

Teacher Edition

Cover: (t to b, I to r) guvendemir/E+/Getty Images, Andrey Prokhorov/E+/Getty Images, anatols/iStock/Getty Images, iava777/iStock/Getty Images

mheducation.com/prek-12

Mc Graw Hill

Copyright © 2020 McGraw-Hill Education
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
McGraw-Hill Education
STEM Learning Solutions Center
8787 Orion Place
Columbus, OH 43240
ISBN: 978-0-07-899720-4 (Reveal Math, Course 1, ॄacher Edition, Volume 1)
MHID: 0-07-899720-8 (Teacher Edition, Volume 1)
ISBN: 978-0-07-667372-8 (Interactive Student Edition, Volume 1)
MHID: 0-07-667372-3 (Interactive Student Edition, Volume 1)
Printed in the United States of America.
456789 WEB 252423222120

Common Core State Standards © Copyright 2010. National
Governors Association Center for Best Practices and Council of
Chief State School Officers. All rights reserved.

Contents in Brief

Module 1 Ratios and Rates

2 Fractions, Decimals, and Percents

3 Compute with Multi-Digit Numbers and Fractions

4 Integers, Rational Numbers, and the Coordinate Plane

5 Numerical and Algebraic Expressions

6 Equations and Inequalities

7 Relationships Between Two Variables

8 Area

9 Volume and Surface Area

10 Statistical Measures and Displays

Reveal Math ${ }^{\oplus}$ Guiding Principles

Academic research and the science of learning provide the foundation for this powerful $\mathrm{K}-12$ math program designed to help reveal the mathematician in every student.

Reveal Math is built
 on a solid foundation of RESEARCH

that shaped the PEDAGOGY of the
program.

Reveal Math used findings from research on teaching and learning mathematics to develop its instructional model. Based on analyses of research findings, these areas form the foundational structure of the program:

- Rigor
- Productive Struggle
- Formative Assessment
- Rich Tasks
- Mathematical Discourse
- Collaborative Learning

Instructional Model

88.3 WARM UP	18.1 LAUNCH THE LESSON	9 EXPLORE
During the Warm Up, students complete exercises to activate prior knowledge and review prerequisite concepts and skills.	In Launch the Lesson, students view a real-world scenario and image to pique their interest in the lesson content. They are introduced to questions that they will be able to answer at the end of the lesson.	During the Explore activity, students work in partners or small groups to explore a rich, real-world or mathematical problem related to the lesson content.
INDIVIDUAL ACTIVITY GROUP ACTIVITY CLASS ACTIVITY		

2 Explore and Develop

LEARN

In the Learn section,
students gain the foundational knowledge
needed to actively
work through upcoming Examples.

Students work through Examples related to the key concepts and engage in mathematical discourse.

Students complete a Check after each Example as a quick formative assessment to help teachers adjust instruction as needed.3 Reflect and Practice

The Exit Ticket
gives students an opportunity to convey their understanding of the lesson concepts.

81
 PRACTICE

Students complete Practice exercises individually or collaboratively to solidify their understanding of lesson concepts or build proficiency with lesson skills.

Reveal Math Key Areas of Focus

Reveal Math has a strong focus on rigor-especially the development of conceptual understanding-an emphasis on student mindset, and ongoing formative assessment feedback loops.

Rigor

Reveal Math has been thoughtfully designed to incorporate a balance of the three elements of rigor: conceptual understanding, procedural skills and fluency, and application.

Conceptual Understanding

Explore activities give all students an opportunity to work collaboratively and discuss their thinking as they build conceptual understanding of new topics. In the Explore activity to the left, students use algebra tiles to gain an understanding of operations with positive and negative integers.

Procedural Skills and Fluency

As students move through the lesson, they will use different strategies and tools to build procedural fluency. In the Example shown, students use Web Sketchpad ${ }^{\circledR}$ to develop proficiency with integer operations.

Application

Real-world examples and practice problems are opportunities for students to apply their learning to new situations. In the real-world example to the left, students apply their understanding of percents to solve a percent error problem.

Student Mindset

Mindset Matters tips located in each module provide specific examples of how Reveal Math content can be used to promote a growth mindset in all students. Another feature focused on promoting a growth mindset is Ignite! Activities developed by Dr. Raj Shah to spark student curiosity about why the math works. An Ignite! delivers problem sets that are flexible enough so that students with varying background knowledge can engage with the content and motivates them to ask questions, solve complex problems, and develop a can-do attitude toward math.

Mindset Matters

Growth Mindset vs. Fixed Mindset
Everyone has a core belief or mindset about how they learn. People with a growth mindset bellieve that they can grow their intelligence through hard work. Those with a fixed mindset believe that while they can leam new things, they cannot increase their intelligence. When a student approaches school, life, and the future workplace with a growth mindset, they are more likely to persevere through challenging problems, leam from their mistakes, and ultimately learn concepts in a deeper, more meaningful way.

How Can I Apply It?
Assign students rich tasks, such as the Explore activities, that can help them to develop their intelligence. Encourage them with the thought that each time they learn a new idea, neurons fire electric currents that connect different parts of their brain!

Teacher Edition Mindset Tip

IGNITME!

Student Ignite! Activity

Formative Assessment

The key to reaching all learners is to adjust instruction based on each student's understanding. Reveal Math offers powerful formative assessment tools that help teachers to efficiently and effectively differentiate instruction for all students.

Math Probes

Each module includes a Cheryl Tobey Formative Assessment Math Probe that is focused on addressing student misconceptions about key math topics. Students can complete these probes at the beginning, middle, or end of a module. The teacher support includes a list of recommended differentiated resources that teachers assign based on students' responses.

Example Checks

Each example is followed by a formative assessment Check that students complete on their own that allows teachers to gauge students' understanding of the concept or skill presented. When students complete the Check, the teacher receives resource recommendations, which can be assigned to all students.

A Powerful Blended Learning Experience

The Reveal Math blended learning experience was designed to include purposeful print and digital components focused on sparking student curiosity and providing teachers with flexible implementation options.

Reveal Math has been thoughtfully developed to provide a rich learning experience no matter where a district, school, or classroom falls on the digital spectrum.
All of the instructional content can be projected or can be accessed via desktop, laptop, or tablet.

Lesson

Launch the Lesson

9 ExLORE

The Explore Activity can be projected while students record their observations in the Interactive Student Edition or can be assigned for students to complete on individual devices.

Explore

2 Explore an	evelop	3 Refiect a	nd Practice
（8）Lamm	889 sammiss cutiex	88 extroer	（89 paearce
回	回口	回	回］
	cemme	mober	$\xrightarrow{\text { asters }}$
	den	Vastuen	
	1 teevesseso onemess		coid
			deme

Supporting All Learners

The Reveal Math program was designed so that all students have access to:

- rich tasks that promote productive struggle,
- opportunities to develop proficiency with the habits of mind and thinking strategies of mathematicians, and
- prompts to promote mathematical discourse and build academic language.

Resources for Differentiating Instruction

When needed, resources are available to differentiate math instruction for students who may need to see a concept in a different way, practice prerequisite skills, or are ready to extend their learning.

AL
Approaching Level Resources

- Remediation Activities
- Extra Examples
- Arrive Math Take Another Look Mini Lessons

BL
Beyond Level Resources

- Beyond Level

Differentiated Activities

- Extension Activities

Resources for English Language Learners

Reveal Math also includes student and teacher resources to support students who are simultaneously learning grade-level math and building their English proficiency. Appropriate, research-based language scaffolds are also provided to support students as they engage in rigorous mathematical tasks and discussions.

ELL
English Language Learners

- Spanish Interactive Student Edition
- Spanish Personal Tutors
- Math Language-Building Activities
- Language Scaffolds
- Think About It! and Talk About It! Prompts
- Multilingual eGlossary
- Audio
- Graphic Organizers
- Web Sketchpad, Desmos, and eTools

Embedded Reteach Support Arrive Math Booster Mini-Lessons

Reveal Math ensures a seamless connection for students who need extra topic support with embedded Arrive Math Booster mini-lessons. These mini-lessons, called Take Another Look, have been included in Reveal Math to provide students direct support related to the lesson objective.

- Teacher-assigned option based on Example Check results
- Digital, student-driven lesson
- Gradual release experience in three parts

Part 2: Interactive Practice

Arrive

 B005TER

Complement Reveal Math with the K-8 Arrive Math Booster supplemental intervention to equip teachers with all the resources they need to supplement their instruction and meet the needs of all learners.

Digital mini-lessons
Utilize over 1,160 Take Another Look digital mini-lessons for every skill within the K-8 standards.

Hands-On Lesson
Complement the Take Another Look lessons with concrete modeling support using hands on, teacher-led activities.

Games

Engage students
through exciting math games to become fluent in critical math skills.

Reveal Student Readiness with Individualized Learning Tools

Reveal Math incorporates innovative, technology-based tools that are designed to extend the teachers' reach in the classroom to help address a wide range of knowledge gaps, set and align academic goals, and meet student individualized learning needs.

LEARNSMART*

Topic Mastery

With embedded LearnSmart ${ }^{\otimes}$ students have a built-in study partner for topic practice and review to prepare for multi-module, or mid-year tests.

LearnSmart's revolutionary adaptive technology measures students' awareness of their own learning, time on topic, answer accuracy, and suggests alternative resources to support student learning, confidence, and topic mastery.

ALEKS ${ }^{\circ}$

Individualized Learning Pathways
Learners of all levels benefit from the use of ALEKS' adaptive, online math technology designed to pinpoint what each student knows, does not know, and most importantly, what each student is ready to learn.

When paired with Reveal Math, ALEKS is a powerful tool designed to provide integrated instructionally actionable data enabling teachers to utilize Reveal Math resources for individual students, groups, or the entire classroom.

Activity Report

Powerful Tools for Modeling Mathematics

Reveal Math has been designed with purposeful, embedded digital tools to increase student engagement and provide unique modeling opportunities.

Web Sketchpad ${ }^{\circledR}$ Activities

The leading dynamic mathematics visualization software has now been integrated with Web Sketchpad Activities at point of use within Reveal Math. Student exploration (and practice) using Web Sketchpad encourages problem solving and visualization of abstract math concepts.

desmos

The powerful Desmos graphing calculator is available in Reveal Math for students to explore, model, and apply math to the real-world.

eTools
By using a wide-variety of digital eTools embedded within Reveal Math, students gain additional handson experience while they learn and teachers have the option to create problem-based learning opportunities.

Technology-Enhanced Items
Embedded within the digital lesson, technology-enhanced items-such as drag-and-drop, flashcard flips, or diagram completion-are strategically placed to give students the practice with common computer functions needed to master computer-based testing.

Assessment Tools to Reveal Student Progress and Success

Reveal Math provides a comprehensive array of assessment tools to measure student understanding and progress. The digital assessment tools include next generation assessment items, such as multiple-response, selected-response, and technology-enhanced items.

Assessment

Reveal Math provides embedded, regular formative checkpoints to monitor student learning and provide feedback that can be used to modify instruction and help direct student learning using reports and recommendations based on resulting scores.

Summative assessments built in Reveal Math evaluate student learning at the module conclusion by comparing it against the state standards covered.

Formative Assessment Resources

- Cheryl Tobey Formative Assessment Math Probes
- Checks
- Exit Tickets
- Put It All Together

Summative Assessment Resources

- Module Tests
- Performance Tasks
- Benchmark Tests
- End-of-Course Tests
- LearnSmart

Or Build Your Own assessments focused on standards or objectives. Access to banks of questions, including those with tech-enhanced capabilities, enable a wide range of options to mirror high-stakes assessment formats.

Reporting

Clear, instructionally actionable data will be a click away with the Reveal Math Reporting Dashboard.

Activity Report Real-time class and student reporting of activities completed by the class. Includes average score, submission rate, and skills covered for the class and each student.

- Item Analysis Report Review a detailed analysis of response rates and patterns, answers, and question types in a class snapshot or by student.
- Standards Report Performance data by class or individual student is aggregated by standards, skills, or objectives linked to the related activities completed.

Activity Report

Professional Development Support for Continuous Learning

McGraw-Hill Education supports lifelong learning and demonstrates commitment to teachers with a built-in professional learning environment designed for support during planning or extended learning opportunities.

What You Will Find

- Best-practices resources
- Implementation support
- Teaching Strategies
- Classroom Videos
- Math Misconception Videos
- Content and Pedagogy Videos
- Content Progression Information

Why Professional Development is so Important

- Research-based understanding of student learning
- Improved student performance
- Evidence-based instructional best-practices
- Collaborative content strategy planning
- Extended knowledge of program how-to's

Reveal Math Expert Advisors

Areas of expertise:

Mathematics Teaching, Equity, Assessment, STEM Learning, Informal Learning, Upside-Down Teaching, Productive Struggling, Mathematical Practices, Mathematical Habits of Mind, Family and Community Outreach, Mathematics Education Policy, Advocacy
"We want students to believe deeply that mathematics makes sense-in generating answers to problems, discussing their thinking and other students' thinking, and learning new material."
-Seeley, 2016, Making Sense of Math

Nevels Nevels, Ph.D.

Saint Louis, Missouri
PK-12 Mathematics Curriculum Coordinator for Hazelwood School District

Areas of expertise:

Mathematics Teacher Education; Student Agency \& Identity; Socio-Cultural Perspective in Mathematics Learning
> "A school building is one setting for learning mathematics. It is understood that all children should be expected to learn meaningful mathematics within its walls. Additionally, teachers should be expected to learn within the walls of this same building. More poignantly, I posit that if teachers are not learning mathematics in their school building, then it is not a school."
> -Nevels, 2018

Cheryl R. Tobey, M.Ed.

Gardiner, Maine
Senior Mathematics Associate at Education Development Center (EDC)

Areas of expertise:

Formative assessment and professional development for mathematics teachers; tools and strategies to uncovering misconceptions
"Misunderstandings and partial understandings develop as a normal part of learning mathematics. Our job as educators is to minimize the chances of students' harboring misconceptions by knowing the potential difficulties students are likely to encounter, using assessments to elicit misconceptions and implementing instruction designed to build new and accurate mathematical ideas."

- Tobey, et al 2007, 2009, 2010, 2013, 2104,

Uncovering Student Thinking Series

Raj Shah,
Ph.D.
Columbus, Ohio
Founder of Math Plus Academy, a STEM enrichment program and founding member of The Global Math Project

Areas of expertise:

Sparking student curiosity, promoting productive struggle, and creating math experiences that kids love

[^0]

Walter Secada, Ph.D.

Coral Gables, Florida
Professor of Teaching and Learning at the University of Miami

Areas of expertise:

Improving education for English language learners, equity in education, mathematics education, bilingual education, school restructuring, professional development of teachers, student engagement, Hispanic dropout and prevention, and reform
"The best lessons take place when teachers have thought about how their individual English language learners will respond not just to the mathematical content of that lesson, but also to its language demands and mathematical practices."
-Secada, 2018

Ryan Baker, Ph.D.

Philadelphia, Pennsylvania

Associate Professor and Director of Penn Center for Learning Analytics at the University of Pennsylvania

Areas of expertise:

Interactions between students and educational software; data mining and learning analytics to understand student learning
"The ultimate goal of the field of Artificial Intelligence in Education is not to promote artificial intelligence, but to promote education... systems that are designed intelligently, and that leverage teachers' intelligence. Modern online learning systems used at scale are leveraging human intelligence to improve their design, and they're bringing human beings into the decisionmaking loop and trying to inform them."
-Baker, 2016

Dinah Zike, M.Ed.

Comfort, Texas
President of Dinah.com in San Antonio, Texas and Dinah Zike Academy

Areas of expertise:

Developing educational materials that include three-dimensional graphic organizers; interactive notebook activities for differentiation; and kinesthetic, cross-curricular manipulatives
> "It is education's responsibility to meet the unique needs of students, and not the students' responsibility to meet education's need for uniformity."
> -Zike, 2017, InRIGORating Math Notebooks

Reveal Everything Needed for Effective Instruction

Reveal Math provides both print and innovative, technologybased tools designed to address a wide range of classrooms. No matter whether you're in a 1:1 district, or have a classroom projector, Reveal Math provides you with the resources you need for a rich learning experience.

Blended Classrooms

Focused on projection of the Interactive Presentation, students follow along taking notes and working through problems in their Interactive Student Edition during class time. Also included in the Interactive Student Edition is a glossary, Foldables ${ }^{\circledR}$ at point of use and in the back of the book, selected answers, and a reference sheet.

Digital Classrooms

Projection is a focal point for key areas of the course with students interacting with the lesson using their own devices. Each student can access teacherassigned sections of the lessons for Explore activities, Learn sections and Examples. Point of use videos, animations, as well as interactive content enable students to experience math in interesting and impactful ways.

Web Sketchpad

Drag-and-Drop

Desmos

Videos and Animations

In Reveal Math,
R is for-

- Research
- Rigor
- Relevant Connections

Are you...
READY to start?

TABLE OF CONTENTS

Module 1

Ratios and Rates

Essential Question

How can you describe how two quantities are related?
What Will You Learn? 1
Lesson 1-1 Understand Ratios. 3
Explore Compare Two Quantities
1-2 Tables of Equivalent Ratios 13
Explore Compare Equivalent Ratios
1-3 Graphs of Equivalent Ratios. 23
1-4 Compare Ratio Relationships 29
1-5 Solve Ratio Problems 37
1-6 Convert Customary Measurement Units 47
1-7 Understand Rates and Unit Rates 57Explore Compare Quantities with Different Units
1-8 Solve Rate Problems 65
Module 1 Review 73

Fssential Question

How can you use fractions, decimals, and percents to solve everyday problems?What Will You Learn?77
Lesson 2-1 Understand Percents 79
2-2 Percents Greater Than 100\% and Less Than 1\% 85
2-3 Relate Fractions, Decimals, and Percents 93
Explore Percents and Ratios
103
2-4 Find the Percent of a Number
Explore Percent of a Number
2-5 Estimate the Percent of a Number 113
2-6 Find the Whole 121
Module 2 Review 129

Content Standards

Foundational for 6.RP.A.3, 6.RP.A.3.C

Foundational for 6.RP.A.3, 6.RP.A.3.C

Foundational for 6.RP.A.3 6.RP.A.3.C
6.RP.A.3, 6.RP.A.3.C
6.RP.A.3, 6.RP.A.3.C
6.RP.A.3, 6.RP.A.3.C

TABLE OF CONTENTS

Module 3

Compute with Multi-Digit Numbers and Fractions

e. Essential Question

How are operations with fractions and decimals related to operations with whole numbers?
What Will You Learn? 133
3-1 Divide Multi-Digit Whole Numbers 135
Lesson
3-2 Compute With Multi-Digit Decimals 143
3-3 Divide Whole Numbers by Fractions 155
Explore Divide Whole Numbers by Fractions
3-4 Divide Fractions by Fractions 167
3-5 Divide with Whole and Mixed Numbers 177
Content Standards
6.NS.B. 2
6.NS.B. 3
6.NS.A. 1
6.NS.A. 1
6.NS.A. 1
Explore Divide Fractions by Whole Numbers
Module 3 Review. 187

Module 4

Integers, Rational Numbers, and the Coordinate Plane

e Essential Question
How are integers and rational numbers related to the coordinate plane?

Lesson

4-1 Represent Integers1914-1 Represent Integers193Explore Represent Integers
4-2 Opposites and Absolute Value 199Explore Opposites and Absolute Value
4-3 Compare and Order Integers 205
4-4 Rational Numbers. 215

Content Standards
6.NS.C.5, 6.NS.C.6,
6.NS.C.6.C
6.NS.C.5, 6.NS.C.6, 6

NS.C.6.A, 6.NS.C.7, 6.
NS.C.7.C
6.NS.C.7, 6.NS.C.7.A,
6.NS.C.7.B, 6.NS.C.7.C,
6.NS.C.7.D
6.NS.C.6, 6.NS.C.6.C, 6.NS.C.7, 6.NS.C.7.A,
6.NS.C.7.C
6.NS.C.6, 6.NS.C.6.B,
6.NS.C.6.C, 6.NS.C. 8
6.NS.C.6, 6.NS.C.6.B,
6.NS.C.6.C, 6.NS.C. 8
6.NS.C. 8

Explore Distance on the Coordinate Plane
\qquad

TABLE OF CONTENTS

Module 5

Numerical and Algebraic Expressions

Essential Question

How can we communicate algebraic relationships with mathematical symbols?

Fssential Question

How are the solutions of equations and inequalities different?
What Will You Learn? 333
Lesson 6-1 Use Substitution to Solve One-Step Equations 335
6-2 One-Step Addition Equations 341Explore Use Bar Diagrams to Write Addition EquationsExplore One-Step Addition Equations
6-3 One-Step Subtraction Equations 351Explore Use Bar Diagrams to Write Subtraction Equations
6-4 One-Step Multiplication Equations 359
Explore Use Bar Diagrams to Write Multiplication Equations
6-5 One-Step Division Equations 369Explore Use Bar Diagrams to Write Division Equations
6-6 Inequalities 377
Explore Inequalities
Module 6 Review 391

TABLE OF CONTENTS

Module 7

Relationships Between Two Variables

Essential Question

What are the ways in which a relationship between two variables can be displayed?
What Will You Learn? 395
7-1 Relationships Between Two Variables. 397
LessonExplore Relationships Between Two VariablesRepresented in Tables405
Explore Relationships with Rules that Require Two Steps
7-3 Graphs of Relationships 415
7-4 Multiple Representations 423
Content Standards
7-2 Write Equations to Represent Relationships
Module 7 Review. 429
6.EE.C. 9
6.EE.C. 9
6.EE.C. 9
6.EE.C. 9

Module 8

Area

Fssential Question

How are the areas of triangles and rectangles used to find the areas of other polygons?
Lesson 8-1 Area of Parallelograms 435Explore Area of Parallelograms
443
8-2 Area of TrianglesExplore Parallelograms and Area of TrianglesExplore Area of Triangles
8-3 Area of Trapezoids 451
8-4 Area of Regular Polygons 463Explore Area of Regular Polygons
8-5 Polygons on the Coordinate Plane 469
Explore Explore the Coordinate Plane
Module 8 Review 479
What Will You Learn? 433
Content Standards
6.G.A.1, 6.EE.A.2,
6.EE.A.2.C
6.G.A.1, 6.EE.A.2,
6.EE.A.2.C
6.G.A.1, 6.EE.A.2,
6.EE.A.2.C
6.G.A. 1
6.G.A. 3

TABLE OF CONTENTS

Module 9

Volume and Surface Area

Essential Question

How can you describe the size of a three-dimensional figure?

Lesson

9-1 Volume of Rectangular Prisms
9-2 Surface Area of Rectangular Prisms 495
Explore Cube Nets
9-3 Surface Area of Triangular Prisms 505
Explore Non-Rectangular Prism Nets
9-4 Surface Area of Pyramids 517
Module 9 Review 531

Content Standards

6.G.A. 4
6.G.A. 4
6.G.A. 4

Fssential Question

Why is data collected and analyzed and how can it be displayed?
What Will You Learn?535
Lesson 10-1 Statistical Questions 537Explore Collect Data10-2 Dot Plots and Histograms543
10-3 Measures of Center 549
Explore Mean
10-4 Interquartile Range and Box Plots 561
10-5 Mean Absolute Deviation 569
10-6 Outliers 575Explore Mean, Median, and Outliers10-7 Interpret Graphical Displays583
Explore Interpret Box PlotsModule 10 Review.593

Content Standards

6.SP.A. 1
6.SP.B.4, 6.SP.B.5,
6.SP.B.5.A
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6. SP.B.5.C
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C
6.SP.A.3, 6.SP.B.5,
6.SP.B.5.A, 6.SP.B.5.B. 6.

SP.B.5.C
6.SP.A.3, 6.SP.B.4,
6.SP.B.5, 6.SP.B.5.C, 6.SP.B.5.D
6.SP.A.2, 6.SP.A.3, 6.

SP.B.4, 6.SP.B.5,
6.SP.B.5.A, 6.SP.B.5.B,
6.SP.B.5.C, 6.SP.B.5.D

Mathematical Overview for Reveal Math, Course 1

Reveal Math, Course 1, focuses on four critical areas: (1) connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, and using expressions and equations; and (4) developing understanding of statistical thinking.

Mathematical Practices

1 Make sense of problems and persevere in solving them.

2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.

5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

4 Model with mathematics.

Key Mathematical Understandings*, Grade 6

Ratios and Proportional Relationships (Domain 6.RP)

- Understand ratio concepts and use ratio reasoning to solve problems.

The Number System (Domain 6.NS)

- Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
- Compute fluently with multi-digit numbers and find common factors and multiples.
- Apply and extend previous understandings of numbers to the system of rational numbers.

Expressions and Equations (Domain 6.EE)

- Apply and extend previous understandings of arithmetic to algebraic expressions.
- Reason about and solve one-variable equations and inequalities.
- Represent and analyze quantitative relationships between dependent and independent variables.

Geometry (Domain 6.G)

- Solve real-world and mathematical problems involving area, surface area, and volume.
Statistics and Probability (Domain 6.SP)
- Develop understanding of statistical variability.
- Summarize and describe distributions.

Standards ør Mathematical Content, Grade 6

This correlation shows the alignment of Reveal Math, Course 1 to the Standards for Mathematical Content, Grade 6, from the Common Core State Standards for Mathematics. Primary references are bold. Supporting references are italicized.

Standards for Mathematical Content		Lesson(s)
6.RP Ratios and Proportional Relationships		
Understand ratio concepts and use ratio reasoning to solve problems. (Major Cluster)		
6.RP.A. 1	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	1-1, 1-5, 1-6, 10-7
6.RP.A. 2	Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." ${ }^{1}$ Expectations for unit rates in this grade are limited to non-complex fractions.	1-7, 1-8
6.RP.A. 3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	$\begin{aligned} & 1-2,1-3,1-4,1-5,1-6,1-7,1-8, \\ & 2-4,2-5,2-6,10-7 \end{aligned}$
	6.RP.A.3.A Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	1-2, 1-3, 1-4, 1-7, 7-3, 7-4
	6.RP.A.3.B Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?	1-7, 1-8
	6.RP.A.3.C Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.	2-4, 2-5, 2-6
	6.RP.A.3.D Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	1-6

Standards for Mathematical Content		Lesson(s)
6.NS The Number System		
Apply and extend previous understandings of multiplication and division to divide fractions by fractions. (Major Cluster)		
6.NS.A. 1	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2$ Ib of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?	3-3, 3-4, 3-5
Compute fluently with multi-digit numbers and find common factors and multiples. (Additional Cluster)		
6.NS.B. 2	Fluently divide multi-digit numbers using the standard algorithm.	3-1
6.NS.B. 3	Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	3-2
6.NS.B. 4	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.	5-5, 5-6
Apply and extend previous understandings of numbers to the system of rational numbers. (Major Cluster)		
6.NS.C. 5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/ debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	4-1, 4-2
6.NS.C. 6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	$\begin{aligned} & 4-1,4-2,4-3,4-4,4-5,4-6,4-7 \\ & 6-6,7-3,7-4 \end{aligned}$
	6.NS.C.6.A Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.	4-2, 4-6
	6.NS.C.6.B Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	4-5, 4-6
	6.NS.C.6.C Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	$\begin{aligned} & 4-1,4-3,4-4,4-5,4-6,6-6,7-3 \\ & 7-4 \end{aligned}$

	Standards for Mathematical Content	Lesson(s)
6.NS.C. 7	Understand ordering and absolute value of rational numbers.	4-2, 4-3, 4-4, 4-7
	6.NS.C.7.A Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.	4-3, 4-4
	6.NS.C.7.B Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.	4-3, 4-4
	6.NS.C.7.C Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars.	4-2, 4-3, 4-4, 4-7
	6.NS.C.7.D Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.	4-3
6.NS.C. 8	Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	4-5, 4-6, 4-7
6.EE Expressions and Equations		
Apply and extend previous understandings of arithmetic to algebraic expressions. (Major Cluster)		
6.EE.A. 1	Write and evaluate numerical expressions involving whole-number exponents.	5-1, 5-2
6.EE.A. 2	Write, read, and evaluate expressions in which letters stand for numbers.	$\begin{aligned} & 5-2,5-3,5-4,5-7,7-1,8-1,8-2, \\ & 8-3 \end{aligned}$
	6.EE.A.2.A Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-y$.	5-3
	6.EE.A.2.B Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.	5-3, 5-6
	6.EE.A.2.C Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving wholenumber exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	$5-2,5-4,7-1,8-1,8-2,8-3$
6.EE.A. 3	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	5-6, 5-7

STANDARDS FOR MATHEMATICAL CONTENT GRADE 6, CONTINUED

| | Standards for Mathematical Content | Lesson(s) |
| :--- | :--- | :--- | :--- |
| 6.EE.A.4 | Identify when two expressions are equivalent (i.e., when the two expressions name the same number
 regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are
 equivalent because they name the same number regardless of which number y stands for. | $5-7$ |
| Reason about and solve one-variable equations and inequalities. (Major Cluster) | | |

Standards for Mathematical Content

6.G Geometry

Solve real-world and mathematical problems involving area, surface area, and volume. (Supporting Cluster)
6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
6.G.A. 2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=l w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
6.G.A. 3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
6.G.A. 4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
$8-1,8-2,8-3,8-4,8-5$

9-1

8-5

9-2, 9-3, 9-4

STANDARDS FOR MATHEMATICAL CONTENT GRADE 6, CONTINUED

Standards for Mathematical Content		Lesson(s)
6.SP Statistics and Probability		
Develop understanding of statistical variability. (Additional Cluster)		
6.SP.A. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am l?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	10-1
6.SP.A. 2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	10-4, 10-7
6.SP.A. 3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	$\begin{aligned} & 10-3,10-4,10-5,10-6 \\ & 10-7 \end{aligned}$
Summarize and describe distributions. (Additional Cluster)		
6.SP.B. 4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	$\begin{aligned} & 10-2,10-3,10-4,10-6 \\ & 10-7 \end{aligned}$
6.SP.B. 5	Summarize numerical data sets in relation to their context, such as by:	$\begin{aligned} & 10-1,10-2,10-3,10-4 \\ & 10-5,10-6,10-7 \end{aligned}$
	6.SP.B.5.A Reporting the number of observations.	$\begin{aligned} & 10-1,10-2,10-3,10-5 \\ & 10-7 \end{aligned}$
	6.SP.B.5.B Describe the nature of the attribute under investigation, including how it was measured and its units of measurement.	10-3, 10-5, 10-7
	6.SP.B.5.C Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	$\begin{aligned} & 10-3,10-4,10-5,10-6 \\ & 10-7 \end{aligned}$
	6.SP.B.5.D Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	10-6, 10-7

Standards ør Mathematical Practi̇e, Grade 6

This correlation shows the alignment of Reveal Math, Course 1 to the Standards for Mathematical Practice, from the Common Core State Standards.

	Standards for Mathematical Practice	Lesson(s)
MP1	Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.	A strong problem-solving strand is present throughout the program with an emphasis on having students explain to themselves and others the meanings of problems and plan their solution strategies. Look for the Apply problems and exercises labeled as Persevere with Problems. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 1-2, Apply - Lesson 3-1, Practice Exercise 15 Lesson 3-3, Apply - Lesson 8-1, Apply - Lesson 9-1, Apply
MP2	Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.	Students are routinely asked to make sense of quantities and their relationships, and attend to the meaning of quantities as opposed to just computing with them. Students are often asked to decontextualize a real-world problem by representing it symbolically as an expression, equation, or inequality. Look for lessons addressing these algebraic topics and the exercises labeled as Reason Abstractly. Many Talk About It! question prompts ask students to reason about relationships between quantities. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 1-6, Example 1 - Lesson 5-3, Examples 2, 4, 5 - Lesson 6-2, Example 1 - Lesson 7-1, Example 2 - Lesson 7-3, Learn Write an Equation from a Graph

	Standards for Mathematical Practice	Lesson(s)
MP3	Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.	Students are required to justify their reasoning and to find the errors in another student's reasoning or work. Look for the Apply problems (Step 4) and the exercises labeled as Make a Conjecture, Find the Error, Use a Counterexample, Make an Argument, or Justify Conclusions. Many Talk About It! question prompts ask students to justify conclusions and/or critique another student's reasoning. In the Teacher Edition, look for the Teaching the Mathematical Practicestips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 2-3, Practice Exercises 16-17 - Lesson 8-2, Practice Exercises 11, 14 - Lesson 9-1, Practice Exercise 9 - Lesson 9-4, Example 2, Talk About It!
MP4	Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.	Students apply the mathematics they know to solve realworld problems by using mathematical modeling. In the Apply problems, students determine their own strategy to solve application problems by choosing mathematical models to aid them. Look also for the exercises labeled as Model with Mathematics. In the Teacher Edition, look for the Teaching the Mathematical Practicestips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 6-2, Example 1 - Lesson 6-4, Apply - Lesson 6-5, Apply - Lesson 7-2, Examples 1-2 - Lesson 7-2, Apply

Standards for Mathematical Practice

Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Lesson(s)

In addition to traditional tools such as estimation, mental math, or measurement tools, students are encouraged to use digital tools, such as Web Sketchpad, eTools, etc. to help solve problems. Students are routinely asked to compare and contrast methods, tools, and representations and note when one tool might be more advantageous to use than another. Look for selected Talk About It! prompts and exercises labeled as Use Math Tools. Many Explore activities ask students to select and use appropriate tools as they progress through the activities. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice.

Throughout the program, for example: Interactive Student Edition and Teacher Edition:

- Lesson 1-4, Learn Use Graphs to Compare Ratio Relationships
- Lesson 1-5, Learn Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems
- Lesson 1-6, Learn Convert Larger Units to Smaller Units
- Lesson 3-3, Examples 4-5
- Lesson 5-3, Explore activity Write Algebraic Expressions

Students are routinely required to communicate precisely to partners, the teacher, or the entire class by using precise definitions and mathematical vocabulary. Look for the exercises labeled as Be Precise. Many Talk About It! question prompts ask students to clearly and precisely explain their reasoning. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice.
Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 3-1, Learn Divide Multi-Digit Numbers - Lesson 4-4, Learn Absolute Value of Rational Numbers, Talk About It!

- Lesson 6-2, Learn Write Addition Equations, Talk About It!

	Standards for Mathematical Practice	Lesson(s)
MP7	Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.	Students are routinely encouraged to look for patterns or structure present in problem situations. For example, students look for structure present in algebraic expressions and use the structure of three-dimensional figures to create nets Look for the exercises labeled as Identify Structure. Many Talk About It! question prompts ask students to study the structure of expressions and figures. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 4-6, Example 1, Talk About It! - Lesson 4-7, Learn Find Vertical Distance, Talk About It! - Lesson 5-3, Learn Structure of Algebraic Equations, Talk About lt! - Lesson 5-3, Example 1 - Lesson 6-1, Learn Equations, Talk About lt! - Lesson 9-2, Learn Make a Net to Represent a Rectangular Prism, Talk About It! - Lesson 9-3, Example 2
MP8	Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1)$, $(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.	Students are encouraged to look for repeated calculations that lead them to sound mathematical conclusions. For example, students notice that division ends when a remainder is zero. Look for the exercises labeled as Identify Repeated Reasoning. Several Talk About It! question prompts ask students to look for repeated calculations. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 3-1, Example 2, Talk About lt! - Lesson 4-2, Example 3 - Lesson 6-2, Explore activity One-Step Addition Equations

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Q Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How can you describe how two quantities are related? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.
Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
(1) When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of peanut butter production, baseball batting cages, and the eating habits of blue whales to introduce the idea of ratios and rates. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

Interactive Presentation

Ratios and Rates

Coherence

Vertical Alignment

Previous

Students understood a fraction as part of a whole, and fraction equivalence. 3.NF.A.1, 4.NF.A. 1

Now

Students use ratio and rate reasoning to solve real-world and mathematical problems. 6.RP.A.1, 6.RP.A.2,6.RP.A. 3

Next

Students will use ratio reasoning to find the percent of a number.

```
6.RP.A.3, 6.RP.A.3.C
```


Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of fractions and fraction equivalence to develop understanding of ratios and rates. They use this understanding to build fluency with finding equivalent ratios and rates, and finding unit rates. They also apply their understanding of ratios and rates to solve real-world problems.

Suggested Pacing

Lesson		Standard(s)	45-min classes	9-min classes
Module Pretest and Launch the Module Video			1	0.5
1-1	Understand Ratios	6.RP.A. 1	2	1
1-2	Tables of Equivalent Ratios	6.RP.A.3, 6.RP.A.3.A	3	1.5
1-3	Graphs of Equivalent Ratios	6.RP.A.3, 6.RP.A.3.A	2	1
1-4	Compare Ratio Relationships	6.RP.A.3, 6.RP.A.3.A	1	0.5
1-5	Solve Ratio Problems	6.RP.A.3, Also addresses 6.RP.A. 1	2	1
Put It All Together 1: Lessons 1-1 through 1-5			0.5	0.25
1-6	Convert Customary Measurement Units 6.RP .A.3, 6.RP.A.3.D, Also addresses 6.RP.A. 1		2	1
1-7	Understand Rates and Unit Rates	6.RP.A.2, 6.RP.A.3, 6.RP.A.3.A, 6.RP.A.3.B	2	1
1-8	Solve Rate Problems	6.RP.A.2, 6.RP.A.3, 6.RP.A.3.B	2	1
Put It All Together 2: Lessons 1-6 through 1-8			0.5	0.25
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			20	10

Formative Assessment Math Probe

Ratios and Rates

${ }^{\circ}$ Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will determine which item is the better buy, and explain their choice.
Targeted Concept Ratios and rates can be compared by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams or equations.

Targeted Misconceptions

- Students compare the difference between the two quantities in each ratio.
- Students use an additive relationship to find comparative ratios.

Assign the probe after Lesson 8.

Correct Answers: 1. B; 2. A; 3. A; 4. B

Collect and Assess Student Answers

the student selects...
2. C
3. C

1. B
2. A

the student likely...

found the difference between the two quantities in the ratio.
Example: For Exercises 2 and 3, the student chooses equivalent. because both ratios in each question have the same difference.
added the number of items in one ratio to make it equivalent to the other, and added that same amount to the dollar amount.

Example: For Exercise 1, the student chooses B, the correct answer, but reasons that B is equivalent to $\$ 12$ for 2 pounds by adding 1 to each term.

Example: For Exercise 4, the student determines that A is equivalent to $\$ 28$ for 6 shirts by adding 3 to each term.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- © ALEKS' Ratios, Proportions, and Measurements
- Lesson 7, Examples 1-2
- Lesson 8, Examples 1-2

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

What Vocabulary Will You Learn?	
Check the box next to each vocabulary term that you may already know.	
\square double number line	\square ratio table
\square - equivalent ratios	\square scaling
\square part-to-part ratio	\square unit price
\square part-to-whole ratio	\square unit rate
\square rate	\square unit ratio
$\square \mathrm{ratio}$	

What Vocabulary Will You Learn?

E[LI As you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define Equivalent ratios are two ratios that express the same relationship between two quantities.

Example $12: 6$ is equivalent to $20: 10$
Ask What is an equivalent ratio to $9: 81$? Sample answers: $6: 54,5: 45$, 12:108

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- multiplying and dividing whole numbers
- understanding a fraction as part of a whole
- finding equivalent fractions

D ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Ratios, Proportions, and Measurements topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

Growth Mindset vs. Fixed Mindset

Everyone has a core belief or mindset about how they learn. People with a growth mindset believe that they can grow their intelligence through hard work. Those with a fixed mindset believe that while they can learn new things, they cannot increase their intelligence. When a student approaches school, life, and the future workplace with a growth mindset, they are more likely to persevere through challenging problems, learn from their mistakes, and ultimately learn concepts in a deeper, more meaningful way.

How Can I Apply It?

Assign students rich tasks, such as the Explore activities, that can help them to develop their intelligence. Encourage them with the thought that each time they learn a new idea, neurons fire electric currents that connect different parts of their brain!

Learn Understand Ratios

Objective

Students will understand the concept of a ratio and how a ratio can be used to compare two quantities.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to attend to the value given for lemon juice and compare it to the total number of cups of lemonade.
As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of the quantities and how changing them might affect the flavor of the lemonade.

Teaching Notes
 SLIDE2:

Have students study the bar diagram to understand how the values in the table are used to make an additive comparison of cups of lemon juice to total cups of lemonade. Point out that this recipe makes 10 cups of lemonade. Suppose the quantities in the recipe are doubled in order to make 20 cups of lemonade. Ask students if there will still be 8 more cups of lemonade than cups of lemon juice. Students should use reasoning to determine that there would be 4 cups of lemon juice to make 20 cups of lemonade, which means there are 16 , not 8 , more cups of lemonade than lemon juice if the recipe is doubled. The additive comparison of 8 more cups of lemonade than cups of lemon juice is only true for this first batch.
(continued on next page)

Interactive Presentation

Learn, Understand Ratios, Slide 2 of 4

LESSON GOAL

Students will understand the concept of a ratio.

1 LAUNCH

Launch the Lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Compare Two Quantities

Learn: Understand Ratios
Example 1: Understand Ratios
Learn: Part-to-Whole and Part-to-Part Ratios
Example 2: Part-to-Whole Ratios
Example 3: Part-to-Part Ratios
Apply: Fundraising

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	TAB	
AriveMATH Take Another Look	\bullet		
Extension: The Golden Ratio		\bullet	0
Collaboration Strategies	\bullet	\bullet	

Language Development Support

Assign page 1 of the Language Development Handbook to help your students build mathematical language related to understanding ratios and ratio language.
FElill You can use the tips and suggestions on page T 1 of the handbook to support students who are building English proficiency.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by solving problems by understanding the concept of a ratio.
Standards for Mathematical Content: 6.RP.A. 1
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5

Coherence

Vertical Alignment

Previous

Students understood a fractionas part of a whole, and fraction equivalence.

5.NF.B. 3

Now

Students understand the concept of a ratio.

6.RP.A. 1

Next
Students will use ratio tables and double number lines to find equivalent ratios.
6.RP.A.3, 6.RP.A.3.A

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of ratios and ratio language to describe the relationship between two quantities. They come to understand that ratios can be part-to-whole and part-to-part and write ratios in different forms that express different ratio relationships. They apply their understanding of ratios to solve real-world problems.

Mathematical Background

A ratio is a comparison between two quantities, in which for every a units of one quantity, there are b units of another quantity. The phrases for every and for each are used to define and describe ratios. Ratios can be written in different ways and can be modeled using bar diagrams and other representations. A part-to-whole ratio compares one part of a group to the whole group. A part-to-part ratio compares one part of a group to another part of the same group.

Interactive Presentation

Warm Up

Launch the Lesson

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- solving word problems (Exercises 1 and 2)

Answers

1A. total of 15 items; equally divided
1B. number of items each charity receives
1C. 5 items
1D. Multiply 5 by 3 to check that the total is 15 .

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about ratios and their real-world applications.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- What are some everyday examples of where you might have heard the term ratio before? Sample answers: The ratio of wins to losses for a basketball team, the ratio of boys to girls in a class, the ratio of teachers to students at a school.
- What part of speech is the term part-to-part? If you knew that a ratio is a comparison of two quantities, what kind of ratio do you think is a part-to-part ratio? adjective; Sample answer: A part-to-part ratio is a special kind of ratio that might compare one part of a group to another part of the same group.
- What part of speech is the term part-to-whole? What kind of ratio do you think is a part-to-whole ratio? adjective; Sample answer: A part-to-whole ratio is a special kind of ratio that might compare one part of a group to the total.

Explore Compare Two Quantities

Objective

Students will use Web Sketchpad to explore how to maintain the same relationship between two quantities as one of the quantities changes.

(1) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to discuss why or why not the bus moves if there are 2 teachers.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with various scenarios of the number of students and teachers on different buses and determine how many additional students or teachers need to be added in order to maintain the relationship of 1 teacher for every 8 students.

(Q) Inquiry Question

How can you use reasoning to maintain the same relationship between two quantities as one of the quantities changes? Sample answer: As one of the quantities changes, I can reason about how the relationship between the quantities must remain the same. For example, if the relationship between students and teachers is 1 teacher for every 8 students, then if there are 24 students, that means there are 3 groups of 8 students, and each group needs a teacher chaperone. So, 3 teachers are needed.

Wo Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

Mathematical Discourse

How many teachers did you place on the bus? Did the bus move? Why do you think the bus either moved or did not move? Sample answer: I placed two teachers on the bus and the bus moved, because the relationship 1 teacher for every 8 students is maintained. If there are 16 students, that is two groups of 8 students, and one teacher is needed to chaperone each group.

Interactive Presentation

Compare Two Quantities
©) Introctacing the Ingutry Ouention

Explore, Slide 1 of 6

Explore, Slide 3 of 6
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how to maintain the same relationship between two quantities as one of the quantities changes.

Interactive Presentation

Explore, Slide 5 of 6

TYPE

a
On Slide 6, students will respond to the Inquiry Question and can view a sample answer.

Explore Compare Two Quantities (continued)
 Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to use reasoning about the relationship between the number of teachers and students and what it means to maintain that relationship as the number of students or number of teachers changes. In order to maintain the relationship of 1 teacher for every 8 students, encourage them to think about groups of 8 students. If there are two groups of 8 students (16 students), then two teachers are needed. For every group of 8 students, one teacher is needed.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!

SLIDE5

Mathematical Discourse

How many teachers did you place on the bus? Did the bus move? Why do you think the bus either moved or did not move? Sample answer: I placed three additional teachers on the bus and the bus moved, because the relationship 1 teacher for every 8 students is maintained. If there are 32 students, that is four groups of 8 students, and one teacher is needed to chaperone each group. This is a total of four teacher chaperones.

Talk About It! If you did not maintain the same ratio of lemon
juice to total cups of lemonade when making 2 or 3 batches, what might happen to your lemonade? Justify your response.
Sample answer: If there is too much lemon juice, the lemonade might be the lemonade might be enough, it might be too enough
sweet.

4 Module 1. Ratios and Rates

Interactive Presentation

Learn, Understand Ratios, Slide 3 of 4

Another way to make a comparison is to use a ratio. A ratio is a comparison between two quantities, in which for every a units of one quantity, there are b units of another quantity. The phrases for every and for each are used to define and describe ratios.
The relationships between the quantities of ingredients in recipes quantities oxemples of ratios. To make one batch of lemonade 10 cups, you need 2 cups of lemon juice

To make two batches of lemonade, 20 cups, how many cups of lemon juice will you need?

To make three batches of lemonade, 30 cups, how many cups of lemon juice will you need?

Triple the quantities of lemon juice and lemonade to maintain the same ratio. Each section represents 3 cups. Y ou need 6
of lemon fuice.
p.c..... 30 total cups of lemonade of lemon juice.

No matter how many batches are made, there are always 2 cups of lemon juice for every 10 cups of lemonade in the recipe. This confirms the same relationship between cups of lemon juice and cups of lemonade is maintained.

[^1]1 CONCEPTUAL UNDERSTANDING

Learn Understand Ratios (continued)

Teaching Notes SLIDE 3

Students will learn that using a ratio is another way to compare quantities. You may wish to have students move through the slides that show how the bar diagrams can be used to compare the number of cups of lemon juice to the total number of cups of lemonade as the number of batches increases. Ask students the following questions.

- Why is the number of sections representing lemon juice and lemonade the same for each bar diagram? Sample answer: By keeping the number of sections the same, I can be sure that the ratio relationship between the two quantities is maintained.
- Why does the number labeled inside each section increase for each batch? What does this number represent? Sample answer: The number labeled inside each section indicates the number of cups each section represents, whether or lemon juice or lemonade. As the number of batches increases, this number increases.

Go Online to find a sample answer for the Talk About lt! question on Slide 4.

DIFFERENTIATE

Have students practice using the phrases for every and for each when describing ratio relationships. Students may be unsure when to use for every and when to use for each. $\quad \mathrm{bu}$ may wish to point out that the phrase for every is used when the second quantity is plural, and for each is used when the second quantity is singular. Some examples are shown. - For each cup of simple syrup, there are 2 cups of lemon juice.

- For every 2 cups of lemon juice, there are 7 cups of water.

Knowing when to use each versus every can be confusing even among fluent English language speakers. Allow students space to make mistakes; the most important concept for them to grasp is the reasoning behind why these phrases are used when describing ratio relationships. Have students work with a partner to respond to the following questions, given the scenario presented in the Learn.

- Consider the phrase for every 2 cups of lemon juice, there are 10 cups of lemonade. Why do you think the phrase for every is necessary here? Sample answer: Without using for every, the relationship might not be maintained when making more batches of lemonade. By using for every, it is defining the connection between lemon juice and lemonade that persists for any number of batches.
- Write your own sentences comparing the quantities in the recipe that being with for every or for each. Sample answers given. For every 2 cups of lemon juice, there is 1 cup of simple syrup. For each cup of simple syrup, there are 7 cups of water.
For every 7 cups of water, there are 10 total cups of lemonade.

Example 1 Understand Ratios

Objective

Students will use reasoning to determine if the same ratio is maintained.

Questions for Mathematical Discourse

SLIDE 2
ALI What is a ratio? Sample answer: A ratio is a comparison between two quantities, in which for every a units of one quantity, there are b units of another quantity.

Ol. Use ratio language to describe Pedro's original ratio of blue paint to yellow paint. For every 2 containers of blue paint, there are 3 containers of yellow paint.

IBLI A classmate wrote the ratio of blue paint to yellow paint as $3: 2$. Is this correct? Explain. no; Sample answer: The ratio is defined as comparing blue paint to yellow paint, so the ratio is 2:3.
[3.1 In what context might it be correct to use the ratio $3: 2$ in this example? Why is it important to define the quantities used in a ratio? Sample answer: If you define the ratio as comparing yellow paint to blue paint, you can use the ratio $3: 2$. It is important to define the quantities you are using in a ratio, so that you know which number represents which quantity. The first quantity in the comparison is the first number in the ratio.

SLIDE 3

By what number can you multiply the original amount of blue paint to get the new amount of blue paint? Explain your reasoning. 2; Sample answer: The original amount of blue paint was 2 containers and the new amount is 4 containers, so the original is multiplied by 2 .

OL. What might be undesirable with the shade of the paint if Pedro uses the ratio of blue paint to yellow paint of $4: 5$? Sample answer: The paint could have more of a bluish tone than he likes.

BL. If Pedro has 12 gallons of yellow paint, how many gallons of blue paint does he need to mix with the yellow paint in order to maintain the ratio? Explain your answer. 8 gallons; Sample answer: Since 12 is 3×4, multiply 2 by 4 to obtain the number of gallons of blue paint needed to maintain the ratio.

(3)
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

A Example 1 Understand Ratios
 realized he did not have enough paint, so he added two more sample containers of each color. Will the new mixture result in the same shade of green? Justify your response.
To create his favorite shade of
To create his favorite shade of green, Pedro used a ratio of 2 to
For every 2 containers of blue paint, there are 3 containers
of yellow paint.

of each color. The ratio of blue paint to yellow paint in the new mixture is 4 to 5 .

The amount of blue paint in the new mixture is twice that of Pedro's favorite shade. To maintain the same ratio, the amount of yellow paint should also be twice that of his favorite shade. Because $3 \times 2 \neq 5$, the ratio was not maintained. The resulting shade of green will not have ratio was not maintained. The resulting shade of green
enough yellow in it to match Pedro's favorite shade.

If Pedro adds one more container of yellow paint to his create his favorite shade of green.

\section*{What Pedro Should Do} -blue paint | $1 \mid 11$ | $11 \mid 11$ | 11 | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |

Check
A recipe for rice calls for 6 cups of water and 3 cups of uncooked rice. Trinity only has 2 cups of uncooked rice. She reasons that because she subtracted 1 cup of rice, she needs to use a total of $6-1$, or 5 cups of water. Is her reasoning correct? Explain. no; Sample answer: Trinity incorrectly assumed the recipe indicated an additive relationship. For every 3 cups of rice, there are 6 cups of water. To cook 2 cups of rice, Trinity needs to use a total of 4 cups of water, because the number of cups of water is twice the number of cups of rice.

Think About It How will you begin solving the problem? What are some other What are some other make his mixture and still end up with his favorite shade of green?

Sample answer: He could use 1 gallon of blue paint and $1 \frac{1}{2}$ gallons of yellow

paint.

esson 1-1. Understand Ratio

Interactive Presentation

Example 1, Understand Ratios, Slide 3 of 5
On Slide 3, students move through the
steps to compare the ratios.

Interactive Presentation

Learn, Part-to-Whole and Part-to-Whole Ratios, Slide 1 of 3

FLASHCARDS

On Slide 1, students use Flashcards to learn about part-to-whole ratios.

FLASHCARDS

On Slide 2, students use Flashcards to learn about part-to-part ratios.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Learn Part-to-Whole and Part-to-Part Ratios

Objective
Students will understand the different kinds of ratios that can be used to compare quantities (part-to-whole and part-to-part).

(1). Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to attend to the meaning of each type of ratio. You may wish to have them describe other scenarios in which each type of ratio can be used.

Teaching Notes
 \section*{SIDE1}

Students will learn the definition of part-to-whole ratio. You may wish to have a volunteer use the Flashcards that illustrate how to model and write part-to-whole ratios of the cups of lemon juice to the cups of lemonade. Encourage students to understand the correspondences between the bar diagram, words, and ratio notation.

SLIDF2

Students will learn the definition of part-to-part ratio. You may wish to have a student volunteer use the Flashcards that illustrate how to model and write part-to-part ratios of the cups of lemon juice to the cups of water. Have students compare and contrast part-to-whole and part-to-part ratios.

Talk About It!

SLIDE2

Mathematical Discourse

Using the same recipe, write another ratio in which fraction notation would not be the best notation to use to represent the relationship. Explain. Sample answer: lemon juice to simple syrup; This ratio is a part-to-part relationship and fractions are used to represent part of a whole.

SLIDE 3

Mathematical Discourse

No matter how many batches of lemonade are made, will there always be 2 cups of lemon juice for every 7 cups of water? Justify your response. yes; Sample answer: When making batches of lemonade, the ratio relationship will always be maintained. So, if you make 2 batches, there will be 4 cups of lemon juice and 14 cups of water.

Example 2 Part-to-Whole Ratios

Objective

Students will write and use a part-to-whole ratio to find a new value for one quantity when the other quantity changes.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically In Step 2, encourage students to use the bar diagram to determine how many flowers each bar represents.

Questions for Mathematical Discourse

SIDE 2

Aㄴ.. What is the ratio of tulips to total flowers? 4 to 12 or 4 : 12
AL. How do we know that we need to use a part-to-whole ratio? Sample answer: The number of tulips is part of the total number of flowers.

OL How many flowers does each section represent? Each section represents 1 flower.
18. A classmate drew a bar diagram with 2 sections representing tulips and 6 sections representing total flowers. Is this a correct representation? Explain. How many flowers would each section represent? yes; Sample answer: If each section represents $\frac{1}{2}$ flower, the bar diagram correctly represents the ratio.
Can the ratio of tulips to total flowers be written using numbers that are less than 2 and 6 ? What is the ratio using these numbers? yes; Sample answer: 1 to 3 or 1:3.

Go Online

- Find additional teaching notes and the Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Part-to-Whole Ratios, Slide 2 of 4
On Slide 2, students move through the
steps to use ratio reasoning to determine
the number of flowers in the large vase.

Interactive Presentation

Example 3, Part-to-Part Ratios, Slide 2 of 4
On Slide 2, students move through the
steps to use ratio reasoning to determine
the number of blueberry muffins in the
large box.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 3 Part-to-Part Ratios

Objective
Students will write and use a part-to-part ratio to find a new value for one quantity when the other quantity changes.

Questions for Mathematical Discourse

SLIDE 2

Al How do you know a part-to-part ratio is needed? Sample answer: The number of blueberry muffins is part of the whole and the number of chocolate muffins is another part of the same whole.

OL Suppose a classmate said that for every 3 chocolate muffins, there are 2 blueberry muffins. Is this correct? Explain. yes; Sample answer: The ratio of chocolate muffins to blueberry muffins is $3: 2$.
[BI․ Is it possible to create a box with 7 blueberry muffins and maintain the same ratio? no; Sample answer: The ratio of blueberry muffins to chocolate muffins is $2: 3$, to have 7 blueberry muffins you need to multiply by $3.5(2 \times 3.5=7)$. Multiplying 3×3.5 is 10.5 , or $10 \frac{1}{2}$ muffins, and you need a whole number of muffins.

1

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Enrichment Activity Bㅡㄴ

Two rectangles are similar if the ratio of the width to the length is the same for each rectangle. Have students find the ratio of the width to the length for each of the following rectangles.

Rectangle	Width (units)	Length (units)	
A	4	3	$4: 3$
B	4	6	$4: 6$
C	12	9	$12: 9$
D	6	9	$6: 9$
E	3	4	$3: 4$

1. Which rectangles are similar? Explain. A and C, B and D; Sample answer: The ratio of the width to the length for Rectangles A and C is $4: 3$ and the ratio of the width to the length for Rectangles B and D is 2:3.
2. The ratio of the length to the width for a rectangle is $3: 5$. What are possible dimensions of a rectangle that is similar to this one? Sample answer: width 6 in., length: 10 in.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Fundraising

Objective

Students will come up with their own strategy to solve an application problem involving fundraising.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- Do the amounts of the other ingredients matter in this problem?
- How many servings of granola do you expect to sell?
- How many cups of granola are included in each serving?

(2)
 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Fundraising
CHECK
-17 Students complete the Check exercise move on.

Interactive Presentation

Exit Ticket

Essential Question Follow-Up

How can you describe how two quantities are related? In this lesson, students learned how to compare two quantities by using a ratio. Encourage them to discuss with a partner why different kinds of ratios (part-to-part and part-to-whole) might be used in different situations.

Exit Ticket

Refer to the Exit Ticket slide. Look around your classroom. Write two ratios, one part-to-whole and one part-to-part, that compare the quantities of two objects or people. Sample answer: The ratio $12: 26$ represents the part-to-whole ratio of boys to total students in my class. The ratio 12 : 14 represents the part-to-part ratio of boys to girls in my class.

ASSESS AND DIFFERENTIATE

(117) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1-9 odd, 10-13
- Extension: The Golden Ratio
- ALEKS' Ratios and Unit Rates

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-6, 8, 11, 12
- Extension: The Golden Ratio
- Personal Tutor
- Extra Examples 1-3
- ALEKS Ratios and Unit Rates

IF students score 65\% or below on the Checks,
THEN assign:

- ArriveMATH Take Another Look
- D ALEKS Ratios and Unit Rates

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form A
[8] Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
2	determine whether or not ratio relationships are maintained	1,2
2	use part-to-whole ratios to solve problems	3,4
2	use part-to-part ratios to solve problems	5,6
2	extend concepts learned in class to apply them in new contexts	7
3	solve application problems involving ratios	8,9
3	higher-order and critical thinking skills	$10-14$

Common Misconceptions

When writing a ratio that uses the whole group as the second quantity, some students will fail to include the first quantity in the total. In Exercise 3, students are asked for the ratio of the number of cups of orange juice to the total number of cups of juice. The total number of cups of juice is $\mathbf{4 1 +}$ $2+2=9$, but if students do not include the cups of orange juice (2) in their total, then they will think the ratio is instead of $\frac{2}{9}$. Encourage students to examine each ratio they write and be able to interpret it within the context of the problem.
Name ${ }^{-}$Period Go Online Y ou can complete your homework online

1. In Suri's coin purse, she has 6 dimes and 4 quarters. Martha has 5 dimes and 3 quarters. Suri thinks that the ratio of dimes to quarters in both purses is the same because they each have 2 more quarters than dimes. Is the same ratio of dimes to quarters maintained? Justify your response. (Example 1)
no; Sample answer: Suri's ratio is $6: 4$ and Martha's is $5: 3$.
2. Riley needs to make fruit punch for the family reunion. One batch of punch has the 27 cups, how many cups of orange she need to keep the ratio in a full punch she need to keep the ratio in a full punch

Item
Cranberry Juice
Lemon Lime Soda
Orange Juice
Pineapple Juice
cups
cur

5. Mrs. Santiago is buying doughnuts for her office. Each box contains 6 glazed, 4 cream filled, and 2 chocolate flavored doughnuts. If there were 20 total cream filled doughnuts, many chocolate doughnuts did she buy? (Example 3)
10 chocolate doughnuts
6. correctly out of 10 turns in the game. He then answered the next three questions correctly. He reasoned that because he added to both the total questions and his correct responses, that the ratio of correct answers to total questions remained the (Example
no; Sample answer: His original ratio was $8: 10$ and his new ratio is $11: 13$. The ratios are not the same
7. A small fruit basket contains the fruits shown. A large basket has the same ratio of has 42 total pieces of fruit how

9 pieces
8. A small batch of trail mix contains 2 cups of raisins, 2 cups of peanuts, 1 cup of sunflower seeds, and 1 cup of chocolate coated candies. A large batch has the same ratio ingredients as a small batch. If the large cups of sunflower seeds are in a large batch? (Example 3) 4 cups
T est Practice
9. Open Response A football coach needs to divide 48 players into two groups. He wants the ratio of players in Group 1 to players in Group 2 to be 1 to 3 .
How many players will be in Group 2?
36 players

Apply "indicates multi-step problem
8. To make a homemade all-purpose household cleaner, you can mix ingredients shown in the table. Samuel has 1 cup of rubbing alcohol and will use the entire amount. He plans to store the cleaning solutio in containers that each hold a maximum of 6 cups. How many containers does he need? Write an argument to defend your solution 6 containers; Sample answer: The total solution will include 2 cups vinegar, 1 cup rubbing alcohol, and 32 cups water, which is a total of 35 cups. Five containers will hold 5×6, or 30 cups of solution. He will need a sixth container to hold the remaining 5 cups of solution.
"9. The table shows the ingredients needed to make one batch of homemade slime. Dodi has 2 cups of liquid starch and will use the entire amount. She plans to store the slime in containers that each hold a maximum of 6 fluid ounces. How

Ingredient	Amount (iी oz)
Glue	4
Liquid Starch	4
Water	4

your solution. (Hint: 2 cups $=16$ fluid ounces)
8 containers; Sample answer: She has 2 cups, or 16 fluid ounces, of liquid starch. She will make 8 containers; Sample answer: She has 2 cups, or 16 fluid ounces, of liquid starch. She will make
$16 \div 4$, or 4 batches of slime. Each batch makes 4×3, or 12 fluid ounces, so she will make a $16 \div 4$, or 4 batches of slime. Each batch makes 4×3, or 12 fluid ounces, so she will make a
total of 48 fluid ounces of slime. If each container holds 6 fluid ounces, she needs $48 \div 6$, or total of 48 fluid
0 Higher-Order Thinking Problems
10. Find the Error The ratio of quarts of white paint to red paint is $3: 4$. A student says that to maintain the same ratio, he will need 7 quarts of white paint if he has 8 quarts of red paint, because originally there was one more quart of red paint than worrect it correct it
Sample answer: The student misinterpreted the ratio of white paint to red paint as an additive comparison. He should think of the ratio $3: 4$, meaning that for every 3 quarts of white paint, there are 4 quarts of red paint. So, for 8 quarts of red paint, there should be 6 quarts of white paint.
12. Create Write your own real-world problem involving part-to-whole or part-to-part ratios. Trade problems with a partner and solve each other's problem. Discuss with your partner how your knowledge of ratios helped you solve each problem.
See students' responses.

All-Purpose Cleaner

1 cup vinegar
$\frac{1}{2}$ cup rubbing alcohol
1 gallon water (16 cups)
11. Justify Conclusions Rowan found that 4 out of 28 students in her class bike to school. What is the ratio of students that bike to school to the number of students that do not bike to school? Write an rgunis to defend your solution.
4: $\mathbf{2 4}$; Sample answer: If 4 students bike to school, then $28-4$ or 24 students do not bike to school. The ratio is $4: 24$.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 10, students will construct an argument to explain why the student incorrectly determined the number of quarts of white paint.
In Exercise 11, students will find the ratio of the number of students that bike to school to the number of students that do not bike to school and will justify their response by presenting a reasoned defense.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Interview a student.

Use with Exercises 8-9 Have pairs of students interview each other as they complete these application problems. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 9 might be, "What is the total number of fluid ounces needed?"

Make sense of the problem.

Use with Exercise 10 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student added 4 quarts to both the red and white paint.

1 CONCEPTUAL UNDERSTANDING

Learn Equivalent Ratios and Ratio Tables

Objective

Students will understand what it means for two ratios to be equivalent and how a ratio table can be used to display and find equivalent ratios.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others, 5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 3, encourage them to make a plausible argument for why it might be more useful to use a ratio table instead of a bar diagram.

Teaching Notes

SUDE 1
Present students with the ratio relationship for every two cups of Greek yogurt in a pizza dough recipe, there are three cups of self-rising flour. Ask them how the ratio table displays this ratio relationship. You may wish to have them identify the three ratios that are displayed by the bar diagrams: $2: 3,4: 6$, and $6: 9$. Point out that these ratios are equivalent because they represent the same ratio relationship. Ask students how they can find the ratio $6: 9$ if they know the ratio $2: 3$. Students should note that they can multiply the flour quantity by 3 and the yogurt quantity by3. This concept is known as scaling. You may wish to ask students to use scaling to generate other ratios that represent this relationship.

Talk About It!

SLIDE 1

Mathematical Discourse

How do the bar diagrams show that the ratio $2: 3$ is maintained? Sample answer: In each bar diagram there are 2 sections representing Greek yogurt and 3 sections representing flour.
(continued on next page)

Interactive Presentation

Learn, Equivalent Ratios and Ratio Tables, Slide 1 of 3
Cuck
On Slide 1, students select the buttons to show the equivalent ratios.

Tables of Equivalent Ratios

LESSON GOAL

Students will use tables to find equivalent ratios.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Explore: Equivalent Ratios

Learn: Equivalent Ratios and Ratio Tables
Example 1: Scale Forward to Find Equivalent Ratios
Example 2: Scale Backward to Find Equivalent Ratios
Example 3: Scale in Both Directions
Example 4: Use a Double Number Line to Find Equivalent Ratios
Apply: Packaging
Have your students complete the Checks online.

3

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 2 of the Language Development Handbook to help your students build mathematical language related to tables of equivalent ratios.
GLLL You can use the tips and suggestions on page T 2 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by solving problems by writing ratios to compare quantities.
Standards for Mathematical Content: 6.RP .A.3, 6.RP.A.3.A
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP7, MP8

Coherence

Vertical Alignment

Previous

Students understood the concept of a ratio.
6.RP.A. 1

Now

Students use tables to find equivalent ratios.
6.RP.A.3, 6.RP.A.3.A

Next

Students will use graphs to represent ratio relationships.
6.RP.A.3, 6.RP.A.3.A

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of ratios as they explore ratio equivalence using ratio tables. They use the tables to build fluency with finding equivalent ratios by scaling forward or backward to find the desired ratio. They apply their understanding of equivalent ratios to solve real-world problems.

Mathematical Background

Equivalent ratios express the same ratio relationship between quantities. You can organize a collection of equivalent ratios into a table, called a ratio table. You can use tables and scaling, which is the process of multiplying or dividing each quantity in a ratio by the same number in order to generate equivalent ratios. Sometimes, it is beneficial to scale forward to find a desired equivalent ratio. Other times, it is beneficial to scale backward, and sometimes, you may need to scale in both directions.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary wan You Learn?

double number line

equifulient ratios

miso table

sealing

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- multiplying and dividing whole numbers (Exercises 1-5)

Answers

1. 60
2. 42
3. 9
4. 9
5. 3 favors

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about adjusting recipes in order to serve different numbers of people.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standard? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Based on what you know about number lines, for what do you think a double number line might be used? Sample answer: A double number line could be used to compare quantities in a ratio, similar to a bar diagram.
- What do you know about equivalent fractions? How could this help you infer what equivalent ratios are? Sample answer: Equivalent fractions look different but represent the same part of a whole. Equivalent ratios may look different but express the same relationship between two quantities.
- What is a table used for in mathematics? What can you infer about a ratio table? Sample answer: A table is used to organize and display information. A ratio table may organize information related to a specific ratio.
- What are some real-world examples where you might have heard the term scaling before? Sample answer: scaling the side of a mountain, weighing a specific weight

Explore Equivalent Ratios

Objective

Students will use tools to explore equivalent ratios.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About lt! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with the drag and drop activity to help model the number of cups of self-rising flour and yogurt needed to make 1,2 , and 3 pizzas. Students will generalize what they learned and use their observations to determine how to calculate quantities of ingredients for an additional number of pizzas. Students should be familiar with equivalence and the term equivalent from prior grades. In this activity, they will extend their understanding of equivalence to apply it to ratios.

(3) Inquiry Question

How can you use a model to find equivalent ratios? Sample answer: I can use models such as counters or drawings to represent the different values in the ratio and then use multiple sets of these models to find equivalent amounts.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

Record your results in a table. Describe to a classmate how you modeled the number of cups of each ingredient for different numbers of pizzas. Sample answer: I placed 2 of the metal cups and 3 of the glass cups in a group to represent one pizza. Then I added a second group of 2 metal cups and 3 glass cups to represent 2 pizzas. I added a third group to represent 3 pizzas.
(continued on next page)

Interactive Presentation

Explore, Slide 1 of 5

Explore, Slide 2 of 5

DRAG \& DROP

On Slide 2, students drag objects to model the ingredients needed to make 1, 2 , and 3 pizzas.

Interactive Presentation

Explore, Slide 4 of 5

On Slide 4, students explain how to find the amount of each ingredient needed to make 8 pizzas.

TYPE

a
On Slide 5, students respond to the Inquiry Question and view a sample answer.

Explore Equivalent Ratios (continued)

(17) Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Encourage students to use the drag and drop tool to model the simplified problem of making one pizza before considering the ingredients for two or more pizzas.
8 Look For and Express Regularity in Repeated Reasoning Encourage students to notice if any calculations are repeated as they complete the Explore.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About lt! question on Slide 3 is shown.

Talk About It!

SLIDE 3

Mathematical Discourse

The ratios of cups of yogurt to cups of flour are equivalent ratios.
Describe what it means for two ratios to be equivalent ratios.
Sample answer: Equivalent ratios use different numbers to describe the same ratio relationships between two quantities.

A table of equivalent ratios, or ratio table, is a collection of equivalent ratios that are organized in a table. Each column consists of a pair of quantities that have the same ratio as the pairs of quantities in the other columns.

Ratio tables show both an additive structure and a multiplicative structure.

The process of multiplying each quantity in a ratio by the same number to obtain equivalent ratios is called scaling.
Y ou can use scaling to extend the ratio table to find the number of cups of each ingredient needed to make additional pizzas. By doing
so, you find more equivalent ratios. so, you find more equivalent ratios

Continue the pattern by multiplying each of the original quantities by the
same number to obtain the values in the other columns

To make four pizzas, you need 8 cups of Greek yogurt and 12 cups of flour. T o make five pizzas, you need 10 cups of Greek yogurt and 15 cups of flour.
The ratios $8: 12$ and $10: 15$ are equivalent to $2: 3,4: 6$, and $6: 9$.

Interactive Presentation

Learn, Equivalent Ratios and Ratio Tables, Slide 2 of 3

CLICK
On Slide 2, students click to reveal the additive and multiplicative structures of the ratio table.

1 CONCEPTUAL UNDERSTANDING

Learn Equivalent Ratios and Ratio Tables (continued)

Teaching Notes

SLIDE2
Present students with the ratio table showing the relationship between the number of cups of Greek yogurt and the number of cups of flour in the pizza dough recipe. You may wish to have a student volunteer reveal how ratio tables show both an additive structure and multiplicative structure. Encourage students to attend to the differences in structures.

SLIDE3

After revealing the extended ratio table, you may wish to have students continue finding more equivalent ratios. Then ask students to find the cups of Greek yogurt and flour needed to make 13 pizzas and 18 pizzas.

Talk About It!

SLIDE3

Mathematical Discourse

Why might a ratio table be more advantageous to use than a bar diagram when finding the quantity of each ingredient needed to make 5 pizzas? Sample answer: A ratio table can easily be extended to find equivalent ratios. Drawing bar diagrams can become cumbersome with larger values.

DIFFERENTIATE

Enrichment Activity sil

To challenge students' understanding of ratio tables, ask students to identify several other flour and yogurt ratio relationships that could appear in the table presented in the Learn, if it was extended.

Greek Yogurt	2	4	6
Self-rising flour	3	6	9

Sample answers: 8 cups of yogurt and 12 cups of flour, 10 cups of yogurt and 15 cups of flour, 12 cups of yogurt and 18 cups of flour

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION
Example 1 Scale Forward to Find Equivalent Ratios

Objective

Students will scale forward to find equivalent ratios.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively, 5 Use Appropriate Tools
Strategically As students discuss the Talk About It! question on Slide 4, encourage them to make sense of the quantities given in the question and to understand how a ratio table with an additive structure can be used to help them solve the problem. Encourage them to see how either representation can be used as a tool to solve this problem.

Questions for Mathematical Discourse

SLIDE 2

Al How many drops of yellow correspond with 2 cups of icing? 6 drops

AL How many cups of icing correspond with the unknown value you are trying to find? 8 cups
0) Do you expect to need more than or less than 6 drops of yellow food coloring? Explain. more than 6 drops; Sample answer: 8 cups of icing is more than 2 cups, so the number of drops used for 8 cups of icing is more than the 6 drops used for 2 cups of icing.

Bla Based on the equivalent ratio, how many cups of white icing should be mixed with 60 drops of yellow food coloring to make yellow icing? 20 cups

SLIDE 3 :

AL. What number do we scale (multiply) 2 by to obtain 8 ? What does that tell us? 4; This is the number by which we need to multiply 6 drops of yellow.

