

Teacher Edition Volume 1

Reveal MATH' Integrated I

mheducation.com/prek-12

Mc Graw Hill

Copyright © 2020 McGraw-Hill Education
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, network storage or transmission, or broadcast for distance learning.
Cover: (t to b, I tor) whitestone/123RF, Ingram Publishing
Send all inquiries to:
McGraw-Hill Education
8787 Orion Place
Columbus, OH 43240
ISBN: 978-0-07-700693-8
MHID: 0-07-700693-3

Printed in the United States of America.
34567891011 WEB 2726252423222120
Common Core State Standards © Copyright 2010. National Governors
Association Center for Best Practices and Council of Chief State School Officers.
All rights reserved.

Contents in Brief

Module 1 Expressions
2 Equations in One Variable3 Relations and Functions
4 Linear and Nonlinear Functions
5 Creating Linear Equations
6 Linear Inequalities
7 Systems of Linear Equations and Inequalities
8 Exponential Functions
9 Statistics
10
Tools of Geometry
1112 Logical Arguments and Line Relationships
13 Transformations and Symmetry
14
Triangles and Congruence

Reveal Math Guiding Principles

Academic research and the science of learning provide the foundation for this powerful K-12 math program designed to help reveal the mathematician in every student.

Reveal Math Integrated I, Integrated II, and Integrated III (Reveal Math Integrated) used findings from research on teaching and learning mathematics to develop its instructional model. Based on analyses of research findings, these areas form the foundational structure of the program:

- Rigor
- Productive Struggle
- Formative Assessment
- Rich Tasks
- Mathematical Discourse
- Collaborative Learning

Instructional Model

1 Launch	1-5.	
88 WARM UP	88 LAUNCH THE LESSON	8 EXPLORE

During the Warm Up, students complete exercises to activate prior knowledge and review prerequisite concepts and skills.

INDIVIDUAL ACTIVITY GROUP ACtivity CLASS ACTIVITY

In Launch the Lesson, students view a real-world scenario and image to pique their interest in the lesson content. They are introduced to questions that they will be able to answer at the end of the lesson.

During the Explore activity, students work in partners or small groups to explore a rich mathematical problem related to the lesson content.

2 Explore and Develop

LEARN

In the Learn section, students gain the foundational knowledge needed to actively work through upcoming Examples.

89
 EXAMPLES \& CHECK

Students work through Examples related to the key concepts and engage in mathematical discourse.

Students complete a Check after several Examples as a quick formative assessment to help teachers adjust instruction as needed.

9 Practice

Students complete Practice exercises individually or collaboratively to solidify their understanding of lesson concepts and build proficiency with lesson skills.

Reveal Math Key Areas of Focus

Reveal Math Integrated I, II, III (Reveal Math Integrated) have a strong focus on rigor-especially the development of conceptual understanding-an emphasis on student mindset, and ongoing formative assessment feedback loops.

Rigor

Reveal Math Integrated has been thoughtfully designed to incorporate a balance of the three elements of rigor: conceptual understanding, procedural skills and fluency, and application.

Conceptual Understanding

Explore activities give all students an opportunity to work collaboratively and discuss their thinking as they build conceptual understanding of new concepts. In the Explore activity to the left, students use Web Sketchpad ${ }^{\text {® }}$ to build understanding of the relationships between corresponding sides and angles in congruent triangles.

Procedural Skills and Fluency

Students use different strategies and tools to build procedural fluency. In the Example shown, students build proficiency with writing equations in point-slope form.

Application

Real-world examples and practice problems are opportunities for students to apply their learning to new situations. In the real-world example shown, students apply their understanding by solving a multi-step problem with translations.

Student Mindset

Mindset Matters tips located in each module provide specific examples of how Reveal Math Integrated content can be used to promote a growth mindset in all students. Another feature focused on promoting a growth mindset is Ignite! Activities developed by Dr. Raj Shah to spark student curiosity about why the math works. An Ignite! delivers problem sets that are flexible enough so that students with varying background knowledge can engage with the content and motivates them to ask questions, solve complex problems, and develop a cando attitude toward math.

Mindset Matters

Growth vs.Fixed Mindset
Everyone has a core belief or mindset about how they learn. People with a growth mindset believe that hard work will make them smarter. Those with a fixed mindset believe that they can learn new things, but can't become smarter. When a student changes their mindset they are more likely to work through challenging problems, learn from their mistakes, and ultimately learn more deeply.

How Can I Apply It?

Assign students tasks, such as the Explore activities, that can help them to develop their intelligence. Let them know that each time they learn a new idea an electric current fires that connects different parts of the brain!

Teacher Edition Mindset Tip

Formative Assessment

The key to reaching all learners is to adjust instruction based on each student's understanding. Reveal Math Integrated offers powerful formative assessment tools that help teachers to efficiently and effectively differentiate instruction for all students.

Math Probes

Each module includes a Cheryl Tobey Formative Assessment Math Probe that is focused on addressing student misconceptions about key math topics. Students can complete these probes at the beginning, middle, or end of a module. The teacher support includes a list of recommended differentiated resources that teachers assign based on students' responses.

Example Checks

After multiple examples, a formative assessment Check that students complete on their own allows teachers to gauge students' understanding of the concept or skill presented. When students complete the Check online, the teacher receives resource recommendations which can be assigned to students.

A Powerful Blended Learning Experience

The Reveal Math Integrated Course I, Course II, Course III (Reveal Math Integrated) blended learning experience was designed to include purposeful print and digital components focused on sparking student curiosity and providing teachers with flexible implementation options.

Reveal Math Integrated has been thoughtfully developed to provide a rich learning experience no matter where a district, school, or classroom falls on the digital spectrum. All of the instructional content can be projected or can be accessed via desktop, laptop, or tablet.

Lesson

2 Explore and Develop

3

Reflect and Practice

88 LEARN

As students are introduced to the key lesson concepts, they can progress through the Learn by recording notes in a notebook or on their own devices.

88 8 EXAMPLES \& CHECK

$\equiv \square$

Either in a notebook or on an individual device, students work through one or more Examples related to key lesson concepts.

A Check follows several Examples in either the Student Edition or on each student device.

EXIT TICKET

\equiv

The Exit Ticket is
projected or accessed via student devices to provide students with lesson closure and an opportunity to revisit the lesson concepts.

8Ω Practice

 Assign students Practice problems from their Student Edition or create a digital assignment for them to work on their device in class or at home to solidify lesson concepts.

Practice

Supporting All Learners

The Reveal Math Integrated I, II, and III (Reveal Math Integrated) programs were designed so that all students have access to:

- rich tasks that promote productive struggle,
- opportunities to develop proficiency with the habits of mind and thinking strategies of mathematicians, and
- prompts to promote mathematical discourse and build academic language.

Resources for Differentiating Instruction

When needed, resources are available to differentiate math instruction for students who may need to see a concept in a different way, practice prerequisite skills, or are ready to extend their learning.

AL
Approaching Level Resources

- Remediation Activities
- Extra Examples

BL
Beyond Level Resources

- Beyond Level

Differentiated Activities

- Extension Activities

Resources for English Language Learners

Reveal Math Integrated also includes student and teacher resources to support students who are simultaneously learning grade-level math and building their English proficiency. Appropriate, research-based language scaffolds are also provided to support students as they engage in rigorous mathematical tasks and discussions.

ELL
English Language Learners

- Spanish Personal Tutors
- Math Language-Building Activities
- Language Scaffolds
- Think About It! and Talk About It! Prompts
- Multilingual eGlossary
- Audio
- Graphic Organizers
- Web Sketchpad, Desmos, and eTools

Developing Mathematical Thinking and Strategic Questioning

Reveal Math Integrated I, II, and III (Reveal Math Integrated) are comprised of high-quality math content designed to be accessible and relevant to each student. Throughout the program, students are presented with a variety of thoughtfully designed questioning strategies related to the content. Using these questions provides you with an additional, built-in type of formative assessment that can be used to modify instruction. They also strengthen students' ownership of mathematical content knowledge and daily use of the Standards for Mathematical Practice.

Key Concept Introduction followed by a Talk About It question to discuss with a classmate.

You will find these types of questioning strategies throughout Reveal Math Integrated. The related Standard for Mathematical Practice for each is also indicated.

- Talk About It questions encourage students to engage in mathematical discourse with classmates (MP3)
- Alternate Method shows students another way to solve a problem and asks them to compare and contrast the methods and solutions (MP1)
- Avoid a Common Error shows students a problem similar to an example but with a flaw in reasoning, and students have to find and explain the error (MP3)
- State Your Assumptions requires that student state the assumptions they made to solve a problem (MP4)
- Use a Source asks students to find information using an external source, such as the Internet, and use it to pose or solve a problem (MP5)
- Think About It questions help students make sense of mathematical problems (MP1)
- Concept Checks prompt students to analyze how the Key Concepts of the lesson apply to various use cases (MP3)

Reveal Student Readiness with Individualized Learning Tools

Reveal Math Integrated I, II, and III (Reveal Math Integrated) incorporate innovative, technology-based tools that are designed to extend the teacher's reach in the classroom to help address a wide range of knowledge gaps, set and align academic goals, and meet student individualized learning needs.

LEARNSMART*

Topic-Mastery
With embedded LearnSmart, ${ }^{\circledR}$ students have a built-in study partner for topic practice and review to prepare for multi-module or mid-year tests.

LearnSmart's revolutionary adaptive technology measures students' awareness of their own learning, time on topic, answer accuracy, and suggests alternative resources to support student learning, confidence, and topic mastery.

ALEKS*

Individualized Learning Pathways
Learners of all levels benefit from the use of ALEKS' adaptive, online math technology designed to pinpoint what each student knows, does not know, and most importantly, what each student is ready to learn.

When paired with Reveal Math Integrated, ALEKS is a powerful tool designed to provide integrated instructionally actionable data enabling teachers to utilize Reveal Math Integrated resources for individual students, groups, or the entire

Activity Report

Powerful Tools for Modeling Mathematics

Reveal Math Integrated I, II, and III (Reveal Math Integrated) have been designed with purposeful, embedded digital tools to increase student engagement and provide unique modeling opportunities.

Web Sketchpad ${ }^{\circledR}$ Activities

The leading dynamic mathematics visualization software has now been integrated with Web Sketchpad Activities at point of use within Reveal Math Integrated. Student exploration (and practice) using Web Sketchpad encourages problem solving and visualization of abstract math concepts.

Technology-Enhanced Items
Embedded within the digital lesson, technology-enhanced items-such as drag-and-drop, flashcard flips, or diagram completion-are strategically placed to give students the practice with common computer functions needed to master computer-based testing.

Assessment Tools to Reveal Student Progress and Success

Abstract

Reveal Math Integrated I, II, and III (Reveal Math Integrated) provide a comprehensive array of assessment tools, with both print and digital administration options, to measure student understanding and progress. The digital assessment tools include next-generation assessment items, such as multiple-response, selected-response, and technology-enhanced items.

Assessment Solutions

Reveal Math Integrated provides embedded, regular formative checkpoints to monitor student learning and provide feedback that can be used to modify instruction and help direct student learning using reports and recommendations based on resulting scores.

Summative assessments built in Reveal Math Integrated evaluate student learning at the module conclusion by comparing it against the state standards covered.

Formative Assessment Resources

- Cheryl Tobey Formative

Assessment Math Probes

- Checks
- Exit Tickets
- Put It All Together

Summative Assessment Resources

- Module Tests
- Performance Tasks
- End-of-Course Tests
- LearnSmart

Or Build Your Own assessments focused on standards or objectives. Access to banks of questions, including those with tech-enhanced capabilities, enable a wide range of options to mirror high-stakes assessment formats.

Reporting

Clear, instructionally actionable data is a click away with the Reveal Math Integrated Reporting Dashboard.

Activity Report Real-time class and student reporting of activities completed by the class. Includes average score, submission rate, and skills covered for the class and each student.

- Item Analysis Report A detailed analysis of response rates and patterns, answers, and question types in a class snapshot or by student.

Standards Report Performance data by class or individual student are aggregated by standards, skills, or objectives linked to the related activities completed.

Activity Report

Professional Development Support for Continuous Learning

McGraw-Hill Education supports lifelong learning and demonstrates commitment to teachers with a built-in professional learning environment designed for support during planning or extended learning opportunities.

What You Will Find

- Best-practice resources
- Implementation support
- Teaching Strategies
- Classroom Videos
- Math Misconception Videos
- Content and Pedagogy Videos
- Content Progression Information

Why Professional Development Is so Important

- Research-based understanding of student learning
- Improved student performance
- Evidence-based instructional best practices
- Collaborative content strategy planning
- Extended knowledge of program how-to's

Reveal Math Expert Advisors

Cathy Seeley, Ed.D.
Austin, Texas
Mathematics educator, speaker, and writer, former Senior Fellow at the Charles A. Dana Center at The University of Texas at Austin, past President of NCTM, former Director of K-12 Mathematics for the State of Texas

Areas of expertise:

Mathematics Teaching, Equity, Assessment, STEM Learning, Informal Learning, Upside-Down Teaching, Productive Struggling, Mathematical Practices, Mathematical Habits of Mind, Family and Community Outreach, Mathematics Education Policy, Advocacy
"We want students to believe deeply that mathematics makes sense-in generating answers to problems, discussing their thinking and other students' thinking, and learning new material."
-Seeley, 2016, Making Sense of Math

Nevels Nevels, Ph.D.

Saint Louis, Missouri
PK-12 Mathematics Curriculum Coordinator for Hazelwood School District

Areas of expertise:

Mathematics Teacher Education; Student Agency \& Identity; Socio-Cultural Perspective in Mathematics Learning
"A school building is one setting for learning mathematics. It is understood that all children should be expected to learn meaningful mathematics within its walls. Additionally, teachers should be expected to learn within the walls of this same building. More poignantly, I posit that if teachers are not learning mathematics in their school building, then it is not a school."

Cheryl R. Tobey, M.Ed.

Gardiner, Maine
Senior MathematicsAssociate at Education Development Center (EDC)

Areas of expertise:

Formative assessment and professional development for mathematics teachers; tools and strategies to uncovering misconceptions
"Misunderstandings and partial understandings develop as a normal part of learning mathematics. Our job as educators is to minimize the chances of students' harboring misconceptions by knowing the potential difficulties students are likely to encounter using assessments to elicit misconceptions and implementing instruction designed to build new and accurate mathematical ideảs.

- Tobey, et al 2007, 2009, 2010, 2013, 2104,

Uncovering Student Thinking Series

Raj Shah, Ph.D.

Columbus, Ohio
Founder of Math Plus Academy, a STEM enrichment program and founding member of The Global Math Project

Areas of expertise:

Sparking student curiosity, promoting productive struggle, and creating math experiences that kids love
"As teachers, it's imperative that we start every lesson by getting students to ask more questions because curiosity is the fuel that drives engagement, deeper learning and perseverance."

Walter Secada, Ph.D.
Coral Gables, Florida

Professor of Teaching and Learning at the University of Miami

Areas of expertise:

Improving education for English language learners, equity in education, mathematics education, bilingual education, school restructuring, professional development of teachers, student engagement, Hispanic dropout and prevention, and reform
"The best lessons take place when teachers have thought about how their individual English language learners will respond not just to the mathematical content of that lesson, but also to its language demands and mathematical practices."
-Secada, 2018

Ryan Baker, Ph.D.
Philadelphia, Pennsylvania
Associate Professor and Director of Penn Center for Learning Analytics at the University of Pennsylvania

Areas of expertise:

Interactions between students and educational software; data mining and learning analytics to understand student learning
"The ultimate goal of the field of Artificial Intelligence in Education is not to promote artificial intelligence, but to promote education... systems that are designed intelligently, and that leverage teachers' intelligence. Modern online learning systems used at scale are leveraging human intelligence to improve their design, and they're bringing human beings into the decisionmaking loop and trying to inform them."
-Baker, 2016

Dinah Zike, M.Ed.

Comfort, Texas
President of Dinah.com in San Antonio, Texas and Dinah Zike Academy

Areas of expertise:

Developing educational materials that include three-dimensional graphic organizers; interactive notebook activities for differentiation; and kinesthetic, cross-curricular manipulatives
"It is education's responsibility to meet the unique needs of students, and not the students' responsibility to meet education's need for uniformity."

[^0]
Reveal Everything Needed for Effective Instruction

Reveal Math Integrated I, II, and III (Reveal Math Integrated) provide both print and innovative, technology-based tools designed to address a wide range of classrooms. No matter whether you're in a 1:1 district, or have a classroom projector, Reveal Math Integrated provides you with the resources you need for a rich learning experience.

Blended Classrooms

Focused on projection of the Interactive Presentation, students follow along, taking notes and working through problems in a notebook during class time. Also included in the Interactive Student Edition is a glossary, selected answers, and a reference sheet.

Digital Classrooms

Projection is a focal point for key areas of the course with students interacting with the lesson using their own devices. Each student can access teacher-assigned sections of the lessons for Explore activities, Learn sections, and Examples. Point of use videos, animations, as well as interactive content enable students to experience math in interesting and impactful ways.

In Reveal Math

Integrated, R is for-

- Research
- Rigor
- Relevant Connections

Are you...
READY to start?
eTools

TABLE OF CONTENTS

Module 1

Expressions

What Will You Learn? 1
1-1 Numerical Expressions 3Explore Order of Operations
1-2 Algebraic Expressions 13
Explore Using Algebraic Expressions in the Real World
1-3 Properties of Real Numbers 23
Explore Testing the Associative Property
1-4 Distributive Property 35Explore Using Rectangles with the Distributive PropertyExplore Modeling the Distributive Property
1-5 Expressions Involving Absolute Value 45
Explore Distance Between Points on a Number Line
1-6 Descriptive Modeling and Accuracy 49
Module 1 Review 59

Equations in One Variable

What Will You Learn? 63
2-1 Writing and Interpreting Equations 65
Explore Writing Equations by Modeling a Real-World Situation
2-2 Solving One-Step Equations 75
Explore Using Algebra Tiles to Solve One-Step EquationsInvolving Addition or SubtractionExplore Using Algebra Tiles to Solve One-Step EquationsInvolving Multiplication
2-3 Solving Multi-Step Equations 85
Explore Using Algebra Tiles to Model Multi-Step Equations
2-4 Solving Equations with the Variable on Each Side 91
Explore Modeling Equations with the Variable on Each Side
2-5 Solving Equations Involving Absolute Value 101
Explore Modeling Absolute Value
2-6 Solving Proportions 109
Explore Comparing Two Quantities
2-7 Using Formulas 117Explore Centripetal ForceExplore Using Dimensional Analysis
Module 2 Review 129

TABLE OF CONTENTS

Module 3

Relations and Functions

What Will You Learn? 133
3-1 Representing Relations 135
Explore Choosing Scales
3-2 Functions 147
Explore Vertical Line Test
3-3 Linearity and Continuity of Graphs 157
Explore Representing Discrete and Continuous Functions
3-4 Intercepts of Graphs 167
3-5 Shapes of Graphs 179
Explore Line SymmetryExplore Relative High and Low Points
3-6 Sketching Graphs and Comparing Functions 191
Explore Modeling Relationships by Using Functions
Module 3 Review.203
What Will You Learn? 207
4-1 Graphing Linear Functions 209
Explore Points on a LineExplore Lines Through Two Points
4-2 Rate of Change and Slope 219
Explore Investigating Slope
Expand 4-2 Proving the Slope Criteria (Online Only)
4-3 Slope-Intercept Form 229
Explore Graphing Linear Equations by Using the Slope-Intercept Form
Expand 4-3 Linear Growth Patterns (Online Only)
4-4 Transformations of Linear Functions 239
Explore Transforming Linear Functions
4-5 Arithmetic Sequences 251
Explore Common Differences
4-6 Piecewise and Step Functions 259
Explore Age as a Function
4-7 Absolute Value Functions 267
Explore Parameters of an Absolute Value Function
Module 4 Review 281

TABLE OF CONTENTS

Module 5

Creating Linear Equations

What Will You Learn? 285
5-1 Writing Equations in Slope-Intercept Form 287
Explore Slope-Intercept Form
5-2 Writing Equations in Standard and Point-Slope Forms 295
Explore Forms of Linear Equations
5-3 Scatter Plots and Lines of Fit 307
Explore Making Predictions by Using a Scatter Plot
5-4 Correlation and Causation 315
Explore Collecting Data to Determine Correlation and Causation
5-5 Linear Regression 319
5-6 Inverses of Linear Functions 327
Explore Comparing a Function and Its Inverse
Module 5 Review 335

What Will You Learn? .. 339
6-1 Solving One-Step Inequalities ... 341
Explore Graphing Inequalities
Explore Properties of Inequalities
6-2 Solving Multi-Step Inequalities .. 351
Explore Modeling Multi-Step Inequalities
6-3 Solving Compound Inequalities ... 357
Explore Guess the Range
6-4 Solving Absolute Value Inequalities ... 367
Explore Solving Absolute Value Inequalities
6-5 Graphing Inequalities in Two Variables 375
Explore Graphing Linear Inequalities on the Coordinate Plane
Module 6 Review 381

TABLE OF CONTENTS

Module 7

Systems of Linear Equations and Inequalities

What Will You Learn? 385
7-1 Graphing Systems of Equations 387
Explore Intersections of Graphs
7-2 Substitution 399
Explore Using Substitution
7-3 Elimination Using Addition and Subtraction 405
7-4 Elimination Using Multiplication 413
Explore Graphing and Elimination Using Multiplication
7-5 Systems of Inequalities 419
Explore Solutions of Systems of Inequalities
Module 7 Review 425

Module 8

Exponential Functions

What Will You Learn? 487
8-1 Exponential Functions 489
Explore Exponential BehaviorExplore Restrictions on Exponential Functions
8-2 Transformations of Exponential Functions 497
Explore Translating Exponential FunctionsExplore Dilating Exponential FunctionsExplore Reflecting Exponential Functions
8-3 Writing Exponential Functions 509
Explore Writing an Exponential Function to ModelPopulation Growth
8-4 Transforming Exponential Expressions 519
8-5 Geometric Sequences 523
Explore Modeling Geometric Sequences
Expand 8-5 Exponential Growth Patterns (Online Only)
531
8-6 Recursive Formulas
Explore Writing Recursive Formulas from Sequences
Module 8 Review 539

TABLE OF CONTENTS

Module 9

Statistics

What Will You Learn? 685
9-1 Measures of Center 687
Explore Finding Percentiles
9-2 Representing Data 695
9-3 Using Data 703
Explore Phrasing Questions
9-4 Measures of Spread 709
Explore Using Measures of Spread to Describe Data
9-5 Distributions of Data 715
9-6 Comparing Sets of Data 723
Explore Transforming Sets of Data by Using Addition
Explore Transforming Sets of Data by Using Multiplication
9-7 Summarizing Categorical Data 733
Explore Categorical Data
Module 9 Review 741

Module 10

Tools of Geometry

What Will You Learn?1
10-1 The Geometric System 3
Explore Using a Game to Explore Axiomatic Systems
10-2 Points, Lines, and Planes 11
Explore Intersections of Three Planes
10-3 Line Segments 19
Explore Using Tools to Determine Betweenness of Points
10-4 Distance 27
Explore Using the Pythagorean Theorem to Find Distances
10-5 Locating Points on a Number Line 35
Explore Locating Points on a Number Line with
Fractional Distance
10-6 Locating Points on a Coordinate Plane 43
Explore Applying Fractional Distance
10-7 Midpoints and Bisectors 51
Explore Midpoints
Module 10 Review 61

IIIIIII II 11111 II \# \square ■1

Module 11

Angles and Geometric Figures

What Will You Learn? 63
11-1 Angles and Congruence 65
Explore Angles Formed by Intersecting Lines
11-2 Angle Relationships 75Explore Complementary and Supplementary AnglesExplore Interpreting Diagrams
11-3 Two-Dimensional Figures 85
Explore Modeling Objects by Using Two-Dimensional Figures
11-4 Transformations in the Plane 95
Explore Introducing Transformations
11-5 Three-Dimensional Figures 107Explore Measuring Real-World Objects
11-6 Two-Dimensional Representations of Three-Dimensional Figures 117Explore Representing Three-Dimensional Figures
11-7 Precision and Accuracy 129
Explore Precision and Accuracy in Basketball
11-8 Representing Measurements 137
Explore Significant Figures
Module 11 Review 147

Module 12

Logical Arguments and Line Relationships

What Will You Learn? 151
12-1 Conjectures and Counterexamples 153
Explore Using Inductive Reasoning to Make Conjectures
12-2 Statements, Conditionals, and Biconditionals 161
Explore Truth Values
12-3 Deductive Reasoning 171
Explore Applying Laws of Deductive Reasoning by Using Venn Diagrams
12-4 Writing Proofs 179
Explore Algebraic Proof
12-5 Proving Segment Relationships 189
Explore Segment Relationships
12-6 Proving Angle Relationships 197
Explore Angle Relationships
12-7 Parallel Lines and Transversals 207Explore Relationships Between Angles and Parallel Lines
12-8 Slope and Equations of Lines 215
Explore Equations of Lines
12-9 Proving Lines Parallel 225
Explore Intersecting Lines
12-10 Perpendiculars and Distance 233
Explore Distance from a Point to a Line
Module 12 Review 243

TABLE OF CONTENTS

What Will You Learn? 247
13-1 Reflections 249
Explore Developing the Definition of a Reflection
13-2 Translations 253
Explore Developing the Definition of a Translation
13-3 Rotations 257
Explore Developing the Definition of a Rotation
13-4 Compositions of Transformations 261
Explore Reflections in Two Lines
13-5 Tessellations 269
Explore Creating Tessellations
13-6 Symmetry 275
Explore Symmetry in Figures
Module 13 Review 283
Module 14
Triangles and Congruence
What Will You Learn? 287
14-1 Angles of Triangles 289
Explore Triangle Angle Sums
14-2 Congruent Triangles 297
Explore Relationships in Congruent Triangles
14-3 Proving Triangles Congruent: SSS, SAS 305
Explore Conditions That Prove Triangles Congruent
14-4 Proving Triangles Congruent: ASA, AAS 313
14-5 Proving Right Triangles Congruent 321
Explore Congruence Theorems and Right Triangles
14-6 Isosceles and Equilateral Triangles 325
Explore Properties of Equilateral, Isosceles, andScalene TrianglesExplore Isosceles and Equilateral Triangles
14-7 Triangles and Coordinate Proof 333
Explore Triangles and Coordinate Proofs
Module 14 Review 343
Selected Answers SA1
Glossary. G1
Index IN1

Standards for Mathematical Content, Reveal Math Integrated I

This correlation shows the alignment of Reveal Math Integrated I to the Standards for Mathematical Content from the Common Core State Standards for Mathematics.

Standard		Lesson(s)
Number and Quantity		
Quantities \star N. 0		
N.Q. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	2-7, 3-1, 9-2, 9-4
N.Q. 2	Define appropriate quantities for the purpose of descriptive modeling.	1-6
N.Q. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	1-6
Algebra		
Seeing Structure in Expressions A.SSE		
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.		1-1, 1-2, 1-4, 4-6, 4-7
	b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.	
Creating Equations \star A.CED		
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear quadratic functions, and simple rational and exponential functions.		$\begin{aligned} & 2-1,2-2,2-3,2-4,2-5,2-6,6-1,6-2,6-3 \\ & 6-4 \end{aligned}$
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.		$\begin{aligned} & 4-1,4-3,4-4,4-5,4-6,4-7,5-1,5-2,5-3, \\ & 5-5,5-6,8-1,8-2,8-3,8-5,8-6 \end{aligned}$
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.		$\begin{aligned} & 2-1,2-7,3-6,5-1,5-2,6-1,6-2,6-3,6-4, \\ & 6-5,7-1,7-2,7-3,7-4,7-5 \end{aligned}$
A.CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.		2-7
Reasoning with Equations and Inequalities A.REI		
A.REI. 1 Explain each step in solving a linear equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.		2-2, 2-3, 2-4, 2-5, 2-6, 4-3, 5-1, 5-2
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.		2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 6-1, 6-2
A.REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.		7-4
A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.		7-1, 7-2, 7-3, 7-4
A.REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).		3-4, 4-1, 4-3, 8-1

Standard		Lesson(s)
A.REI. 1	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	7-1
A.REI. 1	Graph the solutions to a linear inequality in two variables as a halfplane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	6-5, 7-5
Functions		
Interpreting Functions F.IF		
F.IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	3-1, 3-2
F.IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that 3 use function notation in terms of a context.	-2
F.IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset the integers.	-4-5, 8-5, 8-6
F.IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	$3-3,3-4,3-5,3-6,4-4,4-6,4-7,8-1$
F.IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	-2, 3-3, 3-6, 8-1
F.IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a tab over a specified interval. Estimate the rate of change from a graph.	e4-2, 5-1
F.IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	4-1, 4-3, 4-4, 8-1, 8-2
	e. Graph exponential and logarithmic functions, showing intercepts and end behavior, an trigonometric functions, showing period, midline, and amplitude.	
F.IF. 9	Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	3-6, 4-3, 4-6, 8-1
Building Linear or Exponential Functions F.BF		
F.BF. 1	Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from b. Combine standard function types using arithmetic operations.	$4-5$ context.
F.BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them 4 to model situations, and translate between the two forms.	-5, 8-5, 8-6

Standard		Lesson(s)
F.BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	4-4, 4-7, 8-2
Linear and Exponential \star F.LE		
F.LE. 1	Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals; exponent functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit int to another. c. Recognize situations in which a quantity grows or decays by a constant percent ra interval relative to another.	Expand 4-3, 8-1, Expand 8-5 rval relative e per unit
F.LE. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	4-5, 8-3, 8-5
F.LE. 3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly.	Standard F.LE. 3 is taught in Integrated Math Course II, 12-8 Modeling and Curve Fitting
F.LE. 5	Interpret the parameters in a linear or exponential function in terms of a context.	4-1, 4-2, 4-3, 8-1, 8-3, 8-5
Geometry		
Congruence G.CO		
G.C0.1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based 10-2, 10-3, 10-4, 11-1, 11-2, 12-7 on the undefined notions of point, line, distance along a line, and distance around a circular arc.	
G.CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).		11-4
G.CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.		13-6
G.CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.		13-1, 13-2, 13-3, 13-5, 13-6
G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.		13-1, 13-2, 13-3, 13-4, 13-5, 13-6
G.CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide whether they are congruent.		13-1, 13-2, 13-3, 13-4, 13-6
G.CO. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent 14-2 if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.		

Standard		Lesson(s)
G.C0.8	xplain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	14-3, 14-4
G.CO.	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	$\begin{aligned} & 10-3,10-7,11-1,11-2,12-5,12-9,12-10, \\ & 13-1,14-3,14-4,14-6 \end{aligned}$
G.CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. Emphasize Standard G.CO.13 is taught in Integratedthe ability to formalize and defend how these constructions result in the desired objects.		
Expressing Geometric Properties With Equations G.GPE		
G.GPE	e coordinates to prove simple geometric theorems algebraically.	14-7
G.GPE. 5	Prove the slope criteria for parallel and perpendicular lines; use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	Expand 4-2, 12-8
G.GPE.	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	11-3
Statistics and Probability \star		
Interpreting Categorical and Quantitative Data S.ID		
S.ID. 1	Represent data with plots on the real number line (dot plots, histograms, and box plots).	9-2, 9-4
S.ID. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	9-4, 9-6
S.ID. 3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	9-5, 9-6
S.ID. 5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	9-7
S.ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions, or choose a function suggested by the context. Emphasize linear and exponential models.	5-3, 5-5
	b. Informally assess the fit of a function by plotting and analyzing residuals. Focus on situations for which linear models are appropriate.	
	c. Fit a linear function for scatter plots that suggest a linear association.	
S.ID. 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	5-1, 5-3
S.ID. 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.	5-5
S.ID. 9	Distinguish between correlation and causation.	5-4

Standards for Mathematical Practice

This correlation shows the alignment of Reveal Math Integrated I to the Standards for Mathematical Practice, from the Common Core State Standards.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3 Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Reveal Math Integrated I requires students to reason abstractly and quantitatively in Think About It features and Higher Order Thinking Skills throughout the program. Some specific lessons for review are: Lessons 1-2, 1-6, 2-1, 2-2, 2-3, 2-4, 2-6, 2-7 3-3, 3-4, 3-5, 4-2, 5-1, 5-2, 6-1, 6-2, 7-3, 7-4, $8-4,8-5,9-4,10-3,10-4,11-3,11-6,12-2$, 12-9, 13-4, 14-3, 14-7

Reveal Math Integrated I requires students to construct viable arguments and critique the reasoning of others in Talk About It features and Practice throughout the program. Some specific lessons for review are: Lessons 1-3, 2-4, 3-2, 3-3, 4-5, 5-4, 6-4, 7-5, 8-1, 8-5, 9-1, 9-3, 10-1, 10-2, $10-5,11-2,11-8,12-1,12-5,12-6,12-8$, 12-9, 12-10, 13-1, 13-4, 13-5, 14-1, 14-3, 14-5, 14-7

Reveal Math Integrated I requires students to model with mathematics, collaborate, and discuss mathematics in Examples and Practice throughout the program. Some specific lessons for review are: Lessons 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-5, 2-6, 3-2, 3-5, 4-2, 4-3, 4-6, 5-1, 5-2, 5-6, 6-3, 6-5, 7-3, 7-4, 8-1, 8-4, 8-6, 9-1, 9-2, 9-4, 9-5, 9-6, 9-7, 10-2, 10-6, 10-7, 11-1, 11-4, 11-5, $11-6,12-3,12-4,12-6,12-9,12-10,13-1$, $13-4,14-1,14-4,14-5$

Standard
5 Use appropriate tools strategically.
Mathematically proficient students consider the available tools when solving a mathematical problem. These
tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet,
a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are
sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each
of these tools might be ehelpful, recognizing both the insight to be gained and their limitations. For example,
mathematically proficient high school students analyze graphs of functions and solutions generated using
a graphing calculator. They detect possible errors by strategically ysing estimation and other mathematical
knowledge. When making mathematical models, they know that technology can enable them to visualize the
results of varying assumptions, explore consequences, and compare predictions with data. Mathematically
proficient students at various grade levels are able to identify relevant external mathematical resources,
such as digital content located ona website, and use them to pose or solve problems. They are able to use
technological tools to explore and deepen their understanding of concepts.

Lesson(s)
Reveal Math Integrated I requires
students to use appropriate tools
strategically in Exploge activities
throghout the program. Some
specific lessons for review are:
Lessons $1-4,2-2,2-3,3-4,4-1,4-3,4-4$,
$4-7,5-3,5-4,5-5,5-6,6-1,6-5,7-1$,
$8-2,8-5,9-5,9-6,10-2,10-6,11-4,11-8$,
$12-1,12-7,12-8,13-13,13-3,13-5,13-6$,
$14-2,14-4,14-6$

Reveal Math Integrated I requires students to attend to precision in Examples and Practice throughout the program. Some specific lessons for review are: Lessons 1-4, 1-6, 2-7, 3-1, $3-6,4-6,5-3,5-5,6-4,7-2,7-5,8-3$, 8-4, 9-3, 10-1, 11-1, 11-6, 11-7, 11-8, 12-2, 12-3, 12-4, 12-5, 12-6, 12-7, 13-2, 13-3, 13-6, 14-2, 14-4, 14-6
Reveal Math Integrated I requires students to look for and make use of structure in Explore activities and Higher Order Thinking Skills throughout the program. Some nspecific lessons for review are: Lessons 1-2, 1-3, 1-5, 2-2, 2-3, 2-4, 2-5, 3-6, 4-4, 4-7, 5-3, 6-3, 7-5, 8-1, 8-2, 8-6, 9-1, 9-7, 10-5, 11-5, 12-2, 13-3, 13-6, 14-2, 14-6

Reveal Math Integrated I requires students to look for and express regularity in repeated reasoning in Concept Check and Think About It features and Higher Order Thinking Skills throughout the program. Some specific lessons for review are: Lessons 1-5, 2-7, 3-1, 4-5, 5-2, 6-3, 7-1, 8-3, 8-6, 9-6, 10-3, 11-2, 12-3, 12-4, 13-2, 14-1

Expressions

Module Goals

- Students write and evaluate numerical and algebraic expressions.
- Students simplify expressions using the Distributive Property.
- Students evaluate absolute value expressions.

Focus

Domain: Algebra
Standards for Mathematical Content:
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context.
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it.
Also addresses N.RN.3, N.Q. 2 and N.Q. 3
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

Be Sure to Cover

To completely cover N.RN.3, go online to assign the following activity:

- Operations with Rational Numbers (Expand 1-3)

Coherence

Vertical Alignment

Previous

Students performed operations on rational numbers.

7.NS. 1

Now

Students take what they have learned about whole numbers and apply that to algebraic expressions.
A.SSE.1, A.SSE. 2

Next
Students will create equations to solve problems.

A.CED. 1

Rigor

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go throughthe Examples and Practice.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY
3 APPLICATION

$$
\text { EXPLORE }\rangle \text { LEARN } \geqslant \text { EXAMPLE \& PRACTICE }
$$

Suggested Pacing

Lessons	Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video		1	0.5
1-1 Numerical Expressions	A.SSE.1b, A.SSE. 2	2	1
1-2 Algebraic Expressions	A.SSE.1, A.SSE. 2	1	0.5
1-3 Properties of Real Numbers	A.SSE. 2	2	1
1-3 Expand Operations with Rational Numbers	N.RN. 3	1	0.5
Put It All Together: Lessons 1-1 through 1-3		1	0.5
1-4 Distributive Property	A.SSE.1a, A.SSE. 2	2	1
1-5 Expressions Involving Absolute Value	A.SSE. 2	1	0.5
1-6 Descriptive Modeling and Accuracy	N.Q.2, N.Q. 3	1	0.5
Module Review		1	0.5
Module Assessment		1	0.5
		14	7

Formative Assessment Math Probe Order of Operations
${ }^{-}$Analyze the Probe
Review the probe prior to assigning it to your students.
In this probe, students will determine which expression has been simplified correctly by using the order of operations and explain their choices.

Targeted Concepts Understand the order in which operations are performed when evaluating a mathematical expression.

Targeted Misconceptions

- Although a concept introduced in earlier grades, high school students often incorrectly work from left to right without using the rules for the order of operations when evaluating expressions.
- Students may use the order of operations rules, but not work from left to right when evaluating expressions (that is, they may always compute multiplication before division and addition before subtraction).

Use the Probe at the beginning of the year as any misunderstandings or misconceptions can affect a student's success in Algebra 1.

Correct Answers:
Miguel's Solution: no;
Adam's Solution: no;
Sophie's Solution: yes

Collect and Assess Student Answers
the student selects these responses...

Miguel's Solution: yes

Adam's Solution: yes
the student likely...
worked from left to right without using the rules for the order of operations to evaluate the expression.

Example: Subtracted 20 from 36 first as it was the first operation in the expression.
used the rules for the order of operations without working from left to right in the expression.

Example: Multiplied 4 by 5 instead of dividing 20 by 4 .

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Operations with Signed Numbers
- Lesson 1-1, Learn, Examples 5 and 7

Revisit the probe at the end of the module to be sure that your students no longer carry
these misconceptions.

[^1]
IGNiTE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question.

How can mathematical expressions be represented and evaluated? Sample answer: Y ou can represent mathematical expressions verbally, numerically, and algebraically. They can be evaluated by applying properties and rules. For example, you can translate a sentence to a numerical or algebraic expression and use the order of operations to simplify or evaluate the expression.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Focus Students organize their notes about expressions, properties of real numbers, and absolute value.

Teach Throughout the module, have students take notes under the tabs of their Foldables while working through each lesson. They should include definitions and key concepts. Encourage students to record examples from each lesson.

(1)
When to Use It Use the appropriate tabs as students cover each lesson in this module. Students should add to the vocabulary tab during each lesson.

Launch the Module

For this module, the Launch the Module video uses online shopping to show how algebraic expressions are used in the real world. Students learn how algebraic expressions are used in the trucking industry, and the importance of order of operations.

Interactive Presentation

Module 1•Expressions 1

What Vocabulary Winil You Learn?		
- abrodute value	. constant tem	- mutiplcative idersiay
- axcuracy	- defles a varuste	- moluplcatie imerses
- addeve idevay	- onscietve modelag	- numpricsi experwion
- adstive imverses	- equivibets exprestions	- reciprocols
- adpebracic upression	- evoluate	- simpleat form
- bine	- aponert	- term
- closed	\rightarrow lien sems	- varsole
- coeflicient	- metric	- vansble term

Are You Ready?
Complete the Ouck Review to see if you are reacy to nthe this modile. Then complete the Quick Cneck:

then bet ytu sot
Which eestises dd you anamer conectiy in the Oifck Check?

2 Medile 1- Liprenios

2 Module 1. Expressions

What Vocabulary Will You Learn?

ELLL Introduce the key vocabulary by using the following routine.
Define An algebraic expression is a mathematical expression that contains at least one variable.

Example $9 y-7 x$
Ask Is there at least one variable? Y es, both $9 y$ and $7 x$ have variables.

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- adding and subtracting integers
- multiplying and dividing integers
- adding and subtracting rational numbers
- using order of operations
- naming points on number lines

© ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels

You may want to use the Real Numbers section to ensure student success in this module.

Mindset Matters

Growth Mindset vs. Fixed Mindset
Everyone has a core belief or mindset about how they learn. People with a growth mindset believe that hard work will make them smarter. Those with a fixed mindset believe they can learn new things, but cannot become smarter. When a student changes their mindset, they are more likely to work through challenging problems, learn from their mistakes, and ultimately learn more deeply.

How Can I Apply It?

Assign students tasks, celebrate mistakes, and provide opportunities for critique, revision, and reflection. The Explore activities and discussion prompts are a great tool to begin this journey.

LESSON GOAL

Students write and evaluate numerical expressions.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Order of Operations

Develop:

Writing Numerical Expressions

- Translate a Verbal Expression
- Translate a Verbal Expression with Grouping Symbols
- Write a Numerical Expression

Evaluating Numerical Expressions

- Evaluate Expressions
- Order of Operations
- Write and Evaluate a Numerical Expression
- Expressions with Grouping Symbols

Plan for Problem Solving

- Write and Evaluate Algebraic Expressions

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al\|	IIE	IELII	
Remediation: Subtract Integers			0	
Extension: The Four Digits Problem			0	0

Language Development Handbook

Assign page 1 of the Language Development Handbook to help your students build mathematical language related to numerical expressions.
[El|lil You can use the tips and suggestions on page T 1 of the handbook to support students who are building English proficiency.

Focus

Domain: Algebra
Standards for Mathematical Content:
A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity.
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it.

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment
Previous
Students performed operations on rational numbers.

7.NS. 1

Now

Students write and evaluate numerical expressions.
A.SSE.1b, A.SSE. 2

Next
Students will write and evaluate algebraic expressions.
A.SSE.1, A.SSE. 2

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Hintin Conceptual Bridge In this lesson, students develop understanding of numerical expressions and use it to build fluency with evaluating numerical expressions. They apply their understanding of numerical expressions by solving real-world problems.		

Mathematical Background

When evaluating an expression, students should recall the set of rules that specifies which operation to do first, the order of operations.

- First, perform operations inside grouping symbols. Grouping symbols include parentheses, brackets, braces, and fraction bars. Perform operations inside the innermost grouping symbol first,
- Then, evaluate all powers.
- Next, perform all multiplications and/or divisions from left to right.
- Finally, perform all additions and/or subtractions from left to right.

Interactive Presentation

Warm Up

Launch

[^2]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- adding and subtracting integers

Answers:

1. -18
2.4
3.1
2. 2
3. $-13^{\circ} \mathrm{F}$

Launch the Lesson

Teaching the Mathematical Practices
4 Model with Mathematics Encourage students to analyze the relationships between two different sizes of cookie sheets to write a numerical expression.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Explore Order of Operations

Objective

Students explore how to use the order of operations to evaluate numerical expressions.

Teaching the Mathematical Practices

4 Apply Mathematics In this Explore, students apply what they know about the order of operations to solving a real-world problem.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will be presented with guiding exercises to complete at the end of the activity. Students watch a video setting up the numerical expression for which the order of operations will be used to calculate. Then students will analyze the incorrect work. The guiding exercises will lead students to determine why the work was incorrect and what is the correct solution path. Then, students will answer the Inquiry Question.
(continued on next page)

Interactive Presentation

Explore

Explore

Students click on each step to see the steps each student took to evaluate the given expression.

TYPE

a)

Students answer questions analyzing the presented solutions, and then fill in the correct solution pathway.

Interactive Presentation

Explore

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Order of Operations (continued)

Questions

Have students complete the Explore activity.

Ask:

- How could you use a model to help you evaluate the numerical expression? Whose method does this show? Sample answer: The video shows a model with groups of drinks. Add two groups of 12 to get 24 , then three groups of 6 to get 18 , and one box of $10.24+18+10=52$. This is similar to Ana's method.
- How would the expression change if Ana brought 2 packages of juice? How many drinks would they have in total? Sample answer: The new expression would be $2 \cdot 12+3 \cdot 6+2 \cdot 10$. There would be 62 drinks total.
(-) Inquiry
How can you evaluate a numerical expression? Sample answer: Use the order of operations to determine the order in which the operations should be completed.

0
Go Online to find additional teaching notes and answers for the Explore activity.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Learn Writing Numerical Expressions

Objective

Students write numerical expressions by interpreting words as mathematical symbols.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Common Misconception

Students many times do not use parentheses because the verbal sentence does not mention grouping symbols. Remind students that words like sum or difference often need parentheses and to always carefully read verbal sentences to identify relationships that may need grouping symbols.

Example 1 Translate a Verbal Expression

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the verbal and numerical expressions in this example.

Questions for Mathematical Discourse
AL. Can you tell by the verbal expression what operation is intended to be done first? no
ol. How could you adjust the verbal expression to indicate addition should be done first? Sample answer: Add one and eight, and then divide by three.
B1il How could you adjust the verbal expression to indicate division should be done first? Sample answer: Add one to the quotient of eight and three.

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

$5+2+1$ ix alation

2.3 (23) (2)3 (2)3)
Learn

Students identify the factors in a given multiplication expression.

Interactive Presentation

Example 2

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY | 3 APPLICATION

Example 2 Translate a Verbal Expression with Grouping Symbols

(11) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the verbal and numerical expressions in this example.

Questions for Mathematical Discourse

All. What word or phrase represents division? divided by
OL. What word or phrase indicates the need for grouping symbols? sum of
Bill Could a verbal expression that does not use divided by or quotient of still result in the same numerical expression? If so, give an example. Yes; sample answer: half the sum of five and nine

Common Error

Students often treat the words sum and difference like regular addition or subtraction words, even though they require the use of parentheses. Encourage students to underline or highlight sum or difference as a reminder to treat them differently when translating.

Example 3 Write a Numerical Expression

(1)
Teaching the Mathematical Practices
2 Create Representations Guide students to write a numerical expression that models the situation in this example.

Questions for Mathematical Discourse
ALI What three operations are present in the verbal expression? subtraction, multiplication, and division
OL. What grouping symbols should be used in the numerical expression? parentheses and a fraction bar
[BLI Why is the subtraction piece $200-170$ instead of $170-200$? Sample answer: The average is subtracted from 200, so 200 goes first and the average goes next.

DIFFERENTIATE

Reteaching Activity ALI 픈.

IF students have difficulty translating from verbal expressions to numerical expressions,
THEN have them make flash cards with words on one side and the corresponding operation on the other side.

Enrichment Activity [BLI

Pablo and Martin are both writing a numerical expression for the phrase three times the sum of four squared and five. Pablo writes $3\left(4^{2}+5\right)$ while Martin writes $3(4)+5$. Who is correct, Pablo or Martin? Explain your reasoning. Pablo; sample answer: Pablo included parentheses around the sum; Martin did not.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Learn Evaluating Numerical Expressions

Objective
Students evaluate numerical expressions by applying the order of operations.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 4 Evaluate Expressions

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL. What are the bases in each part? 2 and 4 What are the exponents in each part? 4 and 5
Ol. What does 2^{4} indicate? Sample answer: 2 is multiplied by itself 4 times.
31. Write a real-world example where you might use 2^{4}. Sample answer: There are two cookies on a baking sheet. The baker would like to double the amount of cookies on the sheet. She decides this still isn't enough so she doubles the amount on the sheet again two more times.

Example 5 Order of Operations

T1P Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
ALI. What step should be performed first when evaluating a numerical expression? grouping symbols
OL. Because there are no grouping symbols, which operation should be evaluated first? exponents: $8^{2}=64$
BBil How would the value of the expression change if there were parentheses around $8^{2}-7$? Sample answer: Y ou would need to subtract 7 from 64 , then multiply this quantity by 11 . The addition and subtraction step would become $20-7+627$, or 640 .

Learn Evatuating Numerical Expressians power is used to teter bo bide expression ore vavie, orthe esponent of the enpression		Q Talk About m Enplan how the ardel ot ootrations apples nhen unistine tomisa $i_{2}^{n h}+$ B, 10 tent the ares of: traperoid
To evatuate so expressico meens 50 tid as vabe. Yo numerces emprestion contars more than ose opermion, then the nie the hets youk know which operotion to pirform frati is called the orider of operations.		Snmeple athwer According to the order of operationcyou have to add the lengths of the buses logether frat and theen matiply by $\frac{1}{2}$ times the height.
any Censept. Order we Opectitions Shes I Eviluate erpressons intide grouping symbols. $\operatorname{Stog} 2$ Enturte at pomers. Seep 3 Mutiply andor divide frem inet lo aige. step 4 Add andior sictsact fiom loft to note.		
Example 4 Evaluate Expressions Evaluate each expression. a. $2^{\text {t }}$ $\begin{aligned} & 2^{t}=2 \cdot 2 \cdot 2 \cdot 2 \\ & =-16 \\ & 0 \cdot 4^{5} \\ & 4^{5 \times 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4} \\ & =1024 \end{aligned}$	Une-2 nis fockar Atmen xunt Wede as a Gectim Stanes * 4 an	
Example 5 Order of Operavions Eveluate $20-7+8^{2}-7+12$. $\begin{aligned} 20-7+82-7 \cdot \pi & =20-7+64-7 \cdot \pi \\ & =20-7+64-77 \\ & =03+64-7 \end{aligned}$	tient matuy 7 eith: heprazeun 20	\bigcirc Think About te whe an enpession the wises erocosens ans of lent tirice Giferent opsations: Enpion the nopes you moust the eso evative the erpicsion.
$\begin{aligned} & -\pi-\pi \\ & =0 \end{aligned}$	Actramst 4 Shatree 77 hmm	5 ample bruwer: $5+10^{2} \cdot 4$ 12 Fint I wosld eveluate 10^{2} and tien muttply by 4 . twould ado 5 to Hat and then subtract 12 :

Interactive Presentation

Interactive Presentation

Example 6
TYPE
Students enter the correct numbers to write a numerical expression.

1 CONCEPTUAL UNDERSTANDING

Example 6 Write and Evaluate a Numerical Expression

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse
Al. What mathematical operation will be used when combining the points earned from the three different point levels? addition
(Oll The problem states the point value for each ball Mellie rolled. What mathematical operation represents the point values when translating to a numerical operation? multiplication
Bil. How would the expression change if Mellie also rolled one ball into the 100-point hole? The expression would be $2(30)+4(20)+$ $3(50)+1(100)$.

Common Error

Students may not know what understood math operations are attached to the words triple and double, and may try to add. Remind students that these words represent multiplication.

Essential Question Follow-Up
Students have begun applying the order of operations when evaluating numerical expressions.

Ask:

Why is order important when evaluating numerical expressions? Sample answer: Order matters because otherwise multiple answers could be found for one problem, when only one answer is actually correct.

DIFFERENTIATE

Reteaching Activity 슨큰.

IF students struggle remembering the order of operations,
THEN have students write PEMDAS in their foldable with Parentheses, Exponent, Multiplication, Division, Addition, and Subtraction written by each letter. Have students draw an arrow above MD and AS to remind them to work from left to right.

Enrichment Activity BL

Using the numbers $2,3,4$, and 8 only once and any operation or grouping symbols, write a numerical expression evaluating to 8 . Sample answer: $(4+8) \div 3 \times 2$ or $8 \div 4 \times 3+2$

Example 7 Expressions with Grouping Symbols

10 Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
ALI In part a, which operation should be evaluated first? Explain your reasoning. Either $4+5$ or $7-4$ could be evaluated first because they are both in parentheses.
OL. In part b, which operation should be evaluated first? Explain your reasoning. $3-2$ should be evaluated first because this is in the innermost grouping symbols.
BLi. Would the value of the expression be the same if the expression in part \mathbf{b} was $15-10+(3-2)^{2}+6$? Explain. No; sample answer: This expression would subtract only 10 from 15 , not the entire expression after the subtraction sign.

Common Error

Expressions with multiple grouping symbols can confuse students. Encourage students to start at the innermost part of the grouping symbol and work their way out.

Learn Plan for Problem Solving

Objective

Students use the four-step problem solving plan to solve problems.
Teaching the Mathematical Practices
1 Analyze Givens and Constraints In this Learn, guide students through the use of the four-step plan in order to be able to identify the meaning of problems and look for entry points to their solutions.

Interactive Presentation

Learn

Interactive Presentation

Apply Example 8
 to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 8 Write and Evaluate

 ExpressionsTeaching the Mathematical Practices
1 Analyze Givens and Constraints Guide students through the use of the four-step plan to identify the meaning of Example 8 and look for entry points to its solution.

Questions for Mathematical Discourse

AII How much does a student ticket cost? \$5 How much does a 20-ounce water cost? \$5

OL What are the items you are splitting with your friends? a large tub of popcorn and a large candy How do you find your cost based on the total cost? Multiply by $\frac{1}{2}$.Suppose you and your friend also decide to also split a pack of fruit snacks. What effect will this have on your individual cost? Sample answer: The total cost will increase by $\$ 1.50$ because this is half of $\$ 3$.

Common Error

Problems that give extra information can lead students to include irrelevant numbers. Encourage students to highlight or circle values that apply to the given scenario and cross off values or information that is not important.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-52$	
2	exercises that use a variety of skills from this lesson	$53-58$
3	exercises that emphasize higher-order and critical-thinking skills	$59-62$

ASSESS AND DIFFERENTIATE

II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,

THEN assign:

- Practice Exercises 1-57 odd, 59-62
- Extension: The Four Digits Problem
- DALEKS' Operations with Signed Numbers

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-61 odd
- Remediation, Review Resources: Subtract Integers
- Personal Tutors
- Extra Examples 1-8
- ALEKS'Addition and Subtraction with Integers

IF students score 65% or less on the Checks,
THEN assign:

- Practice Exercises 1-51 odd
- Remediation, Review Resources: Subtract Integers
- Quick Review Math Handbook: Variables and Expressions
- ArriveMATH Take Another Look
- ALEKS'Addition and Subtraction with Integers


```
turae!
write a numerical exprescign for each verbal ecpesivion
    White a numerical axpressian for each vertal ecgeetsion
```



```
    3\times13+7 - 500-20
```



```
    6-1N1 14-1\times4
```



```
        m6+4+25-33
```



```
(twn+)
Whte a mumetical exprossion tor wech verthal expreswion
```



```
    4a+年<3
```


*3

 dyy a lakes Unimut to orbat the Sin $165 \times$ bs

 ($\mathrm{B}+2 \mathrm{2}+\mathbf{2 n}+\mathrm{N}$

 of durls swangle Jaris fratge is shome. Wree a nurserica $\frac{1}{2} \times 8+8+16 \% \mathrm{er}^{\frac{1}{2}+\frac{1}{2}+9}$
29. heforote Shenenosons mectanguir bediow is 12 hertiong and 7 leet wide Wite a eunielical expestios wo devibe the wes of Shenensomhl becoom. $12 \times$?

kuen 6

 cbserve aftue 6 dm

So. Rhicision he vive shors how scom tro caicutated st orveng coopetitom. Enct of the bre jotyes tcoves
 come tom theludeseme0.75, 85.75 and7
corestron the jubes as 80, 75, 65. 7h, and

b. Whit war 7reets scove tor ine devpl ss

Seep 1	Cropinionghest Md kowert ol the fer nobse' seares
2eed 2	Ads Mn temainap wores 10 thad the waw wore
Sens 3	Whicty dee rain woup by Be degue of oncity

A. Whe an erphetion to fea the amount af wood netbec io buas the
tho xele poneti of a watebowd ramp. $2 k$; po + sopi2t
a. How much wosd s needee wo buld the tro side parneli of
 sembsard limpt $1920 \mathrm{in}^{2}$
tample 1

 orestyp

cenam		mants		Mercrewter	
Cnlem	534	Sis	532	1208	53
Sumion	525	Psien Ony	515	508t	58

Mand furchass
Write a mumerkal expenvion for each verbat erpressise.
53. anteto se form power incresses by wi. $\mathrm{g}^{2}+6$

57. Cofstmuct abouneats Kety buen 3 viseo jumes ithe cont $\$ 1896$ eech. Ste aho buys 2 pins of eostyds that

 Ree thet the bot cost in 373 s. Who it cortect Jutry your agomers the caster, kety theuld thre seteres Be

58. mexsomand The opremion $3.25 \times 5+65$ gives the

位

Higher-Onder Tinving Stilis
 Mine an expretion lor the wes of the gostreet, in squep feec. by

 pee matioly $\mathbf{3} 10+\pi$
60. catuit Delcribe a shaton that couls be mppriented oy eich a.

$5.5 \times 6-5 \times 6$ sompe amaer the cost al parthaing ithath. if be repola

 enpewion the nidenti wosk is homn. Oescribe ary even and Me cooscr vive of the esrewion roplain you have adoediotracted hom lit to light the comect vilien is 30.
62. vevativae When is tr < 47 Ube x dabang io path, your
 $\tan 4 r=4\left(\frac{1}{3}\right) \approx 2 \operatorname{len} 2<4$

12 Mosolt-t-tumu

LESSON GOAL

Students will write and evaluate algebraic expressions.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Develop:

Writing Algebraic Expressions

- Write a Verbal Expression
-Write a Verbal Expression with Grouping Symbols
-Write an Algebraic Expression
- Write an Expression

Explore: Using Algebraic Expressions in the Real World

Develop:

Evaluating Algebraic Expressions

- Evaluate an Algebraic Expression
-Write and Evaluate an Algebraic Expression
You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL SME	EI	
Remediation: Divide Integers	- -		-
Extension: Toothpick Triangles	- ${ }^{-}$		-

Language Development Handbook

Assign page 2 of the Language Development Handbook to help your students build mathematical language related to algebraic expressions.
[ELII You can use the tips and suggestions on page T2 of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing
 | $90 \min$ | 0.5 day |
| :--- | :--- |
| 45 min | |}

Focus

Domain: Algebra
Standards for Mathematical Content:
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context.
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it.

Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students wrote and evaluated numerical expressions.

6.EE.1, A.SSE.1b, A.SSE. 2

Now

Students write and evaluate algebraic expressions.
A.SSE.1, A.SSE. 2

Next
Students will apply the properties of real numbers to simplify expressions. A.SSE. 2

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop an understanding of algebraic expressions and use it to build fluency with evaluating algebraic expressions. They apply their understanding of algebraic expressions by solving real-world problems.

Mathematical Background

Mathematical expressions that contain at least one variable are called algebraic expressions. They can be written as mathematical expressions or verbal expressions, but do not contain an equal sign. A variable is a symbol used to represent an unspecified number or value. Algebraic expressions may contain powers. When evaluating a power, the exponent tells how many times the base is used as a factor.

Interactive Presentation

	\times
Warm Up	
Evaluate.	
1-5 (-6)	
2. $\frac{17}{41}$	
2.-5 (-2).3	
4.5.4-(-6)	
the poerge lows oer play?	

Warm Up

Launch

[^3]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- multiplying and dividing integers

Answers:

1. 30
2. 9
3. 30
4. -9
5.6 yd

Launch the Lesson

Teaching the Mathematical Practices
4 Model with Mathematics Students will analyze the information about concert ticket sales to write an algebraic expression.

Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Explore Using Algebraic Expressions in the Real World

Objective
Students explore how to use substitution and the order of operations to evaluate algebraic expressions.

113 Teaching the Mathematical Practices

2 Create Representations Guide students to write an equation that models the situation in this Explore. Then use the equation to solve the problem.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will be presented with guiding exercises to complete at the end of the activity. Students will use cost information from a diner to write different orders using variables. The guiding exercises will lead students to write algebraic expressions. Then, students will answer the Inquiry Question.
(continued on next page)
tinued on next page)

Interactive Presentation

Explore

Explore

TYPE

a
Students answer questions analyzing different cost scenarios.

Interactive Presentation

Explore

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Using Algebraic Expressions in the Real World (continued)

Questions

Have students complete the Explore activity.

Ask:

- What did the first table order? How do you know? Two burgers, chicken tenders, and three waters; B stands for burger, C stands for chicken tenders, and W stands for water.
- A third table ordered two lunch specials, three fries, and five juices. What would Ruby write for their order? Describe how you would calculate the cost of the order using multiplication and addition. $2 L+3 F+5 J$. Sample answer: Multiply $\$ 6.75$ by $2, \$ 2.50$ by 3 , and $\$ 1.50$ by 5 . Then add the three results together.
© Inquiry
How are algebraic expressions useful in the real world? Sample answer: Algebraic expressions can be written and evaluated to represent situations in the real world.

3 Go Online to find additional teaching notes and answers for the Explore activity.

Learn Writing Algebraic Expressions

Objective

Students write algebraic expressions by interpreting words as mathematical symbols.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Θ_{1}
Essential Question Follow-Up
Students have begun writing verbal and algebraic expressions.

Ask:

Why is it important to use a variable in a real-world situation? Sample answer: It is important to use a variable because many times we do not know a quantity in a real-world situation, so we can use a variable to represent this unknown. Then we can still talk about the situation even with the missing piece.

Example 1 Write a Verbal Expression

11P Teaching the Mathematical Practices

7 Look for a Pattern Help students to see the pattern in this example.

Questions for Mathematical Discourse

AL What operation is between the 5 and the x_{3} ? multiplication
Ol. What word or phrase represents the exponent? cubed or the third power
8. Why is the term 2 called the constant? Sample answer: The number 2 is not multiplied by a variable, so it will remain 2 no matter what value is substituted into the expression.

Common Error

Students often translate incorrectly when the variable term has a coefficient. Since there is no obvious operation present between the coefficient and variable, they make one up. Remind students that when a variable has a coefficient, there is an understood multiplication sign between them.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

Interactive Presentation

Example 2

Students compare and contrast methods of equivalent verbal expressions with grouping symbols.

Example 2 Write a Verbal Expression with Grouping Symbols

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse

(Al) What words represent addition? Sample answers: plus, added to, increased by, more than
[OL What word or phrase represents the exponent? fourth power
ㅂ․․ If the expression were instead $\left(a^{4}+6 b\right) \div 7$, how would the verbal expression change? Sample answer: The division is now applied to a quantity, so the expression would be the quantity a raised to the fourth power plus 6 times b all divided by 7 .

Example 3 Write an Algebraic Expression

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

AL. How do you know the word quantity implies that parentheses are used? Sample answer: A quantity usually means more than one thing or a group of things.
OL In part a, how would the algebraic expression change if the verbal expression were 2 times the quotient of y and 11? Sample answer: If the quantity is changed to the quotient of, then you would need to divide y and 11 . So the expression would be $2\left(\frac{y}{11}\right)$ or $2 \times \frac{y}{11}$.
BEL. Write the verbal expression in a different way for the same algebraic expression $2(y+11)$. Sample answer: The sum of y and 11 multiplied by 2 .

Common Error
When there are multiple possible solutions to a verbal expression, students may have trouble writing an answer. They get bogged down in which translation is correct, not realizing there are multiple possibilities. Reinforce to students that there are many ways to write verbal expressions.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY | 3 APPLICATION

Example 4 Write an Expression

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about writing algebraic expressions to solving a real-world problem.

Questions for Mathematical Discourse

AL What variables are used to represent a win, tie, and loss? w, t, z
Ol. Why is the expression for the number of points written $3 w+t$ instead of $3 w+1 t$? Sample answer: The 1 is understood and does not need to be written because anything multiplied by 1 is itself.
(3.1. Why are the losses, z, not represented in the expression? Sample answer: $0 z$ is simplified to 0 so there is no need to include it in the expression because 0 does not change the expression.

Common Error

When translating a real-world situation, students must define variables before beginning. Without defining variables, the expression is meaningless and students are more likely to make mistakes if they have not decided what the variables represent.

DIFFERENTIATE

IF students have difficulty writing a verbal or algebraic expression, THEN pair them with other students as mentors for practicing these skills. The transition from verbal expressions to algebraic expressions is easier for some students than others.

Enrichment Activity [BL

Write a verbal expression for $\frac{(x+5)^{2}}{y-5}$. Sample answer: The square of the sum of x and 5 divided by the difference between y and 5 .

DIFFERENTIATE

Language Development Activity 태L

Explore the similarities with quotient and difference compared to product and sum. Review instances when the order of operations in a written expression must be the same as the order in the numerical or algebraic expression. Also review instances where that order does not have to be maintained, and when the order may be the opposite.
a) The quotient of 8 and 4 means $8 \div 4 ; \frac{8}{4}$ does not mean $4 \div 8$ or $\frac{4}{8}$. Write a sentence or phrase with the same meaning using a phrase like goes into. How many times does 4 go into 8 ?
b) Subtract 8 from 12 means $12-8$. How would you say the same thing using difference? The difference of 12 and 8 means $12-8$.
Expand the discussion to include synonyms for these operations, and how the overall order of words does not always translate to the same order of operations.

When withe an expresition ts iepresent a souation chocse a vaispleso represect each unkncum vilet in the problems. This is cilled defining a variable.
Q Example 4 White an Expression
soccell in the group play stage of the FiFA Wonld Cup, teans are placed in groups of 4 , and they play each othec. A team is mivardee 3 points for a win, 1 point for a tie, an
points for a loss. Wite an sigetoraic
 play stope of the World Cup play stage of the World Cup.
Detine veriables for the usknown walues.
Let whe the rumber of winc. t be the namber of tes and 2 be the number of losses for ave

toses.
So, the number of poister awarded for whes is 3 w . The number of points
 owaded sor ties st, and the number of poets
The number of points accumutated is $3 \mathrm{n}+t$.
a. Wite a vertal expression for phe oumber of poivss sccumulatec and interpet the meoning of pee varnbles in the comest of the probiem.
$3 w+23$ points tises the number of wits phas the number of 6 es
b. What units wee associeted weh the varinbles the coefficients and the expreision?

The variables represeot rumbers of games, the coefficients represent poinss per game, and the expiession repretents the total number of pointi
c. How would the expression change if a point mere deducted to eactiless?
Wou would subtract z from the oripinst expressiot $3 m+2-2$.

Crieck

musc. A mulic lestiven offers copedey und theeediy popses. A onedey pass conts $\$ 100$, and a theeeday pass costs $\$ 250$. Whe an expression for the toosl scout sules fan one-dioy pasises sond t three-dey passes are sold. $200 \mathrm{~m}+250 \mathrm{C}$

Study Tip

 Modelling When witiog min epiesivon to model esituation begis by isuntsing the inporiant quintibes and relaticonvies.
Interactive Presentation

Example 4

Interactive Presentation

Example 5
Students tap through the steps of the
order of operations to determine the value
of an algebraic expression

1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY 3 APPLICATION

Learn Evaluating Algebraic Expressions

Objective
Students evaluate algebraic expressions by substituting values into and simplifying given expressions.

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this Learn.

Common Misconception

Students often replace the variables with their corresponding numerical values, but then fail to finish evaluating the expression. Evaluating an algebraic expression requires two steps. First, use substitution to replace the variable with its value. Then, evaluate the expression by using the order of operations. State that evaluate means to find the value.

Example 5 Evaluate an Algebraic Expression

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear mathematical language when answering the question in the Talk About It! feature.

Questions for Mathematical Discourse

All What is the resulting numerical expression after the Substitution Property is applied? $2^{2}(3 \times 6-2+5) \div 4$
OL. In what order is the expression inside the parentheses evaluated? multiplication, then subtraction, then addition
BL. Why do you multiply before dividing? because multiplication and division are done from left to right and the multiplication came before division in the expression

Common Error

When an expression contains addition and subtraction or multiplication and division, students perform the addition or multiplication first, rather than the operation that appears first when working from left to right. Remind students that addition and subtraction or multiplication and division are performed in one step in the order in which they appear.

Example 6 Write and Evaluate an

 Algebraic Expression
(1) Teaching the Mathematical Practices

4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

Questions for Mathematical Discourse
ALI What operation does the word times mean? multiplication
OLI Why is the exponent only applied to the radius? Sample answer: The problem states that the radius is squared, not that the quantity four times π multiplied by the radius is squared.
B4. Suppose you could blow a bubble with a radius of 10 cm . What is the surface area of your bubble?
$A=4 \pi(10)^{2}$
$A=4 \pi(100)$
$A=400 \pi \mathrm{~cm}^{2}$

Essential Question Follow-Up
Students have begun evaluating algebraic expressions.

Ask:

Why may we need to evaluate algebraic expressions? Sample answer: In the real world, algebraic expressions represent unknown values, which we may need to determine. We will need to substitute the known values into an expression and evaluate to determine the value.

```
Q Example }6\mathrm{ Write and Evaluate an Algetraic
Expression
wowio necoess in 2004, Chad Fell set the recoed for the largest
bubblegumb bubble blown. Assume that the bubble was spherical.
The surface area of a sphere is four times m mulelplied by the rafivs
squared.
Part A Complete the table to write an expression that represents
        the worface ares of a sphere.
```



```
Part 8 The secord setting bubble hed a radius of 25.4 centimeters.
    Find the surface aree of this bubtle.
    A = 4\pir
        Syrpoe mes cif a mpture
        -4mp54%% Avpacermevitia
```



```
    -25%064\pi mand,4 yy besm
    * $10732
                                    Serivite
```

The surtace ares of pe bubbie is approvimately 890732 an^{2}
Check
FOOTBALL Tbe wobrg capocibes or boan sholums in me AFC Enst
Divison of Pe Netiond foobonal Leogue are shown in lie rible

Tomm	Wrmber of Secty
Mami Dotphits	65326
Fwew England Patriots	66.829
Budislo Bis	76.608
Thew Mork Leta	122.509

Part A Wilie an expression that represents the maximum tumber of abencees it Jets. Oophims, and Pabriots haire games during the semon, lef; be the rumber of lees homs gimes, dof the tumber of Dolphiss homse gamez, and ρ be the number of Paticts home gimes. $82500 \mathrm{C}+65.326 \sigma+66.829 p$
Part B Suppose that aber the sith week of the season, the jets had phaped 4 home gaves, the Doipthens hod piayed 3 bome pabyed A home gaties, the Doiphers hisd piaywd 3 bome your esperssion from Pat A. Thed the maxienom nunber of attendees at the Jues. Dotphins, and Pariots games after the sititl week of Be inason. 659,536

Interactive Presentation

Example 6


```
Pause and Peflect
Odd you tsuygle weth ampting in this cosson? If so, now dd you doal with it?
Practice
Exampes 1and 2
Write a verbal expression for each algebraic expression. 1-21. Serple emwwers given.
    4.49 2. %y righthofy l
    4. w-24
        wminus 24
        2. 20+6}\mathrm{ fwotimes a plut sia
10. }5\mp@subsup{f}{}{2}+
        us times a minber squared
        ptusfort times the number
13. 507
    Stinesg to fle sirth pown
        6. 20%
        2 simes S squared
19. }3\mp@subsup{n}{}{2}-\mathrm{ -
        3tmeso quaved minus:
    Example}
Write an algebraic expression for each verbal expression.
22. xmoreman7 7+& 23. a rumberiess 35 n-35
24.5 Dimes a number 5n 25.-Dne mied of a number in
26. Folvided by }00\mathrm{ 音 27. the quotient of 45 and, 45
```



```
30.k squared manus 11 k k
32. fle sum of a number and 10 t+10 33. 15 less flan the sum of k and 2
    (k+2)-15
```



```
*8 modte 1+Kpremum
```

```
Pause and Peflect
Did you tryugole weth ampting in this cosson？if so，how did you doal with it？
Practice
```



```
Write a ver
```

1． 4 a ．
4．$w-24$
8 minus 24

20＋6

10． $65+5$ limes a minter squred fifer times dis number號 20 20^{2} sines os squared

19． $3 n^{2}-$ ． timeso жeynued minus：

5． $3 x^{2}$ Jimes rupuared 8．r^{c} ．t^{5} the fouth power timest
to the thid gownt tha the third power
1．$\frac{2 \pi}{2}$ Not and a mumber ralised the fest power divided by the
14．$k-2 \mathrm{kd}$
the oflerence of cand 2 Smesd
17． $7 x^{3}-1$
 20． $12+50$ 21． $180 p+5$ ） the wive of 2 and 5 oimesp 18 times the ovamforp plas 5

Exumples 3

22．x moreman $7.7+2$
23．a numberiess 35 n－35

24． 5 simes a number 50
5．
26．folvided by $50 \frac{1}{\text { 音 }}$
27．the quotient of 45 and？$\frac{45}{3}$
28．Hree pmes a mumber plus $163 n+36 \quad 29.28$ dectyased by 3 simes d $38-38$
30．ksquared minus $11 k^{3}-11 \quad$ 32． 20 divided by f to the tith power
32．fle sum of a number and $10: x+10$
$(k+2)-15$
34．the product of fis and $a+158$
35． 6 mon than twice $m 2 m+6$
88 Medte 1－Kpuenwow

DIFFERENTIATE

Reteaching Activity AL 느닌

IF students struggle to evaluate algebraic expressions， THEN use tiles with numbers and operations on them to create the numerical expression after the Substitution Property is applied．Then students remove the operation performed in each step of order of operations and replace with the number tiles that are equivalent．

Exit Ticket

Recommended Use

At the end of class，go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper．Have students hand you their responses as they leave the room．

Alternate Use

At the end of class，go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini－whiteboard．Have students hold up their whiteboards so that you can see all student responses．Tap to reveal the answer when most or all students have completed the Exit Ticket．

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-66$	
2	exercises that extend concepts learned in this lesson to new contexts	$67-75$
3	exercises that emphasize higher-order and critical-thinking skills	$76-79$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice Exercises 1-75 odd, 76-79
- Extension: Toothpick Triangles
- ALEKS'Writing Expressions and Equations

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-79 odd
- Remediation, Review Resources: Divide Integers
- Personal Tutors
- Extra Examples 1-6
- ALEKS"Multiplication and Division with Integers

IF students score 65% or less on the Checks,
THEN assign:

- Practice Exercises 1-65 odd
- Remediation, Review Resources: Divide Integers
- Quick Review Math Handbook: Variables and Expressions
- ArriveMATH Take Another Look
- ALEKS'Multiplication and Division with Integers

Evaluate esch expression IF $x=6, y=8$, and $z=3$		
S4.ny+z5t	55. $x+x$ 18	56. $2 x+3 y-231$
$52.20 x+\pi-\gamma 10$	58. $5 x+6 y-017$	S9. $50-4+20$ te
40 $a^{3}+b^{2}-458 ?$	6. $\frac{x \cdot a}{y} 0$	62. $\frac{3 y+x^{2}}{1} 20$

Kansul

 Tell Hath School

 Elidento was itasent

 an antiose of nlees $2 n+8 n$
 4079 feet bayn

 2003
 square el thet itiont.
a. Wite mo espession tor the wes of a oide meth robise πr^{2}
 513 $36 \mathrm{in}^{7}$

20 mestr 1. Gownas

Manet Exerciones
52. Consiber the expresion $\frac{\stackrel{5}{5}+r}{r}$

Sr diviecty 2 plecy to ste thetrome:
b. Evolute ine expresion e. $\times 4$ and $y-2$ =1

62. Evinute $x^{2}+y^{2}+2,5 x=2 y=5$ and $2=4 a 9$

72. shacrupe Whm an alocerac expression that hovdes p um ano a prodvct Whe a rebak enpretion foy pur tionebrac esprevion Sefple miver. $22+1$ moo Sinetxplas 1
72. STaucruet votr a verbat enpersion siei inctades s difecence end a oustient.
 quothent of x mitur 1 mene $2 . \frac{-1}{2}$
 enn be used by chacoen to buts play stivelves. The prodketion team
andyraing the mourc of pars they Feed tor abiock
a. The proorction tosen decibes to use one cont pl piven for nect bicch.

C. The producton reso pochasen care of pant par wal cover forl whe an
 thock i copered weth the reihiman emoun of osit needed for tho veets of pant $125^{2} \leq 60$

 divm:
a. We

Whee in endretsion to troretemt the minoint Oevion pad for adstone metepor $\mathrm{x}-06 \times 4$
 Devondowe $\frac{1-94 \times 6}{079}$
 ental 150 mi

OHgher Order Thinking Sille

 santion work.

 wibs Sse!

LESSON GOAL

Students apply the properties of real numbers to simplify expressions.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Develop:

Properties of Equality

- Identify Properties of Equality
- Interpret Properties of Equality
- Use Properties of Equality

Identitites and Inverses

- Evaluate Using the Addition Properties
- Evaluate Using the Multiplicative Identity and Multiplicative Inverse
- Evaluate Using the Multiplicative Property of Zero

Explore: Testing the Associative Property

Develop:

Commutative and Associative Properties

- Evaluate Using the Associative Property
- Evaluate Using the Commutative Property
- Evaluate Using the Associative and Commutative Properties

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit TicketPractice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL ME	FIII	
Remediation: Subtract Rational Numbers	- -		-
Extension: Properties of Operations	-		-

Language Development Handbook

Assign page 3 of the Language Development Handbook to help your students build mathematical language related to simplifying expressions.
Elill You can use the tips and suggestions on page T3 of the handbook to support students who are building English proficiency.

Focus

Domain: Algebra
Standards for Mathematical Content:
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it.

Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students wrote and evaluated algebraic expressions.
6.EE.2, A.SSE.1b, A.SSE. 2

Now

Students apply the properties of real numbers to simplify expressions.
A.SSE. 2

Next
Students will use the Distributive Property to simplify expressions.
A.SSE.1a, A.SSE. 2

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Fill understanding of expressions to build fluency with using the properties of real numbers to simplify expressions. They apply their understanding of the properties of real numbers by solving real-world problems.		

Mathematical Background

Properties of equality, addition, and multiplication can be used to justify steps when evaluating expressions and solving equations. Using these properties can often help make mental calculations easier.

Interactive Presentation

Warm Up

Launch

[^4]
Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- adding and subtracting rational numbers

Answers:

1. $\frac{5}{8}$
2. -0.7
3. -1.7
4. $-1 \frac{1}{3}$
5. \$148

Launch the Lesson

Teaching the Mathematical Practices
4 Model with Mathematics Encourage students to analyze the given information about a shopping trip to write and evaluate an expression.

Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Explore Testing the Associative Property

Objective

Students compare values of expressions to explore the Associative Property.

Teaching the Mathematical Practices

7 Use Structure Help students to use the structure of the Associative Property in this Explore to complete the tables.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will be presented with guiding exercises to complete at the end of the activity. Students select different values for a, b, and c to test eight different claims. They will complete a chart involving addition and subtraction and then another chart involving multiplication and division. The guiding exercises will lead students to discover for which operations the Associative Property holds true. Then, students will answer the Inquiry Question.
(continued on next page)

Interactive Presentation

helugive Rencoultw Musele

yor wher nit hut hiver mindifred euprex

Explore

Explore

Students complete a table by entering possible values for a, b, and c and then the value of three different expressions.

Interactive Presentation

Explore

TYPE

a
Students respond to the Inquiry Question and can view a sample answer.

Explore Testing the Associative Property (continued)

Questions

Have students complete the Explore activity.

Ask:

-Why is it helpful to reorder or regroup terms when evaluating an expression? Sample answer: Reordering and regrouping terms makes it easier to put terms together that can easily be added or multiplied.

(4) Inquiry

For what operations does the Associative Property hold true? For what operations does it not? addition and multiplication; subtraction and division

Go Online to find additional teaching notes and answers for the Explore activity.

Learn Properties of Equality

Objective

Students recognize the properties of equality by identifying the properties used to justify given statements.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 1 Identify Properties of Equality

(17) Teaching the Mathematical Practices

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

Questions for Mathematical Discourse
AL In part a, how many equations are involved? 2
Oll Because part b only involves 1 equation, which properties of equality can you eliminate? Symmetric and Transitive Properties
Bill Write a statement that illustrates the Transitive Property of Equality. Sample answer: If $10+12=15+7$ and $15+7=22$, then $10+12=22$.

Common Error

Students often use the wrong property because they have not fully memorized the names of the properties. They may know the property but not know the name. Encourage students to make flash cards with the property and the definition.

B

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn
TYPE

Students use a diagram to write two equations illustrating the Symmetric Property of Equality.

Interactive Presentation

Example 2
DRAG \& DROP

Students drag and drop the images to represent the verbal expression.

TYPE

Students determine if a verbal expression represents the Transitive Property of Equality.

Example 2 Interpret Properties of Equality

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. The Talk About It! feature asks students to justify their conclusions.

Questions for Mathematical Discourse
AIL What are the three quantities given in the problem? the amount of sugar, amount of flour plus 2 tablespoons, and the amount of milk
[OL. Which ingredients belong in the first equation of the Transitive Property? the amount of sugar and the amount of flour plus 2 tablespoons Which ingredients belong in the second equation of the Transitive Property? the amount of flour plus 2 tablespoons and the amount of milk

At the end, the amount of sugar and the amount of milk are the same. Why is this an example of the Transitive Property of Equality and not the Reflexive Property of Equality? Sample answer: Sugar and milk are not the same ingredient, and the resulting statement does not set either the amount of sugar or the amount of milk equal to itself.

Common Error

Students may not equate a real-world problem to the properties of equality because there are no given equations. Students will have to define variables first in order to see the property of equality.

Example 3 Use Properties of Equality

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

ALI What does the Reflexive Property of Equality state? Sample answer: that any quantity equals itself

OL. Which properties of equality can you rule out in part \mathbf{b} and why? Symmetric and Reflexive because there are three equations
31. Would "If $x+5=y-5$ and $y-5=10$, then $x+5=10$ " be an example of the Transitive Property? Explain. Yes; sample answer: When one quantity $(x+5)$ equals a second $(y-5)$ and the second quantity $(y-5)$ equals a third (10), then the first quantity $(x-5)$ equals the third (10).

Common Error

Students are familiar with numerical statements that they can check for correctness, but when asked to identify properties for algebraic statements, they may try to solve rather than identify the correct property. Remind students that variables are simply unknown numbers so the properties of equality work the same.

DIFFERENTIATE

Reteaching Activity 4 AL 큰

IF students are struggling to identify or use the correct property of equality,
THEN tell them a good way to remember is:

- The Reflexive Property involves one equation.
- The Symmetric Property involves two equations.
- The Transitive Property involves three equations.

Learn Identities and Inverses

Objective
Students evaluate numerical expressions by applying the Inverse and Identity Properties.

Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of addition and multiplication in this Learn.
(continued on the next page)

Example 3 Use Properties of Equality
Use the given property of equality to complete each statement.
a. $y-21=\longrightarrow$ Refiexive Property of Equality
The Reflexive Property of Equalty stares thet any suantity equals
tsets soy $21=y \quad 21$
b. If $24+11=9+26$ and $9+26=2$, then $24+11=\square ?$
Transitive Property of Equatity
The fransitive Property of Equility states thyt if one quantity
$(24+51)$ equats a second quantey $(9+26)$ and the second
quanoty $(9+26)$ equais a thind gimatily (2), then the finst puantey
$(24+11)$ equals the enid guintity (n) So $24+11=z$.
Check
Use the piven property of equaticy to complote each stimement.
A. it $43+9=10+42$ and $t 0+42=52$, then $43+9=\frac{?}{52}$ Tinntwe Propety of Equaliar
Timsitive Propety of Equaliar
b. $2 n \quad 1=\frac{?}{2 n-1}$ Refexve Propenty of Equalty
Learn Identities and inverses
The wum ot any number a and O is equal to a. Thus, D is catied the
additive identity. IThe sim of two mumbers is equal to the sodithe
identity. $/ \mathrm{sw}-4+(-4)=0$, then the two numbers we additive inverses
Serr Concept - Aiddelen Propenties
Addelve Idensty Property
Words For iny red number a the sum of a ando iso
Symbols $a+0=0+a=a$
Eximples $5+0=5$
$0+5=5$
Addilve inverse Property
Worss A molnumber ind its opposte ape adotive inverpes
of erch athec
$\begin{array}{ll}\text { Symbols } & 0+|-\alpha|=0 \\ \text { Examples } 2+(-2)=0\end{array}$
Symbols $\quad \alpha+|-\alpha|=0$
Examples $2+(-2\rangle=0$
$7 \sim 7=0$

Interactive Presentation

Example 3

Interactive Presentation

Learn
TYPE
Students use the Additive Inverse Property to analyze an expression.

1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY 3 APPLICATION

About the Key Concept

Students learn about the additive and multiplicative identities and inverses, along with the Multiplicative Property of Zero. The Identity Properties do not change the value of the expression, while the Inverse Properties either add to zero or multiply to 1 . Finally, the Multiplicative Property of Zero states that if the product of two numbers is zero, at least one of the numbers must be zero.

Common Misconception

Students believe the Inverse Properties are illustrated when any expression equals zero or one, regardless of the operation. For example, $-2+3=1$ and $5(0)=0$ are often confused as Inverse Properties because they equal zero or one. Encourage students to consider the operation before concluding it is an Inverse Property.

Example 4 Evaluate Using the Addition Properties

Teaching the Mathematical Practices
3 Reason Inductively In this example, students will use inductive reasoning to make plausible arguments.

Questions for Mathematical Discourse
AL When using the order of operations, which operation in the expression should be simplified first? the power
OLI Why is $8(2)$ not simplified first even though there are parentheses? Sample answer: Parentheses are done first when they are used as grouping symbols. Those parentheses represent multiplication, which comes after exponents in the order of operations.
[Bill How can $4-4$ be rewritten to more clearly illustrate the use of the Additive Inverse Property? $4+(-4)$

Example 5 Evaluate Using the Multiplicative Identity and Multiplicative Inverse

Teaching the Mathematical Practices

2 Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. In this example, notice the relationship between the terms and the Multiplicative Identity and Inverse Properties.

Questions for Mathematical Discourse
ALI What is the result of multiplying $\frac{3}{2}$ by $\frac{2}{3}-2 \frac{3}{3} \frac{2}{6}=\frac{6}{6}=1$
OL How do you know $\frac{3}{2}$ and $\frac{2}{3}$ are multiplicative inverses without multiplying? They are reciprocals.
[B1. What factor would need to be included in the expression in order for the expression to simplify to 1 ? Explain. $\frac{1}{7}$ sample answer: In order for the expression to simplify to 1 , the multiplicative inverse of 7 would need to be a factor.

Example 6 Evaluate Using the Multiplicative Property of Zero

Teaching the Mathematical Practices
7 Look For a Pattern Students should see the pattern of grouping numbers according to the Multiplicative Property of Zero so the expression can be evaluated more easily.

Questions for Mathematical Discourse

|Al. According to the order of operations, what should be simplified first? everything inside the parentheses
OL. How much of the expression is inside the parentheses? Everything except zero
B1. Would the value of the expression change if the expression were instead $7+[4-3(2)] \times 0$? Explain. Yes; sample answer: The zero is no longer multiplied by everything, so only the part in the bracket becomes zero. $7+0=7$, not zero.

DIFFERENTIATE

Language Development Activity 4 IL BLL

IF students are struggling to identify or use the correct Inverse or Identity Property,
THEN tell them a good way to remember is:

- Identity Properties do not change the starting value. When you add zero or multiply by one, the answer is identical to the starting value, so adding zero or multiplying by one are Identity Properties.
- Inverse Properties involve "undoing," so adding the opposite or multiplying by the reciprocal is the way to get rid of or undo the addition or multiplication that was previously there.

Interactive Presentation

Example 5

TYPE

Students state why the multiplicative identity is 1 and not 0 .

CHECK

Students complete the Check online to determine whether they are ready to move on.

Interactive Presentation

Learn

Learn Commutative and Associative Properties

Objective
Students evaluate numerical expressions by applying the Commutative and Associative Properties.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of the Commutative and Associative Properties in this Learn.

About the Key Concept

The Associative Property allows sums or products of three or more numbers to be regrouped without changing the value of the expression. The Commutative Property allows numbers being added or multiplied to be reordered without changing the value of the expression.

Common Misconception
Since the Commutative and Associative Properties apply to addition and multiplication, some students believe they will automatically apply to subtraction and division. They may rewrite or regroup subtraction or division expressions, which will lead to wrong answers. Remind students that subtraction and division must be performed in a certain order and these properties do not apply to those two operations.

Example 7 Evaluate Using the Associative Property

Teaching the Mathematical Practices
3 Construct Arguments In the Think About It! feature, students will use stated assumptions, definitions, and previously established results to construct an argument.

Questions for Mathematical Discourse
AL. When adding money without a calculator, what is one way to make adding easier? Sample answer: Add things in a different order.
Oll Why should $\$ 34.50$ be grouped with $\$ 32.50$ and $\$ 23.25$ be grouped with $\$ 31.75$ when using the Associative Property? Sample answer: $\$ 34.50$ and $\$ 32.50$ both have 50 cents which, when added together, equals a whole dollar, and the same for the 25 cents and 75 cents.
BLil If the amounts had been listed in a different order, could the expression be simplified using only the Associative Property? Explain. No; sample answer: If the amounts had been listed in a different order, then the Commutative Property would have been needed first.

DIFFERENTIATE

Reteaching Activity ALILILI

IF students are having a hard time distinguishing between the Commutative and Associative Properties,
THEN write the following examples of each property on the board and ask students to identify which property is being used.
$\cdot 12+16+8+14=12+8+16+14$
$\cdot 12+8+16+14=(12+8)+(16+14)$
$\cdot 3+5+15+12=3+12+5+15$
$\cdot 3+12+5+15=(3+12)+(5+15)$
Ask students what makes it so difficult to distinguish the properties. Discuss ways to tell the two properties apart. Explain that the Associative Property affects how numbers are grouped, or how they are associated with each other. The Commutative Property allows the numbers to be moved around or commute.

Interactive Presentation

Example 7

Interactive Presentation

Example 9

CHECK
Students complete the Check online to determine whether they are ready to move on.

Example 8 Evaluate Using the Commutative Property

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of the Commutative Property in this example.

Questions for Mathematical Discourse
AII. When multiplying without a calculator, what is one way to make multiplying easier? Sample answer: Multiply things in a different order.
[OLI Is there a pair of numbers that multiply to a whole number? Explain. Yes; sample answer: $\frac{5}{6}$ and $\frac{6}{5}$ are reciprocals so they multiply to 1.
BLII If the expression had been $\frac{5}{6} \cdot 9 \cdot \frac{6}{9}$, would you still use the Commutative Property to evaluate? Explain. No; sample answer: Because the fractions are not reciprocals, it does not make sense to switch 9 and $\frac{6}{9}$. Instead, the 9 and $\frac{6}{9}$ should be grouped to simplify to 6.

Example 9 Evaluate Using the

Associative and Commutative PropertiesTeaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

In Step 1, what is the difference between the left side of the equation and the right side? The 27 and 28 changed places.
OL How does the expression in Step 2 differ from the right side of Step 1? Parentheses were added to indicate which additions should be performed first.
[BL. Why were the numbers grouped the way they were in Step 2? Sample answer: The numbers 32 and 28 add to a multiple of 10 as do the numbers 27 and 33 .

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Putting It All Together
Go Online to have students practice what they have learned about properties of real numbers in the Putting It All Together for Lessons 1-1 through 1-3.

3 APPLICATION

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-34$	
2	exercises that use a variety of skills from this lesson	$35-48$
3	exercises that emphasize higher-order and critical-thinking skills	$49-56$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-47 odd, 49-56
- Extension: Properties of Operations
- ALEKS Properties of Real Numbers

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-55 odd
- Remediation, Review Resources: Subtract Rational Numbers
- Personal Tutors
- BrainPOP Video: Commutative Property, Associative Property
- Extra Examples 1-9
- ALEKS'Addition and Subtraction with Fractions

IF students score 65% or less on the Checks, THEN assign:

- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Subtract Rational Numbers
- Quick Review Math Handbook: Properties of Numbers
- ArriveMATH Take Another Look
- ALEKSAddition and Subtraction with Fractions
 Minptcotve Papenty of Zexa?

33. tasne trip properties unect to evitithe7.1 - 4. 1

34. (rouste $7-2 \cdot 7-5$ oring poserties of turben thime the property uted in wech twe. $7 \cdot 2+7.5=7 \cdot 7+2 \cdot 5$

Find the value ofx. Thee name the property vies.
$35.8=8+8$ o.domivelidemy
36. $32+\times w 32$ o: Aastove iserthy

$39: x+0=5$ 5: madition ionery

45. Weritau math The tlangdar benner nan obose of

 Millplitatep afow tho be remiten
 owivce of pe cort ot pe cac Her noithy paymeet net be STBS. Aher 9 movibs. tow mich will she have boid tor be cant \$23!
47. suarover The human pody nas 78 dones n the upper and ioner casamites 28 bopes in the hesa and $5 z$ boovs in the torso. Use the Ansocisive Propery to Sumin Boty. Saltiple answer. $126+26)+52=126+(28+52)=125+80=208$

 ispurchesed. 54 io

Otsphes-Order Thiesting Sails

 $\mathrm{f}=4+1+5+7=18+4$ ent $5+4=12, \mathrm{ne5} 5+7=12$

 whenele 2 soer mol.

St Asucras Prowse examples by thow bit mere in no Commative Poperty
 ine renit when the offer of divaso of two numbert is withed?

 Ganple assmer You contof कivide Iy e.
 ut of whole numbers $19.12 .2,4$. In raid to Se coned unser adstion This a
 Stillese./vity your nemsoing.
2. The set ot whole nambeci is dosed under vetraction
 toe vel of whice namberi is dowed under miliplicaton
The velol antole nimbers sigsed inter sovion tabs, smple amiser: $2+3=3$, which is not a aboier cumber.

tete

34 mosint-tognu

Focus

Domain: Algebra
Standards for Mathematical Content:
A.SSE.1a Identify parts of an expression, such as terms, factors, and coefficients.
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it.

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

Coherence

Vertical Alignment
Previous
Students applied the properties of real numbers to simplify expressions.
6.EE.3, A.SSE. 2

Now

Students use the Distributive Property to simplify expressions.
A.SSE.1a, A.SSE. 2

Next
Students will apply the Distributive Property to construct and solve equations in one variable.
A.CED. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their understanding of expressions to build fluency with using the Distributive Property to simplify expressions. They apply their understanding of the Distributive Property by solving real-world problems.

Mathematical Background

The Distributive Property can be used to evaluate and simplify expressions. The property permits a factor outside the parentheses to be distributed to each term inside the parentheses. When the Distributive Property is applied to algebraic expressions, the coefficients of like terms can be combined and the expressions can be simplified.

Interactive Presentation

Warm Up

Launch

[^5]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- using order of operations

Answers:

1. 17
2. $\frac{7}{30}$
3. 29
4. 32
5. \$45

Launch the Lesson

Teaching the Mathematical Practices
4 Model with Mathematics Encourage students to analyze the given information about giant pumpkin competitions to evaluate an expression by using the Distributive Property.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Explore Using Rectangles with the Distributive Property

Objective
Students use a sketch to model the Distributive Property.

(11)
 Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use algebra tiles. Work with students to explore and deepen their understanding of the Distributive Property.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will be presented with guiding exercises to complete at the end of the activity. Students will use a sketch to explore two methods for finding the area of a rectangle, and then fill in the provided table with specific results. The guiding exercises will lead students to see the Distributive Property in action. Then, students will answer the Inquiry Question.
(continued on next page)

Interactive Presentation

Explore

Explore

WEB SKETCHPAD

Students use the sketch activity to complete an activity in which they explore finding the area of two rectangles.

Students fill in a table with different values of a, b, and c from the sketch and then answer questions about the areas of rectangles.

Interactive Presentation

Explore

TYPE

a|
Students respond to the Inquiry Question and can view a sample answer.

Explore Using Rectangles with the Distributive Property (continued)

Questions

Have students complete the Explore activity.

Ask:

- What do you notice about the total area in each case? In each case, the combined area of the two rectangles is the same.
(C) Inquiry

What is the product of a and $(b+c)$? $a b+a c$
Go Online to find additional teaching notes and answers for the Explore activity.

Explore Modeling the Distributive Property

Objective

Students use algebra tiles to model the Distributive Property.
Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in this Explore.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will be presented with guiding exercises to complete at the end of the activity. Students will use algebra tiles to model the expression $4(x+2)$. The guiding exercises will lead students to see the Distributive Property in action. Then, students will answer the Inquiry Question.

(continued on next page)

Interactive Presentation

Explore

Explore

Interactive Presentation

Explore

Students respond to the Inquiry Question and can view a sample answer.

Explore Modeling the Distributive Property (continued)

Questions

Have students complete the Explore activity.

Ask:

- Does it matter which expression you use as the length and which expression you use as the width? Explain. No; sample answer: Because you are multiplying to find the area, switching the expressions for the length and width will product the same area.

(B) Inquiry

How can you use algebra tiles to find the product of two expressions? Sample answer: Form a rectangle with the algebra tiles where one expression is the length of the rectangle and one is the width. Then find the area of the rectangle.

Go Online to find additional teaching notes and answers to the Explore activity.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY 3 APPLICATION

Learn Distributive Property with Numerical Expressions

Objective

Students identify and evaluate equivalent numerical expressions by using the Distributive Property.

Teaching the Mathematical Practices
7 Use the Distributive Property Point out that the Distributive Property is one of the most-used properties in algebra. Students should know that whenever they see a number outside of a sum or difference within parentheses, they should apply the Distributive Property.

What Students Are Learning

When the Distributive Property is used, equivalent expressions are generated; $5(1+6)$ is equivalent to $5(1)+5(6)$. The Distributive Property combines addition or subtraction with multiplication.

Common Misconception

Many times students will only multiply the coefficient of the sum or difference to the first term and ignore the second term. Reinforce to students that the Distributive Property is when the coefficient is multiplied to all terms of a sum or difference.

DIFFERENTIATE

Language Development Activity

Entering Before students read the lesson, provide examples or illustrations to introduce each vocabulary word. Have students repeat each word and point to the visual representation as you review vocabulary.
Emerging or Developing Have partners make and use flash cards to check each other's pronunciation and understanding of vocabulary.
Expanding Have students scan the lesson for content vocabulary words in context. Help them pronounce the vocabulary words correctly. Discuss vocabulary meanings with them.
Bridging After reading each example of the lesson, use an Interactive Question-Response to discuss it. Have students record the main idea and details of the paragraphs in their notes.

Interactive Presentation

Learn

Interactive Presentation

Example 1
 problem.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY | 3 APPLICATION

Apply Example 1 Use the Distributive Property

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- H ow is the amount spent in each month calculated?
- In what form should the percentages be written in order to solve the problem?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Mental Math

Teaching the Mathematical Practices
7 Use the Distributive Property Point out that the Distributive Property is one of the most-used properties in algebra. Students should know that whenever they see a number outside of a sum or difference within parentheses, they should apply the Distributive Property.

Questions for Mathematical Discourse

AL. In part a, what number is close to 99 that would be easier to multiply with using mental math? 100 In part \mathbf{b}, what number is close to 1002 that would be easier to multiply with using mental math? 1000
Oll In part a, why does it make sense to subtract 5 and not 1 ? Sample answer: Because you are multiplying by a number that is one less than 100, it makes sense to remove one multiple of 5 from 500 .
31. Would you apply the Distributive Property to solve 4-1200? Why? No; sample answer: Because 1200 can just be multiplied as 12 hundreds.

DIFFERENTIATE

IF students are struggling to apply the Distributive Property with numerical expressions,
THEN let students model the expression using algebra tiles until they can successfully evaluate using the Distributive Property.

Enrichment Activity BL

Explain how the Distributive Property can be used to find the product 7×435 without the use of a calculator.
Sample answer: I can break 435 into a sum of its parts and then use the Distributive Property:

$$
\begin{aligned}
7(400+30+5) & =7(400)+7(30)+7(5) \\
& =2800+210+35 \\
& =3010+35 \\
& =3045
\end{aligned}
$$

Check

Smumeng Verdelfs twim nam practices 5 days a week. Each dor they spend 15 fuhutes sweccring. 45 minutes twinning taph, and 30 minutes ifing woights
Part A wich eapessionst represent ine number of minutes Werderls toam spends in proctice each week? Select at that apply A.C
A. $5(15+45+30) \quad$ Bi. $5151+45+30$
C. $5(05)+5(45)+5(30) \quad$ D. $5(15)+5(454+30$

E $5+15+45+30$
Part B How much time does Verder's town spmo in pracice pach week? ?
A. 90 minutes \quad e. 150 minutes
C. 330 minutes \quad D. 450 minutes

Example 2 Montal Math
Use the Distributive Property to remithe and evaluate each expresition.
a. 5.99
$5.99-5100-7$

```
Thbol-39 - 1000-1
```

 \(=5(100)-5,9\)
 \(=500-5\)
 \(-495\)
 b. 4 - 1002
$4 \cdot 1002=40000+21$
$=4(000)+4(2)$
$=4000+8$
-4008
Check
Part A Estimate the vatie of the expression तStl
$\frac{\pi}{50} \frac{2}{30}=350$ so 758 wa be a imle $\frac{2}{\text { more }}$ vian 350.
Part B Which eapressionta ssebl the Datributine Propenty to rewine
and snd the exact value of be expression 75517 B. I
A. $5 \times 7-3) 204$ B. $2150+$ b. 357 C. $507+3 \times 510$.
D. $58(7) \quad 543 \% 204$ E. 750$)+706.357$ \& $5271+5 \times 3 \% 510$

OThinkAbout lt

 How cen you ule the Bostout ve Propety' the enpression aucoo?Sample arawer. Thinis' $100=1000+500,30$ - $-100=1 / 1000{ }^{\circ}+$ per tse the Dustroutve Propenty $21000 \%+8709$ Witply to get $8000+$ 800. Then add to get 8900 .

Interactive Presentation

Example 2

Interactive Presentation

Learn

Students determine if another student's claim is
correct. correct.

Learn Distributive Property with Algebraic Expressions

Objective

Students identify and simplify equivalent algebraic expressions by using the Distributive Property.

Teaching the Mathematical Practices

7 Use the Distributive Property Point out that the Distributive Property is one of the most-used properties in algebra. Students should know that whenever they see a number outside of a sum or difference within parentheses, they should apply the Distributive Property.

Common Misconception

Students often believe that as long as variables are the same, they are like terms regardless of exponents. This causes problems not only in this lesson, but in future lessons as well. Reinforce that like terms have the same variables, but the corresponding variables must have the same exponents. The terms $5 x y$ and $3 x y^{2}$ are not alike, but $5 x y^{2}$ and $3 x y$ äre.

Example 3 Distribute an Algebraic Expression from the Left

Teaching the Mathematical Practices
7 Use the Distributive Property Point out that the Distributive Property is one of the most-used properties in algebra. Students should know that whenever they see a number outside of a sum or difference within parentheses, they should apply the Distributive Property.

Questions for Mathematical Discourse
Which value is being distributed? 4
OL To which term does the subtraction sign belong? with the 7
[BII Why is the expression $20 x-7$ not equivalent to the expression in the example? Sample answer: The 4 must be distributed to both terms in the difference, not just the first term.

Common Error

When distributing to a subtraction problem, many students will replace the subtraction sign with addition. Reinforce the rules of multiplying integers and that those rules are the only way signs can change.

Example 4 Distribute an Algebraic Expression from the Right

10 Teaching the Mathematical Practices

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. The Talk About It! feature asks students to respond to the arguments of others.

Questions for Mathematical Discourse

AL. Does it matter that the 6 is to the right of the parentheses? Explain. No; sample answer: The 6 is multiplying the quantity inside the parentheses, and multiplication is commutative, so it doesn't matter whether it is in front of the parentheses or behind it.
OLI Will the signs of the expression inside the parentheses change when 6 is distributed? Explain. No; sample answer: Since 6 is not a negative number, none of the signs will change.
314. How could the original expression be rewritten if a student does not like distributing from the right? $6\left(3 y^{2}+y-8\right)$

Common Error

Students can get confused when the value to be distributed is on the right side of the parentheses, rather than the left. If students need to, they can rewrite the expression with the coefficient on the left.

Example 5 Combine Like Terms

Teaching the Mathematical Practices
7 Use the Distributive Property Point out that the Distributive Property is one of the most-used properties in algebra. Students should know that whenever they see a number outside of a sum or difference within parentheses, they should apply the Distributive Property.

Questions for Mathematical Discourse
AL How many terms are in part \mathbf{a} ? 2 part \mathbf{b} ? 3
이 In part \mathbf{b}, why is $4 b^{2}$ not a like term? because the exponent of b is different
1BL. How might algebra tiles help someone identify like terms in part b? Sample answer: Using square tiles for b^{2} and rectangular tiles for the b terms allows you to see that the square tiles do not combine with the rectangular tiles.

Interactive Presentation

Example 4

TYPE

Students determine if another student's work is correct.

Pewrate $\left(3 y^{2}+7-8\right) 6$ using the Distrimutive Property. Then simplity. $=48 y^{2}+6 y-48 \quad$ Muldh
a]

Interactive Presentation

Example 6

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 6 Write and Simplify Expressions

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to respond to the arguments of others.

Questions for Mathematical Discourse

AII. What does the word sum represent? addition What do difference and decreased by represent? subtraction
[OL How do you know you need parentheses? because you are multiplying a constant by the sum or difference of two terms
[BLI Simplify the expression $4(a-3 b)-3(2 a+b)$ and indicate the properties used.

$$
\begin{array}{ll}
4 a-12 b-6 a-3 b & \text { Distributive Property } \\
=4 a-6 a-12 b-3 b & \text { Commutative Property } \\
=(4-6) a+(-12-3) b & \text { Distributive Property } \\
=-2 a-15 b & \text { Simplify. }
\end{array}
$$

Common Error

With large algebraic expressions, students can make careless errors in translating, like forgetting parentheses or exponents. Encourage students to highlight or underline all words that imply a math operation or symbol to decrease the likelihood of a mistake.

