
4 & \(4-4\) \\
5 & \(4-1\) \\
\hline
\end{tabular}

\section*{Review}

Item Analysis
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 6 & 2 & \(4-1\) & 5.NBT.B.7 \\
\hline 7 & 2 & \(4-3\) & 5.NBT.B.7 \\
8 & 2 & \(4-4\) & 5.NBT.B.7 \\
9 & 2 & \(4-3\) & 5.NBT.B.7 \\
10 & 3 & \(4-5\) & 5.NBT.B.7 \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

Item Analysis (continued)
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 11 & 2 & \(4-6\) & 5.NBT.B.7 \\
12 & 2 & \(4-5\) & 5.NBT.B.7 \\
13 & 2 & \(4-7\) & 5.NBT.B.7 \\
14 & 2 & \(4-8\) & 5.NBT.B.7 \\
15 & 2 & \(4-8\) & 5.NBT.B.7 \\
\hline
\end{tabular}

\section*{Performance Task}

Standard: 5.NBT.B. 7
Rubric (4 points)
Part A - 2 points
2 POINTS Student's work reflects a proficiency in using a bar diagram to represent a word problem. The student can complete a bar diagram and use a variable to represent the unknown.

1 POINT Student's work reflects developing proficiency in using a bar diagram to represent a word problem. The student partially completes the bar diagram.
0 POINTS Student's work reflects a weak understanding of using a bar diagram to represent a word problem. The student cannot use a variable to represent the unknown.

Part B-2 points
2 POINTS Student's work reflects a proficiency in using strategies to subtract decimals. The student's solution is accurate and the student is able to explain the strategy.
1 POINTS Student's work reflects developing proficiency in using strategies to subtract decimals. The student's solution may be accurate, but they may not be able to explain the strategy.
0 POINTS Student's work reflects a weak understanding of using strategies to subtract decimals. The student's solution is inaccurate, and they are not able to explain the strategy.

\section*{Reflect}

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.


\section*{Performance Task}

A veterinarian mokes a paste to remove shunk odor on pets. She combines 1.48 quarts of hydrogen peroxide wath 0.72 quart of a mixture of Slavid dishwasting soasp and baking soda. How mary more quarts of tydrogen petoxide than liquid soap misture aoes the veterinarian use?
Part A: Complete the bar dingram to represert the problem.
Sample answer shown:


Part B: Solve the probiem. Show your work and explain how you determined which strategy to use to solve.
Check students' explanations. Sample answer: 0.76 qt: \(1.48-0.70=0.78 ; 0.78-0.02=0.76\)

\section*{(1) Reflect}

Describe two strategies for adding of subtracting decimal numbers. Which stategy do you preter to use?
Answers may vary.


Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice using an algorithm to subtract.

Fluency Progression
\begin{tabular}{|l|l|l|}
\hline Unit & Skill & Standard \\
\hline 1 & Use Partial Sums to Add & 4.NBT.B.4 \\
\hline 2 & Decompose by Place Value to Subtract & 4.NBT.B.4 \\
3 & Use an Algorithm to Add & 4.NBT.B.4 \\
\hline \(\mathbf{4}\) & Use an Algorithm to Subtract & 4.NBT.B.4 \\
\hline 5 & Choose a Strategy to Add & 4.NBT.B.4 \\
\hline 6 & Choose a Strategy to Subtract & 4.NBT.B.4 \\
7 & Multiply by Multiples of 10 & 5.NBT.B.5 \\
8 & Multiply by Multiples of 100 & 5.NBT.B.5 \\
\hline 9 & Divide Multiples of 10 & 5.NBT.B.6 \\
\hline 10 & Divide Multiples of 100 & 5.NBT.B.6 \\
\hline 11 & \begin{tabular}{l} 
Use an Algorithm to Multiply (2- and 3-Digit
\end{tabular} & 5.NBT.B.5 \\
\hline 12 & \begin{tabular}{l} 
Numbers by 1-Digit Numbers) \\
Use an Algorithm to Multiply (2-Digit Numbers \\
by 2-Digit Numbers)
\end{tabular} & 5.NBT.B.5 \\
\hline 13 & \begin{tabular}{l} 
Choose a Strategy to Multiply \\
Choose a Strategy to Multiply
\end{tabular} & 5.NBT.B.5 \\
\hline
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Performance Task}

\section*{Cell Phone Shopping}

Student draw on their understanding of using strategies to add and subtract decimals. Use the rubric shown to evaluate students' work.

\section*{Standard: 5.NBT.B. 7}

Rubric (8 points)

\section*{Part A (DOK 3) \(\mathbf{- 2} \mathbf{2}\) points}

2 POINTS Student's explanation reflects a proficiency with estimating with decimals in context.
1 POINTS Student's explanation reflects developing proficiency with estimating with decimals in context.
0 POINTS Student's explanation reflects a poor understanding with estimating with decimals in context.

Part B (DOK 2) \(\mathbf{- 2}\) points
2 POINTS Student's work reflects a proficiency with decimal addition and subtraction. Student's work reflects a proficiency with estimation.

1 POINTS Student's work either reflects a developing proficiency with decimal addition and subtraction or a developing proficiency with estimation.

0 POINTS Student's work shows a weak proficiency with decimal addition and subtraction. Student's work shows a weak proficiency with estimation.

\section*{Part C (DOK 3) \(\mathbf{- 2}\) points}

2 POINTS Student's work reflects a proficiency with decimal addition and subtraction. Student's conclusion is reasonable.

1 POINTS Student's work either shows developing proficiency with decimal addition and subtraction or has a reasonable conclusion.

0 POINTS Student's work shows weak proficiency with decimal addition and subtraction. The student's conclusion is not reasonable.

\section*{Part D (DOK 2) - 2 points}

2 POINTS Student's work reflects 2 reasonable strategies to find the correct answer.

1 POINTS Student's work reflects 1 reasonable strategy to find the correct answer.

0 POINTS Student's work reflects weak proficiency with decimal operations.

\section*{Unit 4}

\section*{Performance Task}

Name

\section*{Cell Phone Shopping}

Sarah io shopping for a new cell phone plan. She warts to make the best decision for her budget when shoosing the phone plan, so she decidirs to shop srounc. She stops by Cell City, to see her options.
Part A
The first plan Sarah eaplores will cost \(\$ 61.99\) per morth. She has \(\$ 75.50\) budpoted per morth for her phone bill. Sarah thinks that because she is only spending about \(\$ 60\), she can got the better cata plon for \(\$ 14.99\) per month. Do you agree? Explain.
Sample answer: No; Sarah should round to the nearest greater dollar. She actually does not have enough money for this plan.
\(61,99 \rightarrow 62.00\)
\(+14.99-15.00\)
\(77.00>75.50\)
Part B
5arah may also buy a new phone at Celi Cry


If Sarah stajs within her phone budget of \(\$ 75.50\), what is the
greatest number of G8 of data she can aftord? Estimate, then record
the actuai cost of the phone, fees, and taxes for each dota plan
displyed in the table. Snow your work
\(76-30-11-6=29\). I think Sarah can afford 3 GB of data.
\(75.50-29.99=45.51\)
\(45.51-10.54=34.97\)
\(34.97-6.22=28.75\)
Sarah can only afford to buy 3 GB of data for \(\$ 18.99\).

Part C
Sarah goes to another store craled Super Cell to see their dara plans
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Super Cell Phone Plans} & \multicolumn{4}{|c|}{G8 Data Plans} \\
\hline Phone & Fees & Taxes & & 2.00- & 4.00- & 6.00 \\
\hline \$39.99 & 58.88 & 3734 & 0.00-1.99 & 3.99 & 5.99 & and up \\
\hline & & & \(\$ 13.27\) & \$55 & \$1799 & \$2010 \\
\hline
\end{tabular}

How much would Sarah pay for both the cost of the phone. Fees, and taxes with 6.5 GB of data?
Super Cell: \(\$ 39.99+\$ 20.10+\$ 8.88+\$ 7.34=\$ 76.31\).

Compare this total cost with the Call City plan from Part il. it Sarah needs 9GE of dista, which is the better cell phone deai for Sarah's budget? 5 now your work
Cell City: \(\$ 29.99+\$ 35.99+\$ 10.54+\$ 6.22=\$ 82.74\)
Super Cell: \(\$ 39.99+\$ 20.10+\$ 8.88+\$ 7.34=\$ 76.31\).
Super Cell is the better plan, but both plans are greater than her budget.

\footnotetext{
Part D
Atter picking up her phone. Sarah chooses a storage pian to backup everything on her phone. Her spos use 40.02 Ge. Her contacts use 0.32 GB. Her photos une 6.93 GE. If she gets 15 GS of storage. how many GS will be free after the backup? Use two difterent strategies to find the solvien, Show your work
Strategy \(\mathbf{1}: 15-4.02-0.32-6.93=3.73\)
Strategy \(2: 4.02+0.32+9.93=11.27\)
\(15-11.27=3.73\).
Sarah will have 3.73 GB free after the backup.
}

\section*{Unit Assessments}

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.
Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{llllll}
\hline Item & pOK Lesson Guided Support \\
Intervention Lesson
\end{tabular}\(\quad\) Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit 4}

\section*{Unit Assessment, Form A}

Name
1. Where Robent lives, the average high temperature in July is 87.4F. The average low temperature in July is 64.8 F . Which equation best eatimates the difforence betweon the average high and low temperatures in duly?
(A.) \(87-65=22\)
B. \(88-64=24\)
C. \(88-65=23\)
D. \(87-64=23\)
2. What equation is shown ty the decimal grid?

A. \(1-0.05=0.95\)
B. \(0.95-0.08=0.87\)
C. \(0.95-0.8=0.8\)
D. \(0.87-0.08=0.79\)
3. What equation is repesected by the decienal grids?

\(0.6+\underline{0.78}=\underline{1.38}\)
4. What is the sum? Use the decimal gyids to solve.
\(0.6+0.2=\)
A. 0.08
B. 0.62
C. 0.8
D. 6.2
5. What is the difference? Use the decimal grid to solve.
\(0.7-0.12=\)

A. 0.05
(B) 0.58
c. 0.62
D. 0.82
6. Which of the following is a coriect way to find \(26.34+12.53\) ? Choose al that appy.
A. \(2+1+6+2+3+5+4+3\)
B. \(2+1+6+2+0.3+0.5+0.4+0.3\)
C. \(20+10+5+2+0.3+0.5+0.04+0.03\)
(D.) \(26+12+0.34+0.53\)

62
Raserverathroucellow

\section*{Unit 4}

Unit Assessment. Form A (continued)
Name
7. Francesca has a recipe that call for 0.7 cup of miki and 0.42 cup of chicken turoth. How mary cups of lifuid does Francesca need for the recipe?
A. 0.28 cup
B. 0.32 su5
C. 0.49 cup
(D.) 112 cups
3. Aethe iongtump ivent. Beris tiest jump was 62 meters. His second jump was 59 mwten. How much lareger was his first jump?
(A) 0.3 metin
B. 0.7 mulvy
C. 17 ineters
D. 121 moters
9. Margaret waikad 2.28 inlles yerterdey 3 he walked t 19 mies today Abau how many miles ald Margaret walk both days?
about 3 miles
10. A new pencil is 22 \& s centineteis iong. A pencle that ficichers been iting is now 12.73 cerdirsters lang. About how mach iongur is the new pencil? about 10 centimeters
fi. Isla maxes 2.7 itors of lomonsdo Ater serving lemonsode to her thencts she nas 0 t 9 ifer left. How miny iters of lemonide did luld serve to her fiends?
2.51 iters
12. Heman and nei tather carch two fian The first lish weighn 35 pounds The second hish weighs 0.42 pound lois than the first firt. What is the somibined weight of the twe lish? 6.58 pounds
13. Zekie and his brother had dinner at thar tivolte iestauram. The total cost for their two entrees was \$4133. The cost of Zeke's meal was \$12.92. What was the cost at his brother's meal? Which strategy did you use to salve? \(\$ 28.34\); Sample answer: I used the count on to subtract strategy. I started at 12.99 and counted up by 0.01 to 13.00. Then I added 0.33 to get 13.33. Then I added 28 to get 41.33. Then 1 added \(0.01+0.33+28=28.34\).
14. A coble that is 1873 meters iong is to oe connected to another cable that it 12.45 meters long. What will be the length of the new cable? Wuich ctrategy sid you use to solve?
31.19 meters: Sample answer: I decomposed both numbers and added the like place values: \(10+10=20\); \(8+2=10 ; 0.7+0.4=1.1 ; 0.03+0.06=0.09 ;\) then 1 added the partial sums: \(20+10+1.1+0.09=31.19\)
15. A spool contains 455 meteris of wite. Raphoel uses 28 日 2 meters of the wee for a ploject. What is the length of the wire let ont the spooi? Explain how you found your inswer. Which stritegy did you use to salve? 16.68 meters: Sample answer: I used the count on to subtract strategy. I counted up 0.08 from 28.82 to get 28.9. Then I added 0.6 to get 29.5. Then I added 16 to get 45.5 . So the answer is \(0.08+0.6+16=16.68\).

Form B

\section*{Une 4}

Unit Assessment, Form B
"



(a) \(54-0=0\)
(1) \(51-40 \mathrm{~m}\)
-
a. 3 - 0 -


A. \(1-00=0 \mathrm{n}\)
(C) \(0 x-0801=0 . \pi\)

C \(a 83-a 7=2 \pi\)



\(34+0.58-108\)

 inal Nover
A. \(1+1+7+4+7+7+6+1\)

(C) \(5 i+2+5+2+a i+35+2 i n+\operatorname{man}\)
(D) \(n+4+0 n+05\)
- 5 neters
 Nav =inen oe thay nos tan dopel abringt 33 milec

 own abust 9 centimeter

 an 2.7 liten
\(2+7=0,0.7+0.5=12 ; 0.04+0.02=0.06\) them I added the partial puma: \(20+9+1.2+0.06=30.26\)



753 squarp feet: Sanplp answer: I used the sount m te sabernet strntegy-I scanted up 0 . m from 2767 to got 272, Then 1 added 05 to pet 282.2 .7 Then 1 ndded 7 to opit 25.2. Sa the nnswer is \(0.03+0.5+7=753\)

\section*{Benchmark Assessment 1}

The Benchmark Assessment 1 is available in both print and digital.
Data When students complete the Benchmark Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Item pok skill} & Standard \\
\hline 1 & 2 & Subtract decimals & 5.NBT.B. 7 \\
\hline 2 & 3 & Understand volume & 5.MD.C. 3 \\
\hline 3 & 2 & Add decimals & 5.NBT.B. 7 \\
\hline 4 & 2 & Round decimals & 5.NBT.A. 4 \\
\hline 5 & 2 & Add decimals & 5.NBT.B. 7 \\
\hline 6 & 1 & Understand decimal place value & 5.NBT.A. 1 \\
\hline 7 & 3 & Describe how to find volume & 5.MD.C. 5 \\
\hline 8 & 2 & Compare decimals & 5.NBT.A.3.b \\
\hline 9 & 2 & Determine the volume of composite figures & 5.MD.C. 5 \\
\hline 10 & 2 & Compare decimals & 5.NBT.A.3.b \\
\hline 11 & 3 & Represent decimals in different ways & 5.NBT.A.3.a \\
\hline 12 & 2 & Determine the volume of composite figures & 5.MD.C. 5 \\
\hline 13 & 1 & Relate addition and subtraction of decimals & 5.NBT.B. 7 \\
\hline 14 & 2 & Count unit cubes to determine volume & \[
\begin{aligned}
& \text { 5.MD.C.3, } \\
& \text { 5.MD.C. }
\end{aligned}
\] \\
\hline 15 & 2 & Understand decimal place value & 5.NBT.A. 1 \\
\hline 16 & 2 & Solve volume word problems & 5.MD.C. 5 \\
\hline 17 & 1 & Read and write decimals & 5.NBT.A.3.a \\
\hline 18 & 2 & Represent subtraction of decimals & 5.NBT.B. 7 \\
\hline 19 & 2 & Estimate sums and differences of decimals & 5.NBT.B. 7 \\
\hline 20 & 1 & Understand volume & 5.MD.C. 3 \\
\hline 21 & 2 & Represent subtraction of decimals & 5.NBT.B. 7 \\
\hline
\end{tabular}

Assign the digital Benchmark Assessment to students or download and print PDFs from the Digital Teacher Center.


\section*{Grade 5}

\section*{Benchmark Assessment I}

\section*{Name}
1. Look at the expression.
\(36.58-2719\)
What is the value of the expression?
8.99
2. A student is asked to find the volume of a rectanguiar prism Which of these describes what the student is being asked to do?
A. Find the number of unit clubes \(\boldsymbol{\pi}\) takes to fa noil the rectangular priam.
(B) Find the number of unst cubes it takas to fill the entire rectangular pram.
c. Find the number of unt cubes a takes to equal the length of the rectangular pism.
D. Find the rumber of unit cuber 4 t takes to equal the bottom of the rectongular prism.
3. Rosa uses partiol sums to add \(103+5.32\). Far in the missing numbers to complete her equations.
\(1+5=5\)
\(0.0+0.3=0.3\)
\(0.03+0.02=0.05\)
\(6+0.3+\underline{0.05}=6.35\)
4. What is 81.574 rounded to the ferths place?
A. 815
B. 81.57
(C.) 816
D. \(B 2\)
5. What is the sum?
\(12.56+10.25+9.02+5.40=37.23\)
6. Which decimasis is the value of 0.4 ?
A. 0.004
(B) 0.04
c. 04
D. 40
7. Which of these is not a coriect method for finding the volume of a boxe
A. Mutiply the length by the width by the height of the box
(B) Mutipty the length by the wath and add this to the height of the box
C. Fis the box completaly with unit cubes and count the number of unit cubes at takes to fil the box
D. Fil the bottom of the box with unt cubes and then muliply the number of unit coubes by the neight of the box
8. How can you compare the decimala? Wite \(<,>\), or \(=\) 432.637 \(\qquad\) 432638
9. A compncy designs a plastic toy hammer. The head and the handie of the hammer are shaped like rectangular prisms. The handle is made with 8 cubic inches of plastic.


What is the total volume of the plastic used to make the hamrier?
A. 21 cubic inches
B. 63 cublic inches
C. 71 cubic inches
D. 504 cuabic inches

To Avowent Reswer How

Grade 5
Benchmark Assessment I [sortinued

\section*{Name}
10. Which number nakes the comparison frue?
\(58.63>\square\)
(A.) 58.625
B. 58 E31
C. 58.7
D. 59.6
11. Kendra claims that the onlly way to decompote 125.531 is \(100+\) \(20+5+\frac{5}{6}+\frac{3}{106}+\frac{1}{1000}\) Which expressions prove that Kendra's cheim is false? Choose all that appy.
(A) \(100+25+\frac{531}{1000}\)
(B) \(120+5+\frac{5}{10}+\frac{31}{1000}\)
c. \(120+5+\frac{53}{10}+\frac{1}{2000}\)
(2) \(20+\frac{55}{50}+\frac{3}{65}+1 \times 2 \times\)
(E.) \(125+\frac{4}{10}+\frac{3}{100}+\frac{1}{1000}\)
F. \(100+20+5+\frac{5}{10}+\frac{2}{100}+\frac{2}{1000}\)
12. Look at the fyuro


What is the volume, in cubic yards, of the tigure?
A. 20 cubic yards
B. 45 cubic yards
D. 99 cubic yards
13. Which equation nas the same uniknown as \(22.58+\) \(\qquad\) \(=38.527\)
A. \(\square+38.52=22.58\)
(B) \(3852-\square=2268\)
C. \(2268-38.52=\square\)
D. \(38.52+22.68=\square\)
14. Look at the Figure, which is tiliod with centimeter cubes


What is the volume of the figure shown? 60 cubic centimeters
15. Yosrs aga, a collector bought a new set of coina. The value of the coins today is \(\$ 20\), which is 10 times their criginal value. How much did the collector pay for the coins?
(A) 32
B. \(\$ 20\)
C. \(\$ 200\)
D. \(\$ 2.000\)
16. Gemma shios a box that is 10 inches iong. 2 inches tall, and 8 inches wide.
What is the volume of the box Gemme shlips?
160 cubic Inches
Grade 5
Benchmark Assessment I (continued)
Name
12. Which of these is fity two and forty-three thousandiths?
A. 52.430
B. 52.403
C. 52043
D. 50.243
18. Which equistion does the number line represent?

19. Luke looks at his gades in school His average grade in History is 87.24 percent. His zvernge grate in Sicience is 918 percent. Which equation would give the most reasonable estimate of the difference between Luke's average grades in History and Science?
(A) \(92-87=5\)
B. \(91-87=4\)
C. \(9 t-88=3\)
D. \(90-88=2\)
20. Grady wants to know how much water fits in his batifub. Which messurement of his bothtub does Grady need to find to get his answer?
A. length
B. perimeter
C. ares
D. volume
21. Use the decimal giod to solve \(0.5-0.44=\mathrm{s}\)


What is the value of s?
0.36

\section*{UNIT 5 PLANNER}

\section*{Multiply Multi-Digit Whole Numbers}

\section*{PACING: 12 days}
\begin{tabular}{ll} 
LESSON MATH OBJECTIVE \\
Unit Opener & Lowite Mile-High Pennies Review estimation and multiplication skills using stacks of pennies.
\end{tabular}
\begin{tabular}{ll|l|l|}
\hline 5-1 & \begin{tabular}{l} 
Understand Powers \\
and Exponents
\end{tabular} & \begin{tabular}{l} 
Students write a power of 10 as a \\
multiplication expression with factors \\
of 10. \\
Students write a power of 10 using a \\
base of 10 and exponents.
\end{tabular} & \begin{tabular}{l} 
Students explain the steps to take to \\
write a powe of 10 as a multiplication \\
expression while using the passive \\
voice.
\end{tabular} \\
\hline 5-2 & \begin{tabular}{l} 
Patterns When Multiplying \\
a Whole Number by Powers \\
of 10
\end{tabular} & \begin{tabular}{l} 
Students use patterns to determine \\
products when multiplying whole \\
numbers by powers of 10. \\
Students explain patterns in the \\
products when multiplying whole \\
numbers by powers of 10.
\end{tabular} & \begin{tabular}{l} 
Students talk about the patterns they \\
see in products while answering \\
Wh- questions.
\end{tabular} \\
\hline 5-3 & \begin{tabular}{l} 
Estimate Products of Multi- \\
Digit Factors
\end{tabular} & \begin{tabular}{l} 
Students estimate products of \\
multi-digit factors using the same \\
strategies used to estimate products \\
of lesser factors. \\
Students use estimated products to \\
make predictions about a calculated
\end{tabular} & \begin{tabular}{l} 
Students discuss estimating products \\
while answering Wh- questions.
\end{tabular} \\
\hline
\end{tabular}

\section*{SOCIAL AND EMOTIONAL} LEARNING OBJECTIVE

Unit Opener Iowitet Mile-High Pennies Review estimation and multiplication skills using stacks of pennies.

Students demonstrate selfawareness of personal strengths and areas of challenge in mathematics.

Students employ techniques that can be used to help maintain focus and manage reactions to potentially frustrating situations.

Students determine the strategies and analyses necessary to make informed decisions when engaging in mathematical practices.

Students explore taking different perspectives on approaches to problem solving.

Students practice strategies for persisting at a mathematical task, such as setting a small goal or setting timers for remaining focused.

Students collaborate with peers to complete a mathematical task and offer constructive feedback to the mathematical ideas posed by others.

Math Probe Multiplication of 2-Digit Numbers Determine if a given strategy is a correct approach to find the product of two 2-digit numbers.
\begin{tabular}{lll} 
5-7 & Multiply Multi-Digit & Students use an algorithm to multiply \\
& Factors Fluently & two multi-digit factors.
\end{tabular}

\section*{Unit Review}

Fluency Practice

\section*{Unit Assessment \\ Performance Task}

Unit 5 • Multiply Multi-Digit Whole Numbers

\title{
FOCUS QUESTION: How can I multiply multi-digit numbers?
}

LESSON
MATERIALS TO GATHER
RIGOR FOCUS STANDARD
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Math Terms & Academic Terms & & & \\
\hline 5-1 & \begin{tabular}{l}
base \\
exponent exponential form power of 10
\end{tabular} & accurate prove & - number cubes & \begin{tabular}{l}
Conceptual \\
Understanding \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.A. 2 \\
\hline 5-2 & base exponent factor power of 10 & cite establish & \begin{tabular}{l}
- calculators \\
- index cards
\end{tabular} & \begin{tabular}{l}
Conceptual \\
Understanding \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.A. 2 \\
\hline 5-3 & estimate round & accurate relevant & \begin{tabular}{l}
- calculators \\
- index cards \\
- number cubes
\end{tabular} & Procedural Skill \& Fluency & 5.NBT.B. 5 \\
\hline 5-4 & area model decompose partial products & debate speculate & - none & Procedural Skill \& Fluency & 5.NBT.B. 5 \\
\hline 5-5 & area model partial products & analyze suggest & - number cubes & Procedural Skill \& Fluency & 5.NBT.B. 5 \\
\hline 5-6 & \begin{tabular}{l}
algorithm \\
partial products regroup
\end{tabular} & procedure prove & \begin{tabular}{l}
- base-ten blocks \\
- number cubes
\end{tabular} & Procedural Skill \& Fluency & 5.NBT.B. 5 \\
\hline 5-7 & algorithm & \begin{tabular}{l}
analyze \\
note \\
transition
\end{tabular} & \begin{tabular}{l}
- Multiplication Algorithm \\
- spinners Teaching Resource \\
- number cubes
\end{tabular} & Procedural Skill \& Fluency & 5.NBT.B. 5 \\
\hline
\end{tabular}

\section*{Unit Overview}

\section*{Focus}

\section*{Multiply Multi-Digit Whole Numbers}

In this unit, students are guided gradually from their previous understanding of place-value relationships to a concrete understanding of multi-digit multiplication. They begin by writing powers of 10 in exponential form and then work to identify patterns when multiplying by powers of 10 .

Students then begin to estimate products, using compatible numbers and rounding. Estimation gives students a way to think about computation with larger numbers. For example, the magnitude of the product \(5,136 \times 13\) may not be as easy for students to comprehend as \(5,000 \times 10\). That may be because students may lose sense of the magnitude of the product when they work through the steps of finding \(5,136 \times 13\). After they estimate products, students begin finding exact products by using area models and partial products.

Students then relate their understanding of partial products to an algorithm. Multiplying multi-digit numbers using an algorithm can be an abstract process. Even when students multiply the digits in the correct order and regroup accurately, they may not be fully aware of the actual quantities with which they are working.

\section*{Coherence}

\section*{What Students Have Learned}
- Students multiplied up to 4 -digit whole numbers by 1 -digit whole numbers using place value and properties of operations.
- Students multiplied two 2-digit whole numbers using place value and properties of operations.
- Students understood the relationship between values of digits within the base-ten system.

\section*{What Students Are Learning}
- Students use whole-number exponents to denote powers of 10.
- Students explain patterns when multiplying a number by powers of 10 .
- Students use patterns to multiply a number by powers of 10 .
- Students use area models to determine partial products and relate the partial products to the standard algorithm.
- Students multiply multi-digit whole numbers using an algorithm.

\section*{What Students Will Learn}
- Students extend the algorithm for multiplication to multiply decimals.

\section*{Rigor}

\section*{Conceptual Understanding}

Students develop understanding of: - exponential form of powers of 10 .
- patterns when multiplying whole numbers by powers of 10 .

\section*{Procedural Skill and Fluency}

Students build proficiency with:
- solving and evaluating expressions with powers of 10 .
- multiplying by a power of 10 .
- estimating the product of multi-digit factors.
- using area models to multiply multi-digit factors.
- using partial products and an algorithm to multiply multi-digit numbers.

\section*{Application}

Students apply their knowledge of:
- estimating products to solve real-world applications involving the products of multi-digit numbers.
- area models and partial products to solve real-world applications involving the products of multi-digit numbers.
Application is not a targeted element of rigor for the standards in this unit.

\section*{Effective Teaching Practices}

\section*{Use and Connect Mathematical Representations}

Throughout this unit, students use a variety of representations as they develop skills with multi-digit multiplication.
- They use partial products represented both numerically and with area models. This reinforces place value and also provides a visual means for understanding why the partial products are added to determine the final product.
- Students write equations using variables to represent the products, and they write the steps for multiplying with the algorithm.

Each connection that students make among these representations helps them visualize the math.

Encourage students to use more than one representation and to articulate the connections among them.

For example, as students make the transition from partial products to the algorithm, ask them to explain how each partial product is represented in the steps of the algorithm. Have students pay special attention to what the regrouped digits represent and how they are composed with subsequent products.

Ask open-ended questions that encourage students to discuss which representations they find most meaningful and effective.

Guide students to maintain fluency with varied tools and strategies.
When students get stuck using one strategy, guide them to try another one with which they might be more comfortable.

For example, as students progress to using the algorithm to multiply factors with greater numbers of digits, remind them of how they have used partial products and how they related the two strategies.

\section*{Math Practices and Processes}

\section*{Look for and Express Regularity in Repeated Reasoning}

This unit's progression of multiplication strategies and size of factors provides consistent opportunities for students to look for and express regularity.
- When students identify patterns when multiplying by powers of 10 , they should describe ways to use the pattern to find other products.
- When students estimate a product, use partial products to calculate the product, and then compare the estimate with the calculation, they should observe and describe the connections they see.
- When students progress from multiplying a multi-digit number by a 1-digit number to multiplying multi-digit numbers by a 2-digit number, the reasoning that they have applied in one instance should guide their understanding of the next.

Provide frequent opportunities for students to articulate their strategies and reasoning.

Some suggestions include:
- Students are given different multiplication problems. Each student shows the same problem using partial products and the algorithm. Then, students share their work with partners. Pairs describe to each other how the partial products and algorithm steps show the same multiplication, including regrouping.
- Students are given the same multiplication problem and are asked to find different ways to represent it. Each student then describes how he or she chose the representation and how each step or element is part of finding the product.
- Students are given a multiplication problem and are asked to estimate the product using both compatible numbers and rounding, find the actual product using a calculator, and then explain the differences among the two estimates and the calculated product.

\section*{\({ }^{\text {ștl }}\) Social and Emotional Learning}

\section*{What Skills Will We Develop?}
- Self-Awareness - Accurate Self-Perception (Lesson 5-1): Having accurate self-perception allows students to determine areas of strength as well as areas in which they need to focus and practice.
- Self-Management - Control Impulses (Lesson 5-2): Students who can regulate their impulses and reactions are better able to navigate and solve problems.
- Responsible Decision Making - Analyze Situations (Lesson 5-3): Students make sense through analysis, which helps them make informed decisions.
- Social Awareness - Develop Perspective (Lesson 5-4): Developing perspective can help students understand different ways of thinking.
- Self-Management - Self-Discipline (Lesson 5-5): Self-disciplined students can manage their impulses to focus on a mathematical task.
Relationship Skills - Social Engagement (Lesson 5-6): Engaging with others allows students to develop relationships and establish a sense of security and belonging in the classroom community
- Self-Awareness - Identify Emotions (Lesson 5-7): Students who can identify and understand their own feelings and emotions can better manage the reactions to those feelings and emotions.

\section*{Unit Overview}

\section*{Language of Math}

\section*{Vocabulary}

Students will be using these key terms in this unit:
- algorithm (Lesson 5-6, 5-7) Students may have been introduced to this term in Grade 3 when using the addition and subtraction algorithm. Now this term will be applied to multi-digit multiplication.
- base* (Lesson 5-1, Lesson 5-2) The base is the number that is repeatedly multiplied when written in exponential form.
- estimate (Lesson 5-3) Students were introduced to estimating in Grade 3. Have students discuss estimation techniques such as rounding as a way of determining the magnitude of a solution or checking the reasonableness of a calculated solution.
- exponent* (Lesson 5-1, 5-2) The exponent is the superscript after the number and notes the number of times the number is multiplied times itself.
- exponential form* (Lesson 5-1) Exponential form involves a number, called the base, and an exponent. Exponential form is a way of simplifying the notation for repeated multiplication.
- partial products (Lesson 5-4, 5-5, 5-6, 5-7) Students were introduced to partial products in Grade 3. Relate this term to the area models used to find products as well as the Distributive property.
- power of 10* (Lesson 5-1,5-2) A power of ten is the exponential form using a base of 10 . The exponent is also called the power.
- round (Lesson 5-3) Students were introduced to rounding in Grade 2. Have students review when to round up and when to round down. Discuss the importance of place value when rounding.
*This is a new term.

\section*{Math Language Development}

\section*{A Focus on Speaking}

When students learn a new language, speaking that language is of paramount importance.

Learning the grammar and vocabulary will not be enough for the language student to build fluency; instead, a certain reading and writing fluency may be gained while the student is never comfortable enough with the rhythm and sound of the language to understand or participate in its spoken form.

The language of mathematics is a subset of the language of where it is being taught and discussed. In the United States, it is part of English, in Germany, it is part of German, and so on. As such, the linguistic aspects of math may not receive pedagogical focus.
But the specific vocabulary, usage, and phrasing of math is its own subset of the language, one that can be difficult to learn for students who are learning it in their first languages but even more so for second-language students.

And just like students of new languages, students of math will not gain real fluency in its language without speaking the words and sentences that make up, describe and explain it.

For this reason, give students ample opportunities to speak about the math that they are learning. As they learn about multi-digit multiplication, model precise oral usage of correct vocabulary and guide students to integrate it into their own speech.

Students should hear the words base, exponent, factor, product, estimate, partial product, and algorithm in your discourse and then become fluent with these terms in their own explanations.

Help students analyze terminology, breaking down words' meanings to make them more accessible. For example, discuss that when we use partial products, each product is a part of the whole product.

\section*{English Language Learner}

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to multiplying multi-digit whole numbers. Because many of the words (distance, feet (ft.), vertical), phrases (as...as, make money), and grammar structures (can be..., to + verb) used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

Lesson 5-1 - can be (connected)
Lesson 5-2 - distance
Lesson 5-3 - to + verb to say why
Lesson 5-4 - abbreviation ft.
Lesson 5-5 - vertical
Lesson 5-6 - as...as... to compare
Lesson 5-7 - make money

\section*{Unit Routines}

\section*{Number Routines}

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

\section*{About How Much?}

Purpose: Build estimating skills.
Overview: Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

\section*{Find the Pattern, Make a Pattern}

Purpose: Build efficiency with recognizing and building patterns. Overview: Students determine the rule(s) for a given pattern, then use the rule(s) to create a new pattern. The teacher records students' new patterns and faciliates a discussion to validate the pattern and its rules.

\section*{Greater Than or Less Than}

Purpose: Build proficiency with number and place vlaue sense; estimating and comparing skills.
Overview: Students use mental math to esitmate or evaluate the value of given expressions and then compare the value of the expressions to a target benchmark number. Students share their solutions and thinking.

\section*{What's Another Way to Write It?}

Purpose: Build flexibility with number sense and mental math operations.
Overview: Given a number, students generate expressions using operations that, when evaluated, have the same value as the number. The teacher records expressions as students share. Students then look for relationships amongst the expressions.

\section*{Sense-Making Routines}
- Which Doesn't Belong? (Lesson 5-1) Students analyze four multiplication expressions, looking for similarities and differences that get them to think about multiplication with the repeated factors.
- Notice \& Wonder: How are they the same? How are they different? (Lesson 5-2, 5-7) Students consider the similarities and differences between different representations involving multiplication by powers of 10. In lesson 7, students compare two ways to solve a multiplication problem.

\section*{- Notice \& Wonder: What do you notice? What do you wonder?}
(Lesson 5-3, 5-5, 5-6) In Lesson 5-3, students prepare to think about how an estimate compares to a calculated solution. In the following lessons, students think about how a multiplication equation relates to an area model and then how a multiplication equation with partial products relates to the standard algorithm.
Notice \& Wonder: What do you see? (Lesson 5-4) In lesson 5-4, students consider an image where the area is decomposed into smaller rectangles and how they add to the total.

\section*{Math Language Routines}

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable, format for amplifying and developing students' social and academic language. For more information on the Math Language Routines, see the Appendix.
- Lesson 5-1 - Students participate in MLR6: Three Reads.
- Lesson 5-2 - Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 5-3 - Students participate in MLR7: Compare and Connect.
- Lesson 5-4 - Students participate in MLR4: Information Gap.
- Lesson 5-5 - Students participate in MLR8: Discussion Supports and MLR3: Critique, Correct, and Clarify.
- Lesson 5-6 - Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 5-7 - Students participate in MLR5: Co-Craft Questions and Problems.

\section*{Unit 5}

\section*{How Ready Am I?}

Name
1. Which shows the expanded form of 32 T?
A. \(3+2+1\)
B. \(30+20+10\)
C. \(100+20+1\)
D. \(3,000+200+10\)
2. Wrat is the number 497,512 rounded to the nearest thousand? A. 500,000
B. 497,000
C. 498,000
D. 497,500
3. Which sum is equivalent to \(13 \times 4\) if using partial products?

\section*{A. \(4+12\)}
(B.) \(40+12\)
C. \(50+7\)
D. \(120+4\)
4. Which is the product of \(36 \times 40\) ?
A. 76
B. 144
C. 760
D. 1,440
5. Which is the product of \(20 \times 44\) ?
A. 80
B. 88
C. 800
(D.) 880
6. Which is the correct sum?
1.384
+413
(A. 1,797
B. 1787
C. 797
D. 977
7. Which is the correct sum?
5.589
+3.663
A. 8,142
B. 8.252
C. 9.242
(D. 9.252
8. Which number mekes the equation true? \(53 \times 17=500+?+30+21\)
A. 35
B. 30
C. 300
(D) 350
9. A rectangular filowerbed measures 62 feet long and 48 feet wide. About how much is the area of the flowerbed?
A. 220 square feet
B. 2,400 square feet
C. 3.000 square feet
D. 3,500 square feet
10. A store sold 100 shits for \(\$ 8\) each. How much did the store earn from the sale of the shits?
A. \(\$ 80\)
B. \(\$ 108\)
C. \(\$ 880\)
(D.) \(\$ 800\)

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

\section*{Targeted Intervention}

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis
\(\left.\begin{array}{|ll|l|l|}\hline \text { Item } & \text { DOK Skill } & \begin{array}{l}\text { Guided Support } \\ \text { Intervention Lesson }\end{array} & \text { Standard } \\ \hline 1 & 1 & \begin{array}{l}\text { Identify expanded form of Expanded Form } \\ \text { a number }\end{array} & \text { 4.NBT.A.2 } \\ \text { through 999,999 }\end{array}\right]\) 4.NBT.A.3

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit Opener}

\section*{Focus Question}

Introduce the Focus Question: How can I multiply multi-digit numbers? Ask students to think about what they know about multiplying multi-digit numbers.
- What does multi-digit mean? What are whole numbers?
- What do you know about multiplying multi-digit numbers?
-What do you think you will be doing in the unit?
Remind students that at the end of the unit, they will reflect back on what they learned in this unit.

\section*{Family Letter}

Each letter presents an overview of the math in the unit and home activities to support student learning.

\section*{STEM in Action}

\section*{Videos}

Students can watch the two STEM videos.
STEM Career: Entomologist: Owen discusses his aspirations to be an entomologist.
Counting Ladybugs: Owen and entomologists use multi-digit multiplication to help them do their work, including estimating a population.

\section*{STEM Project Card}

Students can complete the STEM Project Card during their workstation time.


\section*{STEM Career: Entomologist}



\section*{Ignite!}

\section*{Mile-High Pennies}

Students review estimation and multiplication skills in preparation for work in Unit 5.
1. Direct attention to the stacks of pennies.
-What do you notice about the stacks of pennies?
- Which stack appears to be about 1 inch tall? How many pennies are in that stack?
- Which stack appears to be about 2 inches tall? How many pennies are in that stack?
2. Provide students with a ruler to confirm the above results. Have them record the results with Question 1.
3. Have students think about a stack of pennies that is 1 foot tall.
- About how many pennies do you think would be in that stack? Explain.

Have students record their estimated number of pennies in a 1 -foot stack with Question 2
4. Now have students think about a stack of pennies that is 1 mile tall.
- How many pennies do you think would be needed to make a stack that is 1 mile tall? Write your guess with Question 3.
- Also write a number of pennies that you think is definitely too large for a reasonable estimate. Then write a number of pennies that you think is definitelytoo small.
5. Challenge students to use the above results, along with the images of the pennies and a ruler, to make a calculated estimate of the number of pennies needed to reach a height of 1 mile. You may want to provide the following conversions as needed:
\[
\begin{array}{cc}
12 \text { inches }=1 \text { foot } & 3 \text { feet }=1 \text { yard } \\
5,280 \text { feet }=1 \text { mile } & 1,760 \text { yards }=1 \text { mile }
\end{array}
\]
6. Have students record their calculated estimate with Question 4. Discuss the various strategies that emerge.
- How did you solve the problem?
- How does your estimate compare with the guess you made with Question 3?

\section*{Workstations}

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.


\section*{Additional Resources}

Use the resources below to provide additional support for this unit.

\section*{Vocabulary}

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the new terms on the front side of the card.


\section*{Foldables}

Use the unit foldables with Lessons 5-5 and 5-6.


\section*{Spiral Review}

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.
\begin{tabular}{l|l|}
\hline Lesson & Standard \\
\hline \(5-1\) & 5.MD.C.3 \\
\(5-2\) & 5.NBT.A.1 \\
\(5-3\) & 5.MD.C.5 \\
\(5-4\) & 5.NBT.A.3 \\
\(5-5\) & 5.NBT.A.2 \\
\(5-6\) & 5.NBT.A.4 \\
\(5-7\) & 5.NBT.B.5 \\
\hline
\end{tabular}

\section*{Understand Powers and Exponents}

\section*{Learning Targets}
- I can write a power of 10 as a multiplication expression with factors of 10.
- I can write a power of 10 using a base of 10 and exponents.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Addifional}

\section*{Content}
5.NBT.A Understand the place value system.
\(\diamond\) 5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .

\section*{Math Practices and Processes}

MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objectives}
- Students write a power of 10 as a multiplication expression with factors of 10.
- Students write a power of 10 using a base of 10 and exponents.

\section*{Language Objectives}
- Students explain the steps to take to write a power of 10 as a multiplication expression while using the passive voice.
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR6: Three Reads.

\section*{SEL Objective}
- Students demonstrate selfawareness of personal strengths and areas of challenge in mathematics.

\section*{Coherence}
\begin{tabular}{l|l|l|}
\hline Previous & Now & Next \\
\begin{tabular}{l} 
- Students recognized that a digit \\
represents 10 times as much as it \\
represents in the place to its \\
right and \(\frac{1}{10}\) of what it represents \\
in the place to its left (Unit 3).
\end{tabular} & \begin{tabular}{l} 
- Students extend their \\
understanding of place value \\
to write powers of 10 \\
using exponents.
\end{tabular} & \begin{tabular}{l} 
- Students examine patterns \\
based on place value when a \\
whole number is multiplied by a
\end{tabular} \\
& & \begin{tabular}{l} 
power of 10 (Unit 5). \\
- Students write and evaluate \\
numerical expressions involving \\
whole-number exponents \\
(Grade 6).
\end{tabular} \\
\hline
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students develop conceptual understanding by connecting the ideas of powers and exponents.

\section*{Procedural Skill \& Fluency}
- Students solve and evaluate expressions with powers of 10 .

\section*{Application}
- Students apply their understanding of powers and exponents to solve problems based on real-world contexts.

Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ base \\ Academic Terms \\ accurate \\ exponent prove \\ exponential form \\ power of 10
}

\section*{Materials}

The materials may be for any part of the lesson.
- number cubes

\section*{Number Routine}

\section*{Find the Pattern, Make the Pattern \({ }_{5-7 \text { min }}\)}

Build Fluency Students build number sense as they determine a pattern in a sequence of numbers and find the missing terms. Then they create a new sequence with the same pattern but different numbers.

These promptsencourage students to talk about their reasoning:
- How did you determine the pattern in the sequence of numbers?
- How can you explain to someone what steps to take to find a pattern?
- How did you determine the missing numbers?
- How did you determine the starting point of your sequence?

Purpose Students analyze four multiplication expressions and identify any similarities and/or differences.

\section*{Which Doesn't Belong?}
- Which doesn't belong?

Teaching Tip You may wish to have students work in small groups to discuss what they notice about the multiplication problems. Invite them to share what they are wondering and how they decide how to compare and contrast the expressions. Remind students that there are multiple ways to answer the question and stress the importance of their justification using correct mathematical terminology.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' awareness of multiplication expressions whose factors are the same number and are based on possible comments and questions that students may make during the share out.
-What do you notice about the factors in each expression?
- What do you notice about the product of each expression?

\section*{Math is... Findset}
- What do you want your classmates to know about your math story?

\section*{SEL}

\section*{Self-Awareness: Accurate Self-Perception}

As students begin to think about identifying similarities and differences in the Which Doesn't Belong routine, encourage them to make connections to strategies/concepts they are more familiar or comfortable with, such as the similarities and differences in each factor. They can also use more familiar strategies to check their answers. As students continue to understand powers and exponents, differentiate instruction to provide opportunities for students to experience success and gratification as well encounter appropriate amounts of productive struggle.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about multiplication expressions whose factors are the same number.

\section*{EIP Establish Mathematics Goals to Focus Learning}
- Let's think about multiplication expressions whose factors are the same number and other ways to write those types of expressions.


\section*{Learn}

At Week 1, Dean had 10 pennies Each week after, Dean increased the number of pennies by 10 times the previous week.

During which week will Dean have \(1,000,000\) pennies?
You can organize the information in a table to help determine the solution. notice in the table?
\begin{tabular}{|c|c|c|}
\hline Wesk & Murtipheation Exartwien & Murate ef Pimite Added ewch wheu \\
\hline 1 & 50 & 10 \\
\hline 2 & \(10 \times 10\) & 100 \\
\hline 3 & \(10 \times 10 \times 10\) & 1,000 \\
\hline 4 & \(10 \times 10 \times 10 \times 10\) & 10,000 \\
\hline 5 & \(10 \times 10 \times 10 \times 10 \times 10\) & 100,000 \\
\hline 6 & \(10 \times 10 \times 10 \times 10 \times 10 \times 10\) & 1,000,000 \\
\hline
\end{tabular}

Dean wall have 1000.000 pennies in Week 6
You can write a power of 10 as a mutplication expression weh factors of 10 . You can also write a power of 10 in exponential form using a base and an exponent


\section*{Q. Work Together}

Withe \(40^{\circ}\) as \(n\) mutiplication expression. Then, find the product. \(10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=100,000,000\)

\section*{(1) Pose the Problem}

\section*{MLR}

\section*{Collect and Display}

As students discuss the questions, make a list of key words and phrases you hear, such as power of 10, exponential form, base, and exponent. Display the list and use these expressions to help students connect words they already know and math vocabulary.

\section*{EIP Pose Purposeful Questions}
- How can you describe the problem in your own words?
- How could you organize the information in the problem?

\section*{(2 Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

\section*{Three Reads}

1st Read: Have students underline the key numbers that will be used to solve the problem.

2nd Read: Have students write the meaning of each number in context.

3rd Read: Have students work in pairs to create mathematical expressions until they get to \(1,000,000\) pennies.

\section*{3 Bring It Together}

\section*{Elicit and Use Evidence of Student Thinking}
- How can you write a product where all the factors are 10 using exponential form?

\section*{Key Takeaways}
- A power of 10 is the product of 10 multiplied by itself a number of times.
- A power of 10 can be written in exponential form.

\section*{Work Together}

Students write a power of 10 as a multiplication problem and then as a product.
- Common Error Students may often write the product as 10 followed by 8 zeros, Make sure they understand the pattern that 10 \&s 1 followed by 8 zeros.

\section*{Language of Math}

An exponent is also a person who believes strongly in an idea, as in, "She is an exponent of the teachings of Euclid," or a person who is highly skilled, as in "He is the world's leading exponent of classical trombone."

\section*{Activity-Based Exploration}

Students represent powers of 10 using small objects and compare what 10,100 , and 1,000 of the objects look like. They use these findings to predict what 1,000,000 objects will look like.

Materials: small objects, such as centimeter blocks, paper clips, cereal, beans, and toothpicks

Directions: Partners choose an object and determine what 10, 100, 1,000 of the object looks like. They use these findings to describe and predict what 1,000,000 objects would look like. Have students determine a way to represent their findings for others to see.

\section*{ETP \\ Implement Tasks That Promote Reasoning and Problem Solving}
- About how big will 1,000 of your objects be?
- How will 1,000 of your objects compare to 1,000 of a smaller object?
-What did you discover when representing 10,100 , and 1,000 ?
- How did you use multiplication to help you think about what \(1,000,000\) objects would look like?
- How did your estimate compare with your findings?
- How did the size of your object affect what the values looked like?

Activity Debrief: Have students share their representations of 10, 100, and 1,000 and their prediction of what 1,000,000 looks like. Tell students that these numbers are called powers of 10 and that they are created by starting with 1 and repeatedly multiplying by 10 . Explain that powers of 10 can be written in exponential form, using a base and an exponent. Have students add to their representations to show each number written in exponential form.

\section*{Math is... Patterns}
-What patterns do you notice when representing powers of 10 ?
Students look for and use mathematical patterns to understand and solve the problem.

Have students revisit the Pose the Problem question and discuss answers.
-During which week will Dean add \(1,000,000\) pennies?

\section*{Guided Exploration}

Students use the relationship between repeated multiplication and the product to develop an understanding of powers and exponents.

\section*{FIP Facilitate Meaningful Mathematical Discourse}
- Think About It: How can the table help you understand the problem?
- How can you use place value to help you determine \(10 \times 10 \times 10\) ?
(4. Have the students fill in the row for Week 4 on their own. Ask:
-What multiplication expression can you use to represent the number of pennies in Week 4?
- How can you use place value to help you determine \(10 \times 10 \times 10 \times 10\) ?
(4. Have the students write the exponential forms for each row. Ask:
-What is the base for each exponential form? How do you know?
- What is the exponent for each exponential form? How do you know?
- How is writing 1,000 in exponential form the same as writing \(10 \times 10 \times 10\) ? How is it different?
-What happens to the value of the digit 1 for each power of 10 ?
- Think About It: How can you use place value to justify the pattern in the number of zeros?

\section*{Math is... Patterns}
-What patterns do you notice in the table?
Students look for and use mathematical patterns to understand and solve the problem.

\section*{2. Develop the Math}

At Week 1 Dean had 10 pennies.


\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding the passive by demonstrating. Show students two tens rods. Connect the two tens rods. Say These tens rods can be connected. Repeat the task twice with new objects, using the passive with can. Finally, put a group of chips on the table, and demonstrate counting them. Say Complete the sentence: These chips can [be counted].

Developing/Expanding Support students in understanding the passive can by demonstrating. Show students two tens rods then connect them. Say These tens rods can be connected. Next, put a group of chips on the table, and demonstrate counting them. Say Complete the sentence: These chips can [be counted]. Finally, ask students to make their own sentence using the passive with can.

Bridging/Reaching Ask students to explain how a power of 10 can be written in exponential form. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, it can't be written.... or No, that's incorrect because....

\section*{Practice \& Reflect © wiomin}

15. Trevor's personat wolking gaal is shown on his activity tracker.
A. How can you help Trevor write this goal using an exponent? Sample answer: He can write 10,000 using a base of 10 and an exponent of \(4\left(10^{4}\right)\).

B. How can you help Trever write this goal as a product of los? Sample answer: He can multiply 10 by itself 4 times \((10 \times 10 \times 10 \times 10)\).
56. Jency's tother gives her \(\$ 10\). Her grandfother offers to give her ten times the value her father gave hes, Her giandinother offers her a choice of eather ten times the value her grandrather offored or \(\$ 500\). Which of har grandmcther's affors should Jenny choose? Explain Sample answer: Jenny should choose her grandmother's offer of ten times the amount her grandfather offered, or \(\$ 1,000\) \((10 \times 10 \times 10)\). This is greater than her grandfather's offer of \(\$ 100\) and the offer of \(\$ 500\).
17. Extend Your Thinking Corsider the inequality shown.
\[
10 \times 10 \times 10 \times 10<b<10
\]

What is the value of \(b\) ? Explair.
\(b=100,000 ; 10^{4}<b<10^{\circ}\)

\section*{(2) Rellec}

What patterns did you notice when witing different forms of powess of 10 ?
Answers will vary.

\footnotetext{

}

\section*{Practice}

ETP Build Procedural Fluency from Conceptual Understanding Common Error: Exercise 14 In evaluating 10 , students may write 10 followed by 6 zeros. Remind them that the exponent in a power of 10 shows the number of zeros after a 1 , not a 10 .

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1 \mathbf{- 1 2}\) & 1 & Procedural Skill and Fluency \\
13 & 2 & Conceptual Understanding \\
\(14-16\) & 1 & Application \\
17 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- What patterns did you notice when writing different forms of powers of 10 ?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have your strengths in math helped you with your work today? Students reflect on how they practiced self-awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can write a power of 10 as a multiplication expression with factors of 10.
- I can write a power of 10 using a base of 10 and exponents.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{3}{|c|}{ Item DOK Skill } & Standard \\
\hline 1 & 2 & Understand powers of 10 & 5.NBT.A.2 \\
2 & 2 & Understand powers of 10 & 5.NBT.A.2 \\
3 & 2 & Understand powers of 10 & 5.NBT.A.2 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

3 of 3
Additional Practice or any of the © or activities
Take Another Look or any of the Bactivities
1 or fewer of 3 Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce UnderstandingBuild Proficiency
E Extend Thinking


\section*{Reinforce Understanding}

\section*{Roll It and Write It!}

Work with students in small groups. Provide students with a number cube. Have students write a base of 10 and then roll the number cube to obtain an exponent. Students write the expression using an exponent and as a multiplication expression and find the product. Make sure students recognize how the expressions are related.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Introduction to Powers of 10
- Powers of 10 (Exponents)


Differentiation Resource Book, p. 37

\section*{Cesson 5-1-Reinforce Understanding}

Understand Powers and Exponents
Name

\section*{Review}

The product of multipying 10 by Iself a number of times is calied a power of 10 .

- 10.000
\(10^{4}\) would be a 10 with 4 zoros ather the one.
Witte each power of 10 as a product of 10x.
2. \(10^{\prime}=10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\)
2. \(10^{1}=10 \times 10 \times 10 \times 10 \times 10\)
3. \(10^{3}=10 \times 10 \times 10\)
4. \(10^{3}=10 \times 10 \times 10\)

Write as a product of \(10 s\) and as the exponential form.
5. \(100=10 \times 10=10^{2}\)
6. \(10=10=10^{1}\)
7. \(1.000,000=10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{6}\)
a. \(100,000=10 \times 10 \times 10 \times 10 \times 10=10^{15}\)
9. \(100,000,000=10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10=10^{1}\)

\section*{Build Proficiency}

\section*{Practice It! Game Station}

\section*{Powers of 10 Concentration}

Students practice powers of 10 in standard form, as expressions, and with exponents.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 37-38

\section*{Lesson 5.4}

\section*{Additional Practice}

Name

\section*{Review}

You can use a base and an exponent to find and represent powers of 10.
Find \(50^{\circ}\)
In the expression \(10^{\circ}\), 10 is the bose and 5 is the exponent. Exponents represent now mary times the base is used as a facioc
\[
10^{1}=10 \times 10 \times 10 \times 10 \times 10=100,000
\]

Represent \(10 \times 10 \times 10\) in exponential form. using a hase and an exponent.

Since 10 is the repeated toctoc, and \(1 t\) is being uned as a factor 3 times. 10 will be the bese and 3 will be the exponent. Wite the expression in exponential form.
\[
10 \times 10 \times 10=10
\]

Write each power of 10 as a product of 10 s.
\begin{tabular}{|c|c|}
\hline 1. \(10 \pm 10 \times 10\) & 2. \(10 \times 10 \times 10 \times 10 \times 10\) \\
\hline \[
\text { 3. } 10=\begin{aligned}
& 10 \times 10 \times 10 \times 10 \\
& \times 10 \times 10
\end{aligned}
\] & 4. \(10^{1} 10 \times 10 \times 10\) \\
\hline \multicolumn{2}{|l|}{Write the exponential form.} \\
\hline 5. \(10 \times 10 \times 10=10^{1}\) & 6. \(10 \times 10 \times 10 \times 10 \times 10=10^{5}\) \\
\hline 7. \(10 \times 10 \times 10 \times 10=10^{4}\) & B. \(10 \times 10=10^{2}\) \\
\hline
\end{tabular}

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication using area models.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Lesson 5-1 - Extend Thinking} \\
\hline \multicolumn{4}{|l|}{Understand Powers and Exponents} \\
\hline \multicolumn{4}{|l|}{Name} \\
\hline \multicolumn{4}{|l|}{1. Complate the missing cells of the table.} \\
\hline Number & Powerr of 10 & Proct & \(t\) af 308 \\
\hline 10 & \(10^{7}\) & & 10 \\
\hline 100 & \(10^{2}\) & & +10 \\
\hline 1,000 & \(10^{1}\) & \(10 \times\) & \(10 \times 10\) \\
\hline 10,000 & \(10^{4}\) & \(10 \times 10\) & \(\times 10 \times 10\) \\
\hline 100,000 & \(10^{3}\) & \(10 \times 10 \times\) & 10 \(0 \times 10 \times 10\) \\
\hline 1,000,000 & \(10^{6}\) & \(10 \times 10 \times 9\) & \(\times 10 \times 10 \times 10\) \\
\hline I with \(n\) zeros & \(10^{6}\) & \[
\underbrace{10 \times 10}
\] & \[
\underbrace{\times 10}_{\text {ines }}
\] \\
\hline \multicolumn{4}{|l|}{2. Complete the table to find out how much money you have in each scenario. The first one is done for you.} \\
\hline Sconerio & \multicolumn{2}{|l|}{Work to Solve Scenaico} & Answer \\
\hline 100 ten-colar bils & \multicolumn{2}{|c|}{\[
\begin{gathered}
100 \times 10 \\
10 \times 10 \times 10 \\
104
\end{gathered}
\]} & \$1,000 \\
\hline \(\$ 000\) one huncer dohtr bils & \multicolumn{2}{|l|}{\[
\begin{gathered}
1,000 \times 100 \\
10 \times 10 \times 10 \times 10 \times 10 \\
10^{5}
\end{gathered}
\]} & \$100,000 \\
\hline 10 ane thousanddotar bilit & \multicolumn{2}{|l|}{\[
\begin{gathered}
10 \times 1.000 \\
10 \times 10 \times 10 \times 10 \\
10^{4} \\
\hline
\end{gathered}
\]} & \$10,000 \\
\hline \[
\begin{gathered}
10,000 \\
\text { tep-dollor bills }
\end{gathered}
\] & \multicolumn{2}{|l|}{\[
\begin{gathered}
10,000 \times 10 \\
10 \times 10 \times 10 \times 10 \times 10 \\
10^{2}
\end{gathered}
\]} & \$100,000 \\
\hline \multicolumn{4}{|c|}{Litisematian lesture fioct} \\
\hline
\end{tabular}
2. Complete the table to find out how much money you have in each scenaria. The first one is done for you
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Lesson 5-1 - Extend Thinking} \\
\hline \multicolumn{4}{|l|}{Understand Powers and Exponents} \\
\hline \multicolumn{4}{|l|}{Name} \\
\hline \multicolumn{4}{|l|}{1. Complate the missing cells of the table.} \\
\hline Number & Powerr of 10 & Proct & \(t\) af 308 \\
\hline 10 & \(10^{7}\) & & 10 \\
\hline 100 & \(10^{2}\) & & \(\times 10\) \\
\hline 1,000 & \(10^{1}\) & \(10 \times\) & \(10 \times 10\) \\
\hline 30,000 & \(10^{4}\) & \(10 \times 10\) & \(\times 10 \times 10\) \\
\hline 100,000 & \(10^{3}\) & \(10 \times 10 \times\) & 10 \(0 \times 10 \times 10\) \\
\hline 1,000,000 & \(10^{6}\) & \(10 \times 10 \times 9\) & \(\times 10 \times 10 \times 10\) \\
\hline I with \(n\) zeros & \(10^{6}\) & \[
\underbrace{10 \times 10}
\] & \[
\underbrace{\times 10}_{\text {ines }}
\] \\
\hline \multicolumn{4}{|l|}{2. Complete the table to find out how much money you have in each scenario. The first one is done for you.} \\
\hline Sconerio & \multicolumn{2}{|l|}{Work to Solve Scenaico} & Answer \\
\hline 100 ten-colar bils & \multicolumn{2}{|c|}{\[
\begin{gathered}
100 \times 10 \\
10 \times 10 \times 10 \\
104
\end{gathered}
\]} & \$1,000 \\
\hline 5000 one huncred dohtr bils & \multicolumn{2}{|l|}{\[
\begin{gathered}
1,000 \times 100 \\
10 \times 10 \times 10 \times 10 \times 10 \\
10^{5} \\
\hline
\end{gathered}
\]} & \$100,000 \\
\hline 10 ane thousanddotar bilit & \multicolumn{2}{|l|}{\[
\begin{gathered}
10 \times 1.000 \\
10 \times 10 \times 10 \times 10 \\
10^{4} \\
\hline
\end{gathered}
\]} & \$10,000 \\
\hline \[
\begin{gathered}
10,000 \\
\text { tep-dollor bills }
\end{gathered}
\] & \multicolumn{2}{|l|}{\[
\begin{gathered}
10,000 \times 10 \\
10 \times 10 \times 10 \times 10 \times 10 \\
10^{2}
\end{gathered}
\]} & \$100,000 \\
\hline \multicolumn{4}{|c|}{Litisematian lesture fioct} \\
\hline
\end{tabular}

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 38

\section*{Lesson 5-1-Extend Thinking}

Understand Powers and Exponents
Name

\section*{Use it! Application Station Washington Color School MovementColor Field Painting Students create art to represent a base number with an exponent. 단} intion bequantion
9. \(10=10^{\prime}\)
10. \(10,000=10^{4}\)
11. \(100=10^{2}\)
12. \(10.000,000=10^{7}\)
13. A compary has a total of 10 employees. How many employees does the compary have?
The compary has 100,000 employers
14. Aletha has \(10^{\prime}\) photos on her computer. How many photos does she have?
Netha has 1.000 photos
15. Desmond dives to0 milus each doy. What is this number as a product of tos? What is this number in exponertial form? \(10 \times 10 ; 10^{2}\)
16. Each day. Maurice has a goal to walk 10,000 steps. What is this rumber as a product of 10 s? What b this number in exponential forme \(10 \times 10 \times 10 \times 10 ; 10^{4}\)

\title{
Patterns When Multiplying a Whole Number by Powers of 10
}

\section*{Learning Targets}
- I can determine the products of numbers multiplied by powers of 10 written with exponents.
- I can describe the pattern for multiplying by powers of 10 .