Explain how you know that the number of drops of yellow will be greater than 18 . Sample answer: $2 \times 3=6$ and $6<8$; The number by which I would multiply 6 drops of yellow must be greater than 3 , which would yield a product greater than 18.
How many cups of icing are needed if 84 drops of yellow food coloring are used? Explain. 28; Sample answer: Multiply 6 by 14 to obtain 84 drops. Multiply 2 cups of icing by 14 to obtain 28 cups.

(6) Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 1 Scale Forward to Find Equivalent Ratios

To make yellow icing, Amida mixes 6 drops of yellow food coloring with $2_{\text {cups }}$ of white icing.

How many drops of yellow food coloring should Amida mix with 8 cups of white icing to get the same shade of yellow?

Step 1 Create a ratio table with the given information.
For every 6 drops of yellow food coloring, there are 2 cups of icing. The unknown is the number of drops of yellow needed to mix with 8 cups of icing.

Step 2 Scale forward to find how many drops of yellow Amida needs to mix with 8 cups of icing.

Ogo Online Y ou can complete an Extra Example online.

Think About It! Should Amida add less
than, more than, or the same number of drops, 6, of yellow food coloring to mix with the 8 cups of icing? Why?
more than; Sample answer: $\mathbf{8}$ cups >2 cups, so she should add more than 6 drops.
(3) Talk About It! How you can use a How you can use a
ratio table that show an additive structure to solve this problem? Which structure, additive or multiplicative structure is more advantageous to use in this case? Explain.
Sample answer: Se up a table with the same row labels. The same row labels. The 6 first column will be 6 drops of yellow for 2 cups of icing. Add 6 drops of yellow and 2 cups of icing until the number of drops of food coloring is fou for 8 cups of icing. Using a multiplicative structure requires fewer operations than using an additive structure.

Interactive Presentation

Example 1, Scale Forward to Find Equivalent Ratios, Slide 2 of 5

Interactive Presentation

Example 2, Scale Backward to Find Equivalent Ratios, Slide 2 of 5
On Slide 2, students complete the table
using the given information.

16 Module 1 - Ratios and Rates

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 2 Scale Backward to Find Equivalent Ratios

Objective

Students will scale backward to find equivalent ratios.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantities given in the problem to understand the relationship between the amount of yellow paint and the amount of red paint.

As students discuss the Talk About $l t$! question on Slide 4, encourage them to explain why or why not Akeno is correct.
5 Use Appropriate Tools Strategically Students should understand how a ratio table can be a tool that can help them find equivalent ratios and solve real-world problems.

Questions for Mathematical Discourse
 SLIDE?

AL. How many containers of yellow paint correspond with 4 containers of red paint? 3

Ol How do you know that the ratio of 1.5 to 2 is equivalent to the ratio of 3 to 4 ? Sample answer: I can draw a bar diagram with 3 equalsize sections to represent yellow paint and 4 equal-size sections to represent red paint. If each section represents 0.5 containers, then there are 3×0.5, or 1.5 sections of yellow paint and 4×0.5, or 2 sections of red paint.

BLI Compare and contrast scaling forward and scaling backward to find equivalent ratios. Sample answer: Scaling forward uses multiplication of whole numbers, while scaling backward uses division of whole numbers. Both are used to find equivalent ratios in ratio tables.

AL. What is the operation that is performed in the ratio table, as you move through the slides? Why does that operation make sense? division; Sample answer: In order to find the number of containers of yellow paint needed for 2 containers of red paint, I can divide.

OL. Can you subtract 2 from each quantity and still maintain the same ratio? Explain your reasoning. no; Sample answer: $3-2=1$. The ratio $1: 2$ is not equivalent to the ratio $3: 4$.

BL. Can you use multiplication to scale backward? Explain. yes; Sample answer: Instead of dividing by 2, I can multiply by $\frac{1}{2}$.

0
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Example 3 Scale in Both Directions

Objective

Students will scale in both directions to find equivalent ratios.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of others As students discuss the Talk About It! question on Slide 4, they should be able to construct an argument to explain why scaling back was helpful.

2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantities given in the problem and to understand they can use a variety of scaling approaches (forward and backward) to solve the problem.

Questions for Mathematical Discourse

SLIDE 2

AL. How many fluid ounces of fruit punch are needed to make one batch? How many scoops of ice cream are needed to make one batch? 9 fl oz; 6 scoops

Ol. Is the ratio of fruit punch to scoops of ice cream a part-to-whole ratio or a part-to-part ratio? part-to-part ratio
131. Suppose Natasha wants to make 2.5 batches of punch. How much of each ingredient would she need? 22.5 fl oz of punch, 15 scoops of ice cream, 7.5 L of soda

SLIDE3

Al Is it possible to use a whole number to scale backward from 9 to 6 ? Explain. no; Sample answer: 9 is not evenly divisible by 6 .

OL. By what number could you divide both 9 and 6 to scale back? 3
OL. Why would scaling by 1 not be helpful in this problem? Sample answer: Dividing by 1 does not scale back because the quotient is the original number.Could you scale backward using a decimal? Explain. yes; Sample answer: 9 divided by 1.5 is 6 , so I could also divide 6 by 1.5 to get 4.
[BLI How many scoops of ice cream are needed if Natasha has 15 fluid ounces of fruit punch? 10 scoops

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
a Example 3 Scale in Both Directions
of fruit made raspberry punch for a party by mixing 9 fluid ounces fruit punch, 3 liters of soda, and 6 scoops of raspberry ice cream. Halfway through the party, the punch bowl was empty.

If Natasha only has 6 fluid ounces of fruit punch left, how much ice cream does she need to make another batch of punch? Step 1 Create a ratio table with the given information
For every 9 fluid ounces of fruit punch, there are 6 scoops of raspberry ice cream. The unknown is the amount of ice cream needed to mix with 6 fluid ounces of fruit punch.

Fruit Punch (fil oz)	69	There is no whole number by which you can multiply 6 to
Ice Cream (scoops)	$? 6$	obtain a product of 9.

Step 2 Scale backward to find an equivalent ratio.

Step 3 Use the equivalent ratio you found to scale forward to find the desired equivalent ratio.

the remaining 6 fluid scoops
Check
Refer to Example 3. How many liters of soda should Natasha mix with the 6 fluid ounces of fruit punch?

```
2 liters
```

\qquad

Think About It! Tomix with the remaining amount of fruit punch, will the number of scoops of ice cream that Natasha needs be less than, more than, or equal to 6 ? Explain.
less than; Sample answer: 6 floz < 9 floz , so she will need less than 6 scoops of ice cream.
\square

C Talk About It Why was scaling back ratio 3.2 helpful in solving the problem?

Sample answer: There is no whole number that can be used to scale from 9 to 6 .

\square
\square
\square \square \square \square \square

Interactive Presentation

Example 3, Scale in Both Directions, Slide 3 of 5

Interactive Presentation

Example 4, Use a Double Number Line to Find Equivalent Ratios, Slide 3 of 5
On Slide 3, students move through the
slides to determine the number of cups
of flour.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
Example 4 Use a Double Number Line to Find Equivalent Ratios

Objective

Students will use a double number line to find equivalent ratios.

Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Students should create a double number line so that the coordinated quantities on the number lines are equivalent ratios. They should be able to use the double number line to find the quantity that coordinates with 18 biscuits.

Questions for Mathematical Discourse

SLIDE 2

AL What does the top number line represent? the bottom number line? the cups of flour; the number of biscuits

OL What is the ratio of cups of flour to total biscuits? $4: 24$
OL. What number on the top number line coordinates with 24 on the bottom number line? 4

BL. What equivalent ratio will you use to find the number of cups of flour needed to make 18 biscuits? Explain. 1 : 6; Sample answer: I need to scale the ratio $4: 24$ backwards to the equivalent ratio $1: 6$ to find the cups of flour needed to make 18 biscuits.

SLIDE 3

AL.Do you need to scale backwards or forwards to solve the problem? backwards

OL What increments should be used on the bottom number line? Explain. increments of 6; Sample answer: I need to include 18 on the bottom number line. Both 24 and 18 are divisible by 6 , so 1 should label the number line in increments of 6 .

OL What increments should be used on the top number line? Explain. increments of 1 ; Sample answer: I need the same number of tick marks on the top number line as are on the bottom number line, so they should be labeled by ones.

BL Suppose Portia only wanted to make 15 biscuits. How could you set up the double number line to find how many cups of flour she needs? Sample answer: The bottom number line should be labeled with increments of 3 , and the top with halves. She would need $2 \frac{1}{2}$ cups of flour.

(Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Packaging

Objective

Students will come up with their own strategy to solve an application problem involving determining the cost of a bag of marbles.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How many total marbles are in the small bag?
- How can you write a ratio to help solve the problem?
- If you only know the number of green marbles, how can you use ratios to determine the number of blue, red, and orange marbles?

Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Packaging

A toy store sells assorted marbles, sold in small or large bags. The table shows the number of each color of marble in the small bag. The manager of the store wants to maintain the same ratio of each color of marble in the large bag as in the small bag. Each marble costs 20 cents. If the large bag contains 20 green marbles, how much

Color Quantity	
Blue	14
Red	12
Green	8
Orange	6

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.
First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

\$20; See students' work.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend
your solution.
See students' arguments.

Interactive Presentation

Apply, Packaging

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Check
The table shows the number of slices of turkey and cheese in the regular T otally Turkey Sandwich at Dave's Deli.

The ingredients are doubled in the large Totally Turkey Sandwich. On Wednesday, three times as many customers ordered the regular sandwich as the large sandwich. If 27 customers ordered the regular sandwich, how many total slices of turkey were used to make the sandwiches that day?

135 slices of turkey

Ogo Online You can complete an Extra Example online.
(\$) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

20 Module 1. Ratios and Rates

Interactive Presentation

Exit Ticket

(ii) Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could describe how ratio tables are used to find equivalent ratios. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

How can you describe how two quantities are related?
In this lesson, students learned how to use tables and scaling to find equivalent ratios. Encourage them to discuss with a partner how equivalent ratios, such as $\frac{8 \text { cats }}{12 \text { dogs }}$ and $\frac{4 \text { cats }}{6 \text { dogs }}$, describe the same relationship between the two quantities.

Exit Ticket

Refer to the Exit Ticket slide. If a recipe serves 6 people and requires $1 \frac{1}{2}$ cups of flour, how much flour do you need if you are serving 15 people? Write a mathematical argument that can be used to defend your solution. $3 \frac{3}{4}$ cups of flour; Sample answer: If the recipe serves 6 people and requires $1 \frac{1}{2}$ cups of flour, this means that I will need $\frac{1}{4}$ cup of flour for every person. To serve 15 people, I will need $3 \frac{3}{4}$ cups of flour.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1-9 odd, 10-13
- D ALEKS Ratios and Unit Rates

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-7, 9, 11, 13
- Personal Tutor
- Extra Examples 1-4
- DALEKS Equivalent Fractions

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATH Take Another Look
- \quad ALEKS Equivalent Fractions

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK \mathbf{T}	opic	Exercises
2	use scaling to find equivalent ratios	$1-7$
2	extend concepts learned in class to apply them in new contexts	8
3	solve application problems involving equivalent ratios	9
3	higher-order and critical thinking skills	$10-13$

Common Misconception

When using scaling to determine whether or not two ratios are equivalent, students may have difficulty in determining whether they need to scale forward, backward, or both. Remind students that when using scaling, they should look at the relationship between the values. If you can multiply the original value by a whole number to obtain the new value, then you can scale forward. If you need to divide the original value by a whole number to obtain the new value, then you can scale backward. If you cannot multiply or divide the original value to obtain the final value, then you might need to multiply and then divide or vice versa in order to find the desired ratio.

Apply *indicates multi-step problem
*9. The table shows the items in a family chicken taster meal at a restaurant. The restaurant wants to create a larger meal to accommodate larger groups of people. They also want to limit the number of chicken tenders to 15. If the ratio remains the same, how many biscuits are in the larger meal?
20 biscuits

Higher-Order Thinking Problems
10. Identify Structure Generate a ratio table with at least two ratios equivalent to $\frac{\$ 10}{15 \text { tickets }}$. Then describe how the table shows an additive structure and a multiplicative structure.

Sample answer:

Cost (\$)	102030

Number of Tickets 153045
The table shows an additive structure by adding $\$ 10$ to each entry in the first row and 15 tickets to each entry in the second row. It shows a multiplicative structure because you can multiply the values in the first column by 2 to find the number of tickets you can buy with $\$ 20$ and then by 3 to find the number of tickets you can buy for $\$ 30$.
12.
12. Reason Inductively A student said you can add the same number to both terms of a ratio to find an equivalent ratio. Is the tudent correct? Explain why or why not. no; Sample answer: To find equivalent ratios, multiplication or division is used.
Adding the same number changes the
relationship between the two quantities.
11. Justify Conclusions There are 21 goats and 35 chickens on a farm. If 5 more goats and 5 more chickens are added, is the ratio of goats to chickens the same? Write an argument to defend your solution.
no; Sample answer: If 5 goats and 5 chickens are added, there would be 26 goats and 40 chickens on the farm, with a goat-to-chicken ratio of $\mathbf{1 3 : 2 0}$. The ratio of goats to chickens was originally $3: 5$ which is not equivalent to 13 : 20.
13. Create Write and solve a real-world problem where you determine if two ratios are equivalent.
Sample answer: Seth's bouquet has 21 flowers with 15 roses. Keith's bouquet has 35 flowers with 25 roses. Are the ratios of roses to flowers the same? Y es, they both scale to 5 roses to 7 flowers.

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 10, students can use the structure of a ratio table to generate equivalent ratios using additive and multiplicative reasoning.

3 Construct Viable Arguments and Critique the Reasoning of

 Others In Exercise 11, students construct an argument to defend their response as to whether or not the ratio relationship was maintained.2 Reason Abstractly and Quantitatively In Exercise 12, students reason with ratios to explain why or why not equivalent ratios can be found by adding the same value to both terms.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 9 Have students work in pairs. Give students
1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Interview a student

Use with Exercise 11 Have pairs of students interview each other as they complete this problem. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 11 might be, "Without solving, do you think the ratios are the same?"

Learn Ratios as Ordered Pairs

Objective

Students will learn how to write ratios as ordered pairs and graph them on the coordinate plane.

Teaching Notes

SLIDE1

You may wish to remind students how to extend a ratio table to write equivalent ratios. You may wish to also remind students about ordered pairs, a pair of numbers used to locate a point on the coordinate plane, before explaining that each pair of equivalent ratios can be expressed as an ordered pair. Encourage students to recognize the ordered pairs in the table. You may wish to have students write the ordered pairs as coordinates: $(1,3),(2,6),(3,9)$, and so on.

SLIDE2

Students have graphed on the first quadrant of the coordinate plane in a previous grade. You may wish to remind students how to write the ratios in the table as ordered pairs and how to graph the ordered pairs.

Encourage students to study the structure of the graph representing the ratio relationship. Ask students what they notice. Some students may say the points seem to fall on an imaginary line that passes through the originnote that this concept will be further developed in Grade 7. Encourage students to notice that each new point is 3 units up and 1 unit to the right of the previous point. Ask students how this relates to the ratio of olive oil to vinegar, $3: 1$. Students should notice that it is the same. This confirms the graph is the graph of a ratio relationship.

Talk About It!

SLIDE 3 -

Mathematical Discourse

Compare and contrast the ratio table and the graph. How do they both illustrate the same ratio relationship? How does the graph help you visualize the ratio relationship? Sample answer: The ratio table shows each equivalent ratio. The graph shows those ratios graphed on the coordinate plane. You can see that the graph is a ratio relationship because the points are in a straight line.

DIFFERENTIATE

Reteaching Activity AL

Students learned how to graph ordered pairs in the first quadrant of the coordinate plane in Grade 5. To review this, have them identify the x - and y-coordinates for the following ordered pairs and explain how to graph them on the coordinate plane.
$(4,7) x$-coordinate: $4 ; y$-coordinate: 7 ; Start at (0,0). Move 4 units right and 7 units up.
$(3,1) x$-coordinate: $3 ; y$-coordinate: 1 ; Start at $(0,0)$. Move 3 units right and 1 unit up.

Interactive Presentation

Learn, Ratios as Ordered Pairs, Slide 1 of 3

eTOOLS

On Slide 2, students use the Coordinate Graphing eTool to graph the relationship on a coordinate plane.

Graphs of Equivalent Ratios

LESSON GOAL

Students will use graphs to represent ratio relationships.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

8 Learn: Ratios as Ordered Pairs
Example 1: Graph Ratio Relationships
Example 2: Graph and Interpret Ratio Relationships

Have your students complete the Checks online.

3

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	ALI LBI	
Remediation: Review Resources	- e	
Arrive MATHTake Another Look	\bigcirc	
Collaboration Strategies	- -	2

Language Development Support

Assign page 3 of the Language Development Handbook to help your students build mathematical language related to graphs of equivalent ratios.
ELL You can use the tips and suggestions on page $T 3$ of the handbook to support students who are building English proficiency.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by graphing tables of equivalent ratios.
Standards for Mathematical Content: 6.RP .A.3, 6.RP.A.3.A
Standards for Mathematical Practice: MP2, MP5, MP7

Coherence

Vertical Alignment

Previous

Students used tables to find equivalent ratios.
6.RP.A.3, 6.RP.A.3.A

Now

Students use graphs to represent ratio relationships.
6.RP.A.3, 6.RP.A.3.A

Next

Students will use graphs and tables to compare ratio relationships.
6.RP.A.3, 6.RP.A.3.A

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to expand their understanding of ratio relationships by graphing ordered pairs that represent ratio relationships in the coordinate plane. They build fluency with graphing ordered pairs and apply their understanding of ratio relationships to solve real-world problems.

Mathematical Background

Equivalent ratios can be represented as ordered pairs and graphed on the coordinate plane. To graph a point, start at the origin. Move right along the x-axis the number of points indicated by the x-coordinate. From that location, move up along the y-axis the number of units indicated by the y-coordinate. Place a dot at that location. When a ratio relationship is graphed, the points fall along an imaginary line that passes through the origin. This concept will be further expanded on in Grade 7.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

```
What Vocabulary Will You Use?
coonflinute plane
```



```
ordered patr
```



```
origin
```



```
xascls
```



```
x-coordinuta
```



```
yaxds
hreh ahwela lse rent
ycooedinate
```


What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- understanding ratios (Exercises 1-3)

Answers

1. 2 to $9 ; 2: 9$
2. The ratio $3: 5$ means that for every 3 horses on the farm, there were 5 pigs.
3. Both boys are correct. The ratio can be written as 3 to 4 and $3: 4$.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about students participating in a read-a-thon.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion. Additional questions are available online.

Ask:

- How would you describe a coordinate plane? A coordinate plane is a tool that can be used to visually display coordinates, which are points.
- How do the terms order and pair help you understand what an ordered pair is? Sample answer: An ordered pair represents the pair of x - and y-coordinates that are in a particular order (x first, followed by y). The ordered pair represents a point on the coordinate plane.
- What does the term origin mean in everyday life? How can this help you understand where the origin is on the coordinate plane? Sample answer: The origin of something means the start of something. On the coordinate plane, this is represented by the point $(0,0)$.

Interactive Presentation

Example 1, Graph Ratio Relationships, Slide 2 of 5
OLICK
On Slide 2, students complete the ratio 3, students use the Coordinate
table.
Graphing eTool to graph the relationship
on the coordinate plane.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION
Example 1 Graph Ratio Relationships
Objective
Students will graph a ratio relationship on the coordinate plane.

(1) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantities presented in the problem to generate the ordered pairs.
7 Look For and Make Use of Structure As students discuss the Talk About It! question on Slide 4, encourage them to study the structure of the graph as they respond to the question. Some students may notice the points fall on an imaginary line. Other students may notice that each new point is 6 units up and 1 unit to the right from the previous point.

Questions for Mathematical Discourse

SLIDE2

Al What two quantities are being compared in the ratio? the number of charms to the number of beads for a bracelet

Ol. By what value can you multiply 6 to find the number of beads for 4 charms? 4

OLI. Suppose a classmate graphed the number of beads along the x-axis and the number of charms along the y-axis. Would this graph still represent the ratio of beads to charms? What would the graph look like? no; Sample answer: This graph would not represent the same ratio relationship between the two quantities. The graph would not be as steep, but the points would still fall on an imaginary line through the origin. Each new point would be 1 unit up and 6 units to the right from the previous point.
ELL. If Tamara made 5 bracelets, each with 5 charms, how many beads would she need? 150 beads

SLIDE3

AL. Explain how you would graph the ordered pair $(1,6)$ on the coordinate plane. Sample answer: Start at the origin. Move 1 unit to the right along the x-axis and 6 units up along the y-axis. Then graph the point.
OL. What are the ordered pairs that need to be graphed on the coordinate plane? $(1,6),(2,12),(3,18)$, and $(4,24)$
BL. Can you use the graph to find the number of beads needed if Tamara has 6 charms? Explain. yes; Sample answer: I can extend the graph to include the value of 6 on the x-axis. Then I can draw a line through the points already on the graph to see what value corresponds with 6 on the x-axis.

(2) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Graph and Interpret Ratio Relationships

Objective

Students will graph tables of equivalent ratios and interpret the relationship between two quantities.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to use the Coordinate Graphing eTool to graph the ordered pairs in order to describe the pattern they see.

Questions for Mathematical Discourse

SLIDE 2

AL. How can you write the ordered pairs from the table? Sample answer: Let x represent the number of cups of flour and let y represent the number of cups of water.

0․ For each batch of clay, are the ratios of water to flour equivalent? Explain. yes; Sample answer: They all have the same ratio, 2 to 4.
O. Suppose a classmate graphed the cups of water along the x-axis and the cups of flour along the y-axis. Would this graph still represent the ratio of water to flour? What would the graph look like? no; Sample answer: This graph would not represent the ratio of water to flour. The graph would not be as steep, but the points would still fall on an imaginary line through the origin. Each new point would be 4 units up and 2 units to the right from the previous point.

What are some other ordered pairs that could be plotted on the graph? Sample answers: $(24,12),(28,14),(32,16)$

SLIDE3

AL. Explain how to graph the first ordered pair, (4, 2). Sample answer: Starting at the origin, move 4 units to the right, then 2 units up.

OL. What are the ordered pairs that need to be graphed on the coordinate plane? $(4,2),(8,4),(12,6),(16,8)$, and $(20,10)$.

E1. Can you use the graph to determine how many batches of clay Sequoia could make if she has 10 cups of flour? Explain why or why not. no; Sample answer: I can use the graph to determine how many cups of water she would need for 10 cups of flour, but the graph does not directly show how many batches of clay she could make.

Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Graph and Interpret Ratio Relationships

To make one batch of homemade modeling clay that can be used in arts and crafts, Sequoia mixed the ingredients shown in the table.
Graph the ratio relationship between the unber of cups of watery and number or Then describe the pattern in the relationship.
Part A Graph the ratio relationship.
Step 1 Generate a set of ordered pairs.
For every 4 cups of flour, there are 2 cups of water. Let the x-coordinates represent the number of cups of flour and the y-coordinates represent the number of cups of water.

Flour (c), x Water (c), y		Use scaling to write the equivalent ratios for 1, 2, 3, 4, and 5 batches.
4	2	- 1 batch
8	4	* 2 batches
12	6	- 3 batches
16	8	-4 batches
20	10	-. 5 batches

Step 2 Graph the relationship
The x-coordinates increase from 4 to 20 , so let each grid unit along the x-axis on the coordinate plane represent 2 units.

Modeling Clay

Part B Describe the pattern in the ratio relationship.
In the graph, the points appear to fall on a straight line. Each new In the graph, the points appear to fall on a straight line. Each new
point is 2 units up from and 4 units to the right of the previous point. This means that the number of cups of water increases by 2 cups as the number of cups of flour increases by $\quad 4$ cups.

Think About It! How do you know that the relationship between flour and water is a ratio relationship?

Sample Answer: Each batch of clay will always have 4 cups of flour for every 2 cups of water.

Interactive Presentation

Example 1, Graph Ratio Relationships, Slide 3 of 6

Interactive Presentation

Exit Ticket
Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record information in the tables and graphs sections about graphing ratios. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up
How can you describe how two quantities are related?
In this lesson, students learned how to graph the relationship between two quantities, expressed as a ratio table, in the coordinate plane. Encourage them to discuss with a partner how a graph visually describes the relationship between two quantities. Have them compare and contrast using tables and graphs to represent ratio relationships.

Exit Ticket

Refer to the Exit Ticket slide. Who read the greatest number of pages per day? Predict how many pages each person will have read by the tenth day. Write a mathematical argument that can be used to defend your solution. Olivia; Sample answer: Olivia read 232 pages in 4 days or 58 pages per day. So, she will have read 58×10 or 580 pages after 10 days. Jackson read 260 pages in 5 days or 52 pages per day. So, he will have read 52×10 or 520 pages after 10 days.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1. 3, 5-8
- Daleks Ratios and Unit Rates

IF students score 66-89\% on the Checks
THEN assign:

- Practice, Exercises 1, 2, 6, 7
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- a Aleks' Ordered Pairs

IF students score 65\% or below on the Checks
THEN assign:

- Remediation: Review Resources
- ArriveMATH Take Another Look
- ALEKS Ordered Pairs

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
2	graph tables of equivalent ratios and describe the relationship between two quantities	1,2
2	extend concepts learned in class to apply them in new contexts	3,4
3	higher-order and critical thinking skills	$5-8$

Common Misconception

Some students may rush to complete a problem without carefully studying the scale on either or both axes of a graph. For example, in Exercise 1, students may incorrectly describe the pattern in the graph by saying that each point is 3 units up and 2 units to the right of the previous point. Be sure they study the structure of the graph carefully and attend to the precision of how the axes are labeled. In this exercise, each point is actually 6 units up from and 2 units to the right of the previous point, because the scale on the y-axis increases by 2 .

Name

Practice

1. Lulah is buying beach balls for her beach themed party. Each package contains 6 beach balls. Generate the set of ordered pairs for the ratio relationship between the number of beach balls y and the number of packages x for a total of $1,2,3$, and 4 packages. Then graph the relationship on
the coordinate plane and describe the
pattern in the graph. (Examples 1 and 2)

(1, 6), (2, 12), (3, 18), (4, 24); Sample answer: The points appear to be in a straight line. Each point is 6 units up from and 1 unit to the right of the previous point. This means that the number of beach balls increases by 6 as the number of packages increases by 1 .

Period
Go Online Y ou can complete your homework online.
2. A sloth travels about 7 feet every minute. Generate the set of ordered pairs for the ratio relationship between the total distance traveled y and the number of minutes x for a total of $1,2,3$, and 4 minutes. Then graph the relationship on the coordinate plane and describe the pattern in the graph. (Examples 1and 2)

(1, 7), (2, 14), (3, 21), (4, 28); Sample answer: The points appear to be in a straight line. Each point is 7 units up from and 1 unit to the right of the previous point. This means that the distance travelled increases by 7 feet as the number of minutes increases by 1 minute.
3. Two friends are making scrapbooks. The number of photos Lexi and Audrey place on each page of their scrapbooks is shown in the graph. Describe the ratio relationship for each person.
Sample answer: The ratio of photos to pages for Lexi's scrapbook is $4: 1$. The ratio of photos to pages for Audrey's scrapbook is $6: 1$. Audrey uses more photos per page than Lexi.

T est Practice

4. Multiselect Lacy is running laps around the track. The time in minutes and the number of laps ran are shown in the graph. Which of the following is true about the ratio relationship shown in the graph?
\checkmark Every 4 minutes, Lacy ran 1 lap.
Lacy ran 8 laps in 2 minutes
It took Lacy 1 minute to run 4 laps.
\checkmark In 16 minutes, Lacy completed 4 laps
\checkmark Based on the relationship, it would take
Lacy 20 minutes to complete 5 laps.

Higher-Order Thinking Problems
5. Identify Structure There are 4 quarters for every one dollar and 10 dimes for every dollar. Without graphing, would the ratio of quarters to dollars or dimes to dollars appear to have a steeper line? Explain your reasoning.
dimes to dollars; Sample answer: The ratio of dimes to dollars is $10: 1$ and the ratio of quarters to dollars is $\mathbf{4 : 1}$. Since 10 is greater than 4 , the ratio of dimes to dollars will have a steeper line.
7. Reason Abstractly The table gives the number of beads needed to make bracelets of certain lengths. Suppose you graph the ordered pairs (bracelet length, number of beads) on the coordinate plane. Would the point $(10.5,42)$ make sense in this context? Explain.
Bracelet Length (in.) 78910
Number of Beads
2832364
yes; Sample answer: A bracelet could have a length of 10.5 inches and 42 beads.
6. What are the advantages of graphing when solving problems that involve ratios? Sample answer: The graph allows you to see patterns, make predictions, and compare relationships more quickly than using another method.
8. Multiple Relationships For every second the average green sea turtle can swim 9 meters. Represent how far a green sea turtle can swim in 1, 2, 3 and 4 seconds in a table. Then graph the points on a coordinate plane.

1234 91827 36 Green Sea Turtles

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 5, students visualize the structures of the graphs of each ratio to determine which ratio's graph will appear to fall on a steeper line.

2 Reason Abstractly and Quantitatively In Exercise 6, students use reasoning to evaluate if an ordered pair would make sense in the given context.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Clearly explain your strategy.

Use with Exercise 8 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Learn Use Graphs to Compare Ratio Relationships

Objective

Students will understand how multiple ratio relationships can be compared by graphing them on the same coordinate plane.

Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Encourage students to understand the benefit of graphing all three ratio relationships on the same coordinate plane, as opposed to three separate coordinate planes.

7 Look For and Make Use of Structure As students discuss the Talk About lt! question on Slide 3, encourage them to study the structure of the graph and reason about how reversing the order of the quantities in the ratio will alter the graph.

Teaching Notes

SLIDE1
Students will understand how multiple ratio relationships can be compared by graphing them on the same coordinate plane. Have students begin by comparing the ratios of proteins to other ingredients for the three companies.

SIIDE2

When graphing a ratio relationship, it is important to understand and maintain the order of the ratio. In this scenario, students are asked to compare the grams of protein to the cups of dog food. Specifically, they need to determine which company has the most protein in a cup of dog food. To graph this relationship, the number of grams of protein is represented by the y-coordinate, and the number of cups of dog food is represented by the x-coordinate. The company with the greatest ratio of grams of protein to cups of dog food will have the steepest line on the graph. You may wish to have students draw a dashed line through the points for each company to more clearly see which line is steepest.

Some students may instead graph the number of grams of protein along the x-axis and the number of cups of dog food along the y-axis. Be sure they understand that, while this is not incorrect, if they graph the quantities this way, the company with the greatest ratio of grams of protein to cups of dog food will actually have the least steepest line. Encourage them to understand how to read the graphs based on the way in which they graph the quantities.

Talk About It!

SLIDE 3

Mathematical Discourse

If the ratio compared the cups of dog food to the grams of protein, how would the graph change? Which line would be the steepest?
Sample answer: Grams of protein would be graphed on the x-axis and the cups of dog food would be graphed on the y-axis. Company C would have the steepest line.

Interactive Presentation

Learn, Use Graphs to Compare Ratio Relationships, Slide 1 of 3

Compare Ratio Relationships

LESSON GOAL

Students will use graphs and tables to compare ratio relationships.

1 LAUNCH

Launch the Lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Use Graphs to Compare Ratio Relationships Example 1: Use Graphs to Compare Ratio Relationships
Learn: Use Tables to Compare Ratio Relationships
Example 2: Use Tables to Compare Ratio Relationships
Apply: Mixing Paint

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	L.E	
Remediation: Review Resources	\bullet	\bullet	
Arive MATH Take Another Look	\bullet		
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 4 of the Language Development Handbook to help your students build mathematical language related to comparing ratio relationships.
ELIII You can use the tips and suggestions on page $T 4$ of the handbook to support students who are building English proficiency.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by comparing ratios using graphs and ratio tables.
Standards for Mathematical Content: 6.RP .A.3, 6.RP.A.3.A
Standards for Mathematical Practice: MP1, MP3, MP4, MP5, MP7

Coherence

Vertical Alignment

Previous

Students used graphs to represent ratio relationships.
6.RP.A.3, 6.RP.A.3.A

Now

Students use graphs and tables to compare ratio relationships.
6.RP.A.3, 6.RP.A.3.A

Next

Students solve real-world problems involving ratios.
6.RP.A. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
develop understanding of ratios. They begin to understand that ratio
relationships can be represented in different forms, and that it can be
easier to compare the ratio relationships when they are represented
in the same form. They apply their understanding of ratios by
comparing ratio relationships in real-world problems.

Mathematical Background

Ratio relationships can be described using words and represented in different forms, including tables and graphs. One way to compare two or more ratio relationships that are represented in different forms, is to represent them using the same form.

Interactive Presentation

Warm Up

Launch the Lesson

Compase Rario Kelationatipe

 ponst

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- using equivalent ratios or ratio tables to solve problems (Exercises 1-3)

Answers

1. 104 campers
2. 24 purple balloons
3. 100 foul shots made

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about a student council comparing companies for a school fundraiser.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- When might it be helpful to compare ratios? Sample answer: It might be helpful to compare ratios when deciding on which company to use or which product to purchase.
- Since you can use a ratio table to organize a collection of equivalent ratios, how would using ratio tables help you compare several ratios? Sample answer: Using ratio tables could help me easily see many ratio relationships in a visually organized way.

Interactive Presentation

Example 1, Use Graphs to Compare Ratio Relationships, Slide 4 of 6
On Slide 4, students identify the pizzeria
with the greatest ratio of pepperonis to
pizza size. online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
Example 1 Use Graphs to Compare Ratio Relationships

Objective

Students will graph and compare multiple ratio relationships on the same coordinate plane.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to understand the benefit of graphing all three ratio relationships on the same coordinate plane, as opposed to three separate coordinate planes.

Questions for Mathematical Discourse SLIDE 3 -

Al What models can you use to represnt the ratios? graph or table
OI. After graphing the relationships for all three pizzerias on the same coordinate plane, what do you notice? Sample answer: The points for each pizzeria seem to fall in a straight line. The line for The Pizza Place appears to be the steepest.
31. Is there a pizza size with the same number of pepperonis for all three pizzerias? Explain. no; Sample answer: If two or more pizzerias have the same number of pepperonis for the same size pizza, the lines would intersect. On the graph, the only time the lines intersect is at 0 , so there is no pizza size with the same number of pepperonis.

0

Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

To extend students understanding of graphing and comparing ratio relationships, have them research the Internet, newspapers, or magazines, for real-world uses, such as comparing the ratio of gallons of gas to miles driven for various types of vehicles. You may wish to have students present their findings to the class.

Learn Use Tables to Compare Ratio Relationships

Objective

Students will understand how ratio tables can be used to compare multiple ratio relationships.

Teaching Notes

SLIDE1

Students are asked to determine which smoothie recipe has the greatest ratio of blueberries to strawberries. To compare the three relationships using ratio tables, students can generate equivalent ratios for each recipe until the quantity of strawberries is the same for all three recipes. It is important for students to understand that, because the number of blueberries is what they are most interested in, you want to hold the number of strawberries constant across the three recipes. When all three recipes have an equal number of strawberries, students can easily compare the number of blueberries. The recipe with the greatest number of blueberries, when the number of strawberries is constant, has the greatest ratio of blueberries to strawberries.

Go Online to find additional teaching notes, Teaching the Mathematical Practices, and a sample answer for the Talk About It! question.

Example 2 Use Tables to Compare Ratio Relationships

Objective

Students will use ratio tables to compare multiple ratio relationships.

Questions for Mathematical Discourse

SIIDE 2

AL. What quantities are being compared? ounces of sunflower seeds to ounces of peanuts

OL. By making which quantity the same will help you most in finding the greatest ratio of ounces of sunflower seeds to ounces of peanuts? Justify your response. ounces of peanuts; Sample answer: To determine which recipe has the greatest ratio of ounces of sunflower seeds to ounces of peanuts, I need to compare the quantity of sunflower seeds when the ounces of peanuts are the same in all three relationships.

BL. Before writing equivalent ratios, can you determine the quantity for the ounces of peanuts you will need in order to compare sunflower seeds? Explain. Sample answer: The quantity for ounces of peanuts will need to be 12 in each relationship because 12 is evenly divisible by 3,4 , and 6 .

Learn Use Tables to Compare Ratio Relationships Another way to compare ratio relationships is to use tables. For example, a comparison of three smoothie recipes shows that Recipe A has a blueberry to strawberry ratio of 8 to 2 , Recipe B has a ratio of 5 to 1 , and Recipe C has a ratio of 10 to 3 . Y ou can usetables of equivalent ratios to determine which recipe has the greatest ratio of blueberries to strawberries.

Recipe B has a ratio of 30 blueberries for every 6 strawberries, followed by Recipe A with a ratio of 24 to 6 , and Recipe C with a ratio of 20 to 6 . So, Recipe B has the greatest ratio of blueberries to strawberries.
et Example 2 Use Tables to Compare Ratio Relationships
Roman is considering different bird seeds to fill his bird feeder Measured in ounces, Recipe A has a sunflower seed to peanut ratio of 2 to 3 , Recipe B has a ratio of 3 to 4 , and Recipe C has a ratio of 5 to 6 .
Which recipe has the greatest ratio of ounces of sunflower seeds to ounces of peanuts?
Step 1 Create a ratio table for each recipe. Find equivalent ratios to
compare the relationships.

2 Talk About It!

 If the ratio relationships were graphed with blueberries on th y-axis and strawberries on the x-axis, the line forwhich recipe would have the steepest line? Explain.
Sample answer: Recipe B would have the steepest line because it has the greatest ratio of blueberries to strawberries.

Think About It! Which quantity will you make equivalent in each ratio in order to compare the other quantity? peanuts

Lesson 1-4 - Compare Ratio Relationships

Interactive Presentation

Learn, Use Tables to Compare Ratio Relationships, Slide 1 of 2

TYPE	On Slide 2 of Example 2, students generate equivalent ratios to compare the relationships.
al	

Step 2 Determine the recipe with the greatest ratio of sunflower seeds to peanuts.
Recipe A: 8:12 Recipe B: 9:12 Recipe C: $10: 12$
Because 10 is greater than 9 and 8 , the recipe with the greatest ratio of sunflower seeds to peanuts is Recipe \quad C.

Check

When working on homework, Bailey spends 15 minutes reading for every 20 minutes spent on math, Aisha spends 12 minutes reading for every 15 minutes of math, and Tyler spends 7 minutes reading for every 10 minutes of math. Which person has the greatest ratio minutes spent on reading to minutes spent on math? Aisha

Pause and Reflect

Have you ever wondered when you might use the concepts you learn in math class? What are some everyday scenarios in which you might use what you learned today?

32 Module 1- Ratos and Rates

Interactive Presentation

Example 2, Use Tables to Compare Ratio Relationships, Slide 3 of 5

CLICK	
(N)	On Slide 3, students move through the slides to identify the recipe with the greatest ratio of ounces of sunflower seeds to ounces of peanuts.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Use Tables to Compare Ratio Relationships (continued)

Questions for Mathematical Discourse

SLIDE 3.

AI. What is the greatest quantity of ounces of sunflower seeds when the number of ounces of peanuts are the same? 10 ounces of sunflower seeds
DL. Which recipe has the greatest ratio of ounces of sunflower seeds to ounces of peanuts? Explain. Recipe C; Sample answer: When the number of ounces of peanuts is constant, 12 , the recipe with the greatest number of ounces of sunflower seeds has the greatest ratio.

OL. How would you alter your method if you were asked which recipe contains the greatest ratio of ounces of peanuts to ounces of sunflower seeds? Sample answer: Instead of generating equivalent ratios until the number of ounces of peanuts is constant, I can generate equivalent ratios until the number of ounces of sunflower seeds is constant. When the number of ounces of sunflower seeds is 30 for all three recipes, Recipe A has the greatest number of ounces of peanuts, 45 . So, Recipe A has the greatest ratio of ounces of peanuts to sunflower seeds.
181. A classmate generated equivalent ratios until the number of ounces of peanuts was 24 . Is this a valid method? Justify your response. yes; Sample answer: This is a valid method, because when the number of ounces of peanuts is 24 , you can compare the number of ounces of sunflower seeds and arrive at the same solution. Recipe C has the greatest ratio. While this is a valid method, you can stop generating equivalent ratios when you find the first common value at 12 .

0
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About $l t$! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Mixing Paint

Objective

Students will come up with their own strategy to solve an application problem involving mixing paint colors.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What strategies have you learned that can help solve the problem?

- What do you notice about the ratios for Marcus and Hiram? Can you tell whose paint mixture will have the most blue?

Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Mixing Paint

Three friends are each mixing containers of red and blue paint, according to the ratios shown, to create their favorite shades of purple paint. Each container is the same size. If each person uses 6 quarts of red paint, whose paint mixture will have the most blue?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.
First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
 Use your strategy to solve the problem. A coordinate grid is provided should you choose to use it.

Marcus; See students' work.

4 How can you show your solution is reasonable?
QWrite About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Mixing Paint

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Check

Three cereal brands advertise the average number of berries for every cup of whole-grain cereal flakes as shown in the table. Each box is the same size. Which company advertises the greatest ratio of berries for every cup of flakes? Brand A

A coordinate grid is provided should you choose to use it.

(2) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

34 Module 1 R Ratlos and Rates
34 Module 1 R Ratlos and Rates

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could write a short description of how to compare ratio relationships using tables and graphs. You may wish to have students share their Foldables with a partner to compare information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. Which company should the student council choose if they want to earn the most money possible during the fundraiser? Write a mathematical argument that can be used to defend your solution. Company C; Sample answer: Using ratio tables, I can use scaling to find equivalent ratios for each company, then compare. For example, Company A will give $\$ 4$ for every $\$ 24$ sold, Company B will give $\$ 4.80$ for every $\$ 24$ sold, and Company C will give $\$ 6$ for every $\$ 24$ sold. So, Company C will be the best company to use because the council gets the most money back from them for selling the same dollar amount of gift wrap.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
[BII
THEN assign:

- Practice, Exercises 1-5 odd, 6-8
- Daleks Ratios and Unit Rates

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1, 2, 4, 8
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- Q ALEKS' Ordered Pairs

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- Q ALEKS Ordered Pairs

1 CONCEPTUAL UNDERSTANDING

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

$\mid A L$	Practice Form B
OI	Practice Form A
Bl	Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
2	use a graph to compare multiple ratio relationships	1
2	use ratio tables to compare multiple ratio relationships	2
2	extend concepts learned in class to apply them in new contexts	3
3	solve application problems involving comparing ratio realtionships	4,5
3	higher-order and critical thinking skills	$6-8$

Common Misconception

In Exercise 2, students might think that they can only use tables to compare the ratios. While this is the indicated method in the Exercise, students that are more visual learners may benefit from writing ordered pairs to represent each relationship and graphing the relationships on the same coordinate plane. If students are struggling with using tables, remind them that they can graph the relationships if needed.

Apply *indicates multi-step problem

*4. Mrs. Gonzalez wants to hire a catering company for her daughter's quinceanera. The ratios of the cost per person for a child and an adult for two different companies are shown in the table. Mrs. Gonzalez is planning on 25 adults and 12 children adding the party. How much less will it cost for
her to hire Planning Pros than Party Time? $\$ 19.50$

	Party Time Planning Pros	
Cost per Adult (\$)	10.50	9.00
Cost per Child (\$)	6.00	7.50

*5. Charlie, Beth, and Miguel all babysit kids in their neighborhood. The table shows the number of hours and the amount each of them earned last night. If each person babysits for 5 hours next weekend, which person will earn the most money? Use a coordinate plane if needed to solve. Miguel

	Charlie Beth Miguel		
Number of Hours	3	4.5	4
T otal Earned (\$)	28.50	42.00	40.00

(3) Higher-Order Thinking Problems
6. Construct an Argument Ratio relationships can be described with words or tables, and graphs. Which display is more, advantageous to use when comparing ratio relationships? Explain your reasoning
Sample answer: Graphs are more advantageous because I can visually see which relationship has a steeper line. The steeper the line, the greater the ratio.
7. Give an example of a ratio relationship that you have seen outside of school. How was the ratio relationship displayed, and why was the relationship displayed that way? Sample answer: Three packages of hot dogs cost $\$ 9.50$. The relationship was displayed in words because it's easier and faster for people to understand while shopping.
8. Find the Error Avery wants to order new practice T-shirts for her soccer team. The ratio of the total cost to the number of T -shirts purchased for three different stores is shown in the graph. Avery says that the shirts will cost ess from Shirts Galore because the graph is steeper than the graphs of the other relationships. Find her mistake and correct it.
Sample answer: The graph of the relationship that is steepest represents the relationship that has the greatest ratio of total cost to number of T -shirts. To determine which company has the least cost, she should look for the graph that is the least steep.

Learn Use Bar Diagrams to Solve Ratio Problems

Objective

Students will understand that they can use a bar diagram to model and solve a real-world problem involving ratios.

Teaching the Mathematical Practices 5 Use Appropriate Tools Strategically Students should understand how a bar diagram can be a tool that can help solve real-world problems involving ratios.

0
Go Online to have your students watch the video on Slide 1 if they would benefit from reviewing how to draw a bar diagram.

Teaching Notes

SLIDE1

Present the problem and ask students to work with a partner to determine possible strategies they can use to solve it - without using a bar diagram. They may use any strategy, but must be able to explain why their strategy works. Then have them move through the slides that show how a bar diagram can be used to model and solve the problem. Have students compare this strategy to the one they chose.

Talk About It!

SIDE 2

Mathematical Discourse

When thinking about the ratio of students who play sports to the total number of students, is it easier to think about 3 to 5 , or 315 to 525 ? Explain. Sample answer: It is easier to think about the ratio 3 to 5 because I can visualize a lesser number of students better than a greater number.

DIFFERENTIATE

Language Development Activity 대는

For students that may be struggling to create bar diagrams to represent ratios, have them identify the part and the whole for each of the following ratios. Then have them identify the number of total sections and the number of sections that would be shaded in a corresponding bar diagram that represents the ratio.

6 out of 7 part: 6; whole: 7; total sections: 7; shaded sections: 6
2 : 9 part: 2; whole: 9; total sections: 9; shaded sections: 2
$\frac{5}{8}$ part: 5 ; whole: 8 ; total sections: 8 ; shaded sections: 5

Interactive Presentation

Learn, Use Bar Diagrams to Solve Ratio Problems, Slide 1 of 2

Solve Ratio Problems

LESSON GOAL

Students will solve real-world problems involving ratios.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Use Bar Diagrams to Solve Ratio Problems
Example 1: Use Bar Diagrams to Solve Ratio Problems
Example 2: Use Bar Diagrams to Solve Ratio Problems
Learn: Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems
Example 3: Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems
Apply: Inventory
Have your students complete the Checks online.

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	ALI	LE	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATHTake Another Look	\bullet		
Extension: Determine if Figures are Similar		\bullet	\bullet
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 5 of the Language Development Handbook to help your students build mathematical language related to solving problems involving ratios.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by solving real-world problems involving ratios using equivalent ratios, double number lines, and bar diagrams.
Standards for Mathematical Content: 6.RP .A.3, Also addresses 6.RP.A. 1

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP7

Coherence

Vertical Alignment

Previous

Students used graphs and tables to compare multiple ratio relationships.
6.RP.A.3, 6.RP.A.3.A

Now

Students solve real-world problems involving ratios.
6.RP.A. 3

Next

Students will use ratio reasoning to convert between customary units of measurement.
6.RP.A.3, 6.RP.A.3.D

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students apply their understanding of ratio relationships to solve real-world problems.
They build fluency with using different methods, such as bar diagrams, double number lines, and reasoning about equivalent ratios, as they solve problems.

Mathematical Background

Ratio problems can be solved by using a variety of methods, including the use of bar diagrams, double number lines, and reasoning about equivalent ratios. Bar diagrams and double number lines are both useful visual representations of the ratio relationship. Using bar diagrams and double number lines can help you understand the relationship between the two quantities. When the numbers are large or involve decimals or fractions, reasoning about equivalent ratios can be more advantageous.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- writing equivalent fractions (Exercises 1-4)
- solving real-world problems involving equivalent ratios (Exercise 5)

Answers

1-5. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about collecting surveys to gather and compare data.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- What does equivalent mean? What does this tell you about equivalent fractions? Sample answer: Equivalent means having the same value. For two fractions to be equivalent, they should be equal to the same value.
- Y ou previously learned about ratios. Give a real-world example of a ratio. Sample answer: For every 1 dog at the animal shelter, there are 4 cats.

Interactive Presentation

Example 1, Use Bar Diagrams to Solve Ratio Problems, Slide 3 of 5
On Slide 2, students move through the
slides to see how a bar diagram can be
used to solve the problem.

38 Module 1 • Ratios and Rates

Example 1 Use Bar Diagrams to Solve Ratio Problems

Objective

Students will use bar diagrams to solve real-world problems involving part-to-whole ratios.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 4, encourage them to clearly explain how they can reason about the ratios $2: 3$ and $500: 750$ in order to determine if they are equivalent.

5 Use Appropriate Tools Strategically Encourage students to use the bar diagram as a tool to model and represent the problem. Students should understand how the bar diagram helps them visually make sense of the relationship between the quantities involved in the problem, in order to use reasoning to solve the problem.

Questions for Mathematical Discourse

SLIDE2

An Why is the bar divided into three sections? The ratio 2 to 3 is a part-to-whole ratio, and the whole is 3 students.

AI. Why are two sections shaded and labeled prefer cats? The part that represents those who prefer cats is 2 students.
10. Why is the value of each section equal to 250 ? What does this represent? The total number of students is 750 , and there are three equal parts; $750 \div 3=250$. This represents the number of students in each of the three parts.

If 2 out of 5 students preferred cats, how would the bar diagram be altered? Sample answer: The bar diagram would be divided into 5 sections. Each section would represent $750 \div 5$, or 150 students.

SLIDE 3

AL How many sections represent students that prefer cats? students that do not prefer cats? 2 sections; 1 section.

OL. How can you check your answer? Sample answer: If 500 students prefer cats, and 250 do not prefer cats, the total is 750 students, which is correct.
[BLI How would the bar diagram and solution be altered if the total number of students were 900 ? Sample answer: Each section would be 300 students, and the number of students who prefer cats would be 600 students.

(Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING
 2 FLUENCY
 3 APPLICATION

Example 2 Use Bar Diagrams to Solve Ratio Problems

Objective

Students will use bar diagrams to solve real-world problems involving part-to-part ratios.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to use the bar diagram as a tool to model and represent the problem. Students should understand how the bar diagram helps them visually make sense of the relationship between the quantities involved in the problem, in order to use reasoning to solve the problem.

7 Look For and Make Use of Structure As students discuss the Talk About lt! question on Slide 3, encourage them to use the structure of the bar diagram in their explanation. Because 4 sections represent the number of photos Maribel took, and 3 sections represent the number of photos Marcus took, there is $4-3$, or 1 more section that represents the difference. Because each section represents 6 photos, Maribel took 6 more photos than Marcus.

Questions for Mathematical Discourse

SUIDE2:

A… Why is Marcus' label on the bar shorter than his sister's? For every 3 photos Marcus took, his sister took 4. His sister takes more photos.

AII Why is the bar divided into four equal sections? The ratio is $3: 4$. Divide the bar into 4 sections and shade 3 of them to represent the ratio.

OL. Why does each section in the bar diagram represent 6 photos? Marcus took 18 photos. His bar diagram has 3 sections; $18 \div 3=6$. Each section is equivalent, so they all represent 6 photos.

OL. How do you know your answer is correct? Sample answer: The ratios $18: 24$ and $3: 4$ are equivalent because you can divide 18 and 24 both by 6 to obtain the quantities 3 and 4 , respectively.

How would the bar diagrams be altered if Marcus took 24 photos? Sample answer: The label over Marcus' bar diagram would be 24, not 18 . Each section would represent $24 \div 3$, or 8 photos, instead of 6 .

(3)
 Go Online

- Find additional teaching notes and the Talk About lt! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Use Bar Diagrams to Solve Ratio Problems

During their family vacation, Marcus took 18 photos on his cell phone. The ratio of the number of photos Marcus took to the number of photos his sister Maribel took is 3 to 4
How many photos did Maribel take?
Y ou can use a bar diagram to solve the problem.
Step 1 Draw a bar.

Step 2 Shade and label the diagram

The ratio of the number of photos Marcus took to the number
Maribel took is $3: 4$, so divide Maribel took is $3: 4$, so divide the
bar into four equal sections.

Shade three sections to represent the ratio $3: 4$ and add labels for Marcus and Maribel. Because Marcus took 18 photos. label the three shaded sections as 18 photos.
Step 3 Find the value of each section

Divide the total number of photos Marcus took by 3 to determine the value of each section. Because $18 \div 3=6$, each section represents 6 photos.
There are four sections that represent the number of photos Maribel took. Multiply 6 by 4 . So, Maribel took a total of 6×4, or 24 photos on their vacation.

Check

A survey of randomly selected people found that the ratio of people who prefer oatmeal raisin cookies to those who prefer chocolate chip cookies is 3 to 5 . If 27 people said that they prefer oatmeal raisin cookies, how many said they prefer chocolate chip? Draw a bar diagram to support your solution.

45 people; See students' work for bar diagram.
\qquad

Think About It! is the number of photos Maribel took less than, greater than, or equal to 18? How do you know?
greater than; Sample answer: In the ratio 3:4,3 represents photos Marcus took, while 4 represents photos Maribel took. Since 4 is greater than 3, Maribel took more photos than the 18 photos Marcus took.

```
L
```

Talk About It How does the bar diagram indicate how many more photos
Maribel took than Marcus?

Sample answer: The bar diagram shows that the whole bar is one section greater than the shaded portion. One section has a value of 6 , so Maribel took 6 mor photos than Marcus.

Lesson 1-5 . Solve Ratio Problems

Interactive Presentation

Example 2, Use Bar Diagrams to Solve Ratio Problems, Slide 2 of 4
On Slide 2, students move through the
slides to see how a bar diagram can be
used to solve the problem.

Learn Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems

The manager of a small hotel determines that it takes 30 loads of laundry to clean the towels and sheets of the hotel's rooms each day. A large bottle of laundry detergent contains 150 ounces and the label indicates that the contents of the bottle can clean 75 loads. How many ounces of detergent are needed to clean the hotel's towels and sheets each day?
Y ou can represent this ratio relationship and solve the problem by using double number lines and equivalent ratios.

Method 1 Use a double number line.
Step 1 Draw a double number line.
The top number line represents the number of loads of laundry. The bottom number line represents the number of ounces of detergent needed

Mark the ratio of loads to detergent (75:150). Mark and label equal increments to show 30 loads.

Step 2 Find the equivalent ratio.
There are 5 equal sections. Because $150 \div 5=30$, label equal increments of 30 on the bottom number line.

The value on the bottom number line that corresponds with 30 loads is 60 ounces of detergent.

So, 60 ounces of detergent are needed each day

1 CONCEPTUAL UNDERSTANDING

Learn Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems

Objective

Students will understand that they can use double number lines and equivalent ratios to solve a real-world problem involving ratios.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically As students discuss the Talk About lt! questions, you may wish to have them try to draw a bar diagram to represent the problem. They may find it challenging as they determine how many sections to divide the bar into, and what each section represents. Some students may choose to use a double number line because it can be less complicated and can help them visually see the ratio relationships more immediately. Have students compare and contrast using a double number line and reasoning about equivalent ratios.

Teaching Notes

SLIDE1

Present the real-world problem and ask students to work with a partner to determine possible strategies they can use to solve the problem. They must be able to explain why their strategy works. Then have them move through the slides that show how double number lines and equivalent ratios can be used to solve the problem. Have students compare this strategy to the one they chose.

Talk About It!

SLIDE 2

Mathematical Discourse

Why might a bar diagram not be the best representation to help solve this problem? Sample answer: A bar diagram might not be the best representation because the problem involves taking a portion of the original ratio, which might make it challenging to split up the bars in a bar diagram without getting confused.
(continued on next page)

DIFFERENTIATE

Enrichment Activity $\boldsymbol{B H}_{\mathrm{B}} \mathrm{L}$

To challenge students' understanding of equivalent ratios, have them explain how to find an equivalent ratio for the following ratio. In this case, one ratio is not a whole-number multiple of the other.
$\frac{18}{63} \overline{105}$?
Sample answer: 63 can be multiplied by $\frac{5}{3}$ to obtain 105. Multiply 18 by $\frac{5}{3}$ to find the unknown: $18 \cdot \frac{5}{3}=30$.

Learn Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems (continued)

Teaching Notes

SLIDE3I
After moving through each of the methods shown, you may wish to have students discuss the similarities and differences, and determine scenarios in which one method might be more useful than the other.

0
Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SUDE 4

Mathematical Discourse

Compare and contrast using a double number line and equivalent ratios. Which method might be more advantageous to use if the numbers are large? Sample answer: A double number line helps visualize the equivalency, but using equivalent ratios might be more advantageous if the numbers are large because it is easier to perform operations on the numbers than it is to represent them on a double number line.

Example 3 Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems

Objective

Students will use equivalent ratios to solve real-world problems involving part-to-whole ratios.

Questions for Mathematical Discourse

SUIDE2]
An What ratio represents the situation? $2: 96$
All Is the ratio a part-to-part ratio or a part-to-whole ratio? part-to-whole

OI. How do you know how many equal increments to mark? Sample answer: I need to start and end at 480 jars on the bottom number line. One of the increments needs to be at 96 jars. Because 480 is a multiple of 96 , and $480 \div 96=5$, I need to mark 5 equal increments from 96 to 480 . Counting the increment at 0 , this is a total of 5 increments of 96 from 0 to 480.
[BI. How would the ratio change if two cases of peanut butter contained 230 jars? Sample answer: Instead of the second quantity being 96 , it would be 230 .

Interactive Presentation

Example 3, Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems, Slide 2 of 5

Talk About It!
How can you use
scaling and a table of
equivalent ratios to
solve this problem?
Sample answer: I can set up a table
beginning with the ratio $2: 96$ and ending with $\mathrm{c}: 480$. Then I could use scaling to multiply 2 and 96 by the same number to obtain number to obtain reaching 480 .

Step 2 Find the equivalent ratio.
There are 5 equal sections. Label equal increments of 2 on the top number line.

The value on the top number line that corresponds with 480 jars is 10 cases. So, 10 cases should be ordered each week.

Method 2 Use equivalent ratios.

Write and solve an equation stating that two ratios are equivalent. Let c represent the unknown number of cases the manager should order each week.
number of cases $\rightarrow \frac{2}{9}=\frac{c}{480}$ — number of cases

So, using either method, the manager should order 10 cases of peanut butter each week.

Check

The manager of a bakery determines that an average of 112 loaves of cheese bread are sold each week. For every 2 loaves of cheese bread that are sold, about 3 loaves of whole wheat bread are sold. About how many loaves of whole wheat bread are sold each week?

168 loaves

$$
\begin{aligned}
& \text { yainwoik } \\
& \text { nerain }
\end{aligned}
$$

Go Online
 nine

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 3, Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems, Slide 3 of 5
On Slide 3, students move through the
steps to use equivalent ratios to solve the
problem.

1 CONCEPTUAL UNDERSTANDING

Example 3 Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems (continued)

Questions for Mathematical Discourse

SLIDE 3

Al Why do you multiply both 2 and 96 by 5 ? I need to find the equivalent ratio, and 96 multiplied by 5 equals 480 .

OLI How can you determine by what number the quantity 2 needs to be multiplied to find the number of cases? Sample answer: Divide 480 by 96 , which is 5 . This means 96×5 is 480 , so 2 must also be multiplied by 5 .

OL. What similarities do you notice between Methods 1 and 2? Sample answer: The ratio $2: 96$ is used in each method and this ratio is equivalent to a ratio containing an unknown value that is compared to 480.
|B1I How many cases should the manager buy if an average of 500 jars are sold each week? 11 cases

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Apply Inventory

Objective

Students will come up with their own strategy to solve an application problem involving inventory at an office supply store.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoningof Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What information do you need in order to solve the problem? What information do you not need?
- How can you write a ratio to help solve the problem?
- How can you determine how many free reams of paper were given away?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Inventory
CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Check
The manager of a clothing store decides to hold a Buy 1 , Get 2 Free sale on all pairs of socks. The sale is held for one week and a total of 182 pairs of socks were sold (not including the ones given away for free). If each pair of socks cost the store $\$ 2.50$, how much money did the store lose by giving away the free socks?

Math History Minute
Euphemia Haynes (1890-1980) was the woman to eam a Ph.D. in mathematics. She taught in the public school system of Washington, D.C. for 47 years and became the first woman to serve as chair of the city School Board.

Q ${ }^{\text {Go Online Y Y }}$ Y can complete an Extra Example online

Pause and Reflect

What are the advantages of using a bar diagram to solve ratio problems? When might it be more advantageous to use double number lines or equivalent ratios?

44 Module 1. Ratios and Rates

Interactive Presentation

Exit Ticket

Essential Question Follow-Up

How can you describe how two quantities are related?
In this lesson, students learned how to solve real-world ratio problems using bar diagrams and equivalent ratios. Encourage them to work with a partner to compare and contrast the two methods. Have them explain which method they prefer and why.

Exit Ticket

Refer to the Exit Ticket slide. If there are 480 students in your grade, how could you use this ratio to predict how many students in your grade prefer chocolate ice cream over vanilla? Explain how you solved the problem. Sample answer: Set up equivalent ratios and solve for the unknown. I can predict that about 320 students in my grade will prefer chocolate ice cream over vanilla.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-9 odd, 11-14
- Extension: Determine if Figures are Similar
- ALEKS Ratios and Unit Rates

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-7, 9, 12, 13
- Extension: Determine if Figures are Similar
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- D ALEKS Ratios and Unit Rates

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Ratios and Unit Rates

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
2	use bar diagrams, double number lines, or equivalent ratios to solve real-world ratio problems	$1-7$
2	extend concepts learned in class to apply them in new contexts	8
3	solve application problems involving ratio problems	9,10
3	higher-order and critical thinking skills	$11-14$

Common Misconception

Some students may incorrectly draw a bar diagram to solve a ratio problem. In Exercise 2, students may draw a bar diagram that identifies 720 students as the part rather than the whole. Some students may attempt to draw the bar diagram with 5 sections rather than 8 . In either case, the students will most likely obtain an answer for the part that is greater than the whole. Encourage students to evaluate their answers within the context of the problem. A part that is greater than the whole does not make sense within the context of Exercise 2.

Use any strategy to solve each problem. (Examples 1-3)
$\begin{array}{lll}\text { 1. A survey showed that } 4 \text { out of } 5 \text { students own } & \text { 2. A survey of Mr. Thorne's class shows that }\end{array}$ a bicycle. Based on this result, how many of
the 800 students in a school own a bicycle? 640 students
3. The ratio of the number of baskets made by

T ony to the number of baskets made by Colin
is 2 to 3 . T ony made 10 baskets. How many
baskets did Colin make?
15 baskets
4 girls. There choir, there is 1 boy for every 4 girls. There are a total of 11 boys. How many girls are in the choir? 44 girls
b out of 8 students will buy lunch today.
Based on this result, how many of the
720 students in the school will buy today? 450 students
5. Liberty Middle School has 600 students. In

Anna's class, 3 out of 8 students walk to school. How many students at the school can
be expected to walk to school?
225 students
. Pine Hill Middle School has 300 students. In Zoey's class, 2 out of 5 students belong to a club. How many students at the school would you expect belong to a club? 120 students
est Practice
7. In a survey, the ratio of students who prefer popcorn to potato chips is 3 to 4 . If the number of students surveyed who prefer popcorn is 360 , how many preferred potato chips?
480 students
8. Open Response In a neighborhood, the ratio of houses with swing sets to houses f houses with swing sets is 270 how many houses do not have swing sets?

450 houses

Apply *indicates multh-step wroblem

'2. The manngec of an at sucoly striee decides to hold a Buy 2 . Get 1 Firel Hale on tubes of wabercolict ponts. The sle is held for oce week and a losr or 280 soes of paint were soid woh incudng vee ones gwon rayy money dia the stope lose by poling poin ser tree thes of peim? \$5,015
'10. The mansger of a garden plore decides to hold a Boy 3. Get I Free sele on wepetable plarts. The swle a hield for one week and a wotal of 636 vepetable

 the free pran

GHigher-Order Thinking Problems
π. Tir Construct an Argument Determine it the following staiement is true or fobe Construct an aggument to delend you response.
in equiralent totiox. if the numevator af pher Fagt ratio as preaser than the denominator of ine frist robid then the mumpotor of the second fotions less than the dertominoter of the accondiratio
torece Sample inviwer: For the ratios to be equivalent, they must be equivalent fractions. So, the namerator of the second fraction must abso be greoter thin the derominator, Otherwitos, the ratos are not equivalent.
3. (1) Persevere with Problems Suppose 20 out of 140 poccle suid they play imenis and fout of every 9 of those players hwve s terris casch Using these same ration, in a group of 504 people. predict how many you would erpect to hive a ternis coach Explain how you mude the prediction.
Speople; Sample answer: Using equivalent ratios, $\frac{20}{100}=30 \mathrm{j}, \mathrm{i}, 50,72$ people In a groop of 504 would play temnia. Using mquivaleot natios. $\frac{1}{2}=\frac{1}{2}$, So, 8 people out of those 72 would have a tennis cosch
14. Wibe and solve a coal world ratio probiom Sample anverer 2 out ef 3 atudents in my dass have a pet Based si Dis result, how own a pet? Draw a har diagram to solve. 100 students

12. Compare and contrast the use of bas diagrams and equivalent ratios to solat tajo probiem.
Sample anverer Both methods allow yee to model the ratio and solve the problem. The bar diag am methed provides a more visual reproseotrition of the problem, while the equivaient raties method in more of a nutnerical repreventasion of the problew and tends to be morit efficient when working with larger numbers or tractions. that can be wifed by unimg a bue diagent many of the 150 siath-graders in my school
mesile 1-Rution ma bues

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 11, students determine whether a statement is true or false and construct an argument to defend their response.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 13, students determine a strategy they can use to make their prediction.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises

Listen and ask clarifying questions.

Use with Exercises 9-10 Have students work in pairs. Have students individually read Exercise 9 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 10

Explore the truth of statements created by others.

Use with Exercises 11-14 Have students work in pairs. After completing the exercises, have students write two true statements about using bar diagrams and equivalent fractions to solve ratio problems and one false statement. An example of a true statement might be, "Bar diagrams can be used to solve part-to-whole ratio problems." An example of a false statement might be "Equivalent ratios can only be used to solve part-topart ratio problems." Have them trade statements with another pair or group. Each pair identifies which statements are true and which are false. For each false statement, have them generate a counterexample. Have them discuss and resolve any differences.

Learn Unit Ratios and Measurement Conversions

Objective

Students will understand that they can use unit ratios to represent relationships between Customary units of measurement.

Teaching the Mathematical Practices
6 Attend to Precision As students refer to the Customary conversion chart to write unit ratios, make sure students are careful about the order of the quantities in their ratio. Remind them that in a unit ratio, the first quantity is compared to every 1 unit of the second quantity.

Teaching Notes

SLIDE1

Students should be familiar with the Customary conversions represented in the table. Point out that they can use these conversions to write unit ratios, such as $\frac{3 \text { feet }}{1 \text { yard }}$. These unit ratios can help them convert measurements. You may wish to ask students to use the table to generate other unit ratios.

Talk About It

SLIDE 2

Mathematical Discourse

What are some other unit ratios that you can describe from the conversions listed in the table?
Sample answers: 8 fl oz : $1 \mathrm{c}, 2,000 \mathrm{lb}: 1 \mathrm{~T}$

DIFFERENTIATE

Language Development Activity $\boldsymbol{\text { ELLLIL}}$

Some of your students may be more familiar with the metric system than the Customary system, as the metric system is the standard throughout most parts of the world. You may want to spend more time reviewing the Customary measurement system for those students who are less familiar with it. Have students use the Internet or another source to research and describe in words how each of the following Customary measurement system relates to one of the standard metric system units. Sample responses are shown.

1 foot 1 foot is about 0.3 meter and 1 meter is about 3.3 feet, which means there are a little over 3 feet in 1 meter.

1 mile 1 mile is about 1.6 kilometers and 1 kilometer is about 0.6 mile, which means there is a little over half a mile in 1 kilometer.

1 inch 1 inch is about 2.5 centimeters and 1 centimeter is about 0.4 inch, which means there is a little under half an inch in 1 centimeter.

Interactive Presentation

Customary Conversions			
Type of Measure	Larger Unid	\rightarrow	Senster Unit
	1 foot ${ }^{2}$. 1 yand bop 1 mile (min)		$\begin{aligned} & 12 \text { inches }(n) \\ & 3 \text { feve } \\ & 5.250 \text { feet } \end{aligned}$
Weight	I pound \%by It toen (T)		16 ounces (or) 2.000 pounds
Capacty	tcuptct 1 pint (pt) 1 quars lop T gallonf (gat)		8 fuid ounces (10 OR) 2 cups 2 pints 4 equarts

Learn, Unit Ratios and Measurement Conversions, Slide 1 of 2

TYPE On Slide 2, students enter the unit ratios that represent each relationship.

Convert Customary Measurement Units

LESSON GOAL

Students will use ratio reasoning to convert between customary units of measurement.

1 LAUNCH

Launch the lesson with a warm up and an introduction.
EXPLORE AND DEVELOP

Learn: Unit Ratios and Measurement Conversions Learn: Convert Larger Units to Smaller Units

Example 1: Convert Larger Units to Smaller Units
Learn: Convert Smaller Units to Larger Units
Example 2: Convert Smaller Units to Larger Units
Apply: Soccer Practice

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	LBI	
Remediation: Review Resources		0	
ArriveMATHTake Another Look			
Collaboration Strategies		0	

Language Development Support

Assign page 6 of the Language Development Handbook to help your students build mathematical language related to using ratio reasoning to convert measurements.

Suggested Pacing

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by solving real-world problems involving ratios and measurement units. Standards for Mathematical Content: 6.RP .A.3, 6.RP.A.3.D, Also addresses 6.RP.A. 1
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students solved real-world problems involving ratios.
6.RP.A.3, 6.RP.A.3.B

Now

Students use ratio reasoning to convert between customary units of measurement.
6.RP.A.3, 6.RP.A.3.D

Next
Students will use rates and unit rates to compare quantities.
6.RP.A.2, 6.RP.A.3, 6.RP.A.3.A, 6.RP.A.3.B

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of ratios and unit rates to the relationships among Customary measurement units of length, weight, and capacity. They build fluency with converting measurements within the Customary measurement system and apply their understanding of these measurement conversions to solve real-world problems.

Mathematical Background

Unit ratios can be used to convert measurement units within the Customary measurement system.

- To convert a measurement to a smaller unit, multiply by the unit ratio.
- To convert a measurement to a larger unit, divide by the unit ratio.

Multiplying (or dividing) by a unit ratio is mathematically equivalent to using equivalent ratios to convert between units of measure.

Interactive Presentation

Launch the Lesson, Slide 1 of 2
\square
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- identifying abbreviations for Customary measurement units (Exercises 1-4)
- solving real-world problems involving equivalent ratios (Exercise 5)

Answers

1. yard
2. quart
3. gallon
4. 15 cups
5. inch

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about systems and units of measurement.

3 Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Given what you know about the terms unit and ratio, what can you infer about a unit ratio? Sample answer: A unit ratio will compare one

Interactive Presentation

Learn, Convert Larger Units to Smaller Units, Slide 2 of 3

On Slide 2, students move through the slides to use a bar diagram to convert a larger unit to a smaller unit.

1 CONCEPTUAL UNDERSTANDING

Learn Convert Larger Units to Smaller Units

Objective

Students will understand that they can use bar diagrams and unit ratios to convert larger units to smaller units.

Teaching the Mathematical Practices

2 Reason Abstractly and QuantitativelyAs students use reasoning about ratios to convert a measurement from a larger unit to a smaller unit, encourage them to make sense of the relationships between the unit measurements. Students should begin to understand and be able to explain the steps of the conversion more clearly as they progress through the Learn, so that they can then reason about the advantages and disadvantages of using bar diagrams, and unit ratios/equivalent ratios to solve problems.

5 Use Appropriate Tools StrategicallyAs students discuss the Talk About It! question on Slide 3, encourage them to reason about when it might be more beneficial to use equivalent ratios rather than a bar diagram. While a bar diagram helps to visualize the problem, if there are more than two conversions that are needed, the bar diagram might become complex and difficult to understand.

Teaching Notes

SHDE1

Students may need a reminder that the unit ratio 8 fluid ounces for every 1 cup is used in the conversion, however, the bar diagram is divided into six equal sections, where each section represents 2 cups (1 pint). Because there are 8 fluid ounces in 1 cup, there are 16 fluid ounces in 2 cups. So, each section should be labeled as 2 cups.

SLIDE 2

Students should be familiar with setting up and using equivalent ratios to solve ratio problems. Ask students if they would arrive at the same solution to the problem if they had set up the equivalent ratios as $\frac{1}{2}=\frac{6}{c}$.
Students should be able to reason that their solution would be the same, because the same ratio reasoning is applied.

Talk About It!

SLIDE 2

Mathematical Discourse

Explain why the number of fluid ounces, 96 , is greater than the number of pints, 6 . Sample answer: Fluid ounces is a smaller unit than pints. When converting a larger unit into a smaller unit, the number of smaller units will always be greater than the number of larger units.
(continued on next page)

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Learn Convert Larger Units to Smaller Units (continued)

Talk About It!

SLIDE 3

Mathematical Discourse

Compare the use of the bar diagram to using equivalent ratios. Which one is more advantageous to use to visualize the relationship? Sample answer: Both methods use the relationship between pints and cups and the relationship between cups and ounces. However, when you have to use more than 2 unit ratios, it might be better to use equivalent ratios.