DIFFERENTIATE

Reteaching Activity 4 니 크닌

IF students are struggling to apply the Distributive Property with algebraic expressions,
THEN have students draw an arrow from the multiplier to each term in the parentheses as a visual reminder to multiply all terms.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-56$
2	exercises that use a variety of skills from this lesson	$57-67$
3	exercises that emphasize higher-order and critical-thinking skills	$68-72$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-67 odd, 68-72
- Extension: Mayan Numerals
- ALEKS'Properties of Real Numbers

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-71 odd
- Remediation, Review Resources: Apply Rational Number Operations
- Personal Tutors
- BrainPOP Video: Distributive Property
- Extra Examples 1-6
- ALEKS'Other Topics Available: Fractions

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-55 odd
- Remediation, Review Resources: Apply Rational Number Operations
- Quick Review Math Handbook: Properties of Numbers
- ArriveMATH Take Another Look
- ALEKS'Other Topics Available: Fractions


```
Truyu;
Use me Distribobve Preperty lo rewine and eveluste esch enpessioce
117. 007 7500-7%300 12.6525% 64500 + 25):3150
```



```
*2. 12.204 12000-2%105 20.80.15 501 +0.5%12
21.3.10.2300+0.25.306 22.5(4\frac{1}{5})5(4+\frac{1}{5}):21
Rewite esch expression uning the Divvilutive Property. Then simplity.
2n 2(x+4) 24. (5+m)
    2(i)+2(t) 2x+3
26. 10-3mp
```



```
    5<39+433:15 +3n
    26. -32x-6)
22.Q-40!?
    2(1) +1-40|(%), 34-69)
2a. (3-2a)27
    12a)+1-2man: 5-540
32.62x}-506+
    6(20)+6(-cd)+640)
    l2k-6k\mp@subsup{\sigma}{}{2}
    32.3yn+4)}3(m)+3(n).3n+3
    35.}(\frac{y}{3}+60)
```



```
22. 103-6050
    03,51+1-6ex.6-27-14a
    88. -4(co+2b-k)
```

42 Mosite1- Dement
$22.2(x+4)$
$2 x+2(4) 2 x+3$
25. $10-3 \mathrm{~m} / \mathrm{s}$

2a. $\left(\frac{1}{3}-2 b\right) 27$
$\frac{1}{2}(2)+1-202925-540$
31. $6\left(2 c-80^{6}+6\right) .6(20)+6(-6)^{2}+6|0|$
$12 x=\times 6$
$3(n)+3 n+3 n+3 n$
$35 .\left(\frac{1}{2}+60\right) \mu$
3 205 + Magse $7+520$
22. $103-609$
$0.391+1-6 e x \% 37-27-54 t$

42 Moblet 1- Diponter

Fieross		
Simprify eech erpression	A pentle, write simplited.	
30. $10+5$	60. $3 x^{4}-2 v^{2}$ ainpoltes	4t. $\begin{aligned} & 7 m+7-5 m \\ & 2 m+3\end{aligned}$
42. $\begin{aligned} & 5 r^{3}+3 z+8 r^{2} \\ & 12 p^{2}+3 v \end{aligned}$	42. $\begin{aligned} & 7 m+2 m+5 p+4 m \\ & 12 m+5 p \end{aligned}$	$44.5 x+4 y+5 x$ $46+4$
45 $\begin{aligned} & 3 m+5 y+69+7 b \\ & 14 m+1 y \end{aligned}$	$\begin{aligned} & \text { 46. } 40+b v^{2}+20^{2}+\sigma^{2} \\ & 8 p^{2}+4 e \end{aligned}$	47. $\begin{aligned} & 5 k+3 k^{2}+7 k+9 k^{2} \\ & 12 k^{2}+2 k \end{aligned}$
$\text { 4a. } \frac{6 r^{2}}{6 x^{2}+5 x}+4 x-3 x$	42. $\begin{gathered}09 \\ 0_{g} \\ 0\end{gathered}$	$\text { 50. } 2 e^{2}+6 r^{1}+6 r^{2}$
$\text { st. } \frac{70^{2}}{50^{2}}-20^{2}$	62. $3 y^{2}-2 y+3$ simplinat	52. $3 \rho^{2}+q-q^{2}$ $20^{1}+9$

Finver 6

Connider esch verbol expressione
in, white an Aljebraic exprestion to ropersent the vertbel expressiong
b. Sinplify the expessien and indictite the propprtiet used.
54. Me popderor 9 and t socima, neriesed by 3 liner the sumer 2oodthovored
a. $x^{2}+3\left(z+x^{2}\right)$

66. AEAsoivata A theatir hin in wass pet row on the left side al the risk and

- Explun how you can une Te Dotibutve Procestrio wimo two Selleren

 asbe. Does tis distle the ruiber of seasts in the thectert Use one of the

 expressoes to regreseet the pervitec of the tioced dop pask. $2 n+2 m$ and $2 i n+m$

Qisgher Oides Theekiog Skies
6s.
 Facobag wipho 22 ounces and the macinum weplet pre can whp in
 and diciber thet whe can who sie bags in one brac. Dayou agreet

 $8(20+z=8(291+812)=150+16=776$ cances.

 arounere. The Disnoume fiopeny is a property of both udision and matiplation The; bon epecations ave ised di of $+q-a t+\infty$.

44 Moditr t-bignes

LESSON GOAL

Students evaluate absolute value expressions.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Distance Between Points on a Number Line
Develop:

Evaluating Expressions Involving Absolute Value

- Write an Absolute Value Expression
- Evaluate the Absolute Value of an Algebraic Expression
- Evaluate an Expression Involving Absolute Value

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL ME	FFIIL
Remediation: Represent Integers	- ${ }^{-}$	-
Extension: Making Conjectures with Absolute Value Expressions	-	-

Language Development Handbook

Assign page 5 of the Language Development Handbook to help your students build mathematical language related to absolute value expressions.
F․all You can use the tips and suggestions on page T5 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Algebra
Standards for Mathematical Content:
A.SSE. 2 Use the structure of an expression to identify ways to rewrite it.

Standards for Mathematical Practice:
4 Model with mathematics.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

Coherence

Vertical Alignment

Previous

Students used the Distributive Property to simplify expressions.
6.EE.3, A.SSE.1a, A.SSE. 2

Now

Students evaluate absolute value expressions.
A.SSE. 2

Next
Students will solve equations involving absolute value.
A.CED.1, A.REI. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION
understanding of expressions to build fluency with simplifying expressions that involve absolute value. They apply their understanding of absolute value expressions by solving real-world problems.

Mathematical Background

The absolute value of a number is the distance the number is from zero on a number line. Absolute value is always greater than or equal to zero.

Explore Distance Between Points on a Number Line

Objective

Students use dynamic number lines to explore absolute value.
Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in this Explore

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will be presented with guiding exercises to complete at the end of the activity. Students will use a sketch to explore finding the distance between two points on the number line, and then fill in the provided table with specific results. The guiding exercises will lead students to determine how to calculate the distance between two values. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Explore

WER SKETCHPAD

Students use the sketch activity to complete an activity in which they explore the distance between two points on the number line.

TYPE

a|
Students fill in a table with different values of x and y from the sketch and then basic computations.

Lesson 1-5 • Expressions Involving Absolute Value 45c

Interactive Presentation

Warm Up

Launch

[^6]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- naming points on number lines

Answers:

1. D
2. F
3. G
4. C
5. E

Launch the Lesson

(13) Teaching the Mathematical Practices

4 Model with Mathematics Encourage students to analyze the information about a Claude Monet painting to write an absolute value expression.

Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will use this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the question below with the class.

Interactive Presentation

\square

Explore

TYPE

a
Students respond to the Inquiry Question and can view a sample answer.

Explore Distance Between Points on a Number Line (continued)

Questions

Have students complete the Explore activity.

Ask:

- Do any of the algebraic expressions equal the distance between x and y for every set of values? no
- What pattern do you notice when $x-y$ or $y-x$ does not equal the distance between x and y ? Sample answer: When $x-y$ or $y-x$ does not equal the distance between x and y, the expression is the additive inverse of the distance.
(8) Inquiry

How can you find the distance between any two values x and y on a number line? The distance between any two values on a number line can be found by taking the absolute value of the difference of the two numbers; i.e., $|x-y|$ or $|y-x|$.

3 Go Online to find additional teaching notes and answers for the Explore activity.

Learn Evaluating Expressions Involving Absolute Value

Objective

Students evaluate absolute value expressions by substituting values into and simplifying given expressions.

11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Common Misconception

Absolute value does not change the sign of the number (e.g. $|5| \neq-5$). Remind students that absolute value represents the distance from zero regardless of direction.

Essential Question Follow-Up

Students have begun evaluating expressions involving absolute value.

Ask:

When can absolute value model real-life situations? Sample answer:
Absolute value can model real life situations when the distance is the only thing that matters, not the direction. For example, if the temperature of a cup of coffee went from $105^{\circ} \mathrm{F}$ to $90^{\circ} \mathrm{F}$, and we wanted to know just the change in temperature, then we could say it changed $15^{\circ} \mathrm{F}$.

Example 1 Write an Absolute Value Expression

Teaching the Mathematical Practices

4 Apply Mathematics In this example, students apply what they have learned about absolute value expressions to solving a realworld problem.

Questions for Mathematical Discourse

AL. What do the variables t and m represent? t is the temperature reading on the thermometer and m is the actual temperature of the meat.
OL To find the accuracy of a meat thermometer, should you subtract the readings first and then take the absolute value, or take the absolute value of each reading and then subtract? Explain. Subtract the readings before taking the absolute value; sample answer: We want a nonnegative difference between the readings, so subtract them first and then take the absolute value.
[BLI Why is $|m-t|$ not equivalent to $|m|-|t|$? Sample answer: For the first expression, we would subtract and then take the absolute value. For the second expression, we would take the absolute value first and then subtract. If m were less than t, the second expression would yield a negative.

Interactive Presentation

Learn

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2

1 CONCEPTUAL UNDERSTANDING

Example 2 Evaluate the Absolute Value of an Algebraic Expression

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL. How many times does x appear in the expression? 1 the y ? 2
Oll Why does $-2 x y$ evaluate to positive 36 ? Sample answer: After substituting in the values for the variables, you get $-2(6)(-3)$, and a negative times a negative is a positive.
B1. Explain how to evaluate the expression for $x=1$ and $y=-7$. Sample answer: After substituting the values in for the variables, | got |14-35|, which simplifies to |-21|, which equals 21 .

Example 3 Evaluate an Expression Involving Absolute Value

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

Questions for Mathematical Discourse

AL. What should be the first step in evaluating the absolute value of the algebraic expression? Replace x with 2 .

OL Evaluate the expression for $x=-2$. Why is the answer for $x=2$ not the same as $x=-2$? 18; sample answer: Substituting -2 for x gives $23-|-5|$, which is not the same as $23-|11|$.
BL. What other value of x will yield the same result of 12 ? If $x=-3.5$, the expression will still be 12.

DIFFERENTIATE

Reteaching Activity ALI 픈

IF students are struggling to evaluate absolute value expressions,
THEN have them evaluate the inside of the absolute value using order of operations and plot the resulting value on the number linellistudents the final answer is the distance that number is from zero. They can count the spaces from zero and see the answer is just the positive value.

Enrichment Activity BLil

EVALUATE $|-3 y|+|3 y|$ for $y=1$. Explain why even though it appears $-3 y$ and $3 y$ are additive inverses, they are in fact not.
Sample answer: $|3(-1)|+|3(1)|=|-3|+|3|$, which simplifies to $3+3=6$. The two terms appear to be additive inverses, but the absolute value converts the negative value to a nonnegative value. Thus the two are not additive inverses but like terms.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-34$	
2	exercises that use a variety of skills from this lesson	$35-36$
3	exercises that emphasize higher-order and critical-thinking skills	$37-39$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks, THEN assign:

- Practice, Exercises 1-35 odd, 37-39
- Extension: Examining Cases
- ALEKS Operations with Signed Numbers

IF students score 66\%-89\% on the Checks, THEN assign:

- Practice, Exercises 1-39 odd
- Remediation, Review Resources: Represent Integers
- Personal Tutors
- Extra Examples 1-3
- Q ALEKS Plotting and Comparing Signed Numbers

IF students score 65% or less on the Checks,

THEN assign:

- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Represent Integers
- ArriveMATH Take Another Look
- ALEKS Plotting and Comparing Signed Numbers

$23.2 n+4+2 y=$	24. $40-130+2 \mathrm{ct}-12$	2s. $-150+54+13 y+24 \mid-24$
	27. 6 y $-205-384$	
Fvaluate wech expession if $0=-\frac{1}{2}, b=\frac{3}{4}$, and $\mathrm{c}=-\frac{1}{2}$		
29.- $6 \mathrm{c}-250 \mathrm{c}+1-15$	$30.34+2\|x+100\| 21$	$2 \mathrm{x}\|-2 a-200\|-12 \mathrm{c} 22$
22. $120-7-160 \mid \rightarrow 4$	32. $75-3 \mathrm{c}+$ +a HS	3. $12-50-60 \mid+$ we -

Hined Fevicieps

2. wis too asolotion
b. Ivitum tre erpession at the acturi digunce fion the gor bol to vie pin
 75 mesers S miters

 mande

 10fimatios

Orieneriorder Thinking salls
32. Cafatt Describea nes wodd shation thet couc be repintectod by me

38. Ino tiel zenoe The securcy af a tian gwoe is tee posibie ullemce betmeen

4 A motin r-Camumu

LESSON GOAL

Students use quantities for the purpose of descriptive modeling, and report solutions with an appropriate level of accuracy.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

88 Develop:

Descriptive Modeling

- Use Descriptive Modeling
- Compare Metrics

Accuracy

- Decide Where to Round
- Find an Appropriate Level of Accuracy
- Determine Accuracy

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Language Development Handbook

Assign page 6 of the Language Development Handbook to help your students build mathematical language related to descriptive modeling.
EELII You can use the tips and suggestions on page $T 6$ of the handbook to support students who are building English proficiency.

Suggested Pacing
$90 \mathrm{~min} \quad 0.5$ day
45 min

Focus

Domain: Algebra
Standards for Mathematical Content:
N.Q. 2 Define appropriate quantities for the purpose of descriptive modeling.
N.Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students constructed simple equations to solve real-world problems.

7.EE. 4

Now

Students use quantities for descriptive modeling.
N.Q.2, N.Q. 3

Next

Students will construct and solve more complicated equations in one variable.
A.CED. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of descriptive modeling and learn to use appropriate quantities when modeling and the correct level of accuracy to report those quantities. They apply their understanding by using descriptive modeling to solve problems.

Mathematical Background

Descriptive modeling is a way to mathematically describe real-world situations and the factors that cause them. Metrics are used to assign a number to some characteristic or attribute by creating a rule. Measurements are approximations, and thus will be rounded. Accuracy refers to the nearness of a measurement to the actual value of the measure. How measurements should be rounded depends on the limitation on the units.

Lesson 1-6 • Descriptive Modeling and Accuracy

Interactive Presentation

Warm Up

Launch

[^7]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- determining the level of accuracy needed in real-world situations

Answers:
1.1 cup
2.1 inch
3. minutes
4. hours

Launch the Lesson

Teaching the Mathematical Practices
4 Model with Mathematics Encourage students to analyze the given information to understand how the metrics relate to grading scales.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Learn Descriptive Modeling

Objective

Students define and use appropriate quantities for the purpose of descriptive modeling.

Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of descriptive modeling in this Learn.

Common Misconception

Students often believe descriptive modeling is using the four-step problemsolving plan. The four-step plan is a good way to approach word problems, but descriptive modeling has more factors to consider. Encourage students to read problems carefully and consider any metrics provided.

Example 1 Use Descriptive Modeling

NTP Teaching the Mathematical Practices

4 Analyze Relationships Mathematically Point out that to solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

Questions for Mathematical Discourse

AL. What scores will be substituted into the metric? reading, writing, and math scores, and GPA value
ol. After substituting in the values, what operation should be performed first? the addition inside the parentheses
Bhill Suppose an athlete with a 3.3 GPA scored a 600 on reading and writing, and a 610 on math. Would the student qualify as an athlete at the university? Explain.
Yes; sample answer: $\left.2\left[\frac{(600+600}{2}\right)+610\right]+$ $70=121+70=191$, and $191 \geq 186$.
(continued on the next page)

Interactive Presentation

Learn

Interactive Presentation

Example 1
 descriptive modeling problem.

[^8]
Common Error

When students are presented with multiple grouping symbols inside an expression, they may make careless mistakes when evaluating. Remind students to start at the innermost set and work their way out.

DIFFERENTIATE

Language Development Activity 태내

Discuss grouping symbols, like nested parentheses or brackets, with your students. Point out that absolute value symbols can also act as grouping symbols, as in Example 3 of Lesson 1-5.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Compare Metrics

Teaching the Mathematical Practices
5 Use a Source Guide Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse

AL. What is the difference in predicted heights for the son using the two methods? 1.21 inches
ol. Using the Doubling Method, what would be the predicted height of a girl who is 31 inches tall at age 18 months? 2(31) $=62$. Her predicted height is 62 inches.
34 Which metric seems to be a better predictor of height? Explain. The Gray Method; sample answer: The Gray Method takes into account the height of both parents, rather than just the height of the child. The parents' heights have a lot to do with how tall their children will be.

Common Error

Students can get overwhelmed with multiple solution pathways, and wonder which answer is correct. Remind students that the metrics can only predict height, so both solutions are possibilities.

DIFFERENTIATE

Reteaching Activity ALI

IF students are overwhelmed by descriptive modeling problems,
THEN have them underline or highlight important information given, such as metrics and data, which can be used mathematically as a helpful first step when solving these problems. Then, have students discuss their solution methods with each other.

- Example 2 Compare Metrics

Neiown \mathbf{A} chicrs sdult height can be predicted using several metrics. Given the helpht of the mother. fother, and their son at 2 years oid, use the metrics to predict the son's neight as an adult.

Methed 1 The Gray Method
 the gender of ple child Foc a boy, the forther's height is mutipted by $\frac{7}{2}$, end for a git, the fathers helight in mutiplied by?

$=\frac{3.65+72}{2}$
$=\frac{7042}{2}+73$
$-\frac{4742}{2}$
-7121
Wikply ${ }^{9}$ antife

Epoty
Uuing the Gray Method. the boy wel be about 71 inches tal as an adulf.

Method 2 The Doubling Method

The Doubling Method mutiples the height of a chidd br 2 at a spectic age fo predict the chlds? height as ar adift Hefigtt at 24 months is uned for boys, and height at tis montiss is ined for gals.
2 - noighe of child
-2.35
mincinegtu if 35 hacriet
$=70$
Sumby
Uing the Doubling Method, the boy will be 70 inches tat ms ma adut.

Use a Source Fina inblomation 10 creste a mertli 10 osabue wometing that is important to yeu. Explain how your metic incudes tue lectors that you fivik re inportant to messure.

Sumple answer in

 Iscroise, ball ccatral can be meatsured by a asin's riestpercentage dinided by their nide percentape: A tomily cieser perceetrige lr equan to he nusber of
toccesshul doans thy a
tesim sivided by the
number of stterpted
percmanageis rqual to
percomige is equa ne number ol team's opperient divised by the apposeer a abempled number of dears. This number al cears. ith because it heloss te because a help eflectroty a feam eon winsition from defeese to ettense.

Interactive Presentation

Example 2

Interactive Presentation

Learn

CHECK

Students complete the Check online to determine whether they are ready to move on.

Learn Accuracy

Objective
Students choose a level of accuracy appropriate to limitations on measurements when reporting quantities.

Teaching the Mathematical Practices
6 Use Precision In this Learn, students learn how to calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

Common Misconception

Students often think that decimal answers are easier and better than fractional answers. When dealing with accuracy and measurement, it is important to pay attention to rounding. Decimal answers may be less accurate than fractional answers if they are not rounded appropriately. Remind students to analyze the context of the situation and the limitations on the tool of measurement when determining whether to use fractions or decimals.

1 CONCEPTUAL UNDERSTANDING

© Example 3 Decide Where to Round

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about accuracy to solving a real-world problem.

Questions for Mathematical Discourse

AL. How many total miles will the three friends drive? 172 miles
OII Why does the answer $57 . \overline{3}$ not make sense? Sample answer: Using a car's odometer, it would be impossible to measure $0 \overline{333}$ of a mile while driving.If Damien instead had three friends on the road trip, would the distance each person should drive need to be rounded? Explain. No ; sample answer: They would each need to drive 43 miles. There is no decimal mileage, so the answer is exact.

Example 4 Find an Appropriate Level of Accuracy

Teaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Questions for Mathematical Discourse
AL. What information is needed from the problem to calculate the total driving and flying time? driving time: 12 miles and 1.3 miles per hour; flying time: 897 miles, 1381 miles, and 287 miles per hour
OLI What formula is used to relate distance, speed, and time? distance $=$ speed \cdot time, or speed $=\frac{\text { distance }}{\text { time }}$How can you use the given units to help determine which operation needs to be done to solve the problem? Sample answer: You are given miles per hour, which tells you that a distance has been divided by a time. To cancel out distances, you will need to divide miles by miles per hour and, and you will be left with hours.

Q Example 3 Decide Where to Round
goad Thas Damien and two of his fflends are taking a road trip. They plan to share the responsibility of diviving and wilt each drive They platit distance. Dimien's GPS shows that the totel distance is 172 miles. Determine the exact distance that esch person should drive. Then determine a mose appropiate driving distance for each person given the limitations of the situation.
Po determine the exsact distance ench person should dive, avide the fotsis dostance by 3

72 mbes $+3=523$ mile

Becsuse the distance given ty the GPS is accurme to the nearest miv. the cistance evch sever will drive ibould be rounded to the pesiest. mile fach diver will drive acost 57 milen.

Chock

vacation aichiro has sawdd $\$ 400$ to spernd on his 7 -day vacation. He plans to budget his $\$ 400$ by spending the same atiount each day of the vacation Determine bre appreprote amount he should spend each der.
ह? 578

Q Example 4 Find an Appropriate Level of Accuracy shice shutrix in 2012 , Nasair space ahuttle Endeover traveled appraximately Spy miles from the Kennedy Space Center to
Houston, Yexes, by a shuttle carrier nircraft. Then it traveled about T381 miles to the Los Angeles International Airpert. Finali, a truck pulled finderover ti2 miles through the atreets of Los Angeles to the Calitornia Science Center.
It the ahutsle carrier tircraft fiew ot an average speed of 287 mìes per hour and the truck puited Endeovor at an avecage speed of 13 miles pee hour, determine the totat amount of time ipeed Endeovar to travel itom the Kennedy Space Center to the Cantornia Science Cepser with a reasonablo level of accuracy.
Blecause ube pans of the space shutles journey hom the kenoed Space Cernep to Hoxiston and then trom Houston to Los Angews are al the seme speed add those two druances. $897+1381$ er 2278

The fotur vavel pine for Enceovor from the Kernedy Space Center to the Caiffornia Sclence Center was about 11 hoves.

Interactive Presentation

Example 3

TYPE

Students decide how a total cost should be split among friends and discuss the limits of the accuracy.

PThink About It The tota cost of tivel for Me tip was $\$ 20.11$ they splat the cost equaly, how euch thould tach pierion per? What suit of mensure limiss the scuracy of eno olviont
\$6.57, semple atrawer Because maney con caly be rounded to ese norest propy, of the ceursyof the soburion 5 linitied.

Q Faik About it Wy a s une monatio lo sey ung rimok rima reach the science tente?

5ample armwer: sechace many of lae poret givere in the problem are neprommatons or wrespes, it is mot posisle to calculate the esact tifie.

Interactive Presentation

Example 5

SELECT | Students select the correct answer to |
| :--- |
| show they understand the appropriate |
| degree of precision. |

CHECK
Students complete the Check online to
determine whether they are ready to
move on. move on.
Students select the correct answer to show they understand the appropriate degree of precision.

Example 5 Determine Accuracy

Teaching the Mathematical Practices
6 Use Precision In this example, students learn how to calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

Questions for Mathematical Discourse

AL. What are the different components of population change? births, deaths, and international migrants
Ol. Consider the birth and death rates; will the population change be positive or negative for each 15 seconds? Explain. Positive; sample answer: On average, 2 babies will be born in 15 seconds while only one person will die.
Bil. Why will we never know the exact population in the United States? Sample answer: The population changes so quickly with births and deaths and other factors, we cannot count the exact number of people at any one time. Even if we could, that number would change so quickly it wouldn't be accurate for long.

Essential Question Follow-Up

Students have begun learning about accuracy and rounding answers. Ask:

Why is accuracy important with measurements? Sample answer: Accuracy is important because it allows us to represent measurements to the necessary degree of the actual measurement. In track events, time needs to be measured more accurately than in a basketball game.

DIFFERENTIATE

Reteaching Activity ALI 픈

IF students are confused about rounding measurements,
THEN have them list potential rounded answers and discuss which answer makes the most sense. For example, if you need to make 8 goody bags with 17 treats divided evenly among the bags, how many treats would each bag receive? Students could write down 17/8, 2.125, 2.1, and 2. Discuss how the first three do not make sense since you cannot put part of a treat into a goody bag.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-20$	
2	exercises that use a variety of skills from this lesson	$21-28$
3	exercises that emphasize higher-order and critical-thinking skills	$29-31$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-27 odd, 29-31
- Extension: Appropriate Units

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Convert Customary

Measurement Units

- Personal Tutors
- Extra Examples 1-5
- ALEKSU.S. Customary Units of Measurement

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Convert Customary Measurement Units
- Quick Review Math Handbook: Descriptive Modeling
- ArriveMATH Take Another Look
- D ALEKSU.S. Customary Units of Measurement

Practice

samel:

1. IST cooess A macher comperes the rato of the ninber of asstoos anwered

 the lesst mimber of questons a itcuett can answer cossctby to eeve in A or oove tem 3?

 mesic to deterfeine whether a person pains s diver's acempt in ol tate se bul mumber of posvile ponts in the wrem porton of the abier's wish is 36 . A perrico wer pass the wircipen portion of the alvers enan by coing bex or gwisec The tabie shows pe mund ot osets onterect people kemed os ghe wniten sorton of the

2. tracr A colego tack conch compares the rato of sme t bies s fumer to pun

 ve wount lit mecents

Genver 3

 Plumber for iss houl. Fins 1me cont ot revice
7. envestrad Hector is oeviding boe much he stowid inest sech your. The

 10 wars or liss and $\$ 50.060$ tor as emplogev mat has been in De sume

Fonewn 3

8. Mostr judan hes s20ss whee amary 3 people. Jordon spes $20+3$ irmo sin

 she peve esch initene P? mack pem
 Acpuaimuser, 60 people withe aneniding tre bispivt 118 pecple con te

9. Oavivor (inay wints is peat fowies in a nariow rectangitu plot trat in 1 foot by
 How many piants shood me buy br ple padee \&s
10. Levectaide Juben has 64 bunces ef lethonabe to divise mong 9 spoppe. When
 How much ineonsto thould to piet to ench periont about 10 oukce:

Fumat

 Ther volc ambin at of the 100 cookins te 5100 esch. The soart sibo sectivec
 level of eccovas. $\$ 200$
25. Eureases Sopitio spends an merage or ses pee nocri se clowing. not

 pricsces the plana tor an wermege of 20 mintes per day and we procices
 prictiong th a your with a rewonnole lowed of scousky: 524 houn

Enowe 1

 Try petilk.
 abk foce How accuntr a the sponp Eqtin yout temoning. The muthomatcom woocicicand may viry dupendioy on the und coplectect.

Micent feverver

 mulr be gevber man a equal ts 0es. Find the munber d hree trows made and

 Coperter memure Ve Mongh in feet, ieches, motits, or Aicmiters 1o de nost nembark: Mibecis the inalent vint given

24. Horuh miod hasha and fiever ase doirg research aboutve Seer pepuition

 the ine tiat morir doseny upproximaser 10, date in the scatter plat Use Be grapat for berchees 25-20.
25. stivictuet Desoibe tev lre in werns of sccusey

26. usi essouncoi the tre ins to mopotimute we cuncer 26. usk istuancor ube tel ins lo mopromine ver

 wrape eilly terppentive:

 ppymectit the wane sor exte carpany then utich of itele mortyoge ceripain.

9 Highie-Order Thinkiog stilb

 bibs oc the amesit if rutes an smployst genertes
 reperment Four utweets meigh me some sanole uivo atlenent sciles.

$$
1009 \text { 1049 } 105910250
$$

50 meditr-bgmum

Review

Rate Yourself 级自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.
-Why is order important when evaluating numerical expressions?
-Why is it important to use a variable in a real-world situation?
-Why may we need to evaluate algebraic expressions?
-When can absolute value model real-life situations?
-Why is accuracy important with measurements?
Then have them write their answer to the Essential Question.

DINAH ZIKE FOLDABLES

태II A completed Foldable for this module should include the Key Concepts related to writing and simplifying expressions, properties of real numbers, absolute value, descriptive modeling, and accuracy.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Relationships Between Quantities and Reasoning with Equations and Expressions and Equations.

- Interpret the Structure of Expressions
- Use the Structure of an Expression to Rewrite It
- Write Expressions in Equivalent Forms to Solve Problems

Test Practice

1. Mutnple CHOACE Which is equivaterg no $2^{\text {b }}$ A. 10 IT
A. 10
B. 16
C. 24

2. mutn seuct The table shoms the picel of severil hens at a move thester. Which apressions represent me fotul cost af 4 marie tichats. 2 poporins and 1 bottied water? Select alt ohat appily, samum is

nem	cent
Tickent.	5975
Prpecoen	\$0.25
Sodo	\$5.80
Water	\$475
Boxut Concy	S350

(4) $4.9751+216.250+4.75$
(8. $4(975)+2 / 550 \%+475$
© $39.00+12.50+475$
D. 54.75
e5625
3. OPEN RESPONSE White an algetrnic eppression that repretents five hives the quonsty rincrecsed by rivin minus fou cubed sman 1/7
$5 x+n-4$
4. muchate choice What is the value of the expression $9 v^{\prime}+4 x-11$ when $x=3.2 y$ Experess your answer is a decims, founded A. 20232
B. 30.6
C. 59.4

C9396
5. Muliple choice which algebric
expretsion represents the wertw
expression the product of five ond d
numben, decreosed by elewen? ibmesia
48 $5 n-1$
8. $\pi 1-5 n$
C. $5 \mathrm{gr}-1 \mathrm{~T}$
$0 . \pi-6 n+5)$
6. Open reseonse Evaluate the expeetion

0
7. Mutrife CHOICE Which expression is NOT a war to represent $2 \cdot 3 \frac{5}{6}+2 \cdot 12+2 \cdot \frac{1}{6}$? tivion kA
A. $2\left(3 \frac{5}{6}+12+1 \frac{1}{5}\right)$
© $2 \cdot 5+12$
C. $2(5+121$
0.34

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 1-1 through 1-3
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
ALI Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-17 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$1,4,5,7,12$
Multi-Select	Multiple answers may be correct. Students must select all correct answers.	2,10,
13,14		
Table Item	Students complete a table by entering in the correct values.	9,11
Open Response	Students construct their own response.	$3,6,8,15-17$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
N.Q.2, N.Q.3	$1-6$	16,17
A.SSE.1	$1-2,1-3$	$3-6$
A.SSE.1a	$1-4$	11,13
A.SSE.1b	$1-1$	2
A.SSE.2	$1-1,1-3,1-4,1-5$	$1,7-10,12$ 14,15

E. OPEN RESPONSE AyMm, a chet wants to Setermine how many mosls she scoked in one evining toe lable shows ve lour mean wree served esch minal linembli

Mex	Number of Puocte
Lusagu	23
Spapheais meutama	21
Steak s Protusien	19
String Sceme	u

She ises the following ssops to determase how macy total meals she cooked.
$\operatorname{sen} t \cdot 27+21+19+13$
$\operatorname{sep} 2: 27+13+2 t+79$
Steg $3:(27+13)+(21+79)$
Seep 4:40 +40
Step 5x 00
Which poperty did mpumi uwe in Sseep 3 ? Associafive Propenty
9. ODEN ReSPONSE indicme whether pach of the statements is mue or foise aenns 13 ? A. $4 / 6-2 \times 3$) $=0$ thue
B. 1 Y $3^{1}-9$ 㘯 $+2\left(\frac{1}{2}\right)=0$ Rahe
C. $4 \cdot 0+4^{2}-2^{\prime}-(2+2 \cdot 3)=0$ Due
10. Munhsfiect Which expreviont coukd be uned to evalute 4tib 2 ग?
A. $4=20-7$
(B $_{1}(420-2827)$
C. $1400-189(27)$
(418) $20+7$
(2) 418 ic30-3)
14. Muthseizct todicate whether each expression represents the werbal eapression negative seven tines tho promity mble in
manvi deven isuseste
$\mathrm{A}-7 \mathrm{~m}^{t}-17$
(e-73m)-71-10
C $-2 \mathrm{tm}-77$

- $-2 t m+77$
E. $-2 \mathrm{tm}-11$

1. $-7 m^{2}+77$
2. Muthete Orouce wich is the simplifec

A $-96 m+9 k-13$
(8) $-160-72 k+104$
C. $-10 \mathrm{~mm}-72 \mathrm{k}-104$
C. $76 \mathrm{~m}-72 \mathrm{k}-104$
3. Muin-sezect A group of 5 arstas plans to attend a quibing clios and parchase lunch. (cumen

Quilting
Classes
图
Each class $\$ 10$
Each lunch \$14

Which expretsonem regresents me ions cos tor at 8 atists?
A. $8 \mathrm{COH}+14$
B. $20(8+34)$
(3) 3 , $0+141$
D. $80+100$
$880+112$
14. Multh-seuect it x and y are both integers. which expressionesiare equiviert to

5 $|y-x|$
B. $|y+x|$
© $x 1-x|x| x \leq y$ and $x \geq 0$
D. $|x|-y|y| y>x$
E. $|n+|x| i d y>x$
15. cper मesporise What is the value of the expression $4:+2 / 4 x-9$, when $x=-2 ?$ semint
67
26. Open arsponest A player's seconory miveroge (Siccal is a way so took se the exts boses psinod wenoveregwd so baming sverage. The formhlo for SecA is
 bases. H is hts. 8 is boses from bals of pines cought steoling. and A is bimes at bat

 \begin{tabular}{|l|l|l|l|l|l|l|}
\hline Rnowe \& 106 \& 188 \& 39 \& 22 \& 3 \& 330

\hline

\hline Cisi \& 397 \& 04 \& 45 \& 2 \& 0 \& 279

\hline Ranot \& 139 \& 14 \& 23 \& 0 \& 0 \& 251

\hline
\end{tabular}

Find esch pimeris SecA Round to the nemest fundredth if necessary. lituen th

IT. OPEN Respowse A makking manager bought 4 sobvertsements for $\$ 1345$ ebch bought 4 aovertsements for $\$ 1345$ each Sce ivpoted to her wipenisor thot she spent about 54000 out of her budget. Oid to a reasonabie level of scryantyl Expluin. Sever

Wor sample answer: The managorecounded town, but actually spent maxh more than $\$ 1000$. 1 l wopld thive been bettec io report spreatec amount so that it was clean her bodpet was not overipont.

Equations in One Variable

Module Goals

- Students solve linear equations in one variable.
- Students solve proportions.
- Students use formulas to solve real-world problems.

Focus

Domains: Number and Quantity, Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Also addresses A.CED.3, A.CED.4, and N.Q.1.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

Coherence

Vertical Alignment

Previous

Students wrote and solved one-, two-, and multi-step equations in one variable.
6.EE.7, 7.EE.4a, 8.EE. 7

Now

Students write and solve equations in one variable. A.CED. 1

Next
Students will construct equations in two variables.
A.CED. 2

Rigor

The Three Pillars of Rigor

To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY $\mid 3$ APPLICATION

```
EXPLORE \(>\) LEARN
```


EXAMPLE \& PRACTICE

Suggested Pacing

Lessons	Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video		1	0.5
2-1 Writing and Interpreting Equations	A.CED.1, A.CED. 3	1	0.5
2-2 Solving One-Step Equations	A.CED.1, A.REI.1, A.REI. 3	2	1
2-3 Solving Multi-Step Equations	A.CED.1, A.REI. 3	1	0.5
2-4 Solving Equations with the Variable on Each Side	A.CED.1, A.REI. 3	2	1
Put It All Together: Lessons 2-1 through 2-4		1	0.5
2-5 Solving Equations Involving Absolute Value	A.CED.1, A.REI. 3	1	0.5
2-6 Solving Proportions	A.CED.1, A.REI. 3	1	0.5
2-7 Using Formulas	A.CED.4, A.REI. 3	2	1
Module Review		1	0.5
Module Assessment		1	0.5
		14	7

\square^{-}Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students determine which equation has been solved correctly and explain their choices.

Targeted Concepts Understand the relationships between numbers and variables in an equation.

Targeted Misconceptions

- When students do not understand the relationships between numbers and variables, they often incorrectly manipulate the numbers and/or variable by either
- "flipping" only one side of the equality,
- leaving the variable in the denominator and trying to "work around it," or
- moving the variable to the numerator without maintaining the equality.
- Students may not recognize a simplified version or may not consider a nonsimplified version of the correct answer.
Use the Probe after Lesson 2-4.
Collect and Assess Student Answers

If the student selects these responses...

1. yes
2. no
3. yes
4. no
5. no
6. yes
7. yes
did not use the proper steps to isolate x. Often students automatically divide the larger number by the smaller number without taking the relationship between the numbers into consideration.
did not recognize the simplified form of $\frac{15}{45}$ (choice 5), or did not consider choice 2 as it is not in simplified form.
realized there is division taking place on the right side of the equation and that multiplication is the inverse operation but did not take into consideration that the variable is in the denominator.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Multi-Step Linear Equations
- Lesson 2-3, Learn, Examples 1-2

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

IGN|TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question.

How can writing and solving equations help you solve problems in the real world? Sample answer: Equations can be written to describe the relationship between quantities in the real world. Solving these equations provides information about unknown quantities.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLDA8LES

Focus Students read and learn about linear equations.
Teach Throughout the module, have students take notes from each lesson on the appropriate Foldables page. They should include definitions of terms and key concepts. Encourage students to record examples of the various linear equations from each lesson.
(11) When to Use It Use the appropriate page in the Foldable booklet as students cover each lesson in this module.

Launch the Module

For this module, the Launch the Module video uses sports to demonstrate how equations can be written and solved in the real world. Students learn how equations, formulas, and absolute value can help calculate unknowns in the sports field.

Interactive Presentation

Module 2 • Equations in One Variable 63

What Vocabulary Will You Learn?

ELLI As you proceed through the module, introduce the key vocabulary by using the following routine.

Define An equation is a mathematical statement that contains two expressions and an equal sign, $=$.

Example $3 p+7=2$.
Ask Does this statement have two expressions and an equal sign? Y es, $3 p+7$ and 2 are both expressions with an equal sign between them.

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- translating phrases into expressions
- multiplying and dividing rational numbers
- using the Distributive Property
- evaluating expressions
- calculating opposites and absolute values
- determining whether two ratios are equivalent
- translating sentences into equations

D ALEKS'

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the topics in the Linear Equations module-who is ready to learn these topics and who isn't quite ready to learn them yet-in order to adjust your instruction as appropriate.

Mindset Matters

View Challenges as Opportunities

Part of cultivating a growth mindset in math involves viewing challenging problems or tasks as an opportunity to learn and make new connections in your brain.

How Can I Apply It?

Encourage students to embrace challenges by trying problems that are thought provoking, such as the Higher-Order Thinking Problems in the practice section of each lesson. Remember to regularly remind students that each new challenge is an opportunity to grow!

Focus

Domain: Algebra

Standards for Mathematical Content:
A.CED. 1 Create equations and inequalitiesin one variable and use them to solve problems.
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.

Coherence

Vertical Alignment
Previous
Students evaluated and simplified algebraic expressions.

6.EE.2, 6.EE.3, A.SSE. 1

Now

Students translate between sentences and equations and use them to solve problems.
A.CED.1, A.CED. 3

Next
Students will solve one-step equations with the four operations.
A.REI. 3

Rigor

The Three Pillars of Rigor

ONCEPTUAL UNDERSTANDING	2 FLUENCY	PPPLICA
Conceptual Bridge In this lesson, students develop understanding of equations by expanding on what they have learned about expressions. They build fluency by writing and interpreting equations, and then they apply their understanding by interpreting solutions.		

Mathematical Background

Variables are used to represent an unknown amount when writing equations from a verbal sentence. The ability to write an equation from a verbal sentence is needed when solving word problems. When a verbal sentence can be translated into an equation that states a rule for the relationship between certain quantities, the equation is then called a formula, and can be used to solve problems involving those quantities.

Interactive Presentation

Warm Up

Launch the Lesson

[^9]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- translating phrases into expressions

Answers:

1. $12 \div n$
2. $n+8$ or $8+n$
3. $n-2$
4. $p \div 4$
5. $3 n$

Launch the Lesson

Teaching the Mathematical Practices
2 Represent a Situation Symbolically Encourage students to define all variables before writing an expression about the number of songs that can be downloaded on a digital media player.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class

Explore Writing Equations by Modeling a Real-World Situation

Objective

Students use a real-world situation to explore how to write equations.

119 Teaching the Mathematical Practices
 2 Represent a Situation Symbolically Guide students to define variables to solve the problem in this Explore. Help students to identify the independent and dependent variables. Then work with them to find the other relationships in the problem.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will use a drag and drop activity to help organize the presented information before considering algebraic representations. The guiding exercises will lead students to write an algebraic equation involving the given information. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Explore

DRAG \& DROP

Students drag items to represent the given situation.

Students answer questions to show they understand how to write an algebraic equation.

Interactive Presentation

Explore

TYPE

Students respond to the Inquiry Question and can view a sample answer.

Explore Writing Equations by Modeling a Real-World Situation (continued)

Questions

Have students complete the Explore activity.

Ask:

-Why does it help to define your variable when writing an expression? Sample answer: In order to define the variable, you have to think about the part of the problem that is unknown. Then you can see how the other values are related and come up with the expression.

- Would both sides of the equation change if Garrett used 7 sleeves of cups? What is the new equation? Yes; sample answer: Garrett would need to use 7 of the sleeves that are outside the box, which would change the expression to $6 n+5$. The total number of sleeves would also change, $162-7=155$. The new equation is $6 n+5=155$.

(4) Inquiry

What steps can you use to write equations to represent a real-world situation? Sample answer: Identify the unknowns, write two equivalent expressions, and use the expressions with an equal sign to write the equation.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Writing Equations

Objective

Students create equations that describe relationships by interpreting words as mathematical symbols.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

Common Misconception

Students may believe that the order in which terms are placed in an equation does not matter Point out that subtraction and division are not commutative and the order in which terms are subtracted or divided does matter

Example 1 Write an Equation for a
 Sentence

Treaching the Mathematical Practices
2 Create Representations Guide students to write an equation that represents the sentence in this example.

Questions for Mathematical Discourse
Ali. How many operations are in this equation? 3
OU. Why is the expression on the left not $\frac{7}{x}-20$? Sample answer: The word minus lets you know that the quotient is being subtracted from 20.
[BI. Why does the order matter in a division expression? Division is not commutative and the terms cannot be interchanged.

Common Error

Students may not realize the word twice means multiply by two. Point out to students that twice or double mean multiply by two while triple means multiply by three.

(Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

TYPE

Students answer a question to show they understand the difference between an expression and an equation.

 nemook.
Step 2 bierefy the givens and their mutatiomahip. Toe givens are:

- 799 leens wece sutveyed.
- Some number of the weens use s socid network.
- 430 of those con a social setwork swy people their age a "mostly kne onine. The other 193 do not.
The 439 and 193 erake up the gooup on a socisi netmonk, The rest of the 799 surveyed ate not on a socisl ienwork.
Step 3 Whe the sentence as an equation
The sum of the teens on a vocist network and trose not on a rocial netrick is 799
$(430+19)+n=799$
Check
retaoova Elu has read 12 of me 32 chupters in his assigned book. He plans to tirish the book by reading cctupters each for 8 dsys ums the

A. $12-8 c=32$
B. $12+\frac{5}{1}=32$
C. $12+3 c=32$
D. $12-\frac{1}{1}=32$

66 Mesie 2, toumpsin Ow virees

Interactive Presentation

Example 2

Example 2 Write an Equation

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about writing equations to solve a real-world problem.

Questions for Mathematical Discourse
AII Is it possible for a surveyed teen to both use a social network and also not use a social network? no
OL- Does the remaining "193 did not" refer to teens who do not use a social network or to teens who are not "mostly kind?" Explain. Teens who are not "mostly kind." Sample answer: The part of the sentence right before this phrase gave information about "mostly kind" teens, which means the remainder of the sentence would be about the same topic.
1B1 How would you solve for n in the equation? Explain the steps. Sample answer: First I would simplify the numbers inside the parentheses to get $623+n=799$. To solve for n, I would subtract 623 from both sides giving $n=176$.

DIFFERENTIATE

Reteaching Activity ALI 픈

IF students are having difficulty identifying the mathematical meaning of words,
THEN have students make a list of words or phrases they do know and put other words or phrases they do not know next to the ones they most closely match; discuss with another student, then rearrange, if needed.

Enrichment Activity [BII

Write and simplify a variable expression to determine why the following works.
Think of a number. Multiply by 10 . Add 5 to your result. Next, subtract 3 .
Then add 2. Next, subtract 4 . Divide your result by 5 . Finally, subtract your original number. Your result is your original number.

$x=$ number	Simplify: $(10 x+2+2-4) \div 5-x$ Subtract.	
$10 x$	$(10 x+4-4) \div 5-x$	Add.
$10 x+5$	$(10 x) \div 5-x$	Subtract.
$10 x+5-3$	$2 x-x$	Divide.
$10 x+5-3+2$	x	Simplify.
$10 x+5-3+2-4$		
$(10 x+5-3+2-4) \div 5$		
$(10 x+5-3+2-4) \div 5-x$		

1 CONCEPTUAL UNDERSTANDING

Example 3 Write an Equation with

 Multiple Variables
Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

ALI What variables are used to represent the unknowns? P, ℓ, w
OL. What operations occur in the given relationship? multiplication and addition
31. What is the perimeter of an equilateral triangle, which is a triangle whose sides are all the same measure? Sample answer: $P=3 \mathrm{~s}$

QEssential Question Follow-Up

Students have begun writing equations including real-world situations.

Ask:

Why is it important for you to be able to write equations to help solve problems in the real world? Sample answer: I need to be able to write equations for problems in the real world because this will help me quickly set up and solve problems that I may face.

Learn Interpreting Equations

Objective

Students interpret equations that describe relationships by interpreting mathematical symbols as words.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

```
Example 3 Wite an Equation with Multiplo Variablos
*iOMerier Translate the sentence inso a formula.
The perimeter of a rectangle is twice the sum of the length and
the wisth.
Step 1 ideraty urimowins.
    perimetex the length, mod the wouth
Step 2 Aasign variables.
    Let }P=\mathrm{ permostec.f= length, and w = width
Step 3 ldentyy the giveos and their releponstips.
    rwice meons nwo simes
    Tulce the sum means you odd flom, mhon mulypy.
Step 4 write an ecoation
    Toe formain for the perimeler of a rectangle is p=2l +m
Check
Transtate the sentance info a formula
*WOTOES The nossepower of a motor is the product of the motor speed
and the torgue diviced by 5252. It
A. H= 5%%%%
c. }H=\frac{52,}{4%
D. H=52%%M
Baçis Plail and cimsuion riein bagees are the most popute favocs Each ywa. 24 milipo more than twice as many pockages of plain bugets are sold as cinnamon rahin. There were 136 millon packages of pobin sugpeis sold last yeoc. Creste as equatos that can be uned to find the mumber of milhoss of packages af cinnamon raibin bageibs fisold tast yene
\(336-2 C \cdot 24\) OR \(136=24+2 \mathrm{OR} 2 \mathrm{O}=24=136 \mathrm{OR} 24+2 \mathrm{C}=138\)
Learn Interproting Equations
Leok for the relesonsiips in an equaton by interpevting each part of the expressions in the equation.
As you invepret an equation ense tesciesents a realsfe shaution, convider chat the equation may be viemed as a constraist in the Shaston in mathematici is constraint is a condocin thit it solytion moist smaty. These condions finit the rumber of possible solution. The soldons of the equation meet the construints of the problem.
```


QTrimkabout fo

```
Why is a selphat bo
identy all the
\(1 a^{2}+{ }^{2}\)
writing in regution?
Sample amwer: ideectiong pe unknowns abown you to asigh vesistles esd begin to identify the retationshide between the unknowns.

\section*{Interactive Presentation}


Example 3
\begin{tabular}{ll} 
TAP & \begin{tabular}{l} 
Students move through the steps to write \\
an equation.
\end{tabular} \\
Students answer a question to show they \\
understand why defining a variable is an \\
important first step.
\end{tabular}

\section*{Interactive Presentation}


Example 4
 understand how to decide which possible answer choice makes the most sense.


\section*{m-1-1}
amiantion


Students move through the steps of writing a sentence.

68 Module 2 - Equations in One Variable

\section*{Example 4 Write a Sentence for an Equation}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

AL. What words could we use to represent the operations in the equation? Sample answer: for multiplication: product of or times; for subtraction: difference of or minus
[OU- Does the phrase difference of change the order of the terms in the equation? no
느․ What is another way to write the sentence using different words? Sample answer: Five is one less than the product of two and \(z\).

\section*{Common Error}

Remind students that there is often more than one way to translate an equation into a verbal sentence. They should pick the words they are most comfortable using to ensure accuracy.

\section*{Example 5 Write a Sentence for an Equation with Grouping Symbols}

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse
AL. What operations appear in the equation? multiplication and addition
OL What words could be used to represent the operation in the parentheses? sum, plus
[BLI How would the equation translate if there were no grouping symbols? Sample answer: One more than three times \(y\) is 12 .

\section*{© Example 6 Interpret an Equation}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about interpreting equations to solve a real-world problem.

\section*{Questions for Mathematical Discourse}

AL. What does the variable \(S\) represent in the formula? surface area
OL. What do the other three variables in the equation represent? \(\ell\) represents length, \(w\) represents width, and \(h\) represents height
B1. Instead of writing two times length times height, how else could you represent the same expression? Sample answer: twice the length times the height

\section*{Essential Question Follow-Up}

Students have begun to translate equations into sentences.
Ask:
Why would translating equations into verbal sentences be a helpful skill? Sample answer: I need to understand what an equation represents, and if I can write a sentence from an equation, I will understand the parts of the equation.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity \(A\) 닌ㄴㄴ․}

IF students are having difficulty translating equations into sentences, THEN have students work with a partner to take turns pretending to be the teacher who calls out a verbal expression for which the other student is to write a numerical or algebraic expression.

\section*{Language Development Activity 지닌}

Beginning Reinforce the use of visual context to derive meaning through examples of environmental print that can be used to write equations such as discount signs and road signs you find online. Pantomime or elicit one-word responses to the meaning derived from such images.
Intermediate Provide images to illustrate problems that students can work in pairs to solve. Move around the room to monitor progress.
Advanced High Provide an image and have students use it to write an equation. Have volunteers share their problems with their group.

\section*{Check}
\(x_{0}+230-102\)
A. Seven imes the sum of \(\rho\) and twenty stree is the same as one nvoded time:
a Sowan times \(p\) ptes twentrytree equals one tundied too
c. Seven smes the quantily o plus trenty-theet equals one hundred two.
D. The quassty seven times \(p\) plus twenty-fhree a the same as one huidered two.
e. Seven sires the sim of pand twenty spree hoop hundred two

Example 6 interpret an Equation
ofomener Withe a sentence for the formita
for the surface area of a rectangular prism
\(S=2 l w+2 c h+2 w h\). Then interpret the
equation in the comest of the situation.
From the equation, we see that the suiface ares
of a rectangubar prims depenos on the leegh
withe, and height.

- The fist term. 26 w is two times the ares of a rectangle, in ine pism above the ares of the bomoen face is for. The tog is the some thpe, 90 ? has the same aros This term represerts the
sum of the areas of the botbim and loo taces
- The second ters. 203, is the sum of the armes of the front and back toces.
 taces
Sa, me virtace wea of the rectanguiar priam is the suis of the aveas of the tices

OThink About ft
whot words
comnemote proving
porbolk in in eprension or equeson?

\section*{Sasiple inswer the} unstidy sometimen me sum the the ofference

Think About le
Wher did you aheady tecw thit thetped you ieserperet the formulat

Satple minver the Hupe of a peetangute orisne, the formula
© Go Ontine
Kou can watch a wides
to see how to use eqgeter tiver wher thy

\section*{Interactive Presentation}


Example 6



\section*{Interactive Presentation}
```

Ouestion 3

```

```

muta

```


```

Nat*

```


```

 Mmorve
    ```


```

 *"+we
    ```


\section*{CHECK}


Students complete the Check online to determine whether they are ready to move on.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-36\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(37-49\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concept learned in this \\
lesson to new contexts
\end{tabular} & \(50-53\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(54-61\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-53 odd, 54-61
- Extension: Guess the Number
- © ALEKS'Writing Expressions and Equations

IF students score \(66 \%-89 \%\) on the Checks,
THEN assign:
- Practice, Exercises 1-61 odd
- Remediation, Review Resources: Write Algebraic Expressions
- Personal Tutors
- Extra Examples 1-6
- ALEKS'Evaluating and Writing Expressions

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Write Algebraic Expressions
- Quick Review Math Handbook: Writing Equations
- ArriveMATH Take Another Look
- DALEKS'Evaluating and Writing Expressions

Practice
tumpl:
Write an equition for esch seevence.
1. Teo adjed ss tiree ines a furiber mis ve uncan 18. \(3 n+2=18\)

2. The quobient x 24 and \(x\) equals 24 minan 2 times. \(19=24-2 t\)
 \(25-9 y=n 4+n\)
kancol
5. wainned Ly tan maked 2 mibn ther poar is sp wak 6 mies. Lay plant so teech nur gook by waking I nites each tou f for see revt of het wak. Wree an equation tow goor by waking ? mies econ hou h for bep rent or her wak whe an
6. Mult Pribis bas sompictod 24 oce 42 nuth ploblenss the was aswiged fon

 complesa her matt homwobv asporment \(2 t+8 t w 42\)

 ato do nct ploy basketbat le +31 +o= 10 ?




\section*{cums}

Tramiste eseb sentence into an equation or formata.
2. Tefice o incresses ty the cibe of o esunds 0; \(\quad 2 z+e^{i=h}\)





soes a a i ande \(p=1+0+6\)


72. Sirmele intersst is computed by fidang we prodict of the pincipal anouft \(\rho\), , the
    sterest ine cand the tine \(t\) is pt
4. The matace ares of siectangiar prisn is 2 sines ve suine of the weth. ik. Smet


\section*{Turgentives}

Wite a sentence for esch equation \(19-30\). Semple numen plats


22. \(7 p+23=302\)


23. \(3 v+\frac{1}{4}-\frac{3}{3} v^{2}\)

Tro ntiss of rplon tieet fowervis
defticel to twe theds al r separme
\(0+10=30\)
8 ans 10 in

\(4 j 0+8]=3 a\)
itivestiose


24. \(\frac{1}{1}-\frac{1}{2} z=\frac{1}{y^{2}} y^{3}\)

yonsed

2t. \(8(2 y-60)=4+2 n\)

\(30 x^{2}-a^{2}=2 b\) plat 2tiop:

mever
whisea ser



 woline wids 8 the Rose ionpth. Sarple anmest: The nime squals be wite length cubed the volune in ne wes of the bose fies ine heipto e \(=\) privicuac \(r=\) nde. and \(t\)-tine
Somple unisur - De indmet - tine













Mired Fisurdaes
For Exavises 37-40, match sech sentence with as equation
A. \(\left.g^{2}-2 g-10\right) \quad\) a. \(\frac{j}{2} p+32-15+5 g \quad\) C. \(g^{3}-240+4 \quad\) a. \(3 p^{2}-30+30\)

38. A mumber 9 to the thiod power is see same os the product of 24 and \(g\) plas \(4 C\)
 a. Phe prosict of 3 ana the square of s ceaver the sims of inaty and me probict of eveand a :
 nnd \(\kappa y^{2}-12=5\)



45. \(4 n-215-\) -
four lisesn equils x time the intirence of five ovan squils
Tanstate asch sentesce into a formis.
4. \(y+3 r^{2}=5 e\) The son af fresetter probut at and the squice of ra a 5 timese.

 w. asd the heigh a . \(V=6\) wht

So. versowng The mer of skichen is fez rower feet This is 20 th of the wean of
 equitonso repesserve vitarton

 copresent line 'luation
 itiatenvip befivest ine rumber offlocevF, edjer \(E\), mo verficen \(V\) of \(s\) pofinedorn wach as a primic wiste the Smiala in worts ther wim of the number al fices ant number of writics is poual to tie tuat of tha sond the number of edges:

53. smuctivet Arecpring conpaty chargis bounhess omets 410 for enct ciki




Orgaher Oeder Thiming sails

Erptan
The prosuct of x and y plet \(r\) requata in


 rentence: Esplim
2. The seraep of the profuct of 4 and a nurber is equil to 8 limes the pion of
 Tresmes mor sebsed

 divite br boe-nat it unvid be \(\frac{1}{2} n+3=8-2\)



 Ser mayin.
52. caiciry Wete a problem abod you feronte hivevivoo yhow that unes the
 rpsedes each pees So tur them wised. Mow miny new enplasdes are left?
 of be faces it Crepsuent fer lenge of the side of scube, with a homita for se wirfoce ame orthe cibe \(5=\mathrm{Er}^{3}\)

 Golitic Seen mipy


\section*{Answers}
56. Sample answer: The area of a trapezoid is equal to the height times the quotient of the sum of the bases and 2 . All of the variables must be positive.
57. Sample answer: Mr. Rhoads ordered 188 math books. The algebra books were packed in boxes of 12. The geometry books were packed in boxes of 10 . He ordered one more box of algebra books than geometry books. How many books of each type book did he order? Let \(a=\) number of algebra books.
61. Sample answer: First you should identify the unknown quantity or quantities for which you are trying to solve, and assign variables. Then you should look for key words or phrases that can help you to determine operations that are being used. You can then write the equation using the numbers that you are given and the variables and operations that you assigned.

\section*{LESSON GOAL}

Students solve equations by using addition, subtraction, multiplication, and division.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

\section*{Explore:}
- Using Algebra Tiles to Solve One-Step Equations Involving Addition or Subtraction
- Using Algebra Tiles to Solve One-Step Equations Involving Multiplication

\section*{Develop:}

Solving One-Step Equations Involving Addition or Subtraction
- Solve by Adding
- Solve by Subtracting
- Write a One-Step Equation

Solving One-Step Equations Involving Multiplication or Division
- Solve Equations by Multiplying or Dividing
- Solve by Multiplying


You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & Al & InE & IIII & \\
\hline Remediation: Divide Rational Numbers & \(\bullet\) & & & \(\bullet\) \\
\hline Extension: Generalized One-Step Equations & & \(\bullet\) & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 8 of the Language Development Handbook to help your students build mathematical language related to solving equations.
IELII You can use the tips and suggestions on page \(T 8\) of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students translated between sentences and equations and used them to solve problems.
6.EE.6, 7.EE.4, A.SSE.1, A.SSE. 2

\section*{Now}

Students solve one-step equations.
A.CED.1, A.REI.1, A.REI. 3

Next
Students will solve multi-step equations.
A.CED.1, A.REI.1, A.REI. 3

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3APPLICATION \\
\hline \begin{tabular}{l} 
略 Conceptual Bridge In this lesson, students expand on their \\
understanding of writing equations and use it to build fluency with \\
solving one-step equations. They apply their understanding of \\
one-step equations by solving real-world problems. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Mathematical Background}

Solving an equation means finding the value of the variable in the equation that makes the equation true. \(\bar{\sigma}\) solve a one-step equation, isolate the variable with a coefficient of one by applying the correct property of equality to maintain equivalent expressions in each step of the process.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- multiplying and dividing rational numbers

Answers:
1. -15.6
2. \(-7 \frac{1}{32}\)
3. -0.8
4. -60
5. 5 cakes

\section*{Launch the Lesson}

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation that models the situation and use it to find the weight of a dog.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

75b Module 2 • Equations in One Variable

\section*{Explore Using Algebra Tiles to Solve One-Step Equations Involving Addition or Subtraction}

\section*{Objective}

Students use algebra tiles to explore solving one-step equations involving addition or subtraction.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use algebra tiles. Work with students to explore and deepen their understanding of addition and subtraction equations.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a drag and drop algebra tile mat to visualize the given equations before solving. The guiding exercises will lead students to solve one-step equations. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore


\section*{Interactive Presentation}


\section*{Explore}

TYPE
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Using Algebra Tiles to Solve One-Step Equations Involving Addition or Subtraction (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- How does using zero pairs help you solve the equation? Sample answer: Zero pairs allow you to cancel values when you have the same number of positives and negatives. We can isolate \(x\), by adding either positive or negative tiles to create zero pairs for any 1-tiles that are with the \(x\)-tile.
- Which tiles would you use to model \(x-3=-8\) ? Which tiles do you need to place on the mat to solve for \(x\) ? Sample answer: \(\overline{6}\) model \(x-3\), place one \(x\)-tile and three negative 1 -tiles on the left side of the mat. Place eight negative 1 -tiles on the right side of the mat to model -8 . To solve for \(x\), add three 1 -tiles to both sides of the mat and remove zero pairs so that the \(x\)-tile is alone.

\section*{(3) Inquiry}

How can you model and solve addition and subtraction equations? Sample answer: Use algebra tiles to model the equation. Isolate the \(x\)-tiles on one side of the mat and then remove any zero pairs.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Explore Using Algebra Tiles to Solve One-Step Equations Involving Multiplication}

\section*{Objective}

Students use algebra tiles to explore solving one-step equations involving multiplication.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use algebra tiles. Work with students to explore and deepen their understanding of one-step equations involving multiplication or division.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a drag and drop algebra tile mat to visualize the given equation before solving. The guiding exercises will lead students to solve the one-step equations. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore

\section*{DRAG \& DROP}


Students drag algebra tiles to represent the given equation.

Students answer a series of questions to show they understand how to solve a one-step equation.

\section*{Interactive Presentation}
\(\square\)

\section*{Explore}

\section*{TYPE}

Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Using Algebra Tiles to Solve One-Step Equations Involving Multiplication (continued)}

Questions
Have students complete the Explore activity.

\section*{Ask:}
-Why does it not it make sense to use algebra tiles to model \(\frac{x}{4}=5\) ? Sample answer: There are only 1 -tiles, \(x\)-tiles and \(x^{2}\)-tiles. Because we can't break the tiles into smaller pieces, it's not possible to model one-fourth of the \(x\)-tile.
- Draw a square to represent \(x\). How could you use this model to solve \(\frac{x}{4}=5\) ? Sample answer: Draw lines to divide the square into 4 even pieces and shade one piece. Write a 5 into the shaded piece to model \(\frac{x}{4}=5\). If one piece is 5 , you can write a 5 into each of the remaining pieces and see that the full square has 5 written 4 times, or 20 , so \(x=20\).
(B) Inquiry

How can you model and solve multiplication equations?
Sample answer: Use algebra tiles to model the equation. Isolate the \(x\)-tiles on one side of the mat and then separate the tiles into equal groups.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

1 CONCEPTUAL UNDERSTANDING

\section*{Learn Solving One-Step Equations Involving Addition or Subtraction}

\section*{Objective}

Students solve one-step equations by applying the Addition Property of Equality or Subtraction Property of Equality.

\section*{Teaching the Mathematical Practices}

3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{About the Key Concept}

The Addition Property of Equality states that if a number is added to each side of a true equation, the resulting equivalent equation is also true. The Subtraction Property of Equality states that if a number is subtracted from each side of a true equation, the resulting equivalent equation is also true.

\section*{Common Misconception}

Students often add or subtract the same number that is with the variable, instead of using the opposite operation. Remind students that to solve an equation, we must use zero pairs.


\section*{Interactive Presentation}


Learn
\begin{tabular}{|l|}
\hline TYPE \\
\hline \begin{tabular}{l} 
Students complete a concept check \\
with two different cases to deepen \\
their understanding of the Addition and \\
Subtraction Properties of Equality.
\end{tabular} \\
\hline Students answer a question to determine \\
whether they understand the Addition and \\
Subtraction Properties of Equality.
\end{tabular}


\section*{Interactive Presentation}


\section*{Example 1}


\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 1 Solve by Adding}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AII. What value are we trying to determine? the value of \(g\)
OL Why do we add 25 to both sides? Sample answer: to isolate the variable \(g\)
131. Explain why we can add 25 to both sides of the equation. Sample answer: The Addition Property of Equality states that if the same number is added to both sides of an equation, the resulting equation is equivalent to the original equation.

\section*{Example 2 Solve by Subtracting}

\section*{Teaching the Mathematical Practices}

1 Understand the Approaches of Others Mathematically proficient students can explain the methods used to solve a problem. The Talk About It! asks students to justify the reasoning of Ann.

\section*{Questions for Mathematical Discourse}

All What value is being added to \(k\) ? 27
OL. Why would the Subtraction Property of Equality be the best choice when solving the equation? Sample answer: We need to undo the addition of 27 and \(k\), so we will subtract 27 from both sides.
BL. How would the answer have changed if the equation were \(k-\) \((-27)=30\) ? Sample answer: The answer would not have changed because \(k-(-27)\) can be simplified to \(k+27\) To solve, we would still subtract 27 from both sides.

\section*{Common Error}

Students may subtract in the wrong order when using the Subtraction Property of Equality. Reinforce to students that subtraction is not commutative and the order matters.

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{3 APPLICATION}

\section*{Example 3 Write a One-Step Equation}

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

\section*{Questions for Mathematical Discourse}

AL. For which tennis player are we interested in finding the number of Grand Slam single titles won? Rafael Nadal
OLI Which property of equality would be the best choice when solving the equation? Explain. Sample answer: The Subtraction Property of Equality would be the best choice because we need to subtract 3 from both sides to make a zero pair.
Bill Pete Sampras has 3 fewer Grand Slam singles titles than Roger Federer did at that point in his career. Set up and solve an equation to find the number of Grand Slam singles titles Pete Sampras has. \(a+3=17, a+3-3=17-3, a=14\)

\section*{Common Error}

Students may confuse which tennis player is the variable and set up an incorrect equation. Remind students to carefully read the problem and determine for which tennis player we seem to lack information.

\section*{QEssential Question Follow-Up}

Students have begun solving one-step equations involving addition or subtraction.

\section*{Ask:}

Why is it important to create equivalent equations when solving an equation? Sample answer: It is important to create equivalent equations because if you start with a true equation, then any equivalent equation will also be true. Therefore, the solution will be correct.


\section*{Interactive Presentation}


Example 3
\begin{tabular}{l} 
SELECT \\
\begin{tabular}{l} 
Students research a men's singles tennis \\
player to write their own equation. \\
statement.
\end{tabular} \\
\hline \begin{tabular}{l} 
Students complete the Check online to answer to complete a \\
determine whether they are ready to \\
move on.
\end{tabular}
\end{tabular}


\section*{Interactive Presentation}


Learn


1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY
3 APPLICATION

\section*{Learn Solving One-Step Equations Involving Multiplication or Division}

Objective
Students solve one-step equations by applying the Multiplication Property of Equality or the Division Property of Equality.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Example 4 Solve Equations by Multiplying or Dividing}

\section*{Teaching the Mathematical Practices}

1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. They should ask themselves whether their answer makes sense and whether they have answered the question asked.

Questions for Mathematical Discourse

\section*{ALI What is the reciprocal of \(\frac{3}{8} \frac{8}{8}\)}

OL. Which property of equality will allow us to isolate the variable? Sample answer: The Multiplication Property of Equality would allow me to isolate the variable because I can multiply both sides of the equation by the reciprocal.
BL. Why does the answer, 6 , make sense as the solution? Sample answer: \(\frac{9}{4}\) can be rounded to 2 , and \(\frac{3}{8}\) can be rounded to one half. We can estimate that 2 is half of 4 . So, the answer of 6 makes sense.

\section*{Common Error}

Students often make mistakes when dealing with fractional coefficients. Many try to divide both sides by the fraction and then get stuck. Remind students that to divide fractions, you must multiply by the reciprocal of the divisor fraction.

\section*{© Apply Example 5 Solve by Multiplying}

\section*{Teaching the Mathematical Practices}

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

\section*{Recommended Use}

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

\section*{Encourage Productive Struggle}

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

\section*{Signs of Non-Productive Struggle}

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What other mathematical process can be used to solve this equation?
- How can the answer be proven correct?


Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.


\section*{Interactive Presentation}


Apply Example 5

\section*{TYPE}


Students answer questions to show they understand how to set up and solve an equation.


\section*{Interactive Presentation}
```

Ouestion 3

```


```

 ~14th 58p = 21:%espon
    ```




Check

Students complete the Check online to determine whether they are ready to move on.
Check


\section*{Essential Question Follow-Up}

Students have begun solving one-step equations involving multiplication or division.

\section*{Ask:}

Why should we be able to set up and solve one-step equations in the real world? Sample answer: I need to be able to set up and solve equations in the real world because I may know only part of the information for a situation and can solve for the missing part. For example, I may know how much something costs after a discount so I can find the original price.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity ALI ELL}

IF some students are struggling to use the appropriate property of equality to solve an equation,
THEN have students write down the operation given in the equation and then the property of equality for the opposite operation.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-59\) \\
\hline 2 & exercises that use a variety of skills from this & \(60-89\), \\
& lesson & \(93-98\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
\\
\end{tabular} & lesson to new contexts
\end{tabular} \(90-92\)

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks,}

THEN assign:
- Practice, Exercises 1-97 odd, 99-104
- Extension: Generalized One-Step Equations
- Q ALEKS One-Step Linear Equations

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-103 odd
- Remediation, Review Resources: Divide Rational Numbers
- BrainPOP Video: Solving Equations
- Extra Examples 1-5
- ALEKS'Multiplication and Division with Fractions; Multiplication and Division with Mixed Numbers; Decimals: Division

IF students score \(65 \%\) or less on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-65 odd
- Remediation, Review Resources: Divide Rational Numbers
- Quick Review Math Handbook: Solving One-Step Equations
- ArriveMATH Take Another Look
- ALEKS Multiplication and Division with Fractions; Multiplication and Division with Mixed Numbers; Decimals: Division
\begin{tabular}{|c|c|c|}
\hline Practice & \multicolumn{2}{|r|}{} \\
\hline \multicolumn{3}{|l|}{Smanoestames} \\
\hline \multicolumn{3}{|l|}{Sotee mech funtios} \\
\hline 2. \(+-9-823\) & 2.44-ti-72 15 & 3. \(-6 t=0+(-28)-4)\) \\
\hline 4. \(18+2 \times 40\) n2 & 5. \(-40-48 \mathrm{E}-12\) & 6. \(12 \mathrm{r}=-62 \mathrm{l}\) \\
\hline \(x+8-1-n)-8 t .73\) & 8. \(-26-(-80-45-29\) & 2. \(\mathfrak{j} \mathbf{v}=-5-8\) \\
\hline 10. \(I=-4-2 n\) & ti. \(\frac{7}{}=-9-54\) & 12. \(-\frac{1}{5}-\frac{1}{3}-7\) \\
\hline n. \(\frac{1}{1}-\cdots+\frac{3}{1} \frac{1}{n}\) & 14. \(\frac{1}{2}+2=-\frac{1}{1}\) & 3. \(-\frac{1}{4}-\frac{1}{5}-\frac{3}{15}\) \\
\hline 16. \(-\{-y-2 \times 1\}\) & 42 \(\mathrm{v}+914 \mathrm{c}-23-937\) & 38. \(467+x=-209-708\) \\
\hline 9. \(-\langle\leq-2 t-18 t\) & 20. \(-\frac{2}{1} v=-22.33\) & 24, \(\}=-15-25\) \\
\hline 22. \(\hat{1}--\dot{j}-2\) & 23. \(\frac{5}{}-\frac{1}{1}-\frac{1}{2}\) & 24.3- 3 - - - - - 1 \\
\hline 25. \(y-7-8=8\) & 26. w + \(14=-8-22\) & \(22 p-4=610\) \\
\hline 28. \(-0=3+\cdots-81\) & 22. \(90=3+3454\) & \(30 . y-32=-13\) \\
\hline 31.n+1-28) \(\sim 028\) & 32. \(y+(-30)=6.15\) & 32. \(-4 \pm r+1-1993\) \\
\hline 32, \(5-1-07=36 \mathrm{~m}\) & 35. \(4=\alpha+(-10) 24\) & 36. \(w+1-590-15-16\) \\
\hline 37, \(11=-35+\gamma 27\) & \(28 . c-(-3)=100\) क) & 39. \(47+\infty-5-84\) \\
\hline 40. \(x-(-79)=-22-76\) & 41. 4-1-79-63 65 & 42. \(-50-20-(-7)-78\) \\
\hline 43, \(12 t=100^{\text {a }}\) & 4. \(-77-42-7\) & 4s. w w \(-2 \mathrm{se}-12\) \\
\hline 46. \(-22=130-2\) & 42. \(-800-427\) & 48. \(50-260-4\) \\
\hline 49. \(\{-105\) & Sa. \(\frac{1}{6}=914\) & \(5 \mathrm{c}-34=1-252\) \\
\hline 52, \(-\mathrm{Y}=-33 \mathrm{n}\) & 53. \(i=-13-52\) &  \\
\hline & &  \\
\hline
\end{tabular}

\section*{an3 anos}

S5. turasest coumr Chel Mutice whim formpist serves ente Suprene Court





\(09,000-14000=p\) w \(172,000-p=94,000, p=\$ 85.000\)
57. wLariex On a cols dempry dyy. Kara noliced that the temperatue diopped 71 dequess owe the coure of the dry so \(-9 \cdot \mathrm{C}\), wate and wove in equition 16

 Farm Wten ant volve an equibin is dotomane the munber of scos of the firmoorfiem \(12 t=1 / \varepsilon a=50 t n i t y\)
59. soccer Durbg the season 35 of se players who sioned wh for the seccer

a Aswig a vatable. Withe as expression for the number of phopess who thinchect



D. Wite an egationi io Ind the number of propen wito sigied ap for the toccir ligane \(0.87 p=0174\)
A. Solve fre equabon so fod the mumber of playens uho segind so for the soccer leogne \(p=200 ; 200\) plojes wiphed wis le Dersocter leogoe

Minod Exirches
Whee an equation tor esch semtence. Then solve the equasion.
40. Sx finpo a mumber in \(122 . \mathrm{Gr}=172 ; 22\)

62. Five elleverthy thes a number is \(55 \frac{1}{11} n=55,12 t\)




aro each equation check your solution．
e2． \(3-15 \frac{5}{3}\)
62． \(9=-\pi-7\)
ce． \(3-36\)
70． \(3 \mathrm{z}=-4271\)
7．\(\frac{1}{2}+--6-18\)
22． \(4 \frac{1}{3}=30\) i 00 咅
73．\(-5=3 \frac{1}{2} \times-\frac{5}{3} x-1 \frac{1}{3}\)
74． \(6=-\frac{1}{2} n-12\)

＊2．\(-\frac{8}{4}=\) 令 -10
\(3 n-5=-45225\)
78．\(-6=\frac{j}{j} x-1\)
72． \(39=-4-14\)
ex．\(\{p=-10-8\)
92．\(\frac{88}{16}-\frac{1}{1} 4\)
日2． \(8-8-69\)
ax \(-28-8+2 x-45\)
84．\(-7_{k}=60-9\)
85．\(-\frac{1}{6}=-845\)
＊6．\(y+(-2)=-124\)
m． \(3 x=-9-15\)
Be．\(-\mathrm{Bd} \sim-643\)
me \(-\frac{3}{2} v-\frac{3}{30}-\frac{1}{15}\)

90．Vacation The toper fandy il or vacution in lenpetcee．tray crove 200 mies foom Menghi pe bine troy teachedk kionile，yey tod towbec a total of 700 mass



b．which peveerty ol ecuatity covid you ine so inolme me verible in wur equatont Enplien you resoonig Sanple maver．A number ia added te me veriatie il
 Stersuction hoperiy ut fousity mo nole Ye equibon



 the ansece fiom Mempths so Chattancogp vrough Ninhivle．How tain





 ressos rechets \(\$ 20\)



\section*{strucruat Solve each equatioe suato be Property of Equalify nead．}

32． \(5=24 \quad x=236\) ．Menplication hopery uf Equalty

95． \(922+y=7 a 5\) ， 222 Sathocion Moperty of fivally
36．\(-\frac{4}{5} \rho=12 \quad \rho=-65\) CWilibe Popentrof Tquefy


Orogher Orsee Thinking skets
92．mincricuir possict sinuons identey the equation that does not belong with the other thepe duasty your conclesion
\(-16=28\) does not tolong bectune for the ostar Bree，\(n=12\) ，and for thin osen \(n=\) is


A． \(7 x-9=12\) ．what in the value of \(x+1722\)
b．\(\because n+7=-4\) ，wher is the vilue of +1.10
 to wolve Sopplearmer，\(x-4=10\)
 Rnsty rour wrgument．
 \(+2+2\)
 arethe nevods sinster and how we they ditivect？Sanple minwec lo solve \(5 \mathrm{~s}=25,1\) would

 secoas equation．
104．werre Conudar the Hitiplention Phoperty of kquaity and Ex Civeion Property al Egoathy Explan wity they can be convilend the tame propent．Weich one




\section*{LESSON GOAL}

Students solve multi-step equations and equations for specific lettered coefficients by applying properties of equality.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Using Algebra Tiles to Model Multi-Step Equations

\section*{Develop:}

Solving Multi-Step Equations
- Solve Multi-Step Equations
- Write and Solve a Multi-Step Equation
- Solve Multi-Step Equations with Letters as Coefficients


You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

\section*{Exit Ticket}

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.


\section*{Language Development Handbook}

Assign page 9 of the Language Development Handbook to help your students build mathematical language related to solving multi-step equations.
FEllill You can use the tips and suggestions on page \(T 9\) of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

\section*{Domain: Algebra}

Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. \(\mathbf{1}\) Explain each step insolving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students solved one-step equations with the four operations.

\section*{A.REI. 3}

\section*{Now}

Students solve multi-step equations.
A.CED.1, A.REI.1, A.REI. 3

Next
Students will solve equations with the variable on each side.
A.CED.1, A.REI. 3

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|c|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLuency & 3 APPLICATION \\
\hline \multicolumn{3}{|l|}{Conceptual Bridge In this lesson, students draw on their understanding of solving one-step equations and build fluency with solving multi-step equations. They apply their understanding of multi-step equations by solving real-world problems.} \\
\hline
\end{tabular}

\section*{Mathematical Background}

Multi-step equations involve more than one operation. These equations can be solved using the properties of equality and the strategy of undoing each operation by working backward.
In number theory, multi-step equations are written and solved to understand the relationship between numbers, such as consecutive integers.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- using the Distributive Property

Answers:
1. \(5 k-22\)
2. \(-2 a+9\)
3. \(33-6 \mathrm{t}\)
4. \(6 y+24\)
5. \(2 y+20\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
2 Represent a Situation Symbolically Encourage students to define variables, recognize relationships between given quantities, and write an equation to model the amount of money Olivia received.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will use this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the question below with the class.

\section*{Explore Using Algebra Tiles to Model Multi-Step Equations}

Objective
Students use algebra tiles to explore solving multi-step equations.

\section*{(11) Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use algebra tiles. Work with students to explore and deepen their understanding of multi-step equations.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use the Algebra Tiles eTool to help visualize the equation before solving. The guiding exercises will lead students to solve the multi-step equation. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore
SELECT


Students select the correct answer to two questions regarding solving a multi-step equation.

\section*{Interactive Presentation}


Explore
TYPE


Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Using Algebra Tiles to Model Multi-Step Equations (continued)}

\section*{Questions}

Have students complete the Explore activity.
Ask:
- How is solving a multi-step equation similar to solving a one-step equation? Sample answer: You still need to perform the opposite operation in order to isolate \(x\).
- Can you use algebra tiles to model and solve \(5 x+3=-13\) ? Why or why not? Sample answer: You can model \(5 x+3=-13\) with five \(x\)-tiles and three 1 -tiles on the left side of the mat and thirteen negative 1 -tiles on the right side. When you place three negative 1 -tiles onto each side of the mat to isolate \(5 x\), you're left with \(5 x=-16\). Because you can't divide -16 into 5 equal groups, you can't solve with algebra tiles.

\section*{(3) Inquiry}

How can you model and solve a multi-step equation? Sample answer: Use algebra tiles to model the equation. Then add positive or negative 1 -tiles to form zero pairs to isolate the \(x\)-tiles. Finally, separate the remaining tiles into equal groups.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{1 CONCEPTUAL UNDERSTANDING}

2 FLUENCY
3 APPLICATION

\section*{Learn Solving Multi-Step Equations}

\section*{Objective}

Students solve multi-step equations by applying properties of equality.

(n)
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

What Students are Learning
In this section, students learn the definition of a multi-step equation and how to solve using two properties of equality. Students see that solving a multi-step equation is like working backward from the order of operations.

\section*{Example 1 Solve Multi-Step Equations}
(1)TP Teaching the Mathematical Practices

1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. They should ask themselves whether their answer makes sense and whether they have answered the question asked.

Questions for Mathematical Discourse
Alil In part a, what operations are being performed on the variable? multiplication and subtraction
Olill In part a, what operation will you undo first? Explain. subtraction; Sample answer: It is necessary to reverse the order of operations.
Bill In part b, why would we not undo the addition first? Sample answer: Because the fraction bar is a grouping symbol, we must undo the division. Grouping symbols would be last when reversing the order of operations.

\section*{Common Error}

Students often undo addition and subtraction first no matter what operations or grouping symbols are present. Remind students that fraction bars group terms together just like parentheses and these are always one of the last operations to undo when working backward.


\section*{Go Online}
- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn



\section*{Interactive Presentation}


Example 2


Students select the correct phrase to define the variable.


\section*{DIFFERENTIATE}

\section*{}

IF students are struggling to work backward in the order of operations,
THEN have them circle the variable and its coefficient. Suggest they undo the operation on the outside of the circle first.

\section*{Enrichment Activity BIH}

An odd integer can be written as \(2 n+1\), where \(n\) is any integer.
If \(2 n+1\) is the first integer, then add 2 to get the next largest odd integer, and so on.
What two consecutive odd integers have a sum of 144 ? Write an equation and solve.
\(2 n+1+2 n+1+2=144\)
\(4 n+4=144\)
\(4 n+4-4=144-4\)
\(4 n=140\)
\(n=35\)
The two integers would be 71 and 73 .

\section*{Example 2 Write and Solve a Multi-Step Equation}

\section*{Teaching the Mathematical Practices}

2 Create Representations Guide students to write an equation that models the situation in this example. Then use the equation to solve the problem.

Questions for Mathematical Discourse
AL. What information is the question asking us to find? the cost of the dance
OL How much was raised by the bake sale? \(\$ 480\) How can you use this to estimate the cost of the dance? Sample answer: Because the bake sale raised enough to cover less than half the cost of the dance, the dance costs more than \(2(\$ 480)\) or \(\$ 960\).What percent of the cost of the dance was raised through the bake sale and raffle ticket sales? 52.5\%

\section*{Common Error}

When given a real-world situation, students may struggle to understand the relationship of the numbers given. They may write the numbers in an equation as they are presented in the problem. Have students underline or highlight important words or phrases that represent mathematical operations. This will help when writing the equation.

\section*{Example 3 Solve Multi-Step Equations with Letters as Coefficients}

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

\section*{Questions for Mathematical Discourse}

All What is the variable and what is the coefficient? The variable is \(x\) and the coefficient is \(a\).
OL. What is the reciprocal of \(a\) ? \(\frac{1}{a}\)
[Bl. Would the answer change if we multiplied by \(\frac{1}{a}\) instead of dividing by \(a\) ? Explain. No; sample answer: \(\frac{1}{a} \cdot a x\) and \(\frac{a X}{a}\) are equivalent expressions, as are \(\frac{1}{a} \cdot(-2)\) and \(-\frac{2}{a}\).

\section*{Common Error}

Students may have trouble remembering which letter is the variable and which is the coefficient. Encourage students to highlight or underline the variable so they will solve for the correct letter.


\section*{Interactive Presentation}


Example 3
Students move through the steps to solve
the equation.
Wasch Out
Isolate the Variable Make sute that you are
sousvion Hemenb
that a reprewists:
condoicent not the
veriable
Check
Check
Sove 2-ax =-8 lory, Assume oft0 D
Sove 2-ax =-8 lory, Assume oft0 D
A. }x=\frac{-7}{#
A. }x=\frac{-7}{#
B. }x=-\frac{6}{8
B. }x=-\frac{6}{8
C. }x=\frac{8}{8
C. }x=\frac{8}{8
D. }x=\frac{1}{6
D. }x=\frac{1}{6

\section*{Pause and Reflect}
Did you striggle whth anything in licis lessont It so, how cid you deal with in?
See stadeoss' observation.
Practice

E-anuнe!
Use properties of equabtiy to solve each equation. Check your solution.
\(\begin{array}{lllll}\text { 1. } 3 r+7=-8 & -5 & \text { 2. } 8-16+8 n-1 & \text { 3. }-34-6 m & 4\end{array}-5\)
4. \(9 x+27=-72-71\)
5. \(\frac{5}{5}-6=870\)
6 \(\frac{1}{-}-8 \sim 2-70\)
\(7.1+\frac{1}{6}=4 \quad 27\)
4. \(\frac{1}{2}+4=-6 \quad-60\)

to. \(44=\frac{6-2}{-7}-34\)
n2. \(-11=\frac{2}{6} 5^{5}-51\)
12. \(22,3-743\)
Stenpio?
43. SHOPpors Ricerdo spert hat of his allowance on school supplies. Theon he bougth a sneck for \(\$ 525\) wheo he antied home, he had \(\$ 22.50\) int. Wise and rove an equation to find the amourt of Ricardots allowance al \(\frac{1}{j 0}=5.25=22.50-\$ 55.50\)
14. sioppers liza consed tome money by casing care of bot neighbor's pot she sought a drivik for 51.95 , and a concert ticket for \(\$ 30\). \(\$ 0\) e bought a ang for \(\$ 7.20\). and then qpent two thrds of the temaning emoney on o mrreless sptaree. If ced earned by luking care of hec neghoor') pet. \(\frac{1}{}(5-1.95-30.00-7.20)=38.50 ; 5154.65\)

\section*{Essential Question Follow-Up}

Students have begun thinking about working backward to solve multistep equations.

\section*{Ask:}

Why is working backward an important part of the solving process? Sample answer: Working backward is important because it undoes the operations in the equation in the correct order to isolate the variable.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-26\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(27-35\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & 36,37 \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(38-44\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-37 odd, 38-44
- Extension: Angles of a Triangle
- D ALEKS"Multi-Step Linear Equations

IF students score 66\%-89\% on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-43 odd
- Remediation, Review Resources: Simplify Algebraic Expressions
- BrainPOP Video: Solving Equations
- Extra Examples 1-3
- ALEKS'Equations and Inequalities

IF students score \(65 \%\) or less on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Simplify Algebraic Expressions
- Quick Review Math Handbook: Solving Multi-Step Equations
- ArriveMATH Take Another Look
- ALEKS'Equations and Inequalities
15. Fer saticas Herry morbs at a pet sheser ather kchool. He aurchases a lerge pochage of dog veats. He sets asile to treats and savibutes the rest equaty movo the 15 dojs in the shetrer, ir each dog feceled 4 weats. write And soik
 \(\frac{t-15}{5}=4 ; 70\) vess
 gaves was 63 pontr. in the frat two games, they scored the same rumbec of points, which was 6 points moee then they scored in the etird orme. Wose and olve an egration to feds the number of points the seem vored in eecti gume. \(\theta+p+i p=6=63\); They scored 65 points in the first two games and 59 points in the third game.
7. Hemand nelight Micalt') adult heght is one sess than twice bs Deight at oge 2 Vicab's solat helight is 21 inches. Write and solve an equation io Find Miches seightat oge \(2.71=2 n-1 ; 36\) inches
Eennels 3
Solve each equation for \(x\). Assume a \(\neq 0\).


24. \(5=\frac{5}{4}+1 \frac{5}{4 c} \quad 25 .-3=a x+11 \frac{-4}{4} \quad\) 26. \(-7=-a x-16 \frac{-9}{5}\)

Mined Sowriven
Solve esch equation. Check your solution.

stasonivg Write and sofve an equation to find each number:
36. A mumber is flvided by 2 . and then the quitient is increvied by ह8. The result is 33 \(\frac{9}{2}+8=33 ; 50\)
37. Two is subtusteo fegem a mimber, and inen the difference is ofided by 3. The resifit is \(30 .(n-2) * 3=30.92\)

\section*{Prigher Order Tivining Sally}
38. Peasivere The sum of 4 consecutive odo integens is equal to zeto
a. Write an equation no modet the sentence. Let \(n=\) the first odd integer; \(n+(n+2)+(n+4)+(n+6)=0\)
6. Solve the equation to find the numberr. Check your solution.
\(n=-3\), The numbers are \(-3,-1,1\), and \(3 ;-3+(-1)+1+3=0\)
39. Wio me ensor Kadje and Jorge are sotving \(\frac{1}{2} n+5=\frac{5}{2}\), Jorge uses the Subyaction Propenty of Equality followed by the Mulapicicinion Propenty of
 muitiphod by + Xasjo claina that the Oivion Pioperty of Equality can be used to scimte the varable. Which student is comect? fopldin your reasoring. Somple answer: Both are correct. Dividing by a trumber and multiphing by that number's reciprocel are equivalent operations.
40. cayatr Wibe a problem inte can be representeo by the equibion \(1190+231-273\) Detine the variable aod sotie the equation Sample answes; \(p\) represents. the number of hours worked, a server eumi \(\$ 1190\) per hour and made \(\$ 23.10\) in tips for the week for a sotal earnings of \(\$ 273\) that week
41. Nusyze Selve each equmen ior x. Astume that of \(\alpha\) a. \(\alpha x+7=5 x=\frac{-2}{6} \quad\) b. \(\frac{1}{6} x-4=9 x=13 a \quad\) c. \(2 \sim-\alpha x=-8 \quad x=\frac{10}{2}\)
42. wacyy Detennien whether eoch eountion tas a solaion. Austif your antwer. See margin a. \(\frac{8+4}{5+2}=5\)
- \(1 \frac{1 \cdot}{\square}=\)
c. \(\frac{5}{2}=\frac{3}{2}=1\)
43. Aowizt Desomise whefer the folowing statevert i sometines, oliojs. oe neve tove distly your agoment.
The wow of tivee conprcibive odd incegers equob on ever inveper Never, whenevor three odd integers are added together, the sum is abways odd.
44. warte white a parag ach enplaring the ouser od the senor thut you would the to sove a mu-t-step equation. Somple answer in orde to sotue the escuation at \(+20=236\), you would sirst subbsct 20 triom each side and thes ilvide esch sade by 4.

\section*{Answers}

42a. No ; for there to be a solution there must be a number for which \(a+4=a+5\).
42b. Yes; for \(b=0, \frac{1+b}{1-b}=\frac{1+0}{1-0}\) or 1 .
42c. No; \(c-5=5-c\) when \(c=5\). However, \(\frac{c-5}{5-c}\) is undefined for \(c=5\) since the fraction represents division by 0 .

\section*{Solving Equations with the Variable on Each Side}

\section*{LESSON GOAL}

Students solve equations with the variable on each side by applying the properties of equality and the Distributive Property.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Modeling Equations with the Variable on Each Side

\section*{Develop:}

Solving Equations with the Variable on Each Side
- Solve an Equation with the Variable on Each Side
- Write an Equation with the Variable on Each Side

Solving Equations Involving the Distributive Property
- Solve an Equation with Grouping Symbols
- Solve an Equation with a Fraction Bar
- Write an Equation with Grouping Symbols

Identities and Equations with No Solutions
- Solve an Equation with No Solution
- Solve an Identity

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice


Formative Assessment Math Probe

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & Al| & HE & FIII & \\
\hline Remediation: Simplify Algebraic Expressions & - \({ }^{-}\) & & & - \\
\hline Extension: Finding Unknowns in Identities & & - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 10 of the Language Development Handbook to help your students build mathematical language related to the properties of equality and the Distributive Property.
ELLL You can use the tips and suggestions on page T10 of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing}


\section*{Focus}

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students solved multi-step equations.
8.EE.7, A.CED.1, A.REI.1, A.REI. 3

\section*{Now}

Students solve equations with the variable on each side.
A.CED.1, A.REI.1, A.REI. 3

\section*{Next}

Students will solve equations involving absolute value.
A.CED.1, A.REI. 3

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1CONCEPTUAL UNDERSTANDING & \multicolumn{1}{c|}{ 2 FLUENCY } & 3 APPLICATION \\
\hline 庸 Conceptual Bridge In this lesson, students draw on their \\
understanding of solving multi-step equations and build fluency with \\
solving equations with the variable on each side. They apply their \\
understanding of equations with the variable on each side by solving \\
real-world problems.
\end{tabular}

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- evaluating expressions

Answers:
1. -11
2. 4
3. -19
4. 68
5. \(p-3\); 12 ponytail holders

\section*{Launch the Lesson}

Teaching the Mathematical Practices
2 Make Sense of Quantities Encourage students to define the variables and write equations relating the balances of bank account over time.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the question below with the class.

\section*{Mathematical Background}

When the variable is on each side of the equation, first use the Distributive Property when appropriate to simplify before using the properties of equality to solve. If all of the variables are eliminated during the solving process, and both sides of the equation are different, then the equation is not true; there is no solution. If both sides of the equation are the same, then the equation is an identity; all values are solutions.

\section*{Explore Modeling Equations with the Variable on Each Side}

\section*{Objective}

Students use a sketch to explore solving equations with the variable on each side.

\section*{(11) Teaching the Mathematical Practices}

3 Construct Arguments In this Explore, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a sketch to determine the relationship between two racing rabbits. They will also write an expression for the distance each rabbit travels which leads to an equation with the variable on each side. The guiding exercises will help students write and solve an equation with the variable on each side. Then, students will answer the Inquiry Question.
(continued on next page)

\section*{Interactive Presentation}


Explore


Explore
WEB SKETCHPAD
Students use a sketch to complete an activity in which they explore an equation with the variable on each side.

\section*{TYPE}

Students answer a series of questions to show they understand how to write and solve an equation with the variable on both sides.

Lesson 2-4 • Solving Equations with the Variable on Each Side 91c

\section*{Interactive Presentation}


\section*{Explore}

TYPE
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Modeling Equations with the Variable on Each Side (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- What would happen if you eliminated the variable from the left side of the equation? Sample answer: The coefficient for \(x\) would be negative instead of positive, \(-3=9-3 x\). Then you would subtract 9 from both sides to have \(-12=-3 x\), so you would have to divide by -3 . Because \(4=x\), the answer is still \(x=4\).
- What should be the first step in solving \(2(x-5)=3 x+4\) ? Sample answer: Before you can move the variables to one side, you have to use the Distributive Property for \(2(x-5)\) to give you \(2 x-10\). Then you could solve like before.

\section*{(). Inquiry}

How can you solve an equation with the variable on each side? Sample answer: Isolate the variables on one side. Then solve the equation like a one-step or multi-step equation.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Solving Equations with the Variable on Each Side}

\section*{Objective}

Students solve equations with the variable on each side by applying the properties of equality.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Example 1 Solve an Equation with the Variable on Each Side}

Teaching the Mathematical Practices
3 Compare Arguments Mathematically proficient students can compare arguments, determine which one is flawed, and explain the flaw. In this example, students have to identify the flawed argument and choose the correct one.

Questions for Mathematical Discourse
ALI. What are the variable terms given in the equation? \(7 a\) and \(4 a\)
Oll Does the variable in the solution always have to be located on the left side of the equation? Explain. No; sample answer: The variable can be on either side of the equation. A solution of \(-6=a\) is equivalent because of the Symmetric Property of Equality.

Bu. Explain a second method to solve the equation. Sample answer: We could have subtracted \(7 a\) from both sides of the equation and then added 13 to both sides. The variable term would then be on the right instead of the left. The solution would stay the same.

Go Online
- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


\section*{Learn}

\section*{DRAG \& DROP}

Students drag shapes to identify variables and constants in an equation.

\section*{TYPE}

Students answer questions to show they understand how to decide which property of equality is appropriate to use when solving.


\section*{Interactive Presentation}


Example 2


\section*{Example 2 Write an Equation with the Variable on Each Side}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about writing equations to solve a real-world problem.

\section*{Questions for Mathematical Discourse}

What does the variable \(m\) represent? the number of minutes Matt has been eating hot dogs
OLI. Why is it more difficult to subtract 6.2 m from each side than 3.8 m ? Sample answer: It is more difficult because the only constant is on the right side, so if 6.2 m is subtracted, one side of the equation will equal zero.
Bill Suppose Miki had been given a 48 -hot dog head start instead. What is the new equation and solution? The new equation is \(6.2 m=3.8 m+48\), and the new solution is \(m=20\) minutes.

\section*{QEssential Question Follow-Up}

Students have begun to solve equations with the variable on each side. Ask:

Why might equations have variables on each side in the real world? Sample answer: When two quantities are the same, you can set them equal and solve. Consider two athletes running, each with a different expression representing their distance at a certain time. They can be set equal to find the time when the distances are equal.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity ALI 캐L.}

IF students are struggling to solve an equation with the variable on each side,
THEN they should use the algebra tiles to model and solve the equation. Have students remove \(x\)-tiles from one side of the equation in the same manner as removing a number using the \(+/-1\) tiles.

\section*{Enrichment Activity [BL]}

Paul wants to buy a plaque for his football coach. One store charges \(\$ 15\) for the plaque and then \(\$ 0.50\) per word engraved. A second store charges \(\$ 20\) for the plaque but only \(\$ 0.30\) per word engraved. How many words could Paul have engraved on the plaques for the same cost? Write and solve an equation. Be sure to define your variable.

Let \(w=\) number of words engraved.
\[
15+0.50 w=20+0.30 w
\]
\(15+0.50 w-0.30 w=20+0.30 w-0.30 w\)
\[
15-15+0.20 w=20-15
\]
\[
0.20 w=5
\]
\[
w=25
\]

Paul could have 25 words engraved on each plaque for the same cost.

\section*{Learn Solving Equations Involving the Distributive Property}

\section*{Objective}

Students solve equations by applying the Distributive Property.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Common Misconception}

When an equation contains parentheses, some students still try to get the variable terms together first before applying the Distributive Property. Remind students that grouping symbols should always be handled first because of the order of operations.

\section*{QEssential Question Follow-Up}

Students have begun to solve equations involving the Distributive Property. Ask:

Why is it important to follow the order of operations even when solving equations? Sample answer: The order of operations is the correct order to simplify expressions, and equations that have expressions to simplify must be simplified consistently. Without the order of operations, different solutions could be found for one equation.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity \(\|\) 니는ㄴ}

IF students are struggling to use the Distributive Property,
THEN have them draw an arrow from the coefficient of the parentheses to each term inside the parentheses as a visual reminder of "handing out" the coefficient to each term.

\section*{Enrichment Activity [BL}

Three times the sum of a number and 4 subtracted from 10 is the same as two times the same number increased by 8 . Write and solve an equation.
\[
\begin{aligned}
10-3(n+4) & =2 n+8 \\
10-3 n-12 & =2 n+8 \\
-3 n+3 n-2 & =2 n+8+3 n \\
-2-8 & =8+5 n-8 \\
-10 & =5 n \\
-2 & =n
\end{aligned}
\]

\section*{Check}
 pasyits in a colege basbethal cecterence last season the tabie fhow how many points Notan and Victor scored and how many games they played ist season, The points Nolon and Victor score this seasor wit De combised with texer points hom tost season so give thol yotsi career poitas, Thas semonh, Notith is noping to cobch wo so victor and Move the some nuinber of cweer ponts Assume hat Noun and Vioor pley men aste and score at the same coostant rate an last seaton.


Part A
Based on eoch player's everage scoung rate, wite to equation But repeetients the mumber of gimes a will take Nolan to accumidote the same number of cateer ponto as vicice
```

250+

```

Part 8
Bated on your equation in Par A aber how macy gones twis seacon wal Nolian and Victor Have sconed the same thatber of esceer points? Th-games

Learn Solving Equations InvolVing the Distributve Property:
Some equabons copain groupisg spmbobs. Qouping syenpols can inclas parentheste (), spachets I / and fraction bar:
The steps for solveg an equation can be surmarized as fotlows
Step 1 Simplify me expcessions on esch side. Remown any groupiop symbots. Une the Distibutive Property as needed
Step 2 Use the Adsition andibe Sibtraction Properties of Equasity to get the varistle terms int one side of the equation and the conotant tevens on the other sode. Simply.
Step 3 Use the Mulichication and Dimion Properties of Equabity to solve


\section*{Interactive Presentation}


Learn



Math History Miruse Durico the short lfe of Indian mathemationan (1887-4920), he compled ne dy 3900 newth, which inovided prods of oreorems. equationt and idecoties soanty al of which haw been
proven cormet. poven comel as a genius and en. as 1 genur and en
antodicoct, wich in on person who is settanght:

Example 3 Solve an Equation with Grouping Symbols
Solve \(7 n-010-2(3+n)\).
\(7 n-n=-23+n \quad\) Onymir manen
\(7 n-7=6-2 n\)
\(2 n-7+2 n=-6-2 n+2 n\)
\(-9 n-7=-6\)
\(9 n-7+7=-6+7\)
\(9 n=1\)
\(5-\frac{1}{6}\)
\(n=\frac{1}{3}\)
Check
Silve \(7(n-2)+8=3(n-4)-2\)
o. \(\frac{7}{-2}\)

Example 4 Solve an Equation with a Fraction Bar Solve \(5 y=\frac{a y+35}{4}\).
\begin{tabular}{|c|c|}
\hline \[
5 y=\frac{n y+10}{4}
\] & Orymar equation \\
\hline \(4(5)=4\left(\frac{2 y+16}{4}\right)\) & Midelcemetiot iv 4 \\
\hline \(20 y-12 y+16\) & Imaty \\
\hline \(20 y-12 y-12 y+16-12 y\) & Sherient tie hom esch Mes \\
\hline \(8=36\) & Simien \\
\hline \[
y=\frac{y}{z}
\] & Siver enctiderive \\
\hline \(y=2\) & Smash \\
\hline
\end{tabular}

1 CONCEPTUAL UNDERSTANDING

\section*{Example 3 Solve an Equation with Grouping Symbols}

\section*{Teaching the Mathematical Practices}

7 Use the Distributive Property Point out to students that the Distributive Property is one of the most-used properties in algebra. Students should know that whenever they see a number outside of a sum or difference within parentheses, they should apply the Distributive Property.

\section*{Questions for Mathematical Discourse}

AL What operation is assumed between the 7 and the \((n-1)\) ? multiplication
OLI What number is distributed to \((3+n)\) ? -2
B1. What would a student have done incorrectly to get the equation \(7 n-7=-6+2 n\) ? Sample answer: The student would have not distributed the -2 correctly in the second parentheses, instead multiplying the constant by -2 but the variable by 2 .

\section*{Common Error}

Students tend to forget to multiply the second term inside the parentheses by the number out front. Remind students that the number outside of the parentheses must be multiplied to all terms within the parentheses.

\section*{Example 4 Solve an Equation with a Fraction Bar}

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students should check their answer. They should ask themselves whether their answer makes sense and whether they have answered the question asked.

Questions for Mathematical Discourse
AL What operation, addition, subtraction, multiplication, or division, does the denominator of a fraction represent? division
OL Why does each side of the equation need to be multiplied by 4 ? Sample answer: Multiplying each side of the equation by 4 eliminates the denominator of the fraction on the right side of the equation.
(B1. How could the equation have been solved if the large fraction was split into two fractions? Sample answer: If the fraction was broken into \(\frac{12 y}{4}+\frac{16}{4}\), then the terms could have been simplified to \(3 y+4\). Then the equation could have been solved by subtracting \(3 y\) from each side, and then dividing each side by 2 .

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{2 FLUENCY}

\section*{3 APPLICATION}

\section*{Example 5 Write an Equation with} Grouping Symbols

\section*{Teaching the Mathematical Practices}
\(\mathbf{2}\) Create Representations Guide students to write an equation that models the situation in this example. Then use the equation to solve the problem.

\section*{Questions for Mathematical Discourse}

ALI Write a verbal sentence that states the areas of the figures are the same. Sample answer: The area of the rectangle is equal to the area of the triangle.
OL. Why does \(\frac{1}{2}(12)(2 x-6)\) simplify to \(6(2 x-6)\) rather than \(6 \cdot \frac{1}{2}(2 x-6)\) ? Sample answer: The operation between \(\frac{1}{2}, 12\), and \((2 x-6)\) is multiplication, so the \(\frac{1}{2}\) does not need to be distributed to \((2 x-6)\). By simplifying to 6 outside the parentheses, the multiplication of \(\frac{1}{2}\) has been completed.
What would be the value of \(x\) if twice the area of the rectangle were equal to the area of the triangle?
\[
\begin{aligned}
2(5)(x+4) & =6(2 x-6) \\
10(x+4) & =6(2 x-6) \\
10 x+40 & =12 x-36 \\
76 & =2 x \\
38 & =x
\end{aligned}
\]

\section*{Common Error}

When writing an equation, many students do not read well enough to determine the relationship of all the values. Encourage students to read the problem, underline or highlight important words, numbers, or phrases, and then write the equation.

\section*{Learn Identities and Equations with No Solutions}

Objective
Students prove that equations are identities or have no solution by applying the properties of equality.

Teaching the Mathematical Practices
3 Analyze Cases Work with students to look at the three types of equations. Encourage students to familiarize themselves with all of the cases.

\section*{Important to Know}

An identity is an equation that is true for all values of the variable. An equation that does not have a value that makes it true will have no solution. An equation can have one solution, no solution, or is an identity.

\section*{Common Misconception}

Students confuse equations whose solution is zero with equations that have no solution or are identities. Remind students that zero is a valid solution, but when the variable is eliminated, then the equation has no solution or is an identity.


\section*{Interactive Presentation}


Example 5



Example 6 Solve an Equation with No 5csution
Solve \(6(0)-5)=2900+3 x\).
\(5 y-5 y=200+3 n\)
\(6 \mathrm{y}-30=20+6 y\)
\(6 y-30-6 y-20+6 y-6 y\)
Origns faition: Dethetron Mreotr \(-30 \neq 20\)

Sum
Since \(-30 \neq 20\), thes equation has no soluhbin

Example 7 Solve an idently
Solve \(7 x+5(x-v=12 x-5\).
\(7 x+5 x-18=12 x-5\)
\(7 x+5 x-5=12 x-5\)
Ongear mation
\(12 \mathrm{x}-5=12 \mathrm{x}-5\).
\(0<0 \quad\) senfana-strum ruthise
Since tre expestions on which side ch mee equabor ore be sume, twis eqation sa an isensty. It is tive for at velves of \(x\).