\section*{Standards \(\propto\) major \(\triangle\) supporting \(\circ\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.A Understand the place value system.
5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .

\section*{Math Practices and Processes}

MPP Construct viable arguments and critique the reasoning of others.

\section*{Focus}

\section*{Content Objectives}
- Students use patterns to determine products when multiplying whole numbers by powers of 10.
- Students explain patterns in the products when multiplying whole numbers by powers of 10 .

\section*{Language Objectives}
- Students talk about the patterns they see in products while answering Wh- questions.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

\section*{SEL Objective}
- Students employ techniques that can be used to help maintain focus and manage reactions to potentially frustrating situations.

\section*{Coherence}

\section*{Previous}
- Students recognized that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right (Grade 4).
- Students extended their understanding of place value to write powers of 10 using exponents (Unit 5).

\section*{Now}
- Students examine patterns based on place value when a whole number is multiplied by a power of 10 .

\section*{Next}
- Students estimate products of multi-digit factors to determine if calculations are reasonable (Unit 5).
- Students write and evaluate numerical expressions involving whole-number exponents. (Grade 6).

\section*{Vocabulary}

\author{
Math Terms \\ base \\ Academic Terms \\ exponent establish \\ factor \\ power of 10
}

\section*{Materials}

The materials may be for any part of the lesson.
- calculators
- index cards

\section*{Number Routine}

Find the Pattern, Make a Pattern

Build Fluency Students build number sense as they determine the pattern and find the missing terms, and then create a new sequence with the same pattern but different numbers.

These prompts encourage students to talk about their reasoning:
-What strategy did you use to determine the pattern and missing numbers?
- How can you tell if your sequence follows the same rule?
  

\section*{Rigor}

\section*{Conceptual Understanding}
- Students develop conceptual understanding by multiplying by powers of 10 and looking for patterns and understand the effect multiplying by a power of 10 has on a number.

\section*{Procedural Skill \& Fluency}
- Students build upon the conceptual foundation for the effect of multiplying by a power of 10 , which gives students some early experience developing proficiency.

\section*{Application}
- Students apply their understanding of powers and exponents to solve problems based on real-world contexts.
Application is not a targeted element of rigor for this standard.

Purpose Students think about differences and similarities between four representations of the same number using powers of 10 .

\section*{Notice \& Wonder}
- How are they the same?
- How are they different?

Teaching Tip You may wish to divide the class in half and assign one question to each half of the class. Ask students to independently analyze the expressions and answer their question. Then invite students to share their findings and discuss any points of interest that the different perspectives may provide.

\section*{ETP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of patterns that arise when multiplying a number by powers of 10 and are based on possible comments and questions that students may make during the share out.
-What do you notice about the factors in the expressions?
-What do you notice about he exponents in the expressions?
-What do you notice about the zeros in the expressions?

\section*{Math is... Gindset}
-What do you do to avoid getting distracted?

\section*{SEL \\ Self-Management: Control Impulses}

Invite students to set a class Focus Goal for the Notice \& Wonder routine by agreeing on a set time that they will independently focus on noticing and wondering. As students work through this time, remind them to be mindful of their collective goal. Model constructive strategies and language for helping others stay on task, as well as for maintaining one's own focus. If students lose focus, allow them to take independent breaks to help them regain their focus.

\section*{Transition to Explore \& Develop}

Guide the discussion to have students analyze the similarities and differences in terms of powers of 10 . Ask questions to get students thinking about ways to determine how to relate how the digits of the whole number shift based on the exponent on the power of 10 .

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about how we can use patterns to multiply a number by powers of 10 .


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

The distances from these planets to the Sun are shown as mulipicication expressions. How can you deternine the volue of these expressions?


First, determine the distance from Mercury to the Sun. Look for portterns when mutipying by a power of 10
\(36 \times 10^{5}=36 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\)
\(=36 \times 1,000.000 \quad\) The enponent is the same as tre
\(=36.000 .000{ }^{-} \quad\) number of zeess in the prostact.
The distance from Mercury to the Sun is about \(36,000,000\) miles.
You can use patterns to detormine the distance from Neptune to the Sun.
\(3 \times 10^{3}=3 \times 1.000 .000 .000\)
\(=3,000,000,000\)
The distance from Neptune to the Sun is about \(3.000,000,000\) miles.

Math in. Structure Why does the place of the digts in a number shift each time you ruitiply by to?

When muliblying by powers of 10 , there is a pattern in the number of zeros in the product in retotionship to the exponert.

\section*{Qwork Together}

Find the value of each expression. Explain how you used patterns to help you.
\[
32 \times 10^{\prime} 3,20032 \times 10^{\prime} 32,00032 \times 10^{\prime} 320,000
\]

Sample answer: I moved the digits to the left the same number of places as the exponent.


\section*{(1) Pose the Problem}

\section*{Pose Purposeful Questions}
-What do you notice about the multiplication expressions?
- What is the problem asking you to do?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{Stronger and Clearer Each Time}

Pair students and have them work together to find the values of two expressions. Have them individually write sentences explaining the patterns they used. Then have them share their writing with their partner and, if needed, refine their writing. Revisit the task throughout the lesson for reinforcement.

\section*{3 Bring It Together}

\section*{EIP Elicit and Use Evidence of Student Thinking}
- How could you explain to a friend how to use place-value patterns to multiply a number by a power of 10 ?

\section*{Key Takeaways}
- Multiplying a whole number by a power of 10 results in a discernable pattern - the number of zeros following the whole number is the same as the power.
- The exponent of a power of 10 indicates the number of times 10 is multiplied by itself and is represented by the number of zeros after the whole number.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of how to use patterns to simplify expressions involving a whole number times a power of 10 . Have students work on the activity in pairs before asking them to explain how they found their answers.

Common Misconception Students may see and use the "adding zeros" pattern and feel it is incorrect. It is not, but remind them that the digits in a number shifting when it is multiplied by a power of 10 is what establishes that pattern, and they should always understand how and why a shortcut works.

\section*{LOM Language of Math}

Make sure that students understand the difference between a multiple of 10 and a power of 10 . Encourage students to cite numbers that are powers of 10 , then others that are multiples of 10 .

\section*{Activity-Based Exploration}

Students explore place-value patterns when multiplying by powers of 10 and use their patterns to multiply whole numbers by powers of 10 .

\section*{Materials: calculator}

Directions: Students enter any 2-digit whole number on the calculator (e.g. 57), then multiply their number by 10 . Have them predict the product before they press the equal key. Students continue to multiply by 10 mentally, challenging themselves to predict the product before they press the equal key.

Depending on the calculator being used, students may notice that they reach a point that an " \(E\) " is shown followed by some digits. Ask students to use their patterns to make a conjecture about what the "E" represents.

\section*{ETP Implement Tasks That Support Reasoning and Problem Solving}
- How did you use mental math to predict the product?
- What happens to the digits each time the number is multiplied by 10 ?
-What are some ways to record your work to look for patterns?
- How could you summarize the results to predict how multiplying a number by a power of 10 affects the values of the digits?

\section*{Math is... Structure}
- How can you use place value to explain why the place of the digits in a number shift each time you multiply by 10 ?

Students use structure to connect place value and multiplying by powers of 10 .

Activity Debrief: Have students share their findings when repeatedly multiplying by 10 . Encourage students to write their multiplication expressions by writing the powers of 10 in exponential form. Discuss the relationship between the exponent and the number of places the digits shifted.

Have students revisit the Pose the Problem question and discuss answers.
- How can you determine the value of these expressions?

\section*{Guided Exploration}

Students examine the patterns that arise when multiplying a whole number by a power of 10 .

国Use and Connect Mathematical Representations Have the students write the expression \(36 \times 10\) as a product without exponents on their own. Ask:
- What is the base of 10 ?
- What is the exponent of 10 ?
- How can you write 10 \& \({ }^{\text {d }}\) a product? How do you know?
- How do you know that \(10 \times 10 \times 10 \times 10 \times 10 \times 10\) equals \(1,000,000\) ?
- How do you know that \(36 \times 1,000,000\) equals \(36,000,000\) ?

Have the students find the other representations of \(3 \times 108 \mathrm{on}\) their own. Ask:
-What is the exponent of 10 ?
- How many zeros should be in the product? How do you know?

\section*{Math is... tructure}
- How can you use place value to explain why the place of the digits in a number shift each time you multiply by 10 ?

Students use structure to connect place value and multiplying by powers of 10 .

\section*{2. Develop the Math}

Let's look at the distance from Mercury to the Sun.

We can write the multiplication
Mercury about \(36 \times 10 \mathrm{~h}\) about \(36 \times 10^{\mathrm{m}} \mathrm{mi}\)

\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding the term distance by demonstrating. Measure the distance between two objects in your classroom; for example, a desk and the door. Say The [desk] is [three feet] away from the door. Pause and then say The distance is [three feet]. Repeat twice with new objects. Finally, ask students to measure distance, and complete the following sentence, saying it aloud: The distance is \(\qquad\)

Developing/Expanding Support students in understanding the term distance by demonstrating. Measure the distance between two objects in your classroom; for example, a desk and the door. Say The [desk] is [three feet] away from the door. Pause and then say The distance is [three feet]. Repeat twice with new objects. Finally, ask students to measure the distance between two objects, and say it aloud in a sentence using distance.

Bridging/Reaching Ask students to discuss how they can find the distance between two objects in the classroom. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, I disagree because... or No, that isn't the distance...

\section*{Practice \& Reflect © wiomin}

14. Error Anelysis Carol says the equation that she wrote is correct. How do you respond to her? Sample answer: Carol's equation is incorrect. She only multiplied \(8 \times 10,000\), not \(80 \times 10,000\). The correct product is 800,000 .
45. Which equations are thue? Cucle ail that appy A. \(5 \times 100=6 \times 10 \times 10 \times 10\) (B) \(10,000 \times 4=10 \times 10 \times 10 \times 10 \times 4\) C. \(15 \times 10^{3}=1,500\)
(D) \(70 \times 10 \times 10=7,000\)
56. Extend Vour Thinking Find the unknown factor that is a whote number. Explain your thinking
\[
7 \times 10^{1}=56.300 .000
\]
\(563 \times 10^{5}=56,300,000\); Sample answert Because multiplying by powers of ten shifts the digits of the factor to the left. you can work backwards and move the digits in the product to the right the same number of places as the power of ten.
(2) Reflect

What patterms ad you notice when mutiplying by powers of 10? Answers may vary.

\section*{Practice}

ETP Build Procedural Fluency from Conceptual Understanding
Common Error: Exercise 7 Some students may develop a habit of adding the same number of zeros as the power to the first digit of a multiple of 10 or 100 , resulting in an error. Make sure they remember to add zeros to the number being multiplied.

\section*{Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-12\) & 1 & Procedural Skill and Fluency \\
\(13-16\) & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- What patterns did you notice when multiplying by powers of 10 ? Ask students to share their reflections with their classmates.

\section*{Math is... lindset}
-What steps did you take to maintain your focus today?
Students reflect on how they practiced self-management.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can determine the products of numbers multiplied by powers of 10 written with exponents.
- I can describe the pattern for multiplying by powers of 10 .

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item pok Skill & Sultiply whole numbers by powers of & 5.NBT.A.2 \\
\hline 1 & 3 & \begin{tabular}{l} 
M \\
10 patterns
\end{tabular} \\
\hline 2 & 2 & \begin{tabular}{l} 
Multiply whole numbers by powers of \\
10 patterns
\end{tabular} & 5.NBT.A.2 \\
\hline 3 & 2 & \begin{tabular}{l} 
Multiply whole numbers by powers of \\
10 patterns
\end{tabular} & 5.NBT.A.2 \\
\hline 4 & 2 & \begin{tabular}{l} 
Multiply whole numbers by powers of \\
10 patterns
\end{tabular} & 5.NBT.A.2 \\
\hline 5 & 2 & \begin{tabular}{l} 
Multiply whole numbers by powers of \\
10 patterns
\end{tabular} & 5.NBT.A.2 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{lll}
\hline \multicolumn{2}{l|}{ If students score } & then have students do \\
\hline 5 of 5 & Additional Practice or any of the \(\operatorname{Bor}\) or activities \\
4 of 5 & Take Another Look or any of the \(\boldsymbol{B}\) activities \\
3 or fewer of 5 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Place Value Slide}

Work with students in small groups. Give each student index cards for the digits \(1-9\), and three cards with 0 . Have each student create a number using three cards. Announce an operation and power of 10 , such as "multiply by 100 " or "divide by 1,000 ." Students shift their cards with respect to the decimal point to display the results, inserting 0 s as needed. Have students explain how the operation affects where the decimal point is.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Introduction to Powers of 10
- Multiply by Powers of 10 (Decimal Point)


Differentiation Resource Book, p. 39

\section*{Essson 5-2 - Reinforce Understanding}

Patterns When Multiplying a Whole Number by Powers of 10

Name

\section*{Review}

Use the pattern in the number of recos in the product when nutiplying a whole number by a power of 10 .
\begin{tabular}{|l|l|}
\(36 \times 10^{4}\) & \(=36 \times 10 \times 10 \times 10 \times 10\) \\
& \(=360 \times 10 \times 10 \times 10\) \\
& \(=3,600 \times 10 \times 10\) \\
& \(=36,000 \times 10\) \\
& \(=360,000\)
\end{tabular}
\(50,36 \times 10^{4}\) is equivilent to 36 weth four Os. or 360,000
Complete the equations:
1. \(237 \times 100=23700\)
2. \(52 \times 1,000=52.000\)
3. \(8 \times 10,000=80,000\)
4. \(328 \times 10=3.280\)

Find the value of each expression.
\begin{tabular}{l|l} 
5. \(45 \times 10^{\prime}=\frac{4,500}{}\) & \(8.27 \times 10^{\prime}=270,000\) \\
6. \(70 \times 10^{\prime}=\frac{7,000}{2}\) & 9. \(2 \times 10^{\prime}=900,000\) \\
7. \(47 \times 10^{\prime}=417,000\) & \(10.321 \times 10^{2}=32,100\)
\end{tabular}

\section*{Build Proficiency}

\section*{Practice It! Game Station} Multiplying by 10 Tic Tac Toe
Students practice multiplying whole numbers and decimals by 10 and 100 .


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 39-40

\section*{Lesson 5-2}

\section*{Additional Practice}

Name

\section*{Review}

You can use a pattern to multiply whole numbers by powers of 10 .
A compacy is purchasing pens. There are 16 pens in a pack, und the company purchases 1.000 packe. How mary penh does the sompany purchase?
When mutiplying a number by a power of 10 , the product becomes 10 times greater for each power of 10 .
\(16 \times 10^{1}=8 \times 10=160\)
\(16 \times 10^{2}=8 \times 100=1600\)
\(16 \times 10^{1}=8 \times 1.000=16.000\)
The company purchases 16,000 pens.
Use patterns to find each product.
\begin{tabular}{|c|c|}
\hline 1. \(25 \times 10=250\) & 2. \(73 \times 1,000=73,000\) \\
\hline \(25 \times 100=2,500\) & \(73 \times 10.000=730,000\) \\
\hline \(25 \times 1,000=25,000\) & \(73 \times 100,000=7,300,000\) \\
\hline 3. \(44 \times 10^{0}=4,400\) & 4. \(81 \times 10^{4}=810,000\) \\
\hline \(44 \times 10^{2}=44.000\) & \(81 \times 10^{+}=8.100,000\) \\
\hline \(44 \times 10^{\prime}=440,000\) & \(81 \times 10^{6}=81,000,000\) \\
\hline
\end{tabular}

\section*{Extend Thinking}

\section*{Use It! Application Station}

Make a Pulley System Students use measurements to create a pulley system. The content of this card has concepts covered later in Lesson 5-7. You may want to assign this card to students ready to explore content covered
 later in this unit.

\section*{Websketch Exploration}
\begin{tabular}{ll} 
5. \(69 \times 10^{\circ}=\underline{69,000}\) & 6. \(247 \times 10^{0}=\underline{24,700}\) \\
\begin{tabular}{ll} 
7. \(80 \times 10^{4}=800,000\) & 8. \(505 \times 10^{2}=5,060\)
\end{tabular}
\end{tabular}

Complete each equation with a power of to.

13. Henhel trinks that \(30 \times 1.000=30,000\). How would you respona to Herihel?
Sample answer: Hershel is correct because when you multiply by 1,000 , you move 30 three places to the left.
14. Which equations are mut? Croose ail that apply
(A) \(3 \times 10=80\)
(B.) \(70 \times 100=7,000\)
C. \(29 \times 1,000=2.900\)
(D) \(60 \times 100=5.000\)

Math @ Home

U-rate




Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 40

\section*{Lesson 5-2-Extend Thinking}

Patterns When Multiplying a Whole Number by Powers of 10


Nane
In the table below, the distance of each planet from the sun is provided in kilometers. Rewrite each distance as a product with a power of to. The first one is done for you. (Source: theplanets.org)
\begin{tabular}{|c|c|c|}
\hline Phinet & Distance From the Sun kmy & My Answert \\
\hline Mercury & 57.910 .000 km & \(5791 \times 10^{4}\) \\
\hline Verus & 108.200 .000 km & \(1,082 \times 10^{6}\) \\
\hline Earth & 149,600.000 km & \(1.496 \times 10^{5}\) \\
\hline Mars & 227,940,000 km & \(22,794 \times 10^{4}\) \\
\hline Jupiter & 778.3300000 km & \(77.833 \times 10^{4}\) \\
\hline Satum & \(1.424,600.000 \mathrm{~km}\) & \(14,246 \times 10^{5}\) \\
\hline Uramus & \(2.873,550.000 \mathrm{~km}\) & \(287.355 \times 10^{4}\) \\
\hline Neptune & \(4,501,000,000 \mathrm{~km}\) & \(4,501 \times 10^{6}\) \\
\hline
\end{tabular}

Use your previous work to rewrite the table so that all distances
from the sun are multiplied by 10 ? The first one is done for you.
\begin{tabular}{|c|c|c|}
\hline Phanet & Distance From the Sun ikmo & My Answer \\
\hline Mercury & \(37.910,000 \mathrm{~km}\) & \(57,910 \times 10^{1}\) \\
\hline Versus & \(108.200,000 \mathrm{~km}\) & \(108,200 \times 10^{3}\) \\
\hline Earth & 149.600 .000 km & \(149,600 \times 10^{3}\) \\
\hline Mars & \(227.940,000 \mathrm{~km}\) & \(227,940 \times 10^{2}\) \\
\hline Jupter & \(778.330,000 \mathrm{~km}\) & \(778,330 \times 10^{2}\) \\
\hline Satum & 1,424,600,000 km & \(1,424,600 \times 10^{3}\) \\
\hline Uranus & 2.873,550,000 km & \(2,873,550 \times 10^{3}\) \\
\hline Neptune & \(4.501,000.000 \mathrm{~km}\) & \(4,501,000 \times 10^{2}\) \\
\hline
\end{tabular}

Deyentitar tescarce foce

\section*{Estimate Products of Multi-Digit Factors}

\section*{Learning Targets}
- I can explain how to estimate products of multi-digit factors.
- I can estimate products of multi-digit factors to determine if calculations are reasonable.
- I can use an estimated product to make predictions about a calculated solution.

\section*{Standards \(\diamond\) major \(\Delta\) supporting \(\bigcirc\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.

\section*{Math Practices and Processes}

MPP Use appropriate tools strategically.

\section*{Vocabulary}

\author{
Math Term \\ estimate \\ Academic Terms \\ round accurate relevant
}

\section*{Materials}

The materials may be for any part of the lesson.
- calculators
- index cards
- number cubes

\section*{Focus}

\section*{Content Objectives}
- Students estimate products of multi-digit factors using the same strategies used to estimate products of lesser factors.
- Students use estimated products to make predictions about a calculated solution.
- Students use estimated products to assess the reasonableness of a calculated solution.

\section*{Coherence}

\section*{Previous}
- Students multiplied two two-digit numbers, using strategies based on place value and the properties of operations (Grade 4).
- Students examined place-value patterns when a whole number was multiplied by a power of 10 (Unit 5).

\section*{Language Objectives}
- Students discuss estimating products while answering Wh- questions.
- To maximize linguistic and cognitive meta-awareness, ELs participate in MLR7: Compare and Connect.

\section*{SEL Objective}
- Students determine the strategies and analyses necessary to make informed decisions when engaging in mathematical practices.

\section*{Now}
- Students estimate products of multi-digit factors to determine if calculations are reasonable.

\section*{Next}
- Students will find products of two- and three-digit factors using area models and partial products (Unit 5).
- Students will add, subtract, multiply, and divide using the standard algorithm (Grade 6).

\section*{Number Routine About How Much? \\ \(5-7 \mathrm{~min}\)}

Build Fluency Students build number sense as they estimate the sum of two decimals. Remind students that they should use mental math strategies to estimate the sums and that they should not be computing exact answers.

These prompts encourage students to talk about their reasoning:
-What strategy did you use to estimate each sum?
- How can you tell when a calculated sum is not reasonable?
- What is another way to find an estimate?

Rigor

Conceptual Understanding
- Students build their understanding of multiplying multi-digit numbers by estimating products.
Conceptual understanding is not a targeted element of rigor for this standard.

\section*{Procedural Skill \& Fluency}
- Students build proficiency estimating the product of multiplying multi-digit numbers.

\section*{Application}
- Students estimate and find products to solve problems based on real-world contexts.

Application is not a targeted element of rigor for this standard.

Purpose Students think about how changing a factor (like what is done when estimating a product) changes a product.

\section*{Notice \& Wonder}
- What do you notice? What do you wonder?

Teaching Tip It may help students understand the Notice \& Wonder situation better by thinking of the area on the left as something being covered by the blue rectangles, like a table and tablecloths, or a window and curtains, or pieces of paper.
\(\square\) Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' noticings and wonderings about how changing a factor in a multiplication equation impacts the product and are based on possible comments and questions that students may make during the share out.
-What factors were changed in the expression \(15 \times 12\) ?
- Which one is closest in area to \(15 \times 12\) ?
-Which one is farthest away in area from \(15 \times 12\) ?

\section*{Math is... Jindset}
-What helps you make sense of a situation?

\section*{SEL \\ Responsible Decision-Making: Analyze Situations}

As students work through the Notice \& Wonder routine, have them think about alternative ways to consider the factors and products. Encourage students to use a different strategy to check their answer. Remind them that thinking flexibly can help them work through challenging problems/ mathematical tasks.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about how estimating products can be useful. Guide the discussion to encourage students to think about multi-digit factors that they cannot easily multiply mentally. Encourage students to think about how they can use products of numbers they already know to find estimates.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about how we can find an estimate for a product and how we can use those estimates we find.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

On Soturday. 432 people go to the theater.
About how much money does the theater
collect on Saturday?


Eltimsted products can help you determine whether calculations are ressonsble.

\section*{C Work Together}

Estimste the product of \(879 \times 36,36,000\)
Which suategy did you use? Explain why
Sample answer: 36,000; Check students' responses.


\section*{(1) Pose the Problem}

\section*{ETP \\ Pose Purposeful Questions}
- What operation will you use to solve the problem?
- Do you need to find an exact answer? Why or why not?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

Compare and Connect
Pair students. Provide students with a problem similar to the one on the Learn page. Instruct each student to solve it individually, and then have the students compare and contrast the strategies they used. Revisit this activity throughout the lesson to help students build proficiency.

\section*{3 Bring It Together} ETP Elicit and Use Evidence of Student Thinking
- How are using compatible numbers and rounding to estimate products similar? How are they different?
- How can estimating a product help you determine whether a calculated product is reasonable?

\section*{Key Takeaways}
- Estimating products can help make predictions about a calculated solution.
- Estimating products helps assess the reasonableness of a calculated solution.
- Strategies used to estimate products of lesser factors, such as rounding and compatible numbers, can also be used to estimate products of multi-digit factors.

\section*{Work Together}

As students share out their responses, ask them to explainthe differences in the strategies used and their estimates. Encourage students to make predictions about the calculated product based on their estimates.
- Common Misconception Remind students that there are no real "rules" for creating compatible numbers or rounded numbers to use in their estimates. The goal is to find two numbers that are easy for them to multiply mentally and quickly.

\section*{\(\stackrel{\text { LOM }}{\sim}\) Language of Math}

Looking at 6 jelly beans and knowing there are 6 of them without counting is called subitizing. Looking at a jar full of jelly beans saying there are "about 100 of them" is estimating. Students practiced subitizing when they were younger and just learning numbers.

\section*{Activity-Based Exploration}

Students estimate products of multi-digit factors using various strategies. They will compare their estimates.

Materials: number cubes
Directions: Students play a game where the greater estimate wins. Have students discuss estimation strategies they have used in the past, and how they can apply those strategies to multiplication. Students roll the number cubes to create two 2-digit factors. Each student estimates the product of a multiplication equation using a strategy of their choosing. The student with the higher estimate wins that round.

After students have compared their estimates, students work together to predict whether each estimate is greater than or less than the actual product.

\section*{EIP Support Productive Struggle}
- How can you make an estimate that you know is greater than the calculated product?
- How can you make an estimate that you know is less than the calculated product?
- Which strategy do you think helps you find a more accurate estimate?

\section*{Math is... Choosing Tools}
-What can and can't an estimated product tell you?
Students detect possible errors using estimation, recognizing both the insight to be gained from, and limitations of, estimation.

Activity Debrief: Have students share their strategies for determining a greater estimate and their prediction of how their estimate compares to the calculated product. For each multiplication expression shared, provide students with a calculated product. Facilitate a class discussion to use their estimate to assess the reasonablesness of the calculated product.

Have students revisit the Pose the Problem question and discuss answers.
- About how much money does the theater collect on Saturday?

\section*{Guided Exploration}

Students use two different strategies to estimate products of multi-digit factors. They will then compare their estimates to the calculated product and use their estimates to assess if the calculated product is reasonable.

\section*{EIP Facilitate Meaningful Mathematical Discourse \\ Have the students mentally find the product of 400 and 15 . Make sure they share their strategies and ask useful questions to improve each others' strategies: Ask: \\ - What strategy did you use? Why? \\ - Can you understand someone else's strategy? \\ - How would you find the exact solution to this problem? \\ - Think About It: What other compatible numbers could you use? \\ - How can you ou use place value to explain why \(48010=4,300\) ?}

Q Have the students compare the calculated and estimated products. Ask:
- Is the calculated result reasonable? Why or why not?
-Why is the estimate using compatible numbers greater than the calculated product?
- Will compatible numbers always result in an estimate greater than the calculated product? Why or why not?
-Why is the estimate using rounded numbers less than the calculated product?
- Will rounded numbers always result in an estimate greater than the calculated product? Why or why not?

\section*{Math is... Choosing Tools}
-What can and can't an estimated product tell you?
Students detect possible errors using estimation, recognizing both the insight to be gained from, and the limitations of, estimation.


\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of using the infinitive to express purpose. Go to your classroom door. Say I can turn the knob to open the door. Then pick up a [crayon]. Say, I can use this [crayon] to [color a picture]. Finally, ask students to complete the sentence, saying the answer aloud: I can use a pencil__(to write) my name.

Developing/Expanding Support students' understanding of using the infinitive to express purpose. Go to your classroom door. Say I can turn the knob to open the door. Then pick up a [crayon]. Say, I can use this [crayon] to [color a picture]. Finally, ask students to say something that they can do, using the same sentence pattern. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to explain how they can use compatible numbers or rounded numbers to find an estimate. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, I disagree because... or No, can use compatible numbers to find an estimate by....

\section*{Practice}

ETP Build Procedural Fluency from Conceptual Understanding
Common Error: Exercise 9 If students front-end estimate to 400 and
30 , they may see that \(4 \times 3=12\) and forget the correct place value, so about 1,200 would seem like an estimate of the product. Remind students to make sure they are using the correct place value when estimating using rounded numbers.

Item Analysis
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 1 & Procedural Skill and Fluency \\
\(5-8\) & 2 & Application \\
\(9-12\) & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you use estimates to determine if a calculated product is reasonable?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did flexible thinking help you with your work today?

Students reflect on how they practiced responsible decision-making.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain how to estimate products of multi-digit factors.
- I can estimate products of multi-digit factors to determine if calculations are reasonable.
- I can use an estimated product to make predictions about a calculated solution.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.
Assign the On My Own practice to

\footnotetext{

}

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{lll|l|}
\hline Item & DOK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Estimate products of multi-digit \\
numbers
\end{tabular} & 5.NBT.B.5 \\
\hline 2 & 2 & \begin{tabular}{l} 
Estimate products of multi-digit \\
numbers
\end{tabular} & 5.NBT.B.5 \\
\hline 3 & 2 & \begin{tabular}{l} 
Estimate products of multi-digit \\
numbers
\end{tabular} & 5.NBT.B.5 \\
\hline 4 & 2 & \begin{tabular}{l} 
Estimate products of multi-digit \\
numbers
\end{tabular} & 5.NBT.B.5 \\
\hline 5 & 3 & \begin{tabular}{l} 
Estimate products of multi-digit \\
numbers
\end{tabular} & 5.NBT.B.5 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{|l|l|}
\hline If students score & Then have students do \\
\hline 5 of 5 & Additional Practice or any of the \(\mathbf{B}\) or \(\mathbf{B}\) activities \\
4 of 5 & Take Another Look or any of the \(\mathbf{B}\) activities \\
3 or fewer of 5 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{Reinforce Understanding \\ Is the Product Reasonable? \\ Prepare a set of index cards with expressions describing the product of one 2 -digit number and one 3 -digit number. Provide some cards showing the correct product and some showing a clearly incorrect product. Work with students to use estimation strategies to determine which products are reasonable and which are incorrect.}

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Estimate Products (Whole Number Factors)


Differentiation Resource Book, p. 41

\section*{Eesson 5.3-Reinforce Understanding \\ Estimate Products of Multi-Digit Factors}

Name
```

Review
You can mutiply with multiples of 10 to help when estimuting
products of mulb-digit foctors.
Estimute the product 52\times303.
50 \times300=5 5 10 \times3\times100
=5\times3\times10
=15\times1\mp@subsup{0}{}{\prime}
= \$5,000

```

Estimate the product using rounded numbers or multiples of 10 . Check students' answer. Sample answers given.
1. \(713 \times 82\)
2. \(599 \times 52\) \(600 \times 50=30,000\)
3. \(205 \times 11\) \(200 \times 10=2,000\)
4. \(398 \times 61\)
\(400 \times 60=24,000\)
5. \(352 \times 27\)
5. \(350 \times 30=10,500\)
6. \(749 \times 89 \times 90=67,500\)

Estimate the product presented in the word problem.
2. The clasvoom ubrary Mas 12 shelves. Each sheif hoids 53 books About how many books does the classoom libtary nave in aif? Snow your work. \(10 \times 50=500\)

Ditrietidion Rensact foch

\section*{Build Proficiency}

Practice It! Game Station
Estimating Products Bingo Students practice finding estimated products.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 41-42

\section*{Lesson 5.3}

\section*{Additional Practice}

Name

\section*{Review}

You can use rounding or compatible numbers to estimate a product.
There are 329 students in a grade school. Each student donates ft earnned goods. About how many canned goods does the school collect?


Estimate each product. Ex. 1-10. Sample answers shown.
\(\qquad\)
2. \(281 \times 32=300 \times 30=9,000\)
3. \(81 \times 687=30 \quad \times \quad 700=56,000\)
4. \(57 \times 509=60 \times 300=30,000\)
5. \(749 \times 64=750 \times 60=45,000\)
6. \(499 \times 51=500 \times 50=25,000\)
7. \(79 \times 643=80 \times 600=48,000\)
8. \(24 \times 702=\frac{20}{} \times 700=14,000\)
\(\qquad\)

Unit 5 • Multiply Multi-Digit Whole Numbers

\section*{Extend Thinking}

\section*{Use It! Application Station}

Let's Celebrate Students use charts to create a budget for a graduation celebration.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 41-42
9. One sleeve of plastic zups holes 32 eups. A store has 73 sleeves of cups on hand. About thow many plastic cups does the store hewe on hiand? Show yout wook,
Sample answer: \(30 \times 70=2,100\); about 2,100 cups
10. One student ticket for the 200 const \(\$ 12\). 1 a class of 89 students poes to the roo, about how much will the tickets cost? Show your work
Sample answer: \(10 \times 90=900\); about \(\$ 900\)

Determine whether the calcuiation is reasonable. Explain why or why not.
11. Patti mutbiptes 713 by 58 to get 41,354 is he calculation reasonable? Yes; Sample answer: The best estimate is \(710 \times 60\) \(=42,600\). This estimate is close to her calculation, which shows that her calculation is reasonable.
12. Raul selfs 321 sponts passes tor \(\$ 14\) each. He says thet he collects \(\$ 494\) is his calculaton reasonabie?
No: Sample answer: The best estimate is \(320 \times 10\) \(=\mathbf{\$ 3 , 2 0 0}\). This estimate is far from his calculation. which shows that his calculation is not reasonable.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 42

\section*{Lesson 5-3-Extend Thinking \\ Estimate Products of Multi-Digit Factors}

Name
Estimate the following products to determine which product is greater. The first one is done for you.
\begin{tabular}{|c|c|c|c|}
\hline Problem & Froduct A & <or \(>\) & Prodict \(\mathrm{B}^{\text {a }}\) \\
\hline \multirow[t]{3}{*}{1.} & \(31 \times 262\) & \multirow{3}{*}{\(>\)} & \(22 \times 299\) \\
\hline & \(30 \times 260\) & & \(20 \times 300\) \\
\hline & 7.800 & & 6.000 \\
\hline \multirow[t]{2}{*}{2.} & \(53 \times 199\) & \multirow[b]{2}{*}{\(>\)} & \(59 \times 106\) \\
\hline & \[
\begin{aligned}
& 50 \times 200 \\
& =10,000
\end{aligned}
\] & & \[
\begin{gathered}
60 \times 100 \\
=6,000
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{3.} & \(192 \times 58\) & \multirow{3}{*}{\(<\)} & \(149 \times 91\) \\
\hline & \(200 \times 60\) & & \(150 \times 90\) \\
\hline & \(=12,000\) & & \(=13,500\) \\
\hline \multirow[t]{3}{*}{4.} & \(503 \times 67\) & \multirow{3}{*}{\(>\)} & \(493 \times 61\) \\
\hline & \(500 \times 70\) & & \(500 \times 60\) \\
\hline & \(=35,000\) & & \(=30,000\) \\
\hline \multirow[t]{3}{*}{5.} & \(812 \times 21\) & \multirow{3}{*}{\(<\)} & \(783 \times 29\) \\
\hline & \(800 \times 20\) & & \(800 \times 30\) \\
\hline & \(=16,000\) & & \(=24,000\) \\
\hline \multirow[t]{3}{*}{6.} & \(79 \times 643\) & \multirow{3}{*}{\(>\)} & \(53 \times 552\) \\
\hline & \(80 \times 650\) & & \(90 \times 550\) \\
\hline & \(=52,000\) & & \(=49,500\) \\
\hline
\end{tabular}

\footnotetext{
7. Bet has \(31 \times 192\) dollurs and Marle has \(21 \times 249\) dollars? Whe has more monvy? Explain your answet. Bill has more money. \(31 \times 192\) rounds to \(30 \times 200=6,000\) dotlars white \(21 \times 249\) rounds to \(20 \times 250=5,000\) dollars, \(\$ 6,000\) is greater than \(\$ 5,000\).
}

\section*{Use Area Models to Multiply Multi-Digit Factors}

\section*{Learning Target}
- I can use an area model and partial products to multiply multi-digit whole numbers.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Look for and make use of structure.
MPP Look for and express regularity in repeated reasoning.

\section*{Focus}

\section*{Content Objective}
- Students use an area model to determine partial products and add partial products to calculate the product.

\section*{Coherence}

\section*{Previous}
- Students multiplied two 2-digit numbers, using strategies based on place value and the properties of operations (Grade 4).
- Students estimated products of multi-digit factors to determine if calculations are reasonable (Unit 5).

\section*{Language Objectives}
- Students explain how to use an area model to multiply while answering \(W h\) - questions.
- To support optimizing output, ELs participate in MLR4: Info Gap.

\section*{Now}
- Students find products of two- and three-digit factors using area models and partial products.

\section*{SEL Objective}
- Students explore taking different perspectives on approaches to problem solving.

\section*{Next}
- Students use the partial products strategy to multiply a multi-digit number by a multi-digit number (Unit 5).
- Students add, subtract, multiply, and divide using the standard algorithm (Grade 6).

\section*{Vocabulary}

\author{
Math Terms \\ area model \\ Academic Terms \\ decompose debate \\ partial products
}

\section*{Materials}

The materials may be for any part of the lesson.
- none

\section*{Number Routine Greater Than or Less Than © \({ }^{5-7 \text { min }}\)}

Build Fluency Students build number sense as they determine whether the sum of two decimals is greater than 100 or less than 100.

Remind students that they should use mental-math strategies to form their comparisons and that they should not be computing exact sums.
These prompts encourage students to talk about their reasoning:
- How did you estimate to determine if the sum is greater than 100 or less than 100 ?
- How can you use place value to help you answer the question?
- Which digit in each number has the greatest impact on the sum? Which digit is next most important? Explain.

Purpose Students use area models to multiply multi-digit numbers.

\section*{Notice \& Wonder}
-What do you see?
Teaching Tip You may want to have students copy the area model on their own piece of paper. This can help them become familiar with drawing area models later in the lesson.

\section*{ER \\ Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how multiplication relates to area models and are based on possible comments and questions that students may make during the share out.
- How could you find the area of the box?
- How does the area of the whole box compare to the area of the boxes inside itl?
- If you knew the area of all the smaller boxes, how could you find the area of the box they are inside?

\section*{Math is... lindset}
- How can you show that you understand your partner's point of view?

\section*{SEL}

\section*{Social Awareness: Develop Perspective}

Encourage students to think about different ways to consider the Notice \& Wonder routine. With a partner, have them share different tools, strategies, representations, or methods they can use to explain what they see. Invite students to consider and build off their partners' ideas.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about how the area of a rectangle can be found by adding the areas of rectangles it is composed of.
ETP Establish Mathematics Goals to Focus Learning
- Let's think about how we can we use area models to understand multi-digit multiplication and to calculate products.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

How can you determine the area of the youth soccer field?

You can use an area model to solve \(72 \times 114=A\).


\section*{Decompose the factors by} place value.


Add the partial products to determine the product.

Determine partial products


Math is.an Modeling How does an area model helo you understand multiplication?
\(7,000+700+280+200+20+8=8.208\)
The area of the soccer field is 8,208 square feet.
You can use ares modets to mumply muti-dig? factors

\section*{CWork Togother}

Use an area model and partial products to determine the product of \(304 \times 68.20,672\)


\section*{(1) Pose the Problem}

\section*{ETP}

\section*{Pose Purposeful Questions}
- What operation can you use to determine area?
-What strategies do you know for multiplying?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{KLI}

Info Gap
Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to solve the problem. Instruct Partner B to ask A what information they need, and for A to respond, explaining why they need it. Have students continue until the problem is completed.

\section*{3 Bring It Together} ETP

\section*{Elicit and Use Evidence of Student Thinking}
- How do you decompose each factor when you use an area model?
- How do you determine the partial products when you use an area model?
- How do you determine the product when you use an area model?

\section*{Key Takeaway}
- One multiplication strategy uses an area model to determine partial products, which are then added together to arrive at the product.

\section*{Work Together}

Before students begin calculating the product, have them first make an estimate using compatible numbers and rounded numbers. After students have calculated the product using an area model and partial products, have them use their estimate to check that the product is reasonable.
- Common Misconception Students may be confused about how to decompose 304 since there are no tens in it. Point out that it can be decomposed as \(300+0+4\), or just \(300+4\).

\section*{LOM Language of Math}

Tell students that decompose means "to break down into simpler elements." We decompose a number by breaking it down by place value. Similarly, you can decompose words by breaking them down to their base word and prefix or suffix (unhappy decomposes into un- and happy or "not happy"). Either way, decomposing can make things easier to understand.

\section*{Activity-Based Exploration}

Students explore area models to determine different ways to decompose them to form partial products.

Directions: Ask students to write a multiplication problem using one 3-digit factor and one 1 -digit factor and draw an area model to represent the product. Have students record as many ways as possible to decompose the area model. Invite students to share ways they decomposed the area model and focus attention on similar methods of decomposing, such as decomposing by place value.
- Do you think these methods of decomposing will work for multiplying two multi-digit numbers?

Have students explore different ways to decompose an area model that represents the product of \(114 \times 72\) and find the product.

\section*{ETP}

\section*{Support Productive Struggle}
- How can you apply your method of using an area model to multiply a 3 -digit factor by a 1 -digit factor to multiplying a 3 -digit factor by a 2-digit factor?
- Is your answer reasonable? How do you know?
- How is your area model the same as or different from another student's method?

\section*{Math is... Todeling}
-How does an area model help you understand multiplication?
Students map the quantities in a practical situation using a model, and assess if the model has served its purpose.

Activity Debrief: Discuss with students that an area model is one method they can use to multiply multi-digit numbers. Using this method, they can decompose by place value, find partial products, and add partial products to calculate the product of two multi-digit whole numbers.

\section*{Guided Exploration}

Students expand their knowledge of multiplying with multi-digit factors by breaking down factors by place value, creating an area model, finding partial products, and adding partial products to find the product.

\section*{[IP Use and Connect Mathematical Representations Have the students create the equation. Ask:}
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
\(\Theta\)
Have the students estimate the solution. Ask:
- Will you use compatible numbers or rounded numbers to estimate the solution? Why? Have the students draw their own area models and fill them out as they work through the problem as a class.
- How can you decompose each factor?
- How can you determine the multiplication expression that repesents the area of each region of the area model?
- How can you determine the partial productfor each region?
- Think About It: Is the calculated result reasonable? Why or why not?

\section*{Math is... Todeling}
- How does an area model help you understand multiplication?

Students map the quantities in a practical situation using a model, and assess if the model has served its purpose.

\section*{2. Develop the Math}

How can you determine the area of the youth soccer field?

What equation can you write to represent the problem?

\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of the abbreviation for feet ( ft ) by showing students other common abbreviations they may know. Write the name of a male that students know well on the board. (Mister [Smith]/ Mr. [Smith]) Say, Mister [Smith]. Point to Mister. Say Mister again and point to Mr. Say This is short for mister. Point to the \(M\) and \(r\) in Mister for emphasis on the letters used in the abbreviation. Repeat the task with other abbreviations.

\section*{Developing/Expanding Support students'} understanding of the abbreviation for feet ( \(f t\) ) by showing students other common abbreviations they may know. Ask students to look at the Learn page. Ask Can you find an abbreviation? Once they find \(f t\), ask them to search the page for the full word.

Bridging/Reaching Ask students to explain what \(f t\) is short for and explain how they know/figured it out. Have students work together to brainstorm other math abbreviations they may know and to sort them into categories, such as people, measurement, etc.

\section*{Practice \& Reflect © wiomin}

9. What is the ares of the foothall lield? 6.360 square yards

12. A school collected 128 boxes of canned tood. Each box Ras 45 cans. How many cans of food did the school collect? 5,760 cans of food
11. STEM Connection Owen has 14 shetchbooks that each contain 128 sketches of insects. How many sloutcher of insects does Owen hove int all? 1,792 sketches
12. Extend Vour Thinking How could you use an ares
 model to determine the product of \(452 \times 2737\) Explain.
You can divide the area model into 9 spaces instead of 6 to determine \(452 \times 273=123,396\).

\section*{(2) Reflect}

How oid t think like a mathematician to muliply multi digt factors? Answers may vary.
\[
\begin{aligned}
& \text { Math ism_ Mindset } \\
& \text { How huve you shown that } \\
& \text { you understand your } \\
& \text { partner's point of view? }
\end{aligned}
\]

\section*{Practice}

ETP Build Procedural Fluency from Conceptual Understanding
Common Misconception: Exercises 9-11 When using partial products to multiply a 3-digit factor by a 2 -digit factor, students may forget about the third digit in the 3 -digit factor. Remind students to create regions in their area models for that digit, and to find the partial products that belong in those regions.

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 1 & Procedural Skill and Fluency \\
\hline \(9-11\) & 2 & Application \\
12 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did I think like a mathematician to multiply multi-digit numbers? Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have I worked to understand my partner's thinking?

Students reflect on how they practiced social awareness.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can use an area model and partial products to multiply multi-digit whole numbers.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item poK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Use area models to multiply multi-digit \\
factors
\end{tabular} & 5.NBT.B.5 \\
\hline 2 & 2 & \begin{tabular}{l} 
Use area models to multiply multi-digit \\
factors
\end{tabular} & 5.NBT.B.5 \\
\hline 3 & 3 & \begin{tabular}{l} 
Use area models to multiply multi-digit \\
factors
\end{tabular} & 5.NBT.B.5 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{ll} 
If students score & Then have students do \\
\hline 3 of 3 & Additional Practice or any of the \(B\) or \(\boldsymbol{B}\) activities \\
2 of 3 & Take Another Look or any of the \(B\) activities \\
1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency
© Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Multiplication Challenge}

Work with students in groups of 3 . The first student writes a single-digit multiplication fact, such as \(6 \times 7=42\). The second student inserts a digit to the left of the second factor and writes a new equation (for example, \(6 \times 57=342\) ). The third student inserts a digit to the left of the 2 -digit factor and writes a new equation. Help students understand how to relate the products shown using an area model to the products previously obtained.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Multiply 2-Digit Numbers (Area Models)


Differentiation Resource Book, p. 43

\section*{ession 5 - 4 - Reintorce Understanding \\ Use Area Models to Multiply Multi-Digit Factors}

Name

\section*{Review}

Decompose the factors by place value and ser up your area model. Multipty to find the pertial products. Add to find the product.
\(77 \times 385=(10+77 \times 1300+80+5)\)

\(77 \times 385=3,000+2.100+800+560+50+35=5.545\)
Use area models to find the area of the rectangles.


Use areo models to solve these equations.
5. \(361 \times 26=9,386\)
6. \(515 \times 14=7.210\)
7. \(32 \times 185=5,920\)
8. \(88 \times 116=\underline{10,208}\)

\section*{Build Proficiency}

\section*{Practice It! Game Station}

\section*{Area Model Task Cards}

Students use area models to multiply.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 43-44

\section*{Lesson 5-4}

\section*{Additional Practice}

Name

\section*{Review}

You can use ares models and partial products to decompose factors and find products.
A porking lot is 248 feet long ond 56 foet wide. What is the aree of the parking lot?
To find the aree solve \(56 \times 248\). Use an area model


Add the partial products to find the product.
\(10.000+2.000+4.00+1.200+2.40+48=13.888\)
The area of the poiking lot is 13.888 square feet.
Use the area model and partial products to solve.
Use the area model and partiai products to solve.
See students' model decompositions.
Sample computations shown.
1. Jocty's house has a rectangular deck attached. What is the aroa of the deck?


The areo of the deck is 143

Subwt hasker liow

Unit 5 • Multiply Multi-Digit Whole Numbers

\section*{Extend Thinking}

\section*{Use It! Application Station \\ Washington Color School Movement-} Color Field Painting Students create art to represent a base number with an exponent.

\section*{다}

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 43-44

6. What is the aren of the rectangular fieid?


The area of the fleld is 5,376 square foot.

\footnotetext{
7. A sporting goods company ships out 621 bowe of basebals each day. How mary boxes of boseballs are shipped out in 25 cays?
The compary ships out 15,525 boxes of baseballs.

Math
(a) Home Activity





}

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 44

\section*{Lesson 5-4 - Extend Thinking \\ Use Area Models to Multiply Multi-Digit Factors}

Name
Fill in the missing parts of the area models below, Then fill in the blanks for the factors and the product.
1.


The product of \(243 \times 26\) is equar to 6,318
2.


The product of \(581 \times 32\) is equal to 18,592 .
3.


Siffermathe trource live

\title{
Use Partial Products to Multiply \\ Multi-Digit Factors
}

\section*{Learning Targets}
- I can use partial products to help me multiply multi-digit factors.
- I can explain how to use partial products to multiply.

\section*{Standards \(\circ\) Major \(\Delta\) supporting \(\bigcirc\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.

\section*{Math Practices and Processes}

MPP Use appropriate tools strategically.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objective}
- Students determine partial products by decomposing the factors and adding partial products to calculate the product.

\section*{Language Objectives}
- Students discuss how to solve multiplication equations using partial products while answering Wh- and Yes/No questions.
- To support sense-making and cultivating conversation, ELs participate in MLR8: Discussion Supports and MLR3: Critique, Correct, and Clarify.

\section*{SEL Objective}
- Students practice strategies for persisting at a mathematical task, such as setting a small goal or setting timers for remaining focused.

\section*{Coherence}
\begin{tabular}{l|l|l|}
\hline Previous & Now & Next \\
- Students multiplied two two-digit & - Students use the partial products & - Students connect the partial \\
\begin{tabular}{l} 
numbers, using place value and \\
the properties of operations
\end{tabular} & \begin{tabular}{l} 
strategy to multiply a multi-digit \\
number by a multi-digit number.
\end{tabular} & \begin{tabular}{l} 
products strategy to an \\
algorithm (Unit 5).
\end{tabular} \\
\begin{tabular}{lll} 
(Grade 4). & & \begin{tabular}{l} 
- Students add, subtract, multiply, \\
and divide using the standard \\
- Students found products of \\
two- and three-digit factors \\
(Unit 5).
\end{tabular} \\
& & \\
\hline
\end{tabular}
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students build their understanding of multiplication by using partial products to multiply multi-digit factors.

Conceptual understanding is not a targeted element of rigor for this standard.

\section*{Procedural Skill \& Fluency}
- Students gain skill and fluency in evaluating partial products when multiplying multi-digit factors.

\section*{Application}
- Students apply their understanding of partial products to solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ area model \\ Academic Terms \\ partial products suggest
}

\section*{Materials}

The materials may be for any part of the lesson.
- number cubes

\section*{Number Routine Greater Than or Less Than © \({ }^{5-7 \text { min }}\)}

\section*{Build Fluency Students build number} sense as they determine whether sums and a product are greater than 800 or less than 800 . Remind students that they should use mental math strategies to form their comparisons and that they should not be computing exact results.

These prompts encourage students to talk about their reasoning:
- What was your strategy for estimating the value of each expression?
- How did you determine if each expression was greater than 800 or lessthan 800 ?
- How do you know that your estimates are reasonable?

Purpose Students explore how an area model relates to a multiplication equation stepped out with partial products.

\section*{Notice \& Wonder}
- What do you notice? What do you wonder?

Teaching Tip Have students work in pairs as they notice and wonder. Encourage students to work together to determine where the factors come from (for example, 40 is from the tens place in 43 and 300 is from the hundreds place in 374).

\section*{Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help students connect an area model to the partial products strategy and are based on possible comments and questions that students may make during the share out.
- How do the strategies appear to be related to one another?

\section*{Math is... Jindset}
-What steps can you take to focus on your work today?

\section*{SEL Self-Management: Self-Discipline}

Help students develop strong learning habits by providing them opportunities to practice self-regulation. Before beginning the Notice \& Wonder routine, discuss ways that students will manage distractions and stay focused on their work noticing and wondering.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about how they can use partial products to solve a multiplication equation without using an area model. Students should begin to understand multiplication in a more abstract sense.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about how a strategy using partial products can help us solve multiplication equations.


\section*{\(\square\) Be curious}

What do you notice?
What do you wonder?


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

A stadium has 164 rows of seats.
How many seats are in the stadium?

You can use partial products to solve the problem,



\section*{Q. Work Together}

What is the product? Use partial products to solve Show \(142 \times 63\) vertically
8,946


\section*{(1) Pose the Problem}

\section*{MLR}

\section*{Discussion Supports}

As students engage in discussing the answers to both questions, restate statements they make as a question to seek clarification and to confirm comprehension, providing validation or correction when necessary. Encourage students to challenge each other's ideas when warranted, as well as to elaborate on their ideas and give examples.

\section*{ETP Pose Purposeful Questions}
- What are the important quantities in this problem?
-What strategies have you used to solve similar problems?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

Critique, Correct, and Clarify
Make a false claim for students to critique. Write a multiplication problem on the board. Decompose the factors, using an incorrect place value for one of the decompositions. Say, I decomposed this problem correctly. Yes or No? Have the class discuss how to correct your mistake. Revisit this activity throughout the lesson.

\section*{3 Bring It Together} ETP

\section*{Elicit and Use Evidence of Student Thinking}
- How can you decompose factors without using an area model?
- How can you determine the partial products you use in the partial products strategy?

\section*{Key Takeaway}
- Another multiplication strategy is to calculate partial products of decomposed factors, then add the partial products to determine the product.

\section*{Work Together}

Before students begin calculating the product, tell them to estimate a product that they can later check to see if their final product is reasonable.

Have students work to calculate the product using only partial products without an area model.
. Common Error Students may use the value of an incorrect place value when finding partial products (for example, using 600 instead of 60 when decomposing 63). Have students estimate before solving so they have an idea of what a reasonable product is.

\section*{LOM Language of Math}

Explain to students that partial in this context means "only in part." Each partial product is part of the actual product. People may also be partial to things they like very much above others, as in, "Brighton likes fruit, but is partial to blueberries."

\section*{Activity-Based Exploration}

Students explore ways to record their work when using partial products to multiply.

Directions: Ask students to write a multiplication problem using one 3-digit factor and one 1 -digit factor. Have students determine the product in as many different ways as they can. Invite students to share their different methods, focusing attention on similar methods that involve finding partial products.

\section*{ETP Implement Tasks That Promote Reasoning and Problem Solving}
- What steps did you take to determine the product?
-What patterns do you notice as you calculate each partial product?
- Is your calculated product reasonable? How do you know?

Activity Debrief: Display a multiplication problem using the vertical format. Work with students to record the steps for finding each partial product, then adding to determine the product.

\section*{Math is... Generalizations}
- How does the area model help you understand how this strategy works?

Students look for both general methods and shortcuts.
Have students revisit the Pose the Problem question and discuss answers.
- How can you determine how many seats are in the stadium?

\section*{Guided Exploration}

Students use partial products to multiply using multi-digit factors, while following along with an area model.

\section*{ETP Use and Connect Mathematical Representations \\ Have the students create the equation. Ask:}
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(8) Have the students estimate the solution. Ask:
- Will you use compatible numbers or rounded numbers to estimate the solution? Why?

\(\oplus\)Have the students draw their own area models and fill them out as they work through the problem as a class. Ask:
- How can you decompose each factor?
- How can you determine the multiplication expression that represents the area of each region of the area model?
- How can you determine the partial product for each region?
- Think About lt: What patterns do you see in how the place values of the factors are used to find the partial products in this strategy?
\(\otimes\) Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

\section*{Math is... Generalizations}
- How does the area model help you understand how this strategy works?

Students look for both general methods and shortcuts.

Developing/Expanding Support students in understanding the word vertical using manipulatives or drawings and say This is vertical. Be sure to motion up-down to emphasize what makes the object/drawing vertical. Then choose two more objects or use two more drawings, one being vertical, and one being horizontal. Ask students to tell you which item is vertical, and to explain how they know. Provide sentence frames for students who need more guidance.

Bridging/Reaching Instruct students to explain what vertical means, and how it compares to horizontal. Then encourage students to list synonyms and antonyms for both words using a dictionary for guidance. Have students compare their lists, giving suggestions and corrections as needed.

2. At a school fundraiser, 327 donois give \(\$ 25\) eact. How much money does the school collect? \(\$ 8,175\)
50. A store has 60 bowes of shirts with 152 shirts in each box. How many shits are there in all? 9,120 shirts
11. Errer Analysis Raya used partial products to find the product of \(128 \times 17\). What can you say about Rayo's work?
Sample answer: She found 7 tens for \(7 \times 0\) instead of 0 tens.

12. Extend Your Thinking Solve using parisai products

Explain your answer:

\section*{\(384 \times 725 \quad 278,400 ;\)}

Check students' explanations.

\section*{(2) Reflect}

How can you use partial products to find the product of muiti-dign factors?
Answers may vary.

\section*{Math is... Mindset}

What steps did you take 10 focus on your work todny?

\section*{Practice}

EIP Build Procedural Fluency from Conceptual Understanding
Common Misconception: Exercise 11 Students certainly may include
partial products for the ones place in 60 . While \(0 \times 100,0 \times 50\), and \(0 \times 2\)
all yield partial products of 0 , including those partial products as
"placeholders" can help students better understand how to use the strategy.