Example 1 Convert Larger Units to Smaller Units

Objective

Students will use ratio reasoning to convert larger measurement units in the Customary system to smaller measurement units.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 4, encourage them to check to make sure that the answer, 8 cups, makes sense in the context of the problem. They should use reasoning to make sense of each conversion from gallons to cups.

6 Attend to Precision Students should be careful about specifying the units of measure in each step of the problem.

Questions for Mathematical Discourse
 SUDE2

An What unit of measure are you given? What do you need to find? I know the gallons and I need to find the number of cups.

OL. Why would we first convert gallons to quarts? Sample answer: I know the conversion from gallons to quarts, but not necessarily the conversion from gallons directly to cups.
OL. How can you use reasoning to convert țallon to quarts? Sample answer: If one gallon is equal to 4 quarts, then half of a gallon is equal to 2 quarts.

BL. Make an argument for how you could directly convert dallon to cups. Sample answer: One gallon equals $4 \times 2 \times 2$, or 16 cups. So, half of a gallon is equal to 8 cups.
(continued on next page)

Interactive Presentation

Example 1, Convert Larger Units to Smaller Units, Slide 2 of 5

On Slide 3 of the Learn, students move through the steps to use equivalent ratios to convert a larger unit to a smaller unit.

On Slide 2 of Example 1, students move through the slides to use a bar diagram to convert a larger unit to a smaller unit.

Step 4 Find the number of cups. For every 1 pint, there are 2 cups.

There are two shaded sections that each represent 4 cups. So there are 2×4 or 8 cups in $\frac{1}{2}$ gallon.

Method 2 Use unit ratios and equivalent ratios.

Step 1 Convert $\frac{1}{2}$ gallon to quarts. There are 4 quarts in every 1 gallon. The unit ratio of quarts to gallons is $4: 1$. Let q represent the unknown number of quarts.
quarts $\rightarrow \frac{4}{1}=\frac{q}{1}$ guarts

Step 2 Convert 2 quarts to pints. There are 2 pints in every 1 quart The unit ratio of pints to quarts is $2: 1$. Let p represent the unknown number of pints.
pints $\rightarrow \frac{2}{1}=\frac{p}{2} \underset{\text { quarts }}{*-\text { pints }}$

Step 3 Convert 4 pints to cups. There are 2 cups in every 1 pint. The unit ratio of cups to pints is $2: 1$. Let c represent the unknown number of cups.
${ }_{\text {pints }}^{\text {cups }} \because \frac{2}{14}=\subset \approx$ cups

So, Marco should use 8 cups of fertilizer. Iways
han the number of larger units.
50
Module 1• Ratios and Rates

Interactive Presentation

Example 1, Convert Smaller Units to Larger Units, Slide 3 of 5

On Slide 3, students move through the slides to use equivalent ratios to convert a larger unit to a smaller unit.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Example 1 Convert Larger Units to Smaller Units (continued)

Questions for Mathematical Discourse

SLIDE 3

What ratio is given? What unit ratio of the same measurements do you know? $\frac{1}{2}$ gallon to quarts; There are 4 quarts in 1 gallon.

OL. How can you use equivalent ratios to find the unknown number of cups? I can set the ratio 4 quarts to 1 gallon equal to the ratio quarts q to $\frac{1}{2}$ gallon, then solve for q. I can continue to set unit ratios of smaller measurements equal to the ratios I find when solving for each new unknown measurement, until I reach the unit of cups.
[3L. If Marco needed to fertilize the tulip bulbs an additional time, how many total cups of fertilizer would he need? How many pints would that be? 16 cups; 8 pints

3
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Convert Smaller Units to Larger Units

Objective

Students will understand that they can use bar diagrams and unit ratios to convert smaller units to larger units.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students use reasoning about ratios to convert a measurement from a smaller unit to a larger unit, encourage them to make sense of the similarities and differences in the steps and methods between converting from smaller units to larger units and converting from larger units to smaller units. Students should be able to reason about the advantages and disadvantages of using bar diagrams, and unit ratios/equivalent ratios to solve problems.

5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 4, encourage them to use reasoning about the number of sections a bar diagram would need to have in order to convert 126 inches to yards.

Teaching Notes

SLIDE1

Students should be familiar with the customary conversions represented in the table. Point out that they can use these conversions to write equivalent ratios, such as $\frac{1 \mathrm{yd}}{3 \mathrm{ft}}$ and $\frac{3 \mathrm{ft}}{1 \mathrm{yd}}$. As students will learn later in this Learn, they should choose the ratio that will allow them to divide out the common units.

SLIDE 2

Students may need help with determining which units to label as they create their bar diagram. Encourage them to think about the progression of unit measurements from smaller to larger. You may wish to ask them what is the next largest unit from inches, then the next largest unit from feet, and so on. You may wish to have them refer to the conversion chart at the beginning of this lesson as well.
(continued on next page)

Interactive Presentation

Learn, Convert Smaller Units to Larger Units, Slide 2 of 4

CLICK

On Slide 2, students move through the slides to use a bar diagram to convert a smaller unit to a larger unit.
\square
Θ Think About It! Will the number of tons be less than, greater than, or equal to 9,920? Explain.
less than; Sample answer: Y ou are converting a smaller unit to a larger unit.
(2.) Talk About It! How do you know that the number of tons should be less than 5 . but very close to 5 ?
Sample answer: Because 9,920 is close to 10,000 and 10,000 divided by 2,000 is 5 .

Method 2 Use unit ratios and equivalent ratios.
Step 1 Convert 24 inches to feet.
There are 12 inches in every 1 foot. The unit ratio of inches to feet is $12: 1$. Let f represent the unknown number of feet.
$\underset{\text { feet } \rightarrow}{\text { inches } \rightarrow} \frac{12}{1}=\frac{24}{f} \quad$ *- inches

Step 2 Convert 2 feet to yards.
Because there are 3 feet in every 1 yard, and there are only 2 feet,
the number of yards is $\frac{2}{3}$.
So, using either method, there are 24 inches in $\frac{2}{3}$ yard.

Q Example 2 Convert Smaller Units to Larger Units

A male hippopotamus can weigh as much as 9,920 pounds.
How much is this weight in tons?
Use unit ratios and equivalent ratios.
There are 2,000 pounds for every 1 ton. The unit ratio of pounds to tons is $2,000: 1$. Let t represent the unknown number of tons.
$\underset{\text { tons }-\frac{2,000}{1}=\frac{9,920}{\text { pounds }} \text { - pounds }}{\text { ton }}$

Because $2.000 \times 4.96=9,920$, Because $2.000 \times 4.96=9,920$,
multiply 1 by 4.96 to find the value of . There are 4.96 tons.

So, the male hippopotamus can weigh as much as 4.96 tons.
Check
How many yards are in 54 inches?
$1 \frac{1}{2}$ or 1.5 yards
Q go Online Y ou can complete an Extra Example oniline
52 Module 1 • Ratios and Rates

Interactive Presentation

Example 2, Convert Smaller Units to Larger Units, Slide 2 of 4
On Slide 3 of the Learn, students move
through the slides to use equivalent ratio
to convert a smaller unit to a large unit.

52 Module 1 - Ratios and Rates

Learn Convert Smaller Units to Larger Units (continued)

Talk About It!

SLIDE 4

Mathematical Discourse

Why might it not always be advantageous to use a bar diagram to convert measurement units? Would you choose to use a bar diagram to convert 126 inches to yards? Why or why not? Sample answer: I would have to draw 126 sections to convert 126 inches to yards. I wouldn't use a bar diagram because it would take a long time to draw all of those sections. When there are larger numbers, it would be better to use equivalent ratios.

Example 2 Convert Smaller Units to Larger Units

Objective

Students will use ratio reasoning to convert smaller measurement units in the Customary system to larger measurement units.

Questions for Mathematical Discourse

SLIDE2

An What unit of measure are you given? What do you need to find? I know the pounds and I need to find the number of tons.

OI. Why do we need to use the unit ratio of 2,000 pounds for every 1 ton? Sample answer: The unit of measurement given is pounds and I need to find the solution in tons.

OL. Use reasoning to explain why the numerical value of the measurement is less than the given value. Sample answer: It takes more of a smaller unit to equal a larger unit, so the opposite is also true. It takes less of a larger unit such as tons, to equal a smaller unit, such as pounds.

BL. Make an argument for why converting to a smaller unit is impractical in this real-world problem. Sample answer: A smaller unit such as ounces is impractical to convert to because a hippopotamus is such a large animal, that the number of ounces would be extremely large and not as easy to conceptualize.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Soccer Practice

Objective

Students will come up with their own strategy to solve an application problem involving the amount of water athletes drink during soccer practice.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What units of measurement are given? What unit ratios do you know for those units of measurement?
- Would using a bar diagram or unit ratios and equivalent ratios be more advantageous to use in this scenario?
- How will you find the total cost the coach will spend once you have converted the units to quarts?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Soccer Practice

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. How many teaspoons of oregano will you need to serve 16 people? If one teaspoon is one third of a tablespoon, how many tablespoons of oregano will you need to serve 16 people? Write a mathematical argument that can be used to defend your solution. 10 teaspoons; about $3 \frac{1}{3}$ tablespoons; Sample answer: Multiply the number of teaspoons, 2.5 , by 4 , since 4 multiplied by 4 equals 16 . This yields 10 teaspoons. Since each teaspoon is one third of a tablespoon, divide 10 by 3 . This yields $3 \frac{1}{3}$ tablespoons.

ASSESS AND DIFFERENTIATE

II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1-11 odd, 13-16
- D ALEKS U.S. Customary Units of Measurement

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-8, 11, 15, 16
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- ALEKS Ratios and Unit Rates

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Ratios and Unit Rates

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	use ratio reasoning to convert larger measurement units in the Customary system to smaller measurement units	$1-4$
2	use ratio reasoning to convert smaller measurement units in the Customary system to larger measurement units	$5-8$
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving converting measurement units	11,12
3	higher-order and critical thinking skills	$13-16$

Common Misconception

Students may incorrectly use a reciprocal relationship to convert a unit measurement. In Exercise 3, students may incorrectly think that there are 16 gallons in one cup rather than 16 cups in one gallon. Encourage students to understand the different sizes of unit measurements and use that information to determine the correct unit ratio.

Apply "indicates multi-step problem

'11. At the grocery store, Mr. Arnett allowed each of his children to fill their own bag with trail mix for their hike. The table shows the amount of trail mix for each child. The trail mix costs $\$ 4.50$ per pound. How much will Mr. Arnett pay for all the trail mix?
\$15.75

12. A hockey player needs to shoot a puck 55 meters from his current location to his opponent's goal to score a goal. After the shot, the puck is 120 centimeters from his opponent's goal. If there are 100 centimeters in 1 meter, how many meters did the puck travel? 53.8 meters

Higher-Order Thinking Problems

13. There are 60 minutes in one hour and 60 seconds in one minute. Using this information, explain how you could conver 20 miles per hour to feet per second.

Sample answer: First, convert 20 miles to feet. There are 5,280 $\times 20$ or 105,600 feet in 20 miles. Then convert one hour to seconds. There are 60×60 or 3,600 seconds in one hour. So, $\frac{105,600 \mathrm{ft}}{3,600 \mathrm{~s}} \approx$ $\frac{29.3 \mathrm{ft}}{1 \mathrm{~s}}$ or about 29.3 feet per second.
15. The table shows the metric system conversions of length.

Larger Unit $\rightarrow \quad$ Smaller Unit

 1 kilometer $(\mathrm{km})=1,000$ meters (m) 1 meter $\quad=100$ centimeters (cm) 1 centimeter $=10$ millimeters (mm) How can you use ratio reasoning to find the number of centimeters in 2.2 kilometers? Sample answer: I can use the equivalent ratios $\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=\frac{2.2 \mathrm{~mm}}{}$ to find that 2.2 kilometers is equal to 2,200 meters. I can then use the equivalent ratios $\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{2200 \mathrm{~m}}{1} \mathrm{~m}$ to convert meters to $100 \mathrm{~cm} \uparrow \mathrm{~cm}$. $100 \times 2,200$ or 220,000 centimeters.14. Identify Structure When converting from larger units such as quarts to smaller units such as cups, will the number of smaller units be greater than the number of larger units? Explain your reasoning
yes; Sample answer: When converting from larger units to smaller units, there will be more of the smaller units to equal the larger units. For example, there are 4 cups in 1 quart.
15. Find the Error A student's work for converting 4 gallons to cups is shown. Find the mistake and correct it.
16 gallons $=4$ gallons So, d is equal to $\frac{1}{4}$ cup.
Sample answer: The student's unit ratio is incorrect. There are 16 cups in one gallon, not 16 gallons in one cup. The correct not 16 gailons in one cup. The correct
answer is 4 gallons is equal to 64 cups.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure In Exercise 14, students use the structure and sizes of units to determine how the number of a certain unit will change when converted from a larger unit to a smaller unit.

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 16, students will explain why the conversion that another student completed is incorrect.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercises 11-12 Have students work in pairs. Have students individually read Exercise 11 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 12.

Clearly and precisely explain.

Use with Exercise 16 Have pairs of students prepare and practice their explanations, making sure that their reasoning is clear and precise.
Then call on one pair of students to explain their reasoning to the class. Encourage students to come up with a variety of methods, such as using unit ratios or bar diagrams, in their responses.

Learn Understand a Rate and a Unit Rate

Objective

Students will understand how to compare quantities using rates and unit rates.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to use reasoning about the quantity 1.5 minutes and how that corresponds to minutes and seconds, or just seconds.
As students discuss the Talk About lt!! question on Slide 4, encourage them to reason about what each bar diagram represents and which one would be more beneficial to use if you wanted to find the unit rate in minutes per lap versus laps per minute.

Teaching Notes

SLIDE 2:
Present the scenario and bar diagram to your students. Ask them to reason about the relationships represented in the bar diagram to find the number of minutes that Luciana can run for each lap. Students should be able to reason that Luciana can run each lap in 1.5 minutes, assuming she ran at a constant rate, because $4 \times 1.5=6$. Point out that this is a unit rate, because the first quantity (minutes) is compared to 1 unit of the second quantity (laps). Students may be familiar with rates and unit rates in their everyday lives, such as a car traveling at 65 miles per hour on the highway. Be sure students understand that a rate is a special kind of ratio in which the units are different. Many rates in the real-world involve time as one of the units.

Talk About It!
 SLIDE2

Mathematical Discourse

If Luciana's unit rate in minutes per lap is 1.5 , how long did it take her to run each lap? 1 minute and 30 seconds, or 90 seconds
(continued on next page)

DIFFERENTIATE

To further student's understanding of rates and unit rates, have them work with a partner to generate several different rates, some of which (but not all) are unit rates. Have them write each rate on a slip of paper. Then have them trade papers with another pair of students. Each pair should sort the rates as to whether or not they are unit rates, and explain their reasoning. Have the pairs check each other's work, and discuss and resolve any differences.

Interactive Presentation

Learn, Understand a Rate and a Unit Rate, Slide 1 of 6

Understand Rates and Unit Rates

LESSON GOAL

Students will compare quantities by using unit rates.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Compare Quantities with Different Units

Learn: Understand a Rate and a Unit Rate
Example 1: Find a Unit Rate
Learn: Unit Price
Example 2: Find a Unit Price
Apply: Travel
Have your students complete the Checks online.

3

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	L Bl	
ArrlveMATMTake Another Look			
Collaboration Strategies			0

Language Development Support

Assign page 7 of the Language Development Handbook to help your students build mathematical language related to understanding rates and unit rates.
GLL You can use the tips and suggestions on page T7 of the handbook to support students who are building English proficiency.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by solving problems by finding unit rates to compare quantities.
Standards for Mathematical Content: 6.RP .A.2, 6.RP.A.3, 6.RP.A.3.A,

6.RP.A.3.B

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP6

Coherence

Vertical Alignment

Previous

Students used ratio reasoning to convert between Customary units of measurement.
6.RP.A.3, 6.RP.A.3.D

Now

Students use rates and unit rates to compare quantities.
6.RP.A.2, 6.RP.A.3, 6.RP.A.3.A, 6.RP.A.3.B

Next

Students will solve real-world problems involving rates.
6.RP.A.2, 6.RP.A.3, 6.RP.A.3.B

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of ratio relationships through rates and unit rates. They learn to use rate language to describe the relationships between quantities and start to build fluency with finding rates and unit rates. They apply their understanding of rates and unit rates to solve real-world problems.

Mathematical Background

A rate is a ratio that compares two quantities with different types of units. A unit rate is a rate in which the first quantity is compared to 1 unit of the second quantity. The phrase per is used to describe unit rates. It means for each. Unit rates are used to solve problems involving best buys, unit prices, and finding other rates with the same unit rate.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- writing equivalent ratios (Exercises 1-4)

Answers

1. Sample answers: 5 to $1 ; 50$ to 10
2. Sample answers: 13 to 2; 78 to 12
3. Sample answers: 6 to 1; 96 to 16
4. Sample answers: 4 to $1 ; 80$ to 20

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about different-sized packages and prices of some food items in grocery stores.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- What are some everyday examples of where you might have heard the term rate before? Sample answer: running or traveling at a fast or slow rate, or speed
- How is the word unit used in your everyday life? How could you use this knowledge to help understand what a unit price might be?
Sample answer: We measure (length, weight, area, etc.) using units. A unit price may be the price for one item.
- Based on your understanding of what a rate might be, and what a unit means, what do you think a unit rate might be? Sample answer: A unit rate might be the rate per one quantity of something, such as the speed at which someone can run in one minute, or one hour.

Explore Compare Quantities with Different Units

Objective

Students will use Web Sketchpad to explore comparing quantities with different units.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with the sketch that shows a crank that takes a certain amount of time and produces a certain number of noodles. They will write the relationship as a ratio before finding equivalent ratios. Throughout this activity, students will apply what they know to explore the idea of a unit rate.

Inquiry Question

How can you compare quantities with different units? Sample answer: I can use rates and unit rates to compare quantities with different units.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 3 are shown.

Talk About It!

SLIDE 3

Mathematical Discourse

The units of the two quantities are different. This type of relationship is called a rate. A rate is a special type of ratio in which the two quantities being compared are different. Discuss some real-world examples of rates. 5 packages of cookies for $\$ 10$

The machine made 7 noodles in 4 seconds. This is a constant rate. What do you think constant rate means? Sample answer: The machine is consistent. It produces the same number of noodles in a minute. This number does not change.
(continued on next page)

Interactive Presentation

Compare Cuantities with Different Units
(C) Introdueting Be Inquity Couestion

Explore, Slide 1 of 6

Explore, Slide 4 of 6
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how to compare quantities with different rates.

Interactive Presentation

Explore, Slide 5 of 6
TYPE
a
On Slide 6, students respond to the Inquiry Question and view a sample answer.

Explore Compare Quantities with Different Units (continued)

(1)

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to reason about the relationships between the elapsed time and the number of noodles produced by the machine.

6 Attend to Precision Students should be precise when talking about the different kinds of units, noodles, and seconds.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 4 is shown.

Talk About It!

SLIDE 4

Mathematical Discourse

Without turning the crank, predict how many noodles the machine can make in 32 seconds. Explain. 56 noodles; Sample answer: If the machine makes 7 noodles in 4 seconds, it will make 7×8 or 56 noodles in 4×8 or 32 seconds.

Interactive Presentation

Learn, Compare Quantities using Rates and Unit Rates, Slide 5 of 6

1 CONCEPTUAL UNDERSTANDING

Learn Understand a Rate and a Unit Rate (continued)

Talk About It!
SLIDE3

Mathematical Discourse

How does this bar diagram compare to the one on the previous page? Do they represent the same relationship between the two quantities? Sample answer: Both bar diagrams represent the same relationship between number of laps and number of minutes. The choice to use either diagram depends on which unit rate you want to find (minutes per lap, or laps per minute).

Teaching Notes
 SLIDE4

Present the scenario and bar diagram to your students. Ask them to reason about the relationships represented in the bar diagram to find the number of laps that Luciana can run for each minute. Students should be able to reason that Luciana can run $\frac{2}{3}$ lap for each minute, assuming she ran at a constant rate, because $4 \div 6=\frac{2}{3}$. If students struggle to reason, you may want to have them refer to their process earlier in this Learn, to note the use of division.

Talk About It!
SLIDE 6

Mathematical Discourse

Which unit rate, minutes per lap or laps per minute, would be helpful if you wanted to predict how many minutes it will take Luciana, at that rate, to run 5 laps? Why? 1.5 minutes per lap; Sample answer: I can multiply 1.5 by 5 to find the number of minutes, 7.5.

Go Online to find additional teaching notes.

DIFFERENTIATE

Language Development Activity $\boldsymbol{\|}$ ㅌL

Encourage students to spend time studying the table presented in the Learn that summarizes ratios, rates, and unit rates. Have students work with a partner to create a graphic organizer that includes examples of real-world ratios, rates, and unit rates. Have them draw a bar diagram that illustrates the relationship. Have them present their graphic organizers to another pair of students, and discuss and resolve any questions or discrepancies. You may wish to have students display their graphic organizers around the room.

1 CONCEPTUAL UNDERSTANDING
 2 FLUENCY
 3 APPLICATION

Example 1 Find a Unit Rate

Objective

Students will find a unit rate in order to solve a real-world problem.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Students should interpret the mathematical results within the context of the real-world problem and see whether the results make sense.

As students discuss the Talk About It! question on Slide 4, encourage them to understand the meaning of each of the quantities in the rate and use the rate to solve the problem.

Questions for Mathematical Discourse

SLIDE 2

AL. Is the rate 1,590 wing flaps in 30 seconds a unit rate? Explain. no; Sample answer: The unit rate should be written as the number of wing flaps per second (in 1 second).

Ol Use reasoning to estimate the unit rate, in wing flaps per second, without performing any calculations. Sample answer: 1,590 is a little over fifty times 30 , so the unit rate will be a little over 50 .
|nsil Use reasoning to find the unit rate in flaps per second. 53 flaps per second

SLIDE3

ALI What must the denominator be of the rate that represents the unit rate? The denominator of any rate that represents a unit r ate should be the number 1 .

OL. Why do we divide both the numerator and denominator of the second rate by 30 ? The denominator in the rate needs to be 1 , so that the equivalent rate is a unit rate; 30 divided by 30 is equal to 1 .

How many wing flaps would the hummingbird have in 30 seconds, if its unit rate is 48 flaps per second? Explain how you solved the problem. 1,440 flaps; Sample answer: $\frac{48 \text { flaps }}{1 \text { second }}=\frac{\mathrm{S}}{30 \text { seconds }}$; $48 \times 30=1,440$ flaps

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

A Example 1 Find a Unit Rate

A scientist studying hummingbirds recorded that a hummingbird flapped its wings 1,590 times in 30 seconds during normal flight. Assuming a constant rate, how many times did the hummingbird flap its wings per second?
Method 1 Use a ratio table. Create a ratio table with the given information.
Scale backward to find the number of wing flaps per second.

```
Method 2 Use equivalent rates.
```

Write and solve an equation stating that two rates are equivalent. Let s represent the unknown number of wing flaps per second.
wing flaps $=\frac{s}{1}=\frac{1,590}{30} \approx$ wing flaps

$$
\begin{array}{ll}
\frac{s}{1}=\frac{1,590}{30} & \begin{array}{l}
\text { Because } 30 \div 30=1 \text {, divide } 1,590 \text { by } 30 \text { to } \\
\text { find the value of } s .
\end{array} \\
\div 30 & \\
\frac{53}{1}=\frac{1,590}{30} & 1,590 \div 30=53 ; \text { So, } s=53 .
\end{array}
$$

So, using either method, the hummingbird flapped its wings at a rate of 53 flaps per second.

Check

Refer to Example 1. The scientist also recorded that the hummingbird took 6,250 breaths over a period of 25 minutes. Assuming a constant rate, how many breaths per minute did the hummingbird take?

250 breaths per minute

Ogo Online Y ou can complete an Extra Example online.

Think About It! Why might a bar diagram not be the best method to use to find the unit rate?
Sample answer: The quantities given, 1,590 and 30 , are large, so drawing a bar diagram would not be efficient.

Talk About It! At this rate, how many times would the wings in 2 minutes? Justify your response.

6,360 times; Sample answer: The number of flaps per minute is found by multiplying 53 flaps per second by 60 seconds. Then that unit rate is multiplied by 2 , to find the by 2 , to find the 2 minutes.

Interactive Presentation

Example 1, Find a Unit Rate, Slide 2 of 5
On Slide 2, students move through the
slides to use a ratio table to find the unit
rate.

QTulataboatio

the 32 -ounch
contion?
Sample answer: It you wanted to try jonta. sample of the yogurt first. you might want to buy the tmaller containes.

Learn Unit Price
A grocery stone sels a 6 ounce container al yogut for 5078 . The store also sets a 32 -ounce container of the same yogut for $\$ 3.84$. To determine which is the beffer buy - per cunce - find the unt price of each hom. The unia price is the cost per unit of an tiem. You can use whet you know about ont rates to flad a unit price.
6-Ounce Container 32-Ounce Container
Scale bociward to find the Scale bocknard to Snd the price per outice. The unit pice per ounce. The unh price is SO 13 per ounce. prise is 5012 per ounce.

\section*{| Puce (3) |
| :--- |
| Ounces |} | ar |
| :--- |
| 1 |
| 1 |
| 1 |

Per ounce, the 32 -ounce container d yogurt is the beter bux. because the unt price is less than that of the 6 -ounce container.
© Example 2 Find a Unit Price
For Carcinal's birthasy, her mother took her and four fiends to a woter park Cayolisis mother can pay enther $\$ 130$ tor a 5 pack of student tickets, $<\$ 28$ for each individual student ticket.
Which ticket poyment option has the lesser unit price?
The unk price is given foe buying the tickets indinidually. $\$ 28$ per sicket. Find the unit price for the 5 -pack of student tickits.
Scale bocimesed to find the unt peice.
The unt price is $\$ 2.5$ per sicket.
So, the 5-pack bickel paymect option in/s the lesser unit price becture $\$ 26<\mathbf{\$ 2 8}$.

Check
A sporting goods store selts a onckape of twonty basebals for $\$ 25.05$ or single baseballs for $\$ 155$ each Which oprion hes the ilsser unit price?
package of 20 basebolls

Interactive Presentation

Example 2, Find a Unit Price, Slide 2 of 3

TYPE	On Slide 2 of Example 2, students determine the unit price of dollars per ticket.
SHECK	Students complete the Check exercise online to determine if they are ready to move on.

60 Module 1 - Ratios and Rates

Learn Unit Price

Objective

Students will learn how to find unit price in order to solve a real-world problem.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide1, encourage them to construct a plausible argument for why someone might choose to purchase the container with the greatest cost per ounce.

Teaching Notes

SLIDE1
Present the real-world scenario to students and have them discuss how they can use what they know about unit rates to find the unit price. You may also wish to have a discussion about other situations students may have encountered that involve unit prices in their everyday lives.

Talk About It!

SLIDE1

Mathematical Discourse

When might it be better to buy the 6 -ounce container instead of the 32-ounce container? Sample answer: If you wanted to try just a sample of the yogurt first, you might want to buy the smaller container.

Example 2 Find a Unit Price

Objective
Students will find a unit price in order to solve a real-world problem.

Questions for Mathematical Discourse

SLIDE 2

AL Why do you divide both the first quantity and second quantity by 5 ? I need to find the cost per ticket, and there are 5 tickets.

OL Why was it important to find the unit price? Sample answer: It is important to find the unit price so that the two purchase options can be compared to find the lesser price.

BLL At the same unit price, what would the number of tickets need to be in order for the total cost to be $\$ 208$? 8 tickets

(3) Online

- Find additional teaching notes and the mathematical practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Travel

Objective

Students will come up with their own strategy to solve an application problem involving travel speeds.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,

4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What tools can you use to solve the problem?

- How might the unit rate help you?
- How can you compare the rates?

2
 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Travel

The Martinez family and the Davidson family each drove at a constant rate. The Martinez family drove 260 miles in 4 hours and the Davidson family traveled 305 miles in 5 hours. Which family traveled at a faster rate? How much faster?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

the Martinez family; They traveled at a rate of 4 miles per hour faster than the Davidson family; See students' work.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Travel

Students complete the Check exercise online to determine if they are ready to move on.

Exit Ticket

Interactive Presentation

1 CONCEPTUAL UNDERSTANDING

Essential Question Follow-Up
How can you describe how two quantities are related?
In this lesson, students learned how to compare quantities using rates and unit rates. Encourage them to work with a partner to compare and contrast ratios, rates, and unit rates.

Exit Ticket

Refer to the Exit Ticket slide. Which box is the better buy? Write a mathematical argument that can be used to defend your solution. The second box is the better buy; Sample answer: The unit price for the first box is $\$ 0.49$ per bag. The unit price for the second box is $\$ 0.45$ per bag, which is a lesser unit price.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, |BI
THEN assign:

- Practice, Exercises 1-9 odd, 11-14
- a AleKS Ratios and Unit Rates

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-7, 9, 12, 13
- Personal Tutor
- Extra Examples 1 and 2
- ALEKS Ratios and Unit Rates

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATH Take Another Look
- ALEKS Ratios and Unit Rates

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B Practice Form APractice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
2	find the unit rate in order to solve a real-world problem	$1-4$
2	find the unit price in order to solve a real-world problem	$5-7$
2	extend concepts learned in class to apply them in new contexts	8
3	solve application problems involving rates and unit rates	9,10
3	higher-order and critical thinking skills	$11-14$

Common Misconception

When writing and solving an equation using equivalent rates, students might set up the given rate incorrectly. They might not keep the corresponding units in the same location across the equation. For example, in Exercise 4, students might incorrectly write the equation as $\frac{p}{1}=\frac{10}{4}$, where $p=$ pounds. Students who consistently write the equation in this way might find greater success using a ratio table, where the units are more clearly labeled, thus making it easier to organize the data.

Apply *indicates multi-step problem
"9. Nolan found two stores that sell filled party favor bags. The table shows his options. Which store has the lesser cost per filled bag? How much less?
Party R Us; \$0.25 less

Store	Number of Bags	Cost (\$)
Party R Us	8	12
Celebrations 12		21

"10. The Houck family and Roberts family took trains for their family vacations,
traveling at constant rates. The Houck family's train traveled 552 miles in
6 hours and the Roberts family's train traveled 744 miles in 8 hours.
Which family's train is traveling at a faster rate? How much faster?
Roberts family; 1 mph faster

Higher-Order Thinking Problems
11. Caleb paid $\$ 4.50$ for 12 bagels. Describe a unit price for bagels that is greater than the unit price Caleb paid.
Sample answer: 1 bagel for $\$ 0.50$

Ni: Justify Conclusions If you travel at a rate of 60 miles per hour, how many minutes will it take you to travel 1 mile? Write an argument that can be used to justify your conclusion.
1 min ; Sample answer: There are 60 minutes in 1 hour, so 1 mile per minute is equivalent to 60 miles per hour.
12. Find the Error A large box of spaghetti noodles contains 3 pounds and costs $\$ 2.40$. A student said the unit cost is $\$ 1.20$ per pound. Is the student correct? Explain. no; Sample answer: The unit cost is equal to the cost divided by the number of pounds of spaghetti: $\frac{\$ 2.40}{3}$ or $\$ 0.80$ per pound.
14. Reason Inductively Suppose two boxes of cereal contain the same number of ounces but cost different amounts. Without computing, how can you determine which computing, how can you determine which Explain.
Sample answer: If the number of ounces are the same, then the box that costs more will cost more per ounce.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of

 OthersIn Exercise 12, students will critique the reasoning of another student who found an incorrect unit price.

In Exercise 13, students will find a unit rate using a different unit than the one given in the problem and will justify their answer by presenting a reasoned defense.

2 Reason Abstractly and Quantitatively In Exercise 14, students will reason about the method used to determine which box of cereal will cost more per ounce.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Solve the problem another way.

Use with Exercises 9-10 Have students work in groups of 3-4. After completing Exercise 9, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method. Repeat this process for Exercise 10.

Make sense of the problem.
Use with Exercise 12 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise thinks that the spaghetti costs $\$ 1.20$ per pound. Have each pair or group of students present their explanations to the class.

Learn Use Bar Diagrams to Solve Rate Problems

Objective

Students will understand that they can use bar diagrams to model and solve a real-world problem involving rates.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to understand that there are two rates presented in the Learn, so they need to draw two bar diagrams, one for each person. Once they correctly find the unit rate, they still need to find how many more miles Santiago can drive in 9 hours than Destiny.
6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to use clear and precise mathematical language to explain how they can solve the problem another way.

Teaching Notes

SLIDE1
Students may not readily see this problem as having multiple steps. Some students may correctly model the situation using a bar diagram, but neglect to finish the steps needed in order to answer the question. Encourage students to return to the problem scenario as they progress through the steps, to ensure that they use the unit rate found through use of the bar diagram, to find how many more miles Santiago can drive in 9 hours.

Talk About It!

SLIDE2

Mathematical Discourse

Can you solve this rate problem another way? Explain. yes; Sample answer: After finding the unit rates, I can multiply each unit rate by 9 to determine the distance each person can drive in 9 hours. Then I can subtract the lesser distance from the greater distance to find how much farther Santiago can drive in 9 hours.

Interactive Presentation

Learn, Use Bar Diagrams to Solve Rate Problems, Slide 1 of 2

On Slide 1, students move through the slides to find the total number of miles each person drove.

Solve Rate Problems

LESSON GOAL

Students will solve real-world problems involving rates.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Use Bar Diagrams to Solve Rate Problems
Example 1: Use Bar Diagrams to Solve Rate Problems
Learn: Use Double Number Lines and Equivalent Rates to Solve Rate Problems
Example 2: Use Double Number Lines and Equivalent Rates to Solve Rate Problems
Apply: Bike-a-thon
Have your students complete the Checks online.

3

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 8 of the Language Development Handbook to help your students build mathematical language related to solving problems involving rates.

ㅌLL. You can use the tips and suggestions on page 18 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by solving rate problems using ratios.
Standards for Mathematical Content: 6.RP .A.2, 6.RP.A.3, 6.RP.A.3.B Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6

Coherence

Vertical Alignment

Previous

Students solved real-world problems involving ratios.
6.RP.A.2, 6.RP.A.3, 6.RP.A.3.A, 6.RP.A.3.B

Now

Students solve real-world problems involving rates.
6.RP.A.2, 6.RP.A.3, 6.RP.A.3.B

Next
Students understand that a percent is a rate per 100.
6.RP.A.3.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Citi Conceptual Bridge In this lesson, students apply their		
understanding of rates and unit rates to solve real-world problems.		
They build fluency with different representations, such as bar		
diagrams, double number lines, and equivalent rates, as they solve		
problems.		

Mathematical Background

Bar diagrams and double number lines are both useful visual representations to help solve problems involving rates. Using these visuals can help you understand the relationship between the two quantities. This becomes especially helpful when a comparison needs to be made between multiple rates represented in different problem scenarios. When the numbers are large or involve decimals or fractions, reasoning about equivalent ratios can be more advantageous.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- finding unit rates (Exercises 1-3)

Answers

1. 2 cups
2. 110 miles per hour
3. 1.5 books

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about video game arcades and the use of tokens instead of money.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- How would you use a rate involving distance in a sentence? Sample answer: We drove 450 miles in 7 hours.
-Where do you usually see unit rates being used in everyday life? Sample answer: Unit rates can be used to explain how fast a vehicle is moving. For example, a car may travel at a unit rate of 65 miles per hour.

Think About It Why do you need to know the sizes of the cans? Do you need to use that number when solving the problem?

Sample answer: In

 order to make a comparison, I need to know that the cans are the same size. I do not need to use the size of the cans in the calculations.| |
| :--- |
| | Talk About It!

How can you use estimation to help you
solve this problem if you are in a store and do not have access to pencil, paper , or a

Sample answer: A case from the about $\$ 10$, so 6 cas costs about $\$ 60$. Twelve 3-packs from the grocery stores costs about $12 \times \$ 6$ caterer will save about $\$ 72-\$ 60$, or $\$ 12$.

Interactive Presentation

Example 1, Use Bar Diagrams to Solve Rate Problems, Slide 2 of 5

On Slide 2, students move through the slides to see how a bar diagram is used to solve the problem.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

© Example 1 Use Bar Diagrams to Solve Rate Problems

Objective
Students will use bar diagrams to model and solve a real-world problem involving rates.

17. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 4, encourage them to reason how using estimation would help solve the problem if they did not have any tools available to use.

Questions for Mathematical Discourse
 SLIDE 2

AL. Why do we divide the bar for the warehouse into 6 sections, and the bar for the grocery store into 3 sections? Sample answer: Because the cans are sold in cases of 6 cans at the warehouse, and they are on sale in groups of 3 at the grocery store.
OI. Describe another way you can solve this problem. Sample answer: I can multiply the cost of a case by 6 to find the total cost at the warehouse. Then, multiply the sale price of the cans at the grocery store by 12 to find the total cost at the store. Finally, subtract.

IBI. What is the savings per ounce? Round to the nearest cent. \$0.02

SLIDEB

A․ Why do you need to subtract $\$ 1.66$ from $\$ 1.89$? Sample answer: These are the unit prices, and I need to know the difference so I can determine the total amount of money the caterer saved by buying 36 cans from the warehouse.

OL How can you determine if your solution is accurate? Sample answer: I can multiply the cost per can at the warehouse by 36 , and also the cost per can at the grocery store by 36 . This will give me the two total amounts the caterer would spend at each location. I can then subtract the two amounts to determine how much the caterer saved. My solution should be the same as the difference between the two total amounts.

BL. Suppose the warehouse increases the price of a case of 6 cans to $\$ 10.98$. Will the caterer still save money for 36 cans by buying them at the warehouse? Explain. yes; Sample answer: If the price increases to $\$ 10.98$ for 6 cans, the unit price would be $\$ 1.83$. So, $\$ 1.89-\$ 1.83=\$ 0.06$, which is the amount the caterer would save per can. Although the caterer will not save as much money as before, buying from the warehouse still saves the caterer money.

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Use Double Number Lines and Equivalent Rates to Solve Rate Problems

Objective

Students will understand that they can use double number lines and equivalent rates to solve a real-world problem involving rates.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to understand that they can solve this problem by reasoning about the difference between the heartbeats. Because the problem asked for the difference in heartbeats for 6 minutes, they can begin the problem by finding the difference in heartbeats for 4 minutes. As they discuss the Talk About It! question on Slide 3, encourage them to consider alternative approaches to solving the problem.

5 Use Appropriate Tools Strategically Students will use two methods to solve this rate problem, a double number line and equivalent rates. Encourage them to understand the benefits of each method and the correspondences between them. The double number line allows students to visually see the rate relationship, while both methods essentially involve scaling by finding equivalent rates.

Teaching Notes

SLIDE1
In this Learn, students understand that they can find the difference in heartbeats for 4 minutes to extend that to find the difference in heartbeats for 6 minutes. Some students may choose to find the unit rate for each animal first. Students will consider this method as they discuss the Talk About lt! question on Slide 3.

Go Online to find additional teaching notes and the sample answer for the Talk About It! question.

DIFFERENTIATE

Enrichment Activity |Bil

To further students' understanding of rate problems, have them explain whether using a double number line or equivalent ratios is a more advantageous method to solve the following problems.

1. Henry uses 5 gallons of gas in 2.5 hours. At this rate, how many gallons of gas will he use in 7.5 hours? double number line; Sample answer: 7.5 hours is 3 times 2.5 hours, so the total amount of gas can be found by multiplying 5 by 3 .
2. Raelyn reads 7 pages every 12 minutes. At this rate, how many minutes will it take her to read 30 pages? equivalent ratios; Sample answer: 30 is not a multiple of 7 , so a double number line is not the best method to use.

Learn Use Double Number Lines and Equivalent Rates to Solve Rate Problems

A veterinarian measured the number of

 heartbeats of her dog and cat for 4 minutes and recorded the results in more. At these rates, how many 6 minutes than the dog?Method 1 Use a double number line
Step 1 Construct a double number line.
In four minutes, the cat's heart beats $520-360$, or more times than the og's. this difference.

Step 2 Use scaling to find the unit rate
Scale back to find the
difference in heartbeats for 1 minute. Then scale forward to find the difference in heartbeats for 6 minutes.
Method 2 Use equivalent rates.
is 160 beats.

$\frac{6}{240} 1 \overline{160} \quad 4 \quad 160 \times 1.5=240$

So, using either method, the cat's heart beats 240 more times in 6 minutes than the dog's heart

The cat's heart beats 240 more times in 6 minutes than the dog's hear
Write and solve an equation. Let d represent the difference in
heartbeats for 6 minutes. The difference in heartbeats for 4 minutes
difference in heartbeats $\rightarrow \frac{6}{d}=\frac{4}{160} \stackrel{\text { dinutes }}{\sim}$ difference in heartbeats

OTalk About It! A classmate stated that you can also find in heartbeats per minute first. Then multiply each unit rate by 6 minutes to determine the number of heartbeats in 6 minutes for each animal. Finally,
subtract to find the subtract to find the method a valid method? Explain.
yes; Sample answer: You can find each unit rate first and then scale to find the number of heartbeats in 6 minutes before subtracting. Or, you subtracting. Or, you can subtract first and then forward to find then forward to fin the difference in heartbeats for 6 minutes. Either method is valid.

Interactive Presentation

Learn, Use Double Number Lines and Equivalent Rates to Solve Rate Problems, Slide 1 of 3
On Slide 1, students move through the
slides to see how a double number line
can be used to solve the problem.

Q Example 2 Use Double Number Lines and Equivalent Rates to Solve Rate Problems
A bulk food store sells a 12 -pound bag of Red Delicious apples for $\$ 18$.
At this rate, what is the price of a 15 -pound bag of apples?
Method 1 Use a double number line.
Step 1 Construct a double number line.
Draw a double number line to represent the price of a 12 -pound bag. Mark equal increments on the bottom number line.

Step 2 Use scaling to find an equivalent rate.
Scale back to find the price for a 3 -pound bag. Then scale forward to find the price for a 15 -pound bag.

At this rate, the price of a 15 -pound bag of apples is $\$ 22.50$.
Method 2 Use equivalent rates.
Write and solve an equation. Let p represent the price of the 15 -pound bag.
pounds $=\frac{15}{\rho}=\frac{12}{18} \approx$ pounds
ice (\$) $-\frac{15}{\rho}=\frac{12}{18} \quad-$ price ((\$)

So, using either method, the price of a 15 -pound bag is $\$ 22.50$.
Check
The manager of a small bakery determines that an average of 264 loaves of cinnamon raisin bread are sold every 12 weeks. At this rate, about how many loaves of cinnamon raisin bread are sold every 5 weeks?
about 110 loaves
nare
Q go onine Y ou can complete an Extra Example online

Interactive Presentation

Example 2, Use Double Number Lines and Equivalent Rates to Solve Rate Problems, Slide 2 of 5

On Slide 2, students move through the slides to see how a double number line is used to solve the problem.

On Slide 3, students move through the steps to use equivalent rates to solve the problem.

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Use Double Number Lines and Equivalent Rates to Solve Rate Problems

Objective

Students will use double number lines and equivalent rates to solve a real-world problem involving rates.

T1. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 4, encourage them to draw on their knowledge of converting units of Customary measurement to explain their reasoning.

5 Use Appropriate Tools Strategically Students will use two methods to solve this rate problem, a double number line and equivalent rates. Encourage them to understand the benefits of each method and the correspondences between them. The double number line allows students to visually see the rate relationship, while both methods essentially involve scaling by finding equivalent rates.

Questions for Mathematical Discourse

SLIDE2

AI What units need to be represented in the double number line? price and pounds

OI Why do we mark and label the price of a 12-pound bag? Sample answer: We need to use this given rate to then be able to scale back and scale forward.

Ol. Why is the bottom number line divided into increments of 3 and not 1 ? Sample answer: Because 15 is 3 more than 12 , and 12 is evenly divisible by 3 , it is quicker to divide the bottom number line into increments of 3 .

BL. At this rate, what would be the price of an 18 -pound bag of apples? $\$ 27.00$

SLIDE3

AL. How can you represent the rate given in the problem to use in the equation? $\frac{12 \text { pounds }}{18 \text { dollars }}$
OL. Why do we use $\frac{15}{p}=\frac{12}{18}$ instead of $\frac{p}{15}=\frac{12}{18}$? Sample answer: We must keep the same units in the same positions in the rates

BL. Which method is more advantageous to use in this problem? See students'responses.

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks
- Assign or present an Extra Example.

Apply Bike-a-thon

Objective

Students will come up with their own strategy to solve an application problem involving deciding on a bike-a-thon trail based on riding rate.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoningof

 Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What rate is given in the problem?

- Would using a bar diagram, double number lines, or equivalent rates be more advantageous to use in this scenario?
- Once you find the rate of minutes per mile, how will you use this to find the number of hours it will take her to ride each trail?

(Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Bike-a-thon

Keshia can ride her bike 15 miles in 90 minutes. She wants to ride in a bike-a-thon that consists of two trail options, a 56 -mile trail or a 36 -mile trail. At her current rate, how many more hours will it take her to ride 56 miles than 36 miles? If she wants to ride for about 4 hours, which trail should she choose?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

2 hours longer; the 36 -mile trail; See students' work.

How can you show your solution is reasonable?
Q Write About It! Write an argument that can be used to defend
your solution.
See students' arguments.

Interactive Presentation

Apply, Bike-a-thon
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Essential Question Follow-Up

How can you describe how two quantities are related? In this lesson, students learned how to solve real-world problems involving rates using bar diagrams, double number lines, and equivalent rates. Encourage them to work with a partner to compare and contrast the three methods. Have them explain which method they prefer and why.

Exit Ticket

Refer to the Exit Ticket slide. What is the price of one package? How much would he spend if he bought 5 more packages? Write a mathematical argument that can be used to defend your solution. \$4.98; \$24.90; Sample answer: Three packages of tokens cost $\$ 14.95$. To find the cost of one package, I used the equivalent ratio $\frac{\$ 14.95}{3 \text { packages }}=\frac{?}{1 \text { package. }}$. Since $3 \div 3=1$, one package costs $\$ 14.95 \div 3$ or about $\$ 4.98$. To find the cost of five packages, I used the equivalent ratio $\frac{\$ 4.98}{1 \text { package } 5 \text { packages }}=\frac{?}{}$. Since $1 \times 5=5$, five packages cost $\$ 4.98 \times 5$ or about $\$ 24.90$.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-7 odd, 9-12
- Extension: Dimensional Analysis
- D ALEKS Ratios and Unit Rates

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-5, 7, 9, 11
- Extension: Dimensional Analysis
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- a ALEKS' Ratios and Unit Rates

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- ArriveMATH Take Another Look
- ALEKS Ratios and Unit Rates

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL Practice Form B
OLPractice Form A
BL Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	use bar diagrams, double number lines, and equivalent rates to solve real-world problems involving rates	$1-5$
2	extend concepts learned in class to apply them in new contexts	6
3	solve application problems involving rate problems	7,8
3	higher-order and critical thinking skills	$9-12$

Apply "indicates mult-step problemi

7. Naomi can nun 12 mides in 108 minutes she is thinking obout nurving in two afiocent racel, 99 mile race ind a 13 -aile race. At her cutromt rale, how many moce minutes wall I take her to complete the 13 -mide race than
the 9 mile race? the 9 mile race?
18 minutes
'8. Leroy worts to buy a new racing bicycio that costs 5×8. To esso money. he can either do yardwork for his groctrother or babysit his brother 4 hours of habysting. How much ionger wit it thbe him to exun the money it he onyy does yardwoek for his grandmother?
7 heors

OHigher-Order Thinking Problems

2. Bise baves 9 mites in 45 mintoss. At this rote. can she bike 24 mies in 2 hours? Write an argument thet cin be used so jutily your solution
ves: 5 ample answer: 2 hours $=$
120 minutes; Bolie bies at the rate of
$\frac{45 \mathrm{~min}}{9 \mathrm{mi}}$ or $\frac{5 \mathrm{~min}}{1 \mathrm{mi}}$ and $\frac{5 \mathrm{~min}}{1 \mathrm{mi}}=\frac{120 \mathrm{~min}}{24 \mathrm{mi}}$
3. Persevere with Problems A frut stiond 5 selling mandarin oranges for $\$ 6$ for 4 poundi: A masdirio orange weights about 2 ouncen. There are 16 ounces in a pound. At this rate, bow mucy mandsin opanpes cin you buy for $\$ 9$?
48 mandarin oranges
4. Create White and solve a realwond rate probion tivat can be solved by using a doible number line.
Sumple answer: There are 12 Calories in 3 strawberies. At this rate, how many strawberies. At this rate, how r

20 Calories are in 5 strawberrias

Teaching the Mathematical Practices
6 Attend to Precision In Exercise 10, students must clearly and precisely explain the reasoning behind choosing the method that they prefer to use with solving real-world problems involving rates.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 11, students determine a strategy to solve a rate problem involving multiple steps.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 7 Have students work together to prepare a brief demonstration that illustrates why this problem might require multiple steps to solve. For example, before they can identify the difference between the two races, they have to find the unit rate in minutes per mile. Have each pair or group of students present their response to the class.

Create your own higher-order thinking problem.

Use with Exercises 9-12 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Review

DINAH ZIKE FOLBABLES

[ELIII A completed Foldable for this module should include examples of equivalent ratios written as equations, tables, and graphs. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 100

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together 1: Lessons 1-1 through 1-5
Put It All Together 2: Lessons 1-6 through 1-8
Vocabulary Test
All Module Test Form B
OLI Module Test Form A
Bill Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Ratios and Proportional Relationships.

- Ratios
- Rates
- Unit Rate
- Unit Cost
- Solve Problems: Ratio Tables
- Solve Problems: Unit Rates
- Solve Problems: Measurement Conversions

Essential Question

탠. Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How can you describe how two quantities are related? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-12 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	3,10
Multiselect	Multiple answers may be correct. Students must select all correct answers.	5
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	1,12
Table Item	Students complete a table by correctly classifying the information.	4
Grid	Students create a graph on an online coordinate plane.	8
Open Response	Students construct their own response in the area provided.	$2,6,7,9,11$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.RP.A.1	$1-1$	1
6.RP.A.2	$1-7,1-8$	$5,7,9,11$
6.RP.A.3	$1-2,1-3,1-4$,	$2,3,4,6,8,10,11,12$
6.RP.A.3.A	$1-5,1-6,1-7,1-8$	
6.RP.A.3.B	$1-7-4,1-7,1-8$	$2,4,5,6,7,8,9$
6.RP.A.3.D	$1-6$	$5,7,9$

Test Practice

1. Equation Editor Jeremy is making a healthy ice cream using onlyripe bananas and peanut butter. The recipe makes 4 servings and calls for a ratio 5 bananas to 3 tablespoons of peanut butter. If Jeremy has 30 bananas, how many tablespoons of peanut butter does he need? (Lesson 1)

2. Open Response Students at Lincoin Middle School earn $\$ 5$ for every 4 boxes of cookie dough sold during a fundraiser. Students at Williams Middle School earn $\$ 7$ for every 6 rolls of wrapping paper sold during their fundraiser. For which fundraiser do students earn the greater amount of money per item sold? (Lesson 4)
cookie dough
3. Multiple Choice A recipe for a punch calls for 12 fluid ounces of orange juice. Reyna needs to make 4 batches of punch for a party. How many quarts of orange juice will Reyna need? (Lesson 6)
(A) 0.375 quart
(i) 1.5 quarts
(C) 3 quarts
(D) 6 quarts
4. Table Item Place an X in the column to indicate whether or not Ratio A is equivalent to Ratio B. (Lesson 2)

Ratio A	Ratio B	Yes No	
8 questions correct out of 10	4 questions correct out of 5	X	
15 prizes won in 3 40 attempts 10 at	prizes won in tempts		X
3 cats for every 1 6 dogs	cat for every 2 dogs	X	

5. Multiselect Which of the following rates are unit rates? Select all that apply. (Lesson 7)
$\checkmark 65$ miles per hour
2 degrees every half hour
3.2 inches of rain in 2 days
$\checkmark 3$ questions for each lesson
24 students for every 2 teachers
6. Open Response The table shows the number of canned goods collected by three different homerooms during a food drive. (Lesson 2)

Homeroom	Number of Students	Goods
Mr. Alvarez	25	150
Ms. Jensen	28	154
Mrs. Saunders	27	162

Are the ratios of canned goods per student equivalent between any or all of the classes? Explain your reasoning.

The ratios for Mr. Alvarez's and Mrs. Saunders' classes are equivalent at 6 cans per student. The ratio for Ms. Jensen's class is 5.5 cans per student.
7. Open Response Jessica jogged 4 laps around a track in 9 minutes, Luke jogged 8 laps in 27 minutes. Their rates can be expressed as the ratios $\frac{4 \text { laps }}{9 \text { minutes }}$ and $\frac{8 \text { laps }}{27 \text { minutes }}$.Are Jessica and Luke's rates equivalent? Explain. (Lesson 7)
no; Sample answer: Since the rates do not have the same unit rate, they are not equivalent.
8. Grid Kurt uses 3 cups of flour for every 2 cups of sugar in a recipe. Graph the ordered pairs to represent the cups of sugar needed if he uses $3,6,9$, or 12 cups of flour. (Lesson 3)

9. Open Response Abigail surveyed 40 students about their favorite kind of movie. The results are shown in the table. If there are 200 students in the school, predict how many more students prefer action movies to scary movies. (Lesson 7)

10. Multiple Choice Three out of 5 students Maria's school participate in a school club or port. There are 175 students at the school. Which of the following shows how
equivalent fractions can be used to find the total number of students that participate in a school club or sport? (Lesson 5
$\frac{3}{5} \overline{17} 5$
(B) $\frac{3}{5}=\frac{175}{5}$
(c) $\frac{3}{175}=\frac{5}{5}$
11. Open Response A barge traveled 120 miles downstream in 8 hours. Then it traveled 100 miles upstream in 10 hours. (lesson
A. How did the rate of speed downstream compare to its rate of speed upstream?
rate of speed downstream $=\mathbf{1 5} \mathbf{~ m p h}$; rate of speed downstream $=15 \mathrm{mph}$; rate of speed downstream was faster rate the rate of speed upstream.
B. What was the difference between the rates of speed?

5 miles per hour
12. Equation Editor Mr. Collins ordered 8,000 ounces of stone. How many tons of stone did he order? (Lesson 6)

सहत्वान

$123(0)+-x \div$
$456 \quad<5=2 \gg$
789 (t) x 011 $\sqrt{x \sqrt{x} \sqrt{\pi}}$

- 0

25 students

76 Module 1• Ratios and Rates

IGNiTE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question. They will complete a graphic organizer in the module review to help them answer the Essential Question.

How can you use fractions, decimals, and percents to solve everyday problems? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.
Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
(1) When to Use It Students will be directed to add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, at the end of the module, they can use it to help them study for the module assessment.

Launch the Module

For this module, the Launch the Module video uses the topics of weather, technology, and nutrition fact labels to introduce the idea of fractions, decimals, and percents. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Leam?
Phoce s checkmark (v) in ebch row mat corresponds wth how mudh ycu alieady kno nbout each took before staniog th s modive.

(1) Polsubler Cut out the Foldoble and uperito the Modite Review at the end of the module You cin use the Foldible throughout the module es rou learn about percents

Interactive Presentation

Module 2

Fractions, Decimals, and Percents

Module Goal

Learn about the relationship between fractions, decimals, and percents, and apply that relationship to finding the percent of a number.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): 6.RP .A Understand ratio concepts and use ratio reasoning to solve problems.
Standards for Mathematical Content:
6.RP.A. 3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
6.RP.A.3.C Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $\frac{30}{100}$ times the quantity); solve problems involving finding the whole, given a part and the percent.

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- generate equivalent ratios
- express fractions as decimals

Use the Module Pretest to diagnose readiness. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students solved problems involving ratios and rates.
6.RP.A.1, 6.RP.A.2, 6.RP.A. 3

Now

Students relate fractions, decimals, andpercents, and find the percent of a number.
6.RP.A.3, 6.RP.A.3.C

Next

Students will use ratios to solve multi-step percent problems.
7.RP.A. 3

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of fractions, decimals, ratios, and rates to build fluency with finding percents of a quantity. They apply their fluency with percents to solve real-world problems involving finding the whole, given the part and the percent.

Suggested Pacing

Lesson		Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
2-1	Understand Percents	Foundational for 6.RP.A.3, 6.RP.A.3.C	1	0.5
2-2	Percents Greater Than 100\% and Less Than 1\%	Foundational for 6.RP.A.3, 6.RP.A.3.C	1	0.5
2-3	Relate Fractions, Decimals, and Percents	Foundational for 6.RP.A.3, 6.RP.A.3.C	3	1.5
Put It All Together 1: Lessons 2-1 through 2-3			0.5	0.25
2-4	Find the Percent of a Number	6.RP.A.3, 6.RP.A.3.C	3	1.5
2-5	Estimate the Percent of a Number	6.RP.A.3, 6.RP.A.3.C	1	0.5
2-6	Find the Whole	6.RP.A.3, 6.RP.A.3.C	2	1
Put It All Together 2: Lessons 2-4 through 2-6			0.5	0.25
Module Review			1	0.5
Module Assessment			1	0.5
Total Days15				7.5

Formative Assessment Math Probe

 Fractions, Decimals, and Percents
\square Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will determine whether each given value is equivalent to the given fraction, and explain their choice.

Targeted Concept Determining equivalent forms of fractions, decimals and percents involves conceptualizing the meaning of the different representations.

Targeted Misconceptions

- Students do not interpret the fraction bar as a division sign and instead substitute the fraction bar with the \% sign and/or a decimal point.
- Students incorrectly interpret the value of the fraction by using the difference between the numerator and the denominator.

Assign the probe after Lesson 3.
Collect and Assess Student Answers

thations, beimph and Rercers

Correct Answers: 1. No; 2. Yes;
3. Yes; 4. Yes; 5. No; 6. No

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Fractions, Decimals, and Percents
- Lesson 1, Examples 1-4
- Lesson 2, Examples 1-4
- Lesson 3, Examples 1-4

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

What Vocabulary Will You Learn?
Check the box next to each vocabulary term that you may already know
\square benchmark percents

- percent

Are You Ready?
Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review	
Example 1 Use part to whole ratios. The ratio of strawberries to total ingredients in a recipe is 2 to 5 . If you have 35 total ingredients, how many are strawberries? So, 14 strawberries are needed to maintain the ratio in the recipe.	Example 2 Use place value to write decimals in word form. Write each decimal in word form. 0.3 The place value of the last digit, 3 , is tenths. word form: three tenths 2.15 The place value of the last digit, 5, is hundredths. word form: two and fifteen hundredths
Quick Check	
1. The ratio of cups of borax to total ingredients in a recipe for homemade laundry detergent is $2: 6$. If you need 24 total cups of laundry detergent, how many cups of borax do you need? 8 cups	2. Write 0.212 in word form. two hundred twelve thousandths 3. Write 0.145 in word form. one hundred forty-five thousandths
How Did Y ou Do? Which exercises did you answer correctly in the Quick Check? Shade those exercise numbers at the right.	

What Vocabulary Will You Learn?

E[LI As you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define A percent is a ratio that compares a number to 100 .
Example There are 100 marbles in a bag, of which 34 are green, 17 are blue, 22 are red, and 27 are yellow. The ratio of blue marbles to the total number of marbles can be expressed as 17 to 100, or 17%.

Ask Write the ratio of yellow marbles to the total number of marbles as a percent. 27\%

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- finding equivalent ratios
- solving word problems involving ratios and rates
- understanding rates
- making predictions using ratios

OALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Fractions, Decimals, and Percents topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

View Challenges as Opportunities
Part of cultivating a growth mindset in math involves viewing challenging problems or tasks as opportunities to learn and make new connections in your brain.

How Can I Apply It?

Encourage students to embrace challenges by trying problems that are thought provoking, such as the Apply Problems and Higher-Order
Thinking Problems in the Practice section of each lesson. Remember to regularly remind students that each new challenge is an opportunity to grow! After each challenge, engage the class in a discussion about the positive outcomes or learning they experienced after they worked on a challenging problem.

Learn Use 10×10 Grids to Model Percents

Objective
Students will understand that 10×10 grids can be used to model percents.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to make sense of the quantity that is shaded and use the fact that there are 100 squares to find the number of squares that are not shaded.

Teaching Notes

SLIDE1

Students will learn the definition of a percent. A percent is a ratio that compares a number to 100 . They will also learn the percent symbol and the meaning of the word percent. Encourage students to give another example of a percent, to read it, and to talk about what that number means out of 100 . Students will also learn to use a 10×10 grid to model percents. Have students select the flashcards to view an example of a percent and its model.

Talk About It!

SLIDE2

Mathematical Discourse

What percent of the grid is not shaded? Explain your reasoning. 55\%; Sample answer: Because 55 out of 100 squares are not shaded in each grid, 55% of each grid is not shaded.

Interactive Presentation

Learn, Use 10×10 Grids to Model Percents, Slide 1 of 2

FLASHCARDS

On Slide 1, students use Flashcards to view an example of a percent and its model.

LESSON GOAL

Students will use 10×10 grids and bar diagrams to model percents.

1 LAUNCH

Launch the lesson with a warm up and an introduction.
2 EXPLORE AND DEVELOP

Learn: Use 10×10 Grids to Model Percents
Example 1: Identify the Percent
Example 2: Model the Percent
Learn: Use Bar Diagrams to Model Percents
Example 3: Identify the Percent
Example 4: Model the Percent
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 9 of the Language Development Handbook to help your students build mathematical language related to understanding a percent as a rate per 100 .

ELL You can use the tips and suggestions on page T9 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 0.5 day
 45 min
 1 day

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by using tools to model percents.
Standards for Mathematical Content: Foundational for 6.RP .A.3,

6.RP.A.3.C

Standards for Mathematical Practice: MP2, MP3, MP5, MP7

Coherence

Vertical Alignment

Previous

Students used decimal notation for fractions with denominators of 10 and 100.
4.NF.C. 6

Now

Students use 10×10 grids and bar diagrams to model percents.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Next
Students will convert between percents, decimals, and fractions.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their knowledge of fractions and ratios to develop understanding of percents. Using models such as bar diagrams and 10×10 grids, they come to understand that a percent is a ratio that compares a number to 100.

Mathematical Background

A percent is a ratio that compares a number to 100 . It means per hundred. A percent can be modeled with a 10×10 grid by shading the number of squares corresponding to the percent. A bar diagram can also be usedto model the percent by separating the bar into a number of sections equal to 100 divided by the greatest common factor of the percent and 100 . The sections are shaded corresponding to the number of sections in the percent.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- writing ratios as fractions (Exercises 1-4)
- solving word problems involving ratios written as fractions (Exercise 5)

Answers

1. $\frac{15}{27}$	4. $\frac{12}{20}$
2. $\frac{14}{15}$	5. $\frac{7}{9}$
3. $\frac{6}{7}$	

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about where percents are seen in everyday life.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- The term percent is believed to come from the Latin per centum which means "by the hundred". What are some other words that use the root word cent? What do those words mean? Sample answers: century means 100 years, cent means 1 penny (out of 100 pennies), centimeter is one hundredth of a meter, centennial means a 100th anniversary

Interactive Presentation

Example 2, Model the Percent, Slide 2 of 4

TYPE	On Slide 2 of Example 1, students determine the percent modeled.
OLICK	On Slide 2 of Example 2, students shade a 10×10 grid to model 17\%. Students complete the Check exercises move on. determine if they are ready to

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 1 Identify the Percent

Objective
Students will identify the percent modeled by a 10×10 grid.

Questions for Mathematical Discourse

SLIDE2

An. How many squares does the 10×10 grid have? What does each square represent within the context of the total grid?
The 10×10 grid has 100 squares. Each square represents 1\%.
OL Why did we use the fraction $\frac{50}{100}$? Sample answer:
A percent can be easily written from a fraction with 100 in the denominator.

OL. What fraction is equivalent to 50% of the grid being shaded? Explain how this makes sense. $\frac{50}{100}$ or $\frac{1}{2}$; Sample answer: $\frac{50}{100}$ is equivalent to $\frac{1}{2}$. This makes sense because 50 out of 100 squares are shaded, and this represents one half of the grid.
BL. If 67 squares of a 10×10 grid are shaded, what is the percent that is modeled? 67%.

© Example 2 Model the Percent

Objective
Students will model a percent using a 10×10 grid.

Questions for Mathematical Discourse

SLIDE 2

AL. How can you write 17% as a fraction with a denominator of 100 ? $\frac{17}{100}$
AL. How many squares will you shade? 17
OL How do you know how many squares to shade? Sample answer: 17% means 17 out of 100 , so 17 squares should be shaded.

OL. How do you know that you cannot shade 2 full columns? Sample answer: 2 full columns would be 2×10, or 20 squares. I only need to shade 17 squares.

BL. How many squares of a 100×100 grid would be shaded to represent 17% ? 1,700

BLi How many more squares would you need to shade if the original given percent was 34% ? 17 more squares

Q
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

80 Module 2 - Fractions, Decimals, and Percents

Learn Use Bar Diagrams to Model Percents

Objective

Students will understand how bar diagrams can be used to model percents.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others, 5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 4, encourage them to use mathematical reasoning to construct an argument for why it might not be advantageous to use a bar diagram to model 23%.

Teaching Notes

SLIDE2

Students will view different bar diagrams to learn how to model a percent. You may wish to ask students to compare and contrast using $\$ 010$ grids and bar diagrams to model percents. Have them discuss what considerations need to be made when drawing a bar diagram to model a given percent, such as whether or not the percent is a multiple of 5 or 10 .

Talk About It!

SLIDE2

Mathematical Discourse

Describe another way to divide a bar diagram to model 40%. Sample answer: Divide the bar diagram into 5 sections. Each section would represent 20%, so you would shade 2 of the 5 sections to model 40%.

SLIDE 4

Mathematical Discourse

Why might it not be advantageous to use a bar diagram to model a percent such as 23% ? Sample answer: 23 is not a factor of 100 , so you would have to divide the bar diagram into 100 sections to model 23%.

DIFFERENTIATE

Enrichment Activity [BLI

To challenge students' understanding of modeling percents with bar diagrams, have them identify the least number of sections needed and the number of sections to shade in order to model each of the following percents.
$28 \% 25$ sections, 7 shaded
$57 \% 100$ sections, 57 shaded
$20 \% 5$ sections, 1 shaded

Learn Use Bar Diagrams to Model Percents
Y ou can also use bar diagrams to model percents. A bar diagram can be divided into any number of equal-size sections.
To model 10% or a multiple of 10%, you can divide the bar diagram into 10 equal-size sections.

The bar diagrams show representations of several percents that are multiples of 10%.

To model 5\% or a multiple of 5\%, you can divide the bar diagram into 20 equal-size sections.
\square
The bar diagrams show representations of several percents that are multiples of 5%.
:" - ". - "ัய

Interactive Presentation

Learn, Use Bar Diagrams to Model Percents, Slide 2 of 4
\square Example 3 Identify the Percent
What percent is represented by the bar diagram?

The bar diagram is divided into 10 equal-size sections.
Each section represents 10%.
How many sections are shaded? 8
The total percent represented is $8 \times 10 \%$, or 80%.
So, the percent represented by the bar diagram is 80%.

Check
What percent is represented by the bar diagram? 40\%

Q $G 0$ Online You can complete an Extra Example online.
Example 4 Model the Percent
Use a bar diagram to model 65\%.
Draw a bar to represent 100%. Divide the bar into 20 equal-size sections because 65% is a multiple of 5 .

Each section represents 5\%. How many sections should be shaded to represent 65% ? 13

Shade those sections on the bar diagram above to model 65\%.

Check
Draw a bar diagram to model 35%.

Q go Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 4, Model the Percent, Slide 1 of 2
On Slide 2 of Example 3, students move
through the steps to find the percent
modeled by the bar diagram.

Example 3 Identify the Percent

Objective
Students will identify the percent modeled by a bar diagram.

Questions for Mathematical Discourse
 SLIDE 2

A… How does the percent modeled by the eight shaded sections compare to 50% ? Sample answer: The percent modeled by the eight shaded sections is greater than 50%.

OL. Explain why each section of the bar diagram represents 10\%. Sample answer: There are 10 total sections, and 100% divided by 10 equals 10\%.

B1. Can you use this bar diagram to represent 85% ? Explain. yes; Sample answer: I can shade half of one more section. Since each section represents 10%, half of a section would represent 5%.

Example 4 Model the Percent

Objective
Students will model a percent by using a bar diagram.

Questions for Mathematical Discourse

SLIDE1

AL Before you begin, do you think the shaded sections will cover less than half or more than half of the bar diagram? Explain. more than half; Sample answer: Half of the bar represents 50\% and $65 \%>50 \%$.

Ol Why is the bar divided into 20 sections of 5% each, instead of 10 sections of 10% each? Sample answer: Since 65% is divisible by 5 , it makes sense to divide the bar into 20 sections of 5% each. If the bar was divided into 10 sections, each section would represent 10%, and 65 is not a multiple of 10 .

BL. How many sections of this bar diagram would need to be shaded if the percent given was 75% ? Explain. 15 sections; Sample answer: Each section represents $5 \%, 75 \%$ divided by 5% is 15 .

3 Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Exit Ticket

Refer to the Exit Ticket slide. Draw a 10×10 grid that models 85%. Then draw a bar diagram that models 85%. Explain the steps you used for each. See students' grids and diagrams; Sample answer: I drew a 10×10 grid and shaded 85 squares. Then I drew a bar diagram separated into 20 sections, since each section represents 5%, and 85 is a multiple of 5 . To model 85%, I shaded 17 sections, since $5 \% \times 17=85 \%$.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

```
Al Practice Form B
Ol. Practice Form A
B1. Practice Form C
```


Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	identify the percent modeled in a 10×10 grid	1,2
1	model a percent using a 10×10 grid	3,4
1	identify the percent modeled in a bar diagram	5,6
2	model a percent using a bar diagram	7,8
3	solve application problems involving modeling percents	9,10
3	higher-order and critical thinking skills	$11-14$

Common Misconception

When identifying the percent modeled by a bar diagram, students may incorrectly identify the percent because they do not count the total number of sections in the bar diagram. For example, in Exercise 6, students might say that the bar diagram represents 170% because there are 17 sections that are shaded. Remind students to first count the total number of sections to determine the value of each section. The bar diagram in Exercise 6 has 20 total sections, which means that each section represents $100 \% \div 20$ or 5%, not 10%.

Interactive Presentation

Exit Ticket

Apply *indicates multi-step problem

"9. The model shows the percent of students who voted for a tiger as the new school mascot. Did more than 50% of the students not vote for a tiger as the mascot? Write an argument that can be used to defend your solution 0%
yes; Sample answer: Each section of the model represents 20\%. The 3 sections not shaded represent the percent of students who did not vote for the tiger. So, $20 \% \times 3=60 \%$ and 60% is greater than 50%,
10. The model shows the percent of baseball players on a team who plan to go to a baseball camp on Saturday. Can the coach say that more than 75% of his players are going to the camp? Write an argument that can be used to defend your solution.

no; Sample answer: Each section of the model represents 10%
So, $10 \% \times 7=\mathbf{7 0 \%}$ and $\mathbf{7 0 \%}$ is not greater than 75%.

Higher-Order Thinking Problems
11. Reason Abstractly Suppose you divide a bar diagram into 25 equal-size sections and shade 5 sections. What percent is modeled in the diagram? Explain. 20\%; Sample answer: Each section represents 4%. Since 5 sections are shaded, $5 \times 4 \%=20 \%$.
3. Make an Argument Use an example to explain how you can model percents greater than 100\%.
yes; Sample answer: T o model 110\%, use two bar diagrams, each divided into 10 equal-size sections. Shade one bar diagram entirely to represent 100% and then shade 10% in the second bar diagram.
12. Find the Error A student said that to write a percent as a fraction, write the number that comes before the percent symbol over a denominator of 100 . Is the student correct? Justify your conclusion. yes; Sample answer: A percent is a ratio that compares a number to 100 .
14. Create Write a real-world problem that involves a percent less than 50%. Then model the percent.
Sample answer: Of the students at the dance, 40% said they came with a friend.

19. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 11, students use abstract reasoning to identify a percent modeled by a bar diagram.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 12, students determine whether or not a statement made by another student is correct and justify their conclusion.

In Exercise 13, students construct an argument as to how percents greater than 100% can be modeled.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Interview a student.

Use with Exercises 9-10 Have pairs of students interview each other as they complete these application problems. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 9 might be, "What percent does each section of the model represent?"

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks
 THEN assign:

- Practice, Exercises 7, 9, 11-14
- Extension: Model Percents Using Fraction Models
- D ALEKS Understanding Percents

IF students score 66-89\% on the Checks
THEN assign:

- Practice, Exercises 1-7, 9, 11, 14
- Extension: Model Percents Using Fraction Models
- Personal Tutor
- Extra Examples 1-4
- Q ALEKS Converting Between Fractions and Decimals

IF students score 65\% or below on the Checks,
THEN assign:

- ALEKS Converting Between Fractions and Decimals

Learn Percents Greater Than 100\%

Objective

Students will understand that 10×10 grids can be used to model percents greater than 100%.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 5, encourage them to discuss why the ratio that compares the rainfall in 2020 to the rainfall in 2019 is 100%. They should be able to use ratio reasoning to understand that because the amount of rainfall was the same for both years, the rainfall in 2020 is 100% (the same as) of the rainfall in 2019.

Teaching Notes

SLIDE 2

Have students recall that a percent is a ratio that compares a number to 100. You may wish to have students give another example of a percent and to talk about what that number means out of 100 . When viewing the equivalent ratios, students should be able to justify why multiplying both the 3 and 4 in the ratio $\frac{3}{4}$ by 25 produces a ratio that represents 75%.