Check
Sove esch equation and sume wherter tre equation has ooe relutom, nas ne setabs, oris mi identey
A. \(80+65=5 p+34+15)\) (sentity
B. \(5 x+5=35 x-45-10 x\) no solition
C. \(3 m+2=7 w\) one solition
a. \(32 b-5-7=6 b-10\) ideethy


\section*{Interactive Presentation}


1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

\section*{Example 6 Solve an Equation with \\ No Solution}

\section*{Questions for Mathematical Discourse}

Why is using the Distributive Property the first step in the solution? Sample answer: We need to undo the grouping symbols first.
OL. Why is there no solution to the equation? Sample answer: The variable was eliminated and the remaining numbers are not equal.
B니․ Before subtracting \(6 y\) from each side, how can you determine that there is no solution? Sample answer: After applying the Distributive Property, the two sides of the equation have the same variable term, but different constants. This means there is no solution.

\section*{Example 7 Solve an Identity}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
4. What type of equation simplifies to \(0=0\) ? an identity

OL Why is the equation an identity? Sample answer: The variable terms are eliminated and the remaining numbers are equal.

B1. If the expression on the right side of the equation was \(12 x+5\), would this still be an identity? Explain. No; sample answer: After simplifying, all that remains is \(-5=5\).

\section*{DIFFERENTIATE}

\section*{Enrichment Activity [B]}

We have focused on equations that have no solution, have one solution, or are identities. Give an example of an equation that has two solutions. Sample answer: \(|x|=5\) or \(x^{2}=16\)

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-36\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(37-48\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(49-52\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(53-60\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:} B1
- Practice, Exercises 1-51 odd, 53-60
- Extension: Finding Unknowns in Identities
- ALEKS Multi-Step Linear Equations

IF students score 66-89\% on the Checks, THEN assign:
- Practice, Exercises 1-59 odd
- Remediation, Review Resources: Evaluate Algebraic Expressions
- BrainPOP Video: Solving Equations
- Extra Examples 1-7
- ALEKS'Evaluating and Writing Expressions

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Evaluate Algebraic Expressions
- Quick Review Math Handbook: Solving Equations with the Variable on Each Side
- ArriveMATH Take Another Look
- ALEKS'Evaluating and Writing Expressions


\section*{Manet Fwertions}

Solve tach equaton. Creck year soltion
33. \(2 \mathrm{x}=2(\mathrm{x}-3)\) ma solution


4t. \(\frac{1}{6} t+26=4-\frac{1}{6} t-25\)
42. \(\frac{1}{2}+\frac{3}{y}-\frac{1}{8}+\frac{1}{2}-\frac{1}{2}\)
43. \(678 y-52=43 y+283\)
44. \(2428-252=38 t+268.5\)
\(45.22 x-43=1268+165-2\)
45. \(5200-450+50=25-225\)

48, it - \(9-2 \pi-52-15\)
4a. \(\left.2 c_{0}-2--d+x_{d}\right)_{12}^{2}\)
 tries the wrser rotegat

b. Whet tove \(24=2 t-5\)



b. Solve tie equition to fing the rumber. \(n=-2\).

 ropue land fioiv 2 are bee ane

b. Solve the equation to find the rumberc: \(:=4\)


perien pel ing bur of Fque \(l\) compret be berimpter of Fipur tho the


sumbe, ne the vilue ef ris conect
 imgots is 4 inss him two times ne opater ineger

 Eh in idecely bectuse th t tie for mery pok ot conecutive evna ifteger:
-irgher Oeder Thinking sails







 whtroted foo the rigit to bulancr the spurtion.





 notiog the sombion unes te swoe whet.
 oured solition. intify yoor megumpe

\(\begin{aligned} 20 \\ +5-5=22\end{aligned} \quad 5 d-2 d-2 d-\) \(30=-8\)


Corrext on sitraction higenty min weds so contine
 g=8 ticocent the 2eny both g and 5. theor 10 muvi be wetrodet vide of the tquiten. The Division Propety wes vied Aon eath vite: 5

 \(4.2|2 t-2|=4-54-3\) B. \(\pi y-10+z=2 a y-y-y\) s
 coses Sprole Misum, \(2 x+7=r+9\)
 Sample asmen: To spine thp equation \(5 x+2=\mathrm{ox}-1\), tibblact on tron wach sise, then




\section*{Solving Equations Involving Absolute Value}

\section*{LESSON GOAL}

Students solve absolute value equations.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Modeling Absolute Value

\section*{Develop:}

\section*{Solving Equations Involving Absolute Value}
- Solve an Absolute Value Equation When \(n>0\)
- Solve an Absolute Value Equation When \(n<0\)
- Solve an Absolute Value Equation
- Write an Absolute Value Equation

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & All & LIE & IEll & \\
\hline \begin{tabular}{l} 
Remediation: Integers: Opposites and \\
Absolute Value
\end{tabular} & & & & 0 \\
\hline \begin{tabular}{l} 
Extension: Solving Absolute Value Equations \\
with Variables on Both Sides
\end{tabular} & & & & 0 \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 11 of the Language Development Handbook to help your students build mathematical language related to equations involving absolute values.
ELII You can use the tips and suggestions on page T11 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing \\ 90 min \(\quad 0.5\) day \(\quad 1\) day}

\section*{Focus}

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable anduse them to solve problems.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment
Previous
Students evaluated expressions with absolute value and solved multi-step equations.
8.EE.7, A.REI. 3

\section*{Now}

Students solve equations involving absolute value.
A.CED.1, A.REI. 3

Next
Students will solve equations involving proportions.
A.CED.1, A.REI. 3

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students expand their understanding of absolute value expressions to build fluency with solving equations that involve absolute value. They apply their understanding of solving absolute value equations by solving real-world problems.

\section*{Mathematical Background}

The absolute value of a number is the distance the number is from zero on the number line. To solve an equation involving absolute value, first isolate the absolute value on one side of the equation and rewrite the equation as a compound sentence using the word or. The solution set of an absolute value equation can be graphed on a number line or written in set notation.

Lesson 2-5 • Solving Equations Involving Absolute Value 101a

\section*{Interactive Presentation}
\begin{tabular}{|c|c|}
\hline & \(\times\) \\
\hline Warm Up & \\
\hline Evalonte. & \\
\hline 4.8010 & \\
\hline 2.1-2.11 & \\
\hline 3)|5釉 & \\
\hline 4.13.71 & \\
\hline 5, GAME show on a game shom, the object is fo end the gaver with as dose to \(\$ 0\) at porsible. II Dytan lass \(\$ 345 \mathrm{and}\) Mirisol has - 5290 , which contestant is wining? & \\
\hline  & \\
\hline
\end{tabular}

Warm Up


\footnotetext{
Launch the Lesson
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- calculating opposites and absolute values

Answers:
1. 0
2. 2.1
3. \(5 \frac{2}{3}\)
4. 34.7
5. Marisol

\section*{Launch the Lesson}

Teaching the Mathematical Practices
1 Seek Information Encourage students to identify the given information and find the relationship between the reported location and actual location of a baseball.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Explore Modeling Absolute Value}

Objective
Students use survey data to explore the absolute value of a number.
Teaching the Mathematical Practices
4 Apply Mathematics In this Explore, students apply what they have learned about margin of error to solve a real-world problem.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Using an informational handout, students will determine the bounds of a margin of error and plot on a number line. They will answer a series of questions about the margin of error before examining absolute value. The guiding exercises will help students determine the similarities of margin of error and absolute value. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore
TYPE
Students answer a series of questions to show they
a understand absolute value.

\section*{Interactive Presentation}


Explore
TYPE
a|
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Modeling Absolute Value (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- What does the notation \(\pm 3\) mean in words? Why do you think this is used for the margin of error? Sample answer: The plus/minus notation means to add and subtract the value, so in words it's three more and three less than the starting value. This is used for margin of error to show that there could be some variation, but within a specific range.
- If the margin of error for the survey was \(\pm 4\), what are the lowest and highest percentages for a shower that is less than 5 minutes? Sample answer: The survey says \(10 \%\) of adults shower for less than 5 minutes. With the margin of error, that means the percentages could be \(6 \%\) to \(14 \%\) of adults.

\section*{(0) Inquiry}

How is margin of error related to absolute value? Sample answer: Both represent distances, where margin of error is the distance from a given value and absolute value is the distance from zero.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Solving Equations Involving Absolute Value}

\section*{Objective}

Students solve and graph equations involving absolute values by constructing two cases for the equation.

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity ALI}

IF students are struggling to set up the two equations for absolute value, THEN have students write the two cases with the positive and negative signs placed on the side of the absolute value, rather than the other side. For example, \(|x|=4\) would be written as \(x=4\) and \(-x=4\), which yields \(x=-4\).

\section*{Enrichment Activity \(31 / 2\)}

Consider the equation \(|3 q-1|=2 q+3\).
a. Set up the equations for the two cases needed to solve the absolute value equation.
b. Solve each case for the value of \(q\).
c. Check each answer and write the solution set to the absolute value equation.
a. Case 1: \(3 q-1=2 q+3\)

Case 2: \(3 q-1=-2 q-3\)
b. Case 1: \(q=4\)

Case 2: \(q=-\frac{2}{5}\)
c. Case \(1:|3(4)-1|=2(4)+3\)
\[
|12-1|=8+3
\]
\[
|11|=11
\]

Case 2: \(\left|3\left(-\frac{2}{5}\right)-1\right|=2\left(-\frac{2}{5}\right)+3\)
\[
\left\lvert\,-\frac{6}{5} 1 \neq-\frac{4}{5}+3\right.
\]
\[
\left|-\frac{11}{5}\right|=\frac{11}{5}
\]

Solution Set: \(\left\{-\frac{2}{5}, 4\right\}\)

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn



\section*{Interactive Presentation}


Example 1

\section*{Example 1 Solve an Absolute Value \\ Equation When \(n>0\)}

\section*{(11) Teaching the Mathematical Practices}

4 Analyze Cases This example asks students to examine the two cases when solving an absolute value equation. Encourage students to familiarize themselves with all of the cases.

\section*{Questions for Mathematical Discourse}

In Case 1, when \(y+2=4\), do you expect \(y\) to be positive or negative? Explain. positive; sample answer: I know that \(2+2=4\).
Oll In Case 2, when \(y+2=-4\), do you expect \(y\) to be positive or negative? Explain. negative; sample answer: When adding a positive number with a negative result, the starting number must be negative and have a greater absolute value.
[Bill Explain why both solutions work, even though one solution is negative. Because the absolute value expression is equal to a positive number, both values of \(y\) will work in the equation.

\section*{Example 2 Solve an Absolute Value Equation When \(n<0\)}

\section*{(1) Teaching the Mathematical Practices}

7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In this example, guide students to see what information they can gather about the expression just from looking at it.

Questions for Mathematical Discourse
What does the absolute value of a number represent? the distance between a number and zero on the number line
OL Why should the two cases not be considered for the equation? The absolute value is always positive, so there is no solution.
[BL. Why can absolute value not equal a negative number? Sample answer: Because absolute value represents a distance, it cannot be negative because there is no such thing as a negative distance.

\section*{Common Error}

Students may not pay attention when an equation involving absolute value is set equal to a negative number, and solve the equation as usual. Remind students to always check the given equation before solving.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 3 Solve an Absolute Value} Equation

\section*{(M) Teaching the Mathematical Practices}

4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

\section*{Questions for Mathematical Discourse}

ALI What is meant by the phrase give or take 250 songs? Sample answer: The number of songs on her phone will range from 250 songs less than 2000 up to 250 songs more than 2000.
Ol. How would you describe the situation in terms of distance on a number line? Sample answer: We are looking for values that are 250 units from 2000.
Bill Why does this situation model an absolute value equation? Sample answer: The number of songs could be in the positive or negative direction from 2000 songs, which is an absolute value problem.

\section*{Common Error}

Students are used to writing equations without absolute value, so there is a good chance they will not write an equation involving absolute value. Remind students that when a scenario is within a certain amount, this is represented by absolute value.

©
Essential Question Follow-Up
Students have begun solving absolute value equations.

\section*{Ask:}

Why is absolute value an important concept for real-world equations?
Sample answer: Many quantities are within certain bounds, and absolute value equations allow real-world concepts to be bounded.


\section*{Interactive Presentation}


Example 3


Students complete a sentence by entering the correct word and complete an equation by entering the correct number.


Stuafy Tip Find the Midpolet To fied the poot mionay betiveen two poivts ass the values logether and clivice. by 2 . for the example \(44+2-32502218\) he point nativary between 17 and 27

OThink About le White a geseras nule nust can be vised bo
miciens simiky to
Cumplo 4
Sample antwe; ix- the mdpoint, \(=\) the indpoint and the nidpoint

Example 4. Wite an Absolute Value Equation
Write an equation imvolving absolute value for the graph.

Find the point that is the same distance tion 17 and from 27 on the number ine. This is the midpoiet betheen it and 27 , which is 22.


So an oquetion is ix \(-22-5\)
Check
Labed each graph with the correct equation.
\(x+3|=6 \quad x-11=3 \quad x-7=5 \quad| x-3 x-5\)





\section*{Pause and Reflect}

Oed you whiget with arything in tir lesson? It so, how did you God wen it?

\section*{Example 4 Write an Absolute Value Equation}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

AL. How can you use the number line to find the value in the middle of the two points? Sample answer: I can start with a finger at each point and move both in one point at a time until they meet.
OLI. How is the distance between the points related to the value on the right side of the equation? Sample answer: The distance between the points, 10 , is twice the value on the right side of the equation, 5 .
B1. How do the numbers in the equation relate to the number line? Sample answer: The number being subtracted from \(x\) is the midpoint between the two plotted points on the number line. The number on the right side of the equation is the distance from each plotted point to the midpoint.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-31\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(32-43\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(44-48\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(49-55\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-45 odd, 47-55
- Extension: Solving Absolute Value Equations with Variables on Both Sides
- DALEKS'Absolute Value Equations

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-55 odd
- Remediation, Review Resources: Integers: Opposites and Absolute Value
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Plotting and Comparing Signed Numbers

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Integers: Opposites and Absolute Value
- Quick Review Math Handbook: Solving Equations Involving Absolute Value
- ArriveMATH Take Another Look
- ALEKS Plotting and Comparing Signed Numbers


\section*{tumy}

T2. evasutskive toterance is on sfowasce made for inperfoctions ins Howfictured object The mindstuer of in owe spectites a temperitur



29. nous Candiste A and Candidte 8 are nambo for mopoc. A pot was then to sobivnibe witich canditive nould libely wh She election. The pol is accuste




 a menure of how fy the dici asp bom the mean for rasple, the mexo wowe
 ports higher of loww thas the mean
- Oni wat the muan muthemubci ictre co tse ACT Leat var 20.9 mith stinderc dervison of 53 What an siciokte vilup cquison to find the



22. Avuriow The praph shom the wosits cl a nurvey that miked 4300 tuderti ages 7 to It whin they Hought wodid be the riont ingortant beopfa of as trael in Ble hane There ree atout 40 mation tuxeres in me Untod siapet it Un. taige al the ruebber of students
 that 'lising new resciscas for Evek' is the mot mportint 72 nilion to 98 nith
2. maturicturnas A hadivnes stw ues bagrof rock sit the melsobed

        as weighing 3 poonct Tee en spopert used to gadioge Ele wht produces bopswth.







Eumper 4
```

Whie me rquation inolving absolute value for esch crapk.

```

```

 -4-3+2-10-123+15
 an.1+1++1+:+1-1*
 2+1012345
 -1+
    ```

```

 |-4|=1
 k+2%=4
    ```



thing tierciase



\(+5-3-5-1012141 \quad\) - \(1-1+1+6\)
    \(-1+1+10\) colthition

    blow 135

Write mon squation ilvaliving abs
    \(\underset{\rightarrow+1-3+1-1+2+1+3}{ }\)
    \(33+11_{0}+1+181+1=\)
    \(x=12\)
    \(40 .+1+-101+1+1+101-10\)
    \(|x-| |=3\)


At \(\begin{aligned} & =10-1+1+1+1+1+1+1+1+1+1-1+1\end{aligned}\)
    \(\left\lvert\, x-\frac{1}{2}=1\right.\)

    atomance of 4"



    6. Eefluin the stegite solve ne revolise vilur equaton. What do the solvions




a. Wede in equason to fins the maxism and minenum trinteratives of the tethomase : \(x-3 \mathrm{~F}=2\)
 rebigenatar 40F, \(36 \%\)
45. stivervet A quainy connal rospector ma a bol tectopy enserines random boits


 rinimem: 645 men
42. simsausia noot Coberne a adsed io a vimama pod to sembeo to water and

 thorne concertrieo ix \(x=1\)
48. Tay tave Jom has a 10 giten ligh unk that he wacts wo teit wh
 ind minerum nomber of thithat wistintoterk \(|x-7|=2\)


Origher Oider Rinking 5:Mis.

 dofintionof betriverness. \(|\mathrm{b}-\mathrm{b}|+|\mathrm{b}-\mathrm{d}=| \mathrm{f}-\mathrm{a}\)
50. Auhivat Truqulte the sentence \(x=5 \pm 23\) into an equation kvoleng atroine




\begin{tabular}{|c|c|}
\hline anco & Cani \\
\hline  & 人0.3.4 \\
\hline  & The matioke. \\
\hline us: \(n=\) & \\
\hline
\end{tabular}


53. Caele Devoke a mulwodd utuption that coubd be mpemerted by the
 moperture is \(4 \pm \%\) degnec.


\section*{LESSON GOAL}

Students solve equations involving proportions.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Comparing Two Quantities

\section*{Develop:}

\section*{Solving Proportions}
- Solve a Proportion
- Solve a Proportion with Two Missing Quantities
- Solve a Proportion by Using a Constant Rate
- Solve a Percent Problem by Using a Proportion

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & Al & IIE & IIII & \\
\hline Remediation: Equivalent Ratios and Rates & 0 & & & 0 \\
\hline Extension: Scale Models & & & & 0 \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 12 of the Language Development Handbook to help your students build mathematical language related to solving proportions.

EALII You can use the tips and suggestions on page T12 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

\section*{Domain: Algebra}

Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students solved equations involving absolute value.

\section*{A.CED.1, A.REI. 3}

\section*{Now}

Students solve equations involving proportions.
A.CED.1, A.REI. 3

Next
Students will use a process of reasoning to rearrange formulas to highlight a quantity of interest.
A.CED. 4

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|c|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATIO \\
\hline \multicolumn{3}{|l|}{Conceptual Bridge In this lesson, students expand their understanding of solving equations with the variable on each side to build fluency with solving proportions. They apply their understanding of solving proportions by solving real-world problems.} \\
\hline
\end{tabular}

\section*{Mathematical Background}

A ratio is a comparison of two numbers by division. A ratio is called a rate if the two numbers of a ratio represent measurements with different units, such as miles and hours. A proportion is an equation stating that two ratios are equal. Proportions are useful in finding missing values in a ratio relationship.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- determining whether two ratios are equivalent

Answers:
1. yes
2. no
3. yes
4. no
5. They are the same because the ratios are equivalent.

\section*{Launch the Lesson}

Teaching the Mathematical Practices
2 Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships while considering units. Encourage students to consider how units are important in scale models.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will use this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the question below with the class.

\section*{Explore Comparing Two Quantities}

\section*{Objective}

Students use a sketch to explore how to compare two quantities using ratios and proportions.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to find five pairs of original and discounted prices. The guiding exercises will help students understand ratios and how proportions can be used to solve for missing variables. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore

Students use a sketch to complete an activity in which they explore a proportion.


Students answer a series of questions to show they understand the concept of ratios and proportions.

\section*{Interactive Presentation}
\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & (mxer \\
\hline
\end{tabular}

Explore
TYPE \(\begin{aligned} & \text { Students respond to the Inquiry Question } \\ & \text { and can view a sample answer. }\end{aligned}\)

\section*{Explore Comparing Two Quantities (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why is the ratio of the discounted price to the original price a fraction less than 1 ? Sample answer: The discounted price is less than the original amount, so the ratio should be less than 1 . If the ratio was greater than 1 , then the price would be going up instead.
- How could you use the ratio \(\frac{4}{5}\) and a sale price of \(\$ 36\) to find the original price? Sample answer: Set up a ratio with 36 over the unknown price, then set that equal to \(\frac{4}{5}\) and solve.
(e) Inquiry

How can you solve for an unknown value if two quantities have a proportional relationship? Sample answer: Write a ratio relating the two quantities using a variable for the unknown value. Then set the ratio equal to the original ratio and solve.

Go Online to find additional teaching notes and sample answers for the guiding exercises.
A.CED.1, A.REI. 3

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Learn Solving Proportions}

\section*{Objective}

Students solve proportions by using the Distributive Property.

\section*{Common Error}

When setting up proportions, students overlook that the ratios must be equal. The units of each ratio must match in order to set them equal. Reinforce during examples that the units of each ratio are in the same position.

\section*{Example 1 Solve a Proportion}

\section*{0 Teaching the Mathematical Practices}

6 Use Precision In this example, students learn how to calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

Questions for Mathematical Discourse
ALI What does the term proportion tell us about these two fractions? The two fractions are equal to each other.
O1. Could we have made the calculations easier to do? Explain. Yes; sample answer: We could have simplified \(\frac{15}{25}\) to \(\frac{3}{5}\). When multiplying \(\frac{3}{5}\) by 45 , we could simplify \(\frac{45}{5}\) to be 9 and then multiply by 3 . The result would be the same.
BE. Would the solution be different if the proportion was \(\frac{45}{x}=\frac{25}{15}\) ? Explain. No; sample answer: Both fractions have been flipped. To solve, we would need to multiply by \(x\) first, then multiply by \(\frac{15}{25}\). The solution would still be \(x=27\).

\section*{(3) Go Online}
- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn



\section*{Interactive Presentation}


Example 2
 understand how the problem would differ if one ratio were reversed.


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 2 Solve a Proportion with Two Missing Quantities}

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

\section*{Questions for Mathematical Discourse}

AII Which numerator is a binomial? \(2 x-3\) What property do we need to use when we multiply by a binomial? the Distributive Property
(OL Describe another way to solve the proportion. Sample answer: Multiply each side by 24 to eliminate the denominator on the right side of the equation first. Then solve the resulting equation.
BLI. Write the proportion in a different way that will still yield the same solution. Sample answer: \(\frac{9}{x}=\frac{24}{2 x-3}\)

\section*{Common Error}

With the introduction of new concepts, students tend to forget previously learned material. Students know how to solve an equation with the variable on each side, however they may temporarily forget while solving proportions. Remind students to use properties of equality to solve the equation.

\section*{DIFFERENTIATE}

\section*{}

IF students are not mastering the concept of proportions,
THEN place students in small groups to work through the Check problems. Have one student per group report back on the group's progress and any areas where they may need assistance.

\section*{Enrichment Activity \(\mathrm{BE}_{\mathrm{L}}\)}

A school holds a 24 -hour dance-a-thon to raise money for a local charity. During the event, participants and spectators can purchase raffle tickets as part of the fundraiser. Every 45 minutes a ticket is selected and a winner called. How many winning tickets will be called during the dance-a-thon? Show your work.
24 hours \(=1440\) minutes
\[
\begin{aligned}
\frac{x}{1440} & =\frac{1}{45} \\
45 x & =1440 \\
x & =32
\end{aligned}
\]

There will be 32 winning tickets drawn.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{2 FLUENCY}

\section*{3 APPLICATION}

\section*{Example 3 Solve a Proportion by Using a} Constant Rate

\section*{M1) Teaching the Mathematical Practices}

5 Use Estimation Point out that in this example, students need to include an estimate and check against the estimate at the end.

Questions for Mathematical Discourse
AL. Real-world problems involve units. What units are used in this scenario? centimeters and years
OLI. Step 3 shows us a proportion in which centimeters are in the numerator, years are in the denominator, the known rate is on the left, and the unknown rate is on the right. How else could you set up the proportion? Sample answer: centimeters on the left, years on the right, the known rate on top, and the unknown rate on the bottom
314. Why can you not put centimeters over years in one fraction and years over centimeters in the other? Sample answer: A proportion is made by comparing two fractions. In order to compare these, you need to set them up using the same method. So, either both sides have centimeters over years, or both sides have years over centimeters.

\section*{Common Error}

When students set up the rate ratio, the second ratio must be in the same unit order. Have students write units with each number as a visual check.

\section*{Q Essential Question Follow-Up}

Students have begun to set up and solve proportions.

\section*{Ask:}

Why is it important to set up and solve proportions in the real world? Sample answer: Many real-life situations are proportional, such as gallons of gasoline used for a number of miles, the price of apples for the weight, and the number of girls in a group of people. Being able to set up and solve a proportion allows us to find missing quantities.
- Example 3 Solve a Proporion by Using a Constant Rate
Crochnevir Parts of Mesico City are sinting at a rate of 140 centimeters every 5 yearh. If this rate remeins constant, how many centimeters will the city sink in the next 12 yearst
Step 1 Extirnate the
solution
In 30 years. Mexico
Clywesink
M023) or 280
certimeters.
Beciuse 10 yeas is
sightuly less than 12
yeans. Mexico Cey melt sink more then
280 centimeters in.
12 yeart.
Step 2 White a proportion
Letc reprosect ve number of centinetois \(\stackrel{\text { ctrimin ws on }}{\text { an }} 5\)


\section*{CHECK}

How do you know your splution is resvonable
Samplo entineri A rate of 140 centimeters every \(S\) yein a a unt rate of 28 centimesess per yeat wh 12 yean Mexico CFy would sek
 estimate of move then 280 centimeter.

\section*{Cteck}

Mixtumer Oscar makes trut pusch to sell hem his lood truck by maing 8 pents crorbery juice to 3 pats phowple juich. How mary cups of phesoppie juce mould Oscar need so eix witt 48 cups of omberry Nice to maie his punch? ? cuph


Talk.About tw would you realy xpect the rase of consitat gver the etire sme pericor Epplan.

\section*{Interactive Presentation}


Example 3

\section*{TYPE}

Students answer a question to show they understand the reasonableness of the problem's claim.


\section*{Q Example 4 Solve in Percent Probiem ty Using} a Proportion
macrupes A guide company makes a trail mix of rainins and mived nuts．How many pounds of raisins does the gulde compary need to mik with 14 pounds of miked nuts to make the trail mix 301 ralidins？
METwOD 1 ：ralisins ；tral mix
iser ropresert the number of pounds of raibis
tet \(r+14\) iepresent the number of pounds of pe trail mix white and soive a proporion
 \(x+24\left(\frac{1}{2-1} x\right)=v+4 \pi \frac{10}{20}\)

\[
\begin{aligned}
& r=y+14)_{6}^{3} \\
& r=3 \cdot \frac{4}{20} \cdot 3 \\
& \text { 解的各 } \\
& 9(6)-9(8) \\
& 1=\frac{5}{4} \alpha 6
\end{aligned}
\]

Sonety

\section*{Dotituluef Rerinity} Soteret \({ }^{3}\)＇romenethud Swishly
 sonply

Metreoo 2 ：raikins ：mised nuts
er tepreserk णe number of pounds of rasis，when the number of pounds of mived tuts is 14
white and volve o peoportion．


Check
maxtubet Ayts a moking a planc fooo mbitue to use in ber garden The
 2 gotions of the mixure to cover her emtie garden．Which proporitions that acply is．D
thar apply．

a．\(\frac{9-8}{92}=\frac{10}{106} \quad\) E． \(39=\frac{10}{12}\)


\section*{Interactive Presentation}


\section*{Example 4}


CHECK
Students complete the Check online to determine whether they are ready to move on．

\section*{Example 4 Solve a Percent Problem by Using a Proportion}

Teaching the Mathematical Practices
3 Find the Error This example requires students to read the arguments of others，decide whether they make sense，and ask useful questions to clarify or improve the arguments．

\section*{Questions for Mathematical Discourse}

AII If \(30 \%\) of the trail mix is raisins，what percentage of the trail mix is mixed nuts？70\％

OL Which method do you prefer？Why？Sample answer：I prefer Method 2 because I do not have to distribute．Suppose the trail mix was to be \(55 \%\) raisins．How would the proportions change？
The proportions would be \(\frac{r}{r+14}=\frac{55}{100}\) and \(\frac{r}{14} \frac{55}{45}\) ．

\section*{Common Error}

Proportions do not always have just one variable；there are times the unknown value is used twice．Encourage students to underline or highlight the relationship of the given information before setting up the proportion．

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class，go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper．Have students hand you their responses as they leave the room．

\section*{Alternate Use}

At the end of class，go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini－whiteboard．Have students hold up their whiteboards so that you can see all student responses．Tap to reveal the answer when most or all students have completed the Exit Ticket．

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline \multicolumn{2}{|c|}{2 exercises that mirror the examples } & \(1-48\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(49-69\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(70-74\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(75-80\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-73 odd, 74-80
- Extension: Scale Models
- ALEKS'Proportions

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-79 odd
- Remediation, Review Resources: Equivalent Ratios and Rates
- BrainPOP Video: Using Proportions
- Extra Examples 1-4
- ALEKS Ratios and Unit Rates

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-47 odd
- Remediation, Review Resources: Equivalent Ratios and Rates
- ArriveMATH Take Another Look
- Q ALEKS Ratios and Unit Rates


\section*{Samyts}
27. Boatrus Dedra) boat uned 5 gathom of gunoline in 4 hoias, 44 this nate. how

18. where A droping tracet wantes 3 cops of wotel ewery 24 houn. How nivch mater is waybod ie a weak? 21 cips
 gelobse in the United Srates was \(\$ 14.46\). What was the awerge cont fon 16 olton cl oxsibuep 546.27


 m 3 conutes
2. How many fee theows wat teent make in 5 mirstect to tive throm
b. What estumetise dd you make in part at Explan Sanple anonec: 2. What estunceso dd you mave in pat ay Eplan Sasple ansue-
 Wow auch wi they grow n 20 moness: 684 mal
43. Pciver Jannse entuped the see of a pictipe 30 a heple \(\alpha\) I 5 nctec. What is the new with of the piksee 5 E wis anginally 5 laches wede by 4 inchec tar? 22 s in.
44. Twavts Roscoels exclunging SQ2


Fumple 4
 A chuytr and ter eapenses from the furduber, Owen wodd the the cost of the fuddaver 10 be 15 t of the proctess. If the fundiaser wall cost 5500 . how nuch



47. Crevenvir Achenvaty thacher peeds to max an acid sobition for an expelinere. How mach bruoctionk aid needs to be msesd vitt 800 matiters of water to make a seanos puan s ar aces? 20455 mK
4e. Levorube Laronda mamts so mube fresh hemonade. The recipe ste Ints onter ecominends that the frest lemon puct stovid be 208 of the sted nolume Soy has tis ounces of treth lemon yice. Wow much wotir thowd sht mix wifine beronjuicet 32 or
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Mand Kewripes} \\
\hline \multicolumn{3}{|l|}{Solve each propurise．If necessarx，eound so the nevest hundiedin．} \\
\hline \(423-135\) &  &  \\
\hline 52.\()-\frac{3}{3} 3\) & 52.7803 &  \\
\hline s5．\(\frac{3}{6}-58\) & sa．\({ }_{6}-138\) &  \\
\hline se．\(\frac{3}{}+\frac{2}{20} 15\) &  &  \\
\hline  & 62 2－2．2 -53 &  \\
\hline 64．\(\frac{20+3}{3}-\frac{6-7}{7}\)－ 28 & 65．\(\frac{3+\cdots}{5}\)－\(-\frac{1-1}{6}-3\) & 66．\(\frac{2}{1-\frac{1}{2}+1} 2\) \\
\hline 67． \(\mathrm{Cogiz}_{6}+x_{i}-2-0.4\) &  & 6．\(\left\{\frac{1}{2}\right\}-1-6\) \\
\hline
\end{tabular}

Mand Fwertine
 Ofichpo incultin the fo．Suppose vou blid a scoe moort sle sech bulding Iyou mabe the nodec of mo Whic Tower 3 mesers til what wowd be the apcrawname

7．use tools A mep of Waco．Tests ned aegrborthg lomens is siom．
a．Ule s metic esiec to manave Be sumons betweer Riscimos soa Nowle on the map．
 Schul divarce ovtmeen Hobimion med wisle imple avinec：about 6.6 mad

 How much wat the potulbubgot？ 5724

 heeds so tov 22 potampi．
a．Forerte the cort of 22 potronos Enptan
S450：tecanse 8 rocanos cost 51.30 moniply or 3 to get a copt al 54.50 for 24 potaines
Hos much wala cont fenosndo to tory 22 potitoes？How does nies compare


c．Mon many posiesos could Fernasdo bey wer s？ 37
a．What is the int cest per potiont fore

 sour foster thun kina．They eact wabiod for the same amount of the
 ain be calculted as thetence dinitas ty rate，the pecpostion




Oispher Order Twinkeng swills
 eango for which ne proportions are bue and watuate है？弪所立

7．casate Descroe how a buinness can unp rexps inchale a reas wond stuaton n





7．wimt Compare and contumt intos und rates．Batios and mes sad congure bep numbers iy


79．reasevcei A voiey showed garxit of the woderts at Hoower Hopl schoce Tave A joch whep a peeporton to fidd the meniber of isudenes that hive ajob． 2 I theee sie y stideres at Hoswet thopt schoot ：\(=\) ？

\section*{Using Formulas}

\section*{LESSON GOAL}

Students solve equations for specific variables and convert units of measure by applying the properties of equality.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Centripetal Force

\section*{Develop:}

Solving Equations for Given Variables
- Solve for a Specific Variable
- Solve for a Specific Variable When the Variable Is on Each Side
- Solve Literal Equations for a Given Variable
- Use Literal Equations

Explore: Using Dimensional Analysis

\section*{Develop:}

\section*{Dimensional Analysis}
- Multiply by a Conversion Factor
- Use Dimensional Analysis to Convert Units
- Use Dimensional Analysis to Convert Rates

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

\section*{Exit Ticket}

\section*{Practice}

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l||c|c|c|c|}
\hline Resources & All & IF & \(\|\) III & \\
\hline \begin{tabular}{l} 
Remediation: Write and Solve One-Step \\
Equations
\end{tabular} & \(\bullet\) & & & \(\bullet\) \\
\hline \begin{tabular}{l} 
Extension: Dimensional Analysis with Area \\
and Volume
\end{tabular} & & & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 13 of the Language Development Handbook to help your students build mathematical language related to solving equations for specific variables.
EIIII You can use the tips and suggestions on page \(T 13\) of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 1 day \\
45 min & 2 days \\
\hline
\end{tabular}

\section*{Focus}

Domain: Algebra
Standards for Mathematical Content:
A.CED. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
6 Attend to precision.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students solved equations involving proportions.
7.RP.3, A.CED.1, A.REI. 3

\section*{Now}

Students use formulas to solve problems.
N.Q.1, A.CED.3, A.CED.4, A.REI. 3

\section*{Next}

Students will use formulas to solve problems involving sequences and geometric measurement.
F.BF. 2 (Course 1), G.GMD. 4 (Course 3)

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|c|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLuency & 3 APPLICATION \\
\hline \multicolumn{3}{|l|}{Conceptual Bridge In this lesson, students extend their understanding of solving equations to build fluency with solving formulas for a particular variable. They apply their understanding of formulas by solving real-world problems.} \\
\hline
\end{tabular}

\section*{Mathematical Background}

Equations or formulas containing more than one variable are called literal equations. These equations can be solved for a specific variable in terms of the other variable(s). Many formulas require using dimensional analysis, which is converting units or rates.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- translating sentences into equations

Answers:
1. \(3 n+5=-7 ;-4\)
2. \(-4-3 a=2 ;-2\)
3. \(67-5 c=-28 ; 19\)
4. \(9(w+7)=207 ; 16\)
\(5.3 s+6.50=93.47 ; \$ 28.99\)

\section*{Launch the Lesson}
(11) Teaching the Mathematical Practices

6 Use Quantities Explain to students the importance of specifying units of measure as they work through problems, as illustrated by this video.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Explore Centripetal Force}

Objective
Students explore how to rearrange a formula to solve for specific variables.

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students will watch a video about objects that move in a circular path and the concept of centripetal force. They will complete a chart using given formulas. The guiding exercises will lead students to consider literal equations and solving equations for a specific variable. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore Centripetal Force (continued)

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Which equation is easiest to use to find the velocity? Why? Sample answer: The equation that is solved for \(v\). The variable is already isolated, so you just have to substitute the other values and evaluate.
- The formula for velocity involves a square root. If you were given \(F=m a\), do you think the other forms of the equation would have a square root? Why or why not? Sample answer: The other formulas had \(v^{2}\), so the equation for \(v\) had to use a square root. Because none of the variables have an exponent in \(F=m a\), there would not be a square root in any form of the equations.

\section*{© Inquiry}

Why might you want to solve a formula for a specified variable? Sample answer: I might solve a formula for a specified variable to make it easier to use the formula to find a specific value.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Explore Using Dimensional Analysis}

\section*{Objective}

Students explore how to use dimensional analysis to compare two quantities.

\section*{Teaching the Mathematical Practices}

2 Different Properties Mathematically proficient students look for different ways to solve problems. Encourage them to work through both ways to solve the problem and to choose the method that works best for them.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students will read about the rate in which Americans use water bottles, and consider how many bottles would need to be stacked on top of each other to reach the height of Mount Everest. The guiding exercises will lead students to consider units and unit conversions. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Using Dimensional Analysis (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why is it difficult to compare the measurements 7.8 inches and 8848 meters? Sample answer: The units are in completely different systems. It would be easier if inches were centimeters, or if meters were given in feet.
- How would the calculations change if the height of Mount Everest were given as 8.848 km ? Sample answer: You would also need to change from km into m by multiplying by the conversion \(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\) before completing the rest of the calculations.

\section*{(-) Inquiry}

Why might you want to convert the units for a given quantity or measurement? Sample answer: Converting units for a given quantity or measurement can make it easier to compare two different quantities or measurements.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Solving Equations for Given Variables}

\section*{Objective}

Students solve equations for specified variables by applying the properties of equality.

\section*{Teaching the Mathematical Practices}

3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Common Misconception}

Students often believe they can combine variables as they do numerical values when solving equations in one variable. Reinforce that only like terms can be combined, otherwise the variables must be left separate.

\section*{Example 1 Solve for a Specific Value}

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in this example.

Questions for Mathematical Discourse
All Why can \(5 a\) and \(2 b\) not be combined when solving the equation? Sample answer: because they are not like terms
Oll Is solving an equation with one variable different than solving a literal equation for a specific variable? Explain. No; sample answer: You still use the properties of equality to reverse the order of operations, which undoes the equation and solves for the variable.
Bill Why do you not have to state that the variables are not equal to zero? Sample answer: When solving for \(a\), you do not have to divide by either \(a\) or \(b\), so it is possible for either variable to equal zero.

\section*{(3) Go Online}
- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn


Students answer a question to show they understand how to solve an equation for a specific variable.


\section*{Interactive Presentation}


Example 2


Students select the correct term or expression to solve the literal equation.

\footnotetext{
TYPE


Students answer a question to show they understand whether the solution would be the same if the variable ended up on the right side rather than the left.
}

\section*{Example 2 Solve for a Specific Variable When the Variable Is on Each Side}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
All What is the first goal when solving the equation for \(p\) ? Get all terms with a \(p\) on the same side of the equal sign.
(OU. Which property allows us to get \(p\) by itself by factoring it from the expression \(4 p-p q\) ? the Distributive Property
[BL Why do we have to divide by \(4-q\) instead of just 4 or \(-q\) ? Sample answer: The quantity \((4-q)\) is multiplied by \(p\), so the entire expression must be used when dividing to isolate the variable.

\section*{Common Error}

Students often struggle with reversing the Distributive Property, or factoring out a common factor. When two or more terms have the same variable, students may try to solve for only one of the desired terms, rather than factor out the desired variable. Reinforce that solving equations is undoing the equation, which can mean reversing the Distributive Property.

\section*{Example 3 Solve Literal Equations for a Given Variable}

Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in this example.

\section*{Questions for Mathematical Discourse}

ALI What operation is applied to \(h\) in the formula? multiplication
Oll Should we distribute the \(h\) to \(b_{1}\) and \(b_{2}\) ? Explain. No; sample answer: We want to isolate the \(h\), and it is already isolated as is.
BL. What would be the height of a trapezoid whose area is 87 square feet with bases of 10.5 feet and 11.25 feet? Show all work.
\[
h=\frac{2(87)}{(10.5+11.25)}, h=\frac{174}{21.75}=8 \mathrm{ft}
\]

\section*{Common Error}

When an equation contains a fractional coefficient, many students divide by the denominator, which puts the fraction on the other side. Reinforce that the Multiplication Property of Equality should be used and the reciprocal should be multiplied to both sides of the equation.

\section*{DIFFERENTIATE}

\section*{}

IF students are struggling to solve literal equations for a specified variable,
THEN turn the literal equation into an equation in one variable by substituting numbers. Have the students solve the equation when there is only one variable, then have them solve the literal equation. The process is the same, but the variables cannot be combined like numbers.

\section*{Enrichment Activity [BL}

The formula for area of a trapezoid is \(A=\frac{1}{2} h\left(b_{1}+b\right)\). Solve the equation for \(b_{1}\).
Sample answer: \(2 \times A=\frac{1}{2} h\left(b_{1}+b_{2} \times 2\right.\)
\[
\begin{aligned}
\frac{2 A}{h} & =\frac{h\left(b_{1}+b_{2}\right)}{h} \\
\frac{2 A}{h}-b_{2} & =b_{1}+b-b_{2} \\
\frac{2 A}{h}-b_{2} & =b_{1}
\end{aligned}
\]

Part 8
\begin{tabular}{|c|c|}
\hline  & Soprolin for hegre \\
\hline \[
n=\frac{2 p o}{2+\cdots}
\] &  \\
\hline \[
A={ }_{40}^{46}
\] & Sumby \\
\hline \(n=35\) & Dewat \\
\hline
\end{tabular}

The height of the vaperoid is 35 leet.

Check
Buseness A Mason jar company warts ta incsease the volume of is

 The voluese of a cyendical jar is modoled ty the equation \(\mathrm{V}=\mathrm{m}^{2} \mathrm{~h}\). PartA What lormula should be used to find the helphte? \(C\)


Part B
"the radus of the par is 1.5 inches and the original volume is 30 cubbic inches, then whar height thould the compary matio the height of a new iw to increese the volume by 6 cabic inches? \(\$ .69\) in

\section*{Watch Out} Dividang by a Cuanty Oo not forpet to divac Quanter \(b_{1}+b_{r}\)

Think About le How would the noight of pe triptivio chaoge Et the atea
were doublid and all other mempers remained we same?
Simple answer The helight woild also dolote.

\section*{Study Mip}

Solving for a Specinic Solving
Varlatie Varlatle
When ans When an equiso
mose ihero one movisole, z can nelphi to diplighty ine virtato for ntict jot wo solyog on a piece of puper.

\section*{Interactive Presentation}


Example 3
TYPE \begin{tabular}{l} 
Students complete the statement to \\
include the height of a trapezoid.
\end{tabular}
Pert B
Solve \(T=13.43 \mathrm{c}+15.49 \mathrm{p}\) for C .
Part C
II Kissi has 5 \$35 to spend on plaza and she needs to buy 3 pepperoel
plorak, find the masimuin number of cheese pirras she can buy.


Kishi has \(\$ 85\) to spend on pizza, describe the constraints on \(T=13.49 \mathrm{c}+15.49 \rho\).

The maximam number of cheese pizas Kiser can buF h 6. pecause ins can buy 6 cheese pizzos and no pepperon pizz whout enceeding 855
- The maximum nomber of pepperoel proxes Nishi chen boy is 5. brebuse the can buy 5 pepperoed and no cheese pitat withoit going over her budget.
- The minimum numper of each type of prase vel can Ruy is \(Q\) because ybu canoot bcy a negative threber of pirzas
\[
T=13.49 c+75.49 \mathrm{p}
\]
\(\qquad\)
\[
\gamma-15.49 p=13.49 c+15.430-55.45 p \quad \text { Seoss } 15.40 p
\]
\[
T-55.49 p-13.49 \mathrm{C} \quad \text { 3-10. }
\]

\begin{tabular}{|c|c|}
\hline \[
c=\frac{\frac{1-18+9}{0.45}}{0 .}
\] & Organe wquoon wowa fere \\
\hline \[
c=\begin{gathered}
35-n 2499 \\
349
\end{gathered}
\] & T-K5.n-3 \\
\hline  & Sirocte. \\
\hline c \(\sim 286\) & awe \\
\hline
\end{tabular}

Kovican ocy a maxinum of 2 cheete pras


\section*{Interactive Presentation}


Example 4


\section*{Example 4 Use Literal Equations}

Teaching the Mathematical Practices
1 Analyze Givens and Constraints In this example, help students identify the meaning of the problem and look for entry points to its solution.

\section*{Questions for Mathematical Discourse}

How much does each cheese pizza cost? \$13.49 Pepperoni pizza? \$15.49
OL. Explain why the maximum number of cheese pizzas is 6 . Sample answer: If Kishi buys 6 cheese pizzas, she will spend \(6(13.49)=\$ 80.94\). She cannot buy a \(7^{\text {th }}\) pizza if she can only spend \(\$ 85\).
[BLI If Kishi instead bought 2 pepperoni pizzas, how many cheese pizzas could she buy? Show all work.
\(c=\frac{85-15.49(2)}{13.49}\)
\(c \approx 4.004\)
She could buy 4 cheese pizzas.

\section*{Common Error}

Students tend to follow the rules of rounding despite the context of the problem. Because this problem dealt with a budget, rounding up was not appropriate even though the number would ordinarily round up. Reinforce context to students and ensure they understand what their answer represents.

\section*{Essential Question Follow-Up}

Students have begun solving literal equations for a specified variable.
Ask:
Why is it important to be able to solve literal equations for a specified variable? Sample answer: Many jobs use formulas regularly, but may need a value for one of the variables inside the equation. Being able to solve the general equation for a variable saves time in the long run when that is the needed variable in calculations.

\section*{Learn Dimensional Analysis}

\section*{Objective}

Students convert units of measure by applying the properties of equality.

\section*{(11) \\ Teaching the Mathematical Practices}

3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Common Misconception}

Some students believe they can just solve the problem as is without considering units of measure. During the lesson, point out when unit conversions are necessary and discuss why.

Example 5 Multiply by a Conversion Factor
Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

\section*{Questions for Mathematical Discourse}

ALil How many liters are in one gallon? 3.785
ail Suppose the problem had given how many gallons of water were in the pool instead of liters. What would the conversion rate have been to convert gallons to liters? \(\frac{3.785 \text { liters }}{1 \text { gallon }}\)
[B1. About how many quarts of water will the pool hold? Show all work. 25,703 gallons \(\times \frac{4 \text { quarts }}{1 \text { gallont }}=102,812\)
The pool could hold about 102,812 quarts of water.

\section*{Common Error}

Many students will write the conversion factor in the way it was presented in the problem rather than consider which unit should be in the numerator and which should be in the denominator. Have students write units with every numerical value to help identify where the units should be in order to be eliminated.

\section*{Check}

VIDto cemss Bla maket a video gome that becomes very popvia: Stie creates a formule. P a \(40 \mathrm{c}-300\), to model ber profe P given the number of sopies sold c, aking into actount the 5300 tee trat the has pad a retailer to sed her pame. Which equation would model how many coples C must be soid to yiotd a spocitic amoort of proter D
```

A.C="+40 S. B. }c=\frac{p}{40}+30

```
c. \(c=\frac{0}{40}-300\)
D. \(c=\frac{\pi}{45}+39\)

Explore Using Dimentiona Analyes:
© Online Activity Une a renu world stumion to complete the Eeplore.

Q wouver Why might you want to comed
the units for a given goantity or
mestsuremert?

Learn Dimensional Annlysis
When using formulas, you may want fo ise ifimensonal anay sis. Dimenstonal analysis or unit analysis is the process of performing operations when units.
As you plan your solition mephot. think about
- what units weve given.
- what unts you theed for the solution, and
- the stepbl you need to take to cofreet your units trom what you are guen to whm you will need for the solvion.
Q Example 5 Muitiply by a Comversion Factor
nODLS Mark is purchasing an above-ground swimming pool. The salesperson says that the peof will hold 97,285 titers of watee. it T gallon \(=3.725\) Sters, determine approximately how many gallons of water Mark's pool will hold.
Two nwion can be used to corpere iters and gallomh \(\frac{19010}{176510}\)

Number of Mens te poot mal had \(\times\) gationa to inin 97.285 ities \(\times \frac{10}{1010}\)

Mark's.poof war hodd approximgtely 25703 gilione of watec.
9 Thint About TH Why mahtryou mant to converi (ons?

Sample stitwec Ore. reason to comert units weuls be to mbte ? enfer to sompare two quantities Another reisos woud be to comvent to units that Mre more fimilitr of eavier to understand so that you cen mabe sense of a quamity.

\section*{Study Tip}

Precivion
Notice ther the Question (riks for mn ustimets, not an exact answer

\section*{Interactive Presentation}



\section*{Interactive Presentation}


Example 6
 understand how to set up a conversion
factor. factor.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 6 Use Dimensional Analysis to} Convert Units

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about dimensional analysis to solve a real-world problem.

\section*{Questions for Mathematical Discourse}

How much milk does Nita buy? a half gallon
[OL For this problem, should you convert fluid ounces to gallons or gallons to fluid ounces? Explain. Sample answer: Because the recipe calls for 20 fluid ounces, it would be better to convert gallons to fluid ounces. The solution would be the same if converted to gallons, but we would have to deal with a decimal or fraction value.
[BII How many batches of the recipe could Nita have made if she had \(\frac{3}{4}\) of a gallon of milk? Show all work.
0.75 gál \(\times \frac{4 \text { gt } 2 \text { pts } 2 \text {.cups }}{1 \text { gat }} \times \frac{2}{1 \text { gt }} \times \frac{8 \mathrm{fl} .0 \mathrm{oz} .}{1 \text { pt }}=96 \mathrm{fl} . \mathrm{oz}\).
\(96 \mathrm{fl} . \mathrm{oz} . \div 20 \mathrm{fl} . \mathrm{oz} .=4.8\)
Nita could have made 4 batches of the recipe.

\section*{Common Error}

Many students either unintentionally skip a needed conversion factor or try to combine two factors into one. Either way, this usually produces wrong answers. Encourage students to show all work and not skip conversion factors by going back over the units to ensure the factors eliminate units along the way.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity ALL \(\operatorname{ZLL}\)}

IF students are struggling to convert units correctly,
THEN show students how a proportion can also be used to convert units rather than multiplying by a conversion factor. In the proportion, the conversion factor is one side and the desired unit with the given unit is the other. Just like in proportions, the units must be in the same place for each ratio; then students can solve.

\section*{Example 7 Use Dimensional Analysis to Convert Rates}

\section*{11) Teaching the Mathematical Practices}

1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse
II. How many meters are there per mile? 1609.344 metersWhat is the conversion for 1 kanejaku? 1 kanejaku \(=\frac{10}{33}\) metersAbout how many miles could the runner have traveled in 126.5 minutes if he had run 20 kanejaku per second? about 28.6 miles

\section*{Common Error}

As students set up the conversion factors, encourage them to cancel as they go. Otherwise, they may lose track of which units have canceled and which still remain.

\section*{Essential Question Follow-Up}

Students have begun solving literal equations for a specified variable.

\section*{Ask:}

Why is it important in the real world to convert units? Sample answer: Different countries use different units of measure, so to compare distances or speeds we would need to convert to the same unit of measure. Also, many problems need a unit conversion when the desired information is in different units than the information collected.

\section*{Check}

Acencuature On awage, a dariy com prodoces 832 cunces of mile a day. About how many gotons of mik does a dairy cow produce
 4 quarts
A. 6.5 galons per year
B. 2372.5 polfons per year
C. 43572 gatons per yeer
D. 303,680 gitions per yeor

Q Example 7 Use Dimensionai Analysis to Convert Rates

Spetio In a novel, the main charocter, Aiko, can nue loeg distances at 16.5 kanejoku per second. Carla ksows that the Obympic recoed for ruining a marathon distance of 26.2 mites is about 126.5 minutes. She wonders if Aike could beat this record. If 1 hangiohy \(=\frac{10}{30}\) meters, find how tor Ako could run, in miles, in that amount of time. (Hint 5 mile \(=1609.344\) meters)
Use the formula \(d=\) rf hat reities divtance \(d\), rater \(f\), and time \(t\) to find the ditancti: Abs could run in 226.5 minutes.
\(d=a\)
Denasureciunim
In ordec to conpore Aka lo the Oifngic inneer comen Akels cieie in konelok to miles per minitekonegoku to mies per minite.
Step 1 Convert distance
Yoo want distance in mies, but Aabi's distance is in konejoku. Use the given sooverion rithes that relabe to ditance to compet Akpl rabe in koneyoku per second to miles pee second.


\section*{Step 2 Convert time.}

You want time in minusel, but Ako's sime is in secends. Use the resutivg rate from step 2 to convert seconds to minides.

icsutinuid on the next popel

Probiem-Solving Thp Make a Pian Before yor rolve a problem pink about most the cuesson askog and whil and the sotions

Watch Out Canceling Units Do fet torget to cancel your unis a yoo mutply so thy you can ces what units are let-rbe unts bor sre your fied anwer.

\section*{Interactive Presentation}


Example 7



\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline \multicolumn{2}{|c|}{2 exercises that mirror the examples } & \(1-33\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(34-43\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(44-47\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(48-50\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign: B1
- Practice, Exercises 1-47 odd, 48-50
- Extension: Dimensional Analysis with Area and Volume

\section*{IF students score 66-89\% on the Checks,}

THEN assign:
- Practice, Exercises 1-41 odd
- Remediation, Review Resources: Write and Solve One-Step Equations
- Personal Tutors
- Extra Examples 1-7
- G ALEKS'One-Step Equations;

Fractions: Expressions and One-Step Equations;
Decimals: Expressions and One-Step Equations

\section*{IF students score \(65 \%\) or less on the Checks, \\ THEN assign:}
- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Write and Solve One-Step Equations
- Quick Review Math Handbook: Literal Equations and Dimensional Analysis
- ArriveMATH Take Another Look
- D ALEKS One-Step Equations;

Fractions: Expressions and One-Step Equations;
Decimals: Expressions and One-Step Equations

Lenoes
Solve each equation or formula for the veriatle insicated.




tuent?




 boner uho rosi f his in bomes at be
a. Solve the formiat tor ba \(\quad \mathrm{b}=\) ?
a. It atpocer his a biating avezage of 0325 sid hes 39 nes. how mayy kines han the pibyer boin at tial Dofimes



4. Sclve the esuatontorg: \(\quad=\frac{\text { c- }}{\text { et }}\)
b. Find how mery umes thones coigh. 4 gunes
 thelength wis vee wath. and fis is the height
A. Selve lieflombleet to \(=\frac{\text { e }}{6}\)
b. What it the begts of obor weh a wotime of 50 cube metars. legin at to meten and woll of 2 mevent i25 \(=\)

\section*{Enmpio 4}
23. corret smon Consuilo sh buying favored coffee ans glain cillse. The ketal mout of mony, she spendr on cobce is \(T=5.509+\pi\) wheop \(p\) repessents Alaroned confer
a I Convulo kas 54010 spend on cotie describe the contrimes on te

b. Solemtort. \(t=\frac{r-8.89}{r}\)
c. II Consuitio needn to bry 3 packages of plan coffee, whit is the maurrum number of packages of flavored cofoce the can buy? ?





a. Solve torti. \(8=\frac{\mathrm{t}-\mathrm{iv}}{6}\)
c. She reedi so ouder at least 20 wandiohs. How many been towels can ihe order and taty ueder busper??
tannaters-9
25. Evviosuatior The Unhed sumer retesed 5.877 bibon matic lose of caston






 ake toner 31 mede? Rocond to the nearest surth phect 1 foct \(=0.3048\) meten) 12.5 op 1





 she nersap permon have uned aher takng the stowerer 902 galceis





\section*{Mired Erartiant}

Selve eoch eountion for the valuble indrates
















 permeter of one octugsi ia 48 continstirn
2. What a pelefign ef each sibe of vive octagent 5 cmininete

 72 centimenis
47. Consiber ne equatoo \(\frac{7 x}{7}-1=x\)
4. Solive ve equitontory \(y=\) motyoz
 lesvicions Owison by a is interinet, se in the onginal equabies \(\equiv 0\), met in Br Snal cosibent \# ?
-isphec Cidee Thilaing salts

nacton



 tempeations in degrees fulverbet F nnd degees Cebins C Sinha seles Be forsicto for C. Her sobition is shows at the note is Sesinel solboen

 accourt aher tyeon, wher P it the unsurt intiaty doporbsc and it the

 dopsotes shice item




 that frowaik A P \(<4\)


\section*{Rate Yourself}

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

\section*{Answering the Essential Question}

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.
-Why is it important for you to be able to write equations to help solve problems in the real world?
- Why would translating equations into verbal sentences be a helpful skill?
-Why is it important to create equivalent equations when solving an equation?
-Why should we be able to set up and solve one-step equations in the real world?
-Why is working backward an important part of the solving process?
-Why might equations have variables on each side in the real-world?
- Why is it important to follow the order of operations even when solving equations?
-Why is absolute value an important concept for real world equations?
-Why is it important to set up and solve proportions in the real world?
- Why is it important to be able to solve literal equations for a specified variable?
-Why is it important in the real world to convert units?
Then have them write their answer to the Essential Question.

\section*{DINAH ZIKE f0LDABLES}

ELLL A completed Foldable for this module should include the Key Concepts related to writing and interpreting equations.

Lᄐ킁
LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Relationships

\section*{Between Quantities and Reasoning with Equations and Linear and} Exponential Relationships.
- Reason Quantitatively and Use Units to Solve Problems
- Represent and Solve Equations and Inequalities Graphically

```

Test Practice
4. MuTTPLE CHOICE Whirf Equaston
represents this sertence?' imam}
The sum of 5 trimes a number mand t2 is
equortai 22
* 5m+12=27
8. 50m+127 =27
C.5+12m=27
D.542m) = 27
2. oper response A concain venue surveyed
680 concert uthendees about unt concession
\#nct or those that visited me concession
*)

```

```

 Whte an equasion so sid the ourbor of
 atiencees a who did nor vist the concetwion
 und cemin 25
 Samgle anvere: [527+44]+0=690
 3. mucriple croice wite a verbal sectence
lor the abgebtac tquabon 5x}+2=2
\,wen>>
2 5 mesx squered iess 2 is 22
B. Five plus x Holured plus 2 is 22
C. The geoduct of 5 5imes x semated
and2 is 22.
Twe Smesx squared plus 2\& 22
4. mulipir choce Soven-8=5, immonz3
A. }n=-1
8. }n=-
C.A=3
4.n-13
430
```


\section*{Test Practice}
1. Mutrele choice which equiton epresents this sentence? fiviaur 29 equortso 22
\(5 \mathrm{~F}+12=27\)
C. \(5+20+420=27\)
C. \(5 .+12 m=27\)
D. \(512 \mathrm{~mm}=27\)
2. oper responst A concain venun surveyed thand of there that vielied me concession re acestive, and the cemaining 24 बd not. Whte an equasion so sind the nurber of und 4e...2:

Sampte anvere: \((527+44)+0=690\)
3. Mutriple croict wite a werbel sectench ar the elgebiac equason \(5 x^{2}+2=22\) A-nmen

Five olus \(\times\) thectied plus 2 is 22
The geoduct of 5 Dimes \(\times\) scumed
4. Muripar chicict Solven-8=5. imum 23 \(A=-13\)
C. \(\rightarrow=3\)
4. \(n-13\)

130
 thentis
A. 2
B. 5 :

C 15
6. Open mesponse Solve \(2+12 \geqslant-3\) tor: Explun (manzanl
- 走: 1 ambraited 12 from sach side of the quation to getz \(=-3-12\) which is -15
7. MUTHLE OHOICE II \(3 r-6=42\) wne is the wilue of \(x\) ? leme in
A. 8

812
D. 20
B. OPEN RESPONSE Solve \(8=11-3\). tmon as
\(v=1\)
2. Muntiselect Jaine bought a notebook and a bor of pencis for \(\$ 5,00\). The notebook cont \(\$ 700\) and there ate 10 pencis in a bon The equation \(3+100=5\) can be uled io Find the cost of one pendr setectas poutions that are soachisel
A. \(10 p=\mathrm{B}\)

8 \(10 p=2\)
C \(p=0.80\)
\(0 \rho=020\)
E. \(50 \rightarrow 5\)

\section*{Review and Assessment Options}

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 2-1 through 2-4
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
ALI Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

\section*{Test Practice}

You can use these pages to help your students review module content and prepare for online assessments．Exercises 1－23 mirror the types of questions your students will see on online assessments．
\begin{tabular}{|l|l|c|}
\hline Question Type & Description & Exercise（s） \\
\hline Multiple Choice & Students select one correct answer． & \(1,3,4,5,7\), \\
& & \(10,11,12,15\), \\
\(18,19,20,21\) \\
\hline \multirow{2}{*}{ Multi－Select } & Multiple answers may be correct． & 9,14 \\
& Students must select all correct & \\
\hline answers． & \\
\hline Open Response & Students construct their own & \(2,6,8,13\), \\
& response． & \(16,17,22,23\) \\
\hline
\end{tabular}

To ensure that students understand the standards，check students＇ success on individual exercises．
\begin{tabular}{|l|c|c|}
\hline Standard（s） & Lesson（s） & Exercise（s） \\
\hline A．CED．1 & \(2-1,2-4,2-5,2-6\) & \(1,3,13,15,19,20,21\) \\
\hline A．CED．3 & \(2-1\) & 2 \\
\hline A．CED．4 & \(2-7\) & 22,23 \\
\hline A．REI．1 & \(2-2\) & 6 \\
\hline A．REI．3 & \(2-2\) through \(2-6\) & \(4,5,7-12,14,16-18\) \\
\hline
\end{tabular}

88. Mutrele CHOICE Sole \(\frac{3}{3}+2=\frac{2}{x-2}\)
A. \(x=-4\)
B. \(x=4\)
C \(x=8\)
B \(x=20\)
19. Muktipue CHOICE \(A\) biologist estimated thet \(5 \%\) of tie seaguts in o fock havo been banded There were 22 spogguls buat hame been bonded. Which equation and solution epresent the apposimate number of sespuls, g. that weve in the Scck? jumer 3
A. \(0.005 g=22: g=4 * 00\)
\(9005 \mathrm{~g}=22: 9=440\)
C. 22 g \(=500.9-22\)
D. \(\overline{5}-22=0-227\)
20. muctiple chonce on a map of Toxas, the distance betwren Dafiss and Mowston is 8 inches. if 1 inch \(=50\) miles, what is the intance, in mies, betracen the swo

A. 96 mites
a. 104 miles
- 200 mior
D. 250 mies
21. Muctike crioice it 1 toot \(=0.305\) meter spprowisately how many feet are in
B meters? Semor?
A. 244
8. 262
C. 24.4
926.2
22. OEEN PSSPONSE Solve the formula for 50e cicunteresce of a circle. \(\mathrm{C}=2 \pi \mathrm{~F}\), for 4seram
\(r=\frac{c}{r=}\)
32. Ofen mesponise the volume cla right branies is given ty the fomuts \(V=\frac{1}{3}\) Bh wheee \(B\) is the ares of the base and \(n\) is the height tencra?


Part A Solve the formata for is
\(n=3\) )
Part 8 Find ene heigre, in inchex, of a biget bynemid with a volame of 900 cubc ncter and o base ares of 225 wovere nolos.

12

\section*{Relations and Functions}

\section*{Module Goals}
- Students represent relations, and determine whether a relation is a function.
- Students use function notation, and find function values.
- Students graph linear and nonlinear functions, and identify their attributes.

\section*{Focus}

Domains: Number and Quantity, Algebra, Functions
Standards for Mathematical Content:
F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f\) is a function and \(x\) is an element of its domain, then \(f(x)\) denotes the output of \(f\) corresponding to the input \(x\). The graph of \(f\) is the graph of the equation \(y=f(x)\).
F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
Also addresses N.Q.1, F.IF.5, A.REI.10, and F.IF. 9
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

\section*{Coherence}

Vertical Alignment
Previous
Students understood the concept of a function.
8.F. 1

\section*{Now}

Students graph functions and interpret key features in graphs of functions.
F.IF.1, F.IF. 4

\section*{Next}

Students will construct linear and nonlinear functions to model and solve real-world problems.
F.BF.1, F.LE. 2

\section*{Rigor}

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.


\section*{Suggested Pacing}
\begin{tabular}{|c|c|c|c|}
\hline Lessons & Standards & 45-min classes & 90-min classes \\
\hline \multicolumn{2}{|l|}{Module Pretest and Launch the Module Video} & 1 & 0.5 \\
\hline 3-1 Representing Relations & N.Q.1, F.IF. 1 & 2 & 1 \\
\hline 3-2 Functions & F.IF.1, F.IF. 2 & 1 & 0.5 \\
\hline 3-3 Linearity and Continuity of Graphs & F.IF.4, F.IF. 5 & 1 & 0.5 \\
\hline 3-4 Intercepts of Graphs & A.REI.10, F.IF. 4 & 2 & 1 \\
\hline 3-5 Shapes of Graphs & F.IF. 4 & 2 & 1 \\
\hline \multicolumn{2}{|l|}{Put It All Together: Lessons 3-1 through 3-5} & 1 & 0.5 \\
\hline 3-6 Sketching Graphs and Comparing Functions & F.IF.4, F.IF. 9 & 2 & 1 \\
\hline \multicolumn{2}{|l|}{Module Review} & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Module Assessment} & 1 & 0.5 \\
\hline & & 14 & 7 \\
\hline
\end{tabular}

\section*{\({ }^{\text {a }}\) Analyze the Probe}

Review the probe prior to assigning it to your students.
In this probe, students will determine which graph correctly represents the situation described and explain their choices.

Targeted Concepts Understand the graphical representation of a verbal description that describes a relationship between two quantities.

\section*{Targeted Misconceptions}
- Students may interpret a graph as a literal picture rather than a representation of the relationship between time and distance.
- Students may interpret a rate of change (slope) in the graph as part of the hill in the verbal description.
- Students may interpret a constant function as running on a flat surface (the top of the hill).


Correct Answers:
1. no
2. no
3. yes
4. no

Use the Probe after Lesson 3-1.
Collect and Assess Student Answers

If the student selects these responses...
1. yes
2. yes
3. no
4. yes
is interpreting the graph as a literal picture of the verbal description (going uphill, then going downhill) instead of a representation of time versus distance.
is interpreting the graph as a literal picture of the verbal description, but considers running at the top of the hill as a horizontal line.
doesn't recognize a time versus distance graph and expects it to look like a literal picture of a hill.
is beginning to recognize the relationship between time and distance but needs more experience with connecting pace to rate of change (slope).

\section*{- Take Action}

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.
- ALEKS* Sets, Relations, and Functions
- Lesson 3-1, Learn, Example 2

Revisit the probe at the end of the module to be sure that your students no longer carry these misconceptions.

\section*{IGN|TE!}

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

\section*{Essential Question}

At the end of this module, students should be able to answer the Essential Question.

Why are representations of relations and functions useful? Sample answer: Relations and functions can help you visualize relationships between quantities. They can also be used to display data, identify trends, and make predictions.

\section*{What Will You Learn?}

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

\section*{DINAH ZIKE FOLBABLES}

Focus Students write notes about new terms and concepts as they are presented in each lesson of this module.

Teach Have students construct their Foldable as illustrated. Have students write an explanation of each term or concept on the appropriate section of their Foldable while working through each lesson. Encourage students to record examples of each term or concept on the back of each flap.

When to Use It Encourage students to add to their Foldable as they work through the module, and to use it to review for the module test.

\section*{Launch the Module}

For this module, the Launch the Module video uses data analysis to describe relations and functions. Students learn about using relations and functions in computer networks and weather.

Q Essential Question



\section*{Interactive Presentation}




\section*{What Vocabulary Will You Learn?}

ELL As you proceed through the module, introduce the key vocabulary by using the following routine.

Define A function is a relation in which each element of the domain is paired with exactly one element from the range.

Example \(\{(1,3),(2,4),(2,6)\}\)
Ask Is the relation a function? Explain. No. Because 2, an element of the domain, is paired with both 4 and 6 , the relation is not a function.

\section*{Are You Ready?}

Students may need to review the following prerequisite skills to succeed in this module.
- naming quadrants
- identifying ordered pairs
- graphing ordered pairs
- analyzing qualitative graphs

\section*{O ALEKS'}

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the topics in the Functions and Lines module-who is ready to learn these topics and who isn't quite ready to learn them yet-in order to adjust your instruction as appropriate.

\section*{Mindset Matters}

\section*{Foster Grit}

Grit is defined as a student's perseverance and passion for longterm goals. A student's ability to work hard, endure struggle, remain committed to their goals, make mistakes, and try again are important factors in learning.

\section*{How Can I Apply It?}

Assign students the Put It All Together activity for each module and allow them an opportunity to work through the problems, make mistakes, share their strategies and receive feedback, and then work on the problems again to try new strategies.

\section*{LESSON GOAL}

Students represent relations with graphs, ordered pairs, tables, and mappings.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

\section*{Develop:}

\section*{Relations}
- Representations of a Relation

Analyzing Graphs of Relations
- Analyze Graphs

Explore: Choosing Scales

\section*{Develop:}

The Coordinate System
- Use Appropriate Scales
- Choose an Appropriate Origin
- Interpret Scales and Origins

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket


\section*{Practice}

Formative Assessment Math Probe

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l||c|c|c|}
\hline Resources & Al & IE & IFIII \\
\hline & \\
\hline Remediation: The Coordinate Plane & \(\bullet\) & & \(\bullet\) \\
\hline Extension: Misleading Scales & & \(\bullet\) & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 14 of the Language Development Handbook to help your students build mathematical language related to representing relations.
[EIII You can use the tips and suggestions on page T14 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

Domain: Number and Quantity, Functions Standards for Mathematical Content:
N.Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f\) is a function and \(x\) is an element of its domain, then \(f(x)\) denotes the output of \(f\) corresponding to the input \(x\). The graph of \(f\) is the graph of the equation \(y=f(x)\).
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
6 Attend to precision.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students used multiple representations (tables, graphs, ordered pairs) to represent relationships between two quantities.

\section*{6.EE.9, 7.RP.3a, 8.EE. 5}

\section*{Now}

Students represent relations.
N.Q.1, F.IF. 1

Next
Students will determine whether a relation is a function and find function values. F.IF.1, F.IF. 2

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students develop understanding of relations as a prelude to understanding functions. They apply their understanding by solving real-world problems involving relations.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


Today's Vocabulary

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- naming quadrants

Answers:
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\)-value & \(-2-1\) & 0 & 1 & 2 \\
\hline\(y\)-value & 0 & -1 & 0 & 3 & 8 \\
\hline
\end{tabular}

\section*{Launch the Lesson}

\section*{(17) Teaching the Mathematical Practices}

1 Explain correspondences Encourage students to explain the relationships between the GCS coordinates and the actual location of a city.
6 Use quantities Have students examine the scales and labels of the axes.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer to read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Mathematical Background}

A relation can be represented as aset of ordered pairs, as an equation, a table, a mapping, or a graph. A mapping lists the \(x\)-values in the domain (independent variable) and the \(y\)-values in the range (dependent variable) with arrows drawn from the \(x\)-values to the corresponding \(y\)-values. A table lists the set of \(x\)-coordinates in the first column and their corresponding \(y\)-coordinates in the second column. A graph consists of a horizontal axis ( \(x\)-axis), a vertical axis ( \(y\)-axis), and the intersection of the axes (origin).
The scale of graph is the distance between tick marks on the \(x\) - and \(y\)-axes. Using a scale other than 1 can make graphing a relation easier.

\section*{Explore Choosing Scales}

Objective
Students use a sketch to explore how to choose appropriate scales for situations.

\section*{Teaching the Mathematical Practices}

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Explore asks students to justify their conclusions.
1 Seek Information Students may need to change the viewing windows on their graphing calculators to complete this Explore.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will explore how choosing an appropriate scale is similar to choosing appropriate bills for a withdrawal amount from a bank. They will then use a graphing calculator to explore how the choice of scale affects the graph of a set of data. Then, students will complete the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore
WEB SKETCHPAD
Students use the sketch to complete an activity in which they explore the best way to pay out different withdrawal amounts.

\section*{Interactive Presentation}



\section*{Explore}

\section*{TYPE}


Students will respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Choosing Scales (continued)}

\section*{Questions}

Have students complete the Explore activity.
Ask:
- Why would it be harder for the teller to use \(\$ 1\) bills? If they still existed, would it be reasonable to use a \(\$ 1000\) bill? Sample answer: The teller would have to count out one thousand \(\$ 1\) bills, which would take more time. It's not reasonable to use a \(\$ 1000\) bill, even though there would only be one bill. There are not many (or any) places where you could use a \(\$ 1000\) bill.
- Would a scale of 5 be appropriate to use for the given data? Why or why not? Sample answer: While a scale of 5 seems to fit with the given values because almost all are multiples of 5 , this would mean close to 20 tick marks in each quadrant. It makes more sense to use a scale of 10 .

\section*{(-) Inquiry}

How can you tell if an appropriate scale is being used to represent a relationship? Sample answer: The scale is appropriate if it allows you to view all of the data in a reasonably-sized graph, and allows you to read or estimate data values.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Relations}

\section*{Objective}

Students represent relations by matching sets of ordered pairs to tables, graphs, and mappings.

\section*{Teaching the Mathematical Practices}

7 Use Structure Help students to explore the structure of relations in this Learn.
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{What Students Are Learning}

Students are learning that a relation is a pairing of elements from one set (the domain) with elements from a second set (the range). They learn that the pairing can be shown using different representations.

\section*{Common Misconception}

A common misconception some students may have is that the domain and the range of a relation must have the same number of elements. Explain that this is not true, as an element of either the domain or the range can be paired with more than one element from the other set.


Essential Question Follow-Up
Students learn that there are different ways of representing a relation.
Ask:
Why is it helpful to have several different representations of the same relation? Sample answer: Different representations of the same relation can show different aspects of the relationship. For example, a mapping is helpful because it allows you to quickly visualize how many times an element in the domain is paired with an element in the range, or vice versa.

\section*{(6) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


\section*{Learn}

\(\square\)


\section*{Interactive Presentation}


Example 1 DRAG \& DROP

Students drag objects to create different representations of a relation.

\section*{CHECK}


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 1 Representations of a Relation}

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain how the table, graph, and mapping are related.

\section*{Questions for Mathematical Discourse}

Which value in each given ordered pair goes in the \(x\)-column of the table? the first value in each pair
ㅇL Which representation makes it easier for you to see the relationship between the \(x\) - and \(y\)-coordinates? Explain. Sample answer: The mapping because I can see how many unique values are in the domain and range.
BLI. How can you tell if the relationship is linear? Explain. Sample answer: By looking at the graph, I can see that it is not linear because the plotted points do not lie on a line.

\section*{Common Error}

Students may think they need to write the -5 in the range of the mapping diagram twice. Explain that this is not the case, and that more than one arrow can be drawn from or to any of the elements.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{2 FLUENCY | 3 APPLICATION}

\section*{Learn Analyzing Graphs of Relations}

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of graphs of relations in this Learn.

\section*{Objective}

Students interpret graphs of relations by analyzing their shapes and selecting the independent and dependent variables.

\section*{What Students Are Learning}

The dependent variable depends on the independent variable. For example, if, each \(y\)-value in a relation is 2 more than its corresponding \(x\)-value, then the values of \(y\), the dependent variable, depend on the values of \(x\), the independent variable.

\section*{DIFFERENTIATE}

\section*{Language Development Activity ALI 트L}

Discuss with students how the shape of a graph changes based on what it represents. The graph of Days and Driving Time represents the time the student has spent driving over several days of training. Ask students what they think the graph might look like if the vertical axis represented Distance Driven or Distance from Starting Point. If the driver starts and ends each driving session at home, would the graphs be the same or different? If they are different, how are they different? This would be an excellent time to have a student use a stopwatch to record the time x it takes another student to walk or run a specific distance from a starting point. Make a table and graph the data to represent the situation in different ways.

\section*{Example 2 Analyze Graphs}

Teaching the Mathematical Practices
4 Make Assumptions Discuss with students the reasonableness of the assumptions they make while solving problems. Ask them to explain why they made the assumptions that they did.

\section*{Questions for Mathematical Discourse}

AL. Describe the graph. The graph increases, then stays the same, then increases again, then stays the same, and then increases again.
이. Which variable continues to increase regardless of the change in the other variable? timeDoes it make sense for the graph to continue to increase? Why? Sample answer: The graph will not continue to increase forever because it would not make sense for Nora to send an infinite number of texts in one day.

Learn Anslyzing Grophs of Relations

Griphing the folsis ime airen duning your diving course can neip you wesistre emo progerss.
A restion cen be graphed wheura a scale An ether ans to show the resorionstip on ethor axis to show the restionstip vicisties. These orrots in be


The velues in the dontin corsepond no tre indeoendert variabie in a relicon The independent varible ocoutly, nas a velue thats suitied to choice in the groph abows, me incopmodect weribte is tre dyph The valus in the tange correspond so the dopendene vacible of the releton. The sependent variabie is the warsobic in a relation usuably. whit values trut depend on \(x\) in the graph above, the dopendent veriabie is the drang time.
E Example 2 Antlyze Graphs
ruxting The groph represents the number. of text mestrages seel by Nora throughout the day.
Part A identily the indepensent and
dependent variabise of the
retation independent wariobie:
the dependent variotio. number of leet messoges sent
 Part 8 Describe what happens in the graph.

As you move hom left to nigth alomg the graph, seep increases and the number of tent fiessmges sent increates until the graph secomes a horizortal ine
The horizotal ase means that tine a incressho, but the Number of text messoges semt remsins constant During tio tine. Nore stoppedsending text messigos.
Theo vec consoned to send tert messiges until the sooped agan for a period of teme.
Finuby, Nera began sending weet messiger ropin. Check
wernty me indepencert and deplendent warabies at exct vetision.
a. The mwispe cicce of a leket to an am revesot park hes rteodly locwsthed ower bime
The awrupe pocee do rikenet is ine Sepandint
Time is the \(?\) ? wriabice indipsendent
b. The eir gressue insde a soccer bas decresser wimb bene. Time asper variabie inoepenobet Ar pornure is me ? veribice depensent



\section*{Interactive Presentation}


Example 2

\(\Theta\) TrinkAbout it What can you conctere bom the grach aboct the rutes at wition ivan sem ber messiges
troughout tre cosy?

Sanple otswer Ners emplet inessper at he fatestrotecit ine beginining of the diaf.


\section*{Interactive Presentation}


Check
MULTIPLE CHOICE
Students decide which graph best represents the situation.

\section*{CHECK}


Students complete the Check online to determine whether they are ready to move on.

\section*{Common Error}

Students may interpret a horizontal segment as increasing, as the \(x\)-values of the points along such a segment are increasing. Explain that it is the \(y\)-values that determine whether a relation is increasing, decreasing, or constant.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity AL ㅌLㄴ}

IF students have difficulty interpreting qualitative graphs,
THEN have them think about the \(y\)-axis as a "thermometer," and use the idea of the temperature reading rising, falling, and remaining constant to determine whether the parts of the graph indicate that the values are increasing, decreasing, or remaining constant.

\section*{Enrichment Activity IBL}

Have students draw a graph that shows the height of water in a tub as it is filling, when the water is turned off, when a person gets into the water, when they get out, and as the tub is draining. Remind students to label the axes of their graphs. Have students exchange and discuss their graphs. See students' graphs.

\section*{Learn The Coordinate System}

\section*{Objective}

Students choose and interpret appropriate scales and origins of graphs.

\section*{119 Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Things to Remember
When different scales are used for the \(x\) - and \(y\)-axes, distances on a graph will be distorted. For example, a point that appears to be equidistant from the two axes with different scales will actually be fewer units from one axis than from the other.

\section*{Common Misconception}

A common misconception some students may have is that the scales on the \(x\) - and \(y\)-axes must be the same. Point out that the scale for each axis should be chosen based on the values of the related coordinate in the ordered pairs.

\section*{Example 3 Use Appropriate Scales}
(17) Teaching the Mathematical Practices

3 Compare Arguments Mathematically proficient students can compare arguments, determine which one is flawed, and explain the flaw. In this Think About It!, students have to evaluate and correct a solution.

\section*{Questions for Mathematical Discourse}

Al. If you used a scale of 1 , about how many tick marks would be required along the \(x\)-axis to accommodate all the ordered pairs? about 80 along the \(y\)-axis? about 200
OI Why is it important to choose a scale other than 1 for this situation? Sample answer: The number of tick marks needed for the axes (about 80 on the \(x\)-axis and about 200 on the \(y\)-axis) is unreasonable, and would make the graph difficult to use and read.
BB. If you knew you wanted 16 tick marks along the \(x\)-axis and 20 tick marks along the \(y\)-axis, how could you determine the appropriate scale for each axis? Sample answer: Divide 80 by 16 to determine a scale of 5 for the \(x\)-axis, and divide 200 by 20 to determine a scale of 10 for the \(y\)-axis.

Explore Choosing Sciles
Q Online Aetivicy Use areal mold stuation to complete the Explore.

Qr wourer How con you tell it an approgelate nouver How con you ted it an spe
renle is being uned to reperent. sene a being
relotiontilip?

Learn The Coordinate Syptem
When giapting on the coordinote syitem the scale of a graph refers to the dotance, or intervot, betiveen sick makis on the \(x\) rand \(y\)-ases. For example, ir one lick maik tepresents 5 unts, then the scale of the Graph is 5. Ench ania may hive a siferent scNie.
A scole at rick merk \(=1\) unit is freguectly used in mothematics Howovec uligg a dibesent scale may make it easier to proch a ghoon set of onfered pains

RTaik About iv
Devibees resu woind
miper be essect to co byavilut obernit

Smple anower When taking amendsoce. it myybe eatier to count by twos ar thives one pesson it a ting.
Example 3 Use Appropriate Scales


\section*{Watch Outl}

Large Scales be careltit not to choose MColes Ihm are teo targe il a scole is too large: a cos be officuat to sccumbeny graph pointer

QTuink Abost IU Omen uneo a scale of fon the \(x\) arde. finter scale oppropiste? Explain your reasoning Toxis suinplt minsiar a rave of 4 stib allow the exeotbinates to be prapted sexustel) and only requires aboot ten marks os the webs in the positive and nepative Girections

\section*{Interactive Presentation}


Example 3


\section*{Oweck}
When grohing P6, 32, \(\{-10,17,14,-27\), and \((-7,-5 \%\) wetect the mose appocgnote scale for
\begin{tabular}{|c|c|}
\hline a. thenaris \# & b. the ratis \(C\) \\
\hline A. \(-20 \% 20\) sate 1 & A. -30 to 35 sestec 1 \\
\hline A. -12 to tris scale: 2 & il. -30 bo 30. scale: 5 \\
\hline C. -1210 桹 scale 6 & c. -305035 scete. 5 \\
\hline D. -205020 scale 20 & a. -30 sp 40 , sedoc. 10 \\
\hline
\end{tabular}
E Example 4 Choose an Approprite Origin wtanet The table shows the sotal snowfatl in Januery for Boston.
\begin{tabular}{|c|c|}
\hline Yex &  \\
\hline 2005 & 43.30 \\
\hline 2006 & 350 \\
\hline 2007 & 100 \\
\hline 2008 & 830 \\
\hline 2009 & 2370 \\
\hline 2010 & 83.20 \\
\hline 2011 & 28.30 \\
\hline 2012 & 6.80 \\
\hline 2043 & 500 \\
\hline 2054 & 2480 \\
\hline 2015 & 3430 \\
\hline
\end{tabular}

\section*{Study Tip}
Apprepriste Origins
When ensosing an
are stil uning the point po. C9 ms the orgin but tre thinging whit: represerts
Part A. Choose an acoropritse odgin
Let the xasis tepresent ve years since 2005 and the yass iepresern the total snowtal Then we origin 10,9 regresents the yeer 2005 and 0 inches of snow.
Part e Choose an aporoprimot scole.
The votal snowtal is between 100 and 43.30 inches, so the yaus shoudd include values from to 45 and twe a xale of 5 inches:



\section*{Interactive Presentation}


Example 4



\section*{Example 4 Choose an Appropriate Origin}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about choosing an appropriate origin to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL How does letting the \(x\)-axis represent the number of years since 2005 make it easier to graph the data? Sample answer: It makes the \(x\)-values \(0,1,2,3, \ldots\) instead of 2005, 2006, 2007, 2008 \(\ldots\), and it is easier to create a scale for the smaller numbers.

OL. Why is it important to change the meaning of the origin in this situation? Sample answer: If the meaning of the origin was not changed, then the point \((0,0)\) would represent the year 0 and 0 inches of snow. The next smallest \(x\)-value on the graph would be 2005, which would make for an unreasonable scale on the \(x\)-axis.
31. Why is it unnecessary to include any negative \(y\)-values for this graph? Sample answer: The number of inches of snow cannot be negative, so it is unnecessary to include negative numbers in this context.

\section*{Common Error}

Students may think they can use the years for the tick marks on the \(x\)-axis. Explain that since the value of \(x\) at the origin is 0 , making the next tick mark 2005 would make the scale on the \(x\)-axis 2005 years. This means that the second tick mark would be 4010.

\section*{Example 5 Interpret Scales and Origins}

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse
Are the average number of social media posts per day increasing or decreasing each year? increasing How does the graph show this? Sample answer: As the \(x\)-values increase, the \(y\)-values increase.
OL. What does the ordered pair \((6,340)\) represent on the graph? Six years after 2008, or in 2014, the average number of posts on social media per day was 340 million.
[BLI What would the ordered pair \((-2,5)\) represent if it was on the graph? Two years before 2008, or in 2006, the average number of posts on social media per day was 5 million.

\section*{Common Error}

Students may think that the scale on the \(y\)-axis represents 50 posts. Remind them to always read the label on an axis in order to correctly interpret the scale. In this example, the scale is 50 million posts, not 50 posts.


Interactive Presentation


Example 5



\section*{Interactive Presentation}


Check
CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 2 exercises that mirror the examples & \(1-10\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(11-24\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(25-29\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice Exercises 1-23 odd, 25-29
- Extension: Misleading Scales
- ALEKS Introduction to Functions; Ordered Pairs

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice Exercises 1-29 odd
- Remediation, Review Resources: Compare and Order Rational Numbers
- Personal Tutors
- Extra Examples 1-5
- \(\mathbf{0} \mathbf{A L E K S}\) Ordered Pairs; Converting Between Fractions and Decimals

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice Exercises 1-9 odd
- Remediation, Review Resources: Compare and Order Rational Numbers
- Quick Review Math Handbook: Relations and Functions
- ArriveMATH Take Another Look
- ALEKS' Ordered Pairs; Converting Between Fractions and Decimals

Practice
Osore numinetini=
tempit
tapress wach relation as a table. a gaph, and a mupping. Then detemise the
somain and range



Eumul 2
4. Mavortce The goph reveserns the mount ot Semb

2. Ionsty tre inseserdect and orpendent vorable athe relatoo. insepederce bown wodes:
drpeosent ansists el apocieck.

 eir pegchock iecrenses. as scembien minber of hown

5. pewve the gxih wpenerts the prici of an tem und ve number of zeinsurchaset
- aconty the woependent Acd degendint varubles of ind revion
 a. Devorbe what hoppens th the groph As the prike if an han herwisel thi naeber of thems puchused deorsiel-

C
 sleplene from yousd


 then as the timper thr Kigh hocreases, the dsterce the siplane is fiven ber yound focrosses unta is isocties the givine.
Eurebes 3 ent 4
 triget hews rane darligg evercise stocil oo betneen 50 h and \(75 /\)
 me apposimute maticut heart 1ster tor people of giver aget Ssute Antiocentisel A Auporition.

 Sort and Ha weight in povios of tree wabes at be rophb


Evequs





The r ois mpresent the fien in owone. Ter raien upriterb ite heigte of the wifioner infert Thes a

 o kerfin Osectied

 bougt al a wpermetet snd the scet cort of ve tepras is givisi is the tubie istevret ne meining of the zaes. wale. and onigh of one conesosocieg gnon of the dita
 untier ct tcems. fie mas iepenarts he note cot in defer theren tona. To revis tas. ale st toun = 12 tiv


mieed Erencius

set of sedesed poils.



a.


an:
15. NuTvat. Meple ryup is made by cobecrey sap toom nogm nuple vees avit boitich it somer lo remcre excess woscc The gach ulows tea nirce of pulons or bee re regited to

 Source Vermonh Miele Saper Meken' Aaspcaton?





 idenily P novionsble donsin for tis stivitos. Ofo 15 gulios.
 Socks her schosblune mice dingug hoone escrivening. Ner ciar honis dher phosk twod \(y\) te pe nuribet of sodems wen \(x\) tectopik.


Kegress fre mivion a
B. What a the daman et tre (etwont/ |2. 1.2.3.4.5


ne number of cockses asd the equivient humber of corimi Gryh




 frour the moibor os he mone Ler the formonsil hais show pee sme ind




Trn and Laven we beic can to delver piess. The gaph iepresents peir



 porrerla. Soe dives dinecty there. nithout itspotery.

 werr Solt is the wite ditance trom to pirnima.

 wis ebelone To's diruece trem the pientas was 0 .
Orghterouter Thinting Salln
 gevtec Phe or equat th the cuiber delements inge ange Do you agee) I so. emplin why

26. cutatr Thirk of a ataben mat could be modeted by tis guph. Then labet

27. Catart Use the set \([-T 0,1,2]\) as a domon ins eve ser \([-2,-1,4,5]\) as a range
a. Gidite a ribition Espress ye retision as s ret ot ordered pies
 ard onapging See nargit
 in the soman or ringe: Semple amwer: A mation mexuing le fow tefyerature werr doy fors

29. white Concere and content sopenoes mod independent varisbien:



\section*{Answers}
1.
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline-1 & -1 \\
\hline 1 & 1 \\
\hline 2 & 1 \\
\hline 3 & 2 \\
\hline
\end{tabular}


\[
D=\{-1,1,2,3\} ; R=\{-1,1,2\}
\]
2.
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline 0 & 4 \\
\hline-4 & -4 \\
\hline-2 & 3 \\
\hline 4 & 0 \\
\hline
\end{tabular}


\(D=\{-4,-2,0,4\} ; R=\{-4,0,3,4\}\)
3.


\[
D=\{-2,1,3\} ; R=\{-2,0,1,4\}
\]
26. Sample answer: The distance a boy is from his home as a function of time. Label the vertical axis as distance and the horizontal axis as time. The boy rides his bike to the post office to drop off a letter. He rides to his high school, which is a bit closer to his house. He jogs twice around the track, then rides his bike straight home.

\section*{27b.}
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline-1 & -3 \\
\hline 0 & -3 \\
\hline 0 & -1 \\
\hline 1 & 4 \\
\hline 2 & 5 \\
\hline
\end{tabular}



\section*{LESSON GOAL}

Students determine whether a relation is a function and find function values.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Vertical Line Test

\section*{Develop:}

\section*{Functions}
- Identify Functions
- Analyze Data
- Equations as Functions

\section*{Function Values}
- Find Function Values
- Evaluate Functions
- Interpret Function Values

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|}
\hline Resources & A TEE & IEIL & \\
\hline Remediation: Graph Reflections of Points & - - & & - \\
\hline Extension: Composite Functions & - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 15 of the Language Development Handbook to help your students build mathematical language related to determining whether a relation is a function.
FEllil You can use the tips and suggestions on page T15 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

\section*{Domain: Functions}

\section*{Standards for Mathematical Content:}
F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f\) is a function and \(x\) is an element of its domain, then \(f(x)\) denotes the output of \(f\) corresponding to the input \(x\). The graph of \(f\) is the graph of the equation \(y=f(x)\).
F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students understood the concept of a function.
8.F. 1

\section*{Now}

Students determine whether a relation is a function, and find function values. F.IF1, F.IF. 2

Next
Students will identify linear and nonlinear functions and continuous and discrete functions.
F.IF. 4

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline Fitis Conceptual Bridge In this lesson, students expand on their \\
understanding of relations to include functions and function notation. \\
They build fluency by determining which relations are functions and \\
apply their understanding by solving real-world problems involving \\
functions.
\end{tabular}

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying ordered pairs

Answers:
1. \((-4,0)\)
2. \((-5,-5)\)
3. \((0,4)\)
4. \(\left(2 \frac{1}{2},-3 \frac{1}{2}\right)\)
5. \((3,3)\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Analyze Relationships Mathematically Encourage students to describe the relationship between the dependent and independent variables to determine whether the relation in the graph is a function.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Mathematical Background}

A function is a relationship between input and output in which each input value has exactly one output. The set of input values is the domain of the function, and the set of output values is the range. The vertical line test can be used to determine whether a graph represents a function. If the graph does not intersect any drawn vertical line more than once, it is a function. Functions can be written using function notation. In a function, if \(x\) represents the independent quantity (elements of the domain), \(f(x)\) represents the dependent quantity (elements of the range).

\section*{Explore Vertical Line Test}

\section*{Objective}

Students use a sketch to determine whether relations are functions.
Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of relations and functions.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will learn that they can use a vertical line to test the graph of a relation to see if the relation is a function. They will be presented with different types of graphs, and will use a movable vertical line to test whether each graph represents a function. Then, students will complete the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}
```

Verticartine Tysu:

```

C8. To test grophcany wbether a retapion a a furcion, you can use the vertical line test. if a vertical line passes
prouph asoce thas ase point in a graph me teutios is not a tinction


whether enot relation is a fiscotion or nat a tinction

\section*{Explore}


Explore

Students will use a sketch to determine whether relations are functions.

MULTIPLE SELECT
Students will select all of the relations that are functions.

Students describe their observations from the graphing activity and explain how to tell if a relation is a function.

\section*{Interactive Presentation}


Explore
TYPE
Students will respond to the Inquiry Question and can view a sample answer.

\section*{Explore Vertical Line Test (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why is a circle not a function? Sample answer: A vertical line drawn would intersect a circle at more than one point.

Inquiry
How can you tell whether a relation is a function? Sample answer: You can look at its graph and use the vertical line test. If a vertical line intersects the graph in more than one point, the relation is not a function.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Functions}

\section*{Objective}

Students determine whether relations are functions by analyzing mappings, tables, or graphs.

\section*{Teaching the Mathematical Practices}

1 Different Methods Mathematically proficient students look for different ways to solve problems. Encourage them to work through different ways to solve the problem and to choose the method that works best for them.
7 Use Structure Help students to explore the structure of functions in this Learn.

About the Key Concept It is important that students understand why the vertical line test works. Lead them to see that if a vertical line passes through more than one point of the graph, those points will have the same \(x\)-coordinate and different \(y\)-coordinates. This means that an element of the domain is paired with more than one element of the range, and therefore the relation is not a function. A vertical line has an equation of \(x=a\), where \(a\) is a constant. If a vertical line intersects with a graph twice, then two range values would be paired with \(a\).

\section*{Common Misconception}

A common misconception some students may have is that if more than one \(x\)-value is mapped to the same \(y\)-value, then the relation is not a function. Point out that as long as each input value is mapped with only one output value, the relation is a function.

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


\section*{Learn}

\section*{TYPE}

Students describe another way to determine whether a relation is a function.


Interactive Presentation


Example 1


\section*{Example 1 Identify Functions}

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

\section*{Questions for Mathematical Discourse}

In each part, are there any values of the domain that are used more than once? a: no; b: yes; c: yes
OL In part a, how can you use the arrows in the diagram to determine whether the relation is a function? Sample answer: I can see if any of the numbers in the domain have more than one arrow. In part \(\mathbf{c}\), if the order of the coordinates in each ordered pair were reversed, would the resulting relation represent a function? Explain. Yes; sample answer: Because no two ordered pairs would have the same \(x\)-coordinate, the relation would be a function.

\section*{Common Error}

Some students may think that they can conclude that a set of ordered pairs is not a function if any of the ordered pairs have the same \(x\)-coordinate or the same \(y\)-coordinate. Help them to see that in a function, it is possible that more than one ordered pair may have the same \(y\)-coordinate, but not the same \(x\)-coordinate, since each element of the domain must be paired only once.

\section*{Example 2 Analyze Data}

Teaching the Mathematical Practices
2 Consider Units Point out that it is important to note the units involved in this problem.

\section*{Questions for Mathematical Discourse}

ALI What are the independent and dependent variables? The independent variable is the team number and the dependent variable is the distance of the best jump.
OL Would the relation be a function if the best jump for Team 5 was 21.5 feet instead of 20.2 feet? Explain. Yes; sample answer: Each element of the domain would still only be paired with only one element in the range.
[31. In the context of the situation, is it possible for one \(x\)-value to be mapped to more than one \(y\)-value? Explain. No; sample answer: It is not possible for one team to have more than one best jump.

Q Example 2 Analye Dota
tow Hump Five scheols are competing in the long jump portien of A track mest. The distances of the players with the best jump on Team 3, 20.9 feet Team 4, 99.4 feet Team 5, 20.2 feet


Part A Make s table


Part \& Determine the domain and range of the relation.
Domain (t, 2, 3, 4, 5]
Range: [20.5. 215, 209. 19.4. 20.2]
Part C Detemine whether the relation is a function.
For sach element of the domain, thece is only one eiersent of the range. So, this relation is a function.

Chieck
tescirt Binley reconded phe hieghes of fve of her siends. The heights, in

Part A Find the somain and range of the celason. ©
A. D: Phartec, 62, Ling. 60, Elat A: (65. Omar, 68, Aina. 67)

C. D. Ftursee Ling. fla. Omas, Almu: R \(162,65,66,677\)
D. D. \((62,65,66,67\), R: PHurtet Ling, Fili, Oinis Alims)

Part 8 is the releton a fonctise? Explein your reatoning A
A. Yes, tor vach element of the domain, there is only one element of the rarge.
8. No. in tads the verfical line vest.
C. Mor an wement in the dombin is paied with more than one elemert in ube ange:
a. No, the comin and range are nit real numbers


QTink About te
Exptian why the
Explitin why the the Ainction wep not at me hinction mer
real nambers
Sample anwer: The tewn nambero de cony whole riebbes berbwen Tand 5 inclutive for coitphathew is no mamnamber 28 . So the donish compt be all inel munbers, Tee tringe \$oci, the bett jury ontances hites for oumple, Kus iot on oesteralive inge so reel neginters.

If rastro
Aemember the domain is related to the indepensent vociatice. acol the range in
retased to the deomdert vavable

\section*{Interactive Presentation}


Example 2



\section*{Interactive Presentation}


Example 3


CHECK
Students complete the Check online to determine whether they are ready to move on.

\section*{1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION}

\section*{Example 3 Equations as Functions}

Teaching the Mathematical Practices
3 Explain Correspondences Encourage students to explain the relationships between the equation of a function and its graph used in this example.

\section*{Questions for Mathematical Discourse}

ALI What is the independent variable? \(x\) the dependent variable? \(y\)
OLI Are there any \(x\)-values that are paired with more than one \(y\)-value? Explain. No; sample answer: If there were, there would be points vertically aligned with each other.
B3. Give an example of an equation that has a graph that would not pass the vertical line test. Sample answer: \(x=3\)

\section*{Common Error}

Some students reverse the concept of the vertical line test, thinking if a vertical line passes through more than one point on the graph, the graph represents a function. Help them to understand why this reasoning does not make sense.

\section*{Learn Function Values}

Objective
Students evaluate functions in function notation for given values by writing or selecting the correct solution.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Important to Know}

It is important to recognize that the ordered pairs that belong to the function are of the form ( \(x, f(x)\) ), where \(x\) represents the elements of the domain.

\section*{Common Misconception}

Some students may not understand the notation, mistaking \(f(x)\) to mean
\(f\) times \(x\). Compare an equation such as \(f(x)=x+1\) to \(f(5)=5+1\) in order to illustrate that the \(x\) acts as a placeholder for the numbers that will be evaluated in the function.

\section*{Example 4 Find Function Values}

Teaching the Mathematical Practices
3 Construct Arguments In the Think About It! feature, students use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions for Mathematical Discourse}
4. What does the notation \(f(4)\) mean? the value of the function when evaluated for \(x=4\)
OL. In part b, why do we not combine 4 and 3 to make \(f(7)\) in the first step? Sample answer: The 4 is the \(x\) value that needs to be evaluated in the functions, so it cannot be combined with the 3 .
[Bil What value of \(x\) would make \(f(x)=9\) ? Explain. 0 ; because \(-2(0)+\) \(9=9\)

\section*{Example 5 Evaluate Functions}

Teaching the Mathematical Practices
7 Use Structure Help students use the structure of functions in this example to evaluate them for the given values.

Questions for Mathematical Discourse
4L. How do you read \(h(4)-h(1)\) ? \(h\) of 4 minus \(h\) of 1
OL. Explain the difference between the steps needed to solve part b and the steps needed to solve part c. Sample answer: In part b, you need to evaluate the function for two different numbers and then subtract the answers. In part \(\mathbf{c}\), you need to evaluate the function only for 5 and then subtract 7 from the result.
BL. If the ordered pair \((0, y)\) belongs to function \(h\), what is the value of \(y\) ? Explain. 36 ; the value of \(y\) is the value of \(f(0)\), which is equal to 36 .

\section*{Common Error}

When evaluating quadratic functions, such as the function in this example, some students may forget to follow the order of operations. Remind them to simplify exponents before multiplying, and to multiply before adding.


\section*{Interactive Presentation}


Example 5



Example 6



\section*{Interactive Presentation}
determine whether they are ready to move on.

\section*{Example 6 Interpret Function Values}

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

\section*{Questions for Mathematical Discourse}

All What does 9.25 represent in the context of the situation? the amount of money Mason makes for each hour that he works

OII How can Mason determine the total amount of money he will make before taxes if he knows the number of hours that he worked? He can substitute the number of hours he worked for \(x\) in the function and then evaluate the expression.

B3. Find the domain and range in the context of the situation. Justify your answer. The domain and range are all real numbers greater than or equal to 0 . Mason cannot work negative hours or make a negative amount of money.

\section*{DIFFERENTIATE}

\section*{Language Development Activity 태L}

Beginning/Intermediate Have students work in small groups. This strategy allows every student to have an opportunity to speak several times. Ask a question or give a prompt about functions such as "Name a real-world situation that can be modeled by a function." Then pass a stick or other object to the student. The student speaks, everyone listens, and then the student passes the object to the next person. The next student speaks, everyone listens, and then the student passes the object on until everyone has had one or two turns.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

\section*{3 APPLICATION}

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-31\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(32-44\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(45-47\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(48-53\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
OLIBL
THEN assign:
- Practice, Exercises 1-47 odd, 48-53
- Extension: Composite Functions
- Q ALEKS Introduction to Functions

IF students score 66\%-89\% on the Checks,
THEN assign:
- Independent Practice, Exercises 1-53 odd
- Remediation, Review Resources: Compare and Order Rational Numbers
- Personal Tutors
- Extra Examples 1-6
- ALEKS Converting Between Fractions and Decimals; Ordered Pairs

\section*{IF students score \(65 \%\) or less on the Checks,}

THEN assign:
- Independent Practice, Exercises 1-31 odd
- Remediation, Review Resources: Compare and Order Rational Numbers
- Quick Review Math Handbook: Relations and Functions
- ArriveMATH Take Another Look
- ALEKS' Converting Between Fractions and Decimals; Ordered Pairs

Practice

 Ne, the conat 6 in tre donsia is poirnd wer wh-fised 5 in be inver.
10. \(y=\pi\)



 pasiss throoph sen than ene point on toy paph

(mann 22-hancans 153

\section*{Suntya 2}



a. Mate a tible Setmargh

c. Deternibe whether the refotion is a furction (fre esch eliment ef Br

15. nowe value the trorge value of a houte chacoges ovee tine The averagh tolows 2046, \$254,000. 205, \$793,000, 2066, \$338,000. 200, \$372.000
a. Make a tible Seo magia.

- Devermpe whepher the neitoion is a huction

men \(4=18\)
IIf \(f(0)=2 x+2\) and \(g(x)=x^{2}-x\), find esch value.


22. nin +1. 5 23. \(n-14\) 24. \(403-20\)
\(25.9 x-8+46 \quad\) 26. \(50+13 x+3 \quad\) 22. pozes \(30^{2}-30\)

Sumpar 6
28. cesi movers Mary cel peone pless tawe an opbon to nodve nore thinone phome. The function to the montty cost of cel phove sirike foom a weless








 The squison tat tegiesietss nia rotibon ay \(=30 \dot{x}+\pi\), where \(\times\) in the



154 Mowe 3-Dinem nethrown
Mased Fawrines
32. UsE A nobe Morio cotected anta about nome of the plaper on A wowery baveebol thas. the dsu we Mown in pe why eot? See mingie.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Teenvowh} \\
\hline Yewaitem & crimpriva \\
\hline 1 & 24. \\
\hline 2 & 45 \\
\hline 3 & 12 \\
\hline 3 & \(8{ }^{\text {sin }}\) \\
\hline
\end{tabular}

(f \(5(x)=-2 x-3\) ned \(g(x)=x^{2}+5 x\), find ench valve.
か-
34. 50 ) -5
35. 9214
20. \(901-7-10\)
30. \(19 n-4 y-3\)
4a. gif-6mf \(3 \mathrm{~mm}^{2}-35 \mathrm{~m}\)
4. \(8 \mathrm{~cd}-5-2 \mathrm{c}+-1\)
42. \(\mathrm{Nr}+2-2 \mathrm{r}-1\)
42. spate -1004 - 15

\section*{Answers}

14a.
\begin{tabular}{|l|c|c|c|c|c|}
\hline Number of Cars & 1 & 2 & 3 & 4 & 5 \\
\hline Cost (\$) & 0.75 & 1.50 & 2.25 & 3.00 & 3.75 \\
\hline
\end{tabular}

15a.
\begin{tabular}{|l|c|c|c|c|}
\hline Year & 2014 & 2015 & 2016 & 2017 \\
\hline Value (\$) & 254,000 & \(293,000338,000372,000\) & \\
\hline
\end{tabular}
32. The relation in the table is not a function because 3 maps to both 82 and 88 ; the relation in the mapping is not a function because 22 maps to both 70 and 73 ; the relation in the graph is a function because each \(x\) only maps to one \(y\).
\(45 c . f(3)=36.25\), which means if Aisha buys 3 pounds of birdseed, she saves \(\$ 36.25 ; f(18)=17.50\), which means if Aisha buys 18 pounds of birdseed, she saves \(\$ 17.50 ; f(36)=-5\), which means if Aisha wants to buy 36 pounds of birdseed, she needs \(\$ 5\) extra.
 slen by pe sinction Nin \(=2 t+5\)
2. What is the vabe of \(\mathrm{N} 2 \mathrm{O}:\) and unar does it enes in the cortent ot ite
 346 leet


c. What in re hedts of the bolson put before zis released viow doypu hoow?