\section*{Item Analysis}
\begin{tabular}{l|l|l} 
Item & DOK & Rigor \\
\hline \(1-6\) & 1 & Procedural Skill and Fluency \\
\(7-11\) & 2 & Application \\
\(12-13\) & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you use partial products to find the product of multi-digit factors?
Ask students to share their reflections with their classmates.

\section*{Math is... (indset}
- What steps did you take to focus on your work today? Students reflect on how they practiced self-management.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use partial products to help me multiply multi-digit factors.
- I can explain how to use partial products to multiply.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{ccl|l|}
\hline Item & pOK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Use partial products to multiply \\
multi-digit factors
\end{tabular} & 5.NBT.B.5 \\
\hline 2 & 2 & \begin{tabular}{l} 
Use partial products to multiply \\
multi-digit factors
\end{tabular} & 5.NBT.B.5 \\
\hline 3 & 3 & \begin{tabular}{l} 
Use partial products to multiply \\
multi-digit factors
\end{tabular} & 5.NBT.B.5 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

Exit Ticket Recommendations
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{If students score then have students do} \\
\hline 3 of 3 & Additional Practice or any of the \({ }^{\text {B }}\) or activities \\
\hline 2 of 3 & Take Another Look or any of the (3) activities \\
\hline 1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{Q}\) activities \\
\hline \multicolumn{2}{|l|}{Key for Differentiation} \\
\hline \multicolumn{2}{|l|}{(1) Reinforce Understanding} \\
\hline \multicolumn{2}{|l|}{(B) Build Proficiency} \\
\hline \multicolumn{2}{|l|}{© Extend Thinking} \\
\hline
\end{tabular}



\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Multiply 2-Digit Numbers (Area Models)


Differentiation Resource Book, p. 45

\section*{Lesson 5.5 - Reintorce Understanding \\ Use Partial Products to Multiply Multi-Digit Factors}

Name

\section*{Review}

Decompose the factors by place value. Use this to help sel up your paitial products
\(17 \times 385=(10+7) \times(300+80+5)\)
\(=10 \times 300+10 \times 80+10 \times 5+7 \times 300+7 \times 80+\) \(7 \times 5\)
\(=3.000+800+50+2.100+560+35\)
\(=6.545\)

Use partial products to fill in the blanks and solve these equations.
1. \(19 \times 92=10+9) \times(90+2)\)
\(=10 \times 90+10 \times 2+9 \times 90+9 \times 2\)
\(=\underline{900}+20+\underline{810}+18\)
\(=1,748\)
2. \(512 \times 21=(500+10+2) \times(20+1)\)
\(=500 \times \frac{20}{20}+500 \times 1+10 \times 20+10 \times 1\)
\(+2 \times 20+2 \times 1\)
\(=10,000+500+200+10+40+2\)
\(=10,752\)
Use partial products to solve these equations.
3. \(72 \times 165=11,880\)
4. \(37 \times 205=7.585\)
5. \(275 \times 36=9,900\)
6. \(812 \times 68=55,216\)

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Partial Products Concentration
Students use partial products to multiply.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 45-46

\section*{Lesson 5.5}

\section*{Additional Practice}

Name

\section*{Review}

You can use partial products to find products of mults-digit factors.
Find \(16 \times 128\). Decompose the factors by place value. Then use partiol products

> \begin{tabular}{rl} 128 \\ & \(\begin{array}{r}\times 16 \\ 10 \times 100 \\ =1,000 \\ 10 \times 20\end{array}\) \\ \(10 \times 8\) & \(=800\) \\ \(5 \times 100\) & \(=600\) \\ \(6 \times 20\) & \(=120\) \\ \(6 \times 8\) & \(=+48\) \\ \hline \end{tabular}

The product is 2.048.
Use partial products to solve.
\begin{tabular}{ll} 
1. 37 & 2. 416 \\
\(\times 55\) \\
\hline \(1,500+350+180\) & \\
\hline\(+42=2,072\) & \begin{tabular}{l}
\(12,000+300+180\) \\
\\
\end{tabular} \\
& \(+3,200+80+48\) \\
& \(=15,808\)
\end{tabular}

Unit 5 • Multiply Multi-Digit Whole Numbers

\section*{Extend Thinking}

\section*{Use It! Application Station}



Student Practice Book, pp. 45-46
```

A T-shit company ships out 250 boxes of shirts bach week. Each box holds 48 shirts. How many shirts does the company ship out each week?
12,000 shirts

```

Math
eHome

 want

Sobet Andier liow
```

Use partial products to solve.
3. 472 4. 508
32,000+5,600+160 10,000+0+16
+1,200+210+6 +3,500+0+56
=39,176 = = 13,716
5. A mural is pointed on a rectangutar wall that is 154 feet long and
t5 feet tall. What is the area of the wall?
2,464 square feet
6. A basketpall costs \$78. A team orders 25 basketbulle. How much
does the team spend for the basketballs?
\$1,950
7. A rectangular comfeld measures }358\mathrm{ meters long and }64\mathrm{ meters
wide. What is the area of the cornfeld?
22,912 square meters
Sybet Mostre llock

```

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication using area models.

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.

Make a Pulley System Students use measurements to create a pulley system. The content of this card has concepts covered later in Lesson 5-7. You may want to assign this card to students ready to explore content covered
 later in this unit.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.

Differentiation Resource Book, p. 46

\section*{Lesson 5.5 . Extend Thinking \\ Use Partial Products to Multiply Multi-Digit Factors}

Name
Use the partial products to determine the factors in the equation.


\section*{Relate Partial Products to an Algorithm}

\section*{Learning Targets}
- I can multiply using an algorithm.
- I can describe an algorithm for multiplication.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Look for and express regularity in repeated reasoning.

\section*{Vocabulary}

\section*{Math Terms \\ algorithm \\ Academic Terms procedure \\ partial products \\ prove \\ regroup}

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks
- number cubes

\section*{Focus}

\section*{Content Objectives}
- Students use an algorithm to multiply multi-digit factors by a one-digit factor.
- Students understand and explain a multiplication algorithm.

\section*{Language Objectives}
- Students discuss strategies to multiply while using as...as.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

\section*{SEL Objective}
- Students collaborate with peers to complete a mathematical task and offer constructive feedback to the mathematical ideas posed by others.

\section*{Coherence}
\begin{tabular}{|c|c|c|}
\hline Previous & Now & Next \\
\hline - Students multiplied two two-digit numbers, using strategies based on place value and the properties of operations (Grade 4). & - Students connect the partial products strategy to an algorithm, and use that algorithm to multiply multi-digit numbers by 1 -digit numbers. & \begin{tabular}{l}
- Students will use an algorithm to multiply two multi-digit factors (Unit 5). \\
- Students will add, subtract, multiply, and divide using the
\end{tabular} \\
\hline - Students used the partial products strategy to multiply a multi-digit number by a multidigit number (Unit 5). & & standard algorithm (Grade 6). \\
\hline
\end{tabular}

\section*{Rigor}

\section*{Conceptual Understanding}
- Students develop an understanding of how they can solve problems using a multiplication algorithm.
Conceptual understanding is not a targeted element of rigor for this standard.

\section*{Procedural Skill \& Fluency}
- Students demonstrate procedural skill and fluency in performing the steps to solve multiplication equations using an algorithm.

\section*{Application}
- Students solve real-world multiplication problems using partial products and an algorithm.
Application is not a targeted element of rigor for this standard.

\section*{Number Routine} Greater Than or Less Than © \({ }^{5-7 \text { min }}\)

Build Fluency Students build number sense as they determine whether sums of three decimals are greater than 1,200 or less than 1,200 . Remind students that they should use mental math strategies to form their comparisons and that they should not be computing exact sums.

These prompts encourage students to talk about their reasoning:
- What strategies did you use to estimate if each sum is greater than 1,200 or less than 1,200 ?
- How can you use place value to help you estimate the sum?
- Which place-value position in each number has the greatest impact in the sum? Which place-value position is next most important? Explain.
- How do you know your estimates are reasonable?

Purpose Students explore how partial products relate to a multiplication algorithm.

\section*{Notice \& Wonder}
- What do you notice? What do you wonder?

Teaching Tip You may want to have students copy down the equations themselves so that they can more easily compare them as they Notice \& Wonder.
EPP Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' curiosity about how partial products relate to an algorithm and are based on possible comments and questions that students may make during the share out.
-What strategy was used on the left to solve the equation?
- How do you think the multiplication equation on the right was solved?

\section*{Math is... lindset}
- How can you be part of the classroom community?

\section*{SEL \\ Relationship Skills: Social Engagement}

As students engage in collaborative discourse around the Notice \& Wonder routine, invite them to give constructive or helpful feedback to their peers. As students engage and discuss how the strategies for multiplying are similar and different, they are strengthening their relationship skills. Remind students that active listening and building on the ideas of others can help them connect with one another and work toward achieving shared goals.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about how each multiplication strategy is using place value to find the product. Guide the discussion to have students think about how these strategies can help them determine the product of other multi-digit numbers.
ETP Establish Mathematics Goals to Focus Learning
- Let's explore an algorithm for multiplying that is related to the partial products strategy.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

The distance from Los Angeles to New York City is 7 times as far from Los Angeles to Proenix.

How can you determine the distance
from Los Angeles to New York City?


You can multiply using an algorithm


\section*{(1) Pose the Problem}

\section*{토N}

Pose Purposeful Questions
-What are you trying to find?
- What strategies do you already know that you can use to calculate the product?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{Stronger and Clearer Each Time}

Pair students and give them a multiplication problem to solve using this algorithm. Have them individually write sentences explaining the steps they took to solve the problem. Then have them share their writing with their partner and revise if necessary. Revisit throughout the lesson for reinforcement.

\section*{3 Bring It Together} ETP

\section*{Elicit and Use Evidence of Student Thinking}
- How is using this algorithm related to using partial products?
- How do you use this algorithm to solve a multiplication equation?

\section*{Key Takeaway}
- An algorithm is another way to determine a product.

\section*{Work Together}

Direct students to estimate the product before they calculate using this algorithm. After students have calculated the product using this algorithm, encourage them to check the product by using partial products. Encourage students to discuss how the two strategies are related. When multiplying using an algorithm, it is a common practice to startby multiplying the digits in the ones place.
©Common Error The Work Together problem has a factor with an "internal" zero \((3,021)\). Make sure students understand that this means when they multiply 4 by the digit in the hundreds place, the value will be 0 . Encourage students to think of how they would represent the hundreds place in 3,021 using base-ten blocks.

\section*{Lom Language of Math}

Algorithm comes from the name of the 9th century Persian mathematician, astronomer, and geographer Muhammad ibn Mūsā al-Khwārizmī who was called Algorithmi in Latin. His Arabic book Al-jabr is the first work dedicated to what would come to be known as algebra.

\section*{Activity-Based Exploration}

Students explore using an algorithm to solve a multiplication problem.

Materials: base-ten blocks
Directions: Display the following multiplication problem. Have students work in small groups to determine a logical sequence of steps that was taken to determine the product. Have students record their steps and explanations. Students may choose to use base-ten blocks or an area model to help make sense of the solution method.

\section*{2}

413
\(\times 7\) 2,891

\section*{ETP}

\section*{Support Productive Struggle}
- How can you represent the factors using base-ten blocks?
- How are the two tens regrouped?
- How can you use what you know about partial products to find the sequence of steps used to solve the equation?

\section*{Math is... Meneralizations}
- How are the partial products strategy and this algorithm related?

Students notice if calculations are repeated in the partial products strategy and look for shortcuts.

Activity Debrief: Have students share their sequence of steps to explain the solution method. Explain that an algorithm is a step-bystep method for performing calculations. Walk through the steps for the multiplication algorithm shown.

\section*{Guided Exploration}

Students apply what they know about solving multiplication equations using partial products to use an algorithm to solve multiplication equations.

\section*{ETP Use and Connect Mathematical Representations \\ Have the students create the equation. Ask:}
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?

How should the unknown appear in the equation? Why?
Q Have the students estimate the solution. Ask:
- Will you use compatible numbers or rounded numbers to estimate the solution? Why?
(2. Have the students find the product using the partial products strategy. Ask:
- How will you decompose the factors by place value to find partial products?
- Think About It: What other algorithms do you already know how to use?
- Why do you regroup the two tens? How is this different from using partial products? How is it different?

(1)Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

\section*{Math is... Generalizations}
- How are the partial products strategy and this algorithm related?

Students notice if calculations are repeated in the partial products strategy and look for shortcuts.

\section*{2. Develop the Math}

The distance from Los Angeles to New York City is 7 times as far as the \(\mathbf{4 1 3}\) miles from Los Angeles to Phoeniy How can you determine the

\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding using as... as for comparing, using manipulatives. Choose two objects that have something in common to compare, such as a ruler and a pencil. Say The ruler is as straight as the pencil. Choose two more sets of objects to compare using as... as. Finally, show students two more pairs of objects. With one pair make a correct comparison, and with the other pair, make an incorrect one.

Developing/Expanding Support students in understanding using as...as for comparing, using manipulatives. Choose two objects that have something in common to compare, such as a ruler and a pencil. Say The ruler is as straight as the pencil. Choose two more sets of objects to compare using as...as. Finally, ask students to choose two classroom objects to compare, using as...as. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to compare two objects using as...as. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, that's not correct because... or No, that isn't as .... as...

9. STEM Coennection Hira knows that Lake Michigan is 922 feet deep. He knows that the Atlantic Ocean is 28 times as deep. How deep is the Atiantic Ocean? 25,816 feet

10. Jony eams \(\$ 355\) a week mowing lawns. How much money dous he eam in 6 weeks? \(\$ \mathbf{2 , 1 3 0}\)
11. The pedompter shows the number of steps Maria walks each day. How many steps did she watk after 7 days? 64,050 steps

12. On a road trip. Emily and her family listen to 3 podcasts. Each one is 45 minutes loag For how many seconds do they listen to podcasts? 8,100
13. Extend Your Thinking Expluin why it is important to follow wach step of the aigorithm when mutiplying. The calculation will not be correct if one of the steps is left out.

\section*{(3) Reflect}

How are portial products and an algorthm for mutiolicotion related? Answers may vary.

\footnotetext{

}

\section*{Practice}

EIP Build Procedural Fluency from Conceptual Understanding
Common Error: Exercises 1-8 While using this algorithm, some students may add a regrouped amount before performing the multiplication. For example, while calculating Exercise 1 and finding that \(6 \times 7=42\), students may regroup the 4 tens and add them to the 2 tens before multiplying by 6 , rather than multiplying then adding.

Item Analysis
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 1 & Procedural Skill and Fluency \\
\(9-12\) & 2 & Application \\
13 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How are partial products and an algorithm for multiplication related? Ask students to share their reflections with their classmates.

\section*{Math is... Yindset}
- How did you connect with your classmates today?

Students reflect on how they developed stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can multiply using an algorithm.
- I can describe an algorithm for multiplication.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|ccl|l|}
\hline Item pOK skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
1-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
2 & 2 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
1-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
3 & 2 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
1-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
4 & 3 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
1-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}
4 of \(4 \quad\) Additional Practice or any of the \(\operatorname{Bor}\) ortivities

3 of 4 Take Another Look or any of the (3) activities
2 or fewer of \(4 \quad\) Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency
© Extend Thinking


\section*{Reinforce Understanding}

\section*{Roll to Multiply}

Work with students in pairs. Have students roll a number cube 4 times to create a 3 -digit number by 1 -digit number multiplication problem. Work with the students to solve the problem, with one student using partial products and the other using an algorithm. Make sure students understand how the algorithm relates to the partial products. Have students switch roles and repeat the process with new numbers.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Multiply 3- by 1-Digit Numbers
- Multiply 4- by 1-Digit Numbers


Differentiation Resource Book, p. 47

\section*{Cesson 5.6 - Reintorce Understanding \\ Relate Partial Products to an Algorithm}

Name

\section*{Review}

Belbw is a way to combine the partion products wet the agoranm


3 and the 5 are in the ones place. Mutiply \(3 \times 5\)
400 is in the tens place. Multiply \(80 \times 5\).
+4.5009 is in me Rundeds ploce Mumply \(900 \times 5\)
4.955 Add 15. 400 , anc 4.500 tor the product.
\(\begin{array}{r}983 \\ \times \quad 5 \\ \hline 495 \\ \hline\end{array}\)

Find the products of the equations first using partial products and then using an algorithm. Choose the correct answer.
\begin{tabular}{l|l} 
1. \(512 \times 8=\mathrm{b}\) & 2. \(2.604 \times 5=\mathrm{d}\) \\
\begin{tabular}{ll} 
a. 4,006 & a. 13,000 \\
b. 4,096 & b. 10,020 \\
c. 4,085 & c. 13.030 \\
d. 4,196 & d. 13,020
\end{tabular}
\end{tabular}

Find the products of the equations using an algorithm.
\begin{tabular}{l|l} 
5. \(76 \times 9=1,044\) & 7. \(2,752 \times 5=\underline{18,760}\) \\
6. \(289 \times 4=\underline{1.156}\) & g. \(2.974 \times 3=8,922\)
\end{tabular}

Ditrimehoben Revarcr foch

\section*{Build Proficiency}

\section*{Practice It! Game Station \\ Multiplication Standard Algorithm Task Cards}

Students identify errors in multiplication using the standard algorithm.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 47-48

\section*{Lesson 5-6}

\section*{Additional Practice}

Name

\section*{Review}

You can use an algorithm to multiply a multi-digit factor and a single-digit factor.
Find the product \(2.234 \times 6\). Use the standard algoithem for mutiplication.
\[
\begin{array}{r}
+1+2+2 \\
2,234 \\
\times \quad 6 \\
\hline 13,404
\end{array}
\]

The product is 12,404
Solve using the standard algorithm for multiplication.
\begin{tabular}{|c|c|c|}
\hline 1. 478 & 2. 791 & 3. 384 \\
\hline \(\times 7\) & \(\times 9\) & + 5 \\
\hline 3,346 & 7119 & 1.920 \\
\hline 4. 147 & 5. 3.519 & 6. 77568 \\
\hline \(\times 4\) & \(\times 6\) & \\
\hline 5,908 & 21,114 & 60,544 \\
\hline
\end{tabular}

Unit 5 • Multiply Multi-Digit Whole Numbers

Own It! Digital Station

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication using area models.

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


\section*{Use It! Application Station}

Let's Celebrate Students use charts to create a budget for a graduation celebration.

\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 48

\section*{Lesson 5.6 - Extend Thinking \\ Relate Partial Products to an Algorithm}

Nane
Break down each problem into a more manageable problern. Use the algorithm to find any products you use. The first problem has the algonithm to find any products you use. The first problem has been started for you answers
may vary
1. To lind the product \(876 \times 12\). could find the product \(875 \times 5\) and maltiply the result oy 2
\(876 \times 12=10,512\)
2. To find the product \(439 \times 24\), could find the product \(439 \times \quad 4 \quad\) and multiply the result by \(\quad 6\) \(439 \times 24=10,536\)
3. To find the product \(517 \times 56\), 1 could find the product \(517 \times \quad 7\) and mutiply tive result by 8 \(517 \times 56=28,952\)
4. To find the product \(123 \times 35\), could find the product \(123 \times 5\) and multipty the result by 7 \(123 \times 35=4,305\)

\section*{Math Probe}

\section*{Unit 5}

Multiplication of 2-Digit Numbers
Name
Four students were in the process of finding this product:
\[
42 \times 13
\]

Decide if each student's approsch is a correct way to find the product. Circle Yes or No.
Do not actually complete the process to find the product.

Student 1


Circle Yes or No
(ves No

Student 2
\((40 \times 20)+(2 \times 3)\)

Circle Yes or Na .
Yes


Exploin why you chose Yes or Na .

\section*{Student 3}
\(13 \times 40+13 \times 2\)
Circle Yes or No .
No

Exploin why you chose Yes or No. Answers may vary.

Answers may vary.

Explain why you chose Yes or No
Answers may vary.

Reflect On Your Learning

vo manawe manchandery

\section*{Analyze the Probe Formative Assessment}

Targeted Concept Evaluate different strategies and representations in preparation for applying the standard algorithm for multiplying multi-digit numbers.

Targeted Misconceptions Some students multiply 2-digit numbers by multiplying the ones digits and the tens digits-and then adding the results. This misconception may stem from applying addition approaches to multiplication or from not knowing different ways to think about multiplication. Some students do not understand how to decompose factors to use with an area representation. When some students multiply, they treat a digit in the tens place as if it were in the ones place.

\section*{Sample Student Work}

Below are examples of students' explanations.

\section*{Sample A}


\section*{Sample B}
```

Student 2
(40\times20)+(2\times3)
Circle Yes or No.
Yes (No)

```

\section*{Collect and Assess Student Work}

Collect and review student responses to determine possible misconceptions. See examples in If-Then chart.

IF incorrect... THEN the student likely ...
Student 1: No has difficulty interpreting an area representation for multiplication. The student may not be able to connect the partial products shown in the area representation with the partial products derived in the partial-products strategy.

Student 2: Yes does not fully understand the process of using partial products to multiply two 2-digit numbers. The student believes that multiplying the value of the tens digits \((40 \times 10)\) and multiplying the ones digits \((2 \times 3)\), then adding the two partial products, provides the product for \(42 \times 13\).

Student 3: No has difficulty recognizing decomposition as a strategy that works for multiplication. Some students fail to recognize that multiplication is commutative: \(42 \times 13=\) \(13 \times 42\), and you can think of this as 13 groups of 40 and 13 groups of 2 .

\section*{Sample Misconceptions}

In this case, the student does not reason about the sum of the partial products shown.


In this case, the student does not consider whether the decomposition of the numbers shown is accurate.
\begin{tabular}{|l|l}
\hline \begin{tabular}{l} 
Student 2 \\
\((40 \times 20)+(2 \times 3)\)
\end{tabular} & \begin{tabular}{l} 
Explain why you chose yes or No. \\
I circled yes because the \\
Circles or No. \\
Yes
\end{tabular} \\
numbers can be broken \\
apart like th at.
\end{tabular}

In this case, the student does not recognize when multiplying, a and can be decomposed and each multiplied by 13 .


Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

\section*{Take Action}

Choose from the following resources or suggestions:
- Revisit estimation and partial products in Lessons 5-3 and 5-5.
- Encourage a routine of using estimation as a tool for determining the reasonableness of answers and approaches.
- Show examples of both correct and incorrect approaches to multiplication to spark a discussion about correct strategies and to address common misconceptions.
- Provide practice decomposing 2-digit numbers to reinforce placevalue ideas, such as the fact that the value of a 4 in the tens place is 40 , not 4 . Discuss how decomposing numbers can make computation easier.
- Connect numeric expressions to the area representation to reinforce that in 2-digit multiplication, each digit of a factor is multiplied by each digit of the other factor.

Revisit the Probe After additional instruction, have students review their initial answers to the probe. Use these questions for discussion:
- Are there any answers you would like to change? Explain why you might want to change them.
- Are there any questions that you still have about any of the exercises on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{LESSON 5-7}

\section*{Multiply Multi-Digit Factors Fluently}

\section*{Learning Targets}
- I can use an algorithm to multiply multi-digit factors.
- I can explain how to use an algorithm to multiply.

\section*{Standards \(\propto\) major \(\triangle\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B. 5 Fluently multiply multi-digit whole numbers using the standard algorithm.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Look for and express regularity in repeated reasoning.

\section*{Focus}

\section*{Content Objective}
- Students use an algorithm to multiply two multi-digit factors.

\section*{Language Objectives}
- Students explain how to use an algorithm to multiply while answering Wh- and Yes/No questions.
- To support maximizing linguistic and cognitive meta-awareness and optimizing output, ELs participate in MLR5: Co-Craft Questions and Problems.

\section*{SEL Objective}
- Students identify and discuss the emotions experienced during math learning.

\section*{Coherence}
\begin{tabular}{|l|l|l|}
\hline Previous & Now & Next \\
\begin{tabular}{l} 
- Students multiplied two two-digit \\
numbers, using strategies based \\
on place value (Grade 4).
\end{tabular} & \begin{tabular}{l} 
- Students use an algorithm to \\
multiply two multi-digit factors.
\end{tabular} & \begin{tabular}{l} 
- Students multiply decimals \\
(Unit 6).
\end{tabular} \\
\begin{tabular}{l} 
- Students connected the partial \\
products strategy to an algorithm \\
(Unit 5).
\end{tabular} & & \begin{tabular}{l} 
- Students add, subtract, multiply, \\
and divide using the standard \\
algorithm (Grade 6).
\end{tabular} \\
\hline
\end{tabular}

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build their understanding of multiplying two multi-digit factors.

Conceptual understanding is not a targeted element of rigor for this standard.

\section*{Procedural Skill \& Fluency}
- Students gain proficiency in using an algorithm to multiply two multi-digit factors efficiently.

\section*{Application}
- Students apply their understanding of an algorithm of multiplication to solve problems with real-world contexts.
Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms \\ algorithm \\ Academic Terms \\ analyze \\ note \\ transition}

\section*{Materials}

The materials may be for any part of the lesson.
- Multiplication Algorithm Teaching Resource
- number cubes
- spinners

\section*{Number Routine What's Another Way to Write It? © \({ }_{5-7 \text { min }}\)}

Build Fluency Students build number sense as they write three different expressions that are equivalent to 7.5 .

Remind students that there will be many different possible combinations of numbers and operations that are equivalent to 7.5. As solutions are given, record them for students to evaluate and compare.

These prompts encourage students to talk about their reasoning:
- What numbers might you typically think about using first?
- What strategies did you use to get started?
- How can you use one expression to create a new expression?
- Describe a situation when you would need to write an expression that is equivalent to 7.5 .

Purpose Students start thinking about how this algorithm aligns with the partial products strategy when multiplying multi-digit numbers by multidigit numbers.

\section*{Notice \& Wonder}
-How are they the same?
- How are they different?

Teaching Tip As students Notice \& Wonder, you may want to have them discuss the similarities and differences and keep track of what they say in a chart for everyone to see.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering of how this algorithm aligns with the partial products strategy when multiplying multi-digit numbers by multi-digit numbers and are based on possible comments and questions that students may make during the share out.
- What is the sum of the first three partial products on the left? Is that number the same as either partial product on the right?
- What is the sum of the last three partial products on the left? Is that number the same as either partial product on the right?

\section*{Math is... Vindset}
-What makes you feel excited when doing math?

\section*{SEL \\ Self-Awareness: Identify Emotions}

As students complete the Notice \& Wonder routine, invite them to share how they organized their work or what they noticed about how you organized your work. For example, you may have written down similarities and differences between the two multiplication strategies as two organized lists. Invite students to discuss the tools they may use to organize their work while multiplying multi-digit factors fluently. Encourage them to think about why this tool may be helpful for their work with multiplying multi-digit factors fluently.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about how they can use an algorithm to solve multiplication equations with multi-digit factors.
ETP Establish Mathematics Goals to Focus Learning
- Let's think about how this algorithm works when we multiply multi-digit numbers by multi-digit numbers.


\section*{Explore \& Develop © 20 min}

\section*{Learn}



Step 3 Add partial products.
\begin{tabular}{r}
549 \\
\(\times \quad 26\) \\
\hline 3,294 \\
\(+10,980\) \\
\hline 14,274
\end{tabular}

The store made \(\$ 14,274\) from selling T-shirts last weekend.
An algoikinm can be a more efficient wiy to mutipty-

\section*{Q Work Together}


\section*{(1) Pose the Problem}

\section*{Pose Purposeful Questions}
-What are you trying to find?
-What information do you already know?

\section*{2 Develop the Math}

\section*{Choose the option that best meets} your instructional goals.

\section*{MLB \\ Co-Craft Questions and Problems}

Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the task throughout the lesson for reinforcement.

\section*{3 Bring It Together} EIP Elicit and Use Evidence of Student Thinking
- How is using this algorithm to multiply by a 1 -digit number similar to using this algorithm to multiply by a 2-digit number? How is it different?

\section*{Key Takeaway}
- An algorithm has a consistent process for recording products when multiplying two multi-digit factors.

\section*{Work Together}

Before students begin calculating the product, have them estimate the product. After students have solved the problem using an algorithm, have them use partial products to solve the equation and discuss how the strategies are related.
[ Common Misconception Students may only pay attention to the digits in the factors and not their place value. Make sure students remember that, for example, they are multiplying \(4 \times 60\) instead of \(4 \times 6\).

\section*{Language of Math}

Make sure students understand that regrouping means different mathematical processes in different mathematical contexts. Discuss with students the similarities and differences in regrouping in adding, subtracting, or multiplying.

\section*{Activity-Based Exploration}

Students explore extending a multiplication algorithm to multiply two multi-digit factors.

Materials: Multiplication Algorithm Teaching Resource
Directions: Distribute copies of the Multiplication Algorithm Teaching Resource. Students will extend what they learned in the previous lesson to complete the algorithm for \(549 \times 26\).

\section*{Support Productive Struggle}
- What digits will you multiply first?
- How will you use regrouping while multiplying?
-What is the last step to finding the product?

\section*{Math is... Generalizations}
- How might using this algorithm be different when multiplying a 3 -digit number by a 3 -digit number?

Students notice if calculations are repeated and look for general methods.

Activity Debrief: Have students share their thinking as they complete the algorithm to find the product. Encourage students to think about the value of the digits, rather than simply the digits themselves. For example, rather than multiplying the digit 2 by the digit 9, students should think about the values of the digits.

A PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students use an algorithm to multiply two multi-digit factors.
\(\square\) Facilitate Meaningful Discourse Have the students create the equation. Ask:
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
Q. Have the students estimate the solution. Ask:
- Will you use compatible numbers or rounded numbers to estimate the solution? Why?

Q Have the students find the product of 549 and 6 using the algorithm from Lesson 6 .
- Think About It: How is the partial product \(9 \times 6=54\) represented in the product of 549 and 6 , and why is it represented that way?

Before multiplying 540 by 20 , have the students find the product of 549 and 2 using the algorithm from Lesson 6. After they have found the product, ask:
- How can you use that product and place value arguments to determine the product of 549 and 20 ?
- Think About It: Why is there a 0 in the ones place of the product of 549 and 20 ?

\(\oplus\)Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

\section*{Math is... Generalizations}
- How might using this algorithm be different when multiplying a

3-digit number by a
3 -digit number?
Students notice if calculations are repeated and look for general methods.

\section*{2. Develop the Math}

Last weekend, a store sold 549 T-shirts. How can you determine how much money store made from selling T-shirts?

\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding the phrase make/made money. Set up a mock buying and selling role play. Give a classroom object, such as a book, a price and pretend to buy it from one of your students. Walk over to another student. "Sell" the book to the student for a higher price. Say, I made [two dollars]. Mock buy and sell another item with two students, this time asking after the final sale How much money did I make?

Developing/Expanding Support students in understanding the phrase make/made money. Set up a mock buying and selling role play. Give a classroom object, such as a book, a price and pretend to buy it from one of your students. Walk over to another student. "Sell" the book to the student for a higher price. Say, I made [two dollars]. Then ask students to perform a mock buying and selling role play with a group of three. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to perform mock buying and selling role plays with a group of three students. Have them talk about how much money they made. Then have students discuss different ways of expressing making money, such as made a profit, etc.

\section*{Practice \& Reflect © wionin}

11. On a road trip, a family traveied 412 mies each day. How many mles had they traveled by the end of 5 days? 2,060 miles
12. A hotel toon costs \(\$ 193\) per night. How much will a 7 -diay stay cost? \$1,351
13. STEM Connection Adult dogs have 42 teeth. Over the course of a week. Auby checis the teeth of 85 dogn. How mamy tretth doen the check in at? 2,730 teeth

14. Extend Your Thinking How does knowing how to solve mutiplication equations using partial products hetp you solve muliplicition equations using an algorthem?
Sample answer: An algorithm involves partial products by adding the product of a factor and a place value digit with another; knowing how to use partial products beforehand made using an algorithm easier.

\section*{© Reflect}

Why might usinc an algorithm be more efficient than using partial products when mijtiplying?
Answers may vary.


\section*{Practice}

\section*{ETP Build Procedural Fluency from Conceptual Understanding}

Common Error: Exercises 1-8 Some students do not consider the value of the digits when using a standard algorithm. Some omit the 0 in the ones place in the second partial product. If this error occurs in Exercises 1-8, have students work the problems again by using partial products to reinforce the place value of the digits that are multiplied and written in the algorithm.

\section*{Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 1 & Procedural Skill and Fluency \\
\(9-13\) & 2 & Application \\
14 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- Why might using an algorithm be more efficient than using partial products when multiplying?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How has organizing your work helped you?

Students reflect on how they practiced self-awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use an algorithm to multiply multi-digit factors.
- I can explain how to use an algorithm to multiply.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|c|l|l|l|}
\hline Item DOK Skill & Standard \\
\hline 1 & 2 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
2-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
\hline 2 & 3 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
2-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
\hline 3 & 3 & \begin{tabular}{l} 
Multiply multi-digit numbers by a \\
2-digit number using an algorithm
\end{tabular} & 5.NBT.B.5 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}
3 of \(3 \quad\) Additional Practice or any of the \(\boldsymbol{B}^{\boldsymbol{B}}\) or activities

1 or fewer of \(3 \quad\) Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce UnderstandingBuild ProficiencyExtend Thinking


\section*{Reinforce Understanding}

\section*{Spin ' \(n\) ' Roll for Products!}

Work with students in pairs using a spinner that contains 2-digit numbers. One student spins the spinner to obtain a factor. The other student rolls a number cube twice to produce a 2-digit factor. Help students multiply the two factors and then check their work using estimation. Have students repeat the process with new numbers.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Multiply Multi-Digit by

2-Digit Numbers
- Mutliply 3-Digit by 3-Digit Numbers

- Multiply Multi-Digit Numbers

Differentiation Resource Book, p. 49
-esson 5-7 - Reinforce Understanding
Multiply Multi-Digit Factors Fluently
Name

\section*{Review}

Below is a way to multiply uting partial products.
983
\(\begin{array}{r}\times \quad 37 \\ \times \quad 6891 \\ \hline\end{array}\)
6.891 Muttoly \(983 \times 37\).
+29.490 Muttply \(983 \times 30\).
36,371 Add the partiol products
Find the product of each equation using partial products.


Find the product of each equation using an algorithm.
5. \begin{tabular}{r}
210 \\
\(\times \quad 34\) \\
\hline 7140
\end{tabular}
6. \(\begin{array}{r}632 \\ \times \quad 18 \\ \hline 11,376\end{array}\)
8. \(\begin{array}{r}1,786 \\ \times \quad 62 \\ \hline\end{array}\) \(\times \quad 62\)
110,732

Unit 5 - Multiply Multi-Digit Whole Numbers

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Multiplication Showdown Students practice multiplication of multi-digit numbers.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 49-50

Lesson 5.7
Additional Practice
Name

\section*{Review}

You can use the standard algorithm to multiply 3-digit and 4 -digit factors by a 2 -digit factor.
Find \(2.186 \times 42\) using the standerd algorithm for multiplicition.
\[
2,186
\]
\[
\begin{array}{r}
42 \\
\hline
\end{array}
\]
\[
4,372
\]
\(\begin{array}{r}87.440 \\ \hline 91.312\end{array}\)
Mutiply 2.586 by 2
91.812 Add the partial products

The product is 91,812 .
Find the product using the standard algorithm,
\begin{tabular}{|c|c|c|}
\hline 1. 251 & 2. 974 & 3. 4,009 \\
\hline \(\begin{array}{r}1 \\ \times \quad 27 \\ \hline 677\end{array}\) & +34 & + 19 \\
\hline 6,777 & 33,116 & 78.071 \\
\hline 4. 865 & 5. 376 & 6. 3,489 \\
\hline 4. 24 & 5 83 & \(\times 51\) \\
\hline 20,760 & 31,208 & 177,939 \\
\hline
\end{tabular}

Own It! Digital Station

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication using area models.

\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 49-50

\section*{Solve each problem.}
7. Wando makes bracelets to sell at craft shows. Each beacelet she mokes uses 38 beads. This yeat, Wanda has sold 351 bracelets How mary beads did she use to make the bracelets?

13,338 beads
8. Lorenzo saves \(\$ 136\) each week. How much money will he have sived atter \({ }^{1}\) year ( 52 weeks?
\$7,072
9. A furnture company provides 84 screws for customers to use to out one bed together. if the compary sells 511 beds. now many screws did they provide?

42,924 screws
10. Carla averages B. 275 steps each day. Act this rate, how many steps will Carla woik in two weeks?

115,850 steps





\section*{Extend Thinking}

\section*{Use It! Application Station}

Make a Pulley System Students use


\section*{Websketch Exploration}

Assign a websketch exploration to apply skills and extend thinking.


Differentiation Resource Book, p. 50

\section*{Unit Review}


\section*{Review}
8. Which expression or value is equivalent to \(10^{\prime}\) civen hs
A. 1,000
B. \(10 \times 4\)
C. \(10 \times 10 \times 10 \times 10\)
D. \(10+10+10+10\)
9. The tock museim has 324 display drawers. Each drawer hoids 23 rock samples About how many tock samples does the huseum have? smunsal Answers will vary. Sampte answer is glven. There are about 6,000 fock samples.
10. Use an area model to find the area of the outdoor recreational certet 1 Im-n 14

the area is 544 square meters.

12. Bubire reads 242 pages each week. How can she use partial pribcucts of an algorithm to find the number of poges she reads in 6 weeks? Lanese
Sample answer: She can use partial products or an algorithm to find the product of the different place values and add them to find the product. \(242 \times 6=1,452\)
13. Find the product using an algortity, itemen in \(429 \times 31=\) 13,299

Students can complete the Unit Review to prepare for the Unit Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{|l|l|}
\hline Item & Lesson \\
\hline 1 & \(5-4\) \\
2 & \(5-1\) \\
3 & \(5-1\) \\
4 & \(5-3\) \\
5 & \(5-1\) \\
6 & \(5-3\) \\
7 & \(5-6\) \\
\hline
\end{tabular}

\section*{Review}

Item Analysis
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 8 & 2 & \(5-1\) & 5.NBT.A.2 \\
9 & 2 & \(5-3\) & 5.NBT.A.2 \\
10 & 2 & \(5-4\) & 5.NBT.A.2 \\
11 & 2 & \(5-5\) & 5.NBT.A.2 \\
12 & 3 & \(5-6\) & 5.NBT.A.2 \\
13 & 2 & \(5-7\) & 5.NBT.B.5 \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

\section*{Item Analysis (continued)}
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 14 & 2 & \(5-2\) & 5.NBT.A.2 \\
15 & 2 & \(5-3\) & 5.NBT.A.2 \\
16 & 2 & \(5-5\) & 5.NBT.A.2 \\
17 & 2 & \(5-7\) & 5. NBT.B.5 \\
18 & 2 & \(5-7\) & 5.NBT.B.5 \\
19 & 2 & \(5-2\) & 5.NBT.A.2 \\
\hline
\end{tabular}

\section*{Performance Task}

Standards: 5.NBT.A.2, 5.NBT.B. 5
Rubric (6 points)
Part A (DOK 2) - 3 points
3 POINTS Student's work reflects a proficiency with subtraction when using exponential forms of a number as a product.
2 POINTS Student's work reflects a developing proficiency when using exponential forms of a number as a product. The error is a result of subtraction and not with writing an exponential form of a number as a product.
1 POINT Student's work reflects a developing proficiency when using exponential forms of a number as a product. The error is a result of writing an exponential form of a number as a product.
0 POINTS Student's work reflects a a poor understanding of using exponential forms of a number as a product.

\section*{Part B (DOK 2) - 3 points}

3 POINTS Student's work reflects a proficiency with multiplying multi-digit numbers with no errors.
2 POINTS Students work reflects a proficiency with multiplying multidigit numbers. The error is a result of multiplying by less than 52 weeks in a year.
1 POINT Student's work reflects developing proficiency with multiplying multi-digit numbers.
0 POINTS Student's work reflects a poor understanding of multiplying multi-digit numbers.

\section*{(2) Reflect}

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.


\section*{Performance Task}

Owen is studying how much honey is proouced by honey bees at two diferent locitions. The hives at location A house \(13 \times 10^{\prime}\) honey bees and produce about 121 ounces of honey each week. The hives at location a house \(27 \times 10^{\prime}\) noney bees and produce about 344 ounces of honey ench week
Part A: What is the difference between the number of honey bees at each location?
\(2,700-1,300=1,400\) honey bees

Part B: What is the combined amount of honey produced
each year?
\(6,292+17,888=24,180 \mathrm{oz}\)

\section*{(2) Reflect}

What are some different stategies you can use to muliply mutb-digt numbers?
Answers may vary.


Fluency practice helps students develop procedural fluency; that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice choosing a strategy to add fluently.

Fluency Progression
\begin{tabular}{|l|l|l|}
\hline Unit & Skill & Standard \\
\hline 1 & Use Partial Sums to Add & 4.NBT.B.4 \\
\hline 2 & Decompose by Place Value to Subtract & 4.NBT.B.4 \\
\hline 3 & Use an Algorithm to Add & 4. NBT.B.4 \\
\hline 4 & Use an Algorithm to Subtract & 4.NBT.B.4 \\
\hline \(\mathbf{5}\) & Choose a Strategy to Add & 4.NBT.B.4 \\
\hline 6 & Choose a Strategy to Subtract & 4.NBT.B.4 \\
\hline 7 & Multiply by Multiples of 10 & 5.NBT.B.5 \\
\hline 8 & Multiply by Multiples of 100 & 5.NBT.B.5 \\
\hline 9 & Divide Multiples of 10 & 5.NBT.B.6 \\
\hline 10 & Divide Multiples of 100 & 5.NBT.B.6 \\
\hline 11 & \begin{tabular}{l} 
Use an Algorithm to Multiply (2- and 3-Digit
\end{tabular} & 5.NBT.B.5 \\
\hline 12 & Numbers by 1-Digit Numbers) & \\
\hline 13 & \begin{tabular}{l} 
Use an Algorithm to Multiply (2-Digit Numbers \\
by 2-Digit Numbers)
\end{tabular} & 5.NBT.B.5 \\
\hline 14 & Choose a Strategy to Multiply & Choose a Strategy to Multiply
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Performance Task}

\section*{Movie Theaters}

Students draw on their understanding of multiplying multi-digit numbers. Use the rubric shown to evaluate students' work.

Standards: 5.NBT.A.2, 5.NBT.B. 5
Rubric (12 points)

\section*{Parts A and B (DOK 2) - 4 points}

4 POINTS Student's work reflects proficiency with multiplying multi-digit factors. Student was able to accurately calculate the answer.
2 POINTS Student's work reflects developing proficiency with multiplying multi-digit factors. Minor error in calculation resulted in an inaccurate final answer.
0 POINTS Student's work reflects a weak proficiency of multiplying multi-digit factors. Multiple errors in calculation resulted in an inaccurate final answer.

\section*{Part C (DOK 3) \(\mathbf{- 2}\) points}

2 POINTS Student's work reflects proficiency with determining which value is the greater of two values. The student justifies their selection with an accurate and reasonable explanation.
1 POINT Student's work reflects a developing proficiency with determining which value is the greater of two values. The student's justification of their selection is lacking.

0 POINTS Student's work reflects a weak proficiency in determining which value is the greater of two values. The student's justification of their selection is not present.

\section*{Part D (DOK 2) - 4 points}

4 POINTS Student's work reflects proficiency with multiplying multidigit factors. Student was able to accurately calculate the answer. The student justifies their selection with an accurate and reasonable explanation.
2 POINTS Student's work reflects developing proficiency with multiplying multi-digit factors. Minor error in calculation resulted in an inaccurate final answer. The student's justification of their selection is lacking.
0 POINTS Student's work reflects a weak proficiency of multiplying multi-digit factors. Multiple errors in calculation resulted in an inaccurate final answer. The student's justification of their selection is not present.

\section*{Part E (DOK 3) - 2 points}

2 POINTS Student's work reflects proficiency with using reasoning in a real-world situation. The student justifies their selection with an accurate and reasonable explanation.
1 POINT Student's work reflects a developing proficiency in using reasoning in a real-world situation. The student's justification of their selection is lacking.
0 POINTS Student's work reflects a weak proficiency of using reasoning in a real-world situation. The student's justification of their selection is not present.

\section*{Unit 5}

\section*{Performance Task}

\section*{Name}

\section*{Movie Theaters}

A move theater chain, Action Theasers, is considering repiocing their standard seats with reciining seats in ofder to stay competitive with other theaters. The owners of Action Theaters are reseraching the ousts associated iwth the renowations as well as the polectiat gairs in ticket sales.
Part A
Action Theaters currently has 21 thesters and each thester has 10 auditorlums. Each auditorlum contains 100 seats each. The cost of a movie ticket is currertly \(\$ 8\). Assuming all auditorlums at all 21 theaters are full, how much money in ticket sales would be taken in? 5how your work.
Sample answer: \(21 \times 10=210\) total auditoriums
\(210 \times 100=210 \times 10^{2}\) seats
\(210 \times 10^{2} \times 8=1,680 \times 10^{2}=\$ 168,000\)

\section*{Part B}

If Action Theaters makes the swfch te reclining seats in all
50 auditoriums in each of their 21 theaterk, each audtorlum will hove fess sents. Since the recining seats take up more room, each auditorlum would only have 70 seats each. Because of the reclining seats, the cost of a movie ticket can be taised by \(\$ 2\). Assuming at auditoriums at all 21 theaters are fill, how much money in ticket sales would be taken in? Show your work.
Sample answer: \(21 \times 10=210\) total auditoriums
\(210 \times 70=14,700\) seats
\(14,700 \times 10=\$ 147,000\)
Acsusups Rhovene lowe

\begin{abstract}
Part C
Assuming Action Theaters shows an \(\dagger 1\) am. move in all ts audioriums acooss all its theaters and all sents are full. wouid it be better for the auditoriums to have standord or rectining seats? Explain.
Sample answer: it would be better for each auditorium to have standard seats because they would take in \(\$ 168,000\) on ticket sales instead of \(\$ 147,000\) with recilining seats.
\end{abstract}

\section*{Part D}

It knit realstic that all seass would alwilys be full in the theater Usually in an auditociumi with standard seats. 75 are fut, and in an sudtorlum with reclining seats, 65 are fual Use this intormation to determine if it is better for the auditoriums to have standard of reclining seats. Show your work and explain.
Sample answer: \(21 \times 10=210\) total auditoriums
\(210 \times 75=15,750\) seats
\(15,750 \times 8=\$ 126,000\)
\(21 \times 10=210\) total auditoriums
\(210 \times 65=13,650\) seats
\(13,650 \times 10=\$ 136,500\)
Based on these new amounts, it is better to have reclining seats because you take in more money from ticket sales.

\section*{Part E}

What other profit items would the theater owners need to take into consideration before changing from standard seats to reciring?
Sample answer: If there are less people int the theaters because of the reclining seats, the concession stand might not make as much money selling food.
s5 assenter Mevoria bock

\section*{Unit Assessments}

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & DOK & Lesson Gui & ided Support Intervention Lesson & Standard \\
\hline 1 & 2 & 5-1 & Powers of 10 (Exponents) & 5.NBT.A. 2 \\
\hline 2 & 2 & 5-1 & Introduction to Powers of Ten & 5.NBT.A. 2 \\
\hline 3 & 2 & 5-2 & Multiply by Powers of 10 & 5.NBT.A. 2 \\
\hline 4 & 2 & 5-2 & Multiply by Powers of 10 & 5.NBT.A. 2 \\
\hline 5 & 2 & 5-3 & Estimate Products (Whole Number Factors) & 5.NBT.B. 5 \\
\hline 6 & 3 & 5-3 & Estimate Products (Whole Number Factors) & 5.NBT.B. 5 \\
\hline 7 & 2 & 5-4 & Multiply 2-Digit Numbers (Area Models) & 5.NBT.B. 5 \\
\hline 8 & 2 & 5-5 & Multiply 2-Digit Numbers (Area Models) & 5.NBT.B. 5 \\
\hline 9 & 2 & 5-6 & Multiply 3-by 1-Digit Numbers & 5.NBT.B. 5 \\
\hline 10 & 2 & 5-7 & Multiply Multi-Digit by 2-Digit Numbers & 5.NBT.B. 5 \\
\hline 11 & 2 & 5-4 & Multiply 2-Digit Numbers (Area Models) & 5.NBT.B. 5 \\
\hline 12 & 3 & \[
\begin{aligned}
& 5-4,5-5, M \\
& 5-7
\end{aligned}
\] & Multiply 2-Digit Numbers (Area Models) & 5.NBT.B. 5 \\
\hline 13 & 3 & \[
5-3,5-6 \mathrm{Es}
\] & Estimate Products (Whole Number Factors) & 5.NBT.B. 5 \\
\hline 14 & 3 & 5-7 & Multiply Multi-Digit by 2-Digit Numb & s5.NBT.B. 5 \\
\hline
\end{tabular}

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit 5}

\section*{Unit Assessment, Form A}

Name
1. Which is equivalent to \(10^{\circ}\) ? Choose all that apply.
A. \(10 \times 5\)
B. \(10 \times 10 \times 10 \times 10\)
C. \(10 \times 10 \times 10 \times 10 \times 10\)
D. \(10 \times 10 \times 10 \times 10 \times 10 \times 10\)
E. 10.000
(5) 100.000
2. A square has side length of 10 . Which represents the ares of the square? Choose all thet apply
A. \(10 \times 2\)
B. \(10+10+10+10\)
(D) \(10 \times 10\)
(F.) 100
(C) \(10^{2}\)
E. 40
3. Which is equivalent to \(75 \times 10^{\circ}\) ?
A. 750
e. 75,000
4. What exponertial form completes the equation?
\(81 \times 10^{2}=81.000\)
5. Which is the most reasonable estimate for \(29 \times 681\) ?
A. \(20 \times 600\)
(B.) \(30 \times 700\)
C. \(200 \times 700\)
D. \(300 \times 600\)

6. A rectangular pasture measures 61 ह feet long and 32 teet wide. About how much is the area of the pasture?
Sample answer: \(600 \times 30=18,000\) square feet
7. Which product is shown by the area model?

A. \(40 \times 700=28,000\)
B. \(40 \times 725=29,000\)
C. \(46 \times 725=29,570\)
(D. \(46 \times 725=33,350\)
8. Which sum shows how to calculate \(26 \times 648\) using partial products?
(A)
\(\begin{array}{r}12.000 \\ 800 \\ 160 \\ 3.600 \\ 240 \\ +\quad 48 \\ \hline 15.848 \\ \hline\end{array}\)
g.
\(\begin{array}{r}12 \\ 8 \\ 16 \\ 36 \\ 24 \\ +\quad 48 \\ \hline 444\end{array}\)
c. 600
9. Which product is correct? Choose alt that apply
A. \(\begin{array}{r}296 \\ \times \quad 3 \\ \hline \text { C. } \begin{array}{r}678 \\ \times \quad 316 \\ \hline 28.742\end{array}\end{array}\)
(B) \(\begin{array}{r}548 \\ \times \quad 8 \\ \hline 4384\end{array}\)
(D) \(\begin{array}{r}473 \\ \times \quad 5 \\ \hline 2365\end{array}\)

38
Asenvent lencure llow

Unit 5
Unit Assessment, Form A (continued)
Name
10. What is the product? Use an algorithm.
\begin{tabular}{r}
749 \\
\(\times \quad 42\) \\
\hline 1498 \\
+29960 \\
\hline 31.458
\end{tabular}
11. A tand service charges \(\$ 57\) for a ride from the suburbs to an airport. During one week, the company had 38 fares. How much money dio the tave compary eain?
A. \(\$ 627\)
B. \(\$ 1556\)
C. \(\$ 2.166\)
D. \(\$ 2,400\)
12. In its frame, a rectangulv pointing measures 84 certimeters long and 56 centimiters wide. How much wal 1 poce does the painting cover? Explain the strotegy you used to Fid the answir
4,704 square centimeters; Sample answer: I used an area model to multiply, then I added the partial products: \(4.000+200+480+24=4.704\).

Form B

\section*{une 5}

Unit Assessment, Form B

A. \(0 \times 4\)
(B) \(10 \times 10 \times 10 \times 10\)
C. \(10 \times 10 \times 10 \times 10 \times 10\)
b. 1000
(C) 0,000
R. 100000
 squanef Chosen al wit wiot
A \(0 \%\)
(C.) 0

A. 100 a. 34.000
c. 370000
(a) 2300000

\(6 \times \quad 10^{4}=60000\)

(C) \(\times 0 \times 200\)
c. \(000 \times 200\)

는…ck.

 as nctes wide Hew nath med spict dee ite poiser cobed iotan the stitiog wo used fo tia me ithe
2.060 squate inches: Smple arswer: I used an rea model to multintr, then 1 added the partia profucte \(2400+320+300+40=3060\)
14. A theater has 2,785 seats For a show' 29 performances, every seot was filed. How many people sow the show? Explain the strategy you used to find the answet.
80,765 people; Sample answer: I used an algorithm to multiply, first by multiplying 9 times 2.785 and then by multiplying 20 times 2.785 ;

2785
\begin{tabular}{l}
29 \\
\(\times \quad\) \\
\hline 25065
\end{tabular}
25065
\(+55700\)
80,765
3. The average attendance at a nown's high school footbal games is 3.627 people per game. How many people attended the team's 7 home garnes this season? Give an estimate and the evact numbet Explain your strategles.
Sample answer: 28,000; 25,389 people; I rounded 3,627 to 4,000 and multiplied by 7 to get 28,000; I used an algorithm to multiply 7 times 3.627;
\[
3,627
\]
\begin{tabular}{l}
7 \\
\(\times \quad 7\) \\
\hline 25,389
\end{tabular}


\section*{UNIT 6 PLANNER Multiply Decimals}

\section*{PACING: 10 days}

\section*{MATH OBJECTIVE}

\section*{LANGUAGE OBJECTIVE}

\section*{SOCIAL AND EMOTIONAL} LEARNING OBJECTIVE

Unit Opener ieviret Area and Decimal Multiplication Explore area of rectangles on a grid to learn to place a decimal point in decimal multiplication.
\begin{tabular}{|c|c|c|c|c|}
\hline 6-1 & Patterns When Multiplying Decimals by Powers of 10 & \begin{tabular}{l}
Students use patterns to multiply a decimal by a power of 10 . \\
Students explain patterns when multiplying a decimal by a power of 10 .
\end{tabular} & Students explain how to use patterns to multiply a decimal by a power of 10 wit the gerund using. & tudents recognize and work to understand the emotions of others and practice empathetic responses. \\
\hline 6-2 & Estimate Products of Deci & Students estimate products of decimals Students use estimated products to make predictions about a calculated solution. Students use estimated products to assess the reasonableness of a calculated solution. & Sudents discuss how to estimate products of two decimals using by + gerund. & Students engage in active listening and work collaboratively with a partner to complete mathematical tasks. \\
\hline 6-3 & Represent Multiplication Involving Decimals & Students use decimal grids to represent and solve multiplication equations involving decimals. & Students discuss how to solve multiplication equations using decimal grids while answering \(W h\) - and Yes/No questions. & Students identify personal traits that make themgood students, eers, and math learners. \\
\hline \multicolumn{5}{|l|}{Math Probe Decimal Multiplication Estimate products of decimal numbers.} \\
\hline 6-4 & Use an Area Model to Multiply Decimals & Students use an area model to determine partial products and add partial products to calculate the product of two decimals. & Students discuss using area models to solve multiplication problems while answering \(W h\) - and Yes/No questions and using the term decompose. & Students discuss and practice strategies for managing stressful situations. \\
\hline & Generalizations about Multiplying Decimals & \multicolumn{3}{|l|}{Students use patterns based on place Students explain how to use patterns in Students reflect on and describe value concepts and properties of calculations to multiply decimals by the logic and reasoning used to operations to determine the placement making generalizations. make a mathematical decision or of the digits in a product. conclusion.} \\
\hline 6-6 & Explain Strategies to Multiply Decimals & \multicolumn{3}{|l|}{\begin{tabular}{l}
Students explain different strategies to while answering \(W h\) - questions. \\
approaches to problem solving. multiply decimals.
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{Unit Review Fluency Practice} \\
\hline \multicolumn{5}{|l|}{Unit Assessment Performance Task} \\
\hline
\end{tabular}


\section*{Unit Overview}

\section*{Focus}

\section*{Multiplying Decimals}

In this unit, students extend on their understanding from Grade 4 of multiplying whole numbers and fractions to multiplying decimals. They use estimation to determine the reasonableness of their answers. Students apply their understanding of multiplying decimals to solve problems in real-world contexts.
Students apply their knowledge of decimal fractions, place value, and the properties of operations to multiply decimals. Later in the unit, students revisit and make use of the pattern they discovered to make a generalization about the placement of the decimal in the product.

Students discover that place value and multiplication strategies work the same way with decimal operations as they do with whole number operations.
- Students can extend their understanding based on these explorations with decimal grids to generalize their methods and understanding. They move to the generalized area model, which serves as a template for their thinking and use of the Distributive Property and partial products. For example, consider \(0.25 \times 73\).
- Students can decompose the factors by place value and set up the following area representation of the product. Now, if students explore further by finding the products \(25 \times 73,2.5 \times 73,2.5 \times 7.3\), and \(0.25 \times 7.3\), they can see that the number of decimal places in the product equals the total decimal places in the factors.

\section*{Coherence}

\section*{What Students Have Learned}
- Students used partial products to multiply multi-digit numbers. (Grade 4)
- Students used place value to round decimals. (Grade 5, Unit 3)
- Students identified patterns based on the placement of the decimal point when a decimal was multiplied by a power of 10 . (Grade 5 , Unit 5 )
- Students multiplied multi-digit whole numbers. (Grade 5, Unit 5)
- Students estimated decimal products to determine if calculations were reasonable. (Grade 5, Unit 5)

\section*{What Students Are Learning}
- Students use strategies based on place value to multiply decimals by powers of 10 .
- Students estimate products of decimals to determine reasonable solutions.
- Students represent multiplication with decimals using decimal grids.
- Students use multiplication strategies to multiply decimals to hundredths.

\section*{What Students Will Learn}
- Students estimate quotients of decimals. (Grade 5, Unit 8)
- Students use strategies to divide with decimals. (Grade 5, Unit 8)
Sudents fluently multiply multi-digit decimals using the standard algorithm. (Grade 6)

\section*{Rigor}

\section*{Conceptual Understanding}
- Students develop understanding of multiplying decimals by powers of 10 .
- Students build on their understanding of partial products and area models to multiply decimals.
- Students extend their understanding of place value to determine the product of two decimal factors.

\section*{Procedural Skill and Fluency}
- Students develop proficiency in multiplying decimals to hundredths by powers of 10 .
- Students use strategies used for multiplying whole numbers to build proficiency with multiplying decimals.
- Students increase proficiency with multiplying decimals by making generalizations about the product of decimal factors.

\section*{Application}
- Students apply estimated products to successfully solve contextual, real-world problems.
- Students apply their understanding of multiplying using decimals to solve problems with real-world contexts.

Application is not a targeted element of rigor for the standards in this unit.

\section*{Effective Teaching Practices}

\section*{Facilitate Meaningful Mathematical Discourse}

In the mathematics classroom, student discourse is an interactive process of collaborative exploration, exchange of ideas, argumentation, and building of shared understanding. It is engaging, commands participation, and promotes deep learning. It is a tool the teacher uses to both ensure and confirm that learning is taking place.

Discourse can be verbal or written and enhanced through visuals. It takes place in a variety of settings and calls for student-student and studentteacher interaction. Student-student discourse allows students to take responsibility for their own learning and the learning of their peers. The student-teacher dynamic has the teacher playing more of a supporting role, making sure that the process follows a productive path. Classroom discourse can also be used to enrich the classroom experience for English language learners.