SLIDE 3

When viewing this representation of equivalent ratios, students should be able to reason that 125% is equivalent to $\frac{125}{100}$. You may wish to ask students to explain how they know this is an accurate representation of a percent greater than 100%. Encourage students to use the relationship between the part and whole in their explanation.

SLIDE 4

When modeling a percent that is greater than 100%, explain to students that they can use place value to determine how to use multiple 10×10 grids to model the percent. For example, when modeling 125%, students can examine the hundreds place to determine the number of whole 10×10 grids that need to be shaded. $125 \%=100 \%+25 \%$. This means that one whole 10×10 grid should be shaded to represent 100%. There is 25% remaining. This means that 25 squares on a second 10×10 grid should be shaded, for a total of 125 shaded squares.

Talk About It!

SIIDE 5

Mathematical Discourse

Suppose the rainfall in 2020 is 5.0 inches. What percent compares the rainfall in 2020 to the rainfall in 2019? Explain why this makes sense. 100%; Sample answer: The rainfall in 2020 is equal to the rainfall in 2019, so the rainfall in 2020 is 100% of the rainfall in 2019.

Interactive Presentation

Learn, Percents Greater Than 100\%, Slide 4 of 5

FLASHCARDS

On Slide 4, students use Flashcards to view an example of a percent greater than 100% and its model.

Percents Greater Than 100\% and Less Than 1\%

LESSON GOAL

Students will use 10×10 grids to model percents that are greater than 100% and less than 1%.

1 LAUNCH

Launch the Lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Percents Greater Than 100\%
Example 1: Identify the Percent
Example 2: Model the Percent
Learn: Percents Less Than 1%
Example 3: Identify the Percent
Example 4: Model the Percent

Have your students complete the Checks online.

3

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 10 of the Language Development Handbook to help your students build mathematical language related to percents greater than 100% or less than 1%.
GLL You can use the tips and suggestions on page T10 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min
 45 min

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by using tools to model percents.
Standards for Mathematical Content: Foundational for 6.RPA.3,

6.RP.A.3.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP5

Coherence

Vertical Alignment

Previous

Students used tools to model percents.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Now

Students use 10×10 grids to model percents that are greater than 100% and less than 1%.
Foundational for 6.RP.A.3, 6.RP.A.3.C
Next
Students will relate fractions, decimals, and percents.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Rigor

The Three Pillars of Rigor

Conceptual Bridge In this lesson, students continue to develop understanding of percents. They begin to understand that percents greater than 100\% represent numbers greater than 1 and percents less than 1% represent numbers that are significantly less than the whole. They build fluency with modeling percents, and apply their understanding of percents to solve real-world problems.		

Mathematical Background

Students have used 10×10 grids and bar diagrams to model percents. A percent that is greater than 100% can be modeled with multiple 10×10 grids, while a percent that is less than 1% can be modeled in a close-up view of 1 square of a 10×10 grid.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocibulary will You Use?

procem

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- modeling percents (Exercises 1-4)

Answers

1-4. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about a restaurant's increase in soup sales.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- A percent is a ratio, or rate, that compares a number of 100 . Percent means per hundred and is represented by the symbol \%. What are some examples of real-world percents? Sample answers: a sale in a store, tipping for service

Interactive Presentation

Example 1, Identify the Percent, Slide 2 of 4

On Slide 2, students move through the steps to identify the percent modeled by the 10×10 grids.

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 1 Identify the Percent

Objective
Students will identify a percent, that is greater than 100%, modeled by 10×10 grids.

(1)
 Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Encourage students to reason about how shading a 10×10 grid can be used as a visual representation of a percent, given the definition of a percent as a rate or ratio per 100.

Questions for Mathematical Discourse

SLIDE 2

Al How many grids have all 100 squares shaded? 2 grids
All How many squares are shaded on the last grid? 63 squares
OII Explain the method you will use to identify the percent that is modeled by the 10×10 grids. Sample answer: I will find the total number of squares shaded by knowing that if all the squares are shaded, the percent is 100%. Because two whole grids are shaded, part of the percent is $100 \%+100 \%=200 \%$. Then I will count the number of squares in the last grid, 63 . The percent modeled is $200 \%+63 \%$, or 263%.
[1] Suppose you erase one-half of one shaded square in the last grid. What percent would the grids now represent? 262.5\%

1 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Language Development Activity ELLL

While presenting Example 2, students may struggle with the phrase twice as much and not connect its meaning with the phrase two times as much. You may wish to have students work with a partner to generate phrases that have the same meaning as two times as much, such as twice as much, or double. Point out that, depending on the context, instead of using as much, the phrase as many might be used. The phrase as many is used for countable objects, such as the number of kittens is twice as many as the number of dogs or the number of ounces is twice as many at 3 weeks of age than at birth. The phrase as much is used for objects that are not countable, such as the kitten's weight is twice as much as it was at birth. The number of ounces might be countable, but the term weight is not countable.

Example 2 Model the Percent

Objective

Students will use 10×10 grids to model percents greater than 100% and write a percent to represent a real-world context.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to reason about the differences in meaning of increased by versus compared to. As students discuss the Talk About It! question on Slide 3, encourage them to use that reasoning to help explain when it is correct to use 100% versus 200% when talking about the kitten's weight.

Questions for Mathematical Discourse

SLIDE 2
AL What number is in the hundreds place in the percent? tens? ones? 2; 0; 0
Ol How can you set up the equivalent ratios to find the percent? Sample answer: Start with the ratio $\frac{10}{5}$. Set this equal to a ratio with 100 in the denominator. Because $5 \times 20=100$, multiply 10×20 to find the percent.
OL. Suppose a classmate set up the ratio $\frac{5}{10}$ and found the percent to be 50%, not 200%. What did they do incorrectly? What does 50% represent in the context of the problem? Sample answer: They equated $\frac{5}{10}$ with $\frac{?}{100}$ and found the percent to be $50 \% .50 \%$ actually represents the fact that the kitten's birth weight is 50% of its weight at 3 weeks of age.
BLI What percent would represent the phrase three times as much? Describe a context in which some quantity is three times as much as another quantity, using the percent. 300%; Sample answer: My dog's weight is 300% of my cat's weight.

ω
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Model the Percent, Slide 2 of 4
On Slide 2, students move through the
slides to find and model the percent.
Students complete the Check exercise
online to determine if they are ready to
move on.

Sample answer: The classmate represented 93%, not 0.93%, on the grid. 0.93% is less than 1%, and 0.93% is significantly less than 93%, soless than 1 grid square should be shaded.

Learn Percents Less Than 1\%
Percents can also be less than 1%. Consider the following situation.
The distance from the center of Earth to the surface is also known as the radius of Earth. The radius of Earth is about 4,000 miles. The radius of the Sun is about 430,000 miles.

The ratio of Earth's radius to the Sun's radius is $4,000: 430,000$. Y ou can use equivalent ratios to show that the radius of Earth is about 0.93% of the Sun's radius. Because 430,000 divided by 4,300 is 100 , divide 4,000 by 4,300 . Round to the nearest hundredth.

ercents are less than 1% when the number being compared to 100 is less than 1 . When the percent is less than 1%, the part is significantly less than the whole. The radius of Earth is significantly less than the radius of the Sun.

On a 10×10 grid, 0.93% is represented by shading 93% of one grid square. One grid square represents 1% and 0.93% is less than 1%. Compared to $100 \%, 0.93 \%$ is significantly less.

When thinking about how the size of Earth compares to the size of When thinking about how the size of Earth compares to the size of he Sun's radius. Earth's radius is a little less than 1% of the Sun's radius.

Interactive Presentation

Learn, Percents Less Than 1\%, Slide 2 of 3

FLASHCARDS

On Slide 2, students use Flashcards to view an example of a percent less than 1% and its model.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY

3 APPLICATION

Learn Percents Less Than 1\%

Objective
Students will understand what a percent less than 1% means, and that 10×10 grids can be used to model percents less than 1%.

113 Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to use reasoning about percents as a ratio per 100 to explain why a grid that models a percent that is less than 1% will have less than 1 square shaded.

Teaching Notes

SLIDE1

Students may not be able to determine whether the radius of Earth is the part or the whole. Because students are comparing the ratio of Earth's radius relative to the Sun's radius, Earth's radius is the part, and the Sun's radius is the whole, so the ratio is $\frac{4,000}{430,000}$

Talk About It!

SLIDE 3

Mathematical Discourse
A classmate used a 10×10 grid to model 0.93% as shown. What mistake did they make? How does 0.93% compare with 93% ?

Sample answer: The classmate represented 93%, not 0.93%, on the grid. 0.93% is less than 1%, and 0.93% is significantly less than 93%, so less than 1 grid square should be shaded.

1 CONCEPTUAL UNDERSTANDING

Example 3 Identify the Percent

Objective
Students will identify a percent, that is less than 1%, modeled by 10×10 grids.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to reason about the amount of one grid square that is shaded relative to the entire grid. Because less than one grid square is shaded, the percent modeled is less than 1%.
As students discuss the Talk About lt! question on Slide 3, encourage them to use similar reasoning in their explanations. Have students take turns sharing their explanations until everyone in the class understands that the percent modeled is 0.25%, not 25%.

Questions for Mathematical Discourse

SLIDE2:

A Of the entire grid, is more than one square, less than one square, or exactly one square shaded? less than one square
10. Because less than one square is shaded, what does this tell you about the percent? The percent is less than 1%.
Ol. If the close-up was not given of the one square, would you be able to state exactly what percent of the entire grid is shaded? Why or why not? no; Sample answer: I can estimate that it looks like about one-fourth of the one square is shaded, but I would not know exactly unless the close-up was given.
[BI․ Describe how you could use a 10×10 grid to model 1.75%. Shade one square. Then shade three-fourths of a second square.

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 3, Identify the Percent, Slide 2 of 4
On Slide 2, students move through the
steps to identify the percent that is
modeled by the 10×10 grid.

Interactive Presentation

Example 4, Model the Percent, Slide 2 of 5
DRAG \& DROP
On Slide 2, students drag to write the equivalent ratios.

CLICK

On Slide 3, students shade squares to model 0.5\%.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Example 4 Model the Percent

Objective
Students will use a 10×10 grid to model a percent less than 1%.

(17) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of the percent, given the context of the problem, and not just perform the calculations. Because the plankton's length is significantly shorter than the length of the jellyfish, a percent of 50% or 5% would not make sense within this context. If the plankton's length was 50% of the jellyfish's length, the plankton's length would be 4 inches. If the plankton's length was 5% of the jellyfish's length, the plankton's length would be 0.4 inches (by using place-value reasoning and dividing 50% and 4 inches both by 10). Having students use this reasoning will help prepare them for upcoming lessons on finding the percent of a number.

As students discuss the Talk About lt! question on Slide 4, encourage them to use similar reasoning to generate possible misconceptions. Ask students to explain why a student might have these misconceptions and how they can use reasoning to correct them.

Questions for Mathematical Discourse
 SUDE 2

AL. What is the length of the plankton? the jellyfish? 0.04 in.; 8 in.
OL How can you set up the equivalent ratios to find the percent? Sample answer: Start with the ratio $\frac{0.04}{8}$. Set this equal to a ratio with 100 in the denominator. Because $8 \times 12.5=100$, multiply 0.04 by 12.5 to find the percent.

BL. Write a percent that compares the length of the jellyfish to the length of the plankton. 20,000\%

SLIDE 3

AL. What number is in the tenths place in the percent? 5
OL What portion of one square should you shade? half
[BL. Would it be reasonable to use a bar diagram to find the percent instead of a 10×10 grid? Explain your reasoning. no; Sample answer: To model 0.5% using a bar diagram, I would need 200 sections, so that each section represents half of 1 percent. This would be very tedious and time consuming to create.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Exit Ticket

Refer to the Exit Ticket slide. Describe how you would model 175% with a 10×10 grid. Sample answer: Shade all 100 squares in one grid and 75 squares in a second grid.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	identify percents greater than 100% or less than 1% represented by 10×10 grids	$1-4$
2	model percents greater than 100% with 10×10 grids	5
2	model percents less than 1% with a 10×10 grid	6
2	extend concepts learned in class to apply them in new contexts	7
3	solve application problems involving percents less than 1%	8
3	higher-order and critical thinking skills	

Common Misconception

Students may think that because a percent is defined as a ratio that compares a number to 100, the number cannot be greater than 100 or less than 1 . Because of this, they may only include the partially shaded grid when identifying the percent that is represented by the 10×10 grids. Remind students that percents can be any number and that they should include all of the shaded squares when writing the percent.

Interactive Presentation

Exit Ticket

T est Practice

7. Equation Editor A certain store's sales increased by 175% compared to the previous year. How many squares would be shaded on 10×10 grids to represent 175% ?

TGE邁 123 456 789 $0 . \square$

Apply "indicates multi-step problem
" 8 . A bottle of cleaner states that it eliminates 0.999 of germs. For a magazine to recommend a cleaner to its readers, the percent of germs that it does not eliminate cannot exceed 1%. Would this cleaner be recommended by the magazine? Write an argument that can be used to defend your solution.
yes; Sample answer: The cleaner does not eliminate 0.001 or 0.1% of germs. Since $0.1 \%<1 \%$, the percent of germs that it does not eliminate is less than 1%.

Higher-Order Thinking Problems
9. Persevere with Problems The top running speed of a giraffe is 250% of the top speed of a squirrel. If a squirrel's top unning speed is 12 miles per hour, find the speed of a giraffe.
30 mph
11. Fi. Find the Error A student said that to epresent 0.2% with a 10×10 grid, you shade 2 squares in the grid. Find the student's error and correct it.
Sample answer: The student modeled 2%, not 0.2%. To model 0.2%, onlg of one square should be shaded.
10. Reason Inductively A rational number is any number that can be written as a fraction with a numerator and denomin that are both whole numbers. Is a percent a rational number? Explain your reasoning. yes; Sample answer: Every percent can be written as a fraction with a denominator of 100.
12. Create Write about a real-world situation involving a percent that is greater than 100% or a percent that is less than 1%. Then explain how you would use 10×10 grids to model the percent. Sample answer: Tyrone's weekly salary is 110% of his previous salary; To model the percent, use two 10×10 grids and shade all 100 squares in the first grid and 10 squares in the second grid.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In Exercise 9, students use mathematical reasoning to plan a strategy to determine the top running speed of a squirrel, given the running speed of a giraffe.

2 Reason Abstractly and Quantitatively In Exercise 10, students use reasoning to explain whether or not percents are rational numbers.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 11, students explain why another student's solution is incorrect and then correct their solution.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Make sense of the problem.

Use with Exercise 11 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the Exercise thinks that 0.2% is equivalent to 2%. Have each pair or group of students present their explanations to the class.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 5, 7, 9-12
- D ALEKS Percents, Decimals, and Fractions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-6, 8, 9, 11
- Personal Tutor
- Extra Examples 1-4
- ALEKS* Understanding Percents

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATH Take Another Look
- D ALEKS Understanding Percents

Learn Relate Percents to Fractions and Decimals

Objective

Students will understand that they can write a percent as a fraction and a decimal by first writing the percent as a rate per 100 .

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to use placevalue reasoning to explain that while there may be many fractions that represent 35%, only one decimal represents 35%. Decimals are constructed using place-value.

Teaching Notes

SLIDE1I

Students will understand that they can write a percent as a fraction and as a decimal by first writing the percent as a rate per 100. Encourage students to use their knowledge of the definition of percent, equivalent ratios, and place-value reasoning as they progress through the slides of this Learn.

SLIDE 2

Before having students walk through the calculations, be sure they understand that a percent can be thought of as a ratio or rate per 100. Each time they need to write a percent as a fraction or decimal, encourage them to first write the percent as a ratio to 100 . This will help them write the percent as a fraction with a denominator of 100 . Because decimals are constructed using place-value, by writing the percent first as a ratio per 100, they can use place-value reasoning to express that value in decimal form.

Talk About It

SLIDE3

Mathematical Discourse

You can write $\frac{35}{100} 20^{7}$ to represent the fraction form of 35%. Are there two different ways to write the decimal form of 35% ? Explain. Sample answer: You can write the fraction form of 35% as $\frac{35}{100}$ 20 $\frac{7}{}$ because both the numerator and denominator of $\frac{35}{100}$ can be divided by 5 to obtain $\frac{7}{20}$.
The only decimal form of 35% is 0.35 because the decimal form indicates place value. The second digit to the right of the decimal point is always the hundredths place.

Interactive Presentation

Learn, Relate Percents to Fractions and Decimals, Slide 2 of 3
CLICK
On Slide 2, students select the buttons to learn how to write a percent as a fraction and a decimal.

LESSON GOAL

Students will relate fractions, decimals, and percents.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

EXPLORE AND DEVELOP

Explore: Percents and Ratios
Learn: Relate Percents to Fractions and Decimals
Example 1: Write Percents as Fractions and Decimals
Learn: Relate Fractions to Percents and Decimals
Example 2: Write Fractions as Percents and Decimals
Example 3: Write Mixed Numbers as Percents
Learn: Relate Decimals to Percents and Fractions
Example 4: Write Decimals as Percents and Fractions
Apply: School
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	LBI	
ArriveMATHTake Another Look			
Extension: Find the Percent of a Population			0
Collaboration Strategies		0	0

Language Development Support

Assign page 11 of the Language Development Handbook to help your students build mathematical language related to fraction, decimal, and percent equivalencies.
ELL. You can use the tips and suggestions on page T11 of the handbook to support students who are building English proficiency.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster
6.RP.A by converting between fractions, decimals, and percents.

Standards for Mathematical Content: Foundational for 6.RPA.3,
6.RP.A.3.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP7
Coherence
Vertical Alignment

Previous

Students used 10×10 grids and bar diagrams to model percents.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Now

Students relate fractions, decimals, and percents.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Next

Students will find the percent of a number.
6.RP.A.3, 6.RP.A.3.C

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3APPLICATION
Figis Conceptual Bridge In this lesson, students continue to develop		
understanding of percents. They begin to understand the relationship		
between fractions, decimals, and percents and start to build fluency		
with conversions between them. They apply their understanding of		
fractions, decimals, and percents to solve real-world problems.		

Mathematical Background

To write a fraction as a percent, find an equivalent fraction with a denominator of 100 . The numerator is equal to the percent. Mixed numbers can be written as improper fractions and the same process applies. To write a percent as a fraction or mixed number, express the percent as a rate per 100 by writing the numerator as the percent without the percent sign and the denominator as 100 . Then the fraction can be simplified or written as a mixed number, if necessary.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocoblation Wil mut the
percent
Ther modi in detione 3hin menmol

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- finding equivalent ratios (Exercises 1-5)

Answers

1. 2
2. 36
3. 20
4. See Warm Up slide online for correct answer.
5. 9

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about a basketball team's ratios of free throw attempts.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Use?

Use the following question to engage students and facilitate a class discussion.

Ask:

- How would you describe 37% as a ratio? Sample answer: 37 out of 100

Explore Percents and Ratios

Objective

Students will explore writing ratios as percents.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About $l t$! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with the ratios of the number of students in different groups that chose soccer as their favorite sport. The students need to compare these ratios. Throughout this activity, students will use various strategies, including 10×10 grids and percents to compare the ratios. Students will use their observations to learn about how percents compare numbers differently than ratios.
(9) Inquiry Question

Why is it helpful to write a ratio as a percent? Sample answer: When you have ratios with different denominators, you can compare them more easily as percents, because percents are given as parts per 100.

0
Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3-

Mathematical Discourse

The grid has 100 squares, but the ratio is 3 out of 20 . How can you determine the number of squares to shade? Sample answer: There are 5 groups of 20 in 100 , so I can divide the grid into 5 sections of 20 squares and shade 3 out of 20 in each section.
(continued on next page)

Interactive Presentation

Percents and Ratios

Ol Introdacing the Inquity Ouestion
Why

Explore, Slide 1 of 8

Explore, Slide 3 of 8

CLICK

On Slides 3 and 4 , students shade a 10×10 grid to represent a ratio.

Interactive Presentation

Explore, Slide 7 of 8

On Slides 5 and 6, students shade a 10×10 grid to represent a ratio.

On Slide 7, students identify the group with the highest percent of students that chose soccer as their favorite sport.

On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Percents and Ratios (continued)

(17) Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Students will use the grid to represent different ratios. Students should examine the similarities and differences between modeling ratios and modeling percents using 10×10 grids.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 7 is shown.

Talk About It!

SLIDE7

Mathematical Discourse

Is it easier to compare the groups when looking at the models, the percents, or the ratios? Explain your reasoning. Sample answer: It is easier to compare the groups as percents because percents give you the parts per 100. The ratios are different sized groups, so it is more difficult to compare.

Interactive Presentation

Example 1, Write Percents as Fractions and Decimals, Slide 2 of 3

TYPE	On Slide 2 of Example 1, students write a percent as a fraction.
On Slide 2 of the Learn, students select	
the buttons to learn how to write a	
fraction as a percent and a decimal.	

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY
Example 1 Write Percents as Fractions and Decimals

Objective
Students will write percents as fractions and decimals by first writing the percent as a rate per 100.

Questions for Mathematical Discourse

SLIDE2

ALI Write 95% as a fraction with a denominator of $100 \cdot \frac{95}{100}$
AL. What is $\frac{95}{100}$ in word form? ninety-five hundredths
OLII In this case, why is it beneficial to leave the fraction with a denominator of 100 , before writing it as a decimal? Explain. Sample answer: Because the fraction already has a denominator of 100, it can easily be written as 0.95 using place-value reasoning.

Bㅣ․ Explain how you know your fraction is reasonable. Sample answer: 95% is close to 100%, and the numerator 19 is close to the denominator 20. So, my fraction is reasonable.

13
 Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Relate Fractions to Percents and Decimals

Objective

Students will understand that they can write a fraction as a percent and a decimal by first finding an equivalent ratio with 100 as the denominator.

Talk About It!

SLIDE 2

Mathematical Discourse

When writing a fraction as a percent, why do you find an equivalent ratio with a denominator of 100 ? Sample answer: A percent compares a number to 100, so the equivalent ratio should also compare a number to 100 .
(continued on next page)

94 Module 2 - Fractions, Decimals, and Percents

Learn Relate Fractions to Percents and Decimals (continued)

Teaching Notes

SLIDE 3 :

You may wish to pause the animation after the fraction $\frac{9}{15}$ is shown. Challenge students to come up with a strategy as to how they can write an equivalent fraction with 100 as the denominator. Have them share their strategies with the class. Then replay the animation and ask students to compare their strategy with the one shown. Ask students why it is beneficial to write $\frac{9}{15}$ as $\frac{3}{5}$, as opposed to other equivalent fractions, such as $\frac{18}{30}, \frac{27}{45}$, or $\frac{36}{60}$. Students should be able to reason that the denominators 30,45 , and 60 are not factors of 100 , so those fractions do not help them get any closer to finding the percent.

Talk About It!

SLIDE4

Mathematical Discourse

A classmate claims that you can always write a fraction as a decimal by dividing the numerator by the denominator. Is this a valid method? Why or why not? Sample answer: This is a valid method because a fraction bar indicates division of the numerator by the denominator.
A classmate wrote the decimal form of $\frac{9}{15}$ as 0.6 . Another classmate wrote the decimal form as 0.60 . Who is correct? Why? Sample answer: Both classmates are correct. $0.6=0.60$; six tenths $=$ sixty hundredths because the ratios $\frac{6}{10}$ and $\frac{60}{100}$ are equivalent. Adding a zero, or zeros, to the right of the last nonzero digit to the right of a decimal point in a number does not change the value of the number.

Go Online to find Teaching the Mathematical Practices.

Interactive Presentation

Learn, Relate Fractions to Percents and Decimals, Slide 3 of 4
WATCH
On Slide 3, students watch an animation to learn how to write fractions as percents.

Interactive Presentation

Example 2, Write Fractions as Percents and Decimals, Slide 2 of 5
On Slide 2, students move through the
steps to write the fraction as a percent.

96 Module 2 - Fractions, Decimals, and Percents

Example 2 Write Fractions as Percents and Decimals

Objective

Students will write fractions as percents and decimals by first finding an equivalent ratio with 100 as the denominator.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantity $\frac{6}{8}$ and to understand how simplifying it first will allow them to write it as a fraction with a denominator of 100. Students should be able to reason that while 8 is not a factor of 100,4 is a factor of 100 .

Questions for Mathematical Discourse

SLIDE 2

ALI. Is the denominator of $\frac{6}{8}$ a factor of 100 ? no
A느․ Is $\frac{6}{8}$ in simplest form? Why or why not? no; Sample answer: It can be written as $\frac{3}{4}$.
OL. Why do you simplify $\frac{6}{8}$ first? Sample answer: Simplifying $\frac{6}{8}$ to $\frac{3}{4}$ allows me to write an equivalent fraction with a denominator of 100 because 4 is a factor of 100 .

Write three different fractions that are all equivalent to 75%. Sample answers: $\frac{9}{12}, \frac{15}{20}$, and $\frac{18}{24}$

SLIDE 3

AL. Why did you start with 75% ? Sample answer: The fraction was already written as 75%.

OL What mathematical operation do you use to convert 75% to 0.75 ? Explain. division; Sample answer: Divide 75 by 100.

BL. What is another method you can use to write a fraction as a decimal? Sample answer: Divide the numerator by the denominator.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Write Mixed Numbers as Percents

Objective

Students will write a mixed number as a percent.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantity $2 \frac{9}{80}$ 别d to understand how first expressing it as an improper fraction will help in writing the quantity as a percent. Students should also be able to use reasoning to find the percent mentally.

Questions for Mathematical Discourse

SLIDE 2

AL. What percent does the whole number 1 represent? 2? 100%; 200\%
A느․ What is 9 将itten as a percent? 90%
OL. Why is it helpful to write $2 \frac{9}{98}$ an improper fraction? Sample answer: It aids in writing an equivalent fraction with a denominator of 100 .
OL. How can you use reasoning to write $2 \frac{9}{18}$ a percent, without writing the mixed number as an improper fraction first? Sample answer: The mixed number $2 \frac{9}{10}=2+\frac{9}{10}$. The whole number 2 represents 200%. The fraction $\frac{9}{6}$ presents 90%. So, $2 \frac{9}{10}$ represents 290\%.
The gyrfalcon is a bird of prey, and the largest falcon in the falcon species. It has a top speed that is $\frac{17}{20}$ times as fast as the top speed of a cheetah. Write $\frac{17}{20}$ as a percent. 185\%

(3) Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

To further students' understanding of writing fractions as percents, have them work with a partner to generate a list of fractions that satisfy each condition below. For each condition, they should generate at least 3 fractions. Have them explain how they determined the fractions in each list.

- fractions in which they can immediately write an equivalent fraction with a denominator of 100 (without simplifying the fraction first)
- fractions in which they should write the fraction in simplest form before writing an equivalent fraction with a denominator of 100
e Example 3 Write Mixed Numbers as Percents The cheetah is the fastest land mammal in the world. The peregrine falcon is the fastest bird in the world. The peregrine falcon's top speed is $2 \frac{9}{10}$ times as fast as the top speed of a cheetah.

What percent represents this value?
Step 1 Write the mixed number as an improper fraction.
The fraction $2 \frac{9}{10}$ is a mixed number that consists of a whole number part, 2 , and a fractional part, $\frac{9}{10}$.
$2 \frac{9}{10}=2+\frac{9}{10} \quad$ Write the mixed number as a sum.
$=\frac{10}{10}+\frac{10}{10}+\frac{9}{10} \quad 2=1+1$ and $1=\frac{10}{10}$
$=\frac{29}{10} \quad$ Add

Step 2 Find an equivalent ratio with 100 as a denominator.
 Find an equivalent ratio with 100 as the denominator.
Because $10 \times 10=100$, multiply 29 by 10 to obtain 290 . Definition of percent

So, the peregrine falcon's top speed is 290 \% that of a cheetah's top speed.

Check
When blue whales feed, they can take in $1 \frac{1}{25}$ times their body weight in food and water in one single gulp. What percent of their body weight is this?

Think About It Is the top speed of the falcon greater than cheetah? How do you know?
yes; Sample answer: If the top speed of the falcon was 200\% that of the cheetah, the alcon would be twice as fast, or two times as fast, as the cheetah. Since the falcon's top speed is $2 \frac{9}{10}$ times as fast, the percent is greater than 200\%.

Q. Talk About It!

 How can you use mental math to express $2 \frac{9}{10}$ as a percent? Sample answer: $\frac{9}{10}$ is 90% and the whole number 2 means 200\%. So, $2 \frac{9}{10}$ as a percent is $90 \%+$ 200% or 290%.\qquad

Interactive Presentation

Example 3, Write Mixed Numbers as Percents, Slide 3 of 5

Learn Relate Decimals to Percents and Fractions
Y ou can use place-value reasoning and equivalent ratios to write decimals as percents and fractions. A decimal with its last nonzero digit in the tenths place can be written as a fraction with a denominator of 10 .
$0.7=\frac{7}{10}$
Find an equivalent ratio with a denominator of
100. Multiply both 7 and 10 by

As a fraction, $0.7=\frac{7}{10}$. As a percent, $0.7=70 \%$
A decimal with its last nonzero digit in the hundredths place can be written as a fraction with a denominator of 100 .
$0.34=\frac{34}{100}$, or $34 \% \quad 0.34$ means thirty-four hundredths
As a fraction, $0.34=\frac{34}{100}$, or $\frac{17}{50}$. As a percent, $0.34=34 \%$.
s place can be itten as a fraction with a denominator of 1,000 .
$0.125=\frac{125}{1.000}$ \qquad
Find an equivalent ratio vith a denominator of 100 Divide both 125 and 1,000 by 10

As a fraction, $0.125=\frac{125}{1,000}$, or $\frac{1}{8}$. As a percent $0.125=12.5 \%$.
Example 4 Write Decimals as Percents and Fractions
Write 0.025 as a percent and as a fraction
$0.025=\frac{25}{1,000} \quad 0.025$ means twenty-five thousandths
$=\frac{2.5}{100} \quad T$ o write 0.025 as a percent, find an equivalent
$=\frac{1}{40} \quad$ To write 0.025 as a fraction, find an equivalent ratio s a percent, $0.025=2.5 \%$. As a fraction, $0.025=\frac{25}{1.00}-$ or $\frac{\frac{1}{40}}{4}$
Check
Write 1.4 as a percent and as a mixed number.
$140 \% ; 1 \frac{40}{100} 10^{\frac{4}{-}}$, or $1 \frac{2}{5}$
Q go Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 4, Write Decimals as Percents and Fractions, Slide 1 of 2

On Slide 1 of Example 4, students move through the steps to write the decimal as a percent and a fraction.

Students complete the Check exercise online to determine if they are ready to move on.

98 Module 2 - Fractions, Decimals, and Percents

1 CONCEPTUAL UNDERSTANDING

Learn Relate Decimals to Percents and Fractions

Objective
Students will understand how to write a decimal as a percent and then as a fraction by first writing the decimal as a fraction with a denominator of 100 .

0
Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SLIDE 4

Mathematical Discourse

When might it be advantageous to simplify the fraction $\frac{125}{1,000} \frac{5}{8}-\frac{1}{-}$? When might it be more advantageous to leave the fraction as $\frac{125}{1,000}$? Sample answer: Simplifying the fraction $\frac{125}{1,000}$ to $\frac{1}{-}$ allows me to visualize how the part compares to the whole with smaller numerical values. Leaving the fraction as $\frac{125}{1,000}$ allows me to find the percent using mental math by finding an equivalent ratio with a denominator of 100 .

Example 4 Write Decimals as Percents and Fractions

Objective

Students will write a decimal as a percent and then a fraction by first writing the decimal as a fraction with a denominator of 100 .

Questions for Mathematical Discourse

SLIDE1

AL What is the decimal 0.025 in word form? twenty-five thousandths
OL. How do you know that twenty-five thousandths can be written as a fraction? Sample answer: Thousandths means that the last digit is in the thousandths place. Twenty-five thousandths means twentyfive out of one thousand, or $\frac{25}{1,000}$.

BLI Write thirty hundredths as both a decimal and a percent. Can you write this number in word form differently? Explain. 0.30; 30\%; yes; Sample answer: 0.30 also means three tenths.

3 Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply School

Objective

Students will come up with their own strategy to solve an application problem involving time spent studying.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What can we say about how the amount of time spent studying math compares to the amount of time spent studying history?
- How do you write a percent as a fraction?
-Can the fraction be simplified?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, School

Math History
Minute
Graciano Ricalde
Gamboa (1873-1942) was a Mexican mathematician who in
1910, achieved 1910, achieved
recognition for calculating the orbit of Halley's Comet. His precise calculations proved that the comet would not hit Earth, which was of great concern at the time. Halley's Comet follows a highly elliptical path
and can be seen from Earth every 74-79
years.

Check
The table shows the percent of time Naima's soccer team spent on each skill during their last practice. The total time spent practicing is 100%. What fraction of the time was spent on crossing and passing? $\frac{9}{20}$

O go Online Y ou can complete an Extra Example online.
(7) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

modue 2 . Fracions, Decimals, and Percents

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Essential Question Follow-Up

How can you use fractions, decimals, and percents to solve everyday problems? In this lesson, students learned how to write equivalent forms of fractions, decimals, and percents using the definition of percent as a rate per 100 . Encourage them to brainstorm with a partner some realworld examples of when they might need to convert between fractions, decimals, and percents. For example, if they got 8 out of 10 problems correct on a quiz, that would be the same as a score of 80% on the quiz.

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could describe how to convert between fractions, decimals, and percents. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. A basketball team made 12 out of 15 free throw attempts in their first game, 14 out of 25 in the second game, and 13 out of 20 in the third game. Has the team improved their free throw accuracy? Write a mathematical argument that can be used to defend your solution. Game \#1: 80\%; Game \#2: 56\%; Game \#3: 65\%; Sample answer: The team's accuracy decreased from the first game to the second game, and then increased from the second game to the third game.

ASSESS AND DIFFERENTIATE

(ili) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 11, 13, 15, 16-19
- Extension: Find the Percent of a Population
- D ALEKS Percents, Decimals, and Fractions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-11, 15, 16, 17
- Personal Tutor
- Extra Examples 1-4
- Q ALEKS Understanding Percents

IF students score 65\% or below on the Checks, THEN assign:

- ArriveMATHTake Another Look
- ALEKS Understanding Percents

1 CONCEPTUAL UNDERSTANDING

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL Practice Form B 01. Practice Form A

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	write percents as fractions and decimals	$1-3$
1	write fractions as percents and decimals	$4-6$
1	write decimals as percents and fractions	$7-9$
2	convert between fractions, decimals, and percents	$10-12$
2	extend concepts learned in class to apply them in new contexts	13
3	solve application problems involving fractions, decimals, and percents	14,15
3	higher-order and critical thinking skills	
		$16-19$

Common Misconception

Some students may have difficulty when writing mixed numbers as a percent because they do not include the whole number when writing the percent. In Exercise 5, remind students that they need to include the whole number when writing $1 \frac{3}{4}$ as a percent. They can first write the fractional part as a percent and then add 100 , since 1 is equal to 100%. Encourage students to think about the definition of a mixed number to understand that a mixed number will result in a percent that is greater than 100.

Apply *indicates multi-step problem
'14. The table shows the results of a recent survey of sixth grade
students at Potter Middle School about their favorite sports. students at Potter Middle School about their favorite sports. What fraction of the students chose football or soccer? $\frac{11}{20}$
'15. The table shows the percent of each type of pet owned by pet owners in a neighborhood. The total percent is equal to 100%. What fraction of the pets owned were cats and dogs? $\frac{7}{10}$
ϑ Higher-Order Thinking Problems
16. Justify Conclusions Determine if the following statement is true or false. Justify your conclusion.
Any decimal that ends with a digit in the hundredths place can be written os a fraction with a denominator that is divisible by both 2 and 5 .
true; Sample answer: A decimal that end in the hundredths place can be written with a denominator of $\mathbf{1 0 0 .} 100$ is divisible by both 2 and 5 . So, the denominator of every such decimal is divisible by 2 and 5
18.

NiF Persevere with Problems Explain how you can write $25 \frac{2}{5} \%$ as a decimal. Sample answer: Since $\frac{2}{5}$ is equal to 0.4 I can write the percent as 25.4%. Then can write the percent as the decimal 0.254 .

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 16, students determine if a statement is true or false and justify their conclusion.
In Exercise 17, students use inductive reasoning to evaluate the results of a survey.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 18, students determine a strategy and explain how to write a mixed-number percent as a decimal.

7 Look for and Make Use of Structure In Exercise 19, students use the structure of a fraction to explain how to determine if an equivalent percent will be greater than or less than 100%.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercises 14-15 Have students work in pairs. Have students individually read Exercise 14 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 15.

Be sure everyone understands.

Use with Exercises 16-17 Have students work in groups of 3-4 to solve the problem in Exercise 16. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 17.

Learn Find the Percent of a Number

Objective

Students will understand how to use bar diagrams, ratio tables, equivalent ratios, and double number lines to find the percent of a number.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 2, have them give advantages and disadvantages of dividing the bar into different numbers of sections.

Teaching Notes

SLIDESM $1=2$
You may wish to present the scenario to the class and ask them how they would find the number of people who prefer lemon, using any strategy they choose. They should be prepared to explain their strategy to the class. Have them compare their strategy to the one shown that uses a bar diagram. Ask them why the bar diagram is divided into ten equal sections, and what each section represents, both in terms of percent and in terms of the number of people. Students previously learned about part-to-whole ratios. Ask them what the part-to-whole ratio is of the number of people that preferred lemon sherbet, and how it is illustrated in the bar diagram.

Talk About It!

SIIDE 2

Mathematical Discourse

Why is the bar divided into 10 sections? Is there a different way you can divide the bar to solve the same problem? Explain. Sample answer: Since the percent is 20%, the bar is divided into 10 sections that each represent 10%. You could also divide the bar into 20 sections, and each section would then represent 5\%.
(continued on next page)

DIFFERENTIATE

Reteaching Activity AL

If any of your students are struggling with creating a bar diagram to solve a percent problem, have them work with a partner to find the smallest number of sections that a bar diagram can be divided into to model each percent.

65\% 20 sections
75\% 4 sections
$72 \% 25$ sections
$70 \% 10$ sections
80\% 5 sections
$74 \% 50$ sections

Interactive Presentation

Learn, Find the Percent of a Number, Slide 1 of 6

LESSON GOAL

Students will use bar diagrams, equivalent ratios, double number lines, and ratio tables to find the percent of a number.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

EXPLORE AND DEVELOP

Explore: Percent of a Number
Learn: Find the Percent of a Number
Example 1: Find the Percent of a Number
Example 2: Find the Percent of a Number
Example 3: Find the Percent of a Number
Example 4: Find the Percent of a Number
Apply: Book Fair

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	ALI	LEI	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATH Take Another Look	\bullet		
Extension: Compare Multiple Discounts		\bullet	\bullet
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 12 of the Language Development Handbook to help your students build mathematical language related to finding the percent of a number.
ELLL You can use the tips and suggestions on page T12 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	
45 min	

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP.A by finding the percent of a number.
Standards for Mathematical Content: 6.RP .A.3, 6.RP.A.3.C
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students related fractions, decimals, and percents.
Foundational for 6.RP.A.3, 6.RP.A.3.C

Now

Students find the percent of a number. 6.RP.A.3, 6.RP.A.3.C

Next

Students will estimate the percent of a number. 6.RP.A.3, 6.RP.A.3.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of percents. They use the parts of a percent problem (part, whole, and percent), to build fluency with finding the percent of a number. They apply their fluency to solve real-world problems.

Mathematical Background

To find the percent of a number, first express the percent as a rate per 100. In other words, write the percent as a fraction with a denominator of 100 . Simplify the fraction, if necessary, and then multiply the fraction by the number. For example, to find 32% of 514 , think of 32% asthe rate 32 per 100 , or $\frac{32}{100}$. Multiply the rate by $514 ; \frac{32}{100} \times 514=164.48$. You can also express the rate per 100 as a decimal and multiply it by the whole.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocibathy will fou then?
rate per 100

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- writing fractions as percents (Exercises 1-4)
- understanding unit price (Exercise 5)

Answers

1. 80%
2. 50%
3. 45%
4. 75%
5. $\$ 2.51$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about percent discounts on items in stores.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following question to engage students and facilitate a class discussion.

Ask:

- What is an example of a rate? What might it mean to express a percent as a rate per 100? Sample answer: 120 miles in 2 hours; a percent compares a number to 100 , so expressing a percent as a rate per 100 may mean to write it as a ratio using 100 as the whole.

Explore Percent of a Number

Objective

Students will use bar diagrams to explore percent of a number.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About lt! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with a scenario about 300 sixth-grade students. Throughout this activity, students will use a 10×10 grid to find the number of students that play a musical instrument. Students will then be given another scenario and they will use a double bar diagram to represent the number of students that play a musical instrument.

(Q)
 Inquiry Question

How can you use a model to find the percent of a number? Sample answer: I can use 10×10 grids or bar diagrams to find the percent of a number.

Wo Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 2 are shown.

Talk About It!

SLIDE2

Mathematical Discourse

What percent does each square represent? How many students would be in one of the squares in the 10×10 grid? Explain your reasoning. Sample answer: Each square represents 1%. Each square also represents 3 students because 300 divided by 100 is 3 .
(continued on next page)

Interactive Presentation

Explore, Slide 4 of 6

CLICK

On Slide 4, students move through slides to find the number of students that play musical instruments.

On Slide 6, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Percent of a Number (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use a 10×10 grid and a double bar diagram to model finding the percent of a number.

0Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3:

Mathematical Discourse

How could you use a bar diagram to represent the same situation? Sample answer: I could divide the bar into 4 sections, each representing 25%. 300 divided by 4 is 75 , so each section also represents 75 students.

Interactive Presentation

Learn, Find the Percent of a Number, Slide 5 of 6

Learn Find the Percent of a Number (continued)

Teaching Notes
 SIIDF 3

Although students have learned about ratio tables already, they still may need support in determining the appropriate labels and locations for the given data. Encourage students to look back at the scenario to identify the given data as the part, whole, or percent. Students may also find the bar diagram on the previous slide helpful as a comparison, as they work to understand the ratio table on this slide.

SIDE 4

Some students may find using an equation to be their preferred method to solve the problem. You may wish to ask students to think of a scenario when an equation may not be the most advantageous to use. Students should be able to reason that if the whole does not go into 100 evenly, then using another method may be preferable.

SIDDE5

At first, students may not want to learn four different methods for finding the percent of a number. Arrange students into groups of $3-4$. Have each group study the four different methods, compare and contrast each method, and devise a reasoning behind when it would be advantageous to use each method. Then have each group share their findings with the class. Ask them how studying different methods helps them understand the mathematics involved in each, and to have a better understanding of what the percent of a number means, as opposed to memorizing a certain process or method without having that depth of understanding.

Talk About lt!
SLIDE 6

Mathematical Discourse

Which representation helps you to visualize the problem? Can you think of a situation in which it might not be advantageous to use that representation? See students' responses.

Example 1 Find the Percent of a Number

Objective

Students will use a rate per 100 to find the percent of a number.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantities and to understand which values represent the part, the percent, and the whole. While mental math may not always be a beneficial method when finding the percent of a number, it is very beneficial when it can be used, as in this Example. Understanding 15% of 300 as a rate of 15 for every 100 will help students solidify their understanding of what the percent of a number means, in general.
5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 5, encourage them to think about how to construct a bar diagram to solve this problem. They may compare the three methods and discuss which method is most efficient for solving this particular problem.

Questions for Mathematical Discourse
 \section*{SLIDE 3}

AL How can you interpret 15% as a comparison to 100 ? 15 out of 100
OL How can you determine if your answer is accurate? Sample answer: If 45 out of 300 students bring cheese as a snack, I can write it as a fraction and then simplify. Because, $\frac{45}{300} \frac{15}{100}$, which is 15%, I know my answer is accurate.

If 14% of the students brought cheese as a snack, how many students brought cheese as a snack? 42 students

SLIDE4

AL. How can you represent the percent as a ratio? How can you represent the relationship between the part and the whole as a ratio? $\frac{15}{100} \cdot \frac{n}{300}$
OL Would it be advantageous to simplify $\frac{15}{100} \frac{1}{2} 8 \frac{3}{}$ before writing the equation? Explain. no; Sample answer: Because 100 is closer to the whole, 300 , I will multiply by a smaller number, 3 , to find the unknown part, than if I simplify the fraction first. If I use $\frac{3}{20}$, I will have to multiply by a larger number, 15.

How many of the students do not bring cheese or veggies as a snack? 204 students

3 Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Q Example 1 Find the Percent of a Number

 The graph shows the types of snacks that students at York Middle School bring with them to school. Suppthere are 300 students at the school.
How many of them bring cheese for a snack?

First, identify the part, the whole, and the percent. The part is unknown. The whole is 300 . The
 percent is 15%.
Method 1 Use the rate per 100 and mental math.
The percent is 15%. This means, that for every 100 students, 15 of them bring cheese for a snack. This is the rate per 100.
$15+15+15 \quad \begin{aligned} & \text { There are three } 100 \mathrm{~s} \text { in } 300 \text {. For each } 100,15 \text { students } \\ & \text { bring cheese as a snack. }\end{aligned}$
$=3 \times 15 \quad$ Write repeated addition as multiplication.
$=45$
Multiply. 45 students bring cheese as a snack.
Method 2 Use equivalent ratios.
Write and solve an equation stating that the ratios are equivalent. Let n represent the number of students who bring cheese as a snack. $\left.\underset{\text { total students }}{\text { chese }} \rightarrow \frac{\pi}{300}=\frac{15}{100}\right\}$ percent
 by 3.
$\frac{4515}{300} 100-$
So, using either method, 45 students bring cheese as a snack
Check
Approximately 11% of the U.S. population is left-handed. If there are 700 students at a middle school, about how many of them are expected to be left-handed?
(y) Show about 77 students

Qoo \qquad

Think About It! A classmate claims that because 15% is a little over 10% and 10% of 300 is 30 , that 15% of 300 will be a little over 30. Do you think this reasoning is correct? Why or why not?
See students responses.

\square

\square

(3) Talk About It! How can you use a bar How can you use a bar 300?

Sample answer:
Draw a bar and divide it into 20 equal-size sections of 5% each. Then shade three section to represent 15\% to represent 15\% represents 15 because $300 \div 20=$ 15. So, 15% of 300 is 15. So, 15% of 300 is
$15+15+15$, or 45.
\qquad
\square \square \square

Interactive Presentation

Example 1, Find the Percent of a Number, Slide 3 of 6

Think About It

is 30% of 240 less than, greater than or you know?
less than; Sample answer: 120 is half, or 50%, of 240 . Since $30 \%<50 \%, 30 \%$ of 240 will be less than 120.

Example 2 Find the Percent of a Number

What is $\mathbf{3 0 \%}$ of $\mathbf{2 4 0}$?

The part is unknown. The whole is 240 . The percent is 30%
Method 1 Use a bar diagram.
Draw a bar diagram with 10 equal-size sections. The whole is 240 , so each section represents $240 \div 10$ or 24 . Shade three sections to represent 30%. So, 30% of 240 is $24+24+24$, or 72 .

Method 2 Use a double number line.

Draw a double number line. The bottom number line represents the percent, so use increments of 10 to draw tick marks and label the percents. The top number line represents the number that corresponds with 100% on the bottom number line with 240 . Since there are 10 increments, the value of each tick mark on the top number line increases by $240 \div 10$, or 24 units. So, 30% on the ottom number line corresponds with 72 on the top number line.

Method 3 Use equivalent ratios.
Write and solve an equation stating that the ratios are equivalent Let n represent the unknown part.

Because $100 \times 2.4=240$ multiply 30 by 2.4 .
$\frac{72}{240}=\frac{30}{100} \quad 30 \times 2.4=72 ; 50, \pi=72$
So, using any method, 30% of 240 is 72
Check
What is 70% of 580 ? Use any strategy

Q

Interactive Presentation

Example 2, Find the Percent of a Number, Slide 3 of 7

On Slide 2, students identify the part, whole, and percent.

On Slide 5 , students indicate what number is 30% of 240 .

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Find the Percent of a Number

Objective
Students will use bar diagrams, double number lines, and equivalent ratios to find the percent of a number.

Questions for Mathematical Discourse

SLIDE2

Al. What information is given? the percent and the whole
Ol. What value represents the whole? How do you know? 240; Sample answer: The question states of 240 , which tells me this is the total amount, or the whole.

IBLI In the question What is 12.5% of 36 ?, what is the unknown? the part

SLIDE3

Al. Do you need to find the part, the whole, or the percent? the part
Ol Can you use a different number of sections in the bar diagram? Explain. yes; Sample answer: 20 sections of 5\% each
E1. What is 70% of 240 ? How does the bar diagram help you? Sample answer: 7 sections of 24 equals 168 .

SLIDE 4

AL What number on the top number line should correspond with 100 on the bottom number line? 240

Ol. How do you know what value to assign to each tick mark on the top number line? There are 10 intervals in the number line, so find $240 \div 10$ to find the value for each tick mark.

EL. How is using a bar diagram similar to using a double number line? Sample answer: In both, you have to divide the model into a certain number of sections, in this case, each section representing 10\%, and then look at three sections to find 30% of the number.

SLIDE 5

AL. What is the percent? What is the whole? 30\%; 240
OL By what value do you need to multiply 100 to obtain 240? 2.4
BL. Which method would you choose to use to find 35% of 240 ? Why? Sample answer: I prefer to use equivalent ratios, because it is less time consuming than drawing a model with 20 sections of 5% each.

3 Go Online

- Find additional teaching notes Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find the Percent of a Number

Objective

Students will use ratio tables and equivalent ratios to find the percent of a number when the percent is greater than 100%.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 5, encourage them to make sense of the part, in relation to the whole, 320 , and not just perform the calculations. Students should be able to determine whether their answer is reasonable by reasoning that because 145% is greater than 100%, the part will be greater than 320 .

Questions for Mathematical Discourse

SLIDE3 3

AL When using a ratio table, how do you scale back to 1% from 100% ? Sample answer: Divide both the percent and the part by 100 .
Ol Why is it beneficial to scale from 100% to 1% and then scale from 1% to 145%, as opposed to scaling directly from 100% to 145% ? Sample answer: To scale directly from 100% to 145%, I need to multiply by 1.45 . While this is valid, it might be more intuitive to divide by 100 first and then multiply by 145 .
OL. Explain why 145% of 320 is larger than 320 . Sample answer: Because 145% is greater than $100 \%, 145 \%$ of 320 must be greater than 320.

BL. How much greater is 245% of 320 than 145% of 320 ? Explain. 320; Sample answer: Each 100% is equal to 320, the whole. Therefore, since 245% is 100% more than $145 \%, 245 \%$ of 320 is 320 more than 145% of 320 .

SLIDE 4

AL Explain how to estimate 145% of 320 . Sample answer: 145% is close to 150% and $150 \%=100 \%+50 \% .100 \%$ of 320 is 320 . 50% of 320 is 160 . So, 145% of 320 is about $320+160$, or 480 .

OL. Without calculating, explain whether 145% of 320 is less than or greater than 320 . Sample answer: Since 145% is greater than $100 \%, 145 \%$ of 320 will be greater than 320 .
31. Now that you know 145% of 320 is 464 , use mental math to find 72.5% of 320 and 290% of 320 . Explain how you found these values. 232; 928 ; Sample answer: 72.5% is half of 145%, so half of 464 is 232.290% is twice as great as 145%, so $2(464)=928$.

(3) Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find the Percent of a Number What is 145% of $\mathbf{3 2 0}$?

The part is unknown. The whole is 320 . The percent is 145%. Method 1 Use a ratio table.

Y ou know that 100% of 320 is 320 . Y ou need to find 145% of 320 . Use a ratio table to scale back from 100% to 1%. Then scale forward from 1% to 145%.

Method 2 Use equivalent ratios.
Write and solve an equation stating the ratios are equivalent. Let n represent the unknown part.
$\left.\begin{array}{c}\text { part } \\ \text { whole }\end{array} \rightarrow \frac{n}{320}=\frac{145}{100}\right\}$ percent

So, using either method, 145% of 320 is 464

Check
What is 275% of 4 ? Use any strategy.
(yno wark) 11

Q oo Online Y ou can complete an Extra Example online.

Think About It Is 145% of 320 less than, greater than, or equal to 320 ? How do you know?
greater than; Sample answer: The percent is greater than 100% so the part will be so the part will be whole.
 \square \square

Q Talk About It Compare the part, 464, to the whole, 320 . Does it make sense that 464 is greater than 320 ? Why or why not?
yes; Sample answer: The percent is greater than 100% so the part should be greater than the whole.

Interactive Presentation

Example 3, Find the Percent of a Number, Slide 3 of 6

DRAG \& DROP

On Slide 2, students drag to identify the part, whole, and percent.

©Think About It

Why might it not be advantageous to use a 0.25% of 58 ?

See students' responses.
\square
QTalk Abouttit
Compare the part, 0.145 , to the whole, 58. Does it make sense
that 0.145 is
significantly less than
$58 ?$ Why or why not?
58 ? Why or why not?
yes; Sample answer:
The percent is less
than 1%, so the part is
significantly less significantly less than the whole.

Example 4 Find the Percent of a Number What is 0.25% of 58 ?
The part is unknown. The whole is 58 . The percent is 0.25%.
Method 1 Use a ratio table.
Y ou know that 100% of 58 is 58 . Y ou need to find 0.25% of 58 . Use a ratio table to scale back from 100% to 1%. Then scale back gain from 1% to 0.25%.

Method 2 Use equivalent ratios.
Write and solve an equation stating the ratios are equivalent. Let n represent the unknown part.
$\left.\underset{\text { whoile }}{\text { par }} \rightarrow \frac{n}{58}=\frac{0.25}{100}\right\}$ percent

So, using either method, 0.25% of 58 is $\mathbf{0 . 1 4 5}$.

Check
What is 0.55% of 220 ? Use any strategy.
1.21

1 CONCEPTUAL UNDERSTANDING

Example 4 Find the Percent of a Number

Objective
Students will use ratio tables and equivalent ratios to find the percent of a number when the percent is less than 1%.

TH. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to use reasoning to understand why it is beneficial to scale from 100\% to 1% using the ratio table, and then scaling from 1% to 0.25%. Ask students if they can scale directly from 100% to 0.25% by dividing 100% by 400 . While this is a valid method, it is not as intuitive as breaking up the scaling into two parts.

As students discuss the Talk About lt! question on Slide 5, encourage them to make sense of the percent, in relation to the whole, 58 , and not just perform the calculations. 0.25% is less than 1%, so the part will be significantly less than 58 . Students should use this reasoning to make sense of their solution.

Questions for Mathematical Discourse
 SLIDE3

A1 What do you notice about the percent? Sample answer: It is less than 1%.

Ol Without calculating, explain whether 0.25% of 58 is less than or greater than 58 . Sample answer: Since 0.25% is less than 100%, 0.25% of 58 will be less than 58 .

OL Explain how to estimate 0.25% of 58 . Sample answer: 0.25% is one fourth of $1 \% .1 \%$ of 58 is 0.58 . So, 0.25% will be one fourth of 0.58 . Since 0.58 is close to 0.6 and one fourth of 0.6 is $0.15,0.25 \%$ of 58 is close to 0.15 .

OL. Why do we scale from 100% to 1% first? Sample answer: It is easier to scale back to 1% and then scale from 1% to 0.25% instead of scaling directly from 100% to 0.25%.
BEL Now that you know that 0.25% of 58 is 0.145 , use reasoning and mental math to find 0.75% of 58 and 0.25% of 29 . Explain how you found these values. $0.435 ; 0.0725$; Sample answer: Because 0.75% is 3 times as great as 0.25%, multiply 0.145 by 3 to obtain 0.435 . Because 29 is half of 58 , find half of 0.145 to obtain 0.0725 .

3 Go Online

- Find additional teaching notes, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Book Fair

Objective

Students will come up with their own strategy to solve an application problem involving attendance.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What information from the table is extra and not needed to solve the problem?
- Do you need to find the part, the whole, or the percent? Which method would you prefer to use to find the unknown?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Book Fair
Students were asked which night they planned on attending the book fair. The results of the survey are shown in the table. Twenty percent of the students who planned to attend on Wednesday attended on Thursday instead. Twenty-five percent of the students who planned to attend on Thursday attended on Wednesday instead. Which day, Wednesday or Thursday, had a greater actual attendance? By how many students?

Day	Number of Students
Monday	55
Tuesday	80
Wednesday	70
Thursday	112
Friday	65

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partne

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies

3 What is your solution?
Use your strategy to solve the problem

Thursday; 14 students; See students' work.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.
See students' arguments.

Talk About It! Would the solution be
the same if 25% of the students who planned to attend Wednesday attended on Thursday, instead of 20% ? Explain.
no; Sample answer: Since the percent is greater, the numbe switching to Thursday is greater.

Interactive Presentation

Apply, Book Fair

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Check

Five hundred students were asked what color they prefer for the new thool cols. The many mare show students prefer blue than black? 30 students

Color	Percent
Y ellow	7
Blue	36
Orange	15
Red	12
Black	30

Interactive Presentation

Exit Ticket

Q Essential Question Follow-Up
How can you use fractions, decimals, and percents to solve everyday problems? In this lesson, students learned how to find the percent of a number using models. Encourage them to brainstorm with a partner some real-world examples of when they might need to find the percent of a number. For example, if a shirt that costs $\$ 20$ is discounted 10%, it would mean \$2 off the cost of the shirt.

Exit Ticket

Refer to the Exit Ticket slide. How much will you save if you buy the shirt on sale? Write a mathematical argument that can be used to defend your solution. \$17.46; Sample answer: You can use the equivalent ratios $\frac{30}{100}=\frac{7.485}{\$ 24.95}$ to find that the amount of discount is $\$ 7.49$. So, the sale price of the shirt is $\$ 24.95-\$ 7.49$ or $\$ 17.46$.

ASSESS AND DIFFERENTIATE

II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1, 10, 12-15
- Extension: Financial Literacy: Compare Multiple Discounts
- ALEKS' Percent of a Number

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-8, 10, 12-15
- Extension: Financial Literacy: Compare Multiple Discounts
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- aleks Understanding Percents

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Understanding Percents

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	find the percent of a number	1,2
1	use any method to find the percent of a number	$3-8$
2	extend concepts learned in class to apply them in new contexts	9
3	solve application problems involving percent of a number	10,11
3	higher-order and critical thinking skills	$12-15$

Common Misconception

Some students may have trouble finding the percent of a number when the percent is less than 1 . In Exercise 8, students may want to find 0.4 (40%) instead of 0.4%. Remind students that when using equivalent ratios they must maintain the decimal in the percent ratio $\left(\frac{n}{168} \overline{100} 0.4\right)$. Remind them that 1% of 168 is 1.68 and that 0.4% will be less than that.

Apply *indicates multi-step problem

*10. Students were asked which night they planned on going to the school festival. The results of the surve are shown in the table. If 18% of the students did no go on Friday, and 15% of the students did not go on Saturday, how many more students went on Friday
than on Saturday?
43 students
${ }^{\text {¹ }} 11$. Students were surveyed about which school athletic event they were planning to attend this week. Of the game, 25% did not attend. Of the students who
ghe, 25\% dd not ar 1 did not attend How many more students went to th did not attend. How many more students went to the ooth the vall game?

26 students

Higher-Order Thinking Problems

12. Persevere with Problems Olive is going to buy a scooter that costs $\$ 95$. The sales tax rate is 8.5%. What is the total cost of the scooter including tax to the nearest cent? $\$ 103.08$
13.

TVI Identify Structure How can you find 40% of 150 using mental math? Explain.
Sample answer: $\mathbf{4 0 \%}$ can be represented as $10 \%+10 \%+10 \%+10 \% .10 \%$ of 150 is 15. $15+15+15+15=60 ;$ So, 40% of 150 is 60 .
13. Justify Conclusions is 18% of 30 the same as 30% of 18 ? Justify your conclusion. yes; Sample answer: $\mathbf{1 8 \%}$ of 30 is 5.4 and 30% of 18 is $5.4 ; 5.4=5.4$.
15. Be Precise Explain how the part of a whole can be greater than the whole itself. Use an example.
Sample answer: If the percent is greater than 100%, the part will be greater than the whole. For example, 125% of 12 is 15. The part, 15 , is greater than the whole, 12.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In Exercise 12, students apply their knowledge of percent of a number to find to find the total cost of an item including sales tax.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 13, students determine whether or not the two expressions have the same value and justify their conclusion.

7 Look for and Make Use of Structure In Exercise 14, students use mental math to find 40% of 150 . Encourage them to use structure in representing 40% as $10 \%+10 \%+10 \%+10 \%$.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Interview a student.

Use with Exercises 10-11 Have pairs of students interview each other as they complete these application problems. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 13 might be, "What does it mean that 18% of the students did not go on Friday?"

Clearly explain your strategy.

Use with Exercise 12 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would find the total cost with sales tax, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Learn Estimate the Percent of a Number

Objective

Students will learn how to use benchmark percents and rounding to estimate the percent of a number.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of the percent given, 27%, in relation to the benchmark percent, 25%. They should be able to reason that because $25 \%<27 \%$, 25% of 40 is less than 27% of 40 .

Talk About It!

SLIDE3

Mathematical Discourse

Why is the estimated part, 10, less than the actual part, 10.8? Sample answer: 25% is less than 27%, so 25% of 40 will be less than 27% of 40 .
(continued on next page)

DIFFERENTIATE

Enrichment Activity |B1

To further students' understanding of why benchmark percents are useful, have them discuss with a partner why a percent such as 30% is a benchmark percent and 32% is not. Sample answer: The calculations with 30% are easier than the calculations for 32%. When written as a fraction, 30% is equal to $\frac{3}{10}$, so 30% of a number can be found by finding one tenth of the number and multiplying the result by 3 . Finding one tenth of the number is the same as dividing by 10 . When written as a fraction, 32% is equal to $\frac{32}{100} 2 \frac{8}{5}$. Finding one twentyfifth of a number is not as simple, and the result would have to be multiplied by 8 to find the part.

Interactive Presentation

Learn, Estimate the Percent of a Number, Slide 2 of 6

Estimate the Percent of a Number

LESSON GOAL

Students will estimate the percent of a number.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Estimate the Percent of a Number
Example 1: Estimate the Percent of a Number
Example 2: Estimate the Percent of a Number
Apply: Financial Literacy
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

| Resources | AL | LB | \square |
| :--- | :---: | :---: | :---: | :---: |
| Remediation: Review Resources | \bullet | \bullet | |
| Collaboration Strategies | \bullet | \bullet | \bullet |

Language Development Support

Assign page 13 of the Language Development Handbook to help your students build mathematical language related to estimating the percent of a number.
ELLL You can use the tips and suggestions on page T13 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 0.5 day
 45 min
 1 day

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster
6.RP.A by estimating the percent of a number.

Standards for Mathematical Content: 6.RP.A.3, 6.RP.A.3.C Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5

Coherence

Vertical Alignment

Previous
 Students found the percent of a number.

6.RP.A.3, 6.RP.A.3.C

Now

Students estimate the percent of a number.
6.RP.A.3, 6.RP.A.3.C

Next
Students will find the whole given the percent and the part, using double number lines and equivalent ratios.
6.RP.A.3, 6.RP.A.3.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3APPLICATION
開 Conceptual Bridge In this lesson, students apply their fluency		
with percents to solve real-world problems involving estimating with		
percents.		

Mathematical Background

To estimate a percent problem, we often use convenient benchmark percents. Benchmark percents are common percents to which we compare other percents: multiples of 10%, multiples of 5%, and commonly 25% and 75% because of their relationship to well-known fractions ($\frac{1}{4}$ and $\frac{3}{4}$). To estimate a percent, round the whole to a convenient number, e.g. to the nearest 100 , and round the percent to a convenient benchmark fraction, then multiply the rounded whole by the benchmark fraction. The use of bar diagrams and equivalent ratios is beneficial when estimating the percent of a number.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

Whan Woobushy We Eulemit

benchmark percents

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding equivalent fractions (Exercises 1-4)
- making predictions using ratios (Exercise 5)

Answers

1. 165
2. 351
3. 100
4. $\frac{3}{7}=\frac{246}{574}$; There may be 574 girls in the entire school.
5. 141

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about survey results of theater moviegoers.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Where have you seen the term benchmark before? Sample answer: A benchmark is a standard against which similar things can be measured. For example, you may have taken benchmark tests in school to see how well you have learned a certain set of skills.

Interactive Presentation

Learn, Estimate the Percent of a Number, Slide 4 of 6

1 CONCEPTUAL UNDERSTANDING

Learn Estimate the Percent of a Number (continued)

Teaching Notes

SLIDE4

Have students use the interactive tool to view examples of common benchmark percents and their related benchmark fractions. It will benefit students later on when solving real-world and mathematical problems to commit these common benchmark percents and fractions to memory.

Talk About It!

SLIDE 5

Mathematical Discourse

Compare and contrast 30% of 40 and the estimate you found on the previous page, 25% of 40 . Which one is closer to the actual value, 27% of 40 ? Why? Sample answer: 30% of 40 is 12 , which is greater than 25% of 40 , or 10 . The actual value is between 10 and 12 because 27% is between 25% and 30%. Because 27% is closer to 25%, the actual value is closer to 10 .

Talk About It!
SIDE 6

Mathematical Discourse

How can you use the benchmark percent 10% to find 30% of 40 ? Sample answer: 30% is a multiple of 10%. Find 10% of 40 , which is $\frac{1}{10}$ of 40 , or 4 . Then multiply by 3 to find 30% of 40 .

Example 1 Estimate the Percent of a

 Number
Objective

Students will use bar diagrams and equivalent ratios to solve a real-world problem that involves estimating the percent of a number.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Students should be able to use reasoning to estimate the percent and the whole in order to estimate the solution.

As students discuss the Talk About lt! question on Slide 4, encourage them to think about how rounding both quantities affects the estimate, and why someone might choose to round differently in a real-world context.

Questions for Mathematical Discourse

SLIDE2

Al. Why do we round $\$ 47.45$ to $\$ 50.00$? Sample answer: $\$ 47.45$ is close to $\$ 50.00$, and it is fairly easy to calculate with $\$ 50.00$.

Why is 20% a good percent to use as an estimate for 18% ? Sample answer: It is close to 18%, and it is a benchmark percent. It is not difficult to calculate 20% of a number.

OI Why is the bar diagram divided into 5 sections? Sample answer: The benchmark percent is 20%. Since $100 \div 20=5$, the bar diagram has 5 sections.

Bhil Can the bar diagram be divided into a different number of sections? Explain your reasoning. yes; Sample answer: The diagram can be divided into 10 sections, each representing 10\%.

SLIDE 3

AL. When writing the equivalent ratios, do you need to find the percent, part, or whole? part

OL. Is the estimate less than or greater than the actual amount? Explain without calculating the actual amount. greater than; Sample answer: $20 \%>18 \%$, and $\$ 50.00>\$ 47.45$, so the estimate is greater than the actual amount.
[31. About how much would Marita tip if the total bill was $\$ 72.43$? Explain. Sample answer: 20\% is close to 18% and $\$ 70$ is close to $\$ 72.43$. 20% of $\$ 70$ is $\$ 14$, so Marita would tip about $\$ 14$.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
axample 1 Estimate the Percent of a Number Marita and five of her friends went out to dinner. Their total bill was $\$ 47.45$, and they would like to tip 18% of the bill.
About how much money should they leave as a tip?
Use the benchmark percent 20% because 18% is close to 20%. Round $\$ 47.45$ to $\$ 50$.
18% of $\$ 47.45 \approx 20 \%$ of $\$ 50$ 18\% is close to the benchmark percent 20%.
Method 1 Use a bar diagram.
The bar diagram shows that 20% of $\$ 50$ is $\$ 10$.

Method 2 Use equivalent ratios.
Let n represent the unknown part.
whirle $_{\text {part }}$? $\frac{n}{50}=\frac{20}{100}$ \}percent

Because $100 \div 2=50$, divide 20 by 2 .

$$
\frac{102}{50} \frac{2}{100}-\quad 20 \div 2=10 ; \text { So }, n=10 .
$$

So, using either method, 18% of $\$$

Check
Of the 78 campers at a youth camp, 63% have birthdays in the spring. About how many campers have birthdays in the spring?

Show Sample answer: about 60% of 80 , or 48 campers

Qgo Online Y ou can complete an Extra Example online.

Think About It! is 18% of $\$ 47.45$ less than, greater than, or equal to $\$ 5$?
greater than; Sample answer: 10\% of \$47.45 s a little less than $\$ 5$, so 18% of $\$ 47.45$ should be almost twice as much.

Talk About It! A classmate rounded $\$ 47.45$ to $\$ 48$ and found 20% of $\$ 48$ to be $\$ 9.60$. Is this a valid strategy? Explain. Which rounding strategy is closer to the actual value?
might someone might someone
choose to round $\$ 50$ instead of $\$ 48$?

Sample answer: Rounding to $\$ 48$ is a valid strategy and results in an estimated value that is closer to the actual value because \$48 is closer to \$47. 45 than $\$ 50$ is. However, 50 is. However, someone might be able to use mental math to find 20\% of 50 more efficiently han finding 20\% of 48. It is not necessary to be exact when leaving a tip.

Interactive Presentation

Example 1, Estimate the Percent of a Number, Slide 2 of 5

TYPE	On Slide 3, students estimate 18% of \$47.45.
CHECK	Students complete the Check exercise online to determine if they are ready to move on.

Q Example 2 Estimate the Percent of a Number
Most pet birds spend about 41% of the day sleeping.
About how many hours a day do they spend sleeping?
Y ou need to estimate 41% of 24 , because there are 24 hours in a day. Because 41% is close to $40 \%, 41 \%$ of $24 \approx 40 \%$ of 24 .
Method 1 Use the benchmark percent 10%.
Draw a bar diagram with 10 equal-size sections. Each section represents 10%. The value of each section is $24 \div 10$ or 2.4 . So, 10% of 24 hours is 2.4 hours.
2.4 h 2.4 h 2.4 h 2.4 h 2.4 h 2.4h 2.4h 2.4 h 2.4 h 2.4 h Percent 0\% 10\%

100\%
Multiply by 4 to find 40% of 24 hours.
40% of $24=4(10 \%$ of 24$) \quad 40 \%=4(10 \%)$

$$
\begin{array}{ll}
=4(2.4) & \text { 10\% of } 24=2 . \\
=9.6 & \text { Multiply. }
\end{array}
$$

Method 2 Use the benchmark percent 20%.
Draw a bar diagram with 5 equal-size sections. Each section epresents 20%. The value of each section is $24 \div 5$ or 4.8 . So

Multiply by 2 to find 40% of 24 hours.
40% of $24=2(20 \%$ of 24$) \quad 40 \%=2(20 \%)$
$=2(4.8) \quad 20 \%$ of $24=4.8$
$=9.6 \quad$ Multiply.
So, using either method, 41% of 24 hours is about 9.6 hours. Pet birds spend about 9.6 hours a day sleeping.

Check
Estimate 76% of 122 . Use any strategy.
Sample answer: $\mathbf{7 6 \%}$ of $\mathbf{1 2 2} \approx \mathbf{7 5 \%}$ of $\mathbf{1 2 0}$, or 90

Q oo Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 2, Estimate the Percent of a Number, Slide 3 of 5
On Slide 2, students move through the steps
to estimate 41% of 24 .

Example 2 Estimate the Percent of a Number

Objective

Students will use a bar diagram to solve a real-world problem involving estimating the percent of a number.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Have students discuss the advantages of using the two different bar diagrams. Ask them to remark on when having more divisions of a bar diagram might not be advantageous.

Questions for Mathematical Discourse

SLIDER

Al. The percent 41% is close to what benchmark percent? 40%
Ol Why is the bar diagram divided into 10 sections? How many hours does each section of the bar diagram represent? Sample answer: Each section represents 10% and $10 \% \cdot 10=100 \% ; 2.4$ hours

Ol. How do you know the answer is reasonable? Sample answer: $41 \%<50 \%$ and 50% of 24 is 12 . Because $9.6<12$, the answer is reasonable.

R1. How many hours per day do pet birds spend not sleeping? Explain. 14.4 hours; Sample answer: If a pet bird spends 9.6 hours per day sleeping, then it spends $24-9.6$ or 14.4 hours per day not sleeping.

SLIDE3

Al. Why is the benchmark percent $20 \% 41 \%$ is close to 40%, and 40% is a multiple of the benchmark percent 20%.

AL. How many 20s are in 40 ? 2
OL. Using either method, will the estimate be greater than or less than the actual answer? Explain. less than; Sample answer: In both methods, 41% was rounded down to 40%. Since $40 \%<41 \%$, the estimate will be less than the actual solution.

BL. Is there another benchmark percent that can be used instead of 10% or 20% ? Is it an advantageous choice? Why or why not? yes; no; Sample answer: I can use 5\%. It is not advantageous because I would have to divide the bar diagram into 20 sections.

1 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Financial Literacy

Objective

Students will come up with their own strategy to solve an application problem involving sales tax.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- Is the discount applied before or after the tax is applied?
- What benchmark percent can you use to estimate?
- How would you round the price of the service?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Financial Literacy

Sabrina takes her car to the car wash and chooses the Gold Star service that includes a wash, wax, and interior cleaning. This service normally costs $\$ 53.99$, but is on special for $\$ 5.00$ off. She must also pay a 6% sales tax, which is applied to the discounted price, and then added to find the total price. Estimate the total amount Sabrina paid at the car wash.

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

Sample answer: about \$52.50; See students' work.
(The sample answer is obtained by rounding $\$ 53.99$ to $\$ 55$, rounding 6% to 5%, and then finding 5% of $\$ 55-\$ 5$, or $\$ 50$.)