Efeet: \(t=\) Dbefue the histopn is mefteried. ant nobl \(=6\).
d. Aro thee mol restrictions po the velues of timat can be used os inguss for ity



-irigherever Thieting seik
46. conamucr aidunients The fobowion set of adend poin mpereecs at what conchions cat you inske nbout the mung vavi') juthly rour mpatiots The misieg vitpp cosmot be \(-4, \alpha,-1\). 1 He misi
 inst valie migned lo tos ootpit values.

 tie witical ine text: it vertical ine intersets ite grat mos the poss, then ine retatien Ber Beqreph repistem is not a tinction

 yor coumera. angex. \(-5 \min 42\)
 contining the time. \(4 g+35 j=-43 g-17.95\)





\section*{Linearity and Continuity of Graphs}

\section*{LESSON GOAL}

Students identify linear and nonlinear functions and continuous and discrete functions.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Representing Discrete and Continuous Functions

\section*{Develop:}

Discrete and Continuous Functions
- Determine Continuity
- Determine Continuity by Using Graphs
- Apply Discrete and Continuous Functions

\section*{Linear and Nonlinear Functions}
- Linear and Nonlinear Functions
- Identify Linear and Nonlinear Functions
- Functions in Table Form
- Identify Linear Functions by Graphing

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & ALI & \% \(\mathrm{B}_{1}\) & क.14 & \\
\hline Remediation: Nonlinear Functions & \multicolumn{2}{|l|}{- -} & & - \\
\hline Extension: Point Discontinuity & & - 0 & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 16 of the Language Development Handbook to help your students build mathematical language related to linear and nonlinear functions.
[탠.4 You can use the tips and suggestions on page T16 of the handbook to support students who are building English proficiency.



\section*{Focus}

Domain: Functions
Standards for Mathematical Content:
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.

\section*{Coherence}

Vertical Alignment
Previous
Students determined whether a relation was a function and found function values. 8.F.1, F.IF.1, F.IF.2, F.IF. 5

\section*{Now}

Students identify linear and nonlinear functions and continuous and discrete functions. F.IF.4, F.IF. 5

Next
Students will find intercepts of graphs.
F.IF.4; A.REI. 10

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline \begin{tabular}{l} 
霖 Conceptual Bridge In this lesson, students expand on their \\
understanding of functions to include graphs of functions. They
\end{tabular} \\
apply their understanding by solving real-world problems involving \\
discrete, continuous, linear, and nonlinear functions. \\
\hline
\end{tabular}

\section*{Mathematical Background}

The graph of a discrete function consists of points that are not connected. The domain and range of a discrete function are described by sets of individual values. The graph of a continuous function forms a line or smooth curve. The domain and range of a continuous function consist of infinitely many values. A linear function is a function in which no independent variable is raised to a power other than 1. A linear function can be described by a linear equation.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying linear functions

\section*{Answers:}
1. nonlinear
2. linear
3. linear
4. nonlinear
5. nonlinear

\section*{Launch the Lesson}

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the verbal descriptions and the graphs in the video.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Explore Representing Discrete and Continuous Functions}

\section*{Objective}

Students use a sketch to explore whether a situation can be represented by a continuous or discrete function.
(11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use the sketch to create and explore a graph that represents data related to a video game. They will then answer questions about the nature of the graph, requiring them to think about how the graph models the given situation. Then students will complete the Inquiry Question.

\section*{(continued on the next page)}

\section*{Interactive Presentation}


Explore


Explore

Students use a sketch to determine if a function is discrete.

Students answer questions regarding discrete functions.

\section*{Interactive Presentation}


Explore

\section*{TYPE}

Students will respond to the Inquiry Question and can view a sample answer.

\section*{Explore Representing Discrete and Continuous Functions (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- How is measuring the number of items in Ruby's backpack different than measuring time? Sample answer: For items, you can only use whole numbers. When you are measuring time, you can use decimals or fractions for seconds or even milliseconds.
- If a café were counting the bottles of water sold in a day, is this discrete or continuous? What if the café counted the liters of water sold? Sample answer: Counting numbers of water bottles sold would be discrete because you cannot sell part of a water bottle. Counting liters could be continuous because you can measure partial liters.

Inquiry
How can you use the graph of a function to determine whether it is discrete? Sample answer: Y ou can look to see if the graph consists of individual points. If it does, then the function is discrete.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Discrete and Continuous Functions}

\section*{Objective}

Students determine whether functions are continuous, discrete, or neither continuous nor discrete by classifying given functions.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Common Misconception}

A common misconception some students may have is that if a graph is not a continuous line or curve, it represents a discrete function. Use examples to show them that this is not the case, and reinforce that in order for a graph to represent a discrete function, it must consist only of individual points.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity AL BLILL}

Have students describe real-world situations that can be described by discrete functions, and real-world situations that can be described by continuous functions. Encourage students to explain what it is about each situation that makes the related function discrete or continuous.


\section*{Interactive Presentation}


Example 1
\begin{tabular}{|ll}
\hline TYPE & \begin{tabular}{l} 
Students determine if the function will still \\
be discrete if they did not use a sliding \\
scale.
\end{tabular} \\
\hline TAP & \begin{tabular}{l} 
Students tap to see how to determine \\
continuity.
\end{tabular} \\
\hline Cl
\end{tabular}


\section*{Interactive Presentation}


\section*{Example 1 Determine Continuity}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about continuity to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL. Is the relation a function? Explain. Yes; each \(x\)-value is mapped to only one \(y\)-value.
Ol. Why is the number of books the independent variable and the price the dependent variable? Sample answer: The price depends on how many books someone buys, so it has to be the dependent variable.

BLI Could the store adjust its pricing so that the function representing price was continuous? Explain. Sample answer: No; because you cannot have a part or a piece of a book.

\section*{Example 2 Determine Continuity by Using Graphs}

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

\section*{Questions for Mathematical Discourse}

AL Do either of these graphs represent a function? Explain.ess, they are both functions. No \(x\)-value is mapped to more than one \(y\)-value.
OL How do discrete functions and functions that are neither continuous nor discrete differ? Sample answer: Discrete functions are composed of single, unconnected points. Functions that are neither continuous nor discrete may have some points that are connected, but the graph is not one continuous line or curve.

B1. Which parts of \(g(x)\) are continuous? Sample answer: for \(x\) values from -2 to -1 and from 4 to 7

\section*{Example 3 Apply Discrete and Continuous Functions}

\section*{10) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others. Have them use the terms discrete and continuous instead of descriptive words like connected or broken.

\section*{Questions for Mathematical Discourse}

AII Are there any portions of this graph that are continuous? If so, where? yes; from 0 to 8 hours
OL Tia finishes an investigation after 4 days of work. How much will she charge her client? \$1000
[BL Why is this function not continuous? Sample answer: The graph begins as a continuous line, but then changes to have points at specific \(x\)-values. Because of the change, it cannot be considered continuous.


\section*{Interactive Presentation}


Example 3



Interactive Presentation


Example 4


\section*{1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION}

\section*{Learn Linear and Nonlinear Functions}

Objective
Students determine whether functions are linear or nonlinear by rewriting the related equations in standard form.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Common Misconception}

A common misconception some students may have is that a linear equation must contain both \(x\) and \(y\). Help them to see what happens to the equation and the resulting graph if \(A=0\) (produces an equation and graph of a horizontal line), and then if \(B=0\) (produces an equation and graph of a vertical line).

\section*{Example 4 Linear and Nonlinear Functions}

\section*{Teaching the Mathematical Practices}

1 Seek Information Mathematically proficient students must be able to transform algebraic expressions to reach solutions. Point out that gaining fluency in this skill is as important as learning their math facts was in the elementary grades.

Questions for Mathematical Discourse
ALI What is the standard form of a linear equation? \(A x+B y=C\)
OL Why do you think that \(y=4 x^{2}-(2 x)^{2}+3 x-5\) is sometimes mistakenly thought to be nonlinear? Sample answer: There are variables raised to a power greater than 1.
BLi. Can the equation \(y=2\) be written in standard form? If so, write the equation. yes; \(0 x+y=2\)

\section*{Common Error}

Students may write the answer to Example 4 as \(-3 x+y=-5\). Remind them that \(A\), the coefficient of \(x\), must be greater than or equal to 0 .

\section*{1 CONCEPTUAL UNDERSTANDING}

2 FLUENCY

\section*{3 APPLICATION}

\section*{Example 5 Identify Linear and Nonlinear Functions}

Teaching the Mathematical Practices
3 Construct Arguments In the Think About It! feature, students use stated assumptions, definitions, and previously established results to construct an argument about whether a function is linear or nonlinear.

\section*{Questions for Mathematical Discourse}

AL
In a linear function, what can be the values of the exponents on the variables? 0 or 1
(O) How can you tell that the function \(y=3 x^{3}-x^{3}+3 x+6\) is nonlinear? Sample answer: There are variables raised to a power greater than 1 in the equation of the function after it is simplified.
EB
Write an equation that simplifies to a linear function, but has variables raised to a power greater than 1 . Sample answer: \(y=5 x+3 x-5 x+10\)

\section*{Example 6 Functions in \(T\) able Form}

Teaching the Mathematical Practices
7 Use Structure Help students explore the structure of the table in this example to determine if the function is linear.

\section*{Questions for Mathematical Discourse}
4. What is another way that you could use the information in the table to determine whether the function is linear or nonlinear? Sample answer: Plot the data on a coordinate plane.
(OL. Why can you use the table to determine whether the function is linear or nonlinear? Sample answer: Linear functions must show a constant increase or decrease.
B1. In the context of this situation, would it make sense for the data to be linear? Explain. Sample answer: No; because a ball must come back down once it is kicked, the data will show heights that are first increasing and then heights that are decreasing. There will not be a constant rate of change.
```

Example S IGentify Linear onid Nöllinear Functions
Determibe whetser }y=3\mp@subsup{x}{}{3}-\mp@subsup{x}{}{3}+3x+6\mathrm{ is an equation for a lineor
or nonlineor function.
Step 1 simplity the equation.
y=3\mp@subsup{x}{}{2}-\mp@subsup{x}{}{2}+3x+6 Orgmerergoation
-2\mp@subsup{x}{}{3}+3x+6
Sog 2 Rewrite the equation.
y=2x+3x+6 Smemitied ecintion
y-2\mp@subsup{x}{}{3}-3x-2\mp@subsup{x}{}{3}+3x+6-2\mp@subsup{x}{}{2}-3x
y-2\mp@subsup{x}{}{3}-3x-6 Simpity
2x}+
Becuuse 2x}+3x-y=-6\mathrm{ s not io the form }Ax+By=C\mathrm{ .
2x}+3x-y=-6a\mathrm{ anon/mese
Check
The function 4s - 224 - 3is_? nonlioer
Q Example 6 Funtcions in Table Form
soccer Salina kicks a socese boll The
lolight of the bal after each haif second is
recorded in the table. Is the function that
models the height of the ball a lineor or
sonfinear function?
Fist Hair-Second interval
During the first ball second interval, the
bel goes from a height of 2 toet to a heigmt of
28 feet that ts mo incresse of 26 fevt.
y-2\mp@subsup{x}{}{2}-3x=6 Simpily
Check

```

Second Hoir.Second tintervat
During the wecond huifsecond wservat the ball poes from 28 feet to.
46 ferc. That is an increase of ts seet.
fiecause the chenge in the haight waries over the two equivalent
finervit, the helghe of the soccer ball eupt be modeled of a moniliear

OThink About Il is the fueston hi wefluation
iepisientid by \(2 x+9\) \(-5 y\) 3rya ineat of nonbisesp bunction? Justit your argument.
Nocolinew, sumple. atrwer The fausion can be winten
\(2 x-5 y+3 y=-2\) \(2 x-5 y+3 y=-9\).
feckie it hastie term 3 Renae intastie len 30, vis equation form \(k x+8 y=c i S a\). ateprevents notinesar finction.

\section*{QThink About IU \\ Whist do you notice.} nitisut the helofte of the soccer batt ower time Onat might inacite that the function il not tinear?
Sampio anwer: A fin goes in one diection. SQ, a linas function imat renain increatim? decreasing, st cositam arthe vaies of ? Hocetse. The numben Inthe height ecoung for me socce bal sturt by iscreadisg, but after 2 seconsh, the mumben begin to decrace. Thereloes, the bieght of
the bul carnot be the bell comot be repeicntesby a lieom function


\section*{Interactive Presentation}


Example 5

\section*{SELECT}

Students select the correct operation used when simplifying expressions.

TYPE
a
Students determine if a given equation represents a linear or nonlinear function.
(a) rak About in neme 25 minutes Fornando tumion ine hove He thes 5 minues 10 ramove ney
wivises trom pe pood thee theo fer intimis is Wrap tre posist tre cand nome Wocid the Anctoon yhe teoverems mina bre oost towio to comanserben meor fuxction Sopiten par romeniop

\section*{Ne wonplemery} actur miat homan yo geos own no inewe tein 255020 mintur Weatatiogtorin: sthon 5 skx mimb Hetrcice amed axtor max by a bieses turetion. Filing tat Pool Part 8 Graph

The points on the graph can be connecteo by a strages lise.
Check
anemun weate the toble hams the rocers minimuat woge rates during yo in which the wose increesed. Which Intement best describes the function thin nodes the wages ower timet. 6


A. The furcion a inear bictuse se hicceme in 5070 between 1997 and 2007 and \(\$ 0.0\) detheen 2008 ind 2009
The function is noninear becwere the incresise as soas between T990 and 1991 and so70 between 2007 and 2008
c. The function a liwear buctisne it is constasty incresuing
a. The turction is nominear becuse tis dsorete



\section*{Greck}

(a) Example 7 Identify Linear Functions by Graphing
pook Fernando uses a garden hose to tir his empty posel The table showe the amount of water in the pool after every
five minutes.
Part A Determine linearity
The amount of wote in the poal
 netembind 50 gall Int 5 minuter Z als inctoates by 60 galons daring each change in the anount of witer is constret lor erey toite
162 modife 1 , Reveion and forkione

Interactive Presentation


\section*{Example 7}


162 Module 3 • Relations and Functions


\section*{Example 7 Identify Linear Functions}
by Graphing
Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

Questions for Mathematical Discourse

AL Why is it reasonable to expect that this situation would be represented by a function that is linear? Sample answer: because water from a garden hose flows at a constant rate
OL How can you test that the plotted points model a linear function? Sample answer: Check that the points form a straight line by using a ruler or straightedge.
BELC Could this function be represented by a continuous line? Explain. Sample answer: Yes; although the table and the graph show only 5 points, each point on the line that connects those points represents another number of minutes and number of gallons as the pool is filling.

Essential Question Follow-Up
Students analyze a table of values and the related graph of a function for a real-world situation.

\section*{Ask:}

Why is it useful to have a graph of a function for a real-world situation? Sample answer: You can use the graph to obtain data values for the situation, and to get a picture of how those data values are related. This can give you the information you need to understand the situation.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-25\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(26-33\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(34-36\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks, IBI THEN assign:
- Practice Exercises 1-33 odd, 34-36
- Extension: Point Discontinuity
- Q ALEKS' Other Topics Available: Functions and Lines

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice Exercises 1-35 odd
- Remediation, Review Resources: Nonlinear Functions
- Personal Tutors
- Extra Examples 1-7
- ALEKS Scatter Plots and Lines of Best Fit

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice Exercises 1-25 odd
- Remediation, Review Resources: Nonlinear Functions
- Quick Review Math Handbook: Interpreting Graphs of Functions
- ArriveMATH Take Another Look
- D ALEKS Scatter Plots and Lines of Best Fit


\section*{tangur}
2. iukoranio nowe records ne number ot hows she
 seternser a the tinction trat model usi she ynobs siciene, cosebivect or nettrec diverte

 thas atier bobing basches of cookies ma inen paghs me function
 (inction that models Des station is cascrete. consevions, of neater. cootineors

 ne has seen doy end oes grephs me dunction that moden ne nimbat. Use tro ginh to determine if me fonction ther model



Funveses and
Determise whether esch function is finear er aitine.
He. \(y=2 x+5\) linaw \(\quad\) ES. \(y=3 x^{2}-x+5\) monioner





\section*{Answers}
34. Sample answer: Always; if a function is linear, then it can be written in the form \(A x+B y=C\). If \(x\) is increased by a real number \(a\), then the new function could be written as \(A(x+a)+B y=C\). This can be rewritten as \(A x+A a+B y=C\), or \(A x+B y=C-A a\). Because \(C, A\), and \(a\) are all real numbers, the expression \(C-A a\) is a real number, which means \(A x+B y=C-A a\) is also a linear function.
35. Sample answer: A studio charges musicians to use the space and recording equipment by the hour, rounding a fraction of an hour up. So, for up to 1 hour, the studio charges \(\$ 100\), but for up to 2 hours, the studio charges \(\$ 200\), and so on. The function that models this situation is neither discrete nor continuous.
36. Never; if a function consists of a finite set of ordered pairs, then the function is made up of a set of individual points. Thus, itis by definition discrete.

\section*{LESSON GOAL}

Students identify intercepts of functions and solve equations by graphing.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

\section*{Develop:}

\section*{Intercepts of Graphs of Functions}
- Intercepts of the Graph of a Linear Function
- Intercepts of the Graph of a Nonlinear Function
- Find Intercepts from a Graph
- Find Intercepts from a Table

\section*{Solving Equations by Graphing}
- Solve a Linear Equation by Graphing
- Solve a Nonlinear Equation by Graphing
- Solve an Equation of a Horizontal Line by Graphing
- Estimate Solutions by Graphing

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l||c|c|c|c|}
\hline Resources & Al & IIF & IFII & \\
\hline Remediation: The Coordinate Plane & \(\bullet\) & & & \(\bullet\) \\
\hline Extension: Even and Odd Functions & & \(\bullet\) & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 17 of the Language Development Handbook to help your students build mathematical language related to solving equations by graphing.
튼.l You can use the tips and suggestions on page T17 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing \\ }

\section*{Focus}

Domain: Algebra, Functions
Standards for Mathematical Content:
A.REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
5 Use appropriate tools strategically.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students interpreted the \(y\)-intercept of a linear function, including reading from a graph.
8.F. 4

\section*{Now}

Students identify intercepts of functions and solve equations by graphing.
A.REI.10, F.IF. 4

\section*{Next}

Students will identify characteristics of functions.
F.IF. 4

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students expand on their understanding of functions by finding the intercepts of graphs of functions. They apply their understanding by solving real-world problems that require them to interpret the intercepts of graphs.

\section*{Mathematical Background}

The intercepts of the graph of a function are the points where the graph intersects the \(x\)-axis and the \(y\)-axis.

\section*{Interactive Presentation}

\section*{}

Warm Up
\begin{tabular}{|l|l|l|}
\hline Launch the Lesson & \begin{tabular}{l} 
A water park sells annual memberships \\
Ior \(\$ 79\) or single-day passes for 58.
\end{tabular} \\
The revenue from admission to the \\
water park for a single day was \\
\(\$ 31,600\). This is shown by the graph. \\
You can find the \(x\) - and \(y\)-intercepts of \\
the graph to determine the number of \\
annual memberships sold if no single- \\
day passes were sold and the number \\
of single-day passes sold if no annual \\
memberships were sold, respectively.
\end{tabular}

Launch the Lesson

Vocabulary


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- graphing ordered pairs

Answers:


\section*{Launch the Lesson}

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationship between the verbal description about water park admission and the corresponding graph.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Learn Intercepts of Graphs of Functions}

\section*{Objective}

Students analyze the graphs or tables of functions to identify the intercepts of the functions and determine their meaning in real-world contexts.

\section*{M1) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Common Misconception}

A common misconception some students may have is that a function is negative where its graph lies to the left of the \(y\)-axis, and positive where its graph lies to the right of the \(y\)-axis. Explain that the references to "positive" and "negative" are to the \(y\)-values, so these terms refer to where the \(y\)-values are positive or negative, which are, respectively, above the \(x\)-axis and below the \(x\)-axis.

\section*{Example 1 Intercepts of the Graph of a Linear Function}

\section*{Teaching the Mathematical Practices}

3 Construct Arguments In the Think About It! feature, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions for Mathematical Discourse}

AL. How many times does the graph cross the \(x\)-axis? 1 the \(y\)-axis? 1
이 Does the graph have parts that lie above the \(x\)-axis? yes below the \(x\)-axis? yes What does this mean about the function? It is over one interval and negative over another.
BE
Can a linear function be positive or negative over more than one interval of \(x\)-values? Explain your reasoning. Sample answer: No; the graph of a linear function is a straight line, so it will not cross the \(x\)-axis more than once.

\section*{Common Error}

Some students may think that a function is negative when \(x<0\). Help them to see that although the \(x\)-values for that piece of the graph are negative, the \(y\)-values are positive. Emphasize that it is the sign of the \(y\)-values that determines where the function is positive or negative.

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Example 1



\section*{Interactive Presentation}

Example 2


CHECK
Students complete the Check online to determine whether they are ready to move on.



168 Module 3 • Relations and Functions

\section*{Example 2 Intercepts of the Graph of a Nonlinear Function}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

A1. How many times does the graph cross the \(x\)-axis? 2 the \(y\)-axis? 1
OL Does the graph have parts that lie above the \(x\)-axis? yes below the \(x\)-axis? yes What does this mean about the function? It is positive over some intervals and negative over others.
BLi. Can a nonlinear function be positive or negative over more than one interval of \(x\)-values? Explain your reasoning. Sample answer: Yes; the graph of a nonlinear function often curves, so it could cross the \(x\)-axis more than once.

\section*{Common Error}

Some students may reference the negative parts of the function where \(x<3\). Help them to recognize that the points on the piece of the graph that lies below the \(x\)-axis have \(x\)-values that lie between -4 and 3 , and that this is the correct way to describe this piece of the graph.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity 스는ㄴ․}

IF students have trouble identifying the intervals over which a function is positive and over which it is negative, THEN have them circle the numbers on the \(x\)-axis that correspond to the \(x\)-intercepts, and have them trace the pieces of the graph with their finger, stopping at each circled intercept. Students can then record the interval over which they traced each piece, and state if the function is negative or positive in that interval.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 3 Find Intercepts from a Graph}

Teaching the Mathematical Practices
2 Consider Units Point out that it is important to note the units involved in this problem.

\section*{Questions for Mathematical Discourse}

1 Why does the entire graph lie above the \(x\)-axis? because the height of the ball is always a positive number or 0
OII What are the coordinates of the \(y\)-intercept? \((0,4)\) the \(x\)-intercept? (9, 0)
[BL. What is the domain of the function? real numbers from 0 to 9 , inclusive the range? real numbers from 0 to 9 , inclusive

\section*{Common Error}

Some students may misinterpret the meaning of the \(y\)-intercept. Explain that this point represents the value of the function when \(x=0\), which is the start time ("time 0 "). The point \((0,4)\) indicates that the starting height of the ball was 4 feet.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity}

Challenge students to write a description about what the shape of the Gym Occupancy graph indicates about the number of people at the gym on the day the data were recorded. Have the students reference the different parts of the graph, and interpret them in the context of the situation.


\section*{Interactive Presentation}


Example 3

\section*{TYPE}


Students explain what the function represents after 9 seconds.


Interactive Presentation


Example 4
 move on.

\section*{Example 4 Find Intercepts from a T able}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about finding intercepts to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL Are either of the intercepts given in the table? How can you find them? Yes; both are given. To find the \(y\)-intercept, look for the row where the \(x\)-value is 0 . To find the \(x\)-intercept, look for the row where the \(y\)-value is 0 .
OL. What value does each intercept represent in the context of the situation? Sample answer: The \(x\)-intercept means that at 40 days the balance will be zero, and the \(y\)-intercept means that at the beginning of the semester the balance will be \(\$ 150\).Does the function have a second \(x\)-intercept? Explain. Sample answer: No ; there is only one time when the balance is \(\$ 0\), and that is at 40 days.

\section*{Common Error}

Some students might think the \(x\)-intercept appears in the table where \(x=0\). Remind them that the \(y\)-coordinate of any point on the \(x\)-axis is 0 , so the \(x\)-intercept is the entry in the table where \(y\) is 0 .

\section*{Learn Solving Equations by Graphing}

\section*{Objective}

Students solve equations by graphing and identifying where the given graphs intersect the \(x\)-axis.

\section*{(11) \\ Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Important to Know}

The distinction between roots of an equation and zeros of a function is an important one. An equation can be solved, producing solutions, or roots. Functions are not "solved"; they are evaluated. If a function produces a value of 0 when evaluated for a given number, that number is a zero of the function. Graphically, the zeros are the \(x\)-intercepts of the graph of the function.

\section*{Example 5 Solve a Linear Equation by Graphing}

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

\section*{Questions for Mathematical Discourse}

AL What does knowing the zero of a function tell you about the graph of the function? It tells me the \(x\)-intercept.
이 After graphing the equation, how can you verify that the line crosses the \(x\)-axis at 3 ? Substitute 3 into the function for \(x\) and make sure that \(f(3)=0\).What would be true about the graph of a function that has no zero? Sample answer: The graph will never cross the \(x\)-axis.


\section*{Interactive Presentation}


Learn



Interactive Presentation


Example 7
 algebraically gives the same solution as solving the equation graphically.

Solve 4 t \(+3=4 r-5\) by graphing, Check your solution:


\(41+7=41\)
sentuy
 solving the equation graphically.

\section*{Example 6 Solve a Nonlinear Equation by Graphing}

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the equation and the graph used in this example.

Questions for Mathematical Discourse
4L. How do you find the zeros by graphing? Graph and find the \(x\)-intercepts.
OL How many zeros will this function have? 2 Explain your reasoning. The graph crosses the \(x\)-axis in 2 places.
[3LI Describe the shape of the graph of a function that has three zeros. Sample answer: It could be increasing, then decreasing, then increasing again, crossing the \(x\)-axis three times.

\section*{Example 7 Solve an Equation of a Horizontal Line by Graphing}

\section*{Th) Teaching the Mathematical Practices}

7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In Example 7, guide students to see what information they can gather about the equation just from looking at it.

\section*{Questions for Mathematical Discourse}

AL. How do you use the equation to get the related function? You add and subtract terms so that one side of the equation equals zero.
OL. What type of line is the graph of the resulting function? horizontal
BL. Why does the function not have any zeros? The function does not have any zeros because there are no numbers that make the function equal to 0 . If there were, the graph would have an \(x\)-intercept.

\section*{Common Error}

Some students may have difficulty identifying a related function for an equation such as the one in Example 7, where the resulting equation does not contain a variable. Help them to make the connection between this type of equation and the related constant function, with a graph that is always a horizontal line.

\section*{©Apply Example 8 Estimate Solutions by Graphing}

\section*{(17) Teaching the Mathematical Practices}

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

\section*{Recommended Use}

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

\section*{Encourage Productive Struggle}

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

\section*{Signs of Non-Productive Struggle}

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
- How do you use the equation to determine the zero?
-What does the \(y\)-intercept represent in the context of the situation?

\section*{2 Write About It!}

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

\section*{Check}

Equations and the graptes of setr related functions pro shown were the retutod tunction and is sorobt under the appropriste gaph
zeroge -2 and 3
zeroge -2 and 3
- Apply Example 8 Eqtimate Solutions by Graphing Paicty Haley is ordeving invitations for her graduation party. She has \(\$ 40\) to spend and each invitation costs \(\$ 0.96\). The function \(m=40-0.96 p\) represents the amount of money mithioy has left


I Wher is the topk?
Descrbe the task in your own wordh. Then lat any questions that you masy have. How con you find anderers to your questons?
Sancle miswer: A need to find the tero of the turction and descibe whan it medes. How cinl determine the meming of the zeco froms ia graph of the finctiont I can zeview graphing lineas fucctions and labeling awes
 To helo vouc complete the thas?
Sample acseer i wit graph the furection by meking a tobie of vatuec. will estimate the \(x\) intercept of the gaph to find the zevo. I wel then tibeck my solution oy solving the equation algebrakaly. I wit use the aves labets to hebo ose xterpres emy solition.



\section*{Interactive Presentation}


Apply Example 8
TAP
Students tap on each step to solve a real-world problem.


1 what is your selutiont
Use your strategy to solve the problem.


Estimate se sclution 42 imetatorns

Check the soltion
\(\approx 4.67\) imitutions
Whet does youe sotition mean in the coitect of the stuision?
Simple araser: Holey cin order 41 intations weth the anound ed moner she has to spend

4 How chen you knoiw flat your sotition it resiovabie?
© Write About itt Whise an mpumert that con be uned to delend your solvition.
Somple answer This amount is diose to the estimated revo of 42 invations from ene oriot

\section*{Check}

Datra Blairs cess phone pton atows het to use 3 GB of dsta, and she uses approvimitely 234 G8 of dota each dey. The function \(g=3\) - 0sed repreverst the amount of sta g in GB she hast let ithor didens. Part A Exanine the graph of the finction to eatimate ats zera so the pearest doy.

The gaph sppeas ta intersect the \(x\)-axis of 722
Part E Solve migebraicaty so check you anweec. flound so the nowest tenth
\(x=7.21 .4\)
Part C Oesobe what your answer to Pan 8 mews in this conted
Ater \(\frac{3}{21.4}\) deph Bipir has \(\frac{?}{0}\) Ge wht.



\section*{Interactive Presentation}


Check


CHECK
Students complete the Check online to determine whether they are ready to move on.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1, 2 exercises that mirror the examples & \(1-21\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(22-27\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(28-31\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice Exercises 1-27 odd, 28-31
- Extension: Even and Odd Functions
- ALEKS Tables and Graphs of Lines

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice Exercises 1-31 odd
- Remediation, Review Resources: Compare and Order Rational Numbers
- Personal Tutors
- Extra Examples 1-8
- ALEKS Converting Between Fractions and Decimals; Ordered Pairs

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice Exercises 1-21 odd
- Remediation, Review Resources: Compare and Order Rational Numbers
- Quick Review Math Handbook: Interpreting Graphs of Functions
- ArriveMATH Take Another Look
- ALEKS Converting Between Fractions and Decimals; Ordered Pairs


\section*{(antive 1}
50. roomat. The gaph seruss the teight et a focmal ine being kided. One the grabh is estaute De wa dod hegative ard inserpiet the meacings in the content of the





 cems. Whe the guph to entimate ve a and y intercepts of he sivkion weer pe tincton is pontro ans aspable



 neparibe.

\section*{tenveis 4}
42. culuthe ingra s molnteinctimbing and aterts the dyy as 325 mebers sbove rea livel Eson Hour she descents

a. Find re eitencoots. The xietenceptiss. The yintencege is wis.



 clitbing, she men al a Belight of it2.5 mover.
13. wower Juiec bormed 59950 tron Nis pheres. Ewion mosth ne wovid hi pousts 5335 . The noble vown the function
 a. Nogsten anceses. The pisprceptis the yources. is tuso.
b. Describe nhis me intectess mein bs se contect of the
situiton. Thexatencept neam that aher 6 moobes, Jevers

 theiofimin pareets.




Ewerwis:

 \(m=50-125 \mathrm{r}\) represects the amontt of cone of Moens end Kevon here lith





 bigh, humetr witt hirit tio fither left
```

Mront Eseriline:
Use the gragh sp ettimute phe x aod yivsercepts of the finctiop and desoribe
mbere the finction ts positive and negatioc.

```

rintacopet-4, ©
rintercest \(a,-1\) poutive. Ahen \(x<-4\)
tegutir whe \(1>-4\)


Nitencrpe: (-2.0; ons 12. 이 rinsercept in. 9 rincercept
poitere \(-2<\varepsilon<2\) segative mbens<-2end mener \(>2\)


``` the funcsor, where the finction is ponbive and nogativ. ant imserpet the meavings in we consencot the ihation. See argin.
```



```
26. \(3 x+1=-5-2\) xist-2: rint. \(\quad 27.9 x-7=-6 x+8\) \& vent 2riet -15
Origher-Orter Thimking suis
28. Aubcres Do ineer equatons somedes, alroys er neww heve fond
```




``` the equationy \(=\alpha\) At other lhes theve both e and y letercopte
```





```
30. creanl Wice a word prethen for the fincicny \(=60-25 x\). Find tev rovo of the
```



```
31. Frastrat Deroke spe creps you see so rove me couptce \(16=x+4+2^{i}-61\) oy grephing Then expiain how pou can check your solition Seemargh.
Tre madin 3. Wiotora micurten
```


## Answers

25. The $x$-intercepts are 3 and 7 . That means that the bird will be at sea level at 3 seconds and at 7 seconds. The $y$-intercept is 4.5 . This means that at time 0 , the bird was at a height of 4.5 feet. The function is positive when $x$ is less than 3 and when $x$ is greater than 7 , which means that the bird is above sea level from 0 to 3 seconds and after 7 seconds. The function is negative when $x$ is between 3 and 7 , which means that that the bird is below sea level, or under water, for 4 seconds.
26. 


27.

30. Sample answer: Mr. Devono is purchasing notebooks. He has $\$ 60$ to spend and each notebook costs $\$ 2.50$. The function $y=60-2.5 x$ represents the amount of money $y \mathrm{Mr}$. Devono has left after purchasing $x$ notebooks. The zero of the function is at 24 . This represents that after purchasing 24 notebooks, Mr. Devono will have no money left.
31. Find the related function. Subtract 16 fromeach side:
$0=x+4+\left(2^{4}-6\right)-16$. Evaluate the exponent:
$0=x+4+(16-6)-16$. Evaluate the expression in parentheses:
$0=x+4+10-16$. Add and subtract: $0=x-2$. Replace 0 for $f(x)$. The related function is $f(x)=x-2$. The graph of the related function intersects the $x$-axis at 2 . This is the $x$-intercept, or zero.
So the solution of the equation is 2 . Check the solution by
solving the equation algebraically. Evaluate the exponent:
$16=x+4+(16-6)$. Evaluate the expression in parentheses:
$16=x+4+10$. Add: $16=x+14$. Subtract 14 from each side: $2=x$.

## LESSON GOAL

Students identify symmetry, extrema, and end behavior of functions.

## 1 LAUNCH



Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Explore:

- Line Symmetry


## Develop:

Symmetry and Graphs of Functions

- Line Symmetry
- Interpret Symmetry


## Explore:

- Relative High and Low Points


## Develop:

## Extrema of Graphs of Functions

- Determine Increasing and Decreasing Parts of the Graph of a Function
- Determine Extrema of the Graph of a Function
- Interpret Extrema of the Graph of a Function


## End Behavior of Graphs of Functions

- Determine End Behavior of the Graph of a Linear Function
- Determine End Behavior of the Graph of a Nonlinear Function

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

## Practice

## DIFFERENTIATE



View reports of student progress on the Checks after each example.

Resources	Al	IEE	IFII
Remediation: Qualitative Graphs	$\bullet$		
Extension: Optimization with Graphs		$\bullet$	$\bullet$

## Language Development Handbook

Assign page 18 of the Language Development Handbook to help your students build mathematical language related to symmetry, extrema, and end behavior of functions.
태… You can use the tips and suggestions on page T18 of the handbook to support students who are building English proficiency.


## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
4 Model with mathematics.

## Coherence

Vertical Alignment

## Previous

Students identified intercepts of functions and solved equations by graphing.
A.REI.10, F.IF. 4

## Now

Students identify symmetry, extrema, and end behavior of functions.
F.IF. 4

## Next

Students will sketch graphs of functions and compare two or more functions.
F.IF.4, F.IF.5, F.IF. 9

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of graphs of functions by exploring the shapes of graphs. They apply their understanding by solving real-world problems that require them to interpret the symmetry, extrema, and end behavior of graphs.

## Mathematical Background

A function is increasing over an interval if its graph goes up when viewed from left to right and is decreasing over the interval if the graph goes down. A function may have extrema, in the form of relative maxima and minima. End behavior of a function is the behavior of the values of a function at the positive and negative extremes of its domain.

## Interactive Presentation



Warm Up


Launch the Lesson

## Vocabulary



[^10]
## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- analyzing qualitative graphs


## Answers:

1. Jamaal did not move forward during this time.
2. Jamaal came back to where he started.
3. Sofia walked faster.
4. Aaron walked steadily forward.
5. Yes; Jamaal's graph is steeper.

## Launch the Lesson

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationship between the verbal description of the number of searches and the graph representing the situation.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Explore Line Symmetry

## Objective

Students use a sketch to determine whether functions have line symmetry.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of symmetry of functions.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will explore the concept of line symmetry as it relates to the graphs of functions. Students will use a movable vertical line to analyze the graphs of different types of functions. If they can position the vertical line so that the left side of the graph is a mirror image of the right, then the function is symmetric. Then, students will complete the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore
WEB SKETCHPAD
Students use the sketch to determine line symmetry.

## Interactive Presentation



Explore

## TYPE



Students will respond to the Inquiry Question and can view a sample answer.

## Explore Line Symmetry (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- What is another way to describe a mirror image? Sample answer: a reflection
- If a function is symmetric about the $y$-axis, and you know the coordinates for a positive $x$-value, what else do you also know? Sample answer: If you know the function is symmetric about the $y$-axis, it means that the $y$-values will be the same at equal distances from the $x$-axis. For example, if you know there is a point on the graph at $(3,5)$, then you also know that there is a point on the graph at $(-3,5)$.


## (3) Inquiry

How can you use the graph of a function to determine whether it is symmetric? Sample answer: If you can find a line such that the left and right halves of the graph are mirror images of one another, then the graph of the function is symmetric.
(3o Online to find additional teaching notes and sample answers for the guiding exercises.

## Explore Relative High and Low Points

## Objective

Students use a sketch to explore the relative high and low points of the graph of a function.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of relative high and low points of functions.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will trace the curve of a given graph using a movable point that allows them to see the coordinates of the points on the graph. They will explore how the $y$-values of the relative high points and the relative low points compare to the $y$-values of nearby points. Then, students will complete the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

Students will use the sketch to determine relative high and low points.

Students will compare locations of the relative high and low points.

## Interactive Presentation



## Explore

## TYPE

Students will respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

## Explore Relative High and Low Points (continued)

## Questions

Have students complete the Explore activity.

## Ask:

-What does the word "relative" mean in other uses? How is that similar to the use here? Sample answer: Relative often means related to, like a family member or a species. This is similar to how relative is used in this Explore because it discusses how a point may be high or low, compared to the values that surround it.

- Are there other relative low points in the given function? Why or why not? Sample answer: There are no other relative low points for this function. It appears to go down to negative infinity for both positive and negative $x$-values.

Inquiry
How do the $y$-values of relative high and low points on a graph compare to the $y$-values of nearby points? Sample answer: The $y$-value of a relative high point is greater than the $y$-values of nearby points. The $y$-value of a relative low point is less than the $y$-values of nearby points.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Symmetry and Graphs of Functions

## Objective

Students determine whether functions have line symmetry and, if so, find the line of symmetry by analyzing graphs.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Common Misconception
A common misconception some students may have is thinking that a function is symmetric only if its graph is symmetric about the $y$-axis. Correct this misconception by using the second graph on this page and other similar graphs. Help students see that any vertical line can serve as the line that divides the graph in half.

## (3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


## DIFFERENTIATE

## 

IF students have difficulty determining whether the graph of a function exhibits line symmetry,
THEN have them use tracing paper to trace the shape of the graph, and see if they can fold the paper in such a way so that one half of the figure folds exactly on top of the other half.


## Interactive Presentation




## Interactive Presentation



Example 1


180 Module 3 • Relations and Functions

## Example 1 Line Symmetry

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between line symmetry and graphs used in this example.

## Questions for Mathematical Discourse

Does the right side of each graph appear to be a mirror image of the left? a. no; b. yes; c. yes; d. no
OLI In the top right graph, how far are the $x$-intercepts from the line of symmetry? Both $x$-intercepts are 1.5 units from the line of symmetry. Does this make sense? Explain. Sample answer: Yes; because the graph of one side is a mirror image of the other side, the $x$-intercepts should be the same distance from that line.
[BLII In the graphs with line symmetry, what do you notice about where the line of symmetry crosses the graph? Sample answer: It crosses at a point where the graph changes from increasing to decreasing or from decreasing to increasing.

## Common Error

Some students may think that all linear functions have line symmetry because their graphs are lines. Use a tracing of the first graph in the example to correct the error in this reasoning by showing students that this graph cannot be folded on top of itself around a vertical line.

## DIFFERENTIATE

## Enrichment Activity Bㅡㄴ ㅍLㄴ

Have pairs of students challenge each other by each drawing graphs of three functions: one that has line symmetry and two that do not. Have the students trade graphs and they must determine which of the three graphs drawn by their partner represents a function that has line symmetry. Have them share and discuss their observations and conclusions.

## Example 2 Interpret Symmetry

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

## Questions for Mathematical Discourse

Does the right side of the graph appear to be a mirror image of the left? yesOL Does the function have a second $x$-intercept? Explain. Sample answer: Yes; because the graph is symmetric, the graph will cross the $x$-axis again at some negative value of $x$.
[B. Without extending the graph, how can you determine the other $x$-intercept? Sample answer: The line of symmetry is $x=2$. The $x$-intercept we know is $x=5$, which is 3 units away from the of symmetry. The other $x$-intercept should be 3 units in the other direction at $x=-1$.

## Common Error

Students may state that the function represented by the graph in this example does not have line symmetry because the piece of the graph that is shown is not symmetric about a vertical line. Explain that although a real-world situation may place restrictions on the domain of a function, the determination of whether the function has line symmetry must be made by considering the function graphed over all real numbers.
@ Example 2 interpret Symmetry rounganis A fountain is spriying a atream of water into the aik. The solid portion of the graph represents the path of the wathe, where yis the height in teet of the stream, find and intergere ary symmetry in the graph of the function.
The righe hat of the gragh is the minor mage

in the contex of ghe stuation the symuretry of the graph teels you that the height of the stream of water when it is from 0 to 2 feet awisy from the foumtin st the sarke as the height of the stream of woter whien it is from 2 to 4 feet mway from the fountain

## Check

COUF The widd portion of the proph represent: the puff ot a poif boll after a is bit oll of a plotiont, wheres is the distroce in feet a goy pot bed.
Part A Use the graplits desuribe any symunty of the groph of the function D
A. vemenetic in the $y$ swo
B. sytraieticin the Ine $x=8$
C. symbersi in thie line $x=2825$
D. symanatic in the line $x=90$

Part 8 intergeer the symmetry in the content of the shumbion. $B$
A. The height of the goit bell when it has trowied a distance of 0 to -8 feet is the same as the neight of the poif ball when if has vaveled A diatioce of 8 to 28.25 feel.
B. The height of the got sall when a nos traveled a datance of 0 of 90 feet is the some as the height ot tive got boll when it has triveied a dartance of 90 to tro seet
C. The ditance the gof bal has traviled when $A$ is 0 to 8 feet in the ain is the same as the datances the golf bal has taviled whte it is 8 to 28.25 feet th the ak.
D. The datance the goll balt has tavetod when it is 0 to 90 feck in the are is the same is the datance the goil bal has trovolod when a is 90 vo 180 foet in the aic


PThink Atout it Find $\begin{aligned} \\ \text { ne maimim }\end{aligned}$ nelghe of the itwim of waler

Sample antwer: 9 n

Problem-5olving Tip To helo vasulire a ine
 soidicg the groph in hat \#the erohtinat us pertecty ese grapos is symmetic nbout ene ine you have creotes wet the fole.

## Interactive Presentation



Example 2



## Interactive Presentation



1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY 3 APPLICATION

## Learn Extrema of Graphs of Functions

Objective
Students identify extrema and where functions are increasing and decreasing by analyzing graphs.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of a function to determine where it is increasing or decreasing.

## Common Misconception

A common misconception some students may have is thinking that the arrows at the ends of the graph are the indicators of where the graph is increasing and where it is decreasing. Correct this misconception, and reinforce the need to read the graph from left to right in order to determine where the graph is increasing and where it is decreasing.

## Example 3 Determine Increasing and Decreasing Parts of the Graph of a Function

Teaching the Mathematical Practices
5 Analyze Graphs Help students analyze the graph in this example to determine where the function is increasing and decreasing.

## Questions for Mathematical Discourse

AL The given graph of $f(x)$ curves. Should we expect $f(x)$ to be always increasing or decreasing? Because of the curve in the graph, we should expect $f(x)$ to increase over some interval and decrease over some interval.

OL Starting at the leftmost point of the graph and moving from the left to the right, is the graph increasing or decreasing? decreasing At what $x$-value does the graph change to be increasing? at $x=0$
Do the arrows on the ends of the graph indicate whether the function is increasing or decreasing? Explain. Sample answer: No; the arrows on the ends of the graph indicate only that the graph continues in each direction. To tell whether the graph is increasing or decreasing, you trace the graph from its leftmost point.

## Common Error

Some students may state that the graph is increasing on both sides of the $y$-axis. It is likely that these students are looking at the left side of the graph from right to left instead of from left to right. Correct this error and show these students why this part of the graph is decreasing.

## Example 4 Determine Extrema of the Graph of a Function

## 10) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL How many extrema does the graph have? 2
OL What must be true for a point to be a relative minimum?
There must be no points nearby the point that have a lesser $y$-coordinate. Which point of the graph satisfies this condition? point $C$
Point $A$ has the same $y$-coordinate as point $C$, and point $D$ has the same $y$-coordinate as point $B$. Why are points $A$ and $D$ not extrema? Sample answer: There are points to the left of point $A$ with lesser $y$-coordinates and to the right of point $A$ with greater $y$-coordinates, so it is neither a relative minimum nor a relative maximum. The same is true for point $D$. .


Interactive Presentation


Example 4



O- Example 5 interpret Extrema of the Graph of a Function
cownc boois A comic book tore uses a function to model its rofa it thoulands or donst cen the forininividual insues it hetermine whether point $O$ is etathe minimum, melathe maximum, or neither. Then Interpret its meaning in the context of the situation.


Point $O$ is a reladve maximum because aff nearity points save a lesser -coopdinses.

Foint D represents the greatest prott then the comic book store can eam given the price t charges per issue.

Check
afsoeanics Aerobisich, or sturt fyeng is me prescice of intentonai manewees of an arcraft that see not pecesssiy for normal ilighe, Liscoln Beachey, an investor of aesobaics, was koom foe bis stuys, called the "Dip of Dests' is which ide plano world plumnet towad ve gound trom sogo teet undi he leveled phe plane. Has datauce fiom the ground oung the sturt can be coprosimstelty modeted by th unclion tiod iderify any extrema in the contert of the situstion


Foint A reptysetss mut at soout 20 seconos. Lincons Bebchey rewches $\rightarrow \frac{?}{\text { reflatie mapimum }}$ relative maximam in heiget at 5000 fifet. Aher point A this height is $\frac{7}{}$ decivasing onda he levels wattre plone.


## Interactive Presentation



Example 5


## CHECK



Students complete the Check online to determine whether they are ready to move on.

## Example 5 Interpret Extrema of the

 Graph of a FunctionTeaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about extrema to solving a real-world problem.

## Questions for Mathematical Discourse

What do the $x$ - and $y$-axes represent? The $x$-axis represents the price of one comic book in dollars; the $y$-axis represents the publisher's profit in thousands of dollars.

OL Is the function increasing or decreasing as the graph approaches point $D$ from the left? increasing As the graph moves away from point $D$ toward the right, is the function increasing or decreasing? decreasing

BL Describe the behavior of a function, in terms of increasing and decreasing, at an extreme. Sample answer: At an extreme, the function changes from increasing to decreasing or vice versa.

## Common Error

Some students may misinterpret the meaning of the maximum in the context of the situation. Make sure they understand what the scale on each axis represents. This is an important first step in interpreting the meaning of any point on the graph.

## Learn End Behavior of Graphs of Functions

## Objective

Students determine the end behaviors of graphs of functions by analyzing graphs.

## 113 Teaching the Mathematical Practices

5 Analyze Graphs Help students to analyze the graph of a function in order to determine the function's end behavior in this Learn.

## Example 6 Determine End Behavior of the Graph of a Linear Function

## (19) Teaching the Mathematical Practices

3 Make Conjectures In the Think About It! feature, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

## Questions for Mathematical Discourse

AL. Is the slope of the graph positive, negative, zero, or undefined? positive
OL Start at the $y$-intercept. Follow the graph to the left. Do the $y$-values increase or decrease? decrease Start at the $y$-intercept again. Follow the graph to the right. Do the $y$-values increase or decrease? increase
[BL. Can a linear function ever increase both as $x$ increases and as $x$ decreases? Explain. Sample answer: No; for a function to increase as $x$ becomes both increasingly positive and increasingly negative, the graph would need to turn and change direction. Because the graph of a linear function is a straight line, this is not possible.

## Common Error

Some students may mistakenly analyze the graph from left to right, as they do when determining whether a graph is increasing or decreasing. Reinforce that when determining the end behavior as $x$ is decreasing, students must read the graph from right to left.


## Interactive Presentation



Example 6



## Interactive Presentation



Example 7


1 CONCEPTUAL UNDERSTANDING
1CONCEPTUAL UNDERSTANDING 2 FLUENCY

## Example 7 Determine End Behavior of the Graph of a Nonlinear Function

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graph and the end behavior of the function used in this example.

## Questions for Mathematical Discourse

Start at the $y$-intercept. Follow the graph to the left. Does the graph go up or down? down
OLI Is the end behavior at each end of this graph the same or different? different How do you know? Sample answer: The arrows at each of the two ends are pointing in different directions. One arrow is pointing up and the other is pointing down.
[B1. Can a nonlinear function ever increase both as $x$ increases and as $x$ decreases? yes What must be true for this to happen? Sample answer: For a function to increase as $x$ becomes both increasingly positive and increasingly negative, the graph would need to turn once, three times, or any odd number of times. The same is true for decreasing end behavior.

## Essential Question Follow-Up

Students have explored interpreting graphs of functions.

## Ask:

Why are graphs useful representations of functions? Sample answer: You can use the graph of a function to find where the function is increasing and decreasing and the end behavior and extrema of the function.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1, 2 exercises that mirror the examples	$1-20$	
2	exercises that use a variety of skills from this   lesson	$21-23$
3	exercises that emphasize higher-order and   critical-thinking skills	24,25

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice Exercises 1-23 odd, 24, 25
- Extension: Optimization with Graphs
- ALEKS Graphs of Functions

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-25 odd
- Remediation, Review Resources: Qualitative Graphs
- Personal Tutors
- Extra Examples 1-7
- Q ALEKS' Graphs of Functions

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-19 odd
- Remediation, Review Resources: Qualitative Graphs
- Quick Review Math Handbook: Interpreting Graphs of Functions
- ArriveMATH Take Another Look
- ALEKS Graphs of Functions



## tierves

 potin torn Ne tee is womt in tew qupt. Deviernme wheter




16. Hourecicastia The nefped a nolercobers contenva to

 nawing or netrer Dinobbe what esch vatup mpers in the
 rative malitrus. Point 8 regrevests the yratest heiptr of the


 netercosiler piren the Bitacke from start.


Genval ome?

0


12

as xdecesser. $y$ docuraen



## Monet Eiencient.

Determine mhetrec eech function has line symenety and where the fuinction is


24

naline syomety
Minapusoturie
etrvere note
Ass dequasc, yincianss
As a increanes, y fecinass

nolise venerty
Sereseving $-1<x<05$,

 As Pincreatel, y incresien.

22 ancis the guap showa the height of a rock after ilis trown veto the de over hiee Dosermire the exivma Then iberay esch oowd as a meative minibut rebtiv

 He roch given the tien

-1.igher-Ordee Tkinking sains
24. wert the gaph hows the mubber of compiten trat aie afteciel

 atectre.

 pue' Janty poui concluion
The guph in invnemic in rie ine $x=0$
The orsati hes cos relebve pivirem as sbout $(-225$ - -61 The quebihes men velant mocelin at wese 10.9



-56 and one at atina $2.25,-1$ eic

## Sketching Graphs and Comparing Functions

## LESSON GOAL

Students sketch graphs of functions and compare two or more functions.

## 1 LAUNCH



Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Modeling Relationships by Using Functions

## Develop:

## Sketching Graphs of Functions

- Sketch the Graph of a Linear Function
- Sketch the Graph of a Symmetric Function
- Sketch the Graph of a Nonlinear Function
- Compare Properties of Functions

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

## Exit Ticket

## Practice

## DIFFERENTIATE

View reports of student progress on the checks after each example.

Resources	All	L	Ell	
Remediation: Identify Functions				-
Extension: Solving Equations: $f(x)=g(x)$		-	-	-

## Language Development Handbook

Assign page 19 of the Language Development Handbook to help your students build mathematical language related to graphs of functions.
FELII You can use the tips and suggestions on page T19 of the handbook to support students who are building English proficiency.


## Suggested Pacing

90 min $\quad 1$ day
45 min
2 days

## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, sketch graphs showing key features given a verbal description of the relationship.
F.IF. 9 Compare properties of two functions each represented in a
different way (algebraically, graphically, numerically in tables, or by ver descriptions).
Standards for Mathematical Practice:
6 Attend to precision.
7 Look for and make use of structure.

## Coherence

Vertical Alignment

## Previous

Students sketched functions to qualitatively describe the relationship (increasing, decreasing, linear, nonlinear).
8.F. 5

## Now

Students sketch graphs of functions and compare two or more functions.
F.IF.4, F.IF. 9

Next
Students interpret key features of graphs that represent functions, and compare two or more functions.
F.IF.4, F.IF.5, F.IF. 9 (Course 1, Course 2, Course 3)

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of graphs of functions and build fluency by using key features to sketch graphs. They apply their understanding by solving real-world problems that require them to compare and interpret the key features of graphs.

## Interactive Presentation



Warm Up


Launch the Lesson

## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skills for this lesson:

- sketching graphs of relations
- analyzing qualitative graphs


## Answers:

1. between 14 and 16 minutes before the scheduled start
2. The chances decrease the earlier they arrive.
3. Being late appears to guarantee that the person will not get the job.
4. about 1 minute late
5. When a person arrives early, there is still a small chance that they will get the job. But when they arrive late, there is almost no chance.

## Launch the Lesson

Teaching the Mathematical Practices
6 Use Quantities Have students read the verbal description about the world record for indoor pole vaulting and then determine how the axes should be labeled on the graph.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Mathematical Background

You can sketch the graph of a function if you are given information about its key features. Key features include intercepts, relative maxima and minima, intervals over which the graph is increasing or decreasing, and the end behavior of the function. Also helpful is information about any symmetry the graph may possess, and the real-world constraints of the situation modeled by the function.

## Explore Modeling Relationships by Using Functions

## Objective

Students use data and a sketch to predict key features of the graph of a function.

## Teaching the Mathematical Practices

3 Construct Arguments In this Explore, students will use stated assumptions, definitions, and previously established results to construct an argument.
5 Compare Predictions with Data Point out that in this Explore, students should use a graphing calculator to compare their predictions with the data.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will examine an infographic about body ratios. They will collect data from their classmates about wrist and neck circumferences and graph the data. They will use the resulting graph and their knowledge of the key features of graphs to answer questions and make a prediction about the function that models this relationship. Then, students will complete the Inquiry Question.
(continued on the next page)

## Interactive Presentation

Modelling Retationstips by UJing Functions
Qinguiry How can you use key fentures to approximate the grophs of furictions?
Examine the infogrophic about body ratios.

Explore

# Body Ratios 

The Overall Body


Explore


## WEB SKETCHPAD

Students use a sketch to graph the collected data.

## Interactive Presentation



Explore

## TYPE

Students will respond to the Inquiry Question and can view a sample answer.

## 1 CONCEPTUAL UNDERSTANDING

## Explore Modeling Relationships by Using Functions (continued)

## Questions

Have students complete the Explore activity.

## Ask:

-Why does it make sense for the graph to pass through the origin? Explain in context. Sample answer: The graph represents the relationship between the wrist circumference and neck circumference. If one circumference is 0 inches, then it does not exist, and the other would not exist either.

- For the relationship between the length of a person's foot and the length of the body, what key features of the function do you know without experimentation? Sample answer: We're told that a foot is about one-sixth of the whole length of the body, so we know that the graph will pass through the origin. If a person is 0 ft tall, they will have feet that are 0 ft long. We also know that the graph will be increasing because as a person's foot grows, usually their height is growing too. Also, it is not possible for these lengths to benegative.


## © Inquiry

How can you use key features to approximate the graphs of functions? Sample answer: Since key features tell you about the general shape and behavior of a function, you can use them to predict what the graph of a function will look like.

Wo Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Sketching Graphs of Functions

## Objective

Students sketch graphs of functions by using key features.

## T1P Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the verbal descriptions and the graphs they create.

## Common Misconception

A common misconception some students may have is that increasing and decreasing describes what the $x$-values of the function are doing, rather than what the $y$-values are doing. Reinforce to students that for a function to be increasing, the $y$-values are increasing as the $x$-values increase, but a function is decreasing if the $y$-values are decreasing as the $x$-values increase.

## (3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation




Interactive Presentation


Example 1


## Example 1 Sketch the Graph of a <br> Linear Function

Teaching the Mathematical Practices
4 Make Assumptions In the Think About It!, have students point out where an assumption or approximation was made in the solution.

## Questions for Mathematical Discourse

ALI Does the graph have an $x$-intercept? yes What are the coordinates of the intercept? $(0,0)$
OL What does the $x$-intercept mean in this context? Sample answer: When no time has passed, he has ridden 0 miles.
Bil Given this situation, would it make sense for the function to decrease over any interval? Explain. Sample answer: No; distances cannot be negative. Even if he had turned around at some point, the total distance he had ridden would still increase. The slope of the line may vary over the 24 hours, but it will never be negative.

## Example 2 Sketch the Graph of a

 Symmetric Function
## (1)Teaching the Mathematical Practices

1 Explain Correspondences Guide students as they use each piece of information in Example 2 to sketch a graph to represent the situation.

## Questions for Mathematical Discourse

AL. How many $x$-intercepts does the function have? 2
Ol. What is happening in the graph when it changes from increasing to decreasing? Sample answer: This is the point where the graph curves. In this case, it is the maximum.
BE. How many quadrants are needed to show the whole graph? Explain. Sample answer: 3; The positive part of the graph appears in Quadrant I, but because we know the function is negative for $x<25$ and $x>89$, the graph extends into Quadrant IV. Assuming that the left half of the graph continues as shown, it will eventually cross into Quadrant III, which makes sense because temperatures can be negative.

- Example 2 Sketch the Groph of a Symmetric Function
WEthen A pertom's happiness can be affected by temperature. Sketch a noelinear graph that shows the happinesis of a person $y$ as a function of temperature $x$. Interpret the key features.
Ponitive: between about 255 and $89{ }^{\circ}$ F
Negative: for temperatures less than 25 F ond gremer then $89 \%$
Increasing: for temperinuers less than about 57\%
Decreaving: for sempecolvees greater ithan about 57 F
Relative Maximum: att abour 57F, when a person's happiness is about 85
A nolseive maximum Occius at 57 F. or $x=57$, and a huppiness af 85, or $y=$ as This is masesented by the point 152.85 . which we can graph on the coordinste plans.
End Behavior: As remperrative inoeases or decreoses, a pessen's happhess decresses
For teniperatires less than 25 F or $x<25$, the graph is negative. For tinse temperstixes, the gaph is the Inciessing for teompesstres betiven 25F and 57F the graph is porstive and increasing. The graph is poitive and docreasing for temperatures between 577 and 89 F. This interuli of the quobt is also symmetric to the gaph from 257F to 577. This mians trot the fighe hat of the groph is the mince mage of the left halt. Fot temperatures greeter then 897 , oce $x>82$ the graph is nogatwe. decreaing. and sympretic to the therval of the grogh that 's less then 25F. As temperature increases or docsombes, a person's happisess decreases. This mears muc happiness wil get increalingly negetse to move rigt and whi on the graph.
Symmetry: A pertoo's Nappiness for temperatures less then 57 Fis the saine as their happiness for temperatuies grester the saine
than 575

A persin is happlest mien in is $57 \%$ As the veeperatione pots increasingly cold or hot. a person beccones less hapey. When the temperature is telow about $25^{\circ} \mathrm{F}$ or sbove about 89 F a person as unhappy: (continued on the neat poge)

$\Theta$ Think About It
Descibe the location or the poitt where the Moction changes tom negative to postive.

## Simple suyw. The

pelints whenes the
furtion efarpestrom
negative to poritlve or poitive lo nequbve ant the remeecepts.

QThink About IU
Think About IU what does a negative the contert orfins Ptastion?
Survie meneer : person beive artuppy

## Interactive Presentation



Example 2



## Interactive Presentation



Example 2
SWYPE


Students move through the slides to analyze the key features of a function.

1 CONCEPTUAL UNDERSTANDING

## Common Error

Some students may confuse "positive" with "increasing" and "negative" with "decreasing." Review these key features and help students reinforce their understanding of their differences

## DIFFERENTIATE

## Language Development Activity $A \operatorname{LL}$ |BL |ELI

IF students are having trouble sketching the graph of a nonlinear function,
THEN have students work together to discuss the examples in this lesson. You may also want them to complete some of the Check exercises cooperatively.

## DIFFERENTIATE

## Enrichment Activity ${ }^{[B 1 /}$

Have pairs of students challenge each other to draw graphs with given key features. One student draws a graph without showing it to the other and describes its key features. The second student should draw a graph that fits the description. The students should discuss similarities and differences in the graphs and whether both graphs fit the description. Then have them switch roles and repeat.

## Example 3 Sketch the Graph of a

 Nonlinear Function
## 013 Teaching the Mathematical Practices

4 Apply Mathematics In this example, students apply what they have learned about sketching graphs of functions to solving a real-world problem.

## Questions for Mathematical Discourse

AL. Which points are the easiest to graph first? the intercepts and the relative extrema
Ol How many quadrants are needed to show the whole graph? Explain. Sample answer: 2; Most of the graph appears in Quadrant I, but because people lined up before the ride opened, we need Quadrant II. We do not need Quadrants III or IV because it is not possible for a negative number of people to be in line.
[BL Is this the only possible graph for this situation and the given key features? Explain. No; sample answer: The example shows smooth curves between the known points, but we could draw straight lines or more wiggly lines connecting the points instead, as long as we do not introduce more local extrema in the process.

## Common Error

Some students may be confused about the fact that the graph does not contain the origin. Discuss what the $y$-intercept represents in this context, and why the $y$-intercept is not 0 .


## Interactive Presentation



Example 3



## Interactive Presentation



Check


Students interpret the key features in the context of the situation.

## CHECK



Students complete the Check online to determine whether they are ready to move on.

## Essential Question Follow-Up

Students have explored sketching graphs of functions.

## Ask:

How does knowing about the key features of graphs of functions help you to sketch the graph of a function that represents a real-world situation? Sample answer: You can use the information about the situation to determine where to plot the intercepts and the extrema, and where the graph is increasing or decreasing and positive or negative. You can also get information about the end behavior to help you sketch the graph.

Example 4 Compare Properties of Functions
T15 Teaching the Mathematical Practices
4 Model with Mathematics In Example 4, students apply what they have learned about sketching graphs to solving a real-world problem.

Questions for Mathematical Discourse
Al. At what height does the ball leave the player's racquet on a forehand shot? 2.8 ft What key feature is this on the graph? the $y$-intercept
OL. How far from the player does the ball hit the ground on a forehand shot? 58 ft on a backhand shot? 70 ft What key feature is this on the graph? the $x$-intercept
[BL. Why do you think the ball reaches a higher point on a forehand shot? Sample answer: The ball is hit from a slightly higher point, and perhaps the ball is at more of an upward angle.

## Common Error

Some students may not recognize that the description of the forehand is a description of a continuous function. Help them to see that just as the graph represents the backhand function, the verbal description of the forehand contains information about the key features of the function that models the forehand.

- Example 4 Compare Properties of Functions Trives Howk Eye is a computer system used in tennis to track the path of the ball. it is used at an officiating aid to ibcete the landing spot of a tennis balt when ployyers challenge a call Use the description pethe of the two shots if $y$ is the vertical meight and $x$ is the distance.


	Fertham	Hextrind
xiverceset	51	70
yivierceer	28.	25
Etratse	masimum height of 10 teet whea : - 29	inkorman heiget of 7 feetimen $x-35$
wereating and Decresning	incruaser to a heigh cof 10 leve from $x=0: 5$ $x=29$ and rem decieases from $x-29$ to $x=58$ to a heoght of 0 fert	ifcieayes to a height of 7 feet troen $:=0$ to $x=35$ and then secreates fiop $x=35$ Tox = Th low a beight of Ofoet.

wistercept
The seress bat trawes 12 feet terther during the backitand shot. yintercept:
The rimercepts of the owo functions moan that tre tencis bell is about 03 foct tigher or the beginning of tile forehigd shot. Extrema
The maximum heightit of the teveri boplis 3 leethighes duliog be forehand shot.
Increasing and Decreasing
The beight of the eemis bal increases over a shoner inderval daring the forehand shot but it reaches a bigher mavimum height. This means that the temit bill incrases an a faster race diving the forehand.



## Interactive Presentation



Example 4

## TAP

Students move through the categories to compare the key features for each shot.

## TYPE



Students compare the intervals over which each shot is positive and/or negative.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Interactive Presentation



Check

## MULTIPLE CHOICE



Students decide which statements best represent a graph.

Students complete the Check online to determine whether they are ready to move on.

## Practice and Homework

## Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-8$	
2	exercises that use a variety of skills from this   lesson	$9-11$
3	exercises that emphasize higher-order and   critical-thinking skills	$12-16$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, <br> THEN assign:

- Practice Exercises 1-11 odd, 12-16
- Extension: Solving Equations: $f(x)=g(x)$
- © ALEKS' Graphs of Functions

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-15 odd
- Remediation, Review Resources: Identify Functions
- Personal Tutors
- Extra Examples 1-4
- ALEKS' Introduction to Functions

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-7 odd
- Remediation, Review Resources: Identify Functions
- Quick Review Math Handbook: Interpreting Graphs of Functions
- ArriveMATH Take Another Look
- Q ALEKS' Introduction to Functions


## Practice

he nier owde aswo money to tovy a hew cer The ancurt
 in wites.
Atmercept nane
rimeeccept 51060
Uneek er Nenlineer: The grach of the finction in inem
Poutive for sme greter mand
iscreasing: tor time proser than D
End Geswion As the nubior of meses Se has save
ecrestes to amortiswod inormet.



此 Unaw or Nonbeser The groph of me finctan a inewer Poutive: for sime groster than 0 .

bocressing: tor une gentel trano 0
Ind Bebvilar: ds the nusber of houes whe nas smin increspes, the rumber of colones buyned acremel
tanow

1. roornait The Spit of a footal prown by a quatubbci con be
 Poutive: between on recseas ind 5 peconas Negative norm
trovesing: for time lest than 2 records.
Decresuing: for les grester than 2 seconth



Symmety. The feiperel pe bobbal for bine Detween 0 uconos and 2 reconds



Posilver petnees 2 iecoidi and 5 siconds

incresting for time lest then 5 secobos
Decceasing sor Bne greates 5 seconth

9 inctes
 foh secressen
Symetry: The heighe of lie foh for bees hes nuen 5 seconal a


## funcol


 the x morehs ince davuey 2001 .
Povitiw: dor the greter then 0 months
Negabver mope
Incerevinge tor at thmy groser Run 0 mozers
Decreaing: mone

Eviciemar rave


mairum t could ewor nech al the caximum number of pesple sawered:

 norens inco Aupinl 2000 imerpiet the bey fentires
Poblive lor Rne giopber flan a morem
Negative: nope
Increasing betrwn o mothi and la nowith for fine prater the
sooct 65 morth




Relation Minimuse at aboukibs. 39
Felative Maximum: if spose no. 2m

 inimber of sosplo sarwive.


## Minest Esericiner

The coviane departnent of a theatre compary is masing cone-shaped Nuts tor aplay set is medievis tises. Each sat will be covered with satin over its eetbire laternt surface terst inside and oul. The diant height of esch hat will remuin consturt st 20 inches, but the radius of the base will vary os acconmodate. es a function Une siis indermation tor Esercives o-ri.
9. use a mooti. stetch a croph nie ivem the biteme area of the hat fin squive indtec. ss a tinction of the focke of es owe s. in inctive.

 Penitive for rabla of otuse ureauer gun? Increaning: for notis of a Sene greater then o
 wea hcresses








Oriphtecordec Tinking soita

 tools and a ntall shed to use as his workiopp. He sells blees far \$75 ench. Use
this irformaton for Evencless 12-th







15. Nuiyzt Which wey featuve of ele priph tepesertas Aidaci) tecok awo poes
 fratemive





## Answers

14. $y$-intercept: The profit for buying and selling 0 bicycles is $-\$ 840$. Linear or Nonlinear: The function is linear. Positive: for greater than 30 bicycles. Increasing: for greater than 0 bicycles. End behavior: As the number of bicycles increases, the profit increases.

15. Sample answer: I researched the population of Pennsylvania from 2007 to 2017. The graph is a nonlinear function that is always positive. The $x$-axis represent years since 2007 and the $y$-axis represents the population in millions. The $y$-intercept is $(0,12.52)$ meaning that 0 years since 2007, or in 2007, the population of Pennsylvania was 12.52 million. As time increases, the population increases.

## Review

## Rate Yourself! 且 自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

## Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- Why is it helpful to have several different representations of the same relation?
- Why is it useful to have a graph of a function for a real-world situation?
-Why are graphs useful representations of functions?
- How does knowing about the key features of graphs of functions help you to sketch the graph of a function that represents a real-world situation?

Then have them write their answer to the Essential Question.

## DINAH ZIKE FOLDABLES

[EIIIA A completed Foldable for this module should include the key concepts related to relations and functions.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Linear and Exponential Relationships.

- Understand the Concept of a Function and Use Function Notation
- Analyze Functions Using Different Representations
- Interpret Functions that Arise in Applications in Terms of the Context



2. Mucnife OHOICE The Milsborough State Park in Thonotosussh. Flovids, charges an $\$ 20$ perright This can be onese fo function +1 ) $=20 \mathrm{k}+4$, where fin as the totai cont and $x$ in the nurber of niot she comping What is the value of 955 which is the cost of 5 nights carping? itmeth
A. 80
B. 100

P 104
D. 120
3. Mutime ChOICE If $(x)=-9 x+8$. then find
(-2) Ianory
A. -34

日. -8
8. 26
D. 100
4. Mutrere choice Which function inctudes the dota set pifow?

A. $5 x\left(-\frac{1}{2} x-3\right.$
(2. $f(x)=-2 x+2$
( $\mathrm{P} 0 \mathrm{a}=3 x-8$
D. $4 x)=4 x-30$
5. OPER RESPCNSE Determine wherer the reation shown in the table is a function. Explain 1man 3 ?


Sancle anwec the clemont -4 in the domein ts pakred with boes 8 and 13 in the range: tein teltiton $k$ fot 7 function.

## Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 3-1 through 3-5
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
ALI Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

## Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-12 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$2-4,7,12$
Multi-Select	Multiple answers may be correct.   Students must select all correct   answers.	1
Table Item	Students complete a table by   entering in the correct values.	6
Open Response	Students construct their own   response.	$5,8-11,13$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
N.Q.1	$3-1$	1
F.IF.1	$3-2$	$4-6$
F.IF.2	$3-2$	2,3
F.IF.4	$3-4,3-5$	$8,10-12$
F.IF.5	$3-3$	7
F.IF.9	$3-6$	13
A.REI.10	$3-4$	9


10. Optev etsponse $A$ plece of at is in the Bhape of an arch. il is modeled by a firiction athere $x$ is the with in feet of the arch and $y$. sthe bejght in feet The wofle shows the etationsuip of $x$ to y


Wite the yimtencept as in orseced pair mod iscerpiet it mesining in the teat worid conowe
(2. Sos, Sample answer, tit the point (2, 8); the aroth is at in's highest point, 3 tret above the greund.

Th. OPEN RESPONSE A gorden supply store mannger found thot It abe used a cection functoon she could delemice ine best price to charge for be shovels she selis to maxinize the revenve. The gash repessents ine reverue (is) yof the store at annce (\$) per thovel One the grnph 10 tha and impormer of she


Symmetry: The graph is symenetric in "pe
Symmetry
ine $x+90$
interprel symmetryc The revenue gaineo when a stervel is scid for $\$ 20 \mathrm{k}$ the same as eis whien a movel it sold for $\$ ? 50$
12. mutiple choice Suppose the graph of function is increasing to the left of $s=2$ and decressing so the roght of $x=2$ which evcribes the point at $\mathrm{x}=2$ ? mens 3
A uness you kiow fley $y$-coorchinate of the pooch you cencot say soptoing about the point at $x=2$.
8. In is ae $x$-intercepe.

C Mis a rebatre minimum
is a relative marimam
13. OPENRESPONSE Use the descipton and gropb to compare the population data for hoio and Flionict, where a heo populan ince 7900 Wine stotiomento abouthe Petations of Crio and Fiovido since 1900 . popultons ot Crio and florido since

Ohio Population since 1900
In 1000 the pogolition of Orio was above 42 mition in 1000 the popdikon ol Otio wal sbout 42 mition
 2006. the popuition of Oni9 prew to approwintely "4 mition Bepond 2000 , the popuition at Otio continuer to grasubly increses. See margin

206


## Answers

13. Sample answer: In 1900 the population of Ohio was nearly 4 million more than the population of Florida. Both populations grew between 1900 and 1950. At this point, the population of Ohio exceeded that of Florida by approximately 5 million, indicating a greater growth rate for Ohio than Florida during those decades. Then from 1950 to 2000, the population of Ohio grew by about 3.4 million, whereas the population of Florida grew by about 13 million, indicating a significantly greater growth rate for Florida during those decades. In fact, by 2000, the population of Florida surpassed Ohio by more than 4 million people.

## Linear and Nonlinear Functions

## Module Goals

- Students graph linear, piecewise-defined, step, and absolute value functions.
- Students find and interpret the rate of change and slope of lines.
- Students identify the effects of transformations on the graphs of linear and absolute value functions.


## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.
F.IF.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
Also addresses A.CED.2, A.RE10, F.IF.4, F.IF.6, F.BFa, F.BF.2, F.LAa, F.LE.2, and F.LE.5.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

## Be Sure to Cover

To completely cover F.LE.1a, go online to assign the following activity:

- Linear Growth Patterns (Expand 4-3)


## Coherence

Vertical Alignment

## Previous

Students interpreted theequation $y=m x+b$ as defining a linear function and gave examples of functions that are not linear.
8. F. 3

## Now

Students write and graph linear and nonlinear equations.
F.IF.7a, F.IF.7b, F.BF. 3

Next
Students will build linear and nonlinear functions to model real-world data and relationships.
F.BF. 1 (Course 1, Course 2, Course 3)

## Rigor

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.

## Suggested Pacing

Lessons	Standards	45-min classes 90-min classes	
Module Pretest and Launch the Module Video		1 0.5	
4-1 Graphing Linear Functions	A.REI.10, F.IF.7a, F.LE. 5	1	0.5
4-2 Rate of Change and Slope	F.IF.6, F.LE. 5	1	0.5
4-3 Slope-Intercept Form	A.CED.2, F.IF.7a, F.LE. 5	2	1
4-3 Expand Linear Growth Patterns	F.LE.1a	1	0.5
4-4 Transformations of Linear Functions	F.IF.7a, F.BF. 3	2	1
4-5 Arithmetic Sequences	F.BF.1a, F.BF.2, F.LE. 2	1	0.5
4-6 Piecewise and Step Functions	F.IF.4, F.IF.7b	1	0.5
4-7 Absolute Value Functions	F.IF.7b, F.BF. 3	2	1
Put It All Together: Lessons 4-6 through 4-7		1	0.5
Module Review		1	0.5
Module Assessment		1	0.5
	Total Days	15	7.5

## ${ }^{\text {a }}$ Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will determine which graph matches the correct function and explain their choices.

Targeted Concepts Certain modifications to the parent function of an absolute value function will result in predictable transformations of the graph.

## Targeted Misconceptions

- Students may not recognize a horizontal transformation and/or predict an incorrect direction of a horizontal transformation.
- Students may not recognize a vertical transformation and/or predict an incorrect direction of a vertical transformation.
Use the Probe after Lesson 4-7.


Collect and Assess Student Answers

Correct Answers: 1. B 2. C 3. D
4. A 5. C

```
 If the student selects
 these responses...
 1.D
 3. B
 2. A
 4. C
 5. A
 1.A 2.D
 3.C 4. B
 confuses a horizontal shift with a vertical shift
 Example: For Item 3, the student incorrectly moves the graph up 4 units instead of
 to the right 4 units.
```


## Take Action

```
After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.
- D ALEKS \({ }^{\circ}\) Absolute Value Functions
- Lesson 4-7, all Learns, all Examples
Revisit the probe at the end of the module to be sure that your students no longer carry these misconceptions.
```


## IGNT゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

## Essential Question

At the end of this module, students should be able to answer the Essential Question.

## What can a function tell you about the relationship that it represents?

Sample answer: It can tell you about the rate of change, whether the relationship is positive or negative, the locations of the $x$ - and $y$-intercepts, and what points fall on the graph.

## What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

## DINAH ZIKE FOLDABLES

Focus As students read and study this module, they should show examples and write notes about linear functions and relations.
Teach Have students make and label their Foldables as illustrated. Students should label the front of each half page with the lesson title. On the back of each of these pages, they can record concepts and notes from that particular lesson.

When to Use It Encourage students to add to their Foldables as they work through the module and to use them to review for the module test.

## Launch the Module

For this module, the Launch the Module video uses real-world scenarios to illustrate how functions and their graphs can be used to model both linear and nonlinear relationships. Students learn about using graphs to model the change in altitude of an airplane and the change in strength of a Wi-Fi signal.

- Essential Question



Interactive Presentation


What Vocabutary Will You Leatn?		
- abvolite value function	- idecsity finction	- reflection
- armmasis seguence	+ netrece of an arthente	- sequense
- cormmon afferncoe	sebvence	- Noper
- comutarat finction	+ cormmenter	- iteg tanction
- Glasion	- parentismicton	- term cla segutera
- tamily of gaphe	- Diecomsedetioed tanction	+ Trandermition
- gratest insoger fuection.	- piecowiselinag turcion.	- trimsition.
- letever	- wite of charge	- vertox

Are You Ready?
Complene the Cuick Review to see if you are ready to surt this nodile
Then conplote the Quick Check


Haw did wo dot
which emercises ide you minamer conscly is the oulek Check?

## What Vocabulary Will You Learn?

태L As you proceed through the module, introduce the key vocabulary by using the following routine.

Define The slope of a line is the rate of change in the $y$-coordinates (rise) for the corresponding change in the $x$-coordinates (run) for points on the line.

Example A line passes through the points $(1,4)$ and $(3,8)$.
Ask What is the slope of the line? 2

## Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- identifying domain and range
- identifying slopes
- translating and reflecting geometric figures
- finding the next terms in patterns
- graphing linear functions
- evaluating absolute value expressions


## OALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the topics in the Functions and Lines module-who is ready to learn these topics and who isn't quite ready to learn them yet-in order to adjust your instruction as appropriate.

## Mindset Matters

Collaborative Risk Taking
Some students may be averse to taking risks during math class, like sharing an idea, strategy, or solution. They may worry about their grades or scores on tests, or some might feel less confident solving math problems, especially in front of their peers.

How Can I Apply It?
Assign the Practice problems of each lesson and encourage students to take risks as they solve problems, try new paths, and discuss their strategies with their partner or group.

## Answer

1-6.


## Graphing Linear Functions

## LESSON GOAL

Students graph linear functions by using tables and intercepts.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Points on a Line

## Develop:

## Graphing Linear Functions by Using Tables

- Graph by Making a Table
- Choose Appropriate Domain Values
- Graph $y=a$
- Graph $x=a$

Explore: Lines Through Two Points

## Develop:

Graphing Linear Functions by Using the Intercepts

- Graph by Using Intercepts
- Use Intercepts

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

## Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	ll	IFll	
Remediation: Proportional Relationships and   Slope				0
Extension: Graphing Equations in Three   Dimensions				0

## Language Development Handbook

Assign page 20 of the Language Development Handbook to help your students build mathematical language related to graphing linear functions.
EIII You can use the tips and suggestions on page T20 of the handbook to support students who are building English proficiency.

Suggested Pacing


## Focus

Domain: Algebra, Functions
Standards for Mathematical Content:
A.REI. 10 Understand that thegraph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.
F.LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.

## Coherence

Vertical Alignment

## Previous

Students sketched graphs and compared graphs of functions.
8.F.2, 8.F.4, F.IF.4, F.IF. 9

## Now

Students graph linear functions using tables and intercepts.
A.REI.10, F.IF.7a, F.LE. 5

Next
Students will investigate rate of change and slope.
F.IF.6, F.LE. 5

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of and fluency with linear functions (first studied in Grade 8) to graphing linear functions by using a table and by using intercepts. They apply their understanding of linear functions by solving real-world problems.

## Interactive Presentation



Warm Up


Launch the Lesson

## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- identifying domain and range

Answers:

1. D: $\{2,3,4,7\}, R:\{2,3,4\}$; yes
2. D: $\{0.9,1.4,3.2\}, R:\{0.8,1.4\}$; yes
3. D: $\{-5,-1,3,4\}$, $R:\{-4,-1,3,4\}$; yes
4. D: \{Ohio, Texas\}, R: \{Cleveland, Columbus, Dallas, Houston\}; no
5. D: \{dog, fish, cat, other, bird, rabbit, hamster, horse, snake\},

R: $\{5,6,20,21,22,24,42,60,71\}$; yes

## Launch the Lesson

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain how the verbal description of the relationship between the device's strength and the distance from the router can be modeled by a function, which can be used to create a table of values and a graph.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Mathematical Background

The graph of a linear function is a line. The coordinates of the points on the line are the solutions of the related linear equation. If you know at least two solutions of the equation, you can use them to graph the line. You can also use the $x$ - and $y$-intercepts to graph the line. The intercepts can be found by alternately replacing $x$ and $y$ with 0 . The line that connects the intercepts is the graph of the linear equation.

## Explore Points on a Line

## Objective

Students explore the relationship between graphs of linear equations and their solutions.

Teaching the Mathematical Practices 7 Look for a Pattern Help students to see the pattern in this Explore.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will be presented with a linear equation and its graph. Several points on the coordinate plane are marked and labeled, some on the graph, and some not on the graph. Students will record the coordinates of the marked points, and determine whether each pair of coordinates makes the equation true. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore


## Explore Points on a Line (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Why is it important to know if coordinates make an equation true? Sample answer: It is important to know when the substituted values make both sides of the equation equal. The coordinates that make the equation true are solutions of the equation.
- Given a graph of a linear function, how could you find a solution of the related equation? Sample answer: I could look for coordinates on the line because any point on the line is a solution of the related equation.


## (C) Inquiry

How is the graph of a linear equation related to its solutions?
Sample answer: The graph of a line is all of the solutions of its equation plotted on a coordinate plane.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Explore Lines Through Two Points

## Objective

Students use a sketch to explore the number of lines that pass through two points.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use a sketch. Work with students to explore and deepen their understanding of lines through two points.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to explore the number of lines that can be drawn through a single point. They will then explore the number of lines that can be drawn through two points. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

Students use a sketch to explore the graphs of linear functions.

## TYPE

Students answer questions about the graphed functions.

## Interactive Presentation



Explore

## TYPE

a
Students respond to the Inquiry Question and can view a sample answer.

## Explore Lines Through Two Points (continued)

## Questions

Have students complete the Explore activity.

## Ask:

-Can you graph a function from a table that has only two points? Sample answer: As long as you know that the function is linear, it is okay for the table to only list two points.

- When graphing, do you think it would be better to use two points close together or farther apart? Sample answer: Farther apart would help you get a better idea of where the line should be drawn. If the points are too close together, you might not have your ruler or line tool lined up correctly.

How many lines can be formed with two given points? Sample answer: There is only one line that can be formed with two given points.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Graphing Linear Functions by Using Tables

## Objective

Students graph linear functions by making a table of values.

## (11) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the table, coordinates, equation, and graph of a linear function.

What Students Are Learning
Students come to understand that although a table of values can be used to construct the graph of a linear function, the graph represents all of the solutions of the equation. They learn that every point on the graph represents a pair of coordinates that is a solution of the equation.

## Example 1 Graph by Making a T able

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

## Questions for Mathematical Discourse

AL. What values are in the domain of the function? all real numbers
OLI Why is it helpful to choose both positive and negative values? Sample answer: Choosing positive and negative values gives you a better idea of what the graph will look like and will show you where the graph crosses the $y$-axis.
BLI What should you do if one of the points you graph is not on the same line as the others? Sample answer: Check your work to see if you miscalculated the $y$-value.

## (3) Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Example 1



## Interactive Presentation



Example 2


Students use a sketch to graph the ordered pairs from the table of values.


## Example 2 Choose Appropriate Domain

 ValuesTeaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the equation, table, and graph in this example.

## Questions for Mathematical Discourse

What values are in the domain? all real numbers
OL. Why were the values selected for $x$ in the table $-8,-4,0,4$, and 8 ? Sample answer: They were all multiples of 4 and since the coefficient is $\frac{1}{4}$ this makes multiplication easier.
What would happen if you used multiples of 2 for $x$ in the table? Sample answer: Multiples of 2 that are also multiples of 4 would cancel out the denominator, but others would reduce to have a denominator of 2 .

## Common Error

Some students may make calculation errors when working with a coefficient that is a fraction. Help them avoid this by suggesting that they write the integer that they are substituting for $x$ as a fraction with a denominator of 1 .

## Example 3 Graph y $=a$

## Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
ALL How is this equation different from other linear equations that you have worked with? Sample answer: The coefficient of $x$ is zero.
OL What would the table look like for other values of $x$ ? Sample answer: The $y$-values would all be 5 .

Bl. Is the graph a function? Explain Yes; sample answer: This is a function because it passes the vertical line test.

## Common Error

Some students may interpret an equation such as $y=5$ as a point, not a line. Help them to see that although the equation specifies that $y=5$, $x$ could be infinitely many values. Use a table to show how this leads the graph of $y=5$ consisting of more than one point.

## Example 4 Graph $x=a$

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this example, students will need to use a sketch. Work with students to explore and deepen their understanding of graphs of horizontal lines.

## Questions for Mathematical Discourse

AL. How is this equation different from other linear equations that you have worked with? Sample answer: There is only one variable, $x$.
으 What is the $x$-intercept for the graph of an equation of the form $x=a$ ? $(a, 0)$
BLI Why does every point of the form $(-2, y)$ satisfy the equation? Sample answer: Because the equation has no $y$-variable, substituting any point $(-2, y)$ into the equation will result in the true statement $-2=-2$.

## DIFFERENTIATE

## Language Development Activity $\triangle$ AL BL ELL

IF students are having difficulty remembering which equations represent horizontal lines and which represent vertical lines, THEN have them use the acronyms HOY and VUX to remember which is which. HOY stands for "Horizontal, $\underline{0}$ slope, $\underline{y}=$," and VUX stands for "Vertical, U्Undefined slope, $\underline{x}=$."

Example 3 Graphy $=0$
Groph y $=5$ by making a table.
Step 1 Revwle fle equasion
$y=0 x+5$
Step 2 Make a table.

Step 3 Graph the line.
The grepit of $x=5$ is a
horizomtal lise thriough (x. 5 ) for at values of $x$ in the domain


Example 4 Graph $x=0$
Graph $x=-2$.
Ybu leaned in the prevsous axamiple that equations of the form $y$ mo hane grabat that are horgontal lines. Equations of the form $x=$ a lave grapha that are vertical lives
The sraph of $x$ ar -2 iss wertical Ine thouph $(-2 . y$ tor all reat than have xocosndinter of -2 and corvect from with a vertical line.

to
Check
Graph $x=6$



## OTminkaboutit

 mogenerat what soen in generist mhatthe gatapi of to une grapt of on $y \mathrm{y} 0$ a, where on any redinamber, took the?
Sinple antwer: a horitastal line throuptis in the fomsin.

## ©Thiminabout in

is pe procitof $x=0$ aknotion Why a noty ocel?

Nos rample anver: The eferovita in the the evoporc inthe more tian one climent of the range.

## Interactive Presentation



Example 3



## Interactive Presentation

## Graph by Using Intercepts

Graph $-x+2 y=8$ by using the $x$ - and $y$ intercepts.

Find the $x$ and $y$ intercepts.

To find the $x$-intercept, let $y=0$.

$$
\begin{array}{rlrl}
-x+2 y & =8 & & \text { Original equation } \\
-x+2(0) & =8 & \text { Replace } y \text { with } 0 . \\
-x & =8 & \text { Simplify. } \\
x & =-8 & & \text { Divide. }
\end{array}
$$

Example 5

## WEB SKETCHPAD



## 1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

## Learn Graphing Linear Functions by Using the Intercepts

## Objective

Students graph linear functions by using the $x$ - and $y$-intercepts.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Common Misconception

Some students may think that the $x$ - and $y$-intercepts are the coefficients of $x$ and $y$. Use an example such as $3 x+2 y=12$ to review the process of finding intercepts and show that neither coefficient is an intercept.

## Example 5 Graph by Using Intercepts

Teaching the Mathematical Practices
5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as a straightedge. Help them see why using these tools will help to solve problems and what the limitations are of using the tool.

Questions for Mathematical Discourse

AL. What are the intercepts of the graph of a linear function? the points where the line crosses the $x$ - and $y$-axes
OL. How does finding the $x$ - and $y$-intercepts help you to graph the function? Sample answer: Two points make a line, so a line can be drawn using the intercepts as the two points.
When finding the $x$-intercept, why do you substitute 0 for $y$ in the equation? Sample answer: The $y$-coordinate of any point on the $x$-axis is 0 , so substituting 0 for $y$ in the equation tells you the value of $x$ when $y=0$, which is the $x$-intercept of the graph of the function.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

3 APPLICATION

## BExample 6 Use Intercepts

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about graphing linear functions to solving a real-world problem.

## Questions for Mathematical Discourse

AL What information is given in the problem?
Angelina starts with 60 cups of dog food and feeds her $\operatorname{dog} \frac{5}{2}$ cups per day.
OL. What does each variable represent, and what does this tell you about the intercepts? Sample answer: $x$ represents days, and $y$ represents cups of food. So the $x$-intercept represents the number of days when there are 0 cups of food left, and the $y$-intercept represents the amount of food when 0 days have passed.
Explain what the intercepts mean in the context of the problem. Sample answer: At 24 days, there is no food left. The bag started with 60 cups of food and after 24 days, the bag was empty.

## Common Error

Some students may interchange the intercepts, thinking that when they let $x=0$, they are finding the $x$-intercept or vice versa. Help students avoid this error by having them write the ordered pairs with the zeros in place before they solve algebraically. Then have them fill in the values they find, and plot the points from the ordered pairs.

## EEssential Question Follow-Up

Students have used a variety of methods to graph linear equations.

## Ask:

Why is it helpful to have different ways to graph linear functions? Sample answer: Some methods of graphing are easier in different contexts. For instance, graphing by finding the $x$ - and $y$-intercepts might be obvious from inspecting the particular equation. For a function that represents a real-world situation, it might be easier to create a table of values for the situation.

## DIFFERENTIATE

## Enrichment Activity [B1

Have students work in pairs to create a poster about graphing linear equations. Have them include information about tables of values, intercepts, and the solutions of the equations in their display.


## Interactive Presentation



Example 6
WEB SKETCHPAD



## Interactive Presentation



## CHECK



Students complete the Check online to determine whether they are ready to move on.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-16$	
2	exercises that use a variety of skills from this   lesson	$17-25$
2	exercises that extend concepts learned in this   lesson to new contexts	$26-29$
3	exercises that emphasize higher-order and   critical-thinking skills	$30-37$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-25 odd, 30-37
- Extension: Graphing Equations in Three Dimensions
- Q ALEKS' Ordered Pairs; Graphing Lines

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-37 odd
- Remediation, Review Resources: Proportional Relationships and Slope
- Personal Tutors
- Extra Examples 1-6
- DALEKS Proportional Relationships; Slope

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-15 odd
- Remediation, Review Resources: Proportional Relationships and Slope
- Quick Review Math Handbook: Linear Functions
- ArriveMATH Take Another Look
- D ALEKS Proportional Relationships; Slope


## Practice

Ermestiomen :
Graph wach eqwation by makiog a tutife.

3. $y=-8$ B





24. $x-\frac{1}{2}=-3$

$$
\begin{aligned}
& \text { 25. } y=3 x+1 \\
& \text { vet }-1 \frac{1}{\text { Pr }} \text { yiet: }
\end{aligned}
$$




$A=334, d=-1, \sin C=-412$.


© Gaphthe equition by uving the insicepts. Seemaigh.
d. Une the graph se find tre appormemp beight of a moman veove redive bope i 25 cercomery iong 165 cm


 conter ot tre nowion See nary
28. use a mocer Eas fas 5 as 10 spena on pemmen und protert for a party Fymus


 ceprinent io terms of contsect ser maipi.



 hteractive Presertatiof

Origher-Order nisking suife
30. wure Consder feat wond shations that can De gadelest ty theac fixicions
 1. Wite in equation 10 coobpl your reok aopst thiliort Et dive to defre


 thetem of per diff
C. Groph rour equicon ty maing a tubin, incide a spe for the gash as well an





 rans rintertita bity $-4=0$ andy kis syintercept






34. Nunkz2 Cosione and contuat the grash of $y=2 x+1$ we $(2,3,4)$ enoy $=2 r+1$ weth the domin at redi wanben.


Cutark Give an erample of a linese oquation in the form $A x+$ oy $=C$ for osch condition then describe the griph of the equition.
35. $A=0 \quad$ 36. $B=0$
larylt mowery $y=$ :
Sumple anumer: $=\mathrm{F}$ ㄷ․
virtcatles
3. $\mathrm{c}=0$
Sanpla manerc: $-y=0$

toliontal ine


faryis muery
toltoptal ine
virtcal liex
ine tresoph 10.01

## LESSON GOAL

Students find and interpret the rate of change and slopes of lines.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

Rate of Change of a Linear Function

- Find the Rate of Change
- Compare Rates of Change
- Constant Rate of Change
- Rate of Change

Explore: Investigating Slope

## Develop:

## Slope of a Line

- Positive Slope
- Negative Slope
- Slopes of Horizontal Lines
- Slopes of Vertical Lines
- Find Coordinates Given the Slope
- Use Slope

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket
Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	In	IELII
Remediation: Order of Integer Operations	$\bullet$		$\bullet$
Extension: Treasure Hunt with Slopes		$\bullet$	$\bullet$

## Language Development Handbook

Assign page 21 of the Language Development Handbook to help your students build mathematical language related to rates of change and slopes.
[FILII You can use the tips and suggestions on page T21 of the handbook to support students who are building English proficiency.


## Suggested Pacing <br> 90 min 45 min $\quad 0.5$ day $\quad 1$ day

## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
F.LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.

## Coherence

Vertical Alignment
Previous
Students understood the concept of slope and rate of change for linear functions.
8.EE.5, 8.EE. 6

## Now

Students find and interpret the rate of change and slopes of lines.
F.IF.6, F.LE. 5

Next
Students will graph equations in slope-intercept form.
A.CED.2, F.IF.7a, F.LE. 5

## Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Find Conceptual Bridge In this lesson, students expand on their		
understanding of and fluency with slope and rate of change (first		
studied in Grade 8). They apply their understanding of slope and rate of		
change by solving real-world problems.		

## Mathematical Background

Rate of change is a ratio that describes, on average, how one quantity changes with respect to a change in another quantity. Slope can be used to describe rate of change. The slope of a line is the ratio of the vertical change (the rise) to the horizontal change (the run). The slope formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, where $\left(x_{14} y\right)$ and $\left(x_{22} y\right)$ are two points that lie on the line, can be used to find the slope of a line without graphing.

## Interactive Presentation



Warm Up


Launch the Lesson


[^11]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- subtracting integers in fractions


## Answers:

1.1
2. $-\frac{5}{2}$
3. undefined
4. -3
5. 13,100 people

## Launch the Lesson

Teaching the Mathematical Practices

## 2 Make Sense of Quantities

Mathematically proficient students need to be able to make sense of quantities, such as slope and rate of change, and their relationships.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Explore Investigating Slope

Objective
Students use a sketch to explore how the slope of a line affects its graph.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use the sketch to see how the slope of a line changes as the line is rotated. They will observe how the rise and the run are affected as the line is rotated, and how that affects the calculation of the slope. They will explore lines with positive slopes and negative slopes and will investigate the slopes of horizontal and vertical lines. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore
WEB SKETCHPAD
Students use a sketch to investigate the slope of a line.

## TYPE

a|

Students answer questions about the slope of a line.

## Interactive Presentation



## Explore

## TYPE

a Students respond to the Inquiry Question and can view a sample answer.

## Explore Investigating Slope (continued)

## Questions

Have students complete the Explore activity.
Ask:

- How can the words "rise" and "run" remind you whether to look for a change in $y$ or a change in $x$ ? Sample answer: You can think of rise as something going up or down, which goes along with a change in vertical distance along the $y$-axis. You can think of "run" as something you do on the ground, which is horizontal or along the $x$-axis.
- What does a slope of -3 tell you about the line? Sample answer: The negative sign tells me that the line will be decreasing as it moves from left to right. I also know that the line will go down three units for every one unit to the right.


## (C) Inquiry

How does slope help to describe a line? Sample answer: The slope of a line can tell you whether the graph of the line will slope up or down from left to right or if it will be a horizontal or vertical line.

(3)
Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Rate of Change of a Linear Function

## Objective

Students calculate and interpret rate of change by identifying the change in the independent and dependent variables.

Teaching the Mathematical Practices
2 Make Sense of Quantities In this Learn, help students to notice the relationship between the variables when calculating rate of change.

## QExample 1 Find the Rate of Change

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

## Questions for Mathematical Discourse

AL. What are the quantities being compared in the table? the number of pancakes and the number of cups of flour
Ol. How do you know which is the independent variable and which is the dependent variable? Sample answer: The pancakes depend on the flour because the number of pancakes you can make depends on how much flour you use. So the number of pancakes is the dependent variable, and the amount of flour is the independent variable.
31.I. Would the ratio be different if you used the first and last pairs of values from the table to calculate the rate of change? Explain. No; sample answer: $\frac{36-12}{6-2}=\frac{24}{4}$ or 6 .

## (3) Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Example 1



## Interactive Presentation



Example 2


220 Module 4 • Linear and Nonlinear Functions

## Example 2 Compare Rates of Change

Teaching the Mathematical Practices
4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

Questions for Mathematical Discourse
AII What are you trying to determine? the rate of change for two time periods: 2000-2005 and 2010-2015
[OL What do $x$ and $y$ in the formula for the rate of change represent? $y$ represents dollars, and $x$ represents years
1B1. Can you find the rate of change by simply subtracting the numbers that are called out on the graph? Why or why not? No; sample answer: Subtracting those numbers will not produce a rate. Each listed point is at an interval of 5 years, so you need to divide by 5 to determine the rate of change per year.

## Common Error

When interpreting a solution, some students may ignore the sign of a rate that is negative. Explain that in any real-world problem, the sign of a quantity has meaning. Help them to see that in this example, the negative rate of change means that the budget was reduced over that time period.

## Example 3 Constant Rate of Change

## (11) Teaching the Mathematical Practices

8 Look for a Pattern Help students to see the pattern in this example.

## Questions for Mathematical Discourse

Al. What do you need to know in order to determine whether the function is linear? whether there is a constant rate of change
ㅇ․ How does finding the differences between successive values in the table help you determine whether a function is linear? Sample answer: If the differences are the same, then I know that the rate of change is constant, and therefore the function is linear.
314. What is another way you can use the table to determine if the rate of change is constant? Sample answer: Because consecutive $x$-values decrease by 3 , I can check to see if consecutive $y$-values increase or decrease by the same number. Because consecutive $y$-values increase by $2, I$ know there is a constant rate of change.

## Example 4 Rate of Change

(4) Teaching the Mathematical Practices

1 Explain Correspondences Use the Study Tip to encourage students to explain the relationship between the graph and rate of change of a linear function.

Questions for Mathematical Discourse
4L How will you determine whether the function is linear? Sample answer: I will find the changes in the $x$-values and the changes in the $y$-values, and see if those changes are constant.
이 Is it necessary to calculate the rate of change between every pair of points to determine linearity? Explain. No; sample answer: Once you have found two pairs that have different rates of change, you have shown that the function is not linear.
Bil If you graphed the points from the table, would they lie on a straight line? How do you know? No; sample answer: Because the rates of change are not constant, the function is not linear, and therefore the graph of the points will not lie on a line.

## Common Error

Some students may observe the pattern in the differences between the $y$-values $(3,2,3,2)$ and think that this regularity indicates that the function is linear. Correct this reasoning, and reinforce that when the differences in the $x$-values are the same, the differences in the $y$-values must also be the same for the function to be linear.

Example 3 Constant Rate of Change Determine whether the function is lineas. It it is, state the rate of change.
Find the changes in bee x volues and the changer inthe $y$ values:
Notice that Pe rite of change for each patir of pohlts shown is - ?


The rates of change we conspant, so the
function is lingar. The rate of change is -$\}$,
Example 4 Rato of Chonge
Determine whether the function is lineat, it it is state the rate of change.
Find the changes in the xvatues and the chinges in the $y$-values
The rates of change are nos constant. Betiveen some pars of poines the tate of change is?
 and between the other pain in is? ${ }^{2}$. Therefore, this is not $a$ Inemer function.

## Chock

Copy and complefe the table so thit the function is linese.

$\alpha$	$y$
12	-225
11.5	1
11	4.25
105	75
30	3075
95	14

[^12]Study Tip:
Unear Versus Not Unear Versus Not
Lnes Romember tin Lnew rauthember that that the graph of the functionis a strigtit the loo toe roch of ? functoon to be a line.: has lo be incinaing or decresing at? constantrate.

## Interactive Presentation



Example 3



## Interactive Presentation



Example 5


## Learn Slope of a Line

Objective
Students calculate and interpret slope by using the Slope Formula.
Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of slopes of lines in this Learn.

## Example 5 Positive Slope

Questions for Mathematical Discourse
AIL Finding the slope is the same as finding what other measure? the rate of change
OUL Is the slope of this line positive, negative, or zero? How can you tell by looking at the graph? Positive; sample answer: The line slopes upward from left to right.
|Bil Does it matter which coordinates you use as $\alpha_{2}$ and $y_{2}$ ? Explain. No; sample answer: 1bu can use either of the $x$-coordinates as $x_{2}$, but the value for $y$ must then be the $y$-coordinate that corresponds with $x_{2}$.

## DIFFERENTIATE

## Enrichment Activity AAI Bl브탠

IF students automatically assume that the left-most point has tobe $\left(x_{1 \eta} y\right)$ and the point farther right is $\left(x_{2}, y\right)$,
THEN explain that the designation of $\left(x_{11} y\right)$ and $\left(x_{2^{\prime} 2} y\right)$ is arbitrary. Write pairs of points on index cards. Give one card to each student. Have them find the slope both ways. Then ask which way made the subtraction easier.

## DIFFERENTIATE

## Language Development Activity ELL

Intermediate Instruct a small group of students to write a paragraph describing what is happening in the illustration of slope in the Key Concept box. Their paragraphs should describe all parts of the diagram in their own words. Ask for volunteers to read their paragraphs. Have students ask for clarification as needed. Then, have students revise their paragraphs based on the feedback and questions from the group.

## Example 6 Negative Slope

Teaching the Mathematical Practices
8 Use Slope Help students to pay attention to the calculation of the slope of the line.

Questions for Mathematical Discourse
ALI If $x_{1}=-1$, what is the value of $y ? 3$
OLII Is the slope of this line positive, negative, or zero? How can you tell by looking at the graph? Negative; sample answer: The line slopes downward from left to right.
B1.l What would the value of the slope be if you used $(4,1)$ for $\left(x_{14} y\right)$ and $(-1,3)$ for $\left(x_{22} y\right)$ ? It would still be $-\frac{2}{5}$.

## Example 7 Slopes of Horizontal Lines

(11) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationship between the graph, points, and slope in this example.

Questions for Mathematical Discourse
All How would you describe what is meant by the slope of a line? Sample answer: It is the steepness of the line.
OLI Is the slope positive, negative, or zero? zero
[BLI Why is the slope zero? Sample answer: The slope is zero because there is no change in $y$-values, so the numerator will be zero and zero divided by any number is zero.

## Example 8 Slopes of Vertical Lines

(1) Teaching the Mathematical Practices

8 Use Slope Help students to pay attention to the calculation of slope for a vertical line.

Questions for Mathematical Discourse
AL. Which values are the same? $x$-values: -3
OL. Why is the slope undefined instead of zero? It is not possible to divide by 0 . So, the slope of a vertical line is undefined.
B3il. Does the graph of a line with an undefined slope represent a function? Why or why not? No; sample answer: In a function, every $x$-value is paired with exactly one $y$-value. In a relation that is represented by a vertical line, there is one $x$-value paired with infinitely many $y$-values.


## Interactive Presentation



Example 7


## Interactive Presentation



Example 10


## Example 9 Find Coordinates Given the Slope

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" In this example, encourage students to check their answer.

## Questions for Mathematical Discourse

AL. For what variable in the equation do you substitute $\frac{3}{4}$ ? $m$
OL How could a graph help determine the missing coordinate? Sample answer: I can plot the given point and then use the slope to move to the next point. I can continue using the slope until I get to the point with the $x$-coordinate of 4 .
[BLI Name another point on the same line. Sample answers: $(0,8),(8,14)$

## Example 10 Use Slope

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

## Questions for Mathematical Discourse

AL. What are the two ordered pairs you can use to find the slope? $(75,-65)$ and $(125,-2700)$
OLI Interpret the value of the slope in the context of the problem. Sample answer: The slope means that the water gets 52.7 meters deeper for every meter you move farther from shore.Do you think the continental slope is constant? Sample answer: No, there are probably places where the drop is less steep and places where it is more steep.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
2 exercises that mirror the examples		$1-49$
2	exercises that use a variety of skills from this   lesson	$50-58$
2	exercises that extend concepts learned in this   lesson to new contexts	$59-62$
3	exercises that emphasize higher-order and   critical-thinking skills	$63-68$

## ASSESS AND DIFFERENTIATE

(II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-61 odd, 63-68
- Extension: Treasure Hunt with Slopes
- DALEKS'Equations of Lines

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-67 odd
- Remediation, Review Resources: Order of Integer Operations
- Personal Tutors
- Extra Examples 1-10
- ALEKS'Multiplication and Division with Integers

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-49 odd
- Remediation, Review Resources: Order of Integer Operations
- Quick Review Math Handbook: Rate of Change and Slope
- ArriveMATH Take Another Look
- D. ALEKS'Multiplication and Division with Integers

Practice
notove:

2. Pofucanow cersity the nicue shows the popcation
 annw iste of change in ine popuision devey, troen $2000 \%$ 2000. Eerveres sbot 19 ample per squart mit
4. HNo in 2012 . thent were asproxmathly 275 , modents in 04 Debumbe Mgiti Schoot bsed in 2018 , ein trimber iscresied to
 the sind inewosent ty Sy


Enem?



 the vinution- 5 : His mam ly sonperthir


- Ains the able of change is tenyptratas Dom tpu. and 2

 5Fserhour hese tase wo 2 pic.
a. com pookits the gash stom the amust cosk eroote tron U.S. mines in matios of ther tions.