Each lesson in this program calls for discourse using the think-pair-share model and whole-class discussion. The teacher is a facilitator and performs the following actions-
- Engages students as they explore and share ideas and strategies with each other.
- Observes and gathers information about what students are doing and saying.
- Makes sure the discourse stays relevant to the lesson's goals and progresses toward a meaningful conclusion.
The student is a leader, partner, problem solver, and communicator, and performs the following actions-
- Presents and explains ideas, strategies, representations, and reasoning to peers.
- Seeks to understand the strategies, representations, and approaches of peers.

\section*{Math Practices and Processes}

\section*{Attend to Precision}

Attending to precision refers to any action or habit of being accurate, clear, and on point. For example, when students attend to precision, they use care in computations and check their answers, pay attention to units while reasoning about problems, use the clearest possible language to explain ideas, and label representations accurately to connect them to the quantities and relationships in problems. Teachers help students develop the habit of attending to precision by being accurate themselves in their discussions and by requiring it of them in all discourse and classroom activity.
To help students develop the habit of attending to precision, assign tasks that require precision and set clear expectations.

For example:
- Have students talk about their representations with area models and decimal grids.
- Have students discuss how they estimate products, how they know their estimates are reasonable, and how far away a reasonable answer could be from an estimate.
- Have students explain the thought process they use to label their area representations.
- Pay attention to whether and how students attend to the units in the problems they solve and ask them questions that lead to thinking about units.
- Have students describe the pattern they discovered in the position of the decimal point in products.

\section*{Social and Emotional Learning}

\section*{What Skills Will We Develop?}
- Social Awareness - Empathy (Lesson 6-1): Students who can empathize with others are more able to build positive relationships.
- Relationship Skills - Build Relationships (Lesson 6-2): Building positive relationships can help establish a strong classroom community.
- Self-Awareness - Self-Confidence (Lesson 6-3): Self-confident students are more willing to take risks, allowing them to learn from mistakes.
- Self-Management - Manage Stress (Lesson 6-4): Students who can regulate their stress are resilient and better prepared for academic success.
- Responsible Decision-Making - Evaluate (Lesson 6-5): When students evaluate their own logic and reasoning, they can develop understanding that helps them make informed decisions.
- Social Awareness - Appreciate Diversity (Lesson 6-6): When students appreciate diversity, they create a stronger, more inclusive classroom community.

\section*{Unit Overview}

\section*{Language of Math}

\section*{Vocabulary}

Students will be using these key terms in this unit.
- Estimate - (Lesson 6-2): Students were introduced to this term in the context of solving word problems involving all four operations. Have students discuss how estimation can help them evaluate the reasonableness of a solution.
- Exponent - (Lesson 6-1): Students are familiar with this term from their work with place value and expanded form. They know it as a raised number placed next to 10 to tell the number of factors of 10 needed to make products of 100,1000 , and so on. Students use the exponent to determine the number of zeros in those products.
- Partial products - (Lesson 6-4): Students were introduced to this term in the context of multiplication in Grade 4. They learned partial products as the terms they generate using the Distributive Property.
- Range \({ }^{*}\) - (Lesson 6-2): Students are introduced to this term in the context of a range of numbers used for factor pairs. A range gives two numbers between which acceptable values fall.
*This is a new term.

\section*{Math Language Development}

\section*{A Focus on Reading}

In many respects, reading in math is the same as reading in any academic discipline. In some ways, reading in math is different and requires different or additional strategies.

Consider these unique characteristics of mathematics text.
- Math text is conceptually dense. A single sentence or equation might communicate multiple layers of interdependent content.
- Math text looks different. It includes prose, equations, graphs, tables, symbols, and other means for communicating ideas.
- Math ideas in instructional texts are developed differently. They are developed in a logical progression with the conclusion at the end.
- Math is a language that uses many words common to everyday texts but with different meanings.
- Math requires students to interpret real-world contexts using abstract methods.

The teacher plays a supportive role. Instruction should give attention to the strategies that students can use to read the language more effectively. As a facilitator, interact with students before, while, and after they read.

Before reading-
- If the passage or problem has a title or other telling features, ask students to use them to predict what the content is about.
- Have students tell whether the passage or problem looks like anything they have encountered before.

\section*{While reading-}
- Have students restate the content in their own words.
- Have students notice the ways that new ideas are built on familiar ones.

After reading-
- Check with students that the problem or passage makes sense to them.

\section*{English Language Learner}

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to multiplying decimals. Because many of the words (using, cost, efficient), phrases (similar to), and structures (by + -ing verbs, if...[then]...) used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

\section*{Lesson 6-1 - using to express how}

Lesson 6-2 - by + -ing verbs to answer how questions
Lesson 6-3-costs
Lesson 6-4 - similar to
Lesson 6-5 - if...(then)...
Lesson 6-6-efficient

\section*{Unit Routines}

\section*{Number Routines}

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

\section*{What's Another Way to Write It?}

Purpose: Build flexibility with number sense and mental math operations. Overview: Given a number, students generate and share expressions using operations that, when evaluated, have the same value as the number. Students then look for relationships amongst the expressions.

\section*{About How Much?}

Purpose: Build estimating skills.
Overview: Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

\section*{Find the Missing Values}

Purpose: Build identification of patterns and efficiency with solving equations while examining a list of related equations.
Overview: Students analyze a series of equations to look for patterns that they can use to determine the missing values in the equations. As students share their analyses and solutions, the teacher can reveal the missing values.

\section*{Where Does It Go?}

Purpose: Build estimating skills using benchmarks.
Overview: Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

\section*{? Sense-Making Routines}
- Notice \& Wonder: What do you notice? What do you wonder? (Lesson 6-1) In this lesson, students are presented with two sets of equations to think about multiplication and the patterns it creates.
- Notice \& Wonder: How are they the same? How are they different? (Lesson 6-3) Students compare two dozen eggs to see how they are alike and how they are different.
- Which Doesn't Belong? (Lesson 6-4) Students explore the relationships between numbers with common digits but different place values to determine which value has the digits in a different order.
- Is It Always True? (Lesson 6-5) Students are provided with a scenario where they have to consider what happens to a product when a factor is multiplied by a power of ten.
- Numberless Word Problem (Lessons 6-2 and 6-6) Students are presented with a problem where they need to multiply decimals, but they are not given any numbers. They have to think through what information they would need and how they would solve the problem.

\section*{Mis Math Language Routines}

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. For more information on the Math Language Routines, see the Appendix.
- Lesson 6-1 - Students participate in MLR2: Collect and Display and MLR1: Stronger and Clearer Each Time.
- Lesson 6-2 - Students participate in MLR5: Co-Craft Questions and Problems.
- Lesson 6-3 - Students participate in MLR8: Discussion Supports and MLR6: Three Reads.

\footnotetext{
- Lesson 6-4 - Students participate in MLR7: Compare and Connect.
- Lesson 6-5 - Students participate in MLR8: Discussion Supports and MLR7: Compare and Connect.
}
- Lesson 6-6 - Students participate in MLR1: Stronger and Clearer Each Time.

\section*{Unit 6}

\section*{How Ready Am I?}

Name
1. The height of a room is 3.28 meters. What is this measurement rounded to the nearest whole number of meters?
A. 2 meters
B. 3 meters
C. 4 meters D. 5 meters
2. What is \(15 \times 1,000\) ?
A. 150,000
(B.) 15,000
C. 1,500
D. 150
3. What is the value of \(10^{\circ} 7\)
(A.) 10.000
B. 4,000
C. 1,000
D. 40
4. What is \(1579 \times 8\) ?
A. 8,362
(B.) 12.632
C. 1,587
D. 13,332
5. What is \(28 \times 69\)
A. 97
B. 420
(C. 1,932
D. 1,462
6. Ahmed delivers 175 newspopers to each of 8 stores every morning. What is the total number of newspapers Ahmed debliers every morning?
A. 1,373 newspapers
B. 1,380 newspapers
C. 1,400 newspapers
D. 1,500 newspapers
7. Which sum is equivilent to \(47 \times 6\)
A. \(24+42\)
B. \(24+420\)
C. \(240+42\) D. \(240+420\)
8. What number is represented by the decimal grid?

(A) 0.83
B. 6.3
C. 0.063
D. 6.03
9. What number is represented by the decimal gid?

A. 0148
B. 14.08
(C.) 1.48
D. 14.8
10. Which sum is equivalent to \(87 \times 54\) ?
A. \(40+35+32+28\)
B. \(400+350+32+28\)
C. \(4,000+350+320+28\)
D. \(4,000+3,500+320+280\)

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

\section*{Targeted Intervention}

III Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

Item Analysis
\begin{tabular}{|c|c|c|c|c|}
\hline Item & DOK & kill & Guided Support Intervention Lesson & Standard \\
\hline 1 & 2 & Round to nearest whole number & Round Decimals to Nearest Whole > 1 & 5.NBT.A. 4 \\
\hline 2 & 2 & Multiply by power of 10 & \begin{tabular}{l}
ntroduction to \\
Powers of Ten
\end{tabular} & 5.NBT.A. 2 \\
\hline 3 & 2 & Powers of 10 & Powers of 10 (Exponents) & 5.NBT.A. 2 \\
\hline 4 & 2 & Multiply 4-digit by 1-digit whole numbers & Multiply 4- by 1-Digit Numbers & 4.NBT.B. 5 \\
\hline 5 & 2 & Multiply 2-digit by 2-digit whole numbers & Partial Products (2- by 2-Digit Numbers) & 4.NBT.B. 5 \\
\hline 6 & 2 & Multiply 3-digit number M by 1-digit number & Multiply 3- by 1-Digit Numbers & 4.NBT.B. 5 \\
\hline 7 & 2 & Multiplication as partial products & Multiply 2 - by 1-Digit Numbers & 4.NBT.B. 5 \\
\hline 8 & 1 & Identify decimal number from decimal grid & \begin{tabular}{l}
Standard \& Word \\
Form (Large Numbers)
\end{tabular} & 5.NBT.A. 3 \\
\hline 9 & 1 & Identify decimal number from decimal grid & Standard \& Word Form (Large Numbers) & 5.NBT.A. 3 \\
\hline 10 & 2 & Multiplication as partial P products & artial Products (2-by 2-Digit Numbers) & 4.NBT.B. 5 \\
\hline
\end{tabular}

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit Opener}

\section*{Focus Question}

Introduce the Focus Question: What strategies can I use to multiply decimals? Ask students to think about what they know about multiplication.
-What strategies did you use to multiply whole numbers?
- How do you think multiplying decimals will be different?

Remind students that at the end of the unit, they will reflect back on what they learned in this unit.

\section*{Family Letter}

Each letter presents an overview of the math in the unit and home activities to support student learning.

\section*{STEM in Action}

\section*{Videos}

Students can watch the two STEM videos.
STEM Career: Geologist Maya talks about her aspirations to be a geologist.
Maya Finds the Weight of Boulders Maya talks about how to find the weight of several boulders.

\section*{STEM Project Card}

Students can complete the STEM Project Card during their workstation time.

\section*{STEM Adventure}

Students can complete the STEM Adventure during their workstation time.


STEM Career: Geologist



\section*{Ignite!}

\section*{Area and Decimal Multiplication}

Students apply their knowledge of area as they explore preliminary work with decimal multiplication and the intuitive placing of the decimal point in a product.

Materials: scissors, plain paper per student
1. Have students work in pairs to observe Rectangles \(\mathrm{A}, \mathrm{B}\), and C .
- Which rectangle do you think has the greatest area? Why?
- Which rectangle do you think has the least area? Why?
2. Have students trace Rectangles A, B, and C onto their own paper.

Then have students cut the copied rectangles and trace them onto the grid.
- Each square on the grid paper has an area of 1 square unit. Use the grid paper to help you find out the area of each rectangle.
3. Select a few students to explain how they found the area of each rectangle. Make sure the class agrees on the area of each rectangle.
- How did your original guesses compare with the areas that you found?
4. What are the dimensions of Rectangle \(A\), using decimals?
- To find \(1.5 \times 3\), think: How much is 3 , and half of 3 more?
- How does that result compare to the area of Rectangle A that you traced on the grid paper?
5. Mention that if we were to multiply the dimensions of Rectangle A without regard to the decimal point, we would obtain \(15 \times 3=45\).
- Where would the decimal point need to go in 45 so that it matches the area of Rectangle A?
- So, what is the product \(1.5 \times 3\) ?
6. Repeat Steps 4 and 5 for Rectangles \(B\) and \(C\).

For Rectangle B, students observe that the product of the dimensions without regard to the decimal points is \(15 \times 25=375\). Based on the area of Rectangle B, students should conclude that to find the product \(1.5 \times 2.5\), they should place the decimal point between the 3 and the 7 to produce 3.75 . So, \(1.5 \times 2.5=3.75\).
For Rectangle C , students observe that the product of the dimensions without regard to the decimal point is \(125 \times 4=500\). Based on the area of Rectangle C, students should conclude that to find the product \(1.25 \times 4\), they should place the decimal point between the 5 and the 0 to produce 5.00 , or 5 . So, \(1.25 \times 4=5.00\), or 5 .

\section*{Unit Resources At-A-Clance}

\section*{Workstations}

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.


\section*{Additional Resources}

Use the resources below to provide additional support for this unit.

\section*{Vocabulary}

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the new terms on the front side of the card.


\section*{Foldables}

Use the unit foldables with Lessons 6-3 and 6-4.


\section*{Spiral Review}

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.
\begin{tabular}{l|l|}
\hline Lesson & Standard \\
\hline \(6-1\) & 5.MD.C.4 \\
6-2 & 5.NBT.B.5 \\
\(6-3\) & 5.NBT.A.2 \\
6-4 & 5.MD.C.3 \\
6-5 & 5.NBT.A.1 \\
6-6 & 5.NBT.B.7 \\
\hline
\end{tabular}

\title{
Patterns When Multiplying Decimals \\ by Powers of 10
}

\section*{Learning Targets}
- I can use patterns to multiply a decimal by a power of 10 .
- I can explain patterns when multiplying a decimal by a power of 10 .

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.A Understand the place value system.
\(\diamond\) 5.NBT.A. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10.

\section*{Math Practices and Processes}

MPP Attend to precision.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objectives}
- Students use patterns to multiply a decimal by a power of 10 .
- Students explain patterns when multiplying a decimal by a power of 10 .

\section*{Language Objectives}
- Students explain how to use patterns to multiply a decimal by a power of 10 with the gerund using.
- To support maximizing linguistic and cognitive meta-awareness and optimizing output, ELs participate in MLR2: Collect and Display and MLR1: Stronger and Clearer Each time.

\section*{SEL Objective}
- Students recognize and work to understand the emotions of others and practice empathetic responses.

\section*{Next}
- Students will estimate products of decimals to assess calculated solutions (Lesson 2).
- Students will write and evaluate numerical expressions involving whole-number exponents (Grade 6).

\section*{Coherence}
\begin{tabular}{|c|c|c|}
\hline Previous & Now & Next \\
\hline \begin{tabular}{l}
- Students determined that a digit in one place represents ten times what it represents in the place to its right (Grade 4). \\
- Students multiplied multi-digit whole numbers (Unit 5).
\end{tabular} & - Students use their knowledge to create strategies based on place value to multiply decimals by powers of 10 . & \begin{tabular}{l}
- Students will estimate products of decimals to assess calculated solutions (Lesson 2). \\
- Students will write and evaluate numerical expressions involving whole-number exponents (Grade 6).
\end{tabular} \\
\hline
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students understand multiplying decimals by powers of 10 using strategies based on place value, properties of operations, and patterns in the powers of 10 .

\section*{Procedural Skill \& Fluency}
- Students develop proficiency in multiplying decimals to hundredths by powers of 10 .

\section*{Application}
- Students apply their understanding to solve contextual problems.

Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms \\ exponent \\ Academic Terms \\ factor analyze \\ product}

\section*{Materials}

The materials may be for any part of the lesson.
- calculator
- number cubes: 1 whole number cube,

1 decimal cube
- place-value charts

\section*{Number Routine} What's Another Way to Write It? © \({ }^{5-7 \mathrm{~min}}\)

Build Fluency Students build number sense as they write three different expressions equivalent to 13.75 .

Remind students that there will be many different possible answers to the problem. As solutions are given, record them for students to evaluate and compare.

These prompts encourage students to talk about their reasoning:
- Which of the expressions that you wrote are related? Why?
- Explain how you can use one expression to create a new expression.
- Do you notice any patterns? Explain.

Purpose Students notice patterns of zeros when multiplying whole numbers by powers of 10 and consider whether that pattern extends to decimals.

\section*{Notice \& Wonder}
-What do you notice? What do you wonder?
Teaching Tip You may want to have students work in pairs as they notice and wonder. This can help build a productive question and ponder environment that fosters further points of notice and questions for exploration as they collaborate ideas.

\section*{GIP \\ Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how to use patterns to multiply decimals by powers of 10 and are based on possible comments and questions students that may make during the share out.
- Do you think any patterns you noticed work for decimal numbers?
- How do think the patterns might work for decimal numbers?

\section*{Math is... Yindset}
- How can working with your peers help when solving problems?

\section*{SED Social Awareness: Empathy}

As students work through the Notice \& Wonder routine, invite them to collaborate with peers to think about multiplication patterns. Encourage students to share ideas and work together to identify the problem, choose an appropriate model or strategy, and execute the steps necessary to solve the problem.

\section*{Transition to Explore \& Develop}

Have students think about multiplication patterns involving the relationship between the zeros and the powers of 10 as they consider the equations. Guide them toward discussing the effects on place value in the products.
ETP Establish Mathematics Goals to Focus Learning
- Let's think about how to use patterns to multiply decimals by powers of 10 .


\section*{Eie Curious}



\section*{(1) Pose the Problem}

\section*{MLR Collect and Display}

As students discuss the questions, make a list of key words and phrases you hear, such as exponent, factor, product, place-value, decimals, and patterns. Display the list and use these expressions to help students connect words they already know and math vocabulary.

\section*{Pose Purposeful Questions}
- Will the powers of 10 represent large or small values? Explain.
- What techniques did you use to solve similar problems in the past?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets} your instructional goals.

\section*{KIR \\ Stronger and Clearer Each Time}

Pair students and have them work together to solve a problem multiplying by powers of 10 . Have them individually write sentences explaining how they used patterns to help them solve the problem. Then have them share their writing with their partner, and if needed, refine their writing. Revisit the task throughout the lesson for reinforcement.

\section*{3 Bring It Together}

\section*{EIP Elicit and Use Evidence of Student Thinking}
- How would you explain to someone what multiplying a decimal by a power of 10 does to the digits in the number?

\section*{Key Takeaway}
- Multiplying a decimal by a power of 10 results in a discernable pattern - the digits of the decimal shift left the same number of places as the power.

\section*{Work Together}

Students use their knowledge of multiplication patterns involving powers of 10 to find the value of three expressions. Students can work on the activity in pairs before sharing their work.
- Common Error Students may be tempted to ignore the decimal point and add the number of zeros equal to the exponent to the end of the number. Invite students to ask, "Does this make sense?" if they are making this error.

\section*{LOM Language of Math}

Remind students that, while they might use the word power in daily conversation to describe a superhero or electricity, power has a specific mathematical meaning, too. Explain that \(10^{5}\) can be read " 10 to the fifth power."

\section*{Activity-Based Exploration}

Students explore place-value patterns when multiplying by powers of 10 and use their patterns to multiply decimals by powers of 10 .

Materials: calculator
Directions: Students enter any decimal number on the calculator (e.g. 1.45), then multiply their decimal by 10 . Have them predict the product before they press the equal key. Students continue to multiply by 10 mentally, challenging themselves to predict the product before they press the equal key.

\section*{EIP Implement Tasks That Promote Reasoning and Problem Solving}
- How did you use mental math to predict the product?
- What happens to the digits each time the number is multiplied by 10 ?
-What are some ways to record your work to look for patterns?
- How could you summarize the results to predict how multiplying a decimal by a power of 10 affects the decimal value?

\section*{Math is... Ytructure}
- How are multiplying decimals and whole numbers by 10 similar?

Students use patterns to connect what happens when whole numbers are multiplied by a power of 10 to what happens when decimals are multiplied by a power of 10 .

Activity Debrief: Have students share their findings when repeatedly multiplying by 10 . Encourage students to write their multiplication expressions by writing the powers of 10 in exponential form. Discuss the relationship between the exponent and the number of places the digits shifted.

Have students revisit the Pose the Problem question and discuss answers.
- How can you determine the value of these expressions?

\section*{Guided Exploration}

Students write out the factors of 10 to multiply a decimal by a power of 10 to explore and recognize patterns.

\section*{EIP Facilitate Meaningful Mathematical Discourse}

Have the students find the product of 1.4 and 10. Ask:
- How can you use decimal grids, equal groups, or place value to find the product?
(1) Have the students find the product of 14 and \(10^{4}\) Ask:
- How can you use the patterns you have seen to find the product?
- Think About It: Can you think of additional ways to write \(1.4 \times 10^{4}\) ?
(8) Have the students justify the ways of writing \(2.4 \times 10^{3}\). Ask: -What is the exponent? How do you know?
- How many zeros will there be? How do you know?
- What happens to the digits in 24 ?

\section*{Math is... Structure}
- How are multiplying decimals and whole numbers by 10 similar?

Students use patterns to connect what happens when whole numbers are multiplied by a power of 10 to what happens when decimals are multiplied by a power of 10 .

\section*{2. Develop the Math}

Let's determine the distance from Tamara's


Bridging/Reaching Instruct students to use the gerund using in their response to the Math Is...Structure question on the Learn page. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding, and explaining why something may be incorrect. For example, No, that's wrong because.... or No, that's incorrect because....

\section*{Practice \& Reflect \({ }_{10}\) min}


\section*{Practice}

ETP Build Procedural Fluency from Conceptual Understanding
1 Common Error: Exercises 1-4 Students may confuse the notation for multiplication with factors of 10 with the normal order of operations. Watch for students first multiplying the value by 10 , and then raising the result to the given power. You may want to remind students that the exponent is only applied to the 10 , and not the entire expression.

Item Analysis
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 1 & Procedural Skill and Fluency \\
\(5-8\) & 2 & Application \\
\(9-12\) & 1 & Procedural Skill and Fluency \\
13 & 4 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you explain what it means to multiply a decimal by a power of 10 ?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did working with your peers help when solving problems?

Students reflect on how they practiced social awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use patterns to multiply a decimal by a power of 10 .
- I can explain patterns when multiplying a decimal by a power of 10 .

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|c|}{ Item } & pOK Skill & Standard \\
\hline 1 & 2 & Multiplying decimals by powers of 10 & 5.NBT.A.2 \\
2 & 2 & Multiplying decimals by powers of 10 & 5.NBT.A.2 \\
3 & 2 & Multiplying decimals by powers of 10 & 5.NBT.A.2 \\
4 & 2 & Multiplying decimals by powers of 10 & 5.NBT.A.2 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

4 of 4 Additional Practice or any of the or \(\boldsymbol{B}\) activities
3 of 4
2 or fewer of 4
Take Another Look or any of the Bactivities
Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce UnderstandingBuild ProficiencyExtend Thinking



\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Multiply by Powers of 10
(Decimal Point)


Differentiation Resource Book, p. 51

\section*{Lesson 6-1 - Reinforce Understanding}

\section*{Patterns When Multiplying Decimals by Powers of IO}

Name

\section*{Review}

You can use pattens when multiplying decinais by powers of 10 . \(73 \times 10^{\prime}=73 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\) \(=(73 \times 10) \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\) \(=(73) \times 10 \times 10 \times 10 \times 10 \times 10 \times 10\)
\(=73.000 .000\)
Write the multiplication using factors of 10 . Then find the value.
\begin{tabular}{l|l}
\begin{tabular}{ll} 
1. \(5.7 \times 10^{4}=\frac{57,000}{}\) & 3. \(8.4 \times 10^{4}=\frac{84,000}{5.7 \times 10 \times 10 \times 10 \times 10}\) \\
\begin{tabular}{ll}
\(8.4 \times 10 \times 10 \times 10 \times 10\) \\
\(2 . ~\) & \(10 \times 10^{3}=\frac{9,100}{} \times 10 \times 10 \times 10\)
\end{tabular} & 4. \(2.5 \times 10^{2}=\frac{250}{}\) \\
\begin{tabular}{ll}
\(9.5 \times 10 \times 10\)
\end{tabular} \\
Use patterns to help you find the value of each expression.
\end{tabular}
\end{tabular}
5. \(13 \times 10^{7}=130\)
\(13 \times 10^{3}=1,300\)
\(1,3 \times 10^{4}=13,000\)
6. \(27 \times 10^{\prime}=27\)
\(27 \times 10^{2}=270\)
\(2.7 \times 10^{1}=2.700\)
7. \(6.4 \times 10^{1}=6,400\) \(6.4 \times 10^{4}=64,000\) \(6.4 \times 10^{7}=640,000\)
8. \(4.5 \times 10^{7}=450\) \(4.5 \times 10^{1}=4.500\) \(4.5 \times 10^{4}=45,000\)

\section*{Build Proficiency}

Practice It! Game Station
Multiply by Powers of 10 Showdown
Students practice multiplication of decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 51-52

\section*{Lesson 6-4}

\section*{Additional Practice}

Name

\section*{Review}

You can multiply a decimal by a power of 10 .
There are \(6.3 \times 10^{1}\) people at the foothell gwne. How many people are at the game?
The exponent 3 tets you by how many factors of 10 to multiply the number. Muitiply 6.3 by three factors of 10 .
\(6.3 \times 10^{\prime}=6.3 \times 10 \times 10 \times 10=6.300\)
There are 6.300 people at the lootball game.
Write the multiplication using factors of 10 . Then find the value.
\[
\begin{array}{ll}
\begin{array}{ll}
1.18 \times 10^{\prime} & 2.6 .4 \times 10^{\prime} \\
1.8 \times 10 \times 10 \times 10 ; & 6.4 \times 10 \times 10 ; \\
1,800 & 640 \\
& \\
3.37 \times 10^{2} & 4.5 .9 \times 10^{\prime} \\
3.7 \times 10 \times 10 \times 10 \times 10 ; & 5.9 \times 10 \times 10 \times 10 ; \\
37,000 & 5,900
\end{array} \\
& \\
\text { 5. The distance between two cities is about 14 } \times 10^{\prime} \\
\text { how many miles apart are the two cities? about } 1,400 \text { miles }
\end{array}
\]

Unit 6 • Multiply Decimals

\section*{Own It! Digital Station \\ Build Fluency Games}

Assign the digital game to develop fluency with multiplication of multi-digit numbers.

\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 51-52
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Use patterns to help you find the value of each expression.} \\
\hline 6. \(5.2 \times 10^{1}=520\) & 2. \(97 \times 10^{\prime}=\) & 97 \\
\hline \(5.2 \times 10^{\prime}=5,200\) & \(97 \times 10^{\prime}=\) & 970 \\
\hline \(52 \times 10^{2}=52,000\) & \(97 \times 10^{1}=\) & 9,700 \\
\hline 8. \(2.6 \times 10^{\prime}=2,600\) & 9. \(6.1 \times 10^{2}=\) & \\
\hline \(2.6 \times 10^{\prime}=26,000\) & \(61 \times 10^{\prime}=\) & 6,100 \\
\hline \(26 \times 10^{\prime}=260,000\) & \(61 \times 10^{\prime}=\) & 61,000 \\
\hline
\end{tabular}
10. The diameter of the Earth me the equator is aboun \(79 \times 10^{\prime}\) miles About how many miles is the diameter of the Earth? about 7,900 miles
11. Rosa hiked \(1.3 \times 10^{\prime}\) meters betore stopping for a water break Alvin hiked \(94 \times 10^{\prime}\) meters before stopping for water Who hiked tarther before stopping? How do you know? Rosa; Sample answer: Rosa hiked 1,300 meters and Alvin hiked 940 meters, and \(1,300>940\).
12. Keny is running in a tok roce. The coune covers a total distance of \(1 \times 10^{\prime}\) metors. Ater one houk, Kenif has fun \(3.2 \times 10^{\prime}\) meters. How much tarther does Kenji huve to run to complete the race? White the answer in standord form and as a decimal mutipied by a power of to. 6.800 meters; \(6.8 \times 10^{7}\) meters

\section*{Extend Thinking}

\section*{Use It! Application Station}

Move to the Left. Now Right! Students
create a maze and write step-by-step
directions for getting through the maze.
The content of this card has concepts covered later in Lesson 6-3. You may want to assign this card to students
 ready to explore content covered
later in this unit.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 52

Lesson 6-1-Extend Thinking
Patterns When Multiplying Decimals by Powers of 10
Nome
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Metric Comversions} \\
\hline 1 centimeter \(=10\) millimeters & \(1 \mathrm{~cm}=10 \mathrm{~mm}\) & \(1 \mathrm{~cm}=90 \mathrm{~mm}\) \\
\hline 1 metor \(=300\) centimetors & \(1 \mathrm{~m}=100 \mathrm{~cm}\) & \(1 \mathrm{~mm}=50^{7} \mathrm{~cm}\) \\
\hline klompter \(=1000\) meters & \(1 \mathrm{~km}=1000\) & \(1 \mathrm{~km}=10^{2} \mathrm{~m}\) \\
\hline
\end{tabular}
Complete the following conversions. Write the multiplication using factors of 10 . Then find the value. Show your work.
1. 5.4 kjometers \(=5,400\) meters \(5.4 \times 10^{3}=5.4 \times 10 \times 10 \times 10\)
2. 0.9 centimeters \(=9 \quad\) milimeters \(0.9 \times 10\)
3. 176 metors \(=\quad 1,760\) centinuters \(17.6 \times 10^{2}=17.6 \times 10 \times 10\)
Use conversiens to help decide the relationship \((k,=\), or \(>\) )
4. \(450 \mathrm{~m}=0.45 \mathrm{~km}\) \(0.45 \mathrm{~km}=0.45 \times 10^{2} \mathrm{~m}=450 \mathrm{~m}\)
5. 3.215 mm \(\qquad\) \(-321 \mathrm{~cm}\) \(321 \mathrm{~cm}=321 \times 10 \mathrm{~m}=3,210 \mathrm{~mm}\)
6. \(90,000 \mathrm{~cm}\) \(\qquad\) 9 km \(9 \mathrm{~km}=9 \times 10^{2} \mathrm{~m}=9,000 \mathrm{~m} ; 9,000 \mathrm{~m}\) \(=9,000 \times 10^{2} \mathrm{~cm}=900,000 \mathrm{~cm}\)

Math
© Home Activity




\section*{Estimate Products of Decimals}

\section*{Learning Targets}
- I can explain how to estimate products of two decimals.
- I can use an estimated product to make predictions about a calculated solution.
- I can estimate products of decimals to assess if calculations are reasonable.

\section*{Standards \(\diamond\) Major \(\triangle\) supporting \(O\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Reason abstractly and quantitatively.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objectives}
- Students estimate products of decimals.
- Students use estimated products to make predictions about a calculated solution.
- Students use estimated products to assess the reasonableness of a calculated solution.

\section*{Coherence}

\section*{Previous}
- Students added and subtracted multi-digit whole numbers (Grade 4).
- Students created place-value strategies to multiply decimals by powers of 10 (Lesson 1 ).

\section*{Language Objectives}
- Students discuss how to estimate products of two decimals using \(b y+\) gerund.
- To support optimizing output, ELs participate in MLR5: Co-Craft Questions and Problems.

\section*{SEL Objective}

Students engage in active listening and work collaboratively with a partner to complete mathematical tasks.

\section*{Now}
- Students estimate products of decimals to assess if calculated solutions are reasonable.

\section*{Next}
- Students will represent multiplication of decimals using decimal grids (Lesson 3).
- Students will add, subtract, multiply, and divide using the standard algorithm (Grade 6).

\section*{Rigor}

\section*{Conceptual Understanding}
- Students extend their understanding of estimation as a strategy for determining whether products are reasonable.

\section*{Procedural Skill \& Fluency}
- Students build proficiency estimating products of decimals.

\section*{Application}
- Students find products to solve real-world problems.
Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ estimate \\ Academic Terms \\ range \\ cite \\ round
}

\section*{Materials}

The materials may be for any part of the lesson.
- Blank Open Number Lines Teaching Resource
- number cubes sense as they estimate the difference of two 2-digit decimal numbers.

Remind students that this is a mental activity, and exact answers are not needed.

These prompts encourage students to talk about their reasoning:
- How did you determine your estimate?
- Was your strategy the same or different for each expression? Why?
-What is a different way you could estimate the difference?

Purpose Students realize they need the price of gas per gallon, the number of gallons she needs, how much money she has, and to estimate a product of decimals to solve the problem.

\section*{Numberless Word Problem}
-What math do you see in this problem?
Teaching Tip You may want to have students to first come up with their own noticing and wondering. Then have students form small discussion groups where they can share their comments and questions about the map.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how to estimate products of decimals and are based on possible comments and questions that students may make during the share out.
- What operation would you use to solve this problem? Explain.
- Do you need an exact answer to solve this problem? Explain why or why not?

\section*{Math is... Gindset}
-What are some ways you or your classmates can contribute to the group today?

SEL

\section*{Relationship Skills: Build Relationships}

Help students identify and understand the value of their role(s) within the class community. As students collaborate in small groups to complete the Numberless Word Problem routine, invite each student to acknowledge the value of each group member. As students discuss what they notice and wonder, have them identify their peers' as well as their own contributions to the collaborative group effort.

\section*{Transition to Explore \& Develop}

Ask questions to get students thinking about the uses of estimates. Guide the discussion to have students think about reasonableness. Students might notice that different estimating strategies will lead to different estimates, and if so, allow it to become part of the conversation.
EIP Establish Mathematics Goals to Focus Learning
- Let's think about how we might estimate the product of two decimals, and how we could use the estimate.


\section*{Learn}


One Way Estimate by rounding.
78 rounds to \(8 . \quad 2.32\) rounds to 2 .
\(2 \times 8=16\)
Sadie will pay about \(\$ \% 6\) for gas.


Math is. Choosing Tools Why is a range heloful when estimating?

A reasonable estimate is between \(\$ 14\) and \(\$ 24\).
Sadle colculated that the total cost is \(\$ 18.50\). This is reasonable because it is within the range of \(\$ 14\) to \(\$ 24\) and close to \(\$ 16\).

You can use rounding or finding a range to estimate. You can sae an estimate to assess the reasonableness of an answer.

\section*{Q Work Together}
```

Is this answer reasonable? Explain your thinking

```
    \(5 \times 278 \stackrel{2}{=} 1,390\)

No; Sample answer: A reasonable estimate for the product is between 125 and 150 .


\section*{(1) Pose the Problem} EIP

\section*{Pose Purposeful Questions}
-Why might Sadie want to estimate the total cost?
- How will the total cost be related to the price per gallon and number of gallons?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{KIR}

\section*{Co-Craft Questions and Problems}

Pair students and have them co-create and solve a problem similar to the one on the Learn page, then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of four to check solutions and correct any mistake. Revisit the task throughout the lesson for reinforcement.

\section*{3 Bring It Together}
- How can you use estimates when multiplying decimals?
- How is estimating the products of whole numbers similar to estimating the products of decimal numbers? How is it different?

\section*{Key Takeaways}
- Estimating products helps make predictions about a calculated solution.
- Estimating products helps assess the reasonableness of a calculated solution.
- Strategies used to estimate products of whole numbers, such as rounding, compatible numbers, and front-end estimation, can also be used to estimate products of decimals.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of how to assess the reasonableness of the product of decimals. Have students work on the activity in pairs before asking them to explain whether the answer provided is reasonable.
4. Common Error Students may miss the decimal point in 27.8 and round 278 to 280 or 300 to estimate the product instead of multiplying 5 by 27 , 28 , or 30 .

\section*{LOM Language of Math}

Have students share examples of situations in their life outside of school where they make estimates and how they make them. Make sure they include math language like rounding or compatible numbers, and use it correctly.

\section*{Activity-Based Exploration}

Students explore whether an estimated product is greater than or less than an actual product based on comparing factors.

Directions: Display an expression, such as \(5.6 \times 3.9\). For each of the estimates below have students decide whether the product will be greater than or less than the calculated solution. Students should explain their reasoning.
\[
\begin{array}{ll}
5 \times 3 & 6 \times 3 \\
5 \times 4 & 6 \times 4
\end{array}
\]

\section*{ETB Support Productive Struggle}
- How can you make an estimate that you know is greater than the calculated product?
- How can you make an estimate that you know is less than the calculated product?

Activity Debrief: Have students share their ideas about the estimated products. Facilitate a discussion to ensure that students understand that one estimate \((6 \times 4)\) is determined by rounding both factors to the nearest whole number. Two estimates ( \(5 \times 3\) and \(6 \times 4\) ) create a range for reasonable calculated products.

\section*{Math is... Choosing Tools}
-Why is a range helpful when estimating?
Students detect possible errors by strategically using estimation and other mathematical knowledge.

Have students revisit the Pose the Problem question and discuss answers.
- What are some ways to estimate the total cost?

\section*{Guided Exploration}

Students build on their understanding of multiplication of whole numbers to estimate products of two decimals.

\section*{EIP Facilitate Meaningful Mathematical Discourse}
- Think About It: What strategies do you know for estimating?
- How would you estimate the product of whole numbers?
- Explain why 7.8 rounds to 8 and 2.32 rounds to 2 .
(2. Have the students create the equation after rounding. Ask:
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

Make available the Blank Open Number Lines Teaching Resource for students to use as a tool to help them estimate. Ask:
- Between which two whole numbers is 2.32 ? How do you know?
- Between which two whole numbers is 7.8 ? How do you know?


Have the students use their estimate to assess the reasonableness of a calculated solution. Ask:
- If Sadie calculated the total cost to be \(\$ 18.10\), is her calculated solution reasonable? Why or why not?

\section*{Math is... Choosing Tools}
-Why is a range helpful when estimating?
Students detect possible errors by strategically using estimation and other mathematical knowledge.


\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding how to use by +- ing by expanding on what students learned using the gerund using in Lesson 1. Show students two tens rods. Say, I can make twenty by connecting two tens rods. Connect the two rods. Repeat the task twice with new objects, using by + ing. Finally, put a group of fifteen chips on the table. Write the following two sentences on the board: I can find out how many by counting the chips. I can find out how many by count the chips. Ask Which is correct? Accept pointing.

Developing/Expanding Support students in understanding how to use by +- ing by expanding on what students learned using the gerund using in Lesson 1. Show students two tens rods. Say, I can make twenty by connecting two tens rods. Connect the two rods. Repeat the task twice with new objects, using by + ing. Next, put a group of fifteen chips on the table. Provide the following sentence frame: I can find out how many___ (counting) the chips. Finally, have students find an example of this structure on the Learn page. ([You can] estimate by rounding.)

Bridging/Reaching Instruct students to explain how to do something using by + -ing. Allow students to interject, pointing out any mistakes that they may catch in structure, meaning or understanding. For example, No, you forgot to use by.... or No, you didn't use....

14. Arna has \(\$ 40\) ta spend an downioading music if each song costs \(\$ 129\), does she have enough money to downlond 16 songs? Explain now you can use estimation to solve.
Yes. Sample answer: 1.29 is between 1 and 2 ; \(16 \times 2=32\); So 16 songs will cost less than \(\$ 40\).
55. It the product reasonable? Explain:
\[
5.86 \times 9.3 \pm 64.5
\]

No, Sample answer: 5.86 is between 5 and \(6 ; 9.3\) is between 9 and 10; \(6 \times 10=60\); the product must be less than 60
16. STEM Connection Maya has 3.8 Brees of a solution. She needs 4.3 times more than she stready has. About how many ifers of the sobution does she need?
Sample answer: \(4 \times 4=16\); Maya needs about 16 liters of the solution.
17. Withe fwo expressions that could be uned to find a range of reasonabie estimates for the product \(10.25 \times 5.89\). Sample answer: \(10 \times 5\) and \(11 \times 6\)
18. Extend Your Thinking Write two mutiplication expressions so that when the product is estimated by iounding. the estimates we the arme Sample answer; \(3.2 \times 5.6\) and \(2.8 \times 6\)

\section*{(P) Reflect}

Why is estimating products af decimals nelphir? Answers will vary. What did you do to build a positive retationship with a classmate?

\section*{Practice}

EIP Build Procedural Fluency from Conceptual Understanding
Common Error: Exercises 7-12 Students may round each factor to the nearest whole number rather than thinking about which two whole numbers the decimals falls between.

\section*{Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-12\) & 1 & Procedural Skill and Fluency \\
\(13-14\) & 2 & Application \\
15 & 2 & Conceptual Understanding \\
16 & 2 & Application \\
\(17-18\) & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- Why is estimating products of decimals helpful?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did you or your classmates contribute to the group today?

Students reflect on how they developed stronger relationship skills.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain how to estimate products of two decimals.
- I can use an estimated product to make predictions about a calculated solution.
- I can estimate products of decimals to assess if calculations are reasonable.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.
Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|c|}{ Item } & pOK Skill & Standard \\
\hline 1 & 2 & Estimating products of decimals & 5.NBT.B.7 \\
2 & 2 & Estimating products of decimals & 5.NBT.B.7 \\
\hline 3 & 2 & Estimating products of decimals & 5.NBT.B.7 \\
4 & 2 & Estimating products of decimals & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

4 of 4 Additional Practice or any of the or \(\boldsymbol{B}\) activities
3 of 4
2 or fewer of 4
Take Another Look or any of the (3) activities Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Reasonable Estimates!}

Work with students in small groups. Provide each group with 3 number cubes. One student rolls a number cube to get a whole number. A second student rolls 2 cubes and uses the digits to make a decimal number that is less than 9.9. The numbers are recorded as a multiplication equation (e.g., \(6 \times 3.2\) ). The other students estimate the product. Have students explain how they found their estimates.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Estimate Products (Decimal Number Factors)


Differentiation Resource Book, p. 53

\section*{Lesson 6-2 - Reinforce Understanding}

\section*{Estimate Products of Decimals}

Nome

\section*{Review}

Estimate the product \(5.8 \times 10.23\) to the nearest whole number.
\(5.8>5.5\), so we will 1 ound it to 6.
\(10.2<10.5,50\) we will round a to 10 .
\(6 \times 10=60\), so will estimate the product \(5.8 \times 1023\) to be 60
Estimate each product by rounding to the nearest whole number.
```

1. 3.4\times723 about 21
2. }3975\times724\mathrm{ about }28
3. 782 \times5,44 about 40
4. }3015\times15.63\mathrm{ about 480
Estimate each product by finding a range. The first one is done for
you. Show your work.
5. }6.21\times78
6\times7=42 and 7\times8=56,
so6.21\times7.85 is between 42
and 56.
6. }819\times12.4
8\times12=96;9\times13=
117; between 96 and
1 1 7
7. }11.44\times5.8
11\times5=55;12\times6=
72; between }55\mathrm{ and 72
7. }30.29\times4.7
30\times4=120;31\times5=
155; between }120\mathrm{ and
155
```

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Estimating Decimal Products Bingo
Students practice finding estimated products.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 53-54

\section*{Lesson 6-2}

\section*{Additional Practice}

Name

\section*{Review}

You can use estimation to determine whether a solution is reasonable.
One pound of aimonds costs \(\$ 4.79\). Ebony buys 5.3 pounds of almonds. The castiet charges her \(\$ 253.87\). Should Eborly question the amount or just pay il?
Ebory can estimate the cost of the aimonds.
4.79 rounds to 5.5 .3 rounds to 5.5 ince \(5 \times 5=25\), Ebony should pay about \(\$ 25\) for the aimonds.
Ebony can atsp find a range of reasorable costs. 4.79 is botween 4 and \(5.5,3\) is between 5 and 6 . So a reasonable range is between \(4 \times 5\) and \(5 \times 6\). She will spend between \(\$ 20\) and \(\$ 30\) for the almonds.
Since the amount charged, \(\$ 253.87\), is not in the reasonable range, Ebony shouid question the amount.

Estimate each product by rounding. Show your work.
t. \(418 \times 6.86\)
2. \(2.73 \times 5.17\)
\(4 \times 7=28 ;\) about 28
\(3 \times 5=15\); about 15
3. \(3.6 \times 98\)
4. \(4.55 \times 72\)
\(4 \times 10=40\); about \(40 \quad 5 \times 7=35\); about 35

Unit 6 - Multiply Decimals

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication of multi-digit numbers.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


\section*{Student Practice Book, pp. 53-54}

Estimate each product by finding a range. Show your work.
```

5. 2.63\times7.2
6. }5.56\times18
2\times7=14:3\times8=24;
between 14 and 24
7.67\times98
6\times9=54;7\times10=70; 4\times4=16;5\times5=25;
between 54 and 70
5\times1=5;6\times2=12;
between 5 and 12
8. 4.1 < 4.58
```
9. Find it minge of reasonisie estimates for the product \(734 \times 4.78\) Explain how you found the range
Sample answer; between 28 and 40 ; Since 7.34 is between 7 and 8 and 4.78 is between 4 and 5 , the product lies in the range given by \(7 \times 4=28\) and \(8 \times 5=40\)
10. Gasolne costs \(\$ 2.86\) al the litirg station. Barb fills her car's lank with 8.73 gallons of fuel. About how much thould Barb expect to pary for the gas? Explain which estimation strategy you used. Sample answer about \(\$ 27\); 1 rounded each decimal to the nearest whole number to estimate, and \(3 \times 9=27\).
1t. Evelyn has \(\$ 30\) to spend on iunch meat for a tamily picnic. The unch meat costs \(\$ 579\) per pound. \$he estimates thot she will theed 725 pounds. Does she have enough money to buy all the lunch meat she reeds? Explain how you know.
No; Sample answer: Since 5.79 is between 5 and 6 and 7.25 is between 7 and 8 , the range of values for the exact cost is between \(5 \times 7\) and \(6 \times 8\), or between \(\$ 35\) and \(\$ 48\). Since Evelyn has only \(\$ 30\) to spend, she does not have enough money.

\section*{Use It! Application Station}

School Spirit Students use area and multiplication to create a school wall mural. The content of this card has concepts covered later in Lesson 6-4. You may want to assign this card to students ready to explore content covered
 later in this unit.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 54
Lesson 6-2-Extond Thinking
Estimate Products of Decimals
Name
Estimate the product of each expression by rounding. Then match up the estimates that are equal. The first one is done for you as an example. Show your work.
\begin{tabular}{|c|c|}
\hline Column A & Column 8 \\
\hline \[
\begin{aligned}
& 3.72 \times 5.6 \\
& 4 \times 6=24
\end{aligned}
\] & \[
\begin{array}{r}
5.74 \times 77 \\
6 \times 8=48
\end{array}
\] \\
\hline \[
\begin{aligned}
& 5.9 \times 7.81 \\
& 6 \times 8=48
\end{aligned}
\] & \[
\begin{aligned}
& 5.9 \times 5.18 \\
& 6 \times 5=30
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
413 \times 5.1 \\
4 \times 5=20
\end{array}
\] & \[
\begin{array}{r}
10.67 \times 4.2 \\
11 \times 4=44
\end{array}
\] \\
\hline \[
\begin{aligned}
& 10.98 \times 23 \\
& 11 \times 2=22
\end{aligned}
\] & \[
\begin{aligned}
& 39 \times 4.62 \\
& 4 \times 5=20
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 3.2 \times 11.41 \\
& 3 \times 11=33
\end{aligned}
\] & \[
\begin{aligned}
& 5.93 \times 4.1 \\
& 6 \times 4=24
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5.71 \times 4.8 \\
& 6 \times 5=30
\end{aligned}
\] & \[
\begin{array}{r}
71 \times 5.7 \\
7 \times 6=42
\end{array}
\] \\
\hline \[
\begin{aligned}
& 3.62 \times 10.8 \\
& 4 \times 11=44
\end{aligned}
\] & \[
\begin{array}{r}
7,43 \times 8.1 \\
7 \times 8=56
\end{array}
\] \\
\hline \[
\begin{aligned}
& 6.44 \times 74 \\
& 6 \times 7=42
\end{aligned}
\] & \[
\begin{aligned}
& 189 \times 112 \\
& 2 \times 11=22
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 8.2 \times 6.91 \\
& 8 \times 7=56
\end{aligned}
\] & \[
\begin{aligned}
& 10.61 \times 2.8 \\
& 11 \times 3=33
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Represent Multiplication of Decimals}

\section*{Learning Target}
- I can use decimal grids to help me represent and solve multiplication equations involving decimals.

\section*{Standards \(\circ\) major \(\triangle\) supporting \(\circ\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Model with mathematics.
MPP Use appropriate tools strategically.

\section*{Vocabulary}

\section*{Math Terms \\ decimal grid partition \\ Academic Terms complex negate}

\section*{Materials}

The materials may be for any part of the lesson.
- Blank Open Number Lines Teaching Resource
- \(10 \times 10\) Grids Teaching Resource
- number cubes

\section*{Focus}

\section*{Content Objective}
- Students use decimal grids to represent and solve multiplication equations involving decimals.

\section*{Language Objectives}
- Students discuss how to solve multiplication equations using decimal grids while answering Why and Yes/No questions.
- To support cultivating conversation and sense-making, ELs participate in MLR8: Discussion Supports and MLR6: Three Reads.

\section*{SEL Objective}
- Students identify personal traits that make them good students, peers, and math learners.

\section*{Coherence}
\begin{tabular}{l|l|l|}
\hline Previous & Now & Next \\
- Students added and subtracted & - Students represent multiplication & • Students will use multiplication \\
multi-digit whole numbers & of decimals using decimal grids. & \begin{tabular}{l} 
strategies to multiply decimals \\
to hundredths (Lesson 4).
\end{tabular} \\
\begin{tabular}{ll} 
(Grade 4).
\end{tabular} & - Students will add, subtract, \\
- Students estimated products of & & \begin{tabular}{l} 
multiply, and divide using the \\
decimals (Lesson 2).
\end{tabular} \\
& & standard algorithm (Grade 6). \\
\hline
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students develop understanding of multiplication of decimals by representing multiplication using equations and decimal grids.

\section*{Procedural Skill \& Fluency}
- Students develop proficiency in multiplying with decimals by using decimal grids.

\section*{Application}
- Students multiply with decimals to solve problems involving real-world contexts.
Application is not a targeted element of rigor for this standard.

\section*{Number Routine About How Much? \\ (1) 5 \\ 5-7 min}

Build Fluency Students build number sense as they estimate the difference of two 2-digit decimal numbers.

These prompts encourage students to talk about their reasoning:
- What did you do first to estimate the differences of each expression?
-What strategy did you use to estimate? How did you choose this strategy?
- What is another strategy to use in estimating the difference?

Purpose Students begin thinking of the "fraction of" concept that they will use to model a decimal times a decimal later. The dozen egg containers and the arrangement of the white/brown eggs mimic the grid model used when that is done.

\section*{Notice \& Wonder}
- How are they the same?
- How are they different?

Teaching Tip You may want to have students Think Pair Share to discuss how the eggs are the same and how they are different.

\section*{ERP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how to represent multiplication of decimals and are based on possible comments and questions that students may make during the share out.
-What fraction of the dozen eggs is brown?
- If there were 10 eggs instead of 12 in each container, how could you use decimals to describe the number of brown eggs?

\section*{Math is... Yindset}
- How can creative thinking help you solve a problem?

\section*{Self-Awareness: Self-Confidence}

As students work through the Notice \& Wonder routine, encourage creative thinking by inviting them to explore and consider alternative representations for multiplication. As a class, discuss some of the options students can use to represent multiplication. Then, have students check their answers using an alternative representation.

\section*{Transition to Explore \& Develop}

Ask questions to get students thinking about ways to represent multiplying decimals. Students might notice that they can use decimal grids in different ways to multiply with decimals.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about how we might represent multiplication of decimals.


\section*{Learn}

Jonah will make 5 turkey sandwiches. He will use 0.04 pound of lettuce for each sanowich, lettuce costs \(\$ 0.90\) per pound.

How can you determine the cost of lettuce for all 5 sandwiches?
You can use decimal grids to help you solve the problem.


Representations are a helpful tool when solving mutiplication problems involving decimals.

\footnotetext{
Q Work Together
Rin needs 0.3 cup of four per serving to make breed. Rin wants to make 4 servings. How many cups of flour does he need?
1.2 cups; \(4 \times 0.3=1.2\)
}


\section*{(1) Pose the Problem}

\section*{Discussion Supports}

As students engage in discussing the answers to the three questions below, restate statements they make as a question to seek clarification. Encourage students ask useful questions to improve each others' ideas.

\section*{EPR Pose Purposeful Questions}
- What operation can help you determine how much the lettuce for all five sandwiches will cost?
- How can you represent the information you have?
-What strategy can you use?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

1sRead: Have students underline the key number that will be used to solve the problem.
\(2^{\text {nd }}\) Read: Have students write the meaning of each number in context (numbers, pounds, cost). \(3^{\text {rd }}\) Read: Have students work in pairs to create

\section*{(3) Bring It Together}

\section*{GiP}

\section*{Elicit Evidence of Student Thinking}
- How do decimal grids help you understand multiplication of decimals?
- How do you use decimal grids as a tool that help you multiply decimals?

\section*{Key Takeaway}
- Multiplication of decimals can be represented using concrete models or drawings, such as decimal grids.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of how to find the product of decimals. Have students work on the activity in pairs before asking them to explain how they found their answers.
- Common Misconception Students may think that the product of two factors must be greater than both numbers, but that is not true when one or more factors is between 0 and 1 .

\section*{Lom Language of Math}

Students may have heard of the field American football is played on called a gridiron. A gridiron is great for broiling food over a flame, and resembles the lines on a football field. Have the students relate this to the appearance of a decimal grid.

\section*{Activity-Based Exploration}

Students develop strategies for multiplying decimals.
Materials: \(10 \times 10\) Grids Teaching Resource, Blank Open Number Lines Teaching Resource

Directions: Read the first part of the Pose the Problem; ensure that students understand that \(5 \times 0.04\) represents the total amount of lettuce. Encourage students to develop a strategy to solve.

\section*{ETP \\ Support Productive Struggle}
- Is the answer more than 1 pound? More than 0.5 pound? How do you know?
- How can you use equal groups to help you find the total amount of lettuce?
-What tools can you use to help you find the total amount of lettuce?
Have groups share their products and their strategies for solving. Identify similarities and differences among the strategies and representations. Have students solve the next part of the Pose the Problem; ensure students understand that \(0.2 \times 0.9\) represents the total cost. Encourage students to develop a strategy to solve.

\section*{Math is... Yodeling}
- How do decimal grids help you understand multiplying decimals?

Students assess models to see if they have served their purpose.

Activity Debrief: Facilitate a discussion to ensure students understand multiplication of decimals can be represented as equal groups on a decimal grid. When multiplying two decimals, it is represented as a part of a part.

PDFs of the Teaching Resources are available in the Digital Teacher Center.


\section*{Guided Exploration}

Students build on their understanding of multiplication to find products of decimals using decimal grids.

EIP Use and Connect Mathematical Representations
Q. Have the students estimate the product of 5 and 0.04 . Ask:
- What factors will you use to estimate the solution? Why?
- How can finding a range help you estimate?
- Think About It: What is the size of each group? How many groups are there?
(4. Have the students use the model to determine the product of 5 and 0.04. Ask:
-What strategy did you use to find the product?
-Why did you choose that strategy?
- How did you use that strategy to find the product?
Q. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution of 0.2 reasonable? Why or why not?
- What different ways could you represent \(5 \times 0.04\) using decimal grids?
- Will "tenths times tenths" always result in "hundredths"? Explain why or why not.
- What do you think "tenths times hundredths" will resultin? Why?

Have the students assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution of 0.18 reasonable? Why or why not?

\section*{Math is... Nodeling}
- How do decimal grids help you understand multiplying decimals?
Students assess models to see if they have served their purpose.

\section*{2. Develop the Math}

Jonah will make 5 turkey sandwiches. He will use 0.04 pound of lettuce for each sandwich. Lettuce costs \(\$ 0.90\) per pound.

How can you determine the all 5 sandwiches?


ELEnglish Learner Scaffolds

Entering/Emerging Support students' understanding of cost. First, choose a classroom object, such as a notebook. Write a price on a sticker or piece of paper and put it on the object. Say The price is [\$1.00]. It costs [\$1.00]. Repeat the task with a different classroom objects. Say The price is \(\$ 1.50\). Then prompt them to complete the following sentence saying the correct word (costs) aloud: It \(\qquad\) \(\$ 1.50\).

Developing/Expanding Support students' understanding of cost. First, choose a classroom object, such as a notebook. Write a price on a sticker or piece of paper and put it on the object. Say The price is [\$1.00]. It costs [\$1.00]. Repeat the task with a different classroom object. Say The price is \(\$ 1.50\). Then prompt them to complete the following sentence saying the correct word (costs) aloud: It __ \(\$ 1.50\). Finally, ask students to repeat the task, choosing a classroom object, and make a sentence of their own using cost.

Bridging/Reaching Ensure comprehension of the meaning of cost, then have students brainstorm words associated with cost; for example, price, dollars, bucks, cents, etc.

\section*{Practice \& Reflect 10 min}


What is the product? Use a representation to solve.
\begin{tabular}{ll}
\(5.8 \times 0.2=1.6\) & 6. \(0.3 \times 0.9=0.27\) \\
\(7.012 \times 7=0.84\) & 8. \(0.4 \times 0.8=0.32\) \\
\(9.5 \times 1.5=7.5\) & 10. \(0.6 \times 0.0=0.36\)
\end{tabular}
11. Write an equation to show the product represerted by the decimal grids Sampte answer: \(3 \times 0.4=1.2\) or \(0.4 \times 3=1.2\)
12. Extend Your Thinking Kristine buys 2 yards of tabric for
\(\$ 2.90\) per vard. Her friend Normer wants to buy 04 yard of fabric from her How much does Kristina poy for the fabric? How much will Norman pay Kestina for the fabric?
\(\mathbf{2 \times 2 . 9 = 5 . 8 ; ~ K r i s t i n a ~ p a y s ~} \$ 5.80\) for the fabric. \(2.9 \times 0.4=1.16 ;\) Norman will pay \(\$ 1.16\).

\section*{(D) Reflect}

How is multiplying decinals similar to muttiplying whole numbers?
Answers may vary.

\section*{Practice}

ETP Build Procedural Fluency from Conceptual Understanding Common Misconception: Exercise 3 Students might not understand why there are not 6 decimal grids to shade. Explain that they can shade the decimal factor repeatedly in one decimal grid until the grid is full, and then continue shading on the next one to see the number of tenths or hundredths.

Item Analysis
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 2 & Application \\
\(5-10\) & 1 & Procedural Skill and Fluency \\
\(11-12\) & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How is multiplying decimals similar to multiplying whole numbers?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did creative thinking help you solve a problem?