4 How can you show that your solution is reasonable? Write About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Financial Literacy
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Essential Question Follow-Up

How can you use fractions, decimals, and percents to solve everyday problems? In this lesson, students learned how to estimate the percent of a number using benchmark percents with bar diagrams and equivalent ratios. Encourage them to brainstorm with a partner some real-world examples of when they might need to estimate the percent of a number. Have them explain how they know when they need to find the actual percent of a number versus when they can use an estimate.

Exit Ticket

Refer to the Exit Ticket slide. Estimate the number of people who plan to see the movie. Write a mathematical argument that can be used to defend your solution. Sample answer: about 75 people; 27% is close to 25% and 298 is close to $300 \cdot \frac{25}{100} \times 300=75$.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,

IF students score 66-89\% on the Checks, THEN assign:

- Practice, Exercises 1-11, 13, 15, 17
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-2
- DALEKS' Understanding Percents

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- ALEKS Understanding Percents

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

OL Practice Form

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	estimate the percent of a number	$1-6$
2	estimate the percent of a number	$7-11$
2	extend concepts learned in class to apply them in new contexts	12
3	solve application problems involving fractions, decimals, and percents	13,14
3	higher-order and critical thinking skills	$15-18$

ractic

Go online Y ou can complete your homework oniline.
wers given for 1-12.

1. 51% of $62 \approx 30$	2. 26% of $78 \approx 20$	$\text { 3. } 39 \% \text { of } 198 \approx 80$
50% of $60=30$	25% of $80=20$	40% of $200=80$
$\begin{aligned} & \text { 4. } 78 \% \text { of } 148 \approx 120 \\ & 80 \% \text { of } 150=120 \end{aligned}$	5. $\begin{aligned} 19 \% \text { of } 103 \approx & 20 \\ 20 \% \text { of } 100 & =20\end{aligned}$	$\begin{aligned} & \text { 6. } 98 \% \text { of } 59 \approx 60 \\ & 100 \% \text { of } 60=60 \end{aligned}$

7. Emilia and her three sisters went out to dinner. The total cost of their dinner was $\$ 38.75$. They want to leave a tip that is 23% of the total bill. About how much of a tip should they leave?
about $\$ 10 ; 25 \%$ of $40=10$
8. The concession stand at a football game served 288 customers. Of those customers, about 77% bought a hot dog. About how many customers bought a hot dog?
about 225 customers; 75% of $\mathbf{3 0 0}=\mathbf{2 2 5}$
9. The table shows how the 515 students at West Middle School get to school. About how many of the students walk to school?

Method	Percent of Students
Bus	53%
Car	21%
Walk	26%

about 125 students; 25% of $500=125$

Karl earned $\$ 188$ last month doing chores after school. If 68% of the money he earned was from doing yard work, about how much did Karl earn doing yard work? about $\$ 140 ; 70 \%$ of $200=140$
10. In a recent season, the Chicago Cubs won 64% of the 161 regular season games they played. About how many games did they win?
about 104 games; 65% of $160=104$

T est Practice

12. Open Response Carolyn's homeroom sold 207 magazine subscriptions. Of the magazine subscriptions sold, 28% were for fashion magazines. About how many fashion magazine subscriptions were sold?
about 60 subscriptions

Apply *indicates multi-step problem
*13. Paul takes his dog to the groomer and selects the deluxe grooming package. He has a coupon for $\$ 10$ off any grooming service. He must pay an 8% sales tax, which is applied to the discounted price, and then added to find the
 total price. Estimate the total amount Paul paid the dog groomer.
Sample answer: about \$55
*14. A store purchases a television for $\$ 192$ and adds $\$ 230$ to set the sticker price. The store is having a sale where everything is 20% off the sticker price. Estimate the final price of the television.
Sample answer: about \$344

Higher-Order Thinking Problems
15. There were 59,500 people who attended a football game. Twenty-four percent of the people received a voucher for a free water bottle. Six percent of those people never claimed their water bottle. About how many people claimed their water bottle? about 14,250 people
17. Explain how you can estimate 39% of $\$ 197$ Sample answer: First, round 39% to 40% and $\$ 197$ to $\$ 200$. Next, find 10% of $\$ 200$, which is $\$ 20$. Last, multiply $\$ 20$ by 4 to find 40% of $\$ 200$, or $\$ 80$.
16. Reason Inductively Zeb wants to buy a fishing pole regularly priced at $\$ 64$. It is on sale for 60% off. Zeb estimates that he will save 60% of $\$ 60$, or $\$ 36$. Will the actual amount saved be more or less than $\$ 36$? Explain.
more; Sample answer: Zeb rounded \$64 down to $\$ 60$, so the actual amount he will save will be a little more than $\$ 36$.
18. Justify Conclusions A store is having a 40% off sale. If you have $\$ 38$, will you have enough money to buy an item that regularly sells for $\$ 65.99$? Write an argument to justify your conclusion.
no; Sample answer: The sale price is about 60% of $\$ 65$, or $\$ 39$. Because $\$ 39$ is more than $\$ 38$, you do not have enough money.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 16, students analyze an estimate of a percent.

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 18, students determine whether or not they would have enough money to buy an item that is on sale and justify their conclusion.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Explore the truth of statements created by others.
Use with Exercises 13-14 Have students work in pairs. After completing the application problems, have students write two true statements and one false statement about each situation. An example of a true statement for Exercise 13 might be, "The regular package costs $\$ 38.99$ with the coupon." An example of a false statement might be, "The sales tax is added before the coupon is applied." Have them trade statements with another pair or group. Each pair identifies which statements are true and which are false. Have them discuss and resolve any differences.

Solve the problem another way.

Use with Exercise 15 Have students work in groups of 3-4. After completing Exercise 15, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method.

Learn Find the Whole

Objective

Students will understand how a bar diagram, a ratio table, a double number line, or equivalent ratios can be used to find the whole, given the part and the percent.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 2, encourage them to make sense of how they can use the bar diagram to find the number of sixth graders who do not play a sport.

As students discuss the Talk About lt! question on Slide 5, encourage them to discuss the disadvantages of using this method to solve this problem. Students should be able to reason that because there is no whole number by which they can multiply 60 to obtain 114, using another method, such as a ratio table, might be easier and more efficient.

Teaching Notes

SLIDE1

You may wish to present the mathematical problem of finding the whole given that the part is 114 and the percent is 60%. Ask students to work with a partner to come up with possible strategies for finding the whole. Have students share their strategies with the class. Then have them complete the Learn and view the steps for using a bar diagram, a ratio table, or a double number line to find the whole, and compare that strategy with the one they used. You may wish to ask students how the methods from the Learn show other part, whole, and percent relationships other than the one asked for in the problem. For example, the double number line shows that 40% of 190 is 76 .

Talk About It!

SLIDE 2

Mathematical Discourse

How can you use the bar diagram to find the number of sixth grade students who do not play a sport? Sample answer: There are 4 unshaded sections. These sections represent the students who do not play a sport. Each section represents 19 students and $19 \times 4=76$. So, 76 sixth grade students do not play a sport. You can also subtract 114 from the whole; $190-114=76$.
(continued on next page)

LESSON GOAL

Students will find the whole given the percent and the part.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Find the Whole
Example 1: Find the Whole
Example 2: Find the Whole
Apply: Sales

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	A	囘 ${ }^{1}$	
Remediation: Review Resources	-	-	
AriveMATHTake Another Look	-		
Extension: Find the Percent Given a Part and the Whole		-	-
Collaboration Strategies	-	-	-

Language Development Support

Assign page 14 of the Language Development Handbook to help your students build mathematical language related to finding the whole, given the part and the percent.
Fallily iou can use the tips and suggestions on page T14 of the handbook to support students who are building English proficiency.

Focus

Domain: Ratios and Proportional Relationships
Major Cluster(s): In this lesson, students address major cluster 6.RP .A by finding the whole given the percent and the part.
Standards for Mathematical Content: 6.RP .A.3, 6.RP.A.3.C
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students estimated the percent of a number.
6.RP.A.3, 6.RP.A.3.C

Now

Students find the whole given the percent and the part.
6.RP.A.3, 6.RP.A.3.C

Next

Students will use proportional relationships to solve multi-step ratio and percent problems.
7.RP.A. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students apply their fluency with percents to solve real-world problems that involve finding the whole. They build fluency with different representations, such as double number lines and equivalent ratios as they solve problems.

Mathematical Background

To find the whole, given the part and the percent, use bar diagrams, equivalent ratios, and double number lineso Tise a double number line, the top number line is divided into equal parts with percents ranging from 0% to 100%, and the bottom contains the given part. The whole is the number associated with 100% on the number line. Alternatively, equivalent part-towhole ratios can be written on one side and the fractional equivalent of the percent (as a rate per 100) on the oth.eStudents can use what they know about equivalent ratios to find the missing whole.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- modeling percents with a 10×10 grid (Exercises 1-5)

Answers

1. 23
2. 79
3. 3
4. 56
5. 87 squares

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about finding the original price of a discounted item.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following question to engage students and facilitate a class discussion.

Ask:

- What other mathematical terms have the same root as the word equivalent? Use this to define equivalent ratios. Sample answer: equal, equation, equals sign; equivalent ratios are ratios that are equal in value but are expressed differently.

Interactive Presentation

Learn, Find the Whole, Slide 4 of 5
On Slide 3, students move through the
slides to use a ratio table to find the
whole.

Learn Find the Whole (continued)

Teaching Notes
 SLIDE 3

You may wish to ask students why it is necessary to scale back first, before scaling forward. Students should be able to reason that because there is no whole number by which you can multiply 60 to obtain 100 , it is easier to scale back to 10 , which can be multiplied by 10 to obtain 100 .

Talk About It!

SUIDE 5

Mathematical Discourse

A classmate let w represent the unknown whole and set up the equivalent ratios $\frac{114}{w}=\frac{60}{100}$. Is this method valid? Why might this method not be the most advantageous one to use in this case? Sample answer: While this is a valid method, there is no whole number by which you can multiply 60 by to obtain 114 . You can use this method by multiplying 60 by 1.9 to obtain 114 , and then multiplying 100 by 1.9 to obtain 190 . But it is not intuitive to know that 60 multiplied by 1.9 is 114 .

DIFFERENTIATE

Reteaching Activity A II

For students that may be struggling with using double number lines to find the whole, explain how they can determine the number of sections in the double number line by analyzing the percent. Have students identify the number of sections needed in a double number line for each of the following percents. Have them draw number lines as needed to support their thinking.

Example 1 Find the Whole

Objective

Students will use bar diagrams and equivalent ratios to solve a real-world problem involving finding the whole.

Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Encourage students to reason about how a bar diagram helps them visualize the percent and the part, in order to find the whole.

7 Look For and Make Use of Structure Encourage students to analyze the structure of the bar diagram in order to recognize 75% as 3 parts out of a total of 4 , where each part represents 25%.

Questions for Mathematical Discourse

SLIDE3 3

AL Why is the bar diagram divided into four equal sections? The percent given is 75%, which is three-fourths, so divide the bar diagram into 4 sections.
(0). Explain how you know that the whole is greater than 90 . Sample answer: If 75% of his music library corresponds to 90 songs, then 100% of his music library must be greater than 90 songs.

OL How can you find the number of songs that each section represents? Sample answer: Since 90 represents three-fourths, divide 90 by 3 to find the value of each section.
[1] A classmate claims that he could find the whole by dividing the bar diagram into 20 sections. Is the classmate correct? Explain. yes; Sample answer: Each section would represent 5\%, or 6 songs, so the whole would be $6 \cdot 20$ or 120 songs.

SLIDE 4 -

AL. When writing the equivalent ratios, do you need to find the percent, part, or whole? whole

OL. By what number do you need to multiply 3 to obtain 90 ? 30
OL. A classmate claims that Landon has 67.5 songs in his library. What was the likely mistake? Why is this answer not reasonable? Sample answer: The classmate likely found 75% of 90 , thus treating 90 as the whole instead of the part. It is unreasonable to have 67.5 songs because you cannot have a fraction of a song.

BL. Suppose Landon had 150 songs in his music library. What percent of his library would be country music? 60\%

(Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
a Example 1 Find the Whole
Country music makes up 75% of Landon's music library. .
If he has downloaded 90 country music songs, how many songs does Landon have in his music library?

The part is 90 country music songs. The percent is 75%. The whole, the number of songs he has in his library, is the unknown.
Method 1 Use a bar diagram.
Draw a bar diagram with 4 equal-size sections of 25% each. Shade 3 sections to represent 75%. Label the shaded sections as 90 songs.

How many songs are represented by each section? 30 songs
Label each section on the bar diagram.
How many songs are represented by the whole? 120 songs
Method 2 Use equivalent ratios.
Let w represent the whole.
whiole 二号 $\frac{20}{w}=\frac{75}{100}$ \}percen
$\frac{90}{6}=\frac{3}{4} \quad$ Simplify $\frac{75}{100}$ as -

Because $3 \times 30=90$,
multiply 4 by 30 to obtain 120 .
So, $w=120$
So, using either method, Landon has 120 songs in his music library.
Check
In the first year of ownership, a new car lost 20% of its value. If the car lost $\$ 4,200$ of its value, how much did the car originally cost? Use any strategy.

Think About It A classmate claims that because 75% is should have more than 90 music song in his library. Do you think this reasoning is correct? Why or why not?
yes; Sample answer: If 75% of the whole is 90 , then the whole must be greater than 90.

2 Talk About It! Explain why setting up the equation relating was advantageous to use in this example.

Sample answer: While there is no whole number by which you can multiply 75 to obtain 90 , you can simplify the ratio $\frac{75}{10}$ to $\frac{3}{4}, Y$ ou can then multiply 3 by 30 to obtain 90.

Lesson 2-6. Find the Whole 123

Interactive Presentation

Example 1, Find the Whole, Slide 3 of 6

OThink About It!Is the whole less than, greater han, or equal
to $\$ 15$? How do you
know?
greater than; Sample answer: The amount Marissa saved is 30\% of the whole. Since $100 \%>30 \%$, the whole is greater than \$15.

Q Example 2 Find the Whole
Marissa saved $\$ 15$ because she bought a sweater that was on sale for 30% off.
What was the original price of the sweater?
The part is $\$ 15$. The percent is 30%. The whole is the unknown.

Method 1 Use a bar diagram.

Draw a bar diagram with 10 equal-size sections of 10% each. Shade 3 sections to represent 30%. Label the shaded sections as \$15.

Percent 0\% 30\%
How much money is represented by each section? $\quad \$ 5$
Label each section on the bar diagram.
How much money is represented by the whole? \$50
Method 2 Use a double number line.
Step 1 Draw a double number line.
Label the part, 15 , with its corresponding percent, 30%.
Choose another
strategy, such as a ratio
table or an equation
relating two equivalen
ratios, to solve this
problem. Compare and
contrast the methods.
Sample answer: A bar diagram helps me to visually see the relationships among the part, percent, and whole. A ratio table or an equation relating equivalent ratios are efficient methods because you can use whole-
number multiplication.
0102030405060708090 100
0102030405060708090 100
0102030405060708090 100

Step 2 Find the whole.
The value of each tick mark on the top number line increases by $15 \div$ 3 , or 5 units. The number line shows that the whole, or 100%, is $\$ 50$.

So, using either method, the original cost of the sweater was \$ 50 .
Check
Kai calculates that he spends 15% of the school day in science class. f he spends 75 minutes in science class, how many minutes long is Kai's school day?
(yorrwouk 500 minutes
Q go \qquad

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 2 Find the Whole

Objective
Students will use bar diagrams and double number lines to solve a realworld problem that involves finding the whole.

(17) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of the quantities and to understand the correspondences between each method.

As students discuss the Talk About It! question on Slide 5, encourage them to discuss the advantages and disadvantages of using the different methods to solve this problem.

Questions for Mathematical Discourse

SLIDE3

An Was the sale 30% off the original price or 30% off $\$ 15$? The sale was 30% off the original price.

ALI Why is the bar diagram divided into 10 sections? The percent is 30%, and 30 is a multiple of 10 .

OL How much does each section of the bar diagram represent? How do you know this? $\$ 5$; Sample answer: 30% represents $\$ 15$, and is represented by 3 sections. So, each section is $\$ 15 \div 3$, or $\$ 5$.

OL Where is the original price of the sweater represented on the bar diagram? It is the total of all ten sections of $\$ 5$, or $\$ 50$.

Bin Suppose the percent discount was 35%. How would you change the bar diagram to find the whole? Sample answer: Divide the bar diagram into 20 sections, each representing about $\$ 2.14$. Then multiply $\$ 2.14$ by 20 to find the original price.

SLIDE 4

AL. What number on the top number line corresponds with 30 on the bottom number line? 15

OL Why is the number line divided into 10 sections? Sample answer: The discount was 30%, so the number line should be divided into 10 equal sections of 10%.

A classmate says that the sweater originally cost $0.30 \times \$ 15$, which is $\$ 4.50$. Explain why this is not correct. Sample answer: The classmate is finding 30% of 15 , and therefore treating 15 as the whole. However, 15 is the part. Realistically, the original price of the sweater cannot be $\$ 4.50$ if she saved $\$ 15$. That would mean she paid a negative amount.

3 Go Online

- Find additional teaching notes, discussion questions, and the Talk About It! question.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Sales

Objective

Students will come up with their own strategy to solve an application problem involving selling bags of popcorn.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What percent of the bags of popcorn are represented by the cinnamon and cheese together?
- Which of the methods discussed in the lesson would be appropriate to use to solve the problem? Why?
-Why do you need to know the cost of each bag?

(Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Sales
The table shows the percentage of each type of popcorn flavor at a specialty food store. A store clerk put all of the bags of cinnamon popcorn and cheese popcorn in a display in the front of the store. If the clerk put 60 bags in the front, how many bags of popcorn does the store have in all? If the store sells all of the bags of popcorn for $\$ 4.75$ per bag, how much will the store earn in sales?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partne

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

The store has 200 total bags of pop \$950 in sales; See students' work.

4 How can you show that your solution is reasonable?
QWrite About It! Write an argument that can be used to defend your solution.
See students' arguments.

Q Go Online watch the animation.

Interactive Presentation

Apply, Sales
On Slide 1, students watch an animation
that illustrates the problem they are about
to solve.

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. What was the cost of the drone before the sale? Write a mathematical argument that can be used to defend your solution. $\$ 200$; Sample answer: The sale price of the drone is $\$ 50$ which is 25% of the original price. I used equivalent ratios to find the sale price. $\frac{50}{?}=\frac{25}{100}$. Since $25 \times 2=50$, I multiplied 100 by 2 to obtain 200 , the original price of the drone.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-9 odd, 11-14
- Extension: Find the Percent Given the Part and the Whole
- ALEKS' Percent Equations

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-4, 9, 11, 13
- Extension: Find the Percent Given the Part and the Whole
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-2
- ALEKS Understanding Percents

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Understanding Percents

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	find the whole given the part and percent	$1-7$
2	extend concepts learned in class to apply them in new contexts	8
3	solve application problems involving fractions, decimals, and percents	9,10
3	higher-order and critical thinking skills	$11-14$

Common Misconceptions

Students may attempt to find the whole given the percent and the part by incorrectly treating the part as the whole. In Exercise 1, students may find 80% of 20 and add the result to 20 . Remind students that percents are rates per 100 (the whole) and that a double number line can be used to find the whole when it is unknown.

Apply *indicates multi-step problem

9. Three different options for school lunch were offered on Friday The table shows the percent of the total lunches sold for each option. If 270 students bought a cheese pizza or a pepperoni pizza, how many lunches were sold on Friday? If each lunch costs $\$ 3.50$, how much money will the cafeteria earn from all of the lunches?
300 lunches; $\$ 1,050$
*10. The volleyball team is selling snack bags to raise money for new uniforms. The table shows the percent of the total bags sold for each type of snack bag. If they sold 210 bags of pretzels and cheese puffs, how many snack bags did they sell in all? If each snack bags costs $\$ 1.75$, how much money did they raise?
700 snack bags; $\$ 1,225$
Higher-Order Thinking Problems
10. Be Precise Of the number of sixth grade students at a middle school, 120 prefer online magazines over print magazts, 140 prer student, said that this means a greater. percent of seventh grade students prefer online magazines than sixth grade students. is the student correct? Use precise Is the student conect Use precise reasoning.
no; Sample answer: A percent compares the part to the whole. In this case, the only known value is the part. T o compare percents, the whole, the total number of sixth grade students and the total number of seventh grade students, must be known.
11. Create Write and solve a real-world problem where you use equivalent ratios to find the whole
Sample answer: James's soccer team won 68% of the games they played. If they won 17 games, how many did they play? 25 games

12. Use Math Tools In a photography club, about 48% of the members are girls. If there you can use mental math to estimate the total number of people in the photography club? club?

Sample answer: Round 48% to 50% and round 26 to 25 . Since 25 is about half of the members in the club, then $25+25$ or 50 people is the approximate number of people in the club.
14. If 10% of x is 100 , how can you find the value of x ?
Sample answer: Use equivalent fractions. $\frac{100}{x}=\frac{10}{100}$. Because 100 is 10 times 10 , multiply 100 times $\mathbf{1 0}$. So, $x=\mathbf{1 , 0 0 0}$ because $100 \times 10=1,000$.

Teaching the Mathematical Practices

6 Attend to Precision In Exercise 11, students use precise mathematical language to explain why a comparison cannot be accurately made without using percents.

5 Use Appropriate Tools Strategically In Exercise 12, students use mental math to estimate the whole.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 9 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Clearly and precisely explain.

Use with Exercises 11 and 14 Have students work in pairs. Have students individually read Exercise 11 and formulate their strategy to solve the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 14.

DINAH ZIKE FOLBABLES

[EILII A completed Foldable for this module should include examples of fractions, decimals, and percents. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 100

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together 1: Lessons 2-1 through 2-3
Put It All Together 2: Lessons 2-4 through 2-6
Vocabulary Test
An Module Test Form B
Oll Module Test Form A
|Bil Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Ratios and Proportional Relationships.

- Ratios
- Rates
- Solve Problems: Unit Rates
- Solve Problems: Percent Rates

130 Module 2 - Fractions, Decimals, and Percents

Essential Question

탠․ Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How can you use fractions, decimals, and percents to solve everyday problems? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-12 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	1,8
Multiselect	Multiple answers may be correct. Students must select all correct answers.	5
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	2
Open Response	Students construct their own response in the area provided.	$3,4,6,7$, $9-12$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
Foundational for 6.RP.A.3	$2-1,2-2,2-3$	$1-6$
6.RP.A.3	$2-4,2-5,2-6$	$7-12$
Foundational for 6.RP.A.3.C	$2-1,2-2,2-3$	$1-6$
6.RP.A.3.C	$2-4,2-5,2-6$	$7-12$

. Open ResponseA basketball player made 40% of the shots she attempted. If she made 32 baskets, how many shots did she attempt? (Lesson 6)

80 shots
8. Multiple Choice A clothing store purchases a sweatshirt for $\$ 26$ and adds $\$ 15$ to set the
sticker price. The store is having a sale where
everything is on sale for 20% off. Choose the ost reasonable estine for the final price of a sweatshirt. (Lesson 5)
(A) $\$ 8.00$
(B) $\$ 28.00$
(2) $\$ 32.00$
(D) $\$ 40.00$
9. Open Response Three hundred students were surveyed about their favorite subject. The results are shown in the table below. How many more students prefer science than math? (Lesson 4)

Subject	Percent
Language Arts	15
Math	24
Science	33
Social Studies	21
Elective	7

27 students
10. Open Response The original price of a DVD s $\$ 11$. The sale price is 30% off the original price. What is the sale price of the DVD? (Lesson 4)
$\$ 7.70$
11. Open Response The table shows the percent of total items sold for each type of ball sold at a sports equipment store in one week. (Lesson 6)

Type of Ball	Percent
Baseball	25
Basketball	35
Football	20
Soccer Ball	15
Tennis Ball	5

A. If they sold a total of 450 baseball and tennis balls, how many total items did the store sell in one week?

1,500 items
B. If each item is sold for $\$ 10.95$, how much did the store have in sales?
\$16,425
12. Open Response Twenty-one students in Michael's classroom are wearing jeans. There are 25 students in his class. Michae ays that 80% of his class is wearing jeans. Michael correct? Explain your reasoning. Lesson 4)
no; Sample answer: $\mathbf{2 1}$ is $\mathbf{8 4 \%}$ of $\mathbf{2 5 .}$

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Q. Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How are operations with fractions and decimals related to operations with whole numbers? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.

Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.

When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of theater set design and business management to introduce the idea of computing with decimals and fractions. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Learn?
Pace a checkmark (filie edeh row pat cormpoods with hew much you abeedy know about oich topic befoce starting this modie

(I) Roidaties Cut out the Foldable and tape it to the Modide Roview of the end of the module. You can use the Foldable trouplout the eoodile as you learn obout compiting. wher muth dige numbers and tractions.

Interactive Presentation

Compute with Multi-Digit Numbers and Fractions

Module Goal

Compute with multi-digit numbers and fractions.

Focus

Domain: The Number System
Major Cluster(s):
6.NS.A Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
Standards for Mathematical Content:
6.NS.A. 1 Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem.
6.NS.B. 3 Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.
Also addresses 6.NS.B.2.
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8

Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- fluently add, subtract, and multiply multi-digit whole numbers
- divide whole numbers with up to four-digit dividends and two-digit divisors
- perform operations with decimals to the hundredths place
- add, subtract, and multiply fractions
- divide whole numbers by unit fractions and vice versa using visual models

Use the Module Pretest to diagnose readiness. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students multiplied with fractionsand mixed numbers and divided with unit fractions.
5.NF.B.4, 5.NF.B.6, 5.NF.B. 7

Now

Students compute with multi-digit numbers and fractions
6.NS.A.1, 6.NS.B.2, 6.NS.B. 3

Next

Students will extend previous understandings of numbers to the system of rational numbers.
6.NS.C.5, 6.NS.C.6, 6.NS.C.7, 6.NS.C. 8

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of basic computation to develop understanding of computation with multi-digit numbers and fractions. They use this understanding to build fluency with the four basic operations involving whole numbers and decimals, and division of fractions and mixed numbers. They also apply their understanding of fractions to write and solve real-world story contexts.

Suggested Pacing

Lesson		Standard(s)	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
3-1	Divide Multi-Digit Whole Numbers	6.NS.B. 2	2	1
3-2	Compute with Multi-Digit Decimals	6.NS.B. 3	2	1
Put It All Together 1: Lessons 3-1 and 3-2			0.5	0.25
3-3	Divide Whole Numbers by Fractions	6.NS.A. 1	3	1.5
3-4	Divide Fractions by Fractions	6.NS.A. 1	2	1
3-5	Divide with Whole and Mixed Numbers	6.NS.A. 1	3	1.5
Put It All Together 2: Lessons 3-3, 3-4, and 3-5			0.5	0.25
Module Review			1	0.5
Module Assessment			1	0.5
			16	8

Formative Assessment Math Probe

if)
the student selects...

1. c, d, e
2.c, d, e
3.d, e
4.e

Various patterns of incorrect responses

the student likely...

overgeneralizes from operations with whole numbers, and reasons the rule "division makes smaller" applies to all numbers.

Example: The student chooses a combination of these answers, because the quotient is greater than the dividend.
applies incorrect reasoning about either the size of the decimal or the effect of the operation; and/or incorrectly applies an algorithm.
Example: The student chooses c for Exercise 1 by incorrectly reasoning that dividing by one half is the same as dividing a quantity in half and option c is the closest answer to half of 31 .

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- Q ALEKS' Decimals
- Lesson 2, Example 5

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

Are You Ready?
Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

What Vocabulary Will You Learn?

ELIL As you proceed through the module, introduce each vocabulary term using the following routine.

Define Two numbers whose product is 1 are called multiplicative inverses, or reciprocals.
Example The multiplicative inverse, or reciprocal of 9 is $\frac{1}{9}$. The multiplicative inverse of $\frac{5}{6}$ is $\frac{6}{5}$.
Ask What is the multiplicative inverse, or reciprocal of $\frac{7}{8} ? \frac{8}{7}$

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- dividing whole numbers using the standard algorithm
- adding and subtracting multi-digit numbers
- multiplying fractions
- understanding inverse operations
- solving word problems involving the multiplication of fractions

- ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Decimals topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

Collaborative Risk Taking

Some students may be averse to taking risks during math class, such as sharing an idea, strategy, or solution. They may worry about their grades or scores on tests, or some might feel less confident solving math problems, especially in front of their peers. Create a classroom environment where it is safe for students to take risks, including setting norms for how students will engage in classroom conversations. Encourage students to view mistakes as part of the path to success.

How Can I Apply It?

In the Practice section of each lesson, Collaborative Practice tips are provided for several exercises in the Teacher Edition. Assign those exercises and encourage students to take risks together as they solve problems, try new solution paths, and discuss their strategies.

When assigning the Application Problems, have students look for alternative approaches that can be used. Encourage them to view their solution process as one of refinement, as needed. They may try different paths, monitor their progress, and change course if necessary. This is part of the natural process of problem solving.

Learn Divide Multi-Digit Numbers

Objective

Students will understand the parts of a division problem.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to use the definitions of quotient, dividend, and divisor to accurately label the division problem as they complete the drag and drop activity on Slide 1.

Go Online to find additional teaching notes.

Example 1 Divide Multi-Digit Numbers

Objective
Students will fluently divide multi-digit whole numbers with whole number quotients.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to pay careful attention to each place-value position as they use the standard algorithm for division.

Questions for Mathematical Discourse

SLIDE1

AL I Identify the quotient, dividend, and divisor. The quotient is 2,145 , the dividend is 25,740 , and the divisor is 12 .

OL Why is the 2 in the quotient above the 5 , instead of the 2 , in 25,740 ? 12 cannot divide 2 , but it can divide 25 , so the 2 goes above the 5 .

OL.How can you check the quotient for reasonableness?
Sample answer: Use estimation; $24,000 \div 12=2,000$, so the quotient should be close to 2,000 .
|BL If $25,740 \div 12=2,145$, how can you use mental math to find $2,145 \times 13$? Sample answer: I know that $2,145 \times 12=25,740$; Add another 2,145 to 25,740 to represent the 13th time that 2,145 is added. Since $25,740+2,145=27,885$, then $2,145 \times 13=27,885$.

(3) Go Online

- Find additional teaching notes and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn, Divide Multi-Digit Numbers

DRAG \& DROP

On Slide 1 of the Learn, students drag terms to label the division problem.

TYPE

On Slide 1 of Example 1, students determine the quotient.

CHECK
(II)

Students complete the Check exercise online to determine if they are ready to move on.

Divide Multi-Digit Whole Numbers

LESSON GOAL

Students will find quotients of multi-digit whole numbers.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Learn: Divide Multi-Digit Numbers
Example 1: Divide Multi-Digit Numbers
Learn: Divide Multi-Digit Numbers
Example 2: Divide Multi-Digit Numbers
Example 3: Divide Multi-Digit Numbers
Apply: Fundraising

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	LBI	\square
ArriveMATHTake Another Look	\bullet		
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 15 of the Language Development Handbook to help your students build mathematical language related to division of multi-digit whole numbers.

CLLL You can use the tips and suggestions on page T15 of the handbook to support students who are building English proficiency.

Focus

Domain: The Number System
Additional Cluster(s): In this lesson, students address additional cluster
6.NS.B by finding quotients of multi-digit whole numbers.

Standards for Mathematical Content: 6.NS.B. 2
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP6, MP8

Coherence

Vertical Alignment

Previous

Students divided four-digit dividends by two-digit divisors.
5.NBT.B. 6

Now

Students find quotients of multi-digit whole numbers.
6.NS.B. 2

Next
Students will perform operations on multi-digit decimals.
6.NS.B. 3

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Citil Conceptual Bridge In this lesson, students draw on their		
knowledge of division (gained in prior grades) to build fluency		
with dividing multi-digit whole numbers, with both whole number		
quotients and by annexing zeros in the decimal place. They apply		
their understanding of dividing multi-digit whole numbers to solve		
real-world problems.		

Mathematical Background

A division problem has three components: a dividend, a divisor, and a quotient. The dividend is the number being divided, the divisor is the number the dividend is being divided by, and the quotient is the result. Multi-digit whole numbers can be divided using the standard division algorithm. If the divisor does not dividethe dividend evenly, the result can be written as a quotient and remainder, or zeros can be annexed and the standard division algorithm can be continued in order to write the quotient as a decimal.

Interactive Presentation

Launch the Lesson

Whar Vocibliary Wor You Laam?

dividend

divisor

 the athine.
quotient
 ibverabon wownember what the owntent of a oviben probicen regersests?

[^2]
Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- dividing using the standard algorithm (Exercises 1-5)

Answers

1. 8
2. 9
3. 25
4. 42
5. $\$ 1.62$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the history of numbers.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- If an addend is a number that is added to another number, what is a dividend? a number that is divided by another number
- In a division problem, the dividend is divided by the divisor. Use the term equal groups to describe a possible role of the divisor. Sample answer: The divisor represents the number of equal groups into which the dividend is being divided.
- The term quotient originates from the Latin word quotiens, meaning how many times. How can you use this information to remember what the quotient of a division problem represents? Sample answer: the number of times the dividing number goes into the number being divided

Interactive Presentation

Learn, Divide Multi-Digit Numbers, Slide 1 of 2

On Slide 1, students compare the division algorithm using remainders with annexing zeros.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Learn Divide Multi-Digit Numbers

Objective
Students will learn how to fluently divide multi-digit whole numbers by annexing zeros.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 2, encourage them to reflect upon how annexing zeros to the end of a decimal affects, or doesn't affect, the value of the number.

Teaching Notes
 SLIDE1

Students learned about division with remainders in prior grades. You may wish to have them review the standard division algorithm using remainders. Point out that they can continue dividing by adding a decimal point to the right of the whole number and annexing zeros.
Have students select the buttons to examine the similarities and differences between using remainders and annexing zeros. Ask students what they notice. They should note that the whole number part of the quotient is the same, 32 . When using remainders, the remainder is 20 , which represents 20 out of 25 (the divisor). In other words, the quotient is $\frac{30}{25}$. When continuing to divide by annexing zeros, the quotient is 32.8 , which is the same as $\frac{39}{25}$

Talk About It!

SLIDE2

Mathematical Discourse

How do you know that 820 and 820.0 are equivalent? Sample answer: Adding zeros to the end of a decimal does not change the value of the decimal.

DIFFERENTIATE

Reteaching Activity AL

Some students may have difficulty contextualizing the long division algorithm. Base-ten blocks can be an effective manipulative for helping students to understand how to divide multi-digit whole numbers. Have the students model the dividend in the expression $262 \div 8$ using base-ten blocks. Then ask the following questions.

1. How did you model 262 with base-ten blocks? 2 hundreds, 6 tens, and 2 ones
2. Since you cannot divide the hundreds into 8 equal groups, regroup them into tens. How many tens are there altogether? 26
3. Divide the tens into eight groups. How many tens are in each group? How many are left over? 3 tens in each group with 2 left over
4. Regroup the remaining tens into ones. How many ones are there altogether? 22
5. Divide the ones into eight groups. How many ones are in each group? How many are left over? 2 ones in each group with 6 left over
6. What do the remaining 6 ones represent? the remainder

Example 2 Divide Multi-Digit Numbers

Objective

Students will fluently divide multi-digit whole numbers by annexing zeros.

(10)
 Teaching the Mathematical Practices

6 Attend to Precision Encourage students to pay careful attention to each place-value position to ensure they annex zeros in the correct positions.

8 Look for and Express Regularity in Repeated Reasoning As students discuss the Talk About It! question on Slide 3, encourage them to look back at the division and make sense of the remainder of 0 . If they were to keep dividing, they should notice that they would continue to repeat zeros, and this is why no further division needs to take place.

Questions for Mathematical Discourse

SLIDE 2

Anil What does "annexing a zero" mean? Sample answer: Annexing a zero means to add a zero to the end of a number.

OI How could you check to make sure the quotient is correct? Sample answer: I can multiply 82.375 by 64 to make sure that their product is 5,272 .
[31. Would it be necessary to annex zeros if the divisor was 2? Explain. no; Sample answer: It would not be necessary to annex zeros, because 2 divides 5,272 evenly.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Divide Multi-Digit Numbers, Slide 2 of 4

OLICK	On Slide 2, students move through the steps to solve the division problem by annexing zeros.
quotident. 2, students determine the	

Interactive Presentation

Example 3, Divide Multi-Digit Numbers, Slide 1 of 2

CLICK	On Slide 1, students move through the steps to solve the division problem by annexing zeros.
On Slide 1, students determine the quotient.	

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 3 Divide Multi-Digit Numbers

Objective
Students will fluently divide multi-digit whole numbers by annexing zeros.

(11) 1
Teaching the Mathematical Practices
6 Attend to Precision Encourage students to pay careful attention to each place-value position to ensure they annex zeros in the correct positions.

Questions for Mathematical Discourse

SLIDE1

ALI Why do we place the 1 above the 8 of the dividend, 5,287 ? 340 cannot divide 5 or 52 , but it can divide 528 , so the 1 goes above the 8 .
(1). How do you know when you are done dividing? When the final remainder is zero, there is no other division to take place.
[BIㅔ Find $5,287 \div 170$. What do you notice about this divisor compared to 340 ? What do you notice about this quotient compared to the quotient of $5,287 \div 340$? 31.1; Sample answer: 170 is half of 340 , and the quotient 31.1 is twice the quotient 15.55 .

0

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Fundraising

Objective

Students will come up with their own strategy to solve an application problem involving making bags of cookies to sell for a fundraiser.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What operation is used when you need to separate items into different groups?
- How many of each type of cookie was donated for the sale?
-What do you need to do to solve the problem?

(Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Fundraising

The table shows the number of cookies donated for the school bake sale. The cookies were placed into bags with one dozen cookies in each bag. How many bags of one dozen cookies were available to sell?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies

3 What is your solution?
Use your strategy to solve the problem.
show
45 bags; See students' work.

4 How can you show your solution is reasonable?
Qrite About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Fundraising
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. Maria is giving away 264 books to 11 of her friends. If she divides the books equally among the friends, how many books will each friend receive? Write the answer using Roman Numerals. XXIV books

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 11, 13-17
- D ALEKS Division

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-9, 13, 14, 17
- Personal Tutor
- Extra Examples 1-3
- ALEKS Division

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATH Take Another Look
- aleks Division

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.
AIII Practice Form B
OLI Practice Form A
|BII Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	fluently divide multi-digit whole numbers with whole number quotients	$1-3$
1	fluently divide multi-digit whole numbers by annexing zeros	$4-9$
2	extend concepts learned in class to apply them in new contexts	10,11
2	solve application problems involving the division of multi-digit numbers	12,13
3	higher-order and critical thinking skills	$14-17$

Apply *indicates multi-step problem

*12. The table shows the number of each type of greeting card a gift shop had remaining at the end of the year. The store created bags with 15 random cards in each bag. How many complete bags of cards were they able to make?
37 bags

"13. The table shows the number of each type of seed packet a garden center had remaining at the end of summer Bags were created with 20 rand seed packets in each bag. How many complete bags
of seeds can be created?
24 bags

Seed Type	
Number of Packets	
Aster	40
Daisy	95
Pansy	160
Sunflower	125
Wildflower	70

Higher-Order Thinking Problems
14. Use the digits 9,6 , and 3 one time each in the following multi-digit division problem. Then rewrite the problem.

3, $600 \div 90=40$
$3,600 \div 90=40$
16.
.F. Justify Conclusions Determine if the following statement is true or false. Justify your conclusion.

The remainder in a division problem can equal the divisor.
false; Sample answer: The remainder cannot equal or be greater than the divisor. If the remainder is equal o greater, then the quotient should be increased by at least one.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In
Exercise 15, students will have to try different division problems to determine the least four-digit dividend that would not have a remainder. They will need to progress methodically and persevere until they find the answer.

3 Construct Viable Arguments and Critique the Reasoning

 of Others In Exercise 16, students will determine whether the remainder in a division problem can equal the divisor, and they will justify their conclusion.
Common Misconception

When finding the number of bags in Exercise 12, students may be tempted to divide the individual numbers by 15 and round. For example, they may divide 47 Thank-You cards by 15 to get 3 bags. They may also answer 4 if they think there is another bag necessary for the left over 2 Thank-You cards. After calculating the individual quotients, they may add them together to find the total number of bags. Encourage students to pay attention to the way the problem is worded, and ask them why they must add all of the cards together before dividing by 15 . It will be helpful to demonstrate that the two methods produce two different answers.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercises 12-13 Have students work in pairs. Have students individually read Exercise 12 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 13.

Be sure everyone understands.

Use with Exercise 16 Have students work in groups of 3-4 to solve the problem in Exercise 16. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands why the statement is false. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class.

Learn Add and Subtract Multi-Digit Decimals

Objective

Students will learn how to fluently add and subtract multi-digit decimals when the number of decimal places is not the same.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 3, encourage them to analyze the structure of an addition or subtraction expression involving decimals, in order to understand how they can annex zeros to ensure the same number of decimal places.

Teaching Notes

SUIDES $1=2$

Present the addition problem on Slide $1,45.16+21.384$ and ask students what they notice. They should note that the decimals do not have the same number of decimal places. Ask students if there are any strategies they can use to write these numbers so that they have the same number of decimal places. Students should note that they can annex a zero to 45.16 without changing its value, thus writing the decimal as 45.160 . They can then apply the same rules for adding decimals to the hundredths place to add 45.160 and 21.384 by lining up the decimal points and add the digits in the same place-value positions.

Talk About It!

SLIDE 3

Mathematical Discourse

How does annexing a zero help you correctly add or subtract the numbers? Sample answer: Annexing a zero allows you to align the place values of the numbers being added or subtracted.

DIFFERENTIATE

Language Development Activity

If any of your students are struggling to add and subtract multi-digit decimals when the number of decimal places is not the same, encourage them to read aloud each decimal using the correct place-value positions. For example, to find $348.18+12.2$, have students read aloud the expression as three hundred forty-eight and eighteen hundredths plus twelve and two tenths. The fact that the first decimal is to the hundredths place and the second decimal is to the tenths place should indicate they need to annex a zero to 12.2 , so that it can be read twelve and twenty hundredths (12.20). Have them work with a partner to find the sum or difference of each of the following expressions using this strategy.

```
345.18+12.24 357.42
    18.3+7.09 25.39
108.78-56.362 52.418 100.07-71.002 29.068
```


Interactive Presentation

Learn, Add and Subtract Multi-Digit Decimals, Slide 1 of 3

CLICK

On Slide 1, students move through the steps to add and subtract the decimals.

Compute with Multi-Digit Decimals

LESSON GOAL

Students will perform operations on multi-digit decimals.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Add and Subtract Multi-Digit Decimals
Example 1: Add Multi-Digit Decimals
Example 2: Subtract Multi-Digit Decimals
Example 3: Subtract Multi-Digit Decimals
Learn: Multiply Decimals
Example 4: Multiply Multi-Digit Decimals
Learn: Divide Decimals
Example 5: Divide Multi-Digit Decimals
Apply: Shopping

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice
Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 16 of the Language Development Handbook to help your students build mathematical language related to computations with decimals.

EEIㄴ You can use the tips and suggestions on page T16 of the handbook to support students who are building English proficiency.

Focus

Domain: The Number System
Additional Cluster(s): In this lesson, students address additional cluster
6.NS.B by performing operations with multi-digit decimals.

Standards for Mathematical Content: 6.NS.B. 3
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP6,
MP7

Coherence

Vertical Alignment

Previous

Students found quotients of multi-digit whole numbers.

6.NS.B. 2

Now

Students perform operations on multi-digit decimals.
6.NS.B. 3

Next
Students will divide whole numbers by fractions.

6.NS.A. 1

Rigor

The Three Pillars of Rigor

\section*{| 1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY | 3 APPLICATION |
| :--- | :--- | :--- |}

Conceptual Bridge In this lesson, students draw on their knowledge of whole number and decimal computation (gained in prior grades) to build fluency with adding, subtracting, multiplying, and dividing multi-digit decimals. They apply their understanding of computation with multi-digit decimals to solve real-world problems.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

[^3]
Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- adding and subtracting multi-digit numbers (Exercises 1-4)
- subtracting multi-digit numbers (Exercise 5)

Answers

1. 3,785
2. 122,035
3. 71,346
4. 694
5. 29 ounces

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the cost of building the Interstate Highway System.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Use?

Use the following question to engage students and facilitate a class discussion.

Ask:

- An annex to a building is an addition or attachment to a main structure. How might you annex zeros to the number 20 without changing its value? Sample answer: Add a decimal and zeros after it, as in 20.00.

Interactive Presentation

Example 1, Add Multi-Digit Decimals, Slide 1 of 3

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 1 Add Multi-Digit Decimals

Objective
Students will fluently add multi-digit decimals when the number of decimal places are not the same.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to analyze the structure of the vertical addition expression in order to know why and where the zero is annexed.

Questions for Mathematical Discourse

SLIDE1

Why is it helpful to estimate first? Sample answer: If you estimate first, you can compare your actual answer to the estimate to make sure your answer is reasonable.

OL. Why is annexing a zero helpful? Sample answer: Annexing a zero lets us add the decimals vertically with the same number of decimal places, keeping the digits that need to be added organized.
ㅍㅐㅔ Suppose a classmate wrote the sum as $23.4980+14.93$. What would you say to them about how they annexed the zero? Sample answer: By annexing a zero to 23.498 , the numbers will still not have the same number of decimal places. It is more helpful to annex a zero to 14.93.

Wo Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

Example 2 Subtract Multi-Digit Decimals

Objective

Students will fluently subtract multi-digit decimals when the number of decimal places are not the same.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to analyze the structure of the subtraction expression in order to determine where and how to annex zeros, so that the numbers have the same number of decimal places.

Questions for Mathematical Discourse

SLIDE1
AL Explain how you can estimate the difference. Sample answer: 163.45 is close to 160 , and 85.374 is close to $90.160-90=70$, so the difference should be close to 70 .

Oll How do you know where to annex a zero? Annex a zero to 163.45 because it has one less decimal place than 85.374 .

Ol How can you check your answer? Sample answer: Add 85.374 and 78.076 to make sure the sum is 163.45 .

Phill If $163.45-85.374=78.076$, use reasoning to find $163.45-85.38$. Explain. Sample answer: 85.38 is 0.006 more than 85.374 , so I am subtracting 0.006 more from 163.45. The difference will be 0.006 less than 78.076 , or 78.07 .

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Subtract Multi-Digit Decimals
Find 163.45 - 85.374. Check the solution.
Make an estimate. Round to the nearest ten.
$163.45-85.374 \approx 160-90$ or 70

Find the difference.
163.450

Align the decimal points and annex a zero.
78.076 Subtract. Place the decimal point in the difference

So, $163.45-85.374$ is 78.076

Check the solution.
Compare the solution to the estimate:
$78.076 \approx 70$ The solution is reasonable.

Check
Find 356.18-142.257. 213.923

Interactive Presentation

Example 2, Subtract Multi-Digit Decimals, Slide 1 of 2

Interactive Presentation

Example 3, Subtract Multi-Digit Decimals, Slide 1 of 2

CLICK	On Slide 1, students move through the steps to subtract the decimals.
On Slide 1, students determine the difference.	

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 3 Subtract Multi-Digit Decimals

Objective
Students will fluently subtract multi-digit decimals when the number of decimal places are not the same.

(17) Teaching the Mathematical Practices

7 Look for and Make Use of Structure Encourage students to analyze the structure of the subtraction expression in order to determine where and how to annex zeros, so that the numbers have the same number of decimal places.

Questions for Mathematical Discourse

SLIDE1

Al. Explain how you can estimate the difference. Sample answer: 1.769 is close to $17.25-17=8$, so the difference should be close to 8 .

Ol. How do you know where to annex zeros? Annex three zeros to 25 because it has three fewer decimal places than 17.469.

OLI. How can you check your answer? Sample answer: Add 7.531 and 17.469 to make sure the sum is 25 .

ㅍㅛㅔㅔ If $25-17.469=7.531$, use reasoning to find $25.02-17.469$. Explain. Sample answer: 25.02 is 0.02 more than 25 , so I am subtracting 17.469 from a greater number. The difference will be 0.02 greater than 7.531 , or 7.551 .

13 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Multiply Decimals

Objective

Students will learn how to fluently multiply multi-digit decimals.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 2, encourage them to create a logical argument for why they need to align the decimal points when adding and subtracting, but not when multiplying.

Teaching Notes

SLIDE1
Students will learn that the same strategy used to multiply whole numbers can be used when multiplying a decimal by a decimal. Students should note that to place the decimal point, they need to find the sum of the number of decimal places in each factor. The product has the same number of decimal places as the sum of the decimal places in each factor.

Talk About It!

SUIDE 2

Mathematical Discourse

When you add or subtract decimals, you need to align the decimal points. In multiplication, the decimal points are not aligned. Why don't you need to align the decimal points when multiplying? Sample answer: Y ou add or subtract numbers in the same place-value position, so the decimal points are aligned. But you multiply each digit by every other digit, regardless of place-value position. So, the decimal points don't need to be aligned when multiplying.

Learn Multiply Decimals
When multiplying a decimal by a decimal, multiply as with whole numbers. T o place the decimal point in the product, find the sum of the number of decimal places in each factor. The product has the same number of decimal places. If there are not enough decimal places in the product, annex zeros to the left of the first non-zero digit.

Find 0.014×3.7.
0.014 - three decimal places
$\times 3.7$ - one decimal place
$\begin{array}{r}98 \\ +420 \\ \hline\end{array}$
0.0518 - Add. Then annex a zero to make four decimal places.

So, 0.014×3.7 is 0.0518

Pause and Reflect
Are you ready to move on to the next Example? If yes, what have you learned that you think will help you? If no, what questions do you still have? How can you get those questions answered?

Interactive Presentation

Learn, Multiply Decimals, Slide 1 of 2

CLICK

On Slide 1, students move through the steps to multiply the decimals.
6.NS.B. 3

Module 3. Compute with Mult-Digit Numbers and Fractions

Interactive Presentation

Example 4, Multiply Multi-Digit Decimals, Slide 1 of 3
On Slide 1, students move through the
steps to multiply the decimals.
product 1 , students determine the

148 Module 3 - Compute with Multi-Digit Numbers and Fractions

Example 4 Multiply Multi-Digit Decimals

Objective

Students will fluently multiply multi-digit decimals.

Teaching the Mathematical Practices
6 Attend to Precision Students should be able to calculate the product accurately and efficiently, and pay careful attention to placing the decimal point correctly in the product.

7 Look for and Make Use of Structure Encourage students to analyze the structure of each factor in order to determine the number of decimal places that need to be in the product.

Questions for Mathematical Discourse

SLIDE1

Al Explain how you can estimate the product. Sample answer: 0.067 is close to 0 , and any number multiplied by 0 is 0 . So, the product should be a very small number close to zero.
[0) Explain how to determine the number of decimal places there will be in the product. Sample answer: There are a total of $3+2$, or 5 decimal places in the factors. So, the product will have 5 decimal places.

Bild Find $0.067 \times 1.42 \times 6.1$. Explain how you know the number of decimal places the product will have. 0.580354 ; Sample answer: There is a total of $3+2+1$, or 6 decimal places in the factors. So, the product will have 6 decimal places.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Divide Decimals

Objective

Students will learn how to divide multi-digit decimals.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About It! question on Slide 2, they should use precise mathematical vocabulary, such as power of ten as they explain why the two expressions are equivalent.

7 Look for and Make Use of Structure Encourage students to analyze the structure of each expression, noting that 0.6 is a multiple of 0.006 and 12 is a multiple of 0.12 .

Teaching Notes

SLIDE1
Present the division expression and ask students what they notice about the dividend and the divisor. Students should note that while neither of the numbers are whole numbers, they can rewrite the divisor 0.12 as 12 by multiplying 0.12 by a power of ten. Remind students that multiplying a number by a power of 10 has the same effect as moving the decimal point to the right, because the place-value system is based on powers of 10 (ones, tenths, hundredths, etc.). Be sure that students understand that if they multiply 0.12 by a power of ten, they must multiply 0.006 by the same power of ten.

Talk About It

SLIDE 2

Mathematical Discourse

Use number patterns to explain why you can rewrite $0.006 \div 0.12$ as $0.6 \div 12$. Because you are multiplying both numbers by the same power of ten, one hundred, the value of the quotient does not change.

Interactive Presentation

Learn, Divide Decimals, Slide 1 of 2
CLICK
On Slide 1, students move through the steps to divide the decimals.

Interactive Presentation

Example 5, Divide Multi-Digit Decimals, Slide 2 of 4
On Slide 2, students move through the
steps to divide the decimals.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 5 Divide Multi-Digit Decimals

Objective

Students will fluently divide multi-digit decimals.

(17) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to compare the size of the quotient to the size of the dividend and divisor and ask themselves whether the extremely large quotient makes sense.

6 Attend to Precision As students discuss the Talk About It! question on Slide 3, encourage them to use the correct academic vocabulary (dividend, divisor, and quotient) in their explanations.

Questions for Mathematical Discourse

SLIDE2.

All Why do we multiply each number by 1,000 ? to eliminate the decimal point in the divisor

OI. Compare the size of the quotient to the size of the dividend and divisor. What do you notice? Does this make sense? Sample answer: The divisor is an extremely small number. Dividing a quantity by an extremely small number means that the quotient will be very large. Since the quotient, $5,077.25$, is very large, this makes sense.
[Bill Without calculating, explain how the quotient of $60.927 \div 0.00012$ will compare to the quotient in this example. Sample answer: The quotient will be 100 times greater, or 507,725 , because the new divisor is 100 times smaller.

O
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Shopping

Objective

Students will come up with their own strategy to solve an application problem involving shopping at a farmer's market.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What types of things can you buy at a farmer's market?

- How would you find the amount he spent on pears and plums?
- What information in the table inn't needed to solve the problem?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Shopping

WATCH
Students watch an animation that illustrates the problem they are about to solve.
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Essential Question Follow-Up

How are operations with fractions and decimals related to operations with whole numbers?
In this lesson, students practiced fluency in adding, subtracting, multiplying, and dividing decimals. Encourage them to work with a partner to compare and contrast these operations with operations with whole numbers. For example, have them compare and contrast how they would simplify each of the expressions 0.086×3.15 and 86×315.

Exit Ticket

Refer to the Exit Ticket slide. How many miles of road were built in the recent year as part of the interstate highway system? Write a mathematical argument that can be used to defend your solution. $14,300 \times 3.28=46,904$; Sample answer: The number of miles of road built in the recent year is 3.28 times greater than the 14,300 miles of road built in 1962.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 9, 13, 15-18
- Extension: Compute with Multi-Digit Decimals and Whole Numbers
- \square ALEKS' Addition and Subtraction, Multiplication, Division

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-8, 13, 15-18
- Extension: Compute with Multi-Digit Decimals and Whole Numbers
- Personal Tutor
- Extra Examples 1-5
- aleks Place Value and Ordering

IF students score 65% or below on the Checks,
THEN assign:

- ArriveMATH Take Another Look
- aleks Place Value and Ordering

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	fluently add multi-digit decimals	1,2
1	fluently subtract multi-digit decimals	3,4
1	fluently multiply multi-digit decimals	5,6
1	fluently divide multi-digit decimals	7,8
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving multi-digit decimals	11,12
3	higher-order and critical thinking skills	$13-16$

Common Misconception

When adding or subtracting multi-digit decimals, students often line up the last decimal place of each number rather than lining up the decimal points. In Exercise 2, ask each student to read the place values as they add the two numbers together: " 8 tenths plus 4 tenths" rather than simply " 8 plus 4 ". This will help emphasize that the reason behind aligning the decimal points is to ensure that the numbers in the same place-value position are added together.

Apply *indicates multi-step problem
*11. The table shows the cost per pound of food items you can buy in bulk at a grocery store. Mrs. Linden bought 1.25 pounds of dried fruit and 0.5 pound of cereal. If Mrs. Linden paid for her items with a $\$ 5$ bill, how much
change will she receive? change will she receive?
\$1.51
*12. Chloe is making hair bows to sell at a craft show. The table shows the cost per yard of different types f riben Chw 3.8 yards of tulle. If Chloe paid with a $\$ 20$ bill, how much change will she receive?
\$3.20

Item Cost per Pound (\$)	
Beans	2.86
Cereal	2.38
Dried Fruit	1.84
Rice	0.52

Ribbon Cost per Y ard (\$)	
Chiffon	5.88
Satin	1.50
Lace	3.29
Tulle	2.25

Higher-Order Thinking Problems
13. Construct an Argument Explain how you can mentally determine if the product of 5.5 and 0.95 is less than, greater than, or equal to 5.5 ?
Sample answer: Since the decimal 0.95 is less than 1 , the product of 5.5×0.95 must be less than 5.5×1 or 5.5 .
15. Explain how you know that the sum of 26.541 and 14.2 will be greater than 40 . Sample answer: If you add the whole numbers, the sum is 40 . The sum of the decimals will be added to 40 which will make the sum greater than 40 .
14. Persevere with Problems Brand A dish detergent costs $\$ 2.48$ for a 21.6 -ounce bottle. Brand B costs $\$ 1.55$ for a 12.6 -ounce bottle. Which brand costs less per ounce? Brand A
16. Find the Error A student is multiplying 1.02×2.55. Find the student's mistake and correct it.
1.02
$\begin{array}{r}\times 2.55 \\ \hline 510\end{array}$
5100
20400
+260.10
260.10

Sample answer: The student placed the decimal point, as in addition. The student needs to count the total number of decimal places to the right of the decimal, which is 4 . The correct answer is 2.6010 or 2.601 .

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 13, students construct an argument for why a product must be less than 5.5 by comparing one of the factors to 1 .

In Exercise 16, students explain why another student's solution is incorrect and then correct the solution.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 14, students make a plan for solving a problem involving unit costs for two different products and the division of multi-digit decimals.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create your own application problem.

Use with Exercise 11 After completing the application problems, have students write their own real-world application problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Make sense of the problem.

Use with Exercise 16 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise thinks that there are only two decimal places in the product. Have each pair or group of students present their explanations to the class.

Learn Reciprocals

Objective

Students will understand that multiplicative inverses, or reciprocals, are two numbers with a product of 1 .

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to analyze the structure of the fractions in order to compare the numerator and denominator of each fraction.

Go Online to find additional teaching notes.

Talk About It!

SUDE2

Mathematical Discourse

The fractions $\frac{2}{3}$ and $\frac{3}{2}$ are multiplicative inverses or reciprocals. What are the similarities and differences between the two numbers?
Sample answer: Both fractions share the same values in their numerators and denominators, 2 and 3 . They are different because their numerators and denominators are reversed.

Example 1 Find Reciprocals

Objective
Students will find the reciprocal of a unit fraction.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to know and use the mathematical terms reciprocal, multiplicative inverse, and Inverse Property of Multiplication in order to find the reciprocal of the unit fraction.

Questions for Mathematical Discourse

SLIDE1

In your own words, what is a reciprocal? Sample answer: The reciprocal of a number is the number by which you need to multiply the original number to obtain a product of 1 .

Use your knowledge of multiplying fractions to explain why the product of $\frac{1}{8}$ and $\frac{8}{1}$ is equal to 1 . Sample answer: To multiply fractions, multiply the numerators and multiply the denominators. $1 \times 8=8$, and $8 \times 1=8$. The product is $\frac{8}{8}$, which simplifies to 1 .
BLI. What is the reciprocal of $\frac{1}{80} ? 80 ? 80 ; \frac{1}{80}$

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn, Find Reciprocals, Slide 1 of 2

FLASHCARDS

On Slide 1 of the Learn, students use Flashcards to learn about reciprocals.

TYPE

On Slide 1 of Example 1, students determine the reciprocal.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Divide Whole Numbers by Fractions

LESSON GOAL

Students will divide whole numbers by fractions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.2 EXPLORE AND DEVELOP
Learn: Reciprocals
Example 1: Find Reciprocals
Example 2: Find Reciprocals of Fractions
Example 3: Find Reciprocals of Whole Numbers
Explore: Divide Whole Numbers by Fractions
Learn: Divide Whole Numbers by Fractions
Example 4: Divide Whole Numbers by Fractions
Example 5: Divide Whole Numbers by Fractions
Apply: Cooking
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

```
Exit Ticket
```

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 17 of the Language Development Handbook to help your students build mathematical language related to division of whole numbers by fractions.

ELL You can use the tips and suggestions on page T17 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.A by dividing whole numbers by fractions.
Standards for Mathematical Content: 6.NS.A. 1
Standards for Mathematical Practice: MP1, MP3, MP4, MP5, MP6,
MP7

Coherence

Vertical Alignment

Previous

Students performed operations on multi-digit decimals.

6.NS.B. 3

Now

Students divide whole numbers by fractions.
6.NS.A. 1

Next

Students will divide fractions by fractions.
6.NS.A. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of multiplicative inverses to build fluency with dividing whole numbers by fractions, using visual models and the standard algorithm. They apply their understanding of dividing whole numbers by fractions to solve real-world problems.

Mathematical Background

Two numbers whose product is 1 are called multiplicative inverses or reciprocals. The reciprocal of a fraction $\frac{a}{b}$, where $a \neq 0$ and $b \neq 0$, is $\frac{b}{a}$ because $\frac{a}{b}-a^{b}-1$. The reciprocal of a whole number a is $\frac{1}{a}$ because $a \times \frac{1}{a}=1$. To divide a whole number by a fraction, multiply the whole number by the reciprocal of the fraction.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- multiplying fractions (Exercises 1-4)
- multiplying decimals and whole numbers (Exercise 5)

Answers

1. $\frac{1}{9}$
2. $\frac{14}{27}$
3. $\frac{12}{25}$
4. $\frac{11}{14}$
5. 21 hours

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about terabytes and gigabytes.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- How would you describe the word inverse using your own words? What is the inverse operation to multiplication? opposite direction or position; division
- Based on the meanings of the terms inverse and multiplicative, describe what you think a multiplicative inverse might be. Sample answer: Inverse means opposite and multiplicative refers to multiplication. A multiplicative inverse might be something that is related to the opposite of multiplication.
- What does the term reciprocate mean in everyday life? Sample answer: to return a favor, or respond to an action or gesture by making a corresponding one

Interactive Presentation

Example 3, Find Reciprocals of Whole Numbers, Slide 1 of 3
On Slide 1 of Example 2, students enter
the missing value that gives a product
of 1.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 2 Find Reciprocals of Fractions

Objective
Students will find the reciprocal of a fraction that is not a unit fraction.

Questions for Mathematical Discourse

SLIDE1

A… Is this fraction a unit fraction? Explain. no; Sample answer: A unit fraction has 1 as the numerator. The numerator of this fraction is 3.
OL Explain why you know that the reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$. Sample answer: The product of $\frac{3}{4}$ and $\frac{4}{3}$ is equal to 1 , because $3 \times 4=12,4 \times 3=12$, and $\frac{12}{12}$ simplifies to 1 .
BL. What is the reciprocal of $\frac{31}{42} ? \frac{42}{3}$

Example 3 Find Reciprocals of Whole Numbers

Objective
Students will find the reciprocal of a whole number.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to analyze the structure of the whole number, noting that any whole number can be written as a fraction with 1 in the denominator.

Questions for Mathematical Discourse

SLIDE1

AL. How can any whole number be written as a fraction? Any whole number can be written as a fraction by placing the whole number in the numerator and 1 in the denominator.
OL Your friend wrote 5 as a fraction as $\frac{1}{5}$. Explain the error. Sample answer: Instead of placing 5 in the numerator and 1 in the denominator, the friend reversed their positions. 5 and $\frac{1}{5}$ are not equivalent. The number 5 written as a fraction is $\frac{5}{1}$.
[BL What is the reciprocal of the reciprocal of 6? Explain. 6; Sample answer: The reciprocal of 6 is $\frac{1}{6}$, and the reciprocal of $\frac{1}{6}$, is 6 .

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Learn Divide Whole Numbers by Fractions

Objective

Students will understand that visual models and equations can be used to divide whole numbers by fractions.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 3, encourage them to use clear and precise mathematical language in their explanations.
7 Look for and Make Use of Structure As students discuss the Talk About tt! question on Slide 3, encourage them to analyze the structure of the visual model of the division equation $3 \div \frac{3}{4}=4$ to make connections between the visual model and the equation.

Teaching Notes

SLIDE1
As students move through each slide that illustrates how a model can be used to divide 3 by $\frac{3}{4}$, have them pause and reflect at each step. Ask them to explain how the model represents each step in the process. Some sample questions to help facilitate discussion are shown.
Why are there three bars drawn in the first step? The dividend is 3 .
Why is each bar divided into fourths in the second step? The denominator of the divisor is 4 .
Why is it important to identify how many groups of three-fourths there are? The divisor is three fourths. The number of groups of three fourths that are in the whole number three represents the quotient.
How does the bar diagram illustrate the quotient? The quotient is 4 , the number of groups of three fourths there are in the whole number three.

Talk About It!

SLIDE 1

Mathematical Discourse

Why is each whole divided into fourths? Sample answer: The denominator of the divisor is 4 .
(continued on next page)

DIFFERENTIATE

Enrichment Activity BL는

To further students' understanding of using visual models to divide whole numbers by fractions, have them work with a partner to generate at least 3 expressions that involve dividing a whole number by a fraction. Then have them create their own visual models that illustrate the division and help them find the quotient. Have them trade their visual models with another pair of students. Each pair should determine the division expression and quotient that is represented by the model. Have pairs of students discuss and resolve any differences.

Interactive Presentation

Learn, Divide Whole Numbers by Fractions, Slide 1 of 3

On Slide 1 of the Learn, students move through the slides to view how a model can represent the division.

Explore Divide Whole Numbers by Fractions

Objective

Students will explore how to use models to divide whole numbers by fractions.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Building upon their understanding of division with whole numbers, and division with whole numbers and unit fractions from prior grades, students will explore division of whole numbers by unit fractions using bar diagrams. They will make a conjecture as to how to divide whole numbers by unit fractions without using a bar diagram.

(C) Inquiry Question

How is dividing whole numbers by fractions similar to dividing whole numbers by whole numbers? Sample answer: With both, I need to find out how many groups of the divisor there are in the dividend.

Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About lt! questions on Slide 3 are shown.

Talk About It!

SLIDE3

Mathematical Discourse

What does $4 \div \frac{1}{2}$ mean? How can you use the model to find the answer? Sample answer: It means how many groups of ąe in 4 . I can divide each of the four bars in half, then count how many halves make up the four bars.

Interactive Presentation

Explore, Slide 1 of 7

What doen 4 - f mest how cme you sue whe modets fod the mivert

Explore, Slide 3 of 7
CLICK
On Slide 3, students separate all of the bars into halves.

Interactive Presentation

Explore, Slide 4 of 7

CLICK

TYPE
a
On Slide 7, students respond to the Inquiry Question and view a sample answer.

Explore Divide Whole Numbers by Fractions (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students should be able to explain the benefit of using the interactive tool to separate the bar diagrams into halves or thirds; it can help them visualize the result and simplify the expression.

ω
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 4 are shown.

Talk About It!

SLIDEA

What does $2 \div \frac{1}{3}$ mean? How can you use the model to find the answer?
Sample answer: It means how many groups of $\frac{1}{3}$ re in 2 . I can divide each of the bars into thirds, then count how many thirds make up the two bars.

Interactive Presentation

Learn, Divide Whole Numbers by Fractions, Slide 2 of 3
CLICK
On Slide 2, students use an equation and their understanding of reciprocals to perform the division.

Learn Divide Whole Numbers by Fractions (continued)

Teaching Notes

SLIDE2

Point out that visual models are not the only methods that can be used to divide a whole number by a fraction. By setting up an equation where the quotient is the unknown, students can use their understanding of reciprocals to find the quotient. Have students move through the steps for dividing the whole number by the fraction, being sure that they can clearly explain each step.

Talk About It!

SLIDE 3

Mathematical Discourse

Describe how the visual model supports the equation. Sample answer: The bar diagram shows that when 3 is divided into groups of $\frac{3}{4}$ there are 4 groups of $\frac{3}{4}$. So, $3 \div \frac{3}{4}=4$.

Example 4 Divide Whole Numbers by Fractions

Objective

Students will divide whole numbers by fractions when the quotients are whole numbers.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically In Method 1, encourage students to draw a visual model to help them represent and simplify the division expression. In Method 2, students use an equation to find the quotient. As they discuss the Talk About It question on Slide 4, encourage them to analyze each method, note correspondences, and make an argument for which one might be more advantageous to use given different division problems.

Questions for Mathematical Discourse

SLIDE 2

Al. Why do we draw a model to represent 2? The whole number dividend is 2 .

OI. Why do we divide each whole into thirds? We need to see how many groups of $\frac{2}{3}$ there are in 2 . Since the denominator of $\frac{2}{3}$ is 3 , we divide each whole into thirds.

OL. How many groups of two thirds are there in the diagram? Explain. 3; Sample answer: Each square represents one third, so group the squares by 2 . Each group represents two thirds. There are three groups of two thirds.

Explain how to use a visual model to find $5 \div \frac{2}{3}$. Sample answer: Draw a model to represent 5 and divide each whole into thirds. There are 7 groups of $\frac{2}{3}$ and 1 section of $\frac{1}{3}$ s one half of two thirds. So, $5 \div \frac{2}{3}=7 \frac{1}{2}$
(continued on next page)

Interactive Presentation

Example 4, Divide Whole Numbers by Fractions, Slide 2 of 5

CLICK

On Slide 2, students view how a model can be used to divide (Method 1).

Interactive Presentation

Example 4, Divide Whole Numbers by Fractions, Slide 3 of 5
CLICK
On Slide 3, students view how an
equation can be used to divide
(Method 2). online to determine if they are ready to move on.

Example 4 Divide Whole Numbers by Fractions (continued)

Questions for Mathematical Discourse

SLIDE 3

AL. Why do we write the whole number as a fraction? so that we can multiply it by $\frac{3}{2}$.

OL. Why do we multiply by the reciprocal? Dividing by a fraction is equivalent to multiplying by its reciprocal.

Use this method to find $5 \div \frac{2}{3}$.
$5 \div \frac{2}{3}=\frac{5}{1} \div \frac{2}{3}=\frac{5}{1} \times \frac{3}{2}=\frac{15}{2}$, or $7 \frac{1}{2}$

(1)
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example

DIFFERENTIATE

Reteaching Activity \triangle L

Some students may have difficulty remembering the steps for using a reciprocal to divide a whole number by a fraction. Have students create a flowchart that lists all of the steps. The flowchart would include (1) write the whole number as a fraction, (2) rewrite the division problem as a multiplication problem by finding the reciprocal of the second fraction, (3) multiply the fractions by multiplying the numerators and multiplying the denominators, and (4) simplify the answer, if necessary. Have them use the flowchart to find the quotient of the following.
$5 \div \frac{2}{3} 7 \frac{1}{2} \quad 7 \div \frac{4}{5} 4^{8-3} \quad 2 \div \frac{3}{10} 6 \frac{2}{3}$

Example 5 Divide Whole Numbers

 by Fractions
Objective

Students will divide whole numbers by fractions when the quotients are not whole numbers.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them In Method 2, encourage students to use an equation to find the quotient. Then have them compare the two methods.

As students discuss the Talk About lt! question on Slide 5, encourage them to understand the benefits of each method and identify the correspondences between them.
5 Use Appropriate Tools Strategically In Method 1, encourage students to draw a visual model to help them represent and simplify the division expression.

Questions for Mathematical Discourse

SIDEE 2

Al Why do we draw a model to represent 4 wholes? The whole number dividend is 4 .
(0). Why do we divide each whole into fourths? We need to see how many groups of $\frac{3}{4}$ there are in 4 . Since the denominator of $\frac{3}{4}$ is 4 , we divide each whole into fourths.

OL. How many groups of three fourths are there in the diagram? Explain. $5 \frac{1}{3}$ Samplelanswererthère are 5 5vidilelgrouppsofothiree fourths, and one section left over. The one section left over is one fourth of one whole, but one third of three fourths. So, there are 5 ⿻ㅕㄱroups of three fourths in 4.
Suppose a classmate said the quotient was $5 \frac{1}{4}$ Describe the error they made. Sample answer: They interpreted the one section left over as $\frac{1}{4}$ That one section is o击one whole, but of therree fourths.
(continued on next page)

Interactive Presentation

Example 5, Divide Whole Numbers by Fractions, Slide 2 of 6

CLICK

On Slide 2, students view how a model can be used to divide (Method 1).

Interactive Presentation

Example 5, Divide Whole Numbers by Fractions, Slide 3 of 6

CLICK	On Slide 3, students move through the slides to divide the whole number by the fraction (Method 2).
On Slide 3, students determine the	
quotient.	

Example 5 Divide Whole Numbers by Fractions (continued)

Questions for Mathematical Discourse

SLIDE 3

AL Explain why the quotient will be greater than the dividend. Sample answer: Dividing a number by a number that is between 0 and 1 will result in a quotient that is greater than the original number.
OL. How can you check to make sure that the reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$? Sample answer: Find $\frac{4}{3} \times \frac{3}{4}$ to make sure that the product is equal to 1.
IBL. A classmate claims that $4 \div \frac{3}{4}=\frac{3}{16}$. Describe the error they made. The classmate found the reciprocal of the dividend, 4 , and multiplied it by $\frac{3}{4}$.

SLIDE 4

AL. What do the dividend 4 and the divisor $\frac{3}{4}$ represent within the context of the problem? The dividend 4 represents the total number of hours for activities, and the divisor $\frac{3}{4}$ represents the number of hours for each activity.