2. Nostre res ot chmpe in coal mpons between. 2000 osd 2002 ons celcribes masing h me
 Ofowen 250d mot 2002.
i. Find ine reve of chunge in cost expors between - Find ine rote de chunge in coss expois betwen coteses of the soution of than newas the coid mpots did sot dengo betheen 2005 and 2006

tenten2-has or Oinptmenter 225
```
tavenimess
O
E.gmeesmumh:
Find the slope of tre lime that passes trough vach polir of points.
```




```
#7, (-2,5,0.6)}\frac{1}{i
```







```
35. (5,-2, (a,-2)-1 36.(2, 62, a,-5)) 37, (-4.54, (-12,-5))
Baves
*ind the value of r so the line that penes Hrough esch pali of polits, Has the given wope
```




```
42.v.3.5.%%=-2.2 42.5.%.%.-n,m=-4.0
```




Exmeser 10
 Ol an vpconing alyep down grase what inthe grabe. oc slopet of the hil sescobed on the Dget ?

 sel shodd anem so feit tion the lounsabon whet is the siope of the iol giole? $\frac{1}{7}$

 tume $\frac{1}{1}$ : Sample animer inngti 60 ischen feipht $\$$ incter

 dive. What is tho sope Detwemn the wouts flive mod hiant - $\frac{1}{1}$


Minet Enercase
stuictuant Find the siepe of the line that pastes Bresugh esch par of pointi. so. 2

52.3

53. $5.5 \cdot-74 .-3 \frac{1}{3}$

Se. 10.5815. 970
55: $1-2.6 .1-5.50$
se. (5, tht $\{-4,0$ ?

sa. $0.45 \cdot(2,-6)-\frac{1}{2}$
 in-6, a sope hior si uidetined.?
 anda. in 3 rope of : 2
 points on the preph Devorechow you woud sesemine ste wipe of the priph groph te deternine the slope. This cen be dons by coilting inumes lor the robe aed

62. Atcustions The gaph yoows median onces for shut cottopes on a lebs Shoe 2005 A reti estite pgets sempor since 2005 . the nto ef olvege for nouse pices of $\$ 10000$.
 anivec Nor the cespo appeasis to show an incevese in pice of


-isgher-Ovder Thimking saine
63. cakars Use mhen you inow abour ate of change 20 describe ne fulcio
 prome perwel.
64. Wert Enplain hoer ine the ot charce and ulope we rebted and hoin tof fiod the slope of a the Slee nargin

 putios frough $(-2$. in and th of Oesensise in intict sles Ne mach un erros Gesteryour restonng Siept, the

66. ARsivive Finat the value cid to the the hos parpoties

67. Aviairal why a the stope andefined lor verticul beep
 Ovetion ly 0 as andetivec.

68. wift Tmak manta to tind ino valve of a to the tive bue


 and i tor ane Ows malloty und then whe the mowation to fond that o = t1


## Answer

64. Sample answer: Slope can be used to describe a rate of change. Rate of change is a ratio that describes how much one quantity changes with respect to a change in another quantity. The slope of a line is also a ratio and it is the ratio of the change in the $y$-coordinates to the change in the $x$-coordinates.

## LESSON GOAL

Students graph equations in slope-intercept form.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

Writing Linear Equations in Slope-Intercept Form

- Write Linear Equations in Slope-Intercept Form
- Rewrite Linear Equations in Slope-Intercept Form
- Write Linear Equations

Explore: Graphing Linear Functions by Using the Slope-Intercept Form

## Develop:

Graphing Linear Functions in Slope-Intercept Form

- Graph Linear Functions in Slope-Intercept Form
- Graph Linear Functions
- Graph Constant Functions
- Use Graphs of Linear Functions

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket
Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al\| TME		IEILII
Remediation: Slope of a Line	- -		-
Extension: Pencils of Lines	-	-	$\bullet$

## Language Development Handbook

Assign page 22 of the Language Development Handbook to help your students build mathematical language related to equations in slope-intercept form.


## Suggested Pacing



## Focus

Domain: Algebra, Functions
Standards for Mathematical Content:
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.
F.LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
5 Use appropriate tools strategically.

## Coherence

Vertical Alignment

Previous
Students found and interpreted the rate of change and slopes of lines.
8.F.4, F.IF.6, F.LE. 5

## Now

Students graph equations in slope-intercept form.
A.CED.2, F.IF.7a, F.LE. 5

## Next

Students will Identify the effects of transformations of the graphs of linear functions.
F.IF.7a, F.BF. 3

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students extend their understanding of slope. They build fluency by rewriting equations in slope-intercept form to find the slope and $y$-intercept. They apply their understanding by solving real-world problems involving slope and $y$-intercept.

## Interactive Presentation



Warm Up


Launch the Lesson


[^13]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- identifying slopes

Answers:

1. undefined
2. -1
3. $-\frac{2}{3}$
4. $\frac{1}{2}$
5. -2

## Launch the Lesson

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the verbal description and graphs representing the minimum salary for a Major League Baseball player.

(
Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Mathematical Background

The slope-intercept form of a linear equation is $y=m x+b$, where $m$ is the slope, and $b$ is the $y$-intercept. Writing a linear equation in this form is helpful when you want to graph the function. There are two methods that can be used. The first is to select two values of $x$, substitute those values into the equation to calculate the corresponding values of $y$, plot the resulting ordered pairs, and draw the line that passes through the points. The second method is to plot the $y$-intercept, use it as a starting point, and then use the slope to determine another point on the line. The line can then be drawn through the two points.

## Explore Graphing Linear Functions by Using the Slope-Intercept Form

## Objective

Students use a sketch to explore how changing the slope and $y$-intercept changes the graph of the line.

## 11 Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the problem in the Explore, students will need to use a sketch. Work with students to explore and deepen their understanding of slope-intercept form of a linear equation.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use the sketch to explore how changing the value of $m$ and $b$ in the equation of a line affects the graph of the function. They will use sliders and animations to change the values of $m$ and/or $b$ in a linear equation, and observe the change in orientation of the related line. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore
WEB SKETCHPAD
 and $y$-intercept.

Students answer questions about changing the parameters in the slope-intercept form of a line.

## Interactive Presentation

INQUIRY How do the quantities $m$ and $b$ affect the graph of a linear function slope-intercept form?

## Explore

## TYPE

a
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

## Explore Graphing Linear Functions by

 Using the Slope-Intercept Form (continued)
## Questions

Have students complete the Explore activity.

## Ask:

- Describe the graph when $0<m<1$. Sample answer: When the slope is a fraction between 0 and 1 , the run is greater than the rise. This means that the slant of the line is more gradual.
- What are the slope and $y$-intercept of $y=\frac{2}{3} x-4$ ? The slope is $\frac{2}{3}$ and the $y$-intercept is -4 .


## (1). Inquiry

How do the quantities $m$ and $b$ affect the graph of a linear function in slope-intercept form? Sample answer: Changing the slope affects the steepness of the graph. Changing the $y$-intercept determines the distance and direction that the graph is shifted from the origin.
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

## 3 APPLICATION

## Learn Writing Linear Equations in Slope-Intercept Form

## Objective

Students rewrite equations in slope-intercept form by applying the properties of equality.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Example 1 Write Linear Equations in Slope-Intercept Form

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the verbal description and equation in this example.

## Questions for Mathematical Discourse

What is the slope of the line? $\frac{4}{7}$
OL
Which variable represents the slope in $y=m x+b ? m$
B1. How would this equation have changed if the slope had been $-\frac{4}{7}$ ? It would have been $y=-\frac{4}{7} x+5$.

## 3 <br> Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


Learn Writing Linear Equations in Slope-Intercept form
An equation of the form $y=m x+$ b. where $m$ is the siope and s is the $y$ intercept, is witien in slope-issetcept form. When an irquation iz not in slope intercept tom, a might be eavive to reverite a before graphing An equation can be rewermen in sloperimercept form by wing the piopentes of equaity

```
Kivi Concipt - Swpelmemept Form
```

Werds The sope imarcept iom of a lisear squblioe is $y=$ mox $+B$
ohere ar is the thopg and $b$ is the rinteciet
Exomple $y=m \times+1$
$y=1 x+3$
Example 1 Write Linear Equations in
Slope-intercept Foim
Write an equation in stope-intercept fonm for the line with a slope
of $\frac{y}{7}$ and a $y$-intercept of 5 .
White the equation in slope-vitencept form.
$y=m x+6 \quad$ Sicpe-Alivinot tim
$y=\left(\frac{1}{y}\right) x+5 \quad \cos \frac{1}{3} h=5$
$y=\frac{4}{3} x+5$ Sy
Check
White an epuetion for the line with a slope of -5 and a
rintercept or 12 $y=-5 x+12$


## Todar's Goals

 - Anertr insur tocunobi it ispe interception - Ouse mad viserper Timer Avatios:Today's Vocabulary permeneter
tonisame function

QThena About fu
Explinin why the
Explinin why the
yineciept el at
yenteveen des
equiton can in
wriken as io, al wher on the r intercect.
Sample wewer the Hintersept is the $y$-sorsinate of a peint where a enph crossem the $y$-aio. The goint wherewoymh crotses the $y$ tobin will whays hove an recoerdinste of 0

## Interactive Presentation

Write Lanear Exuation in Sliphe-hotariept Soim
Write an equation in slope-intercept form for the line with a slope of $\frac{1}{7}$ and a yintercept of 5.

W to the ocuason is ilope intercopt form.

```
y=mx+b
 sope varrecultorm:
y=(4)x+5
m}=\frac{4,b=3}{5
y = \frac { 4 } { 4 } x + 5
senows
```

Example 1 TYPE

Students explain how the equation would change if the $y$-intercept was negative.



## Interactive Presentation



Example 3

## TYPE



Students explain the meaning of a certain $x$-value in context of the situation.

## CHECK

Students complete the Check online to determine whether they are ready to move on.

## Example 2 Rewife Linear Equationt in

 Slope-intercept Form
## Write $-22 x+3 y=4$ in slope-interceep form.

$-22 x+3 y x 4 \quad$ Sopins toumion
$-22 x+8 y+22 x=4+22 x \quad$ Not $22 x+10$ resp 200 $8 y=22 x+4 \quad$ serow
 $y=275 x+0.5$ thath.

Check
What is the slope intercept form of $-36 x-4 y=-562 y=-4 t+14$
© Example 3 Whe Lineor Equations
wess the number of fob openings in the United Stases during a recent year increased by an sverage of 0.06 milion per month since May. in May, there were about 4.51 milition jab openings in the United states. Write an equation in slope imtercept torm to represent the cumber of iob openings in the United stames in the menths since May. Use the given informuton to witce an equation in sibpe -reercept torm

- You ate given must tiere were 4.51 multion job openings In Mey
- Let $x=$ the mumber of manths since May ana $y=$ the number of jpb openieger in miltons.
- Beccuse the number of inb openings is 4.61 mabon when $x=0, b=4.6 \mathrm{~L}$ and becwise the eumber of job openings has increaseo by 0.06 milion each month, $m=0.06$
- So, the equation $y=0.06 x+4.61$ iepresents the number of fob openings in the Unted States since May.


## Check

sociul meoua in the fost quater of 2012, there were 183 milion utery ©f a popular sociol medis sto in Norts Americh The numbere of usen increased by an awerage of 9 mition per your tince 2012. Whee anequation that regresents the number of uners in milions of the sociol teecin ste in Notth Americs ofter 2012
$\mathrm{r}=9 \mathrm{~g}+\mathrm{8} 9$


## Example 2 Rewrite Linear Equations in Slope-Intercept Form

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. The Think About lt! feature asks students to justify their conclusions.

## Questions for Mathematical Discourse

ALI Is this equation in slope-intercept form? Why? No; sample answer: Slope-intercept form is $y=m x+b$, and in this equation, the $y$-variable is not isolated.
OL How do you know if a linear equation is in slope-intercept form? Sample answer: The $y$-variable is isolated and it is in the form $y=m x+b$
[BIL How would this problem be different if the original equation had been $-22 x-8 y=4$ ? The last step would have involved dividing by -8 instead of 8 , resulting in $y=-2.75 x-0.5$.

## Example 3 Write Linear Equations

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse

ALI Which number is the $y$-intercept? the slope? 4.61, 0.06
OL. What do the slope and $y$-intercept represent in the context of this situation? the increase in the number of millions of job openings per month since May; 4.61 million job openings in May
BLI. What would it mean if the rate of change was -0.06 in the context of the situation? Sample answer: It would mean a decrease of 0.06 million job openings per month.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

 3 APPLICATION
## Learn Graphing Linear Functions in Slope-Intercept Form

## Objective

Students graph and interpret linear functions by writing them in slopeintercept form.

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between linear functions in slope-intercept form and their graphs.

## Common Misconception

Some students may think that when the slope is negative, they should count down for the rise and left for the run to find additional points. Show students that this would lead to a line that is rising from left to right, not falling, as would be the orientation for a line with a negative slope. Tell them to count up and to the right for positive slopes, and down and to the right for negative slopes.

## Example 4 Graph Linear Functions in Slope-Intercept Form

117
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AII. In slope-intercept form, which variable represents the slope? $m$ the $y$-intercept? $b$
Oll When graphing a line in slope-intercept form, why is $b$ graphed first? Sample answer: In order to use the slope, you have to have a starting point.
B1. Why do you find the next point by counting down 3 and to the right 2? Sample answer: The slope is negative, so instead of counting up and to the right, you count down and to the right.


## Interactive Presentation

Graph-Linear Functions In Slope-Intercept Form Graph a finear function with a slope of $-\frac{1}{2}$ and a $r$-intercept of 4 .
Wrav the eqazion is supe-ibtercept form

```
 y=sex+h Nomeinterect tom
 =(-|) x+4 N=-立,b=c
```



UWCa a sool.
$\rightarrow$ graph sv Mand
3 arph tr wing atoot

Example 4

## WEB SKETCHPAD

Students use a sketch to graph a linear function in slope-intercept form.



## Interactive Presentation



Example 5
 an equation in slope-intercept form before graphing.

## Example 5 Graph Linear Functions

Teaching the Mathematical Practices
1 Seek Information Mathematically proficient students must be able to transform algebraic expressions to reach solutions. Point out that gaining fluency in this skill is as important as learning their math facts was in the elementary grades.

Questions for Mathematical Discourse
4ㄴ. What variable must you solve for in order to write the equation in slope-intercept form? y
OUL What are the slope and the $y$-intercept of the line? The slope is 4 . The $y$-intercept is -6 .
|B1. How can the intercepts of the line be used to check your answer? Sample answer: Using the given form of the line, I know the $x$-intercept will be $(1.5,0)$ and the $y$-intercept will be $(0,-6)$. My graph crosses at those points, so the graph is correct.

## Common Error

For an equation such as $y=4 x-6$, some students may state that $b=6$. Review the general form of the slope-intercept form of a linear equation
$(y=m x+b)$, and highlight the plus sign. Help students to see that $y=4 x-6$ is equivalent to $y=4 x+(-6)$, so $b=-6$. Therefore, the $y$-intercept is -6 .

## DIFFERENTIATE

## Reteaching Activity Aㄴㅌㅌㄴㄴ

IF students have difficulty distinguishing between the variables and the parameters in the equation,
THEN write several different equations on the board, each in slope-intercept form. Point out that in each case, the equation contains numbers where $m$ and $b$, which are fixed values, would be the parameters while the variables $x$ and $y$, which vary in value, represent the coordinates of the solutions of the equation. Examining several equations side by side helps to strengthen understanding of the concept.

## DIFFERENTIATE

## Enrichment Activity BL

Write $3 x+2 y=8$ and $-3 x+2 y=8$ on the board. Ask students to tell how the equations are alike and how they are different. Then, ask students to tell how the graphs of the two functions are alike and how they are different without graphing them. Finally, have them graph the functions and check their answers.

## Example 6 Graph Constant Functions

## M1P Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the problem in this example, students will need to use a sketch. Work with students to explore and deepen their understanding of slope-intercept form.

Questions for Mathematical Discourse
ALI What is the $y$-intercept? $x$-intercept? 2 ; There is no $x$-intercept.
Oll Why is the graph a horizontal line? Sample answer: Because the slope is 0 , the graph will not rise, but can run left to right any amount.
3) What is the domain of this function? the range? $\mathrm{D}=$ all real numbers; $\mathrm{R}=2$

## Common Error

Some students may think that the slope is 2 , since, when an equation is written in slope-intercept form, the slope is the number after the equal sign. Point out that if the slope were 2 , the equation would be $y=2 x$. Since there is no $x$ term, the slope is 0 , and the equation is $y=0 x+2$.Essential Question Follow-Up
Students have explored the relationship between the parameters of a linear function and its graph.
Ask:
What can you learn about the graph of a linear function by analyzing its equation? Sample answer: If the equation is in slope-intercept form, I can tell where the graph intersects the $y$-axis and what the slope of the line is.


## Interactive Presentation



Example 6




## Interactive Presentation


Q sooweses The mumber ef ondice atopsers in the Uniled States can be modeled bry the seeation
 after 2010. Onph the equation and interpert the pursmetees. Tmen estimate the nomber of pepple shopping online in the United Stuter in 2020.

Apply Example 7

Apply Example 7 Use Graphs of Linear Functions

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them As they work to solve the problem, encourage them to evaluate thei model and/or progress, and change direction, if necessary.

## Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

## Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

## Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- H ow can you determine the domain?
- H ow can you use the graph to estimate how many people will be shopping online in 2020?


## Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-30$	
2	exercises that use a variety of skills from   this lesson	$31-39$
2	exercises that extend concepts learned in this   lesson to new contexts	$40-43$
3	exercises that emphasize higher-order and   critical-thinking skills	$44-47$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-43 odd, 44-47
- Extension: Pencils of Lines
- ALEKS'Equations of Lines

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-47 odd
- Remediation, Review Resources: Slope of a Line
- BrainPOP Video: Slope and Intercepts
- Extra Examples 1-7
- $\square$ ALEKS Slope

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Slope of a Line
- Quick Review Math Handbook: Writing Equations in Slope-Intercept Form
- ArriveMATH Take Another Look
- DALEKS'Slope




 Trom Moveltaicic $C=2.90 \mathrm{~m}+6 \mathrm{85}$
b. Graph tre ogpation Fee Mod. 4 Antwer Appendex
 Wonsularia. See Mod. 4 Anwwer Appendix.
 Movellina cont the some es reiting 9 moites it Sipetta, ohat does Soperfla chwge per nowe? Erolain yout maspoing Sep Mod 4 Answer Appondx




 by NOF asch minte urbil 2 rocies ne set temperatiae. What a hncton to

b. Getph ine equibon See Mod. 4 Answor Apptedix
c. The beptegg prosess tukes 22 minates. Une your gragn wi fro antee chamber in thas poile 300 F
d. Aheo pe howher recches the int perative dofernived in part c , the

 temocabe. T inside tre chamber a neniass iner the cocing beope. $\mathrm{T}=-\mathrm{B}+300$
 cor wien Sums becime B teenager. Sapto') inde intoly saved \$2000. EiCo cornter swom betcome bletioner Sable
 ther ryewn $y=200 x+2000$
b. Groph we equabon. See Mod 4 Answer Appendle.
c. Sanla tasts stopeing tox a car iblop te term is the car he wasts se buf cost 36000 Doss ter hove enowoh money in the accourd to buy 140 cm ? en sodilonal 5800 to buy the cen he wavta.
 See wiks ot a ate of 425 ko per hocr. Jatmin waks at
tiane pkefor one ense ewn.
a. Vibke an equation in scopenteccept divince y in ifometers lar rhown
b. Guphilie squition
C. Whe do tex, and ponteccepes inpesece


 d. Ator Jaenin has waked 19 blometers $\qquad$



-irgher Orter twikiog saity
For Exercises 44 and 45 , reter to the equation $y=-\frac{4}{5} x+\frac{3}{5}$ where $-2 \leq x \leq 5$.

44. whilze Copy and corplete the tuble so belp you graph me equation $y=-\frac{4}{5} x+\frac{3}{5}$





45. reastiviat Comider three poikts that in on the rame me, (2, 5, $1-6,1$ and

46. Creatr Lisear equations re uneti in poedictang hare everts Onate a inear eqution har modess a wes wond shichon Marn a preaction ton yer




## Answers

19. 


21.

23.

25.

27.

20.

22.

24.

26.

28.


## LESSON GOAL

Students identify the effects of transformations of the graphs of linear functions.

## 1 LAUNCH

## Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Transforming Linear Functions

## Develop:

Translations of Linear Functions

- Vertical Translations of Linear Functions
- Horizontal Translations of Linear Functions
- Multiple Translations of Linear Functions
- Translations of Linear Functions


## Dilations of Linear Functions

- Vertical Dilations of Linear Functions
- Horizontal Dilations of Linear Functions


## Reflections of Linear Functions

- Reflections of Linear Functions Across the $x$-Axis
- Reflections of Linear Functions Across the $y$-Axis

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	All	WE	IEIT	
Remediation: Reflections	- -			-
Extension: Transformations of Other Families of Functions		-		$\bullet$

## Language Development Handbook

Assign page 23 of the Language Development Handbook to help your students build mathematical language related to transformations of the graphs of linear functions.
EELIU You can use the tips and suggestions on page T23 of the handbook to support students who are building English proficiency.


## Suggested Pacing



## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.
F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

## Coherence

Vertical Alignment

## Previous

Students described the effect of transformations on two-dimensional figures using coordinates.
8.G. 3

## Now

Students Identify the effects of transformations of the graphs of linear functions.
F.IF.7a, F.BF. 3

Next
Students will identify the effect of transformations of the graphs of nonlinear functions.
F.BF. 3 (Course 1, Course 2, Course 3)

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
产 Conceptual Bridge In this lesson, students develop		
understanding of transformations of functions by examining		
the family of linear functions. They build fluency by describing		
transformations and identifying transformed functions. They apply		
their understanding by solving real-world problems.		

## Interactive Presentation



Warm Up


Launch the Lesson

[^14]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- translating and reflecting geometric figures

Answers:

1. rotation
2. dilation
3. translation
4. translation
5. reflection

## Launch the Lesson

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of a linear function to identify the effect on the graph when replacing $f(x)$ with $f(x)+k, k \cdot f(x), f(k x)$, and $f(x+k)$ for specific values of $k$.

3 Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Mathematical Background

The parent function of the family of linear functions is $f(x)=x$. Transformations of the parent graph occur when a constant is added to or subtracted from the function or the argument, or when the function or the argument is multiplied by a number. These transformations alter the graph, translating it in a particular direction, dilating it, or reflecting it. Recognizing the effect produced by each type of transformation allows for the new graph to be easily obtained from the graph of the parent function.

## Explore T ransforming Linear Functions

## Objective

Students use a sketch to explore how changing the parameters changes the graphs of linear functions.

## Teaching the Mathematical Practices

3 Construct Arguments In this Explore, students will use stated assumptions, definitions, and previously established results to construct arguments.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students complete guiding exercises throughout the Explore activity. Students use a sketch to explore how the graph of a function is affected when a number is added to the function, when a number is subtracted from the argument of the function, or when the function is multiplied by a number. They enter various values for the number and view the resulting graph. Then, students answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore
WEB SKETCHPAD
Students use a sketch to explore the effects of addition and multiplication on a function.


Students answer questions about transformations of linear functions.

## Interactive Presentation



## Explore

TYPE


Students respond to the Inquiry Question and can view a sample answer.

## Explore T ransforming Linear Functions (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Does adding or subtracting a value to a function change the slope or $y$-intercept? Sample answer: The line moves up/down or left/right when you add or subtract values to the function. This means that the $y$-intercept is changing, but not the slope.
- Why does multiplying a function by a value make it more or less steep? Sample answer: If we multiply every value in a function, then we are changing the value of $y$ for every $x$-value. If we multiply by a value greater than one, then the difference between the $y$-values will be greater, resulting in a greater slope and a steeper line.


## (-) Inquiry

How does performing an operation on a linear function change its graph? Sample answer: Adding a value to the function moves the graph up or down. Subtracting a value from $x$ moves the graph left or right. Multiplying the function by a value makes the graph more steep or less steep.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Translations of Linear Functions

## Objective

Students identify the effects on the graphs of linear functions by replacing $f(x)$ with $f(x)+k$ and $f(x-h)$ for positive and negative values.

## Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of translations in this Learn.

## What Students Are Learning

The parent function of the family of linear functions is $f(x)=x$. Its graph is the line that passes through the origin and has a slope of 1. The graph of every other linear function is a transformation of this function. The first type of transformation students will learn about is translations. Under a translation, the graph of a line is slid to a new location.

## Common Misconception

Students may believe that a translation will change the orientation of the figure. Help them to see that this is not the case. When a figure is slid in its entirety up, down, left, or right, its orientation remains the same. In the case of a line, its slope is not affected, so the new image has the same slope as the original graph.

## Vertical Translations

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of vertical translations in this Learn.

## About the Key Concept

When $k$ is added to the function $f(x)=x$, the graph of the function is translated vertically. This is because adding $k$ to the function increases the $y$-value that is associated with each $x$-value by $k$ units. When $k$ is negative, each $y$-value decreases, which translates the graph down $|k|$ units.

## Common Misconception

Some students may think that adding $k$ to a function increases (or decreases) the $x$-value in each ordered pair. Remind students that the notation $f(x)$ represents the $y$-value that is paired with $x$. Thus, $f(x)+k$ represents an increase (or decrease) in $y$-values, resulting in a vertical translation.


## Interactive Presentation



Learn



## Interactive Presentation



## Example 1



Students move through the steps to graph a vertical translation.

## TYPE <br> 

Students describe how the $y$-intercept of the translated function compares to the parent function.

## 1 CONCEPTUAL UNDERSTANDING

## Example 1 Vertical Translations of Linear Functions

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AIL Looking at only the equation, how do you know the type of transformation? 2 is being subtracted from the parent function so this is a vertical translation.
OL How is the $y$-value of each ordered pair in the parent function affected? Each $y$-value decreases by 2.
트내․ How would you write this function as a vertical translation of the parent graph up 2 units? $g(x)=f(x)+2$ or $g(x)=x+2$

## Horizontal Translations

Teaching the Mathematical Practices
3 Analyze Cases Guide students to examine the cases of different translations. Encourage studentsto familiarize themselves with all of the cases.

## Common Misconception

Some students may think that the graph of $f(x+h)$, where $h$ is a positive number, is a translation of the parent graph $h$ units to the right. Point out that $f(x+h)=f(x-(-h))$, so the number being subtracted is a negative number. Thus, the shift is to the left, not to the right.

## Example 2 Horizontal Translations of Linear Functions

1 Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graph of the translated function and the graph of the parent function used in this example.

## Questions for Mathematical Discourse

AL Looking at only the equation, how do you know the type of transformation? The +5 is grouped with the $x$ in the parentheses so this is a horizontal translation.
이. What are the coordinates when $g(x)=0$ ? $(-5,0)$
31. Write the function that shows a horizontal translation of the parent function 3 units right. $f(x-3) 7$ units left $f(x+7)$

## Example 3 Multiple Translations of Linear Functions

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of the transformed function to identify the translations in the function.

## Questions for Mathematical Discourse

AL Looking at only the equation, how many translations are there? 2
Ol. Looking at only the equation, how do you know that the horizontal translation is to the right? because the number being subtracted from $x$ is positive 6
Bili Write a function that represents a translation 6 units left and 3 units down.
$f(x)=(x+6)-3$

Example 2 Horizontal Translations of Linear Functions Describe the translation in $g(x)=(x+5)$ as it relates to the groph of the parent function.
Graph the pareet graph soe linew
functions.
Becane fol $=x-960=f x-m$
where $n=-5$
$g(x)=|x+5| \rightarrow g(t)=|x-|-5||$
The constant $n$ is gouped wetce. sok affects the input of xwotues the vatos ef $n$ is less tran 0 , so the graph of (0) $=x$ is trampleted $1-5$ ) withs let or 5 unts lert:
$s(x)=(x+5)$ is the translation of the
graph of the preven finction 5 unis set.
Check


Decobe tre vanctation in $g(x)=(x+12)$ as it retates to the graph of the parent linction
The grash of pot $=(x+12)$ is a tiansation of the graph of the pavent
function 12 undes $\frac{?}{\text { left }}$
Example 3 Mutipie Translations of Linemr Functions
Describe the translation in $g(x)=(\mathrm{x}-6)+3$ as it celates to the graph of the paremt function.
Graph the garent grioh for Ineer functions.
Becavelod=x;
$96 j=k x-m+k$
and $k=2$
$g(x)=5 x-6 i+3-g(t)=(x)-6)+3$
The solue of $h$ is grouped with $x$ and is groater than 0 , so the graph of 40 =xis transleevd 6 units righe
The valoe of $k$ is not grouped witho $x$ and is greater than 0.10 me graph of $f x)$ - sis trantioned 3 unts up
$0(x)=(x-6)+3$ is bre transtation of the

graph of the partent flandion 6 unts right and 3 unts up:


Think About it What co you notke Thiot the : interceots ot hor itomaly transltited luretion compared to se sintercest ot ine pareve fuckton?

Somple anwec: Tle -intercepts move right henits or len six untes from the wimercept of the parent fancion.

OThink About tet Elen dencribed ine graph ot gop $=(4-6)$ +3 es the grapt of the pererthiscton tyandibted down 3
untse is she corvect? Endian your remicoing

## Yect mople answer.

 $p(x)-(x-5)+3$ can be cimplifed to oft $-30 \tan$ as $8(d=5 x)-3$
## Interactive Presentation



Example 2



G Example 4 Transiations of Lineer Functionts
nccers A Web site selis tickets to cencerts and sporting events. The totar price of the Jiekets to a certain game cabo be modeles by Web ithe where $t$ represents the number foe of 54 per ordec The Otal price of an ordet con be modeled by git $=12 t+4$, Detcribe the tranalation of gis as it reliates to fy .


Complebe the seeps to describe the trandition of pho as it reishes to th
 The constant k in noded bo for iber the tots price of the lickets has been evoloted and is greder than 9 . so the guoch of will be shitied 4 unts up $90-12 t+4$ in se yanwaton of the grach of thit 4 unts wo
Groph the parent funcion and the vanslased hection.


Check
aetae Jeronse is burmo peint for a mural. The lotal cost of the paint An De modeted by the tanction foll -699 p . He Mis a coupon for Sis of his purchase at the ar suppy store. so the find cont of his purchare can be modered by ocpt $=6.9990-595$ Devcibe He transtation ot the grapt of tipl 5.95 unds som.


## Interactive Presentation



Example 4
 identify the value for the translation.

## WEB SKETCHPAD

Students use a sketch to graph the translated function.

CHECK


Students complete the Check online to determine whether they are ready to move on.

## 1 CONCEPTUAL UNDERSTANDING

## Example 4 Translations of Linear Functions

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about translations of linear functions to solving a real-world problem.

## Questions for Mathematical Discourse

AII What does the 12 in the function represent? the cost per ticket What does the $t$ in the function represent? the number of tickets
[OLI What does the parent function represent in the context of the situation? cost of tickets without the online service fee
|B1| What would the function be if, in addition to the service fee, there was also a $\$ 5$ charge for tax? $g(t)=12 t+4+5$ or $g(t)=12 t+9$

## Common Error

Some students may try to work the 12 into the translation. Remind these students that translations occur when numbers are added or subtracted, not multiplied.

## Essential Question Follow-Up

Students have observed how a function that models a real-world situation can be a transformation of another function.

## Ask:

Why is it important to understand how the structure of a function models a situation? Sample answer: The structure helps you understand how the different quantities in the situation affect the function.

## DIFFERENTIATE

## 

IF students are having difficulty determining the direction of a translation,
THEN have them create four examples of functions that represent each type of translation, and write each one on an index card. Have them sketch the transformation on a coordinate plane on the back of the card, and write the description. Then have them use the flash cards (in both directions) to practice what they have learned.

## Learn Dilations of Linear Functions

## Objective

Students identify the effects on the graphs of linear functions by replacing $f(x)$ with $a f(x)$ and by replacing $f(x)$ with $f(a x)$.

## (10) Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of vertical and horizontal dilations in this Learn.

## About the Key Concept

When the function $f(x)=x$ is multiplied by a number $a$, the graph of the function is dilated vertically. This is because multiplying the function by a number affects the $y$-value that is associated with each $x$-value. When $|a|>1$, the graph is stretched vertically, making it steeper. When $|a|<1$, the graph is compressed vertically, making it less steep.

## Common Misconception

Some students may think that when $a$ is positive, the dilation stretches the graph, and when it is negative, the dilation compresses the graph. Use a table of values for several functions to show students the error in this reasoning. Sample functions: $f(x)=x, g(x)=2 f(x), g(x)=-2 f(x)$, $g(x)=0.5 f(x), g(x)=-0.5 f(x)$

## About the Key Concept

When the argument of the function $f(x)=x$ is multiplied by a number $a$, the graph of the function is dilated horizontally. This is because multiplying the argument by a number affects the $x$-value that is associated with each $y$-value. When $|a|>1$, the graph is compressed horizontally, making it steeper. When $|a|<1$, the graph is stretched horizontally, making it less steep.


## Interactive Presentation



Learn



## Interactive Presentation

## 

Oescrise the dilation ing $(x)=2(x)$ ne if retates to the graph ot ene parent fiection.

Example 5


CHECK


Students complete the Check online to determine whether they are ready to move on.

## Example 5 Vertical Dilations of Linear Functions

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in calculating the coordinates for $g(x)$ in this example.

## Questions for Mathematical Discourse

AI Will the placement of the 2 cause a change to the $x$-value or to the $y$-value of each ordered pair of the parent function? $y$-value; Sample answer: Because the 2 is not grouped with the $x$-variable, it will change the $y$-value.

OLL Looking at only the equation, what kind of dilation is this? a vertical stretch by a factor of 2
[Bl. How would the transformation be different if the function had been $g(x)=\frac{f}{2}(x)$ ? There would be a vertical compression instead of a vertical stretch.

## Example 6 Horizontal Dilations of Linear Functions

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graphs and equations of the functions in this example.

Questions for Mathematical Discourse
ALI What value is grouped with the $x$ ? $\frac{1}{4}$ Will this cause a change to the $x$-value or to the $y$-value of each ordered pair of the parent function? the $x$-value

OLL Looking at only the equation, what kind of dilation is this? a horizontal stretch by a factor of 4
BL. How is a horizontal stretch by a factor of 4 related to a vertical compression by a factor of 4 ? They result in the same line.

## Learn Reflections of Linear Functions

## Objective

Students identify the effects on the graphs of linear functions by replacing $f(x)$ with $-a f(x)$ and $f(-a x)$.

Teaching the Mathematical Practices
1 Explain Correspondence Encourage students to explain the relationships between the coordinates, equations, and graphs of reflected functions and the parent function.

## Example 7 Reflections of Linear Functions Across the $x$-Axis

11) Teaching the Mathematical Practices

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument in the Talk About It! feature.

Questions for Mathematical Discourse
ALi. Looking at only the equation, is this function a reflection? yes What other type of transformation is it? a dilation
OL How do you know - $\frac{1}{2}$ s not grouped with $x$ ? Sample answer: It is not inside the parentheses with $x$.The point $(2,2)$ lies on the graph of the parent function. To what point does this correspond on the graph of $g(x)$ ? $(2,-1)$


## Interactive Presentation




## Interactive Presentation



Example 8

 determine whether they are ready to move on.

## Example 8 Reflections of Linear Functions <br> Across the $y$-Axis

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graph of the reflected function and the graph of the parent function used in this example.

## Questions for Mathematical Discourse

AL. How do you know the negative sign is grouped with the $x$ ? Sample answer: Because the negative sign is inside the parentheses with $x$.
OL. How do you know if the parent function will be reflected over the $y$-axis? Sample answer: If the negative is inside the parentheses with $x$, the reflection will be over the $y$-axis.
B1. How would the function have been written if the reflection was across the $x$-axis? $g(x)=-3 f(x)$

## Common Error

Students may have difficulty seeing how the graph of $g(x)$ is related to the graph of $f(x)$. For these students, you may want to show the transformation in two different steps, first dilating the graph by a factor of 3 , and then reflecting the resulting graph across the $y$-axis.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
2 exercises that mirror the examples		$1-21$
2	exercises that use a variety of skills from this   lesson	$22-29$
2	exercises that extend concepts learned in this   lesson to new contexts	$30-33$
3	exercises that emphasize higher-order and   critical-thinking skills	$34-36$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-33 odd, 34-36
- Extension: Transformations of Other Families of Functions
- DALEKS'Equations of Lines

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Reflections
- Personal Tutors
- Extra Examples 1-8
- Q ALEKS'Reflections

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Reflections
- Quick Review Math Handbook: Transformations of Linear Functions
- ArriveMATH Take Another Look
- ALEKS'Reflections


Samen)



Exasotesio whiv a huetion phe to tepocient he trintubted grapt

 iesgen s. Wite a functongobe 10 reppesent fle perioete of a savive with side





 Suric. where 320 a the winers hoiry rate, and $x$ mpresents the numbee of






 each $365=128:$



Orophev-Order Thimiva sidia

 waph wetcily -t unte, sutsy your anseec. hicule gnohs mi you reuporge:
35. cseare whe in equition tist is a vericaic conpleivios by a focts of a of the fancteot $r=i k$, The What con y
36. wechrone octswh anions Consider the for hinctiont. whick one does not

 terxaters


## Answer

34. No; sample answer: This is true only if the slope is 1 . Consider any constant function. Shifting the graph of a constant function to the right or left does not result in any vertical shift of the same graph. If the slope $m$ of the line described by $f(x)$ is something other than $-1,0$, or 1 , then a horizontal shift of $k$ units is the same as a vertical shift of $-m k$ units. For example, if $f(x)=3 x$, then $f(x+5)=3(x+5)$ or $3 x+15$. $f(x+5)$ is shifted 5 units left of $f(x)$ 15 units up from $f(x)$. Sample graphs shown.



## LESSON GOAL

Students write and graph equations of arithmetic sequences.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

## Arithmetic Sequences

- Identify Arithmetic Sequences
- Find the Next Term

Explore: Common Differences

## Develop:

Arithmetic Sequences as Linear Functions

- Find the $n$th Term
- Apply Arithmetic Sequences as Linear Functions

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL LE	- $=1$	
Remediation: Add Integers	- -		-
Extension: Arithmetic Series	-		-

## Language Development Handbook

Assign page 24 of the Language Development Handbook to help your students build mathematical language related to arithmetic sequences.
IELII You can use the tips and suggestions on page T24 of the handbook to support students who are building English proficiency.


## Suggested Pacing <br> 

## Focus

Domain: Functions
Standards for Mathematical Content:
F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context.
F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
F.LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
8 Look for and express regularity in repeated reasoning.

## Coherence

Vertical Alignment

## Previous

Students understood the initial value and constant rate of change of a linear function.
8.F.4, F.IF.6, F.LE. 5

## Now

Students write and graph equations of arithmetic sequences.
F.BF.1a, F.BF.2, F.LE. 2

## Now

Students will compare and constrast arithmetic sequences and linear functions with geometric sequences and exponential functions.
F.BF.2, F.LE.1a

## Rigor

The Three Pillars of Rigor

```
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION
```

Conceptual Bridge In this lesson, students expand on their understanding of and build fluency with sequences (first studied in Grade 4) by writing formulas for arithmetic sequences and relating them to linear functions. They apply their understanding by solving real-world problems related to arithmetic sequences.

## Interactive Presentation

## Warm Up

Find the next three terms in each pattern.
$1 .-5,-2,-3,0,-1,2,1,4, \ldots$
2, 0, 1, 3, 6, 10, 15, ..
3. $a+1, a+4, a+9, \ldots$
4. $3 d-1,4 d-2,5 d-3, \ldots$
5. EXERCISE After knee surgery, Josh's doctor starts him on an exercise program. She suggests jogging for 12 minutes per day for the first week and increasing that time by 6 minutes per day each week after that. Write the first three terms of this pattern. How many weeks will it be before Josh is jogiging 60 minutes per day?

Warm Up


Launch the Lesson


[^15]
## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- finding the next terms in patterns


## Answers:

1. $3,6,5$
2. $21,28,36$
3. $a+16, a+25, a+36$
4. $6 d-4,7 d-5,8 d-6$
5. 12, 18, 24; 9 wk

## Launch the Lesson

Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in the triangle structures that compose The Nima Sand Museum and in the Pyramid of Oranges.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Mathematical Background

A sequence is a set of numbers in a specific order. The numbers in a sequence are called terms. If the terms of a sequence increase or decrease at a constant rate, the sequence is called an arithmetic sequence. The difference between successive terms of an arithmetic sequence is called the common difference. Any term of an arithmetic sequence can be found by adding the common difference to the preceding term. The formula for finding a specific term in an arithmetic sequence is $a_{n}=a_{1}+(n-1) d$, where $q$ is the $n$th term, $q$ is the first term, and $d$ is the common difference.

## Explore Common Differences

## Objective

Students use a sketch to explore the relationship between arithmetic sequences and linear functions.

Teaching the Mathematical Practices
4 Use Tools Point out that to solve the problem in this Explore, students will need to use the table and sketch.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will complete guiding exercises throughout the Explore activity. Students will use the sketch to graph a linear function to solve a realworld problem. They will observe as the data points are plotted, and then answer questions related to the resulting graph. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore



Explore
WEB SKETCHPAD
Students use a sketch to explore the amount of food remaining as cats are fed.

## TYPE

a
Students answer questions about the pattern in the data.

2 EXPLORE AND DEVELOP

## Interactive Presentation



## Explore

Students respond to the Inquiry Question and can view a sample answer.

## Explore Common Differences (continued)

## Questions

Have students complete the Explore activity.
Ask:

- Why is the amount of food decreasing with each cat? Sample answer: Each cat is being fed a certain amount of food, so there will be less after each cat is fed.
- How does the amount of food each cat is fed relate to the slope of the linear function that models the situation? Sample answer: The amount of food each cat is fed represents the change in the amount of food, which is the slope of the function. As long as there is a constant change, or constant slope, then you have a linear function.


## (a) Inquiry

How can you tell if a set of numbers models a linear function? Sample answer: The points are on the same line and have a constant slope.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Arithmetic Sequences

## Objective

Students construct arithmetic sequences by using the common difference.
(11) Teaching the Mathematical Practices

8 Look for a Pattern Help students see the pattern in this Learn.

## Common Misconception

Students may think that the terms of all arithmetic sequences must increase. They may believe this because the definition of an arithmetic sequence refers to the use of addition to find successive terms. Point out that when the number being added is negative, the terms will decrease.

## Example 1 Identify Arithmetic Sequences

Theaching the Mathematical Practices 3 Reason Inductively In this example, students will use inductive reasoning to make plausible arguments.

Questions for Mathematical Discourse
AL How are the terms of an arithmetic sequence found? The same number is added to each term to find the next term.
Oli. What requirement must be met for the sequence to represent an arithmetic sequence? The difference between the terms must be constant.
311. Does the sequence follow a pattern? Explain. Yes; sample answer: The difference in the numbers repeats itself, so the next difference would be -3 .

## *Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



## Learn



## Interactive Presentation



Example 2


## 1 CONCEPTUAL UNDERSTANDING 2 FLUENCY <br> 3 APPLICATION

## Example 2 Find the Next Term

Teaching the Mathematical Practices
1 Monitor and Evaluate Point out that in this example, students must stop and evaluate their progress when determining the next terms in the sequence.

Questions for Mathematical Discourse
AII. What is the relationship between the terms? Each term is 4 less than the previous term.
OL. If this sequence continues on, will all of the subsequent terms be negative, or will they go back to being positive? Explain. Sample answer: They will stay negative because each term is less than the one before.
What is the tenth term in the arithmetic sequence? - 25

## Learn Arithmetic Sequences as Linear Functions

Objective
Students apply the arithmetic sequence formula by examining the common differences in arithmetic sequences.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.
8 Look for a Pattern Help students to see the pattern in the formula for the $n$th term of an arithmetic sequence.

Important to Know
In the context of a function, the term numbers represent the input values, and the terms of the sequence represent the output values. The common difference is a constant that represents the slope. The function rule is linear, defining how each term is determined by its term number, $n$.

## Common Misconception

Some students may think that the function rule contains more than one variable. Use several examples to show students that for any particular sequence, $a_{1}$ and $d$ are known constants, and only $n$ is variable.

## Example 3 Find the nth Term

Teaching the Mathematical Practices 3 Reason Inductively In this example, students will use inductive reasoning to make plausible arguments.

## Questions for Mathematical Discourse

AL. What values do you need to know in order to write the equation? You need to know the first term, $a_{1}$, and the difference, $d$.
OL. How are the values substituted to find the equation? Sample answer: $-4+3(n-1)=-4+3 n-3=3 n-7$
BLi. Will $n$ always be a positive number? Explain. Yes; sample answer: Since $n$ refers to the number of the term, like the 1st term or the 15 th term, it will always be a positive whole number.

## DIFFERENTIATE

## Reteaching Activity A니르닌

IF students have difficulty following the progression of steps that lead
to the building of the equation,
THEN have them cycle through the steps again, using a simpler sequence, such as $1,4,7,10, \ldots$

## DIFFERENTIATE

## Enrichment Activity 3

Have students work with a partner. Tell them that you know of an arithmetic sequence in which the 4 th term is 27 and the 8th term is 59 . Ask them to find the first term and the common difference. Have pairs share how they solved the problem, and describe how they checked that their solution is correct. $a_{1}=3, d=8$

Example 3 Find the rith Term
Use the arithmetic sequence $-4,-1,2,5, \ldots$ to complete the following.
Part A wite an equation.
$0,-3 n-7$
Part 8 Find the t6eh term of the sequence.
Use the equation from Port A to find the veit term in the achmontic sequence.

```
\mp@subsup{a}{n}{}=3n-7 Equtuon\mp@code{om Puta}
```



```
 \mp@subsup{a}{n}{\prime}=48-7 Minole
 as=4t Smeth
```

Chock
purovevg Randi has been iraining for a marabhog and at is important for her to ketp a constant pace, She recorded her time each mile for the frat severui miles than shem ran

- Af 1 mile, her time was 10 minutes and 30 secondi.
- At 2 mies, ber bime was 21 minutes.
- Ae3 mbes. her tiese was 31 minutes and 36 seconds.
- Ac 4 mien her time was 42 mevtes.

Part A Wite a fanction to rmpresent her secuence of data. Use n as the varisble.
$\Rightarrow t=105 n$
Part 8 How long wit it thio her to nun a whole mariethon? focund your
srower to the newest thousandth a necessarx. Pint a mastion is
26.2 miess
4.585 mount

Q Example 4 Apply Acithmetic Sequences as Liriear Functions
MONCY Lanigua opened e saviegn accoum to sme for a trip to Spain. With the cost of plane tickets, food, hotes and other empenses, she
needs to smee $\$ 1600$. She opened the account with $\$ 525$. Every month she adds the same amouint to her accoust using the monay she earns of her affer schooi job. From her baik statement, Luriqua can weite a function that represents the balunce of her semingr account.
(continusd an the next poper)

Lunen 45-Lements Sequincen 253

## Interactive Presentation



Example 3


Students can tap to see the steps to writing and using an equation for arithmetic sequences.


Part $A$ Create a function to represent the sequence.
Firsk fies seve common diference.


The balincen ater 1 month is $\$ 580$, se let $a_{1}=580$. Notice that the starting batince is $\$ 525$. Wou can think of mis starting point is $9_{0}=580$

$$
(p)=a_{1}+m-n d
$$

formabstir re renter

$$
=580+(n-0) 55)
$$

$$
4,1-589 \text { md } d=59
$$

$$
=500+55 n-55
$$

Senoits

$$
=55 n+525
$$

## Part E Graph the function and determine its domain.



The domen is the nuiber of mooths shce Lanique opened her savings account the domain is $i 0.1,2.3,4,5$, , $)$

## Interactive Presentation



Example 4


254 Module 4 • Linear and Nonlinear Functions

Example 4 Apply Arithmetic Sequences Linear Functions

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

## Questions for Mathematical Discourse

AI. Why does the list of balances represent an arithmetic sequence? because there is a common difference between the balances

OL What does the common difference mean in the context of the problem? Laniqua is saving $\$ 55$ each month, so her account is increasing by $\$ 55$ per month.
[BLI Is the function discrete or continuous? Explain. Discrete; sample answer: The domain is the counting numbers, so the graph would consist of points, not a line.

## DIFFERENTIATE

## Enrichment Activity [BL

Arithmetic sequences can be programmed into graphing calculators with results displayed in lists. Have advanced learners locate a set of directions for programming a sequence and develop a lesson for their classmates on analyzing sequences using the calculator.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-26$	
2	exercises that use a variety of skills from this   lesson	$27-34$
2	exercises that extend concepts learned in this   lesson to new contexts	$35-37$
3	exercises that emphasize higher-order and   critical-thinking skills	$38-46$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-37 odd, 38-46
- Extension: Arithmetic Series
- D ALEKSArithmetic Sequences

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-45 odd
- Remediation, Review Resources: Add Integers
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Addition and Subtraction with Integers

IF students score $65 \%$ or less on the Checks,

## THEN assign:

- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Add Integers
- Quick Review Math Handbook: Arithmetic Sequences as Linear Functions
- ArriveMATH Take Another Look
- ALEKS Addition and Subtraction with Integers



## Sanges 4

23. woars Wanda in the nacape lor Me voccer lean- One of Wr dibes in to hass on eups ef wase at practice, Ekch co anter ormane

## itexactive Presentation requese $100=-40+121$

b. Gribh the finction
C. How such mater is renuingy ater Wixds nunds ost tio stmeypl 7 ownes
24. Thearex A flower has 20 seats in me bist resk 22 a the Econd rom 26 ne the nid reme anit 50 in for 75 nows
a. Cembe a tinclon to moneser phe withnutic

b. Graph itie tinction.

25. nosned Depoce to tend a wes envecpe first dans mat is se certs for ve frat ounce and $\eta$ ceren for wech dotionaf outce The table stoms ithe cont ior weigres. up 105 ources

banchlement ors tos
Secicen Uipted Sates Portur Service

Grach the henction
 cost 32.97 to seem? Bomen
2e. voto pommponceva Brans dounionding upasdes of thi tworne TV show so play on tis persond ineda sevice The cot to dometosd t epiode in s.isg, the cost to domertord 2 epsobes is $\$ 3.58$. The cost 10 domblond 3 epliodes is
$\$ 59$.
 segurice. $\mathrm{A}=1 \mathrm{i}$ - 159
6. Giresh the function

256 meted-unw wanown neoren


 -erabtec the fan to inomane her putiops by 2
sequenct $8 \mathrm{mf}=2 n+38$
b. Gugh lie function
 tha wif do at line 50 pahugs a deff this weer
teteet forrinet


Cosstact anduaticts Breermine whether seth repvecce is ar withmetic
sequesce. Rustify your arpumenk.
$22 .-9,-12,-55-18$


29. 10.15 .25 .40 . Stermancice coes not have a tonuegn
 Fir a not em minetk regunct.
30. $-10-5,0.5$

This seoumcekas a compo Geleresce of S Detime it io term
Thel a min whentic requcte. 31 $-5,-3,-1$ :


Write an squasion for whe meh trom of esch anthmetic sequence.
32. $2,42,12.25$
Ser marial
32. 30.26 .22 .18.
34. $-7,-4,-82$.
Sermaryin.







 nequence me stome
5. $2.3 .5 .5 .8 .12 .2634,55.89$.
 Gtlerence berionen temir cot coentrell
37. STeucrubt Use tie artincote sequence 2. $5.2 . \mathrm{H}$ -
2. Whit an equivich lor the rith term of che requence. $\mathrm{O}_{\mathrm{s}}=\mathrm{3H}-1$
b. What is tre 20 en sem in te seguencet ss

## OHaher-Oider Thiaking suile



39. cabait whe a seqwecke bin is not in activebc seqpecce. Doteeme wheber the requmsce has a pattion, und if so descrbe the ponarm asefralymy

 chim your reasonng .
 He detritioe

Sampleansinec. $2,-8,-2,-28,-$
 lensist no wittonsic sequence. -1
43. creare For emch athuratc sequence descoibed, ente a mimath bor the ith them of a sequirce thin suister the Jescicoben
2. best term s negobe. conmon diference is repative

Sample enere: $\mathrm{d},-\boldsymbol{- 2 - 3 n}$

c $\left.\mathrm{o}_{2}=8.0\right)_{3}=6 \quad \mathrm{v}_{2}=12-2 n$
Andre and Sam are beft resting the same novel Ande. resds 30 pages esch day. Sam created the tuitle of the tighe. Refer to Bis information for freecises 44-46.
44. Nutury Wite aittrubic sequences to represert eich obys dully progress. Then welte the teckon for the nth tem ot esch sequeece

 $360,350,-5401=450-201$
 toble to deterenine t frete h a dyy whem the mucker ot pages Ante has tead b quat to the nurber of poges Som has wht to ress. II sa, which awy is ie Explun


46. Arakra Gaph both tinctions on yoor clication then shecth ere graph How can you wne the guoh to seseve the quenton trom secine 45?






## Answers

32. $a_{n}=6 n+1$;

33. $a_{n}=-4 n+34$;

34. $a=3 n-10$;


## LESSON GOAL

Students graph piecewise-defined and step functions.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.
## 2 EXPLORE AND DEVELOP



## Develop:

Graphing Piecewise-Defined Functions

- Graph a Piecewise-Defined Function

Explore: Age as a Function

## Develop:

## Graphing Step Functions

- Graph a Greatest Integer Function
- Graph a Step Function


You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

## Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al\|	LIE	IFII	
Remediation: Construct Linear Functions	$\bullet$			0
Extension: Taxicab Graphs				0

## Language Development Handbook

Assign page 25 of the Language Development
Handbook to help your students build mathematical language related to piecewise-defined and step functions.
[ELII You can use the tips and suggestions on page T25 of the handbook to support students who are building English proficiency.


## Suggested Pacing <br> 

## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbaldescription of the relationship.
F.IF.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
Standards for Mathematical Practice:
4 Model with mathematics.
6 Attend to precision.

## Coherence

Vertical Alignment

## Previous

Students understood and graphed linear functions.
8.F.3, 8.F.4, F.IF.7a

## Now

Students graph piecewise-defined and step functions.
F.IF.4, F.IF.7b

Next
Students will identify the effects of transformations of the graphs of absolute value functions.
F.IF.7b, F.BF. 3

## Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
展 Conceptual Bridge In this lesson, students extend their		
understanding of linear functions to piecewise-defined and step		
functions. They build fluency by graphing both types of functions,		
and they apply their understanding by solving real-world problems		
related to piecewise-defined and step functions.		

## Mathematical Background

Piecewise-defined functions are functions that are defined by two or more functions, each with its own domain. The graph consists of the graph of each piece over its domain. A step function is a function whose graph consists of segments that look like a set of steps. The graph of the greatest integer function is an example of a step function.

## Interactive Presentation



Warm Up


Launch the Lesson


[^16]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- graphing linear functions

Answers:

1. e
2. a
3. d
4. b
5. c

## Launch the Lesson

(17) Teaching the Mathematical Practices

4 Apply Mathematics In this Launch, students learn how to apply what they have learned about special functions to a realworld situation about the discounts offered at a store.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Explore Age as a Function

## Objective

Students collect data to explore how real-world data can be represented by a step function.

## Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students complete guiding exercises throughout the Explore activity. Students will explore how data in a real-world scenario involving age groups can be modeled by a step function. They will use their own age to create a table that shows the group in which they would be placed after various periods of time and answer questions regarding the data in their table. They will then explore how the graph of a step function represents this type of data. Then, students answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


## Explore

Students answer the questions and complete a table based on age.

## Explore Age as a Function (continued)

## Interactive Presentation

$\square$
Explore

## TYPE

Students respond to the Inquiry Question and can view a sample answer.

## Questions

Have students complete the Explore activity.

## Ask:

- In which age group would you place someone who will be 13 next week? Why? 11-12; Sample answer: According to the rules, the person would be in the 11-12 group because he or she is still 12 .
-What other situations could be modeled by a step function? Sample answer: Movie ticket prices that depend on age could be modeled by a step function.


## (Q) Inquiry

When can real-world data be described using a step function? Sample answer: When domain values in intervals have the same range value, real-world data can be described using a step function.

B Go Online to find additional teaching notes and sample answers for the guiding exercises.

## 1 CONCEPTUAL UNDERSTANDING

## Learn Graphing Piecewise-Defined Functions

## Objective

Students graph piecewise-defined functions and identify their domain and range by determining the intervals where each part of the function should be graphed.

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between equations and graphs of piecewise-defined and piecewise-linear functions.

## Example 1 Graph a Piecewise-Defined Function

## Teaching the Mathematical Practices

2 Different Properties Mathematically proficient students looks for different ways to solve problem. Encourage them to consider an alternate method in the Think About It! feature.

Questions for Mathematical Discourse
AL Why do you think this is called a piecewise-defined function? Sample answer: The function has different rules for different "pieces" of the graph.
Ol Why is $(1,6)$ included in the graph, but $(1,2)$ is not? Sample answer: The first domain includes 1 because it states that $x \leq 1$ while the second domain does not include 1 . So the $y$-value that corresponds with $x=1$ is $2(1)+4$, or 6 .
31. Why is the range not the set of real numbers? There are no values of $x$ that are paired with numbers greater than 6 .

## 3 <br> Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Example 1



## Interactive Presentation



## Learn



CHECK
Students complete the Check online to determine whether they are ready to move on.

## 1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

## Learn Graphing Step Functions

Objective
Students graph step functions by making a table of values.

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the $x$ - and $y$-values of each horizontal line segment used in this Learn.

## About the Key Concept

The graph of a greatest integer function always consists of infinitely many "steps," each with one closed endpoint and one open endpoint. The parameters of the function determine the length of the steps. The greatest integer function is a type of piecewise-defined linear function, as the function is equal to a different constant for different intervals in the domain.

## Common Misconception

Some students may think that the steps on the graph of a greatest integer function are always 1 unit long. Explain that while this is true of the graph of the parent greatest integer function, other greatest integer functions will contain parameters that may affect the length of each step.

## DIFFERENTIATE

## 

IF students have difficulty understanding the nature of the graph of the greatest integer function,
THEN have them create a table of values for the function. Instruct them to include decimals and fractions in their tables. Then have them describe how they determined the $y$-values for the $x$-values that they chose.

## Example 2 Graph a Greatest Integer Function

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL. Why do you think this is called a step function? The graph looks like steps on a staircase.
OL. Why is $(0,1)$ included in the graph but $(1,1)$ is not? $\llbracket 0+1 \rrbracket=1$ and $\llbracket 1+1 \rrbracket=2$
31.l. The greatest integer function is sometimes called the floor function. Why do you think that is? Sample answer: The value truncates to the integer portion of the value, like standing on a chair on the 2nd floor still means you are on the 2nd floor.

## Common Error

Some students may take the greatest integer of the $x$-value before adding 1. Explain that the greatest integer symbols act as grouping symbols, requiring that the operation inside the symbols be performed first, before finding the greatest integer of the resulting value.

## DIFFERENTIATE

## Enrichment Activity ${ }^{3}$ Bin

Have students work with a partner. Ask them to create a story problem that can be modeled using the function $f(x)=1 \mathbb{\$} x \rrbracket$. Have students construct a graph for the model, and share their problems with the class.

Example 2 Graph a Greatest Integer Function Groph $n x]_{[ }[x+1]$. State the domain and range.

Fist make a table selsct a lew values that we between integer.

\%	\%+1	$1 \mathrm{x}+\mathrm{ta}$	
2	1	1	
-175	-075	- 1	
-1.25	-025	$-1$	
-1	0	0	0.05 . and 075 are greater thmit or egoat to 0 but hesp thin' 1.50 , 0 is the grestest integer that in nor grester then 0.05 . or 075
-05	05	0	
-0.25	075	0	
0	1	1	t 125 and 15 ste guater then or equat to 1 but less than 2.50, 1 is the grestent ioteper thas is not gieater then $\$ 125,0<15$
0.5	125	1	
05	15	1	
1	2	2	2.2.25, and 275 are grester then or toud 10 2 but lest than 3 So. 2 is the growest integenUnat is roct gremer than 2.225 . or 275
125	225	2	
13	275	2	

On the graph, dots represeot woluded points. Cacies represent poives that are not inkosed. The oomainis all resi numbers The lange 6 airmegers Note that ons is the the let


Check
Gragh fxa $=|x-2|$ by making a table. Copy and complete the timble Ther grain the function.



Q Taik About IW What do you notice, nobut the symmecr. behavior of the function?
Sanple ativer Me
Sonple miverc ?
function has 00 Sunction has oo
tymmetry hat oo tynmetry and on values. As rincreases, Pd) increses, and ass decreases, fr ) decresses.

## Watch Out

 Grestest integer Function When fincing the valut of a grestest iseger tusction do not found to the nearise iteggec issted, alus truna nonintegers iowner thet is not gremer than the nomber:
## Interactive Presentation

## Graph in Gontal nevertlunciph

Graph $f(x)=\{[x+1 \mid\}$. State the domain ans range.
Movetrough the shides tolesen more absit the table ard graptref the fancioi

Example 2



## Interactive Presentation



Example 3

DRAG \& DROP
Students drag the correct values to complete the table.
TAP

CHECK


> Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

## Example 3 Graph a Step Function

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about step functions to solving a real-world problem.

## Questions for Mathematical Discourse

How many lifeguards are needed for 59 swimmers? 1 For 61 swimmers? 2
Ol. Why is this situation represented by a step function? Sample answer: Every $x$-value in each interval of 60 is paired with the same $y$-value, forming a graph that consists of steps.
Bil How would the graph of the function change if the number of lifeguards required for the number of swimmers is cut in half? Sample answer: The graph would be stretched horizontally because more swimmers could be watched by each lifeguard.

©
Essential Question Follow-Up
Students have analyzed and graphed step functions.
Ask:
If you know that a function is a step function, what do you know about how the elements of the domain are paired with the elements of the range? Sample answer: The domain is grouped into intervals, and every number in the interval is paired with the same number in the range.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-14$	
2	exercises that use a variety of skills from this lesson	$15-20$
2	exercises that extend concepts learned in this   lesson to new contexts	$21-22$
3	exercises that emphasize higher-order and   critical-thinking skills	$23-31$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-21 odd, 23-31
- Extension: Taxicab Graphs

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Construct Linear Functions
- Personal Tutors
- Extra Examples 1-3
- D ALEKS'Tables and Graphs of Lines

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Construct Linear Functions
- Quick Review Math Handbook: Special Functions
- ArriveMATH Take Another Look
- Q ALEKS Tables and Graphs of Lines


## Answers

15. $f(x)=\left\{\begin{array}{l}16.20 \text { if } 0<x \leq 1 \\ 19.30 \text { if } 1<x \leq 2 \\ 22.40 \text { if } 2<x \leq 3 \\ 25.50 \text { if } 3<x \leq 4 \\ 28.60 \text { if } 4<x \leq 5\end{array}\right.$

16a. | $x$ | 0 | 4 | 8 | 12 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 0 | 32 | 64 | 110 | 156 |

16b. $f(x)= \begin{cases}8 x & \text { if } x \leq 8 \\ 64+11.5(x-8) & \text { if } x>8\end{cases}$


Enent 1
 "betwieer ste nound every taction of ion how up to the mest has fock. Diana whir a hoons

 con oriy be codered by the cave, im 12 tomes per coss. Dow, a gooph to reverest te thanber st chas needed $y$ when $\times$ bomes. of cobibic ane soil.


Mane Enerciges
15. rercisols A peckipe ortwry sendee dotensines insev or exprens Whpoing by the weigt of a packroe, we every thacion of a powed Hipoing packipes frat wigh no mole than 5 soundi. White :

netions no mere tive 5 pounds. State the domain and range
eenangin

 \$s per nour the frot thours ine wats si a dey ind Seeso pee nown sachnost therenher: z-C See magh.
a Orgmisa me informaton isto a table lockide a roen for hoors wored x, ind a row for davy esminge tos)
 forxbers






a. Ferriss -
b. Federan 2
C. Finstion wis
d. Findt-128 -1
2. escut cuas we Nomom wats ap reit a ces onvection the nas yo an


 Hows the cost ef foratoes by weigit in posund

 rumber of poundi. Sermerit

b. Grephthefinction.


 tand 53150
22. Euctronic nothas trich Repans charges $325 \mathrm{lor}=$ estronc device repar that sues up to one hoir. For esch adatonis nour ol latco, there is a charge of 530 The iege. top champes for the nest his hour for ing pot ct an Now.
a. Cogy me complete the lebob corganipe Fie informaton


b. Wises viep hucion so epresemt mie towl cont for every
 hove 6 of iopoce $A 0|=25+50| n \mid$
c. Guph the Juncton
 congieter $2<1 \leq 3$

```
22. mwontoer Max smma baley, fery
```



```
 mesbery sicikg a whom
 the tutb
 -What nfinctonto memerert the cott of chocoline digs
 b. Molirrouggen loc chocolite covps tor tse week is S%S
Orghec-Order Thinaling sajes
```



```
 Then gaph thefinciom
```


Esperpound usto3 pourd
5150 per pound For mich poundever 3 pound



 couster as of finction of sime she wed her guph st the poph of a t ite finction :s evs possitel Expien ynar masonia:


 anctont



 Nomplostity yur worotent


27. What a plecrewhe Nretion to mopotset De grash. Sien muph.

29. What in we rame? $\boldsymbol{s}-\boldsymbol{- 6 月} \geq 0$

30. Feathe 54128
3. Finaflas. 24

266 Medik $4 \cdot \mathbf{V}$

1 CONCEPTUAL UNDERSTANDING
20a. $C(p)=\left\{\begin{array}{l}3.50 \text { if } 0<x \leq 1 \\ 7.00 \text { if } 1<x \leq 2 \\ 10.50 \text { if } 2<x \leq 3 \\ 14.00 \text { if } 3<x \leq 4 \\ 17.50 \text { if } 4<x \leq 5\end{array}\right.$
27. $f(x)=\left\{\begin{array}{l}\frac{1}{2} x-3 \text { if } x>6 \\ -\frac{1}{2} x+3 \text { if } x \leq 6\end{array}\right.$

## LESSON GOAL

Students identify the effects of transformations of the graphs of absolute value functions.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Parameters of an Absolute Value Function

## Develop:

Graphing Absolute Value Functions; Translations of Absolute

## Value Functions

- Vertical Translations of Absolute Value Functions
- Horizontal Translations of Absolute Value Functions
- Multiple Translations of Absolute Value Functions
- Identify Absolute Value Functions from Graphs
- Identify Absolute Value Functions from Graphs (Multiple Translations)


## Dilations of Absolute Value Functions

- Dilations of Form $a|x|$ When $x>1$
- Dilations of the Form |ax|
- Dilations When $0<a<1$

Reflections of Absolute Value Functions

- Graphs of Reflections with Transformations
- Graphs of $y=-a|x|$
- Graphs of $y=|-a x|$


## Transformations of Absolute Value Functions

- Graph an Absolute Value Function with Multiple Translations
- Graph an Absolute Value Function with Translations and Dilation
- Graph an Absolute Value Function with Translations and Reflection
- Apply Graphs of Absolute Value Functions

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

## Practice



Formative Assessment Math Probe

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	ALI	LE	EL	
Remediation: Integers: Opposites and   Absolute Value				0
Extension: Parametric Equations				0

## Suggested Pacing

$90 \min$
45 min

## Focus

Domain: Functions
Standards for Mathematical Content:
F.IF.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k f(x), f(k x)$, and $f(x+k)$ for specific values of $k$ (both positive and negative); find the value of $k$ given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

## Coherence

## Previous

Students solved equations involving absolute value.

## A.CED.1, A.REI. 3

## Now

Students identify the effects of transformations of the graphs of absolute value functions.

## F.IF.7b, F.BF. 3

## Next

Students understand, graph, and use quadratic, exponential, and other types of non-linear functions.
F.IF.4, F.IF.7, F.LE.1, F.LE.2, F.LE. 3 (Course 1, Course 2, Course 3)

## Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
廑 Conceptual Bridge In this lesson, students extend their		
understanding of absolute value to absolute value functions. They		
build fluency by graphing absolute value functions, and they apply		
their understanding by solving real-world problems related to		
absolute value functions.		

## Mathematical Background

The graph of the absolute value parent function is V -shaped, with the vertex at the origin. The right side of the V is the graph of $y=x$; the left side is the graph of $y=-x$. Translations, dilations, and reflections of the graph of the absolute value parent function, $f(x)=|x|$, result in shifts, stretches or compressions, and flips (respectively), of the V -shaped graph.

## Interactive Presentation



Warm Up


Launch the Lesson


[^17]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- evaluating absolute value expressions

Answers:

1. $>$
2. $=$
3. $<$
4. $=$
5. $>$

## Launch the Lesson

## (171) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationship between the shape of the Palace of Peace and Reconciliation and the graph of an absolute value function.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

## Language Development Handbook

Assign page 26 of the Language Development Handbook to help your students build mathematical language related to transformations of the graphs of absolute value functions.

ELLL You can use the tips and suggestions on page T26 of the handbook to support students who are building English proficiency.


## Explore Parameters of an Absolute Value Function

## Objective

Students use a sketch to explore how changing the parameters changes the graphs of absolute value functions.

## (117) Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to complete this Explore activity, students will need to use the sketch. Work with students to explore and deepen their understanding of absolute value functions.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to explore how changing the parameters of an absolute value function affects its graph. Students explore the graphs on their own and through an animation. They will answer questions and form generalizations based on their observations. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

Students use a sketch to explore transformations of absolute value functions.

## TYPE



Students answer questions about the transformations of absolute value functions.

## Explore Parameters of an Absolute Value Function (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- How is changing the value of $a$ for the absolute value graph similar to a linear function? Sample answer: The graphs get steeper as the value of $a$ increases and less steep as $a$ decreases.
- How can looking at point $V$ help you determine the transformations in the function? Sample answer: Point $V$ is moved up, down, left or right depending on how values were added or subtracted to the function.
(B) Inquiry

How does performing an operation on an absolute value function change its graph? Sample answer: Adding a value to the function moves the graph up or down. Subtracting a value from $x$ moves the graph left or right. Multiplying the function by a value makes the graph wider or narrower or flips it over the $x$-axis.
W) Go Online to find additional teaching notes and sample answers for the guiding exercises.

## 1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

## Learn Graphing Absolute Value Functions

## Common Misconception

Some students may think that the graph of any absolute value function will lie completely above the $x$-axis. Explain that just as with other functions, transformations of the function will relocate the graph, and the resulting graph may, in fact, contain points that lie below the $x$-axis.
Learn Translations of Absolute ぬlue Functions
Objective
Students identify the effect on the graph of an absolute value function by replacing $f(x)$ with $f(x)+k$ or $f(x-h)$ for positive and negative values.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Example 1 Vertical Translations of Absolute Value Functions

## Teaching the Mathematical Practices

7 Use Structure Help students to use the structure of the transformed function to identify the translation in the function.

Questions for Mathematical Discourse
AL. What type of transformation occurs in $g(x)$ ? a vertical translation How do you know? 3 is being subtracted from the parent function.
이 How is the $y$-value of each ordered pair in the parent function affected? Each $y$-value decreases by 3 units.How would the graph of $f(x)=|x|+3$ compare to this graph? Sample answer: It would be shifted up 3 instead of down 3.

## 13 <br> Go Online

-F ind additional teaching notes.

- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation




## Interactive Presentation



## Example 3



## Example 2 Horizontal T ranslations of Absolute Value Functions

Teaching the Mathematical Practices
7 Use Structure Help students to determine the structure of the translated absolute value function in this example.

Questions for Mathematical Discourse
A4. What type of transformation occurs in $j(x)$ ? a horizontal translation How do you know? The -4 is inside the absolute value symbols.
OL. How would the graph of $f(x)=|x+4|$ compare to this graph? The graph of the parent function would be shifted 4 units to the left instead of to the right.
[BE. How would the graph of $f(x)=|x|-4$ compare to this graph? The graph of the parent function would be shifted 4 units down instead of to the right.

## Example 3 Multiple T ranslations of Absolute Value Functions

## Questions for Mathematical Discourse

ALI Looking at only the equation, which value shifts the graph vertically? +3
OLL Looking at only the equation, how do you know that the horizontal translation is to the right? Sample answer: If you use the form $f(x-h)$ for the translation, then $|x-2|$ means that $h=2$. This represents a translation to the right 2 units.
BL. What would the function be if it was a horizontal translation of 2 units left and 3 units down? $g(x)=|x+2|-3$

## Common Error

As the function becomes more complex, some students may have difficulty seeing the relationship to the parent function. Encourage them to rewrite functions like the one in this example using $f(x)$. For example, for the function in this problem, students would write $f(x-2)+3$. In this way, they can see that 2 is being subtracted from $x$, and 3 is being added to the function values (i.e., the $y$-values).

## DIFFERENTIATE

## Enrichment Activity 4 III 3LI: LIL

IF students are having difficulty determining the direction of a translation,
THEN have them create four examples of absolute value functions that represent each type of translation, and write each one on an index card. Have them sketch the transformation on a coordinate plane on the back of the card, and write the description. Then have them use the flash cards (in both directions) to practice what they have learned.

## Example 4 Identify Absolute Value Functions from Graphs

## 1 Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graph and its equation used in this example.

## Questions for Mathematical Discourse

AL. What translation is shown on the graph? a horizontal shift of 1 to the right
OLI. Does this indicate that the value being added or subtracted should go inside or outside the absolute value symbols? inside
3L. A classmate argues that the function should be $f(x)=|x+1|$ because the shift is in the positive direction. Explain why this is incorrect. Sample answer: Translations are written in the form $f(x)=|x-h|+k$, so $f(x)=|x+1|$ would be $f(x)=|x-(-1)|$, which would be a horizontal shift to the left.

## Common Error

Some students may write the equation using a plus sign instead of a minus sign. Remind them that once they determine how many units and in what direction the graph is translated, they need to subtract that number from $x$.

## Example 5 Identify Absolute Value Functions from Graphs (Multiple Translations)

## Questions for Mathematical Discourse

4L How do you know that this graph represents a function with more than one transformation? Sample answer: The vertex is not on an axis.

OL How many transformations are there, and what type are they? 2; Sample answer: a horizontal translation of 2 units to the left and a vertical translation of 5 units down

Bi. What are the coordinates of the vertex? $(-2,-5)$ How does identifying the coordinates help you solve the problem? Sample answer: I can use the $x$-coordinate for $h$ and the $y$-coordinate for $k$ in the equation $g(x)=|x-h|+k$.

## Learn Dilations of Absolute Value Functions

## Objective

Students identify the effect on the graph of an absolute value function by replacing $f(x)$ with $a f(x)$ or $f(a x)$.

## Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 4 Identify Absolute Value Functions fram Graphs
Use the graph of the function to write its equation.
The gribhis the transtation of the parent graph $t$ unt totie righe

```
g(x)= Fx-N
```

General equapictor, Herisatio lamution
 egme elites arigh

Example 5 identify Absolute Value Functions feom Graphs (Multiple Transtavions) Use the graph of the function to write its equation
The graph is a tunslation of the parent gaph 2 units to the left and 5 units dom?
$g(x)=\mid x-m+x$
Gerwed eventitio .
monat
$g(k)-k-(-2)+k \quad$ Tevenesis zumbun of time ocye



Learn Dilotions of Absolath Value Functions Mitiplying by s consart a ater evaluating an abvaltie value finction creabes a verical change, eithes a stretch or compression. Koy Copitapt - Verthas Distions of Abrowse Vatip Functions If $e \gg$, whe graph of $|x|=$ m is stumeded vatraty.


When minput is mutipled by a comtant obetove for the absolte waliee is evaluated. a hocicontal change octurs.





## Q Talk Ahout in

 How is the valoe: of a in in abrotito value functon cevosedSemple anwect The value of a determies the slope of each part of the graph, The function y e ex can Anobewiminnz

 Where rand a fare
the stopes of the rapk

## Interactive Presentation



Example 4
Students tap on the graph to see the
parent function.
Students complete the Check online to
determine whether they are ready to
move on.


## Interactive Presentation



Example 7
TAP
Students will move through the slides to see how to graph a dilation of an absolute value function.

## Example 6 Dilations of the Form $a|x|$ <br> When $a>1$ <br> Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graphs and equations of the dilated function and the parent function in this example.

## Questions for Mathematical Discourse

Is lal greater than 1 or between 0 and 1 ? Why? Sample answer: $a$ is greater than 1 because $a=\frac{5}{2}$, and $\frac{5}{2}>1$.
OL. What kind of dilation does this represent? Explain. It is a vertical stretch by a factor of $\frac{5}{2}$. Sample answer: The $\frac{5}{2}$ is outside of the absolute value symbols and it is greater than 1 .
BL. How would the function be different if it was a horizontal compression where $a=\frac{5}{2}$ ? Sample answer: The function would be $g(x)=\left|\frac{5}{2} x\right|$.

## Example 7 Dilations of the Form $|a x|$

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

## Questions for Mathematical Discourse

AL When the absolute value function is in the form $f(x)=|a x|$, what will be the effect of $a$ ? Sample answer: The graph will be horizontally stretched or compressed.

OL How would the transformation have changed if the function was $p(x)=\left|\frac{1}{2} x\right|$ ? Sample answer: It would be a horizontal stretch instead of a compression.
B1. What would be an equivalent vertical dilation? Sample answer: a vertical stretch, $p(x)=2|x|$

## Example 8 Dilations When $0<a<1$

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graph and its equation used in this example.

## Questions for Mathematical Discourse

ALI Looking at only the equation, how do you know this is a vertical dilation and not a horizontal dilation? Sample answer: The $\frac{1}{3}$ is being multiplied on the outside of the function, not with $x$.
OL How would the dilation change if the function were $j(x)=3|x|$ ? Sample answer: It would be a vertical stretch by a factor of 3 .
How would this function change if it was a horizontal stretch where $a=\frac{1}{3}$ ?
The function would be $j(x)=\left|\frac{1}{3} x\right|$.

## Learn Reflections of Absolute Value Functions

## Objective

Students identify the effect on the graph of an absolute value function by replacing $f(x)$ with $-a f(x)$ or $f(-a x)$.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 8 Difations When $0<a<1$
Describe how the graph ef $f(x)=\frac{1}{3}(x)$ as $i t$ celates to the graph of the parent function.
For $/(0)=\frac{1}{3} \times 1,0=\frac{1}{3}$
Becwise e is outside the absolvec value signs, the throtbe unvie or the impu sevilion is mutpleth function is mutipled by Plot the points from the

3	[f]	Stat	16xtel
5	1-6tis $=6$	2	$1-6.27$
-3	- $-3-3$	1	(-3, )
0	$10-0$	0	p20)
3.	18-3	1	9, 1
5	\% $=6$	2	18. 21


where $a=\frac{1}{5}$
$\left.m=\frac{1}{2} \times 1-x \right\rvert\,-\frac{1}{2} \cdot m$
$M=\frac{1}{\frac{1}{2}}$ Nis a vertcat compression of the graph of tre parevt fanction

Check


White an equation for vach guach thown

$A \mathrm{Of}=0.125 \mathrm{ar}$
Learn Boplections of Absolute Volue Functions
The grapir of -ober appears to be mpped upsode down conpsered to avil and they we spmmetic about the x-avic:
 The griph at -a(t) a the ceflection of tre gingh of of(x) $=$ ofilactiont meraik.

When she only fronstormation occuining is a retaction or a difation and seflection the graphs of (iax) and 5 -ith) dippeew the sane:

 Heyaks
3. 6s Online
cican match a video to ter how so dercribe
refiections of lunctions

OThink About IC Why wouds $g(0) \sim \mid-2 x$ and $M=201$ appoar to be the same grapra?
Santole attwer lectuse the absolver waluvi of - 2 r and 2 r
we the sume me the sume hegwehs we the same:

## Interactive Presentation




## Interactive Presentation



Example 10
 parent function.

## Example 9 Graphs of Reflections with Transformations

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graph of the reflected function and the graph of the parent function used in this example.

Questions for Mathematical Discourse
AL. How do you know whether there is a horizontal translation? There is a 3 being added to $x$ inside the absolute value symbols.
Ol. What is the effect of the negative in front of the absolute value symbols? It reflects the graph across the $x$-axis.
[31. Why do you need to add 3 and take the absolute value before multiplying by -1 ? Sample answer: When evaluating to find the coordinates, you have to use the order of operations. In this case, you add 3 first because it is the operation inside the parentheses or grouping symbols.

## Common Error

Remind students that the order in which they perform the operations when evaluating the function is important. Tell students that when creating the table, they must first add 3 , then take the absolute value, then multiply by -1 , then add 5 .

## Example 10 Graphs of $y=-a|x|$

Questions for Mathematical Discourse
AL. How does the rule for $q(x)$ compare to the rule for the parent function? The rule for $q(x)$ is the rule for the parent function multiplied by $-\frac{3}{4}$.
OL. How do you expect the vertex of $q(x)$ to compare to the vertex of the parent function? Explain. Sample answer: They will be the same because $q(x)$ has not been translated.
[BLI The point $(12,12)$ lies on the graph of the parent function. To what point does this map to on the graph of $q(x) ?(12,-9)$

## Common Error

Students may have difficulty seeing how the graph of $q(x)$ is related to the graph of the parent function. For these students, you may want to show the transformation in two different steps, first dilating the graph by a factor of $\frac{3}{4}$, and then reflecting the resulting graph across the $x$-axis.

## DIFFERENTIATE

## Enrichment Activity (BLI

Give students the function $f(x)=-|x-4|-2$. Have students create a step-by-step list of instructions for how to graph this function. Then have them graph the function.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

## 3 APPLICATION

## Example 11 Graphs of $y=|-a x|$

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

## AL. What is the coefficient of $x$ ? - 4

OL. Looking at only the equation, what type of transformations does this function represent? a horizontal compression and a reflection across the $y$-axis
BL. How would this function be different if it was a vertical stretch where $a=4$ and a reflection across the $x$-axis? The function would be $f(x)=-4|x|$.

## Common Error

Some students may think that this function is equivalent to $f(x)=-|4 x|$. Have them create a table of values for both functions so that they can see that the two functions produce different sets of ordered pairs.

## Learn Transformations of Absolute Value Functions

## Objective

Students graph absolute value functions by interpreting constants within the equation or by making a table of values.
(17) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graph of the transformed functions and the graph of the parent function used in this Learn.

## Common Misconception

Some students may think that translations should be applied before dilations and reflections. Use an example, such as $f(x)=-2|x-3|+4$, to show students that if they apply the vertical translation before the dilation and reflection, the resulting graph is not the same as when the transformations are applied in the correct order, with the vertical translation as the last transformation.

## DIFFERENTIATE

## Enrichment Activity (BL

Have students work with a partner to create a poster showing examples of graphs that represent dilations of the graph of the parent function, including vertical and horizontal compressions and stretches, and have them use arrows to illustrate the stretch and compression. Have them also provide a description of each transformation.

Example 11 Graphs of $y=$ i- -cox
Describe the reflection in gin $)=1-4 \times 1$ as it reletes to the graph of the pareet function.
Finst the input is mulfipted by 1 - $a$. Then the abroilute value of -aris evalusted.

whereon $=$.
$g(x)=1-\alpha n(-s(x)=\{-1,4, x)$
s(0) $-1-4$ ei 8 the gaph of geve parent
tunction refiected acrosts the y-axs and horitontaly conserested


Learn Transformations of Absolute Value Functions
Yeu can usp the nquition of a sunction to understwid the behmior of the hinction. Becaise Be constants $a, h$, and $k$ affect the function in dellervet wapk, they can heop devplos an accurate graph of the functor
 $0(0)=0 k-k+k$
 vensitefed inis ing

 Vertike Translation, $k$ (k) 0 Ne groph of $(x)=160$ trastaned $k$ anis in



Reflection, a
tia>0, te graph opern inf

Diation, 9
 inimicued witiony. $\$ 0 \mathrm{kla}=1$, the greph in


OThinkAbout io Detcribe hoa me Devcribe how Pe
praph of $y=1$ in gegh of $y=1$ opis is
relted to the ourert tuncton.

## Sample amewer:

 Bechuse xis mumplied by -abolore the atroctute vilue is walioted, the graph woult he wowthet so compresied. depending on the valine of e, eut not reflected acress the savis.
## Why cona there appoed

 to be no intsection for the gaphot $y=1$-an?
## Sample answers The

 jpraph is being reflected across they avinata rewitt of miltipyivg xby - a. There is a reflection occiareg, bot the fins graph apoess the sate as $y=\operatorname{low}$
## Interactive Presentation



Example 11



## Interactive Presentation



## Example 12

 TAPStudents tap on each marker to analyze the parameters in the function.

## Example 12 Graph an Absolute Value Function with Multiple Translations

Teaching the Mathematical Practices
7 Use Structure Helps students to use the structure of the transformed function to identify the transformations in $g(x)$ and graph $g(x)$.

## Questions for Mathematical Discourse

Looking at only the equation, what transformations occur in $g(x)$ ? a horizontal translation 1 unit to the left and a vertical translation 4 units down
Ol. How do you know that there is no reflection in this transformation? Sample answer: There are no negative coefficients in the function.
BLi. How would the function be different if it also represented a reflection over the $x$-axis? Sample answer: The function would be $f(x)=-|x+1|-4$.

## Example 13 Graph an Absolute Value Function with Translations and Dilation

1 Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the equations and graphs of the transformed function and the parent function.

Questions for Mathematical Discourse
AL. What types of transformations occur in $j(x)$ ? a horizontal compression and a horizontal shift
OLI What is the vertex of the graph of $j(x)$ ? $(2,0)$
BL. How could the Distributive Property help explain the horizontal shift 2 units to the right? Sample answer: If we apply the Distributive Property to factor the expression inside the absolute value function, we get $|3(x-2)|$. This shows that we would first perform a translation of 2 units to the right, then a horizontal compression of 3 .

## Example 14 Graph an Absolute Value Function with Translations and Reflection

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL Will the graph open up or down? How do you know? Down; sample answer: There is a negative sign in front of the absolute value symbols.
OI. What types of transformations occur in $p(x)$ ? a horizontal translation 3 units to the right, a reflection across the $x$-axis, and a vertical translation 5 units up
How would the function be different if the graph had been translated 3 units to the right and then reflected over the $y$-axis instead of over the $x$-axis? The function would be $f(x)=|-x-3|+5$.

Example 13 Graph an Absoluto Value finiction with Translations and Dlation Graph $X_{x}(x)=|3 x-6|$ State the damain and range:
Becosie o n inside ye absolve value symbols. vie celtect of on the tumbition spanger.
Enviute the function tor severall values of xto tiod ponts on the graph

 compressed bo (contaily und vensemed 2 unts nopt.
The domain is at coul naibecs the ranpe a at ieat sumbers goviter then or equal to al

Example 14 Graph an Absolute Vabve Function with Translations and Refiection
Graph $p(x)=-\mid x-3 j+5$. state the domain and cange.
mop( $x=-x^{2}-3 \mid+5$, the pasent functoon is reflected across the $x$-swis because the absolute value is boing mutipied by - 1
The function is then transiated 3 units righe


Finally, the function is translated 5 u unts up.
$p(x)=-x-3+5$ is the graph of the parent function transitited 3 units right and 5 units up and reffected ecross the $x$-acil.
The domain is all real numbers. The renge is all real numbers loss tran or equal to 5.


## Interactive Presentation

Graph an Absolute Value Function with Translations and Dlation

## 



Ivolat the hicion for teverw wives of nte fons pols en the gisen


$x$	$(x, 30)$
0	$(0,6)$
1	$(2,3)$
2	$(2,0)$
3	$(3,3)$
4	$(4,5)$

Example 13
 the function.


## Interactive Presentation



Example 15
 of one side of the function.

CHECK


Students complete the Check online to determine whether they are ready to move on.

## Example 15 Apply Graphs of Absolute Value Functions

Teaching the Mathematical Practices
4 Apply Mathematics Students will explore how to use an absolute value function to model the shape of a building. They will learn how to use the physical attributes of the building to calculate the parameters of the function.

## Questions for Mathematical Discourse

All How do you know that the value of $a$ will be a negative number? Sample answer: The shape of the building is a V that opens down.
(OL. How do you know that the value of $k$ will be 62? Sample answer: The vertex of the building is 62 units above the origin.
[B1. Why is it important to find the slope of the sides of the building? Sample answer: The slope tells you if there is a vertical or horizontal stretch or compression.

## Common Error

After studying the photo, some students may try to incorporate a parameter representing a horizontal translation of 31 units. Help students to see that the diagram shows that the building is symmetric with respect to the $y$-axis, so there is no horizontal translation. Explain that the purpose of the marked points on the $x$-axis is for determining the dilation.

## Exit Ticket

Recommended Use
At the end of class, have students respond to the Exit Ticket prompt using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, have students respond to the Exit Ticket prompt verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

## Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-35$	
2	exercises that use a variety of skills from this lesson	$26-42$
2	exercises that extend concepts learned in this   lesson to new contexts	$43-48$
3	exercises that emphasize higher-order and   critical-thinking skills	$49-52$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks,

THEN assign:

- Practice, Exercises 1-47 odd, 49-52
- Extension: Parametric Equations
- ALEKS'Absolute Value Functions

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-51 odd
- Remediation, Review Resources: Absolute Value and Distance
- Personal Tutors
- Extra Examples 1-15
- CALEKS Plotting and Comparing Signed Numbers

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Absolute Value and Distance
- Quick Review Math Handbook: Special Functions
- ArriveMATH Take Another Look
- $\quad$ ALEKS Plotting and Comparing Signed Numbers


## Answers

19. The graph of $g(x)$ is a reflection of the parent function across the $x$-axis and a vertical stretch.
20. The graph of $g(x)$ is a reflection of the parent function across the $x$-axis and translated 2 units down.
21. The graph of $g(x)$ is a reflection of the parent function across the $y$-axis and a horizontal stretch.
22. The graph of $g(x)$ is a reflection of the parent function across the $x$-axis and translated 7 units right and 3 units up.
23. The graph of $g(x)$ is a reflection of the parent function across the $y$-axis and a horizontal compression.
24. The graph of $g(x)$ is a reflection of the parent function across the $x$-axis and a vertical compression.


Mined Enercines
Montuing Geaph eech function State the domain end range. Deterbe how reach
groph b releted to iss pereot graph. 36-31. See Mod 4 Anvert Arpendic.
$38.50)=-4 x-21+3 \quad$ 3n. $n=0 \mid 2 x \quad$ 38, $N 0 \mid-2 x+5$


47. Movuraichuand A manutiching coepany prodicer biens of cerexk :
 aben bom the dropa vi ouncer by mole fat k, Uir bor cancot be inpoed

 Akng a cever path she h 5 miles tose the swat ine sho ix Ahwe Alvilis reaches Dive war tues, we compops ar the same sperd thing mother iep arownd the vick
a. Orpinize the warmaton inio a table, hiduch a row for une

$\begin{array}{llllllll}\approx & 0 & 10 & 20 & 30 & 40 & 50\end{array}$
栯 $6 \quad 4 \quad 2 \quad 0 \quad 2 \quad 4$
b. Drow
(4) HohenOrdee thinking soins
 retried so Pe graph of Ber posent worover vilow Dinction
 Miestisom.
 maker 200 A tien a lochesd st mie maker x ind a 5 voving in an averager spend at 50 mier per trow.
2. Whe etwicion the that gives ine tree. in nouss, t wit thep the ces so reech


4. Doer


 Then grobhilie piecemise function

 Eunters and a ropge trat is urvber than or rewit to 4 : Se wee yout Inction atoo





## Review

## Rate Yourself! 而 (13) 自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

## Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- Why is it helpful to have different ways to graph linear functions?
- What can you learn about the graph of a linear function by analyzing its equation?
- Why is it important to understand how the structure of a function models a situation?
- If you know that a function is a step function, what do you know about how the elements of the domain are paired with the elements of the range?

Then have them write their answer to the Essential Question.

## DINAH ZIKE FOLDABLES

|EIL. A completed Foldable for this module should include the key concepts related to linear and nonlinear functions.

[^18]

## Test Practice

t ceser iven made a table of how much mone she wit esin trom bobysiting. iveni4 4


Whe the table to graph the function


2 OptN aRSFONSE Coby and complete the abie to tond the missing valkes in the thble hat thow the poists on the grach of $F(x)=2 x-4.2 x+3 x+4$

3. Open ressowse M. Hernander is druining his pool bo have it cleened. A2 800 AM . a had 2000 gallons of water and at tto0 A.M. II hed 500 givions lef to dirien. What is the rate of change in the amocune of water in the poof? Anvest
-500 galiseming
4. mucnife choice find the wope of the


## A. -1 <br> B $-\frac{3}{4}$ e $\frac{3}{2}$ <br> D. $\frac{1}{1}$

5. MUATRLE CHOICE Dotermine the slope of the Ine that passes throught the points (4. 20 ) and

A. -1
C. 1
D. undetines
6. ORADH Graph the equation of a line wath a slope of -3 and a yimeecept of 2 innoc 43

7. muctipu chioice what is me wope of the line that passes trough 18.4 ) and $(-7,4$ ? smowit
B. undetined

C $\rightarrow 2$
a. $\rightarrow 0$

## Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 4-1 through 4-7
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
All Module Test Form B
OL Module Test Form A
[BL. Module Test Form C

## Performance Task*

*The module-level performance task is available online as a printable document. A scoring rubric is included.

## Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-21 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$4,5,7,8$,   11,17
Multi-Select	Multiple answers may be correct.   Students must select all correct   answers.	18
Table Item	Students complete a table by   entering in the correct values.	2,15
Graph	Students create a graph on an   online coordinate plane.	$1,6,16$
Open Response	Students construct their own   response.	$3,9,10,12$,   $13,14,19$,   20,21

To ensure that students understand the standards, check students' success on individual exercises.

Standard	Lesson(s)	Exercise(s)
A.CED.2	$4-3$	8
A.REI.10	$4-1$	2
F.IF.2	$4-6$	15
F.IF.6	$4-2$	$3,4,5,7$
F.IF. 7	$4-1,4-3,4-4,4-6,4-7$	$1,6,16,21$
F.BF.1a	$4-5$	12
F.BF.3	$4-4,4-7$	$9,10,17,18$,   19,20
F.LE.2	$4-5$	$11,13,14$

A. Mutiple Choice a seacher buys 100 pencls to keep an her classusom at the begrving of as schoor was she allows ho whdons bonow poble but boy we not alwas 8 peoch a moneth with su equation in sboe intercept form that inpeseits manter ot pencls the has let y. atere number of x months in
A. $y=-8 r-100$
(3) $y=-8 x+100$
C. $y=8 x+100$
D. $y=8 \cdot-100$
9. OPEN aEsponse Name the tramformation that chenges the stope, on the steepnest of,


## diation

10. COIN RISPONSE Describe the diation of (a) $=\frac{1}{2}(0)$ as it reletes to phe gaph of rhe
 fancion by a tactor of ?
11. muttait criovet Ajun begins the calender yeor, wet 540 in his bank accoune Eich week the rectives an alowance of $\$ 20$, hat of whech the deposts into tis bark account. The situmion dercribes an arthmetc sequence. Which inction recrevents the amoum in Appots account after in wecka? 1-
A. 7 ( $\mathrm{pj}=20 \mathrm{n}+40$
B. $2 n=40 n+20$
( $1 / n=40+10 n$
D. $5 /(0)=20+40 n$
12. OPEN PESPONSE What number can be aned to complete the equation below that descrost the mis. of the winnets sequence $\rightarrow 2-15$.
$0_{2}=05 m-\frac{?}{25}$
13. OPEN mesponse Wite and graph a finction to represers the sequence $110,19,28$, $0.5-45$

14. OPEN RESPONSE Chrita Mas a bor of chocolose cindies. the number of drocoltes in exch iour fores an sithimetic sequence as. shown in the tritie $1=$ misi


Whe mo miraturetic function that con be coed to lind the number of chocolites in ench row.
15. Oper response Daniel eams 59 per hou at has job for the fint 40 hours he wods
each week howeve, his pay rite hoceases 513 So per hour thereator This stuation

- $-2 \mathrm{c}, \mathrm{il} \times \leq 40$
$50=\left\{\begin{array}{l}300+135(x-40 \% i x x>40\end{array}\right.$ Use this tunction to copy and complete the table with the correct vilues semocs 4

Hown woved, $x$	
30	270
35	35
40	160
45	4275
50	65s

26. GPAPH Graph the buxction $1(x)=2|x|$ innes ief

27. Mutnile chore Which of the following describes the effect a diation has upon the grapb ef the absolute value parent finction? Cinne at
A. Fsipped across axe

Sitretch or compression
C. Rotated about the origin
D. Sisted norizontally or vertically
R. Muthseuect Describe the tuinsformationts) of the function graphed below in relation to the abocinie value poreat fiunction setiect all


(4) Reflected accoss $\pi$-axiós

9 Vorical stretch
C. Vertical compresson
D. Refercted scross y-axes
E. Translated right 3

ETransiated up 3
19. OPENRESPONSE Describe the gachiol $g(M)=x+5$ in relation to the graph of the $g 00=1 x+5$ in rolstion to the griph af the

Saimple aiseer it is trandated 5 vinits ug.
20. Open aEsponse Aciost which mis a me Froch of $n(f)+-5$ ut rebected? fremit is? satis
21. Open responst Use the graphiot she function to wire is equation. setum + n

$|A|=-|x-4|+1$

Lesson 4-3
33.

34.

35.

36.


40b.


40 c. Sample answer: Find 13 along the horizontal axis. Move up to the line. The corresponding value along the vertical axis is about 45 . So, the cost of watching 13 movies from MovieMania is about $\$ 45$.

40d. Sample answer: The cost of watching 13 movies from MovieMania is about $\$ 45$, so divide $\$ 45$ by 9 to get $\$ 5$. So, the cost of watch a movie from Superflix is about $\$ 5$.

41b.


42b


Lesson 4-7
36.

$\mathrm{D}=$ all real numbers,
$R=f(x) \leq 3$
The graph of $f(x)$ is a reflection of the parent function across the $x$-axis, vertically stretched by a factor of 4 , and translated 2 units right and 3 units up.

37

$D=$ all real numbers,
$\mathrm{R}=f(x) \geq 0$
The graph of $f(x)$ is the parent function horizontally compressed by a factor of $\frac{1}{2}$
38.

$D=$ all real numbers,
$\mathrm{R}=f(x) \geq 0$
The graph of $f(x)$ is the parent function horizontally compressed by a factor of $\frac{1}{2}$ and translated 2.5 units left.

50a.

51.

52.


## Creating Linear Equations

## Module Goals

- Students create linear equations in slope-intercept, point-slope, and standard forms.
- Students use scatter plots to make and evaluate predictions, and use best-fit lines and correlation coefficients to determine how well linear functions fit sets of data.
- Students determine whether a situation illustrates correlation or causation.
- Students find inverses of functions.


## Focus

Domain: Algebra, Functions, Statistics and Probability Standards for Mathematical Content:
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
S.ID.6c Fit a linear function for a scatter plot that suggests a linear association.
S.ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Also addresses A.CED.3, S.ID.6a, S.ID.6, S.ID.8, S.ID.9, and F.BF.4a. Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

## Coherence

Vertical Alignment

## Previous

Students understood the connections between proportional relationships, lines, and linear equations.
8.EE. 5

## Now

Students create linear equations and analyze data to make predictions. A.CED.2, S.ID.6c, F.BF.4a

## Next

Students will use their knowledge of linear equations to build linear functions to model linear relationships.
F.BF.1(Course 1, Course 2)

## Rigor

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigorStudents gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY $\mid 3$ APPLICATION

## Suggested Pacing

Lessons	Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video		1	0.5
5-1 Writing Equations in Slope-Intercept Form	A.CED.2, S.ID. 7	1	0.5
5-2 Writing Equations in Standard and Point-Slope Forms	A.CED.2, A.CED. 3	2	1
Put It All Together: Lessons 5-1 through 5-2		1	0.5
5-3 Scatter Plots and Lines of Fit	S.ID.6a, S.ID.6c	2	1
5-4 Correlation and Causation	S.ID. 9	1	0.5
5-5 Linear Regression	S.ID.6, S.ID. 8	1	0.5
5-6 Inverses of Linear Functions	A.CED.2, F.BF.4a	2	1
Module Review		1	0.5
Module Assessment		1	0.5
	Total Days	13	6.5

${ }^{-}$Analyze the Probe
Review the probe prior to assigning it to your students.
In this probe, students determine why the equation for their best-fit line differs from the equation generated by their graphing calculator and explain their choices.

Targeted Concepts Understand how scale is used to determine and analyze the line of best fit.

## Targeted Misconceptions

- Students may not realize the importance of scale when analyzing and interpreting lines of best fit.
- Students may not understand that the $y$-intercept of a line of best fit is the value of $y$ when the $x$-value is equal to 0 , not the left-most point on the graph.
- Students may rely on what a graph "looks" like rather than understanding a regression model as the line of best fit, generated using the data points.


Use the Probe after Lesson 5-3.
Collect and Assess Student Answers

If the student selects
these responses...
Student 1. yes
Student 2. no
Student 3. yes

Student 4. yes

## Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Scatter Plots and Lines of Best Fit
- Lesson 5-3, Learn, Example 2

Revisit the Probe at the end of the module to be sure that your students no longer carry
these misconceptions.

## IGN|TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

## Essential Question

At the end of this module, students should be able to answer the Essential Question.

## What can a function tell you about the relationship that it represents?

Sample answer: Functions can tell you whether the value of dependent variable increases or decreases as the independent variable changes. They describe trends in data and can be used to make predictions.

## What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

## DINAH ZIKE FOLBABLES

Focus As students read and study this module, they should show examples and write notes about linear equations.

Teach Have students make and label their Foldables as illustrated. Students should label the first three pockets with two lesson titles each. Students should list the vocabulary words on one index card per lesson. On the reverse of each card, students write the definitions of the vocabulary words. The cards are then placed in the appropriate pocket. The index cards can be used as flashcards for students to quiz each other.

When to Use It Encourage students to add to their Foldables as they work through the module and to use them to review for the module test.

## Launch the Module

For this module, the Launch the Module video uses camping in the woods to show real-world applications of linear functions. Students learn about using linear relationships to model the heights of trees over time, the height above the ground of a person on a zip line, and other natural phenomena observable when camping.


## Interactive Presentation




Which enercises ded you anower coerwaty in the Guick Check?

3 Mohile 5 . Orating Linuru towinen

## What Vocabulary Will You Learn?

ㅌLㄴ As you proceed through the module, introduce the key vocabulary by using the following routine.

Define Slope-intercept form is an equation of the form $y=m x+b$, where $m$ is the slope and $b$ is the $y$-intercept.

Example $y=3 x+5$ has a slope of 3 and a $y$-intercept of 5 .
Ask Is the slope on the right side or the left side of the equation? right side

## Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- finding the slope and $y$-intercept from an equation in slope-intercept form
- finding the greatest common factor of a set of numbers
- writing linear equations given one point and the slope
- identifying patterns of association between two quantities
- using scatter plots to evaluate trends and make predictions
- making function tables


## OALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Functions and Lines section to ensure student success in this module.

## Mindset Matters

Regular Reflection
When students are asked to explain their thinking about their strategy they are engaging in thought organization, concise consolidation of knowledge, and deductive and inductive thinking.

## How Can I Apply It?

Have students complete the Exit Tickets at the end of each lesson to reflect on their learning and communicate their thinking. Have students share by writing down their reflections or discussing with a partner or in small groups.


## Focus

Domain: Algebra, Statistics and Probability
Standards for Mathematical Content:
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
S.ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
4 Model with mathematics.

## Coherence

Vertical Alignment

## Previous

Students used similar triangles to derive the slope-intercept form of an equation.

## 8.EE. 6

## Now

Students create linear equations in slope-intercept form.
A.CED.2, S.ID. 7

Next
Students will create linear equations in point-slope form and standard form.
A.CED.2, A.CED. 3

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Conceptual Bridge In this lesson, students extend their understanding of equations in one variable to equations in two variables and build fluency by writing these equations in slopeintercept form. They apply their understanding by interpreting slope and intercept in context.

## Mathematical Background

The slope-intercept form of the equation of a line is $y=m x+b$, where $m$ is the slope of the line, and $b$ is the $y$-intercept of the line. This general equation can be used to write the equation of a line when its slope and $y$-intercept are known.

## Interactive Presentation



Warm Up


Launch the Lesson

## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- finding the slope and $y$-intercept from an equation in slope-intercept form

Answers:

1. $-\frac{2}{3}, 5$
2. $-1,0$
3. $-9,3$
4. 2, -6
5. $y=0.11 x+0.23$

## Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch, students learn how to apply what they have learned about slope to a real-world situation about the flight paths of pilots.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Explore Slope-Intercept Form

## Objective

Students use a sketch to explore how changing the coordinates of points on a line affects the slope of the line.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use the sketch. Work with students to explore and deepen their understanding of the slopeintercept form of a linear equation.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to change the coordinates of two points on a line and observe how those changes affect the slope of the line. They will be guided through the exploration by a series of questions. They will then be asked to make generalizations about what they observed. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore
WEB SKETCHPAD
Students use a sketch to explore how changing points changes slope.

Students move through the activities and answer questions about the lines and their slope.

## Interactive Presentation



## Explore

## TYPE



Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

## Explore Slope-Intercept Form (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- What is true about the coordinates of the points when the slope is undefined? The $x$-coordinates are both the same.
- What is true about the coordinates of the points when the slope is negative? The $y$-coordinate of the point with the greater $x$-coordinate is less than the $y$-coordinate of the point with the lesser $x$-coordinate.


## (B) Inquiry

How does changing the coordinates of two points on a line affect the slope of the line? Sample answer: As the $y$-coordinate approaches the same value as the other $y$-coordinate, the slope gets closer and closer to 0 .
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

## 3 APPLICATION

## Learn Creating Linear Equations in SlopeIntercept Form Given the Slope and a Point

## Objective

Students create linear equations in slope-intercept form by using the slope of the line and the coordinates of a point on the line.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## About the Key Concept

To write an equation in slope-intercept form, you must know the values of $m$ and $b$. If these values are given, the equation can be written simply by substituting these values into the equation. If $b$ is unknown, use the point and the slope to substitute for $x, y$, and $m$, and solve for $b$. Then write the equation by substituting only for $m$ and $b$.

## Example 1 Write an Equation Given the Slope and a Point

## 11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AL. What two values are needed in order to write an equation in slopeintercept form? the values of $m$ (the slope) and $b$ (the $y$-intercept)
OL Why do you need to do Step 1? Sample answer: The value of $b$ is unknown, so it has to be calculated.
[BL. Why do you substitute for $x$ and $y$ in Step 1, but not in Step 2? In Step 1, you need the values of $x$ and $y$ to find $b$. In Step 2, you are writing the equation of the line, so $x$ and $y$ represent the coordinates of all the points on the line.