Students reflect on how they practiced self-awareness.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can use decimal grids to help me represent and solve multiplication equations involving decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item & pOK Skill & Standard \\
\hline 1 & 1 & Represent Multiplication of Decimals & 5.NBT.B.7 \\
2 & 2 & Represent Multiplication of Decimals & 5.NBT.B.7 \\
3 & 2 & Represent Multiplication of Decimals & 5.NBT.B. 7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{If students score then have students do} \\
\hline 3 of 3 & Additional Practice or any of the (3) or \({ }^{\text {a }}\) activities \\
\hline 2 of 3 & Take Another Look or any of the (3) activities \\
\hline 1 or fewer of 3 & Small Group Intervention or any of the \(\mathbf{Q}\) activities \\
\hline \multicolumn{2}{|l|}{Key for Differentiation} \\
\hline \multicolumn{2}{|l|}{( \({ }^{\text {P }}\) Reinforce Understanding} \\
\hline \multicolumn{2}{|l|}{(B) Build Proficiency} \\
\hline \multicolumn{2}{|l|}{© Extend Thinking} \\
\hline
\end{tabular}


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Multiply Whole Numbers and Decimals}

Work with pairs of students. Provide students with 2 number cubes to roll. Tell them that the sum of the number cubes is a number in tenths. Repeat to find the second factor in the multiplication of decimals. Help the students multiply the two numbers, for example \(1.2 \times 0.5\), using decimal grids. Make sure students evaluate their answers for reasonableness. Repeat the activity as time allows.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Multiply Decimals by Whole Numbers-Model
- Multiply Two Decimal Numbers-Model


Differentiation Resource Book, p. 55

Lesson 6-3 - Reinforce Understanding
Represent Multiplication of Decimals


Use a decimal grid to help you solve each equation.


Dilteratiton Kenowice lioct

\section*{Build Proficiency}

Practice It! Game Station
Decimal Multiplication Task Cards
Students practice decimal multiplication.


\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 55-56

\section*{Lesson 6.3}

\section*{Additional Practice}

Name

\section*{Review}

You can use decimal grids to solve multiplication equations irvolving whole numbers and decimals or decimals and decimals.
Hive has 0.7 pound of peanuts. He ests 0.3 of the peanuts for a snock. What is the weight of the peonuts that Hue eats?
Wree an equation \(0.3 \times 0.7=\mathrm{w}\)
Use a decinal grid to solve.
Shace 7 temths of the gidi.


There are 21 hundredtrs of the whole shaded. So Hue eats 0.21 pound of the peanuts.

Write an equation and use a decimal grid to help you solve.
1. Abbey uses 014 gailon of water to fili a containec. She fis the container 6 times throughout the day. How many gallons of water does Abbey use in all?
\(6 \times 0.14=g\)
\(6 \times 0.14=0.84\)
Abbey uses 0.84 gallon of water.


Shbret Rycice flock

Unit 6 • Multiply Decimals

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication of multi-digit numbers.

\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 55-56
2. In a group of students. 0.3 of the students are wearing s blue shit Of those studerst, Q.8 of the shits have a stripe pattern. What part of the group of students are wearing a blue-striped shirt?
\(0.8 \times 0.3=g\)
\(0.8 \times 0.3=0.24\)
0.24 of the group are wearing a blue-striped shirt.


Complete each equation.
3. \(6 \times 0.3=1.8\)
4. \(07 \times 0.5=0.35\)
5. \(0.16 \times 6=0.96\)
6. \(0 . \times 0.9=0.09\)
2. Eight concrete blocks are stacked to build a wall if each concrete block is 0.7 foot tall, how tall is the wall? 5.6 feet tall
8. Antonio is buying some apples. Each apple weighs 0.26 pound. If Antonio buys 7 apples, what is the weight of the apples? 1.82 pounds
9. Jade buys 6 packets of seeds. Each seed packet costs \(\$ 0.30\). She uses the representation below to find the total cost is her representation correct? Explain. What is Jode's fotal cost?

 jesvole

 stidentMackellock

\section*{Extend Thinking}

\section*{Use It! Application Station}

Move to the Left. Now Right! Students create a maze and write step-by-step directions for getting through the maze.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 56
Lesson 6-3-Extend Thinking
Represent Multiplication of Decimals
Name
Write an equation to show the product represented by the decimal grids. Sample answers shown.

2. 0.9

6. \(0.4 \times 0.7\) \(=0.28\)

3. \(0.3 \times 0.4\)

4. \(0.6 \times 0.7\) \(=0.56\)

8. \(0.3 \times 5\)


DVermeontocer foct.

\section*{Math Probe}

\section*{Unit 6 \\ Decimal Multiplication}

Name
Use what you know about decimal multiplication to estimate the product. Do not perform the exact multiplication.
1. \(137 \times 0.2\)

Circle a or b to show the-
better estimate.
(a) less than 1
b. greater than 1
```

Explain or srow your thinking

```

Explanations may vary.
2. \(0.55 \times 229\)

Circle a or b to show the
better estimate.
a. lessthan 1
(b) greater than 1

Explain or show your thinking.

Explanations may vary.

Use what you know about decimal multiplication to estimate the product. Do not perform the exact multiplication.
3. \(0.54 \times 0.54\)
Circie \(a\) or b to show the
better estimate.
(b) less than 0.5
b. greater than 0.5
4. \(1.4 \times 0.62\)

Circle a or \(b\) to show the
better estimate.
a. less than 0.5
(b) greater than 0.5

\section*{Explain or show your thinking}

Explanations may vary.
etter estimate
better estimate.
© less than 0.5
b. greater than 0,5

Explain or show your thinking Explanations may vary.

\section*{Reflect On Your Learning}


\section*{Analyze the Probe Formative Assessment}

Targeted Concept Reason about the magnitude of decimals and the meaning of multiplication to compare decimal products to common benchmarks.

4 Targeted Misconceptions Some students think that multiplying always results in a product that is larger than both factors. While this is true when multiplying two whole numbers that are each greater than 1 , it is not true when one factor is less than 1 . Other students calculate the exact product rather than estimate because they have conceptual difficulty using the meaning of multiplication to estimate the product of two decimals. Some students round each factor to the nearest whole number and then multiply. This may result in an estimate that is not precise enough for the benchmarks that are given.

\section*{Sample Student Work}

Below are examples of students' explanations.

\section*{Sample A}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
1. \(1.37 \times 0.2\) \\
Circle \(\mathbf{a}\) or \(\mathbf{b}\) to show the better estimate. \\
a. less than 1 \\
b. greater than 1
\end{tabular} & \begin{tabular}{l}
Explain or show your thinking. \\
I krow that
\[
\begin{aligned}
& 1.37 \text { is about } 1 \frac{1}{4} \\
& \frac{1}{4} \times \frac{1}{4} \\
& \frac{-4}{} \text { of } 1=\frac{1}{4} \\
& \frac{1}{4} \text { of } \frac{1}{4}=\frac{1}{16}
\end{aligned}
\] \\
not exenclose to 1
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample B}
\begin{tabular}{|c|c|}
\hline 2. \(1.4 \times 0.62\) & Explain or show your thinking. \\
\hline Circle \(\mathbf{a}\) or \(\mathbf{b}\) to show the better estimate. & haif of \\
\hline a. less than \(\frac{1}{2}\) & \[
1 * h a l f
\] \\
\hline (b.) greater than \(\frac{1}{2}\) & \[
75+75=1.50
\] \\
\hline
\end{tabular}

\section*{Collect and Assess Student Work}

Collect and review student response to determine possible misconceptions. See examples in If-Then chart.
\begin{tabular}{|c|c|c|c|}
\hline IF incorrect... & THEN the student likely... & Sample Misconcepti & \\
\hline \begin{tabular}{l}
1. b \\
2. a \\
3. b \\
4. a
\end{tabular} & does not use reasoning to estimate the product. In Exercise 1, the student may not reason that \(1.37 \times 0.2\) represents a little more than 1 group of 0.2 (or a very small portion of 1.37). In Exercise 2, we are looking for about 1 of 2.29. In Exercise 3, we are looking for in Exercise 4. \(1.4 \times 0.62\) represents more than 1 group of 0.62 (or more than 1 of 1.4). & \begin{tabular}{l}
2. \(0.55 \times 2.29\) \\
Circle a or b to show the better estimate. \\
a. less than 1 \\
b. greater than 1
\end{tabular} & Explain or show your thinking.
\[
\begin{gathered}
55 \times 229 \\
1229 \\
255 \\
\hline 1145 \\
11450 \\
12595
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { 1. } b \\
& \text { 3. } b
\end{aligned}
\] & overgeneralizes from whole number multiplication that a product is always greater than its factors. Note that this misconception results in correct choices for Exercises 2 and 4. & \begin{tabular}{l}
2. \(0.54 \times 0.54\) Ordea or b teatom tre bether estinske. \\
 \\
(b) ypenter than \(\frac{1}{1}\)
\end{tabular} & \begin{tabular}{l}
how rovitimetice \\
olte plication. .. \\
plication is bigger
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 2. a } \\
& \text { 4. a }
\end{aligned}
\] & thinks that all decimals are small numbers; therefore, the product of two decimals must be a decimal less than 1 (or less than 1 ). Note that this misconception results in correct choices for Exercises 1 and 3. & \begin{tabular}{l}
2. \(1.4=0.62\) \\
Orle a or b to show the better estimats. \\
(a.)ess than \(\frac{1}{2}\) \\
b. grater than \(\frac{1}{2}\)
\end{tabular} & use is mutiplicatem decinds you 9 e ur. \\
\hline 3. b & \begin{tabular}{l}
mistakenly interprets multiplying a number by itself as being the same as doubling the number; \\
OR \\
rounds each factor up to 1 and then multiplies. This results in an estimated product of 1 , but this is not the better estimate.
\end{tabular} & \begin{tabular}{l}
3. \(0.54 \times 0.54\) \\
Circle \(a\) or \(b\) to show the better estimate. \\
a. less than \(\frac{1}{2}\) \\
b. greater than \(\frac{1}{2}\)
\end{tabular} & Explain or show your thinking.
\[
\begin{array}{r}
\text { I know Quarters } 25 \times 25=50 \\
50 \times 50=100 \\
4,00
\end{array}
\] \\
\hline
\end{tabular}

Many of the above difficulties result in a combination of correct and incorrect responses.
For correct responses, be sure to check for sound reasoning.

\section*{Take Action}

Choose from the following resources or suggestions:
- Revisit activities and representations for whole number multiplication in Lesson 5-4 to underscore the meaning of multiplication with decimals.
- Encourage students to think about multiplication as groups of a quantity. For about \(\frac{11}{2}\) groups of 0.62 .
- Provide opportunities for students to use concrete materials and drawings to help them build skill in visualizing the magnitude of a decimal quantity.
- Discuss the impact of rounding and ideas about the precision needed for an estimate.
- For example, if \(0.55 \times 0.75\) is rounded to \(1 \times 1\), the estimate will not be precise enough for the benchmarks, "less than \(\frac{1}{2}\) " or "greater than \(\frac{1}{2}\)."

Revisit the Probe after additional instruction. Have students review their initial answers to the probe. Use these questions for discussion:
- Are there any answers you would like to change? Explain why you might want to change them.
- Are there any questions that you still have about any of the Exercises on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Use an Area Model to Multiply Decimals}

\section*{Learning Targets}
- I can use an area model to determine partial products.
- I can add partial products to calculate the product of two decimals.

\section*{Standards \(\circ\) Major \(\Delta\) Supporting \(\circ\) Addifional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Model with mathematics.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objective}
- Students use an area model to determine partial products and add partial products to calculate the product of two decimals.

\section*{Language Objectives}
- Students discuss using area models to solve multiplication problems while answering Wh - and \(\mathrm{Yes} / \mathrm{No}\) questions and using the academic term decompose.
- To support optimizing output, ELs participate in MLR7: Compare and Connect.

\section*{SEL Objective}
- Students discuss and practice strategies for managing stressful situations.

\section*{Coherence}
\begin{tabular}{l|l|l}
\hline Previous & Now & Next \\
- Students added and subtracted & • Students use multiplication & - Students will use place-value \\
multi-digit whole numbers & \begin{tabular}{l} 
strategies to multiply decimals \\
patterns to multiply decimals
\end{tabular} \\
\begin{tabular}{ll} 
(Grade 4). & \\
- Studendredths. & (Lesson 5).
\end{tabular} \\
\begin{tabular}{l} 
Students will add, subtract, \\
multiplication of decimals using \\
decimal grids (Lesson 3).
\end{tabular} & & \begin{tabular}{l} 
multiply, and divide using the \\
standard algorithm (Grade 6).
\end{tabular} \\
\hline
\end{tabular}

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build on their understanding of partial products and area models to multiply decimals.

\section*{Procedural Skill \& Fluency}
- Students use strategies for multiplying whole numbers to proficiently multiply decimals.

\section*{Application}
- Students multiply decimals to solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Terms \\ area \\ Academic Terms \\ complement \\ area model evaluate \\ decompose \\ partial product
}

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks
- 0.5 cm grid paper

\section*{Number Routine Find the Missing Values ©5-7 min}

Build Fluency Students build reasoning skills as they are given a set of solved equations and must determine the missing values of in related equations by looking for a pattern.

These prompts encourage students to talk about their reasoning:
- What do you notice about the equations? What pattern do you see in the rows?
-What pattern do you see in the columns?
- How can one equation help you to solve another?

Purpose The lesson content introduces that the digits in numbers move one decimal place to the right when multiplied by 0.1. One way to find the "outlier" here is to find the number that is not " 237 with the digits moved the same number of decimal places."

\section*{Which Doesn't Belong?}
- Which doesn't belong?

Teaching Tip You may wish to have students' work in pairs as they explore the relationships between the numbers. Students can present their findings with the class and discuss any common or differing results.

\section*{GIP \\ Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of the movement of digits involved in multiplying decimals and are based on possible comments and questions that students may make during the share out.
- How are 237, 0.237, and 2,730 the same? How are they different?
- How is 273 different from the rest of the numbers?

\section*{Math is... Jindset}
-What can you do to help yourself work independently?
\(\square\) Self-Management: Manage Stress
Begin the Which Doesn't Belong? routine with a short timed period, such as 5 minutes, for students to work independently. Invite students to think about strategies that can help them stay on task and work on their own. In addition to developing a sense of independence, students will also be able to practice self-discipline, self-motivation, and focus.

\section*{Transition to Explore \& Develop}

Have students think about multiplication area models involving whole numbers. Guide them to discuss partial products.

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about how area models and place-value patterns can help us solve multiplication problems involving decimals.


\section*{Learn}

How can you find the area of the board?
You can use the equation \(1.8 \times 2.9=A\) to represent the problem.
You can use an area model to help you soive the equation.


One multipication strategy for multipying decirtais is to use an area model to determine partial products, which ore then added to determine the product

\section*{(C) Work Together}
\[
\begin{aligned}
& \text { A teacher bought } 18 \text { rulers. What was the total } \\
& \text { cost of the nulers? Use an area model to solve. } \\
& \$ 15.30 \text {; Check students' work. }
\end{aligned}
\]

\section*{(1) Pose the Problem}

\section*{ETP Pose Purposeful Questions}
- How do you find the area of a rectangle?
-What types of similar problems have you solved in the past?
- How did you solve similar problems previously?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}
\(\square\) Compare and Connect
Pair students and assign them a problem to solve. Have one student solve it using a multiplication equation, and the other solve it using an area model. Then have the students compare and contrast the strategies they used to solve it. Revisit this activity throughout the lesson to help students build proficiency.

\section*{3 Bring It Together}

\section*{GIP} Elicit and Use Evidence of Student Thinking
- How would you explain to a friend how to use an area model to multiply decimals?

\section*{Key Takeaway}
- One multiplication strategy for multiplying decimals is to use an area model to determine partial products, which are then added together to arrive at the product.

\section*{Work Together}

Students use their knowledge of area models to multiply a whole number and a decimal to find a sales total. Students can work on the activity in pairs before sharing their work.

Common Error Students may use the digits \((1+8)\) instead of the place value \((10+8)\) in the area model when decomposing 18 . Invite students to estimate the solution and use the estimation to check the reasonableness of their solution.

\section*{Language of Math}

The term partial product can be broken down to identify the meaning. The word partial means only a part; incomplete. The word product represents the answer to a multiplication problem. So, together, the term means part of the answer to a multiplication problem. This may help students remember that they need to combine all of the partial products to completely solve the problem.

\section*{Activity-Based Exploration}

Students explore area models to determine different ways to decompose them to form partial products.

Directions: Ask students to write a multiplication problem involving two 2-digit numbers and draw an area model to represent the product. Have students record as many ways as possible to decompose the factors. Invite students to share ways they decomposed the factors, focus attention on similar methods of decomposing, such as decomposing by place value.
- Do you think these methods of decomposing will work for multiplying two decimals?

Have students explore different ways to decompose the factors 1.8 and 2.9 to find their product.

\section*{\(\stackrel{E T P}{ }\) Support Productive Struggle}
- How can you apply your method of decomposing whole numbers to decomposing decimals?
- Is your answer reasonable? How do you know?
- How is your area model the same as or different from another student's method?

\section*{Math is... Yodeling}
- How are the area models for decimals and whole numbers similar?

Students use a geometric representation to understand multiplication of decimals.

Activity Debrief: Discuss with students that an area model is one method they can use to multiply decimals. Using this method, they can decompose each factor, find partial products, and add the partial products to calculate the product.

\section*{Guided Exploration}

Students use an area model to understand and solve a problem.

\section*{EIP Use and Connect Mathematical Representations}
- Think About It: How did you decompose factors when multiplying multi-digit whole numbers?

QHave students find \(2 \times 0.8\). Ask:
- How can you rewrite 0.8 as the product of a whole number and 0.1 ?
- How can you use that to rewrite \(2 \times 0.8\) as the product of a whole number and 0.1 ?
- How can you use decimal grids, equal groups, or place value to find that product?
-What happened to the digits of 16 when it was multiplied by 0.1 ?
(2. Have students find \(0.9 \times 0.8\). Ask:
- How can you rewrite 0.9 and 0.8 as the products of a whole number and 0.1?
- How can you use those to rewrite \(0.9 \times 0.8\) as the product of a whole number and 0.1s?
- How can you use decimal grids, equal groups, or place value to find that product?
- What happened to the digits of 72 ?
(8. Have the students estimate \(1.8 \times 2.9\) to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

\section*{Math is... पodeling}
- How are the area models for decimals and whole numbers similar?

Students use a geometric representation to understand multiplication of decimals.

\section*{2. Develop the Math}

How can you find the ares of the board?

EL.

\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of the phrase similar to using manipulatives. Show students a pair of similar objects. Point to one of the objects and say This one is similar to that one. Name key similarities. They both have/are... Show two objects that are not similar. Point to one of the objects and say This one is not similar to that one. Then, choose two new pairs of objects, one pair being similar, and the other not. Point to the two objects in each pair, and ask Are they similar to each other?

Developing/Expanding Support students' understanding of the phrase similar to using manipulatives. Show students a pair of similar objects. Point to one of the objects and say This one is similar to that one. Name key similarities: They both have/are... Show two objects that are not similar. Point to one of the objects and say This one is not similar to that one. Then, choose two new pairs of objects, one pair being similar, and the other not. Ask students to choose the pair of objects that is similar and to explain how they are similar.

Bridging/Reaching Ask students to explain the phrase similar to, using classroom manipulatives to support their explanations. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, those items are not similar to each other because... or No, that's not correct because...

\section*{Practice \& Reflect \({ }_{10}\) min}

9. The Mourtalintop Ski Shop sold 15 paies of ski gloves last week. How much did the skis shop make selting gioves last week?
\(15 \times 8.5=\) ? : The ski shop made \(\$ 127.50\) selling ski gloves last week.
10. Ofive's van can travel 6.4 miles per gallon of ges. Her tank has 83 gallons of gas in it. How many mles can Oilive travel with the gas in her tank?
\(16.4 \times 8.3=7\); Olive can travel 136.12 miles.
11. Extend Your Thinking Write and solve a real-woid
mutiplication probien with at least one decimal tactor
Use an area model to help you solve.
Sample answer: Evelyn used 0.32 kg of flour in each of the 5 loaves of bread she made. How much flour did Evelyn use? \(0.32 \times 5=1.6\). Evelyn used 1.6 kg of flour,

\section*{(D) Reflect}

How can you use partial products and an area model to find the pioduct of two decimal factors?
Answers may vary.

\section*{Practice}

\section*{Build Procedural Fluency from Conceptual Understanding}
1. Common Error: Exercises 1-7 Students may incorrectly decompose the decimals creating an area model. Remind students to evaluate and decompose the factors by place value. Ask: Is 15 is the same as \(1+0.5\) or \(10+5\) ?

\section*{Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-6\) & 1 & Procedural Skill and Fluency \\
7 & 2 & Application \\
8 & 3 & Conceptual Understanding \\
\(9-10\) & 2 & Application \\
11 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you use partial products and an area model to find the product of two decimal factors?
Ask students to share their reflections with their classmates.

\section*{Math is... sindset}
-What have you done that helped you work independently?
Students reflect on how they practiced self-management.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use an area model to determine partial products.
- I can add partial products to calculate the product of two decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{lll|l|}
\hline Item & pOK & Skill & Standard \\
\hline 1 & 1 & Use area models to multiply decimals & 5.NBT.B. 7 \\
2 & 2 & Use area models to multiply decimals & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}
\begin{tabular}{l|l|}
\hline \multicolumn{2}{l|}{ If students score then have students do } \\
\hline 2 of 2 & Additional Practice or any of the \(\operatorname{Bor}\) or activities \\
1 of 2 & Take Another Look or any of the \(B\) activities \\
0 of 2 & Small Group Intervention or any of the \(\boldsymbol{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
© Reinforce Understanding
B Build Proficiency
E Extend Thinking


\section*{Lesson 6-4}

Exit Ticket
Name
1. What is the product \(12 \times 3.4\) ? Use the area model to help you solve.

A. 36.48
B. 37.2
C. 40.8
D. 48
2. A rectangular flowerbed is 61 meters long and 3.6 meters wide. What is the area of the flowerbed? Use the area model to solve.

21.96 square meters

Reflect On Your Learning


\section*{Reinforce Understanding}

\section*{Fill It In}

Work with pairs of students. Draw an area model with two rectangles. Students each estimate the product \(6 \times 0.46\). They take turns filling in the area model or the decomposed factors and the partial products. Ask students to identify the value of each partial product. When complete, both students add the partial products and discuss whether the result makes sense based on their estimate.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Multiply Decimal Numbers (Area Model)


Differentiation Resource Book, p. 57

\section*{Lesson 6-4 - Reinforce Understanding}

Use an Area Model to Multiply Decimals
Nome

\section*{Review}

Decompose the factors by place value. Use this to set up your area model to find the product.
\(36 \times 29=130+67 \times 12+0.97\)

\(36 \times 2.9=60+12+27+5.4=104.4\)
Use an area model to solve.


\section*{Build Proficiency}

\section*{Practice It! Game Station}

Decimal Multiplication Tic Tac Toe
Students practice multiplication of decimals.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 57-58

\section*{Lesson 6-4}

\section*{Additional Practice}

Name

\section*{Review}

You can use an area model to find the product of two decimal factors or a whole number and a decimal.
Shay has a stack of 12 books. Each book welighs 2.8 pounds. How much does the stack of books weigh?
Write an equation to represent the problem: \(12 \times 2.8=w\).
Use an area model and the partal products to solve the problem.


The stack of books weighs 33.6 pounds.

Write an equation to represent the problem. Then use an area model to solve.
1. A farmer buys 13 rubber nists to place on the fioor of his barn. Each mat is 4.5 inches thick. What is the total thickness of the mats? \(13 \times 4.5=\mathrm{t}: 58.5\) inches


Unit 6 - Multiply Decimals

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication of multi-digit numbers.

\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 58
Lesson 6-4-Extend Thinking
Use an Area Model to Multiply Decimals
Name
Fill in the missing parts of the area models below. Then fill in the blanks for the equation and the product.
1.

\[
\text { The product is } 35 \times \quad 2.7 \text { and it is equal to } 94.5
\]
2.

3.


The product is \(18.3 \times 2.9\) and it is equint to 53.07
School Spirit Students use area and multiplication to create a school wall mural.

\section*{Extend Thinking}

\section*{Use It! Application Station}

\section*{Student Practice Book, pp. 57-58}
2. Aldo plants fllowers in a rectangular flower bed. The flower bed is 4.7 meters long and 2.4 meters wide. What is the area of the flower bed7 \(4.7 \times 2.4=0 ; 11.28\) square meters


Use an area model to solve.
3. \(24 \times 23=55.2\)
4. \(67 \times 3.2=21.44\)
5. \(5.6 \times 19=106.4\)
6. \(8.4 \times 7.3=61.32\)

Write an equation to represent each problem. Then use an area model to solve. check students' models.
7. Franco's car can travel about ti8. 3 miles per palion. How many miles can Franco drive if his car has 14 gailons of gas in the tank? Sample answer: \(18.3 \times 14=\) ?; 256.2 miles
8. A rectangular photograph measures 4.5 inches wide and 6.4 inches long. What is the area of the photograph?
Sample answer: \(4.5 \times 6.4=7 ; 28.8\) square inches

\section*{Generalizations about Multiplying Decimals}

\section*{Learning Targets}
- I can use patterns based on place value concepts and properties of operations to make generalizations about multiplying decimals.
- I can use those generalizations to determine the placement of digits in a product.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Addifional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Look for and make use of structure.
MPP Look for and express regularity in repeated reasoning.

\section*{Focus}

\section*{Content Objective}
- Students use patterns based on place-value concepts and properties of operations to determine the placement of digits in a product.

\section*{Language Objectives}
- Students explain how to use patterns in calculations to multiply decimals by making generalizations.
- To support sense-making and maximizing meta-awareness, ELs participate in MLR8: Discussion Supports and MLR7: Compare and Connect.

\section*{SEL Objective}
- Students reflect on and describe the logic and reasoning used to make a mathematical decision or conclusion.

\section*{Coherence}
\begin{tabular}{l|l|l|}
\hline Previous & Now & Next \\
- Students added and subtracted & - Students use place-value & - Students will choose and use \\
multi-digit whole numbers & patterns to multiply decimals. & \begin{tabular}{l} 
strategies to multiply decimals \\
(Grade 4)
\end{tabular} \\
\begin{tabular}{ll} 
- Lesson 6).
\end{tabular} \\
\begin{tabular}{ll} 
Students used multiplication \\
strategies to multiply decimals to \\
hundredths (Lesson 4).
\end{tabular} & & \begin{tabular}{l} 
Students will add, subtract, \\
multiply, and divide using the \\
standard algorithm (Grade 6).
\end{tabular} \\
\hline
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students extend their understanding of place value to determine the product of two decimal factors.

\section*{Procedural Skill \& Fluency}
- Students increase proficiency with multiplying decimals by making generalizations about the products of decimal factors.

\section*{Application}
- Students apply generalizations to solve real-world problems.

Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms Academic Terms \\ area model assert expand partial product}

\section*{Material}

The materials may be for any part of the lesson.
- place-value charts

\section*{Number Routine Find the Missing Value © \({ }^{5-7 \text { min }}\)}

Build Fluency Students build reasoning skills as they are given a set of solved equations and must determine the missing values in related equations by looking for a pattern.
Remind students that this is a mental math activity.
These prompts encourage students to talk about their reasoning:
- How did a pattern help you evaluate the remaining equations?
- How do the number of zeros in the factors compare to the number of zeros in the products?
- Will the number of zeros in the products always be equal to the number of zeros in the factors? Do the equations after \(5 \times 6\) follow this pattern? What is different about \(5 \times 6\) ?

Purpose Students think about what happens to a product if one of its factors is multiplied by a power of 10 and look for a pattern.

\section*{Is It Always True?}
- Is the pattern always true?

Teaching Tip You may wish to have students work in small groups to discuss what they notice about the multiplication problems. Invite them to share what they are wondering and how they decide how to analyze the equations. Encourage students to share their observations and to listen respectfully to classmates. Students can build off of each other's ideas in order to fully develop the pattern.

\section*{Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of using place-value patterns to multiply decimals and are based on possible comments and questions students may make during the share out.
- What is happening in each of the equations? What did you do first to find the pattern?
- How can we check a pattern to see if it works?
-What are you wondering about the pattern?

\section*{Math is... Yindset}
- How can you think about the equations in different ways?

\section*{SEL Responsible Decision-Making: Evaluate}

As students begin the Is It Always True? routine, have them think about different ways to analyze or describe the equations. As they analyze the equations, encourage them to think about different attributes or characteristics.

\section*{Transition to Explore \& Develop}

Focus students' attention on what generalizations they can make about what happens to a product if one of its factors is multiplied by a power of 10 .

\section*{ETP Establish Mathematics Goals to Focus Learning}
- Let's think about what happens to a product if one of its factors is multiplied by a power of 10 .


\section*{Learn}

How can you use the solution from one equation to solve the other two equations?
\[
48 \times 26=m \quad 48 \times 2.6=n \quad 48 \times 0.26=p
\]

You know \(48 \times 26=1,248\). You can use place value to help you understand the relationship between the equations.


II the digits in one factor move places to the right, the digits in the product move the same number of places to the right.


How can you use the patterrs in the calculations to efficiently multiply decimals?
You can use pattems to make generalizations about
mult plying decimals.

\section*{C. Work Together}

How can you use the solution for the first equation to solve the others?
\(72 \times 24=?\)
Sample answer: I can \(7.2 \times 24=\) ? compare the digits of the \(0.72 \times 24=\) ?
\(72 \times 2.4=\) ? factors and move the digits in the product the same number of places.

\section*{(1) Pose the Problem}

\section*{MLI}

\section*{Discussion Supports}

As students engage in discussing the answers to the four questions, restate statements they make as a question to seek clarification. Encourage students to challenge each other's ideas when warranted, as well as to elaborate on their ideas and give examples.

\section*{ETP Pose Purposeful Questions}
- If the factors in multiplication equations share the same digits in the same order, what do you predict about the digits in their products?
- How can numbers have the same digits in the same order, but different values?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

\section*{Compare and Connect}

Pair students. Provide them with three equations similar to those on the Learn page. Assign one unsolved equation to each student to work on individually. Then have the students compare and contrast the strategies they used to solve their equation. Revisit this activity throughout the lesson to help students build proficiency.

\section*{3 Bring It Together}
\({ }^{E T P}\) Elicit and Use Evidence of Student Thinking
- How can you use the products of whole numbers to help you multiply decimals?

\section*{Key Takeaway}
- Place-value concepts and properties of operations can justify patterns in the placement of digits when multiplying two decimal numbers.

\section*{Work Together}

Students analyze equations with factors that are multiples of powers of ten to determine how the whole number product can be used to find the similar decimal products.
© Common Error Make sure students (especially ones who are moving the decimal point), are careful with left/right. If the digits in a factor move right, the digits in the product move right.

\section*{LOM Language of Math}

Students need reinforcement in the proper naming of decimals, as errors in pronunciation can lead to confusion, e.g., tens and tenths. Provide opportunities for students to say the names of decimal numbers repeatedly and remind them that Math Is...Precision is about communicating precisely to others in addition to calulating accurately and efficiently.

\section*{Activity-Based Exploration}

Students analyze products of related decimal factors to identify place value patterns when multiplying decimals.

Directions: Have students work on their own or in small groups. Ask them to write down the equations from the Pose the Problem. Before calculating the products, ask students to predict similarities and differences of the products and discuss how they came to these conclusions.

After students have had time to record their prediction, have them find the products using previously taught strategies. Students should determine whether their prediction was true, and discuss why. Ask each student or group to create a generalization statement about multiplying decimals to share with the class.

\section*{ETP Support Productive Struggle}
- How are each of the expressions related to the whole-number expression?
- What did you do first to find a pattern?
- How can you check a pattern to see if it works?
- How can you think about the expressions in a different way?

\section*{Math is... Generalizations}
- How can you use the patterns in the calculations to efficiently multiply decimals?

Students use repeated calculations to create general methods.
Activity Debrief: Facilitate a discussion about patterns in place value when multiplying decimals. Ensure students understand how the relationship between factors impacts the relationship between products.

Have students revisit the Pose the Problem question and discuss answers.
- How can you use the solution from one equation to solve the other two equations?

\section*{Guided Exploration}

Students extend their understanding of multiplying decimals to make a generalization using place value patterns.

\section*{EIP Facilitate Meaningful Mathematical Discourse}
- Think About It: What do you notice about these equations?
(8. Have the students use area models to solve \(48 \times 26=m\),
\(48 \times 2.6=n\), and \(48 \times 0.26=p\). Ask:
- How can you estimate each product?
- How will you decompose each factor? Why?
- How can you find the partial products?
- How can you find each product?
- Are your calculated products reasonable? How do you know?
(4. Distribute place-value charts as a tool to assist students answering the following. Ask:
- How do the digits in 26 and 1,248 relate to the digits that are in \(\frac{1}{10}\) of 26 and in \(\frac{1}{10}\) of 1,248 ?
- How do the digits in 26 and 1,248 relate to the digits that are in \(26 \times 0.1\) and in \(1,248 \times 0.1\) ?
- How do the digits in 26 and 1,248 relate to the digits that are in \(\frac{1}{100}\) of 26 and \(\frac{1}{100}\) of 1,248 ?
- How do the digits in 26 and 1,248 relate to the digits that are in \(26 \times 0.01\) and \(1,248 \times 0.01\) ?

\section*{Math is... Generalizations}
- How can you use the patterns in the calculations to efficiently multiply decimals?

Students use repeated calculations to create general methods.


\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding cause and effect as expressed by lf...,

Developing/Expanding Support students in understanding cause and effect as expressed by lf...,

Bridging/Reaching Ask students to explain what happens if the digits in one then... statements. Go to your classroom door. Point at then... statements. Go to your classroom door. Point at factor moves places to the right. Allow the doorknob, and say, If I turn this, the door opens, then demonstrate. Repeat with a new classroom then demonstrate. Repeat with a new classroom
students to interject, pointing out any mistakes that they may catch in meaning or object or manipulative. Then, show students two more object or manipulative. Then, ask students to perform understanding. For example, No, that's not examples, one that shows cause and effect, and one that does not. For example, If I put on my sweater, I won't be so cold. And If I put on my glasses, I won't be so cold. Ask each time, Is this true? Yes or No?
a task of their own, saying their own cause and effect sentence; for example, if I take this chip away, [two] will be left. Provide sentence frames for students who need more guidance. correct because... or No, if the digits....

12. Error Analysls Claissa states that since 5.5 is \(\frac{1}{15}\) of 55 and 37 is \(\frac{1}{10}\) of \(37,5.5 \times 3.7\) is \(\frac{1}{10}\) of \(55 \times 37\). How do you respand to Clanssa? Sample answer: I don't agree. Clarissa needs to use the place value relationship from both factors.
\(5.5 \times 3.7=\frac{1}{10} \times 55 \times \frac{1}{10} \times 37=20.35\)
13. Eatend Your Thinking Kyle's paper has been smudged and any decimats in the tactors have been lost. Can you belp. opplain to Kyle how to detormine where decinals could go? \(340 \times 13=4.42\)
Sample answer: Kyle can use place value patterns to determine where to place the decimals. Since the digits in 4.42 are 3 places to the right of the digits in \(340 \times 13\) \(=4,420\), the decimal or decimals in the factors need to move the digits a total of 3 places to the right. (Examples: \(3.40 \times 1.3,0.340 \times 13,34.0 \times 0.13,340 \times 0.013)\)
14. Loni's house has a rectangular window whit a neight of 1.5 meters and a width of 0.8 motor. What is the area of the window7 1.2 square \(m\)
15. A car avernges 32.6 miles per gallon of gasoline. How many miles can the car travel on 4.5 palons of gasoline? 146.7 mi
16. Dale boughs 3 apples that cost 50.49 each. He also bought 18 pounds of grapes that cost \(\$ 0.90\) per pound. How much did Dute spend for the appter and prapes? \(\$ 3.09\)

\section*{Reflect}

What patterns did you notice when mutiptying decimals?
Answers may vary.
Math is. Mindset What nelped you make good decisigns iorday?

\section*{Practice}

EIP Build Procedural Fluency from Conceptual Understanding
Common Error: Exercises 10-11 Students may properly decompose and multiply the decimals only to make a mistake when adding. Remind students to add decimals by place value.

\section*{Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-3\) & 2 & Conceptual Understanding \\
\(4-11\) & 2 & Procedural Skill and Fluency \\
\(12-13\) & 3 & Conceptual Understanding \\
\(14-16\) & 2 & Application \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- What patterns did you notice when multiplying decimals?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did you think about problems in different ways?

Students reflect on how they practiced responsible decision-making.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can use patterns based on place value concepts and properties of operations to make generalizations about multiplying decimals.
- I can use those generalizations to determine the placement of digits in a product.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|ccl|l|}
\hline \multicolumn{2}{|c|}{ Item } & DOK & Skill \\
\hline 1 & 1 & Use patterns to multiply decimals & Standard \\
\hline 2 & 2 & Use patterns to multiply decimals & 5.NBT.B.7 \\
3 & 2 & Use patterns to multiply decimals & 5.NBT.B.7 \\
4 & 2 & Use patterns to multiply decimals & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

4 of 4
3 of 4
2 or fewer of 4

Additional Practice or any of the or \(\boldsymbol{B}\) activities
Take Another Look or any of the (B) activities Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(a) Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{Reinforce Understanding}

\section*{Fill It In and Predict}

Work with pairs of students. Draw an area model with two rectangles. Students find the product of \(6 \times 76\) by taking turns filling in each empty space in the area model for the decomposed factors and the partial products. Both students add the partial products. Have students predict the products answers for \(.6 \times\) \(76,6 \times 7.6\), and \(.6 \times .76\) and explain their reasoning.
Assist students in revising their model to show these products before solving.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Multiply Decimal Numbers (Patterns)


Differentiation Resource Book, p. 59

\section*{Lesson 6.5 - Reinforce Understanding \\ Ceneralizations about \\ Multiplying Decimals}

Name

\section*{Review}

Example
\(32 \times 73=2,336\)
\(32 \times 73=2336\)
\(32 \times 7.3=233.6\)
This is because 3.2 is \(9 / 0\) of 32
\(3.2 \times 73=23.36\)
\[
\text { This is because } 23,36 \text { is } 1 / 100 \text { of } 2,336 \text {. }
\]

Complete each sentence.
1. 2.6 is \(1 / 10\) of \(26.50 .2 .6 \times 17\) is \(1 / 10\) of the produc \(26 \times 12\).
2. 0.65 is \(\frac{1 / 100}{}\) of \(65.50,0.65 \times 23\) is \(1 / 100\) of the product \(65 \times 23\)
3. 8.3 is \(\frac{1 / 10}{}\) of 83 and 3.2 is \(\frac{1 / 10}{}\) of \(32.50 .8 .3 \times 3.2\) is \(1 / 100\) of the product \(83 \times 32\).

What is the product?
\begin{tabular}{l|l} 
4. \(82 \times 21=1.722\) & 6. \(93 \times 56=5.208\) \\
\(82 \times 2.1=172.2\) & \(93 \times 5.6=520.8\) \\
\(82 \times 0.21=17.22\) & \(93 \times 5.6=52.08\) \\
5. \(51 \times 12=612\) & 2. \(27 \times 36=972\) \\
\(51 \times 12=61.2\) & \(27 \times 36=97.2\) \\
\(51 \times 0.12=6.12\) & \(27 \times 3.6=9.72\)
\end{tabular}
4. \(82 \times 21=1722\)
\(93 \times 56=5.208\) \(82 \times 21=172.2\)
\(82 \times 0.21=17.22\)
2. \(27 \times 36=972\)
\(27 \times 3.6=9.72\)

\section*{Build Proficiency}

Practice It! Game Station
Related Decimal Multiplication Task Cards

Students practice decimal multiplication.


\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 59-60

\section*{Lesson 6-5}

Additional Practice
Name

\section*{Review}

You can use place value to help make generalizations about multiplying decimals.
Solve each of the equations


Complete each sentence.

```

2. 0.26 is }100\mathrm{ of }26.50.026\times68\mathrm{ is . 100 of the product
26\times68.
3. }\frac{5.2\textrm{in}}{1/
100}\mathrm{ of the product 52 \47
```

\section*{Extend Thinking}

\section*{Use It! Application Station}

Rock Garden Students use metric measurements to create a model of a rock garden. The content of this card has concepts covered later in Lesson 6-6. You may want to assign this card to students ready to explore content
 covered later in this unit.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 60
Lesson 6.5 - Extend Thinking

\section*{Ceneralizations about Multiplying Decimals}

Neme
Determine where the decimal(s) could go to make the equation true. Rewrite the equation. Sample answers given.
4. \(41 \times 25=102.5\)
\(4.1 \times 25 ; 41 \times 2.5\)
2. \(516 \times 2=10.32\)
\(5.16 \times 2 ; 51.6 \times 0.2\)
3. \(283 \times 10=3679\)
\(28.3 \times 1.3 ; 2.83 \times 13 ; 283 \times 0.13\)
4. \(56 \times 84=4.704\) \(5.6 \times 0.84 ; 0.56 \times 8.4\)

Fill in the blanks.
5. \(96 \times 16=1536\) \(9.6 \times 16=153.6\) \(9.6 \times 1.6=15.36\) \(0.96 \times 1.6=1.536\)
6. \(33 \times 24=792\)
\(3.3 \times 24=792\) \(33 \times 2.4=7.92\)
\(0.33 \times 24=0.792\)

> z. \(\frac{52 \times 7=364}{5.2 \times 7=\frac{36.4}{7}=3.64}\) \(0.52 \times 8.0\). \(0.52 \times 07=0.364\) 8. \(102 \times 81=8.262\) \(102 \times 81=826.2\) \(10.2 \times 81=82.62\) \(1.02 \times 8.1=8.26\)

\section*{Explain Strategies to Multiply Decimals}

\section*{Learning Targets}
- I can explain why I chose a strategy to solve multiplication equations involving decimals.
- I can understand other strategies to solve multiplication equations involving decimals.

\section*{Standards \(\diamond\) major \(\Delta\) supporting \(\bigcirc\) Additional}

\section*{Content}
5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Construct viable arguments and critique the reasoning of others.

\section*{Focus}

\section*{Content Objectives}
- Students can explain their reasoning for using different strategies to solve.
- Students explain different strategies to multiply decimals.

\section*{Language Objectives}
- Students explain their reasoning for using particular strategies to multiply decimals while answering \(W h\) - questions.
- To support cultivating conversation, ELs participate in MLR1: Stronger and Clearer Each Time.

\section*{SEL Objective}
- Students discuss the value of hearing different viewpoints and approaches to problem solving.

\section*{Coherence}

\section*{Previous}
- Students added and subtracted multi-digit whole numbers (Grade 4).
- Students used place-value patterns to multiply decimals (Lesson 5).
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students choose and use & - Students will divide multi-digit \\
strategies to solve real-world \\
problems involving the product \\
of decimals.
\end{tabular}\(\quad\)\begin{tabular}{l} 
- Students will (Und, subtract, \\
multiply, and divide using the \\
standard algorithm (Grade 6).
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of multiplying decimals as they use representations and models to find the product of decimals.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with choosing and using strategies for multiplying decimals.

\section*{Application}
- Students apply their understanding of multiplication of decimals to solve problems with real-world contexts.

Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms \\ area model \\ Academic Terms \\ decimal grid relevant suggest decomposition partial product unknown}

\section*{Materials}

The materials may be for any part of the lesson.
- decimal grids
- Show and Explain Your Reasoning Teaching Resource

\section*{Number Routine} Where Does It Go? © \({ }^{5-7 \mathrm{~min}}\) Build Fluency Students build number sense as they place the same decimal number on number lines with different end points.

These prompts encourage students to talk about their reasoning:
-What did you notice about 16.72 ?
- What did you notice about each number line?
- How did you decide where to place 16.72 on each number line?
- How could you label the number lines to help with placing the number?

Purpose Students think about what the problem represents and how the parts relate to the whole. This is an entry point to choosing one of the strategies they know for mulitplying decimals to solve the problem.

\section*{Numberless Word Problem}
-What math do you see in this problem?
Teaching Tip You may want to have students work in pairs to discuss what they notice about the word problem.

ERP Pose Purposeful Questions
The questions that follow may be asked in any order. They are meant to help advance students' noticing and wondering about choosing and using strategies to multiply decimals and are based on possible comments and questions that students may make during the share out.
- What operation would you use to solve this problem? How do you know?
-What kinds of numbers do you think are involved in this problem? Why?

\section*{Math is... Yindset}
- How can you show others that you value their ideas?

Social Awareness: Appreciate Diversity
As students consider the Numberless Word Problem routine, invite them to discuss different strategies that they might use to solve a problem like this. As students share their unique thought processes and ideas, emphasize the value of the differences as well as the similarities so students can understand the importance of diversity within a math context.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about strategies and models used to multiply decimals. Guide students to think about how they can explain strategies used to solve real-world problems involving decimal products.

\section*{EPP Establish Mathematics Goals to Focus Learning}
- Let's think about choosing and using strategies that can be used to multiply decimals and solve real-world problems.


\section*{Be Curious}

What math do you see in this problem?




\section*{Learn}

Amy rides her bike 2.3 miles to school each day. Jason idees bis bike 0.8 of that diatance.
How far does Jason ride his bilke to school each day?


Jason rides his bike 1.84 mies to school each doy.

\(=184\)
Javon rides his biae 184 mies to school each day.
You can use any strategy to mutiply decimas Look
Meth is. Exploring Why la it usehu to know more than one strategy to solve a problem? at the factors to determine the most efficient strateg).

\section*{Q Work Together Check students' explanations.}

\section*{An ares model can be used to} solve \(3.6 \times 2.5\).
What other strategy can you use to solve this problem?



\section*{(1) Pose the Problem}

\section*{EIP}

\section*{Pose Purposeful Questions}
-What strategies can you use to solve the problem?
- In what ways can you model this problem?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

\section*{Stronger and Clearer Each Time}

Pair students and give them a multiplication problem. Have them individually write sentences explaining the strategies that can be used to solve the problem. Then have them share their writing with their partner and compare and contrast the strategies they wrote about, choosing by the end of their discussion which strategy they think is the most efficient and why.

\section*{3 Bring It Together}

\section*{Elicit and Use Evidence of Student Thinking}
- What do you consider when deciding on a strategy to use to solve a real-world problem involving products of decimals?

\section*{Key Takeaway}
- Any of the multiplication strategies that students already know can be used to determine a product.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of using an area model to find the product of a real-world problem involving decimals.

Common Misconception: Students may struggle to find other ways to show this product. Tell them that they could use a set of 12 decimal grids in 4 rows of 3 and shade squares as in the earlier example.

\section*{LOM Language of Math}

The word strategy is from the Greek word stratēgia, meaning "generalship," or "the skill or practice of exercising military command." Mathematical strategies are skills or practices allow us to exercise command over problem-solving.

\section*{Activity-Based Exploration}

Students explain strategies used for solving real-world problems involving decimal products.

Materials: Show and Explain Your Strategies Teaching Resource
Directions: Provide copies of the Show and Explain Your Strategies Teaching Resource. Have students work together to solve the Pose the Problem. Encourage students to solve using more than one strategy.

\section*{ETP Support Productive Struggle}
- Which strategies or models may be used to solve?
- How did you determine which strategy to use to solve this problem?
- Do you think one strategy is more efficient than another? Explain why.
- Give an example of a multiplication problem that would be most efficient using a representation. An area model? Using patterns in the placement of the decimal?

\section*{Math is... Exploring}
- Why is it useful to know more than one strategy to solve a problem?

Students strive to understand multiple approaches to problems.
Activity Debrief: Have groups share and compare their strategies for solving. Discuss similarities and differences between the strategies.

A PDF of the Teaching Resource is available in the Digital Teacher Center.


\section*{Guided Exploration}

Students consider which strategy they would use to solve a realworld problem involving decimal products.

\section*{EIP Facilitate Meaningful Mathematical Discourse \\ Have the students estimate the solution. Ask: \\ -What factors will you use to estimate the solution? Why?}

8 Have students share strategies to determine the total number of squares in the overlapping shaded region. Ask:
- How can you explain how your strategy works?
- How can you explain how someone else's strategy worked?
- How does the decimal grid represent the problem?

Have students use the fact \(23 \times 8=184\) and patterns based on place value concepts and properties of operations to solve the problem. Ask:
- How many places to the right did each digit in 23 move?
- How many places to the right did each digit in 8 move?
- How many places to the right should each digit in 184 move?
- Use your estimate to assess the reasonableness of your calculated solution. Is your calculated solution reasonable? Why or why not?
- Think About It: Which strategies would be less efficient for solving \(2.3 \times 0.8=d\) ?

\section*{Math is... Exploring}
- Why is it useful to know more than one strategy to solve a problem?

Students strive to understand multiple approaches to problems.

\section*{2. Develop the Math}

Any rides her bike 2.3 miles to school each day. Jason rides his bike 0.8 of that distance. How far does Jason ride his bike to school each day?

What multiplication equatio

\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding the term efficient by completing a task first in an efficient way, and then in an inefficient way. For example, move from point A to point B using the shortest path. Say This is an efficient way to [get to the door]. Repeat, this time in an inefficient manner and say This is not an efficient way to [get to the door]. Use another example, and ask, Is this an efficient way to [get to the desk]?

Developing/Expanding Support students in understanding the term efficient by completing a task first in an efficient way, and then in an inefficient way. For example, move from point A to point B using the shortest path. Say This is an efficient way to [get to the door]. Repeat, this time in an inefficient manner, and say This is not an efficient way to [get to the door]. Ask students use another example, and using the word efficient.

Bridging/Reaching Ask students to discuss which patterns they find most efficient for solving the problem. Allow students to interject, pointing out any mistakes that they may catch in meaning or understanding. For example, No, I disagree because... or No, that's not an efficientway because...

\section*{Practice \& Reflect © wiomin}

8. Jutia's dector told him thinat he shouid nat 0.7 gram of protein per diay for every kiogram of body mass. Juto measures 58 kJograms now How much protein should hilio wit?
40.6 grams: \(50 \times 0.7=35,8 \times 0.7=5.6,35+5.6=40.6\)
2. Anits rode her bieycte 78 miles on Monday and 3.1 times as lar on Tucsdoy. How far did she nide Ner bicycle on Tuesdiy?
24.18 miles; \(7 \times 3=21,7 \times 0.1=0.7,0.8 \times 3=2.4\),
\(0.8 \times 0.1=0.08,21+0.7+2.4+0.08=24.18\)
10. STEM Connection Mays has 1 Iter of a solution that cortains 013 iner of an active ingredsent. How much of the active ingredient is in 2.8 iters of the solution? How can you use an ares moder to show this product?
0.364 liters; I can use an area model to show the 4 partial products and then add the partial products
11. Jared buys 3.5 pounds of potatoes. The store charges \(\$ 0.80\) ger pound of potntoes How much does lared pay for the otatoes? Explain how you solved the probleer
\$2.80; Sample explanation: I used decimat grids to show the factors as 35 columns and 8 rows in 4 grids, and the product as the area 2.8 .
12. Ertend Your Thinking How many decimal places do you think We in the product of \(12 \times 143 \times 0,3\) ? What strategy did you use to maver your prediction? Muliply to check your prediction.
Sample answer: \(\mathbf{4}\) decimal places; I used place-value patterns to make my prediction; calculated solution is 0.5148

\section*{(2) Reflect}

How sid I think like a mathematician when expraining now to muitiply decinak?
Answers may vary. you value theif Ideas?

\section*{Practice}

\section*{Build Procedural Fluency from Conceptual Understanding}
- Common Error: Exercises 1-11 Students may make place value errors when multiplying decimals. Suggest that they estimate the products first.

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-2\) & 1 & Procedural Skill and Fluency \\
\(3-11\) & 2 & Application \\
12 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How did I think like a mathematician when explaining how to multiply decimals?
Ask students to share their reflections with their classmates.

\section*{Math is. Uindset}
- How did you show others that you value their ideas?

Students reflected on how they practiced social awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain why I chose a strategy to solve multiplication equations involving decimals.
- I can understand other strategies to solve multiplication equations involving decimals.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item DOK Skill & Standard \\
\hline 1 & 2 & Explain strategies to multiply decimals & 5.NBT.B.7 \\
2 & 2 & Explain strategies to multiply decimals & 5.NBT.B.7 \\
3 & 2 & Explain strategies to multiply decimals & 5.NBT.B.7 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

3 of 3
2 of 3
1 or fewer of 3 Additional Practice or any of the © or © activities Take Another Look or any of the (B) activities Small Group Intervention or any of the \(B\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build ProficiencyExtend Thinking


\section*{Lesson 6.6}

Exit Ticket
Name
What is the product? Use a multiplication strategy to solve.
1. Marie's drinkang glass has a capacty of 0.2 liters. The bucket she is uving has a capacily 22.5 times greater. What is the capocity of the cooler?
4.5 liters
2. Each block is 75 centimeters long. Adom places 9 of these blocks end-to-end to make a train. How long is Adam's train? 67.5 cm
3. At the apple orchard, apples cost \(\$ 180\) per pound. Solly picked two bags of apples that weighed a total of 16 pounds. How much did Sally pay for the apples?
\(\$ 28.80\)

Reflect On Your Learning


\section*{Reinforce Understanding}

\section*{Apply It!}

Work with students in small groups. Provide students with decimal grids that represents a decimal product such as \(4.2 \times\) 0.9 or \(1.1 \times 2.7\). Each student writes the multiplication equation that goes with the decimal grids and a real-world problem that matches the model. Help students use strategies for finding each product. Students then present the decimal grids, equation, and problem to the group.

\section*{Take Another Look Lessons}

Assign the interactive lessons to reinforce targeted skills.
- Multiply Decimal Numbers (Area Model)
- Multiply Decimal Numbers (Patterns)


Differentiation Resource Book, p. 61

\section*{Lesson 6-6 R Reinforce Understanding}

\section*{Explain Strategies to Multiply Decimals}

Nome

\section*{Review}

Your can ve a variety of strategies including decimal grids, area modets, and partial products to multiply decinals. Don't be atreid to try more than one strategy.

Solve each problem. Explain the strategy used to solve.
Sample answers given.
1. The wet recommends a dalify allowance of protein for Chari's dog an 0.8 grams per kelogram of body weight. Charli's dog weighs IS kilograms. How much protein per dey should Charilis dog vat? 14.4 grams; \(10 \times 0.8=8,8 \times 0.8=6.4,8+6.4\) \(=14.4\)
2. Bananas cost 5115 per bunch. How much wifl it cost Siobhan it she purchases 7 bunchet of bananas?
\(\$ 8.05 ; 1 \times 7=7,0.1 \times 7=0.7,0.05 \times 7=0.35\), \(7+0.7+0.35=8.05\)
3. Torbin purchases spring water in 25 gallon containers. Last month he drank o total of 5.7 containers. How mary gallons of spring water did Torbin drinik?
14.25 gallons \(2 \times 5=10,2 \times 0.7=1.4,0.5 \times 5=\) \(2.5,0.5 \times 0.7=0.35,10+1.4+2.5+0.35=\) 14.25

\section*{Build Proficiency}

Practice It! Game Station
Related Decimal Multiplication Task Cards

Students practice decimal multiplication using patterns.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 61-62

\section*{Lesson 6.6}

Additional Practice
Name

\section*{Review}


Use an arear model and partial products to solve \(4.5 \times 6.3\)


What is the product?
1. \(0.9 \times 0.40 .36\)
2. \(67 \times 2.315 .41\)

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with multiplication of multi-digit numbers.

\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


\section*{Student Practice Book, pp. 61-62}

Solve each problem. Explain the strategy used to solve.
3. Lrsute waked 08 mlle yesterday She waked thiee times is for foday How tar did Ursula walk todny"
2.4 miles; Sample answer: I used decimal grids and shaded 3 groups of 8 tenths to show 2 whole grids and 4 tenths of another.
4. Bill jogoed 4.8 miles on Saturday. On Monday, he jogged 0.6 of that distance. How marry miles did Bill jog on Monday? 2.88 miles; Sample answer: I used partial products: \(4 \times 0.6=2.4\) and \(0.8 \times 0.6=0.48\), then \(2.4+0.48=2.88\)
5. A rectangidar picture frome moasures 2.6 foet long and 1.5 feet tall. What is the area that is enclosed by the freme?
4.16 square feet; Sample answer: I used an area model and partial products: \(2 \times 1=2\), \(2 \times 0.6=1.2,0.6 \times 1=0.6\) and \(0.6 \times 0.6=0.36\), then \(2+1.2+0.6+0.36=4.16\)
6. Each orange in a bag of pranges woighs about 0.3 pounds. Gisollo buys a bag thit sortains 14 oranges. About how must does the bap of oranges weigh?
about 4.2 pounds; Sample answer: I used partial products: \(0.3 \times 10=3\) and \(0.3 \times 4=1.2\), then \(3+1.2=4.2\)
7. A rectangular vegotable ganden measures 13 motens long and 9.4 meters wide. What is the ares of the vegetable garden? 122.2 square meters: Sample answer: I used an area model and partial products: \(10 \times 9=90\), \(10 \times 0.4=4,3 \times 9=27\) and \(3 \times 0.4=1.2\), then \(90+4+27+1.2=122.2\)
Math
Mathe
Activity

 potain

Shemet Fartike Eock

\section*{Use It! Application Station}

Rock Garden Students use metric measurements to create a model of a rock garden.


\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 62
Lesson 6-6-Extend Thinking
Explain Strategies to Multiply Decimals


Nivme
Numbers 1-6 are solutions to multiplication problems.
1. 3.2
B
and F
2. 0.24
4. 24.30
H and L
5. 6.24
6. 18.6 and \(G\)

Match each probiem A-L to its solution above in 1 to 6.
\begin{tabular}{|c|c|c|}
\hline A. \(4 \times 0.44\) & B. \(16 \times 0.2\) & C. \(1.55 \times 12\) \\
\hline D. & E. & F. \\
\hline G. \(15 \times 124\) & H. \(9 \times 2.7\) & 1. \(0.8 \times 0.3\) \\
\hline d. August buys 5.2 pounds of oranges that cost \$1,20 a pound. How much does he spend intotar? & K. A recipe for a batch of rols calls for 312 cups of flow, How mach flour is needed for 2 batches? & L. Shelia buyl 18 fishirg lures. Each lure costs \$1.35. How much does she spend in tota? \\
\hline
\end{tabular}

\footnotetext{
DAFrminorlorient fock
}


Students can complete the Unit Review to prepare for the Unit
Assessment. Students may complete the Review in their Interactive eBook in the Digital Students Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{l|l|}
\hline Item & Lesson \\
\hline 1 & \(6-2\) \\
2 & \(6-1\) \\
3 & \(6-2\) \\
4 & \(6-4\) \\
\hline
\end{tabular}

\section*{Review}

Item Analysis
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 5 & 1 & \(6-1\) & 5.NBT.A.2 \\
6 & 1 & \(6-3\) & 5.NBT.B.7 \\
7 & 1 & \(6-5\) & 5.NBT.B.7 \\
\hline 8 & 2 & \(6-2\) & 5.NBT.B.7 \\
9 & 2 & \(6-6\) & 5.NBT.B.7 \\
10 & 1 & \(6-1\) & 5.NBT.A.2 \\
11 & 2 & \(6-4\) & 5.NBT.B.7 \\
12 & 2 & \(6-6\) & 5.NBT.B.7 \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

\section*{Item Analysis (continued)}
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 13 & 2 & \(6-2\) & 5. NBT.B.7 \\
14 & 1 & \(6-4\) & 5. NBT.B.7 \\
15 & 2 & \(6-3\) & 5. NBT.B.7 \\
16 & 1 & \(6-1\) & 5. NBT.A.2 \\
17 & 1 & \(6-5\) & 5. NBT.B.7 \\
18 & 1 & \(6-5\) & 5. NBT.B.7 \\
19 & 1 & \(6-4\) & 5.NBT.B.7 \\
\hline
\end{tabular}

\section*{Performance Task}

Standards: 5.NBT.A.2, 5.NBT.B. 7
Rubric (4 points)

\section*{Part A (DOK 2) - 2 points}

2 POINTS Student's work reflects a proficiency with decimal multiplication. The solution shows a reasonable solution.

1 POINTS Student's work reflects developing proficiency with decimal multiplication. The solution is not reasonable due to computational errors.
0 POINTS Student's work reflects a poor understanding of decimal multiplication. The solution is not reasonable.