OL. Why can you only complete part of the sixth activity? 5 带eans $5+\frac{1}{3}$, so 5 whole activities can be completed plus eff the sixth activity.
How many activities can be scheduled if each activity is $\frac{1}{2}$ our? $8 ; 4 \div \frac{1}{2}=8$

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example

Apply Cooking

Objective

Students will come up with their own strategy to solve an application problem involving following a recipe.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What measurements are given in the table?
- What operation do you need to use to determine the number of batches the chef can make?
- What information in the table isn't needed to solve the problem?

2) Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Cooking
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could write descriptions of the different methods used to divide a whole number by a fraction. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up
How are operations with fractions and decimals related to operations with whole numbers? In this lesson, students learned how to divide whole numbers by fractions using models and equations. Encourage them to work with a partner to compare and contrast dividing whole numbers by fractions with dividing whole numbers. For example, have them compare and contrast how they would simplify each of the expressions $6 \div \frac{3}{4}$ and $6 \div \frac{3}{1}$, or $6 \div 3$.

Exit Ticket

Refer to the Exit Ticket slide. Suppose you knew you had 3 terabytes of cloud storage space. Find $3 \div \frac{1}{512}$ and interpret the quotient. 1,536; Sample answer: The quotient represents the number of typical 2 -hour high definition movies that you could store in 3 terabytes of cloud storage space.

ASSESS AND DIFFERENTIATE

ID Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 10, 12, 14-17
- D ALEKS' Division with Fractions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-9, 12, 14, 15
- Personal Tutor
- Extra Examples 1-5
- ALEKS Multiplication with Fractions

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATH Take Another Look
- AleKs Multiplication with Fractions

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
OL. Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	find reciprocals of unit fractions	1,2
1	find reciprocals of whole numbers	3
1	find reciprocals of fractions	4,5
1	divide whole numbers by fractions	$6-8$
2	divide whole numbers by fractions when the quotients are not whole numbers	9
2	extend concepts learned in class to apply them in new contexts	10,11
3	solve application problems involving the division of whole numbers by fractions	12,13
3	higher-order and critical thinking skills	$14-17$

Common Misconception

When writing whole numbers as fractions, students might mistakenly write the whole number a as the fraction $\frac{G}{a}$ because it represents "one whole" instead of as the fraction $\frac{a}{1}$. Remind students that whole numbers are written with the whole number in the numerator and the number 1 in the denominator. If students continue to struggle with this concept, have them write a whole number as each type of fraction and then perform the division to show that the two fractions are not equivalent.

Apply *indicates multi-step problem

'12. The table shows the amount of each ingredient Jacob is using to make one pizza. If he has 11 cups of mozzarella cheese and makes the greatest number of whole pizzas ossible, how much mozzarella cheese remains? $\frac{1}{2}$ cup

*13. The table shows the ingredients for one batch of
barbeque sauce. Anne has 9 cups of ketchup and makes the greatest number of whole batches of
barbeque sauce possible. How much ketchup remains?
$\frac{1}{3}$ cup

Ingredient Amount	
Brown Sugar	$\frac{1}{4} \mathrm{c}$
Cider Vinegar	$\frac{1}{2} \mathrm{c}$
Ground Cumin 1 tsp	
Ketchup	$\frac{2}{3} \mathrm{c}$
Pepper	1 tsp

OHigher-Order Thinking Problems
14. Find the Error A student is solving $9 \div \frac{3}{4}$. Find the student's mistake and correct it.
$9 \div \frac{3}{41} \overline{\overline{4}}-9 \times \frac{3}{3}$
$=\frac{27}{4}$ or $6 \frac{3}{4}$
Sample answer: The student did not multiply by the reciprocal of $\frac{3}{4}$ which is $\frac{4}{3}$. $\frac{9}{1} \times \frac{4}{3}=-\frac{36}{}$ or 12 .
16. Persevere with Problems \ln a $\frac{3}{4}$-mile relay race, each runner on one team runs $\frac{3}{15}$ mile. How many runners are on one team?
4 runners

Module 3. Compute with Mutt-Digit Numbers and Fractions
15. Zach has 20 sub sandwiches for a party. Each sub sandwich is going to be cut into thirds. Zach needs 55 sandwich pieces. Will he have enough sandwich pieces? Justify your answer.
yes; Sample answer: $20 \div \frac{1}{3}=\frac{20}{11} \times \frac{3}{-}$ or $\mathbf{6 0}$, which is greater than 55 . So, Zach will have enough sandwich pieces.
17. Identify the whole number whose reciprocal has a decimal equivalent between 0.2 and 0.3. Explain.

4; Sample answer: The reciprocal of 4 is $\frac{1}{4}$, which is equal to 0.25 and $0.2<0.25<0.3$.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In Exercise 16, students develop a plan for using the division of fractions by a whole number to solve a problem in which the whole number is missing rather than the quotient.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 14, students explain why another student's solution is incorrect and then correct the solution.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Solve the problem another way.

Use with Exercises 12-13 Have students work in groups of 3-4. After completing Exercise 12, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method. Repeat this process for Exercise 13.

Clearly and precisely explain.

Use with Exercise 15 Have pairs of students prepare their explanations, making sure that their reasoning is clear and precise. Then call on one pair of students to explain their reasoning to the class. Encourage students to come up with a variety of responses, such as using fraction models or multiplying by the reciprocal in their responses.

Learn Divide Fractions by Fractions

Objective

Students will understand that they can use various strategies to divide fractions by fractions.

1 Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the first Talk About It! question on Slide 3, encourage them to make sense of the visual model on the previous slides, and how it can be used to divide the fractions.

6 Attend to Precision As students discuss the second Talk About lt! question on Slide 3, remind them to draw a model with precision and use clear mathematical language when explaining the meaning of the reciprocal.

Teaching Notes

SLIDE1

Students previously learned how to divide a whole number by a fraction, using both visual models and equations. Present the division expression $\frac{1}{2} \div \frac{1}{3}$, and ask students how this expression is different than dividing a whole number by a fraction. Students should note that both numbers are fractions. Have students move through the slides to see how a visual model can be used to help divide the two fractions. Ask them to explain each step in the process. Some sample questions to help facilitate discussion are shown.

In the first step, how does the model represent the dividend? The dividend is $\frac{1}{2}$ and the model has 1 out of 2 bars shaded to represent $\frac{1}{2}$.
In the second step, why is the model divided into thirds? The denominator of the divisor is 3 .

Why is it important to identify how many groups of one-thirds there are in one half? The divisor is one third. The number of groups of one thirds that are in one half represents the quotient.

How does the bar diagram illustrate the quotient? There is 1 group of one third plus $\frac{1}{2}$ of another one third in the shaded section that represents one half. This means the quotient is $1+\frac{1}{2}$, or $1 \frac{1}{2}$.

0
 Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to divide a fraction by a fraction.

Talk About It!

SLIDE3

Mathematical Discourse

How does the visual model illustrate the dividend and divisor? Sample answer: The entire bar represents 1 , so half of the bar represents the dividend, $\frac{1}{2}$. The whole bar is divided into thirds to represent the diviso $\frac{1}{3}$. What is the reciprocal of the divisor in the expression $\frac{1}{2} \div \frac{1}{3} ? \frac{3}{1}$ or 3

Interactive Presentation

Learn, Divide Fractions by Fractions, Slide 1 of 3

Divide Fractions by Fractions

LESSON GOAL

Students will divide fractions by fractions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Divide Fractions by Fractions
Example 1: Divide Fractions by Fractions
Example 2: Find and Interpret Quotients
Learn: Write Story Contexts
Example 3: Write Story Contexts
Apply: Food

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 18 of the Language Development Handbook to help your students build mathematical language related to division of fractions.
[FILII You can use the tips and suggestions on page T18 of the handbook to support students who are building English proficiency.

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.A by dividing fractions by fractions.
Standards for Mathematical Content: 6.NS.A. 1
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6

Coherence

Vertical Alignment

Previous

Students divided whole numbers by fractions.
6.NS.A. 1

Now

Students divide fractions by fractions.
6.NS.A. 1

Next
Students will divide with whole and mixed numbers.

6.NS.A. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of division by fractions. They use visual models and the standard algorithm to build fluency with dividing fractions by fractions. They apply their understanding to write and solve realworld story contexts.

Mathematical Background

To divide $\frac{a}{b}$ by $\frac{c}{d}$, multiply $\frac{a}{b}$ by the reciprocal of $\frac{c}{d}$.
$\frac{a}{b} \cdot \dot{d} \cdot \frac{c}{c}=\underline{a}-\underline{d}=\frac{a d}{b c}$, given $b, c, d \neq 0$

Interactive Presentation

Warm Up

Launch the Lespon
Divite Fractions by Practions

 semireser and opetr poveng opire teer poblat.

Launch the Lesson, Slide 1 of 2

What Vockabiany Wirl Dou Ualt
quotient
mowin te ountient ofs dilibed by it
reciprocat
How can you bescribe a repprocent

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- multiply fractions (Exercises 1-3)

Answers

1. $\frac{1}{4}-\times \frac{1}{4} ; \frac{1}{16}$ mile
2. $\frac{1}{2} \times{ }_{6} \times \frac{1}{2} ;-1$ cup
3. $\frac{2}{3} \times 2 \frac{3}{4} ; 1 \frac{5}{6}$ plants

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the use of fractions in carpentry.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

-What is the quotient of 6 divided by 3 ? 2

- How can you describe a reciprocal? Sample answer: Two numbers are reciprocals if they have a product of 1 .

Interactive Presentation

Example 1, Divide Fractions by Fractions, Slide 2 of 5

On Slide 2, students use a model to divide the fractions (Method 1).

On Slide 3, students use an equation to divide the fractions (Method 2).

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Example 1 Divide Fractions by Fractions

Objective
Students will divide fractions by fractions.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About It question on Slide 4, encourage them to analyze each method, note correspondences, and make an argument for which one might be more advantageous to use given different division problems.

5 Use Appropriate Tools Strategically In Method 1, encourage students to draw a visual model to help them find the quotient. In Method 2, encourage students to use an expression to find the quotient, and compare the two methods. They should see that both methods are valid approaches to finding the quotient.

Questions for Mathematical Discourse

SLIDE2

AL. Why was a model drawn to represent $\frac{3}{4}$? The model is drawn to represent $\frac{3}{4}$ because $\frac{3}{4}$ is the dividend.
OL. Why do we divide the whole into eighths? The divisor is $\frac{3}{8}$, and the denominator of the divisor is 8 .

OL. How many groups of $\frac{3}{8}$ are in the shaded section? Why do we not count the two sections left over? Explain. 2 groups; Sample answer: The shaded section represents the dividend, so we do not want to count the two sections left over that are not part of the dividend.
BL. What would the dividend need to be for the quotient to be $2 \frac{2}{3}$? Explain. 1; Sample answer: If the dividend was one whole, then we could count the two sections left over as part of the quotient. The quotient would represent 2 whole groups of $\frac{3}{8}$ plus two-thirds of another group.

(3) Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Find and Interpret Quotients

Objective

Students will divide fractions by fractions and interpret the quotients.

(1). Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Students should be able to interpret the quotient within the context of the problem, noting that, since Asahi wants to deliver whole batches of cookies, he cannot make $3 \frac{1}{3}$ batches of cookies.
6 Attend to Precision As students discuss the Talk About tt! question on Slide 4, encourage them to clearly explain what the quotient represents within the context of the problem, and what the problem is actually asking for.

Questions for Mathematical Discourse

 SLIDE 2-Explain, in your own words, why the expression $\frac{5}{6} \div \frac{1}{4}$ represents the problem. Sample answer: Since there is $\frac{5}{6}$ pound of sugar, I need to divide that by the amount of sugar required in each batch, $\frac{1}{4}$, to find the number of batches Asahi can make.

OL After finding the quotient, have you completed everything you needed to do for this example? Explain. Sample answer: No, I need to interpret the quotient in terms of the context of the problem.
31. How many more batches could Asahi make if each batch required $\frac{1}{8}$ pound of sugar? Explain. 3 more batches; Sample answer: $\frac{1}{8}$ is half of $\frac{1}{4}$, so Asahi can make twice as many batches (6 batches total) if he only needs half as much sugar for each batch.

SLIDE3

AL What is the quotient? $3 \frac{1}{3}$
OL Can Asahi actually make $3 \frac{1}{3}$ batches of cookies? Explain. yes; Sample answer: He can make $3 \frac{1}{3}$ batches of cookies, but since he wants to deliver whole batches of cookies, he will not make any partial batches
If the quotient was $3 \frac{2}{3}$ would we round up to say that Asahi can make 4 batches of cookies? Explain. no; Sample answer: As long as the quotient is less than 4, Asahi cannot actually make 4 batches of cookies.

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Check
 Find $\frac{7}{9} \div \frac{2}{3} \cdot \frac{7}{6}$ or $1 \frac{1}{6}$

Qoo Online Y ou can complete an Extra Example online.
Qxample 2 Find and Interpret Quotients Asahi is making cookies. There is $\frac{5}{6}$ pound of sugar left in the canister. Each batch of cookies requires $\frac{1}{4}$ pound of sugar. He wants to deliver one batch to each of his neighbors. How many neighbors will receive cookies?

Write and solve an equation that models the situation. Then interpret the quotient.
Part A Write and solve an equation.
The expression $\frac{5}{6} \div \frac{1}{4}$ represents the number of batches he can make, since Asahi has $\frac{5}{6}$ pound of sugar left, and each batch of cookies requires $\frac{1}{4}$ pound of sugar.

```
\frac{5}{6}\div\frac{1}{4}=\square\quad\mathrm{ Write the equation.}
\frac{5}{6}}\div\frac{1}{4}=\frac{5}{6}\times\frac{4}{1}\quad\mathrm{ Multiply by the reciprocal of }\frac{1}{4}\cdot\frac{4}{1
    = \frac{5}{3}\times\frac{4}{1}
    = 5\times2 3\times1 Simplity.
    = 10
So, }\frac{5}{6}\div\frac{1}{4}\mathrm{ is }3\frac{1}{3
Part B Interpret the quotient.
Because Asahi wants to deliver whole batches of cookies, he is
only able to make 3 batches of cookies.
```


Interactive Presentation

Example 2, Find and Interpret Quotients, Slide 2 of 5

Interactive Presentation

Learn, Write Story Contexts

CLICK

Students view how a story context can represent a division expression.

1 CONCEPTUAL UNDERSTANDING

Learn Write Story Contexts

Objective
Students will understand how a story context can be written to represent an expression involving the division of fractions.

Teaching Notes

SLIDE1

Present the division expression and the story context. Prior to selecting the Dividend and Divisor buttons, have students make a conjecture as to how the story context represents the division expression. Encourage students to make the connection between the dividend, divisor, and unknown quotient and how they are represented in the real-world scenario. You may wish to have students generate other story contexts that can represent this division expression.

DIFFERENTIATE

Some students may struggle with writing story contexts for a division problem, because they have difficulty understanding what division means. One way to think of division is to find the number of objects in each equal-size group, when the total is known, and the number of groups is known. Another way to think of division is to find the number of groups, when the total is known and the number of objects in each group is known. For the following division problem, have students work with a partner to write a story context that represents the problem and explain what each quantity represents.
$3 \frac{1}{4} \div \frac{1}{2}$ Sample answer: A recipe calls for $\frac{1}{2}$ cup of flour. Kenneth has $3 \frac{1}{4}$ cups of flour. How many batches of the recipe can he make? The number of batches, the quotient, represents the number of groups. The number of cups of flour in each batch represents the number of objects in each group.

Example 3 Write Story Contexts

Objective

Students will write a story context for a problem involving division of fractions.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to contextualize the division expression by applying it to many different real-world contexts.

As students discuss the Talk About It! question on Slide 4, encourage them to use the context of the same word problem that they chose earlier in the example to explain what the division expression would mean within that context.

Questions for Mathematical Discourse

SUIDE 2

ALI In the expression $\frac{2}{3} \div \frac{1}{6}$, identify the dividend and divisor. The dividend is $\frac{2}{3}$ and the divisor is $\frac{1}{6}$.
OL. If $\frac{2}{3}$ is the dividend and $\frac{1}{6}$ is the divisor, what might this mean when writing a context? Sample answer: This means that $\frac{2}{3}$ will represent the beginning amount that we start within a story context, and $\frac{1}{6}$ will represent how many groups of that dividend we will have.

3L. Write a different story context that is not included in this example. Then solve the problem. Sample answer: Mimi has $\frac{2}{3}$ yard of fabric. Each craft she makes uses $\frac{1}{6}$ yard of fabric. How many crafts can she make? She can make 4 crafts.

SLIDE 3

AL. Why is 6 the reciprocal of $\frac{1}{6} \frac{1}{6} \times \frac{6}{1}=1$
OL. Why is it helpful to keep $\frac{6}{1}$ written as a fraction, and not write it as a whole number? Sample answer: I can keep myself organized and not incorrectly multiply.

How might a classmate obtain the incorrect quotient 9? Sample answer: The classmate may have multiplied the fractions, and then found the reciprocal, instead of multiplying by the reciprocal of $\frac{1}{6}$.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 3, Write Story Contexts, Slide 2 of 5

DIFFERENTIATE

Language Development Activity 티느․

To further students' understanding of writing story contexts that represent division of fractions, have them work with a partner to refer to the Check Exercise that accompanies Example 3, and create arguments for why the story contexts in answer choices A and B do not represent the division expression $\frac{5}{6} \frac{1}{12}$. Have them present their arguments to another pair of students, or to the entire class. Some students may be uncomfortable speaking in front of others. Encourage them to make appropriate eye contact, and articulate their thoughts clearly and loudly enough for others to hear.

Apply Food

Objective

Students will come up with their own strategy to solve an application problem involving making snack bags of different kinds of nuts.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- Which types of nuts are in the snack bags?
- Do you need the information about the almonds and the cashews?
- What operation is used to find the number of whole servings of walnuts that are in each bag?

2) Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Food

Alfonso is making snack bags with different types of nuts as shown in the table. Each snack bag contains $\frac{1}{8}$ pound of one type of nut. How many more whole servings of walnuts can he make than peanuts?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

3 more servings; See students' work

4 How can you show your solution is reasonable?
QWrite About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Food

Students complete the Check exercise online to determine if they are ready to move on.

Check

Sephanies sruinning schedule is showo in she table' Sise tlecides unat Whe wants to do sprint triwing and wif rua the total distance by ruming a series of $\frac{7}{5}$ mile sprints. How mueny move $\frac{\%}{5}$ mile sprints will she thene to min on weeksods conowed to weekdeyp 2 more sprinth

Q seovine Ne ceni conplete in Kiso formien mene
TI noldables ti's tine to upows your Foldabie. Fxtoted in the Module Reviews, based on what you lesened in this leston. il you Hownt abvendy assembled your Foldanble, you can find the hittuctions on pagent

Interactive Presentation
 Interactive Presentation

Exit Ticket
Eall nown

Qumum

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 5-9 odd, 10-13
- Extension: Solve Problems with Division of Fractions
- Q ALEKS' Division with Fractions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-6, 9, 11, 13
- Extension: Solve Problems with Division of Fractions
- Personal Tutor
- Extra Examples 1-3
- ALEKS Multiplication with Fractions

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATHTake Another Look
- a ALEKS' Multiplication with Fractions

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	divide fractions by fractions	$1-3$
2	divide fractions by fractions and interpret the quotients	4,5
2	write a story context for a problem involving division of fractions	6
2	extend concepts learned in class to apply them in new contexts	7
3	solve application problems involving the division of fractions by fractions	8,9
3	higher-order and critical thinking skills	$10-13$

Common Misconception

Students may find the reciprocal of the first number rather than the second number when dividing fractions. In Exercise 2, have students write out what the number sentence means: "How many ninths are in one third?" Students should be able to draw a bar diagram to answer the question, and this will help them see that finding the reciprocal of the first number leads to an incorrect answer.

```
Name
            Perlod
                            Go Online Y ou can complete your homework online.
```

Divide. Write in simplest form(Example i)

1. $\frac{5}{6} 1 \frac{5}{12}-=2$	2. $\frac{1}{3} \div \frac{1}{9}=3$	3

4. Romeo had $\frac{3}{4}$ pound of fudge left. He
divided the remaining fudge into $\frac{5}{16}$-pound
bags. Write and solve an equation that
models the situation. Then interpret the
quotient. (Example 2)
$\frac{3}{4} \div \frac{5}{16}=2 \frac{2}{5}$, Romeo can make 2 whole bags.
5. Chelsea has $\frac{7}{8}$ pound of butter to make icing. Each batch of icing needs $\frac{1}{4}$ pound of butter. Write and solve an equation that models the situation. Then interpret the quotient. (Example 2)
$\frac{7}{8} \div \frac{1}{4}=3 \frac{1}{2}$; Chelsea can make 3 whole batches of icing.
6. Write a story context for $\frac{5}{6} \div \frac{1}{6}$. Then find the quotient. (Example 3)
Sample answer: A nature trail is $\frac{5}{6}$ mile long. There are information markers every $\frac{1}{6}$ mile. How many information markers are there?; 5 markers

T est Practice
7. Equation Editor What is the value of the expression $\frac{2}{5} \div \frac{1}{6}$?
$2 \frac{2}{5}$

लनपलक

$1230+-x=$
$456-\frac{+-x=4}{<5=23}$
789 म造 $101 \sqrt{x} \sqrt{x \pi}$
0.0

Apply *indicates multi-step problem

*8. A teacher is making bags of different colors of modeling clay. The table shows the amount of each color she has available. Each color will be divided into $\frac{3}{16}$-pound bags. How many more bags of purple can she make than yellow?
1 more bag
"9. Mateo is making bookmarks with different colored ribbon. The amount of each color he has is shown in the table. Each bookmark will be $\frac{1}{6}$-yard long. How many more orange bookmarks can he make than aqua bookmarks?
1 more bookmark

6.) Higher-Order Thinking Problems
10. Make a Conjecture Can the quotient of two positive fractions be less than ? ? Explain.
yes; Sample answer: When the dividend is less than the divisor, the quotient is less than 1 . For example, $\frac{1}{2}$ is less than $\frac{3}{5}$.
So, $\frac{1}{2} \div \frac{3}{5}=\frac{1}{2} \times \frac{5}{6}={ }^{5}$ and $\frac{5}{2}<1$.
12. (1) Persevere with Problems Lannie has
$5 \frac{1}{2}$ cups of chocolate chips. She needs
$1 \frac{3}{4}$ cups to make one batch of chocolate chip cookies. How many batches of chocolate chip cookies can she make? 3 batches
11. The length of a race is $\frac{9}{10}$ mile. Andrew wants to place a flag every $\frac{1}{3}$ mile. He has 3 flags. Does he have enough flags? Explain.
yes; Sample answer: $\frac{9}{10} \frac{1}{3} \frac{1}{10}=\frac{9}{2} \times \frac{3}{1}=$ $\frac{27}{10}=2$ 긍 . He only needs 2 flags. So, he has enough.
13. Write a division problem involving the division of two positive fractions whose quotient is equal to 1 . Show that your problem is correct.
Sample answer: $\frac{7}{8} \div \frac{7}{88}=\frac{7}{6} \times \frac{8}{7}$ $=\frac{56}{56}$
$=1$

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 10, students conjecture about whether or not the quotient of two positive fractions can be less than 1 , and students are asked to construct an argument to defend their conjecture.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 12, students complete a problem in which they have to understand what the problem is asking, write mixed numbers as fractions, divide the fractions, and interpret their answer in the proper context.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Be sure everyone understands.

Use with Exercises 8-9 Have students work in groups of 3-4 to solve the problem in Exercise 8. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 9.

Create your own higher-order thinking problem.

Use with Exercises 10-13 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Learn Divide Fractions by Whole Numbers

Objective

Students will understand that they can use various strategies to divide a fraction by a whole number.

Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 3, encourage them to describe the similarities and difference between using a bar diagram and the reciprocal of a whole number to divide a fraction by a whole number, even though both methods are valid approaches and yield the correct solution. Ask them which method might be more advantageous for different division problems.

Teaching Notes

SLIDE1:
Students previously learned how to divide a whole number by a fraction, and how to divide a fraction by a fraction, using both visual models and equations. Present the division expression $\frac{3}{5} \div 2$, and ask students how this expression is different from the other ones they have seen. Students should note that the divisor is a whole number, not a fraction. Have students move through the slides to see how a visual model can be used to divide the whole number by the fraction. Ask them to explain each step in the process. Some sample questions to help facilitate discussion are shown.

In the first step, how does the model represent the dividend? The dividend is $\frac{3}{5}$ and the model has 3 out of 5 bars shaded to represent $\frac{3}{5}$. In the third step, why is each fifth separated into two sections? The divisor is 2 .
In the fourth step, how does the model illustrate dividing $\frac{3}{5}$ by 2 ? There are 10 total sections, and 6 of them were shaded to represent $\frac{3}{5}$. Dividing those 6 sections into 2 groups results in 3 sections in each group. Of the whole, this represents $\frac{3}{10}$, or 3 out of the 10 total sections.
(continued on next page)

DIFFERENTIATE

Enrichment Activity 피는

To further students' understanding of using visual models to divide fractions by whole numbers, have them work with a partner to generate at least 3 expressions that involve dividing a fraction by a whole number. Then have them create their own visual models that illustrate the division and help them find the quotient. Have them trade their visual models with another pair of students. Each pair should determine the division expression and quotient that is represented by the model. Have pairs of students discuss and resolve any differences.

Interactive Presentation

Learn, Divide Fractions by Whole Numbers, Slide 1 of 3

CLICK

On Slide 1, students view how to use a visual model to solve the division problem.

Divide with Whole and Mixed Numbers

LESSON GOAL

Students will divide with whole and mixed numbers.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Explore: Divide Fractions by Whole Numbers
Learn: Divide Fractions by Whole Numbers
Example 1: Divide Fractions by Whole Numbers
Learn: Divide Mixed Numbers
Example 2: Divide Mixed Numbers
Example 3: Divide Mixed Numbers
Apply: Decorating

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 19 of the Language Development Handbook to help your students build mathematical language related to division of fractions by whole numbers.

ELLL You can use the tips and suggestions on page T19 of the handbook to support students who are building English proficiency.

Suggested Pacing

$90 \mathrm{~min} \quad 1.5$ days 3 days
45 min

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.A by dividing with whole and mixed numbers.
Standards for Mathematical Content: 6.NS.A. 1
Standards for Mathematical Practice: MP1, MP3, MP4, MP5, MP6

Coherence

Vertical Alignment

Previous

Students divided fractions by fractions.

6.NS.A. 1

Now

Students divide with whole and mixed numbers.
6.NS.A. 1

Next
Students will extend previous understandings of numbers to the system of rational numbers.
6.NS.C.7, 6.NS.C. 8

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of division to include whole numbers, fractions, and mixed numbers. They use visual models and standard algorithms to build fluency with division of whole and mixed numbers. They apply their understanding of division of fractions to write and solve realworld story contexts.

Mathematical Background

To divide a fraction by a whole number, multiply the fraction by the reciprocal of the whole number. To perform division with mixed numbers, first write them as fractions. A mixed number can be written as a fraction by writing the whole number portion as a fraction and then finding the sum of the two fractions.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- multiplying fractions (Exercises 1-4)
- solving word problems involving dividing fractions (Exercise 5)

Answers

1. $\frac{3}{32}$
2. $\frac{5}{36}$
3. $\frac{1}{6}$ 4. $\frac{4}{15}$
4. 12 rabbits

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about fractions of cords of firewood.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Give an example of a dividend. Sample answer: An example of a dividend would be 12 in the scenario " 12 divided by 2 is 6 ".
- Describe a divisor in your own words. Sample answer: A divisor is the number that divides the dividend. An example of a divisor is 2 in the scenario " 12 divided by 2 is 6 ".

Explore Divide Fractions by Whole Numbers

Objective

Students will use Web Sketchpad to explore how to divide fractions by whole numbers.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About lt! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with multiple division problems. Throughout this activity, students will use a sketch to model the division. Students will use their observations to compare division of fractions by whole numbers to division of whole numbers by fractions.

QInquiry Question

How is dividing fractions by whole numbers similar to dividing whole numbers by fractions? Sample answer: With both, I need to write the whole number as a fraction and then multiply the dividend by the reciprocal of the divisor.

Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About It! questions on Slide 2 are shown.

Talk About It!
 SIIDE 2

Mathematical Discourse

What is the quotient? What steps did you take in order to evaluate the expression? $\frac{1}{3}$; Sample answer: I can use the "Divide by 2 " tool to divide the $\frac{2}{3}$ section into two equal parts.
(continued on next page)

Interactive Presentation

Divide Fractions by Whole Numbers
(C) Inerotucing the Inguliry Cuesbion

Explore, Slide 1 of 5

Explore, Slide 2 of 5

Throughout the Explore, students use Web Sketchpad to explore how to divide fractions by whole numbers.

Interactive Presentation

Explore, Slide 4 of 5

On Slide 5, students respond to the Inquiry Question and view a sample answer.

Explore Divide Fractions by Whole Numbers (continued)

(1)
Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and examine bar diagrams in order to divide fractions by whole numbers. Encourage them to understand the advantages of using this tool and ask them if there are situations when it might not be advantageous.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 4 is shown.

Talk About It!

SLIDEA

Mathematical Discourse

What is the quotient? What are some similarities and differences you notice between the parts of the expression, the dividend, divisor, and quotient? $\frac{3}{8}$; Sample answer: The numerator of the quotient is the same as the numerator of the dividend. The denominator of the quotient is twice as large as the denominator of the dividend. The two is the divisor.

Interactive Presentation

Learn, Divide Fractions by Whole Numbers, Slide 2 of 3

TYPE
On Slide 2, students enter the missing value to solve the division equation.

1 CONCEPTUAL UNDERSTANDING

Learn Divide Fractions by Whole Numbers (continued)

Teaching Notes SLIDE2

Point out that visual models are not the only methods that can be used to divide a fraction by a whole number. By setting up an equation where the quotient is the unknown, students can use their understanding of reciprocals to find the quotient. Have students move through the steps for dividing the fraction by the whole number, being sure that they can clearly explain each step.

Talk About It!

SLIDE3

Mathematical Discourse

Compare and contrast the two methods. Sample answer: The bar diagram is visual and illustrates the division process. Using an equation to find the quotient uses the reciprocal of the whole number.

Example 1 Divide Fractions by Whole

 Numbers
Objective

Students will divide fractions by whole numbers.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically In Method 1, encourage students to draw a visual model to help them find the quotient. In Method 2, encourage students to use an equation to find the quotient, and compare the two methods. They should see that both methods are valid approaches to finding the quotient. Ask them which method might be more advantageous for different division problems.

Questions for Mathematical Discourse

SLIDE $2:$

Alil What operation will be used to find how many pounds of cashews are in each package? How do you know? Division will be used because we know the number of packages and need to find how many pounds of cashews are in each package.
OII Which number is the dividend? Which number is the divisor? Explain. Sample answer: The dividend is $\frac{3}{4}$ because we are trying to find the amount of cashews in each bag. The divisor is 12 because this is how many bags Faye has.
BLI What expression would model the problem if Faye was dividing $\frac{5}{9}$ pound of cashews into 18 packages? $\frac{5}{9} \div 18$
(continued on next page)

Interactive Presentation

Example 1, Divide Fractions by Whole Numbers, Slide 2 of 6

Interactive Presentation

Example 1, Divide Fractions by Whole Numbers, Slide 4 of 6

TYPE	On Slide 4, students use an equation to divide (Method 2).
CHECK	Students complete the Check exercise online to determine if they are ready to move on.

180 Module 3 - Compute with Multi-Digit Numbers and Fractions

O Example 1 Divide Fractions by Whole Numbers (continued)

Questions for Mathematical Discourse

SLIDE3

AL. Into how many sections will the bar initially be divided? Explain. Sample answer: The bar will be divided into 4 sections to represent the denominator of $\frac{3}{4}$.
OL Why are the first three sections divided into 12 sections? The first three sections represent $\frac{3}{4}$ pound of cashews. The three sections were divided into 12 smaller sections to represent the 12 packages.
3L.I. Suppose Faye had $\frac{7}{8}$ pound of cashews. What would the first piece of the bar look like? The first piece of the bar will be 8 sections, with 7 of these sections being shaded.

SLIDE 4

AL What does each number in the expression represent in context of the problem? $\frac{3}{4}$ is the dividend. It represents the amount of cashews Faye has. 12 is the divisor. It represents the amount of bags into which she is dividing the cashews.
OL. How can you check that $\frac{1}{12}$ is the reciprocal of 12 ? Sample answer: To check to make sure $\frac{1}{12}$ and 12 are reciprocals, I need to make sure their product is 1 .
BB․․ Suppose Faye has $\frac{1}{2}$ pound of walnuts and wants to add them equally into the individual bags of cashews. How much will each individual bag weigh when it contains both cashews and walnuts? Explain. $\frac{5}{48} \mathrm{lb}$; Sample answer: Each bag will have $\frac{1}{2} \div 12=$ $\frac{1}{2} 1 \frac{1}{24}=\frac{1}{1}$ pound of walnuts added, so each bag will have $\frac{1}{16} \frac{1}{24} \frac{1}{48}$ or $-\frac{5}{-}$ pound of nuts.

0
 Go Online

- Find additional teaching notes and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Divide Mixed Numbers

Objective

Students will learn how to divide with mixed numbers.

Teaching Notes

SLIDE1

You may wish to pause the animation after the mixed number $2 \frac{1}{4}$ written as the fraction $\frac{9}{4}$. Ask students to explain how they know that $2 \frac{1}{4}=\frac{9}{4}$. Students should note that the mixed number $2 \frac{1}{4}$ is equivalent to $2+\frac{1}{4}$. They should be able to explain that the whole number portion of the mixed number, 2 , can be written as $\frac{8}{4}$. Since $\frac{8}{4}+\frac{1}{4}=\frac{9}{4}$, the mixed number $2 \frac{1}{4}$ can be written as $\frac{9}{4}$. Encourage students to notice the similarities and the differences between dividing with mixed numbers and dividing just with fractions.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to divide with mixed numbers.

Example 2 Divide Mixed Numbers

Objective

Students will divide a mixed number by a whole number.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to calculate efficiently and accurately in order to find the quotient of a mixed number and a whole number. They should pay attention to their final answer, being sure to write it in simplest form.

Questions for Mathematical Discourse

SLIDE1
AL Why do we write the mixed number and the whole number as fractions? so that we can divide as with fractions

OL. Why do we multiply by the reciprocal? To divide by a fraction, multiply by its reciprocal.

OL. Explain why it makes sense that the quotient is less than the dividend. Sample answer: Any number divided by a number greater than 1 , will result in a number that is less than itself.
[31. Find $2 \frac{1}{2} \div 1 \frac{1}{4} .2 \frac{1}{2} \div 1 \frac{1}{4}=\frac{5}{2} \div \frac{5}{4}=\frac{5}{2} \times \frac{4}{5}=2$

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Divide Mixed Numbers, Slide 1 of 2

Interactive Presentation

Example 3, Divide Mixed Numbers, Slide 1 of 2

TYPE	On Slide 1, students determine the quotient.
CHECK	Students complete the Check exercise online to determine if they are ready to move on.

182 Module 3 - Compute with Multi-Digit Numbers and Fractions

Example 3 Divide Mixed Numbers

Objective
Students will divide a mixed number by a mixed number.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to calculate efficiently and accurately in order to find the quotient of two mixed numbers. They should pay attention to their final answer, being sure to write it in simplest form.

Questions for Mathematical Discourse

SLIDE1

ALI Why do we write both mixed numbers as fractions? so that we can divide as with fractions

OII Instead of simplifying before multiplying, can you multiply first, and then simplify? Explain. yes; Sample answer: Either method will result in equivalent quotients.
[BLIL Find $12 \frac{1}{2} \div 10 \frac{3}{4}$. Write as a mixed number. $12 \frac{1}{2} \div 10 \frac{3}{4}=\frac{25}{2} \div \frac{43}{4}=\frac{25}{2} \times \frac{4}{43} \frac{50}{43}=1 \frac{7}{43}$

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Decorating

Objective

Students will come up with their own strategy to solve an application problem involving area of mirrors.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How do you find the area of a square?
- Are the side lengths of a square equal or different?
- Which mirror will have the greater area?

C Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Decorating

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could write descriptions of the different methods used to divide with whole and mixed numbers. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up
How are operations with fractions and decimals related to operations with whole numbers? In this lesson, students learned how to divide fractions by whole numbers using models and equations, and how to divide with mixed numbers. Encourage them to work with a partner to compare and contrast dividing fractions with dividing whole numbers. For example, have them compare and contrast how they can use models to simplify each of the expressions $\frac{3}{4} \div \frac{2}{3}, \frac{3}{4} \div 2,3 \div \frac{2}{3}$, and $3 \div 2$.

Exit Ticket

Refer to the Exit Ticket slide. Find the fraction of a cord that they can burn each day, assuming they burn an equal amount each day. Write a mathematical argument that can be used to defend your solution.
The campers can burn $\frac{1}{30}$ of a cord each day; Sample answer:
$\frac{1}{3} \div 10=\frac{1}{3} \times \frac{1}{30}=1$

ASSESS AND DIFFERENTIATE

II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks
BL
THEN assign:

- Practice, Exercises 1, 9, 11, 13-16
- Extension: Compute with Fractions, Decimals, and Whole Numbers
- ALEKS' Division with Fractions

IF students score 66-89\% on the Checks
THEN assign:

- Practice, Exercises 1-8, 11, 14, 16
- Extension: Compute with Fractions, Decimals, and Whole Numbers
- Personal Tutor
- Extra Examples 1-3
- D ALEKS' Multiplication with Fractions

IF students score 65\% or below on the Checks
THEN assign:

- Arrive MATH Take Another Look
- ALEKS Multiplication with Fractions

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL Practice Form B OLI Practice Form A

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK \mathbf{T}	opic	Exercises
2	divide fractions by whole numbers	1,2
1	divide a mixed number by a whole number	$3-5$
1	divide a mixed number by a mixed number	$6-8$
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving division with whole and mixed numbers	11,12
3	higher-order and critical thinking skills	$13-16$

Common Misconception

When dividing whole numbers, fractions, and mixed numbers, students should first write the whole numbers and mixed numbers as fractions. After writing as fractions, some students might forget to multiply by the reciprocal of the divisor. Remind students that when dividing fractions, you need to perform the inverse operation of division, which is multiplying by the reciprocal, to find the quotient.

Divide. Write in simplest formExamples 2 and 3)

9. Jeanne has $3 \frac{7}{8}$ yards of fabric. The table shows the amount of fabric she needs for different items. How many pairs of shorts can she make? 3 pairs

Clothing Item Fabric Needed (yd)	
Shirt	$1 \frac{3}{4}$
Shorts	$1 \frac{1}{4}$

10. Equation Editor What is the value of the expression $5 \frac{5}{8} \div 3 \frac{3}{4}$?
$1 \frac{1}{2}$
स由कण
$123 \square+-x \div \square$
$456-\begin{aligned} & +-x+ \\ & \langle 5=z>\end{aligned}$
789 좀 $x^{n} 011 \sqrt{x} \sqrt{x} \pi$

- -

Apply *indicates multi-step problem
*11. Kara and Nathan are each painting a poster for the school dance. Their posters have the dimensions shown in the table. How many times greater is the area of Kara's poster than Nathan's?
$6 \frac{1}{4}$ times greater
*12. Mrs. Brown is putting different colored sand into cups for her 4 daughters to make sand art bottles. The total amount of each color she has is shown in the table. If each color is ilvided all and will be availe for girl than purple sand
$\frac{1}{16}$ pound

Higher-Order Thinking Problems
13. Create Write and solve a real-world problem that involves the division of two mixed numbers.
Sample answer: A bag contains $22 \frac{1}{2}$ cups of flour. A recipe for pancakes uses $1 \frac{1}{4}$ cups of flour. How many batches of pancakes can be made with one bag of flour? 18 batches
15.
(1) Persevere with Problems Without dividing, explain whether the quotient of $\frac{9}{10} \div 3$ is greater than or less than the quotient of $\frac{9}{10} \div 2$. less than; Sample answer: $\frac{9}{10} \div 3$ is divided into more parts than $\frac{9}{10} \div 2$. Since it is divided into more parts, each part represents a lesser amount. So, $\frac{9}{10} \div 2>\frac{9}{10} \div 3$.
14. Find $2 \frac{1}{10} \div 1 \frac{1}{5}$. How can you determine if your quotient is reasonable? Explain.

Sample answer: Use estimation. Round each mixed number: $\mathbf{2 \div 1 = 2}$. The actual quotient is $1 \frac{3}{4}$ which is close to 2 . So, the answer is reasonable.
16. Reason Inductively Without computing, which expression is greater, $20 \times \frac{1}{2}$ or $20 \div \frac{1}{2}$? Explain your reasoning. $20 \div \frac{1}{2}$; Sample answer: Multiplying 20 by a number less than 1 results in a number that is less than 20 . Dividing 20 by a number less than 1 results in a number that is greater than 20.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them In Exercise 15, students make sense of a problem involving two quotients and carry out a plan to determine which is greater without performing the division.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 16, students construct an argument to defend whether the product or the quotient is greater without performing the computation.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 11 Have students work together to prepare a brief demonstration that illustrates why this application problem might require multiple steps to solve. For example, before they determine how many times greater one poster is than the other, they have to find the area of each poster. Have each pair or group of students present their response to the class.

Listen and ask clarifying questions.

Use with Exercises 14-15 Have students work in pairs. Have students individually read Exercise 14 and formulate their strategy to solve the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 15.

DINAH ZIKE FOLBABLES

[EILII A completed Foldable for this module should include examples of multiplication and division of fractions with fractions, mixed numbers, and whole numbers. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 0

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together 1: Lessons 3-1 and 3-2
Put It All Together 2: Lessons 3-3, 3-4, and 3-5
Vocabulary Test
All Module Test Form B
OLII Module Test Form A
피네 Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for The Number System.

- Multiplication and Division of Fractions
- Division of Whole Numbers
- Decimal Operations

188 Module 3 - Compute with Multi-Digit Numbers and Fractions

Essential Question

ELLIL Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How are operations with fractions and decimals related to operations with whole numbers? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises $1-13$ mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$5,8,12$
Multiselect	Multiple answers may be correct. Students must select all correct answers.	10
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	$2,3,7$
Open Response	Students construct their own response in the area provided.	$1,4,6,9$,
11,13		

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.NS.A.1	$3-3,3-4,3-5$	$5-13$
6.NS.B.2	$3-1$	1,2
6.NS.B.3	$3-2$	3,4

7. Equation EditorThe table shows the ingredients needed to make one serving of marinade. Kat has 3 cups of soy sauce. She made the greatest number of servings possible. (Lesson 3)

Ingredients	Amount
Ginger	$\frac{1}{8} T$
Soy sauce	$\frac{5}{6} \mathrm{c}$
Garlic	$\frac{1}{4} \mathrm{c}$

A. How many whole servings of marinade will the 3 cups of soy sauce make?

3
B. How many cups of soy sauce will be left over?
$\frac{1}{2}$

लनखगव

123
$456 \quad<s=z>0$
789 (1) x^{x} (1) $1 \sqrt{x} \sqrt{x} \pi$
0.0
8. Multiple Choice T ony is making chicken enchiladas. He needs $\frac{1}{8}$ jar of sauce for each enchilada. How many enchiladas can T ony make with $\frac{5}{6}$ jar of sauce? (Lesson 4)
(A) 5 enchiladas
B) 6 enchiladas
(C) 7 enchiladas
(D) 8 enchiladas
9. Open Response Divide $\frac{2}{3} \div \frac{3}{4}$. (Lesson 4) $\frac{8}{9}$
10. Multiselect A builder is dividing a hectare (about $2 \frac{1}{2}$ acres of land) into $\frac{1}{3}$-acre lots to build houses. Which expression(s) can be used to find how many lots the builder will have to build on? Select all that apply. (Lesson 5)
[$5^{2} \div \frac{1}{1}$
($\frac{2}{5}_{5}^{3} \div 1$
, $\frac{5}{2}^{3} \times \frac{1}{1}$
[$\frac{5}{2} \times \frac{1}{3}$

- $\frac{2}{5}^{3} x \frac{1}{1}$
, $\frac{5}{2} \div \frac{1}{3}$

11. Open Response Three-fifth pound of pasta is enough to feed 6 people. (Lesson 5)
A. Write a division equation to find the number of pounds in each serving.
$\frac{3}{5} \div 6=$
B. How many pounds are in each serving?
$\frac{3}{5} \div 6=\frac{3}{5} \times \frac{1}{6}=\frac{3}{10}$, or -1 pound
12. Multiple Choice A restaurant has a $\frac{3}{4}$-full pan of lasagna. If the cost is $\$ 20$ per $\frac{1}{3}$ pan, how much will the restaurant charge for the $\frac{3}{4}$-full pan of lasagna?(Lesson 5)
(A) $\$ 20$
(8) $\$ 45$
(C) $\$ 60$
(D) $\$ 125$
13. Open Response Find the quotient of $13 \div 4 \frac{7}{8}$ written in simplest form.(Lesson 5) $2 \frac{2}{3}$

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How are integers and rational numbers related to the coordinate plane? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.
Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
(1) When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of latitude and longitude to introduce the idea of integers, rational numbers, and the coordinate plane. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Leam?
Place al checkmak (o) in esch row fhat coutesponds weth how magh you alieody know nbout eech topke before erthing this modil.

kEY	Belore:			Acter		
	0	0	0	0	0	0
usiog integens to mpresent quantives						
graphing istogers on a number line.						
tinding oppontes of integers						
finding abyolute vauts of istegens						
compsing and codering insegers						
Oraphing tationer numbers on a mamber ine						
focing ansolute values of iatiposi numbers						
compuing and erdering rational rumbers						
praphing points in the cosedinate plime						
refiecting points in the coordinate plase.						
thosing coitance between points in the coordinate plane						

(1i) Foiltablies Cut out die Foldable and upe at to the Module Review st the end of the modide You cin use the Foldeble throughout the module as you learn about integens. totionel numbert tand ene coordinase plane

Interactive Presentation

Integers, Rational Nmbers, and the Coordinate Plane

Module Goal

Graph integers and rational numbers on number lines and on the coordinate plane.

Focus

Domain: The Number System
Major Cluster(s): 6.NS.C Apply and extend previous understandings of numbers to the system of rational numbers.
Standards for Mathematical Content:
6.NS.C. 6 Understand a rational number as a point on the number line.

Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
6.NS.C. 7 Understand ordering and absolute value of rational numbers.

Also addresses 6.NS.C. 5 and 6.NS.C.8.
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8

Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- compare and order a set of whole numbers
- graph whole numbers on the number line
- graph points with whole-number coordinates in the first quadrant of the coordinate plane

Use the Module Pretest to diagnose students' readiness for this module. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students computed with multi-digitnumbers and fractions.
6.NS.A.1, 6.NS.B.2, 6.NS.B. 3

Now

Students graph integer and rational-valued points on number lines and the coordinate plane.
6.NS.C.5, 6.NS.C.6, 6.NS.C.7, 6.NS.C. 8

Next
Students will perform operations with integers.
7.NS.A.1, 7.NS.A.2, 7.NS.A. 3

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of whole numbers and number lines to develop understanding of integers, rational numbers, and the coordinate plane. They use this understanding to build fluency with representations of integers and absolute value, comparing and ordering rational numbers, and graphing points and finding distance on the coordinate plane. They also apply their understanding of integers, rational numbers, and the coordinate plane to solve real-world problems.

Suggested Pacing

Lesson		Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
4-1	Represent Integers	6.NS.C.5, 6.NS.C.6, 6.NS.C.6.C	2	1
4-2	Opposites and Absolute Value 6.NS.C.5, 6.NS.C.6, 6.NS.C.6.A, 6.NS.C.7, 6.NS.C.7.C		2	1
4-3	Compare and Order Integers 6.NS.C.7, 6.NS.C.7.A-D		2	1
4-4	Rational Numbers	6.NS.C.6, 6.NS.C.6.C, 6.NS.C.7, 6.NS.C.7.A, 6.NS.C.7.C	2	1
Put It All Together 1: Lessons 4-1, 4-3, and 4-4			0.5	0.25
4-5	The Coordinate Plane	6.NS.C.6, 6.NS.C.6.B, 6.NS.C.6.C, 6.NS.C. 8	3	1.5
4-6	Graph Reflections of Points	6.NS.C.6, 6.NS.C.6.B, 6.NS.C.6.C, 6.NS.C. 8	3	1.5
4-7	Absolute Value and Distance 6.NS.C. 8		3	1.5
Put It All Together 2: Lessons 4-5, 4-6, and 4-7			0.5	0.25
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			21	10.5

Formative Assessment Math Probe

 Compare Rational Numbers
${ }^{\square}$ Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students determine the correct inequality or equals sign to complete each statement.

Targeted Concept The magnitude of two negative quantities can be compared by reasoning about the distances from zero based on their positions on a number line, or by expressing both in decimal or fraction form.

Targeted Misconceptions

- Students may ignore the negative signs and apply positive number comparisons.
- Students may incorrectly interpret the relative position of numbers on a number line.

Assign the probe after Lesson 4.

Collect and Assess Student Work

Correct Answers: 1. <; 2. <; 3. >; 4. $>$; 5. >

the student selects...

1. $>$
2. $>$
3. $<$
4. <
5. $>$
6. $>$
7. $>$
8. $<$
9. $<$
10. $>$
11. $=$

the student likely...

ignores the negative number signs.
Example: The student chooses all or most of these answers, and gives explanations that did not include references to negative numbers.
incorrectly interprets the relative position of the numbers on a number line.
Example: The student chooses all or most of these answers, with explanations referring to a greater distance from zero (absolute value) as the greater number.
bases their comparison after rounding the fraction.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS ${ }^{\text {- Integers and Rational Numbers }}$
- Lesson 4, Examples 1-4

Revisit the probe at the end of the module to be sure your students no longer carry these
misconceptions.

Learn Use Integers to Represent Quantities

Objective

Students will understand what an integer is, how integers can represent real-world quantities, and where integers are located on the number line.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to think about where they have seen positive and negative integers represented on a vertical number line.

Teaching Notes

SLIDE 1

Prior to having students select the Negative Integers button or the Positive Integers button, you may wish to have students make a prediction as to where they think the integers will lie based on their relationship to zero on the number line. Have students generate other examples of positive and negative integers, other than the ones shown.

Point out that not all number lines are horizontal. You may wish to draw a vertical number line on the board and ask students where the integers 3 and -3 will be located on the number line in relationship to zero. When the number line is horizontal, negative integers are to the left of zero and positive integers are to the right of zero. When the number line is vertical, negative integers are below zero and positive integers are above zero.

(continued on next page)

DIFFERENTIATE

Enrichment Activity \quad BLI

To further students' understanding of using integers to represent real-world quantities, have them work with a partner to generate examples of how integers are used in everyday life. They should generate at least three different examples. For each example, have them explain what a negative integer would represent, what a positive integer would represent, and explain the meaning of zero. One example response is shown. Sample answer: The elevation of a hiker descending into a canyon can be represented by a negative integer. The elevation of a hiker ascending a hill or mountain can be represented by a positive integer. The meaning of zero is represented by sea level.

Interactive Presentation

Learn, Use Integers to Represent Quantities, Slide 1 of 3
On Slide 1, students select buttons to
show the location of integers on the
number line.

LESSON GOAL

Students will use integers on a number line to represent quantities.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Explore: Represent Integers
Learn: Use Integers to Represent Quantities
Example 1: Use Integers to Represent Quantities
Learn: Graph Integers on a Number Line
Example 2: Graph Integers on a Number Line

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	LBI	
ArriveMATHTake Another Look	\bullet		
Collaboration Strategies	\bullet	0	

Language Development Support

Assign page 20 of the Language Development Handbook to help your students build mathematical language related to integers.
CLLL You can use the tips and suggestions on page T20 of the handbook to support students who are building English proficiency.

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.C by graphing integers on a number line to represent quantities.
Standards for Mathematical Content: 6.NS.C.5, 6.NS.C.6,
6.NS.C.6.C

Standards for Mathematical Practice: MP2, MP3, MP5

Coherence

Vertical Alignment

Previous

Students divided whole and mixed numbers.

6.NS.A. 1

Now

Students graph integers on a number line to represent quantities.

6.NS.C.5, 6.NS.C. 6

Next

Students will find the opposites of integers and use opposites to understand absolute value.
6.NS.C.5, 6.NS.C.6, 6.NS.C. 7

Rigor

The Three Pillars of Rigor
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of number lines (gained in prior grades) to begin to develop understanding of integers. They use this understanding to build fluency with writing integers, explaining the meaning of zero in a given situation, and graphing sets of integers on horizontal and vertical number lines.

Mathematical Background

The set of integers is $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$. Negative integers are less than zero and positive integers are greater than zero. To graph an integer on a number line, place a dot on the number line at its location. Negative numbers are located to the left of zero, and positive integers are located to the right of zero on a horizontal number line. On a vertical number line, negative integers are located below zero, and positive integers are located above zero.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

```
Whuy Vegabdecy ww kou (angy
Integer
```



```
    Sverent tpee of nomben?
    negative integer
```



```
    positive integer
```


What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- graphing whole numbers on a number line (Exercises 1-4)
- solving word problems involving graphing whole numbers on a number line (Exercise 5)

Answers

1-5. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about checking account actions as a representation of integers.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- The term integer comes from the Latin meaning whole. How do you think the term integer could be related to different types of numbers? Sample answer: The term integer might be used to describe numbers that are not fractions, but numbers that are whole.
- What are some real-world situations in which you can use the term negative to describe them? Sample answers: negative bank account balances, negative charges on electrons, a negative attitude
- What are some real-world situations in which you can use the term positive to describe them? Sample answers: positive bank account balances, a positive outlook on life or a positive attitude, being 100% sure of something

Explore Represent Integers

Objective

Students will explore how integers can be used to represent quantities.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with the thermometer and different temperatures, both above and below zero. Students will explore positive and negative temperatures using a drag and drop activity. Students will label temperatures on the thermometer with positive and negative values.

Inquiry Question

How can positive and negative values be represented? Sample answer: I can represent positive and negative values using positive and negative signs with numbers or on a number line.

Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. A sample response for the Talk About It! question on Slide 4 is shown.

Talk About It!

SLIDE 4 -

Mathematical Discourse

What negative number is the same distance from 0 as the number 4 ? -4 is the same distance from 0 as 4 .
(continued on next page)

Interactive Presentation

Explore, Slide 1 of 7

Drag the values to laber tee thermengter att whole nurbier incremerst to represest degrees Faniantheit.

Explore, Slide 4 of 7
DRAG \& DROP
On Slides 2 and 4, students drag to label thermometers.

Interactive Presentation

Explore, Slide 5 of 7

TYPE

a
On Slide 7, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Represent Integers (continued)

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to abstract the real-world situation involving temperature, in order to represent temperatures that are both above and below 0 , using positive and negative values on the thermometer.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!

SLIDE 5 .

Mathematical Discourse

If the temperature starts at -2 and gets colder, what happens to the values on the thermometer as the temperature drops? Sample answer: The numbers below zero seem to increase on the thermometer as the temperature gets colder.

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Example 1, Use Integers to Represent Quantities, Slide 2 of 5
On Slide 2 of Example 1, students select
from a drop-down menu to write an
integer to represent the situation.

Learn Use Integers to Represent Quantities (continued)

O

 Go Online- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how integers are used to describe temperatures.

Talk About It!

SLIDE 3

Mathematical Discourse

Give another example of when using a vertical number line is useful. Explain. Sample answer: It is useful when graphing elevations because on a vertical number line, 0 represents sea level. Above sea level would be represented by positive integers and below sea level would be represented by negative integers.

Example 1 Use Integers to Represent Quantities

Objective
Students will write an integer to represent a real-world quantity and explain the meaning of zero in the situation.

Questions for Mathematical Discourse

SLIDE2

A1 If you were to lose something, would that item be added to your collection, or subtracted? subtracted

OLII Is the integer that represents a loss of 10 yards positive or negative? Explain. negative; Sample answer: A loss represents something that is subtracted, or taken away.

1811 Describe what a positive integer would represent in this situation. Sample answer: If the football team had completed a 10-yard play, the integer would be positive.

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Graph Integers on a Number Line

Objective

Students will learn how to graph a set of integers on a horizontal or vertical number line.

Teaching Notes

SLIDE1

Point out that number lines can be horizontal or vertical. When graphing a set of integers, students should pay careful attention to how the sign of each integer indicates the location of that integer in relation to zero. On a horizontal number line, numbers to the left of zero are negative and numbers to the right of zero are positive. On a vertical number line, numbers below zero are negative and numbers above zero are positive. Prior to students selecting to graph each integer in the set $\{2,-3,0\}$, have them first make a prediction as to the location of the integer in relationship to zero on each number line.

DIFFERENTIATE

Reteaching Activity

To help students understand how to graph integers on a number line, explain that they can start by drawing a line and labeling the point 0 . Have students determine if each of the following integers are to the left or to the right of 0 on a horizontal number line. Then have them determine if they are above 0 or below 0 on a vertical number line.

4 right; above
-9 left; below
-1 left; below
2 right; above
-5 left; below
6 right; above
3 right; above

Interactive Presentation

Learn, Graph Integers on a Number Line, Slide 1 of 2
CLICK $\begin{aligned} & \text { On Slide 1, students select buttons to view } \\ & \text { a set of integers graphed on each number }\end{aligned}$ line.

Interactive Presentation

Example 2, Graph Integers on a Number Line, Slide 1 of 2
On Slide 1, students use the Number Line
eTool to graph a set of integers on a
number line.

196 Module 4 - Integers, Rational Numbers, and the Coordinate Plane

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 2 Graph Integers on a Number Line

Objective
Students will graph a set of integers on a number line.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use the Number Line eTool to graph the set of integers on a number line. Remind students to pay careful attention to 0 and to how each integer should be graphed in relationship to 0 on the number line.

Questions for Mathematical Discourse

SLIDE1

ALI How can you describe numbers to the left of 0 on a number line? numbers to the right of 0 ? Sample answer: Numbers to the left of 0 on a number line are negative. Numbers to the right of 0 on a number line are positive.
10. Why is -4 farther away from 0 than -1 ? Sample answer: -4 is 4 units to the left of 0 , and -1 is 1 unit to the left of $0 ; 4>1$

Bㅣ․ Which number in the set of integers is farthest away from 0 ? closest to 0 ? -4 is farthest away from $0 ;-1$ is closest to 0

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Exit Ticket

Refer to the Exit Ticket slide. Phoebe deposits $\$ 225.00$ into her savings account when she gets paid; then she withdraws $\$ 35.00$ to see a movie with her friends. Describe the two situations using the words positive and negative. Sample answer: When Phoebe deposits $\$ 225.00$ into her savings account, it will show up as a positive credit to her account because she is adding money to the account. When she withdraws $\$ 35.00$, it will show up as a debit, which is a negative credit to her account. It shows up as a debit, because she is subtracting money from the account.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

ALI Practice Form B
OL. Practice Form A
[Bll Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
2	write an integer to represent a quantity and explain the meaning of zero in the situation	$1-6$
1	graph a set of integers on a number line	$7-12$
2	extend concepts learned in class to apply them in new contexts	$13-14$
3	solve application problems involving graphing integers on a number line	$15-16$
3	higher-order and critical thinking skills	$17-20$

Common Misconception

Students sometimes have difficultly determining whether or not a situation should be represented by a positive or a negative integer. As you complete the lesson, have students make a list of words that are commonly used to indicate positive and negative integers. Students can refer to this list as they complete Exercises 1-6. The list could include words such as loss, owed, spent, below, under, gain, earned, saved, above, and rise.

Interactive Presentation

Exit Ticket

Apply "indicates multi-step problem
-15. Rodney is performing a science experiment. The table shows the temperature of two liquids he is using. Graph the integers that represent the temperatures on a number line. Which beaker's liquid is closer to $0^{\circ} \mathrm{C}$? Explain.

$-5-4-3-2-10123$
Beaker B; Sample answer: Beaker B is 2 units away from 0 on the number line, while Beaker A is 4 units from 0 on the number line. $\mathbf{4 > 2}$
'16. Sydney owes her mother $\$ 5$ and her brother owes her mother $\$ 7$. Graph the integers that represent the amount they owe their mother as a negative integer on a number line. How much more will her brother have to repay their mother than Sydney? Explain.
$-8-7-6-5-4-3-2-10$
$\$ 2$; Sample answer: Sydney's debt is 5 units from 0 . Her brother's debt is 7 units from 0 . This is 2 more units. So, he will have to pay $\$ 2$ more.

OHigher-Order Thinking Problems
17. Use Math Tools Explain how to find the distance between 1 and -3 on a number line.
Sample answer: Graph 1 and -3 on a number line. Then count the units between each integer and zero. There is 1 unit between 0 and 1 . There are 3 units between 0 and -3 . So, 1 unit +3 units $=$ 4 units.
19. Create Describe a real-world situation that can be represented by a negative integer. Then write the integer
Sample answer: Riley lost 10 points playing a trivia game; -10
18. At $\mathrm{D}^{\circ} \mathrm{E}$ a. By 6:00 A.M., the temperature had dropped $4^{\circ} \mathrm{F}$, and then the temperature raised $10^{\circ} \mathrm{F}$ by noon. What is the temperature at noon? $6^{\circ} \mathrm{F}$
b. What represents zero in this situation? Explain. Sample answer: Zero represents $0^{\circ} \mathrm{F}$.
20. Justify Conclusions Craig has $\$ 28$ in his checking account. He wants to make a withdrawal of $\$ 30$. Will his checking account balance be represented by a positive or negative integer after the withdrawal? Justify your conclusion. negative; Sample answer: A withdrawal of $\$ 28$ would result in a balance of $\$ 0$. Since the withdrawal of $\$ 30$ is greater than $\$ 28$, the balance will be less than zero and would be represented with a negative integer.

Module 4 . Integers, Rational Numbers, and the Coordinate Pla

Learn Find Opposites

Objective

Students will understand what the opposite of an integer is, and where it is located on the number line.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to use reasoning to make sense of why 0 is the opposite of 0 .
6 Attend to Precision As students discuss the Talk About It! question on Slide 3, encourage them to use clear and precise mathematical language in their explanations.

Go Online to find additional teaching notes.

Talk About It!

SLIDE 3 -

Mathematical Discourse

Explain why 0 is its own opposite. Sample answer: The opposite of a number a is the number b that is the same distance from zero as the number a, but on the opposite side of the number line from zero. Since 0 is 0 units away from 0 , and 0 is neither positive nor negative, 0 is its own opposite.

DIFFERENTIATE

Reteaching Activity AL

To help students that may be struggling to understand how to identify opposites, explain that they should first calculate the distance to zero and note the direction of the integer. The opposite of an integer is the same distance from zero but in the opposite direction. For each of the following integers, have students identify the opposite's direction and distance from 0 .

2 The opposite is 2 units to the left of 0 .
-3 The opposite is 3 units to the right of 0 .
9 The opposite is 9 units to the left of 0 .
-7 The opposite is 7 units to the right of 0 .
-2 The opposite is 2 units to the right of 0 .

Interactive Presentation

$=+5+6 \times$

Learn, Find Opposites, Slide 2 of 3

On Slide 1, students view examples of opposites on the number line.

CLICK
On Slide 2, students move through the slides to use a number line to see the opposite of the opposite of -4 .

Opposites and Absolute Value

LESSON GOAL

Students will find the opposites of integers and use opposites to understand absolute value.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

EXPLORE AND DEVELOP

Explore: Opposites and Absolute Value

Learn: Find Opposites
Example 1: Use a Number Line to Find Opposites of Integers
Example 2: Find Opposites of Integers Using Symbols
Example 3: Find Opposites of Opposites of Integers
Learn: Absolute Value of Integers
Example 4: Find the Absolute Value of Integers

Have your students complete the Checks online.
REFLECT AND PRACTICE
Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	ALL	LEB	
Remediation: Review Resources	\bullet	0	
ArriveMATHTake Another Look	\bullet		
Collaboration Strategies	\bullet	0	0

Language Development Support

Assign page 21 of the Language Development Handbook to help your students build mathematical language related to opposites and absolute value.

ELLI You can use the tips and suggestions on page T21 of the handbook to support students who are building English proficiency.

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.C by finding the opposites of integers and using opposites to understand absolute value.
Standards for Mathematical Content: 6.NS.C.5, 6.NS.C.6,
6.NS.C.6.A, 6.NS.C.7, 6.NS.C.7.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP5,
MP6, MP8

Coherence

Vertical Alignment

Previous

Students graphed integers on a number line to represent data.
6.NS.C.5, 6.NS.C. 6

Now

Students find the opposites of integers and use opposites to understand absolute value.
6.NS.C.5, 6.NS.C.6, 6.NS.C. 7

Next
Students will compare and order integers on a number line. 6.NS.C. 7

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING \quad 2 FLUENCY \quad 3APPLICATION
Conceptual Bridge In this lesson, students draw on their
knowledge of graphing integers on a number line to develop
understanding of opposites of integers and absolute value. They use
this understanding to build fluency with writing the opposite of an
integer, writing the opposite of the opposite of an integer, and finding
the absolute value of an integer. They also apply their understanding
of opposites and absolute value to solve real-world problems.

Mathematical Background

The opposite of a number is the number that is the same distance from zero on a number line. The absolute value of a number is the distance between the number and zero on a number line. Numbers that are the same distance from zero on a number line have the same absolute value.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

Wivi Vionbutary wh Tbu Laten?

absolute value

the term abrolite in rwoydey ite?

opposite

Oive sont eamples of opponites fien manyby ithe.

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- graphing integers on a number line (Exercises 1-5)

Answers

1-5. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about elevation as a representation of absolute value.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- The term absolute comes from the Latin absolutus, which means unrestricted. Where might you have heard or seen the term absolute in everyday life? Sample answers: Someone who is 100% sure of a decision might say they are absolutely sure, something that is 100% true might be described as the absolute truth
- Give some examples of opposites from everyday life. Sample answers: left and right, up and down, in and out, stop and go

Explore Opposites and Absolute Value

Objective

Students will use Web Sketchpad to explore opposites and absolute value.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with scenarios of balloons moving in specified directions. They will use integers to describe their distances and locations.

Inquiry Question

How can you use integers to describe direction and distance? Sample answer: Positive and negative integers can be used to describe direction. Positive integers can be used to describe distance.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 4 is shown.

Talk About It

SLIDE4

Mathematical Discourse

The integers, 8 and -8 , used to represent the height of Balloon A and the new height of Balloon C , are called opposites. Think about the location of these integers on a number line to explain why these values are opposites. Sample answer: The values are the same distance from 0 on a number line. They are in the same position, but on opposite sides of 0 .

Interactive Presentation

```
Opposites and Abrolute Value
@l Itrmodiving the Ingulicy Cuestion
```


Explore, Slide 1 of 7

Explore, Slide 2 of 7
WEB SKETCHPAD
On Slide 2, students use Web Sketchpad to explore how integers can be used to describe direction and distance.

TYPE
On Slide 2, students complete a table to compare the vertical distance each balloon moved from its starting point.

TYPE

On Slide 3, students type to indicate how many feet Balloons B and D move.

Interactive Presentation

Explore, Slide 5 of 7

On Slide 6, students make a conjecture about the distance from zero for an integer and its opposite.

TYPE
On Slide 7, students respond to the Inquiry Question and can view a sample answer.

Explore Opposites and Absolute Value (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to use Web Sketchpad to model the movements of the balloons, in order to explore how they can use integers to understand direction and distance.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!

SLIDE 5

Mathematical Discourse

What do you notice about the values in the Location column and the values in the Distance Moved column for each balloon? Sample answer: The values in the Distance Moved column are all positive. The values in the Location column are either positive or negative, depending on whether the balloon moved up or down.

Your Notes
\square

CTalk About It

Can all postitive
integers be written with
or without the + sign?
Can all negative
integers be written with
or without the - sign?
Explain.
Sample answer: All positive integers can be written with or without whe + sign, but all the + sign, but all negative integers must be written with the - sign, in order to distinguish them from positive integers.

Example 1 Use a Number Line to Find
Opposites of Integers
Find -(-5).
Graph -5 on the number line.
$\underset{-6-5-4-3-2-1012345}{+}$
The point graphed at -5 is 5 units to the left of 0 . The point that is the same number of units to the right of 0 is 5 .
So, the opposite of -5 is 5

Check
Find -(-21). 21

Q Go Online You can complete an Extra Example onine.
e Example 2 Find Opposites of Integers Using Symbols
Asia and La T oya are building a sandcastle and digging a moat around the sandcastle. They would like the moat to be as deep as the sandcastle is tall. The sandcaste is 17 inches tall.
What integer represents the depth of the moat? How does this integer compare to the height of the sandcastle?
The depth of the moat can be expressed as the integer that is the opposite of 17 . The opposite of a positive is negative.
So, the integer that represents the depth of the moat is -(17) or -17

The integers representing the height of the sandcastle and the depth of the moat are opposites.

Check
Josh is planting a flower that is 6 inches tall. He wants the hole he is digging to be as deep as the flower is tall. What integer represents the depth of the hole? How does this compare to the height of the flower? stow -6; Sample answer: This is the opposite of the height of -6; Samp

6

200 Module 4 - Integers, Rational Numbers, and the Coordinate Plane

Interactive Presentation

Example 1, Use a Number Line to Find Opposites of Integers, Slide 1 of 2
In Slide 1 of Example 1, students use the
Number Line eTool to graph a point on a
number line.

200 Module 4 - Integers, Rational Numbers, and the Coordinate Plane

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 1 Use a Number Line to Find Opposites of Integers

Objective
Students will find the opposite of an integer by using a number line.

Questions for Mathematical Discourse

SLIDE1

Al Why is -5 to the left of 0 ? Negative numbers are found to the left of 0 on a horizontal number line.
(0). Why are -5 and 5 opposites? Sample answer: -5 and 5 are opposites, because they are the same number of units away from 0 , but on opposite sides of 0 .
[31. What is the opposite of the opposite of -5 ? -5

Example 2 Find Opposites of Integers Using Symbols

Objective
Students will find the opposite of an integer by using symbols.
(1) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of the relationship between the height of the sandcastle and the depth of the moat. Students should understand why the integers representing these quantities are opposites.

Questions for Mathematical Discourse

SLIDE 2

Al What integer represents the height of the sandcastle? 17
O) Why is the integer that represents the depth of the moat the opposite of 17 ? The depth of a moat will be below the level of the ground, the same distance as the height of the sandcastle.
[BLI If the depth of the moat was half of the height of the sandcastle, what negative number would represent the depth of the moat? -8.5

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find Opposites of Opposites of Integers

Objective

Students will find the opposite of the opposite of an integer.
Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to compare the values and explain why the opposite of the opposite of a number is the original number. Students should explain the meaning of the symbols in the context of the problem.

8 Look for and Express Regularity in Repeated Reasoning

Have students use patterns to make a conjecture about the relationship between the number of negative signs in an expression involving an integer and the integer itself. For example- $[-(-3)]$ is the opposite of 3 , but $-(-3)$ is equivalent to 3 .

Questions for Mathematical Discourse

SUDE2

Aㄴ. How can you read the expression? the opposite of the opposite of -3

OLI How can you simplify the problem into smaller steps that are easier to solve? Sample answer: First find the opposite of -3 . Then find the opposite of that number.
[31. How does $-[-(-3)]$ compare to 3 ? They are opposites.

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Absolute Value of Integers

Objective

Students will understand that the absolute value of an integer is the distance the integer is from zero on the number line.

0
Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SLIDE2

Mathematical Discourse

Why is the absolute value of a number never negative? Sample answer: The absolute value of a number refers to its distance from 0 on a number line. Distance cannot be a negative number.

Interactive Presentation

Learn, Absolute Value of Integers, Slide 1 of 2

CLICK	On Slide 2 of Example 3, students move through the steps to find $-[-(-3)]$.		
FLASHCARDS	On Slide 1 of the Learn, students use Flashcards to view multiple representations of absolute value.		Students complete the Check exercise
:---			
online to determine if they are ready			
to move on.			

Interactive Presentation

Example 4, Find the Absolute Value of Integers, Slide 2 of 4

OLICK	On Slide 2, students select from a drop- down menu to specify how to find absolute value.
On Slide 2, students determine how many	
units -150 is from 0.	

Example 4 Find the Absolute Value of Integers

Objective

Students will find the absolute value of an integer to solve a real-world problem.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the relationship between the integer that represents the cave explorer's final location, and the distance traveled. Students should use reasoning to determine that the absolute value of the integer gives the distance traveled.

As students discuss the Talk About lt! question on Slide 3, encourage them to use reasoning to determine what other number has the same absolute value as the integer given in this example.

Questions for Mathematical Discourse

SLIDE2

A1 The explorer's final location can be represented by the integer $\mathbf{- 1 5 0}$. Is her final location above or below her starting point? below her starting point

Cal Explain why you need to find the absolute value of -150 to solve this problem. Sample answer: The absolute value of -150 will give the distance the cave explorer traveled.

Ol. Why is the distance not -150 feet? Sample answer: Distance can never be negative.
[Bill If she traveled back up to her starting point, what will be her total distance traveled? What integer now represents her location? She traveled a total distance of $150+150$, or 300 feet, but the integer representing her location in relationship to her starting point is 0 .

Wo Online

- Find additional teaching notes and the Talk About It! question.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Students may have heard the phrase absolute certainty in everyday life. In this context, the term absolute means unchanging or universal. Have students discuss how the term absolute value in math is related to the concept of something that is unchanging or universal. For example, the integers 3 and -3 both have the same absolute value of 3. The distance each integer is from zero is unchanged, even though the integers are on opposite sides of zero. Since the distance from zero is unchanged, the absolute value of the integers is the same.