## Common Error

Some students may replace $x$ and $y$ with the coordinates of the given point in Step 2, as well as in Step 1. Explain that the given point represents only one point on the line, and that the variables $x$ and $y$ are left as such in the final equation, as they represent the coordinates of all of the points on the line.

## (3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



## Study Rip <br> slope when deteriving Stoos' and "docreasho represent a mpapiow Hoce: wid words the <br> 'gooutr" and <br> nostive sope. <br> Think About il Fouation and dencibe the mearsig in the content of the stiution

Sample aniver: The frematse 9 einaitec. The Noen alo 9 miniles. The in bie consent of the sibuationt.

Q Example 2 Write an Equstion in Slope intercept Form
2ascis Marissa is baking a recipe that cals for ber to turn down the empersture an ber oven for part of the baiding time. Wite an equation asry 39 seconds ind after 2 minutes the ter

## Step 1 Ditermine a point on the line and the slope.

Ater 2 iminstes the senperahireis $350 \%$
Let $x=$ the time in minutes and $y=$ the semperatore in ' $\bar{F}$
So, the point $Q$. 350 is on the live.

The temperahare drops $25 \%$ every 30 seconds
The chonge in $\approx$ is 30 seconds or a 5 mingte.
'Orops' meats a negatie change, se the change in $y$ is $-25^{\circ}$.

Stope $=$ trover nty $={ }^{23} \alpha-50^{\circ} \mathrm{F}$ per ininute
So, the slape is -50 .
Step 2 Find the $y$ intercept.
$r=m r+b$
Hoce wierceptserm
$350=-50 \lambda+b$
$350=-400+b$
$450=h$

## seoply

All hoo lo varp wile
This moans that ele tomperature of the oven was 450 R when
It was turned of
Step 3 Write the equation in slope-intercept form.

$$
\begin{array}{ll}
y=\pi x+0 & \text { Sopp-itervert ker } \\
y=-50 x+450 & =--30 \operatorname{sed} 0 \text { ut t50 }
\end{array}
$$

Check
MEMsebship The total monthiy cont of Ay zhel gyes membenhis increases by 55 per cans she amiends. Atter ooging up for 4 classes one month, her toteN cont is $\$ 4999$. Wrich equation regreserti Aycha's total montriy cost y atter ettonding $x$ casses?
A. $y=-5 x+2999 \quad$ U. $y=-5 x+6990$
C. $y=5 x+2999 \quad$ o. $y+5 x+69.99$


## Interactive Presentation

```
Ovevtion 3
```




```
 ###1mued
 Nr}=-5r+29.9
 my = -5r + 60, क)
 a)}=5x+29.9
 ay = 5x+69,90
```


## Ovention 3

```
2-91 entimed
m \(\mathrm{y}=-5 \mathrm{r}+69\), p)
a) \(=5 x+29,99\)
a) \(=5 x+69.90\)
```

Check
 an equation in slope-intercept form.

CHECK
Students complete the Check online to determine whether they are ready to move on.
Check

## Example 2 Write an Equation in Slope-

Intercept Form
Teaching the Mathematical Practices
1 Analyze Givens and Constraints In this example, guide students through the steps to identify the meaning of the problem and look for entry points to its solution.

## Questions for Mathematical Discourse

What information can be used to determine the slope? The temperature dropping 25 degrees every 30 seconds gives you information about a rate, or the slope.
oll What is the $y$-intercept? 450 What does it represent in this situation? the initial temperature of the oven

BLI. What is the temperature after 5 minutes? 200 degrees

## Common Error

Some students may use -25 for the slope instead of -50 . Explain that the units for both the slope and the relevant coordinate in the ordered pair must be the same. Since the point that will be used is $(2,350)$, and 2 represents 2 minutes, the slope should also be a rate measured in minutes.

1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

## Learn Creating Equations in Slope-Intercept Form Given Two Points

## Objective

Students create linear equations in slope-intercept form by using the coordinates of two points on the line.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Example 3 Write Equations Given Two Points

Teaching the Mathematical Practices
8 Use Slope Help students to pay attention to the calculation of the slope of the line.

## Questions for Mathematical Discourse

ALI How can you find the slope given two points? You can use the slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
OL Does the order matter when substituting values into the Slope Formula? Why? No; sample answer: It does not matter which coordinate is used first as long as the $x$ - and $y$-values are kept together.
EB․․ Why is it important to find the slope first? You need to use the slope to find the $y$-intercept.

## DIFFERENTIATE

## Enrichment Activity [BL

IF students are confused by learning more than one way to write a linear equation,
THEN have those students use the definition of slope to derive the slope-intercept form of a linear equation. Have them use the points $(0, b)$ and $(x, y)$ for the derivation.

## DIFFERENTIATE

## Enrichment Activity Aㅣ는Lㄴ

Write $(3,4)$ and $(5,4)$ on the board. Ask students to find $b$, the $y$-intercept, for the line that passes through these two points. After they have completed this, write $(3,5)$ and $(3,4)$ on the board and ask students to find $b$ for the line that passes through these two points. Have them share and explain their results. For the first pair of points, $b=4$. This is a horizontal line that passes through 4 on the $y$-axis. For the second pair of points, there is no $y$-intercept because these two points lie on the vertical line $x=3$.

```
Learn Creating Linear Equations in Siope-Intercept
Farm Gvon Two Points
```



```
cremsan eguwonn tort that ing
```



```
Twepoints
Step1 Une the given points to fod He slope of the line
containg the points
Step2 Use tre slope froes Step 1 anc etser ol me given points
Noffot the yimeccept of te ine.
Step 3 Use ge sope youlound in Secp 1 mod the yontercept you
Wrege slope you found in sep, 1000 trey y.tercept yo
Nound in Step 2 to wate the equation di the fre in sope
interceot form
Example 3 Wite Equators Given Two Points
Witee an equation of tre line that pases through (L2, 0.7) and
(34,16)
Step 1 Find the sope
```



```
 sephtumas
 m=\frac{15}{34}\frac{07}{24}
```



```
 m= -23/5
 m=-0.5
Step 2 Use vither point to find the y yintercept.
 pmax+b
 sco-mpwutwem
```



```
 15=17+b bemis,
 -at=0 Savectibimen won woe
Seep 3 write the equation in mope intercept form.
 y=0x+b SNencomontsum
 y=-25%-01 -n--05mab - -at
Check
Whee on equatond the line thar passes trough(-5. -3) und (-2,-12)
 y=%}\pi+\frac{#}{2
```



## Interactive Presentation



Example 3



## Interactive Presentation



## Apply Example 4



## Apply Example 4 Write an Equation Given Real-World Data

1.) Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with
a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

## Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.
Encourage Productive Struggle
As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

## Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What ordered pairs can be used to find the slope and $y$-intercept?
- How can the equation be used to predict future enrollment?


## ( Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Essential Question Follow-Up
Students have used data gathered from real-world situations to write equations that model the situation.

## Ask:

Why is it useful to have an equation that models the situation, and not just the table of values? Sample answer: It is useful because you can use the equation to make predictions about data values that are not given in the table.

## Practice and Homework

## Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-26$
2	exercises that use a variety of skills from this lesson	$27-49$
3	exercises that emphasize higher-order and   critical-thinking skills	$50-53$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice Exercises 1-49 odd, 50-53
- Extension: Collinearity
- ALEKS'Equations of Lines

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-53 odd
- Remediation, Review Resources: Slope-Intercept Form of a Line
- Personal Tutors
- Extra Examples 1-4
- DIEKS'Equations of Lines

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-25 odd
- Remediation, Review Resources: Slope-Intercept Form of a Line
- Quick Review Math Handbook: Writing Equations in Slope-Intercept Form
- ArriveMATH Take Another Look
- D ALEKS: Equations of Lines






## 

 an equaion in riepe-vtecept form to moded the amount Shitits owed esch stek. $y=-25 s+40$
 508 you pbout vep procisen?

保 wene wosiet emit met


a. Whe en equation is vope intecept som to roober the pouth of

Kobys poopy. $y=15 n+1$

pobleot? it Keey's pupy mighed ipound an bip po nortsy
 25, Kabry propy gioes 75 pocink a moath toc the frat 6 moetec
Oriphicionter Thitaling sams

a sope. 娄, wintetcepe $-8 \quad r=\frac{1}{i} r-3$

4. What poirt do te pripha d boh mquibint hive in coemat and nhat dome en

ot nwo tie usoon tess mo Jacmas are miting as eguiton at tre live friongh Erposie your resusing focime Ters sitited the re adrowerinutin on the

S2. weit Lhesr squationa ane idesa
 inctor in mu-moid maitions the mopt atteat the misubtiy of the groch in making any predctiont Seemieph



 devcree whal we kepe and y ansecept nien. See mapik

## Answers

52. Sample answer: If the problem is about something that could suddenly change, such as weather or prices, the graph could suddenly spike up. You need a constant rate of change to produce a linear graph
53. Sample answer: Let $y$ represent the number of quarts of water in a pitcher, and let $x$ represent the time in seconds that water is pouring from the pitcher. As time increases by 1 second, the amount of water in the pitcher decreases by $\frac{1}{2}$ qt. An equation representing this situation is $y=-\frac{1}{2} x+4$. The slope is the rate at which the water is leaving the pitcher, $\frac{1}{2}$ quart per second. The $y$-intercept represents the amount of water in the pitcher when it is full, 4 qt .

## Writing Equations in Standard and Point-Slope Forms

## LESSON GOAL

Students create linear equations in point-slope form and standard form.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Forms of Linear Equations

## Develop:

Creating Linear Equations in Point-Slope Form

- Equation in Point-Slope Form Given Slope and a Point
- Equation in Point-Slope Form Given Two Points
- Change to Slope-Intercept Form
- Apply Point-Slope Form
- Change to Standard Form
- Standard Form Given Two Points


## Equations of Parallel and Perpendicular Lines

- Parallel Line Through a Given Point
- Perpendicular Line Through a Given Point
- Determine Line Relationships

You may want your students to complete the Checks online

## 3 REFLECT AND PRACTICE

Exit Ticket

## Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	$\triangle l$	LIE	Ill	
Remediation: Greatest Common Factor				

## Language Development Handbook

Assign page 28 of the Language Development Handbook to help your students build mathematicall language related to linear equations in point-slope form and standard form.
CLLL You can use the tips and suggestions on page T28 of the handbook to support students who are building English proficiency.


## Suggested Pacing

90 min
45 min
1 day 2 days

## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A.CED. 3 Represent constraints by equations or inequalities,
and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
8 Look for and express regularity in repeated reasoning.

## Coherence

Vertical Alignment

## Previous

Students created linear equations in slope-intercept form.
A.CED.2, S.ID. 7

## Now

Students create linear equations in point-slope form and standard form.
A.CED.2, A.CED. 3

## Next

Students will use their understanding of different forms of linear equations to write equations for lines of fit that represent scatter plot data.
S.ID.6a, S.ID.6c

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students extend their understanding of linear equations in two variables to two additional forms, standard form and point-slope form. They build fluency by writing equations in these forms and apply their understanding by using linear equations to solve real-world problems.

## Interactive Presentation



Warm Up


Launch the Lesson


[^19]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- finding the greatest common factor of a set of numbers

Answers:
1.1
2. 12
3.6
4. 4
5. 18 in.

## Launch the Lesson

Teaching the Mathematical Practices
2 Create Representations Students can use the information in the Launch to write an equation that models the number of international arrivals to the United States since 2010.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Mathematical Background

Point-slope form is derived from the definition of slope using the coordinates of two points on a line. Suppose the two points on a line are given as $(x, y)$ and $\left(x_{14} y\right)$. Using the definition of the slope, $m=\frac{y-y_{1}}{x-x_{1}}$. If each side of the equation is multiplied by $\left(x-x_{1}\right)$, the result is $y-y_{1}=m\left(x-x_{1}\right)$, the point-slope form of a linear equation.

## Explore Forms of Linear Equations

## Objective

Students use a sketch to explore linear equations in point-slope form and slope-intercept form.

Teaching the Mathematical Practices
2 Represent a Situation Symbolically Guide students to define variables to solve the problem in this Explore. Help students to identify the independent and dependent variables. Then work with them to find other relationships in the problem.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to plot a point, and then draw lines with different slopes that pass through the point. They also will observe and compare the equations of the lines that they draw, written in both slope-intercept form and point-slope form. They will be guided through the exploration by a series of questions. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

## WEB SKETCHPAD

Students use a sketch to explore forms of linear equations and complete the exercises.

## TYPE



Students observe and compare the equations of lines in different forms.

## Interactive Presentation

$\square$
Explore
TYPE
Students respond to the Inquiry Question and can view a sample answer.

## Explore Forms of Linear Equations (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- How could you write the slope-intercept form of the equation if you know the point-slope form? Solve the equation for $y$.

How are the point-slope and slope-intercept forms of a linear equation related? Sample answer: They both contain $x, y$, and the slope, but the point-slope form contains the coordinates of a point on the line, while the slope-intercept form contains the $y$-intercept.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Creating Linear Equations in Point-Slope Form

## Objective

Students create linear equations in point-slope form by applying the properties of equality.

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation of a line in point-slope form using the steps outlined in this Learn.

## About the Key Concept

The point-slope form of a line is actually a transformation of the slope formula, $m=\frac{y-y_{1}}{x-x_{1}}$. If you multiply both sides of the formula by the expression in the denominator of the fraction, you get the point-slope form of a line, $y-y_{1}=m\left(x-x_{1}\right)$.

## Common Misconception

A common misconception some students may have is believing that one of the numbers in an equation written in point-slope form is the $y$-intercept of the line, as is the case with equations written in slopeintercept form. Provide examples of equations written in point-slope form, and have students identify what each number and each variable represent.

## (3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation




## Interactive Presentation



Example 1


## Example 1 Equation in Point-Slope Form Given Slope and a Point

Teaching the Mathematical Practices
4 Use Tools Point out that to solve the problem in this example, students will need to use the formula for point-slope form.

Questions for Mathematical Discourse
What is the point-slope form of a linear equation? $(y-y)=m(x-x)$ What values will you substitute into the equation? I will substitute -2 for $x_{1}, 7$ for $y_{1}$, and $-\frac{3}{2}$ for $m$.
OLI In the final answer, why is the quantity in the parentheses $x+2$ instead of $x-2$ ? When you substitute -2 for $x_{1}$ you get $x-(-2)$, which simplifies to $x+2$.
If the equation of a line in point-slope form is $y+1=5(x+7)$, what is the slope and what is an ordered pair that the line passes through? Sample answer: The slope is 5 and an ordered pair is $(-7,-1)$.

Common Error
Students may interchange the substitutions when substituting for $x_{1}$ and $y_{1}$ because $y_{1}$ appears first in the equation while $x$ appears first in the coordinates. Remind them that the $y$-coordinate is subtracted from $y$ and the $x$-coordinate is subtracted from $x$.

## Example 2 Equation in Point-Slope Form Given Two Points

Teaching the Mathematical Practices
2 Different Properties Mathematically proficient students look for different ways to solve problems. Encourage them to substitute the other point into their equation to check their answer.

## Questions for Mathematical Discourse

ALl What two things do you need to know in order to write an equation in point-slope form? a point and the slope Do you have the information you need to write an equation in point-slope form? Explain. No; the slope is missing.
OLI. In Step 1, could you have used $\left(x_{11} y\right)=(6,-3)$ and $\left(x_{22} y\right)=$ ( $2,-7$ )? yes Explain. Sample answer: Switching the ordered pairs gives $m=\frac{-7-(-3)}{2-6}=\frac{-4}{-4}$ or 1 which is the same as what was calculated the first time.
[BLI How can you check your answer? Sample answer: I can take the coordinates of the point that I did not use to write the equation, substitute them for $x$ and $y$ in the final equation, and check that they satisfy the equation.

## Common Error

Some students may try to use both points when substituting in Step 2. Point out that after Step 1, the procedure is identical to the procedure they learned in the previous examples, where the given information included the slope and one point.

## Example 3 Change to Slope-Intercept Form

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

## Questions for Mathematical Discourse

4I. What operation do the parentheses in the point-slope form indicate? multiplication
OLI What is the first step in rewriting the equation? Use the Distributive Property to rewrite $-2(x-6)$ as $-2 x+12$.
B1. How can you check the answer? Substitute the coordinates of the point $(6,-4)$ into the slope-intercept form of the equation to see if the equation is true.

## Common Error

Some students may look at the equation that results after applying the Distributive Property, and identify the $y$-intercept of the equation as 12. Remind them that the equation must be solved for $y$ in order for the number being added to the $x$-term to be the $y$-intercept.

Example 2 Equation is Point-Siope Form Given Two Points
Whe an equatlon in point-tope form for the line that passes through the given points.
(2. -7 ) and $(6,-3)$

Step 1 Find the slope.

$\operatorname{steg} 2$ write an equation.
You con seivcr everer peint for ( $x, y$, $y$ in poinn siopo form $x-n=n\{x=-3 \quad$ Nonswopelimen


Crieck
Seiect an equation in poik--viope sorm for the line that passes treough
$(-16$. fien and $(-1 t,-2) \quad$ a
A. $y+2=-4(x+7)$
B. $y+2=-\frac{1}{2}(x+m$
C. $y=2=-4 x+15$
D. $y \quad 2=\frac{1}{4}(x)$ Th
E. None of trese

Example 3 Change to Stope-intorcept form
White $y+4=-2(x-6)$ in slope-intarcept form

$y+4=-2 x+0 \quad$ Dusibvere Mroedy
$y=-2 x+8 \quad$ Sefocit 4 han enan vele
Check
Winte $y+3=-\frac{1}{2}(x-8)$ in wope-imercept form.
$y=\frac{?}{-\frac{1}{2}} x+\frac{?}{1}$
(3) cr cille Wo ino complee in frout trappio ontive
$\Theta$ Think About ilt Whe aopther equation In pointsoge form for the line wat ve point glen
$x+7=b-27$
Wity ace inpere nutiple correct answers whn the same oven
informason?
Sample answer: Only a tlope and one poirf on arbe an equition of the line. Any poitt on A ine con be pied to ine con be unsolio If tien poists are given, irsmo possts are give. used to write an nquivilent rquation nquivalent equation.

## Stusy Tip

Checking Your Wook
To chock your wok you
can sabrestie tive poirt
from pe ougnsp
sope form alsp
skop fom arsp

intecest forn of the
equator Meha tive
itwenverk the equation
isconect
$y=-2 x+a$
$\begin{array}{ll}y=-2 x+8 \\ -1 & =-2 h+B\end{array}$
$-4=-12+8$
$-4=-4$.

## Interactive Presentation



Example 3



## Interactive Presentation



Example 4



298 Module 5 - Creating Linear Equations

## Example 4 Apply Point-Slope Form

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about writing equations in point-slope form to solving a real-world problem.

Questions for Mathematical Discourse
AII What ordered pairs could you use to help write the equation? $(5,61.25)$ and $(15,159.75)$
IOL How can you calculate the slope from the information in the
 points (5, 61.25) and (15, 159.75).
BLL Could you write a different equation to represent this same situation? Explain. e§; sample answer: I could use the other point to write an equation in point-slope form: $y-159.75=$ $9.85(x-15)$. I could also rewrite the equation in slope-intercept form: $y=9.85 x+12$.

Essential Question Follow-Up
Students have created linear equations in different forms to represent real-world situations.

## Ask:

When an equation that models a real-world situation is written in slope-intercept form or point-slope form, you can easily identify the slope. What does the slope tell you about the sistaatipina? answer: It provides information about the rate at which the quantities in the situation are increasing or decreasing.

## Example 5 Change to Standard Form

1) Teaching the Mathematical Practices

1 Seek Information Mathematically proficient students must be able to transform algebraic expressions to reach solutions. Point out that gaining fluency in this skill is as important as learning their math facts was in the elementary grades.

## Questions for Mathematical Discourse

AL. What is the standard form of a linear equation? $A x+B y=C$
OL. Why can the equation not be left as $-2 x-5 y=1$ ? Sample answer: In standard form, the coefficient of $x$ has to be greater than or equal to 0 .
BLI Could you do the operations in a different order and still arrive at $2 x+5 y=-1$ as the answer? Explaiample answer: । could distribute the $\frac{2}{5}$ first to get $y \frac{2}{5} 1 \frac{6}{5} x-$. Then 1 could multiply each side by 5 to get $5 y-5=-2 x-6$.

## DIFFERENTIATE

## Reteaching Activity ALI ZLL

IF students have difficulty recognizing when an equation is written in standard form,
THEN present them with a list of 10 equations, some in standard form, others not in standard form, and have them work with a partner to sort the equations into those that fit the requirements of standard form and those that do not. For those equations that do not, have the students indicate why not.

## Example 6 Standard Form Given Two Points

10 Teaching the Mathematical Practices
1 Special Cases Work with students to evaluate the two methods. Encourage students to familiarize themselves with both methods, and to know the best time to use each one.

Questions for Mathematical Discourse
ALI. Does the problem provide enough information to directly write an equation in standard form? Explain. No; sample answer: If you only know two points that lie on the line, you cannot write an equation in standard form without first writing it in one of the other forms.
Ol. Why must you first write the equation in either slope-intercept form or point-slope form? Sample answer: The information provided cannot be used to determine the values of $A, B$, and $C$ in standard form. Therefore, you must use the information to write the equation in one of the other forms first, and then rewrite the resulting equation in standard form.
B1. How can you check whether the equation in slope-intercept form and the equation in point-slope form are equations for the same line? Sample answer: I can rewrite both equations in standard form and see that they produce the same equation.

## Common Error

Some students may confuse the three forms of a linear equation. For these students, it may be helpful for them to see the three forms of a particular equation side-by-side so that they can compare their structures and identify what the numbers represent.

Example 6 standard Form Given Two Points Write an equation in standard form for the line that passes threwgh $(8,-4)$ and $(-6,-11)$.		
Step 1 Find the slope. $\begin{aligned} & m=\frac{y-y}{y-2} \\ & m=\frac{-n-1-1}{-1-h}=2=2 \text { or } \frac{3}{2} \end{aligned}$	Sope Fonsais	(3) Go ontine An aternste finthod is aralisbie for wis. exsmple.
Step 2 Write an equation in slope-intercept form.		OThink About if
$F=m x+b$	Posotinnuet temo	Instep 2 inty is F
$-1 * 2{ }^{2}+6$		equatios in eiver
- $4=4+b$	Simultr	slope-intaccept form or point-siope form and
$-8-b$	Simbia 4 Momenen use	weie get the same
$y-\frac{1}{2} x-8$		form?
Step 3 Write the equation in standard form.		Semplo atiwer Al
$2 y=2\left(\frac{1}{2} x-8\right)$	Mihay eommate ?	itree forms reptetert ngovatrat eqiatient.
$2 y=x-16$	Dintoper Probery	
$-x+2 y=-16$	Simune ctatemes now	
$x-2 y=16$	Witiply eath wite ty -t	
Check		
Select the equistion in standard form for the line that passes truough $\{-9,3$ and $\{(,-12\} \quad 0$		
A. $\mathrm{x}+2 \mathrm{y}=-20$		
a. $2 x+y=-13$		
C. $2 x+y=7$		
D. $2 x+y=-10$		
E. $x+2 y=20$		
Lesven 52-Wmpg towness in Sivilid ond hert.Sope form 299		

## Interactive Presentation



## Example 6




## Interactive Presentation



## Learn



## 1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY 3 APPLICATION

## Learn Equations of Parallel and Perpendicular Lines

## Objective

Students create and identify equations of parallel or perpendicular lines by using slope criteria.

Teaching the Mathematical Practices
2 Create Representations Guide students to write the equations of two parallel lines and two perpendicular lines using the information in this Learn.

## About the Key Concept

If two lines are parallel, they will have the same slope. If two lines are perpendicular, their slopes will be negative reciprocals.

## Common Misconception

Some students may believe that $\frac{1}{m}$ will always result in a negative slope. Help them to see that when $m$ is a negative number, $\frac{1}{m}$ will be a positive number. For these students, it may be helpful for them to use the phrase "the opposite of the reciprocal" when working with the slopes of perpendicular lines.

## Example 7 Parallel Line Through a Given Point

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

Questions for Mathematical Discourse
AL What is the relationship between parallel lines? They have the same slope.
OL Why might you use the point-slope form of a line to write the equation, even though the problem asks for the equation in slopeintercept form? I know a point that lies on the line, and the slope of the line from the given equation. I can then rewrite the pointslope form equation in slope-intercept form.
When graphing these lines, which line would appear above the other? $y=3 x+14$ How do you know? Sample answer: $y=3 x+14$ has a positive $y$-intercept while $y=3 x-5$ has a negative $y$-intercept, so $y=3 x+14$ would be on top.

## 1 CONCEPTUAL UNDERSTANDING <br> 2 FLUENCY <br> 3 APPLICATION

## Common Error

Some students may try to use the $y$-intercept, as well as the slope, from the given line. Explain that only the slopes of parallel lines are related, and that the only information needed about the given line is its slope.

## Example 8 Perpendicular Line Through a Given Point

## (11) Teaching the Mathematical Practices

1 Seek Information Mathematically proficient students must be able to transform algebraic expressions to reach solutions. Point out that gaining fluency in this skill is as important as learning their math facts was in the elementary grades.

## Questions for Mathematical Discourse

ALI Do you know the slope and $y$-intercept of the new line? no Which one should you find first? the slope
OL. How do you know what to do first? Sample answer: I need to find the slope of the line. So, write the given equation in slopeintercept form by solving for $y$. The slope of the given line will be the coefficient of $x$, which is $\frac{3}{2}$.
How can you check the answer graphically? Sample answer: Graph both lines to verify that the lines are perpendicular and that the second line passes through the point given. Perpendicular lines meet at right angles, so if I put the corner of a piece of paper on the point of intersection and the edges of the paper align with the two lines, then the lines are perpendicular.

## Common Error

Some students may make an error when the slope of the given line is a whole number. Remind students that a whole number can be written as a fraction with denominator 1 . For example, if the slope is 4 , students can write it as $\frac{4}{1}$, and then find the opposite of the reciprocal for the slope of the perpendicular line, which will be $-\frac{1}{4}$.

## DIFFERENTIATE

## Enrichment Activity [BL

Write $4 x+3 y=8$ on the board. Ask students to rewrite the equation in slope-intercept form. Have students name the slope and draw a conclusion about the relationship between the slope and the values of $A$ and $B$ when an equation is written in standard form, $A x+B y=C$. Then ask students to describe why it might be useful to write equations in slope-intercept form. $y=\frac{4}{3} x+\frac{8}{3}$; The slope is $-\frac{4}{3}$, so $m=\frac{A}{B}$; sample answer: It is easy to identify the slope and $y$-intercept when an equation is in slope-intercept form, which can make graphing easier.

Steps 2.3 Write the egcation of the paratiet line.
Une the poish-10pe form to rewicte the equation in wope-ineercept fort

$$
y-n=m(c-n) \quad \text { polntioon fom }
$$

$$
y-2=3 x+4
$$

tesplity

$$
r-2=3 x+12 \quad \text { Destowne Aroenty }
$$

$y=3 x+4 \quad$ Andi2 Eiseminke
Creck

to the greah of $y=\frac{1}{3} x+2$.
$y=\frac{3}{3} x-4$

Example 8 Perpendiculor Line Through a Given Point
Winte an equastion in slope-intercept form for the line that passes through $(\mathrm{f},-2)$ and is perpendicular to the graph of $3 x+2 y=12$.
Step 1 identify the slope of the given line.


Oronur rquito
$7 y=12-3$ Satextar hymerictuer
$2 y=-3 x+12$ Sinoly
$\frac{3 y}{2}=\frac{-3}{2}+\frac{3}{2}$ Pivise ench voe tre? Sanaly
The slope of ive line with equasion $3 x+2 y=126 \mathrm{H}=\frac{3}{2}$. The vope or the line perpendicular to that line is the coposite. reclorocal?
Steps 2,3 Write the equation of the perpendicular fine.
Use the poirctiope form to remite the equation in slopeintercept foim.
$y-y=(-13(x-x)$
$x, y=(-1,-x)$ - porit wion lones
$y+2=3(x-1) \quad$ Sing

$y=\frac{2}{3} x-\frac{1}{3} \quad$ Sutanct 2 il oen mecti side


## Srudy Tip

Checking Youn Work
Tocheck the your
equifon secreserts tep
correct tise gaph oom
ines. Verty thus the
ines eopens to be ine passer throworn ine oiven oont.

## Interactive Presentation



Example 8
Students move through the steps to write
an equation in slope-intercept form that is
perpendicular to another line.


## Interactive Presentation



Example 9
 to complete each sentence.

## CHECK



Students complete the Check online to determine whether they are ready to move on.

## Example 9 Determine Line Relationships

Teaching the Mathematical Practices
1 Monitor and Evaluate Point out that in this example, students must stop and evaluate their progress and change course to find the ultimate solution.

## Questions for Mathematical Discourse

ALl What do you need to know about a pair of lines in order to determine whether they are parallel or perpendicular? their slopes
OLI What is true about the slopes of parallel lines? They are the same. What is true about the slopes of perpendicular lines? They are negative reciprocals of each other, so their product is -1 .
BL. Why is the product of the slopes of a pair of perpendicular lines always the same number? Sample answer: Because the slopes of perpendicular lines are negative reciprocals of each other, and the product of a number and its reciprocal is always 1 , the product of the slopes will always be -1 .

## Common Error

Some students may forget to simplify one or both slopes, and therefore may not correctly identify the relationship between them. To help students avoid making this error, encourage students to write the slopes in simplest form.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-36$
2	exercises that use a variety of skills from this   lesson	$37-48$
3	exercises that emphasize higher-order and   critical-thinking skills	$49-55$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, <br> THEN assign:

- Practice, Exercises 1-47 odd, 49-55
- Extension: Parallelograms on the Coordinate Plane
- D ALEKS'Equations of Lines

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-55 odd
- Remediation, Review Resources: Greatest Common Factor
- Personal Tutors
- Extra Examples 1-9
- D ALEKS'Prime Numbers, Factors, and Multiples

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-35 odd
- Remediation, Review Resources: Greatest Common Factor
- Quick Review Math Handbook: Writing Equations in Point-Slope Form
- ArriveMATH Take Another Look
- GLEKS'Prime Numbers, Factors, and Multiples


```
conous
WWhe each equation in standend form.
```



```
8, y-x+1 x-y=-1 20.y-3x-10, x-3y=30
Empows
*)
point!. Sargle atwem give
```



```
23. (-4.9.(2.-9. 3x+y*-3) 24. (-2.9) and D. 35) 4x-y=-23
Evorove 7ane:I
Write an equalion in ulope Sitarcept form for the Line that passes trough mas given
point and is pariluet to the gruph of the equation. That write an equaton for the
thof tur posses twough the given point ans is peependiculer to the gregh of tso
equylion. Smple unvwrs gree
25.a-2vy=x+4
 y=s-5: y=-s+1
 27.10.2xy=-5s+8
 y=-5p+2y=2
 y=-j<y=2x+10
```



```
konve
Ostermine whethet the prophs of esch pair of eqgations are porebec
mepentlouter, oc neither:
```




```
35.2k+5y=15 nethen (3)
Museg Exercises
```



```
 Sample Amuer 5s+4r=20
```



# Whice each equation in slope-intercept and standerd soome <br> 38. $x+3=-52 x+9$ <br> 2xy $y+4=30 v+3$ <br> 40. $x-6=-3(x+2)$ <br> 4. $\begin{aligned} & y-9--6 x+9 \\ & y=-6 x-45: 5 x+y=-45\end{aligned}$ <br> 42. $y+4=3(x+7$ <br> $42, r+7-30 r+310$ <br> $y=\frac{3}{2}+\frac{2}{2} 2 x-2 y=-2$ 

44. Coosiber the givens of the lobpering equition
$y=-2 x \quad 2 y k i \quad 4 y=2 c+4$
a. Whict eqiatroes ors owithe? Eploh yeur restionang



 Bey hive alipper that they oppopte seciprocin.




 ibe etber celleg wall has a ulope of e

 Mo.lec fint ip puit sorowng



 thows the tospectory al the er.
 The jers trajecasy Sempleminwry $y-0=0.5 \%-9$


c. Whit the envolon in standard home $x-2 y=0$

 Tolowfors. revelay
Oripher-Oider Thinkion stily
45. morry Wou idomubon a oeeded no wite the ebastan of a bee? Explsec

 pontrien the ine
 تle graph of $3 \varepsilon-2 y=10$. Do vovagree? Avary your moiment. We, bobr ines birv a wope of ts, to me lies ser poralet.
 $2 x-y=-5$ Do you agee' Jumtly your agoment. No, the lise treouph $a,-10$


 Bete ines medentersedat5, -6 .


Serut amex $y-r=\frac{1-9}{n-7}(x-h)$
 tintry your conctionsa



 coirs lope lorm ind an vegation in shpe irmitceat ionm



## LESSON GOAL

Students use scatter plots to make and evaluate predictions.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

## Scatter Plots

- Evaluate Correlation

Explore: Making Predictions by Using a Scatter Plot

## Develop:

Lines of Fit
-Write an Equation for a Line of Fit
You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE



Exit Ticket

## Practice

Formative Assessment Math Probe

## DIFFERENTIATE

View reports of student progress on the Checks after each example.


## Language Development Handbook

Assign page 29 of the Language Development Handbook to help your students build mathematical language related to using scatter plots to make and evaluate predictions.

FEll You can use the tips and suggestions on page T29 of the handbook to support students who are building English proficiency.


## Suggested Pacing <br> 

## Focus

Domain: Statistics \& Probability
Standards for Mathematical Content:
S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data.
S.ID.6c Fit a linear function for a scatter plot that suggests a linear association.
Standards for Mathematical Practice:
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.

## Coherence

Vertical Alignment
Previous
Students created linear equations in point-slope form and standard form.

## A.CED.2, A.CED. 3

## Now

Students use scatter plots and lines of fit to make and evaluate predictions. S.ID.6a, S.ID.6c

Next
Students will determine whether a situation illustrates correlation or causation. S.ID. 9

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of and fluency with scatter plots (first studied in Grade 8) to prepare for using lines of fit to make predictions. They apply their understanding of linear associations by solving real-world problems.

## Mathematical Background

A scatter plot consists of graphs of ordered pairs that belong to a set in which the $x$-coordinate represents one real-world measurement and the $y$-coordinate represents another. If a set of data exhibits a linear trend, a line of fit can be drawn and an equation of the line can be written to summarize the data.

## Interactive Presentation



Warm Up


Launch the Lesson


[^20]
## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- writing linear equations given one point and the slope

Answers:

1. $y=2 x-4$
2. $y=-3 x-5$
3. $y=1.5 x+6$
4. $y=-x+\frac{10}{3}$
5. $y=65 x+75 ; \$ 270$

## Launch the Lesson

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern of the data in the scatter plot and to explain how the data can be used to make predictions about the future.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Explore Making Predictions by Using a Scatter Plot

## Objective

Students use a sketch to explore using a line of fit to make predictions about a set of data.
(1) Teaching the Mathematical Practices

3 Reason Inductively In this Explore, students will use inductive reasoning to make plausible arguments.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to create a scatter plot for a given set of data. They will explore how a scatter plot can be used to approximate a line of best fit, and how that line can be used to help make predictions about additional data values. They will be guided through the exploration by a series of questions. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

## WEB SKETCHPAD

Students use a sketch to analyze the data and complete the exercises.

TYPE
Students answer questions about the created graph.

## Interactive Presentation



## Explore

## TYPE

a
Students respond to the Inquiry Question and can view a sample answer.

## Explore Making Predictions by Using a Scatter Plot (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- What do you notice about how the location of the line is related to the points? Sample answer: The line is drawn in such a way so that there are about the same number of points above the line as below the line.
-Why is the line helpful? Sample answer: You can use it to estimate additional data values.


## (4) Inquiry

How can you use a scatter plot to estimate unknown data? Sample answer: If the data have a linear relationship, you can find a line to describe the data. Then, use the line to estimate unknown data.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Scatter Plots

## Objective

Students categorize the correlation of a set of data in a scatter plot.Teaching the Mathematical Practices
2 Create Representations Guide students to compare the different representations of correlations in this Learn.

## Important to Know

The concept of bivariate data will be new to most students. Explain that there may or may not be a relationship between the two variables, and that a scatter plot can help identify a trend in the data. Help them to see that a trend is indicated when the general pattern in the data is somewhat linear, either increasing or decreasing.

## Example 1 Evaluate Correlation

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about correlation to solving a real-world problem.

## Questions for Mathematical Discourse

Ali. Looking at the scatter plot, do the two variables appear to be related? Explain how you know. Yes; sample answer: While the data is all over, there are several points that suggest a line with a positive slope.
OL. What does the graph indicate about the data? Sample answer: In general, the taller a player, the more he weighs.
BL. How is slope related to the description of a linear correlation? Sample answer: In a positive correlation, the points tend to approximate a line with a positive slope. In a negative correlation, the points tend to approximate a line with a negative slope.

## Common Error

Students may have difficulty determining a trend because the data varies widely. Explain that not all of the data points need to lie on a line for there to be a correlation. The degree to which the points do approximate a line indicates the strength of the correlation.

## (3) <br> Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation




## Interactive Presentation



Learn
TYPE


Students answer a question to show they understand lines of fit.

## DIFFERENTIATE

## Enrichment Activity [BLI

Write $(1,101),(2,9.8),(3,10),(4,10.5),(5,10.4),(6,10.8)$, and (10.3) on the board. Have students work in pairs, and challenge them to use the data to draw two scatter plots: one that indicates no correlation, and one that indicates a positive correlation. Discuss how graphs can be manipulated to lead to differing conclusions about a set of data.

## Learn Lines of Fit

Objective
Students make and evaluate predictions by fitting linear functions to sets of data.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## About the Key Concept

If a scatter plot shows a linear trend, you can draw a line of fit to model that trend. Once a line is drawn, you can find an equation of that line and use that equation to make predictions about additional data points.

## Common Misconception

A common misconception some students may have is that a line of fit must pass through at least one point on the scatter plot. This is not true. The line of fit must follow the trend of the data, but need not pass through any of the points.

## AExample 2 Write an Equation for a Line of Fit

Teaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Questions for Mathematical Discourse
ALI Once the line is drawn, how can you determine its equation? Sample answer: I can use two points that lie on the line to find its slope. Then I can use the slope and one of the points to write an equation in point-slope form.
OLI. Is it possible that two different people could write different equations for a line of fit and both be correct? Explain. Yes; sample answer: The two people may have drawn slightly different lines, and therefore would have used different points to create the equation.
3. How does the strength of a linear correlation affect the accuracy of the equation of a line of fit for the data? Sample answer: The stronger the relationship, the closer the points will be to the line, making it a more accurate model of the data.

## Common Error

Some students may use 2005 and 2025 for the values of $x$ when using the equation to make their predictions. Refer them back to the table and the graph to help them see that the $x$-value represents the number of years since 2000, not the year itself.


## Interactive Presentation



Example 2



## Interactive Presentation



Check


310 Module 5 • Creating Linear Equations

## DIFFERENTIATE

## Enrichment Activity

IF students need more practice making and interpreting scatter plots, THEN have each student make a scatter plot of their age ( $x$-values) and height ( $y$-values) for the first ten years of their life. Students estimate their heights as needed, but check to be sure estimates are reasonable. Ask them to draw a line of fit and write the slope-intercept form of an equation for the line. Then ask them to compare their current height with that derived from their equation.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-6$
2	exercises that use a variety of skills from this lesson	$7-16$
3	exercises that emphasize higher-order and   critical-thinking skills	$17-21$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90\% or more on the Checks,
THEN assign:

- Practice Exercises 1-15 odd, 17-21
- Extension: Latitude and Temperature
- ALEKS'Scatter Plots and Lines of Best Fit

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Equations for Lines of Best Fit
- Personal Tutors
- Extra Examples 1, 2
- ALEKS'Scatter Plots and Lines of Best Fit; Equations of Lines

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-5 odd
- Remediation, Review Resources: Equations for Lines of Best Fit
- Quick Review Math Handbook: Scatter Plots and Lines of Fit
- ArriveMATH Take Another Look
- D. ALEKS'Scatter Plots and Lines of Best Fit; Equations of Lines


11a.


Practice

ansel
Dubermine wheber each scaser plot nhown a postiven nepgthe, or no comention. It the





3, mut 2

 trom 2010 soc 2 ch .



a. y the wend conforits, whis will be toe eeabpg home in 2025 ? wowt \$as2.300


## Winet Enentises

 ase a civo nom beth inu adibued



in soope isteccot sorm. $y=256$
 dian bow in 2013 an ape in mbort 55.270
Onemion whether each water poter shows bpositive, inegotive. of ne correlation.





a. Mave 5 vaitter pot rebiting ap
B. Determine meneter te proti shom a postive nepobve, or no comevbeco


 Sople enner about $\$ 35$ sse
 Nowoul foumst fespup scapt tom 2007102016.
 Egobis posther contatiot An the nimber of ywars sirce D. 1507 TNC sope-itlecept form of an equanoh for ped line offer thom whee x in the aumber of yewn since 2006 Aourd ta the reweuthingedh $y=237 r+5424$
e. Prebic the onice of a scuet in 2030. about $\$ 1395$


a. Discres the trecd an the dint yom in the scaber pot and 3 se


 pior Expibn your matboing See mivil.
15. Usc a moons the poble give the ise erpectioncy of a chas bom ne ted Unted Sanes n a pron ynac.

 in 2022 Shound to oir havent sent Dsec your anime follow the tend of the datat toplen. Set margin
c. Ephian acy muwnptons you madr when unnp tle ine of le wo etropolate ind find the ilfe expectucy of 0 omby
 contivies se an the wer increases. De le eqpodascy abe


 nidruay nopr beet town, The tible koos how mbry peopie were in ench prow Ara that long in tock esch grove to friat the igb.

## 

a. Gonptye deta on a vimer ove See mupp.



d. Agoterer grop wenti to got done in 45 minuter. Absul how numy wosen ubld they haep liscien you rrasoning Since ra the ming
 consed of the stiatont juidy

Oikgher-Drder thiskang skile
 Oescrov whether there is ponbive nepptve or no corretion Sumple animer the wiver of
 tipher He wing mosis lively be

 Hong, The ofter ithatien tave a poitive comelation dis has so cinvabion.
noon woredd end amorta nown mervich en wedingos that gein an semage $0 / 2$ centinaten usch neet.
neige of masives and
torateredor
number of ancton tioned on:



 tbive and I point betbiw the loe.

 alle matinue indetotelip

 could use bey sciner pot ts predit oe soe of operton oven hin at her height. How



1 CONCEPTUAL UNDERSTANDING

## Answers

11b. Sample answer: $x$ represents the number of years since 2005, so year 2005 is represented by $x=0$ and year 2020 is represented by $x=15$. Two points on the line of best fit are $(4,175)$ and $(12,189)$. Use these two points to find the slope to be 1.75 and the equation of the line of best fit to be $y=1.75 x+168$.
12a.


14b. Sample answer: The number of miles a car has driven and the number of gallons of gasoline in the tank; this would also be a negative correlation because as a car is driven, the amount of gasoline remaining in the tank decreases.

15a.


15b. Sample answer: About 81.8; The data show a positive correlation, so as the years increase, the life expectancy also increases. Therefore, the life expectancy should be higher than that of a baby born in 2010.

16a-b.


16e. Sample answer: $(0,125)$; The $y$-intercept means that 0 workers will take 125 minutes to complete the job. However, if there are no workers, the job will not get done at all. So, the equation can only be used to model the time it takes at least 1 worker to complete the job.
21. Sample answer: You can visualize a line to determine whether the data has a positive or negative correlation. The graph shows the ages and heights of people. To predict a person's age given his or her height, write a linear equation for the line of fit. Then substitute the person's height and solve for the corresponding age. You can use the


## Correlation and Causation

## LESSON GOAL

Students determine whether a situation illustrates correlation or causation.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Collecting Data to Determine Correlation and Causation

## Develop:

Correlation and Causation

- Correlation and Causation by Graphing
- Causation and Correlation by Situation

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE



Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	All	LE	IGII	
Remediation: Scatter Plots				0
Extension: Lurking Variables				

## Language Development Handbook

Assign page 30 of the Language Development Handbook to help your students build mathematical language related to correlation and causation.

EFLII You can use the tips and suggestions on page T30 of the handbook to support students who are building English proficiency.


## Suggested Pacing



## Focus

Domain: Statistics \& Probability Standards for Mathematical Content:
S.ID. 9 Distinguish between correlation and causation.

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.

## Coherence

Vertical Alignment

## Previous

Students used scatter plots and lines of fit to make and evaluate predictions. 8.SP.2, 8.SP.3, S.ID.6a, S.ID.6c

## Now

Students determine whether a situation illustrates correlation or causation.
S.ID. 9

## Next

Students will use best-fit lines and correlation coefficients to determine how well linear functions fit sets of data.

```
S.ID.6, S.ID. }
```


## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on what they have learned about linear associations to gain understanding about the differences between correlation and causation. They apply their understanding by differentiating between situations in real-world contexts.

## Mathematical Background

Some correlations may be purely coincidental, while others may have a common underlying cause. For those situations where the change in one variable is the cause for the change in the other, the relationship is one of causation. It is important to note that correlation does not imply causation. Two variables may have a positive or negative correlation, but may not have a causal relationship.

## Interactive Presentation

Warm Up
Name the situation that you think causes the other.

1. watching the rain and seeing many open umbrellas
2. having a headache and riding a roller coaster
3. feeding your dog and your dog begging
4. watching a football bounce and watching a football hit the ground
5. cutting your finger with a knife and having a bandage on your finger

Warm Up


Launch the Lesson

## Vocmpian


 sexrested incy adrections.


[^21]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- identifying patterns of association between two quantities

Answers:

1. positive
2. no
3. negative
4. not linear
5. negative

## Launch the Lesson

(1T) Teaching the Mathematical Practices
3 Construct Arguments Encourage students to use the information from the video to construct an argument about whether Marcus' decision to not order any more snow shovels is reasonable.

13
Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

## Explore Collecting Data to Determine Correlation and Causation

## Objective

Students collect data to explore the difference between correlation and causation.

## (11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will work in groups of 5 . They will collect data on hand length and shoe size from the members of their group. They will then use the data to construct a scatter plot. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

## WEB SKETCHPAD

Students use a sketch to graph the collected data.

## TAP

Students select the correct type of correlation.

TYPE


Students answer questions about the sketch.

## Interactive Presentation



## Explore

TYPE


Students respond to the Inquiry Question and can view a sample answer.

## Explore Collecting Data to Determine Correlation and Causation (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- What does your graph tell you about the data? Sample answer: In general, students with bigger hands wear larger shoes.
- Why would the scatter plot for a causation situation indicate a correlation? Sample answer: Because as one variable increases, the other would increase or decrease linearly, reflecting the causation.


## (0) Inquiry

What is the difference between correlation and causation? Sample answer: Correlation means that two sets of data show a relationship while causation means that one set of data depends on the other.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

3 APPLICATION

## Learn Correlation and Causation

## Objective

Students determine whether a data set or situation illustrates correlation or causation by analyzing the data or situation.

## Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Important to Know

When a correlation exists between two variables, there may be a factor that is influencing both of the variables. It is important to know that this does not mean that causation exists between the two variables. For example, the number of ice cream cones sold by a vendor at the beach on a given day and the number of ocean rescues on that day may exhibit a positive correlation due to the fact that both of these variables likely increase or decrease in tandem. However neither variable causes the otherhe fact that both of these variables may be affected by the temperature at the beach (which, in turn, affects the number of people at the beach) does not mean that the data exhibit causation.

## QExample 1 Correlation and Causation by Graphing

## (17) Teaching the Mathematical Practices

4 Apply Mathematics In this example, students apply what they have learned about correlation and causation to solving a real-world problem.

## Questions for Mathematical Discourse

AL What type of correlation does the data exhibit? positive correlation What does this tell you about the data? Sample answer: As the amount of mozzarella consumed increases, so does the number of civil engineering doctorates awarded.
OLI Does the positive correlation mean that the amount of mozzarella cheese consumed affects the number of doctorates awarded? Explain your reasoning. Sample answer: No; eating mozzarella cheese does not give you a degree. This is a correlation, not a causation.
[BL. What factors might have an effect on the number of doctorates awarded? Sample answers: the job market, financial aid for graduate school, engineering companies paying for their workers to continue their education


## Interactive Presentation



Learn

## Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Students answer a question to show they understand why correlation does not prove causation.


Step 1 Ditermine the correlotion:
As the amoutt of morzarelat consumed increasen, the rumber of civel engineering doctorabes also increases. The scamer pith shows a positive cerretabor:
Step 2 Determine cousation.
Consumplon of mozzareto does not couse anyone to obtain a doctorel degree in chil engineering. These two sets of dotn ar not telated. Miry tsclors moy affect tre locreose in these witer and semoge treatmers placts grows, the Comind for water and swage freatnemi Dawis grows, usc Comwhd tor capts consumption of morzeretta may be retated to inciemsed piris waks or dairy production Both variables weo aflected by a gracers increase in pocutarion agecerd hciease is popuamion
Step 3 Determinp whether the data illustrate a correlotion or cousotion
The dies estibit a covelabon bur lheres no causation.
Oleck
 oc cousetiont

Mash	Mach	Apit	May	Sune	Sut	Anguat
3unustentela	$\mu$	37	84	117	135	98
Sunmintsate	6	18	23	36	40	39

The data show a ? conetelion As pre number of botties of sumscreen sold increases, the number of suinglasses sold? there dra lifustrate a ?

Sxample 2 Comelation and Cousation by Situation
Determine whether the situation Illostrates a correiation or coutation. Explain your reasoning. including other factors that might be iwvolved.
A univensity experiment showed a negative correlation botween the average weekly time spent experciving and the probablity of developing heort disease.
This sauation models cousatisen Evercise and heart disease are noluted. and lock of exencise could be a cmise of heart disease. Other lactort that inight thare led so lieart disoase ore intensed trats
vnoking or a poor diet

Q mo Oftor nu con ionowter in Extra forpto ooter

## Interactive Presentation



Example 2


316 Module 5 - Creating Linear Equations

## Example 2 Causation and Correlation by Situation

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AII What is the dependent factor? risk of developing heart disease
OL What is the independent factor? average weekly time spent exercising

BI. Can the university state that this is the only cause for developing heart disease? Why? No; sample answer: There are many other factors that contribute to heart disease. This study shows only a causation between lack of exercise and heart disease.

## DIFFERENTIATE

## Language Development Activity |AIㅐ ㅍLIL

IF students are having difficulty differentiating between causation and correlation,
THEN pair students together and have one student write situations that represent causation and situations that represent simply correlation, and have the other student determine which is which. Then have students reverse roles.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-6$	
2	exercises that use a variety of skills from this lesson	$7-10$
3	exercises that emphasize higher-order and   critical-thinking skills	$11-13$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks,

THEN assign:

- Practice, Exercises 1-9 odd, 11-13
- Extension: Lurking Variables
- ALEKS"Scatter Plots and Lines of Best Fit

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Scatter Plots
- Personal Tutors
- Extra Examples 1, 2
- ALEKS'Scatterplots and Lines of Best Fit

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-5 odd
- Remediation, Review Resources: Scatter Plots
- Quick Review Math Handbook: Correlation and Causation
- ArriveMATH Take Another Look
- ALEKS'Scatterplots and Lines of Best Fit


## Answers

1 a.


1c. The relationship may be a causation. Since both are frozen desserts, eating more frozen yogurt may cause people to decrease the amount of sherbet they eat. Other things that might influence the data are an increase in frozen yogurt stores and a decrease in popularity or availability of sherbet.

Practice
tomper

1. reoron bessum The betiv shom ne maneer ch pounor of fospo yogul and pen mumber of younds if weiter conumed per capta in the Unted senves tom 2009122044

 copimi a serter pist. Sor mupin.



thecon mar mheoce tre diea? Sue mough

 seievioion per weesolio.

 solevbere : Saemavin


 focson myy ieturnce pedent? Seo miph.

## thenel 1


Frotath your reasoming.
 patm and the arount of Sme they spend matciang teierinion each day. Constutios anple



5. As a grocery shora, neve a a negabe corvelton outreen tre pice of civeal anc
 cavers cothmen to bye iets cires.



```
Mined Everciae=
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline mer & 1 & \(?\) & 3 & 4 & 5 \\
\hline Sutrumerim & 45 & 1 & 17 & 35 & 20 \\
\hline Hextermerat & 6 & 5 & 45 & 3 & 25 \\
\hline
\end{tabular}
```



``` usate a scriber pot hemengin
```




``` Delermine wheter the oura ingune a correlocion or comotion whin obler
```




``` coirtien atsee duing waition noithin of tie ywir
\begin{tabular}{|c|c|c|c|c|}
\hline w-me & Jausy & Apal & hay & Decamber \\
\hline Sutive & 0 & 193 & 265 & 77 \\
\hline SWersomb & 26 & 3 & 6 & 272 \\
\hline
\end{tabular}
```







```
If there is a coselation. desofios the bena Evplain your reasoning
```




``` cous sumnctros ind mine in be ined
```




``` Orighew-Order Thisking saith
```





```
A thuty compored sto areraje momenty amount spent on mimentu
A thuty compored sle arerage monatly amoult soert on in tor severut montes in serngtise. The data in stown in ese scetter plot. Une Evi information for Eeveciees Q and 10.
```



``` any conetanon Sermapr
4i. weff Exblen whener tha sutesent ha sccurate. Thene is
```




``` swetibuti and sperdigg money on ar censtionng thenfore. 15 cut down ine
```



```
348 Medies. Crovs inew finn
```


## Answers

2a.


2c. The relationship is a correlation, but not a causation. An increase in minutes reading may be related to increased minutes watching television. Both activities might be affected by an increase in free time for leisure activities due to retiring and/or children are no longer being raised in their household.

7a.


7c. The relationship is a correlation, but not a causation. A better yield of strawberries does not cause the blueberries to grow poorly. Other factors, such as temperature and rain, could be affecting the plants that week.

8a.

$8 c$. The relationship is a correlation, but not a causation. Buying sandals does not cause someone to not buy snow boots. Other factors, such as weather and sales, could be affecting the data.
12. Sample answer: The data seem to form a line with a positive slope. Most of the points follow the line fairly closely, so it shows a strong positive correlation. So, when the amount spent on swimsuits increases, so does the amount spent on AC.
13. Sample answer: Correlation does not mean causation. Even though there is a strong correlation, that does not mean buying swimsuits causes the use of air conditioners. Another factor, like the temperature, could be affecting both swimsuit sales and use of air conditioners.

## LESSON GOAL

Students use best-fit lines and correlation coefficients to determine how well linear functions fit sets of data.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

## Linear Regression and Best-Fit Lines

- Find a Best-Fit Line
- Use a Best-Fit Line


## Residuals

- Graph and Analyze a Residual Plot

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	All	ILE	FII:	
Remediation: Draw Lines of Best Fit				0
Extension: Quadratic Regression				0

## Language Development Handbook

Assign page 31 of the Language Development Handbook to help your students build mathematical language related to best-fit lines and correlation coefficients.
EELII You can use the tips and suggestions on page T31 of the handbook to support students who are building English proficiency.


## Suggested Pacing

90 min	$\mathbf{0 . 5}$ day
45 min	
1 day	

## Focus

Domain: Statistics \& Probability Standards for Mathematical Content:
S.ID. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
S.ID. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
6 Attend to precision.

## Coherence

Vertical Alignment

## Previous

Students determined whether a situation illustrates correlation or causation.
S.ID. 9

## Now

Students use best-fit lines and correlation coefficients to determine how well linear functions fit sets of data.
S.ID.6, S.ID. 8

## Next

Students will fit functions to data, including linear, quadratic, and exponential models.
S.ID.6a (Course 1, Course 2)

## Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3APPLICATION
雨 Conceptual Bridge In this lesson, students bring together all		
that they have learned about linear associations, correlations, and		
causation to find and interpret correlation coefficients. They build		
fluency in using technology to fit functions to data, and they apply		
their understanding by solving real-world problems.		

## Mathematical Background

An equation for a best-fit line can be written for any set of data, but it is only useful if the data exhibits a linear trend. A graphing calculator can be used to write an equation for the best-fit line and find the correlation coefficient. The closer the correlation coefficient is to 1 or -1 , the more closely the equation models the data.

## Interactive Presentation



Launch the Lesson


[^22]
## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- using scatter plots to evaluate trends and make predictions

Answers:

1. 66
2. 80
3. 94
4. No; once they reach a certain point, a student will not be able to increase their study time.
5. Positive; the more time a student studies, the higher the final grade.

## Launch the Lesson

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to consider how the times recorded at each of the check points could be used to determine whether a runner ran at a relatively consistent rate throughout the race.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Learn Linear Regression and Best-Fit Lines

## Objective

Students compute and use best-fit lines and correlation coefficients for sets of data by using technology to perform linear regressions.

## Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of linear regression and best-fit lines in this Learn.

What Students Are Learning
Students have already explored lines of fit. In this lesson, students learn that there is a line of best fit that can be determined using a calculator. Students use a calculator to find the line of best fit, and to identify the correlation coefficient associated with the data.

## Common Misconception

A common misconception some students have is believing that the smaller the correlation coefficient, the weaker the correlation. This is not true. Explain that the closer the correlation coefficient is to 0 , the weaker the correlation; the closer it is to -1 or 1 , the stronger the correlation.

## ©example 1 Find a Best-Fit Line

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the question posed in the Use a Source feature.

Questions for Mathematical Discourse
Alil What patterns do you notice in the table? Sample answer: In general, as the year increases the number of hits decreases.
(OIL How would the equation change if the values used for List 1 were the years? Sample answer: The slope would be the same but the $y$-intercept would be different.
[BL. What is the correlation coefficient? What does it mean? -0.8022 ; sample answer: It means the equation models the data well. The closer this number is to 1 or to -1 , the better the equation represents the data.

## Common Error

Student may forget to clear L1 and L2 on their calculators before entering a new set of data. This error will produce an incorrect result. Help students to avoid making this error by making the first step in the procedure "Clear L1 and L2."

## Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Learn
DRAG \& DROP


Students drag and drop the correlation coefficients in order from weakest to strongest.



Math History Minute
One⿻日土 the anssof： inserest of Botis． phetician Plorence Nightingale David （1909－1993，who was natwed ater tantigy tiend Fibrence Noproispoie， as tre obstivution of in 9938 she released a． book minted fioies of sie Corebion Coerforine for untich er ot too circtutatont were orne oo a hand cranked mechenicat carcitito．

Ure a Source．
Crose mother bascebol plymeisis fesurch thut heroy seson uses： graphing cabjuito to vitit on squaten tor the besiviline，and dride whether the eqvinion modes the antas wel

Sample anvwer：Oerek． Jeter＇s tatal bits per season cenpe todeled by $y=-0.45 x+1725 \cdot 71$ correstion coetticient is about 0.05 ，mifich meens祭 the opration does post model the dota well：

Enter me asta by pressing and selesting the Edit option he meyede 1947 be represected by yoer 0 ．Ertec the yooss since 947 into list（1）These wal reprosent the x－yblues．Fosee The total hits imto las 2 icul）．These wit iepresent the $y$ values．
Step 2 Perfanm the regression．
Ferlom the regresuige by presing sutd and selecting the CALC eption，Soit doimn to LinReg（ax＋b）aod piess ember Make sure Lt be Xist ind 12 is the Yist．Tben seleci Calculthe
Step 3 interpret the results．
Whise the equation of the regression ine by rounding ene $o$ and o vebles on the screen The form that we chose for the regression was $0 x+b$, sothe equasion is $y=-10.32 x+195.22$ ．The corvitition px +0, so the equasion is $y=-10.32 x+19522$ the ccrewdifon ene data wel：for negatwo value means that as be yewr since ph7 incromet the total hymber of jocke Aobimpons hits decrewsec


Check
tupcratune The twle shoms the aretige annuul temperatiue for he top 10 mopt populons stiter $n 2014$


Part A Use a groghing colculator so werte an equation for ne best 19 fine for mes dats．Aound to the neasest hundrean $x=7 x+3 \quad-129 \quad 62.4$ Part is Find the cormatiton coeffocets，Round to the newest hundredt － $7-0.41$
Part C lictes on your aniwer to part b，does the equation mindel the dota wolt Yes or Not ＇ne


## Interactive Presentation



Example 1
 the best－fit line using a TI－calculator．


Essential Question Follow－Up
Students have performed linear regression to find the equation of the best－fit line for a set of data．
Ask：
What does the best－fit line tell you about the data set it represents？ Sample answer：It tells you what the relationship between the two variables is，and gives you an equation that you can use to find additional data points．

## DIFFERENTIATE

## Language Development Activity 느는

Beginning Help students access text by working through Examples using a graphing calculator display．Use a poster of the keyboard to point out each step as you work through the problems and explain using short phrases．
Intermediate Provide students with a study guide to make the lesson accessible to all students．Paraphrasing content helps students make connections more easily．

## DIFFERENTIATE

## Enrichment Activity［BU

Remind students that outliers are points that are significantly distant from the other data points．Have students work with a partner to discuss how removing an outlier from a set of data impacts the line of best fit and the residual plot for the data．
Sample answer：Removing an outlier changes the line of best fit，as it changes the regression equation．It also results in a residual plot that indicates that the line is a better fit for the data．

## 1 CONCEPTUAL UNDERSTANDING

## Example 2 Use a Best-Fit Line

Teaching the Mathematical Practices
4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

## Questions for Mathematical Discourse

AL. What are two things that need to be done to solve this problem? Write an equation of the best-fit line, and then use the equation to find the estimate.
al. How can the regression equation be used to find the amount of sales in 2020? Substitute 11 for $x$ and find the value of $y$.
Bill How could the regression equation be used to find when the sales will reach 5 billion? Sample answer: Substitute 5000 for $y$ and find the value of $x$. This is the years since 2009, so you would need to add 2009 to find the year.

## DIFFERENTIATE

## Reteaching Activity AL

IF students are having difficulty using a graphing calculator to perform the linear regression and graph the equation,
THEN use a poster of the calculator keyboard to point out each step as you work through the problems. Encourage students to take notes of the steps, using their own words to write instructions that they will find helpful.

## Essential Question Follow-Up

Students have created linear functions that represent real-world data using linear regression.

## Ask:

What does a linear regression equation tell you about the data that it represents? Sample answer: It gives you an approximation of how the variables are related.

Benter lices can be uned to estmate valtes that are not in the data Recal twit wher we estimato walues that are between koown vaives. this is celled inesr interpolatice When we estimate a mumber cutsise the range of outa. it is cated inear extupolaion
$\Theta$ Example 2 Use a Best-Fit Line
SHCPFND The table shows u.S. desktop online sabes on Cyber Monday since 2009. Entimmete the Cyber Monday sales in 2025.

Yeer	2009	2010	2011	200	2013	2014	2015	2016
sher (inilignt Sedotrey	887	1028	1254	465	1735	2038	2280	2671

Step 1 Graph the dana.
Enter the data focm the tatie ioto the lots Lei 2009 be represemted by $Q$ Then the years shce 2009 are the $x$ volves bit the soles be the $y$ valies. Graon the scaber piot Tum on Proth undet the
 stat plot manu and choose us Use i-6tithentinsosiznearust tifor the Xest and 12 for the Yist. trfoctre xest and t2 for tere hist. ino meo selecting Zoomstat
Steg 2 Pueform the regresvion.
Porform the regrestion using the data in the list. The equasion 6 abocit $y=254.51 x+778$.58. The cocielation coafficient is 0.9935 , which menens that the equation modest the data wer
5 tep 3 Graph the best fit line. Graph De best-fil sine, Piess $y^{-}$vans and choose Statistics
 Froon the EO mesu, chose RogkQ Press Step 4 Extrapolate.
Whe the groph to predict Ile 2025 Cyber Mondiry stes Change the vewing window Ahoidineme Ymax to acomenter the nocesuingyvwues Press 2nd
 $x=5 . y=4851$.


We can estinate ther in 2025, cyber Mondoy solas will be about $\$ 4,85 t, 000,000$


Think About ItI
Why a s helptuifo 2009 instede of yoon?

Sumple answer: Bicasise the dita do mot start sina 2008 ining mors shee 2009 mokes it miviec to graph

## Study Tip

Assumptions Using a bentre line to male pestifors roquivs you to ssume that the thend
 nte no frut mince in cyow Mondoy tiach year

## Interactive Presentation



Example 2

Students move through the steps to find the best-fit line using a TI-calculator.

## TYPE



Students explain why it is helpful to define $x$ as years since 2007 .


## Interactive Presentation



Learn

322 Module 5 • Creating Linear Equations

## Learn Residuals

Objective
Students determine how well functions fit sets of data by plotting and analyzing residual plots.

Teaching the Mathematical Practices
3 Construct Arguments In the Think About It! for this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

## Example 3 Graph and Analyze a Residual

 PlotTeaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

## Questions for Mathematical Discourse

Does the slope of the best-fit line mean that the price is increasing or decreasing? Why? Increasing; sample answer: If the slope is positive, then the price is increasing. If the slope is negative, then the price is decreasing.
oll What does the residual plot show? Sample answer: There are points both above and below the line of best fit.
B1. Are there any outliers in the data? no What does that indicate about the data? Sample answer: It indicates that the cost of a 10-person Thanksgiving dinner increases at about the same rate from year-to-year.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## 3 APPLICATION

## Practice and Homework

## Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-8$	
2	exercises that use a variety of skills from this   lesson	$9-13$
3	exercises that emphasize higher-order and   critical-thinking skills	$14-17$

## ASSESS AND DIFFERENTIATE

(1)Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-13 odd, 14-17
- Extension: Quadratic Regression
- ALEKS'Scatter Plots and Lines of Best Fit

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Draw Lines of Best Fit
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Scatterplots and Lines of Best Fit

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-7 odd
- Remediation, Review Resources: Draw Lines of Best Fit
- Quick Review Math Handbook: Regression and Median-Fit Lines
- ArriveMATH Take Another Look
- ALEKS'Scatterplots and Lines of Best Fit
Practice
toccili The lutey shoms sie number af ponis


M-	200	2001	200	2001	2014	2015

a. write the towation for the bettar tre for me data $F=-13 t \mathrm{p}+$ sass


2. alvinut the tatio thows the risimsed mevinue sumed foc ringtone and inpleck parchuses, in milions of deliurs, each yerr shce 2000

a. Were the equabon for the berase tiee for ine ava, $y=-6313 c+35367$

 in mifioss of dotark, ouned for ingtone red fieponct ourchases tecremet.



a. Whe the equation for the besta ine for the dive $y=352 x+312$

 En intiys of obtar ilocenis
kunvi

 nock in the fofowng wac Let x be the fumber of reow inct 2000


a. Now many bobes of suticiten thid tre npermorbel espect on


 tel rbe the rumber of peas uice 2600 .

53625	30660	V2570	53695	542025	$5 \times 04.00$	503025


 lest ary of rading in 2030? about \$22t15
 ve wevis see shown.



Gume:




Meredel Man wit corsent	\%	3	5	10	4	*	7	8	12	\#	5
	1	1	4	1	4	6	7	$\square$	0	5	B

2. Niat the equaton for the bespest hie for the aite $f=059 x+15$






brewe Burtirnes	5	8	20	25	\%	23	31	30	10	4	\%
Mubtery whers	3	-	0	0	8	0	-	0	$\ddagger$	${ }^{6}$	$\geqslant$






Masd Exerches

 zon-2012 yoloor yeit.

wer	206-200	200-2000	200-3094	20x-2015
Pecmbes	2055	22 n	2268	2120

a. Whie the equabon for the bention lief for the aras $y=0.26 \mathrm{r}+2 \mathrm{tat}$







Surkiatricta	59	62	66	68	73
Durwhermer	3	20	411	64	3

 roptedent. $\gamma=52.09 \mathrm{r}-350.4 \mathrm{k} r * 0 \mathrm{~m}$



 sow meifor pol viles greater pion is



 $y=140 . a+0.8$






 to00 youbit darley pime?


 cobeger retieves since te 2010:-2061 school peas

Mue	200650H	200200	2012 2041	2013-2054	2644205
Semertawter	4400	453,347	2031202	472023	4il2sia



 schod yell mcresie:





- Wrgher Order Thataing sation


 coplicient tos we fow covey wivion model tos Des dote.

15. CaESIV For a clast propect, the scones that 10 mosobity nelecied moderi)
 ef bost in couds $n$ be vied to presd the kores of the cher stutere? foplwn

 Be other tivisum
 ere sue: 1 me carnibior cowfient en e Quen sawion 1 agotb Ne ohange




a. Fins an equatio for me regension ine. yw $84.3450 \mathrm{C}+5.0531863$
b. Accoriding to the equation Row may partolipotec in 20097 abeat 13is.sia


1 CONCEPTUAL UNDERSTANDING

## Answers

9 b. $r \approx 0.359$; The equation does not model the data well. Its value means that as the years since the 2011-2012 school year increase, the percentage of students in public school who met all six of California's physical fitness standards each year varies.
12. The slope of the linear regression line is positive, so the correlation coefficient should be positive. Because the equation models the data very well, there is a strong correlation, so it should be about 0.8 or greater.

## LESSON GOAL

Students find inverses of functions.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

## Inverses of Relations

- Inverse Relations
- Find Inverse Relations from a Table
- Graph Inverse Relations

Explore: Comparing a Function and its Inverse

## Develop:

## Inverses of Linear Functions

- Find an Inverse Linear Function
- Find Inverses of Linear Functions
- Apply Inverse Linear Functions


You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al\|	)		
Remediation: Function Tables	-			-
Extension: One-to-One and Onto Functions		- -		-

## Language Development Handbook

Assign page 32 of the Language Development Handbook to help your students build mathematical language related to the inverses of functions.

FELII You can use the tips and suggestions on page $T 32$ of the handbook to support students who are building English proficiency.


## Suggested Pacing <br> 90 min <br> 45 min <br> 

## Focus

Domain: Algebra, Functions
Standards for Mathematical Content:
A.CED. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
F.BF.4a Solve an equation of the form $f(x)=c$ for a simple function
$f$ that has an inverse and write an expression for the inverse.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
5 Use appropriate tools strategically.

## Coherence

Vertical Alignment

## Previous

Students understood the concept of a function.
8.F. 1

## Now

Students find inverses of functions.
A.CED.2, F.BF.4a

Next
Students will understand the relationship between functions and their inverses, and whether the inverse of a function is also a function.
F.BF. 4 (Course 2)

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, expand on what students have learned about linear functions to gain understanding of inverses of linear functions. They build fluency by finding inverses of relations and functions, and they apply their understanding by solving real-world problems.

## Mathematical Background

The inverse of a relation is the set of ordered pairs obtained by interchanging the $x$-coordinate and $y$-coordinate of each ordered pair of the original relation. A linear function $f(x)$ has an inverse function $f^{-1}(x)$ that can be found by replacing $f(x)$ with $y$, interchanging $x$ and $y$ in the equation, solving for $y$, and then replacing $y$ with $f^{-1}(x)$.

## Interactive Presentation



Warm Up


Launch the Lesson


[^23]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- making function tables
Answers

1. | $w$ | $3 w$ |
| :---: | :---: |
| 0 | 0 |
| 0.5 | 1.5 |
| 0.6 | 1.8 |
| 1 | 3 |
| 10 | 30 |
2. 


3.

$z$	$2+\frac{z}{4}$
0	1
1	1.25
4	2
8	3
21	6.25

4. $y=x+5$
5. $y=3 x+1$
6. $y=\frac{x}{6}$

## Launch the Lesson

Teaching the Mathematical Practices
4 Analyze Relationships Mathematically Point out that to make the formula Isabel knows easier to use, students will need to understand the relationship between a function and its inverse.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Explore Comparing a Function and its Inverse

Objective
Students use a sketch to explore inverse functions.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch of the graph of a function and its inverse to explore the relationship between the two graphs. A series of questions will guide students through the exploration, leading them to observe the relationship between the coordinates of points on the two graphs. Students will also explore the relationship between the graphs and the line $y=x$. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore
WEB SKETCHPAD
Students use a sketch to explore two inverse functions.


Students answer questions regarding the relationship of inverse functions using the activity.

## Interactive Presentation

$\square$
Explore

## TYPE

Students respond to the Inquiry Question and can view a sample answer.

## Explore Comparing a Function and Its Inverse (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- If the point $(x, y)$ lies on the graph of a function, what point must lie on the graph of its inverse? $(y, x)$
- If the graph of a function is a line, will the graph of its inverse always be a line? Explain. Sample answer: Yes; because the graphs of the two functions are reflections across the line $y=x$, and the reflection of a line is another line, the graph of the inverse will also be a line.


## Q Inquiry

How can you graph the inverse of a function? Sample answer: Reverse the coordinates of the points on the function to reflect the graph across the line $y=x$.
(Wo Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Inverses of Relations

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Important to Know

Every relation has an inverse. However, not every function has an inverse that is a function. The first part of this lesson deals with relations and their inverses. The second part of the lesson will address the inverses of functions.

## Common Misconception

Students may think that in order for a relation to have an inverse, the relation must consist of a finite number of ordered pairs. Explain that although initially they will be working with relations consisting of a finite number of ordered pairs, they will later extend their understanding to relations containing infinitely many ordered pairs.

## Example 1 Inverse Relations

Teaching the Mathematical Practices
7 Use Structure Help students to see the pattern when determining the inverse of the relation in the example. Encourage students to explain how to use this pattern to write the inverse of any relation.

## Questions for Mathematical Discourse

Al. What is the domain of this relation? $\{-8,0,11,12\}$ What is the range? $\{-6,3,14,52\}$
OL. What is the domain of the inverse of this relation? $\{-6,3,14,52\}$ What is the range? $\{-8,0,11,12\}$
Is it possible for a point to be in the relation and its inverse? Explain. Yes; sample answer: If a point in the relation lies on the line $y=x$, meaning that the $x$ and $y$ values are the same, then it will also be in the inverse relation.

## (3) <br> Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Learn

| TYPE | $\begin{array}{l}\text { Students answer a question to show they } \\ \text { understand the relationship between the }\end{array}$ |
| :--- | :--- | domains and ranges of inverse relations.



Zxample 2 Find ifiverse Roflations from a Table
Find the leverse of the relation shows in the table.


Whee the copedinuse in the oedered pain to complete the isverse splution
$(-14,9)-(5)-15) \quad(-3,-19)-(-8,-3)$
$[0,-2)-(-2,04 \quad(3,2)-(2,24)$


Example 3 Groph inverse Rolations Oraph the inverse of the relation.
The graph of the relation passes triough the points $(-1-51.10-2) .51$, and 2.4 . Exchange peex-cpoudeutes and $y$ coordinates to find points of the imerse relibion. $(-1,-5)-(-5,-1) \quad(t, 5) \rightarrow a, 7)$ $(0,-2) \cdots(-2,0) \quad$ (2,, 4$) \rightarrow(4,2)$


Prot the polcts of the imverse telason and draw a lose passing through them.

Explore compainga Finction and lits lwase
Q Online Activity Use graphing tectnology to complete the Explore.

C nourr How an ybu graph the inverse of a function?

## Leam Inverses of Linear Functions

A lnear relaton that is described by a function may Nave an inverse function that cor generate ordered pair of the invese relason The inverse of the linew funcion 100 is writen as $f$ - x ond is read timwse of $x$ al the invese off of $x$


## Interactive Presentation



Example 2


1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

## Example 2 Find Inverse Relations from aable

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationship between the table of values and the ordered pairs that comprise the inverse of the relation.

## Questions for Mathematical Discourse

ALI. What does the table tell you about the ordered pairs that belong to the relation? Sample answer: It shows you which values make up the ordered pairs.
OL. How would you make a table for the inverse relation? Switch the values in the $x$-row to be in the $y$-row, and the values in the $y$-row to be in the $x$-row.

B4. What does the table tell you about the domain and range of the inverse relation? The domain of the inverse relation consists of the elements in the $y$-row, and the range of the inverse relation consists of the elements in the $x$-row.

## Example 3 Graph Inverse Relations

## (1) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

AL
Why do you need to identify the coordinates of some of the points that lie on the given line? Sample answer: so that you can create some ordered pairs that belong to the inverse relation
OL. Where do the graph of the given relation and the graph of the inverse relation intersect? Why? (1, 1); Sample answer: The coordinates of one of the points on the graph of the relation are the same value. That ordered pair belongs to the inverse relation, as well, so that point lies on both lines.
BLI What is the graphical relationship between the inverse and original relation? The graph of the inverse is the graph of the original relation reflected across the line $y=x$.

## DIFFERENTIATE

## Enrichment Activity [BLI

Have students graph the inverse of $y=\bar{\chi}$, following these instructions: First, graph $y=x^{2}$ on a coordinate plane by creating a table of values. Then, find points on the graph of the inverse by exchanging the $x$ - and $y$-coordinates in each ordered pair from the table. Plot these new points on the same coordinate plane. Finally, connect the new points with a smooth curve, using the graph of $y=x^{2}$ as a guide. Remind students that the graphs of inverse relations are reflections of each other across the line $y=x$, and encourage them to use this information to help them draw their graphs.

## Learn Inverses of Linear Functions

## Objective

Students find inverses of linear functions by using the algorithm for finding an inverse.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of inverses of linear functions in this Learn.

## Example 4 Find an Inverse Linear Function

## Teaching the Mathematical Practices

1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students should check their answer by graphing $f(x)$ and $f^{-1}(x)$ on the same coordinate plane with $y=x$.

## Questions for Mathematical Discourse

In Step 2, why do you interchange $x$ and $y$ ? because in the inverse function, the $x$ - and $y$-values from the original function are interchangedOl. How are the function and the inverse function related? Sample answer: The input of the function is the output of the inverse function and the output of the function is the input of the inverse function.
31. How do the operations performed on the input variable in the function and in its inverse compare? They are inverse operations performed in the reverse order.

## Example 5 Find Inverses of Linear Functions

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AL. How do you use a graph to check that two functions are inverses of each other? Sample answer: You check to see if the graphs are reflections of each other across the line $y=x$.
OL Why do you multiply each side by $-\frac{3}{2}$ instead of $\frac{3}{2}$ ? Sample answer: To solve for $y$, you must multiply by the reciprocal, which is $-\frac{3}{2}$, to undo the original operation.
BL. How could you find the coordinates of the point of intersection of the graph of a function and the graph of its inverse? Sample answer: You can set the two rules equal to each other and solve for $x$. That answer will be both the $x$-coordinate and the $y$-coordinate of the point of intersection, as the point also lies on the graph of the line $y=x$.

```
*ey Conseex - Findiglurese Furctions
To fos the imvise function't by of the lineer lanction for, coeplete the
OHONtigg towh.
```



```
swep2 unerchange y and x in me seqution
Seep3 Solve the equation lor y.
SNep4 Replncey werr flp) is the sew equation
Example 4 Find an Inverse Linear Function
Find the inverse of f(0) = 5x+10
Step 1 f0t=5x+20 Origed equation
\y=5x+10
Steg 3 x-10=5y bymuct vonmeremenme
```





```
Example 5 Find Itverses of Linew Functions
Find the inverse of f(x) =-3 - x-3.
Ssep1. ma=--2
Stan
Step 3 x+8=-{y mallowectrice
\frac{3}{2}(x+8i-y Sumay tocomen Ny-}
3, - Senmely
The nvesse of 星 = = - 2
```



## Watch OutI

inf: Werme-1h not no exponent. tis a way to indicasp that $r^{\prime}(\mathrm{m})$ is in iovesse of ancther function coslied $\times \times 1$.

```
(2) Talk About It What is tre hewerse of tio) - - el How could you check your solution? Serigite ativer, The \(r^{-1}(x)=-x\) inis \(F^{-}(b)=-x\). This thecked by fioding. points of (p) and points of (h) asd
```



``` of pointswats solvions of (/f) ance \(\Gamma^{-1}|x|\)
```


## Interactive Presentation


 (4.w)


## KEY CONCEPT FINDING NWIRSE RLNCTONS



Stor? marthencny wodx n the equsten
Stes 3 solvelty ecime cofory


Learn



## Interactive Presentation



## Example 6

TAP | Students move through the step to finding |
| :--- |
| and applying the inverse of a linear |
| function. |

 to determine whether they are ready to move on.

Q. Boatings skyler aed Camen rent a poddie boat at
function $C(x)=4 \mathrm{t}+15$ represents the sotal cest c(inf for a heurs. and applying the inverse of a linear function.

## 1 CONCEPTUAL UNDERSTANDING

©xample 6 Apply Inverse Linear Functions
Teaching the Mathematical Practices
4 Apply Mathematics In this example, students will apply what they have learned about inverse functions to solving a real-world problem.

## Questions for Mathematical Discourse

ALI. What does $C(x)$ represent in the context of the situation? the number of hours you can rent a paddle boat with $x$ dollars
OL. What are the domain and range of $C(x)$ in the context of the situation? The domain is possible times in hours, and the range is possible costs to rent the boat.
B1. What are the domain and range of $C-(x)$ in the context of the situation? The domain is possible costs to rent the boat, and the range is possible times in hours.

## Common Error

Some students may make errors interpreting the function, its inverse, and the solution in the context of the situation. Students may benefit from identifying what the input and output values of the original function represent before they find the inverse. They can then reverse their labeling of these quantities (i.e., input for output, output for input) for the inverse function, clarifying the contextual interpretation of the inverse function.

## Essential Question Follow-Up

Students have applied inverses in real-world situations.

## Ask:

What does the inverse of a function tell you about the variables from the situation modeled by the original function? Sample answer: It tells you how to obtain what was the independent variable in the original function when you know the value of what was the dependent variable in the original function.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-26$	
2	exercises that use a variety of skills from   this lesson	$27-41$
3	exercises that emphasize higher-order and   critical-thinking skills	$42-51$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks,

THEN assign:

- Practice, Exercises 1-41 odd, 42-51
- Extension: One-to-One and Onto Functions
- ALEKS' Composition and Inverse Functions

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-51 odd
- Remediation, Review Resources: Function Tables
- Personal Tutors
- Extra Examples 1-6
- $\mathbf{Q}$ ALEKS' Tables and Graphs of Lines

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Function Tables
- Quick Review Math Handbook: Inverse Linear Functions
- ArriveMATH Take Another Look
- $\mathbf{\square}$ ALEKS'Tables and Graphs of Lines


## Answers

10. 




## Practice

tronsentime


## (ansel)


a.



```
80nvensems
Mind the leverse of each function.
```



```
tames
```








```
 Mos con maky 5 dosent biomcies for SQ Ske Orvges ner aptiomen
```




```
 4. What io x ano PPd
```




```
 protios
```





```
 buty mumbevs on the weason pusc.
```





```
 the locolchmper wis 3470% 6
```



40. stivcriter whe Be inerup of eqcitinction







Oifoher-Onder Thinking saits



 netoni of one emober? Give me example the abyes are tic
 Anctions of one mother? Give an exanple fien resectepe ef soe is the risteccept of anathe.
 tus an ximentept el 2 usdar intertept of a
45. raic tie rapoe A duders chams that freve us yinple mothod so tod ve

 Timm coried hovie an esanyle or courtermanple. Set marpe


anucrze Determine whether the following stabemprta are semphiest abvers.
Or rever bres. Esplain your retioniong










334 Modien 5. Owow (man fopilan

## Answers

12. 


14.

13.

15.


40d.

45. Sample answer: This claim is incorrect. The -1 in the inverse function notation is not an exponent. As an example, the inverse function for $y=x+1$ is found by switching $x$ and $y$ and solving for $y$, which gives $y=x-1 . y=x-1$ is not the same waiclyis $y=0$ a line. This method does not work.
48. always true; Sample answer: If $f(a)=b$, then the graph of $f(x)$ includes the point ( $a, b$ ). If $f(x)$ and $g(x)$ are inverses, then the graph of $g(x)$ includes the point $(b, a)$. If $(b, a)$ is included on the graph of $g(x)$, then $g(b)=a$.
49. sometimes; Sample answer: $f(x)$ and $g(x)$ do not need to be inverse functions for $f(a)=b$ and $g(b)=a$. For example, if $f(x)=2 x+10$, then $f(2)=14$ and if $g(x)=x-12$, then $g(14)=2$, but $f(x)$ and $g(x)$ are not inverse functions. However, if $f(x)$ and $g(x)$ are inverse functions, then $f(a)=b$ and $g(b)=a$.
50.


## Rate Yourself 莫自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

## Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- Why is it useful to have an equation that models the situation, and not just the table of values?
- When an equation that models a real-world situation is written in slopeintercept form or point-slope form, you can easily identify the slope. What does the slope tell you about the situation?
- What does the best-fit line tell you about the data set it represents?
-What does a linear regression equation tell you about the data that it represents?
- What does the inverse of a function tell you about the variables from the situation modeled by the original function?

Then have them write their answer to the Essential.

## DINAH ZIKE FOLBA8Les

[ELII A completed Foldable for this module should include the key concepts related to creating linear equations.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Relationships Between Quantities and Reasoning with Equations, Expressions and Equations, and Descriptive Statistics.

- Create and Solve Linear Equations
- Write Linear Equations in Different Forms
- Computing and Interpreting the Correlation Coefficient
- Distinguish Between Correlation and Causation


Q Essential Question
What can a function tell you about the relationship that it represwhts?
Arctrons can sell you whetrior the vilue of the dependent variable increases of decreases as tie independert wawable ctanges. They descrbe trends in data and can Be used to make predictions.

Module Summary
Lessona 5.tand 52

Whing Equatim

- Biose-intercept form a y $-m x+b$, inheie $m$ is
- Sioge-intercept torm ay - mix b, whiciem is

- Nont-slove sun ay $x=-m$ - - on where An a the nope of pe lew.
- 5nddwd sonm is $A x+D_{y}=C$, where $A$ A and $C$ are integen, $A>0 . A$ and 8 werpob not fogat is $Q$ and the GCF of $A .5$. and $C$ ist
- To minte a incur seusbor given two poith on a lioe, fart fed tre stope. Then use eder poirn




## Lessons $5 \cdot 3$ mrough 5.5

Scatter Muns

- A ccater piot stom the rescoomsio behieen e set of bivaiste dats, greoted as ordered oers on a coorsinate dare.
- A posivere correaton revis whes as) increwies, y increasec A nipisitive correation eststs when as xincrensel y deciensen No
 - A inse ol le a used to descibe the tiend of tive ans io s scamer plot.
- To setermine enrstion deternsere whener es veriable infoenses the other variabie.
- The correlation coeflcieve tiols you how wetl the equisoo for phe bestel lise models the data - A coseratanc coemicent cobse so thes entrong dope to -1 has a a woeg itspative conviston
Rendumb meanay how much phe dran devits
- Amidukh meakse how


## cessen 5.6

levernes of Limew fioctian

- Tro colisons are imerre retatom it and ony? 0 ose plition contains the sterment io. of when ve oteet relacon contura the eliemsed io. of - In invere relisons. tre reocedinites ane ecthanged wist the y coprisises fox tach odered par in the retroion
- To fird the inverce al fox ueplece fod whth in the equition for fal maichenge y and $x$ a the equation stive ine equatess so


## Shaty Organize

## (T) rodontian

Une your foidebio to menew the mosus Woring with a gartnee can be hoptol Ausklor ctariciasen of concepts an needed

## Test Practice

	mucnple choice what a the equmtion of the line that passes theeugh the points ( -2.0 and 96.3$)^{2}$ ziomes: 11   (3) $y=\frac{1}{4} x+\frac{3}{2}$					Muxiple choice Which equatipo represents a line that parses through the points $(\beta,-4)$ wat a slope of 77 (wmon57)
						$-3$
						$y+4=7 x+3$
	C. $y=\frac{3}{3} x+\frac{1}{4}$					$y-4=73 x-3)$
	D. $y=\frac{3}{2} x+\frac{1}{4}$					D. $x-4=7(x+3)$
2. Mutiple CHOUCE Select the rouation of a Sne with a slope of 5 that passes flrough top point $2 .-3$ in inas s. 0						
A. $y=5 \mathrm{~s}+2$						
B. $y=5 x-3$						Mutnselect Ssiect all of the equations that reporsent the line. $\qquad$ K2
C. $y=5 x+75 y-16$						
(1) $y=5 x-13$						
Use the table for execoises 3 and 4. A movle streaning service charges a set tee for mevoershlp each month plus an addisional fee for the inumber of movies steamed anch morit This table showt the total charge for defferent numbers of movies						
	Number of movies streamed (a)	2	4	6		2 $2 x+3 y=-3$
	Totw cent (y)	\$14	517	520		$y+3=-2$
3. OPEN मEspONst Wite the slope-intercept form of the equation that models the linesr relaticership in the table. firnuins-1$y=15 x+71$						$\begin{aligned} & e y-1=-\frac{2}{3}(x+3) \\ & 5-y+1=-\frac{3}{2}(x+3) \end{aligned}$
	OPDN RESPONSE F sloge and y-irterte      Sample antwec T Got the cest of eact \$1.50. The y interc set menthly fee for a membernaip is $\$ 71$	ain	moanin   15 me   mev   0 serv	or the the		OPEN RESPONSE A cily porking garage charges $\$ 4$ to park for up to two hours. Aher that, an additional charge of $\$ 2.50$ per hour spplies. Write on equation in politsislope form that miodels the total cost. $y$. for parking x hours, where $x>2$, lanems 3 ? $y-4=25\|x-2\|$

thene aht passes theougt the porks -2
$y=1+3$
B. $y=\frac{3}{2} x+\frac{1}{1}$
C. $y=3 x+\frac{1}{3}$
D. $y=\frac{3}{2} x+\frac{1}{4}$
2. Muctipls CHOICE Select the rouation of a ine with a slope of 5 that passes flrough une point Q. -37 in mas 50
$y=5 x-3$
C. $y=5 x+78 y-17$
$y=5 x-13$
Une the table for exsocives 3 and 4. A mover freming senvice charges s set fee for mervoership each mionth plus an addtiona morith This thlie shown the toell charge to deferent numbers of movies.


OPEN REsPONSt Wite the slope-intercept foim of the equation that models the linesr seshto in the table Il mines)

OPDN REsponse Explain the mpaning of the Wope and y-rtertept in the cortiect of the
 \$1.50. The y intercept of TI means that the membernip is $\$ 11$.

## Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 5-1 and 5-2
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
All Module Test Form B
OL Module Test Form A
BL. Module Test Form C

## Performance Task*

*The module-level performance task is available online as a printable document. A scoring rubric is included.

## Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-17 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$1,2,5,8,9$,   13,17
Multi-Select	Multiple answers may be correct.   Students must select all correct   answers.	6,16
Open Response	Students construct their own   response.	$3,4,7,10,11$,   $12,14,15$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
A.CED.2	$5-1,5-2,5-6$	$1,2,3,5,6,15,16$
A.CED.3	$5-2$	7
F.BF.4a	$5-6$	17
S.ID.6a	$5-3,5-5$	10,13
S.ID.6c	$5-3$	8,9
S.ID.7	$5-1$	4
S.ID.8	$5-5$	14
S.ID.9	$5-4$	11,12

8. MULIPLE CHOKE Which scatter plot shoms the best ine of tre couensat

D.

9. sartiple chouce Which equaton repeesents the oest ine of fa for the scatter plot? Atumbs

$y=0.6 x+1$
B. $y=0.5 x+2$
C. $y=x-2$

D $y=075 x$
10. OPEN RESPONSE Adrana keops the stabitci for her favcrite basketboll tram and crestes the scatber poot stown is inus sas


Acrana theri drams a ine or at for her scatter plot what does the slope of the ine represent?

Sample arsser: As the number of firee throws increases, the total points scoped moresses
T1. Optwatsponst A reiescher found then students whio spent inore inse evercising each wewk also Nad righer suesage lest scores Deicribe the correlation, if any, beoween tive spent exerciang and bett scoves. Imont bat
aporiove comselation

flime she studied each week and ber score on a weekly chemistry quia for eight weoks. She made this scaber pibt trom the dataDetermine whether the dato lilustrate a


## Study Time and Sample answes: The

 Ovir sceees dota show that there correstion betrieen thafy time and tipher quit scoses it is Clibly that stublieg does lesed to Higher scores, so the data
ative show canation.
13. mutivi cract use linew tegression to attinate the weight in ounces, of a blegell hat has a kegem of 95 wches Round ybe nswer to the neavest berth of an ousce.
mans:

A. 12.9
8.13 .4
P) 145
D. 153
14. OPEN RESPONSE Use a grapherg caculator and Inear regresson to wice the equstion of a best-ft ine for the dats in slope-merceot
form. Reound to the nearest werth. itensu bs

24	28	3.4	43	5.1	76	8.4	95
4	85	84	65	72	25	8	4.

$y=-0.9 x+10.5$
passes through ( -3.2 2 $-1,2$. 1, it and (3, - 5 . Fred the imverse function. Then praon tre imerse function: livim 56
$r(x)=-2 x+1$

16. Man-SELECT The table iogresents the coorsinates of a linear function. seveo 5-6

$x$	$y$
6	5
4	1
2	-3

Select the equasions that repretent the itwerse of the tunction.
A. $f^{\prime}(m)=\frac{5}{2} x+\frac{5}{2}$
(er $\quad$ ( $x \left\lvert\,=-5 x+\frac{9}{3}\right.$
C. $f(x)=25 x-65$
D. $r^{\prime \prime}(m)=-125 x+\frac{1}{2}$
Br $|x|=-2.5 x+6.5$
12. mutnire Oroke Shair sf nening in a long. distonce fice ir me maintuina an averiget tceed ors mies per houk then the costance in mies roat he has let to fun a gown by D(a) $--2 x+10$ where $x$ is the rumbir of
 Lincton ave werce of Dov? Lomins :
(5) $\left.D^{-} 7 x\right)=-\frac{5}{3} x+75$
B. $01 m=\frac{2}{8} x-10$
C. D $\mathrm{yd}=-\frac{15}{2} x+1$
$D . D-(x)=-\frac{3}{6} x=\frac{4}{4}$

## Linear Inequalities

## Module Goals

- Students write and solve linear inequalities.
- Students graph linear inequalities in two variables.
- Students apply linear inequalities in problem-solving situations.


## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Also addresses A.CED. 3 and A.REI. 12.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

## Coherence

Vertical Alignment

## Previous

Students constructed simple one-variable inequalities to solve real-world problems.
7.EE. 4

## Now

Students write, solve, and graph inequalities.
A.CED.1, A.REI. 3

## Next

Students will solve systems of inequalities.
A.REI. 12 (Course 1, Course 2)

## Rigor

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.


## Suggested Pacing

Lessons	Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video		1	0.5
6-1 Solve One-Step Inequalities	A.CED.1, A.REI. 3	2	1
6-2 Solving Multi-Step Inequalities	A.CED.1, A.REI. 3	1	0.5
6-3 Solving Compound Inequalities	A.CED.1, A.CED. 3	2	1
Put It All Together: Lessons 6-1 through 6-3		1	0.5
6-4 Solving Absolute Value Inequalities	A.CED.1, A.CED. 3	1	0.5
6-5 Graphing Inequalities in Two Variables	A.CED.3, A.REI. 12	1	0.5
Module Review		1	0.5
Module Assessment		1	0.5
		11	5.5

## ${ }^{-}$Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students determine which graph matches the correct inequality and explain their choices.

Targeted Concepts Understand the relationship between symbolic and graphic representations of linear inequalities.

## Targeted Misconceptions

- Students shade the incorrect region when they lack understanding of the relationship between the graphical representation of an inequality to solutions of the algebraic representation
- Students incorrectly use a dotted boundary line when an equality is included ( $\leq$ and $\geq$ ) or a solid line when it is not ( $<$ and $>$ ).
- Students may incorrectly graph equations of horizontal and vertical lines by interchanging them.
Use the Probe after Lesson 6-5.
${ }^{\circ}$ Collect and Assess Student Answers

If. the student selects these responses...

1. $C$
2. B
3. E
4. H
5. $B$
6. $C$
7. H
8. E
the student likely...
is having difficulty choosing the region that represents the correct solution of the inequality.
is incorrectly using a solid boundary line for inequalities (< and $\rangle$ ) and a dotted line for inequalities that include the line ( $\leq$ and $\geq$ ).
is graphing a " $y=$ a constant" equation as a vertical line and an " $x=$ a constant" equation as a horizontal line.

Take Action
After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Graphing Linear Inequalities
- Lesson 6-5, Learn, Examples 1-3

Revisit the Probe at the end of the module to be sure that your students no longer carry
these misconceptions.

## IGN|TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

## Essential Question

At the end of this module, students should be able to answer the Essential Question.

How can writing and solving inequalities help you solve problems in the real world? Sample answer: Writing and solving inequalities can help me determine the solution sets of problems in the real world.

## What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

## DINAH ZIKE FOLDABLES

Focus Students write about the different ways inequalities can be solved as these methods are presented in the lessons of this module.

Teach Have students make and label their Foldables as illustrated. Students should fill in the appropriate sections with their notes, diagrams, and examples as they cover each lesson in this module.

When to Use It Encourage students to add to their Foldables as they work through the module and to use them to review for the chapter test.

## Launch the Module

For this module, the Launch the Module video uses calculating costs and budget constraints to describe ways of using inequalities to model real-world situations.


What Wi You Leam?


Brigin wit one sheet of Ir $\times$ tr paper.

1. Fold sach ide so the edpas mept in the cerole
2. Fold in halt
3. Unfold and our from eschi end untis you reach the vericat fins.
4. Label the tront of esch fap.


## Interactive Presentation




## What Vocabulary Will You Learn?

ELLL As you proceed through the module, introduce the key vocabulary by using the following routine.

Define A half-plane is a region on a coordinate plane where graphs of ordered pairs are filled.

## Example



Ask How many half-planes are in this graph? Two

## Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- solving one-step equations
- solving multi-step equations
- graphing on a number line
- solving equations involving absolute value
- recognizing solutions of inequalities


## Q ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Linear Inequalities section to ensure student success in this module.

## Mindset Matters

"Not Yet" Doesn’t Mean "Never"
Students with a growth mindset come to understand that just because they haven't yet found a solution, that doesn't mean they can't find one with additional effort and reasoning. It takes time to reason through the different strategies that can be used to solve a problem.

## How Can I Apply It?

Assign students the Math Probes that are available for each module. Have them complete the probe before starting the module and again at the specified point in the module or at the end of the module so that they can see their progress.


## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
5 Use appropriate tools strategically.

## Coherence

Vertical Alignment

## Previous

Students constructed simple one-variable inequalities to solve real-world problems.
7.EE. 4

## Now

Students solve one-step inequalities.
A.CED.1, A.REI. 3

Next
Students will solve multi-step inequalities.
A.CED.1, A.REI. 3

## Rigor

The Three Pillars of Rigor
1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION
Conceptual Bridge In this lesson, students expand on their understanding of equations and use it to build fluency with solving one-step inequalities. They apply their understanding of one-step inequalities by solving real-world problems.

## Language Development Handbook

Assign page 33 of the Language Development Handbook to help your students build mathematical language related to solving inequalities.
ELLILYou can use the tips and suggestions on page T33 of the handbook to support students who are building English proficiency.


Lesson 6-1 • Solving One-Step Inequalities 341a

## Interactive Presentation



## Warm Up



Launch the lesson


[^24]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- solving one-step equations

Answers:

1. 34
2. -12
3. -68
4. 90
5. $x-115=312 ; 427 \mathrm{yd}^{2}$

## Launch the Lesson

## Th) Teaching the Mathematical Practices

2 Create Representations Guide students to write an inequality that can be used to model the situation. Then use the inequality to find the amount of U.S. dollars Chandra will need to exchange.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Mathematical Background

A linear inequality is an open sentence that contains $<,>, \leq$, or $\geq$. Inequalities can be solved by using algebraic methods similar to solving equations. When solved in this way, inequalities that contain a negative coefficient for the variable require special attention when calculating the direction of the inequality in the final solution.

## Explore Graphing Inequalities

## Objective

Students use a sketch to explore graphing solutions of inequalities.

## 11) Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the exercises in this Explore, students will need to use a sketch. Work with students to explore and deepen their understanding of graphing solutions of inequalities.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will graph inequalities on a sketch, with different values and different directions of inequality symbols. They will then answer a series of questions related to the inequalities shown, to solidify understanding of the concepts involved. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore
WEB SKETCHPAD
Students use a sketch to explore the solution of the graph of an inequality.

## TYPE



Students answer questions to show they understand inequalities and their solutions.

## Interactive Presentation



## Explore

## TYPE

a| Students respond to the Inquiry Question and can view a sample answer.

## Explore Graphing Inequalities (continued)

## Questions

Have students complete the Explore activity.
Ask:

- How is graphing the solution to an inequality different than the solution to an equation? Sample answer: An equation has only one answer, so it is just a point on the number line. Because an inequality has an infinite number of solutions, a portion of the number line needs to be shaded as the solution set.
- How do you think the graph would change for the inequality $x \geq 3$ ? Sample answer: 3 is now included in the solution set, so you would graph a point at 3 instead of an open circle.


## (3) Inquiry

How can you graph the solution set of an inequality of the form $x<a$ or $x>a$ for some number $a$ ? Sample answer: Draw a circle at the endpoint. Draw an arrow left if the inequality is less than; draw an arrow right if the inequality is greater than.

## Explore Properties of Inequalities

## Objective

Students use a sketch to explore how addition, subtraction, multiplication, and division affect inequalities.

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in this Explore.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students adjust the sliders and values for operations on the sketch, causing changes in the inequality shown to analyze the relationships when operations are applied to values on each side of an inequality. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore

## WEB SKETCHPAD

Students use a sketch to determine if the properties of equality hold true for inequalities.

## TYPE



Students answer questions to show they understand the property of equalities.

2 EXPLORE AND DEVELOP

## Interactive Presentation

$\square$
Explore

## TYPE

a|
Students respond to the Inquiry Question and can view a sample answer.

## Explore Properties of Inequalities (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Why does the height of the bars stay the same for all operations? Sample answer: If the bars begin at equal heights, the values on each side of the equation are the same. Any changes applied to both sides will still make the values the same.
- Why do you think the inequality symbol changes when you multiply by a negative number? Sample answer: Because the values are not the same to begin with, multiplying will affect then differently. The greater number, multiplied by a negative number, will have a greater absolute value but will be the lesser value.


## Inquiry

Do the properties of equality hold true for inequalities? Explain. No; sample answer: The Multiplication and Division Properties of Equality hold true only for positive values of $c$. For negative values of $c$, the inequality is reversed.

## Learn Graphing Inequalities

## Objective

Students select a graph on a number line that identifies the solution of an inequality.

Teaching the Mathematical Practices
4 Use Tools Point out that to solve the problem in this Learn, students will need to use graphs.

## Example 1 Graph Inequalities

Teaching the Mathematical Practices
6 Use Quantities Use the Study Tip to guide students to clarifying their use of quantities in this example. Ensure that they specify the units of measure used in the problem and label axes appropriately.

## Questions for Mathematical Discourse

ALI When do you shade to the right of the endpoint on the number line? when the variable is greater than the numerical value of the endpoint
Ol. When do you include the endpoint as part of the graph? When the inequality is $\geq$ or $\leq$, the endpoint is included.
31. If $x<k$ has solutions for $x$ that include all negative numbers, what has to be true about $k$ ? Explain. Sample answer: $k$ has to be nonnegative. If $k$ were negative, then there would be negative values greater than $k$ that would not be included in the solution set.

## Example 2 Write Inequalities from a Graph

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the inequalities and their graphs used in this example.

## Questions for Mathematical Discourse

(ALI Is the endpoint a solution to the inequality? Explain. No; sample answer: The graph of the inequality has an open circle at 1.4 which means that 1.4 is not included in the solution.
OL How would the inequality change if the graph had a dot at 1.4 ? It would be included in the solution, so $a \leq 1.4$.
[BEL Describe what the number line represents in this example. It represents an infinite number of solutions to the inequality, where the value of $a$ is less than 1.4.


## Interactive Presentation



## Learn

Students tap on each marker to learn
how a solution set can be graphed on a
number line.


## Interactive Presentation



## Learn



## 1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY <br> 3 APPLICATION

## Learn Solving Inequalities by Using Addition and Subtraction

Objective
Students solve linear inequalities by applying the Addition Property of Inequality or the Subtraction Property of Inequality.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

## DIFFERENTIATE

## 

IF students have trouble understanding some of the phrases used to indicate inequalities, such as "at most" or "no less than",
THEN have them work in pairs or groups to write problems using the phrases. Have students write inequalities to represent the situations.

## Example 3 Solve Inequalities by Adding

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

Questions for Mathematical Discourse
All What is the inverse operation of subtraction? addition
Oll Which property should be used to solve the inequality? Addition Property of Inequality
B1. How would you rewrite the solution with the $x$ on the right side of the inequality? $25>x$

## DIFFERENTIATE

## Enrichment Activity [BL

Write these three linear inequalities on the board:

$$
y>3 \quad y+1>4 \quad 5<y+2
$$

Have students solve each linear inequality and compare the solutions. Ask students to formulate three more linear inequalities that are equivalent to $y>3$.

## Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


## Example 4 Solve Inequalities by Subtracting

Teaching the Mathematical Practices
1 Check Answers Use the Think About It! feature to encourage students to check their solution.

Questions for Mathematical Discourse
All What are two values that make the inequality true? Sample answers: 50,65 (any number greater than 37 )
OLI Will the point on the graph be opened or closed? Explain. Closed; sample answer: The value 37 is included in the solution set because the inequality is "greater than or equal to."
B1. How many solutions are there of the inequality? Explain. Infinitely many; sample answer: There are an infinite number of values greater than or equal to 37 .

## Example 5 Add or Subtract to Solve Inequalities with Variables on Each Side

Teaching the Mathematical Practices
2 Attend to Quantities Point out the order in which to write the solution in set builder notation.

Questions for Mathematical Discourse
Ali Why is it important to isolate the variable? Sample answer: In order to solve for a variable, all like terms need to be together on one side of the inequality.
oll How can you check to make sure your solution is correct? Sample answer: Replace $y$ with a number less than or equal to 3 in the original inequality and check that it is true.
Bi. Why do we not subtract $10 y$ from each side? Sample answer: We would be left with 0 on the right side. We need to have variables on one side and the constants on the other side.