\section*{Part B (DOCK 2) - 2 points}

2 POINTS Student's work reflects a proficiency with decimal multiplication. The solution is accurate.

1 POINTS Student's work reflects developing proficiency with decimal multiplication. The solution is incorrect due to computational errors, not conceptual weakness.

0 POINTS Student's work reflects a poor understanding of decimal multiplication. The solution is incorrect.

\section*{Reflect}

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.


\section*{Performance Task}

Cattyn worked with a geologist to help minens find iron ore. She is paid \(\$ 750\) for each hour of wark. Last week, she worked 9.5 hours Part A: She can increase her hours to 10.5 hours some weeks. How can she earn \(\$ 300\) or more in a month?
Sample answer: If she worked 2 weeks for 9.5 hours and 2 weeks for \(\frac{10}{5}\) hours, she would make exactly \(\$ 300\).

Part B: How many hours a week would she need to work to make \(\$ 8025\) per week? 10.7 hours

\section*{Reflect}

How con I mutiply decimas? Answers may vary.
Unit 6
Fluency Practice
Nome

\section*{Fluency Strategy}
You can choose a strategy to subtract. You can adjust the numbers. decompose the second number, of use an alporthm.
Adjust the numbers.

```

Adjust the numbers to find the difference.

```

```

$\underline{2,275}$

```
Fluency Flash
What is the difference?
\begin{tabular}{|c|c|c|c|}
\hline Pmearth & menter & man & ment \\
\hline 5 & 3 & 8 & 6 \\
\hline 1 & 0 & 7 & 2 \\
\hline 4 & 3 & 1 & 4 \\
\hline
\end{tabular}
3.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{} & 2 & 2 \\
\hline 2 & 4 & 1 & 6 \\
\hline 1 & 9 & 5 & 7 \\
\hline & 4 & 5 & 9 \\
\hline
\end{tabular}


元

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students choose a strategy to subtract.
Fluency Progression
\begin{tabular}{|ll|}
\hline Unit & Skill \\
\hline 1 & Use Partial Sums to Add \\
2 & Decompose by Place Value to Subtract \\
3 & Use an Algorithm to Add \\
4 & Use an Algorithm to Subtract \\
5 & Choose a Strategy to Add \\
\hline 6 & Choose a Strategy to Subtract \\
\hline 7 & Multiply by Multiples of 10 \\
\hline 8 & Multiply by Multiples of 100 \\
\hline 9 & Divide Multiples of 10 \\
10 & \begin{tabular}{l} 
Divide Multiples of 100
\end{tabular} \\
\hline 11 & \begin{tabular}{l} 
Use an Algorithm to Multiply (2- and 3-Digit \\
Numbers by 1-Digit Numbers)
\end{tabular} \\
\hline 12 & \begin{tabular}{l} 
Use an Algorithm to Multiply (2-Digit Numbers \\
by 2-Digit Numbers)
\end{tabular} \\
\hline 13 & \begin{tabular}{l} 
Choose a Strategy to Multiply \\
14
\end{tabular} \\
\hline
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Performance Task}

\section*{Welcome to the Neighborhood!}

Students draw on their understanding of multiplying decimals. Use the rubric shown to evaluate students' work.

Standard: 5.NBT.A.2, 5.NBT.B. 7
Rubric (10 points)
Part A (DOK 2) -2 points
2 POINTS Student's work shows proficiency with multiplying a decimal by a power of 10 . The student's solutions and explanation are accurate.
1 POINT Student's work reflects developing proficiency with multiplying a decimal by a power of 10 . Either the student's solutions or the explanation is accurate.
0 POINTS Student's work shows weak proficiency with multiplying a decimal by a power of 10 . The student's solution and explanation are both inaccurate.

\section*{Parts B \& E (DOK 2) - 4 points}

4 POINTS Student's work shows proficiency with multiplying decimals. The student's solution and explanation of strategy are accurate.
2 POINTS Student's work shows developing proficiency with multiplying decimals. Either the student's solution or explanation of strategy is inaccurate.
0 POINTS Student's work shows weak proficiency with multiplying decimals. The student's solution and explanation of strategy are both inaccurate.

Part C (DOK 3) \(\mathbf{- 2}\) points
2 POINTS Student's work shows proficiency with estimating products of decimals. The student's estimation is correct and the explanation is reasonable.
1 POINT Student's work shows developing proficiency with estimating products of decimals. Either the student's estimation is incorrect or the explanation is not reasonable.

0 POINTS Student's work shows weak proficiency with estimating products of decimals. The student's estimation is incorrect and the explanation is not reasonable or is missing.

\section*{Part D (DOK 2) -2 points}

2 POINTS Student's work shows proficiency with place value concepts. The student's calculations are correct and the explanation is reasonable.
1 POINT Student's work shows developing proficiency with place value concepts. Either the student's calculations are incorrect or the explanation is not reasonable.
0 POINTS Student's work shows weak proficiency with place value concepts. The student's calculations are incorrect and the explanation is not reasonable or is missing.

\section*{Unit 6}

\section*{Performance Task}

\section*{Name}

\section*{Welcome to the Neighborhood!}

The Lin family has just moved into the neighborhood and are maling adjustinents to thei new home as they complete the tig move.

\section*{Part A}

Before selecting their new home, the Lin tamily looked net a couple of different houses. The size of wach of the housus is listed below:
\begin{tabular}{|l|c|c|c|c|}
\cline { 2 - 5 } \multicolumn{1}{c|}{} & Size \((\mathrm{ft})\) & Size \(\left(\mathrm{ft}^{2}\right)\) & Size \(\left(\mathrm{ft}^{2}\right)\) & Size \(\left(\mathrm{ft}^{2}\right)\) \\
\hline House 1 & 2000 & \(2.0 \times 10^{3}\) & \(20 \times 10^{2}\) & \(200 \times 10^{\prime}\) \\
\hline House 2 & 1900 & \(1.9 \times 10^{3}\) & \(19 \times 10^{2}\) & \(190 \times 10^{1}\) \\
\hline
\end{tabular}

For each of the houses, complete the table to express their measurements in three additional forms. Ute square feet as decirnsts multipled by powers of 10. Explain the patsern when mutiplying a decimal by a power of 10
Sample answer: Multiplying a decimal by a power of 10 results in a pattern. The digits of the decimal shift left the same number of places as the power.

\section*{Part B}

The Lins deciee to replace their new house's gravel drivewoy with a concrete drivewily. In order to estimate the cost of the project, Mr. and Mrs Lin take measurements to find the area of the driveway. They messure the width of the driveway as 11.4 feet. The length of the diviveway measures 50.5 feet. What is the area of the driveway? What strategy did you use to solve?
575.7 square feet; Sample answer: I used the partial products strategy to solve. \((11+0.4) \times\) \((50+0.5)=550+5.5+20+0.2=575.7\) sq. ft .

\section*{Part C}

Me. Lin is mowing the lawn for the first time in their new house Before mowing the lawn, he will have to buy gas for the mower. Hes lawn mower con hold 2.7 gallons of gasoline. If gas costs \(\$ 2.78\) per gallon. estimate the amount of money he will spend. He believes that he wil spend about \(\$ 11\) for gas. Use estimation to determine if Mr. Lir's solution is reasonoble. How would you respond to nim?

Round \(\$ 2.78\) to 3 . Round 2.7 to \(3.3 \times 3=9\)
Round \(\$ 2.78\) to 2 . Round 2.7 to \(2.2 \times 2=4\)
His estimation is not reasonable because it does not fall in the range 4 to 9.

\section*{Part D}

The Lins are looking ot a rug to put in their new living room. The carpet they live measures 60 inches \(\times 72\) inches. Explain how finding the ares of the rug can be used to find the answer to \(0.6 \times 72\)
Sample Answer: \(60 \times 72=4,320\).
\(0.6 \times 7.2=43.20\)
The digits shift 2 places to the left.

Port E
The Ramsey family has invited the Lin family over for a lunch next weekend to celebrate the Lin's big move. Mr. Ramsery goes to the grocery store to buy ingredients for the meal Whale at the store. he notices that bananas cost \(\$ 0.60\) per pound. Mr. Ramsey decides to prepare binina bread. How much will it cost to buy 0.5 pouncts of baranas? Which strategy did you use to solve?
\(\$ 0.30\) : Sample Answer: Place value concepts.
\(5 \times 6=30 ; 0.60 \times 0.5=0.30\)

\section*{Unit Assessments}

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & DOK & sson G & uided Support Intervention Lesson & Standard \\
\hline 1 & 2 & 6-1 & Multiply by Powers of 10 (Decimal Point) & 5.NBT.A. 2 \\
\hline 2 & 2 & 6-1 & Multiply by Powers of 10 (Decimal Point) & 5.NBT.A. 2 \\
\hline 3 & 2 & 6-2 & Estimate Products (Decimal Number Facto & 5.NBT.B. 7 \\
\hline 4 & 2 & 6-1 & Multiply by Powers of 10 (Decimal Point) & 5.NBT.A. 2 \\
\hline 5 & 2 & 6-4 & Multiply Decimal Numbers (Area Model) & 5.NBT.B. 7 \\
\hline 6 & 2 & 6-3 & Multiply Two Decimal Numbers-Model & 5.NBT.B. 7 \\
\hline 7 & 2 & 6-3 & Multiply Decimals by Whole Numbers-Mod & .NBT.B. 7 \\
\hline 8 & 2 & 6-4 & Multiply Decimal Numbers (Area Model) & 5.NBT.B. 7 \\
\hline 9 & 2 & 6-5 & Multiply Decimal Numbers (Patterns) & 5.NBT.B. 7 \\
\hline 10 & 2 & 6-5 & Multiply Decimal Numbers (Patterns) & 5.NBT.B. 7 \\
\hline 11 & 2 & 6-2 & Estimate Products (Decimal Number Factor & 5.NBT.B. 7 \\
\hline 12 & 2 & 6-5 & Multiply Decimal Numbers (Patterns) & 5.NBT.B. 7 \\
\hline 13 & 3 & 6-6 & Multiply Decimal Numbers (Patterns) & 5.NBT.B. 7 \\
\hline 14 & 3 & 6-6 & Multiply Decimal Numbers (Patterns) & 5.NBT.B. 7 \\
\hline 15 & 2 & 6-2 & Estimate Products (Decimal Number Factor & 55.NBT.B. 7 \\
\hline
\end{tabular}

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit 6}

\section*{Unit Assessment, Form A}

Name
1. Which of these are equivalent to \(6.8 \times 10\) ? Choose all that appy.
A. \(68 \times 10 \times 3\)
(B) \(6.8 \times 10 \times 10 \times 10\)
C. 680
D. 6.800
2. Knowing that \(8.4 \times 10^{\prime}=840\), what is \(8.4 \times 10^{\circ}\) ?
A. 840
B. 8.400
C. 84,000
D. 840.000

A company sells trall mix for \(\$ 3.65\) per pound. About how much would 1 cost to buy a beg of tral mix weighing 5 pounde? about \(\$ 20\)
4. According to her step-counter, duanita walked \(16 \times 10^{2}\) steps yesterday. How many steps did Juanita walk yesterday?
A. 16 steps
B. 160 strips
C. 1600 steps
(D.) 96.000 steps
5. Which sum is equivalent to \(4.8 \times 0.77\)
A. \(280+56\)
B. \(28+5.6\)
C. \(28+5.6\)
(D) \(2.8+0.56\)
6. Which equation is represented by the decimal gnid?

A. \(0.07 \times 0.04=0.28\)
e. \(7 \times 0.4=2.8\)
C. \(0.7 \times 0.4=2.8\)
(D. \(0.7 \times 0.4=0.28\)
7. A sandwich shop uses 0.14 pound of tomsto on each sandwich. How much tomato will the shop need to make 6 sandwiwhes? Use the decirnal grid to help you solve.

0.84 pound
8. A rectangular storage roon is 2.4 meters wide and 13 meters long. What as the arsa of the storage room? Use the area model to solve.

31.2 square meters
st Anvenmer fivouato floct

\section*{Form B}

\section*{Unit Assessment，Form A（continued）}

Name
9．Keith knows that \(6.3 \times 47=2961\) Use place－value patterns to decide whether each equation is True or Fabe．
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & True & False \\
\hline \(6.3 \times 4.7=29.61\) & \(\checkmark\) & \\
\hline \(63 \times 47=29.610\) & & \(\checkmark\) \\
\hline \(63 \times 0.47=296.1\) & & \(\checkmark\) \\
\hline \(63 \times 4.7=296.1\) & \(\checkmark\) & \\
\hline
\end{tabular}

10．Zara knows that \(23 \times 0.86=1978\) ．What is \(2.3 \times 8.6\) ？
A． 1978
（B．） 1978
C． 1978
D． 1978

14．A rectangular cord measures 6.2 inches long by 4.8 inches wide． Which is the best estimnte for the ares of the cird？
A．about It square inches
B．about 20 square inches
C．about 30 square inches
D．about 50 square inches

12．What is the product？Use place value patterns to solve the equations．
\(32 \times 86=2.752\)
\(32 \times 8.6=275.2\)
\(0.32 \times 86=27.52\)

13．Marielle makes \(\$ 9.75\) per houn．Abeut how maich money does Marielle make when she works 76 hours？Explain which estimstion stategy you ised．
Sample answer：about \(\$ 80\) ； 1 rounded each decimal to the nearest whole number to estimate， \(10 \times 8=80\)

14．Yisef walks 0,7 kilometer to the park．He walks to the park 48 simes this year．How many kiliometers does Yuset walk to the park this year？Explain the strategy you used to solve
33.6 kilometers；Sample answer：I used partial products： \(0.7 \times 40=28\) and \(0.7 \times 8=5.6\) ； then \(28+5.6=33.6\)

15．Jondan lines up 36 erasers．Ench eraser is 4.3 centimeters iong How many centimeters long is Jordan＇s line of ernsen？？Explain the stratogy you used to solve
154.8 centimeters；Sample answer：I used an area model and partial products： \(30 \times 4=120,30 \times 0.3\)
\(=9,6 \times 4=24\) ，and \(6 \times 0.3=1.8\) ；then \(120+9+24\)
\(+1.8=154.8\)

\section*{Unit 6 \\ Unit Assessment，Form B}
 nots
（8） \(28060 \times 3\)
（C） \(18 \times 10 \times 10 \times 10\)
C． 300
（9） 2000

A． 419
4．sube

 thoun 512


4． 55 mos
2． 250 mmp
C． 4500 lieent
（c） 25500 thep

A． \(100+4\)
2． \(5=-42\)
c． \(18+42\)
（Q） \(15+0.0\)



62.4 square meters
m m
（b） \(5 \pi\)
c． 50.2
a．ten
 18 nocien with．Wivis a por beal wintane for for en dive miviteguch？

a mow If begien actur
（C）thot 76 namen ivere
a．topt 40 nquan inder
 Se nopione
\(50 \times \pi=4 \mathrm{~m}\)
\(55 \times 7 \mathrm{H}=4418\)
व大⿱日一\(\times 7 \pi=4118\)
 partial producte \(40 \times 2=80,40 \times 0.7=28,3 \times 2=6\) ． and \(3 \times 0.7=2.1\) then \(80+28+6+21=116.1\)

\section*{PACING: 11 days}
LESSON
Unit Opener Ionitel Division
7-1 \begin{tabular}{l} 
Division Patterns with \\
\\
Multi-Digit Numbers
\end{tabular}

7-2 Estimate Quotients

7-3 Relate Multiplication and Division of Multi-Digit Numbers

7-4 Represent Division of 2-Digit Divisors

7-5 Use Partial Quotients to Divide

SOCIAL AND EMOTIONAL LEARNING OBJECTIVE
\begin{tabular}{|c|c|c|c|c|}
\hline 7-1 & Division Patterns with Multi-Digit Numbers & Students use place-value patterns and basic facts to divide a whole number by a multiple of 10 . & tudents talk about how to use place-value Stur patterns and basic facts to divide a whole number by a multiple of 10 using the moda verb can. & ents recognize personal strengths through thoughtful elf-reflection. \\
\hline 7-2 & Estimate Quotients & \begin{tabular}{l}
Students estimate quotients of multi-digit numbers using the same strategies used to estimate quotients of lesser numbers. \\
Students use estimated quotients to make predictions about a calculated solution. \\
Students use estimated quotients to assess the reasonableness of a calculated solution.
\end{tabular} & Students talk about estimating quotients, using the terms greater than, less than, and about. & Students set learning goals and nitiate work on tasks to accomplish their goals. \\
\hline 7-3 & Relate Multiplication and Division of Multi-Digit Numbers & Students use the relationship between multiplication and division to determin the quotient of multi-digit numbers. & Students describe the relationship betwee multiplication and division that helps them to find the quotient when dividing by a multiple of 10 using the verb determine and the adjectives same and different. & tudents collaborate with peers and contribute to group effort to achieve a collective athematical goal. \\
\hline 7-4 & Represent Division of 2-Digit Divisors & Students use an area model to determine partial quotients and add partial quotients to calculate the quotient. & Students explain how to use an area model to determine and add partial quotients using comparatives more useful, less useful, more helpful, and less helpful. & udents discuss how a rule or routine can help develop mathematical skills and knowledge and be responsible contributors. \\
\hline 7-5 & Use Partial Quotients to Divide & Students record partial quotients using an algorithm. & Students discuss recording partial quotients while using the verb relate. & Students exchange ideas for mathematical problem-solving with a peer, listening attentively and providing thoughtful and constructive feedback. \\
\hline 7-6 & Divide Multi-Digit Whole Numbers & \multicolumn{2}{|l|}{Students solve division problems using Students explain how to solve division partial quotients, which sometimes problems using partial quotients, which include remainders. sometimes include remainders, using If... then.} & Students set a focused mathematical goal and make a plan for achieving that goal. \\
\hline 7-7 & Solve Problems Involving Division & \begin{tabular}{l}
Students solve word problems involving division. \\
Students interpret the remainder, when necessary, to solve problems.
\end{tabular} & \multicolumn{2}{|l|}{Students talk about solving word problems Students break down a situation involving division while using the modals to identify the problem at hand. can and could.} \\
\hline
\end{tabular}

Math Probe Solving Division Word Problems Solve a division word problem.

\section*{Unit Review}

Fluency Practice

\section*{Unit Assessment \\ Performance Task}

\section*{FOCUS QUESTION: \\ How can I divide multi-digit numbers?}

MATERIALS TO GATHER
RIGOR FOCUS STANDARD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 7-1 & \begin{tabular}{l}
Math Terms \\
dividend \\
divisor \\
quotient
\end{tabular} & Academic Terms accurate evaluate & \begin{tabular}{l}
- base-ten blocks \\
- index cards
\end{tabular} & - number cubes & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline 7-2 & estimate & suggest variation & - digit cards & & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline 7-3 & dividend divisor & \begin{tabular}{l}
analyze \\
establish
\end{tabular} & - base-ten blocks & - number cubes & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline 7-4 & partial quotient & reflect speculate & - base-ten blocks & - calculators & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline 7-5 & partial quotient & condition drawback & - Blank Partial Quotients Teaching Resource & & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline 7-6 & partial quotient remainder & address advantage & - base-ten blocks & & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline 7-7 & remainder & note transition & & & \begin{tabular}{l}
Conceptual \\
Understanding, \\
Procedural \\
Skill \& Fluency
\end{tabular} & 5.NBT.B. 6 \\
\hline
\end{tabular}

\section*{Unit Overview}

\section*{Focus}

\section*{Dividing Multi-Digit Whole Numbers}

In this unit, students build on their understanding of multiplication and division from Grade 4. Students have previously worked with division of up to four-digit dividends and one-digit divisors, including situations involving remainders. They continue to use equations, rectangular arrays, and area models to extend their knowledge of division to include up to four-digit dividends and two-digit divisors. They use estimation techniques to determine the reasonableness of solutions.

Students apply their understanding of dividing multi-digit whole numbers to solve problems in real-world contexts.

When possible, students use area models to represent and solve a problem. By reasoning with the blocks for multiple cases, they develop a general process for approaching problems, which they know as the partial quotients algorithm.

Students discover that place value and division strategies work the same way with multi-digit whole number divisors as they do with division by one-digit divisors.
- Use place-value patterns: Students can identify and use place-value patterns to divide multi-digit whole numbers.
- Use models: Students use models to represent division problems and relate the problem to multiplication. They use their understanding of place-value and multiplication to decompose an area model by factors and use partial quotients to identify the quotient.
- Solve word problems: Students use their understanding of equations and models to solve word problems involving division.

\section*{Coherence}

\section*{What Students Have Learned}
- Students divided 4-digit dividends by 1-digit divisors and made sense of remainders. (Grade 4)
- Students used partial-quotient strategies to divide multi-digit numbers with single-digit divisors. (Grade 4)
- Students illustrated and explained calculations using equations, rectangular arrays, and/or area models. (Grade 4)

\section*{What Students Are Learning}
- Students use strategies based on place value to divide multi-digit whole numbers.
- Students estimate quotients of multi-digit whole numbers.
- Student use partial quotients and the standard algorithm to divide multi-digit whole numbers. - Students solve real-world division problems with multi-digit whole numbers.

\section*{What Students Will Learn}
- Students fluently divide multi-digit numbers using the standard algorithm (Grade 6).

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build on their understanding of division by using place value patterns to calculate quotients.
- Students build their understanding of multiplication and division using basic facts to divide multi-digit numbers.
- Students build on their understanding of division as they begin to divide with 2-digit divisors using area models and partial quotients.

\section*{Procedural Skill and Fluency}
- Students develop proficiency with dividing whole numbers by multiples of 10 .
- Students use estimation strategies to begin to build proficiency with division.
- Students build proficiency with multi-digit division using basic multiplication facts.
- Students build proficiency by using area models and partial quotients to represent division with or without remainders.

\section*{Application}
- Students apply estimated quotients to successfully solve contextual, real-world problems.
- Students apply their understanding of dividing multi-digit whole numbers to solve problems with real-world contexts.

Application is not a targeted element of rigor for this standard.

\section*{Effective Teaching Practices}

\section*{Build Procedural Fluency from Conceptual Understanding}

Procedural fluency is the ability to perform mathematics tasks flexibly, efficiently, and accurately. A common misconception is that math is about knowing mathematical procedures. However, math begins with concepts, and procedures are just tools for applying them.

Conceptual understanding is best achieved by way of exploration, discovery, and making connections to prior knowledge. In this way, learning is more meaningful and interesting to students than mere memorization of procedures. When a student's knowledge is built on conceptual understanding, they can more readily reason through new situations. It is important for students to develop strategic thinking and the ability to find a course of action specific to the situation at hand.

This unit involves computation. Be sure instruction makes strong connections to conceptual understanding.
- Have students recognize that it doesn't matter if they don't maximize the number (of thousands, hundreds, and so on) that they distribute at each step of the algorithm. The result will be the same in the end despite the increased number of steps.
- Ask students to make connections to the area models and to whether they are finding the number of groups or the size of each group.
- It might be cumbersome to represent 4-digit numbers and the division process with area models, but it is a useful step in building the conceptual understanding that will support students' work with the algorithm and vertical format. Consider using smaller numbers if time or availability of materials is an issue.
- Have students spend time explaining connections.

\section*{Math Practices and Processes}

\section*{Attend to Precision}

Attending to precision refers to any action or habit of being accurate, clear, and on point. For example, when students attend to precision, they use care in computations and check their answers, pay attention to units while reasoning about problems, use the clearest possible language to explain ideas, label representations accurately to connect them to the quantities and relationships in problems. Teachers help students develop the habit of attending to precision by being accurate themselves in their discussions and by requiring it of them in all discourse and classroom activity.

To help students develop the habit of attending to precision, assign tasks that require precision and set clear expectations and have students think purposefully about precision in their work and discourse.

For example:
- Have students discuss how they estimate quotients using rounding and compatible numbers. Have them recognize and talk about how estimation is connected to the idea of precision and accuracy.
- Have students talk about their area models and connect them to place value concepts using appropriate and precise language.
- Have students describe the units of the quotient and any remainder that results. Have them explain why the context affects the units of the quotient.

\section*{Social and Emotional Learning}
- Self-Awareness - Recognize Strengths (Lesson 7-1): When students recognize their own strengths, they can see themselves as resourceful and may be more willing to attempt to problem solve and help others.
- Self-Management - Self-Motivation (Lesson 7-2): Students who self-motivate can take initiative and persevere through challenging tasks.
- Relationship Skills - Teamwork (Lesson 7-3): When students work effectively as a team, they establish a stronger learning community.

Responsible Decision-Making - Ethical Responsibility (Lesson 7-4): Understanding rules and routines of the classroom environment can help students be responsible contributors to the learning community.
- Social Awareness - Respect Others (Lesson 7-5): When students are respectful of one another, they strengthen their class community.
- Self-Management - Goal Setting (Lesson 7-6): Setting goals can help motivate students to take initiative and stay focused.
- Responsible Decision-Making - Identify Problems (Lesson 7-7): A key step in problem solving is analyzing information to identify the task.

\section*{Unit Overview}

\section*{Language of Math}

\section*{Vocabulary}

Students will be using these key terms in this unit.
- Dividend - (Lesson 7-1): Students were introduced to this term in the context of division fluency. It is the number that gets divided in a division problem.
- Divisor- (Lesson 7-1): Students were introduced to this term in the context of division fluency. It is the number that divides another number in a division problem.
- Quotient - (Lesson 7-1): Students were introduced to this term in the context of division. This is the result of dividing one number by another number.
- Estimate - (Lesson 7-2): Students were introduced to this term in the context of solving word problems involving all four operations. Have students discuss how estimation can help them evaluate the reasonableness of a solution.
- Partial quotient - (Lesson 7-4): Students were introduced to this term with the strategy of breaking a dividend into parts and dividing each part by the divisor separately. Each separate quotient generated by this process is called a partial quotient. The total quotient is the sum of the partial quotients. The process is called the partial quotients algorithm. Students use the process repeatedlythroughout the unit and refer to it simply as using partial quotients.
- Remainder - (Lesson 7-6): Students were introduced to this term in the context of division strategies. A remainder is an amount left over after one whole number is divided by another.

\section*{Math Language Development}

\section*{A Focus on Listening}

We start learning our first language by listening. At an early age we are able to begin connecting what we hear with what is happening around us and with how others are interacting with us. Listening to a fluent speaker is the most efficient way to start learning our first language.

Similarly, our earliest encounters with math most likely involve listening. We recite the count sequence and learn to name shapes by listening to and copying a fluent speaker.
Instruction in the math classroom should include plenty of speaking and listening. Such discourse engages students-with you and with each other. It promotes thinking and shared learning. Speakers must dig into their thoughts and process their own understanding, and listeners must also dig into their thoughts as they process the speakers' ideas and compare them to their own.
Promote listening in the classroom by eliciting responses from students during whole-class discussions. Responses may be written or spoken.

The purpose is simply to promote listening. Also, engage students in discussions with each other and have them paraphrase and record each other's ideas.
- Have students work in pairs. Give them quotients to estimate-including problems for which both rounding and compatible numbers can be used. Students take turns explaining estimates to each other. The listener makes the estimate as described by the speaker and explains the process back to the speaker.
- For a chosen division problem, explain to the class your process for finding the quotient using an area model. Have students write a description of the process.
- Have students explain the reasoning they use to determine the units of a quotient. One student explains the case of the quotient being the number of groups, and the other explains the case of the quotient being the size of each group.

\section*{English Language Learner}

In this unit, students are provided with a number of scaffolds to support their comprehension of the language used to present and explain strategies related to dividing whole numbers. Because many of the words (needed, hold, solution, none, saved) and phrases (as much, as great as, left over) used in this unit could prove challenging to ELs, they are supported in understanding and using them so that the instruction is more accessible.

Lesson 7-1- (10× , etc.) as much
Lesson 7-2 -needed
Lesson 7-3-hold
Lesson 7-4 - solution
Lesson 7-5-(24×, etc.) as great as
Lesson 7-6 - (none) left over
Lesson 7-7 - saved

\section*{Unit Routines}

\section*{Number Routines}

Build Fluency The number routines found at the beginning of each lesson help students build number sense and operational fluency. They also help students develop the thinking habits of mind that are important for proficient doers of math.

\section*{Where Does It Go?}

Purpose: Build estimating skills using benchmarks.
Overview: Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

\section*{Which Benchmark Is It Closest To?}

Purpose: Enhance rounding and reasoning skills.
Overview: Students determine to which benchmark the given number is closest and explain their reasoning.

\author{
Find the Pattern, Make a Pattern
}

Purpose: Build efficiency with recognizing and building patterns. Overview: Students determine the rule(s) for a given pattern, then use the rule(s) to create a new pattern. The teacher records students' new patterns and facilitates a discussion to validate the pattern and its rules.

\section*{Decompose It}

Purpose: Build flexibility with numbers.
Overview: Students generate multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. The teacher records decompositions and then facilitates a discussion of patterns in the decompositions.

\section*{? Sense-Making Routines}
- Notice \& Wonder: What question could you ask? (Lesson 7-1) Students are presented with images of grouped items. Students might ask about the total number of items, the number of groups of items, or the number of items in each group.
- Notice \& Wonder: What do you notice? What do you wonder? (Lessons 7-2 and 7-3) Students are presented with images of grouped items. Students might notice the objects are in groups and wonder about the total number of objects or the number of groups.
- Notice \& Wonder: Tell me everything you can. (Lesson 7-4) Students are presented with a rectangular image with one dimension labeled. Students might ask about the parts or the whole area.
- Numberless Word Problem (Lessons 7-5 and 7-6) Students are given problems containing no numerical information, and asked to identify the math they see.
- Numberless Word Problem (Lesson 7-7) Students are presented with a situation in which no numerical information or question is provided, and asked to predict what the question could be.

\section*{Math Language Routines}

The Mathematical Language Routines used in this unit give teachers a structured, yet adaptable format for amplifying and developing students' social and academic language. These routines can also be used as formative assessment opportunities as students develop proficiency in English and mathematical language. They can be used in ways that support real-time-, peer-, and self-assessment. For more information on the Math Language Routines, see the Appendix.

\footnotetext{
- Lesson 7-1 - Students participate in MLR8: Discussion Supports.
- Lesson 7-2 - Students participate in MLR7: Compare and Connect.
}
- Lesson 7-3 - Students participate in MLR2: Collect and Display.
- Lesson 7-4 - Students participate in MLR1: Stronger and Clearer Each Time.
- Lesson 7-5 - Students participate in MLR4: Information Gap.
- Lesson 7-6 - Students participate in MLR5: Co-Craft Questions and Problems.
- Lesson 7-7 - Students participate in MLR6: Three Reads.

\section*{Unit 7}

How Ready Am I?
Name
```

1. What is the difference?
6.352
-4.715
```
(A.) 1637
B. 1,643
```

C. 2,443
2. What is the difference? 903-74

```
A. 163
B. 201
(C.) 829
D. 971
3. What is the quotient of \(2.400 \div 6\) ?
C. 400
B. 40

What is 2.456 rounded to the nearest thousand
(A.) 2.000
B. 2,400
C. 3,000
D. 2,500
5. A teacher has 48 croyons. She gives an equal number to oach of 6 groups of students. How mary crayons does each group get?
A. 6 crayons
C. 42 crayons
(B.) 8 criyyons
6. What is the quobient of \(538+9\) ?
A. 59 RO
(B.) \(59 R 7\)
C. 59 R 2
D. 59 R16
7. Jim has 225 stickert. He arranges them into 7 equal ples How many stickers are left over?
A. 0
(B.) 1
D. 6
8. Janice has 75 trading cards. She keeps them in plastic sheets that hold 8 cards each. How many plastic sheots does Janice need for all of her trading earta?
A. 6 sheets
B. 7 sheets
C. 9 sheets
D. 10 sheots
9. What is the product?

358
7
\(\times 7\)
A. 2176
B. 2.185
C. 2.506
D. 21,756
10. What is the product?

623
\(\times 54\)
A. 5,607
B. 28,035
C. 33.642
D. 56.070

15
Anvines Renowes loos

Administer the Readiness Diagnostic to determine your students' readiness for this unit.

\section*{Targeted Intervention}

Use Guided Support intervention lessons available in the Digital Teacher Center to provide targeted intervention.

\section*{Item Analysis}
\begin{tabular}{|l|l|l|l|l|}
\hline Item & DOK Skill & \begin{tabular}{l} 
Guided Support \\
Intervention Lesson
\end{tabular} & Standard \\
\hline 1 & 1 & Subtract whole numbers Subtract Multi-Digit \\
Numbers
\end{tabular}\(\quad\) 4.NBT.B.4

Assign the digital Readiness Diagnostic to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit Opener}

\section*{Focus Question}

Introduce the Focus Question: How can I divide multi-digit numbers?
Ask students to think about what they know about division.
-What do you already know about division?
-What do you know about representing division?
- How does knowing multiplication facts help you divide?

Remind students that at the end of the unit, they will reflect back on what they learned in this unit.

\section*{Family Letter}

Each letter presents an overview of the math in the unit and home activities to support student learning.

\section*{STEM in Action}

\section*{Videos}

Students can watch the two STEM videos.
STEM Career: Computer Programmer Grace talks about her aspirations to be a computer programmer.
Grace Designs a Game: Grace uses division to determine the length of a sports field in her computer game.

\section*{STEM Project Card}

Students can complete the STEM project during their workstation time.

\section*{STEM Adventure}

Students can complete the STEM Adventure during their workstation time.


\section*{STEM Career: Computer Programmer}


\section*{IGNiTE!}

Name

\section*{Division Puzzles}
1. Each row and column (not diagonas) represents a division problem. Use whole numbers to fill in the missing numbers in Puzzles A-E

Purzle E
\begin{tabular}{|c|c|c|}
\hline 54 & 9 & 6 \\
\hline 27 & 9 & 3 \\
\hline 2 & 1 & 2 \\
\hline
\end{tabular}
2. Show as many ways as you can to solve this division purzle.

\begin{tabular}{|c|c|c|}
\hline 36 & 12 & 3 \\
\hline 9 & 3 & 3 \\
\hline 4 & 4 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 36 & 18 & 2 \\
\hline 6 & 3 & 2 \\
\hline 6 & 6 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 36 & 9 & 4 \\
\hline 12 & 3 & 4 \\
\hline 3 & 3 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 36 & 36 & 1 \\
\hline 3 & 3 & 1 \\
\hline 12 & 12 & 1 \\
\hline
\end{tabular}

\footnotetext{
206 ignithe - Cingerfiutes
}

\section*{Ignite!}

\section*{Division Puzzles}

Students use their knowledge of division and factors to solve the puzzles.
1. Have students work in pairs to examine Figure 1 and share their thoughts.
-What do you notice about the numbers in Figure 1?
2. Encourage students to look for other division relationships in Figure 1. The class should conclude that each row and column (but not the diagonals) could represent a division problem.
3. In Part 1, have students work in pairs to solve Puzzles A-E. Remind them that every row and column in Puzzles A-E represents a division equation as discussed for Figure 1. Advise students to check all computations before concluding that a puzzle is solved.
4. Have students share their strategies.
- How did you approach solving the puzzles?
5. Now have students draw attention to Part 2 at the bottom of the page. Have them find as many ways as they can to solve the puzzle.
-What patterns did you notice in your solutions?

\section*{Extensions}
6. If you multiply the numbers in all nine squares in a puzzle by the same nonzero number, will the division puzzle still be valid? Explain.
7. If you multiply the numbers in the four squares in the top left of a puzzle by the same nonzero number, will the division puzzle still be valid?

\section*{Workstations}

Reveal Math offers rich and varied resources that teachers can use to differentiate and enrich students' instructional experiences with the unit content. The table presents an overview of the resources available for the unit with recommendations for when to use.


\section*{Additional Resources}

Use the resources below to provide additional support for this unit.

\section*{Vocabulary}

Use the vocabulary cards to help students learn the vocabulary in this unit. Encourage students to write their own definitions of the new terms on the front side of the card.


\section*{Foldables}

Use the unit foldables with Lesson 7-5.


\section*{Spiral Review}

Students can complete the Spiral Review at any point during the unit as either a paper-andpencil or digital activity.
\begin{tabular}{|l|l|}
\hline Lesson & Standard \\
\hline \(7-1\) & 5.MD.C.5 \\
\(7-2\) & 5.NBT.A.3 \\
\(7-3\) & 5.NBT.B.5 \\
\(7-4\) & 5.NBT.B. 7 \\
\(7-5\) & 5.NBT.A.4 \\
\(7-6\) & 5.NBT.A.2 \\
\(7-7\) & 5.NBT.B.6 \\
\hline
\end{tabular}

\section*{Division Patterns with Multi-Digit Numbers}

\section*{Learning Targets}
- I can explain patterns when dividing by a multiple of 10 .
- I can use patterns to determine the quotient when dividing by a multiple of 10 .

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Addifional}

\section*{Content}
\(\checkmark\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

\section*{Math Practices and Processes}

MPP Reason abstractly and quantitatively.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objective}
- Students use place-value patterns and basic facts to divide a whole number by a multiple of 10 .

\section*{Language Objectives}
- Students talk about how to use place-value patterns and basic facts to divide a whole number by a multiple of 10 using the modal verb can.
- To support maximizing cognitive and linguistic meta-awareness, ELs participate in MLR8: Discussion Supports.

\section*{SEL Objective}
- Students recognize personal strengths through thoughtful self-reflection.

\section*{Coherence}

\section*{Previous}
- Students found whole-number quotients and remainders with up to four-digit dividends and one-digit divisor (Grade 4).
- Students multiplied decimals to hundredths (Unit 6).
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students use place-value & \begin{tabular}{l} 
- Students will use compatible \\
patterns to determine quotients \\
when dividing by multiples of 10.
\end{tabular} \\
& \begin{tabular}{l} 
numbers to estimate quotients \\
(Lesson 2).
\end{tabular} \\
& \begin{tabular}{l} 
- Students will fluently divide \\
multi-digit numbers using the \\
standard algorithm (Grade 6).
\end{tabular} \\
&
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of division by using place-value patterns to calculate quotients.

\section*{Procedural Skill \& Fluency}
- Students develop proficiency with dividing whole numbers by multiples of 10 .

\section*{Application}
- Students apply their understanding of division to solve real-world problems
Application is not a targeted element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Terms \\ dividend \\ Academic Terms \\ divisor accurate quotient}

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks
- index cards
- number cubes

\section*{Number Routine} Where Does It G \({ }^{2}\)
(4) 5-7 min

Build Fluency Students build number sense as they place 0.485 on a number line between 0 and 1 and then on a second number line between 0 and 0.5 .

These prompts encourage students to talk about their reasoning:
- What do you think about first when trying to place 0.485 on a number line?
- Which labeled value is 0.485 closer to? How do you know?
- How can breaking up the number line into smaller intervals help you place 0.485 ?
- How can you be sure your answer is correct?

Purpose Students think about how objects are grouped in different ways and how they might determine the number of groups.

\section*{Notice \& Wonder}
-What question could you ask?
Teaching Tip Ask students to draw on their prior knowledge of how many pennies, nickels, dimes, and quarters are in a dollar. Have them determine how many of each type of coin are in each roll.

\section*{Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of using place-value patterns and basic facts to divide by multiples of 10 and are based on possible comments and questions that students may make during the share out.
- How can you determine how many coins are in each type of roll?
-What do you notice about how many are in each type of roll?
- How can you figure out if any of the coins are grouped in a similar way?
- If you knew how many of a type of coin you had, how do you think you could find how many rolls you would need to use?

\section*{Math is... Yindset}
- How can your strengths in other areas help you in math?

\section*{SEI \\ Self-Awareness: Recognize Strengths}

Before students begin the Notice and Wonder routine, invite them to think about their personal areas of strength in math. In addition to specific math skills, students may also acknowledge personal strengths that can help them with their learning, such as listening, staying focused, or explaining. As students work with division patterns throughout the lesson, model giving positive feedback to help them acknowledge their personal strengths. Encourage students to recognize and acknowledge the strengths of their peers.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about using place-value patterns and basic facts to divide.

\section*{EIP Establish Goals to Focus Learning}
- Let's think about how we can use place-value patterns and basic facts to divide whole numbers by multiples of 10 .


\section*{Learn}

There are 12.000 nickets
How can you find the number of rolls of nickels?
Patterns can heip you solve the problem.


\section*{Q Work Together}

\footnotetext{
What is the quabem? How can you use a basic fact and pattems to solve? Sample explanation: The basic fact is \(300 \div 50=6 \quad 30 \div 5=6\). For \(300 \div 50=6\), because \(3.000 \div 50=60\) both the dividend and divisor are 10 time \(30.000 \div 50=600\) as much, the quotient is the same. For the last two steps, when zeros are added to only the dividend, the quotient also increases by the same number of zeros.

}

\section*{(1) Pose the Problem}

\section*{MLP}

\section*{Discussion Supports}

As students talk about what they know, have them pay attention to others' understandings in order to increase their ability to work through division patterns with multi-digit numbers. Restate statements they make as a question to seek clarification and provide vocabulary or grammar prompts for students who need more guidance.

\section*{ETP Pose Purposeful Questions}
- How can you determine which operation you will use to solve this problem?
- Should the number of rolls be more or less than the number of nickels? How do you know?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{3 Bring It Together}

\section*{ETP}

\section*{Elicit Evidence of Student Thinking}
- How do basic facts help you divide multi-digit numbers?
- How do place-value patterns help you find the quotient when dividing by multiples of 10 ?

\section*{Key Takeaway}
- One way to divide a whole number by a multiple of 10 is to use place-value patterns and basic facts.

\section*{Work Together}

As students work together to solve the problem, make sure they start with a basic fact rather than jumping into the first equation. Have students discuss how the basic fact helps them solve the other equations.

Common Error When determining the basic fact, students may think they should use the most basic numbers, in this case, \(3 \div 5\). Remind students that, in a basic division fact, the dividend is greater than the divisor.

\section*{Lom Language of Math}

The word quotient comes from the Latin word quotiens meaning "how many times." The quotient is how many times the divisor is in the dividend.

\section*{Activity-Based Exploration}

Students explore patterns in division equations involving multiples of ten.

Materials: base-ten blocks
Directions: Display a basic fact, such as \(15 \div 3\) and a problem in which the dividend and divisor are 10 times as much, such as \(150 \div 30\). Have students model the division using base-ten blocks. Repeat with different problems. Encourage students to look for patterns as they represent and solve the various problems. After students have discovered and discussed patterns when both the dividend and divisor are 10 times as much. Display division problems in which the dividend is 10 times as much and the divisor stays the same, such as \(1,500 \div 30\). Encourage students to look for patterns as they solve these equations.

\section*{EIP Implement Tasks That Promote Reasoning and} Problem Solving
- How did you determine how to represent the dividends and divisors using base-ten blocks?
- What happens to the quotient when both the dividend and divisor are 10 times as much? How can you show this?
- How does the quotient change when only the dividend is 10 times as much? How can you show this?

\section*{Math is... Structure}
- How can you use place value to justify the pattern of zeros in the dividends and quotients?

Students explain a pattern that arises as a result of the structure of place value.

Activity Debrief: Have groups share their solutions and the patterns. Facilitate a discussion to ensure students understand that when both the dividend and divisor are 10 times as much, the quotient is the same as the basic fact. When only the dividend is 10 times as much, the quotient is also 10 times as much.

Have students revisit the Pose the Problem question and discuss answers.
- There are 12,000 nickels. How can you find the number of rolls of nickels?

\section*{Guided Exploration}

Students use what they know about place value to use patterns that will help them divide multi-digit numbers that are multiples of ten.
[EIP Facilitate Meaningful Discourse
(A) Have the students create the equation. Ask:
-What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
- How does the basic fact relate to the original equation?
- How do you think the basic fact might help you solve the equation?
(4) Have students use base-ten blocks to determine how many groups of 40 can be made by 120. Ask:
- How do the base-ten blocks help you understand and find how many groups of 40 you can make?
- Think About It: How can thinking of 1,200 as 120 tens and 40 as 4 tens help you determine the quotient?

\section*{Math is... Structure}
- How can you use place value to justify the pattern of zeros in the dividends and quotients?

Students explain a pattern that arises as a result of the structure of place value.

\section*{2. Develop the Math}

There are 12,000 nickets. How can you find the number of rolls of nickels if each roll contains 40 nickels?

How can you represent the problem?


\section*{English Learner Scaffolds}

Entering/Emerging Ensure understanding of \((10 \times\) ) as much. Write the number 10 on the board and say it aloud. Then write \(\times 10=100\) next to it. Point to the 100 and say This is ten times as much as 10 . Repeat with another number, such as 40. Ask students is 40 ten times as much as 400 ? (no) Is 400 ten times as much as 40 ? (yes)

Developing/Expanding Ensure understanding of ( \(10 \times\) ) as much. Write the number 10 on the board and say it aloud. Then write \(\times 10=100\) next to it. Point to the 100 and say This is ten times as much as 10 . Times 10 is ten times as much. Repeat with another number, such as 60 . Then ask students to demonstrate the same task with a new number, such as 80 , and to use \(10 x\) as much in their sentence.

Bridging/Reaching Ask students to use (10x) as much in a sentence, focusing on its usage on the Learn page. Then ask students to think of other words that could be used in place of it in their sentences ( \(10 \times\) ) more, (10x) greater, etc.). Allow students to use a dictionary or thesaurus if desired.

\section*{Practice \& Reflect ©iomin}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OnMy Own Mend |atu} \\
\hline \multicolumn{3}{|l|}{Name} \\
\hline \multicolumn{3}{|l|}{Use a bosic fact and patterns to solve.} \\
\hline 1. \(15+3=5\) & \multicolumn{2}{|l|}{2. \(32+8=4\)} \\
\hline \(150+30=5\) & \multicolumn{2}{|l|}{\(320+80=4\)} \\
\hline \(1,500+30=50\) & \multicolumn{2}{|l|}{\(3.200+80-40\)} \\
\hline \(15,000+30-500\) & \multicolumn{2}{|l|}{\(32.000+80=400\)} \\
\hline 3. \(20.000+40=500\) & 4. \(15.000+30=500\) & \\
\hline 5. \(18.000+60=300\) & 6. \(16.000+80=200\) & \\
\hline 7. \(8.000+40=200\) & B. \(25.000+50=500\) & \\
\hline 2. \(32.000+80=400\). & 10. \(9.000+30=300\) & \\
\hline &  & 209 \\
\hline
\end{tabular}
11. There are 24.000 quarters in ralls of 40 quarters each. How
many rolls of quarters are there?
600 rolls of quarters
12. Frror Analysls Drew wants to solve \(12,000+20\) ty starting wh this basic fact \(12+2=6\). Drew then uses patberns to find a quotient of 60 is Drew correct? If not, what mistotet did ne make? No, quotient is 600; Sample answer: He likely multiplied the divisor by 10 one time too many and solved \(12,000 \div 200\) instead of \(12,000 \div 20\).
13. STEM Connection A building has 20 sioors The building has a total floor ares of 40.000 square feet. What is the ares of each tioor? Explain
2,000 square ft ; Sample answer: divide the total area by the number of floors

14. Extend Your Thinking Write a basic fact. Use place value potterns to mutiply the dividend by 10 and the divisor by 10. How do the quotients compare?
Sample answer: \(16 \div 4=4 ; 160 \div 40=4\);
The quotients are the same because the dividend and divisor were both multiplied by the same amount.

\section*{© Reflect}

How does using place-vaiue patterns and basic tacts help you cilivide whole numbers by multipies of 10 ?
Answers may vary.

\section*{Practice}

\section*{EIP Build Fluency from Understanding}
ommon Error: Exercises 7-10 Remind students who determine quotients with the incorrect place value what the pattern in terms of the number of zeroes in the quotient looks like.

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-10\) & 1 & Procedural Skill and Fluency \\
\(11-13\) & 2 & Application \\
14 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How does using place-value patterns and basic facts help you divide whole numbers by multiples of 10 ?
Ask students to share their reflections with their classmates.

\section*{Math is... Jindset}
-When might you use math outside of class?
Students reflect on how they practiced self-awareness.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain patterns when dividing by a multiple of 10 .
- I can use patterns to determine the quotient when dividing by a multiple of 10 .

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|cc|c|l|}
\hline \multicolumn{3}{|c|}{ Item } & DOK \\
Skill & & Standard \\
\hline 1 & 1 & Divide by multiples of 10 & 5.NBT.B.6 \\
\hline 2 & 1 & Divide by multiples of 10 & 5.NBT.B.6 \\
3 & 2 & Divide by multiples of 10 & 5.NBT.B.6 \\
4 & 2 & Divide by multiples of 10 & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}
\begin{tabular}{ll}
4 of 4 & Additional Practice or any of the \(\boldsymbol{B}\) or \(\boldsymbol{B}\) activities \\
3 of 4 & Take Another Look or any of the \(\mathbf{B}\) activities \\
2 or fewer of 4 & Small Group Intervention or any of the \(\boldsymbol{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
( Reinforce Understanding
B
Build ProficiencyExtend Thinking



\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Divide by Multiples of 10


Differentiation Resource Book, p. 63

\section*{-esson 7.1- Reintorce Understanding \\ Division Patterns with Multi-Digit Numbers}

Name

\section*{Review}

Use ycur knowiedge working with powers ot 10 and place value to help you divide.
\(84,000+40=(84 \times 1.000)+(4 \times 10)\)
Finst, start wet \(84 \div 4\), which is equal to 21
Next. \(1000+10\). which is equai to to0.
\(84,000+40=21 \times 100,02,2,00\)
Find the quotient for each equation, starting with a basic fact and showing the pattern you used to find the quotient.
1. \(24,000 \div 60\)
3. \(56,000 \div 70\)
\(24 \div 6=4 ; 1,000 \div 10\)
\(=100 ; 4 \times 100=400\)
2. \(25,000+50\)
\(25 \div 5=5 ; 1.000 \div 10\) \(56 \div 7=8 ; 1,000 \div 10\) \(=100 ; 8 \times 100=800\)
4. \(21000+30\)
\(21 \div 3=7 ; 1,000 \div 10\)
\(=100 ; 7 \times 100=700\)
Complete the pattern.


\section*{Build Proficiency}

\section*{Practice It! Game Station}

Multi-Digit Division Tic Tac Toe
Students find quotients of expressions that include multiples of 10 and 100 .


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 63-64

\section*{Lesson 7.4}

\section*{Additional Practice}

Nome

\section*{Review}

You can use bask facts and patterns with factors of 10 to help you divide.
Start w th the basic foct \(15+3=5\)
\begin{tabular}{|c|c|}
\hline Mutiply the dividend and the divisor by the same number of factors of 10 . The quotient femains the same. & Multiply the dividend by a number of factors of 10 . Keep the divisor the samue. Then the quotient is muitiplied by the same nuinber of factors of 10 . \(150+3=50\) \\
\hline \(150+30=5\) & \\
\hline \(1,500+300=5\) & \(1,500+3=500\) \\
\hline \(15,000 \div 3,000=5\) & 15,000 \(+3=5.000\) \\
\hline
\end{tabular}

Wite the basic fact for the dlivislon. Then use a pattern to find the quotient.
1. \(3,000 \div 60\)
2. \(15,000+50\) \(15 \div 5 ; 300\)
3. \(180+90\)
\(18 \div 9=2 ; 2\)
4. \(21,000+700\)
\(21 \div 7=3 ; 30\)

Unit 7 • Divide Whole Numbers

\section*{Own It! Digital Station \\ Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 63-64


\section*{Extend Thinking}

\section*{Use it! Application Station}

Online Learning: Is It Safe? Students write rules for safely using electronic devices and practice their rules by researching how to divide multi-digit numbers. The content of this card has concepts covered later in Lesson 7-6.


You may want to assign this card to students ready to explore content covered later in this unit.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 64

\section*{Lesson 7.1-1-Extend Thinking \\ Division Patterns with Multi-Digit Numbers}

Name
Calculate the quotient for each equation. Then write the quotients in order from least to greatest.


Quotients in order from least to greatest:
\(5<6<9<40<60<90<\underline{200}<700\)

\section*{Estimate Quotients}

\section*{Learning Targets}
- I can explain how to estimate quotients of multi-digit numbers.
- I can estimate quotients of multi-digit numbers to determine if calculations are reasonable.
- I can use an estimated quotient to make predictions about a calculated solution.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B.6 Find whole-number quotients of whole numbers with up to four-digit dividends and
two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

\section*{Math Practices and Processes}

MPP Reason abstractly and quantitatively.
MPP Use appropriate tools strategically.

\section*{Focus}

\section*{Content Objectives}
- Students estimate quotients of multi-digit numbers using strategies they used to estimate quotients of lesser numbers.
- Students use estimated quotients to make predictions and asses the reasonableness of a calculated solution.
Coherence

\section*{Previous}
- Students used place-value strategies to find quotients quotients (Grade 4).
- Students used place-value patterns to determine quotients when dividing by multiples of 10 (Lesson 1).

\section*{Language Objectives}
- Students talk about estimating quotients, using the terms greater than, less than, and about.
- To support optimizing output, ELs participate in MLR7: Compare and Connect.

\section*{SEL Objective}
- Students set learning goals and initiate work on tasks to accomplish their goals.

Rigor

\section*{Conceptual Understanding}
- Students build their understanding of division through estimating quotients.

\section*{Procedural Skill \& Fluency}
- Students use estimation strategies to begin to build proficiency with division.

\section*{Application}
- Students apply their understanding of estimating quotients to solve problems.
Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Term \\ estimate \\ Academic Terms suggest \\ variation}

\section*{Materials}

The materials may be for any part of the lesson.
- digit cards

\section*{Number Routine Which Benchmark Is It Closest To? © \({ }_{5-7 \mathrm{~min}}\)}

Build Fluency Students build number sense as they determine which of three benchmarks is closest to given decimal numbers.

These prompts encourage students to talk about their reasoning:
- What do you notice about the numbers?
- How did you compare each value to the benchmark numbers?
-Why is 1.075 closer to 1 than to 2 ?
- Which numbers were easiest to place?
-What other numbers are close to that benchmark?
- How could you adjust the number so that it is closer to a different benchmark?

Purpose Students look at large numbers of groups and start to think about how they could figure out the number of groups.

\section*{Notice \& Wonder}
-What do you notice?
-What do you wonder?
Teaching Tip You may want to have students work on their own as they notice and wonder. Encourage students to notice the groupings in each picture and wonder about how the water bottles are grouped rather than the number of water bottles in all.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of estimating quotients using compatible numbers and are based on possible comments and questions that students may make during the share out.
- How are the water bottles grouped?
- How could you figure out how many bottles there are?
- How could you figure out how many groups there are?

\section*{Math is... findset}
-What helps you be motivated to do your best work?

\section*{SEL}

Self-Regulation: Initiative
Before beginning the Notice \& Wonder routine, guide students to make their own specific and attainable goal for the day. Goals may be centered around estimating quotients or may be focused on strong behaviors, such as active listening or staying on task. Creating a personal goal can allow students to practice self-motivation as they work toward achieving that goal.

\section*{Transition to Explore \& Develop}

Encourage students to understand that it would be more efficient for them to estimate how many groups of water bottles there are rather than to try counting each one.

\section*{EIP Establish Goals to Focus Learning}
- Let's think about how we can use compatible numbers to estimate quotients.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

A school collected 3,000 bottles of water to be packed into boxes.

What are some ways to estimate the number of boxes needed?

You can use different strateges to estimate quotients:


Estimated quotients can help you determine whether calculations are reasonable.

\section*{Q. Work Together}

Estimate the quotient of \(4,000 \div 16\) two difiterent ways
Sample answer: \(4,000 \div 20=200 ; 4,000 \div 10=400\)


\section*{(1) Pose the Problem}

\section*{토N}

Pose Purposeful Questions
- What are you trying to figure out?
- Do you need an exact answer? How do you know?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{Compare and Connect}

Pair students and have them both work on the same problem, similar to the one on the Learn page. Have them solve using different compatible numbers, and then have them compare their work with their partner. Revisit this routine throughout the lesson to help students build proficiency.

\section*{3 Bring It Together}

\section*{Elicit Evidence of Student Thinking}
- How is estimating quotients useful?
- How would you explain to a classmate how to estimate a quotient?

\section*{Key Takeaways}
- Estimating quotients can help make predictions about a calculated solution.
- Estimating quotients helps assess the reasonableness of a calculated solution.
- Strategies used to estimate quotients of lesser numbers, such as compatible numbers, can also be used to estimate quotients of multi-digit numbers.

\section*{Work Together}

As students determine what numbers to use for estimating with compatible numbers, ask them to predict whether the calculated quotient will be greater than or less than eachestimated quotient.
[ Common Error Remind students to make sure their estimate has the correct number of zeroes, especially if they used what they know about place value patterns to estimate. For example, they may have used the numbers \(4,000 \div 20\) to estimate.

\section*{Language of Math}

Remind students that compatible means "working well together." Compatible numbers are easy to divide mentally because they are related to a basic division fact. For example, while \(3,000 \div 24\) is not easy to calculate mentally, \(3,000 \div 30\) is because it is related to \(30 \div 3\).

\section*{Activity-Based Exploration}

Students explore strategies for estimating quotients.
Materials: Show and Explain Your Strategies Teaching Resource Directions: Distribute copies of the Show and Explain Your Strategies Teaching Resource. Have students solve the Pose the Problem using two different estimation strategies. Students should complete the Show and Explain boxes on the Teaching Resource. For the Check box, tell students that the calculated quotient is 125 . Have students use their estimates to assess the reasonableness of the calculated quotient.

\section*{ETP Support Productive Struggle}
- How could you make the dividend and the divisor easier to divide mentally?
- How can you use what you know about strategies for estimating products to estimate quotients?
- How can you use what you know about basic division facts and place-value patterns to estimate the quotient?

\section*{Math is... Choosing Tools}
-Why might you estimate a quotient more than one way?
Students strategically use estimation as a tool to help them solve problems. For example, they might use several estimates to get a range of reasonable calculated quotients.

Activity Debrief: Invite volunteers to share the estimated quotients and the strategy they used to determine their estimate. Have students compare the different strategies by identifying similarities and differences.

A PDF of the Teaching Resource is available in the Digital Teacher Center.

\section*{Guided Exploration}

Students estimate quotients and compare the estimates to a calculated quotient to assess if it is reasonable.

\section*{EIP Facilitate Meaningful Discourse}
- Think About lt: Why is 20 used to estimate the quotient?
- How can basic facts and place-value patterns help you determine \(3,000 \div 20\) ?

\(\oplus\)Discuss why rounding and front-end estimation are not viable strategies for estimating quotients. Ask:
-Why wouldn't rounding work to estimate \(3,000 \div 44\) ?
- Why wouldn't front-end estimation work to estimate \(5,000 \div 37\) ?

(1)Have students work in pairs or small groups to determine how the estimated quotient relates to the actual quotient. Students should use the meaning of division to help explain their reasoning, such as since both have the same total number of objects \((3,000)\) and we are dividing them into a greater number of groups ( \(30>24\) ), the number in each group will be less.

\section*{Math is... Choosing Tools}
- Why might you estimate a quotient more than one way?

Students strategically use estimation as a tool to help them solve problems. For example, they might use several estimates to geta range of reasonable calculated quotients.

\section*{2. Develop the Math}

A school collected 3,000 bottles of water to be packed into cases. What are some ways to estimate the number of cases needed?
\(3.000+24=n\)

\section*{English Learner Scaffolds}

Entering/Emerging Support students' understanding of the adjective needed. Use crayons to color a picture. Say I colored this picture. Point to the crayons you used. Say These were needed to color the picture. Repeat with a new task using new materials. Then repeat again with another task, and ask two questions, one prompting a Yes answer and one a No. Ask Were these / Was this needed to [task]?