Exit Ticket

Refer to the Exit Ticket slide. Write a few sentences comparing and contrasting the elevations of New York City and the Danakil Depression, and how far away each elevation is from sea level. Use the terms opposite and absolute value in your explanation. Sample answer: The elevations of New York City and the Danakil Depression are opposites of each other, because the integers 410 and -410 are the same distance from 0 , but on opposite sides of 0 on the number line. The two elevations are the same distance from sea level because the absolute values of 410 and -410 are both equal to 410 .

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AI.. Practice Form B

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK \mathbf{T} opic	Exercises	
1	use a number line to find the opposite of an integer	$1-3$
2	use symbols to find the opposite of an integer	4,5
1	find the opposite or the opposite of the opposite of an integer	$6-11$
2	find the absolute value of an integer to solve a real- world problem	12,13
2	extend concepts learned in class to apply them in new contexts	14
3	solve application problems involving ordering using absolute value	15,16
3	higher-order and critical thinking skills	$17-20$

Common Misconception

Students may confuse the definitions of opposites and absolute value.
Remind students that opposites are on opposite sides of zero on the number line. There will always be a positive number and a negative number in a pair of opposites. The absolute value of a number is the distance that a number is from zero on a number line. Since distance is always positive, the absolute value of a number is always positive.

Interactive Presentation

Exit Ticket

Apply *indicates multi-step problem
*15. The table shows the minimum and maximum elevations, relative to sea level, of several hiking trails. Which hiking trail has the least change in elevation, related to sea level? Explain how you solved.
Southern Moon; Sample answer: I found the absolute value of each minimum elevation and added the maximum elevation for each trail. The change in elevation for Southern Moon is $62+48$, or 110 , which is the least change of the three trails.
${ }^{*}$ 16. The table shows the lowest and highest record temperatures for three cities. Which city had he greatest change in record
Boston; Sample answer: I found the absolute value of each lowest

temperature for each city. The change in temperature for Boston is $30+104$, or 134, which is the greatest change of the three cities.

Higher-Order Thinking Problems
17. Reason Inductively Determine if the following statement is true or false. Explain your reasoning.
The absolute value of a negative integer is always a negative integer.
false; Sample answer: Absolute value is a measure of distance and distance can never be negative.
18. Find the Error Judith states that $-|14|=14$ because the absolute value can never be negative. Find her mistake and correct i

Sample answer: -|14| means the opposite of the absolute value of 14 . Judith is correct that the absolute value can never be negative, but the opposite of the absolute value will always be negative (unless it is 0). The correct answer is $-|14|=-14$.
19. Wi. Justify Conclusions A student states that $-x$ is always equal to a negative integer. Is the student correct? Justify your reasoning.
no; Sample answer: If x is a positive integer such as 1 , then the result is -1 . If x is a negative integer such as -1 , then the result is 1 .

City	$\begin{array}{c}\text { Lowest } \\ \text { Temperature (F) }\end{array}$	$\begin{array}{c}\text { Highest } \\ \text { emperature (}\end{array}$
F ${ }^{\text {F }}$)		

20. Pi. Persevere with Problems Identify integers for x and y that make the following statement true.
$x>y$ and $|x|<|y|$
Sample answer: $x=5$ and $y=-7$

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 17, students determine if a statement is true or false and justify their reasoning.

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 18, students explain why another student's solution is incorrect and then correct the solution.

In Exercise 19, students analyze another student's statement to determine if it is correct.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 20, students use multiple steps to find integers that satisfy multiple criteria.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Listen and ask clarifying questions.

Use with Exercises 15-16 Have students work in pairs. Have students individually read Exercise 15 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 16.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,

- Practice, Exercises 4, 12, 14, 16-20
- aleks Plotting and Comparing Signed Numbers

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-14, 18, 19
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- ALEKS' Plotting and Comparing Signed Numbers

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arive MATH Take Another Look
- ALEKS Plotting and Comparing Signed Numbers

Learn Compare Integers

Objective

Students will understand that they can compare two integers by reasoning about their signs and locations on a number line.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to make sense of the quantities -2 and -3 , in order to reason that while $-2>-3$, the absolute value of -2 is less than the absolute value of -3 . This is true for all negative numbers. Encourage students to explain why, using their understanding of distance between a negative number and zero.

Teaching Notes

SLIDE 1

To compare two integers, have students first look at the signs of the two integers. Be sure they understand that, if the signs of two integers are different, a positive integer will always be greater than a negative integer.

SLIDE 2

If the signs of two integers are the same, students can graph the integers on a number line to compare their magnitudes. When two numbers are graphed on a number line, the greater number is to the right of the lesser number. Students can also use reasoning to compare the numbers without physically graphing them on a number line. Have them imagine a number line in their minds. If both integers are positive, the number farther away from zero is greater. For example, $3>2$, because 3 is farther away from 0 than 2 . If both integers are negative, the number closer to zero is greater. For example $-2>-3$, because -2 is closer to 0 than -3.

Talk About It!

SLIDE 3

Mathematical Discourse

When comparing two negative numbers, like -2 and -3 , what do you notice about the absolute value of -2 compared to the absolute value of -3 ? Does this hold true when comparing other negative numbers? Sample answer: The greater number is -2 , but the absolute value of -2 is less than the absolute value of -3 , since $2<3$. This is true for all pairs of negative numbers and their absolute values.

Interactive Presentation

Learn, Compare Integers, Slide 1 of 3
OLICK Slide 1, students move through the
slides to compare integers with different
signs.

CLICK
On Slide 2, students move through the Slides to compare integers with the same sign.

Compare and Order Integers

LESSON GOAL

Students will compare and order integers using a number line.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Compare Integers
Example 1: Compare Two Integers
Learn: Order Sets of Integers
Example 2: Order Sets of Integers
Learn: Distinguish Absolute Value from Order
Example 3: Comparisons with Absolute Value
Apply: Chemistry

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	l.E.	
Remediation: Review Resources	\bullet	\bullet	
ArtiveMATH Take Another Look	\bullet		
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 22 of the Language Development Handbook to help your students build mathematical language related to comparing and ordering integers.
FElill You can use the tips and suggestions on page T22 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min $\quad 1$ day 2 days

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.C by comparing and ordering integers and using their absolute values to solve problems.
Standards for Mathematical Content: 6.NS.C.7, 6.NS.C.7.A,
6.NS.C.7.B, 6.NS.C.7.C, 6.NS.C.7.D.Also addresses 6.NS.C.6, 6.NS.C.6.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students found the opposites of integers and used opposites to understand absolute value.
6.NS.C.5, 6.NS.C.6, 6.NS.C. 7

Now

Students compare and order integers on a number line.
6.NS.C. 7

Next
Students will reason about rational numbers on a number line.
6.NS.C.6, 6.NS.C. 7

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of integers by using the processes of comparing and ordering. They learn to write inequalities to build fluency with ordering sets of integers, and distinguish between comparisons of absolute value and comparisons about order. They apply their understanding of comparing and ordering integers to solve realworld problems.

Mathematical Background

Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- comparing and ordering whole numbers (Exercises 1-4)
- graphing integers on a number line (Exercise 5)

Answers

1. $1,4,5,9,34$
2. $11,21,22,26,37$
3. $101,112,134,153,167$
4. 1,$019 ; 1,100 ; 1,266 ; 1,345 ; 1,754$
5. See Warm Up slide online for correct answer.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about ordering a golfer's scores.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:
-What is an example of the absolute value of a number? Sample answer: $|-21|$; The absolute value of -21 is 21 .
-What is an example and non-example of an integer? Sample answer: An example of an integer is -4 . A non-example of an integer is $\frac{1}{16}$.

e Example 1 Compare Two Integers
Justin has a score of -5 on the Trueville Trivia Game.
Desiree's score is -3 .
Write an inequality to compare the scores. Then explain the meaning of the inequality.

Part A Write an inequality.
Graph the integers on the number line.

```
-5-4-3-2-1012345
```

Compare. Which number is farther to the right on the number line? - -3
The inequality is $-3>-5$.

Part \mathbf{B} Explain the meaning of the inequality.
Since $-3>-5$, Desiree has a greater score in the trivia game.

Check
Andrew and his father are hiking near T ackle Box Canyon. Their current elevation, in relation to sea level, is -38 feet. T ackle Box Canyon has an elevation of -83 feet.
Part A Write an inequality to compare the elevations.
$-38>-83$

Part B Explain the meaning of the inequality.
Sample answer: Andrew and his father's current elevation is closer to sea level than Tackle Box Canyon.

Interactive Presentation

Example 1, Compare Two Integers, Slide 2 of 5

On Slide 2, students use the Number Line eTool to graph integers on a number line.

Students complete the Check exercise online to determine if they are ready to move on.

Example 1 Compare Two Integers

Objective
Students will write an inequality to compare two integers and explain the meaning of the inequality.

T1P Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 4, encourage them to manipulate the symbols in the inequality in order to write a different, yet equivalent inequality.
5 Use Appropriate Tools Strategically Students will use the Number Line eTool to graph the integers on the number line in order to visually compare them.

Questions for Mathematical Discourse

SLIDE2

|nl Which integer is farther to the right on the number line? What does this mean? -3 is farther to the right; This means that $-3>-5$.
O. What other strategy, besides a number line, can you use to compare the integers? Sample answer: Since both integers are negative, the integer with the greater absolute value, -5 , will be the lesser integer.
(0) A classmate wrote the inequality $-5<-3$. Is this inequality correct? Explain. yes; Sample answer: The inequality reads -5 is less than -3 , which means the same as -3 is greater than -5 .

IBli. How far away from -3 is -5 ? How can you determine this? 2 units; Sample answer: Count the number of units it takes to travel from -3 to -5 .

SLIDE3

AL What does the inequality $-3>-5$ mean? The inequality means that -3 is greater than -5 .

OL How is it possible that a negative score can be declared the winner? Sample answer: The rules of the game indicate that the greater score is the winner, and $-3>-5$.

If Desiree's score increased by 2 and Justin's score decreased by 3, who will win the game? Explain. Desiree; Sample answer: Desiree's new score is -1 and Justin's new score is -8 . Since $-1>-8$, Desiree will win the game.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

Learn Order Sets of Integers

Objective

Students will understand that a number line can be used to order a set of integers.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to use clear and precise mathematical language in order to explain the usefulness of a number line when comparing a large set of integers.

0

Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 1. The animation illustrates how a number line can help order integers from least to greatest.

Talk About It!

SLIDE2

Mathematical Discourse

How does a number line help to organize a set of integers? Sample answer: The number line organizes the integers in order, so that I don't have to compare pairs of integers and remember in what order to place them.

Example 2 Order Sets of Integers

Objective
Students will order a set of integers.

Questions for Mathematical Discourse
 SLIDE1

A. After graphing the values on the number line, how can you tell what the least value is? The integer -105 is the farthest to the left of 0 , so it is the least integer.

OL Explain why it makes sense that the greatest integer is still negative. Sample answer: Integers that are greater than other integers are not always positive integers. If the data set only contains negative integers, such as this one, then the greatest integer will be negative.

Which elevation is the closest to sea level? -15 (Australia)

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt!! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Order Sets of Integers
Y ou can use a number line to order a set of integers from least to greatest or from greatest to least.
Qo Online Watch the animation to see how you can use a number line to order a set of integers.

The animation shows how to graph the set of integers $[-8,3,-1,0,6]$ on a number line.
 from least to greatest are from greatest to least are $(-8,-1,0,3,6)$.

Example 2 Order Sets of Integers
The table shows the lowest accessible elevations for several continents.

Order the continents from least to greatest according to their
lowest elevation.
Graph the integers on a number line.

Which continent has the least accessible elevation? South America
Which continent has the greatest accessible elevation? Australia
So, the continents written in order from least to greatest elevation are South America, North America, Antarctica, and Australia.
(2) Talk About It! How does a number line help to organize a set of integers?

Sample answer: The number line organizes the integers in order so integers in order s that I don't have to compare pairs of integers and remember in what order to place them.
C) Talk About It! The lowest elevation in Asia is near the Dead Sea at -423 meters. The lowest elevation in Africa is near Lake Assal a -157 meters. How would adding these change the number line and the order of the elevations?

Sample answer: By adding two numbers that are less than the least value, I need to extend the number line to -430 to include the values include the values order of the numbers would be -423 , - $157,-105,-86$, $-50,-15$.

Interactive Presentation

Example 2, Order Sets of Integers, Slide 1 of 3

DIFFERENTIATE

Enrichment Activity $\boldsymbol{I B L}_{1}$

To further students' understanding of comparing and ordering integers, have them work with a partner to create two different sets of integers that are not in numerical order. There should be a mix of both positive and negative integers, and at least 4 integers in each set. Have them label one set as Set A, and the other set as Set B. Then have them trade sets with another pair of students. Each pair should order the integers in Set A from least to greatest, and the integers in Set B from greatest to least. Have pairs of students check each other's work, and discuss and resolve any differences.

Learn Distinguish Absolute Value from Order

Objective

Students will understand how to distinguish between comparisons of absolute value and comparisons about order.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use precise terminology from their everyday lives to describe situations where negative and positive integers are used.

Teaching Notes

SLIDE1:

Be sure that students understand that since the absolute value of a number represents the distance the number is from zero, the absolute value increases the farther the number is from zero. As students move through the slides in the interactive tool, ask them to clarify their own understanding by generating numerical examples. For example, they might use the numbers 2 and 3 to illustrate that, as the value of a positive number increases, the absolute value increases. The number 3 is greater than 2 (because it is to the right of 2), and the absolute value of 3 is also greater than 2 (because 3 is farther away from 0 than 2). They might use the numbers -2 and -3 to illustrate that, as the value of a negative number decreases, the absolute value increases. The number -3 is less than -2 (because it is to the left of -2), but the absolute value of -3 is greater than the absolute value of -2 (because it is farther away from 0).

SLIDE2-

Have students further their understanding of this concept by discussing the real-world scenario presented. Ask students to compare the integers -25 and -30 . They should note that -25 is greater than -30 , because -25 is to the right of -30 on a number line. However, Kaito's depth was less than Ember's depth. Ask students to explain why. They should note that the depth of each diver is the distance from sea level (0 depth). Since Ember dove deeper than Kaito (farther away from sea level), her depth is greater, even though -30 is less than -25 .

Talk About It!

SLIDE3

Mathematical Discourse

Some words imply a negative value, like depth. What other words imply the sign of the number? Sample answer: loss, gain, withdrawal, deposit, profit, debt

Learn Distinguish Absolute Value from Order
Y ou know how to order numbers when you see them on a horizontal number line. The values increase as they move to the right, and the values decrease as they move to the left.
What happens to the absolute value, or magnitude, of numbers as the values increase or decrease? Since absolute value is the distance a number is from zero, the absolute value increases the farther the number is from zero.

As a positive value increases, or moves farther from 0 , its absolute value also increases.

As a negative

Suppose Kaito and Ember are scuba diving.
Kaito dove to 25 feet below sea level. This can be represented by the integer -25

Ember dove to 30 feet below sea level. This can be represented by the integer -30 . Who reached a greater depth?
Y ou know that-25>-30, but this does not mean that Kaito's depth was greater. When determining who reached a greater depth, you was greater. When determing who reache gre placement on the number line.

The absolute value of a number takes into account the
number's magnitude.
What is the absolute value of -30 ? $\quad 30$
What is the absolute value of -25 ? $\quad 25$
Which absolute value is greater? 30
Since $|-30|>|-25|$, Ember's depth is greater.

Interactive Presentation

Learn, Distinguish Absolute Value from Order, Slide 1 of 3

Q Example 3 Comparisons with Absolute Value
Explain why an account balance less than - $\$ 40$ represents a debt greater than \$40.
Debt is the money owed by one person to another person.
An example of an account balance less than $-\$ 40$ is $-\$ 50$.
Write an inequality comparing the two amounts.
$-\$ 50<-\$ 40$
Use the absolute value to determine which integer represents a greater debt.
$|-\$ 50|>|-\$ 40|$
An account balance less than $-\$ 50$ has a lesser value, but a greater absolute value.

So, an account balance of $-\$ 50$ means a debt of $\$ 50$, which is greater than a debt of $\$ 40$.

Check
Explain why an account balance less than - $\$ 5$ represents a debt greater than $\$ 5$.

Sample answer: An account balance less than $\mathbf{\$ 5}$ is farther to the left on the number line, which means it has a lesser value, but it is also farther away from zero, so its absolute value is greater than 5 dollars.

Q go Online Y ou can complete an Extra Example online

Interactive Presentation

Example 3, Comparisons with Absolute Value, Slide 1 of 2

CLICK | On Slide 1, students distinguish absolute |
| :--- |
| value from order in a real-world setting. |

Students complete the Check exercise online to determine if they are ready to move on.

Example 3 Comparisons with Absolute

 Value
Objective

Students will distinguish between comparisons of absolute value and comparisons about order.

Questions for Mathematical Discourse

SLIDE1

ALI. What do you know about debt? Sample answer: Debt is when you owe money to someone else. The greater the debt, the more money you owe.

Alil What are some possible account balances that are less than $-\$ 40$? Sample answers: $-\$ 50,-\$ 75,-\$ 90$

Ol. Explain why it makes sense that as a negative account balance decreases, the debt owed increases. Sample answer: Any negative account balance represents a debt owed. As that balance becomes more and more negative, the debt owed will increase.
31. Suppose the account balance is $\$ 40$. Is it still true that an account balance less than $\$ 40$ will represent a debt greater than $\$ 40$? Explain. not necessarily; Sample answer: Since the account balance is positive, any balances that are still positive do not represent any debt. Only balances that are less than zero will represent debt.

1 Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Language Development Activity ELL.

Students may need support distinguishing comparisons of absolute value from comparisons about order. Write the following phrases on the board that refer to the quantities in Example 3. Have students generate three possible quantities for the first phrase. Sample phrases are shown. Discuss why each quantity is actually a debt that is greater than $\$ 40$. Debt is something that someone owes. If a debt is greater than $\$ 40$, the amount owed is greater than $\$ 40$. This means the account balance will be less than $-\$ 40$.

account balance less than $-\$ 40$ debt greater than $\$ 40$	
$-\$ 45$	debt of $\$ 45$
$-\$ 52$	debt of $\$ 52$
$-\$ 67$	debt of $\$ 67$

Apply Chemistry

Objective

Students will come up with their own strategy to solve an application problem involving freezing points of substances.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How might thinking about $0^{\circ} \mathrm{C}$ help you?
- How will you organize the data to make it easier to compare?
- If you include the freezing point of nitric acid in the data, where is it located?

Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Chemistry
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students can describe the similarities and differences between comparing and ordering positive and negative integers. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. If a group of golfer's scores are 2, $-1,3,0$, $-1,-2,1$, and -3 , what is the order of scores beginning with the winner? Write a mathematical argument that can be used to defend your solution. $-3,-2,-1,-1,0,1,2,3$; Sample answer: In golf the lesser score is the winning score. When graphed on a number line, the integers in order from least to greatest are $-3,-2,-1,-1,0,1,2,3$. Since the lesser number is the winning score, the winning score is -3 followed by -2 and so on.

ASSESS AND DIFFERENTIATE

I) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-9 odd, 11-14
- ALEKS Plotting and Comparing Signed Numbers

IF students score 66-89\% on the Checks, THEN assign:

- Practice, Exercises 1-6, 9, 12, 13
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- ALEKS Ordering and Estimation

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Ordering and Estimation

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
2	write an inequality to compare two integers and explain the meaning of the inequality	1,2
2	order a set of integers	3,4
2	distinguish between comparisons of absolute value and comparisons about order	5,6
2	extend concepts learned in class to apply them in new contexts	7,8
3	solve application problems involving comparing and ordering integers	9,10
3	higher-order and critical thinking skills	$11-14$

Common Misconception

Students may mistakenly order integers based on absolute value rather than numerical value or vice versa. Explain to students the importance of identifying what they need to find prior to jumping into an ordering attempt. In Exercise 3, students are asked to order the gases from least to greatest according to their freezing points. If a student ordered the integers from greatest to least, they may have compared the absolute value of the integers, rather than the actual value.

Apply *indicates multi-step problem

*9. The table shows the lowest elevations for several countries. The lowest elevation in the United States is -86 meters. Between the elevations of which two countries is the elevation for the United States?
Morocco and Argentina

Higher-Order Thinking Problems
11. Create Write a real-world situation that compares two negative integers. Then epresent the situation with an inequality. Sample answer: On Saturday the high temperature was -1° F. On Sunday the high temperature was $-3^{\circ} \mathrm{F} ;-1>-3$
13. Order $(-2.5,4,23,-1,5,-3,0.66)$ from east to greatest.
$-3,-2.5,-1,0.66,4,5,23$
12. Justify Conclusions A student said -5 is less than -4 and $|-5|$ is less than $|-4|$. Is the student correct? Justify your reasoning.
no; Sample answer: Since -5 is to the left of -4 on a number line, -5 is less than -4. However, the absolute value of -5 is 5 and the absolute value of -4 is 4 and 5 is greater than 4 .
14. Identify Structure Suppose $y=2$. Identify all the integers for x that make $|x|<|y|$ a true statement.
$-1,0,1$

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 12, students determine if a student's reasoning is correct and justify their reasoning.
7 Look for and Make Use of Structure In Exercise 14, students use the structure of an inequality to solve it.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 9 Have students work together to prepare a brief demonstration that illustrates why this problem might require multiple steps to solve. For example, before they can identify where the lowest elevation for the United States falls, they have to order all of the elevations from least to greatest. Have each pair or group of students present their response to the class.

Clearly and precisely explain.
Use with Exercise 12 Have pairs of students prepare their explanations, making sure that their reasoning is clear and precise. Then call on one pair of students to explain their reasoning to the class. Encourage students to come up with a variety of responses, such as showing the values on a number line to compare.

Learn Rational Numbers

Objective

Students will understand what a rational number is, and how it includes the sets of natural numbers, whole numbers, and integers.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 2, encourage them to make sense of the quantity -3.77 to construct an argument for why the number is a rational number.Go Online to find additional teaching notes.

Talk About It

SLIDE2

Mathematical Discourse

Is -3.77 a rational number? Explain your reasoning. yes; Sample answer: -3.77 can be written as the fraction $-\frac{377}{100}$.

Learn Graph Rational Numbers on a Number Line

Objective

Students will understand that rational numbers are points on the number line, and how to use a number line to represent them.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to reason about each integer's relationship to 0 on the number line so that they can compare its location on a vertical number line with its location on a horizontal number line.Go Online to find additional teaching notes.

Talk About It

SLIDE 2

Mathematical Discourse

Suppose the same numbers are graphed on a vertical number line. Compare and contrast the locations of the numbers on the horizontal and vertical number lines. Sample answer: Each number is the same distance from zero on each number line. On the vertical number line, negative numbers are below zero, instead of to the left, and positive numbers are above zero, instead of to the right.

Interactive Presentation

Learn, Rational Numbers, Slide 1 of 2
On Slide 1 of Learn, Rational Numbers,
students view examples from the set of
rational numbers. to learn how to graph rational numbers.

LESSON GOAL

Students will reason about rational numbers using a number line.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Rational Numbers
Learn: Graph Rational Numbers on a Number Line
Example 1: Graph Sets of Rational Numbers
Learn: Absolute Value of Rational Numbers
Example 2: Find Absolute Value of Rational Numbers
Learn: Compare Rational Numbers
Example 3: Compare Rational Numbers
Learn: Order Rational Numbers
Example 4: Order Sets of Rational Numbers
Apply: GardeningHave your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	IT3	
Remediation: Review Resources	-	-	
ArriveMATH Take Another Look	-		
Extension: Extension Resources		-	-
Collaboration Strategies	\bullet	-	-

Language Development Support

Assign page 23 of the Language Development Handbook to help your students build mathematical language related to rational numbers.
FElill You can use the tips and suggestions on page T23 of the handbook to support students who are building English proficiency.

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.C by comparing and ordering rational numbers.
Standards for Mathematical Content: 6.NS.C.6, 6.NS.C.6.C,
6.NS.C.7, 6.NS.C.7.A, 6.NS.C.7.C,Also addresses 6.NS.C.7.B

Standards for Mathematical Practice: MP1, MP2, MP3, MP4,
MP5, MP6

Coherence

Vertical Alignment

Previous

Students used a number line to compare and order integers.

6.NS.C. 7

Now

Students reason about rational numbers using a number line.
6.NS.C.6, 6.NS.C. 7

Next
Students will identify ordered pairs, points, and quadrants and graph ordered pairs in the coordinate plane.
6.NS.C.6, 6.NS.C. 8

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of natural and whole numbers and integers, to develop understanding of rational numbers. They learn to graph rational numbers on a number line and write inequalities to build fluency with comparing and ordering rational numbers. They apply their understanding of rational numbers to solve real-world problems.

Mathematical Background

0 Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2
\square
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding the absolute value of integers (Exercise 1)
- ordering and graphing integers on number line (Exercise 2)
- writing fractions as decimals (Exercise 3)

Answers

1. Mount Whitney is 14,494 feet from sea level. Death Valley is 282 feet from sea level.
2. See Warm Up slide online for correct answer.
3. 0.95

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about comparing and ordering elevations.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- The term rational uses the root word ratio. What is a ratio? Make a conjecture as to what you think a rational number might be? Sample answer: A ratio is a comparison of two numbers, which can be written as a fraction. A rational number might be a number that can be written as a ratio, or a fraction.

Interactive Presentation

Example 1, Graph Sets of Rational Numbers, Slide 3 of 5
DRAG \& DROP
On Slide 2, students drag to indicate the integer boundaries.
eTOOLS

On Slide 3, students use the Number Line eTool to graph the numbers on a number line.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 1 Graph Sets of Rational Numbers

Objective

Students will graph a set of rational numbers on a number line.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About It! question on Slide 4, they should be able to explain the similarities and differences between the two methods for graphing rational numbers on a number line.

5 Use Appropriate Tools Strategically Students will use the Number Line eTool to graph the set of rational numbers on the number line.

Questions for Mathematical Discourse

SLIDE 2

All What does it mean to say that 3 is the upper limit? Sample answer: There is no number in the set that is greater than 3 .

Ol Why is it important to establish upper and lower limits? Sample answer: Establishing upper and lower limits will help when graphing the set. If I graph a number beyond the limits, it will be a sign that I need to re-evaluate the position of the number.

E1ill If 0.5 was added to the set of numbers, would you need to change the upper limit? What if 3.1 is added? Explain. Sample answer: If 0.5 is added to the set, I would not need to change the upper limit, because $0.5<3$. However, if 3.1 is added to the set, I would need to change the upper limit to be the integer 4, since $3.1>3$, but $3.1<4$.

SLIDE 3

AL. How many numbers will be graphed to the left of 0 ? to the right of 0 ? Three numbers will be graphed to the left of 0 and 1 number will be graphed to the right of 0 .
OL Why will $-\frac{1}{5}$ be graphed between 0 and -1 ? Sample answer: $-\frac{1}{5}=-0.2$, and -0.2 is between -1 and 0 , but much closer to 0 .
[BLI If $-\frac{1}{4}$ is added to the set, between which two other numbers of the set should you graph it? $-\frac{1}{4}=-0.25$, so graph $-\frac{1}{4}$ between $-\frac{1}{5}$ and -0.7 .

(3) Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Absolute Value of Rational Numbers

Objective

Students will understand that the absolute value of a rational number is the distance the number is from zero on the number line.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to adhere to the definitions of absolute value and opposites in order to explain why they do not represent the same concept. You may wish to ask students why the absolute value of -2.5 is the same as the opposite of -2.5 , but the absolute value of 2.5 is not the same as the opposite of 2.5.

Go Online to find additional teaching notes.

Talk About It!

SLIDE 2

Mathematical Discourse

Why is the absolute value of a number not the same as the opposite of a number? Sample answer: Absolute value refers to distance, and distance cannot be negative. Opposites are the same distance from 0 , but are on the opposite sides of the number line, so they can be negative.

Example 2 Find Absolute Value of Rational Numbers

Objective

Students will find the absolute value of a rational number.

Questions for Mathematical Discourse

SLIDE 1

AL. Why is the elevation negative? It is negative because the hiker is descending to an elevation that is lower than the entrance which is at an elevation of 0 feet.

OL. Why can you use absolute value to find how many feet the hiker descended? The absolute value gives the distance the hiker descended to the lowest point of the cave, since distance cannot be negative.

BII What is $-(-|-53.4|)$? 53.4

Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Absolute Value of Rational Numbers
The rational numbers 2.5 and -2.5 are each 2.5 units from 0 , even though they are on opposite sides of 0 . Numbers that are the same distance from zero on a number line have the same absolute value.

© Example 2 Find Absolute Value of Rational Numbers
The lowest point in a certain cave has an elevation of -53.4 meters.
If the cave entrance has an elevation of 0 meters, evaluate |-53.4 to determine the number of meters a hiker would descend to reach the lowest point.
Graph -53.4 on a number line

```
-55
```

How many units from 0 is -53.4 ? $\quad 53.4$
So, the hiker descended 53.4 meters.

Check
The Miller family is having an inground pool installed. The deepest point will be -9.75 feet below ground. If the ground has an elevatio of 0 feet, evaluate $|-9.75|$ to determine the depth of the pool.
9.75 ft
$Q_{\text {Go onli }}$
(2) Talk About It Why is the absolute value of a number not the same as the opposite of a number?
Sample answer: Absolute value refers Absolute value distance cannot be distance cannot be negative. Oppos
are the same are the same
distance from 0 , but distance from 0 , but are on the opposite side of the number line, so they can be negative.

```
\(\square\)
```

\square \square \square \square \square \square \square \square \square \square

Interactive Presentation

Learn, Absolute Value of Rational Numbers, Slide 1 of 2
FLASHCARDS

On Slide 1 of the Learn, students use Flashcards to view multiple representations of absolute value.

On Slide 1 of Example 2, students use the Number Line eTool to graph a number on a number line.

CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Learn, Compare Rational Numbers, Slide 2 of 3

CLICK

On Slides 1 and 2, students move through slides to compare integers.

1 CONCEPTUAL UNDERSTANDING

Learn Compare Rational Numbers

Objective

Students will understand that they can compare two rational numbers by reasoning about their signs and locations on a number line.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About lt! question on Slide 3, they should be able to apply what they learned about comparing integers to comparing rational numbers.

Teaching Notes
 SLIDE1

To compare two rational numbers, have students first look at the signs of the two numbers. Be sure they understand that, if the signs of two numbers are different, a positive rational number will always be greater than a negative rational number.

SLIDER

If the signs of two rational numbers are the same, students can graph the integers on a number line to compare their magnitudes. When two numbers are graphed on a number line, the greater number is to the right of the lesser number. Students can also use reasoning to compare the numbers without physically graphing them on a number line. Have them imagine a number line in their minds. If both numbers are positive, the number farther away from zero is greaterFor example, $1.5>1.2$, because 1.5 is farther away from 0 than 1.2. If both numbers are negative, the number closer to zero is greater For example $-1.2>-1.5$, because -1.2 is closer to 0 than-1.5.

Talk About It!

SLIDE 3

Mathematical Discourse

How can you use what you know about the signs of the rational numbers to quickly compare them? Sample answer: If the signs are different, I know that a positive rational number is greater than a negative rational number. If they are the same, it might be helpful to compare the magnitude using a number line.

DIFFERENTIATE

Enrichment Activity [BLI

To further students' understanding of comparing and ordering rational numbers, have them work with a partner to create two different sets of rational numbers that are not in numerical order. There should be a mix of both positive and negative numbers, a mix of fractions, decimals, and integers, and at least 4 numbers in each set. Have them label one set as Set A, and the other set as Set B. Then have them trade sets with another pair of students. Each pair should order the integers in Set A from least to greatest, and the integers in Set B from greatest to least. Have pairs of students check each other's work, and discuss and resolve any differences.

Example 3 Compare Rational Numbers

Objective
Students will write an inequality to compare two rational numbers.

11. Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Encourage students to use the Number Line eTool to graph the values on the number line, in order to visually compare them.

6 Attend to Precision Students should accurately and efficiently write the numbers in the same form in order to graph them, and compare them by paying special attention to the fact that both numbers are negative.

As students discuss the Talk About lt! question on Slide 4, encourage them to use clear and precise mathematical language as they explain how to compare the numbers without graphing them.

Questions for Mathematical Discourse

SIDEE2:

An How can the fraction be written as a decimal? Sample answer: Multiply the numerator and denominator by 4 , so that the denominator is 100 . Then write as a decimal.
OL. How can you use reasoning to compare $-\frac{12}{25}$ and -0.51 ? Sample answer: $-\frac{12}{25}$ is a little greater than $-\frac{1}{2}$, since half of 25 is 12.5 . -0.51 is a little less than $-\frac{1}{2}$, since $-\frac{1}{2}=-0.5$. So,$-\frac{12}{25}>-0.51$.
[BLI Generate a negative rational number that is greater than either of these two numbers. Sample answer: $-\frac{1}{4}$

SLIDE 3

AL When comparing two numbers, is the number farther to the left on a number line always the lesser number? Explain. yes; Sample answer: This is why we use number lines to compare. Numbers to the left are always less than numbers to the right.

OLI. When comparing two numbers, is the number closer to 0 always the lesser number? Explain. no; Sample answer: When comparing two positive numbers, the number closer to 0 is the lesser number. When comparing two negative numbers, the number closer to 0 is actually the greater number. When comparing a positive and a negative number, the negative number is the lesser number, regardless of which number is closer to 0 .
B1. Generate another number that is between -0.51 and $-\frac{12}{25}$. Sample answer: -0.49

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 3, Compare Rational Numbers, Slide 3 of 5

On Slide 3, students use the Number Line eTool to graph rational numbers on a number line.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.
6.NS.C.6, 6.NS.C. 7

1 CONCEPTUAL UNDERSTANDING

Learn Order Rational Numbers

Objective

Students will understand how a number line can be used to order a set of rational numbers.

Talk About It! How does place value help you order the set of numbers
$\left\{\frac{1}{4},-0.375,-\frac{17}{50}, 0.3\right\}$?

Sample answer: I can

 rewrite all of the rational numbers as decimals. Then I can compare the values in the tenths and hundredths place to order the numbers.Q Think About It! How can you order rational numbers when they are written in different forms?
See students' responses.
Q. Talk About It! How does a number line help you visualize the order of rational numbers?

Sample answer: By placing the numbers on the number line, I can quickly see the can quickly see th farthest to the left, and the greatest and the greatest number is farthest to the right.

Learn Order Rational Numbers
To order rational numbers, follow these steps:

1. Write each number in the same form. Since there may be different denominators in the fractions, it may be easier to write all of the numbers as decimals.
2. Use the signs of the numbers, place value, or a number line to compare the numbers.
3. Order the values from least to greatest or greatest to least.

To order the set of numbers $\left\{\frac{1}{4},-0.375,-\frac{17}{50}, 0.3\right\}$, graph each number on a number line. The least value is farthest to the left and the greatest value is farthest to the right.

So, the set of numbers in order from least to greatest is
$\left\{-0.375,-\frac{17}{50}, \frac{1}{4}, 0.3\right\}$
$\left\{0.3, \frac{1}{4},-\frac{17}{50},-0.375\right\}$.

Example 4 Order Sets of Rational Numbers Order the set $\left\{-2.46,-2 \frac{22}{25} \cdot-2 \frac{1}{1}\right\}$ from least to greatest. Step 1 Write the mixed numbers as decimals. $-2.46=-2.46 \quad-2 \frac{22}{25}=-2.88 \quad-2 \frac{1}{10}=-2.1$ Step 2 Graph the numbers on a number line.
 So, the set of numbers in order from least to greatest is $-2 \frac{22}{25},-2.46$, $-2 \frac{1}{10}$.
Check
Order the set $\left\{2.12,-2.1,2 \frac{1}{10},-2 \frac{1}{5}\right\}$ from least to greatest.
$=\left\{-2 \frac{1}{5},-2,1,2 \frac{1}{10}, 2,12\right\}$
(7) Go Online Y ou can complete an Extra Example online.

```
220
Module 4 - Integers, Rational Numbers, and the Coordinate Plane
```


Interactive Presentation

Learn, Order Rational Numbers, Slide 1 of 2
On Slide 1 of the Learn, students move
through the slides to graph a set of
rational numbers on the number line.

220 Module 4 • Integers, Rational Numbers, and the Coordinate Plane

Go Online

- Find additional teaching notes.
- Teaching the Mathematical Practices
- Sample answer for the Talk About lt! question on Slide 2.

Example 4 Order Sets of Rational Numbers

Objective

Students will order a set of rational numbers.

Questions for Mathematical Discourse

SLIDE2

All Why do you write the mixed numbers as decimals? Sample answer: The mixed numbers can be written as decimals, so that the numbers are easier to graph and compare.
0.l. Can you compare the numbers without graphing them on the number line? Explain. yes; Sample answer: Since the numbers are all negative, I can compare place value. Since $1<4<8$ in the tenths place, I know that -2.88 is the least number, because it is the farthest away from zero. The next least number is -2.46 , and the greatest number is -2.1 .
|31. If one of the numbers was positive, is it enough to only compare the digits in the tenths place? Explain. no; Sample answer: If one of the numbers was positive, I know that is the greatest number since it is farthest to the right on the number line. Then I can compare the tenths digits of the other two numbers, since they are both negative.

SLIDE 3

AL What is true about all of the numbers? They are all negative.
OL Which number is the greatest? How do you know? $-2 \frac{1}{10}$; It's the number that is closest to 0 , and all the numbers are negative.
[BLI Which number has the greatest magnitude? Explain. $-2 \frac{22}{25}$; It has the greatest absolute value.

(3) Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Gardening

Objective

Students will come up with their own strategy to solve an application problem involving comparisons to the record weight of a pumpkin.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of

 Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How can you write the numbers in the same form?
-What do you notice about the units?
- Whose pumpkin had a change in weight that was closest to 0 ?

- Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Gardening

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students can add descriptions of the similarities and differences between comparing and ordering different types of rational numbers. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. Order the locations in the table from the least elevation to the greatest elevation. Write a mathematical argument that can be used to defend your solution. Bentley Subglacial Trench, Dead Sea, Lake Assal, Death Valley, Valdes Peninsula, Caspian Sea, Lake Eyre; Sample answer: When the numbers are all graphed on a number line, the points in order from left to right indicate the elevations in order from least to greatest.

ASSESS AND DIFFERENTIATE

(ili) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 3, 11, 13, 15-17
- Extension: Extension Resources
- ALEKS Plotting and Comparing Signed Numbers

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-10, 13, 16
- Extension: Extension Resources
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- Q ALEKS Plotting and Ordering Fractions

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- Q ALEKS Plotting and Ordering Fractions

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	graph a set of rational numbers on a number line	1,2
2	find the absolute value of a rational number	3,4
1	write an inequality to compare two rational numbers	$5-8$
1	order a set of rational numbers	9,10
2	extend concepts learned in class to apply them in new contexts	11,12
3	solve application problems involving comparing and ordering rational numbers	13,14
3	higher-order and critical thinking skills	

Common Misconception

Students may have trouble understanding negative mixed numbers. In Exercise 7, students may understand that - 4 indicates four units to the left of 0 on a number line. However, they might not recognize that the fractional portion of the number indicates an additional $\frac{4}{25}$ unit to the left of -4 on the number line. Students may mistakenly always consider the fractional part as positive rather than negative. The rational number $-4 \frac{4}{25}$ can be thought of as $-4+\left(-\frac{4}{25}\right)$ not $-4+\frac{4}{25}$.

Apply *indicates multi-step problem

*13. Saeng wants to run the 100 -meter-dash in a certain number of seconds. The table shows the change in times from her goal and her actual times for five races. Between which two race numbers is Saeng's third race?

Race Change in Time from Goal (s)	
1	-1.2
2	$+1 \frac{1}{10}$
3	$-1 \frac{1}{4}$
4	-1.4
5	$+1 \frac{1}{2}$

Race 4 and Race 1
14. In science class, students are growing plants. The table shows the change in th heights between the heights of some students' plants and the height of last year's tallest plant. Order the changes from least to greatest.

Student Change	
Ellen	$-2 \frac{3}{4} \mathrm{in}$.
Juan	$\frac{1}{4} \mathrm{ft}$
Patty	$3.1 \mathrm{in}$.
Sonny	$-\frac{1}{5} \mathrm{ft}$

$-2 \frac{3}{4}$ in., $-\frac{1}{5} \mathrm{ft},-\frac{1}{\mathrm{ft}}, 3.1 \mathrm{in}$.

Q Higher-Order Thinking Problems
15. Create Write about a real-world situation in which you compare two negative rational numbers. Then write an inequality comparing the two numbers.
Sample answer: Ming's account balance is $-\$ 10.50$. Her brother's account balance is $\mathbf{-} \$ 15.50$. Compare their balances; $-\$ 10.50>-\$ 15.50$
16. Justify Conclusions A student said $-2 \frac{1}{4}$ is less than -2.2 and $\left|-2 \frac{1}{4}\right|$ is less than $|-2.2|$. Is the student correct? Justify your reasoning.
no; Sample answer: $-2 \frac{1}{4}=-2.25$, so, it is to the left of -2.2 on a number line. The absolute value of $-2 \frac{1}{4} \mathrm{j}^{5} 2 \frac{1}{2}$ or 2.25 and the absolute value of -2.2 is 2.2 , which is less than 2.25 or $2 \frac{1}{4}$.
17. Reason Inductively Determine whether the following statement is
always, sometimes, or never true. Justify your reasoning.
If x and y are both less than 0 and $x<y$, then $-x\rangle-y$.
always; Sample answer: The lesser the number, the closer it is to 0 ; therefore, it's opposite is also closer to $0 . x=-3, y=-2$

[^4]
1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 16, students analyze another student's statement to determine whether or not it is true.

2 Reason Abstractly and Quantitatively In Exercise 17, students determine if an inequality is true for some, all, or no values of two variables.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create Your Own Problem

Use with Exercises 13-14 Have students work in groups of 3-4 to solve the problem in Exercise 13. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 14.

Make sense of the problem.

Use with Exercise 16 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise said that $\left|-2 \frac{1}{4}\right|$ is less than $|-2.2|$. Have each pair or group of students present their explanations to the class.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY 3 APPLICATION

Learn The Coordinate Plane

Objective

Students will understand how to determine the sign of the x - and y-coordinates for ordered pairs graphed within the four quadrants of the coordinate plane.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 4, encourage them to make sense of the coordinates of the point $\left(\frac{2}{3},-7\right)$ and their signs in order to determine the location of the point.

Teaching Notes

SLIDE1

Be sure students understand the structure of the coordinate plane, and how it is formed by the intersection of two perpendicular number lines (the x - and y-axes), creating four quadrants. Quadrants are named using Roman Numerals.

SLIDE 2

Have students explore the interactive tool in order to understand the patterns for the signs of the x - and y-coordinates that are located in each quadrant, and along each axis. For example, an ordered pair with a negative x-coordinate and a y-coordinate of zero will be located on the x-axis to the left of the origin. You may wish to have students generate other examples and use the interactive tool to locate those points.

SLIDE 3

Have students complete the tables that identify the signs of the x - and y-coordinates corresponding to each quadrant or axis. Some students mistakenly think that the x-coordinate is zero for any point along the x-axis. Encourage them to use reasoning about what each coordinate indicates in an ordered pair. The x-coordinate indicates the distance and direction an ordered pair is from the origin, along the x-axis. If the x-coordinate is zero, then the point lies somewhere along the y-axis (or origin).

Talk About It!

SLIDE 4

Mathematical Discourse

How can you tell in which quadrant the point $\left(\frac{2}{3},-7\right)$ ies?
Sample answer: I can look at the signs of the x - and y-coordinates.
Because the x-coordinate is positive, it must be in either Quadrant I or Quadrant IV. Because the y-coordinate is negative, the point lies in Quadrant IV.

Interactive Presentation

Learn, The Coordinate Plane, Slide 1 of 4
On Slide 2, students select markers
to understand the patterns for the signs of
x - and y-coordinates.

The Coordinate Plane

LESSON GOAL

Students will identify ordered pairs, points, and quadrants and graph ordered pairs on the coordinate plane.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: The Coordinate Plane

Learn: The Coordinate Plane
Example 1: Identify the Quadrant
Example 2: Identify the Axis
Learn: Identify Ordered Pairs
Example 3: Identify Ordered Pairs
Learn: Identify Points
Example 4: Identify Points
Learn: Graph Ordered Pairs
Example 5: Graph Ordered Pairs
Apply: Maps

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 24 of the Language Development Handbook to help your students build mathematical language related to the coordinate plane.
FElill You can use the tips and suggestions on page T24 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1.5 days
45 min	3 days

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.C
by identifying ordered pairs, points, and quadrants, and graphing ordered pairs on the coordinate plane.
Standards for Mathematical Content: 6.NS.C.6, 6.NS.C.6.B,

6.NS.C.6.C, 6.NS.C. 8

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students reasoned about rational numbers using a number line.
6.NS.C.6, 6.NS.C. 7

Now

Students identify ordered pairs, points, and quadrants and graph ordered pairs on the coordinate plane.
6.NS.C.6, 6.NS.C. 8

Next
Students will graph reflections of points on the coordinate plane.
6.NS.C.6, 6.NS.C. 8

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of graphing points on a number line to develop understanding of the coordinate plane. They learn to identify ordered pairs, points, and quadrants, to build fluency with writing ordered pairs and graphing them on the coordinate plane.

Mathematical Background

Wo Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Launch the Lesson, Slide 1 of 2
\square

[^5]
Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- graphing rational numbers on a number line (Exercises 1-5)

Answers

1-5. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about locations on Earth being related to a coordinate plane.
(3o Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Can you think of any other words with the prefix quad-? What does the prefix quad- mean? Sample answer: quadrilateral, quadruplet; The prefix quad- means four.

Explore The Coordinate Plane

Objective

Students will use Web Sketchpad to explore the coordinate plane.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations

Summary of Activity

Students will be presented with a model of a fly on a ceiling that has the horizontal and vertical distance marked. Students will then further explore the idea of x and y coordinates and how they are related to the position of the fly on the model. Students will use their observations to make conjectures about the values of the x - and y-coordinates in each quadrant.

Q Inquiry Question

How are integers and rational numbers used in the coordinate plane?
Sample answer: Integers and rational numbers are used as x - and y-coordinates to locate positions on a coordinate plane.
3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!
 SLIDE 5

Mathematical Discourse

How can you determine the dimensions of the ceiling from the coordinates of the four corners? Sample answer: I can use the greatest x-value, 6 , to find the length, and the greatest y-value, 4 , to find the width. So, the ceiling is 6 by 4 (or 4 by 6).
(continued on next page)

Interactive Presentation

The Coordinate Plane

C) Introducing the Ingatry Cuevtion

Explore, Slide 1 of 11

nrop ne point at

Explore, Slide 3 of 11

Throughout the Explore, students use Web Sketchpad to explore how integers and rational numbers are used in the coordinate plane.

TYPE

On Slide 4, students complete a table to identify the coordinates of the four corners.

Interactive Presentation

Explore, Slide 7 of 11

CLICK

On Slide 8, students identify the point represented by the given coordinates.

On Slide 10, students identify the figure they graphed in the coordinate plane.

CHECK
a
On Slide 11, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore The Coordinate Plane (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and examine the coordinates of the fly on the ceiling, which represents the coordinate plane. Encourage students to notice that there are four quadrants and to make observations about each of the quadrants.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 7 are shown.

Talk About It!

SLIDE7

Mathematical Discourse

Drag the fly around the model. Have the measurements changed? What is different about the coordinates? Sample answer: The ceiling is still 6 by 4. The x-coordinates go from -3 to 3 and the y-coordinates go from -2 to 2 .

Interactive Presentation

Example 1, Identify the Quadrant, Slide 1 of 2
On Slide 1 of Example 1, students move
through the steps to identify the correct
quadrant.

[^6]
1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Example 1 Identify the Quadrant

Objective

Students will identify the quadrant of the coordinate plane in which a given point is located.

Questions for Mathematical Discourse

 SLIDE1A1. How many quadrants are in the coordinate plane? 4
Al. What is the sign of each coordinate? The x-coordinate is negative. The y-coordinate is positive.

OI. Since the x-coordinate is negative, which quadrants can you eliminate? Sample answer: Since the x-coordinate is negative, the point cannot be in Quadrant I or Quadrant IV.
31. How far away from the x-axis is the point? the y-axis? The point is $1 \frac{1}{2}$ units from the x-axis and $\frac{3}{4}$ unit from the y-axis.

Example 2 Identify the Axis

Objective
Students will identify the axis on which a given point is located.

Questions for Mathematical Discourse

SLIDE 1

AL What do you notice about the given point? Sample answer: The x-coordinate is 0 .

OL. Explain why any point with an x-coordinate of 0 is located on the y-axis. Sample answer: When the x-coordinate is zero, the horizontal distance the point is from 0 along the horizontal x-axis is zero. This means that the point lies on the y-axis.
OL There is one point with an x-coordinate of 0 that is located on the x-axis. Identify that point. the origin, $(0,0)$

BL What are the coordinates of the point whose x-coordinate remains unchanged, but whose y-coordinate is the opposite of the given y-coordinate? $\left.\phi,-\frac{2}{5}\right)$

1 Go Online

- Find teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Identify Ordered Pairs

Objective

Students will learn how to identify an ordered pair that represents a point graphed on the coordinate plane.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to pay attention to the order in which the coordinates of an ordered pair must be written.

Teaching Notes

SLIDE1

Be sure students understand that the ordered pairs are written in the form (x, y), so to find the first coordinate in the ordered pair, they must identify the direction and distance the point is from the origin along the horizontal x-axis. Then they can identify the direction and distance the point is from the origin along the vertical y-axis.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to identify ordered pairs of points graphed on the coordinate plane.

Talk About It!
 SLIDE 2

Mathematical Discourse

When identifying an ordered pair that represents a graphed point, why is it important to count the horizontal movement from the origin to that point first? Sample answer: Ordered pairs are defined so that the x-coordinate is written first, followed by the y-coordinate. Counting the horizontal distance first ensures that I will write the coordinates in the correct order.

DIFFERENTIATE

Language Development Activity $\boldsymbol{E E L L}$

Students should be familiar with ordered pairs from Grade 5. They may need support in distinguishing the vocabulary terms coordinates, ordered pair, and point. Have students use a blank coordinate grid to plot and label point P at $(1,5)$. The point is point P. The ordered pair that represents point P is $(1,5)$. Discuss that the term ordered pair denotes a pair of numbers in a particular order. Students can use this understanding to remember what an ordered pair is. The ordered pair contains two coordinates, an x-coordinate and a y-coordinate.

Interactive Presentation

Learn, Identify Ordered Pairs, Slide 1 of 2

WATCH

On Slide 1, students watch an animation that illustrates how to identify ordered pairs of points graphed on the coordinate plane.
 IV

Q Talk About It
Why is the ordered pair $\left(-1,1 \frac{1}{2}\right)$ incorrect for naming point D ?
Sample answer: The coordinates are in the wrong order. The coordinates must be
written x first, then y. Wittenx first, theny.

Example 3 Identify Ordered Pairs
Identify the ordered pair that names point D.

Start at the origin.
Move $1 \frac{1}{2}$ units right on the x-axis until you reach the vertical line that intersects with point D. The x-coordinate of point D is $1 \frac{1}{2}$. Move down 1 unit to reach point D. The y-coordinate of point D is -1

So, the ordered pair that names point D is $\left(\frac{1}{2},-1\right)$.

Check
Identify the ordered pair that names point $B . \quad\left(-1 \frac{1}{2},-1\right)$

Quo Online You can complete an Extra Example online.

Interactive Presentation

Example 3, Identify Ordered Pairs, Slide 2 of 4

OLICK	On Slide 2, students select from drop- down menus to determine the x-coordinate.
	On Slide 2, students determine the y-coordinate.

1 CONCEPTUAL UNDERSTANDING

Example 3 Identify Ordered Pairs

Objective

Students will identify an ordered pair that represents a point graphed on the coordinate plane.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 3, encourage them to construct a plausible argument to explain why the given ordered pair is incorrect when naming point D.
6 Attend to Precision Encourage students to accurately and efficiently determine the quadrant in which the point lies, and pay attention to the order in which the coordinates must be written, as well as the sign of each coordinate.

Questions for Mathematical Discourse

SLIDE2

Ali. Will the x-coordinate be positive or negative? the y-coordinate? Explain. The x-coordinate will be positive because the point is to the right of the y-axis. The y-coordinate will be negative because the point is below the x-axis.

Ol. Why is it helpful to identify the quadrant in which the pointlies? Sample answer: Since point D lies in Quadrant IV, it means that the x-coordinate will be positive and the y-coordinate will be negative.

How far away is point D from the x-axis? the y-axis? Point D is 1 unit from the x-axis and $1 \frac{1}{2}$ units from the y-axis.

1 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Identify Points

Objective

Students will learn how to identify a point on the coordinate plane given an ordered pair.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About It! question on Slide 2, encourage them to provide a clear explanation about how they can use the signs of the coordinates in each quadrant to quickly identify points.

Teaching Notes

SLIDE1

You may wish to pause the animation after the ordered pair ($-2,4$) is shown, and ask students to discuss with a partner how they can rule out some of the points given in the coordinate plane. For example, some students may rule out point R because the x-coordinate that represents point R should be positive, since the point lies in Quadrant IV. You may wish to repeat the discussion after the ordered pair $(4,-2)$ is shown.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to identify a point graphed on the coordinate plane given the ordered pair.

Talk About It!

SUDE 2.

Mathematical Discourse

How can you use what you know about the signs of the coordinates in each quadrant to quickly identify the point? Sample answer: If the x - and y-values are both negative, for example, I know the point is located in Quadrant III, so I can quickly identify the point.

Interactive Presentation

Learn, Identify Points, Slide 1 of 2

WATCH

On Slide 1, students watch an animation that illustrates how to identify a point graphed on the coordinate plane given the ordered pair.

Interactive Presentation

Example 4, Identify Points, Slide 1 of 2
On Slide 1, students move through the
steps to identify the correct point.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 4 Identify Points

Objective

Students will identify a point on the coordinate plane given an ordered pair.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to pay careful attention to the sign of each coordinate in order to determine which point correctly names the given ordered pair.

Questions for Mathematical Discourse

SLIDE 1

An. What does the sign of the x-coordinate tell you about the point? The x-coordinate tells me that the point is left of the origin.

OI. Why is point R the only point that could have this ordered pair? Sample answer: Both points S and T will have x-coordinates that are positive, because they are located to the right of the origin.
Blill If the point $(-2,-2)$ was graphed, how many units below point R will this point be? The point ($-2,-2$) will be 2.5 units below point R.

0

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Graph Ordered Pairs

Objective

Students will learn how to graph ordered pairs with rational number coordinates in the coordinate plane.

Teaching Notes

SUDE1

You may wish to pause the animation after the ordered pair $(-4,3)$ is shown, and ask students to discuss with a partner how they would graph that point in the coordinate plane. Make sure they can clearly explain what process they would use, and why. Then have them continue the animation to compare their process with the one shown. Ask them how they can use their understanding of the signs of coordinates to verify they graphed the point in the correct quadrant.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to graph an ordered pair on the coordinate plane.

Learn, Graph Ordered Pairs

WATCH

On Slide 1, students watch an animation that explains how to graph ordered pairs.

Avenue. Main Street runs north and south, and Lafayette Avenue runs east and west. The streets in her city can be modeled using a coordinate grid with her starting position at the origin. On her route, Calida runs 5 blocks west, then turns and runs 6 blocks north. She then runs 2 blocks east, then turns and runs 10 blocks south where she stops. What ordered pair can be used to represent her stopping position if her beginning position was $(0,0)$ on the grid? How far west of Main Street is Calida when she stops?
($-3,-4$); 3 blocks

Interactive Presentation

Example 5, Graph Ordered Pairs, Slide 1 of 2
On Slide 1, students use the Graphing
eTool to graph an ordered pair on the
coordinate plane.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 5 Graph Ordered Pairs

Objective
Students will graph ordered pairs with rational number coordinates on the coordinate plane.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use the Graphing eTool to graph the point.

6 Attend to Precision Encourage students to pay careful attention to the sign of each coordinate and how the ordered pair indicates movement on the coordinate plane.

Questions for Mathematical Discourse

SLIDE1

Al. In which quadrant will the point be located? Quadrant III
0. What does the x-coordinate tell you to do? Sample answer: Starting at the origin, move $2 \frac{1}{2}$ units to the left.

OL. What does the y-coordinate tell you to do? Sample answer: From my current location, move $3 \frac{1}{2}$ units down, and place a dot.
IBLI. How far is the point from the x-axis? the y-axis? $3 \frac{1}{2}$ units; $2 \frac{1}{2}$ units

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Maps

Objective

Students will come up with their own strategy to solve an application problem involving locations of places on a map of a town.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- To locate the library, in which direction should you go on the x-axis? the y-axis?
- If the dry cleaner is west of the library, should you go left or right? How many units?
- If the dry cleaner is north of the library, should you go up or down? How many units?

(.) Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Maps
The table shows the locations for several different places around town. The grid shows a map of the town, and each square on the grid presents one city block. Ben needs to go to the dry cleaner, which should he go?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem.

$\left(-\frac{3}{4}, \frac{1}{2}\right)$; See students' work.
4 How can you show your solution is reasonable?
Q Write About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Maps

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Essential Question Follow-Up

How are integers and rational numbers related to the coordinate plane? In Lesson 1, students learned how to represent integers on a number line. In Lesson 4, students learned how to represent rational numbers on a number line. In this lesson, students learned how to represent ordered pairs of integers and rational numbers on the coordinate plane. Encourage them to work with a partner to describe how their understanding of graphing these numbers on a number line can help them understand how to graph ordered pairs with integer and rational number coordinates on the coordinate plane.

Exit Ticket

Refer to the Exit Ticket slide. Plot and label the locations on a coordinate plane.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 15-19
- aleks Ordered Pairs

IF students score 66-89\% on the Checks,

THEN assign:

- Practice, Exercises 1-13, 15-17
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-5
- ALEKS Plotting and Comparing Signed Numbers

IF students score 65\% or below on the Checks,
$A L$
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Plotting and Comparing Signed Numbers

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
OL. Practice Form A
[Bill Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	identify the quadrant of the coordinate plane in which a given point is located	$1-4$
1	identify the axis on which a point is located	5,6
1	identify an ordered pair that represents a point graphed on the coordinate plane	$7-9$
1	identify a point on the coordinate plane given an ordered pair	$10-12$
1	graph ordered pairs with rational number coordinates on the coordinate plane	13
2	extend concepts learned in class to apply them in new contexts	14
3	solve application problems involving writing an ordered pair	15
3	higher-order and critical thinking skills	

Common Misconception

In Exercise 7-9, students might write the incorrect ordered pairs for each point because they did not refer to the unit labels on the x-and y-axes. If students give the ordered pair $(-3,2)$ for point $A,(1,-4)$ for point B, and $(-2,-3)$ for point C, have students take a second look at the unit labels. If the units are not labeled, it indicates that the units are in increments of 1 . If there are numbers on the axes, then the units might not be in increments of 1 . Inform students that with any graph, it is important to look at the unit labels to determine whether the units are in increments of 1 .

Apply *indicates multi-step problem

*15. The table shows the locations for several different places around a small city. The grid shows a map of the city, and each square on the grid represents one city block. Shannon needs to go to the library that is 2 blocks east and 3 blocks south of the bakery. Where on the grid should she go? $\left(-\frac{1}{4} 4-1 \frac{1}{1}\right)$
 Bakery $\quad\left(-\frac{3}{4},-\frac{1}{2}\right)$ Courthouse $\quad\left(0, \frac{1}{2}\right)$ Restaurant (1, -1) T own Hall $\quad\left(-1 \frac{1}{4} \cdot \frac{3}{4}\right)$

Higher-Order Thinking Problems
16. Identify Structure If the point (a, b) is located in Quadrant 1 , in which Quadrant is the point $(a,-b)$ located?
Quadrant IV
. 2 Reason Inductively Determine if the following statement is true or false. Explain your reasoning.
A point can be represented by more than one ordered pair.
false; Sample answer: A point is defined by only one ordered pair: an x-coordinate that corresponds to a number on the
x-axis and a y-coordinate that
corresponds to a number on the y-axis.
17. Identify Structure If the point $(-m, n)$ is located in Quadrant 1, what must be true about the value of m ? the value of n ? m is a negative number; n is a positive number
19. Find the Error A student stated that if the point $(-a, b)$ is located in Quadrant I, then the point (a, b) is located in Quadrant IV Find the student's mistake and correct it.

Sample answer: The student did not consider that b is positive, and therefore would be in either Quadrant I or II. The correct answer is Quadrant II.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure

In Exercise 16, students examine the coordinates of points in the first and third quadrants.

In Exercise 17, students examine the coordinates of points in the second and fourth quadrants.

2 Reason Abstractly and Quantitatively In Exercise 18, students determine if a point can be represented by more than one ordered pair.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 19, students find and correct a student's mistake.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Explore the truth of statements created by others.

Use with Exercise 15 Have students work in pairs. After completing the application problems, have students write two true statements and one false statement about each situation. An example of a true statement might be "The point representing the location of the bakery is located in Quadrant III." Have them trade statements with another pair or group. Each pair identifies which statements are true and which are false. Have them discuss and resolve any differences.

Create your own higher-order thinking problem.

Use with Exercises 16-19 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

1 CONCEPTUAL UNDERSTANDING

Learn Reflections of Points

Objective

Students will understand that when two ordered pairs differ only by signs, the points are reflections of each other across one or both axes.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to make sense of the coordinates of P^{\prime} after a reflection across the x-axis, and how they relate to the coordinates of the original point P.

Go Online to find additional teaching notes.

Talk About It!

SLIDE 1

Mathematical Discourse

What do you notice about the x - and y-coordinates of points A and A^{\prime} ? Sample answer: The x-coordinates are opposites and the y-coordinates are the same.

SLIDE 3

Mathematical Discourse

You can also reflect a point across the x-axis. Point P is graphed at $(3,2)$. How can you find the coordinates of P^{\prime} after a reflection across the x-axis? Sample answer: The y-coordinate of the reflection is the opposite of the y-coordinate of the original point. The x-coordinate remains the same.

DIFFERENTIATE

Reteaching Activity

For students that may be struggling to understand how points are reflected across axes, explain to them that they can think about the axis of reflection as the line that the coordinate plane can be folded over to match up a point and its reflection. Students may benefit from drawing a coordinate plane on paper and making a fold along the axis of reflection to identify the point of reflection. Have students use this method to reflect each of the following points about the axis specified.
$(1,3)$; x-axis $(1,-3)$
$(-4,2) ; y$-axis $(4,2)$
$(-7,-3) ; y$-axis $(7,-3)$
(8, -5); x-axis $(8,5)$

Interactive Presentation

Learn, Reflections of Points, Slide 1 of 3

Graph Reflections of Points

LESSON GOAL

Students will graph reflections of points within the coordinate plane.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Explore: Reflect a Point
Learn: Reflections of Points
Example 1: Identify Reflections of Points Across the x-axis
Example 2: Identify Reflections of Points Across the y-axis
Example 3: Identify the Axis of Reflection
Apply: Geography

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

| Resources | AL | LEI | |
| :--- | :---: | :---: | :---: | :---: |
| Remediation: Review Resources | \bullet | \bullet | |
| ArriveMATHTake Another Look | \bullet | | |
| Extension: Translations in the Coordinate
 Plane | | | |
| Collaboration Strategies | | | |

Language Development Support

Assign page 25 of the Language Development Handbook to help your students build mathematical language related to reflections of points in the coordinate plane.
CELL. You can use the tips and suggestions on page T25 of the handbook to support students who are building English proficiency.

Suggested Pacing

| 90 min | 1.5 days |
| :--- | :--- | :--- |
| 45 min | 3 days |

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major
cluster 6.NS.C by graphing reflections of points within the coordinate plane.
Standards for Mathematical Content: 6.NS.C.6, 6.NS.C.6.B,
6.NS.C.6.C, 6.NS.C.8, Also addresses 6.NS.C.6.A

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students identified ordered pairs, points, and quadrants and graphed ordered pairs on the coordinate plane.
6.NS.C.6, 6.NS.C. 8

Now

Students graph reflections of points within the coordinate plane.
6.NS.C.6, 6.NS.C. 8

Next

Students will use absolute value to find distance on the coordinate plane.
6.NS.C. 8

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of the coordinate plane as they explore reflections of points within the plane. They build fluency with using prime notation when writing ordered pairs of reflected points and identifying the axis of reflection of a given point. They apply their understanding of reflections of points to solve real-world problems.

Mathematical Background

A reflection is the mirror image produced by flipping a figure across a line. The reflection of the point (x, y) across the x-axis is $(x,-y)$. The reflection of the point (x, y) across the y-axis is $(-x, y)$.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What vocabation Whil tor Lemit

reflection

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- understanding integers (Exercises 1-4)
- graphing integers on a number line (Exercise 5)

Answers

1. 1, -7
2. $-34,4,-2$
3. -5
4. 123
5. See Warm Up slide online for correct answer.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about reflections in the world around us.

Wo Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Describe how you have used the words reflect or reflection in everyday life. Sample answer: I see my reflection in the mirror; A shiny surface reflects sunlight.

Explore Reflect a Point

Objective

Students will use Web Sketchpad to explore reflections of points.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations

Summary of Activity

Students will be presented with a graph with points A and B. Students will explore the relationship between point A and point B. Students will then be presented with a graph with points A and C. Students will compare the similarities and differences between the two graphs.

(9) Inquiry Question

What happens to the coordinates of a point when a point is reflected across an axis? Sample answer: When the point is reflected across the x-axis, the x-coordinate stays the same and the y-coordinates are opposites, except when the point is on the axis. When the point is reflected across the y-axis, the y-coordinate stays the same and the x-coordinates are opposites, except when the point is on the axis.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 2 are shown.

Talk About It!

SLIDE 2

Mathematical Discourse

What are the similarities and differences in the coordinates of the points? Sample answer: The x-coordinates are the same, but the y-coordinates are opposites, unless the point is on the x-axis.

What do you notice about their location in the coordinate plane? Sample answer: The points are always on the same side of the y-axis, but opposite sides of the x-axis, unless the point is on the x-axis.

Where can you drag the points so their coordinates are the same? any point on the x-axis
(continued on next page)

Interactive Presentation

Reflect a Point

(8) Introtucing the Inquary Coestion

Explore, Slide 1 of 6

Explore, Slide 2 of 6

Throughout the Explore, students use Web Sketchpad to explore what happens to the coordinates of a point when it is reflected across an axis.

TYPE

On Slide 3, students explain what they think represents the mirror given that two points are mirror images of one another.

Interactive Presentation

Explore, Slide 4 of 6

TYPE

On Slide 5, students explain what they think represents the mirror given that two points are mirror images of one another.

TYPE

a)

On Slide 6, students respond to the Inquiry Question and view a sample answer.

I CONCEPTUAL UNDERSTANDING

Explore Reflect a Point (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and deepen their understanding of reflections of points. Encourage students to examine the sketches and compare the coordinates of the points and their locations on the coordinate plane.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 4 are shown.

Talk About It!

SLIDE 4

Mathematical Discourse

What are the similarities and differences in the coordinates of the points? Sample answer: The y-coordinates are always the same, and the x-coordinates are always opposites, unless the point is on the y-axis.

What do you notice about their location in the coordinate plane? Sample answer: The points are always on the same side of the x-axis, but opposite sides of the y-axis, unless the point is on the y-axis.

Where can you drag the points so their coordinates are thesame? any point on the y-axis

Interactive Presentation

Example 1, Identify Reflections of Points Across the x-Axis, Slide 2 of 4
On Slide 2, students use the Graphing
eTool to graph a point on the coordinate
plane.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 1 Identify Reflections of Points Across the x-axis

Objective

Students will write an ordered pair to represent the reflection of a given point across the x-axis.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use the Graphing eTool to graph and locate the point on the coordinate plane that is the same distance away from the x-axis as the original point.

7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 3, encourage them to study the structure of each ordered pair, noting that the x-coordinates are the same and the y-coordinates are opposites. This will tell them that point A^{\prime} is the reflection of point A across the x-axis.

Questions for Mathematical Discourse

SLIDE2

Al Which axis is the point being reflected across? x-axis
OII What do you know about points being reflected across the x-axis? Sample answer: When a point is reflected across the x-axis the x-coordinate stays the same, and the y-coordinates are opposites. How many units away is point A from point A^{\prime} ? 4 units

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

3 APPLICATION

Example 2 Identify Reflections of Points

 Across the y-axis
Objective

Students will write an ordered pair to represent the reflection of a given point across the y-axis.

Questions for Mathematical Discourse

SLIDE1

Anin In what quadrant will the reflected point be located? Quadrant I
OII What do you know about reflections across the y-axis? Sample answer: When a point is reflected across the y-axis, the y-coordinate stays the same, and the x-coordinates are opposites.
[8] Reflect the point $(-1,1)$ across the y-axis and then move the reflected point 2 units down. How many units away is the final location of the point from the x-axis? 1 unit

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Identify Reflections of Points Across the y-axis, Slide 1 of 2

Example 3 Identify the Axis of Reflection
The point $A\left(-2 \frac{3}{4},-4\right)$ is the result of reflecting $A\left(2 \frac{3}{4},-4\right)$ on the coordinate plane.
Identify the axis across which the point was reflected.
Complete the table to compare the coordinates of the original point and the point after the reflection.

	Point Refflected Point
x-coordinate	$2 \frac{3}{4}$
y-coordinate	-4

The x-coordinates are opposites and the y-coordinates are the same.
So, point A was reflected across the y-axis.

Check
The point $M\left(2 \frac{1}{3},-1\right)$ is the result of reflecting $M\left(-2 \frac{1}{3},-1\right)$ in the coordinate plane. Identify the axis across which the point was reflected.

Oco onine roucancompenemen Exam Empone entro

Pause and Reflect

Where do you see reflections in your everyday life? How do these types of reflections compare to reflections of points on the coordinate plane?

Interactive Presentation

Example 3, Identify the Axis of Reflection, Slide 1 of 2
On Slide 1, students complete a table to
compare the coordinates of the original
point and the point after the reflection. move on.

1 CONCEPTUAL UNDERSTANDING

Example 3 Identify the Axis of Reflection

Objective

Students will identify the axis of reflection for a point graphed on the coordinate plane.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to identify the axis of reflection accurately and precisely, by paying careful attention to the signs of the coordinates of the original point and its reflection.

Questions for Mathematical Discourse

SLIDE1

A1. What do you need to find? the axis of reflection
OII What do you know about the coordinates of points when they are reflected across the x-axis? the y-axis? How can this help you determine the axis of reflection? Sample answer: When a point is reflected across the x-axis, the x-coordinate stays the same, and the y-coordinates are opposites. When a point is reflected across the y-axis, the y-coordinate stays the same, and the x-coordinates are opposites. In this case, the y-coordinate stays thesame and the x-coordinates are opposites, so the axis of reflection is the y-axis.
BLI․ What is the horizontal distance between the original point and its reflection? $2 \frac{3}{4}+2 \frac{3}{4}$, or $5 \frac{1}{2}$ units

0
 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Geography

Objective

Students will come up with their own strategy to solve an application problem involving the locations of objects in a neighborhood park.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What object should you find the location of first?
- What do you notice about the location of the fountain?
- How will you use the location of the fountain to determine the location of the picnic tables?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Geography

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. If the y-axis passes through points A and B, and the y-coordinate for point A is 5 , what ordered pairs represent each point? point $A:(0,5)$; point B : $(0,-5)$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
 THEN assign:

- Practice, Exercises 5, 9, 11, 13-16
- Extension: Translations in the Coordinate Plane
- ALEKS' Ordered Pairs

IF students score 66-89\% on the Checks,

0

THEN assign:

- Practice, Exercises 1-8, 11, 13, 15
- Extension: Translations in the Coordinate Plane
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- aleks Plotting and Comparing Signed Numbers

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Plotting and Comparing Signed Numbers

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
OL. Practice Form A
[Bill Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	write an ordered pair to represent the reflection of a given point across the x-axis	$1-4$
2	write an ordered pair to represent the reflection of a given point across the y-axis	5,6
1	identify the axis of reflection for a point graphed on the coordinate plane	7,8
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving writing ordered pairs to represent reflections	11,12
3	higher-order and critical thinking skills	$13-16$

Apply *indicates multi-step problem
*11. T rey drew a map of the summer camp he is staying at this summer
He graphed the point $D(-4.5,4.5)$ for the dining hall. The flag pole is located
at D^{\prime} a reflection of D across the y-axis. The campfire is located at D,
a reflection of D^{\prime} across the x-axis. Identify the ordered pair that describes
the location of the campfire.
the location of the campfire.
(4.5, -4.5)
'12. Liv drew a map of her favorite park. She graphed the point $s\left(2 \frac{1}{2},-2\right)$ for the swings. The picnic tables are located at S, a reflection
The lake is located at $S^{\prime \prime}$, a reflection of S^{\prime} across the y-axis. Identify the
ordered pair that describes the location of the lake.
$\left(-2 \frac{1}{2}, 2\right)$

0 Higher-Order Thinking Problems
13. Find the Error A student was finding the ordered pair for point $Y(1.5,-2)$ after its reflection across the x-axis. Find the student's mistake and correct it.
$Y(1.5,-2) \rightarrow Y^{\eta}(-1.5,-2)$

Sample answer: The student wrote the ordered pair for a reflection across the y-axis, not the x-axis. The correct ordered pair for point Y^{\prime} is $(1.5,2)$.
15. Identify the coordinates of a point located in Quadrant III. Reflect the point across the y-axis. Then give the coordinates of the
reflected point.
Sample answer: $A(-1,-1) ; A^{\prime}(1,-1)$
14. Persevere with Problems Determine whether the statement is olways. sometimes, or never true. Justify your response.
When a point is reflected across the x-axis, the new point has a negative y-coordinate.
sometimes; Sample answer: The y-coordinate of the new point will be negative if the y-coordinate of the original point was positive.
16. Reason Inductively A point is located on the y-axis. It is reflected across the x-axis. What do you know about the x - and y-coordinates of the reflected point?