## Example 6 Use an Inequality to Solve

 a ProblemTeaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.
(continued on the next page)

Example 4 Solve inequalties by Sutbracting Solve $x+24 \geq 61$

The rolvion set in $(x) x \geq 37)$
Check
Select the seltion set for $88<x+13$. |n $x>75$ )

Example 5 Add or Subtract to Solve Inequalities with Variables on Each Side
Solve 5y $+3 \geqslant 10 \mathrm{z}$
$9 y+3 \geq 10 y$
$9 y-9 y+3 \geq 30 y-9 y$
Signutpresier
$3 \geqslant y$ Suataror mungoternor
souty
Since $3 \geq y$ the sane at $y \leq 3$, $y \mid y \leq x)$
Check
Whete the soktion sel for $7 x+5<8 x \quad(x \mid x>5]$

Q Example 5 Use an Inequality to Solve a Problem
Bata usace Massan's wieless contract alows him to use af most 5 glyabytes (GB) of data per moeth. Ae this point. Hossen has used 3.7 G8 of data. How many giopebytes of doto can Hassan use during the rest of the month without exceeding the maxiensm allowance?
Complete the table to write an inequality to represent how many gigabytes of data Kassan can use. Then solve the inequality.
 mequality

Simplethon the
nuse
$33+\pi$

## Siudy 7up

## Writing inequaltien

kequity ra that the
varceie is on pre?
side miny $s$ ?
sde, mhys3.
pres solifion ser in set.
bulfer notition mind
grech ine requility on anurberme:
$x+24 \geq 69 \quad$ Crymineonty
$x+24-24 \geq 61-24 \quad$ Suensi 74 tumenctrioe
$x \geq 32$
Senoly.

## Interactive Presentation



Example 4



## Interactive Presentation



Learn


## 1 CONCEPTUAL UNDERSTANDING 2 FLUENCY | 3 APPLICATION

## Questions for Mathematical Discourse

What phrase tells you this is an inequality? Explain. At most; Sample answer: This means that there is a range of values that are acceptable and an endpoint.
OL. What equation could be used to determine data usage that uses exactly all 5 GB of data? $3.7+g=5$
BL. Could we rewrite the inequality as $g+3.7 \leq 5$ ? Explain. Yes; sample answer: Addition is commutative.

## Learn Solving Inequalities by Using Multiplication and Division

## Objective

Students solve linear inequalities by using multiplication and division.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Important to Know

If an inequality is multiplied or divided by a positive number, the inequality symbol stays the same. If an inequality is multiplied or divided by a negative number, the inequality symbol changes direction.

## © Essential Question Follow-Up

Students have explored using and solving inequalities.

## Ask:

Why is it important to understand what the symbols in a mathematical sentence represent? Sample answer: If you are unsure of what the symbols represent, you may not translate a verbal representation into the correct algebraic representation.

## DIFFERENTIATE

## Language Development Activity 대니

Beginning Read the lesson opener or an Example aloud one sentence at a time. At the end of each sentence, ask students to say a word or short phrase that describes an important piece of information from the sentence. Model recording the information in preparation for solving the problem. Have students use your model to record information in their notes.
Intermediate Slowly read the lesson opener or an Example aloud. After each sentence or two, pause and ask volunteers to identify an important piece of information. Have students write the important ideas in their notes. Advanced Tell students to listen without taking notes while you read aloud. After you have finished, have students write down what they remember from your reading. Have students work in small groups to compare their notes. Then have each group discuss the problem and its solution.
Advanced High Have students practice active listening as you read aloud by taking notes. Then have students work in pairs to summarize the information and solve the problem. Have pairs share with the class.

## ©Apply Example 7 Write and Solve an

 Inequality
## T1P Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

## Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

## Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

## Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- H ow can you write the related equation?
-Which inequality symbol can be used to represent this situation?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

## Example 8 Solve an Inequality by Multiplying

(13)

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
ALI What operation is being performed on the variable? multiplication by a fraction
이 How can you solve the inequality? Multiply each side by the reciprocal.
[31. Why do we reverse the inequality symbol? We are multiplying by a negative number.

- Apply Example 7 Wrie and Solve an Inequality sooks Alas has ress approvimatey $\frac{1}{4}$ of a nowe. It she has read at leste 12 pages, how maty proses are there in the nover? 1. What is the tasa?

Desobe top task b yovi own wads. Then kt any questions uvet you moy hive. How con you kind accowers so your questons?
Sancte arwer i know the number ol peges rees and ye froction of the cowil read i toned to fond out how numy poges are in the noved
2. How will you npprooch the task? What have youl hearned that. you can use to help you complete the task?
 to ropiesert be stimution and solvert.
3. What is your solution?
fistimuts the furfore of peges in the novel 400
Whice an inequaliy to recresent tres stamtion tet 0 - pe mamber of pages in the nowe.
$\frac{1}{1} n \geq 122$
$4\binom{1}{4} n \geqslant 4(\mathrm{~mL})$
$n \geq 448$
There ae at least 448 pages in the novel.
4. How can you know that your solution is reascoable?

Q wite About itt whe an argusent that can be used to delend your sotution.
Somple arswer Use mintiplicanorc $448\left(\frac{1}{4}\right)=112.50 .448 / \mathrm{s}$ reasonatle. Aho, $448>400$ which makes serse with our estimate of moce then 400 peges.

## Chock

suectric caf for every hour , ond Eva's elecaic car changen, the can drive the car 7,5 mies. Eva nepde to deve at leust 60 mies tomorow
Part A What inequaty represents the situation in terms of $x$ hoors? $25 x \geq 60$
Part B What is the least amount of sme pat Evs will need to charge hercam? hours

8
Math History Minube
Gemmen mothemabcion
Emary Noether
 sescibed is one Eepreteos. matempiocistor the smenteen cerainy She avina morcems for fouvdin Einowis. pocry of relabver ned was one of the bundies of noswict ulgebses One pecsion whon- The stwhopment of absurct angetra. Is one or ree mon of twention cerniny mymervocs, is isingey two to tert


## Interactive Presentation



## Apply Example 7

## TAP

Students move through the steps to solve a problem involving an inequality.


## Interactive Presentation



Example 8


CHECK


Students complete the Check online to determine whether they are ready to move on.

## Example 9 Solve an Inequality by Dividing

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the inequality and the graph in this example.

## Questions for Mathematical Discourse

Will the endpoint be a dot or a circle? How do you know? circle; The inequality is $<$.
OL. How can you solve the inequality? Divide each side by 20.
BL. By what could you multiply the original inequality to isolate the variable? $\frac{1}{20}$

## Example 10 Solve an Inequality with a Negative Coefficient

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions to the Talk About It! feature.

## Questions for Mathematical Discourse

What is the inverse operation of multiplication? division
Oll What happens to the inequality symbol when you multiply or divide by a negative number? The inequality symbol reverses direction.
BL. What value can you use to check the inequality solution?
Sample answer: -10 is in the solution region, so $-13(-10)=130$ and $130 \geq 117$.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-54$	
2	exercises that use a variety of skills from this   lesson	$55-78$
3	exercises that emphasize higher-order and   critical-thinking skills	$79-82$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks,

THEN assign:

- Practice, Exercises 1-77 odd, 79-82
- Extension: Triangle Inequalities
- ALEKS'Writing and Graphing Inequalities; Linear Inequalities and Applications


## IF students score 66\%-89\% on the Checks, <br> THEN assign:

- Practice, Exercises 1-81 odd
- Remediation, Review Resources: Write and Solve One-Step Equations
- Personal Tutors
- Extra Examples 1-10
- ALEKS:Solving One-Step Equations


## IF students score $65 \%$ or less on the Checks,

THEN assign:

- Practice, Exercises 1-53 odd
- Remediation, Review Resources: Write and Solve One-Step Equations
- Quick Review Math Handbook: Solving Inequalities by Multiplication and Division
- ArriveMATH Take Another Look
- D ALEKS'Solving One-Step Equations


## Answers

1. 



Practice

tumpit:
Graph the solution wet de esch inequality. See margh
2. $k \leq-5$ 2. $y \geq-2$
2. $9>5 \quad$ 4. $5<-6$
5.as? 6. $0 \leq 6$
wiove?
Write an neegaity that reprevents each graph


a. $4 \frac{1}{d}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}!+$ w<5



tentarl-7
Solve wach inayuulty
4. $m-4<3|m| n<7 \mid$ 14. $p=6 \geqslant 3|p| p \geqslant 29$




23. $8 \leq r-94|p| r \geq 22|\quad 24-7>20+e| c|c<-27|$





## © ancw:


 in keousty no robresent the cont ot the pina $\frac{3}{} \leq 450$. $\leq 58$
32. whanase theodore fiyth of the luweriay of Oicapo deveioped e couvifation of formasoes according to wnd speed and damege the tutie towe the coruferton vetem.

Levt	Nent	Wivespete hiser man
10.	Ow	40.72
A	Mopernt	3-62
12	Starioue	104-187
n	Serees	158-206
54	Deventating	207-260
E5	hionoble	265-39
50	bxanceivem	399,39

## 


 ate corch
 than ine fiometh sinido. $40+y \geq 15 t: y \geqslant$ thk al hext tis mon

## 50wn?




 unved 2079 dinn as Clipt satice. He sered 10.453 dess fewer tron lobn Wiranat who seved as Supreme Cout Cript hatice tor the forgent penet

 woch dey by unsod sutes aikses of oreus. 288 we locsted by the arimed





343 mede $6 \cdot$ Liwar meters

```
Sumper (-10
Saver evon inequality. Graph the solution on a number liot. J7-St See mariti
7. |ms-0
38. j }0<2
3a.-H>-&
4a.-2z-\frac{2}{4}
4t. -10=S
```



```
45.josc-al
42. 4<<64
45. -26<26e
5c.-33>-3t
52.-2q< 5
```


## Mand Surchas

Match esch insopatity with its ceresiponsing natemen.

```
Q. Thee TMesa nincter 'a at nicht nom,
```

56. $\frac{1}{0} \geq 91 \quad$ b. Opertistor nometer in m moce than minel
57. $30 \leq 9$ a CNepwive tree smes a natoe is mare mer nime




ivime lata $=$ to Renber

58. Twenty less than a nonber a ationat is $n-20 \geq 18$ ip|n $\geq 35$ )
59. A nember pus 2 a at mort $1+2 \leq 5,|n| n \leq-1$


60. Eght lines a mumber in athast 16. $\mathrm{Ba} \geq \mathrm{W}=\mathrm{in} \mid \mathrm{e} \geq 2 \mathrm{z}$
```
and then gropbil on a number lice.
```


62. $4<3$
7. $\frac{15}{5} \leq 1$

72. $n-\frac{1}{5}>\frac{4}{3}$
7. $c+1-142 \geq 23$
$74 .+\frac{1}{2}>1$

an a rertee odpers a minimum of $\$ 5000$ worth of lood. Actonip a plating a


50 iniligumen pon day. Ar avectop sied apele contims 6 entigntis of vituin
C. How nay topler would a serison hive to are rech dey 50 seltify tio



ind sche an ineqialty to resretiest the thimion thow loyd we tre cath of ed

78. usc a wioet in a mathemafo cram with a matimp score of No


gride Mesthele con po
a. Defnes vuilable then wite mid natit ar inequitiy 10 respesent
pe number of poicts Mochebe recenvs on her exam

a. interget the acheon to your incoustc. What do you hrow about

Oripber Onter ninking swas.

$A-3 \gg 6 \quad$ i $-\frac{5}{2}<1 \quad c \geqslant<-16 \quad$ D $\hat{j} \leqslant<-1$

ather conect Esphain your nessoning ser mirpin

Wan	Hem


a. $0 \ll 7 \times 1 \quad$ b $a x \geq 12, \geq$ ?


 350 Model 8 -Cown woulter

## Answers

37. $\{m \mid m \leq-68\}$

38. $\{c \mid c>121\}$

39. $\{x \mid x \leq 20\}$

40. $\{h \mid h>21\}$

41. $\{n \mid n \geq 108\}$

42. $\{r \mid r<16\}$

43. $\{t \mid t>-1\}$

44. $\{z \mid z \geq 11\}$

45. $\left\{d \left\lvert\, d>-2 \frac{1}{2}\right.\right\}$


46. $\{d \mid d \geq 68\}$

47. $\{f \mid f<432\}$

48. $\{j \mid j \leq-16\}$

49. $\{p \mid p \leq 16\}$


50. $\{v \mid v<12\}$

51. $\left\{b \left\lvert\, b \leq-\frac{3}{4}\right.\right\}$

52. $\left\{f \left\lvert\, f<-\frac{5}{7}\right.\right\}$

53. Sample answer: Let $x$ represent the decibel level of the calls of a blue whale; $x-83 \leq 105 ; x \leq 188$. The calls of a blue whale are less than or equal to 188 decibels.
54. Sample answer: Heath is correct. Marty solved the inequality incorrectly because the inequality symbol was reversed when dividing by a positive number.


## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.REI. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.

## Coherence

Vertical Alignment

## Previous

Students solved one-step inequalities.

## 7.EE.4, A.CED.1, A.REI. 3

## Now

Students solve multi-step inequalities.
A.CED.1, A.REI. 3

Next
Students will solve compound inequalities.
A.CED.1, A.CED. 3

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their understanding of solving one-step inequalities and build fluency with solving multi-step inequalities. They apply their understanding of multi-step inequalities by solving real-world problems.

## Mathematical Background

A linear inequality is an open sentence that contains $<,>$, $\leq$, or $\geq$, which can be solved by using algebraic methods similar to solving equations. Inequalities containing more elaborate expressions require additional steps of computations to isolate the variables in a solution inequality.

## Interactive Presentation



Warm Up


Launch the Lesson

## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- solving multi-step equations

Answers:
1.1
2. 2
3. 6
4. 6
5. $d+2 d=42 ; 28 \mathrm{yr}$

## Launch the Lesson

Teaching the Mathematical Practices
2 Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. Students can make sense of the information given and the information found in the infographic to write an inequality representing the honey consumed in the U.S. in a given year.

$\omega$
Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Explore Modeling Multi-Step Inequalities

## Objective

Students use algebra tiles to explore solving multi-step inequalities.

## Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use algebra tiles. Work with students to explore and deepen their understanding of multi-step inequalities.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Student use algebra tiles with inequalities, to solidify understanding of how multi-step expressions can be used with inequalities. As the students are guided through the series of questions, they develop an understanding of how their known methods for solving multi-step equations apply to solving multi-step inequalities, with the aid of modeling by algebra tiles. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore


## Interactive Presentation



Explore

## TYPE

a|
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

## Explore Modeling Multi-Step Inequalities (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Why should you begin by adding or subtracting 1 -tiles? Sample answer: Just like solving an equation, you need to isolate the $x$-tiles using zero pairs.
- How would you model and solve the inequality $9 \leq 2 x-5$ ? Sample answer: Place 91 -tiles on the left side of the mat, then place two $x$-tiles and five negative 1 -tiles on the right side. Add five 1 -tiles to each side of the mat and clear out the zero pairs. Then divide the tiles into two equal groups to get $7 \leq x$ or $x \geq 7$.


## (6) Inquiry

How can you model and solve a multi-step inequality? Sample answer: Use algebra tiles to model the inequality. Then add positive or negative 1 -tiles to form zero pairs and isolate the $x$-tiles. Finally, separate the remaining tiles into equal groups.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

3 APPLICATION

## Learn Solving Inequalities Involving More Than One Step

## Objective

Students solve multi-step linear inequalities by applying properties of inequalities.

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in solving multi-step inequalities in this Learn.

## ©Example 1 Apply Multi-Step Inequalities

Teaching the Mathematical Practices
6 State Meanings of Symbols Guide students to define variables to solve the problem in this example. Help students to identify the independent and dependent variables. Then work with them to find the other relationships in the problem.

## Questions for Mathematical Discourse

Al What are you trying to determine? What phrase indicates an inequality? How many comic book copies Suzy can afford to selfpublish; maximum budget
all What expression represents the total cost for printing $x$ copies of Suzy's comic book? $220+3 x$
BL. How would the inequality change if Suzy decided to spend $\$ 25$ of her budget on internet advertising? The $220+3 x$ would need to change to $245+3 x$.

## DIFFERENTIATE

## 

IF you have students who are interested in science,
THEN point out that there are many natural settings that can be connected to linear inequalities. Have students write observations about possible connections in their notebooks and then share their observations with the class.

Essential Question Follow-Up
Students have explored expressions, equations, and inequalities.

## Ask:

How are symbols used to write expressions, equations, and inequalities? Sample answer: If only operational symbols are used without a symbol that denotes equality or inequality, the statement is an expression. If an equal sign is used to show that two or more expressions are equal, the statement is an equation. If an inequality symbol is used to show that two or more expressions are unequal, the statement is an inequality. Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Example 1



## Interactive Presentation



## 1 CONCEPTUAL UNDERSTANDING

## Example 2 Write and Solve a Multi-Step Inequality

## Teaching the Mathematical Practices

2 Create Representations Guide students to write an inequality that represents the verbal description of the inequality in this example. Then use the inequality to solve the problem.

## Questions for Mathematical Discourse

Al What phrase in the description indicates a variable? a number
이. What is the coefficient of the variable? $-\frac{1}{2}$
B1. How is solving this inequality similar to solving a multi-step equation? Sample answer: Because there are multiple operations applied to $x$, you still need to undo each using the reverse order of operations.

## Example 3 Solve an Inequality with the Distributive Property

Teaching the Mathematical Practices
1 Explain Correspondences In this example students should be able to explain the relationship between the solution of the inequality and its number line.

## Questions for Mathematical Discourse

AL. What operation is indicated by the number outside the parentheses? multiplication

OL What is the first step in simplifying this problem? Sample answer: Distribute the 4 and the 2 to the terms in parentheses.Describe another way to solve the inequality. Sample answer: Use the Division Property to divide each side by 2 . This will eliminate the need to distribute on the right side, though you will have to take half of the -12 , turning it into a -6 , and then still distribute on the left side.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

## Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-21$	
2	exercises that use a variety of skills from this lesson	$22-41$
3	exercises that emphasize higher-order and   critical-thinking skills	$42-52$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score 90\% or more on the Checks,

## THEN assign:

- Practice, Exercises 1-41 odd, 42-52
- Extension: Graph Linear Equations to Solve Multi-Step Inequalities
- D ALEKS'Writing and Graphing Inequalities; Linear Inequalities, and Applications

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-51 odd
- Remediation, Review Resources: Solve Two-Step Equations:

$$
p x+q=r
$$

- Personal Tutors
- Extra Examples 1-3
- © ALEKS'Solving Multi-Step Equations

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Solve Two-Step Equations:

$$
p x+q=r
$$

- Quick Review Math Handbook: Solving Multi-Step Inequalities
- ArriveMATH Take Another Look
- GALEKS'Solving Multi-Step Equations


## Answers

2 c . no younger than 22 ; The solution to the inequality is $x>19$, so the youngest brother is no younger than 20. The oldest brother is 2 years older than the youngest brother since each are one year apart. Therefore, the oldest brother is no younger than $20+2$, or 22 .
$3 c$. Because the service charges per $\frac{1}{a}$ mile, multiply $a$ by the number of miles, $x$, to find the number of $\frac{1}{a}$ miles. Subtract 1 from the total number of $\frac{1}{a}$ miles, $a x$, to find the number of additional $\frac{1}{a}$ miles. Multiply the difference by the cost per additional $\frac{1}{a}$ mile, 0.25 , and add the cost for the first $\frac{1}{\sigma}$ mile, 1.50 . This sum is less than or equal to $\$ 3.75$, so $1.50+0.25(a x-1)$ $\leq 3.75$.

Practice
aphov

 $\$ 1500$ spens
2. What in inequalty lo rocretert tion athition infere stia ve sumber ef toun

Jay warem a metu debictor $15+2 \mathrm{~s} \leq 35$

netwidetectory is is 10,30 tevin



veungent brebect $x+|x+1|+|x+2|>$ क人
a. Sopre the inequanty $x>19$




 ntes. $150+0.255 \mathrm{c}-5 \leq 275$
 notspiticanvt $\pm \leq 2: 7=$
C. Generstie a rettrod for wining an inspusity for bis shiution ir ne wevices


 has sto0
 neeos. $765+0.45 \mathrm{C} \leq 50.00$



 want to spend more then 5250
 500
 (nver wo me connert $x \leq 3 / 2 / 3$ prople

```
avwa
```





```
7. Twenly ove is gwober Han Sve sin
```



```
Nud remen
```




```
#M. Tabty seven a wos thar twe dithence of sewn andwen tines a norber
```



```
43. Negatiov fivelours twes a menber glus slx is less than terlv.
```





```
Exarn }
```



```
46}-307+35<6n\quad Z: 2t 2 300-7n+
4(.2y+4>28+x 10. 20-41<50-30-50
20.y+ts.yy+#+2 2r.40+2y-fons 20
Muesa Lumcisen
Solve vach inequatity, Cneck roun solution
22. 2k-452+36x-64 23. 2v-4}2, z-5x+
Ma, (x|x25)
24.55z+15<25z-4y 25.072n+512, 25
 |z|t<-2)
24.2(-30-5%z-28 2z-6w+|<20w+5i
 (mims3) (m(m>-2)
ver roces Use a graphing colivilator to selve esen insquality
2a.3x+7>4x+9 22.3x-11\leq7x+22
 (a)r<-2)
 (x)< < 8)
30. 2v-3)<3(2x+2) 3n,)
 {x|x>-1}] (vicx-6}
32.2x-3\geq=-22 (sir\geq-44)
{1*2*9
```


## innucruas Solve tach isequalid. Then paphit en a number line. <br>  <br> 36. $27-83 \geq 53 x-129,1 \leq 23$ 

 Tesurctes city restrictions on buldiag codes. The rieiple bi the veetouse comprt mit 64 llest in the pound
segrermotis tieve or his geund

- Wite mod rotie mo moantix. $2 s+4 \leq \pi \leq \leq 4.5$
b. Whin a the maximin heigh of poef level? 4.5 n






b. Tre label beiow ipgeen on ictribli cold evescine whar is me asat


\& Wher s the merisum abve osege in nabterst $3 t 2 \mathrm{zit}$
 gencith he has a less then 20 . Whet cen you conclode about tre minbet et








## Oripher Order Thenking saik




 so that hes mwope a at bost 82 . Sor mayin.
 cleet The mariman perinetes in an leet.
a. Side on 2 Vel longer than adasard 2 leet iongm pan b Whip vor is the stortesif Expion See mugh

45. creatr wite minequibly thut tiar be

 Propect. AaStion Prosety al Megutibes, ard me Divion Fropeity of Insquities senpla mower: $2(2 \pi-n<10$
46. ressivese $\mathrm{Let} b>2$. Describe now rou moud odermine $1 \pi 00>20$ Sernurgh
a7. Ceratt four bees the numbec of besebat cordr in tods cotective in sote the


 sach side by a segnive murbet: Sermargin.
 sobtion of es $+b>$ or $+c$ explan wer esposing. See ewighin
so. mechione dotsort anconat time He nequally that does mot bpiofy katlo your concluwon Sen murpin
a.6.0.3
 set of at rai mondsn Show an enanole of each. Sermavil.
52. ressivere Solve each inequaly in serms st a Assume thet aboes net equal a a. $0 x+5<n \quad x<1 \quad$ o. or $-4 \geq 12 \times 2$ y
c. $a x-5>30 \quad x>\frac{H+1}{2} \quad$ \& ar +12$\} x \geq \frac{e-1}{2 x}$


355-356 Module 6 - Linear Inequalities

## Answers

34. $\{g \mid g>4.5\}$

35. $\left\{p \left\lvert\, p \leq 1 \frac{1}{9}\right.\right\}$

36. $r \leq 2.3$

37. Eric does not have any pencils. Based on his statement, the inequality is $6 p+15<20$, where $p$ is the number of pencils. The solution of the inequality is $p<\frac{5}{6}$. However, the number of pencils must be a whole number, so $p=0$.

$$
\text { 41. } \begin{array}{rlrl}
10 n-7(n+2) & >5 n-12 & & \text { Original inequality } \\
10 n-7 n-14 & >5 n-12 & & \text { Distributive Property } \\
3 n-14 & >5 n-12 & & \text { Combine like terms. } \\
3 n-14-5 n>5 n-12-5 n & \text { Subtract } 5 n \text { from each side. } \\
-2 n-14 & >-12 & & \text { Simplify. } \\
-2 n-14+14 & >-12+14 & & \text { Add } 14 \text { to each side. } \\
-2 n>2 & & \text { Simplify. } \\
\frac{-2 n}{-2}<\frac{2}{-2} & & \text { Divide each side by }-2 . \text { Change }>\text { to }<. \\
n<-1 & & \text { Simplify. }
\end{array}
$$

The solution set is $\{n \mid n<-1\}$.
42. The solution set is the empty set because solving the inequality results in a false statement. When you replace the inequality symbol with $\geq$, the solution set becomes all real numbers since solving the inequality now results in a statement that is always true.
43. $\frac{76+80+78+x}{4} \geq 82 ; x \geq 94$; Mei needs a score of at least 94 on the next exam.
44a. The shortest side must be $a$, since $b=a+2$ shows that $b>a$ and $c=b+2$ shows that $c>b$.
44 b . Solve the inequality $a+b+c \leq 20$ or $a+(a+2)+(b+2) \leq 20$ or $a+(a+2)+(a+2+2) \leq 20$. The solution is $a \leq \frac{14}{3}$. So the shortest side is greater than 0 feet but less than or equal to $4 \frac{2}{3}$ feet.
46. The inequality $a b>2 a$ can be determined to be true or false by considering the value of $a$. Since $b>2$, by the Multiplication Property of Inequality $a b>2 a$ is true if $a$ is a positive number.
47. Let $c=$ the number of baseball cards Ted has; $4 c>5 c-15 ; 15>c$; Ted has fewer than 15 cards.
48. Add $3 p$ and 2 to each side. The inequality becomes $9 \geq 3 p$. Then divide each side by 3 to get $3 \geq p$.
49. $\varnothing$; If the inequality is always true, the opposite inequality will always be false.
50. $4 y+9>-3$; It is the only inequality that does not have a solution set of $\{y \mid y>3\}$.
51. Sample answer: The solution set for the inequality that results in a false statement is the empty set, as in $12 \geq 15$. The solution set for an inequality in which any value of $x$ results in a true statement is all real numbers, as in $12 \leq 12$.


## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
Standards for Mathematical Practice:
4 Model with mathematics
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

## Coherence

Vertical Alignment

## Previous

Students solved multi-step inequalities.
7.EE.4, A.CED.1, A.REI. 3

## Now

Students solve compound inequalities.
A.CED.1, A.CED. 3

Next
Students will solve absolute value inequalities.
A.CED.1, A.CED. 3

## Rigor

The Three Pillars of Rigor

```
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY
```

Conceptual Bridge In this lesson, students draw on their understanding of solving multi-step inequalities and build fluency with solving and graphing compound inequalities. They apply their understanding of compound inequalities by solving real-world problems.

## Mathematical Background

A compound inequality is an open sentence in which an algebraic expression is constrained by two different inequality relationships.
Compound inequalities can be solved by using algebraic methods similar to solving equations and standard inequalities.

## Interactive Presentation

Warm Up
Graph the solution of sach inequality on a number line.
$2 . s \leq-5$
$2.14>0$
$3 .-2 \leq c$
$4 . x \neq 3$
$5 . n<5$

Warm Up


Launch the Lesson


[^25]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- graphing on a number line

Answers:

2.

3.

4.

5.


## Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch, students learn how to apply what they have learned about compound inequalities to a real-world situation about the process of becoming an FBI agent.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

## Explore Guess the Range

## Objective

Students use a sketch to explore writing and interpreting compound inequalities by using the word and.

## Teaching the Mathematical Practices

4 Apply Mathematics In this Explore, students use what they have learned about inequalities and apply it to a real-world situation.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. The students will interact with a sketch about the values of prizes on a game show, then answer a series of questions about the price ranges shown and how they relate to writing compound inequalities using the word and. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore


Students select the correct answer to a question to show they understand compound inequalities.

## Interactive Presentation



## Explore

## TYPE

Students respond to the Inquiry Question and can view a sample answer.

Explore Guess the Range (continued)

## Questions

Have students complete the Explore activity.
Ask:
-Would it make sense to write the inequality $6700 \leq x \leq 5500$ ? Why or why not? Sample answer: No, because a value can't be both greater than 6700 and less than 5500 .

- Do you think it would be easier or more difficult to win if the accepted range was $\$ 250$ ? Sample answer: It would be more difficult to win because there are fewer values in a range of $\$ 250$. You would have to be much closer to the actual value.
(D) Inquiry

How can you tell if a value will satisfy a compound inequality that includes the word and? Sample answer: If a value falls between the lowest and greatest values of a compound inequality that uses the word and, then it satisfies the inequality.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

3 APPLICATION

## Learn Solving Compound Inequalities Using the Word and

## Objective

Students solve and graph linear inequalities containing the word and by applying properties of inequalities.

## Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## What Students are Learning

A compound inequality is two or more inequalities that are connected by and or or. The word and means all inequalities must be true, and the solution set is where the graph of the inequalities overlap. This is called the intersection.

## Common Misconception

A common misconception some students may have is that the solution inequality must have different inequality symbols for an and compound inequality. Remind students the inequality symbols keep the solution set between two values and cannot have different symbols.

## Example 1 Solve and Graph an Intersection

## M1P Teaching the Mathematical Practices

7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In this example, guide students to see what information they can gather about the expression just from looking at it.

## Questions for Mathematical Discourse

4L. Why does it help to break the inequality into two pieces? Sample answer: It is easier to focus having the variable on one side of the inequality symbol and a constant on the other side.
OL How do you think we can graph the solution set? Sample answer: We can plot the endpoints and then draw a line connecting them.
BE- If a value is a solution of one of the two inequalities, is it a solution to the compound inequality? Explain. No; sample answer: The intersection means the solutions have to be true for both inequalities. A value that is a solution to one inequality but not the other would not be a solution to the compound inequality.

## Common Error

Students may assume that the solution set for $\{h \mid-6 \leq h<3\}$ includes 3 . It does not. Less than 3 does not include 3.


## Interactive Presentation



Learn
 understand if a value is a solution to a compound inequality.


## Interactive Presentation



Example 2


## Example 2 Apply Compound Inequalities

Teaching the Mathematical Practices
4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

Questions for Mathematical Discourse
All What is the maximum allowed weight for a box of cereal to pass the manufacturer's quality assurance test? less than 25.2 ounces
[OL What is the unknown quantity in this problem? the weight of a box of cereal
EBL How do you determine if this is an intersection or a union? Sample answer: The word "between" tells you that there is a value that is least and a value that is greatest. So, you know that it has to be an intersection.

## Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


## Learn Solving Compound Inequalities Using the Word or

## Objective

Students solve and graph linear inequalities containing the word or by applying properties of inequalities.

## Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of compound inequalities using the word or in this Learn.

## Important to Know

A compound inequality containing the word or is true if at least one of the inequalities is true. The graph of the solution is the union of all solutions of the individual inequalities.

## DIFFERENTIATE

## Enrichment Activity A니 3L: LL

IF some students are overwhelmed trying to discern whether word problems represent compound inequalities and whether the inequalities are inclusive or exclusive,
THEN pair these students with more advanced students to work the problems, encouraging both students to take an active role in solving the problems. If a student proposes a good way of thinking about compound inequalities, encourage that student to share their thinking with the rest of the class.

## Example 3 Solve and Graph a Union

Teaching the Mathematical Practices
7 Use Structure Students will use the structure of the compound inequality to write two cases.

Questions for Mathematical Discourse
All What do 2 and 6 represent? the endpoints of the two inequalities in the compound inequality
OL How can we graph the solution set? Sample answer: Plot a closed circle at 2 and shade to the left. Then plot an open circle at 6 and shade everything to the right.
[BL. If a value is a solution of one of the two inequalities, is it a solution to the compound inequality? Explain. Yes; sample answer: The union includes all values that are solutions to either of the inequalities. A value that is a solution to one inequality but not the other would still be a solution to this type of compound inequality.


## Interactive Presentation

Solve and Graph a Union		
Solve $4 n+8 \leq 16$ or $-3 n+7<-11$. Then graph the solution set:		
Express the compound hequality as two inequatites joined by the woed or:		
$4 n+8 \leq 16$	or	$-3 n+7<-11$
$4 n+8-8 \leq 16-8$	Subsact.	$-3 n+7-7<-11-7$
$4 n \leq 8$	Simplify	$-3 n<-18$
$\frac{4 \pi}{4} \leq \frac{8}{4}$	Divide.	$\frac{-3 n}{-3}<\frac{-18}{-2}$
$n \leq 2$	Simplity.	$n>6$

Example 3

## TAP

Students move through the steps to graph the solution set on a number line.


## Interactive Presentation



Example 4


Students move through the steps to graph the solution set.


## Example 4 Overlapping Intervals

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AIL What does or in the compound inequality mean? Any number that is a solution to one of the inequalities is also a solution to the compound inequality.
OLD Would the compound inequality $x>0$ or $x>1$ include 1 as a solution? Explain. Yes; The value 1 makes the inequality $x>0$ true, so it is a solution to the union shown in the compound inequality, even though it is not a solution to $x>1$. Write the solution in set-builder notation. $\{k \mid k<0\}$

## Common Error

Students may confuse the meaning of the words intersection and union. Have them compare the definitions of these two words in real-world situations. For intersection, students may suggest two roads overlapping at an intersection. For union, they might suggest the 50 states coming together to form a union.

## Example 5 Write a Compound Inequality for an Intersection

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the compound inequality and its graph used in this example.

## Questions for Mathematical Discourse

AL. Is -2 a solution to the compound inequality shown on the graph? Explain. No; sample answer: It is represented by an open circle.
Dil Does this graph represent an intersection or a union? intersectionDescribe all of the solutions to this compound inequality. Sample answer: every value between -2 and 4 , including 4

## Check

Solve 4 en $+7 \geq 19$ or $-m+5 \leq 0$. Then graph the solveon set.
Part A
Select the solution set for $4 m+7 \geq 10$ or $-m+5 \leq 0 .(m \mid \infty \geq 3)$ Parts
Graph of the solution set for $4 m+7 \geq$ th oe $-m+5 \leq 0$

$$
\stackrel{1}{8}+\frac{1}{2} * \frac{1}{6}+\frac{10}{20}
$$

Example 5 . White a Compound inequatity for an internection

## Wite a compound inequality that describes the greph

$4-1+\frac{1}{-2}-4-2-1 \quad 0 \quad 1 \quad 3 \quad 4 \frac{1}{5}$
The graph shows an interval tetiveen tive rumbert. Because a compound loegality with the word and reptesents the internection of two hequatres, its gingh thows the overtip as an intoivat
Steo 1
Analyae the leftuont endpoist of the icterval. The enapoift is showe wien a cricle at -2 , wo -2 is not included in sie satition. Poirsts to the tight of the enapoint eve shaded, so the graph represents solutions of $s>-2$
Step 2
Acalrre pe nightmost eodpoirf of the intorval. The endpoint is shown wifh a dot ot 2004 is inctudnd in the rotition. Points to the let of the endocitt cre shoded so the grach fepserents soldtions of $x \leq 4$.

Step 3
The shaded intervel reperewents the intirsection of the solvions of
$x>-2$ and $x \leq 4$, so the compound intqualey -2 ers 4 detcribes the graph.

## Interactive Presentation





Example 5

Students move through the slides to see how to write a compound inequality for the graph.


## Interactive Presentation



Example 6


## Example 6 Write a Compound Inequality for a Union

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the compound inequality and its graph used in this example.

## Questions for Mathematical Discourse

Al. What is a value that is not a solution to the inequality? Sample answer: 10

OLI Is 8 a solution to the graphed compound inequality? Yes What does this tell you about the inequality? The inequality will include the $\leq$ symbol.
Based on the graph, how can you tell whether the inequality is a union or intersection? Because the graph represents all the solutions of two distinct inequalities, the compound inequality represents a union.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

3 APPLICATION

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-26$	
2	exercises that use a variety of skills from this   lesson	$27-43$
3	exercises that emphasize higher-order and   critical-thinking skills	$44-54$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, <br> THEN assign:

- Practice, Exercises 1-43 odd, 44-54
- Extension: Precision of Measurement
- Q ALEKS'Writing and Graphing Inequalities; Linear Inequalities and Applications


## IF students score 66\%-89\% on the Checks, <br> THEN assign:

- Practice, Exercises 1-53 odd
- Remediation, Review Resources: Represent Integers
- Personal Tutors
- Extra Examples 1-6
- Q ALEKS'Plotting and Comparing Signed Numbers

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Represent Integers
- Quick Review Math Handbook: Solving Compound Inequalities
- ArriveMATH Take Another Look
- Q ALEKS'Plotting and Comparing Signed Numbers


## Answers



## Answers

5. $\{p \mid-4<p \leq 5\}$

6. $\{c \mid-1 \leq c<2\}$

7. $\{f \mid-2<f<-1\}$

8. $\{w \mid w \leq-3$ or $w \geq 2\}$

9. $\{b \mid-2<b<6\}$

10. $\{p \mid p \leq 0$ or $p>3\}$

11. $\{a \mid-2 \leq a<5\}$

12. $\{x \mid 0<x \leq 3\}$

13. The minimum is 67 , since the solution of the inequality $2000 \leq 1000+$ $15 x$ is $66 \frac{2}{3} \leq x$, and the number of students must be a whole number. The maximum is 100 , since the solution of the inequality $1000+15 x \leq$ 3000 is $x \leq 133 \frac{1}{3}$, but the bus can only hold 100 students.
39a. The side lengths must be $5, x$, and $9-x$. Using the Triangle Inequality results in the compound inequality $x+5>9-x$ and $14-x>x$.

39b. The solution of the compound inequality is $2<x<7$, so each of the lengths must be greater than 2 m but less than 7 m . The sum of the two lengths must be equal to 9 m .
41. $\{x \mid-2<x<5\}$

46. When solving $-3 x+7 x-1>11$, Sierra incorrectly added $-3 x$ and $7 x$, which caused her to divide by a negative coefficient and incorrectly switch the inequality symbol.
49. The union of the two graphs is the graph on the left, so the graph on the left is the graph of the solution set for Exercise 47. The intersection of the two graphs is the graph on the right, so the graph on the right is the graph of the solution set for Exercise 48.
50. 12 feet; The cost of the fence is represented by the compound inequality $60 \leq 1.5(a+a+a+4) \leq 75$ or $60 \leq 1.5(3 a+4) \leq 75$. The solution is $12 \leq a \leq 15 \frac{1}{3}$. The flower bed with the shortest possible sides occurs when $a=12$, and the lengths in this case are $12 \mathrm{ft}, 12 \mathrm{ft}$, and 16 ft .
53. Sometimes; The graph of $x>2$ or $x<5$ includes the entire number line.
54. Sample answer: The speed at which a roller coaster runs while on the track could represent a compound inequality that is an intersection.

## LESSON GOAL

Students solve absolute value inequalities.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Solving Absolute Value Inequalities

## Develop:

Solving Inequalities Involving < and Absolute Value

- Solve Absolute Value Inequalities (<)
- Absolute Value Inequalities (<) with No Solutions
- Use Absolute Value Inequalities

Solving Inequalities Involving > and Absolute Value

- Solve Absolute Value Inequalities ( $>$ )
- Absolute Value Inequalities ( $>$ ) with Overlapping Case Solutions

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

## Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	$A$	IIF	IEI	
Remediation: Solving Equations Involving   Absolute Value				0
Extension: Using Graphs to Solve Absolute   Value Inequalities				

## Language Development Handbook

Assign page 36 of the Language Development Handbook to help your students build mathematical language related to absolute value inequalities.
IELII You can use the tips and suggestions on page T36 of the handbook to support students who are building English proficiency.


## Suggested Pacing <br> 90 min $\quad 0.5$ day

## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 1 Create equations and inequalities in one variable and use them to solve problems.
A.CED. 3 Represent constraints by equations or inequalities, and by
systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.

## Coherence

Vertical Alignment

## Previous

Students solved compound inequalities.
A.CED.1, A.CED. 3

## Now

Students solve absolute value inequalities.
A.CED.1, A.CED. 3

Next
Students will solve and graph inequalities in two variables.
A.CED.1, A.REI. 12

## Rigor

The Three Pillars of Rigor

```
1 CONCEPTUAL UNDERSTANDING
```

Conceptual Bridge In this lesson, students expand their understanding of absolute value equations to build fluency with solving inequalities that involve absolute value. They apply their understanding of solving absolute value inequalities by solving real-world problems.

## Mathematical Background

Inequalities involving absolute value can be solved by writing them as compound inequalities. These compound inequalities can then be solved using the algebraic methods previously explored.

## Interactive Presentation

	$\times$
Warm Up	
Solve each equation.	
1. $21.1-1=2$	
2. $3 / 9 / 4$	
3. $2 \mathrm{hat}-2=6$	
4. $2101+2=3$	
5. TEMPIRATURE While a nomal body temperature is 98.6 F , most phyicians foet that a temperature TF above or below 98.6 F is also normal. Whe an equation to represent this situation ther solve the oquation.	

## Warm Up



Launch the Lesson

## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- solving absolute value equations

Answers:

1. 3 or -3
2. 5 or -5
3. 4 or -4
4. $\frac{1}{2}$ or $-\frac{1}{2}$
5. $|x-98.6|-1 ; 97.6,99.6$

## Launch the Lesson

Teaching the Mathematical Practices
6 Communicate Precisely In this Launch, students will learn the importance of communicating precisely when specifying the baking temperatures of candy. Baking temperatures can be modeled with absolute value inequalities.

(3)
Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Explore Solving Absolute Value Inequalities

## Objective

Students explore how to use the process for solving absolute value equations to solve absolute value inequalities.

Teaching the Mathematical Practices
3 Make Conjectures In this Explore, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students examine solution cases for a basic inequality involving an absolute value, relating the methods of solving them to solving absolute value equations. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore


Lesson 6-4 • Solving Absolute Value Inequalities 367c

## Interactive Presentation



## Explore

TYPE


Students respond to the Inquiry Question and can view a sample answer.

## Explore Solving Absolute Value Inequalities (continued)

## Questions

Have students complete the Explore activity.

## Ask:

-Why do you have to solve two cases for the absolute value inequality? Sample answer: Similar to an absolute value equation, you have to take into account both distances from zero on the number line.

- How do you think you the graph would change for $|x| \geq 3$ ? Sample answer: You are looking for distances that are greater than or equal to 3 from zero, so you would shade $x>3$ and $x<-3$.


## (e) Inquiry

How is solving an absolute value inequality similar to solving an absolute value equation? Sample answer: To solve both an absolute value inequality and an absolute value equation, you must consider the case where $x$ is nonnegative and the case where $x$ is negative.

## Learn Solving Inequalities Involving < and Absolute Value

## Objective

Students solve absolute value inequalities involving a less than symbol by applying properties of inequalities.

## Teaching the Mathematical Practices

3 Analyze Cases This Learn guides students to examine the cases arising when solving an absolute value inequality. Encourage students to familiarize themselves with both cases.

## Important to Know

Discuss with students that absolute values should be thought of as a distance. Relate the symbolic representation of the absolute value with the graphical representation on the number line, and encourage students to use this representation as a way to confirm their solutions to absolute value inequalities as they move forward.

## DIFFERENTIATE

## Reteaching Activity AL

IF students do not understand why $|m+5|<3$ is rewritten as $m+5<3$ and $m+5>-3$,
THEN have them rewrite the second inequality as $-(m+5)<3$ and multiply each side by -1 to yield $m+5>-3$. This method makes the switch of the direction of the inequality more obvious, as students must make the switch when they multiply each side by -1 .

## Example 1 Solve Absolute Value Inequalities (<)

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse
In Example 1, what are the two possible cases for $m+5$ ? $m+5$ is positive and $m+5$ is negative.

OL. Why are there two cases to consider in an absolute value inequality? Sample answer: Absolute value means distance away from zero on a number line. There is the distance in the positive direction from zero and the distance in the negative direction from zero.

BLI For what values of $b$ would $|m+5|<b$ have no solutions? Explain. Sample answer: All values of $b$ such that $b<0$ would have no solutions, because the absolute value quantity must be nonnegative.


## Interactive Presentation



Learn


Students tap to see a Watch Out! feature about visualizing the graph of the inequality to help determine which inequality symbol to use.


## Interactive Presentation

## 

## Selvely $-1<-5$. Then graph the roturten set.




## Example 2

| TYPE | Students answer a question to show they <br> understand whether a given absolute <br> value inequality has an empty solution set. |
| :--- | :--- | | Students complete the Check online to |
| :--- |
| determine whether they are ready to |
| move on. |

## Example 2 Absolute Value Inequalities (<) with No Solutions

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse
The expression $|n-1|$ represents the distance of $n$ from which number? 1
(OL. What is the name of the solution set for an inequality that has no solutions? the empty set, or null set
Bㅣㄴ How could you change the inequality so it has a solution of all real numbers? Sample answer: Reverse the inequality to $|n-1|>-5$. Because the absolute value is always nonnegative for all values of $n$, all values of $n$ would be solutions to the inequality.

## Example 3 Use Absolute Value <br> Inequalities

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about absolute value inequalities to solving a real-world problem.

## Questions for Mathematical Discourse

What is meant by the phrase margin of error? Sample answer: The actual percentage can be within a range of 1.8 percentage points higher or lower than $72 \%$.
OL. What are the two possible cases? $x-72 \leq 1.8$ and $-(x-72) \leq 1.8$
BL. How do you know this is an absolute value problem? Sample answer: I am finding distance away from the number in both directions.

## Common Error

Students may be more comfortable using decimal notation to represent percent values, rather than leaving them in percent format. If a student brings up that $72 \%$ should be written as 0.72 , for example, review the ways of writing a percent. Have two groups work out the solution method using different notations to verify that the results are consistent for both notations.

## Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


## 1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

## 3 APPLICATION

## Learn Solving Inequalities Involving > and Absolute Value

## Objective

Students solve absolute value inequalities involving a greater than symbol by applying properties of inequalities.

## Teaching the Mathematical Practices

3 Analyze Cases This Learn guides students to examine the cases arising when solving an absolute value inequality. Encourage students to familiarize themselves with both cases.

## Important to Know

The inequality $|x|>a$ means the distance between $x$ and 0 is greater than $a$. As with < absolute value inequalities, there are two cases to consider.

## DIFFERENTIATE

## Enrichment Activity 31

Draw a number line on the board. Have a student use your number line to create the graph of an absolute value inequality. Ask the rest of the class to write the inequality that the graph models.

## Example 4 Solve Absolute Value Inequalities ( $>$ )

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the absolute value inequality and its graph used in this example.

## Questions for Mathematical Discourse

All What is the first step in solving this problem? Sample answer: Rewrite the inequality as two cases. One case is nonnegative and the other is negative.
Oll Describe how to graph the solution set. Plot an open circle for the endpoint -2 and shade to the left. Then plot an open circle for the endpoint 11 and shade to the right.
[BI. Does this represent an intersection or a union? Explain. The absolute value inequality represents a union, because the solution set represents all the solutions of two distinct nonoverlapping solution sets.

```
Case 2 x - 72 is neputve.
 -(x-72) s 28 - Conz?
 -x<-702 Sutact'2 menemituble
```



```
 inoduty,ym|ts
The peccert of uners who fwor the changes Jonas made se tia
sotware is between 70.25 ma 73.85, so tie solution set is
(M170.2 sx < 738). Thes soltion set is a smat interval of possibio
waloes close to the percert that Jonas found, to the solvion sot seems
reasonatie foe the stumtion
Learn Solving Inequalites involving > and Alosolutw
Vatue
For a real number a, the inequalicy bet>0
means thy the dotmcebetamen x ando
is greater than a.
Then solangebiduevateinequates, mere are two cases tocons
Case 1 The erpression inside the abrolute value symbots is
 nonnegative, il: xis nonosegutve. .v| =x
 *>0 Cme
Case 2 The erpeension inuide the mbsolute value symbols if negative
 |x|s negafve, || =--x.
 -x>0 CNve2
```



```
 re=e msquaty
```

The solvion ser is the union of the sostions to these nivo cases
So, $x>0$ or $x<-\alpha$. The solution set sh $(x \mid x<-\alpha \alpha x>a)$.
Example 4 Solve Absolute Value inequastijes $\langle>$ )
Solve $12 m-9 i>13$. Then graph the solviion set.
Part A Rewree $12 m-96>33$ for Cose tand Case?
Case I $112 m-9$ a nornopsive. $12 m-9 \mid=2 m-9$
$2 m-9>13 \quad$ comer
$2 m>22 \quad$ Aas U Esenctive
in> in oingeenin yutivic:2
scontmued on the next pogen


## Study Tip

 $>$ and < It anabioline vele nequat, hoolves 3 or 2 , ve woltion wet utses the werd or. It an morotite vilue nequity holves < $\alpha$ <ithe soluton ser uses the worsora
## Interactive Presentation



## Learn



Students tap to see a Study Tip about the correspondence between inequality symbols with intersections and unions.


## Interactive Presentation

	$\times$
Absolute Value-iriequalites $\%$ \% with Or	
Solve $\|n-6\| \geq-5$. Then graph the solution set.	
Part A   Rewrite $\|n-6\| \geq-5$ for Case 1 and Case 2.	

Example 5
TAP

Students move through the two cases to solve absolute value inequalities.

[^26]
## Example 5 Absolute Value Inequalities ( $>$ ) with Overlapping Case Solutions

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Questions for Mathematical Discourse

AL. When you graph each piece of the solution, what is the significance of the overlapping section? Sample answer: It is the solution of the inequality.
[OI. What is always true about a distance? Sample answer: A distance cannot be a negative number.

Bㅣ․ What does it mean if the solution set for an inequality is all real numbers? Sample answer: Any value on the number line would be a solution to the inequality.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-25$	
2	exercises that use a variety of skills from   this lesson	$26-50$
3	exercises that emphasize higher-order and   critical-thinking skills	$51-60$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-49 odd, 51-60
- Extension: Using Graphs to Solve Absolute Value Inequalities
- ALEKS'Absolute Value Inequalities

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-59 odd
- Remediation, Review Resources: Solving Equations Involving Absolute Value
- Personal Tutors
- Extra Examples 1-5
- ALEKS'Solving Absolute Value Equations

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Solving Equations Involving Absolute Value
- Quick Review Math Handbook: Inequalities Involving Absolute Value
- ArriveMATH Take Another Look
- DALEKS Solving Absolute Value Equations


## Answer

23b.


## Practice

faimen 1:2.4:

2. $\mathrm{X}+\mathrm{Bi} \leqslant \mathrm{M6} \quad$ 2. $\mathrm{V}+\mathrm{F} \leq 2$

2 2 $2 x-5 \leq y \quad$ 4. $|2 v-7|<0$
5. $|n+4|<-7 \quad$ 6. $|n+5|<-1 \mid$
$7 .|+2|>6 \quad$ 2. $|k-4|>3$
$2 \cdot 2 n-3120 \quad$ so. $140 \cdot 2120$
H. $15 x+3 \leqslant>-9 \quad$ 12. $\mid-2 k-3 i>-4$
43. $14 n+3 t \geq 18 \quad$ 34 $35 t-2 i=6$


na. $|-6 x-4|<3 \quad 20.1-5 p-7 \gg 5$
tharver 3





 vatur inequaity to reresent the pospite temperatien tolled focin the maftin

 ix 105 rud ounces of the rcturt ansurt of pind.





 her cat $||=-20|>1$




points nipser ar bi pomblomer swa hey memb

2. bile an norotie vase inequitr to fod tre range of sat nutrem
B. What a va rarge of sat mutherwbss tet weres $\pm 2$ vendurd devisten toem


Mined Emerifes
scoutanity wrike an spen sentence involviog abvolute valvo for each grapk
26. $\frac{1}{k^{-3}-\frac{1}{2}<1}-\frac{1}{2} \frac{1}{2} \frac{1}{2}+\frac{1}{4}$ ह $;$





BEnsovew Match each open sentence with she graph of its solution sut.
32 ie>2 $>$


34. $x+1<2=$
$c=1-1-1-1+19+1-1-2++9+1=$
35. $|-x+15|<3=$


Then solve ane groph the absolvte value insquality. 36 -3t. Wed. 6 Arviver $A$ opentis

37. Serena wil nobe ine i8 nem t sle scoues wetin 8 point of ne vem mwage of 92

87 shilents
37 motherther neoutr




```
42. }\mp@subsup{P}{2}{\prime
```

 cunbertl Natutryour argument Seemarin
 segte $h$ da a woman given the lurgith in centametern $f$ ol her textur bone.

 O0 certimeterst tall? See margin
47. evoulairtr A box of cervet nowd wegh $5 \%$ game. The qualty sownd




set
a. $(-14 \times x) \quad \therefore(4)$

Sample animer $1<a \operatorname{and} 4 \leq x \quad$ Songit mamec: $\leq 4$ med $r \geq 4$
49. Aviluzt Celemine i) we open semence ) $-24>4$ acdile compound

50. ancerrectuat An actibect is designing a hoise for the Frasier lisiby. wi me


2. Tre oviding codes that phot coe con buta no gover then 20 feet po she lot Ine Wite an neausty so mseleot the possible wists of the nowse dion

 2800 siquer feet and no mpre sum 3200 squwe feet of focr space It Hy


 mocking si athotito whive and kole. Eqpitin the mearing of the onvivet
 fion SES5,000 to S 595.050 for the hosite.
-irgher-order Thating Sxils


 the negutive to bvitr ane?


 Set. $\$$ ev Mod E. Antiatr Kopendie.
 ne grohi? 6



 ever the vion of bes grepth Doplein. Sametimes, the gisph could be th imensection af two gaphe. The enofy wet, oc at iesil mumbers.
 ver noworing


Se. worte Evplan how to deberviep whether an atroike valie inequity vies a



6a. wach one dorsw hition conction Seemuph.
$[6+4 \mid-7 \geq 3$ [-6x-5xj$-2 \mid 0 x+4<6$


## Answers

39. $\{x \mid-1 \leq x \leq 3\}$

40. $\{x \mid x \geq 2$ or $x \leq-1\}$

41. $\{x \mid-9 \leq x \leq 3\}$

42. $\{x \mid x \geq-2.5$ or $x \leq-11.5\}$

43. $\{x \mid x>18$ or $x<-17\}$

44. $\{x \mid-3<x<2\}$

45. By definition, the absolute value is always greater than a negative number. Therefore, no matter what number is chosen, it will always be greater than -1 when evaluated in the absolute value inequality given.
46. No; based on the equation for estimating height, a femur bone measuring 47 cm would come from a woman who was between 156 and 162 cm tall.
47 a. Set the absolute value of an unknown variable, $x$, minus the recommended weight, 516 , to be less than or equal to the variance of 4 . So, the inequality $|x-516| \leq 4$ represents the situation.
47b. Write two inequalities, one for each case: $x-516 \leq 4$ and $-(x-516)$ $\leq 4$. For the first case, add 516 to both sides: $x \leq 520$. For the second case, distribute the negative on the left side, subtract 516 from both sides and divide by a negative 1 remembering to switch the inequality sign: $x \geq 512$. This means a box of cereal should have a minimum weight of 512 g and a maximum weight of 520 g .
47. The solution set for $|x-2|>4$ is $\{x \mid x<-2$ or $x>6\}$. The solution set for $-2 x<4$ or $x>6$ is $\{x \mid x>-2\}$. One includes numbers greater than -2 , and the other includes numbers less than -2 or greater than 6 . These solution sets are not the same.
50 b . The formula for the area of a rectangle with 50 substituted for the width can be used to write the compound inequality $2800 \leq 50 \ell \leq 3200$. The possible lengths are found by solving this compound inequality for $\ell$. The solution set is $\{\ell \mid 56 \leq \ell \leq 64\}$.
48. No; Sample answer: Lucita forgot to change the direction of the inequality sign for the negative case of the absolute value.
49. Sample answer: Symbols can be used as a shorthand way to represent ideas such as operations, equality, absolute value, and the empty set. For example, instead of writing 5 minus the absolute value of $2 x$ equals 10 , you could write $5-|2 x|=10$.
50. Sample answer: When an absolute value is on the left and the inequality symbol < or $\leq$, the compound sentence uses and, and if the inequality symbol is $>$ or $\geq$, the compound sentence uses or. To solve, if $|x|<n$, then set up and solve the inequalities $x<n$ and $x>-n$, and if $|x|>n$, then set up and solve the inequalities $x>n$ or $x<-n$.
51. $|3 x+5|<-\frac{3}{5}$; The other three inequalities have real number solutions, but this inequality has a solution of $\varnothing$.

## Graphing Inequalities in Two Variables

## Suggested Pacing



## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
> A.REI. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Standards for Mathematical Practice:
4 Model with mathematics.
5 Use appropriate tools strategically.

## Coherence

Vertical Alignment

## Previous

Students graphed equations in two variables, and graphed inequalities in one variable.
8.EE.5, 7.EE. 4

## Now

Students solve and graph inequalities in two variables.
A.CED.3, A.REI. 12

Next
Students will solve systems of inequalities.
A.REI. 12 (Course 1, Course 2)

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of graphing inequalities on a number line to build fluency with graphing linear inequalities. They apply their understanding of graphing linear inequalities by solving real-world problems.

## Mathematical Background

Inequalities in two variables are solved by graphing the inequality as if it were an equation, and then shading the half-plane that makes the inequality true.

## Interactive Presentation



Warm Up


Launch the Lesson


Today's Vocabulary

## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- determining whether a number is a solution to an inequality

Answers:

1. no
2. no
3. no
4. yes
5. $12.5 x+20 y \geq 2000$; yes

## Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch, students learn how to apply what they have learned about graphing inequalities to a real-world situation about improving a marathon time.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will address these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will use these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions with the class.

## Explore Graphing Linear Inequalities on the Coordinate Plane

Objective
Students use a sketch to explore graphing linear inequalities on the coordinate plane.

Teaching the Mathematical Practices
5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as sketches. Help them see why using these tools will help to solve problems and what the limitations are of using the tools.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to graph linear inequalities in the coordinate plane, comparing this to their previous work with graphing equations. They will equate graphing on the coordinate plane with graphing on a number line. Then, students will answer the Inquiry Question.

## Interactive Presentation



Explore


Explore

## WEE SKETCHPAD

## Interactive Presentation



## Explore

a| Students respond to the Inquiry Question and can view a sample answer.

## Explore Graphing Linear Inequalities on the Coordinate Plane (continued)

## Questions

Have students complete the Explore activity.

## Ask:

-Which side would be shaded for $x \geq 2$ ? Sample answer: The region on the coordinate plane to the right of the line $x=2$, because this includes all $x$ values greater than 2 .
-What do you think the graph of $y \leq x$ would look like? Sample answer: The line $y=x$ would be used to divide the coordinate plane into two regions, and the side with coordinates that make the inequality true would be shaded.

## Inquiry

How is graphing a linear inequality on the coordinate plane similar to and different from graphing on the number line? Sample answer: When graphing on the coordinate plane and on the number line, you graph $x=a$ and the points to the left or right represent the solution. However, when you graph on the coordinate plane, you graph a line and when you graph on the number line, you plot a point.

## Learn Graphing Linear Inequalities in <br> Two Variables

## Objective

Students graph the solutions of linear inequalities in two variables as half-planes.

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the inequality and graph for each example. Remind students that the shaded region represents all solutions of the inequality.

## About the Key Concept

The graph of a linear inequality represents the set of all points that are solutions to the inequality. The boundary will be either solid or dashed and then the area above or below the boundary is shaded to indicate the solution region.

## Example 1 Graph an Inequality with an Open Half-Plane

## (11) Teaching the Mathematical Practices

2 Attend to Quantities It is important to note the meaning of the quantities used in this problem. Remind students that points on the boundary are not solutions to the inequality.

## Questions for Mathematical Discourse

Al. Why is the inequality symbol reversed in the fourth line? Because we divided by a negative number.
0. Is $(-6,-6)$ a solution? Explain using both the graph and algebraic inequality. Yes; sample answer: Point $(-6,-6)$ is in the shaded region. Substituting the value -6 for both $x$ and $y$ results in $3(-6)-2(-6)<8$, which is equivalent to the true inequality $-6<8$.

BLI Does any point on the boundary make this inequality a true statement? Explain. No; sample answer: The boundary is not included in the solution. Those points on the boundary make the two sides of the inequality equal to each other.


## Interactive Presentation



Learn

## TAP

Students tap to learn more about the parts of a graph of a linear inequality.


## Interactive Presentation



Example 2

Students move through the steps to graph an inequality with a closed half plane.

Essential Question Follow-Up
Students have explored absolute value.

## Ask:

How are graphs helpful when solving inequalities in two variables? Sample answer: Graphs help you visualize the solutions. I know all the points in the shaded region make the inequality true.

## Example 2 Graph an Inequality with a Closed Half-Plane

Teaching the Mathematical Practices
1 Understand Different Approaches Point out to students that any point that is not on the boundary can be used as a test point.

## Questions for Mathematical Discourse

ALI Is the line solid or dashed? How do you know? Solid; sample answer: The inequality includes points that make the statement equal.
OL Why should you not use $(0,0)$ as the test point? $(0,0)$ is on the boundary and will make the inequality true, but does not give any information about which side of the boundary to shade.
Bill How many solutions does this inequality have? The inequality has an infinite number of solutions.

## Common Error

Though it is often easiest to use the origin as the test point to determine which side of the boundary to shade, this does not work if the related equation that defines the inequality passes through the origin. In this case, choose another convenient test point.

## Example 3 Apply Graphing Inequalities

 in Two VariablesTeaching the Mathematical Practices
4 Use Tools In Example 3, students will need to identify important quantities in the problem and use a graph to find viable solutions.

Questions for Mathematical Discourse
ALI Suppose Dominique needs to buy at least 12 drinks for the squad. Name 2 viable solutions. Sample answer: 5 bottles of water and 8 sports drinks; 15 bottles of water and 0 sports drinks
Ol. Is it necessary to solve for $y$ in Step 2? Explain. No; sample answer: The boundary could also be graphed by plotting the $x$ - and $y$-intercepts.
(31. Given the context of the problem, are there other boundaries? Explain. Yes; sample answer: The $x$ - and $y$-axes are also boundaries because Dominique cannot buy a negative number of items.

## Common Error

Many students expect a word problem to have an exact solution, but when the situation involves a linear inequality there may be many viable solutions. Remind students that linear inequalities create a region of potential answers, not an exact value.

## -3 Example 3 Apply Giaphing Inequaities

 in Two VariablesRefretsininits Dominique can spend up to $\$ 20$ to provide the dance squad with drinks aftee their peactice. A bottle of water costs nk costs $\$ 1.25$. How and sperts drinks can Dominigue buy for the dance squad



Stee 2 Solve tive inequality fory

$$
08 x+125 y \leq 20
$$

$$
1,25 y \leq-08 x+20 \quad \text { sibescr 0.8 }
$$

$$
y \leq-0.64 x+5 \text { OVAEs vein vida try } 125
$$

Step 3 Groph the inequaty
Beckute Ovesinioue carnot buy e negmtive number of dirida, negative wathes of rand y are nonvabie optices. So the domain and range must be nonnequfve numbers. Graph the boundery

$x=1$	$y$
0	16
10	16
15	64
25	0



The sest point (0. af is a sotution of the inequality. 5 hode pre closed herfolase intieckides pa, os.
Step 4 interprest the iolution in the content of the situation Notice than preve ave infintely many sotions of the inegratify reasonabie only the sotooins in waich boet $x$ and y are whole numbers ave vinete One viable soluton is 90 bomios of wates and 8 sporis drinias.

Problem-Solving Tip Use a Graph Youcan dita annize trecos. and make predicions.

## Study Tip

 Specifying Uuits Deciusce we assigned \#be virubies lor the Riscincal biviont te nows.Pa Thik About it
Ace there any vabie sokwoms in which ominicue spendi a low or 3207 II 5 a whece bo brove 10htiots appowt on the graph?

## Interactive Presentation



Example 3
TYPE

Students answer a question about viable solutions for a given constraint.


## Interactive Presentation



Example 4
 a linear inequality with one variable.

## CHECK



Students complete the Check online to determine whether they are ready to move on.

## Example 4 Solve Linear Inequalities

Teaching the Mathematical Practices
2 Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. In Example 4, note the relationship between an inequality in one variable and its corresponding half-plane.

## Questions for Mathematical Discourse

AL. How many unknown values are in this equation? one
OL. What is the slope of the boundary? undefinedSuppose you graphed two linear inequalities and there was a region where the shading of the inequalities overlapped. What would this mean? The points in the region are valid solutions to both inequalities.

## Common Error

Students might struggle with graphing a one-variable equation on the coordinate plane. Remind them that when the equation contains only one variable, the graph will be a line crossing directly through the axis of the variable present.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-17$	
2	exercises that use a variety of skills from this   lesson	$18-27$
3	exercises that emphasize higher-order and   critical-thinking skills	$28-32$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score $90 \%$ or more on the Checks,

## THEN assign:

- Practice, Exercises 1-27 odd, 28-32
- Extension: Linear Programming
- D ALEKS' Graphing Linear Inequalities

IF students score $66 \%-89 \%$ on the Checks,

## THEN assign:

- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Write and Solve Two-Step Inequalities
- Personal Tutors
- Extra Examples 1-4
- Q ALEKS' applications of inequalities

IF students score $65 \%$ or less on the Checks,

## THEN assign:

- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Write and Solve Two-Step Inequalities
- Quick Review Math Handbook: Graphing Inequalities in Two Variables
- ArriveMATH Take Another Look
- G ALEKS'applications of inequalities


## Answer



Practice
Expotelans:


2. $y<x-3$	2. $y>x+0$	3. $y \geq 3 x-1$
4. $y \leq-4 x+17$	5. $30 \times 2 y>17$	6. $2 v+2 y<18$
7. $5 x+y>10$	8. $2 x+y<-3$	2. $-2 \mathrm{c}+\mathrm{y} \geq-4$
50. $8 x+y \leq 6$	12. $8 \mathrm{x} x+2 \mathrm{y} \leq 3$	12. $-24 x+8 y z-48$

## turater



a. Wbe end graph in inequidy for the invuril temiy ncones y Hul ev wes inm the median for speers aher 2006 Sep Mob. 6 Abinw A Noperon.


14. Runohusias toop 200 wols eider and dowit to rase ingney Ne craity. They fot




Oropb esch inequasty.
S. $2 \%+6 \geq 0 \quad$ 16. $j \geq+i<3 \quad$ a $j r-15>-4$

Mined Erexclise
Graph eech inequatiox. See 13-23. Sev Mod. 6 Amew hapeots.
18. $y<-1 \quad$ 19. $y=x-5 \quad 20 . y>3 e$
$2 x . y \leq 2 x+4 \quad 22 . y+n>3 \quad 22 . y-x \geq 1$
 $\$ 250$ each ind opin cest 5125 s vich
a. Whar min webaity pat regrelests the munber st apps o mid the number of
 - $2509+1250 \leq 50,0 \geq 0$ ned $g \geq 0$


d. Kumbst decides to toy the name number if spos snef gamek and ine decises to spend as much ot the \$SO es possible. How many apes and ganes diet





```
 prote of more twin sje per siy frocs se wles of vnobevies.
```



```
 NNootivs a vut to cote noeds so ret. Descrbe the cositrintsi on to
```







```
 d. On Thescm, te coth mase the dily pote gool by witing ve mmelum
```




```
 niles per houl Ther se bifyold for 2 lown aly nils per bout Fodly, se smu
 a datance of 2 miek. The Howe rymber ot eles did eot escedd 30 miles.
```






```
 int otmensices Ssemmovin
 c. Whim is the gomest ponible spevd fut oreg coudd have bicyeve ulut serf
```



```
22. constuct AlGowtins Pre sobutie of the nequaliyer + by <cea a hat
```



```
 vatue of e% Jontly pour migument. Sep nmpic.
Qrsphec:Onder Thiskigg Sule
```




```
 #Nats
 4.5 iv
 v<多
 *rmerar
 islve
```




```
 {t Sa not Sappit emserers
```








## Answers

25b.


25d. 41; Sample explanation: 40 peach smoothies results in a profit of exactly $\$ 90$, so to make a profit of more than $\$ 90$, the café must have sold 41 smoothies.

26b.
Training Speeds

27. The value of $c$ must be positive. Because $(0,0)$ is a solution of the inequality, $a(0)+b(0)<c$ must be a true statement, so $0<c$.
28. Reiko; Kristin used a test point located on the line and shaded in the incorrect half-plane.
30. A test point on the boundary does not show which half-plane contains the points that make the inequality true.
31. Sample answer: The inequality $y>10 x+45$ represents the cost of a monthly smartphone data plan with a one-time fee of $\$ 45$, plus $\$ 10$ per GB of data used. Both the domain and range are nonnegative real numbers because the GB used and the total cost cannot be negative.
32. Sample answer: First solve the inequality for $y$. Then change the inequality sign to an equal sign and graph the boundary. If $<$ or $>$ is used, the boundary is not included in the graph and the line is dashed. Otherwise, the boundary is included and the line is solid. Then choose a test point not on the boundary. Substitute the coordinates of the test point into the original inequality. If the result makes the inequality true, then shade the half-plane that includes the test point. If the result makes the inequality false, shade the half-plane that does not include the test point. Lastly, check your solution by choosing a test point that is in the half-plane that is not shaded. This second test point should make the inequality false if the solution is correct.

## Review

## Rate Yourself

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

## Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- Why is it important to understand what the symbols in a mathematical sentence represent?
- How are symbols used to write expressions, equations, and inequalities?
- How are graphs helpful when solving inequalities in two variables?

Then have them write their answer to the Essential Question.

## DINAH ZIKE FOLDABLES

FEnIIA A completed Foldable for this module should include the key concepts related to solving and graphing inequalities.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Relationships

## Between Quantities and Reasoning with Equations and Linear and Exponential Relationships.

- Create and Solve Linear Inequalities
- Represent and Solve Equations and Inequalities Graphically



## Test Practice


2. Opfin Response Eourdo a winng a hustaical novel. He wrote 16 peges todidy. bifinging his totat number of poges witten to mgre than SO. How mary pages $p$ did Eduardo wote before today? Conglete the aropaity thet represents Pis situmben Then tolve the infqualoy imumer

2. OPEN RESPONSE A larmer said that for every tow of serds he plants, he can narvest 6.5 tushels of tomatoes. The termer needs to havest af lemst 52 bubhels of tramatoes what the teast number of rows thut the tarmer wif need to plontzizumen 6

## fiom

4. OPEN RESPONSE Find the solvion sut of
$3 d-8<A d+2$ aquon 11
(bfd>-m)
5. Mutnife CHoice Which inequality bes solutions represemted by the graph? freme 51

A. $5-x>4$
B. $2 x+1 \geq 9$
(2) $2 x-5>3$.
D. $6 x-7>5$
6. Mutnseciect Conwider the inequitay five phis no fimes o thintiber it is Ness thion or. eguor to eteren. Setect at of the reprowentations then are solutions.
stamhtr
n 53
B. 3 sm
C.nss
7. ofen response solve
$(20+2 i+2 x+2)-3 ;-2)<0$ Whte the solution uning setbilider notation 1 mene 627 ( $\mathrm{nf} \ll-3$ )
8. Mutiels choice solve $-\frac{4}{5} x-3 \leq 17$
lemish $1-3$ )
(e) (riez-25)
B. ( $21: \geq-36$ )
C. $\{0.5 \leq-25)$
D. (w) $x \leq-26$ )

## Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 6-1 through 6-3
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
All Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

## Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-18 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$1,5,8,12$,   14,15
Multi-Select	Multiple answers may be correct.   Students must select all correct   answers.	9
Table Item	Students complete a table by   entering in the correct values.	6,17
Graph	Students create a graph on an   online coordinate plane.	18
Open Response	Students construct their own   response.	$2-4,7,10,11$,
13,16		

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
A.REI.3	$6-1,6-2$	$1,4-8$
A.CED.1	$6-1,6-2,6-3,6-4$	$2,3,9$
A.CED.3	$6-3,6-4$	$10-15$
A.REI.12	$6-5$	$16-18$

9. Mukn secect The science che is planding a can wash fancraisec Hoboa wertes and Graph an isequaity to icpresem tho nuireve of cNil che profes to cover ther emperietis id

Whict inequolity could Halona have graphed for thes sibiation? Select all that apple
(8) $2 c+1 \pi-50 \geq 352$
(e) $310+c \leq 3 i c-30 \mid$

C $2040-52,4000$
D. $5 k+1-200 \geq 250$
E. $50 \mathrm{Cr}-5 \mathrm{~F} \geq 200$
10. open response Micoela wants to plant a squave garder and enclose it why a tence. Wents 120 seldes of becciog avaisble and ere warliono Complete tre inequilty to mas cresent the possele vile lengths represent the possele sidelengtho sabsio.

11. Open pesponse Sohe $4+9 \geq 3$ o $6 g \geq-36$. wite the soltion using sel-bulder notation, 8 evimen 9 |g| $-5 \leq$ g $\mid$
12. MutTPLE CHicice which graph ihows the sotilion of $3 n-1<5$ and $-2 n+3<$ 所 ATm= 4
(8) $\begin{array}{lllllll}-1 & 4-3-24 & 0 & 1 & 1 & 1 & 1\end{array}$ B $+\frac{1}{-5}+4-3-10+3+3+5$


13. OPRN MESPONSE:GRAPM Lummbl Part a solve in $+3<5$. Whec the volution sot using sec-bullder notation

Part B Grogh the whution wet on a number Hine.

14. MurnliE CHOICE Which is NOT a true

A. The empty secis the solficion of $k-2 i+1 \leq-2$.
8. The solution of $x-2 ; 2$ is


- The solition of $13 k+3 \leq-9$ is $|k|-4 \geq k \geq 2\}$
D. $\boldsymbol{k}-\pi<-6$ nen for soltion

15. Mutriple choce the actuak weight of a jar of peorubs fends to be witin 05 cusce of th isfed welghe. Which graph shows the possitle woights of a jir of pesnuts that the listed weight of 65 oonces? Inmens al
A. $-\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$



16. Oper beseonst The equation for the boundary of tive inequaticy graphed is $y=3 x-215 m 02$


Write the inequabty inst tripiesents the groph:
$-3 t+y \leq-1$
7. OPEN RESPCNSE Comider the photh. Wof the leter of the praph phat repieserts the soluson fo esch of the inequalices. sumis? Gengh:

$2 y-x \leq-3 \quad$ C
$2 y-x \geq-3 \quad 0$
$2 x-y>-3$ ||
$2 x-y<-3 \quad$ A
88. Arem Graph the inequalty $\frac{2}{5} x+5-y<6$ ITBion 18:


Lesson 6-1
67. $\{c \mid c>4\}$

68. $\{b \mid b \geq-6\}$

69. $\{x \mid x<36\}$

70. $\{x \mid x \leq 20\}$

71. $\{m \mid m<5.4\}$

72. $\{n \mid n>1\}$

73. $\{c \mid c \geq 3.7\}$

74. $\left\{k \left\lvert\, k>-\frac{5}{12}\right.\right\}$
$\xrightarrow[-1]{+\frac{3}{4}-\frac{1}{2}-\frac{1}{4}} \underset{0}{\rightarrow}$

## Lesson 6-2


16. $\left\{n \left\lvert\, n>-\frac{1}{3}\right.\right\}$

17. $\{a \mid a \leq 11\}$

18. $\{\varnothing\}$

19. $\{b \mid b$ is a real number. $\}$

20. $\{t \mid t \geq-1\}$

21. $\{a \mid a \geq-9\}$


## Lesson 6-3

7. $\{h \mid 2 \leq h<3\}$

8. $\{m \mid m$ is a real number. $\}$

9. $\{y \mid y<-3\}$

10. $\{\varnothing\}$

11. $\{b \mid 4<b \leq 5\}$

12. $\left\{a \left\lvert\,-3<a \leq \frac{1}{2}\right.\right\}$

13. $\{m \mid m<-6$ or $m>-1\}$

14. $\{n \mid n<-3$ or $n>-3\}$

15. $\{m \mid 2 \leq m<4\}$

16. $\{y \mid y<1$ or $y \geq 6\}$


17b. $0<x<12$ or $x>27$; Because the combined height of the sign and pole cannot be negative, the value of $x$ must be greater than 0 .

17c.


18c. $\begin{array}{llllllllllll}500 & 1000 & 1500 & 2000 & 2500 & 3000 & 3500 & 4000 & 4500 & 5000 & 5500\end{array}$

## Lesson 6-4


2. $\{r \mid-3 \leq r \leq 1\}$

3. $\{c \mid-3 \leq c \leq 4\}$

4. $\{h \mid-3<h<5\}$

5. $\{\emptyset\}$

6. $\{\emptyset\}$

7. $\{r \mid r<-8$ or $r>4\}$

8. $\{k \mid k<1$ or $k>7\}$

9. $\{h \mid h \leq-3$ or $h \geq 6\}$

10. $\{p \mid p \leq-3$ or $p \geq 2\}$

11. $\{v \mid v$ is a real number. $\}$

12. $\{c \mid c$ is a real number. $\}$

13. $\left\{n \left\lvert\, n \leq-5 \frac{1}{4}\right.\right.$ or $\left.n \geq 3 \frac{3}{4}\right\}$

14. $\left\{t \left\lvert\,-\frac{4}{5} \leq t \leq 1 \frac{3}{5}\right.\right\}$

15. $\left\{h \left\lvert\,-5 \frac{2}{3}<h<5\right.\right\}$

16. $\{p \mid p \leq-14$ or $p \geq 22\}$

17. $\{\emptyset\}$

18. $\{g \mid g$ is a real number. $\}$

19. $\left\{r \left\lvert\,-2<r<\frac{2}{3}\right.\right\}$

20. $\left\{p \mid p<-4\right.$ or $\left.p>-\frac{2}{3}\right\}$

36. $|x-52| \leq 3 ;\{x \mid 49 \leq x \leq 55\}$

37. $|x-92| \leq 8 ;\{x \mid 84 \leq x \leq 100\}$

38. $|x-87| \leq 25 ;\{x \mid 62 \leq x \leq 112\}$
$\begin{array}{lllllllllllllllllllllll}56 & 60 & 64 & 68 & 72 & 76 & 80 & 84 & 88 & 92 & 96 & 100 & 104 & 108 & 112 & 116 & 120\end{array}$
53. $(-8 \leq n<-3)$ or $(1<n \leq 6)$. To solve this compound inequality, split it into two inequalities. The first one to solve is $|n+1|>2$ and the second one is $|n+1|$ $\leq 7$. The solution set of the entire problem is the overlap of the individual solutions.


## Lesson 6-5

2. 


4.

1.

3.

5.

7.

9.

11.

6.

8.

10.

12.


13a. $y<1240 x+48,200$

14. $1.25 d+2.5 c \geq 100$

15.

17.

19.

16.

18.

20.

21.

22.

23.


# Systems of Linear Equations and Inequalities 

## Module Goals

- Students solve systems of equations using a variety of methods.
- Students solve systems of equations using graphing technology.
- Students graph the solution sets of systems of linear inequalities.


## Focus

## Domain: Algebra

Standards for Mathematical Content:
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
A.REI. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Also addresses A.REI. 5 and A.REI. 11.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

## Coherence

Vertical Alignment
Previous
Students analyzed and solved simultaneous linear equations.

## 8.EE. 8

## Now

Students write and solve systems of two equations in two variables and solve systems of two inequalities in two variables.
A.CED.3, A.REI.6, A.REI. 12

Next
Students will graph exponential functions, showing intercepts and end behavior, and interpret the parameters of the function in terms of a context.
F.IF.7e, F.LE. 2

## Rigor

The Three Pillars of Rigor
Students will use the three pillars of rigor to help them meet the standards. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

$$
\text { EXPLORE }\rangle \text { LEARN } \geqslant \text { EXAMPLE \& PRACTICE }
$$

## Suggested Pacing

Lessons	Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video		1	0.5
7-1 Graphing Systems of Equations	A.REI.6, A.REI. 11	2	1
7-2 Substitution	A.CED.3, A.REI. 6	1	0.5
7-3 Elimination Using Addition and Subtraction	A.CED.3, A.REI. 6	1	0.5
7-4 Elimination Using Multiplication	A.REI.5, A.REI. 6	1	0.5
Put It All Together: Lessons 7-1 through 7-4		1	0.5
7-5 Systems of Inequalities	A.CED.3, A.REI. 12	2	1
Module Review		1	0.5
Module Assessment		1	0.5
	Total Days	11	5.5

Module 7 - Systems of Linear Equations and Inequalities 385a

## Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will determine which graphs fall into three categories and explain their choices.

Targeted Concepts Systems of equations can be analyzed to distinguish between systems with

- one unique solution (an independent system),
- no solution (a dependent system, parallel lines), or
- infinitely many solutions (an inconsistent system, coinciding lines).

Targeted Misconceptions Students may not be able to analyze the slope and $y$-intercept to categorize systems of equations. They may:

- have to solve the systems, using one of the algebraic/graphical methods for solving to analyze solutions,
- have difficulty working with equations when both are not written in slope-intercept form $(y=m x+b)$, or
- have difficulty analyzing word problems.
- confuse horizontal/vertical lines and/or have difficulty analyzing systems with them.
- multiply quantities without consideration of all of the numbers and symbols.

Use the Probe after Lesson 7-4
${ }^{-}$Collect and Assess Student Answers
(If the student selects these responses...
incorrect placement of one or more cards
the student likely...
has one or more of the targeted difficulties. To learn about student difficulties, give individual students, groups of students, and/or the whole class opportunities to discuss how they categorized each system.

For example:

- An incorrect placement of D, F, G, H, and/or J indicates difficulty with categorizing equations when not written in $y=m x+b$ form.
- An incorrect placement of K and/or L indicates difficulty with analyzing the $y$-intercept.
- An incorrect placement of $\mathrm{M}, \mathrm{N}$, and/or O indicates difficulty with analyzing and/or categorizing horizontal and vertical lines.
- An incorrect placement of $P, Q$, and/or R indicates difficulty with representing written descriptions with equations.

Take Action
After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS" Systems of Linear Equations
- Lessons 7-1 through 7-4, all Learns, all Examples

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

## IGN|TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

## Essential Question

At the end of this module, students should be able to answer the Essential Question.

How are systems of equations useful in the real world? Sample answer: Writing and solving systems of equations can help you find unknown values in real-world situations.

## What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

## DINAH ZIKE fOLDA8LES

Focus Students write notes about solving systems of linear equations and inequalities throughout the lessons of this module.

Teach Have students make and label their Foldable as illustrated. Have students write a word or concept from the lesson on the back of each lesson's tab. Under the word or concept, ask students to include a definition and an example.
(17) When to Use It Encourage students to add to their Foldable as they work through the module and to use them to review for the module test.

## Launch the Module

The Launch the Module video uses a trip to the zoo to show real-world applications of systems of equations. Students learn about using systems to determine the number of child and adult tickets sold on a given day, the most cost-efficient mix of foods to feed the animals, and the number of snacks that can be purchased for a given amount of money.


What Wal You Leam?



## Interactive Presentation



Module 7- Systems of Linear Equations and Inequalities

## What Vocabulary Will You Leam?

## - dopectomet <br> - eliminetion

- indeotodern
- rostiotion
- 15xten cl equationa

Are You Ready?
Complese the Ouick Revew to see if you are fendy to stmy this modult Then complote the Quick Oneck.


386 Module 7- Systems of Linear Equations and Inequalities

## What Vocabulary Will You Learn?

태L As you proceed through the module, introduce the key vocabulary by using the following routine.

Define A system of equations is a set of equations with the same variables.

Example $y=342-14.9 x$ and $y=3.3+4.7 x$
Ask What variables do both equations have in common? $x$ and $y$

## Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- identifying the solution of a system of equations
- solving for a specific variable
- simplifying expressions by using the Distributive Property
- solving systems of equations by using substitution
- testing half-planes


## Q ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Systems section to ensure student success in this module.

## Mindset Matters

## Reward Effort, Not Talent

When adults praise students for their hard work toward a solution, rather than praising them for being smart or talented, it supports students' development of a growth mindset. Reward actions like hard work, determination, and perseverance instead of traits like inherent skill or talent.

## How Can I Apply It?

Have students complete the Performance Task for the module. Allow students a forum to discuss their process or the strategy that they used, and give them positive feedback on their diligence in completing the task.

## LESSON GOAL

Students solve systems of equations by graphing.

## 1 LAUNCH



Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Intersections of Graphs

## Develop:

## Graphs of Systems of Equations

- Consistent Systems
- Inconsistent Systems
- Number of Solutions, Equations in Slope-Intercept Form
- Number of Solutions, Equations in Standard Form

Solve Systems of Equations by Graphing

- Solve a System by Graphing
- Graph and Solve a System of Equations
- Write a System of Equations

Using Systems to Solve Linear Equations

- Use a System to Solve a Linear Equation

Solving Systems of Equations by Using Graphing Technology

- Solve a System of Equations
- Write and Solve a System of Equations

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al\|	I_E		IFLII
Remediation: Solve Systems of Equations by   Graphing				0
Extension: Systems with Three Equations				

## Language Development Handbook

Assign page 38 of the Language Development Handbook to help your students build mathematical language related to solving systems of equations by graphing.

ELL You can use the tips and suggestions on page T38 of the handbook to support students who are building English proficiency.

## Suggested Pacing

90 min	1 day
45 min	2 days

## Focus

Domain: Algebra
Standards for Mathematical Content:
A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. A.REI. 11 Explain why the $x$-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
Standards for Mathematical Practice:
5 Use appropriate tools strategically.
8 Look for and express regularity in repeated reasoning.

## Coherence

Vertical Alignment

## Previous

Students understood the solution to a system of linear equations in two variables corresponds to the point(s) of intersection of their graphs.

## 8.EE.8a

## Now

Students solve systems of equations by graphing and use systems to solve linear equations. A.REI.6, A.REI. 11

Next
Students will solve systems of equations by using substitution. A.CED.3, A.REI. 6

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING			
2 FLUENCY			3 APPLICATION
understanding of graphing linear equations to build fluency with   graphing systems of linear equations. They apply their understanding   of solving systems of linear equations by solving real-world problems.			

## Mathematical Background

A solution of a system of two linear equations is an ordered pair that satisfies both equations in the system. A system of equations can be solved by graphing the equations on the same coordinate plane, which can intersect at one point (exactly one solution), be parallel (no solution), or be the same line (infinitely many solutions).

## Interactive Presentation

Warm Up
Determine whether each ordered palt is a solution of $y=3 x$, equations, or a solution of neleser equation.
1. (2.2)
2. $(-2-6)$
3. (2.6)
4.(1,4)
8. QEOMETRY The siden of a triangle are formed by the $x$ aws, the Ine $3 r-2 y=3$, and the Ine $5 y+6 x=60$. Is the point $(5,8)$ a vertax of the thanglo?

Warm Up


Launch the Lesson


[^27]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- identifying the solution of a system of equations

Answers:

1. $y=2 x-2$
2. both
3. $y=3 x$
4. neither
5. yes

## Launch the Lesson

Teaching the Mathematical Practices
5 Analyze Graphs Encourage students to analyze the graph and describe how it can be used to find the number of lawns Laila needs to mow before making a profit.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

387b Module 7. Systems of Linear Equations and Inequalities

## Explore Intersections of Graphs

## Objective

Students use a sketch to explore solving linear equations graphically.

## Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use the sketch. Work with students to explore and deepen their understanding of solving linear equations graphically.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to solve an algebraic equation. They will graph the functions defined by the expressions on each side of the equal sign and find their point of intersection. They will compare the coordinates of this point with the solution they find algebraically. They will repeat the process for a second equation. Then, students will answer the Inquiry Question.

## Interactive Presentation



Explore


Explore

## WEB SKETCHPAD

Students use a sketch to solve an equation graphically.

Interactive Presentation


## Explore

TYPE


Students respond to the Inquiry Question and can view a sample answer.

## Explore Intersections of Graphs (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Why is the $x$-value of the point of intersection the solution to the equation? Sample answer: because it is the value of $x$ that makes both sides of the equation equal to each other
- What does the $y$-value of the point of intersection represent? the value when each side of the original equation is evaluated at the $x$-value of the point of intersection

Inquiry
How can you solve a linear equation by graphing? Sample answer: Graph each side of the equation as a linear function set equal to $y$. Then, the $x$-coordinate of the point of intersection is the solution of the equation.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Graphs of Systems of Equations

## Objective

Students determine the number of solutions of a system of linear equations by examining the equations and their graphs.

## Teaching the Mathematical Practices

7 Use Structure Help students explore the structure of systems of equation and their graphs in this Learn.

## What Students Are Learning

Students will consider the possible relationships between the graphs of two linear equations. The lines may intersect at a point, may be parallel, or may be the same line. These three different cases produce the three different types of solutions of a system of two linear equations. Also important is the understanding that the solutions of a system are represented by the points that the two graphs have in common. There may be one such point, no points, or infinitely many points.

## Example 1 Consistent Systems

## Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graph and the system of equations used in this example.

## Questions for Mathematical Discourse

ALI How do you use the graph to solve the problem? Sample answer: I look to see how many points the two lines have in common.
OL. How do you know there is one solution? Sample answer: The graphs intersect in one point.
BL. Can two lines ever intersect in exactly two points? Explain. No; sample answer: To intersect in exactly two points, one of the lines would not be straight. It would cross the other line once, then turn and cross back through the line again.

## Common Error

To support the new terminology introduced in the lesson, encourage students to review the vocabulary for the lesson and to write their own descriptions of each type of system, using words that they find helpful.

## (3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation




## Interactive Presentation



Example 2


## Example 2 Inconsistent Systems

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graph, system of equations, and solution in this example.

## Questions for Mathematical Discourse

Explain why the system has no solutions. Sample answer: The solutions of a system are the points the lines have in common, and because these lines are parallel, they will have no points in common. So, there are no solutions.
O. How can you solve the problem without graphing? Sample answer: Because the equations have the same slope but different $y$-intercepts, I know that the lines are parallel and will never intersect. Therefore, I know that the system is inconsistent.
BII Is it possible for a system to be inconsistent and independent? Why? No; sample answer: In order for a system to be independent, it must have exactly one solution. If a system is inconsistent, then it has no solutions.

## Example 3 Number of Solutions, Equations in Slope-Intercept Form

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse
AL What do you notice about the slopes of the lines? They are the same.
OL. Why is it helpful to examine the equations in slope-intercept form? you can see the slope and the $y$-intercept of each line
BL. What types of lines are these? parallel How could you change the second equation to make a system that has infinitely many solutions? set the $y$-intercept at 10

## Example 4 Number of Solutions, Equations in Standard Form

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
ALI What is slope-intercept form? $y=m x+b$
OL Why is it useful to have equations in slope-intercept form when determining the number of solutions? Sample answer: It allows you to easily see the slope and $y$-intercept, which can help you to determine if a system has one, none, or infinitely many solutions.
B3. Explain how you could determine that these equations are equivalent without solving for $y$. Sample answer: Divide the first equation by 2 and the second equation by -3 , and you will get the same equation.

## Common Error

Some students may state that the system is inconsistent, thinking that because the two equations are equivalent, there is "only one equation" and, therefore, no point of intersection. Correct this line of reasoning, explaining that all points on the line satisfy both equations and, for that reason, there are infinitely many solutions, and the system is consistent and dependent.

## Learn Solve Systems of Equations by Graphing

Objective
Students solve systems of equations by graphing.
Teaching the Mathematical Practices
5 Analyze Graphs In this Learn, students learn how to solve a system of equations by analyzing a graph.

## What Students Are Learning

Students are learning that they can find the solution of a system of linear equations by graphing the equations in the system and identifying the point where the lines intersect. Because this point represents the solution of each equation, its coordinates satisfy both equations, which is shown by the algebraic check of the solution.

Example 4 Number of Solitions, Equations in Standord form
Determine the number of solutions the system has. Then state whether the system of equations is consistent or inconsistent and it it is independent or dependent.
$4 y-6 x=16$
$3 x-6 y=-24$
Whe both equations in slope-intercept form.

$4 y-6 x-6 x=+6 x+5$ inden nevien $2 x-6 y-3 x=-2 x-24$ $4 y=6 x+16 \quad$ Peroby $\quad-6 y x-2 x-24$
 $y=\frac{3}{2} x+4 \quad$ serat. $y=\frac{3}{2} x+4$
Becwape the slopes se the same and the y fintercepts are the same. this st the rame line.
Stoce the graphas or these two lines are the same, there are vifintily many solvions. Thesefores the system is consistent and dependent.

Check

$4 x-8 y=76$
$6 x-2 y=5$

Learn Solving Systems of Equations by Grophing
You con saive a system of eguations by grephicg each equation carefuly se the same coocdinste ptone. Every point that tees on the She of one equatios reprelents a siotution of thue equastion. Simitert, every point on toe the a solution of that equation. Therefore, the sotation of a spstem of equations is the point of which the graphs imtersect.
For example, vee solition of this synuen is (-1.3) That is the point it which the grapts intersect Since the point of intersection lies on both fines, the otblered pult sathles eoch equation in the Jostem.

Think About it
How maty rolutions wha a phtm hamed the sopesare
ditwerent? alberent?

## Interactive Presentation



Example 4

Students select the correct category and number of solutions for the system of equations.

Students complete the Check online to determine whether they are ready to move on.


## Interactive Presentation



Example 5


## Example 5 Solve a System by Graphing

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

Questions for Mathematical Discourse
ALI What are the slopes of each equation? $-2, \frac{3}{5}$
OL. How do you know by looking at the equations that there is one solution or no solutions to this system? The slopes are different.
BL. Explain how to check to make sure the solution is correct. Sample answer: Substitute 5 for $x$ and substitute 4 for $y$ in both equations. Simplify, and make sure both resulting equations are true.

## Example 6 Graph and Solve a System of Equations

## (17) $T$ <br> Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to solve the problem in this example, students will need to use a sketch. Work with students to explore and deepen their understanding of graphing and solving systems of linear equations.

Questions for Mathematical Discourse
Why does it help to write the equations in slope-intercept form before graphing? Sample answer: Using slope-intercept form, you can easily see the slopes and $y$-intercepts of the equations.
OL What do you notice about the equations once they are written in slope-intercept form? They have the same slope, but different $y$-intercepts.
BL. How could this system be changed so that it has infinitely many solutions? Sample answer: Change 8 in the second equation to -24 so that the $y$-intercepts are the same.

## Common Error

If students make an error when writing the equations in slope-intercept form but check their answer in the slope-intercept forms of the equations, they will not recognize that their answer is incorrect. To help students avoid making this error, encourage them to use the original equations for the check.

# 1 CONCEPTUAL UNDERSTANDING <br> 2 FLUENCY | 3 APPLICATION <br> BApply Example 7 Write a System of Equations 

## (11) Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

## Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

## Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

## Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- At what $x$ value and at what $y$ value do the two lines intersect?
- What does the intersection of the two lines represent in the context of the situation?


## $\star$ Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

## DIFFERENTIATE

## Reteaching Activity $A$ LI

IF students are having difficulty solving problems involving real-world applications of systems of equations,
THEN pair them with students who seem to have a better grasp of the concept, and have them work together to prepare a presentation of their solution. Require that the presentation include a clear explanation of how the mathematics relates to the situation.

- Apply Example 7 Wrie a Systemf of Equations
 Predket the approximute year when the populations of the two countries will be the same.

1. What is the teski?

Detcribe tow taki nyour own words Then int any quesions that you may have. How can you find movers by your puetiond
Sangle misoert ineed to graph a shsem of equationa phat repcetents
 equesons that Ineed to grashil can revien fiding the merage rate or change and weting equsbios in slope -ritercept torm.
2. How will you eoproach the tankt What have you inarned that you con use to helo you completo the task?
Sarble assuer i wal sind me average ribe of chacge for som countres Then I wal wine a syam of equations to recoeswet tho
 whath have ioumed sbout graphing equations to beep me griph the swlem
3. What is your solution?

Une ree strilegy to solve the probiern.
Find the average tate of change for the popistons of Cinine and indsa
Cins: ne
nosa. $\frac{1}{60}$
Whe a wstem of equisons to necersen the shavion.
$y=\frac{1}{13} x+138$
$y=\frac{1}{60^{x}}+129$

## Interactive Presentation



Apply Example 7



## Interactive Presentation

	x
Ousition 2	
MAA	
$y=367 t+1121$	
$x_{r}=4 \times 4+1121$	
$x=230$	

Check

## MULTIPLE CHOICE



Students select the system that best describes the situation.

1 CONCEPTUAL UNDERSTANDING
Essential Question Follow-Up
Students have used systems of equations to solve problems involving real-world situations.

## Ask:

How can a system of equations help a business owner make decisions? Sample answer: It can help him or her see how the costs of running the business compare to the money the business takes in. This could be helpful when making decisions about pricing and expenditures.

## Common Error

Some students may have difficulty graphing the equations because they contain slopes that are decimals. Encourage students to convert the slopes to fractions in lowest terms before graphing.

## DIFFERENTIATE

## Enrichment Activity 3 BII

Write a system of three equations in two variables on the board. Have the students determine if the system has one solution, no solution, or infinitely many solutions. If it has one solution, have students name it. For example, the following system has no solution because the three lines do not intersect at one point.
$x+y=2$
$x-y=0$
$y=-2$

## Learn Using Systems to Solve Linear Equations

Objective
Students solve linear equations by graphing systems of equations.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## About the Key Concept

Rewriting an equation as a system of equations allows for the solution to be found by graphing the resulting equations and finding the $x$-value of their point of intersection. This is the value that makes the expressions on the two sides of the original equation equal in value. When those expressions are evaluated for the $x$-value, the result is the corresponding $y$-value of the point of intersection.

## Common Misconception

Some students may believe that the solution that is found using this procedure is somehow different in meaning than the solution found by solving algebraically. Address this misconception by solving an equation using both methods, showing that the solutions are the same, and emphasizing what the solution represents in terms of the original equation.

## 1 CONCEPTUAL UNDERSTANDING

## 2 FLUENCY

## 3 APPLICATION

## Example 8 Use a System to Solve a Linear Equation

Teaching the Mathematical Practices
5 Analyze Graphs Help students analyze the graph they have generated using graphing calculators. Point out that to see the entire graph, students may need to adjust the viewing window.

## Questions for Mathematical Discourse

Al. What type of line is $y=-4$ ? horizontal
OL What do you expect the $y$-value of your solution to be? - 4 Why? Sample answer: The $y$-value has to be -4 because the solution has to satisfy both equations, and the second equation will be satisfied only when $y=-4$.
BLI How can you check your solution? Sample answer: Replace $x$ with 2 in the original equation and see if the equation balances.

## Common Error

Some students may state that the answer is the ordered pair $(2,-4)$. These students may not understand that the system of equations is being used as a tool to find the value of $x$ that makes the original equation true. Although $(2,-4)$ is the point of intersection of the two equations in the system, the solution of the original equation is $x=2$.

## Learn Solving Systems of Equations by Using Graphing Technology

Objective
Students solve systems of equations by using graphing technology.
Teaching the Mathematical Practices
5 Use Mathematical Tools Students will use graphing technology to find an approximation of the solution of a system of linear equations.

## Things to Remember

Students may need to be reminded to change the viewing window on their calculators in order to find the point of intersection of the lines.

## Common Misconception

Some students may believe that the calculator will give an exact answer in all situations. Remind them of the fact that, in some instances, a number given on the display may have been rounded due to the number of digits in the decimal.

Learn Using Systemis to Solve Lineat Equations
Ker Conceot-LiNo Syotemsto Sotro Linzei Fourtom
Swel 1 Whte a sintem by seting esch copression equal toy.
$\operatorname{seg} 2$ Graphtie sytem.
seep 3 Find the imerrection

Example 8 Use a Systom to Solve a Lineor Equation
Une a system of equations to solve $-6 x+8=-4$.
Step 1 White a system.
Whet a system of equations. Set ecch side of $-6 x+8=-4$ equit soy $y$ $y=-6 x+8$
$y=-4$
Step 2 Graph the system.
Erter the equations and graph.
Step 3 Find the intersection.


The soltion is the x cooptinute of the intersection, 2
Step 4 Check your solvtion.
$-6 x+8=-4 \quad$ Orgmar nquasor
$-5(2)+8 \div-4 \quad$ Stichisuin
$-12+8 i-4 \quad$ witar
$-4=-4 \quad$ Rau
Check
Use a spibect of equations and yourgrophing colcultotor 10 sotve $-32 x-58-28 x+7$. Rousd to the neerest hundreath, of necessary $x-?-213$


Learn Solving Systerns of Equations by Using Graphing Technctogy
Wou can use a graphing catculetor to graph and solve a system of equibions by following orese steps.
Step 1 lsolate y h each equation
Step 2 Groph mie system.
Step 3 find the ivtersection

## Q Talk About in

How do you know thap the port ofictenection sotities both
equations?
Sinplo attiver fivy
 point en the ine et st thas equibier Sive tie point of intersection les pont of intersection h op poot ioes, 46 a soltion a
ngutiom.

Q So Orine so see now to use a gophing calcuather wet Itis example.
Q. Do OVine Ybu cen
watch a vidito to see how to griph systems or equmors as A prapting cilculttor

## Interactive Presentation



Example 8
Students move through the steps of
solving an equation using a graphing
calculator.


Example 9 Solve a 5ystem of Equations
Solve the system of equations.
$-1.38 x-y=5.13$
$0.62 x+2 y=1.60$
Step 1 iselatex.
Solve each equation for $y$.

$$
-132 x-y=513
$$

$$
\begin{aligned}
& y=5,13 \\
& y=5,13+138 x
\end{aligned}
$$

$$
\begin{aligned}
& y=5,3+138 x \\
& y=-513-1.38 y
\end{aligned}
$$

$0.62 x+2 y=160$ $2 y=160-0.62 x$
$y=0.80-0.33 r$
Step 2 Graph the system. Enter the equations and priph
Step a Find the intersection. The setition is approximaticy i-5.54. 2.527.

Check
What is the solation to the systemi cl equations?
$229 x-4.4 y-6.52$
$416 x+14 y=4.72$
$\begin{array}{ll}1.7 & ? \\ 1.34 & 078\end{array}$

- Example 10 Write and Solve it System of Equations

BUSINESS Denzel is starting a food truck business to sell pourmet griled cheese sandwiches. He has spent $\$ 34,000$ on the truck, equipment, permits, and other start up costs. Each sandwich costs about $\$ 1.32$ to make, and he sells them for $\$ 7$.
How many sandwiches does Dersel need to sell to start eerning a profit?
Get $x=$ theitumber of githeid chevere sandwiches sold. tet $y=$ tothe cost or reversue.
Tons Cost $y=132 x+34,000$
Sotal Sevenud. $y=7 x$
Step 1 Graph the syatem. Enter the equavions and givh
Step 2 Find the intersection.
The solution is apporsimatey $15985.92 .41,901$
This theempat ather Denzal has sola 5985 sanont Mo eam a profe.


## Interactive Presentation



## Example 9


determine whether they are ready to move on.

394 Module 7 • Systems of Linear Equations and Inequalities
Finermuicon
Add 15l. weish yide.
cent rect vibe: -

$$
\begin{aligned}
& \text { Denon mathise by } 2 \text { ? }
\end{aligned}
$$

## Example 9 Solve a System of Equations

Teaching the Mathematical Practices
6 Use Precision In this example, students learn how to calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

## Questions for Mathematical Discourse

AL What does it mean to solve the system of equations? Sample answer: It means to find the ordered pair that satisfies both equations.
OLI Why do you need to solve each equation for $y$ ? Sample answer: The calculator graphing functionality needs equations to be solved for $y$.
Bil. How can you check your answer? Sample answer: I can substitute the values of $x$ and $y$ into the original equations and see if they satisfy the equations, accounting for the fact that the values of $x$ and $y$ are approximations.

## Example 10 Write and Solve a System

 of Equations
## (11) Teaching the Mathematical Practices

2 Consider Units Point out that it is important to note the units involved in this problem.

## Questions for Mathematical Discourse

AL. Why is the total cost represented by the equation $y=1.32 x+34,000$ ? Sample answer: Denzel spent $\$ 34,000$ for the truck and spends $\$ 1.32$ to make each sandwich.
OL What does the point of intersection of the graphs represent? Sample answer: It represents the point at which Denzel's costs equal his revenue.
EBi. How does the graph show the relationship between cost and revenue? Sample answer: When the graph of the cost function lies above the graph of the revenue function, Denzel's costs are more than his revenue. To the right of the point of intersection, the graph of the revenue function lies above the graph of the cost function, so that means he is making a profit.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-29$	
2	exercises that use a variety of skills from this   lesson	$30-39$
2	exercises that extend concepts learned in this   lesson to new contexts	$40-44$
3	exercises that emphasize higher-order and   critical-thinking skills	$45-51$

## ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, <br> THEN assign:

- Practice Exercises 1-43 odd, 45-51
- Extension: Systems with Three Equations
- ALEKS'Systems of Linear Equations

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-51 odd
- Remediation, Review Resources: Solve Systems of Equations by Graphing
- Personal Tutors
- Extra Examples 1-10
- ALEKS:Systems of Equations

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Solve Systems of Equations by Graphing
- Quick Review Math Handbook: Graphing Systems of Equations
- ArriveMATH Take Another Look
- ALEKS'Systems of Equations


## Answers

11. 1 solution; $(0,-3)$

12. 1 solution; $(-1,-2)$



## tumes



 tecond plime is if in athijes al 5000 motern wid is dercending wi a rime of 300 meters per minute.
a. Wine and yach a sprum of equicons thut reperenes the astide of each







tomest
Wite ans graph a system of equations to solve esch lineze ewartion See Med. 7 Ansem Lopendia
*2. $3 x+6=6$
20. $2 k-77=x-10$
21. $-2 x+30-30$
22. $3 n-2 t-24$
22. $2 x+5=2 x+5 \quad 20 . x+1=x+3$
enges
Solve ecri ppatem st equations, stase the decinal solition to the netrect handredth.
25. $25 x+315 y-105$ 26. $22 x+18 x-36 \quad$ 22. $112 x-226 y=495$



## Lament 5

 An foce. 35 wet mbowe the goind, And is teccenseg ot anve of 22 Net per



2. usi roce 1 A oosh


 maparie: that the bockinow toid that meek. Itargee the solition Sop marp

minast Gervilas
Graph esch syutem and dotermine the nariber of solvions it hat if it has ons

30. $2 x-y=-3 \quad$ 3n. $2 x+y=4$
$2 x+y=-1$
$y=-2 x-2$
$32.2 y-5+x$
32. $\begin{array}{r}2 x-y=5 \\ x+y=-2\end{array}$
34. $2 y=12 x-10$

3s. $\begin{aligned} & x-6-3 y \\ & 4=3 x+i v\end{aligned}$
$4 y=24 x$
37. $x+2 y=4, ~ \begin{aligned} & 2 x+2 \\ & y=3\end{aligned}$
38. $\begin{aligned} & y=2 x+3 \\ & 3 y=6 x-6\end{aligned}$
32. $\begin{gathered}y-x=-1 \\ y+y=3\end{gathered}$
40. Eusiarss De number of baus sodd an store 1 can be Nopresented by $y-2000+300$, when reviveremtition the number $c$ l liem siof at 5 cice 2 can be rescetentioc oy $x=200 x+300$ whee rrepesents the runber of dopy wisy uppesients the number of comes sais Look at the
 Sas nos sositor ans solvion, or intitey mory solutem.
 He Ondg rode it a poped ot 20 leet per secona. whle



a. Groph the system ot equation. See Nod. 7 hamwn Aspentio.
C. How ter amay was pe frubl ine from where Cobia stavedr 6001

 $Y=12 t x-3$ and $5 y-5=6 x$. ie conclider tut the votem tas no



 teut met.
Lumbl


b. Genph the sgatem of equitions: See Mod. 7 Mosww Appteste.


 cornect ise a graph bo Matty your masoning See Mid. 7 Anwer Appendic.
Origher-Opder Thieking Ssiles
45. peviviter Une gaphry to fed me iobiton ut tiv viptem of equibon

46. Aviaczar Ditermine wheter a whim ot two inear souptions wien 10.0 and
 yonork she inwip.
 dormet beiong wit the other sreet hanty yool conctivon. See magin.