Developing/Expanding Ensure understanding of the adjective needed. Say I want to color a picture. Ask What do I need? Students respond with something needed (paper, markers, etc.) Say That's right. [Markers] are needed. Repeat with a new task using new materials. Then instruct students to think about the last school or home task they worked on. Ask What materials were needed to complete it?

Bridging/Reaching Ask students to talk about the last school or home task they worked on, and to discuss what materials were needed to complete it. Then have them brainstorm and list similar words to needed and share their list with the class (required, necessary, etc.). Allow students to use a dictionary or thesaurus if desired.

50. A quarterback throws the football for a total af 3,289 yards in 16 games. About how many yards did he throw in each game? Sample answer: about 200 yd
14. Owen took 7.027 pictures over the course of a year. About how many pictures did Owen taker each month?
Sample answer: about 500 pictures
12. Extend Your Thinking Which of these equations is not a reasonable estimate for \(533 \div 57\) Explain your reasoning. \(540 \div 60=9 \quad 500+50=10 \quad 420 \div 50=7\) \(420 \div 60=7\); Sample answer: 420 and 60 are compatible numbers, but 420 is not close to the actual dividend.

\section*{(1) Refliect}

How can you use estimates to determine il calculations are teasonable?
Answers may vary.

\section*{Practice}

\section*{EIP Build Fluency from Understanding}

Common Error: Exercises 1-8 Students may attempt rounding or front-end estimation to estimate quotients but doing so may not result in compatible numbers. While rounding and front-end estimation are strategies that work well for other operations such as adding and multiplication, they are not useful strategies for division.

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 1 & Procedural Skill and Fluency \\
9 & 2 & Conceptual Understanding \\
\(10-11\) & 2 & Application \\
12 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you use estimates to determine if calculations are reasonable?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How can you help yourself to start your work independently?

Students reflect on how they practiced self-management.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can explain how to estimate quotients of multi-digit numbers.
- I can estimate quotients of multi-digit numbers to determine if calculations are reasonable.
- I can use an estimated quotient to make predictions about a calculated solution.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{2}{|c|}{ Item pOK } & Skill & Standard \\
\hline 1 & 1 & Estimate quotients & 5.NBT.B.6 \\
2 & 1 & Estimate quotients & 5.NBT.B.6 \\
\hline 3 & 2 & Estimate quotients & 5.NBT.B.6 \\
4 & 2 & Estimate quotients & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

If students score then have students do
\begin{tabular}{ll}
4 of 4 & Additional Practice or any of the \(\mathbf{B}\) or activities \\
\hline 3 of 4 & Take Another Look or any of the \(\mathbf{B}\) activities \\
2 or fewer of 4 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
© Reinforce Understanding
(B) Build Proficiency

E Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Flip It}

Work with students in pairs. Have students flip over digit cards and work together to create a division equation with a 3-digit dividend and a 2 -digit divisor. Have one student estimate a quotient using rounding and the other students estimate an answer using compatible numbers. Discuss with students whether each estimate is greater than or less than the solution and which they expect to be closer to the actual quotient.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Estimate Quotients (Whole Number)


Differentiation Resource Book, p. 65

\section*{Lesson 7.2 - Reinforce Understanding}

\section*{Estimate Quotients}

Name

\section*{Review}

When estimating a quotient. you may find E helptui to work wath compattile tumbers that are mulliples of 10 .
\(6.298+72\)
6.298 can be rounded to 6.300 and 72 can be rounded to 70 Bcth 6,300 and 70 are multiples of 10
\(5.300 \div 70=90.50\) the estimute for \(6.298 \div 72\) is 90 .
Estimate the quotients. Sample answers given.
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{aligned}
& 6,302 \div 31 \\
& 6,300 \div 30=210
\end{aligned}
\] & 5.
\[
\begin{aligned}
& 6,617 \div 59 \\
& 6,600 \div 60=110
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& 2,700 \div 29 \\
& 2,700 \div 30=90
\end{aligned}
\] & 6.
\[
\begin{aligned}
& 3,487+52 \\
& 3,500 \div 50=70
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& 8,105 \div 92 \\
& 8,100 \div 90=90
\end{aligned}
\] & 7. \(3.406 \div 20\)
\[
3,400 \div 20=170
\] \\
\hline & \[
\begin{aligned}
& 1,480+32 \\
& 1,500 \div 30=50
\end{aligned}
\] & \[
\begin{aligned}
& \text { 8. } 608+10 \\
& 600 \div 10=60
\end{aligned}
\] \\
\hline \multicolumn{3}{|r|}{} \\
\hline
\end{tabular}


\section*{Build Proficiency}

\section*{Practice It! Game Station}

Estimating Quotients Showdown
Students practice estimating quotients.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 65-66

\section*{Lesson 7.2}

\section*{Additional Practice}

Name

\section*{Review}
You can use compatible numbers to estimate quotients.
A scout froop collected 2.854 cans mever the last 36 tien. About how many cans were collected each day?
To solve, estimate the quotient \(2.854+36\).
Look for compatibie numbers that are easy to divide mentally.
2.854 is close to 2.800 . 2.854 is close to 2.700 .
35 is close to 40 . \(\quad 35\) is clove to 30 .
A possible estimate is - A possible estimate is
\(2.800 \div 40=70\)
\(2.700 \div 30=90\)
The scout troop collected The scout troop colected about 90
Estimate the quotient. Show how you made the estimate.
Sample answers are given.
3. \(360 \div 35\)
\(9 ; 360 \div 40\)
4. \(2,100 \div 63\) \(30: 2,100 \div 70\)
4. }3.000+4
4. }3.000+4
    60;3,000 + 50
    60;3,000 + 50

Unit 7 • Divide Whole Numbers

\section*{Extend Thinking}

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 65-66


\section*{Use It! Application Station}

Estimate High School Density
Students research the density of schools in 10 U.S. states.

STEM Adventure
Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 66

\section*{Lesson 7-2 - Extend Thinking}

\section*{Estimate Quotients}

Name
Estimate the quotient by rounding. Then match up the equal estimates. The first one is done for you. Show your work.


\title{
Relate Multiplication and Division of Multi-Digit Numbers
}

\section*{Learning Target}
- I can use the relationship between multiplication and division to determine the quotient when dividing by a 2 -digit divisor.

\section*{Standards \(\circ\) Major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\diamond\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

\section*{Math Practices and Processes}

MPP Look for and express regularity in repeated reasoning.

\section*{Focus}

\section*{Content Objective}
- Students use the relationship between multiplication and division to determine the quotient when dividing by a 2-digit divisor.

\section*{Language Objective}
- Students describe the relationship between multiplication and division that helps them to find the quotient when dividing by a multiple of 10 using the verb determine and the adjectives same and different.
- To support sense-making, ELs participate in MLR2: Collect and Display.

\section*{SEL Objective}
- Students collaborate with peers and contribute to group effort to achieve a collective mathematical goal.

\section*{Next}
- Students will extend their understanding to divide using an area model using partial quotients (Lesson 4).
- Students will fluently divide multi-digit numbers using the standard algorithm (Grade 6).

\section*{Vocabulary}
\begin{tabular}{ll} 
Math Terms & Academic Terms \\
dividend & analyze \\
divisor & establish
\end{tabular}

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks
- number cubes

\section*{Number Routine Which Benchmark Is It Closest To? © \({ }^{5-7 \mathrm{~min}}\)}

Build Fluency Students build number sense as they determine which of four benchmarks is closest to given decimal numbers.

These prompts encourage students to talk about their reasoning:
- What do you notice about the numbers?
- How did you compare each value to the benchmark numbers?
- How do you know if 2.035 closer to 2 or 2.25 ?
- Were some numbers easier to compare than others? Explain.

\section*{Rigor}

\section*{Conceptual Understanding}
- Students build their understanding of multiplication and division using basic facts to divide multi-digit numbers.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with multi-digit division using basic multiplication facts.

\footnotetext{
\section*{Application}
- Students solve real-world division problems.
Application is not a specific element of rigor for this standard.
}

\section*{Coherence}

\section*{Previous}
- Students used place value strategies to find quotients with up to 4-digit dividends and 1 -digit divisors (Grade 4).
- Students estimated quotients using rounding (Lesson 3).

\section*{Now}
- Students use the relationship between multiplication and division to divide multi-digit numbers.

Purpose Students study a picture of groups of objects to think about how they might use multiplication to determine how many objects there are, or division to determine how many groups there are.

\section*{Notice \& Wonder}
-What do you notice?
-What do you wonder?
Teaching Tip You may have students work in pairs or small groups as they discuss the image. Hearing other students' thinking may give students more insight into what they notice and wonder about the image.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of how the relationship between multiplication and division can help us divide and are based on possible comments and questions that students may make during the share out.
- How could you find the total number of pieces of fruit?
- If you knew the total number of pieces of fruit, how could you find the number of pieces in each crate?

\section*{Math is... findset}
-What are some ways you can conribute to your group today?

\section*{SEE \\ Relationship Skills: Teamwork}

Establish a positive classroom culture by providing students opportunities to work together to complete collective tasks. As students notice and wonder, encourage them to work together and build off the ideas of their peers. Invite students to participate in different ways so that each student can actively contribute to the team effort.

\section*{Transition to Explore \& Develop}

Ask questions to encourage students to think about the relationship between mutiplication and division.

\section*{\(E\) Establish Goals to Focus Learning}
- Let's think about how our knowledge of the relationship between multiplication and division can help us solve division equations.


\section*{Learn}

A cafd owner orders 350 tea bags
How many boxes of tea will the cafe owner recelve?
You can use the relationship between mutiplication and division to determine the solution.


A division equation can represent the problem.
\(350+25=t\)
A mulinigication equation with an unknown factor chn also tepresent thit problem.
\(t \times 25=350\)
\begin{tabular}{|c|c|c|c|}
\hline P One Way & 350 & \multicolumn{2}{|l|}{1 Another Way} \\
\hline \(4 \times 25=100\) & \(\underline{-100}\) & \(10 \times 25=250\) & -250 \\
\hline \(4 \times 25=100\) & 250 & \multirow[t]{2}{*}{\(4 \times 25=100\)} & 100 \\
\hline \(4 \times 25=100\) & \(\frac{-100}{150}\) & & \(\underline{-100}\) \\
\hline \multirow[t]{2}{*}{\(2 \times 25=50\)} & -150 & & 0 \\
\hline & \(\frac{-100}{50}\) & & \\
\hline \(4+4+4+2=14\) & 50 & \(10+4=14\) & \\
\hline \(14 \times 25=350\) & 0 & \(14 \times 25=350\) & \\
\hline \(350+25=14\) & & \(350+25=14\) & \\
\hline \multicolumn{2}{|l|}{You can think about how many groups of} & \multicolumn{2}{|l|}{Math is. \({ }^{\text {a }}\) Generalizations} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{the divisor can be made from the dividend to solve division problems.}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Will this strategy work for all division situations? Why or why not?}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{Q Work Together}
```

Use musiplication to sove ford. 5how your work
1,650+22=d
d=75; Check students' work.

```


\section*{(1) Pose the Problem}

\section*{MLP}

Collect and Display
As students discuss the questions, record relevant words and phrases they may use such as operations, unknown factor, same, and groups of. Display the words for student reference. Use the student-generated expressions to help students make connections between student language and math vocabulary.

\section*{ETP Pose Purposeful Questions}
-What is happening in the problem?
-What are you trying to find? How do you know?
-What operations can you use to solve the problem?

\section*{(2) Develop the Math}

Choose the option that best meets your instructional goals.

\section*{(3) Bring It Together}

\section*{EIP}

Elicit Evidence of Student Thinking
- How can your knowledge of multiplication help you solve division equations?
- What are some different ways you can use multiplication to solve division equations?
- How is the quotient of a division equation related to a multiplication equation?

\section*{Key Takeaway}
- One way to determine the quotient of a whole number divided by a 2 -digit divisor is using the relationship between multiplication and division.

\section*{Work Together}

Students work together to solve a division equation using multiplication. Have them multiply 22 by different factors to see if they find any patterns.
- Common Error Students may be confused initially as 22 does not seem as simple a factor to multiply by as 25 . However, remind them that they can use patterns of multiplication to more easily find the products.

\section*{Language of Math}

Remind students that while two numbers being multiplied can both be called factors, in a division equation there is a specific dividend and divisor. The terms are not "commutative."

\section*{Activity-Based Exploration}

Students explore using multiplication concepts, such as equal groups, to solve a division equation.

Materials: number cube
Directions: Before having students start the activity, facilitate a discussion to ensure students understand that both \(350 \div 25=t\) and \(t \times 25=350\) can be used to represent the problem. Provide each pair or small group a number cube. Explain that their goal is to be the first person to reach 350 . Students will roll the number cube. This is the number of groups of 25 . Students should use multiplication to determine the total number and subtraction to determine how much is left. If a student rolls a number that creates a total number that is too many, they loose their turn. Have students record how many groups of 25 it takes to reach 350 .

E1P
Implement Tasks That Promote Reasoning and Problem Solving
- How does making groups of 25 help you solve for \(t\) ?
- How is your answer is the same as your classmates' answer? How is it different?
- Is your solution reasonable? How do you know?

\section*{Math is... Generalizations}
- Will this strategy work for all division situations? Why or why not?
Students consider using multiplication as a general method to divide.
Activity Debrief: Have students share their recorded solutions. Facilitate a discussion to ensure students understand that there are multiple strategies for solving \(350 \div 25=t\), but that all strategies result in a total number of 14 groups of 25 to make 350 . Discuss the benefits of starting with a greater number of groups of 25 , such as 10 groups of 25 , in that \(10 \times 25\) is easy to multiply mentally.

\section*{Guided Exploration}

Students solve a division problem using the relationship between multiplication and division.

\section*{EIP Facilitate Meaningful Discourse}

Q Have the students create the division equation. Ask:
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(1)

Have the students estimate the solution. Ask:
-What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
-Why might writing a related multiplication equation be helpful?
- Think About It: What numbers are compatible with 25 ? Why?
-Why is 4 a good choice to start with?

(2)
Have students use their estimate to assessthe reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?
- Why is 10 a good choice to start with?
- Which way do you think is more efficient? Why?

\section*{Math is... Generalizations}
- Will this strategy work for all division stiuations? Why or why not?

Students consider using multiplication as a general method to divide.

\section*{2. Develop the Math}

A café has 350 tea bags.

How can you determine how many boxes the cafe will


\section*{English Learner Scaffolds}

Entering/Emerging Ensure understanding of hold. Try to put objects into a container that isn't big enough. Say This [box] can't hold all of my [art supplies]. Then get a larger container and put the items in it. Say This [box] holds all of my art supplies. Repeat again with new containers and/ or items. Then repeat once more, asking students Does this [box] hold all of my [books]?

Developing/Expanding Ensure understanding of hold. Try to put objects into a container that isn't big enough. Say This [box] can't hold all of my [art supplies]. Then get a larger container and put the items in it. Say This [box] holds all of my art supplies. Repeat again with new containers and/or items. Then ask students to use hold in a sentence, demonstrating with new items. Provide sentence frames if needed.

Bridging/Reaching Ask students to look at the Learn page and to use hold in a similar way in their own sentence. Then ask them to come up with other meanings and uses of the word (hold something with your hands, hold a baby, hold a meeting, etc.). Allow students to use a dictionary to help them if needed.

\section*{Practice}

\section*{ETP Build Fluency from Understanding}

Common Error: Exercises 1-8 Remind students to consider numbers that are compatible with the divisors before they begin solving. For example, for Exercise 3, students may know that \(12 \times 4=48\), so can use groups of 4 to see how many groups of 12 are in 192.

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-8\) & 1 & Procedural Skill and Fluency \\
\(9-12\) & 2 & Application \\
13 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can using the relationship between multiplication and division help you determine the quotient of multi-digit whole numbers? Ask students to share their reflections with their classmates.

\section*{Math is... Jindset}
- How can working as a team help us achieve our goals?

Students reflect on how they developed stronger relationship skills.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can use the relationship between multiplication and division to determine the quotient when dividing by a 2 -digit divisor.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.
Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{3}{|l|}{ Item } & pOK Skill \\
\hline 1 & 1 & Relate multiplication and division & Standard \\
\hline 2 & 1 & Relate multiplication and division & 5.NBT.B.6 \\
\hline 3 & 2 & Relate multiplication and division & 5.NBT.B.6 \\
4 & 2 & Relate multiplication and division & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}
\begin{tabular}{ll}
4 of 4 & Additional Practice or any of the \(\mathbf{B}\) or \(\mathbf{B}\) activities \\
3 of 4 & Take Another Look or any of the \(\mathbf{B}\) activities \\
2 or fewer of 4 & Small Group Intervention or any of the \(\mathbf{B}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}



\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Relate Multiplication and Division (Whole Numbers)


Differentiation Resource Book, p. 67

\section*{.esson 7.3 - Reinforce Understanding \\ Relate Multiplication and Division of Multi-Digit Numbers}

Name
```

Review
Consicer the equation 234 + 18 =k
To tind the value of k. we can instend rewnhe as k }\times\mathrm{ 绍 =234
Now we need to determine bow mary groups of ti8 we can make
from 234,
10\times18= = t80
3\times18=54
180+54=234, s0 tor 234 + 18 =k the answer is k=10 + 3, or
k=13.

```

Determine how many groups of each unknown factor you can make in each equation. Show your work. Sample work shown.
```

f. }270+15=
m\times15=270
3. }693+2t=
p\times21=693
m=10+4+4, som=18;
10\times15=150
4\times15=60
4\times15=60
2. }496+62=
n\times62=496
n=5+3, so n=8;
5\times62=310
3\times62=186
30+21=630
30\div21=630
4. }\begin{array}{rl}{612+17=q}
{q\times17=612}
{q=30}\&{=6,50q=36;}
{q=30}\&{=17}

```

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Multi-Digit Division Tic Tac Toe
Students find quotients of expressions that include multiples of 10 and 100 .


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 67-68

\section*{Lesson 7.3}

\section*{Additional Practice}

Name

\section*{Review}

You can use multiplication to help you find a quotient.
On a bibe trip, the ridecs roge 345 miles over 15 daps. How many miles did they dide each day?
To solve, thd the quotient \(345+15=d\).
White a related mumiplication equation: id \(\times 15=345\), Find how many groups of 15 there are in 345 .
\begin{tabular}{|l|r|}
\hline \(10 \times 15=150\) & \begin{tabular}{r}
345 \\
\(\frac{-150}{195}\)
\end{tabular} \\
\hline \(10 \times 15=150\) & \(\frac{-150}{45}\) \\
\hline \(3 \times 15=45\) & \(\frac{-45}{45}\) \\
\hline
\end{tabular}

There are \(10+10+3=23\) qroups of 15. So \(345+15=23\).
The riders rode 23 miles each dity.
1. How many groups of ti8 ean you make from 270715
2. How many groups of 22 can you make from 462721
3. How many groups of 13 can you make from 364? 28
4. How many groups of 34 can you make from 544716

Unit 7 • Divide Whole Numbers

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 67-68

Write the related multiplication equation. Then solve.
\[
\begin{aligned}
& \text { 5. } 442+17=n \\
& \begin{array}{ll}
n \times 17=442 ; n=26 & \text { 6. } 473+11=w \\
& w \times 11=473 ; w=43
\end{array} \\
& \begin{array}{ll}
\text { 7. } 456+24=m & \text { 8. } 325+13=b \\
m \times 24=456 ; m=19 & b \times 13=325 ; b=25
\end{array} \\
& \text { 9. A landscaper plants 288 Nowers. The fowers are planted in 18 } \\
& \text { equal rows How many flowess are in each row? } \\
& 16 \text { fiowers }
\end{aligned}
\]
10. A laimer has 209 chickens. He builds enough coops so that there can be II chickens in each coop How mary coops does the farmer bulld?

19 coops





 Soont hascer liod

\section*{Extend Thinking}

\section*{Use It! Application Station} That Is Astronomical Students practice finding quotients, rounding, and writing equations by researching the hours in a day for each planet. The content of this card has concepts covered later in Lesson 7-7. You may want to assign this
 card to students ready to explore content covered later in this unit.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 68

\section*{Lussan 7.3-Extend Thinking \\ Relate Multiplication and Division of Multi-Digit Numbers}

Nome
You can make 36 groups of 24 from 864 .
1. How many proups of 12 cin you make hom 864? 72
2. \(36 \times 24=864\) and \(\frac{72}{2} \times 12=864\) Descibe any pitterns you may hotice aboif the factors.
Sample answer: \(24 \div 12=2\) and \(36 \times 2=72.1\) know 36 groups of 24 make 864 . In problem 1, 72 groups of 12 make 864, I noticed that \(24 \div 12=2\) and \(36 \times 2\) is the answer for problem 1 .
3. How many groups of 108 can you make from 864? \(\qquad\) 8
4. \(36 \times 24=864\) and \(108 \times \quad 8 \quad=864\). Describe any patterns you may notice about the facturs.
Sample answer: \(36 \times 3=108\) and \(24 \div 3=8.1\) know 36 groups of 24 make 864 . In problem 2,8 groups of 108 make 864 . I noticed that \(36 \times 3=108\) and \(24 \div\) 3 is the answer for problem 2.
Use patterns to quickly solve these problemis.
5. You can make 65 groups of 13 from 845 . How mary groups of II can you make?
\(65 ; 55 \div 11=5\) and \(13 \times 5=65\)
6. You can make 42 groups of 27 trom 1,134. How many groupt of B1 can you make?
\(14: 27 \times 3=81\) and \(42 \div 3=14\)
7. You can mulez 23 groups of 64 from 1,472. How mary groups of 15 can you rake?
\(92 ; 64 \div 16=4\) and \(23 \times 4=92\)
aftemtimen bevertelock.

\section*{Represent Division of 2-Digit Divisors}

\section*{Learning Target}
- I can use an area model to determine partial quotients and add partial quotients to calculate the quotient.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

\section*{Math Practices and Processes}

MPP Model with mathematics.
MPP Look for and make use of structure.

\section*{Focus}

\section*{Content Objective}
- Students use an area model to determine partial quotients and add partial quotients to calculate the quotient.

\section*{Language Objectives}
- Students explain how to use an area model to determine and add partial quotients using comparatives more useful, less useful, more helpful, and less helpful.
- To support optimizing output, ELs participate in MLR1: Stronger and Clearer Each Time.

\section*{SEL Objective}
- Students discuss how a rule or routine can help develop mathematical skills and knowledge and be responsible contributors.

\section*{Next}
- Students will use partial quotients to divide by 2-digit divisors (Lesson 5).
- Students will fluently divide using an algorithm (Grade 6).

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of division as they begin to divide with 2-digit divisors using area models.

\section*{Procedural Skill \& Fluency}
- Students build proficiency with division facts for dividing with 2-digit divisors.

\section*{Application}
- Students apply their understanding of division to solve real-world problems.

Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Term
}
partial quotient

\section*{Academic Terms}
reflect
speculate

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks
- calculators

Coherence

\section*{Previous}
- Students used place-value strategies to find quotients (Grade 4).
- Students used the relationship between multiplication and division to divide (Lesson 3).

\section*{Now}
- Students extend their understanding of division to divide using an area model and partial quotients.

\section*{Number Routine Find the Pattern, Make a Pattern © \({ }_{5-7 \text { min }}\)}

Build Fluency Students build reasoning skills as they determine a given pattern, find missing terms, and repeat the pattern with different numbers.

These prompts encourage students to talk about their reasoning:
- What do you notice about the numbers?
- How did you determine the pattern used?
- What is another way to think about the pattern?
- How did you determine the missing value?
-What do you notice about the new patterns?

Purpose Students think about what they know about the image and what math they can use to describe it.

\section*{Notice \& Wonder}
- Tell me everything you can.

Teaching Tip You may want to have students work in pairs as they notice and wonder. This can help build a collaborative classroom culture. It also allows for greater participation among students as they work with their partners.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of representing division using area models and are based on possible comments and questions that students may make during the share out.
- How are area, length, and width related?
- How does this image remind you of problems you have solved before?

\section*{Math is... lindset}
-What is your responsibility in building a safe classroom culture?

\section*{SE[ Responsible Decision-Making: Ethical Responsibility} Invite students to discuss the rules or routines they will follow while working through the Notice \& Wonder routine. Have them consider how these rules or routines help them be responsible contributors to their classroom community. As students work through the lesson, have them consider how they can work ethically and responsibly with others, giving credit to others and acknowledging the contributions of others, while also contributing their own thoughts and ideas.

\section*{Transition to Explore \& Develop}

Ask questions that get students thinking about the use of division to solve problems. Guide the discussion to have students think about how they could represent the divsion.

\footnotetext{
ETP Establish Goals to Focus Learning
- Let's think about how we can represent division using area models.
}


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

The Parthenon, in Athens, Greece has an ires of 2.139 square meters.

What is the length of the Parthenon?
An area model can help to determine the solution


You can use an area model to represent division with 2-digt divison


You can use an area model to represent division with 2-digt divisoes.

\section*{C Work Together}

A rectangle has an srea of 888 square feet. The witan of the rectangle is 24 feet. What is the length?

Use an area model to solve.
Check students' models; 37 ft


\section*{(1) Pose the Problem}

\section*{EIP}

Pose Purposeful Questions
- Have you seen problems like this before? How were they similar? How were they different?
- What operation do you think you will use the solve this problem? Why do you think so?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{Stronger and Clearer Each Time}

Pair students and have them work on a problem like the one on the Learn page. Have them individually write how they can solve the problem using an area model. Then have them share their writing with their partner and fix mistakes. Revisit the task throughout the lesson for reinforcement.

\section*{3 Bring It Together}

\author{
ETP Elicit Evidence of Student Thinking
}
- How could you explain to a friend how to use an area model to find partial quotients?
- Could you use this model if the problem was not about area? Why or why not?

\section*{Key Takeaway}
- One division strategy uses an area model to determine partial quotients, which are then added together to arrive at the quotient.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of using an area model to find the quotient of whole numbers with a 2 -digit divisor.

Common Misconception Students may not understand that there are many different ways to separate an area model into partial quotients. They should find one that works best for them.

\section*{Language of Math}

As students work through the lesson, point out the word part in partial. Explain that a partial quotient is part of the quotient. In everyday use, the word partial means part of, but not complete.

\section*{Activity-Based Exploration}

Students explore using an area model to divide by 2-digit divisors by extending their understanding of using an area model to divide by 1-digit divisors.

Directions: Write the division equation \(1,550 \div 5=m\). In pairs, have students solve using an area model. Then, write the equation \(1,550 \div 25=t\). With their partner, have students first discuss a plan on how they could use an area model to represent division with a 2 -digit divisor. Have students test their plan to divide by a 2-digit divisor.

\section*{EIP Implement Tasks That Promote Reasoning and Problem Solving}
- What steps did you take to solve the equation with a 1-digit divisor?
- Do you think you could extend this understanding to solve a division equation with a 2 -digit divisor?
- How was solving a division equation with a 2 -digit divisor similar to solving a division equation with a 1-digit divisor? How was it different?

\section*{Math is... Todeling}
- What did the area model tell you and how did it help you understand the problem?

Students interpret their mathematical results in the context of the situation and consider if the representation used served their purposes.
Activity Debrief: Ensure that students understand that using an area model to divide by a 2 -digit divisor is an extension of their understanding of using an area model to divide by a 1 -digit divisor.

Have students revisit the Pose the Problem question to solve and discuss answers.
- The Parthenon, in Athens, Greece covers an area of about 2,139 square meters. What is the length of the Parthenon?

\section*{Guided Exploration}

Students extend their understanding of division to dividing by 2-digit divisors. They use area models to divide.

\section*{EIP Use and Connect Mathematical Representations}

Have the students create the equation. Ask:
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
(2)

Have the students estimate the solution. Ask:
-What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
- Think About It: Why was 60 used instead of the estimate of 70 ?

After finding the area represented by the each partial quotient, have students determine how much area is remaining.

Q Have students use their estimates to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

\section*{Math is... Todeling}
-What did the area model tell you and how did it help you understand the problem?

Students interpret their mathematical results in the context of the situation and consider if the representation used served their purposes.

\section*{2. Develop the Math}

The Parthenon in Athens, Greece has an area of 2.139 square meters. How can you determine the length of the Parthenon?

How can you represent the problem?


\section*{English Learner Scaffolds}

Entering/Emerging Support students in understanding the word solution. Write an equation on the board. Say I need to solve this equation. Solve the equation and then say I solved the equation. I determined the solution. Point to the solution. Repeat twice with new equations, once showing a solution, and once not. Ask Did I determine the solution?

Developing/Expanding Support students in understanding the word solution. Write an equation on the board. Say I need to solve this equation. Solve the equation and then say I solved the equation. I determined the solution. Solve another equation, but this time, ask students to tell you what the solution is using the word solution. Provide sentence frames for students who need more guidance.

Bridging/Reaching Ask students to explain how solution is related to solve. Then ask students to come up with a list of similar words to solution (answer, result, etc.) and to share their list with the class. Finally, support students in discussing the similarities and differences in meaning between solve and resolve. Allow students to use a dictionary or thesaurus if desired.

\section*{Practice \& Reflect © \({ }^{10 \mathrm{~min}}\)}


\footnotetext{
50. What is the quotient of \(3.724+49\) ?
A. 70
B. 73
\(\begin{array}{ll}\text { C) } 76 & \text { D. } 80\end{array}\)
}
11. Mr. Ramirez drove 1798 miles on the highwaly over a fow days

He had a constart speed of 58 miles per hout. How long did
he drlve?
31 hours
12. Traci eains \(\$ 13\) per hour working at a store. How many hours does she need to work to aflord a new \(\$ 611\) smant phone? 47 hours
13. Extend Your Thinking Over 18 days, a Eth-grade class of 21 students colectud 4,914 cans. Each student collected the same number of cans each day. How many cans did the class coltect per day? How many did each student cotiect per day? Show your work.
Sample answer: Divide to find that \(4,914 \div 18=273\).
Then divide to find \(273 \div 21=13\). The class collected 273 cans per day. Each student collected 13 cans per day.

\section*{©reneet}

How can you repiesent divison involving 2-digit divisors? Explain Answers may vary.

Math is Mindset
How hive you responslby bult a sale classioom cilure?

\section*{Practice}

\section*{ETP Build Fluency from Understanding}

Common Error: Exercises 1-12 When using an area model to divide, students may often choose partial quotients that yield a product greater than the remaining area. Instead, students should choose partial quotients that yield products that are significantly less than the remaining area.

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 1 & Procedural Skill and Fluency \\
\(5-9\) & 2 & Application \\
10 & 1 & Conceptual Understanding \\
\(11-12\) & 2 & Application \\
13 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you represent division involving 2-digit divisors?

Ask students to share their reflections with their classmates.

\section*{Math is... lindset}
-What is your responsibility in building a safe classroom culture?
Students reflect on how they practiced responsible decision-making.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can use an area model to determine partial quotients and add partial quotients to calculate the quotient.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline \multicolumn{3}{|l|}{ Item DOK Skill } & Standard \\
\hline 1 & 2 & Represent division of 2-digit divisors & 5.NBT.B.6 \\
2 & 2 & Represent division of 2-digit divisors & 5.NBT.B.6 \\
3 & 2 & Represent division of 2-digit divisors & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

If students score then have students do
\begin{tabular}{ll}
3 of 3 & Additional Practice or any of the \(\boldsymbol{B}\) or \(\boldsymbol{B}\) activities \\
2 of 3 & Take Another Look or any of the \(\boldsymbol{B}\) activities \\
1 or fewer of 3 & Small Group Intervention or any of the \(\boldsymbol{Q}\) activities \\
\hline
\end{tabular}

\section*{Key for Differentiation}
(B) Reinforce Understanding
(B) Build Proficiency
© Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Apply It!}

Work with students in groups. Provide students with base ten blocks. Write a few division expressions (that have no remainder) that represents a 3 - or 4 -digit number divided by a 2 -digit number. Students should work together to model the expression by dividing base ten blocks into equal groups of that size, or equally into that many groups. Help students write the division expression that goes with the base ten blocks.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Divide by 2-Digits (Area Models)


Differentiation Resource Book, p. 69
Lesson 7-4 - Reinforce Understanding
Represent Division of 2-Digit Divisors


Find each quotient. Use an area model to solve. Sample answers given. Check students' models.
t. \(840 \div 24=35\)

2. \(6.532+71=92\)
4. \(2.214+54=\) 3. \(858+26=33\)

\[
\begin{array}{|c|c|}
\hline 71 & 54 \\
\hline 80 \times 71=5,680 & 80 \\
\hline 10 \times 71=710 & 10 \\
\hline 2 \times 71=142 & +2 \\
\hline 92 & 30 \times 54=1,620 \\
\hline 10 \times 54=540 & \begin{array}{|c|}
\hline 30 \\
10 \\
\hline 1 \times 54=54 \\
\hline 1 \\
\hline
\end{array} \\
\hline
\end{array}
\]

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Division with 2-Digit Divisors Task Cards
Students practice dividing with 2-digit divisors by using base-ten blocks.

\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 69-70

\section*{Lessan 7.4}

\section*{Additional Practice}

Name

\section*{Review}

You can use multiplication to help you find a quotient. An area model can help you to keep track of the partial products.
The area of a rectangle is 1.564 square feet. The width of the fectangle is 34 teet. What a the length?
To solve, find the quotient \(1,564+34=6\). Use an area model.


The partial products add to 1,564 . The factors used add to equal the quotient of 46.
The length of the rectangle is 46 feet.
Find the quotient. Use an area model to solve. sample area models shown.
\[
\text { 1. } 966+4223
\]
2. \(1,764 \div 28.63\)


Susen Hascer linct

Unit 7 • Divide Whole Numbers

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.


\section*{Spiral Review}

Assign the digital Spiral Review Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 69-70


\section*{Extend Thinking}

\section*{Use It! Application Station}

Online Learning: Is It Safe? Students write rules for safely using electronic devices and practice their rules by researching how to divide multi-digit numbers. The content of this card has concepts covered later in Lesson 7-6. You may want to assign this card to students ready to explore content covered later in this unit.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 70

\section*{Lesson 7-4 - Extend Thinking}

\section*{Represent Division of 2-Digit Divisors}
Name
Complete each area model. Write the resulting equation.
1. \(288 \div 16\) \(\qquad\) \(1.081+47=23\) \begin{tabular}{|c|c}
\hline\(\underline{16} \times 10-160\) \\
\hline \(16 \times 8=128\) & +8 \\
\hline & 10 \\
\hline
\end{tabular}

2. \(2,205+35=63\)
4. \(2,808+72=39\)

\begin{tabular}{|c|c|}
\hline 72 & \\
\hline \(72 \times 30-2960\) & 30 \\
\hline \(\underline{72 \times 9=648}\) & +9 \\
\hline
\end{tabular}

\section*{Use Particl Quotients to Divide}

\section*{Learning Target}
- I can record partial quotients using a strategy.

\section*{Standards \(\circ\) Major \(\Delta\) supporting \(\circ\) Addifional}

\section*{Content}
\(\checkmark\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations rectangular arrays, and/or area models.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Look for and express regularity in repeated reasoning.

\section*{Focus}

\section*{Content Objective}
- Students record partial quotients using a strategy.

\section*{Language Objectives}
- Students discuss recording partial quotients while using the verb relate.
- To support optimizing output, students participate in MLR4: Info Gap.

\section*{SEL Objective}
- Students exchange ideas for mathematical problem-solving with a peer, listening attentively and providing thoughtful and constructive feedback.

\section*{Coherence}

\section*{Previous}
- Students used place-value strategies to find quotients with up to 4-digit dividends and 1-digit divisor (Grade 4).
- Students extended their understanding of division to divide using an area model and partial quotients (Lesson 4).

\section*{Now}
- Students use partial quotients to divide multi-digit dividends by 2-digit divisors to find quotients.

\section*{Next}
- Students will divide multi-digit numbers by 2-digit numbers to find quotients with remainders (Lesson 6).
- Students will fluently divide multi-digit numbers using the standard algorithm (Grade 6).

Rigor

\section*{Conceptual Understanding}
- Students understanding of division is enhanced as they divide multi-digit numbers using partial quotients.

\section*{Procedural Skill \& Fluency}
- Students gain skills and fluency with division as they repeat the process for using partial products throughout the lesson.

\section*{Application}
- Students apply their understanding of division to solve problems with real-world contexts.
Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\author{
Math Term \\ Academic Terms \\ partial quotients condition \\ drawback
}

\section*{Materials}

The materials may be for any part of the lesson.
- Blank Partial Quotients Teaching
Resource

\section*{Number Routine} Find the Pattern, Make a Pattern © \({ }^{5-7 \text { min }}\)

Build Fluency Students build reasoning skills as they determine a given pattern, find missing terms, and repeat the pattern with different numbers.
These prompts encourage students to talk about their reasoning:
- What do you notice about the numbers?
- To find a pattern, what did you consider first?
- What is another way to think about the pattern?
- How can you be sure your pattern is correct?

Purpose Students read a numberless word problem as they engage in contextual sense-making. They share thoughts on what math they see in the problem and describe the relationship between the quantities.

\section*{Numberless Word Problem}
-What math do you see in this problem?
Teaching Tip You may want to have students work in pairs as they make sense of the context. Encourage them to think about quantities and their relationship.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' thinking about the partial quotients strategy and are based on possible comments and questions that students may make during the share out.
- How can you describe this situation in your own words?
- How do you know what operation to use to solve the problem?
-What do you need to know to determine the solution?

\section*{Math is... Yindset}
- What behaviors show respect towards someone?

\section*{SEL \\ Social Awareness: Ethical Responsibility}

As students work with partners to complete the Numberless Word Problem routine, remind them to show respect by listening attentively when others are sharing their ideas. Provide models of constructive and respectful feedback to guide students. As students share the math they saw in the problem, encourage classmates to provide thoughtful feedback to one another. Remind students that respecting others is an important part of being a member of the class community.

\section*{Transition to Explore \& Develop}

Have students share their thoughts on what they think the quantities may be in the problem. Ask them to describe the relationship between the quantities in the problem. Explain that they are going to consider the same problem but with numbers this time.

\footnotetext{
ETP Establish Goals to Focus Learning
- Let's think about a strategy we can use to divide multi-digit numbers.
}


\section*{Explore \& Develop © 20 min}

\section*{Learn}

An adult bison weighs 1.752 pounds, which is 24 times the weight of a bison calt.

How much does the bison calf weigh?
You can use partlal quotients to solve division equations.


\section*{C. Work Together}

What is the quatient of \(2.356+387\) Use the parial quotents strotegy to telp you solve the probiem.



\section*{(1) Pose the Problem}

\section*{GIP}

Pose Purposeful Questions
- Have you seen problems like this before? How were they similar? How were they different?
-What operation do you think you will use to solve this problem? Why do you think so?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

Info Gap
Pair students. Provide Partner A with a problem like the one on the Learn page. Provide Partner B with the information to carry out the problem. Instruct Partner B to ask A what information they need, and for A to respond, explaining why they need it. Have students continue until the problem is completed.

\section*{3 Bring It Together}
- What do you need to consider when choosing what partial quotient to use next?
- Could you use this model if the divisor was only 1-digit or was 3 or more digits? Explain.

\section*{Key Takeaway}
- The quotients of multi-digit divideds and 2-digit divisors can be found using partial quotients.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of using the partial quotients strategy to find the quotient of whole numbers with a 2-digit divisor.
- Common Error Students need to make sure to add all of the partial quotients to find the quotient of the division problem when using the partial quotients strategy.

\section*{Lom Language of Math}

The division symbol \(\div\) is called an obelus, and was first used as a symbol for division in 1659 by Swiss mathematician Johann Rahn. The divsion symbol in this strategy separating the dividend and divisor has no name.

\section*{Activity-Based Exploration}

Students explore using the partial quotients strategy to divide by 2-digit divisors by extending their understanding of using the partial quotients strategy to divide by 1-digit divisors.

Directions: Write the division equation \(1,752 \div 4=r\). In pairs, have students solve using the partial quotients strategy. Then, write the equation \(1,752 \div 24=w\). With their partner, have students first discuss a plan on how they could use the partial quotients strategy to solve a division problem with a 2-digit divisor. Have students test their plan to divide by a 2-digit divisor.

\section*{ETP Implement Tasks That Promote Reasoning and Problem Solving}
-What steps did you take to solve the equation?
- Do you think you could extend this understanding to solve a division equation with a 2 -digit divisor?
- How was solving a division equation with a 2 -digit divisor using the partial products strategy similar to solving a division equation with a 1 -digit divisor? How was it different?

\section*{Math is... Generalizations}
- How does using an area model relate to the partial quotients strategy?

Students use a representation to understand a strategy.
Activity Debrief: Ensure that students understand that using the partial quotients strategy to divide by a 2-digit divisor is an extension of their understanding of using partial quotients to divide by a 1-digit divisor.

Have students revisit the Pose the Problem question and discuss answers.
- How can you find the weight of the bison calf?

\section*{Guided Exploration}

Students extend their understanding of division by 2-digit divisors. They use the partial quotients strategy to divide.

\section*{EIP Use and Connect Mathematical Representations}
- Think About It: How can you use a representation to help you make sense of the problem?

© 8Have the students create the equation. Ask:
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?Have the students estimate the solution. Ask:
- What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
Q. Have students follow along using the Blank Partial Quotients Teaching Resource.
-Why do you subtract each product from the dividend?
(Q. Have students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?

\section*{Math is... Generalizations}
- How does the area model relate to the partial quotients strategy?

Students use a representation to understand a strategy.


\section*{English Learner Scaffolds}

Entering/Emerging Ensure understanding of \((x)\) times as great as.... Using two containers and 24 counters, say I have 24 counters. Count them out. Say I have 2 containers. Say The number of counters is 12 times as great as the number of containers. Write \(2 \times 12=24\). Then write \(2 \times 7\) \(=14\). Point to each part as you ask \(1 s 7\) fourteen times as great as 2? (no) Is 14 seven times as great as 2? (yes)

Developing/Expanding Ensure understanding of ( \(x\) ) times as great as.... Using two containers and 24 counters, say I have 24 counters. Count them out. Say I have 2 containers. Say The number of counters is 12 times as great as the number of containers. Write \(2 \times 12=24\).
Then write \(2 \times 7=14\). Say Tell me about 14. (It's seven times as great as 2 ). Provide a sentence frame if needed.

Bridging/Reaching Ask students to demonstrate and say a sentence using (x) times as great as. Then ask students to list other phrases that are similar in meaning ( \((x)\) more, \((x)\) greater than, etc.), and to share their list with the class. Allow students to use a dictionary or thesaurus if desired.

\section*{Practice \& Reflect © 10 min}

6. Miguel has taken 3,996 photographs in the last 47 days. Miguel took the same number of photographs each dsy. How many photographs per dey has the tatem?
68 photographs
7. One Kiker completed the Appalachian Trall in only 55 days. The tial is about 3.520 kilometers. How many kilometers per day did she hike it she hiked the seme distance each day? 64 kilometers a day

8. What partial quotients could you use to find the quotient of \(3.276 \div 52\) ? Sample answer: \(2,600 \div 52=50\), \(520 \div 52=10\), and \(176 \div 52=3\). The quotient is 63 .
9. Extend Your Thinking Over tI weenks lest summes, Einity earied \(\$ 4,004\). She sained \(\$ 14\) per hout. Enily worked the same number of hours each week. How much did she earn each wewk? How many hours per week did Emily work? Show your work. Sample answer: Divide to find that \(4,004 \div 11=364\). Then divide to find \(364 \div 14=26\). Emily worked 26 hours per week.

\section*{(3) reflect}

How does using the partial quctients strategy help you divide? Answers may vary.

\section*{Practice}

\section*{EIP Build Fluency from Understanding}

Common Error: Exercises 1-4 When using the partial quotients strategy to solve division problems, students may make subtraction or place value errors. They should always assess the resonableness of their calculated quotients using estimates or check their calculated quotients by multiplying the quotient by the divisor.

\section*{Practice Item Analysis}
\begin{tabular}{l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 2 & Procedural Skill and Fluency \\
\(5-7\) & 1 & Application \\
8 & 2 & Conceptual Understanding \\
9 & 3 & Application \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How does using the partial quotients strategy help you divide?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How have you behaved flexibly while working with others?

Students reflect on how they practiced social awareness.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can record the calculation of a multi-digit number divided by a 2-digit divisor using a partial quotients strategy.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|ccc|c|}
\hline \multicolumn{3}{|c|}{ Item } & DOK \\
Skill & & Standard \\
\hline 1 & 1 & Use partial quotients & 5.NBT.B.6 \\
2 & 2 & Use partial quotients & 5.NBT.B.6 \\
3 & 3 & Use partial quotients & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

3 of \(3 \quad\) Additional Practice or any of the \(\boldsymbol{B}\) or \(\boldsymbol{B}\) activities
2 of 3 Take Another Look or any of the (3) activities
1 or fewer of \(3 \quad\) Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}
(B) Reinforce Understanding
(3) Build Proficiency
(9) Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Pass It On!}

Work with students in groups. Provide each student with a division problem with a 3 - or 4-digit dividend and a 2-digit divisor such that there will be no remainder. Each student finds the first partial quotient for their problem before passing the paper to the left. If students are unsure about the previous result, help them check and, if necessary, correct it before they complete the next step. Continue until all solutions are reached.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Divide by 1-Digit (Partial Quotients)


Differentiation Resource Book, p. 71

\section*{esson 7.5 - Reinforce Understanding}

Use Partial Quotients
Name


Find each quotient. Use the partial quotients algorithm to solve.
Sample partial quotients given.
1. \(832+19=49-37\)

2. \(946+43=\) \(\qquad\) 4. \(1988+28=71\)
\[
\begin{array}{r}
4 3 \longdiv { 9 4 6 } \\
\frac{-860}{86} \quad 20 \\
-86 \\
-2
\end{array}
\]


Practice It! Game Station
Division with 2-Digit Divisors Race
Students practice dividing by 2-digit divisors.

\section*{Interactive Additional Practice}

Assign the digital version of the
Student Practice Book.


Student Practice Book, pp. 71-72

\section*{Lesson 7.5}

Additional Practice
Name

\section*{Review}

You can use the partial quotients algorithm to help you find a quotient.
The area of a rectengular field is 3.216 square feet. The width of the field is 48 feet. What is the length?
To solve, find the quotient \(3,216 \div 48=\) L Use the partial quotients algarthm

The factors used, shown along the side \(4 8 \longdiv { 3 , 2 1 6 }\)
add to equal the quotient, 67
The length of the field is 67 foet.


Find the quotient. Use the partial quotients algorithm to solve. Sample models shown.


\footnotetext{
Ditmetuben fewerct Book
}

Unit 7 • Divide Whole Numbers

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.

Differentiation Resource Book, p. 72

\section*{Cesson 7.5 - Extend Thinking}

\section*{Use Partial Quotients}

Name
Find each quotient. Circle your answers in the number search. Answers can be written horizontally, vertically, or diagonally.
Student Practice Book, pp. 71-72
Find the quotient. Use the partial quotients algorithm to solve.
Check students' work.
\begin{tabular}{ll} 
3. \(518+14=\frac{37}{}\) & 4. \(756 \div 36=\underline{21}\) \\
5. \(3.285 \div 45=173\) & 6. \(6.512 \div 74=\underline{88}\)
\end{tabular}

\footnotetext{
courts 1372 times the pushes on each pedalHow many time does Madeleine push an each pedal for one lap?
\(\qquad\) punhes
7. Madeleine rides her bicycle around a track. She rides 14 laps and
}


\section*{Extend Thinking}

\section*{Use It! Application Station}

Estimate High School Density Students
research the density of schools in 10 U.S. states.

\section*{닫}

Complete the table below with your circled numbers. Possible repeats.
\begin{tabular}{|l|l|c|c|}
\hline 2 b a factor & \multicolumn{1}{|c|}{36 a factor } & 4 is a factor & 5 k a factor \\
\hline \(24,38,60\), & \(21,24,27\), & \(24,60,68\) & 60,75 \\
68 & 60,75 & & \\
\hline
\end{tabular}

Which numberts) are let our of the table? 71
 Activity

\section*{Learning Target}
- I can use partial quotients to solve division problems, which sometimes include a remainder.

\section*{Standards \(\circ\) major \(\Delta\) supporting \(\bigcirc\) Additional}

\section*{Content}
5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B. 6 Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or models.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Use appropriate tools strategically.

\section*{Vocabulary}

\author{
Math Terms Academic Terms \\ partial quotients address \\ remainder advantage
}

\section*{Materials}

The materials may be for any part of the lesson.
- base-ten blocks

\section*{Focus}

\section*{Content Objective}
- Students solve division problems using partial quotients, which sometimes include remainders.

\section*{Language Objectives}
- Students explain how to solve division problems using partial quotients, which sometimes include remainders, using If...then
- To support maximizing linguistic and cognitive meta-awareness, ELs participate in MLR5: Co-Craft Questions and Problems.

\section*{SEL Objective}
- Students set a focused mathematical goal and make a plan for achieving that goal.
\begin{tabular}{|l|l|}
\hline Now & Next \\
- Students divide multi-digit & - Students will solve word \\
numbers by 2-digit numbers to & problems involving division \\
find quotients with remainders. & \begin{tabular}{l} 
by 2-digit numbers and \\
interpreting remainders
\end{tabular} \\
& (Lesson 7). \\
& - Students will fluently divide \\
& multi-digit numbers using the \\
& standard algorithm (Grade 6). \\
& \\
&
\end{tabular}

\section*{Number Routine Decompose It © \({ }^{5-7 \text { min }}\)}

Build Fluency Students build number sense as they decompose the number 1,125 in at least 3 different ways.
These prompts encourage students to talk about their reasoning:
- What do you notice about the number?
- How did you determine the different decompositions?
- How could you use this decomposition to create another decomposition?

Purpose Students focus their thinking on what it means when a remainder is present in division by considering two completed partial quotients algorithms - one with a remainder, and one without.

\section*{Numberless Word Problem}
-What math do you see in this problem?
Teaching Tip You may want to have students work in pairs as they discuss the situation and the math they see in the problem. Encourage them to think about what a remainder is, and how the algorithm shows remainders.

\section*{EIP Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of remainders and the partial quotients strategy and are based on possible comments and questions that students may make during the share out.
- What operation could be used to solve this problem?
- How does "left over" sound like something you have already seen in division problems?

\section*{Math is... lindset}
-What actions can help you achieve your day's goal?

\section*{SEL}

Self-Management: Goal Setting
Before students begin the Numberless Word Problem routine, invite them to share or write down one mathematical goal they have for the day. Have students create a plan for how they will work toward achieving their goal. Encourage students to focus their goals around dividing multi-digit whole numbers.

\section*{Transition to Explore \& Develop}

To make sure students are ready to focus on remainders rather than the strategy, have them as a class summarize the partial quotients algorithm.

\section*{\({ }^{E T P}\) Establish Goals to Focus Learning}
- Let's talk about situations where the partial quotients strategy leaves a remainder, and what that means.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}

Rahim will fil bags with tortilias. He has bogs that hotd 12 tortillas and bags that hold 16 tortillas Which size bag should he use if he wants no tortillas left over?


276 tortilas

\section*{It Rahim uses the bags that hold 16 tortilas \\ \(5 \longdiv { 2 7 6 }\) \\ }

He will have 4 tortillas left over.

\section*{Math is. Reasonableness \\ How can you check your solution \\ when there is a remainder?}

You can use partial quotients to divide. Sometimes the quotient has a remeinder.

\section*{Q Work Together}
```

What is the quotient?
89\longdiv{1.250}
14 R4

```

\section*{(1) Pose the Problem}

\section*{EIP}

Pose Purposeful Questions
- What does it mean to have "none left over"?
- In this problem, why might Rahim not want to have any left over tortillas?
- Have you seen a problem like this before? How is this problem different?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

Co-Craft Questions and Problems
Pair students and have them co-create a problem similar to the one on the Learn page. Have them work together to solve their problem and then trade their problem with another pair. After each pair solves the other pair's problems, have them form a group of four to check solutions and correct any mistakes that may have been made. Revisit the routine throughout the lesson for reinforcement.

\section*{(3) Bring It Together} EIP

\section*{Elicit Evidence of Student Thinking}
- How do you know when a quotient includes a remainder?
- How could you describe to a friend what a remainder is?

\section*{Key Takeaway}
- When dividing multi-digit dividends and 2-digit divisors, the quotient sometimes includes a remainder.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of using the partial quotients algorithm to find the quotient of whole numbers with a 2 -digit divisor including where there is a remainder.
1. Common Error Students need to make sure to add all of the partial quotients to find the quotient of the division problem when using the partial quotients algorithm.

\section*{Language of Math}

In mathematics, a remainder is the amount left over. Here, it is the amount left over in a division problem. In a subtraction problem, the amount left over, or the remainder, is called the difference.

\section*{Activity-Based Exploration}

Students explore using the partial quotients strategy with remainders.

Directions: Have students work together to solve the Pose the Problem. Students may use any strategy to divide.

\section*{ETP Support Productive Struggle}
- How is your solution method similar to a classmates' solution method? How is it different?
- When dividing using the partial quotients strategy how do you know what to do next?
- How do you know when to stop dividing when using partial quotients?
- How can you explain to a classmate what it means when you have a remainder?
- Is your calculated quotient reasonable? How do you know?

\section*{Math is... choosing Tools}
- How can you check your solution when there is a remainder?

Students detect possible errors by strategically using mathematical knowledge.
Activity Debrief: Have students share their solutions. Encourage students to defend their argument using mathematically precise language.

\section*{Guided Exploration}

Students extend their understanding of division by 2-digit divisors. They use the partial quotients strategy to divide.

\section*{EIP Facilitate Meaningful Discourse}

Have the students create the equation for the larger bags. Ask:
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
- Think About It: Would estimating the quotient help you solve this problem? Why or why not?
(2. Have the students create the equation for the smaller bags. Ask:
- What should the operation be? Why?
- How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?
- Think About It: What multiples of 12 can you use to help you divide?

\section*{Math is... Choosing Tools}
- How can you check your solution when there is a remainder?

Students detect possible errors by strategically using mathematical knowledge.

\section*{English Learner Scaffolds}

Entering/Emerging Ensure understanding of (none) left over using counting chips. Say I have 20 chips. Then hand out 15 to different students. Say I have five left over. Hand out the rest of your chips. Show your empty hands. Say I have no chips. I have none left over. Repeat twice with a new amount of chips, once giving away all your chips, and once keeping a few. Say I have none left over. Yes or No?

Developing/Expanding Ensure understanding of none left over using counting chips. Say, I have 20 chips. Then hand out 15 to different students. Say I have five left over. Hand out the rest of your chips. Show your empty hands. Say I have no chips. I have none left over. Repeat once. Then ask students to demonstrate none left over, providing sentence frames for students who need more guidance.

Bridging/Reaching Ask students to demonstrate and use none left over in a sentence. Then have students come up with similar words and phrases to none (zero, not any, etc.) and left over (remaining, more, etc.). Allow students to use a dictionary or thesaurus if desired.

\section*{Practice \& Reflect © 10 min}

6. Ly's town is hosting a race She bought 1.525 water cups to pass out to the nunners. She wants to distribute the cups equaily to 48 water stotions. then she finlshes, how many are remaining? 13 cups
7. One bricge in Maryland is 6,946 meters long it is 46 times as long as another nearby bridge. How iong is the sharter bridge? Explain. The shorter bridge is 151 meters long. Divide 6,946 by 46 using the partial quotients strategy to find the length of
 the shorter bridge.
8. Amir has a collection of 936 trading cards. He wants to put them in boxes with 25 trading cards in each box. How many poxes will Amir fir? How many trading cards wit be lett over?
37 boxes with 11 left over
9. Extend Your Thinking A fortst has 476 carnations, She wants to put the same number of carnations in each vase wath no carnations left over \$nould she put 14 or 58 carnations in esch vase? Explain your answer. 14; Divide 476 by 14 and 476 by 18 . When you divide 476 by 18, there are 8 carnations left over and 26 full vases. When you divide 476 by 14, there are no carnations left over and 34 full vases.

\section*{( Reflect}

How can you tell if there is a remainder when dividing using a partial tuctients strategy?

Answers may vary.


\section*{Practice}

\section*{EIP Build Fluency from Understanding}

Common Error: Exercises 3-4 Students may have difficulty determining the remainder. Remind students to keep finding partial quotients until the number remaining is less than the divisor.

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-4\) & 1 & Procedural Skill and Fluency \\
5 & 2 & Conceptual Understanding \\
\(6-8\) & 2 & Application \\
9 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- How can you tell if there is a remainder when dividing using the partial quotients strategy?
Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
-What actions helped you achieve your day's goals?
Students reflect on how they practiced self-management.

\section*{Learning Target}

Ask students to reflect on the Learning Target of the lesson.
- I can use partial quotients to solve division problems, which sometimes include a remainder.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess Q \(_{10 \text { min }}\)}

\section*{Exit Ticket Formative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{lll|l|}
\hline Item DOK Skill & Standard \\
\hline 1 & 1 & \begin{tabular}{l} 
Divide multi-digit whole numbers \\
with remainders
\end{tabular} & 5.NTB.B.6 \\
2 & 2 & \begin{tabular}{l} 
Divide multi-digit whole numbers \\
with remainders
\end{tabular} & 5.NBT.B.6 \\
\hline 3 & 2 & \begin{tabular}{l} 
Divide multi-digit whole numbers \\
with remainders
\end{tabular} & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

\section*{If students score then have students do}

3 of \(3 \quad\) Additional Practice or any of the \(\operatorname{Bor}\) activities
2 of 3 Take Another Look or any of the 3 activities
1 or fewer of \(3 \quad\) Small Group Intervention or any of the \(\mathbf{Q}\) activities

\section*{Key for Differentiation}

\section*{(B) Reinforce Understanding}Build ProficiencyExtend Thinking


\section*{Reinforce Understanding}

\section*{Partial Quotients Division}

Work with pairs of students. Have students work together to write a word problem in which a 3 -digit number is divided by a 2-digit divisor, then use partial quotients to solve the problem.
Make sure students recognize that there may be more than one way to write the problem using partial quotients.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Divide by 2-Digit (Partial Quotients)


Differentiation Resource Book, p. 73

\section*{Lesson 7.6 - Reinforce Understanding}

Divide Multi-Digit Whole Numbers
Name


Use partial quotients to solve. Two the answers will
have remainders. Sample partial quotients shown.
1. \(756+12=63\)

2. \(825+58=14 R 13\)
\[
\begin{aligned}
& \begin{array}{l}
14 \text { R 13 } \\
5 8 \longdiv { 8 2 5 } \\
\frac{-580}{245} \\
\frac{-232}{13}
\end{array}+\frac{10}{14}
\end{aligned}
\]
3. \(2.366+26=91\)

4. \(3.535+82=43\) R9


\footnotetext{
Difiretiolon festace fook
}

\section*{Build Proficiency}

\section*{Practice It! Game Station}

\section*{Remainder Showdown}

Students practice dividing by 2-digit numbers.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 73-74

\section*{Lesson 7.6}

\section*{Additional Practice}

Nome

\section*{Review}

You can use the partial quotients algorithm to help you find a quotient and any remainder.
derry has 275 marbles. He places thens into bogs with 16 marbies in esch beg. How mary, bags will Jerry have? How mary marbies will he have left overt
To solve, find the quotient \(275+16=n\). Use the partial quoterts aigortith
\(1 6 \longdiv { 2 7 5 }\)
-160
115
-112
\(-112\)
The factors uted, ahown along the side, add to be the quotient, 77 . The 3 at the battom is the remainder
Jerry will have 17 bags of marbles with 3 marbles left over.

\section*{Use the partial quotients algorithen to selve.}

Sample models shown.
1. \(607 \div 17=35\) R12
2. \(3.765 \div 52=72\) R22
\(\begin{array}{r}1 7 \longdiv { 6 0 7 } \\ -\quad 510 \\ \hline 97 \\ \hline\end{array} 30\)


Own It! Digital Station

\section*{Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.



Student Practice Book, pp. 73-74


\section*{Extend Thinking}

\section*{Use It! Application Station}

Online Learning: Is It Safe? Students write rules for safely using electronic devices and practice their rules by researching how to divide multi-digit numbers.

\section*{STEM Adventure}

Assign a digital simulation to apply skills and extend thinking.


Differentiation Resource Book, p. 74

\section*{Lesson 7.6 - Extend Thinking}

Divide Multi-Digit Whole Numbers
Name
Use the values provided to create a division problem resulting in the given quotients. Use each value only once. Show your work using partiol quotients to solve.
\begin{tabular}{|l|cccc|}
\hline Dividends & 450 & 483 & 485 & 490 \\
\hline Divisors & 15 & 19 & 23 & 26 \\
\hline
\end{tabular}

\footnotetext{
I. \(485+23=2182\)
3. \(483+19=25\) R8
}
2. \(490+15=32 \mathrm{R10}\) 4. \(450+26=17 \mathrm{R8}\)

\section*{Solve Problems Involving Division}

\section*{Learning Targets}
- I can use solve word problems involving division.
- I can interpret the remainder when solving word problems.

\section*{Standards \(\propto\) major \(\triangle\) supporting \(\circ\) Additional}

\section*{Content}
\(\checkmark\) 5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.
\(\diamond\) 5.NBT.B.6 Find whole-number quotients of whole numbers with up to four-digit dividends and
two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or models.

\section*{Math Practices and Processes}

MPP Make sense of problems and persevere in solving them.
MPP Reason abstractly and quantitatively.

Focus

\section*{Content Objectives}
- Students solve word problems involving division.
- Students interpret the remainder, when necessary, to solve problems.

\section*{Language Objectives}
- Students talk about solving word problems involving division while using the modals can and could.
- To support sense-making, ELs participate in MLR6: Three Reads.

\section*{SEL Objective}
- Students break down a situation to identify the problem at hand.

\section*{Coherence}
\begin{tabular}{l|l|l|}
\hline Previous & Now & Next \\
- Students used place-value & - Students solve word & - Students will solve problems \\
strategies to find quotients with & \begin{tabular}{l} 
problems involving division \\
up to 4-digit dividends and
\end{tabular} & \begin{tabular}{l} 
involving division with decimals \\
by 2-digit numbers and
\end{tabular} \\
\begin{tabular}{ll} 
1-digit divisors (Grade 4).
\end{tabular} & interpreting remainders. & - Students will fluently divide \\
- Students divided multi-digit & & multi-digit numbers using the \\
numbers by 2-digit numbers to & & standard algorithm (Grade 6). \\
find quotients with remainders & & \\
(Lesson 6). & & \\
\hline
\end{tabular}

Rigor

\section*{Conceptual Understanding}
- Students build on their understanding of division as they represent multi-digit division by 2-digit divisors.

\section*{Procedural Skill \& Fluency}
- Students build proficiency by using partial quotients to represent division with remainders.

\section*{Application}
- Students will apply their understanding of division to solve problems with real-world contexts. Application is not a specific element of rigor for this standard.

\section*{Vocabulary}

\section*{Math Term \\ remainder \\ Academic Terms note transition}

\section*{Materials}

The materials may be for any part of the lesson.
- none

Purpose Students make sense of a situation without focusing on the numbers.

\section*{Numberless Word Problem}
- What's the question?

Teaching Tip Encourage students to discuss their understanding of the numberless word problem, and what information would be needed to solve such a problem.

\section*{Pose Purposeful Questions}

The questions that follow may be asked in any order. They are meant to help advance students' understanding of remainders and the partial quotients algorithm in the context of word problems and are based on possible comments and questions students may make during the share out.
- What information do you need to determine how many nights Javier can afford to stay at the hotel?
-What operation could you use to solve a problem like this?

\section*{Math is... Jindset}
- How can you help identify a problem in your class or community?

SEL Responsible Decision Making: Identify Problems Help students develop strong learning habits by providing them opportunities to practice responsible decision-making skills. As students consider the Numberless Word Problem routine, invite them to share what information is most useful to identify the mathematical task at hand.

To make sure students are ready, have them as a class summarize the types of questions that a division word problem could ask.

\section*{EIP Establish Goals to Focus Learning}
- Let's think about how to identify what to do with the remainder in a division word problem.


\section*{Explore \& Develop © \({ }_{20 \text { min }}\)}

\section*{Learn}


\section*{(1) Pose the Problem}

\section*{Pose Purposeful Questions}
- Are you trying to find the number of groups or the size of each group?
- How is this problem similar to others you have solved in this unit? How is it different?

\section*{(2) Develop the Math}

\section*{Choose the option that best meets your instructional goals.}

\section*{MLR}

Three Reads
1\$ead: Instruct students to look at the Work Together problem on the Learn page. Ensure students understand the situation and key words: attend, row, and seat.
2nfead: Focus students' attention on the How many... question.

3rfead: Brainstorm with students ways to solve the problem.

\section*{3 Bring It Together}


\section*{Elicit Evidence of Student Thinking}
- Why might it be important to be able to interpret the remainder when solving problems?
- How do you know whether the quotient, 1 more than the quotient, or the remainder is the answer?

\section*{Key Takeaways}
- Problems involving division can be solved using known strategies for division.
- Some problems require interpreting the remainder when determining the solution.

\section*{Work Together}

The Work Together activity can be used as a formative assessment opportunity to check students' understanding of how to interpret the quotient of a division word problem when there is a remainder.

Common Error Students may always round a quotient to the nearest whole, instead of considering whether they may need to round up or down given the situation.

\section*{Lom Language of Math}

Remainder comes from the word remain. A part that has not been destroyed, taken, or used up is something that remains. The ruins are all that remains of old buildings that are mostly destroyed.

\section*{Activity-Based Exploration}

Students solve division word problems.
Materials: Problem-Solving Tool Teaching Resource
Directions: Provide copies of the Problem-Solving Tool Teaching Resource. Have students work together to solve the Pose the Problem.

\section*{Math is... Planning}
- What are some different ways you know to determine a quotient?

\section*{ETP Support Productive Struggle}
- What strategies have you tried to use to solve the problem? Why do you think those strategies did not work?
- How does your solution method compare to others?
- How else could you have arrived at your answer?
- Does your answer seem reasonable? How do you know?

Students look for entry points for a problem's solution.
Activity Debrief: Have students share their solutions and strategies to solving the problem. Encourage students to find similarities and differences among the solution methods.

A PDF of the Teaching Resource is available in the Digital Teacher Center


\section*{Guided Exploration}

Students extend their understanding of solving division word problems.

\section*{Facilitate Meaningful Discourse}
- Why might it be important for Javier to determine how many nights he can stay at the hotel before booking his trip?
(2) Have the students create the equation. Ask:
- What should the operation be? Why?
-How should the numbers appear in the equation? Why?
- How should the unknown appear in the equation? Why?

\section*{Math is... Planning}
-What are some different ways you know to determine a quotient?
Students look for entry points for a problem's solution.
Have the students estimate the solution. Ask:
-What compatible numbers will you use to estimate the solution? Why?
- How will basic facts and place-value patterns help you estimate the solution?
- Why is 10 a good choice for the first partial quotient?
- Think About lt: How are the quotient of 11 and the remainder of 11 represented in the partial quotients algorithm?
(4. Have the students use their estimate to assess the reasonableness of the calculated solution. Ask:
- Is the calculated solution reasonable? Why or why not?


Have the students check if their calculated solution is correct. Ask:
- How do you check if a quotient with a remainder is correct?
2. Develop the Math

Javier has \$1,056
saved.
How can you
determine the number
of nights he can stay a
thehotel?


\section*{English Learner Scaffolds}

Entering/Emerging Ensure understanding of saved with play money. Say I want to save money to buy a new coat. It costs \$50. Show \$10. Say I'm going to save \(\$ 10\) for my coat. Put it aside. Show \(\$ 15\). Say I'm going to save \(\$ 15\) more for my coat. Put it aside. Say I saved \(\$ 25\) so far. I need \(\$ 25\) more. Repeat with a new item to save for. This time, ask How much have I saved?

Developing/Expanding Ensure understanding of saved with play money. Say I want to save money to buy a new coat. It costs \(\$ 50\). Show \(\$ 10\). Say l'm going to save \(\$ 10\) for my coat. Put it aside Show \$15. Say I'm going to save \(\$ 15\) more for my coat. Put it aside. Say I saved \(\$ 25\) so far. I need \(\$ 25\) more. Repeat with a new item to save for. This time, ask students to tell you how much you have saved.

Bridging/Reaching Ask students what they would buy if they had any money saved. Then have them come up with synonyms (i.e., set aside) and antonyms (i.e., spent) for saved, and to share their list with the class. Allow students to use a dictionary or thesaurus if desired.

\section*{Practice \& Reflect © womin}

5. A tavmer packs 1224 pears to tuke to the fammers' market. Each tray hoids to pears. How mary vars will she taies to the farmers' market7 Exploin yout answer, 71 trays; Sample answer: 70 trays will hold most of the pears, but 4 are left over so another tray is needed.
6. Alicia has 2.056 sticken She puts the same rumber of stickers ito 24 gith bags. How many stickers met in each gith bog? Wh the use all her stickes? Explain your answer.
85 stickers; She will not use all her stickers. There are 16 stickers left over.
7. Lly rents buses to take 1980 rumners to the starting line of a marathon. Each bus hotds 40 people. How mary buses are neededr Explain your answer
50 buses; Sample answer: \(1,980 \div 40=49\) R20; There will be 20 people left, so another bus is needed.
B. Extend Your Thinking There are 8.554 nanners pirticpating in in marathon. The runners will be divided irto 12 groups weh abour the same number of furners in each grovp. How inany futinss can be in each group? Explain.
Sample answer: Because \(8,554 \div 12=712\) R10, there will be 712 groups of 12 runners with 10 runners remaining. One option for grouping is to have 712 groups with 12 runners and 1 group with 10 runners.

\section*{(D) Reflect}



\section*{Practice}

\section*{EIP Build Fluency from Understanding}

Common Error: Exercises 3-7 Students may have difficulty interpreting the remainder. Remind students to consider the context of each problem. In Exercises 3 and 4, the context suggests rounding down (eliminating the remainder). In Exercise 7, the context suggests rounding up (if there is a remainder).

\section*{Practice Item Analysis}
\begin{tabular}{|l|l|l|}
\hline Item & DOK & Rigor \\
\hline \(1-2\) & 1 & Procedural Skill and Fluency \\
\(3-7\) & 2 & Application \\
8 & 3 & Conceptual Understanding \\
\hline
\end{tabular}

\section*{Reflect}

Students complete the Reflect question.
- What does the remainder tell you?

Ask students to share their reflections with their classmates.

\section*{Math is... Mindset}
- How did you help identify a problem in your class or community?

Students reflect on how they practiced responsible decision-making.

\section*{Learning Targets}

Ask students to reflect on the Learning Targets of the lesson.
- I can solve word problems involving division.
- I can interpret the remainder when solving word problems.

To review today's lesson, have students watch the Math Replay video in their Digital Student Center.

Assign the On My Own practice to students from the Digital Teacher Center.

\section*{Assess \(Q_{10 \text { min }}\)}

\section*{Exit Ticket Fomative Assessment}

The Exit Ticket assesses students' understanding of lesson concepts.
Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Exit Ticket Skill Tracker}
\begin{tabular}{|lll|l|}
\hline Item & pOK Skill & Standard \\
\hline 1 & 2 & Interpret remainders in division & 5.NBT.B.6 \\
2 & 2 & Interpret remainders in division & 5.NBT.B.6 \\
3 & 2 & Interpret remainders in division & 5.NBT.B.6 \\
4 & 2 & Interpret remainders in division & 5.NBT.B.6 \\
\hline
\end{tabular}

Data Use students' scores on the Exit Ticket to assign the differentiated resources available. When students complete the Exit Ticket in the digital workspace, their responses are auto-scored.

\section*{Exit Ticket Recommendations}

If students score then have students do
4 of \(4 \quad\) Additional Practice or any of the \(B\) or \(\boldsymbol{\theta}\) activities
3 of 4 Take Another Look or any of the \({ }^{(3)}\) activities
2 or fewer of \(4 \quad\) Small Group Intervention or any of the \(\mathbf{B}\) activities

\section*{Key for Differentiation}
© Reinforce Understanding
(B) Build Proficiency
© Extend Thinking


\section*{SMALL GROUP}

\section*{Reinforce Understanding}

\section*{Remainders}

Work with students in pairs. Have students work together to write a word problem in which a 4-digit number is divided by a 2-digit divisor and the remainder matters, then solve the problem. Then work with students to adjust the problem to use different numbers to see how different remainders affect the solution.

\section*{Take Another Look Lesson}

Assign the interactive lesson to reinforce targeted skills.
- Interpret Remainders in Word Problems


Differentiation Resource Book, p. 75

\section*{Essson 7.7- Reinforce Understanding}

Solve Problems Involving Division
Name

\section*{Review}

A compeny is peckaging of totis of 1.674 marbles info bags which noid 32 moibles each. How mary lagss of miarbles will the tompany be able to make?

Stant by considering how mary groups of 32 me in \(1.680 .50 \times 32=1.500\) which is lest than \(1.580 .60 \times 32=1,960\) which is more than 6880 . We witiog wath 50 . Then we wee oht to flatie out now mary tines 32 will divide into 80 . The resuit is 2 times. iverwing is with remainder of 16 .

Use partial quotients to help you solve. Record your thinking.
t. A company is packioging balioons to sell The company hass etowit of 2.460 balloons. Eech package holas 24 balloons. How many packages of thaloons wal the company be able to make?
102 packages; Sample answer: There are 12 balloons left over after putting 2,448 balloons into 102 bags.
2. What it the compony uses packages that hold 35 balioans? How many packages of balloons will the corrpary be able to make? 70 packages; Sample answer: There are 10 bailoons teft over after putting 2,450 balioons into 70 bags.
3. The company wants to piat the sarse mumber af ballonss in each pockage with no zamutions let over, Stould the compary ploce 32 or 30 bolloons in each package?
30 balloons in each package: Sample answer: There are \(\mathbf{2 4}\) balloons left over after putting \(\mathbf{2 , 4 3 2}\) balloons into 32 bags. There are no balloons left over after putting 2,460 balloons into 30 bags.

\section*{Build Proficiency}

\section*{Practice It! Game Station}

Dividing with Remainders Bump
Students practice identifying remainders in division problems.


\section*{Interactive Additional Practice}

Assign the digital version of the Student Practice Book.


Student Practice Book, pp. 75-76

\section*{Lesson 7.7}

\section*{Additional Practice}

Name

\section*{Review}

You can use the partial quobients algoritthm to help you find a quotient and any remainder. Then you can interpert the remainder in the context of the problem to answer the question.
There are 325 chairs to be set up in the gym tor a performance. There are to be t8 chairs in each row. How many rows will be needed to artange all of the chyirs?
To solve, fand the quotient \(325+18=\) as Use the partisi quot lerts algoreim.
\(1 8 \longdiv { 3 3 5 }\)
\(\frac{-180}{155}{ }^{10}\)
\(\begin{array}{r}-144 \\ \hline 11 \\ \hline\end{array}\)
The foctors used, shown along the side, add to be the quotient. te. The It at the bottom is the remaindec.
There whi be ti8 rows of 18 chaies and 1 row of tichairs.
So 19 rows of chairs ate needed to arrange atil of the chain.
1. Roger reviews movies for the local newspapec. He is givin a budget of \(\$ 350\) and can spend \(\$ 16\) af ench thenter How mary movies can he review'? Explain you answes
Roger can review 21 movies; Sample explanation: \(350 \div 16=21\) R14. He will have \(\$ 14\) left over, which is not enough to review another movie.

Unit 7 • Divide Whole Numbers

\section*{Own It! Digital Station}

\section*{Build Fluency Games}

Assign the digital game to develop fluency with addition and subtraction of decimals.


\section*{Spiral Review}

Assign the digital Spiral Review
Practice to students or download and print PDFs of the Spiral Review from the Digital Teacher Center.


Student Practice Book, pp. 75-76
2. Te the farm one morning. 295 egas are relectid. They are packeged into cortainen of 12 (ond dotern). How many dozen cartors wie Sheof Exploio your answer.
24; Sample explanation: \(295 \div 12=24 R 7\). So 24 containers will be filled with 7 eggs left over, so only 24 containers will be filled.
3. A sporting goods compary prodices 3 ..400 tennis balls each day. They ship out catons wath 36 ternes balls in each conton Atter pecceng and stipping out as many titit catons as posstbe, how muny tennis bals will be lett to snip out the next day? Explan your amwer. 16 tennis balls; Sample explanation: \(3,400 \div 36=94\) R16. So 94 full cartons can be shipped out, and the remaining 16 tennis balls will be part of the next day's shipment.
4. A tarmed warts to plant 2.750 corn staks in rows of 84 coirs stalis in each row How many rows will the Gumer reet in order to plant all of the com staka? Explin you arswer.
33 rows; Sample explanation: \(2,750 \div 84=32\) R62. So there will be 32 full rows, but the farmer needs another rows for the remaining 62 corn stalks. So there needs to be 33 rows.

\section*{Extend Thinking}

\section*{Use It! Application Station}

That Is Astronomical Students practice
finding quotients, rounding, and writing equations by researching the hours in a day for each planet.


\section*{STEM Adventure}

Assign a digital simulation to
apply skills and extend thinking.


Differentiation Resource Book, p. 76 \\ \section*{Lesson 7.7- Extend Thinking \\ \section*{Lesson 7.7- Extend Thinking \\ \\ Solve Problems Involving Division} \\ \\ Solve Problems Involving Division}

Name
1. Fons is trying to decide how to package her homemade stationary card. She has 1154 cards to package. She can packige them in groups of 12, 15 or 18. Which option well resum in the lass number of unpacreged cards?
All the packaging options result in a remainder of 2 cards. \(1,154 \div 12=96\) R \(2,1,454 \div 16=72\) R 2 . \(1.154 \div 18=64 \mathrm{R} 2\).
2. Coach Avarez is ordering chaner buses for the focal college foctrall tham He noods to transport 25 piargers and personnel. One combiny chers a charter but thet tolts 47 people. Another company offers a charter tivs that hoids 56 people. Which option should he go with in order to have tie least number of emply seats on the remalhing bus? How many empty seats will there be? The company with buses holding 47 people. \(125 \div 47=2\) R 31 , resulting in one bus with 16 empty seats. \(125 \div 56=2\) R 13, resulting in one bus with 43 empty seats.
3. A number divided by 27 results in a quotient of 15 with a remeinder of 5 . What is the number? Show your work.
410; Sample answer: \(27 \times 15+5=410\)
4. A number divided by 32 results in a quosient of 14 wath a remairder of 9 . What is Eve number? Show yout work 457; Sample answer: \(32 \times 14+9=457\)

\section*{Math Probe}

\section*{Unit 7}

\section*{Solving Division Word Problems}

Name
Represent and solve the division problem. Then circle the best answer. Explain your answer choice
1. Dino wants to make jump ropes for gits. She needs it feet of rope to make ane jump rope. With 235 feet of rope, how many jump ropes can she make?
Which number of jump ropes best represents the solution?
(a) 21
b. 22
c. 21 remainder 4
d. None of these

Explain your choice. Explanations may vary.


\section*{Analyze the Probe Formative Assessment}

Targeted Concept Solve division word problems involving 2-digit divisors where there is a need to interpret the remainder based on the context of the problem. Students are able to use area models to represent and solve the problem.

Targeted Misconceptions Some students have difficulty recognizing a word problem that involves division. Other students are unable to interpret the context of a remainder. In particular, they may not understand situations where the quotient, without regard to the remainder, is the solution to the problem. In such cases, the student may include the remainder with the answer even though the inclusion of the remainder does not make sense with respect to the problem context. In other cases, students may not understand situations where the remainder signifies the need for increasing the quotient to the next whole number to solve the problem.

\section*{Sample Student Work}

Below are examples of students' explanations.

\section*{Sample A}

1 Diana wants to make jump ropes for gifts. She needs 11 feet of rope to make one Jump rope. With 235 feet of rope, how many jump ropes can she make?

Which number of jump ropes best represents this situation?
a. 21
b. 22

Explain your choice.

\(10+10+1=21\)
4 ft is not enough to equal a nother one.
c. 21 remainder 4
d. None of these

\section*{Sample B}

2 Mrs. Philbrick is packing 374 eggs into cartons. Each carton holds 12 eggs. How many cartons will she need in order to pack all of the eggs?

Which number of cartons best represents this situation?
a. 31
b. 32
c. 31 remainder 2
d. None of these


\section*{Collect and Assess Student Work}

Collect and review student response to determine possible misconceptions. See examples in lf-Then chart.
\begin{tabular}{|c|c|c|}
\hline IF incorrect... & THEN the student likely ... & Sample Misconceptions \\
\hline 1. C & solves the division problem without applying an understanding of how the remainder connects to the context by keeping the remainder as part of the answer. &  \\
\hline \[
\begin{aligned}
& \text { 1.b } \\
& \text { 2. a }
\end{aligned}
\] & solves the division problem without applying an understanding of how the remainder connects to the context by rounding up or down incorrectly. &  \\
\hline \[
\begin{aligned}
& \text { 1. d } \\
& \text { 2. } \mathrm{d}
\end{aligned}
\] & makes an error in the division process; OR does not recognize the problem context as a division situation. &  \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
has difficulty representing 1-digit or 2-digit division; OR \\
solves the division problem correctly and interprets the remainder correctly, but considers more than one answer as correct; \\
OR \\
justifies both rounding down and rounding up. For example, in Item B, a student may circle both choice a for how many full cartons there are and choice b for how many total cartons there are.
\end{tabular}} \\
\hline
\end{tabular}

\section*{Take Action}

Choose from the following resources or suggestions:
- Revisit representing division with 2-digit divisors in Lessons 7-4-7-6.
- Use structured approaches that include asking students to estimate before computing, making a drawing to represent the situation, and comparing their final answer to their estimate.
- Discuss the meaning of a remainder by making explicit connections between a visual representation (such as area models) and the numeric representation.
- Discuss what the dividend, divisor, and quotient mean in the context of a real-world problem. Discuss the best way to describe the answer based on the problem context when there is a nonzero remainder. Ask, "Should we express the answer with a remainder, or should we round down or round up to the next whole number?" Ask students to write their own contexts for division problems.

Revisit the Probe After additional instruction, have students review their initial answers. Use these questions for discussion:
- Are there any answers you would like to change? Explain.
- Are there any questions that you still have about any of the items on this probe?

Metacognitive Check Reflect on Your Learning allows students to think about their level of understanding of the lesson content on a scale of 1 to 4 with 4 being the highest confidence.

\section*{Unit Review}


Students can complete the Unit Review to prepare for the Unit
Assessment. Students may complete the Review in their Interactive eBook in the Digital Student Center.

\section*{Vocabulary Review}

Item Analysis
\begin{tabular}{|l|l|}
\hline Item & Lesson \\
\hline 1 & \(7-2\) \\
2 & \(7-1\) \\
3 & \(7-1\) \\
4 & \(7-4\) \\
5 & \(7-6\) \\
\hline
\end{tabular}

\section*{Review}

Item Analysis
\begin{tabular}{l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 6 & 1 & \(7-1\) & 5.NBT.B.6 \\
7 & 1 & \(7-3\) & 5.NBT.B.6 \\
8 & 2 & \(7-4\) & 5.NBT.B.6 \\
\hline 9 & 1 & \(7-6\) & 5.NBT.B.6 \\
10 & 1 & \(7-5\) & 5.NBT.B.6 \\
11 & 2 & \(7-2\) & 5.NBT.B.6 \\
12 & 2 & \(7-1\) & 5.NBT.B.6 \\
\hline
\end{tabular}

To review the lessons in this unit, have students watch the Math Replay video in their Digital Student Center.

Assign the Unit Review practice to students from the Digital Teacher Center.

\section*{Item Analysis (continued)}
\begin{tabular}{|l|l|l|l|}
\hline Item & DOK & Lesson & Standard \\
\hline 13 & 2 & \(7-7\) & 5.NBT.B.6 \\
14 & 1 & \(7-4\) & 5.NBT.B.6 \\
15 & 1 & \(7-2\) & 5.NBT.B.6 \\
16 & 2 & \(7-7\) & 5.NBT.B.6 \\
17 & 2 & \(7-7\) & 5.NBT.B.6 \\
\hline
\end{tabular}

\section*{Performance Task}

\section*{Standard: 5.NBT.AB. 6}

Rubric (4 points)

\section*{Part A (DOK 2) - 2 points}

2 POINTS Student's work reflects a proficiency with estimating quotients. The student's estimates are reasonable.
1 POINT Student's work reflects developing proficiency with estimating quotients. One of the estimates is reasonable.
O POINTS Student's work reflects a poor understanding of estimating quotients. No estimates are reasonable.

\section*{Part B (DOK 2) - 2 points}

2 POINTS Student's work reflects a proficiency with multi-digit whole number division using partial quotients algorithm. The solution is accurate.
1 POINT Student's work reflects developing proficiency with multidigit whole number division using partial quotients algorithm. The solution is incorrect due to computational errors, not conceptual weakness.
0 POINTS Student's work reflects a poor understanding of multi-digit whole number division using partial quotients algorithm. The solution is incorrect.

\section*{Reflect}

The Reflect question provides an opportunity for students to express their understanding of the unit level focus question.


\section*{Performance Task}

Jenny reviews lines of computer code checking for any errors that might cause the program to not run correctly. One progam that she checks has 3.843 lines of code. Jenny can review an average of 47 lines in an mout.

Part A About how mary hours will it take Jenny to review the entire program?
Sample answer: about 80 hours
Part 8 Jenny is paid for each full hour she works. For how many hours of work will Jenny be pald? Explain how you know your solution is reasonable.


\section*{Reflect}

How can I divide mutb-digit whole numbers?
Answers may vary.


\section*{Fluency Check}


\section*{Fluency Talk}

Exptain how you can use properties of operutions to find the product of a number and a miltiple of 10 .
Explanations may vary.

Describe when and how you need to regroup when subtracting using an algoithm.
Explanations may vary.

Fluency practice helps students develop procedural fluency, that is, the "ability to apply procedures accurately, efficiently, and flexibly." Because there is no expectation of speed, students should not be timed when completing the practice activity.

Build Fluency Objective Students practice multiplying by multiples of 10 .

Fluency Progression
\begin{tabular}{|c|c|c|}
\hline Unit & Skill & Standard \\
\hline 1 & Use Partial Sums to Add & 4.NBT.B. 4 \\
\hline 2 & Decompose by Place Value to Subtract & 4.NBT.B. 4 \\
\hline 3 & Use an Algorithm to Add & 4.NBT.B. 4 \\
\hline 4 & Use an Algorithm to Subtract & 4.NBT.B. 4 \\
\hline 5 & Choose a Strategy to Add & 4.NBT.B. 4 \\
\hline 6 & Choose a Strategy to Subtract & 4.NBT.B. 4 \\
\hline 7 & Multiply by Multiples of 10 & 5.NBT.B. 5 \\
\hline 8 & Multiply by Multiples of 100 & 5.NBT.B. 5 \\
\hline 9 & Divide Multiples of 10 & 5.NBT.B. 6 \\
\hline 10 & Divide Multiples of 100 & 5.NBT.B. 6 \\
\hline 11 & Use an Algorithm to Multiply (2- and 3-Digit Numbers by 1-Digit Numbers) & 5.NBT.B. 5 \\
\hline 12 & Use an Algorithm to Multiply (2-Digit Numbers by 2-Digit Numbers) & 5.NBT.B. 5 \\
\hline 13 & Choose a Strategy to Multiply & 5.NBT.B. 5 \\
\hline 14 & Choose a Strategy to Multiply & 5.NBT.B. 5 \\
\hline
\end{tabular}

\section*{Fluency Expectations}

\section*{Grade 4}
- Add and subtract within 1,000,000.

\section*{Grade 5}
- Multiply multi-digit whole numbers.

\section*{Grade 6}
- Divide multi-digit numbers using the standard algorithm.
- Add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

\section*{Performance Task}

\section*{Locked Cashbox}

Students draw on their understanding of dividing whole numbers. Use the rubric shown to evaluate students' work.
Standards: 5.NBT.B. 6
Rubric (10 points)

\section*{Part A (DOK 3) - \(\mathbf{2}\) points}

2 POINTS Student's work reflects a proficiency in dividing multi-digit factors. The student was able to accurately provide 3 possible breakdowns.
1 POINT Student's work reflects a developing proficiency in dividing multi-digit factors. The student was able to accurately provide 2 possible breakdowns.
0 POINTS Student's work reflects a weak proficiency of dividing multi-digit factors. The student was able to accurately provide 1 or 0 possible breakdowns.

\section*{Parts B, C, and D (DOK 2) - 6 points}

2 POINTS Student's work reflects a proficiency in dividing multi-digit factors. The student was able to accurately calculate an answer and given an explanation.
1 POINT Student's work reflects a developing proficiency in dividing multi-digit factors. The student was able to accurately calculate an answer but has given an incorrect explanation.
0 POINTS Student's work reflects a weak proficiency of dividing multi-digit factors. The student was able to accurately calculate an answer and has given a correct explanation.

\section*{Part E (DOK 3) - 2 points}

2 POINTS Student's work reflects a proficiency in dividing multi-digit factors. The student's work, answer, and list are all correct.

1 POINT Student's work reflects a developing proficiency in dividing multi-digit factors. Some of the student's work, answer, and list are incorrect.

0 POINTS Student's work reflects a weak proficiency of dividing multi-digit factors. The student's work, answer, and list are all incorrect.

\section*{Unit 7}

\section*{Performance Task}

\section*{Name}

\section*{Locked Cashbox}

The Federal Reserve currently issues \(\$ 1, \$ 5, \mathbf{\$ 1 0 , \$ 2 0 , \$ 5 0}\), and \(\$ 100\) bills. A cashbox has \(\$ 3.944\) locked in is, made up of bits in various denominetions.

\section*{Part A}

Use division to help you determine theee different possible
breakdowns of the \(\$ 3.944\) into various bill denominations. You must use at least three offerent bill denaminations for each breakdown. For example, the cashbox could contain \(30 \$ 100\) bils, \(45 \$ 20\) bilis. and \(44 \$ 1\) bils
Sample answer: \(39 \$ 100\) bills, \(8 \$ 5\) bills, and \(4 \$ 1\) bills:
\(60 \$ 50\) bills, \(9 \$ 100\) bills, \(44 \$ 1\) bills:
\(30 \$ 100\) bills, \(188 \$ 5\) bills, \(4 \$ 1\) bills

\section*{Part 8}

It is possible for the cashbox to only contain \(\$ 50\) bills, \(\$ 20\) bllls, and \(\$ 1\) bills? Explain
Yes; Sample answer: \(78 \$ 50\) bills, \(2 \$ 20\) bills, and \(4 \$ 1\) bills

Part C
It is possible for the cashbox to only contain \(\$ 5\) blis? Explain
No; Sample answer: There is a remainder of 4 when 3,944 is divided by 5 .

\section*{Part D}

It is possible for the cashbox to contain at least one of each bill denomination? Expliain

Yes; Sample answer: \(\mathbf{3 0} \mathbf{\$ 1 0 0}\) bills, \(16 \$ 50\) bills, \(\mathbf{2} \$ 20\) bills, \(6 \$ 10\) bills, \(8 \$ 5\) bills, and \(\mathbf{4} \$ 1\) bills.

\section*{PartE}

The owner of the cashbox has revealed the \(\$ 3,944\) uses the fewest number of bills possible. Determine the breakdown as well as the total rumber of bils ised.
\(3944 \div 100=39\) with remainder of \(44,44 \div 20=2\) with remainder of \(4.4 \div 1=4\). The cashbox contains a total of 45 bills. There are \(39 \$ 100\) bills, \(2 \$ 20\) bills, and \(4 \$ 1\) bills.

\section*{Unit Assessments}

Two forms of the Unit Assessment, Form A and Form B, are available for either print or digital administration. The items on the two assessments are parallel items, assessing the same concept and standard. The table below provides the item analysis for both forms.

Both Unit Assessments are available in the Assessment Resource Book or as downloadable files from the Digital Teacher Center.

Data When students complete the Unit Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{llllll}
\hline Item pok Lesson Guided Support \\
Intervention Lesson
\end{tabular}\(\quad\) Standard

Assign the digital Unit Assessment (Form A or B) to students or download and print PDFs from the Digital Teacher Center.


\section*{Unit 7}

\section*{Unit Assessment, Form A}

Name
```

1. Knowing that }36\div9=4\mathrm{ , which quotient is true? Choose at
that apply.
A. }360+9=
(B.) }360+90=
C. }3,600+90=
(D.) }3,600\div90=4
E. }36,000+90=4
(F.) }36,000\div90=40
```
2. A comparry has 10,000 scuare feet on which to bulld 50 identical storage units. What is the area of each storage unit? 200 square feet
3. For which quotient is 70 a reasonable estimate? Choose all that apply.
A. \(194 \div 5\)
B. \(1,398+69\)
C. \(5.612+82\)
(D. \(2.777+4\)
(E.) \(4,200+58\)
F. \(6,254+73\)
4. Which equation can be used to help you solve \(496+16=m\) ?
A. \(n+16=496\)
(8.) \(n \times 16=496\)
C. \(n \times 496=16\)
D. \(n+16=495\)
5. A bulding has a fight of 16 stairs butween each floor. Alice climbed all 240 stars to reach the top floor. How many fights of stairs did Alice climb? 15 flights of stairs
6. Which quotient is shown by the area moder?
\begin{tabular}{|c|}
\hline \(60 \times 46=2.760\) \\
\hline \(10 \times 46=460\) \\
\hline \(6 \times 46=276\) \\
\hline \(2 \times 46=92\) \\
\hline 2 \\
\hline
\end{tabular}
A. \(2.760 \div 46=78\)
B. \(3.588+46=69\)
C. \(3.588+46=78\)
D. \(3.538+46=618\)
7. The area of a roctangular corn field is 3.332 square feet. The wiath of the corn lield is 54 feet. What is the length of the com fied? Use an area model to solve
58 feet

\section*{Unit 7}

Unit Assessment, Form A (continuod)
Name
8. Which quotient is shown by the pirtiol quotionts algorthem \(4 8 \longdiv { 2 . 0 1 6 }\) \begin{tabular}{r|r}
1.920 & 40 \\
\hline 96 & 1 \\
\hline 48 & 1 \\
48 & 1
\end{tabular}
A. \(48+2,015=42\)
(B.) \(2.016+48=42\)
C. \(2.016+48=51\)
D. \(2.016+48=50\)
9. The area of a picture and its rectangutar frame is 3,344 square inches. The widit of the frame is 44 inches. How iong is the picture firmer tse the partar quotients algonthm.
76 inches
10. What is the remainder for the quobent \(3.453 \div 63 ?\)
A. 0
(B.) 51
C. 54
D. 55

\section*{Form B}

\section*{Una 7 \\ Unit Assessment, Form B}

Nen

tatury
A. \(205+1=4\)
(B) \(200+\pi=4\)
C. \(2000+75=4\)
(D) \(20000+70=40\)
E. \(28000 * 70=40\)
(5) \(210000+70=409\)

 200 requere feet
 no enal
A. \(25+4\) ㄹ. \(138+34\)
(C) \(2 \pi 2+0\)
2. \(1354+70\)
(a) \(200 n+n\) (8) \(4=5+\pi\)
 A. \(n+u=200\)
(B) \(=\times 24=256\)
C. \(n \times 2 \mathrm{nc}-4\)

B \(=-4=20\) 百
12. At the factory 3.174 markers were made. Each box holcs 24 markers. How mary bowes wete filled with markers? How many markers were lett over?
132 boxes were filled and 6 markers left over
12. A focthall tham scored 387 points during the seaton. They played t1 games. About how many poirts did the team score each game? Explain how you kound your answer.
Sample answer: about 40 points; I used compatible numbers and changed 387 to 400 and 11 to 10 , then \(400 \div 10=40\).
13. Patricia packages eggs into dozen containers 5 he is allowed to take home any eggs that are left ovec. Todry, Patricia has 650 eggst to pacloge, whit she be abte to talos any oggs home? It so. how many? Explain your arswer
Yes, 2 eggs; Sample answer: I divided 650 by 12 to get 54 R2. This means that she will fill 54 containers and have 2 eggs left over, so she can take those home.
14. Phitlop has a collection of 1,550 basieball cards. He stores them in plastic sheets thet can hoid 18 cards. How many plastic sheets wil Philly need to hold all of his basebal cards? Explain your answer

87 plastic sheets; Sample answer: I divided 1,550 by 18 and got 86 R2. So there will be 86 full sheets and 2 more cards, so he will need 87 plastic sheets for all of his cards.

\section*{Benchmark Assessment 2}

The Benchmark Assessment 2 is available in both print and digital.
Data When students complete the Benchmark Assessment in the Digital Student Center, their responses are auto-scored.

\section*{Item Analysis}
\begin{tabular}{|c|c|c|c|}
\hline Item & O & kill & Standard \\
\hline 1 & 2 & Use unit cubes to determine volume & 5.MD.C. 4 \\
\hline 2 & 2 & Multiply multi-digit numbers & 5.NBT.B. 5 \\
\hline 3 & 2 & Round decimals & 5.NBT.A. 4 \\
\hline 4 & 2 & Add decimals & 5.NBT.B. 7 \\
\hline 5 & 1 & Relate multiplication and division & 5.NBT.B. 6 \\
\hline 6 & 2 & Represent multiplication of decimals & 5.NBT.B. 7 \\
\hline 7 & 2 & Divide multi-digit numbers & 5.NBT.B. 6 \\
\hline 8 & 2 & Multiply decimals & 5.NBT.B. 7 \\
\hline 9 & 1 & Multiply decimals by powers of 10 & 5.NBT.A. 2 \\
\hline 10 & 2 & Subtract decimals & 5.NBT.B. 7 \\
\hline 11 & 2 & Multiply multi-digit numbers using an algorithm & 5.NBT.B. 5 \\
\hline 12 & 2 & Solve volume word problems & 5.MD.C. 5 \\
\hline 13 & 2 & Represent decimals in different ways & 5.NBT.A.3.a \\
\hline 14 & 1 & Understand powers and exponents & 5.NBT.A. 2 \\
\hline 15 & 3 & Understand place value & 5.NBT.A. 1 \\
\hline 16 & 2 & Use strategies to multiply multi-digit numbers & 5.NBT.B. 5 \\
\hline 17 & 2 & Compare decimals & 5.NBT.A.3.b \\
\hline 18 & 2 & Determine volume & 5.MD.C. 5 \\
\hline 19 & 2 & Represent subtraction of decimals & 5.NBT.B. 7 \\
\hline 20a & & Represent division of multi-digit numbers & 5.NBT.B. 6 \\
\hline 20b & & Divide multi-digit numbers & 5.NBT.B. 6 \\
\hline 21 & 2 & Solve multiplication word problems & 5.NBT.B. 5 \\
\hline
\end{tabular}

Assign the digital Benchmark Assessment to students or download and print PDFs from the Digital Teacher Center.


\section*{Grade 5}

\section*{Benchmark Assessment 2}

\section*{Name}


Match the number of layers needed to make a rectangular prian of each volume, in cubbic units.

2. What is the product?
\(321 \times 19=6.099\)
3. What is 2.578 .703 rounded to the nearest hundred?
A. 2.57870
e. \(2578 \pi\)
(C) 2.500
D. 2,500
4. Drew uses partisi sums to add \(3.45+3.27\). Fil in the missing numbers to complete Drew's equation.
\(3+3=6\)
\(0.4+0.2=0.6\)
\(0.05+0.07=0.12\)
\(6+0.6+0.12=6.72\)

Ausesumethinoucu louk \(\mathbf{1 3 3}\)
5. Which equation nas the same uninown as \(1512+36=\) \(\square\)
A. \(36+\square=1.512\)
B. \(\square+1.512=36\)
c. \(1512 \times \square=36\)
(D) \(\square \times 36=150\)

(A) \(2.4 \times 1.5\)
e decimal grid?
C. \(24 \times 15\)
D. \(0.24 \times 15\)
7. What is the quatient?
\(952+68=14\)
8. Look at the expression
\(6.24 \times 8\)
What is the value of the expression?
49.92
9. Sam multiplies 0.37 by \(100^{4}\)

How does Sam move the decimal point?
A. 4 places to the right
B. 4 places to the left

C 5 places to the right
D. 5 places to the left

134
Anpsument linover loch

\section*{Grade 5}

Benchmark Assessment 2 Icontinued)
Name
10. Look at the equintion
\(713-c=19.65\)
What value for c makes the equation true?
A. 90.95
B. 68.35
C. 52.35
(D) 5155
11. How can you use an algocithm to muitipiv \(65 \times 237\) Fill in the missing numbers
\begin{tabular}{r}
65 \\
\(\times 23\) \\
\hline 195 \\
+1300 \\
\(=1495\) \\
\hline
\end{tabular}
12. Sidra has a fish tank that is 40 inches lang. 25 inches wide anc 32 inches tall. She fills the fish tarik with water 2 inches below the top of the fish tank

Whan as the volurpe of watec an cuibic inches, than Sitfre uses to filithe fish tarik?
30,000 cubic inches
13. Which expressions are equivalent to 248533

Choose alif that apply
(A) 24 tens +8 ones +63 hundreath
B. 24 nundreds +8 ones +63 hunciedtis
C. 24 tens +8 ones +6 nundredths +3 wenths
(D) 2 hundreds +4 tens +8 ones +6 tenths +3 bundreaths
E. 2 hundreds +4 tens +8 ones +6 hundredins +3 tenths
14. What \(\$ 10^{\circ}\) writien as a whole number? \(1,000,000\)
15. A factory creates packages of toys. Each package contains 10 foys. The factory ships the toys out to stores in poxes of crates
- Eadt bax contains 10 packages.
- Each crate contilios 90 boxes.
- Store 1 receives 2 boves
- Store 2 recelves 2 crates

Which statement is true?
A. Store 1 necerves 10 times as many loys as Stoce 2
B. Store 2 recalves 10 times as many toys as 5 tore 1
C. Store 1 recelves 20 times as maly toys as 5 tore 2.
D. Stare 2 receives 20 times as mary toys an Stove 1
16. Which number sentence helos sowe \(462 \times 20\) ?
(A) \(1400+62) \times 20\)
B. \((400+62) \div 20\)
C. \((440 \times 62) \div 20\)
D. \((440 \times 62) \times 20\)

136
Ashisumel Pescate lock

Grade 5
Benchmark Assessment 2 icontinued;
Name
17. Which symbol coerectly completes the comparison? \(43.065 \square 43.02\)
(A.) \(<\)
B. \(=\)
C. \(>\)
18. A rectiangular prism is 5 inches long. 9 inches wide and 3 inches tall What is the volume, in cubic inches, of the rectangular orism?
135 cubic inches
19. Sanlya weighs a bag of frut af the supermurket. The bag of frut weighs 153 pounds
The bag weiphs 108 pounds after Saniya removes some of the froit


How much topes the truit that Sanlija removes weigh, in pounds? 0.45 pound

a. Which of these are steps that Vincerua should do to find the quotient? Choose as that apply
A. Vincenzo should divide 83 ones into 21 equal groups.
(B.) Vincerzo shoukd divide 42 tens into 21 equel groups: (C. Vincento should divide 63 ones into 21 equal groups. D. Vincentés should divide 63 bons into 21 equal groups.
E. Vincerteo should divide 48 tens into 21 vauel grouos.
(E.) Vincurno should trade the 4 frundieds for 40 tems.
b. What is the quotien?
\(483+21=23\)
21. Wyatt walks 2.465 steps each day for 5 days.

How many stept doea Wyutf war in ar?
12,325 steps

\section*{Appendix}
Sense-Making Routines ..... A2
Number Routines ..... A3
Math Language Routines ..... A4
Key Concepts and Learning Objectives ..... A6

\section*{Appendix}

\section*{? Sense-Making Routines}

\section*{Notice \& Wonder \({ }^{\text {" }}\)}

Students are presented with an image or situation and are asked to share what they notice and wonder about the image or situation. To increase student participation in this whole-class brainstorming activity, allow students adequate time to write or draw any noticings and wonderings. This will help students control their impulses, and expand their thinking. As you record students' thoughts, thank or acknowledge each student equally. Record all student suggestions, however resist praising, restating, clarifying, or asking questions.

This is primarily a whole-class, discussion-based brainstorming activity, one in which the noticings and wonderings of one student help spark additional noticings and wonderings among other students. Students should not be expected to write down what they notice and wonder; rather, the routine works better when students are more spontaneous and can respond to one another's comments.

As students share, the teacher may want to record students' noticings and wonderings for all to see and to avoid redundancy of ideas. Allow for some non-math-related observations and questions, but eventually pose questions to get students thinking about a math focus. The support in the Teacher Edition offers prompts that can focus students' thinking on a math focus.

These activities are low floor-high ceiling activities and it is important that all students feel comfortable participating and valued for their participation.
Variations of the Notice \& Wonder routine include:
- Tell me everything you can.
- What question could you ask?
- What could the question be?

\section*{How are they the same? How are they different?}

In this variation of the routine, students are presented with two or more images or situations and consider how the images or situations are similar and different. The students share similarities and differences, some of which may be mathematical in nature, others non-mathematical.

As with the Notice \& Wonder routine, this is also primarily a whole-class, discussion-based activity. As students can share both mathematical and non-mathematical similarities and differences, the teacher can record these for reference. If students do not bring up the intended math focus, prompts in the Teacher Edition can get students thinking about the focus.

\section*{Which Doesn't Belong?}

Students are presented with a series of images, quantities, or numbers - usually four, and think about the question, "Which doesn't belong?" The activity has been designed to have multiple responses depending on which criteria or attribute the student is considering. Students are encouraged to think about as many different ways to identify the one that does not belong.

As students share their responses, they should be encouraged to share their reasoning for which one does not belong.

Guidance in the Teacher Edition can help the teacher direct students' thinking to the specific math focus for the lesson.

\section*{Is It Always True?}

Students are presented with one or more images or situations and think about the relationship among the objects in the image or situation. Students then consider whether the relationship always holds or whether it/they are unique to the image or situation.

As with the other sense-making routines, this is primarily a whole-class, discussion-based brainstorming activity, one in which students share their thoughts around the generalizability of the relationship and their reasoning for their claims. As with other routines, allow students adequate time for them to reason through their own thinking. Students should be encouraged to write down or draw their thoughts and reasoning. This additional think time allows students to process the information presented. However, some learners may need to make written notes to capture their thoughts and should feel free to do so.

Guidance in the Teacher Edition can help the teacher direct students' thinking to the specific math focus for the lesson that the sense-making routine is targeting.

\section*{Numberless Word Problems}

Students are presented with a scenario or problem situation that suggests operations, but with no numbers. That is, instead of specifying quantities, the scenario or problem would indicate "some." For example, "Some dogs are in the dog park. Some dogs come into the dog park. Then some dogs leave the dog park." Students are expected to make sense of what is being described in the situation and explain which operations it represents. Without numbers, students are able to develop a better understanding of the underlying structure of the problem itself.
The prompts in the Teacher Edition offer options to extend and expand the discussion about the situation presented.

\section*{Number Routines}

\section*{About How Much?}

Purpose Build estimating skills.
Overview Students estimate the value of expressions (with operations) shown, explaining their strategies and thinking. The teacher records students' estimates, then reveals the value of the expression. Students analyze the estimates and discuss which are closest to the actual value of the expression.

\section*{Can You Make the Number?}

Purpose Build flexible thinking and efficiency with operations.
Overview Students use all the given numbers to build expressions with a value of the given target number. Students can use a range of operations in their expressions. The teacher records students' expressions, then facilitates a discussion about students' expressions.

\section*{Decompose It}

Purpose Build flexibility with numbers.
Overview Students come up with multiple (at least 3) ways to decompose given numbers and share their thinking for each decomposition. Teacher records decompositions then facilitates a discussion of patterns in the decompositions.

\section*{Find the Missing Values}

Purpose Build their identification of patterns and their efficiency with solving equations as they examine a list of related equations.
Overview Students analyze a series of equations to look for patterns that they can use to determine the missing values in the equations. As students share their analyses and solutions, the teacher can reveal the missing values.

\section*{Find the Pattern, Make a Pattern}

Purpose Build efficiency with recognizing and building patterns.
Overview Students determine the rule(s) for a given pattern, then use the rule(s) to continue the pattern or create a new pattern. The teacher records students' new patterns and facilitates a discussion to validate the pattern and its rules.

\section*{Greater Than, Less Than}

Purpose Build proficiency with number and place value sense; estimating and comparing skills.
Overview Students use mental math to estimate or evaluate the value of given expressions and then compare the value of the expressions to a target benchmark number. Students share their solutions and thinking.

\section*{Math Pictures}

Purpose Build number sense and mathematical awareness.
Overview Students respond to a prompt about an image.

\section*{What's Another Way to Write It?}

Purpose Build flexibility with number sense and mental math operations.
Overview Given an expression, students come up with alternative expressions using the same or different operations that, when evaluated, have the same value. The teacher records expressions as students share. Students then look for relationships amongst the shared expressions.

\section*{Where Does It Go?}

Purpose Build estimating skills using benchmarks.
Overview Students place a target number on number lines with different endpoints and justify their placement. In some instances, as a challenge, the target number may not actually belong on one of the number lines.

\section*{Which Benchmark Is It Closest To?}

Purpose Enhance rounding and reasoning skills.
Overview Students determine to which benchmark the given number is closest and explain their reasoning.

\section*{Would You Rather?}

Purpose Build flexibility with number sense and mental math operations; enhance decision-making.
Overview Students choose between two options, both of which require mental computation. Students explain their choice and their rationale for their choice.

\section*{Math Language Routines}

\section*{MLR 1 Stronger and Clearer Each Time}

Purpose To provide opportunities for students to revise and refine both their ideas and their verbal and written output (Zwiers, 2014).
Successive Pair Shares Students respond to a prompt either verbally or in writing. Then, students share their responses and their reasoning through successive pair shares, refining and revising their response after each pair share. Student-pairs are expected to provide details and to press their partners to provide details around their thinking. Students revise their responses after each pair share, incorporating as appropriate new ideas or language.
Convince Yourself, a Friend, a Skeptic Students think about an argument for three different audiences. They first justify the argument in a way that makes sense to them, then they explain what they know and think and how they know their argument is true to a classmate. For their third audience, students explain why they know their argument is true to a different classmate. Students' arguments may include words, pictures, numbers, and examples. Students should be prepared to offer counter-arguments.

\section*{MLR 2 Collect and Display}

Purpose To help students build vocabulary and language when engaging in mathematical discourse.
Gather and Show Student Discourse (Dieckmann, 2017) While students are working in pairs or small groups, the teacher circulates and listens to student talk, capturing common or important words and phrases. The teacher organizes words and phrases captured in a visual display that the teacher and students can reference throughout the unit of study. The teacher can update and add to the visual display to show refinement in language students are using to discuss key concepts.
Number Talks (Humphreys \& Parker, 2015) Number Talks have four parts: (1) Students are presented with a numeracy problem that they consider without written solution for a few minutes; (2) Students share their strategy for solving and their thinking about their strategy; (3) As students share their strategies and thinking, the teacher creates a visual display of students' strategies and thinking, noting common or important words or phrases shared; (4) The teacher facilitates a discussion analyzing the strategies and thinking, their benefits and drawbacks in different types of situations.

\section*{MLR 3 Critique, Correct, and Clarify}

Purpose To have students analyze and reflect on a written or verbal mathematical argument.
Critique a Partial or Flawed Response The teacher presents a partial or flawed argument, explanation, or solution and has students come up ways to complete or fix the argument. Students can work individually or in pairs to propose improvements and/or additions to the argument. Students share their responses with a partner and based on feedback from their partner, they refine and revise their responses.

Always, Sometimes, Never The teacher presents a mathematical statement that students analyze to decide whether it is always, sometimes, or never true. If possible, the teacher presents the statement in a graphic organizer that can then be used to assess students' reasoning.

\section*{MLR 4 Information Gap}

Purpose To create a need for students to communicate (Gibbons, 2002).
Info Gap Cards Each student-pair has two cards, Student A has Card A with the problem statement and Student B has Card B with data or information needed to solve the problem. Student A asks Student B for specific information that is needed to solve the problem. Before providing the information, Student B asks Student A to justify the need for information before providing the information requested (if available). Student A then explains how he or she will use the information to solve the problem.
Info Gap Games Student-pairs play a guessing or matching game. Student A shares the information and Student B uses his or her understanding of math concepts to guess what Student \(A\) is describing. For example, Student A may identify objects in the classroom that share a shape and Student B guesses the shape.

\section*{MLR 5 Co-Craft Questions and Problems}

Purpose To allow students to use conversation skills and mathematical language to generate questions, problems, and situations.
Co-Craft Questions The teacher presents a scenario or part of a problem context and students come up with math-related questions that could be asked about the situation. Student-pairs share their questions, comparing and contrasting the questions each asked. The teacher can then facilitate a share-out of questions from the class, after which the actual question students will look to answer is revealed.
Co-Craft Problems Student-pairs work together to co-create problems. Student-pairs then solve their problems, and trade problems with another student-pair. Student-pairs solve the problems of others, checking their solution against that of the co-creators.
Co-Craft Situations The teacher presents a mathematical representation with no labels. Students work individually to write a story or scenario that matches the representation. Students then work with a partner to share their scenarios or situations, each explaining how their situations reflect the mathematical representation. Based on feedback from their partners, students revise their situations, adding details as appropriate.

\section*{MLR 6 Three Reads}

Purpose To ensure that students make sense of problem situations and equip them with tools used to negotiate meaning (Kelemanik, Lucenta \& Creighton, 2016).
Three Reads Students read a problem situation or scenario three times, each time with a different focus (1) Students read for comprehension, to understand the problem situation; (2) Students focus on the language used to present the mathematics with the goal of understanding what mathematics is most appropriate to use; (3) students think about which strategy or solution method would be appropriate.
Values/Units Chart (1) Students read through text and underline any words or phrases that represent a known or unknown value or amount. (2) They list these numbers, unknowns, and variables in the left column of their graphic organizer (Values). (3) After reading a second time, students write the meaning of the values in the right column of the graphic organizer (Units). (4) After the third read, students work in pairs to create mathematical expressions using only the right column.

\section*{MLR 7 Compare and Connect}

Purpose To foster students' meta-awareness as they identify, compare, and contrast different mathematical approaches, representations, concepts, examples, and language.
Compare and Contrast Solution Strategies Students are given a problem to solve on their own. Students are then paired up and share their solution strategies with their partners, relating and connecting their partner's approach to their own approach. Some options include:
1. Divide and conquer Set students in pairs before they solve the problem. Each pair decides on two different ways to solve the problem; one partner does one way and the other partner does the other way.
2. What is similar, what is different After student-pairs share solution strategies, they identify what is similar and what is different about the approaches. Students can also discuss what worked with each approach.
3. Mathematical focus Student-pairs focus on specific mathematical relationships, operations, quantities and values.
Which One Doesn't Belong? Students are provided with sets of four numbers, equations, expressions, graphs, or geometric figures. Working in pairs, students decide together how to group the sets so that three of the items fit within a category they have created and one does not. Both partners should be prepared to explain to a different group how they agreed on a category and justify which item did not fit.

\section*{MLR 8 Discussion Supports}

Purpose To facilitate rich discussions about mathematical ideas, representations, contexts, and strategies (Chapin, O'Connor, \& Anderson, 2009).

Whole Class Discussion Supports During whole class discussion, the teacher can use these strategies to support mathematical discourse:
- Restating The teacher restates students' ideas as questions to clarify meaning and model appropriate mathematical language
- Press for Details The teacher asks students to elaborate on an idea, expand an argument, or give an example.
- Think Alouds The teacher talks through their thinking about a mathematical concept.
- Use multiple modalities The teacher uses different modalities to show concepts.
- Choral responses The teacher has students practice common or important words or phrases through choral repetition.
Numbered Heads Together (1) The teacher has students count off by 4s (or the number of students he or she wants to have in a group. (2) The teacher then presents a question or problem and has students work in their groups according to their number to come up with an explanation or justification. (3) Each group reporter shares the group explanation and/or agree or disagree with the previous group reporter. Other members of the group are not allowed to talk or write, but the reporter can use the notes from the group discussion. The correct answer, if there is one, is revealed once all groups have presented.

\section*{Key Concepts and Learning Objectives}

\section*{KEY CONCEPT Habits of Mind and Classroom Norms for Productive}

\section*{Math Learning}
- Students make sense of problems and quantities and represent them different ways. (Unit 1)
- Students represent a real-world situation using mathematics. (Unit 1)
- Students construct an argument to explain their thinking with clear and appropriate terms. (Unit 1)
- Students use patterns to develop efficient strategies to solve problems. (Unit 1)
- Students tell their math biography and recognize the behaviors and attitudes that support a productive learning environment. (Unit 1)

\section*{KEY CONCEPT Operations with Fractions}
- Students add, subtract, and multiply fractions, including mixed numbers, with unlike denominators. (Units 9, 10)
- Students find the area of a rectangle with fractional side lengths. (Unit 10)
- Students describe multiplication as scaling. (Unit 10)
- Students divide unit fractions by whole numbers and whole numbers by unit fractions. (Unit 11)

\section*{KEY CONCEPT Operations with Whole Numbers and Decimals}
- Students describe the relationship between place value positions. (Unit 3)
- Students use an algorithm to multiply whole numbers. (Unit 5)
- Students divide multi-digit dividends by 2-digit divisors. (Unit 7)
- Students add, subtract, multiply, or divide decimals. (Units 4, 6, 8)
- Students solve word problems involving operations with whole numbers or decimals. (Units 4, 5, 6, 7, 8)

\section*{KEY CONCEPT Measurement and Data}
- Students describe volume is an attribute of solid figures. (Unit 2)
- Students measure volume by counting unit cubes. (Unit 2)
- Students calculate the volume of rectangular prisms using formulas. (Unit 2)
- Students find the volume of composite solid figures. (Unit 2)
- Students convert measurement units within a given measurement system. (Unit 12)
- Students interpret data on a line plot. (Unit 12)

\section*{KEY CONCEPT Geometry}
- Students identify and describe features of a coordinate plane. (Unit 13)
- Students graph points on the coordinate plane to solve problems. (Unit 13)
- Students classify 2-dimensional figures into categories based on their properties. (Unit 13)

\section*{KEY CONCEPT Algebraic Thinking}
- Students write numerical expressions to represent calculations that are described using written statements. (Unit 14)
- Students interpret numerical expressions without evaluating them. (Unit 14)
- Students use the order of operations to evaluate numerical expressions. (Unit 14)
- Students generate two numerical patterns using two given rules. (Unit 14)
- Students identify apparent relationships between corresponding terms in the generated number patterns. (Unit 14)

\section*{Clossary/Glosario}



Reveal
MATH
? Be Curious
What do you notice? What do you wonder?
mheducation.com/prek-12
```


[^0]: 2 Ausenment fespucr bock

[^1]: - Let's analyze the measurable attributes of 2-dimensional and 3-dimensional figures.

[^2]: - Let's think about how to count unit cubes to find volume and efficient ways to do that counting.