## 

 $y=5 e-3$ The tivee bsterib ihouts be incoschtere, ocrwiteet and


siotime insems of

So. cakals Wise asd praph a yyoum of cquetion that mas the tollowion nimber of







slos. then tien wid diceont is berties.


## Answers

13. no solution

14. infinitely many solutions

15. infinitely many solutions

16. 1 solution; (3, 2)


17a. $y=400 x+1000 ; y=5900-300 x$

18. $x=$ the number of round tables, $y=$ the number of rectangular $8 x+10 y=124 ; y=x-2 ; 8$ round tables and 6 rectangular tables

29. Sample answer: $x+y=260 ; 2.5 x+0.75 y=450$; approximately (145.71, 114.29); The bookstore will make a weekly profit of $\$ 450$ with total weekly sales of 260 publications when about 146 books and about 114 magazines are sold.
46. Always; if the equations are linear and have more than one common solution, they must be consistent and dependent, which means that they have an infinite number of solutions in common.
47. Sample answer: $4 x+2 y=14,12 x+6 y=18$; This system is inconsistent, while the others are consistent and independent.

## Substitution

## LESSON GOAL

Students solve systems of equations by using substitution.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Using Substitution

## Develop:

## Solving Systems of Equations by Substitution

- Solve a System by Substitution
- Solve and Then Substitute
- Use Substitution When There Are No or Many Solutions
- Write and Solve a System of Equations

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	五E	IELII
Remediation: Using Formulas	$\bullet$		$\bullet$
Extension: Intersection of Two Parabolas		$\bullet$	$\bullet$

## Language Development Handbook

Assign page 39 of the Language Development Handbook to help your students build mathematical language related to solving systems of equations by using substitution.
FEllil You can use the tips and suggestions on page T39 of the handbook to support students who are building English proficiency.



## Focus

Domain: Algebra
Standards for Mathematical Content:
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
6 Attend to precision.

## Coherence

## Vertical Alignment

## Previous

Students solved systems of equations by graphing and used systems to solve linear equations.
8.EE.8, A.REI.6, A.REI. 11

## Now

Students solve systems of equations by using substitution. A.CED.3, A.REI. 6

Next
Students will solve systems of equations by using elimination with addition or subtraction.
A.CED.3, A.REI. 6

## Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3APPLICATION
Finin Conceptual Bridge In this lesson, students develop		
understanding of using algebraic methods to solve systems of linear		
equations. They build fluency by using substitution to solve systems		
of equations, and they apply their understanding by solving real-		
world problems.		

## Mathematical Background

Solving a system by substitution involves solving one equation for a specific variable and then substituting the resulting expression in for the variable in the other equation.

## Interactive Presentation

Warm Up
Solve each equation for $x$.
4. $x+4 y=10$
2. $4 x+5 y=16$
Solve each equation for $y$.
3. $-x-y=1$
4. $-x-5 y=12$
5. Business The formula for gross profit percent is $G=\frac{\text { int }}{3}$. How
much can a company spend for overhead o ifits soles $s$ are $\$ 500.000$
and the company wints to have a gross profit rate of $40 \%$ ? Solve the
formula for a. Then solve the problem.

Warm Up


Launch the Lesson


[^28]
## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- solving for a specific variable


## Answers:

1. $x=-4 y+10$
2. $x=-\frac{5}{4} y+4$
3. $y=-x-1$
4. $y=-\frac{1}{5} x-\frac{12}{5}$
5. $s-G s=0 ; \$ 300,000$

## Launch the Lesson

Teaching the Mathematical Practices
1 Explain Correspondences Guide students to use the information given in the Launch about two television shows to create a system of equations modeling the solution.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

## Explore Using Substitution

Objective
Students explore solving a system of equations by using substitution.
Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will work through a series of guiding exercises requiring that they analyze the meaning of an equation that is solved for one variable. Students will then consider how that equation can be used to make a substitution into a second equation containing the same variable. They then analyze the resulting equation and describe how it can be solved. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore
TYPE


Students move through the slides answering questions about the system of equations.

## Interactive Presentation



Explore

## TYPE

Students respond to the Inquiry Question and can view a sample answer.

## Explore Using Substitution (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Why does performing the substitution make it possible to solve the system of equations? Sample answer: It produces an equation that contains only one variable, which can then be solved for that variable.
- How is the value that you find for $x$ related to the graph of the two equations? It is the $x$-coordinate of the point of intersection of the two lines.

Inquiry
How can you rewrite a system of equations as a single equation with only one variable? Sample answer: If one equation is solved for a variable, then you know the value of that variable. Then, you can replace that variable in the other equation.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## 1 CONCEPTUAL UNDERSTANDING

## Learn Solving Systems of Equations by Substitution

## Objective

Students solve systems of equations by using the substitution method.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## What Students Are Learning

Students previously found the solution of a system of equations by graphing. They also used graphing technology to approximate a solution. In this lesson, students learn that the exact solution of a system can be found using an algebraic method, which in this lesson, is the substitution method.

## Example 1 Solve a System by Substitution

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of the equations in this example to solve the system.

Questions for Mathematical Discourse
Ali Do you have at least one equation solved for one variable? Yes; sample answer: $y$ is equal to $4 x+11$
Oll How does making the substitution allow you to solve the system? Sample answer: it creates an equation with only one variable, so I can solve for that variable, and then use that value to find the value of the other variable

BL. What is an advantage of solving a system of equations by substitution instead of by graphing? Sample answer: When using a graph, the solution sometimes has to be estimated, but substitution gives an exact answer.

## 13 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Learn

(20)


```
Check
Rever to greasstom of equations.
3x-2y=-17
y-2x+2
Part A Which exprestion could be substuted for y in the lirst
 equation to fond the value of x% C
\begin{array} { l l l l } { \text { A. } 2 x - 2 } & { \text { B. } - \frac { 3 } { 2 } x + \frac { 0 } { 2 } } & { \text { C. } 2 x + 2 } & { \text { D. } 3 x - 2 y } \end{array}
Part 8 what s the saluoon of eve wntere? 0
A. (-18, -24)
Example 2 Solve and Then Substtute
Use substitution to solve the system of equations.
5x-3y=-25
x+4y= 榢
Step 1 Solve the second equation forr since the coveloment is t
```



```
Step 2 Scortiste 18 - 4y for त in tove first equation
 5x-2ym-25 notroquman
 508-4y-3y=-25 soduther if - 4yfoc:
 90-20y-3y=-25 bistiotwe Howvry
 90-23y=-25 Co-tine isrt=
 -23y=-115 Sotinusso tumenchvol
 ym5 Olvoenach vile by -2]
Step 3 Sobvtbte 5 for y in either rquation to fradx
 x+4y=48 Seconsmuatoin
```



```
 x+20=18 Sendy
 x=-2 Sotmar20 bumenchivil
Toes solutionisi-2.55
Check
Use subethiton to solve mo 1ywten ol equabion:
5x+3y = 5
z+2y=-13
(2,-10)
```




## Interactive Presentation



Example 2


Students move through the steps to solve a system using substitution.
SYPE

Students enter the correct values while
solving using substitution, and then
discuss if the solution would be the same
if the first step was used to solve the
second equation.

Students enter the correct values while discuss if the solution would be the same if the first step was used to solve the second equation.

## Example 2 Solve and then Substitute

Teaching the Mathematical Practices
1 Monitor and Evaluate Point out that in this example, students must stop and evaluate their progress and change course to find the ultimate solution.

Questions for Mathematical Discourse
How can you tell which variable to solve for the substitution? Sample answer: It is easiest to look for a variable that has a coefficient of 1 . Then, all you have to do is add or subtract the other term to solve.
OL. When the quantity $18-4 y$ is substituted for $x$, why is it necessary to use parentheses? Sample answer: The entire quantity needs to be multiplied by 5 . If parentheses are not used, only the 18 will be multiplied by 5 .
What would the graph of this system of equations look like? Sample answer: two lines that intersect at the point $(-2,5)$

## Common Error

Some students may forget to isolate $x$ before making the substitution and substitute $4 y+18$ for $x$ by mistake. Reinforce that the first step is to isolate a variable in one of the equations.

## Common Misconception

A common misconception some students may have is that the substitution method can be used only when one of the equations contains a variable with a coefficient of 1 . Explain that this is not the case, as any equation can be solved for any of its variables. Explain further that students will learn another algebraic method of solution and that for any system of equations, one method may be easier to use than another.

## Example 3 Use Substitution When There Are No or Many Solutions

## 018 Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graph and the system of equations used in this example.

Questions for Mathematical DiscourseWhy is the first step to substitute $-2 x-4$ for $y$ in the first equation? Sample answer: The second equation states that $y$ is equal to $-2 x-4$, so you can replace $y$ in the first equation with $-2 x-4$.
OL What does it mean to say that $-8=-8$ is an identity? It means that the statement is always true. What does this mean about the solutions of the system? Sample answer: It means that all of the solutions of one of the equations are also solutions of the other equation.
[Bil Name three solutions of the system. Sample answer: $(0,-4)$, $(-2,0)$, and $(1,-6)$

## Common Error

Some students may state that the solution is $(-8,-8)$. Help them to see that the variable has been eliminated from the equation, so the resulting equation does not give any information about the values of $x$ or $y$.

## DIFFERENTIATE

## Language Development Activity 태L

Beginning Ask questions about the lesson content to elicit yes/no answers: "Look at Example 1. Is one of the equations solved for one of the variables?" yes "Is the first step of solving the system complete?" yes
Intermediate/Advanced Ask questions about the lesson content to elicit short answers: "Look at Example 1. Which equation is solved for a variable?" the second "What should be substituted for $y$ in the first equation?" $4 x+11$
Advanced-High Ask questions about the lesson content to elicit complete sentences: "How does Example 1 compare to Example 2?" In Example 1, Step 1 is already completed. "How would you choose the variable to solve for to solve Example 2 by substitution?" Solving the second equation for $x$ makes sense because its coefficient is 1 .

Example 3 Use Subsuitution When There are No or Mary Solutions
Une subetitition to solve the system of equationt.
$4 x+2 y=-8$
$y=-2 \mathrm{z}-4$
Subssano $-2 x-4$ scy y in me set equation.

$4 x+2 y=-8$	fort reies)
$4 x+24-2 x-4)^{-8}$	Summe-2

$4 x-4 x-8=-8 \quad$ Dimben liownty $-8=-8 \quad \leftrightharpoons$
 al shesome.
when yrocred, the econtons are the tarse ine
Check
Select ine corect itstement about the spiteo ot equations.
$-x+2 y=2$
$y-\frac{1}{3} x+1$
A. This sytem has no scation
B. Tis onsten has one solution ar ( ${ }_{3}^{2}, \frac{1}{3}$ ).
c. This sptem pas one solution as ( $\left(\frac{1}{3}, \frac{3}{3}\right)$.
D. This system tas intinely many soutions.

- Example 4 Wote and Solve a System of Equations

Tres paiselevanion. A tomin ecdinance defines an abut tree es having a dilamoter grester than winches and asaping as having a divnoter vess then wo hches. The oedinunce requives that on a new builing prigiect tro new trees are plamed for each astiat tree feled and six new trees are planted for each uapling teled. Last yeac, there were 677 trees feled, and the comminity plamed 792 repiscement triess. How macy of each oppe of bee were toltedt
(Contioued on the next page)

## Stuay Tip

Dopeosent Systems Therw aio infistely inany beciune the equations inxiope intercepe form mecsilulere and wer heve to ume groh

## OThirkAbout te

What would a rokition the $-5=0$ metry on a groghy

Sampla anwer the sypten has no soletion. This ines wovit be problel

## Interactive Presentation



Example 3



## Interactive Presentation



## 1 CONCEPTUAL UNDERSTANDING

## Example 4 Write and Solve a System of

 EquationsTeaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

## Questions for Mathematical Discourse

4L. What do the terms $2 a$ and $6 t$ represent? Sample answer: $2 a$ represents the number of trees planted to replace the adult trees that were felled; $6 t$ represents the number of trees planted to replace the saplings that were felled.
OL. What steps are needed to solve the system? Solve for one of the variables in the first equation, then substitute the quantity into the second equation and solve for the variable. Finally, substitute the value back into the first equation and solve for the other variable.
[Bil How would the answer have changed if you had solved for $t$ in Step 1? Sample answer: The final answer wouldn't change. If you solved for $t$ in Step 1, you would then substitute $167-a$ for $t$ in Step 2 to get $a=65$. In Step 3, you would solve for $t$ to get 102 .

## Essential Question Follow-Up

Students are writing and solving systems of equations in two variables.

## Ask:

Why is it necessary to use a system of equations to solve a real-world problem that involves two unknowns? Sample answer: When there are two unknowns, you need two equations to find the values of the variables.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-17$	
2	exercises that use a variety of skills from this   lesson	$18-20$
2	exercises that extend concepts learned in this   lesson to new contexts	$21-24$
3	exercises that emphasize higher-order and   critical-thinking skills	$25-29$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, THEN assign:

- Practice Exercises 1-23 odd, 25-29
- Extension: Intersection of Two Parabolas
- D ALEKS'Systems of Linear Equations

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-29 odd
- Remediation, Review Resources: Using Formulas
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Solving for Variable and Dimensional Analysis

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-17 odd
- Remediation, Review Resources: Using Formulas
- Quick Review Math Handbook: Substitution
- ArriveMATH Take Another Look
- ALEKS'Solving for Variable and Dimensional Analysis

Practice
Thenom 1-s

46. Nowir Haver fas some sivbls and wome 55 ofs in all tee nas 6 bes worth 322. iefx tie se monber of sibes, and lety set lie number of 55 bitc. what


TB. $x+59=22$, he har lou $\$ 5$ bits and too frials



contions $20 x$ ocid any eint ortiled water

 Sopple untwer $e+a=5.070+0.25 i c 0.0585$

- Sole your wheer af equition. How many milltank mom each besber de


Mined Kewecise
en sprten ur cesortons
$45 . y=12 x+10 \quad$ Ne $y=\frac{3}{2} x-\frac{1}{2},(1,3) \quad 20 . y=-10 x-81$

21. ust a sounct hiseerch pogueben tiends in South Anesca. White and selwen

 time a atherence of 20 : What tee re maticres of the angivs Cenviativ yourmetiod Stentith
22. stivicruar A trodige number in rediced by 45 ntien the doth are

 sequetions to tha the orghel nuribec. See margin.
24. yat A mbock. A Dos keps yack or me munter of Vistors to doct eatiot, the sable show the namber af

a. Thise ines ine trat number or adids $m s i r$ les
 Ban ne nunber of ofldien who wistes tte peping



c. Solve the spisiem of eaustops io thad the tolar mu

 abes one dify were 94050 , the aumber of chitorit uto winded the 300 mm 210 more hun 6 smes the nombec of souts who enated wrie and whin a 3 Them of ecrubont to trad ne total nonber of vation lo fie roo thut dey
 -i) Figherorder thiekiong Sailh



 minatioperted the poonds of sppies bought.




27. Avulkar Compare and cortynt fee selviton of a eyiton found by genthing ase

 notem could eprevert a thal wonds stuation and derchibe te vipuicince of

 uspod of soting spitens of equations. Set murpis


## Elimination Using Addition and Subtraction

## LESSON GOAL

Students solve systems of equations by using elimination with addition or subtraction.

## 1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

## Develop:

Solving Systems of Equations by Elimination with Addition

- Elimination Using Addition
- Write and Solve a System Using Addition

Solving Systems of Equations by Elimination with Subtraction

- Elimination Using Subtraction
- Write and Solve a System Using Subtraction

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

## Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	IIE	IELII	
Remediation:				
Extension: Translating Symbols into   Equations			0	0

## Language Development Handbook

Assign page 40 of the Language Development Handbook to help your students build mathematical language related to solving systems of equations by using elimination with addition or subtraction.
[EIII You can use the tips and suggestions on page T40 of the handbook to support students who are building English proficiency.


Suggested Pacing
90 min
45 min

## Focus

## Domain: Algebra

Standards for Mathematical Content:
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

## A.REI. 6 Solve systems of linear equations exactly and approximately

(e.g., with graphs), focusing on pairs of linear equations in two variables.

Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.

## Coherence

Vertical Alignment

## Previous

Students solved systems of equations by using substitution.

## 8.EE.8b, A.CED.3, A.REI. 6

## Now

Students solve systems of equations by using elimination with addition or subtraction.

## A.CED.3, A.REI. 6

## Next

Students will solve systems of equations by using elimination with multiplication.
A.REI.5, A.REI. 6

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of using algebraic methods to solve systems of linear equations. They build fluency by using elimination to solve systems of equations, and they apply their understanding by solving real-world problems.

## Mathematical Background

Elimination using addition or subtraction involves manipulating one or both equations so that one variable is eliminated when the equations are added or subtracted. The solution is the ordered pair consisting of the two values. This is the point of intersection of the graphs of the two equations.

Lesson 7-3 - Elimination Using Addition and Subtraction 405a

## Interactive Presentation

	$\times$
Warm Up	
Simplify each expression.	
1. $50-3)-7$	
$2.6\left(4-v-2 v^{2}\right)$	
3. $3(a+2)-5 d+3$	
4. $12-3(2 t-7)$	
5. SHOPPNG Emills catches a sale on both and body products: She wants to buy 5 tubes of scented lotion s that she finds in the $\$ 2$ off bin and 3 body sprays it that are $\$ 10$ of Wite an expression to represent Emala's puichnses.	

Warm Up


Launch the Lesson


[^29]
## Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- simplifying expressions by using the distributive property

Answers:

1. $5 k-22$
2. $24-6 v-12 v^{2}$
3. $-2 a+9$
4. $33-6 t$
5. $5(s-2)+3(b-1)$

## Launch the Lesson

Teaching the Mathematical Practices
2 Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. In this Launch, notice the relationship between the variables $r$ and $t$.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

## Learn Solving Systems of Equations by Elimination with Addition

## Objective

Students solve systems of equations by eliminating a variable using addition.

## Teaching the Mathematical Practices

7 Look for a Pattern Help students to see the pattern in solving systems of equations by elimination with addition.

## What Students Are Learning

In the previous lesson, students learned how to use substitution to solve a system of equations. In that process, students worked with one equation at a time to eliminate a variable and solved for the other variable. In this lesson, students learn a different algebraic method for solving systems: elimination. In the elimination with addition method, the equations are added together, causing one of the variables to be eliminated. This results in an equation with only one unknown. The remaining steps of the solution are the same as those when using the substitution method.

## Example 1 Elimination Using Addition

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

## Questions for Mathematical Discourse

AL Why do you want to eliminate a variable from the equations? Sample answer: When solving for an unknown variable, you need to only have one unknown at a time.
OLL Why do you add the two equations? Because the coefficients of the $y$-terms in the equations are opposites, you can add the equations together and the $y$-terms will be eliminated. You will be left with an equation with only one variable.

BL. In this problem, why might it be easier to use elimination instead of substitution? Sample answer: By using elimination, the system can be solved for a variable in fewer steps. To use substitution, you would first need to isolate a variable in one of the equations.

## (3) Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Learn


```
Check
Use elimination to lolve the sytum of equations: (-9,5)
5x+13y=20
```

$-5 x-3 y=30$

Example 2 Whas and Solve a System of Equations Using Addition
Seven times a number minus four times another number is thirteen Negative seven times a number plus seven times another number is tourteen. Find the numbers.

Tovm tinen s wartuar mises    Mintoes	Stogily never linms a hatiber put Mrwen Sitas enctret numper  
5x-4y -0	$-3 \mathrm{r}+7 \mathrm{r}=14$

Steps 1 and 2 Write the equations werticaty and add. $7 y-4 y=13$
$\frac{(4)-72+7 y=34}{3 y-27}$
 $y=9$ 5 musy Step 3 Substitute $\$$ for $y$ in either equation to find the value of $x$ $-7 x+7=14 \quad$ Seconc reumion $-7 \mathrm{x}+79 \mathrm{~F}=14 \quad$ lieploce $y$ men
 $x+63-63-14-63 \quad$ settiongicipana $-7 \pi=-49 \quad$ sinity $\overrightarrow{7}=\frac{27}{-7} \quad$ Dible nion sue iv -3 $x=7 \quad \operatorname{Sen}+1$
The solution is $17,98,50, x-7$ and $y=9$
Check
too Gimes a fumber ninus st menes another number is nequtve sox Negasive two smes a cumber plin tive brees ancther flymber is eighteen
Wite the piptrem of equations.
$2 x-6 y=-6$
$-2 x+5 y=16$
Solve ne mpsen of equation: $(-38,-12)$



## Interactive Presentation



Example 2
 move on.

## Example 2 Write and Solve a System of Equations Using Addition

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

## Questions for Mathematical Discourse

AL What words indicate the operations to perform in the equations? times, minus, and plus
OL. What terms will be eliminated when using elimination with addition? Why? the $x$-terms; Sample answer: The coefficients of the $x$-terms are additive inverses and will cancel.
[B1. Does it matter which equation you substitute the 9 back into? Explain. No; sample answer: You will get the same value for $x$ no matter which equation you use.

## Common Error

Some students may need to review translating from words to symbols.

## DIFFERENTIATE

## Enrichment Activity (BLI

Write two equations on the board with the constants missing. Have students find the missing constants that produce the given solution. For example, write the system
$3 x+2 y=$ ?
$5 x-2 y=$ ?
and tell students that the solution is $(1.5,0.25)$. Then have them find the missing constants.
$3 x+2 y=5,5 x-2 y=7$

## Common Misconception

A common misconception some students may have is that the use of different methods of solution may lead to different solutions. Explain that whether found by using a graphing method or one of the algebraic methods, the solution of a system will be the same. In every case, the solution represents the coordinates of the point of intersection of the graphs of the equations, which is the solution(s) that the two equations have in common.

## Learn Solving Systems of Equations by Elimination with Subtraction

## Objective

Students solve systems of equations by eliminating a variable using subtraction.

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in solving systems of equations by elimination with subtraction.

## Example 3 Elimination Using Subtraction

Teaching the Mathematical Practices
1 Monitor and Evaluate Point out that in this example, students must stop and evaluate their progress and change course to find the solution.

## Questions for Mathematical Discourse

AL. Why would you subtract these equations instead of adding them? Sample answer: Because the $y$-terms have the same sign, none of the variables will cancel out when added.
OL What are two different ways that you could check the solution? Sample answer: Substitute the values back into the equations and see that they satisfy both equations, or graph the equations and find the point of intersection.
[B1. Why is adding the two equations not helpful in solving the system? Sample answer: Neither variable is eliminated when you add the equations, so you are left with another equation that contains two variables. You need to produce an equation with only one variable.

## Q Essential Question Follow-Up

Students have been using systems of equations to solve real-world problems.
Ask:
Why is it helpful to know how to solve systems of equations when solving real-world problems? Sample answer: Some real-world problems involve two variables, so you need to know how to write and solve a system of two equations to solve the problem.

```
Learn Solving Systems of Equations by Elimination
wth Subtraction
When the coeffictets of ovirsble are the tame in two equation, you
can elminate the varisble by subtacting one equation trom the cter.
```



```
$wopt Whit the sytem so llo term with the sume covticients
 arealgned.
Stes 2 Suttracront tquation totes the cthec.alevinuting onse vaciatio.
 TMwen tolve pre equation:
Srop 3 Substhte the value torn Step 2 mpo ane of tif equations and
 solve for the offer ymiste. White the solvion is an ordered pai
Example 3 Elminntion Uhing Subtraction
Use eliminvelon to solve the syutem of equations.
3x+6y=30
5x+6y=6
Step 1 Align semms with the same coefficients.
 Since: 6y ond by hove the sume covmicient.you can subluact the
 ecquations to cleminute the vanodiey
Step 2 Sibtract the equations.
 3c+6y=30
 t-5x+6y=6
 \frac{24}{22}=\frac{24}{-2}\quad Ormaveretomplor-2
 xa-12 Svevy
Step 3 Subuthute -12 for x lo either equation to find the valoe of }y\mathrm{ .
 3y+6y=30 Inveombin
```



```
 -36+6y=30
 -36+26+6y=30+30
 6y=66
 y%}=\frac{65}{6
 The solution is (-2.\pi
Check
Use elmination to solve the spstem of equations, (-3.14)
-2x+3y=48
 7x+3y=21
```



## Study Tip

``` Adsing end Subtracting Equations When the
varisbie you want to Eiminale has ue same coefliciont in ule tind equations. wibtract when the variable yeu want 40 coeffcients, odal
```


## Watch Out

```
Sutracting an
Equation When
subtiacting ope
equation from another
-is order to eliminamea varidele. do not Sopget to dutribuce the negatie sign to each
teim of the amprevions on both sises of ine equebs sign
```


## Interactive Presentation



Example 3



## Interactive Presentation



Example 4


## Example 4 Write and Solve a System of

 Equations Using SubtractionTeaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Questions for Mathematical Discourse
AL Which variable is it easiest to solve for first? Why? m; Sample answer: Because both equations contain $1.2 k$, subtract them to eliminate $k$ and solve for $m$.
OL. Why does 1.2 k represent the amount of time Kara spent building computers? Sample answer: Because it takes Kara 1.2 hours to build one computer, 1.2 times $k$ represents the amount of times it takes her to build $k$ computers.
[BII In Step 3, when you substitute 10 for $m$ in the first equation, you find that the value of $k$ is 5 . Assuming that you have performed this step correctly, can you be sure that the solution to the system is $m=10$ and $k=5$ ? Explain your reasoning. No; sample answer: All you know is that this is a solution of the first equation. If you made an error in Step 1 or 2 , and the value of $m$ is not actually 10 , then $m=10$ and $k=5$ is not the solution of the problem.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-32$	
2	exercises that use a variety of skills from this   lesson	$33-38$
2	exercises that extend concepts learned in this   lesson to new contexts	$39-43$
3	exercises that emphasize higher-order and   critical-thinking skills	$44-49$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, THEN assign:

- Practice Exercises 1-43 odd, 44-49
- Extension: Translating Symbols into Equations
- ALEKS'Systems of Linear Equations

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-49 odd
- Remediation, Review Resources: Simplify Algebraic Expressions
- Personal Tutors
- Extra Examples 1-4
- DALEKS"Simplifying Algebraic Expressions

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-31 odd
- Remediation, Review Resources: Simplify Algebraic Expressions
- Quick Review Math Handbook: Elimination Using Addition and Subtraction
- ArriveMATH Take Another Look
- DALEKS'Simplifying Algebraic Expressions

 of the toober af wins and lowes by the Mornac Mertury wat iz. Ded oflenvice of rie nanber of wos tns thes inses the nubber of bosev was 1 How many tugher senuti ganes do the Phocetr Mercury jiby aring tiat seron? 34 gams
 trpes do boubuves. is shom ar ibe lighe Co Mondos. Mansolvied 96 litps somete the beuguris. On Tuestery. She used 92 bidep to nede the smon number of Solive Mex boupurth is Mondey. bual 3 simer an mony Gexden Delight bownents


Sivgene totimembe of
Hind mie totsi number of SAgs Moricil vied fo mabe Garcreo Dolcht Sousuiti on Hosbiey mod Tuevier Sopian your atowec See revih

42. Use a woch Jereny makendickeech bosipt swas for per thyeth at a biatiog popcoin wad the nopber of plives al nucteo eich oerion toiper at wel as the ldist cons of the mock

 repreventit Ser marg
b. Solve the syotem of equabors ind enplan whit your lelision
 di naches cints 5 y/s







 inte of 6 mph and she wibs sto nte of 4 riph

1 CONCEPTUAL UNDERSTANDING

## Answers

40 a. Sample answer: $12 x+16 y=96,12 x+48 y=192$, where $x$ is the number of Spring Mix bouquets and $y$ is the number of Garden Delight bouquets Marisol made on Monday.

40b. 192; The solution of the system is (4, 3), so Marisol made 3 Garden Delight bouquets on Monday and 9 Garden Delight bouquets on Tuesday, for a total of 12 Garden Delight bouquets; $12 \times 16=192$.
41a. Sample answer: $4 p+2 n=18.50,7 p+2 n=26.75$, where $p$ is the price of a bag of popcorn and $n$ is the price of a plate of nachos.
43c. Sample answer: The point of intersection on the graph will match the solution $(5,-2)$


a. Whit a the frut tup to soing tre vitem of equirions by ebminetion? Gionk purperng dar sole for a whintieg, end then you tan solve for:
 greob to cesckyour notition See mainh
d. Weir woutd the solbon thange e the second equation ies $x-5 y=15$ ?
 alited numben rasd $y$ nodsling he equative $-5 y$ w 15

 noverimesed.

Origher-Order minties sivien

 Aovise o coorternambie to how that his statenent is tolve justry our

45. Avicizt Fesce spip Pat $t$ you sobe a ystem of equabons invig elininet

 man ne sabition.


 ane adgelveloweses.


 squition Samp coetiome
48. naseveet The win of ple dipts at a two-dige nubber is a. Tre resut d
 peleth of eguations itat you weid une to find the homber Then solve thy








## Focus

## Domain: Algebra

Standards for Mathematical Content:
A.REI. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
A.REI. 6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.

## Coherence

Vertical Alignment

## Previous

Students solved systems of equations by using elimination with addition or subtraction. 8.EE.8b, A.CED.3, A.REI. 6

## Now

Students solve systems of equations by using elimination with multiplication. A.REI.5, A.REI. 6

Next
Students will solve systems of inequalities by graphing.
A.CED.3, A.REI. 12

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of using elimination to solve systems of linear equations and build fluency with using elimination and multiplication to solve systems. They apply their understanding of the elimination method by solving real-world problems.

## Mathematical Background

When the coefficients of like variable terms are neither the same nor additive inverses, elimination using multiplication can be used to solve the system of equations. This method requires that either one or both of the equations be multiplied by a number so that when the equations are added or subtracted, a variable is eliminated. The system can then be solved using elimination by addition or subtraction.

## Interactive Presentation

Warm up
Use substitution to solve each system of equations.
1. $5 x+2 y=-1$
$-4 x-y=-4$
2. $3 x-4 y=2$
$-x+3 y=6$
$\begin{aligned} & \text { 3. } 2 x+\frac{1}{4} y=-8 \\ & y=8 x \end{aligned}$
$\begin{aligned} 4.2 x-13 y & =21 \\ -x+7 y & =-10 \end{aligned}$
5. GEOMETRY The perimeter of a rectangle is $\$ 4$ centimeters. its length is twice as long as its width. Write a system of equations to represent this information. Then find the dimensions of the rectangle.

## Warm Up

## Cancirife Lussen

Titimalyinetaciand

 min roul wang povi, descia snd bucic hao




Heble


Launch the Lesson

## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- solving systems of equations by using substitution

Answers:

1. $(3,-8)$
2. $(6,4)$
3. $(-2,-16)$
4. (17, 1)
5. $2 \ell+2 w=54$ and $w=2 \ell ; 9 \mathrm{~cm}$ by 18 cm

## Launch the Lesson

Teaching the Mathematical Practices
2 Create Representations Guide students to write a system of equations that models the number of recreational visits to national parks. The system of equations can be solved by elimination using multiplication and addition.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Explore Graphing and Elimination Using Multiplication

## Objective

Students use a graph to explore how to solve a system of equations by eliminating a variable using multiplication.

## (11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will progress through a series of slides that show how the graph of a system of equations changes as the equations are manipulated. They will observe how the solution to the system can be found by transforming the equations and applying algebraic methods that they learned earlier in the module. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


Explore


## Interactive Presentation



Explore

## TYPE

a|
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

## Explore Graphing and Elimination Using Multiplication (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- Why does multiplying the equation by -3 not change its graph? Sample answer: The Multiplication Property of Equality states that if you multiply both sides of an equation by the same number, you maintain the same equality.
- How do you know what number to multiply the equation by? Y ou need to multiply by a number that will then cause one of the variables to be eliminated when the new equation is added to the other equation.


## Q. Inquiry

How can you produce a new system of equations with the same solution as the given system? Sample answer: Change the equations in the original system using multiplication and addition. When the equations are manipulated, the point of intersection of the graphs remains the same.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

## Learn Solving Systems of Equations by Elimination with Multiplication

## Objective

Students solve systems of equations by eliminating a variable using multiplication and addition.

## Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## What Students Are Learning

Students may have recognized that not all systems of equations can be solved by simply adding or subtracting the equations. In this lesson, students learn that by applying the Multiplication Property of Equality, they can multiply one or both of the equations by a number (or numbers) of their choosing to create an equivalent system that can then be solved by addition or subtraction.

## Common Misconception

A common misconception some students may have is that there is only one correct way to use multiplication to solve a system of equations. Explain that this is not the case and that there are many ways to transform a system to an equivalent system that can then be solved by elimination. Provide a few examples, and then have students offer additional methods of solution.

## Example 1 Elimination Using Multiplication

Teaching the Mathematical Practices
3 Make Conjectures In this example, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

Questions for Mathematical Discourse
AL Which variable terms have coefficients with common multiples? $10 x$ and $5 x$

OL. Why can you eliminate the variable after multiplying by -2 ? Sample answer: If you multiply the second equation by -2 , then the coefficients of the $x$-terms are additive inverses and you can add the equations to eliminate $x$.
B1. How can you check your solution? Sample answer: Substitute 1 for $x$ and 4 for $y$ in the original equations and determine if both of the resulting equations are true.


## Interactive Presentation



Learn



Interactive Presentation


Example 2


Students tap on each step to see how to solve a system by multiplying both equations.

## Example 2 Multiply Both Equations to Eliminate a Variable

Teaching the Mathematical Practices
1 Monitor and Evaluate Point out that in this example, students must stop and evaluate their progress and change course to find the solution.

## Common Error

A common error some students may make is forgetting to multiply the constant on the right side of the equal sign by the number used to multiply the terms on the left side. Encourage students to write the multiplier on both sides of the equal sign before they actually perform the multiplication.

## Questions for Mathematical Discourse

Do either of the variables have coefficients with common multiples? no
OLL How do you determine what numbers to multiply by? Sample answer: You need to find a common multiple of the coefficients and then figure out what multipliers will make the coefficients that number and its opposite.
BL. Why is it easier to eliminate $x$ first? Sample answer: Because the $x$-terms have opposite signs, you can just multiply by 2 and 3 and then add, without having to worry about multiplying by a negative number.

## Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


## Example 3 Write and Solve a System Using Multiplication

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

## Questions for Mathematical Discourse

Al. Why is the first equation multiplied by -4 ? The coefficient of $x$ in the second equation is 4 , so you need the coefficient in the first equation to be -4 in order to cancel.
Ol. What would you do if you wanted to eliminate $p$ instead of $c$ ? Multiply the first equation by -12 and add the equations.
(3.1. What number could you multiply the second equation by if you wanted to eliminate $c$ using addition? $-\frac{1}{4}$

## Common Error

Some students may have difficulty writing the equations for the system in these types of problems. Tell them to think about writing one equation that models "how many" and another equation that models "value."


Interactive Presentation


Example 3



## Interactive Presentation



## Check

 Students solve a system of equations.

## Common Error

Some students may have difficulty writing the equations that represent the system. It may be helpful to pair these students with students who have a better grasp of the concept, and have them discuss the translation from words to symbols.

## DIFFERENTIATE

## Enrichment Activity |BU

Ask: What are the benefits of having different strategies for solving systems of equations? Sample answer: $\varnothing u$ can use the strategy that is most efficient. For example, if the variable terms have coefficients that are opposites, elimination would be a good choice. If one of the equations is solved for a variable, substitution may be an efficient way to find the solution. If the equations are easily graphed, graphing might be a good method to use. Also, one method may be a good way to check a solution found using a different method.

## Exit Ticket

## Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 2 exercises that mirror the examples	$1-14$	
2	exercises that use a variety of skills from this lesson	15,16
2	exercises that extend concepts learned in this   lesson to new contexts	$17-20$
3	exercises that emphasize higher-order and   critical-thinking skills	$21-25$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, THEN assign:

- Practice Exercises 1-19 odd, 21-25
- Extension: Solving Systems of Equations in Three Variables
- ALEKS'Systems of Linear Equations

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-25 odd
- Remediation, Review Resources: Solve Systems of Equations by Substitution
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Systems of Equations

IF students score $65 \%$ or less on the Checks,

## THEN assign:

- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Solve Systems of Equations by Substitution
- Quick Review Math Handbook: Elimination Using Multiplication
- ArriveMATH Take Another Look
- ALEKS'Systems of Equations

Practice
(caroestime?


2 $x+y=2$	2. $x-y=-8$	a. $x+5 y=0$
$\begin{aligned} & -3 x+4 y=15 \\ & (-2 ; 1) \end{aligned}$	$\begin{aligned} & 7 x+5 y=\text { is } \\ & 1-26 \end{aligned}$	$\frac{-x+3 y-24}{1-2.49}$
4. $\begin{aligned} & 4 x+y=-39 \\ & 3 x+2 y=-15 \\ & 1-73 \end{aligned}$	$\begin{aligned} & \text { 5. } 2 x+5 y-10 \\ & 4 x+3 y=1 \\ & (-2,3) \end{aligned}$	$\begin{aligned} & 3 x-3 y=-6 \\ & -5 x+4 y=12 \\ & 6.27 \end{aligned}$
$\begin{aligned} & \text { 7. } 2 x+4 y=29 \\ & 6 x+5 y=43 \\ & \text { a, } 5 \text {. } \end{aligned}$	$\begin{aligned} & \text { 2. } 8 x+3 y=4 \\ & -7 x+5 y=-34 \\ & 2 .-6 \end{aligned}$	$\text { 9. } \begin{aligned} & 8 x+3 y=-7 \\ & 7 x+2 y=-3 \\ & k-5 \end{aligned}$
$\begin{aligned} & 10.4 x+7 y=-30 \\ & 2 x+5 y=-50 \\ & \|-6,-8\| \end{aligned}$	$\begin{aligned} & \text { 11. } 12 x-2 y=-3 \\ & 6 x+y=1 \\ & 10.7 \end{aligned}$	12. $\begin{aligned} & -4 x+2 y=0 \\ & 3 x+3 y=8 \\ & \left(\frac{1}{2} 1\right) \end{aligned}$

(1)




 ol mis guises and yia the cost ef NoA gmes
h. Sobe the syiten of equations to tind ine cost for a tamiy of fous 10 attend

s. Aer Me somesk the cuabs of the chisren i, museum recerioy made two purchases of Feg cuy ond pabmer cay sor a vitima foil of each prodact per ksogrem.


 - Sologan of polvine diey

为


## Mined Eenerises

 157 Whut we the numbes? 1 med -1
 numbers is - E : Find the number: -3 med


## LESSON GOAL

Students solve systems of inequalities by graphing.

## 1 LAUNCH



Launch the lesson with a Warm Up and an introduction.

## 2 EXPLORE AND DEVELOP

Explore: Solutions of Systems of Inequalities

## Develop:

## Solving Systems of Inequalities by Graphing

- Solve by Graphing
- Solve by Graphing, No Solution
- Apply Systems of Inequalities

You may want your students to complete the Checks online.

## 3 REFLECT AND PRACTICE

Exit Ticket

Practice

## DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	LIE	IFII	
Remediation: Graphing Inequalities in Two   Variables	$\bullet$			$\bullet$
Extension: Describing Regions		$\bullet$	$\bullet$	$\bullet$

## Language Development Handbook

Assign page 42 of the Language Development Handbook to help your students build mathematical language related to solving systems of inequalities.
Ellill You can use the tips and suggestions on page T42 of the handbook to support students who are building English proficiency.



## Focus

## Domain: Algebra

Standards for Mathematical Content:
A.CED. 3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
A.REI. 12 Graph the solutionsto a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.
7 Look for and make use of structure.

## Coherence

Vertical Alignment
Previous
Students solved systems of equations by using elimination with multiplication.

## A.REI.5, A.REI. 6

## Now

Students solve systems of inequalities by graphing.
A.CED.3, A.REI. 12

Next
Students will use linear programming to find maximum or minimum values of a function. A.CED. 3 (Course 2)

## Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
표파 Conceptual Bridge In this lesson, students expand their		
understanding of graphing linear inequalities to build fluency with		
graphing systems of linear inequalities. They apply their understanding		
of graphing systems of linear inequalities by solving real-world problems.		

## Mathematical Background

A solution of a system of inequalities is the set of all points that satisfy both inequalities. b solve the system, graph each inequality and shade the region where the graphs overlap, or intersect. If the boundary lines are parallel, and the shaded regions have no points in common, then there is no solution to the system. Otherwise, the system has infinitely many solutions.

## Interactive Presentation



Warm Up


Launch the Lesson


[^30]
## Warm Up

## Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- testing half-planes

Answers:

1. no
2. no
3. yes
4. $5 x+7 y>35$
5. Sample answers: 3 phone cases and 4 makeup items; 5 phone cases and 5 makeup items; 6 phone cases and 2 makeup items

## Launch the Lesson

## (1) Teaching the Mathematical Practices

6 State the Meaning of Symbols Guide students to define variables to represent the situation in this Launch. Then, help students write a system of inequalities to determine the amount of time Romano can spend streaming music and videos.

Go Online to find additional teaching notes and questions to promote classroom discourse.

## Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

## Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

## Explore Solutions of Systems of Inequalities

## Objective

Students use a graph to explore the solutions of a system of inequalities.

## Teaching the Mathematical Practices

3 Construct Arguments In this Explore, students will use stated assumptions, definitions, and previously established results to construct an argument.

## Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

## Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will explore how a system of linear inequalities is represented on a graph. They will use a number of marked points to understand what the different shaded areas of the graph represent. Then, students will answer the Inquiry Question.
(continued on the next page)

## Interactive Presentation



Explore


## Interactive Presentation



## Explore

## TYPE



Students respond to the Inquiry Question and can view a sample answer.

## Explore Solutions of Systems of Inequalities (continued)

## Questions

Have students complete the Explore activity.

## Ask:

- What must be true about a point that lies in a region that is shaded in one color but not in both colors? That point is a solution of one of the inequalities but not of both.
- Is the point of intersection of the two boundary lines always a solution of the system of inequalities? Explain. No; It is a solution only if both boundary lines consist of points that are solutions of their respective inequalities.


## © Inquiry

How are the solutions of a system of inequalities represented on a graph? Sample answer: The solutions of the system are represented by the region where the solutions of the individual inequalities intersect.

Wo Online to find additional teaching notes and sample answers for the guiding exercises.

## 1 CONCEPTUAL UNDERSTANDING

## Learn Solving Systems of Inequalities by Graphing

## Objective

Students graph the solution sets of systems of linear inequalities in two variables as the intersections of the corresponding half-planes.

## 1 Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

## What Students Are Learning

Students will learn that a graph can be used to find the ordered pairs that satisfy both inequalities in a system. Students have already learned that the solution set of an inequality can be represented by a half-plane. Here they learn that the solution set of a system of inequalities is the region that is the overlap of the two half-planes from the system.

## Example 1 Solve by Graphing

Teaching the Mathematical Practices
7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In this example, guide students to see what information they can gather about the expression just from looking at it.

## Questions for Mathematical Discourse

AL. How do you know whether a boundary should be drawn as a solid line or a dashed line? It should be drawn as a solid line if the inequality is $\leq$ or $\geq$. It should be drawn as a dashed line if the inequality is $<$ or $>$.
OL Describe how to determine which side of the line to shade. Sample answer: Choose a point that is not on the boundary, and substitute its coordinates into the inequality. If the resulting inequality is true, then shade the half-plane in which the point lies. If it is not true, shade the other half-plane.
BL. How do you know which shaded region represents the solution of the system? Sample answer: Because you want the solutions to be true for both inequalities, you are looking for the region that is shaded by both. Choose a point that lies in the region that you shaded. Substitute the coordinates of the point into each of the inequalities. If the resulting inequalities are both true, then you know you shaded correctly.

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.



## Interactive Presentation



Learn



## Interactive Presentation



Example 2


[^31]
## Common Error

A common error that some students may make is demonstrated in the Avoid a Common Error feature online. The graph shows that the student did not shade the half-planes separately, and therefore could not identify the overlap of the half-planes.

## Example 2 Solve by Graphing, No Solution

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

## Questions for Mathematical Discourse

ALI What does the $>$ symbol in the first equation tell you about the boundary of that half-pane? It is a dashed line. What does the $\leq$ symbol in the second equation tell you about the boundary of that half-pane? It is a solid line.
OL. Why does it not work to use the intercepts in order to graph the system? Sample answer: The intercepts for the first inequality are both 0 , so you only know that the graph will go through the origin. The $x$-intercept of the second inequality is a fraction that is not easily graphed.
BL. How would the solution be different if the inequality sign in the first inequality was < instead of > ? Sample answer: The solution would be the half-plane that represents the second inequality.

## Common Error

Some students may correctly state that the system has no solution, but do so based on their recognition of the fact that the boundaries are parallel lines. Point out that it is not the boundaries that indicate that this system has no solution, it is the fact that the half-planes do not overlap. Lead students to see that it is possible to have overlapping half-planes with parallel boundary lines.

## ©Example 3 Apply Systems of Inequalities

Teaching the Mathematical Practices
2 Represent a Situation Symbolically Guide students to define variables to solve the problem in this example. Help students to identify the independent and dependent variables. Then, work with them to find the other relationships in the problem.

Questions for Mathematical Discourse
AL Why is this system of linear inequalities graphed only in the first quadrant? Sample answer: The number of pillows and blankets must each be nonnegative, so only first-quadrant values and values on the axes make sense.
OL. Name three possible solutions and interpret them in the context of the situation. Sample answer: The class could make 2 blankets and 18 pillows, 4 blankets and 9 pillows, or 8 blankets and 3 pillows.
BLi. Is the point $(10,0)$ in the solution set of the system of inequalities? Yes What does the point represent in the context of the situation? The class can make 10 blankets and 0 pillows.

## Common Error

Some students may give an estimate of the point of intersection of the boundary lines as the solution, as they would when solving a system of equations. Explain why real-world problems of this type have many solutions and how this is indicated by the graph.


## Interactive Presentation



Example 3



## Interactive Presentation



Check

## MULTIPLE CHOICE



Students select the graph of the system of inequalities.

CHECK


Students complete the Check online to determine whether they are ready to move on.

## Essential Question Follow-Up

Students are learning about how a system of inequalities can be used to model the constraints of a real-world situation.

## Ask:

How are systems of inequalities useful in the real world?
Sample answer: They can be used to model and solve situations that involve constraints on different quantities.

## Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

## Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

## Practice and Homework

## Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-14$	
2	exercises that use a variety of skills from this   lesson	$15-17$
2	exercises that extend concepts learned in this   lesson to new contexts	$18-23$
3	exercises that emphasize higher-order and   critical-thinking skills	$24-28$

## ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

## IF students score $90 \%$ or more on the Checks, <br> THEN assign:

- Practice Exercises 1-23 odd, 24-28
- Extension: Describing Regions
- DLEKS'Systems of Linear Inequalities

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice Exercises 1-27 odd
- Remediation, Review Resources: Graphing Inequalities in Two Variables
- Personal Tutors
- Extra Examples 1-3
- D ALEKS Linear Inequalities ith Two Variables

IF students score $65 \%$ or less on the Checks,
THEN assign:

- Practice Exercises 1-13 odd
- Remediation, Review Resources: Graphing Inequalities in Two Variables
- Quick Review Math Handbook: Systems of Inequalities
- ArriveMATH Take Another Look
- D ALEKS Linear Inequalities with Two Variables


## Answers

1. 


2.


3.

5. no solution

4. no solution

6. no solution



 $2 x+3 y>8$ asd $4 x-3 y \geq 27$ dutry roce woinent, Then extion he seotmiogh?
20. Serm Alimb
 $\cdots+y \leq 20 \mathrm{mdx} \leq \mathrm{E}$. stop con a grech Solve Ee syitem di mepubles of groting Set Mos 7 thisime Appensia


 incouiloss to mpresert ons stupon Thenlit ay socstures bor the val (aties
 22 suspiss For masimus efficency, a tociory must save at iespt 100 woner. bri


- Lersur





 oues inam. He wares to ewen at wasi 3100 eviry mekk but he does net wati io work wore than 6 bours each welek what $x$ a povibie nomber d bour cish

-1sphtr-Onder Thirking suils

 e. Juctir rest argutent


26. caeatr one inequilty in a syosem is $3 x-y>4$. Weibe a secosd inequairy so.



27. weit Descrie Be gush of the solition of the rntien $6 x-3 y \leqslant-5$ mad



424 mosise

## Rate Yourself 莫自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

## Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- How can a system of equations help a business owner make decisions?
- Why is it necessary to use a system of equations to solve a real-world problem that involves two unknowns?
- Why is it helpful to know how to solve systems of equations when solving real-world problems?
- How are systems of inequalities useful in the real world?

Then have them write their answer to the Essential Question.

## DINAH ZIKE FOLDABLES

FIIII A completed Foldable for this module should include the key concepts related to systems of linear equations and inequalities.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Linear and Exponential Relationships.

- Solve Systems of Equations


```
Test Practice
```

1. muthseiect use the graph Which sytems of equabons are conshtent and independent Ampont

A. $y=2 x+1$
$y+2=2 x$
(2) $y=2 x+1$
$y=3$
$x=3$
$x=-2$
e) $x=2$
$y+2=2 x$
E. $x=-2$
$x=2$
2. OPEN REspowse Conpder me spoten of equationk 6 num th
$8 x+2 y=8$
$r=-4 r+4$
How macy solutoms are there for the spatem7 is the system dependent or woppendere? intintaly many, dependent
3. mutriple chorce which system of equations can be entered into a graphing caicilator to che $35 x+58--58 x+309$
A. $y=3.5 x$
$y=-58 x$
$y=3.5 x+18$
$y=-5.8 x+30$
C. $0=3.5 x+18$
4. $x=93 x-12$
5. Mirchife choice Use a system of equations and 4 gropting caiculator to sotwo $69 x+43$ C4J. + Q Dund your wewer to the atare hardreoth il necessary limun)
A. 105
. 168
C. 236
C. 5.59
6. OPEN RESPCNE Toylon is seting plastic and wooden trames. He sold 7 total frames. The number of plaste th jesmes. How many of each tope of hime of each type of trame ofd


4 wpoden frames ans 3 plantic thmer
5. MUTIFLE CHOHCE Consider the systom of equations.
$3 x-2 y=0$.
$x+y=10$
What is the sokbon of the ryviem? satur sat
A. The solution to the sypere is $(20,-10)$
B. The solution to the syatem is is, 7

- The solition to the system is $(4,6)$
D. The solution to the system is (6. 4)


## Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 7-1 through 7-4
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
All Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

## Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-17 mirror the types of questions your students will see on online assessments.

| Question Type | Description | Exercise(s) |
| :--- | :--- | :---: |$|$| Multiple Choice | Students select one correct answer. | $3,4,6,10$, <br> $15-17$ |
| :--- | :--- | :---: |
| Multi-Select | Multiple answers may be correct. <br> Students must select all correct <br> answers. | 1,11 |
| Open Response | Students construct their own <br> response. | $2,5,7-9$, |
| $12-14$ |  |  |

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
A.CED.3	$7-2,7-3,7-5$	$5,8,10,17$
A.REI.5	$7-4$	11,12
A.REI.6	$7-1-7-4$	$1,2,4,6,7$,
		$9,13,14$
A.REI.11	$7-1$	3
A.REI.12	$7-5$	15,16

7. OPEN ARSPONSE Determine whether the wrstess has no solvior one totion infiriely mary solutions. if the system has ce sculion. nope it fleus-12)
$x+y=5$
$3 x+2 y=8$
one selutionc $(-2,7)$
8. OPEN RESPONSE The sum of Eve measures of two somplementiry angles is 90 degres. Angles $P$ and $O$ are compiementary, and the measure ol angle Ph 6 degites more than owice the meature of angle 0


Whe a system of squations and une wherstiviso to find the measure of angles $p$ and $Q$ latic) 2
$\mathrm{P}+\mathrm{O}=90$
$\mathrm{P}=20+6$
$m \angle P=62, m \angle Q=2 \sigma^{\circ}$
9. OPEN RESPONSE Solve the system of equations anmar 7 IA
$3 x+y=34$
$05 x-y=1$
(10, 4)
10. MuTTAE CHOCE A rectangie is $x$ inchess wide and $3 y$ inches loog. The sum of the leopert. and Whth is 36 inches sod the ofference bet he length and wice the wieth $s 12$ incties Find the lengh and wider $=13$

(9) wath 8 inches: lengtix 28 inches a. warc 8 inches; lengtt: 93 inches C wiatr: 12 inchess lengit: 24 inches D. withe 75 incters length 21 incors
15. surt-secect Select oll of the wang the system can be solved. smon fal
$9 x-2 y=4$
$3 x+3 y=-12$
(9) Mitipy the fiest equation by 4. meen add the equations
-9. Miniply ese wcond equation by 3. then subtract the equations
C. Mutiply the frast equason by 3, then add the equations.
D. Mutipy the second equation by 3 , then add the equations.
E. Mutloty the flas equation by 3. then subract the equationis.
12. OPRN RESPONSE Solve the syatem of equations I mum .e
$2 x+5 y=5$
$2 x+4 y=-3$
[-5.)
13. Oper qesponse solve the systeco of equasions chemin4
$2 r-t=7$
$t-t=1$
$r=k, t=5$
44. OPENRESPONSE it tikes 3 hours to prdde a kgyak 12 miles downtream and 4 hours for the retum tro upotrem Find the onte of the ktyrak in sell witpr.
Let $k$ - ine rate of the kayok in will water and
$\mathrm{f}-$ the rote of me curipet diviel 14

	$r$	$t$	$d$	tsod
Downatream	* + 5	3	2	3x+ $+5 \times 10$
Upstrstim	t-8	4	12	ex-e-12

3.5 miles pte Nour

T5. Mutrele CHOKCE The graph shows the solvition to the givens system of inequalities. Amen-75
$-x+2 y \leq 1$

in what region a the solvtion sef?
A. A

且 8
C. C
6. MuETIPLE CHOCE Which graph repeesents the woltion of the system of inequalities?
(knewin
$x-y \geq 2$
$2 x+y>-3$

7. Mutripe crionce Diama wants to buid an rectangulter pen for ber grats. The lengen of the pen should be at least 50 feel. and the petimeter of the pen shoudd be no more thon t90 feet What is a wisble solvition for the dimensions of the per? :
A. 20 leet by 40 ient
B. 29 feer by 76 fent

- 29 feet by 65 feet
D. 29 feet by 29 leex.

Lesson 7－1
19．$y=3 x+6$ and $y=6 ;(0,6)$


20．$y=2 x-17$ and $y=x-10(7,-3)$


21．$y=-12 x+90$ and $y=30 ;(5,30)$


22．$y=13 x-28$ and $y=24 ;(4,24)$


23．$y=2 x+5$ and $y=2 x+5$ ；infinitely many solutions


24．$y=x+1$ and $y=x+3$ ；no solution


30． 1 solution；（ $-1,1$ ）；consistent；independent


31．no solution；inconsistent


32．infinitely many solutions；consistent；dependent

33.1 solution；（1，－3）；consistent；independent


34．no solution；inconsistent

35. infinitely many solutions; consistent; dependent

36. 1 solution; (3, 0); consistent; independent

37. infinitely many solutions; consistent; dependent

38. no solution; inconsistent

39.1 solution; (2, 1); consistent; independent


41b.


43b.

44. Maureen is incorrect. If all three equations have the same graph, there are infinitely many solutions. If two equations have the same graph, the third could be parallel to them (no solutions) or intersect them once. If the equations represent parallel lines, there are no solutions. If none of the lines are identical or parallel to each other, then they could intersect in one point (one solution) or three points (no solutions).


45. $(-2,3)$

49. Graphing clearly shows whether a system of equations has one solution, no solution, or infinitely many solutions. However, finding the exact value of $x$ and $y$ from a graph can be difficult.
50. Sample answer: $-4 x+3 y=12$ and $x+y=2$; consistent; independent

$y=x+2$ and $x-y=-2$; consistent; dependent

$3 x+y=-3$ and $3 x+y=3 ;$ inconsistent


Lesson 7-5
20.


22b.

27.9 units $^{2}$


## Selected Answers




SA2-SA3 Selected Answers



SA6-SA7 Selected Answers







SA18-SA19 Selected Answers








49. Graphing clearly shows whether a system of equations has one solution, no solution, or infinitely many solutions. However, finding the exact value of $x$ and $y$ from a graph can be difficult.	variable. That expression can then be substituted into the second equation for the variable.   Lesson 7-3
51. Francisca; If the item is less than $\$ 100$, then $\$ 10$ off is better. Of the item is more than $\$ 100$, then the $10 \%$ is better.	$\begin{array}{llll} \text { 1. }(-3,4) & \text { 3. }(-3,1) & \text { 5. }(4,-2) & \text { 7. }(8,-7) \\ \text { 9. }(4,7) & \text { 11. }(4,1.5) & \text { 13. }(2,1) & \text { 15. }(11,0) \\ \text { 17. }(-3,7) & \text { 19. }(2,-1) & \text { 21. }(-3,-5) \end{array}$
Lesson 7-2	$\begin{array}{lll} \text { 23. }(10,4) & \text { 25. }(7,5) & 27 \cdot(2,-3) \end{array}$ $\text { 29. }-2 \text { and }-4$
1. $(1,6) \quad 3 .(29,53) \quad 5 .(1,1) \quad 7$. infinitely many	31a. $r+s=181$ and $r-s=119$
9. no solution 11. $(0,1) \quad 13 .(2,5)$   15. infinitely many	31b. 31 state senators and 150 state representatives
17a. Sample answer: $a+b=5 ; 0.7 a+0.2 b=$ 0.65(5)	33. (4, -1) 35. $\left(-1,3 \frac{1}{3}\right)$   37. $(-36,-4) \quad 39.34$ games
17b. 4.5 mL from Beaker A and 0.5 mL from Beaker B   19. $\left(\frac{1}{2},-\frac{3}{8}\right)$   21. Sample answer. In 2011, the population	41a. Sample answer: $4 p+2 n=18.50,7 p$ $+2 n=26.75$, where $p$ is the price of a bag of popcorn and $n$ is the price of a plate of nachos
of Ecuador was about 15,180,000 and the population of Chile was about $17,150,000$. The	4ib. (2.75, 3.75); A bag of popcorn costs $\$ 2.75$ and a plate of nachos costs $\$ 3.75$.
population of Ecuador increased by $1,210,000$ and the population of Chile increased by 760,000 from 2011 to 2016. Let $x=$ the number	43a. Add the equations because this will eliminate the variable $y$, and then you can solve for $x$.
of 5 -year periods and $y=$ population. The	43b. (5, -2)
$17,150,000+760,000 x$. Solve by substitution to find that $x \approx 4.4$, or $4.4 \times 5=22$ years. So, the population of Ecuador and Chile will be equal in about $2011+22=2033$. (Source: World Bank)	43c.
23. Let $x=$ tens digit and $y=$ units digit of the original number; $10 y+x=10 x+y-45$; $x=$ $3 y+1 ;(7,2)$; The original number is 72 .	
25. Neither; Guillermo substituted incorrectly for $b$. Cara solved correctly for $b$, but misinterpreted the pounds of apples bought.	Sample answer: The point of intersection on the graph will match the solution $(5,-2)$.   43d. The equations would be equivalent.
27. Sample answer: The solutions found by each of these methods should be the same. However, it may be necessary to estimate	There would be infinitely many solutions, all real numbers $x$ and $y$ satisfying the equation $x-5 y=15$.
solution is needed, you should use substitution.   29. An equation containing a variable with a	43e. There would be no solution because the lines would be parallel and would never intersect.
coefficient of 1 c	45. Sample answer: $x+y=1$ and $-x-y=1$; This system of equations has no solutions.
SA32 Selected Answers	



SA34-SA35 Selected Answers


17. Sample answer: Bar graphs and histograms
are similar because each displays data with bars.
They are dfferent because a bar graph is best
used with data that are discrete and a histogram
represents data that are continuous. For this
reason, the bars in a bar graph do not touch
and represent single values while the bars in a
histogram touch and represent a range of values.
Lesson 9-3

1. Sample answer. The intended population is
all students. By asking only students leaving
basketball practice, Awan is not getting a
representative example of the entire student
body. 3 . Sample answer. The first sentence
states a positive outcome of music education,
which may bias the respondent toward
support. This bias may serve people trying to
keep music education in schools. 5 . Mean:
4, median: 4 , mode: 2 ; The mean and median
are appropriate measures to use to accurately
summarize the data. 7. Sample answer. The
scale for vendor 1 starts at 70 , and because
of the size of the bars, it looks like their sales
doubled in one year, when they increased
about $50 \%$. Vendor 2 had a larger increase in
sales of approximately $67 \%$.
2. Sample answer: The required class would
be better because it is more likely to contain
a representative sample of students. The
elective class might not be representative of
the whole student body because these courses
are chosen for reasons such as personal
preference or future career aspirations.
3. Median; sample answer. The two lowest
weights are much lower than the others, so the
mean will be affected by those outliers.
4. Sample answer. The original data are very
close together, so it is likely that the measures
of center will all be the same or very close.
Adding an outlier of 24 to the data set will
cause the mean to go up, but the median and
mode would likely stay unchanged or very
close to the original number. So, in this case
the median or mode would best represent the
center of data.
ing

5. Sample answer. I can assume that the data is tightly clustered around 37 because all three 33. Because the mean is an average of all the numbers in the data set, it is most affected by
outliers. An outlier on the high end will cause outliers. An outlier on the high end whean to increase. The median is the middle value in the dataset, adding one high number should not have much effect on the median spread. The mode is the most frequent number so the outlier will have no effect on the mode
nless the outlier is the same as the mode. unless the outlier is the same as the mode.
35 . The mean, median, and mode will all be multiplied by the number. 37. Julio should have chosen the mean because all the growth
values are close together. 39 . Sample answer To find a percentile rank, order the data set in decreasing order. Count the number of items
 by 100 to arrive at the percentile rank.
Lesson 9-2
6. Summer Reading Program hovels lower than the 50th percentile would be
 is correct because those three books are in the

47 th percentile, which is just under the 50 th percentile. $\mathbf{2 5}$ c. The median will change from | 0 |  |
| :--- | :--- |
| 0 | 0 |
| 0 |  |
| 0 |  |
| 0 |  |
| $\vdots$ |  |
| 0 |  |






SA40 Selected Answers


to the marginal frequency．Therefore，it is
important to understand what relationship is
being analyzed because each two－way relative
frequency table can provide two different
conditional relative frequency tables．


3．C，D 5．The data could be separated into
intervals of 10 ，from $0-9,10-19,20-29$ ，and
so on through $70-79$ ．7．scaled dot plot；
 u
m
$\vdots$
$\stackrel{\rightharpoonup}{\dot{~}}$

든 흘 号				ṄN	\％
	¢	¢	－	$\stackrel{\substack{2 \\ \sim}}{\sim}$	\％
$\frac{0}{\frac{0}{4}}$		$\left\|\begin{array}{l} 8 \\ \substack{8 \\ n} \end{array}\right\|$	然		응
$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\circ}{0} \\ & \text { \% } \end{aligned}$	$\begin{gathered} \text { 苟 } \\ 3 \\ 3 \end{gathered}$	$\left\|\begin{array}{l} \frac{\pi}{0} \\ \frac{3}{2} \\ \frac{0}{2} \end{array}\right\|$	$\begin{gathered} n \\ \vdots \\ \vdots \\ 0 \end{gathered}$		$\frac{\overline{5}}{\frac{5}{6}}$

47. Sample answer: Hiroshi is correct. After you draw the line from the first point to the other
three, one of the lines from the second point is already drawn. 49. Sample answer: A table is
a finite plane. It is not possible to have a real-life object that is an infinite plane because
all real-life objects have boundaries. Lesson 10-3 $\qquad$ $\begin{array}{lll}\text { 1. } 2.1 \mathrm{~mm} & \text { 3. } 1.1 \mathrm{~cm} \quad \text { 5. } 2.0 \mathrm{~m} \quad \text { 7. } 2 \frac{1}{4} \mathrm{in} . \\ \text { 9. } 5.3 \mathrm{~mm} & \text { 11. } b=12.5 ; Y Z=100 \quad 13 . c=1.7 ; \\ Z=3.4 & \text { 15. } w=4: Y Z=24 \quad \text { 17. } n=4\end{array}$ $\eta=1 \quad$ 19. $k=6 ; Y Z=46 \quad 21 \cdot x=6$; $\begin{array}{lll}Y Z=18 & \text { 23. } x=10 ; Y Z=60 & \text { 25.13 in. and } \\ 65 \text { in. } & \text { 27a. } 6 \mathrm{mi} & \text { 27b. Sample answer: } 1\end{array}$ assumed the three locations were in a straight
line. $\quad \mathbf{2 9 . 4 . 4} \mathrm{mm}$
$\mathbf{3 1} .10 .8 \mathrm{in} . \quad 33.66$ units $35.3 \quad 37.4 \quad A P+P M=A M$ 39. Sample answer. $A P+P M=A M$
48. 5184 ft
$\mathbf{4 3 .} x=3 ; 13 \mathrm{mi} \quad 45.40 \mathrm{ft}$ 47. $J K=12, K L=16 \quad 49 . x=3 ; y=4$
49. Sample answer. $2.8+B C=5.3 ; B C=2.5 \mathrm{in}$.
 Lesson 10-4

$$
\begin{array}{lcccccc}
\text { 1.5 } & 3.9 & 5.12 & 7.3 & 9.3 & 11.9 & 13.6 \\
\text { 15. yes } & 17 . \text { no } & \text { 19. no } & 21.10 \text { units }
\end{array}
$$

23. $\sqrt{89}$ or about 9.4 units
$\begin{array}{ll}\text { 25. } \\ 20 & \text { or about } 4.5 \text { units } \\ \text { 27. } \sqrt{20} \text { or }\end{array}$ approximately 4.5 units 29 . Yes; sample
answer: The distance between Mariah's house and the library is $\sqrt{74}$ or about 8.6 miles. Because $\frac{2}{3}$ of 12 miles is 8 miles, Mariah's bike
ide is more than $\frac{2}{3}$ of the cycling portion of the triathlon. 31. $\sqrt{37}$ or about 6.1 units
24. $\sqrt{29}$ or about 5.4 units $35 \cdot \sqrt{13}$ or about

 47. 10 in. 49. No; sample answer: We know
that $Q U+U R=Q R=4$ and $Q U=U R$, $R V+V S=R S=2$, and $R V=V S$, so $R V=1$.
Because $Q U$ is not equal to $R V$, we know Because $Q U$ is not equal to $R V$, we know
that $\overline{Q U}$ is not congruent to $\overline{R V} . \quad \mathbf{5 1 .}(5,10)$

 points. 31b. Sample answer. The walt 33. Sample answer $\square \boldsymbol{H}$ $=$ 4 ,
25. Sample answe $\rightarrow$
$\stackrel{\stackrel{\circ}{\overleftarrow{N}}}{\stackrel{0}{\dot{~}}}$

26. lines perpendicular to a plane
27. Sample answer:



> ก่
> Sample answer: ice cream cone
Lesson 11-7
$\begin{aligned} & \text { 1. The sample is precise because there } \\
& \text { are consistently } 17 \text { or } 18 \text { rice cakes in eac }\end{aligned}$
package. The sample indicates an innacurate
\(\begin{array}{lll}claim of 20 rice cakes per package. <br>

\)|  3.  0.05 |  milliamp  |
| :--- | :--- |
|  5.  $11^{\circ} \mathrm{F}$ | $7 \mathrm{7a}$ |
| 16.5 yd |  |\end{array}

$189.75 \mathrm{yd}^{2}$ : greatest possible area $=218.75 \mathrm{yd}^{2}$
$\begin{aligned} & \text { 7d. The cost would be at least } \$ 75.90 \text { but less } \\
& \text { than } \$ 87.50, \quad 9.1 \mathrm{in} .11 \mathrm{a} .0 .11 \mathrm{lb} \quad 11 \mathrm{~b} .0 .01 \mathrm{lb}\end{aligned}$
$\begin{array}{lll}11 \mathrm{c} .0 .64 \mathrm{lb} & \text { 13. The cost would be at least }\end{array}$
$\$ 955.94$ but less than $\$ 961.36$. 15. The cost
$\begin{aligned} & \text { 17. Accuracy is how well the information or } \\
& \text { data matches the true values. Precision is the }\end{aligned}$
$\begin{aligned} & \text { repeatability of the measurement and level of } \\
& \text { measurement. Sample answer: } 16.1 \mathrm{oz}, 16.3 \mathrm{oz} \text {, }\end{aligned}$
have an area of 111.4 in $^{2}$, two faces that have an
$\begin{aligned} & 75.3 \mathrm{in}^{2} .19 \mathrm{~b} .445 .0 \mathrm{in}^{2} \quad 19 \mathrm{c} \text {. The calculation } \\ & \text { of surface area is accurate to the nearest tenth. }\end{aligned}$
$\begin{aligned} & \text { The true surface is accea falls bethe nearest tenth. } 444.95 \mathrm{in}^{2} \\ & \text { and } 445.05 \mathrm{in}^{2} .19 \mathrm{~d} .440 .1 \mathrm{in}^{2}\end{aligned}$






SA54-SA55 Selected Answers





な்


51．Sometimes；sample answer：$\overleftrightarrow{A B}$
intersects $\overrightarrow{E F}$ depending on where the planes
intersect．
intersect．
$53 . x=171$
53．$x=171$ or $x=155$ ：$y=3$ or $y=5$
55．No；sample answer．From the definition
of skew lines，the lines must not intersect and of skew lines，the lines must not intersect and
cannot be coplanar．Different planes cannot be coplanar，but they are always parallel or
intersecting．Therefore，planes cannot be skew． Lesson 12－8
五 Clall $1:$ 7

 8 1
 1
0 1 ！ B － 7．perpendicular 9 ．
13．neither 15．para




SA66-SA67 Selected Answers



## Glossary



## Glossary




cofunction identities Identities that show the relationships between sine and cosine, tangent and cotangent, and secant and cosecant.	identidades de cofunción Identidades que muestran las relaciones entre seno y coseno, tangente y cotangente, y secante y cosecante.	composite figure A figure that can be separated into regions that are basic figures, such as triangles, rectangles, trapezoids, and cirdes.	figura compuesta Una figura que se puede separar en regiones que son figuras básicas, tales como trángulos, rectángulos, trapezoides, y circulos.
collinear Lying on the same line.	colineal Acostado en la mismal línea.	composite solid A three-dimensional figure that is composed of simpler solids.	solido compuesta Una figura tridimensional que se compone de figuras más simples.
combination A selection of objects in which order is not important.	combinación Una selección de objetos en los que el orden no es importante.	composition of functions An operation that uses the	composición de funciones Operación que utiliza
combined variation When one quantity varies directly and/or inversely as two or more other quantties.	variación combinada Cuando una cantidad varía directamente y/o inversamente como dos o más	results of one function to evaluate a second function.	los resultados de una función para evaluar una segunda función.   composición de transformaciones Cuando una
common difference The difference between consecutive terms in an arithmetic sequence.	cantidades.   diferencia común La diferencia entre términos consecutivos de una secuencia aritmética.	composition of transformations When a transformation is applied to a figure and then another transformation is applied to its image.	composición de transformaciones Cuando una transformación se aplica a una figura y luego se aplica otra transformación a su imagen.
common logarithms Logarithms of base 10.   common ratio The ratio of consecutive terms of a geometric sequence.	logaritmos comunes Logaritmos de base 10.   razón común El razón de términos consecutivos de una secuencia geométrica.	compound event Two or more simple events.   compound inequality Two or more inequalities that are connected by the words and or or.	evento compuesto Dos omás eventos simples.   desigualdad compuesta Dos o más desigualdades que están unidas por las palabras y uo.
common tangent A line or segment that is tangent to two circles in the same plane.	tangente común Una línea o segmento que es tangente a dos círculos en el mismo plano.	compound interest Interest calculated on the principal and on the accumulated interest from previous periods.	interés compuesto Intereses calculados sobre el principal y sobre el interés acumulado de períodos anteriores.
complement of $A$ All of the outcomes in the sample space that are not included as outcomes of event $A$.	complemento de $A$ Todos los resultados en el espacio muestral que no se induyen como resultados del evento $A$.	compound statement Two or more statements joined by the word and or or.	enunciado compuesto Dos o más declaraciones unidas por la palabray 00 .
complementary angles Two angles with measures that have a sum of $90^{\circ}$.	ángulo complementarios Dos ángulos con medidas que tienen una suma de $90^{\circ}$.	concave polygon A polygon with one or more interior angles with measures greater than $180^{\circ}$.	poligono cóncavo Un polígono con uno o más ángulos interiores con medidas superiores a $180^{\circ}$.
completing the square A process used to make a quadratic expression into a perfect square trinomial.	completar el cuadrado Un proceso usado para hacer una expresión cuadrática en un trinomio cuadrado perfecto.	concentric dirdes Coplanar dircles that have the same center.   conclusion The statement that immediately follows the word then in a conditional.	círculos concéntricos Círculos coplanarios que tienen el mismo centro.   conclusión La declaración que inmediatamente sigue la palabra entonces en un condicional.
complex conjugates Two complex numbers of the form $a+b i$ and $a-b i$.	conjugados complejos Dos números complejos de la forma $a+$ biy $a-b i$.	concurrent lines Three or more lines that intersectat a common point.	líneas concurrentes Tres o más líneas que se intersecan en un punto común.
complex fraction A rational expression with a numerator andor denominator that is also a rational expression.	fracción compleja Una expresión racional con un numerador $\mathrm{y} /$ odenominador que también es una expresión racional.	conditional probability The probability that an event will occur given that another event has already occurred.	probabilidad condicional La probabilidad de que un evento ocurra dado que otro evento ya ha ocurrido.
complex number Any number that can be written in the form $a+b i$, where $a$ and $b$ are real numbers and $i$ is the imaginary unit.	número complejo Cualquier número que se puede escribir en la forma $a+b i$, donde $a$ y $b$ son números reales i es la unidad imaginaria.	conditional relative frequency The ratio of the joint frequency to the marginal frequency.	frecuencia relativa condicional La relación entre la frecuencia de la articulación y la frecuencia marginal.
component form A vector written as $\langle x, y\rangle$, which describes the vector in terms of its horizontal component $x$ and vertical component $y$.	forma de componente Un vector escrito como $\langle x, y\rangle$, que describe el vector en términos de su componente horizontal $x y$ componente vertical $y$.	conditional statement A compound statement that consists of a premise, or hypothesis, and a conclusion, which is false only when its premise is true and its conclusion is false.	enunciado condicional Una dedaración compuesta que consiste en una premisa, o hipótesis, y una conclusión, que es falsa solo cuando su premisa es verdadera y su conclusión es falsa.
G6 Glossary			Glossary G7


cone A solid figure with a circular base connected by a curved surface to a single vertex.	cono Una figura sólida con una base circular conectada por una superficie curvada a un solo vérice.	constanterm	m A term that does not contain a variable.	término constante Un término que no contiene una variable.	
confidence interval An estimate of the population parameter stated as a range with a specific degree of certainty.	intervalo de confianza Una estimación del parámetro de población se indica como un rango con un grado especfico de certeza.	constraint A	A condition that a solution must satisfy.	restricción Una condición que una solución debe satisfacer.	
congruent Having the same size and shape.	congruente Tener el mismo tamaño y forma.	constructions use of measur	Methods of creating figures without the uring tools.	construcciones Métodos de creación de figuras sin el uso de herramientas de medición.	
congruent angles Two angles that have the same measure.	ángulo congruentes Dos ángulos que tienen la misma medida.	continuous fu with a line or	function A function that can be graphed or an unbroken curve.	función continua Una función que se puede representar gráficamente con una línea o una cuva ininterumpida.	
congruent arcs Arcs in the same or congruent circles that have the same measure.	arcos congruentes Arcos en los mismos círculos o congruentes que tienen la misma medida.	continuous ran random event	random variable The numerical outcome of a t that can take on any value.	variable aleatoria continua El resultado numérico de un evento aleatorio que puede tomar cualquier valor.	
congruent polygons All of the parts of one polygon are congruent to the corresponding parts or matching parts of another polygon.	poligonos congruentes Todas las partes de un poligono son congruentes con las partes correspondientes o partes coincidentes de otro poligono.	contrapositive the hypothesi conditional.	ve A statement formed by negating both sis and the condusion of the corverse of a	antitesis Una afirmación formada negando tanto la hipótesis como la conclusión del inverso del condicional	
congruent segments Line segments that are the same length.	segmentos congruentes Línea segmentos que son la misma longitud.	corvenience available or	e sample Members that are readily easy to reach are selected.	muestra conveniente Se seleccionan los miembros que están fácilmente disponibles o de fácil acceso.	
congruent solids Solid figures that have exactly the same shape, size, and a scale factor of 1:1.	sólidos congruentes Figuras sólidas que tienen exactamente la misma forma, tamaño y un factor de escala de 1:1.	converse A hypothesis an	A statement formed by exchanging the and conclusion of a conditional statement.	rećiproco Una declaración formada por el intercambio de la hipótesis y la conclusión de la declaración condicional.	
conic sections Cross sections of a right circular cone.	secciones cónicas Secciones transversales de un cono circular derecho.	corvex polyg measuring les	gon A polygon with all interior angles less than $180^{\circ}$.	polígono convexo Un polígono con todos los ángulos interiores que miden menos de $180^{\circ}$.	
conjecture An educated guess based on known information and specific examples.	conjetura Una suposición educada basada en información conocida y ejemplos espeáficos.	coordinate pr coordinate pla concepts.	proofs Proofs that use figures in the plane and algebra to prove geometric	pruebas de coordenadas Pruebas que utilizan figuras en el plano de coordenadas y álgebra para probar conceptos geométicos.	
which the second terms are opposites.	términos, en la que los segundos términos son opuestos.	coplanar Lyi	Lying in the same plane.	coplanar Acostado en el mismo plano.	
conjunction A compound statement using the word and.	conjunción Una declaración compuesta usando la palabray.	corollary At direct result o	A theorem with a proof that follows as a of another theorem.	corolario Un teorema con una prueba que sigue como un resultado directo de otro teorema.	
consecutive interior angles When two lines are cut by a transversal, interior angles that lie on the same side of the transversal.	ángulos internos consecutivos Cuando dos líneas se cortan por un ángul transversal, interior que se encuentran en el mismo lado de la transversal.	correlation co well data are	coefficient A measure that shows how e modeled by a regression function.	coeficiente de correlación Una medida que muestra cómo los datos son modelados por una función de regresión.	
consistent A system of equations with at least one ordered pair that satisfies both equations.	consistente Una sistema de ecuaciones para el cual existe al menos un par ordenado que satisfice ambas ecuaciones.	corresponding transversal, a transversal and	ing angles When two lines are cut by a   angles that lie on the same side of a   and on the same side of the two lines.	ángulos correspondientes Cuando dos líneas se cortan transversalmente, los ángulos que se encuentran en el mismo lado de una transversal y en el mismo lado de las dos líneas.	
constant function A linear function of the form $y=b$; The function $f(x)=a$, where $a$ is any number.	funcón constante Una función lineal de la formà $y=b$; La función $f(x)=a$, donde $a$ es cualquier número.	corresponding	ing parts Corresponding angles and	partes correspondientes Ángulos correspondientes y	
constant of variation The constant in a variation function.	constante de variación La constante en una función de variación.	corresponding   cosecant the length of	ing sides of two polygons.   The ratio of the length of a hypotenuse to of the leg opposite the angle.	lados correspondientes.   cosecante Relación entre la longitud de la hipotenusa y la longitud de la pierna opuesta al ángulo.	
68 Glossary				Glossary G9	








linear extrapolation The use of a linear equation to predidt values that are outside the range of data.	extrapolación lineal El uso de una ecuación Iineal para predecir valores que están fuera del rango de datos.	magnitude of symmetry The smallest angle through which a figure can be rotated so that it maps onto itself.	magnitud de la simetria El ángulo más pequeño a través del cual una figura se puede girar para que se cargue sobre sí mismo.
linear function A function in which no independent variable is raised to a power greater than 1 ; A function with a graph that is a line.	función lineal Una función en la que ninguna variable independiente se eleva a una potencia mayor que 1 ; Una función con un gráfico que es una línea.	major are An arc with measure greater than $180^{\circ}$.	arco mayor Un arco con una medida superior a $180^{\circ}$.
linear inequality A hall-plane with a boundary that is a straight line.	desigualdad lineal Un medio plano con un límite que es una línea recta.	mapping An illustration that shows how each element of the domain is paired with an element in the range.	cartografía Una ilustración que muestra cómo cada elemento del dominio está emparejado con un elemento del rango.
linear interpolation The use of a linear equation to predict values that are inside the range of data.   linear pair A pair of adjacent angles with noncommon sides that are opposite rays.	interpolación lineal El uso de una ecuación lineal para predecir valores que están dentro del rango de datos.   par lineal Un par de ángulos adyacentes con lados no comunes que son rayos opuestos.	marginal frequencies In a two-way frequency table, the frequencies in the totals row and column; The totals of each subcategory in a two way frequency table.	frecuencias marginales En una tabla de frecuencias de dos vías, las frecuencias en los totales de fila y columna; Los totales de cada subcategoría en una tabla de frecuencia bidireccional.
linear programming The process of finding the maximum or minimum values of a function for a region defined by a system of inequalities.	programación Iineal El proceso de encontrar los valores máximos o mínimos de una función para una región definida por un sistema de desigualdades.	maximum The highest point on the graph of a function. maximum error of the estimate The maximum difference between the estimate of the population mean and its actual value.	máximo El punto más alto en la gráfica de una función. error máximo de la estimación La diferencia máxima entre la estimación de la media de la población y su valor real.
Inear regression An algorithm used to find a precise line of fit for a set of data.	regresión lineal Un algoritmo utilizado para encontrar una línea precisa de ajuste para un conjunto de datos.	measurement data Data that have units and can be measured.	medicion de datos Datos que tienen unidades y que pueden medirse.
Inear transformation One or more operations performed on a set of data that can be written as a linear function.	transformación lineal Una o más operaciones reaizadas en un conjunto de datos que se pueden escribir como una función lineal.	measures of center Measures of what is average.	medidas del centro Medidas de lo que es promedio.
literal equation A formula or equation with several variables.	ecuación literal Un formula o ecuación con varias variables.	measures of spread Measures of how spread out the data are.	medidas de propagación Medidas de cómo se extienden los datos son.
logarithm $\ln x=b^{y}, y$ is called the logarithm, base $b$, of $x$.	logaritmo En $x=b^{\gamma}$, yse denomina logaritmo, base $b$, de $x$.	median The beginning of the second quartile that separates the data into upper and lower halves.	mediana El comienzo del segundo cuartil que separa los datos en mitades superior e inferior.
logarithmic equation An equation that contains one or more logarithms.	ecuación logartitmica Una ecuación que contiene uno o más logaritmos.	median of a triangle A line segment with endpoints that are a vertex of the triangle and the midpoint of the side opposite the vertex.	mediana de un triángulo Un segmento de línea con extremos que son un vétice del triángulo y el punto medio del lado opuesto al vérice.
logarithmic function A function of the form $f(x)=\log$ base $b$ of $x$, where $b>0$ and $b \neq 1$.	función logaritmica Una función de la forma $f(x)=$ base $\log b$ de $x$, donde $b>0 y b \neq 1$.	metric A rule for assigning a number to some characteristic or attribute.	métrico Una regla para asignar un número a alguna caracteristica 0 atribuye.
logically equivalent Statements with the same truth value.	Iógicamente equivalentes Dedaraciones con el mismo valor de verdad.	midline The line about which the graph of a function oscillates.	linea media La línea sobre la cual oscila la gráfica de una función periódica.
lower quartile The median of the lower half of a set of data.	cuartil inferior La mediana de la mitad inferior de un conjunto de datos.	midpoint The point on a line segment halfway between the endpoints of the segment.	punto medio El punto en un segmento de línea a medio camino entre los extremos del segmento.
		midsegment of a trapezoid The segment that connects the midpoints of the legs of a trapezoid.	segmentmedio de un trapecio El segmento que conecta los puntos medios de las patas de un trapecio.
magnitude The length of a vector from the initial point to the terminal point.	magnitud La longitud de un vector desde el punto inicial hasta el punto terminal.	midsegment of a triangle The segment that connects the midpoints of the legs of a triangle.   minimum The lowest point on the graph of a function.	segment medio de un triángulo El segmento que conecta los puntos medios de las patas de un triángulo. minimo El punto más bajo en la gráfica de una función.
G22 Glossary			Glossary G23







root A solution of an equation.	raíz Una solución de una ecuación.	series The indicated sum of the terms in a sequence.	serie La suma indicada de los términos en una secuencia.
rotation A function that moves every point of a preimage through a specified angle and direction about a fixed point.   rotational symmetry A figure can be rotated less than	rotación Función que mueve cada punto de una preimagen a través de un ángulo y una dirección especificados alrededor de un punto fijo.   simetría rotacional Una figura puede girar menos de	set-builder notation Mathematical notation that describes a set by stating the properties that its members must satisfy.	notación de construción de conjuntos Notación matemática que describe un conjunto al declarar las propiedades que sus miembros deben satisfacer.
$360^{\circ}$ about a point so that the image and the preimage are indistinguishable.	$360^{\circ}$ alrededor de un punto para que la imageny la preimagen sean indistingubles.	sides of an angle The rays that form an angle. sigma notation A notation that uses the Greek	lados de un ángulo Los rayos que forman un ángulo. notación de sigma Una notación que utiliza la letra
	$\mathbf{S}$	sigma notation A notation that uses the Greek uppercase letter $S$ to indicate that a sum should be found.	notación de sigma Una notación que utiliza la letra mayúscula griega $S$ para indicar que debe encontrarse una suma.
sample A subset of a population. sample space The set of all possible outcomes.	muestra Un subconjunto de una población.   espacio muestral El conjunto de todos los resultados posibles.	significant figures The digits of a number that are used to express a measure to an appropriate degree of accuracy.	digitoos significantes Los dígitos de un número que se utifizan para expresar una medida con un grado apropiado de precisión.
sampling error The variation between samples taken from the same population.   scale The distance between tick marks on the $x$ - and	error de muestreo La variación entre muestras tomadas de la misma población.   escala La distancia entre las marcas en los ejes $x$ e $y$.	similar polygons Two figures are similar polygons if one can be obtained from the other by a dilation or a dilation with one or more rigid motions.	poligonos similares Dos figuras son poligonos similares si uno puede ser obtenido del otro por una dilatación o una diatación con uno o más movimientos rígidos.
scale factor of a dilation The ratio of a length on an	factor de escala de una dilatación Relación de una	similar solids Solid figures with the same shape but not necessarily the same size.	sólidos similares Figuras sólidas con la misma forma pero no necesariamente del mismo tamaño.
image to a corresponding length on the preimage.	longitud en una imagen con una longitud correspondiente en la preimagen.	similar triangles Triangles in which al of the corresponding angles are congruent and all of the corresponding sides are proportional.	triángulos similares Triángulos en los cuales todos los ángulos correspondientes son congruentes y todos los lados correspondientes son proporcionales.
scatter plot A graph of bivariate data that consists of ordered pairs on a coordinate plane.   secant Ary line or ray that intersects a circle in	gráfica de dispersión Una gráfica de datos bivariados que consiste en pares ordenados en un plano de coordenadas.   secante Cualquier linea o rayo que cruce un círculo	similarity ratio The scale factor between two similar polygons.	relación de similitud El factor de escala entre dos polígonos similares.
exactly two points; The ratio of the length of the hypotenuse to the length of the leg adjacent to the angle.	en exactamente dos puntos; Relación entre la longitud de la hipotenusa y la longitud de la pierna adyacente al ángulo.	similarity transformation A transformation composed of a dilation or a dilation and one or more rigid motions.	transformación de similitud Una transformación compuesto por una dilatación 0 una dilatacióny uno o más movimientos rígidos.
sector A region of a cirde bounded by a central angle and its intercepted arc.   segment bisector Any segment, line, plane, or point	sector Una región de un circulo delimitada por un ángulo central y su arco interceptado.   bisectriz del segmento Cualquier segmento, línea,	simple random sample Each member of the population has an equal chance of being selected as part of the sample.	muestra aleatoria simple Cada miembrode la población tiene la misma posibilidad de ser seleccionado como parte de la muestra.
that intersects a line segment at its midpoint.	plano o punto que interseca un segmento de línea en su punto medio.	simplest form An expression is in simplest form when it is replaced by an equivalent expression having no like terms or parentheses.	forma reducida Una expresión está reducida cuando se puede sustituir por una expresión equivalente que no tiene ni términos semejantes ni paréntesis.
self-selected sample Members volunteer to be included in the sample.   semicircle An arc that measures exactly $180^{\circ}$.	muestra auto-seleccionada Los miembros se ofrecen como voluntarios para ser incluidos en la muestra.   semiárculo Un arco que mide exactamente $180^{\circ}$.	simulation The use of a probability model to initate a process or situation so it can be studied.	simulación El uso de un modelo de probabilidad para imitar un proceso o situación para que pueda ser estudiado.
semiregular tessellation A tessellation formed by two or more regular polygons.	teselado semiregular Un teselado formado por doso más polígonos regulares.	sine The ratio of the length of the leg opposite an angle to the length of the hypotenuse.	seno La relación entre la longitud de la pierna opuesta a un ángulo y la longitud de la hipotenusa.
sequence A list of numbers in a specific order.	secuencia Una lista de números en un orden específico.		
G34 Glossary			Glossary G35


sinusoidal function A function that can be produced bytranslating, reflecting, or dilating the sine function.	función sinusoidal Función que puede producirse traduciendo, reflejando o dilatando la función sinusoidal.	standard error of the mean The standard deviation of the distribution of sample means taken from a population.	error estandar de la media La desviación estándar de la distribución de los medios de muestra se toma de una población.
skew lines Noncoplanar lines that do not intersect.   slant height of a pyramid or right cone The length of a segment with one endpoint on the base edge of the figure and the other at the vertex.	lineas alabeadas Líneas no coplanares que no se curzan.   altura inclinada de una pirámide o cono derecho La bngitud de un segmento con un punto final en el borde base de la figura y el otro en el vétice.	standard form of a linear equation Any linear equation can be written in this form, $A x+B y=C$, where $A \geq 0, A$ and $B$ are not both 0 , and $A, B$, and $C$ are integers with a greatest common factor of 1 .	forma estándar de una ecuación lineal Cualquier ecuación lineal se puede escribir de esta forma, $A x+$ $B y=C$, donde $A \geq 0, A$ y $B$ no son ambos 0, y $A, B y C$ son enteros con el mayor factor común de 1 .
slope The rate of change in the $y$-coordinates (rise) to the corresponding change in the $x$-coordinates (run) for points on a line.	pendiente Latasa de cambio en las coordenadas $y$ (subida) al cambio correspondiente en las coordenadas $x$ (carrera) para puntos en una línea.	standard form of a polynomial A polynomial that is written with the terms in order from greatest degree to leastdegree.	forma estándar de un polinomio Un polinomio que se escribe con los términos en orden del grado más grande a menos grado.
slope criteria Outlines a method for proving the relationship between lines based on a comparison of the slopes of the lines.	criterios de pendiente Describe un método para probar la relación entre líneas basado en una comparación de las pendientes de las líneas.	standard form of a quadratic equation A quadratic equation can be written in the form $a x^{2}+b x+c=0$, where $a \neq 0$ and $a, b$, and $c$ are integers.	forma estándar de una ecuación cuadrática Una ecuación cuadrática puede escribirse en la forma $a x^{2}+$ $b x+c=0$, donde $a \neq 0 \mathrm{y} a, b, y c$ son enteros.
solid of revolution A solid figure obtained by rotating a shape around an axis.	sólido de revolución Una figura sólida obtenida girando una forma alrededor de un eje.	standard normal distribution Anormal distribution with a mean of 0 and a standard deviation of 1 .	distribución normal estándar Distribución normal con una media de 0 y una desviación estándar de 1 .
solution A value that makes an equation true.	solución Un valor que hace que una ecuación sea verdadera.	standard position An angle positioned so that the vertex is at the origin and the initial side is on the positive $x$-axis.	posición estándar Un ángulo colocado de manera que el vértice está en el origen y el lado inicial está en el eje $x$ positivo.
solve an equation The process of finding all values of the variable that make the equation a true statement.	resolver una ecuación El proceso en que se hallan todos los valores de la variable que hacen verdadera la ecuación.	statement Any sentence that is either true or false, but not both.	enunciado Cualquier oración que sea verdadera o falsa, pero no ambas.
solving a triangle When you are given measurements to find the unknown angle and side measures of a triangle.	resolver un triángulo Cuando se le dan mediciones para encontrar el ángulo desconocido y las medidas laterales de un trángulo.	statistic A measure that describes a characteristic of a sample.	estadística Una medida que describe una característica de una muestra.
space A boundless three-dimensional set of all points.	espacio Un conjunto tridimensional ilimitado de todos los puntos.	statistics An area of mathematics that deals with collecting, analyzing, and interpreting data.	estadisticas El proceso de recolección, análisis e interpretación de datos.
sphere A set of all points in space equidistant from a given point called the center of the sphere.	esfera Un conjunto de todos los puntos del espacio equidistantes de un punto dado llamado centro de la esfera.	step function A type of piecewise-linear function with a graph that is a series of horizontal line segments.	función escalonada Un tipo de función lineal por piezas con un gráfico que es una serie de segmentos de línea horizontal.
square A parallelogram with all four sides and all four angles congruent.	cuadrado Un paralelogramo con los cuatro lados y los cuatro ángulos congruentes.	straight angle An angle that measures $180^{\circ}$.	ángulo recto Un ángulo que mide $180^{\circ}$.
square root One of two equal factors of a number.	raíz cuadrada Uno de dos factores iguales de un número.	stratified sample The population is first divided into similar, nonoverlapping groups. Then members are randomly selected from each group.	muestra estratificada La población se divide primero en grupos similares, sin superposición. A continuación, los miembros se seleccionan aleatoriamente de cada gupo.
square root function A radical function that contains the square root of a variable expression.   square root inequality An inequality that contains the	función raíz cuadrada Función radical que contiene la raíz cuadrada de una expresión variable.   square root inequality Una desigualdad que contiene	substitution A process of solving a system of equations in which one equation is solved for one variable in terms of the other.	sustitución Un proceso de resolución de un sistema de ecuaciones en el que una ecuación se resuelve para una variable en tér minos de la otra.
square root of a variable expression.   standard deviation A measure that shows how data deviate from the mean.	la raíz cuadrada de una expresión variable.   desviacióntipica Una medida que muestra cómo los datos se desvían de la media.	supplementary angles Two angles with measures that have a sum of $180^{\circ}$.	ángulos suplementarios Dos ángulos con medidas que tienen una suma de $180^{\circ}$.
G36 Glossary			Glossary G37




G42 Glossary

## Index



## $A$

## ALEKS

every Formative Assessment Math Probe every What Will You Learn, second page every Practice, first page
Assess and Differentiate, every Practice and Homework, first page

Assessment, see Review and Assessment Options, Formative Assessment


Cheryl Tobey, see Formative Assessment Math Probe
Common Misconception, 3, 16, 26, 28, 35, 38,
$45,49,52,65,75,93,95,117,121,135,139,147$, 150, 157, 160, 167, 179, 182, 191, 212, 231, 239, 240, 243, 251, 252, 260, 267, 273, 295, 300, 308, 319, 327, 357, 392, 393, 400, 406, 413, 431, 433, 487, 489, 495, 497, 505, 509, 515, $523,533,535,553,561,564,569,579,585$, 594, 615, 617, 619, 625, 627, 628, 635, 645, 648, 649, 651, 657, 659, 667, 670, 679, 681, $687,689,703,715,721,723,729,741,751,759$, 767, 775, 783, 799, 803, 811, 813, 819, 825, 826, 840, 847, 865, 871, 875, 876, 877
Conceptual Bridge, see Rigor

## D

## Differentiate

Resources Chart, every Lesson Teacher page a
Practice and Homework, every Practice, first page

Activities, 4, 6, 15, 18, 25, 27, 29, 35, 37, 40, $46,50,51,54,66,69,70,75,80,86,92$, $93,96,101,110,119,123,138,152,157,168$, $169,179,180,194,210,213,222,232,233$, 242, 253, 254, 260, 261, 268, 272, 273, 289, 299, 301, 308, 310, 316, 320, 321, $328,342,344,351,359,367,369,391$, 392, 401, 406, 416, 431, 435, 452, 455, $466,474,490,504,515,517,526,528$, 534, 553, 561, 569, 579, 580, 587, 595, 600, 601, 602, 615, 619, 625, 627, 635, 637, 645, 648, 650, 651, 657, 659, 668, $670,679,682,688,705,716,723,734$, 740, 751, 758, 786, 799, 800, 803, 808, $812,820,827,840,848,850,856,857$, 864, 871, 872, 877, 878, 884, 886
Dinah Zike Foldables ${ }^{\oplus}$, see Foldables ${ }^{\oplus}$


## ELL Support

every What Will You Learn, second page Language Development Support, every Lesson Teacher page a see Differentiate, Activities
Essential Question, 1, 63, 133, 207, 285, 339, 385, 429, 485, 551, 613, 701, 797, 837

Essential Question Follow-Up, 6, 13, 17, 45, $54,59,67,69,77,80,88,92,93,103,111$, $120,123,129,135,162,186,196,203,213$, 233, 242, 262, 281, 291-292, 298, 320, $321,330,335,344,351,376,381,392$, 402, 407, 422, 425, 431, 453, 473, 481, 500, 504, 528, 547, 561, 577, 585, 594, $609,615,628,638,687,697,704,711,723$, $733,751,759,775,793,814,820,826$, 833, 847, 871, 885, 893
Explore, Explore and Develop, Lesson T eacher pages c-h


	linear equations point-slope foem, 205 slope-inteicept form 229 standard form. 160 weiting, 65, 229, 257, 295
	Ilnear pais, 619
	lines, 561 muctiary, 876 equidetant, 787 parslitel. 757 perpendicuat, 626-627 of refiection 645 skewt 757
	lines of fit, 308
	Hiterat equations, 117
	logicaly equivalem. 712
	lower quarties, 509

magnitudes, 803
mapping. 135
Math History Minutes, 8, 94, 196, 262, 320, 352, 455, 435, 475. $505,553,658,767,820$, ह75 maximum, 52
measurement data, 487
measures of centec, 487
mear 487-488
median, 487,489
mode 497, 489
measures of spread, 509 interquartioe range. 509
tange, 500
unaodard deviation, 512
vatiance, 512
medians, 487, 488
metrics, 49
midpoints. 599
minimum, $\mathbf{1 8 2}$
mult-step equations. 85
multiplicative identity, 26
multipicative inverses, 26

negations, 711
negative correlations, 307
negatively skewed cistributions. 515 nets, 670


Foldables, 1, 59, 63, 129, 133, 203, 207, 281, $285,335,339,381,385,425,429,481,485$ 547, 551, 609, 613, 697, 701, 793, 797, 833, 837, 893

Formative Assessment Math Probe (Cheryl Tobey), 1b, 63b, 133b, 207b, 285b, 339b, 385bb, 487bbb, 485b, 551b, 613b, 701b, 797b, 837d

## c

Growth Mindset, see Mindset Matters


Inquiry, see Explore
Intervention, see Tier 2 Intervention


Mathematical Background, 3a, 13a, 23a, 35a, 45a, 49a, 65a, 75a, 85a, 91a, 101a, 109a, 117a, 135b, 147b, 157a, 167a, 179a, 191b, 209b, 219a, 229b, 239b, 251b, 259a, 267a, 287a, 295b, 307a, 315a, 319a, 327a, 327, 341a, 351a, 357a, 367a, 375a, 387a, 399a, 405a, 413a, 419a, 431b, 439b, 451b, 461a, 465a, 473a, 487a, 495a, 503a, 509a, 515a, 523, 533a, , 553a, 561, 569a, 577a, 585a, 593a, 599a, 615a, 625a, 635a, 645a, 657a, 667a, 679a, 687a, 703a, 711a, 721a, 729a, 739a, 747a, 765a, 775a, 783a, 799a, 803a, 807a, 811, 819a, 825a, 839a, 847a, 855a, 863, 871a, 875a, 883a

Mathematical Practices, see $T$ eaching the Mathematical Practices

Mindset Matters, 2, 64, 134, 208, 286, 340, $386,430,486,552,614,702,798,838$

## $P$

Pacing, every page a

## Prerequisite Skills

Are You Ready?, 2, 64, 134, 208, 286, 340, $386,430,486,552,614,702,798,838$
Warm Up, every Lesson Teacher page b

## R

Review, see Review and Assessment Options
Review and Assessment Options, 60, 130,
204, 282, 336, 382, 426, 482, 548, 610, 698, 794, 834, 894
Rigor, every Module Teacher and Lesson Teacher page a

## S

Standardized Test Practice, see Test Practice

## $T$

Teaching the Mathematical Practices,
every Launch, Lesson Teacher page b every Explore, second page every Explore and Develop
Test Practice, 60-62, 130-132, 204-206, 282-284, 336-338, 382-384, 426-428, 482-484, 548-550, 610-612, 698-700, 794-796, 834-836, 894-896

in paratel fines. 813   it a vertical Sne. 799   in the free $y=x, 799$
regular   potynecka, 658 tesselations. 819
relations, 35
relative mavimum, 182
relative minimum, 182
tesiduals, 322
ripid motions, 645
roots, 171
rountions, 645
5

samples, 503
scole, 139
scotter plots, 307
semiregular tesseliations. 819
sequences, 251
anthmetci, 251
as explicit fonsulas, 473 :
as tunctions, 252,467
as recursive formalas, 473
grometric, 465
terms of 251.455
set-builder notation, 342
Side-Aogle-Side (SAS)
Congruence, 857
Side-side-5ide (SSS) Congruence, 855 sidea of angles, 615 significant figores, 687 simplest form. 38
slant heights
of prramids, 659-660 of right ceneh, 659-660
slope, 222
slope criteria, 765
for poraltel fiotes. 765
for perpendicular lines, 765
slope-intercept form, 767
slopes. 765
solutions, 75
solve an equation. 75
space, 561
spheres, 657


Tier 2 Intervention, 9-10, 19-20, 31-32, $41-42,47,55-56,71-72,81-82,89,97-98$, 105-106, 113-114, 125-126, 143-144, 153-154, 163-164, 175-176, 187-188, 199-200, 215-216, 225-226, 235-236, 247-248, 255-256, 263-264, 277-278, 291-292, 303-304, 311-312, 317, 323-324, 331-332, 347-348, 353-354, 363-364, 371-372, 395-396, 403, 409-410, 417, 423, 437, 447-448, 457-458, 463, 469-470, 477-478, 491-492, 501, 507, 513, 519-520, 529-530, 537-538

## v

Vertical Alignment, every Module Teacher and Lesson Teacher page a
Vocabulary, 2, 3b, 13b, 23b, 35b, 45b, 49b, 64, 65b, 75b, 85b, 91b, 109b, 117b, 134, 135b, 147b, 157b, 167b, 179b, 208, 219b, 229b, 239b, 251b, 259b, 267b, 286, 295b, 307b, 315b, 319b, 327b, 340, 341b, 357b, 375b, 386, 387b, 399b, 405b, 419b, 430, 431b, 465b, 473b, 486, 487b, 495b, 503b, 509b, 515b, 533b, 552, 553b, 561b, 569b, 577b, 585b, 599b, 614, 615b, 625b, 635b, 645b, 657b, 667b, 679b, 687b, 702, 703b, 711b, 721b, 729b, 757b, 765b, 783b, 798, 803b, 811b, 819b, 825b, 838, 839b, 855b, 863b, 875b, 883b

# Reveal MATH 

 Integrated I • Volume 1
## CONTENTS

MODULE1 EXPRESSIONS
MODULE 2 EQUATIONS IN ONE VARIABLE
MODULE 3 RELATIONS AND FUNCTIONS
MODULE 4 LINEAR AND NONLINEAR FUNCTIONS
MODULE 5 CREATING LINEAREQUATIONS
MODULE 6 LINEARINEQUALITIES
MODULE 7 SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES
MODULE 8 EXPONENTIAL FUNCTIONS
MODULE 9 STATISTICS
MODULE 10 TOOLS OF GEOMETRY
MODULE 11 ANGLES AND GEOMETRIC FIGURES
MODULE 12 LOGICAL ARGUMENTS AND LINE RELATIONSHIPS
MODULE 13 TRANSFORMATIONS AND SYMMETRY
MODULE 14 TRIANGLES AND CONGRUENGE
mheducation.com/prek-12



[^0]:    -Zike, 2017, InRIGORating Math Notebooks

[^1]:    1b Module 1 - Expressions

[^2]:    Today's Vocabulary

[^3]:    Today's Vocabulary

[^4]:    Today's Vocabulary

[^5]:    Today's Vocabulary

[^6]:    Today's Vocabulary

[^7]:    Today's Vocabulary

[^8]:    TYPE
    

    Students determine how the Academic Index would be affected based on a proposed change, and identify attributes of high school recruits that should be considered.

[^9]:    Today's Vocabulary

[^10]:    Today's Vocabulary

[^11]:    Today's Vocabulary

[^12]:    

[^13]:    Today's Vocabulary

[^14]:    Today's Vocabulary

[^15]:    Today's Vocabulary

[^16]:    Today's Vocabulary

[^17]:    Today's Vocabulary

[^18]:    LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. $\begin{aligned} \\ \text { can create a student assignment }\end{aligned}$ in LearnSmart for additional practice on these topics for Linear and
    Exponential Relationships, Descriptive Statistics, and Quadratic Functions and Modeling.

    - Interpret Expressions for Functions
    - Build Linear and Exponential Function Models
    - Interpret Linear Models
    - Construct and Compare Linear, Quadratic, and Exponential Models and Solve Problems

[^19]:    Today's Vocabulary

[^20]:    Today's Vocabulary

[^21]:    Today's Vocabulary

[^22]:    Today's Vocabulary

[^23]:    Today's Vocabulary

[^24]:    Today's Vocabulary

[^25]:    Today's Vocabulary

[^26]:    TYPE Students answer a question to show they understand why one inequality has an empty solution set while a different one does not.

    CHECK
    

    Students complete the Check online to determine whether they are ready to move on.

[^27]:    Today's Vocabulary

[^28]:    Today's Vocabulary

[^29]:    Today's Vocabulary

[^30]:    Today's Vocabulary

[^31]:    | TYPE |  |
    | :---: | :--- |
    | Students discuss if it is possible for a |  | have different slopes to have no solution.