Sample answer: The x-coordinate is equal to 0 since the point lies on the y-axis. The y-coordinate is equal to $-y$ (the opposite of y) since the point was reflected across the x-axis.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY 3 APPLICATION

Learn Find Horizontal Distance

Objective

Students will learn how to find the horizontal distance between two points with the same y-coordinate.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About lt! question on Slide 2 , encourage them to construct a plausible argument for why the distance cannot be negative, even if both points are in Quadrant III.

0Go Online to have your students watch the animation on Slide 1. The animation illustrates how to find the horizontal distance between two points with the same y-coordinate by using the absolute values of the x-coordinates.

Teaching Notes

SLIDE1

You may wish to pause the animation after the first set of points are shown, $(-5,-4)$ and $(-1,-4)$. Ask students how they can determine the distance between the points. Some students will simply count the units to find that the distance is 4 units. Be sure that students understand how this is related to using absolute value to find the distance between the two points. You may wish to continue the same discussion after the second two points are shown, $(-4,2)$ and $(1,2)$.

Talk About It!

SLIDE 2

Mathematical Discourse

If both points are in Quadrant III, will the distance be a negative number? Explain why or why not. no; Sample answer: Distance cannot be negative.

DIFFERENTIATE

Reteaching Activity AL

For students that may be struggling to understand how to find the horizontal distance between two points, explain that the absolute value of each coordinate is used to determine the distance of one point to the corresponding axis. For each of the following ordered pairs, have students identify the horizontal distance from the point to the y-axis, found using the absolute value of the x-coordinate. Students may benefit from actually graphing the point to determine the distance.
$(-3,4) 3$ units
$(6,-1) 6$ units
$(-5,2) 5$ units
(7,9) 7 units
$(-2,-8) 2$ units
$(4,-7) 4$ units

Interactive Presentation

Learn, Find Horizontal Distance, Slide 1 of 2

WATCH

On Slide 1, students watch an animation that explains how to find the horizontal distance between two pointswith the same y-coordinate.

LESSON GOAL

Students will use absolute value to find the distance between points on the coordinate plane.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Distance on the Coordinate Plane
Learn: Find Horizontal Distance
Example 1: Find Horizontal Distance in the Same Quadrant
Example 2: Find Horizontal Distance in Different Quadrants
Learn: Find Vertical Distance
Example 3: Find Vertical Distance in the Same Quadrant
Example 4: Find Vertical Distance in Different Quadrants
Apply: Distance

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al	1431	
Remediation: Review Resources	-	-	
Arive MATHTake Another Look	-		
Collaboration Strategies	-	-	-

Language Development Support

Assign page 26 of the Language Development Handbook to help your students build mathematical language related to absolute value and distance.
FElili You can use the tips and suggestions on page T26 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 45 min

Focus

Domain: The Number System
Major Cluster(s): In this lesson, students address major cluster 6.NS.C by using the absolute value of integers to find the distance between points on a coordinate plane.
Standards for Mathematical Content: 6.NS.C.8, Also addresses
6.NS.C.6, 6.NS.C.7.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students graphed reflections of points within the coordinate plane.
6.NS.C.6, 6.NS.C. 8

Now

Students use absolute value to find the distance between points on the coordinate plane.
6.NS.C. 8

Next
Students will solve problems involving adding integers and rational numbers.
7.NS.A. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Wind Conceptual Bridge In this lesson, students expand on their		
understanding of absolute value to find distance between points on the		
coordinate plane. They build fluency with finding distance in the same and		
different quadrants of the coordinate plane. They apply their understanding		
of distance on the coordinate plane to solve real-world problems.		

Mathematical Background

If two points in the coordinate plane have the same y-coordinate, and lie in the same quadrant, the distance between the two points is the difference of the absolute values of the x-coordinates. If the points lie in different quadrants, the distance is the sum of the absolute values of the x-coordinates. Similarly, if the points have the same x-coordinate, and lie in the same quadrant, the distance between the points is the difference of the absolute values of the y-coordinates. If the points lie in different quadrants, the distance is the sum of the absolute values of the y-coordinates.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

Whan vicibiniary Wift the the:

absofute vatue

coordinate plane

quadrant

[^7]
Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding absolute value of integers (Exercises 1-4)
- graphing ordered pairs in all four quadrants (Exercise 5)

Answers

1. 4
2. 20
3. 11
4. 103
5. See Warm Up slide online for correct answer.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about planning a sightseeing trip around Washington, D.C.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Describe in your own words what the absolute value of a number means. Sample answer: The absolute value of a number is the distance that number is from 0 on a number line.
. Name three parts of the coordinate plane. Sample answer: origin, x-axis, y-axis
- Describe in your own words what quadrant means. Sample answer: The coordinate plane is divided into four quadrants, or sections.

Explore Distance on the Coordinate Plane

Objective

Students will use Web Sketchpad to explore distance on the coordinate plane.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations

Summary of Activity

Students will be presented with points plotted in a coordinate grid. Throughout this activity, students will explore various ways to find the distance between two points. Students will use their observations to make conjectures about how to accurately find the distance between points with the same x - or y-coordinates, graphed on the coordinate plane.

Q. Inquiry Question

How can you use absolute value to find distance on the coordinate plane? Sample answer: Absolute value makes it possible to add or subtract the coordinates to find the distance between points.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

Describe a method you could use to find the distance between the two points. What is the distance in units? Sample answer: I can count the number of unit squares between the points. Because the scale is 0.5 , the distance is 2.5 units.
(continued on next page)

Interactive Presentation

```
Distance on the Coordinate Plane
(S) Introducting the Inquiry Coestion
```


Explore, Slide 1 of 9

Explore, Slide 2 of 9
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how absolute value can be used to find the distance between points on the coordinate plane.

CLICK

On Slides 2 and 4, students identify the quadrant in which the two points are graphed.

Interactive Presentation

Explore, Slide 7 of 9

CLICK

On Slides 6 and 7, students identify the quadrant(s) in which the two points are graphed.

TYPE

On Slide 8, students write a rule to find distance on the coordinate plane when the points are in the same quadrant and in different quadrants.

TYPE
a
On Slide 9, students respond to the Inquiry Question and view a sample answer.

Explore Distance on the Coordinate Plane (continued)

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to examine and deepen their understanding of the distance between two points in a coordinate plane and how this distance might be related to the absolute value of the coordinates.

5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore the distance between two points located in the coordinate plane.

Wo Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 7 is shown.

Talk About It!

SLIDE7-

Mathematical Discourse

Without using a graph, how could you find the distance using only the coordinates? Sample answer: Points E and B have the same x-coordinates but different y-coordinates. I can find the absolute value of the y-coordinates and add to find the distance.
\square
Your Notes

Think About It! Are the x-coordinates the same or different? Are the y-coordinates
different; the same

Q Talk About It How can you check your solution? Explain the process you would
use.
Sample answer: I can draw a line between the points, and count the number of units between the the coordinate plane.

When two points are in different quadrants and they have the same y-coordinate, add the absolute values of the x-coordinates to find the distance between the two points.
Consider the points $(-4,2)$ and $(1,2)$. They hav the same y-coordinates, so find the absolute value of each x-coordinate.

$-4|=4 \quad| 1 \mid=1$
Add the absolute values. $4+1=5$
The distance between the two points is 5 units.

Example 1 Find Horizontal Distance in the Same Quadrant
Find the horizontal distance between the two

points.

To find the horizontal distance between the two points, consider the scale on each axis. The scale of the axes is in $\frac{1}{2}$-unit increments.
Identify the ordered pair for each point.
$u:\left(\frac{1}{2} 2^{-1}\right) \quad v:\left(2,-1 \frac{1}{2}\right)$
Since the y-coordinates are the same, find the absolute value of each x-coordinate.
$u:\left|\frac{1}{2}\right|=\frac{1}{2} \quad v:|2|=2$
Because the points are in the same quadrant, subtract the absolute values of the x-coordinates to find the distance between the points. $2-\frac{1}{2}=1 \frac{1}{2}$
So, points U and V are $1 \frac{1}{2}$ unit(s) apart.

Check
Find the horizontal distance between the two points. 3 units

Qgo
\qquad

Interactive Presentation

Example 1, Find Horizontal Distance in the Same Quadrant, Slide 2 of 4
On Slide 2, students identify the ordered
pair for each point.
SHECK

Students complete the Check exercise
online to determine if they are ready to
move on.

246 Module 4 - Integers, Rational Numbers, and the Coordinate Plane

Example 1 Find Horizontal Distance in the Same Quadrant

Objective
Students will find the horizontal distance between two points in the same quadrant on the coordinate plane.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving ThemAs students discuss the Talk About It! question on Slide 3, encourage them to think of another strategy they could have used to find the distance between the two points, and to use that strategy to check their solution.

6 Attend to Precision Encourage students to accurately and efficiently find the coordinates of each point, the correct absolute value of each x-coordinate, and the distance between the two points.

Questions for Mathematical Discourse SLIDE2

AL What do you need to find? the horizontal distance between the two points

OI Why is it important to use the absolute value of each x-coordinate? It is important to use the absolute value of each x-coordinate because in some situations, the x-coordinate(s) may be negative. Distance is always positive.
OII In this specific example, do you need to find the absolute value first? Explain. no; Sample answer: The x-coordinates of both points were already positive. I could have just subtracted the lesser value from the greater.

BL. If point U was instead located in Quadrant III with the same y-coordinate of point V, describe how you could find the distance between points U and V. Sample answer: I can find the absolute value of the x-coordinates and add them, instead of subtracting them, since they are on opposite sides of the y-axis.

(3) Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Find Horizontal Distance in Different Quadrants

Objective

Students will find the horizontal distance between two points in different quadrants on the coordinate plane.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of the fact that when two points are in different quadrants, the absolute values must be added together instead of subtracted. Encourage students to explain why, in order to solidify their understanding.

6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language about which operation to use (addition or subtraction) when the points are located in the same or different quadrants.

Questions for Mathematical Discourse

SLIDE2:

Ale Why is it important to identify how many units each square represents? in order to find the correct distance

OII What might happen if you do not find the absolute value of each x-coordinate? Sample answer: I might find an incorrect distance. Point $E^{\prime} \mathrm{s} x$-coordinate is negative, so adding a negative value to the value of Point F 's x-coo rdinate will result in an incorrect distance.

OL. Explain why you add the absolute values in this example, instead of subtracting them. Sample answer: The points are located in different quadrants, so they are on opposite sides of the y-axis. I need to add the distance from one point to the y-axis to the distance from the other point to the y-axis.
[31. Could you use this method to find the distance between two points that have different y-coordinates? Explain. no; Sample answer: I am finding horizontal distance between two points with the same y-coordinate. If the y-coordinates are not the same, I will need to use a different method.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Find Horizontal Distance in Different Quadrants

Find the horizontal distance between the two points.

To find the horizontal distance between the two points, consider the scale on each axis. The scale of the axes are in 0.25 -unit increments. Identify the ordered pair for each point.
E: $(-0.75,-0.25) F:(0.25,-0.25$
Since the y-coordinates are the same. Find the absolute value of each x-coordinate.
$E:|-0.75|=0.75$
$F:|0.25|=0.25$
Because the points are in different quadrants, add the absolute values of the x-coordinates to find the distance between the points. $0.75+0.25=1$
So, points U and V are 1 unit(s) apart.

Check
Find the horizontal distance between the two points. 3 units

Qgo Oniline Y ou can complete an Extra Example online

Think About It Are the points in the same quadrant? How will that affect how you find the distance?
See students'
responses.

Talk About It! Use the graph to explain why the x-coordinates are added when the points are in different quadrants.

Sample answer: The absolute value of the x-coordinate gives the distance the point is from the y-axis. The distances from each point to the y-axis do not overlap, like they do when the points are in the same quadrant. Therefore, the distances have to be added together. \square

Interactive Presentation

Example 2, Find Horizontal Distance in Different Quadrants, Slide 2 of 4

Interactive Presentation

Learn, Find Vertical Distance, Slide 1 of 2

WATCH
On Slide 1, students watch an animation that explains how to find the vertical distance between two points with the same x-coordinate.

1 CONCEPTUAL UNDERSTANDING

Learn Find Vertical Distance

Objective

Students will learn how to find the vertical distance between two points with the same x-coordinate.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to explain how they could study the structure of two ordered pairs (with the same x-coordinate), without looking at the graph, in order to determine how to find the distance between the points.

Teaching Notes
 SLIDE1

You may wish to pause the animation after the first set of points are shown, $(3,-1)$ and $(3,-5)$. Ask students how they can determine the distance between the points. Some students will simply count the units to find that the distance is 4 units. Be sure that students understand how this is related to using absolute value to find the distance between the two points. You may wish to continue the same discussion after the second two points are shown, $(2,1)$ and $(2,-4)$.

Go Online to have your students watchthe animation on Slide 1. The animation illustrates how to find the vertical distance between two points on a coordinate plane that have the same x-coordinates.

Talk About It!

SLIDE 2

Mathematical Discourse

How can you find the distance between two points with the same x-coordinates, but different y-coordinates, if you are only given the coordinates, and not the graph? Sample answer: I can find the absolute value of the y-coordinates. If the y-coordinates have the same signs, then I can subtract the absolute values. If they are different signs, I can add the absolute values.

Example 3 Find Vertical Distance in the Same Quadrant

Objective

Students will find the vertical distance between two points in the same quadrant on the coordinate plane.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About lt! question on Slide 3, encourage them to think of another strategy they could have used to find the distance between the two points, and to use that strategy to check their solution.

6 Attend to Precision Encourage students to accurately and efficiently determine that the points are in the same quadrant, find the correct absolute value of each y-coordinate, and determine that they need to subtract the absolute values to find the distance.

Questions for Mathematical Discourse

SIDEE2.

All What do you notice about the signs of the coordinates of the points? Each coordinate of each point is negative.

Compare the x-coordinates. What do you notice? They are the same.

OL Why is it important to find the absolute values of the y-coordinates? Sample answer: The points are in Quadrant III, and the coordinates are negative. If I do not find the absolute value before adding, I will be subtracting negative values to find the distance. Distance is always positive.

OLIL Explain why you subtract the absolute values in this example, instead of adding them. Sample answer: The points are located in the same quadrant, so they are on the same side of the x-axis. I need to subtract the distance from one point to the x-axis from the distance from the other point to the x-axis, because the distances overlap.

If point D was located at $(-1,3)$, how would this affect the process you would use to find the distance? Points C and D will be in different quadrants, so I will need to add the absolute values of the y-coordinates to find the distance.

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find Vertical Distance in the
Same Quadrant
Find the vertical distance between the points $D\left(-1,-\frac{1}{2}\right)$ and
$C(-1,-2)$.
The x-coordinates are negative and the y-coordinates are negative.
This means the points are in Quadrant III .
The x-coordinates are the same. To find the distance each point is from the x-axis, find the absolute value of each y-coordinate.

$$
c:|-2|=2 \quad D:\left|-\frac{1}{2}\right|=\frac{1}{2}
$$

Because the points are in the same quadrant, subtract the absolute values of the y-coordinates to find the distance between the points. $2-\frac{1}{2}=1^{1}$
So, points C and D are $1 \frac{1}{2}$ units) apart.
Check
Find the veritial distance between the points $\mathrm{A}\left(-\frac{1}{3}-{ }^{-\frac{2}{2}}\right)$
$\operatorname{and} B\left(-\frac{1}{3} 3^{-1}\right) \cdot \frac{2}{3}$ unit

Think About It Are the x-coordinates Are the y-coordinates the same or different?
the same; different
C. Talk About It!

How can you check your solution? Explain a process you could a proc
use.
Sample answer: I can graph the points on a coordinate plane. Then I can count the units between the points, paying careful attention to the scale on the axes.
\square

Interactive Presentation

Example 3, Find Vertical Distance in the Same Quadrant, Slide 2 of 4

 Are the points in the same quadrant? How will that affect how you find the distance?

See students'

 responses.Talk About It Compare and contrast horizontal distance horizontal distance the coordinate plane.

Sample answer: To find vertical distance, the points must have the same x-coordinates. To find horizontal distance, the points must have the same y-coordinates. If the y-coordinates. If the
points are in the same quadrant, subtract the absolute values. If the points are in different points are in differen quadrants, add absolute values.

Example 4 Find Vertical Distance in
Different Quadrants
Find the vertical distance between points $S(1,0.5)$ and $T(1,-0.5)$.
The x-coordinates have the same signs.
The y-coordinates have different signs.
This means the points are in different quadrants.
The x-coordinates are the same. To find the distance each point is from the x-axis, find the absolute value of each y-coordinate.

$$
S:|0.5|=0.5 \quad T:|-0.5|=0.5
$$

Because the points are in different quadrants, add the absolute values of the y-coordinates to find the distance between the points. $0.5+0.5=1$
So, points S and T are 1 unit(s) apart.

Check
Find the vertical distance between points $E(0.5,1.5)$ and $F(0.5,-2)$.

Qsooniline You can complete an Exta Example ontine

Pause and Reflect

Could you use the methods described in this lesson to find the distance between two points on a number line? Explain your reasoning.

See students' observations.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Example 4 Find Vertical Distance in Different Quadrants

Objective

Students will find the vertical distance between two points in different quadrants on the coordinate plane.

Teaching the Mathematical Practices

6 Attend to Precision Encourage students to accurately and efficiently determine that the points are in different quadrants, find the correct absolute value of each y-coordinate, and determine that they need to add the absolute values to find the distance.

As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language in their explanations.

Questions for Mathematical Discourse

SLIDE 2

Al How do you know the points are in different quadrants? The x-coordinates are the same, and the y-coordinates have different signs. This means they are not in the same quadrant.

Oll Since the points are in different quadrants, do you add or subtract the absolute values? Explain. add; Sample answer: The distances from each point to the x-axis do not overlap, so I can add them.
Elil How could you change the coordinates of point S in order for you to subtract the absolute values? Sample answer: Point S would need to be in the same quadrant as Point T. If Point S had coordinates (1, -1), then I could subtract the absolute values.

13 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Distance

Objective

Students will come up with their own strategy to solve an application problem involving determining which friend has a farther distance to travel to a park.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- Are the locations in the same or different quadrants?
- Will graphing the points on a coordinate plane help you? Why or why not?
-What do you notice about the x - and y-coordinates for each location?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

© Apply Distance

Firz and Manola like to skiteboars together at a nearby park
They wast io dotermitie mfo has to wak the farther distance no get to the park, so they graph the locmions on a coordindte plano. wilt the citys man square at the erigin. The coordnates for eacti location me thown in the table. Eech unt repeterents a cty brock. Who has to wabl the forther datance to ges so the pork?

1 What is the tank?
Male sume you inderstand exactly what question to answer or probines to solve. You may wart to read the problem three sines Discuss these questions with a parter

First Time Describe the conteat of the problems in your own words Second Tinve What mathematics do you see in the probiem? Thind Time What ave you wondering about?
2. How can you approach the task? What strategles can you use?

See students' strategies.
3 What is yosir solutiont
Use your swhtogy lo solve the probiem.

Manolo; See students' work.
4 How can you shaw your solution is reasonnble?
Q Write About le white an argunget that cin bo uted to defead your sobution.
See stodents' arguments.

Interactive Presentation

Apply, Distance

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. If a family wants to visit the Lincoln Memorial and then the Washington Monument, how far will the family have to walk between the two sites? Write a mathematical argument that can be used to defend your solution. 1 mile; Sample answer: The x-coordinates are the same and the y-coordinates have different signs, so the locations are not in the same quadrant. The locations are $|3|+|7|$ or 10 units apart. Since each unit represents a tenth of a mile, the locations are 10×0.1 mile or 1 mile apart.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 9, 11-15
- D ALEKS Ordered Pairs

IF students score 66-89\% on the Checks,
OI
THEN assign:

- Practice, Exercises 1-8, 11-13
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- ALEKS' Plotting and Comparing Signed Numbers

IF students score 65\% or below on the Checks,
THEN assign:
. Remediation: Review Resources

- Arrive MATH Take Another Look
- ALEKS Plotting and Comparing Signed Numbers

Practice and Homework
The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.
AIIII Practice Form B
에 Practice Form A
IBII Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	find the horizontal or vertical distance between two points	$1-8$
2	extend concepts learned in class to apply them in new contexts	9
3	solve application problems involving finding horizontal or vertical distance between points	10,11
3	higher-order and critical thinking skills	$12-15$

Common Misconception
Students may have trouble finding the distance between two points on the coordinate plane when the units on the x - and y-axes are not 1 unit. In Exercises 1-4, the units are less than 1, so students may incorrectly identify the ordered pair for a given point. For example, in Exercise 1, students may identify the points as $A(1,4)$ and $B(3,4)$ instead of $A(0.5,1)$ and $B(1.5,1)$ This would give students the incorrect distance of 2 units instead of 1 unit. Remind students that they need to examine the units on every coordinate plane to make sure that they identify each ordered pair correctly.

Name
Practice
Find the horizontal or vertical distance between the two points. (Examples 1-4)

2.

3.

5. $X(-2,3)$ and $Y\left(-2,1 \frac{1}{4}\right)$ $1 \frac{3}{4}$ units
7. $A(-1,1.5)$ and $B(-1,-1.5)$ 3 units
4.

6. $Y\left(1,-\frac{3}{4}\right)$ and $Z\left(-1,-\frac{3}{4}\right)$ 2 units
8. $C(3.5,-0.25)$ and $D(0.5,-0.25)$ 3 units

T est Practice
9. Multiple Choice What is the vertical distance between the points $C(2,-0.8)$ and $D(2,1.2)$?
(A) 0 units

1 unit
(B) 0.4 unit

2 units

Apply *indicates multi-step problem
*10. There are two parks near Kennedy's house. She wants
to go the park closer to her house. To which park
should Kennedy go?
Maple Avenue Park

Location	Coordinates
Maple Avenue Park	$\left(2,1 \frac{1}{2}\right)$
Oak Woods Park	$\left(-\frac{1}{2},-\frac{3}{4}\right)$
Kennedy's House	$\left(2,-\frac{3}{4}\right)$

11. James and Amber walk their dogs together at a nearby dog park. They want to determine who has to walk a farther distance to get to the dog park, so they graph the locations on a coordinate plane, with the town square at the origin. Each whole unit represents a city block. James's house is located at the point $(-1.5,4)$. Amber's house is located at the point $(2,0.25)$. The dog park is located at the point $(2,4)$. Who has to walk the farther
distance to get to the dog park? distance to get to the dog park?
Amber
Higher-Order Thinking Problems
12. Explain how to find the distance between the points $A(-2,2)$ and $B(-2,-2)$.
Sample answer: Graph the points on the coordinate plane. Then count the vertical units between the points. There are 4 units between the points.
13. Give the coordinates for two points that have a vertical distance between them of 1.5 units.

Sample answer: $X(-1,0)$ and $Y(-1,1.5)$
13. Find the Error A student said that the vertical distance between the two points graphed is 3 units. Find the student's mistake and correct it

Sample answer: The student did not use the scale on the y-axis. The scale is 0.5 unit. So, the actual distance is 1.5 units.
15. Y ara said that the vertical distance between two points is -1.5 units. How do you know that Y ara's answer is incorrect?
Sample answer: Distance cannot be negative. Y ou have to find the absolute value of each coordinate and subtract the Value of each coordinate and subtract the
lesser number from the greater number.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 13, students explain why another student's solution is incorrect and then correct the solution.

Φ Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 11 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Be sure everyone understands.

Use with Exercises 14-15 Have students work in groups of 3-4 to solve the problem in Exercise 14. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 15.

DINAH ZIKE FOLBABLES

[태II) A completed Foldable for this module should include examples of comparing and ordering rational number sets. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 102

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources
Vocabulary Activity
Module Review

Assessment Resources

Put It All Together 1: Lessons 4-1, 4-3, and 4-4
Put It All Together 2: Lessons 4-5, 4-6, and 4-7
Vocabulary Test
ALI Module Test Form B
Oll Module Test Form A
Bill Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for The Number System.

- Integers, Absolute Value, and Opposites
- The Coordinate Plane
- Plotting Points on a Coordinate Plane
- Graphing Ordered Pairs in an Application

Essential Question

탠․ Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How are integers and rational numbers related to the coordinate plane? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-12 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	8
Multiselect	Multiple answers may be correct. Students must select all correct answers.	10
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	$3,6,12$
Table Item	Students complete a table by correctly classifying the information.	4,9
Grid	Students create a graph on an online coordinate plane or number line.	2,11
Open Response	Students construct their own response in the area provided.	$1,5,7$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.NS.C.5	$4-1,4-2$	$1-3$
6.NS.C.6	$4-1,4-2,4-4,4-5,4-6$	$1-3,8-11$
6.NS.C.6.A	$4-2$	3
6.NS.C.6.B	$4-5,4-6$	$8-11$
6.NS.C.6.C	$4-1,4-4,4-5,4-6$	$1,2,8-11$
6.NS.C.7	$4-2,4-3,4-4$	$4-7$
6.NS.C.7.A	$4-3,4-4$	4,5
6.NS.C.7.B	$4-3$	4,5
6.NS.C.7.C	$4-2,4-3,4-4$	6,7
6.NS.C.7.D	$4-3$	4,5
6.NS.C.8	$4-5,4-6,4-7$	$8-12$

8. Multiple Choice Identify the quadrant in
which the point $\left(\frac{2}{3},-1 \frac{1}{5}\right)$ is located.
(Lesson 5)
(A) Quadrant I
B) Quadrant II
(C) Quadrant III
(6) Quadrant IV
9. Table Item Indicate the axis on which each of the points lie. (Lesson 5)

	x-axis	y-axis
$(-4,0)$	X	
$(0,9)$		X
$(0,-6)$		X

10. Multiselect Consider the point $A\left(-2 \frac{1}{4},-3\right)$ Which of the following statements are true regarding the reflection of this point? Select all that apply. (Lesson 6)

When this point is reflected across the x-axis, the x-coordinate is the opposite and the y-coordinate stays the same.

The reflection of $A\left(-2 \frac{1}{4},-3\right)$ across the x-axis can be represented by $A\left(2 \frac{1}{4},-3\right)$.
\checkmark When this point is reflected across the x-axis, the x-coordinate stays the same and the y-coordinate is the opposite.
\checkmark The reflection of $A\left(-2 \frac{1}{4},-3\right)$ across the y-axis can be represented by $\left\{\left(2 \frac{1}{4},-3\right)\right.$.
\checkmark When this point is reflected across the y-axis, the x-coordinate is the opposite and the y-coordinate stays the same.
11. Grid Derrius drew a map of the community playground. He graphed the point $s\left(2 \frac{1}{2},-5\right)$ for the slide. The swings are cated at S^{\prime} a reflection across the x-axis. The restrooms are located at S^{∞}, a reflection cross the y-axis. (Lesson 6)
A. Identify the ordered pair that describes the location of the restrooms.
\square
B. Plot and label the point $S^{\prime \prime}$ on the coordinate plane.

12. Equation Editor What number of units escribes the vertical distance between the points $X(3,4.5)$ and $Y(3,-1)$? (Lesson 7)
5.5

वस्वन
 123
 456
 789
 o. -

III Foldables Study Organizers

What Are Foldables and How Do I Create Them?
Foldables are three-dimensional graphic organizers that help you create study guides for each module in your book.
Step 1 Go to the back of your book to find the Foldable for the module you are currently studying. Follow the cutting and assembly instructions at the top of the page.
Step 2 Go to the Module Review at the end of the module you are currently studying. Match up the tabs and attach your Foldable to this page. Dotted tabs show where to place your Foldable. Striped tabs indicate where to tape the Foldable.

How Will I Know When to Use My Foldable?
You will be directed to work on your Foldable at the end of selected lessons. This lets you know that it is time to update it with concepts from that lesson. Once you've completed your Foldable, use it to study for the module test.

How Do I Complete My Foldable?
No two Foldables in your book will look alike. However, some will ask you to fill in similar information. Below are some of the instructions you'll see as you complete your Foldable. HAVE FUN learning math using Foldables!

[^8]

FL8 Foldables Study Organizers

Glossary

A

Arrive Math, see Tier 2 Intervention
Assessment, see Review and Assessment Options, Formative Assessment

Differentiate

Enrichment Activities, 8, 14, 30, 40, 67, 81, 97, $113,157,177,193,208,218,231,266,289$, $305,336,359,369,377,410,415,423,435$, $463,497,507,544,575,578,583$
Language Development Activities, 4, 37, 47, $57,58,86,143,170,172,202,210,227$, 239, 278, 299, 315, 341, 351, 397, 443, 454, 512, 521, 537, 569
Reteaching Activities, 23, 103, 122, 136, 160, 195, 199, 237, 245, 269, 277, 287, 295, 308, 321, 407, 469, 485, 519, 551, 561
Dinah Zike Foldables ${ }^{\oplus}$, see Foldables ${ }^{\oplus}$

E

ELL Support, 2, 3a, 4, 13a, 23a, 29a, 37a, 37, $47 a, 47,57 a, 57,58,65 a, 73,74,78,79 a, 85 a$, 86, 93a, 103a, 113a, 121a, 129, 130, 134, 135a, 143a, 143, 155a, 167a, 170, 172, 177a, 187, 188, 192, 193a, 199a, 202, 205a, 210, 215a, 225a, 227, 237a, 239, 245a, 255, 256, 260, 261a, 269a, 277a, 278, 287a, 295a, 299, 305a, 315a, $315,329,330,334,335 a, 341 a, 341,351 a, 351$, 359a, 369a, 377a, 391, 392, 396, 397a, 397, 405a, 415a, 423a, 429, 430, 434, 435a, 443a, 443, 451a, 454, 463a, 469a, 479, 480, 484,

485a, 495a, 505a, 512, 517a, 521, 531, 532, 536, 537a, 537, 543a, 549a, 561a, 569a, 569, 575a, 583a, 593, 594
Essential Question, 1, 74, 77, 130, 133, 188, 191, 256, 259, 330, 333, 392, 395, 430, 433, 480, 483, 532, 535, 594

Essential Question Follow-Up, 10, 20, 26, $44,62,70,100,110,118,153,164,174,184$, 234, 285, 292, 312, 326, 388, 402, 412, 420, 426, 440, 460, 466, 482, 492, 502, $514,512,546,558,566,590$

Foldables, 1, 20, 26, 34, 73, 77, 100, 120, 133, 164, 174, 184, 187, 191, 212, 222, 255, 259, 326, $329,333,348,356,366,392,402,412,415$, $420,433,440,448,460,479,483,492,502$, 514, 528, 535, 531, 546, 566, 572, 590, 593

Formative Assessment Math Probe
(Cheryl Tobey), 1b, 77b, 133b, 191b, 259b,
333b, 395b, 433b, 483b, 535b

G

Growth Mindset, see Mindset Matters

I

Intervention, see Tier 2 Intervention

Mathematical Discourse, 3c, 3d, 4, 5, 6, 7, 8, $13 c, 13 d, 14,15,16,17,18,24,25,29,30,31,32$, $38,39,41,42,47,48,49,50,51,57 c, 57 d, 58$, $59,60,66,68,80,81,82,85,86,87,88,89$, 90, 93c, 93d, 93, 94, 95, 97, 98, 103c, 103d, $103,104,105,106,107,114,115,116,122,123$, $124,135,136,137,138,143,144,145,146,147$, 148, 149, 150, 155, 156, 157a, 158, 159, 160, 161, $162,167,168,169,171,178,179,180,181,182$, 193c, 193d, 194, 196, 199c, 199d, 199, 200, 201, 202, 205, 206, 207, 209, 210, 215, 216, 217, $218,219,220,225 c, 225 d, 225,226,227,228$, 229, 230, 232, 237c, 237d, 237, 238, 239, 240, 245c, 245d, 245, 246, 247, 248, 249, 250, 261, 262, 263, 264, 269, 270, 271, 272, 277c, 277d, 277, 278, 279, 280, 281, 282, 283, 284, 287c, 287d, 287, 288, 289, 290, 295c, 295d, 295, 296, 298c, 298d, 298, 299, 300, 305c, 305d, $306,307,308,309,310,315 c, 315 d, 316$, $317,318,319,320,322,323,324,335,336$, $337,341 \mathrm{c}, 341 \mathrm{~d}, 341,342,343,344 \mathrm{a}$, 344b, $344,345,346,351 c, 351 d, 352,353,354$, 359c, 359d, 360, 362, 363, 364, 369c, 369d, 370, 371, 372, 377c, 377d, 377, 378, 379, 381, $382,383,384,385,397 c, 397 d, 397,398,399$, 400, 405, 406, 407, 408a, 408b, 408, 409,
by multiplication, 361-364 by substitution, 336-337 by subtraction, 353-354 ubtraction, 351-354 writing
addition, 342
division, 370
from a graph, 418-419 multiplication, 36
Equivalent expressions, 315-320
Equivalent rates, 67-68
Equivalent ratios, and graphs, 23-25
and tables, 13-17
to find percent of a number
104-108, 113-115
find the whole, 123
to write decimals as
percents, 98
to write fractions as
percents, 94-97
to write percents, 85-90
to write percents as fractions,
93-94
use scaling to find, 14-17
Evaluation of algebraic
expressions, 287-290
Exponents, 261-264
Expressions
algebraic, 277-284
factoring, 308-310
numerical, 269-271
F
Factoring
algebraic expressions, 310
greatest common factor,
308-310
numerical expressions, 309
First quartile, 561
Foldables ${ }^{\ominus}$, 20, 26, 34, 100, 129,
164, 174, 184, 187, 212, 222, 255,
$326,329,348,356,366,391$,
$402,412,420,426,429,440,448$
$460,479,492,502,514,528,531$
$546,566,572,590,593$
Formulas
area of parallelograms 436 rea of trapezoids, 451-454 rea of triangles, 444 volume of cube, 486 volume of right prism, 487 olume of rectangular prism, 487

Fractions

as percents and decimals,
93-98
dividing by whole numbers,
177-180
dividing whole numbers by,
157-162
division, 167-172

Gap, 585
Greatest common factor (GCF), 295-297
and the Distributive Property, 308-310
Graphic Organizers, $73,130,188$,
256, 330, 392, 430, 480, 532
594
Graphing,
equations, 415-416
inequalities, 380-383
lines, 415-419
ordered pairs, 231-232
ratio relationships, 23-25, 29-30
rational numbers, 225-232
reflections of points, 237-240
Guess, check, and revise strategy, 336

H

Height
of a parallelogram, 436 of a trapezoid, 45
of a triangle, 444
Histogram, 544-545, 585-586

Identity Property, 316 Independent variable, 397 399-400
Inequalities, 377
graphing, 380-382 solving, 383-385 writing, 378-379

Integers

absolute value of, 201-202 209-210
comparing, 205-206 graphing, 195-196
opposites of, 199-201 ordering, 207 representing, 193-194 Interquartile range (IQR), 561, 583
Inverse operations, 344 in solving, 351, 362, 369 Inverse Property of Multiplication, 155

L

Lateral face, 517
Least common multiple
(LCM), 298-300
Like terms, 278-279, 321-323 combining, 321-323 Line plots. See dot plots

Mean, 549-550 Mean absolute deviation (MAD), 569-572, 583 Measures of center , 549 Measures of variation, 561 Median, 553, 561 Missing data, 551 Missing dimensions of parallelograms, 437 of rectangular prisms, 489-490 of trapezoids, 458 of triangles, 446
Mixed numbers
as percents, 97 division of, 181-182
Multi-digit numbers, 134-138
Multiple representations of relationships, 423-425 Multiplication
of decimals, 147-148
Multiplication equations solving, 361-364 writing, 359-360
Multiplication Property of Equality, 371 Multiplicative inverse, 155

Negative integer , 193 Nets, 495 of rectangular prisms, 495-497
of square pyramids, 517-519 of triangular prisms, 505-507 of triangular pyramids, 519-521
Numerical expressions, 269-271 evaluating, 270, 271 writing, 271

0

Opposites, 199-201
Order of operations, 269-270
Ordered pair ,
identifying, 227-232 writing equivalent ratios as, 23-26, 29-30
Origin, 23, 227-228
Outlier, 575-576 effect on data, 577-580

Parallelogram, 436 area of, 436-438
base of, 436
height of, 436
missing dimensions of, 438
Part-to-part ratio, 6, 8 Part-to-whole ratio, 6-7 Peak, 585
Percent, 79-82, 85-90 as decimals and fractions, 93-98
as mixed numbers, 97 benchmark, 113-116 estimating, 113-116 model, 79-82, 85-90 of a number, 103-108
Perimeter
on the coordinate plane, 470 , 471-473
Positive integer, 193
Powers, 261-264
as products, 261-263 evaluating, 263-264

Prism, 485
nets of, 495-497,505-507 rectangular , 485-494 496-500
surface area of, 498-500, 508-512
triangular , 505-512 volume of, 486-490
Pyramid, 517 nets of, 518-521 regular , 517 square, 518-519, 522-524 surface area of, 522-526 triangular , 519-521,525-526

Quadrants, 225-226
Quartiles, 561
Quotient, 135 interpretation of, 161-162, 169

Range, 561
interquartile, 561, 583
Rates, 57-58, 65-68
Ratios, 3-5
and bar diagrams, 3-4, 6,
13, 37
and double number lines,
18, 40
comparing ratio relationships,
29-32
equivalent (see equivalent
ratios)
graphing ratio relationships,
23-25, 29-30
part-to-part ratio, 6, 8
part-to-whole ratio, 6-7
ratio relationships, 3-5, 29-32
to convert measurements,
47-52
unit ratio, 47
Ratio table, 14-17, 29-32, 104 107-108, 122
Rational numbers, 215 absolute value of, 217 comparing, 218-219 graphing, 215-216 ordering, 220
Reciprocal, 155-156, 158-162

Rectangular prisms, 485 missing dimensions of, 489-490
nets of, 495-497
surface area of, 498-500 surface area of, 498-
volume of, 486-490
Reflections on the coordinate
plane, 237-240
Regular polygon, 463
Regular pyramid, 517

s

Scaling, 14-17, 104, 107-108, 122 Simplest form, 321-322
Slant height, 517
Solution, 335
Solve, 335
addition equations, 342-346
by guess and check, 336
by substitution, 336-337
division equations, 371-372
inequalities, 383-385
multiplication equations,
361-364
subtraction equations
352-354
Square pyramids
nets of, 517-519
surface area of, 522-523
Statistical question, 537-538
Statistics, 537
Subtraction Property of Equality, 344
Subtraction equations,
solving, 353-354 solving, 353-354
Surface area
of rectangular prisms 498-500
of square pyramids, 522-524 of triangular prisms, 508-511 of triangular pyramids. 525-526
Symmetric distribution, 583

T ape diagrams. See bar diagrams

415, 416, 417, 418, 419, 423, 424, 425, 435c, 435d, 436, 437, 438, 443c, 443d, 444, 445a, 445b, 445, 446, 451, 452, 453, 455, 456, 457, 458, 463c, 463d, 463, 464, 469c, 469d, 469, 470, 471, 472, 473, 474, 486, 487, 488, 489, 490, 495c, 495d, 495, 496, 498, 499, 505c, 505d, 505, 506, 508, 509, 510, 511, 517, 518, $520,522,523,525,537,538,539 a, 539$ b, 539, 540, 543, 544, 545, 549c, 549d, 550, 552, 553, 554, 555, 556, 561, 562, 564, 565, $566,569,570,571,575,576,577 a, 577$ b, 578, 579, 583, 584, 585, 586, 587a, 587b, 587, 588

Mindset Matters, 2, 78, 134, 192, 260, 334, 416, 434, 484, 536

P

Prerequisite Skills

Are You Ready?, 2, 78, 134, 192, 260, 334, 416, 434, 484, 536
Warm Up, 3b, 13b, 23b, 29b, 37b, 47b, 57b, 68b, 79b, 85b, 93b, 103b, 113b, 121b, 135b, 143b, 155b, 167b, 177b, 193b, 199b, 205b, 215b, 225b, 237b, 245b, 261b, 269b, 277b, 287b, 295b, 305b, 315b, 335b, 341b, 351b, 359b, 369b, 377b, 397b, 405b, 415b, 423b, 435a, 443b, 451b, 463b, 469b, 485b, 495b, 505b, 517b, 537b, 543b, 549b, 561b, 569b, 575b, 583b

R

Review, see Review and Assessment Options
Review and Assessment Options, 73, 129, 187, 225, 329, 391, 449, 480, 531, 593

Rigor, 1a, 3a, 13a, 23a, 29a, 37a, 47a, 57a, 65a, 77a, 79a, 85a, 93a, 103a, 113a, 121a, 133a, 135a, 143a, 155a, 167a, 177a, 191a, 193a, 199a, 205a, 215a, 225a, 237a, 245a, 259a, 261a, 269a, 277a, 287a, 295a, 305a, 315a, 333a, 335a, 341a, 351a, 359a, 369a, 377a, 395a, 395a, 405a, 415a, 423a, 433a, 435a, 443a, 451a, 463a, 469a, 483a, 485a, 495a, 505a, 517a, 535a, 537a, 543a, 549a, 561a, 569a, 575a, 583a

s

Standardized Test Practice, see Test Practice

T

Test Practice, 75-76, 131-132, 189-190, 257-258, 331-332, 393-394, 431-432, 481-482, 533-534, 595-596

Tier 2 Intervention, 3a, 10, 13a, 20, 23a, 26, 29a, 34, 37a, 44, 47a, 54, 57a, 62, 65a, 70, 79a, 84, 85a, 92, 93a, 100, 103a, 110, 113a, 118, 121a, 126, 135a, 140, 143a, 152, 155a, 164, 167a, 174, 177a, 184, 193a, 198, 199a, 204, 205a, 212, 215a, 222, 225a, 234, 237a, 242, 245a, 252, 261a, 266, 269a, 274, 277a, 286, 287a, 292, 295a, 302, 305a, 312, 315a, 326, 335a, 338, 341a, 348, 351a, 356, 359a, 366, 369a, 374, 377a, 388, 397a, 402, 405a, 412, 415a, 420, 423a, 426, 435a, 440, 443a, 448, 451a, 460, 463a, 466, 469a, 476, 485a, 492, 495a, 502, 505a, 514, 517a, 528, 537a, 542, 543a, 546, 549a, 558, 561a, 568, 569a, 572, 575a, 580, 583a, 590

Terms of an algebraic
expression, 278.279
Third quortio, 561
Theee-dimensional Kgures, 485
Traperoid
ares ot $290,451-459$
base ot 454
noighle 0 , 454
missing
Oimensions of 458
Triangle
Nres ot 444-445
base of 444
helghe of, 444
missing oimensions d 486
Thiangutar pisms
nets of 505-507
surfoce aren ot 508-512
Trianguter pyramids
nets of 519-521
sutace area ot $525-526$
U
Unit price, 60
Unit rate. 57-58

Unit ratio. 47

Units

Variobles, 277-278, 280-284.
341-342
Valation, measures ot 561 Volume. 485
of cube, 485
of rectrongula prome, 485-490 of ripht priam. $4{ }^{2} 7$

Whole numbers. $135-138$, 156 -162, 177 -180

X

x-axis, 23; 225 x-coordinate, 23,225-228
yaxis, 23.225 y-coordinate, 23, 225-228

2

Zera. annexation ot 143-150

Selected Answers

Mathematics Reference Sheet

FormulaS					
Perimeter	Square	$P=4 s$	Rectangle	$P=2 \ell+2 w$ or $P=2(\ell+w)$	
	Square	$A=s^{2}$	Rectangle	$A=\ell w$	
Area	Parallelogram	$A=b h$	Triangle	$A=\frac{1}{2} b h$	
	Trapezoid	$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$			
Volume	Cube	$V=s^{3}$	Prism	$V=\ell w h$ or $B h$	
Temperature	Fahrenheit to Celsius	$C=\frac{5}{9}(F-32)$	Celsius to Fahrenheit	$F=\frac{9}{5} C+32$	

Measurement Conversions		
Length	$\begin{aligned} & 1 \text { kilometer }(\mathrm{km})=1,000 \text { meters }(\mathrm{m}) \\ & 1 \text { meter }(\mathrm{m})=100 \text { centimeters }(\mathrm{cm}) \\ & 1 \text { centimeter }=10 \text { millimeters }(\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 1 \text { foot }(\mathrm{ft})=12 \text { inches (in.) } \\ & 1 \text { yard }(\mathrm{yd})=3 \text { feet or } 36 \text { inches } \\ & 1 \text { mile }(\mathrm{mi})=1,760 \text { yards or } 5,280 \text { feet } \end{aligned}$
Volume and Capacity	1 liter $(\mathrm{L})=1,000$ milliliters (mL) 1 kiloliter $(k L)=1,000$ liters	$\begin{aligned} & 1 \text { cup (c) }=8 \text { fluid ounces (fl oz) } \\ & 1 \text { pint }(\mathrm{pt})=2 \text { cups } \\ & 1 \text { quart }(\mathrm{qt})=2 \text { pints } \\ & 1 \text { gallon (gal) }=4 \text { quarts } \end{aligned}$
Weight and Mass	$\begin{aligned} & 1 \text { kilogram }(\mathrm{kg})=1,000 \text { grams }(\mathrm{g}) \\ & 1 \text { gram }=1,000 \text { milligrams (} \mathrm{mg} \text {) } \\ & 1 \text { metric ton }=1,000 \text { kilograms } \end{aligned}$	$\begin{aligned} & 1 \text { pound }(\mathrm{lb})=16 \text { ounces (oz) } \\ & 1 \text { ton }(\mathrm{T})=2,000 \text { pounds } \end{aligned}$
Time	$\begin{aligned} & 1 \text { minute }(\min)=60 \text { seconds }(\mathrm{s}) \\ & 1 \text { hour }(\mathrm{h})=60 \text { minutes } \\ & 1 \text { day }(\mathrm{d})=24 \text { hours } \end{aligned}$	```1 week \((w k)=7\) days 1 year (yr) \(=12\) months (mo) or 52 weeks or 365 days 1 leap year \(=366\) days```
Metric to Customary	1 meter $=39.37$ inches 1 kilometer $=0.62$ mile 1 centimeter $=0.39$ inch	$\begin{aligned} & 1 \text { kilogram }=2.2 \text { pounds } \\ & 1 \text { gram }=0.035 \text { ounce } \\ & 1 \text { liter }=1.057 \text { quarts } \end{aligned}$

Teacher Edition

Reveal MATH

Course 1• Volume 2

Cover: (I to r, t to b) guvendemir/E+/Getty Images, Andrey Prokhorov/E+/Getty Images, anatols/iStock/Getty Images, iava777/iStock/Getty Images

my.mheducation.com

Mc

Graw
Hill
Education

Copyright © 2020 McGraw-Hill Education

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
McGraw-Hill Education
STEM Learning Solutions Center
8787 Orion Place
Columbus, OH 43240
ISBN: 978-0-07-899175-2 (Reveal Math, Course 1, Eacher Edition, Volume 2)
MHID: 0-07-899175-7 (Teacher Edition, Volume 2)
ISBN: 978-0-07-899714-3 (Interactive Student Edition, Volume 2)
MHID: 0-07-899714-3 (Interactive Student Edition, Volume 2)
Printed in the United States of America.
234567891011 WEB 28272625242322212019
Common Core State Standards © Copyright 2010. National
Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

Contents in Brief

Module 1 Ratios and Rates

2 Fractions, Decimals, and Percents

3 Compute with Multi-Digit Numbers and Fractions

4 Integers, Rational Numbers, and the Coordinate Plane

5 Numerical and Algebraic Expressions

6 Equations and Inequalities

7 Relationships Between Two Variables

8 Area

9 Volume and Surface Area

10 Statistical Measures and Displays

Reveal Math ${ }^{\text {TM }}$ Guiding Principles

Academic research and the science of learning provide the foundation for this powerful $\mathrm{K}-12$ math program designed to help reveal the mathematician in every student.

Reveal Math is built
 on a solid foundation of RESEARCH

that shaped the PEDAGOGY of the
program.

Reveal Math used findings from research on teaching and learning mathematics to develop its instructional model. Based on analyses of research findings, these areas form the foundational structure of the program:

- Rigor
- Productive Struggle
- Formative Assessment
- Rich Tasks
- Mathematical Discourse
- Collaborative Learning

Instructional Model

1 Launch		
18. WARM UP	18.1 LAUNCH THE LESSON	8 EXPLORE
During the Warm Up, students complete exercises to activate prior knowledge and review prerequisite concepts and skills.	In Launch the Lesson, students view a real-world scenario and image to pique their interest in the lesson content. They are introduced to questions that they will be able to answer at the end of the lesson.	During the Explore activity, students work in partners or small groups to explore a rich, real-world or mathematical problem related to the lesson content.
INDIVIDUAL ACTIVITY GROUP ACTIVITY CLASS ACTIVITY		

2 Explore and Develop

LEARN

In the Learn section,
students gain the foundational knowledge
needed to actively
work through upcoming Examples.

Students work through Examples related to the key concepts and engage in mathematical discourse.

Students complete a Check after each Example as a quick formative assessment to help teachers adjust instruction as needed.3 Reflect and Practice

8
 PRACTICE

Students complete Practice exercises individually or collaboratively to solidify their understanding of lesson concepts or build proficiency with lesson skills.

Reveal Math Key Areas of Focus

Reveal Math has a strong focus on rigor-especially the development of conceptual understanding-an emphasis on student mindset, and ongoing formative assessment feedback loops.

Rigor

Reveal Math has been thoughtfully designed to incorporate a balance of the three elements of rigor: conceptual understanding, procedural skills and fluency, and application.

Conceptual Understanding

Explore activities give all students an opportunity to work collaboratively and discuss their thinking as they build conceptual understanding of new topics. In the Explore activity to the left, students use algebra tiles to gain an understanding of operations with positive and negative integers.

Procedural Skills and Fluency

As students move through the lesson, they will use different strategies and tools to build procedural fluency. In the Example shown, students use Web Sketchpad ${ }^{\circledR}$ to develop proficiency with integer operations.

Application

Real-world examples and practice problems are opportunities for students to apply their learning to new situations. In the real-world example to the left, students apply their understanding of percents to solve a percent error problem.

Student Mindset

Mindset Matters tips located in each module provide specific examples of how Reveal Math content can be used to promote a growth mindset in all students. Another feature focused on promoting a growth mindset is Ignite! Activities developed by Dr. Raj Shah to spark student curiosity about why the math works. An Ignite! delivers problem sets that are flexible enough so that students with varying background knowledge can engage with the content and motivates them to ask questions, solve complex problems, and develop a can-do attitude toward math.

Mindset Matters

Growth Mindset vs. Fixed Mindset
Everyone has a core belief or mindset about how they learn. People with a growth mindset bellieve that they can grow their intelligence through hard work. Those with a fixed mindset believe that while they can leam new things, they cannot increase their intelligence. When a student approaches school, life, and the future workplace with a growth mindset, they are more likely to persevere through challenging problems, leam from their mistakes, and ultimately learn concepts in a deeper, more meaningful way.

How Can I Apply It?
Assign students rich tasks, such as the Explore activities, that can help them to develop their intelligence. Encourage them with the thought that each time they learn a new idea, neurons fire electric currents that connect different parts of their brain!

Teacher Edition Mindset Tip

IGNITME!

Student Ignite! Activity

Formative Assessment

The key to reaching all learners is to adjust instruction based on each student's understanding. Reveal Math offers powerful formative assessment tools that help teachers to efficiently and effectively differentiate instruction for all students.

Math Probes

Each module includes a Cheryl Tobey Formative Assessment Math Probe that is focused on addressing student misconceptions about key math topics. Students can complete these probes at the beginning, middle, or end of a module. The teacher support includes a list of recommended differentiated resources that teachers assign based on students' responses.

Example Checks

Each example is followed by a formative assessment Check that students complete on their own that allows teachers to gauge students' understanding of the concept or skill presented. When students complete the Check, the teacher receives resource recommendations, which can be assigned to all students.

A Powerful Blended Learning Experience

The Reveal Math blended learning experience was designed to include purposeful print and digital components focused on sparking student curiosity and providing teachers with flexible implementation options.

Reveal Math has been thoughtfully developed to provide a rich learning experience no matter where a district, school, or classroom falls on the digital spectrum.
All of the instructional content can be projected or can be accessed via desktop, laptop, or tablet.

Lesson

Launch the Lesson

9 ExLORE

The Explore Activity can be projected while students record their observations in the Interactive Student Edition or can be assigned for students to complete on individual devices.

Explore

88 can	8：8 examess cuter	Q arrioer	Q packes
回］	回］	回	回
			Asemes
	den	Mouve sidem	leameatee
memen		为	come
			coct

Supporting All Learners

The Reveal Math program was designed so that all students have access to:

- rich tasks that promote productive struggle,
- opportunities to develop proficiency with the habits of mind and thinking strategies of mathematicians, and
- prompts to promote mathematical discourse and build academic language.

Resources for Differentiating Instruction

When needed, resources are available to differentiate math instruction for students who may need to see a concept in a different way, practice prerequisite skills, or are ready to extend their learning.

AL

Approaching Level Resources

- Remediation Activities
- Extra Examples
- Arrive Math Take Another Look Mini Lessons

BL
Beyond Level Resources

- Beyond Level

Differentiated Activities

- Extension Activities

Resources for English Language Learners

Reveal Math also includes student and teacher resources to support students who are simultaneously learning grade-level math and building their English proficiency. Appropriate, research-based language scaffolds are also provided to support students as they engage in rigorous mathematical tasks and discussions.

ELL
English Language Learners

- Spanish Interactive Student Edition
- Spanish Personal Tutors
- Math Language-Building Activities
- Language Scaffolds
- Think About It! and Talk About It! Prompts
- Multilingual eGlossary
- Audio
- Graphic Organizers
- Web Sketchpad, Desmos, and eTools

Embedded Reteach Support Arrive Math Booster Mini-Lessons

Reveal Math ensures a seamless connection for students who need extra topic support with embedded Arrive Math Booster mini-lessons. These mini-lessons, called Take Another Look, have been included in Reveal Math to provide students direct support related to the lesson objective.

- Teacher-assigned option based on Example Check results
- Digital, student-driven lesson
- Gradual release experience in three parts

Part 2: Interactive Practice

Arrive

 3005TER

Complement Reveal Math with the K-8 Arrive Math Booster supplemental intervention to equip teachers with all the resources they need to supplement their instruction and meet the needs of all learners.

Digital mini-lessons
Utilize over 1,160 Take Another Look digital mini-lessons for every skill within the K-8 standards.

Hands-On Lesson
Complement the Take Another Look lessons with concrete modeling support using hands on, teacher-led activities.

Games

Engage students
through exciting math games to become fluent in critical math skills.

Reveal Student Readiness with Individualized Learning Tools

Reveal Math incorporates innovative, technology-based tools that are designed to extend the teachers' reach in the classroom to help address a wide range of knowledge gaps, set and align academic goals, and meet student individualized learning needs.

LEARNSMART*

Topic Mastery

With embedded LearnSmart ${ }^{\otimes}$ students have a built-in study partner for topic practice and review to prepare for multi-module, or mid-year tests.

LearnSmart's revolutionary adaptive technology measures students' awareness of their own learning, time on topic, answer accuracy, and suggests alternative resources to support student learning, confidence, and topic mastery.

ALEKS ${ }^{\circ}$

Individualized Learning Pathways
Learners of all levels benefit from the use of ALEKS' adaptive, online math technology designed to pinpoint what each student knows, does not know, and most importantly, what each student is ready to learn.

When paired with Reveal Math, ALEKS is a powerful tool designed to provide integrated instructionally actionable data enabling teachers to utilize Reveal Math resources for individual students, groups, or the entire classroom.

Activity Report

Powerful Tools for Modeling Mathematics

Reveal Math has been designed with purposeful, embedded digital tools to increase student engagement and provide unique modeling opportunities.

Web Sketchpad ${ }^{\circledR}$ Activities

The leading dynamic mathematics visualization software has now been integrated with Web Sketchpad Activities at point of use within Reveal Math. Student exploration (and practice) using Web Sketchpad encourages problem solving and visualization of abstract math concepts.

desmos

The powerful Desmos graphing calculator is available in Reveal Math for students to explore, model, and apply math to the real-world.

eTools
By using a wide-variety of digital eTools embedded within Reveal Math, students gain additional handson experience while they learn and teachers have the option to create problem-based learning opportunities.

Technology-Enhanced Items
Embedded within the digital lesson, technology-enhanced items-such as drag-and-drop, flashcard flips, or diagram completion-are strategically placed to give students the practice with common computer functions needed to master computer-based testing.

Assessment Tools to Reveal Student Progress and Success

Reveal Math provides a comprehensive array of assessment tools to measure student understanding and progress. The digital assessment tools include next generation assessment items, such as multiple-response, selected-response, and technology-enhanced items.

Assessment

Reveal Math provides embedded, regular formative checkpoints to monitor student learning and provide feedback that can be used to modify instruction and help direct student learning using reports and recommendations based on resulting scores.

Summative assessments built in Reveal Math evaluate student learning at the module conclusion by comparing it against the state standards covered.

Formative Assessment Resources

- Cheryl Tobey Formative Assessment Math Probes
- Checks
- Exit Tickets
- Put It All Together

Summative Assessment Resources

- Module Tests
- Performance Tasks
- Benchmark Tests
- End-of-Course Tests
- LearnSmart

Or Build Your Own assessments focused on standards or objectives. Access to banks of questions, including those with tech-enhanced capabilities, enable a wide range of options to mirror high-stakes assessment formats.

Reporting

Clear, instructionally actionable data will be a click away with the Reveal Math Reporting Dashboard.

Activity Report Real-time class and student reporting of activities completed by the class. Includes average score, submission rate, and skills covered for the class and each student.

- Item Analysis Report Review a detailed analysis of response rates and patterns, answers, and question types in a class snapshot or by student.
- Standards Report Performance data by class or individual student is aggregated by standards, skills, or objectives linked to the related activities completed.

Activity Report

Professional Development Support for Continuous Learning

McGraw-Hill Education supports lifelong learning and demonstrates commitment to teachers with a built-in professional learning environment designed for support during planning or extended learning opportunities.

What You Will Find

- Best-practices resources
- Implementation support
- Teaching Strategies
- Classroom Videos
- Math Misconception Videos
- Content and Pedagogy Videos
- Content Progression Information

Why Professional Development is so Important

- Research-based understanding of student learning
- Improved student performance
- Evidence-based instructional best-practices
- Collaborative content strategy planning
- Extended knowledge of program how-to's

Reveal Math Expert Advisors

Areas of expertise:

Mathematics Teaching, Equity, Assessment, STEM Learning, Informal Learning, Upside-Down Teaching, Productive Struggling, Mathematical Practices, Mathematical Habits of Mind, Family and Community Outreach, Mathematics Education Policy, Advocacy
"We want students to believe deeply that mathematics makes sense-in generating answers to problems, discussing their thinking and other students' thinking, and learning new material."
-Seeley, 2016, Making Sense of Math

Nevels Nevels,

 Ph.D.Saint Louis, Missouri
PK-12 Mathematics Curriculum Coordinator for Hazelwood School District

Areas of expertise:

Mathematics Teacher Education; Student Agency \& Identity; Socio-Cultural Perspective in Mathematics Learning
"A school building is one setting for learning mathematics. It is understood that all children should be expected to learn meaningful mathematics within its walls. Additionally, teachers should be expected to learn within the walls of this same building. More poignantly, I posit that if teachers are not learning mathematics in their school building, then it is not a school."
-Nevels, 2018

Cheryl R. Tobey, M.Ed.

Gardiner, Maine
Senior Mathematics Associate at Education Development Center (EDC)

Areas of expertise:
Formative assessment and professional development for mathematics teachers; tools and strategies to uncovering misconceptions
"Misunderstandings and partial understandings develop as a normal part of learning mathematics. Our job as educators is to minimize the chances of students' harboring misconceptions by knowing the potential difficulties students are likely to encounter, using assessments to elicit misconceptions and implementing instruction designed to build new and accurate mathematical ideas."

- Tobey, et al 2007, 2009, 2010, 2013, 2104, Uncovering Student Thinking Series

Raj Shah, Ph.D.
Columbus, Ohio
Founder of Math Plus Academy, a STEM enrichment program and founding member of The Global Math Project

Areas of expertise:

Sparking student curiosity, promoting productive struggle, and creating math experiences that kids love
"As teachers, it's imperative that we start every lesson by getting students to ask more questions because curiosity is the fuel that drives engagement, deeper learning and perseverance."
-Shah, 2017

Walter Secada, Ph.D.
Coral Gables, Florida
Professor of Teaching and Learning at the University of Miami

Areas of expertise:

Improving education for English language learners, equity in education, mathematics education, bilingual education, school restructuring, professional development of teachers, student engagement, Hispanic dropout and prevention, and reform
"The best lessons take place when teachers have thought about how their individual English language learners will respond not just to the mathematical content of that lesson, but also to its language demands and mathematical practices."
-Secada, 2018

Ryan Baker, Ph.D.

Philadelphia, Pennsylvania

Associate Professor and Director of Penn Center for Learning Analytics at the University of Pennsylvania

Areas of expertise:

Interactions between students and educational software; data mining and learning analytics to understand student learning
"The ultimate goal of the field of Artificial Intelligence in Education is not to promote artificial intelligence, but to promote education... systems that are designed intelligently, and that leverage teachers' intelligence. Modern online learning systems used at scale are leveraging human intelligence to improve their design, and they're bringing human beings into the decisionmaking loop and trying to inform them."
-Baker, 2016

Dinah Zike, M.Ed.

Comfort, Texas
President of Dinah.com in San Antonio, Texas and Dinah Zike Academy

Areas of expertise:

Developing educational materials that include three-dimensional graphic organizers; interactive notebook activities for differentiation; and kinesthetic, cross-curricular manipulatives
"It is education's responsibility to meet the unique needs of students, and not the students' responsibility to meet education's need for uniformity."
-Zike, 2017, InRIGORating Math Notebooks

Reveal Everything Needed for Effective Instruction

Reveal Math provides both print and innovative, technologybased tools designed to address a wide range of classrooms. No matter whether you're in a 1:1 district, or have a classroom projector, Reveal Math provides you with the resources you need for a rich learning experience.

Blended Classrooms

Focused on projection of the Interactive Presentation, students follow along taking notes and working through problems in their Interactive Student Edition during class time. Also included in the Interactive Student Edition is a glossary, Foldables ${ }^{\circledR}$ at point of use and in the back of the book, selected answers, and a reference sheet.

Digital Classrooms

Projection is a focal point for key areas of the course with students interacting with the lesson using their own devices. Each student can access teacherassigned sections of the lessons for Explore activities, Learn sections and Examples. Point of use videos, animations, as well as interactive content enable students to experience math in interesting and impactful ways.

Web Sketchpad

Drag-and-Drop

Desmos

Videos and Animations

In Reveal Math,
R is for-

- Research
- Rigor
- Relevant Connections

Are you...
READY to start?

TABLE OF CONTENTS

Module 1

Ratios and Rates

Fssential Question

How can you describe how two quantities are related?
What Will You Learn? 1
Lesson 1-1 Understand Ratios. 3
Explore Compare Two Quantities
1-2 Tables of Equivalent Ratios 13
Explore Compare Equivalent Ratios
1-3 Graphs of Equivalent Ratios. 23
1-4 Compare Ratio Relationships 29
1-5 Solve Ratio Problems 37
1-6 Convert Customary Measurement Units 47
1-7 Understand Rates and Unit Rates 57Explore Compare Quantities with Different Units
1-8 Solve Rate Problems 65
Module 1 Review 73

Fssential Question

How can you use fractions, decimals, and percents to solve everyday problems?What Will You Learn?77
Lesson 2-1 Understand Percents 79
2-2 Percents Greater Than 100\% and Less Than 1\% 85
2-3 Relate Fractions, Decimals, and Percents 93Explore Percents and Ratios
2-4 Find the Percent of a Number 103
Explore Percent of a Number
2-5 Estimate the Percent of a Number 113
2-6 Find the Whole 121
Module 2 Review 129

Content Standards

Foundational for 6.RP.A.3 6.RP.A.3.C

Foundational for 6.RP.A.3, 6.RP.A.3.C

Foundational for 6.RP.A.3 6.RP.A.3.C
6.RPA.3, 6.RPA.3.C
6.RP.A.3, 6.RP.A.3.C
6.RP.A.3, 6.RP.A.3.C

TABLE OF CONTENTS

Module 3

Compute with Multi-Digit Numbers and Fractions

e. Essential Question

How are operations with fractions and decimals related to operations with whole numbers?
What Will You Learn? 133
Lesson 3-1 Divide Multi-Digit Whole Numbers 135
3-2 Compute With Multi-Digit Decimals 143
3-3 Divide Whole Numbers by Fractions 155
Explore Divide Whole Numbers by Fractions
3-4 Divide Fractions by Fractions 167
3-5 Divide with Whole and Mixed Numbers 177
Content Standards
6.NS.B. 2
6.NS.B. 3
6.NS.A. 1
6.NS.A. 1
6.NS.A. 1
Explore Divide Fractions by Whole Numbers
Module 3 Review. 187

Module 4

Integers, Rational Numbers, and the Coordinate Plane

e Essential Question
How are integers and rational numbers related to the coordinate plane?

Lesson

4-1 Represent Integers1914-1 Represent Integers193Explore Represent Integers
4-2 Opposites and Absolute Value 199Explore Opposites and Absolute Value4-3 Compare and Order Integers205
4-4 Rational Numbers. 215

Content Standards

6.NS.C.5, 6.NS.C. 6
6.NS.C.6.C
6.NS.C.5, 6.NS.C.6, 6.

NS.C.6.A, 6.NS.C.7, 6.
NS.C.7.C
6.NS.C.7, 6.NS.C.7.A,
6.NS.C.7.B, 6.NS.C.7.C,
6.NS.C.7.D
6.NS.C.6, 6.NS.C.6.C, 6.NS.C.7, 6.NS.C.7.A
6.NS.C.7.C
6.NS.C.6, 6.NS.C.6.B,
6.NS.C.6.C, 6.NS.C. 8
6.NS.C.6, 6.NS.C.6.B,
6.NS.C.6.C, 6.NS.C. 8
6.NS.C. 8

Explore Distance on the Coordinate Plane
\qquad

TABLE OF CONTENTS

Module 5

Numerical and Algebraic Expressions

Essential Question

How can we communicate algebraic relationships with mathematical symbols?

Essential Question

How are the solutions of equations and inequalities different?
What Will You Learn? 333
Lesson 6-1 Use Substitution to Solve One-Step Equations 335
6-2 One-Step Addition Equations 341Explore Use Bar Diagrams to Write Addition EquationsExplore One-Step Addition Equations
6-3 One-Step Subtraction Equations 351Explore Use Bar Diagrams to Write Subtraction Equations
6-4 One-Step Multiplication Equations 359
Explore Use Bar Diagrams to Write Multiplication Equations
6-5 One-Step Division Equations 369Explore Use Bar Diagrams to Write Division Equations
6-6 Inequalities 377
Explore Inequalities
Module 6 Review 391

TABLE OF CONTENTS

Module 7

Relationships Between INo Variables

Essential Question

What are the ways in which a relationship between two variables can be displayed?
What Will You Learn? 395
7-1 Relationships Between Two Variables. 397
LessonExplore Relationships Between Two VariablesRepresented in Tables405
Explore Relationships with Rules that Require Two Steps
7-3 Graphs of Relationships 415
7-4 Multiple Representations 423
Content Standards
7-2 Write Equations to Represent Relationships
Module 7 Review. 429
6.EE.C. 9

6.EE.C. 9
6.EE.C. 9

6.EE.C. 9
6.EE.C. 9

帾
6.EE.C. 9

e Fssential Question

How are the areas of triangles and rectangles used to find the areas of other polygons?
Lesson 8-1 Area of Parallelograms 435Explore Area of Parallelograms
443
8-2 Area of Triangles
Explore Parallelograms and Area of TrianglesExplore Area of Triangles
8-3 Area of Trapezoids 451
8-4 Area of Regular Polygons 463Explore Area of Regular Polygons8-5 Polygons on the Coordinate Plane469Explore Explore the Coordinate PlaneModule 8 Review479
What Will You Learn? 433
Content Standards6.G.A.1, 6.EE.A.2,6.EE.A.2.C
6.G.A.1, 6.EE.A.2,
6.EE.A.2.C
6.G.A.1, 6.EE.A. 2
6.EE.A.2.C
6.G.A. 16.G.A. 3

TABLE OF CONTENTS

Module 9

Volume and Surface Area

Essential Question

How can you describe the size of a three-dimensional figure?

Lesson

9-1 Volume of Rectangular Prisms
9-2 Surface Area of Rectangular Prisms 495
Explore Cube Nets
9-3 Surface Area of Triangular Prisms 505
Explore Non-Rectangular Prism Nets
9-4 Surface Area of Pyramids 517
Module 9 Review 531

Content Standards

6.G.A. 2
6.G.A. 4
6.G.A. 4
6.G.A. 4

Statistical Measures and Displays

Essential Question

Why is data collected and analyzed and how can it be displayed?
What Will You Learn?535
Lesson 10-1 Statistical Questions 537Explore Collect Data10-2 Dot Plots and Histograms543
10-3 Measures of Center 549
Explore Mean
10-4 Interquartile Range and Box Plots 561
10-5 Mean Absolute Deviation 569
10-6 Outliers 575Explore Mean, Median, and Outliers10-7 Interpret Graphical Displays583
Explore Interpret Box PlotsModule 10 Review593

Content Standards

6.SP.A. 1
6.SP.B.4, 6.SP.B.5,
6.SP.B.5.A
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6. SP.B.5.C
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C
6.SP.A.3, 6.SP.B. 5
6.SP.B.5.A, 6.SP.B.5.B. 6.

SP.B.5.C
6.SP.A.3, 6.SP.B.4,
6.SP.B.5, 6.SP.B.5.C, 6.SP.B.5.D
6.SP.A.2, 6.SP.A.3, 6.

SP.B.4, 6.SP.B.5,
6.SP.B.5.A, 6.SP.B.5.B,
6.SP.B.5.C, 6.SP.B.5.D

Mathematical Overview for Reveal Math, Course 1

Reveal Math, Course 1, focuses on four critical areas: (1) connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, and using expressions and equations; and (4) developing understanding of statistical thinking.

Mathematical Practices

1 Make sense of problems and persevere in solving them.

2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.

5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

4 Model with mathematics.

Key Mathematical Understandings*, Grade 6

Ratios and Proportional Relationships (Domain 6.RP)

- Understand ratio concepts and use ratio reasoning to solve problems.

The Number System (Domain 6.NS)

- Apply and extend previous understandings of multiplication and division to divide fractions by fractions.
- Compute fluently with multi-digit numbers and find common factors and multiples.
- Apply and extend previous understandings of numbers to the system of rational numbers.

Expressions and Equations (Domain 6.EE)

- Apply and extend previous understandings of arithmetic to algebraic expressions.
- Reason about and solve one-variable equations and inequalities.
- Represent and analyze quantitative relationships between dependent and independent variables.

Geometry (Domain 6.G)

- Solve real-world and mathematical problems involving area, surface area, and volume.
Statistics and Probability (Domain 6.SP)
- Develop understanding of statistical variability.
- Summarize and describe distributions.

Standards or Mathematical Content, Grade 6

This correlation shows the alignment of Reveal Math, Course 1 to the Standards for Mathematical Content, Grade 6, from the Common Core State Standards for Mathematics. Primary references are bold. Supporting references are italicized.

Standards for Mathematical Content		Lesson(s)
6.RP Ratios and Proportional Relationships		
Understand ratio concepts and use ratio reasoning to solve problems. (Major Cluster)		
6.RP.A. 1	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	1-1, 1-5, 1-6, 10-7
6.RP.A. 2	Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." ${ }^{1}$ Expectations for unit rates in this grade are limited to non-complex fractions.	1-7, 1-8
6.RP.A. 3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	$\begin{aligned} & 1-2,1-3,1-4,1-5,1-6,1-7,1-8, \\ & 2-4,2-5,2-6,10-7 \end{aligned}$
	6.RP.A.3.A Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	1-2, 1-3, 1-4, 1-7, 7-3, 7-4
	6.RP.A.3.B Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?	1-7, 1-8
	6.RP.A.3.C Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percent.	2-4, 2-5, 2-6
	6.RP.A.3.D Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	1-6

Standards for Mathematical Content		Lesson(s)
6.NS The Number System		
Apply and extend previous understandings of multiplication and division to divide fractions by fractions. (Major Cluster)		
6.NS.A. 1	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?	3-3, 3-4, 3-5
Compute fluently with multi-digit numbers and find common factors and multiples. (Additional Cluster)		
6.NS.B. 2	Fluently divide multi-digit numbers using the standard algorithm.	3-1
6.NS.B. 3	Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	3-2
6.NS.B. 4	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.	5-5, 5-6
Apply and extend previous understandings of numbers to the system of rational numbers. (Major Cluster)		
6.NS.C. 5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/ debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	4-1, 4-2
6.NS.C. 6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	$\begin{aligned} & 4-1,4-2,4-3,4-4,4-5,4-6,4-7 \text {, } \\ & 6-6,7-3,7-4 \end{aligned}$
	6.NS.C.6.A Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.	4-2, 4-6
	6.NS.C.6.B Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	4-5, 4-6
	6.NS.C.6.C Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	$\begin{aligned} & 4-1,4-3,4-4,4-5,4-6,6-6,7-3 \\ & 7-4 \end{aligned}$

Standards for Mathematical Content		Lesson(s)
6.NS.C. 7	Understand ordering and absolute value of rational numbers.	4-2, 4-3, 4-4, 4-7
	6.NS.C.7.A Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.	4-3, 4-4
	6.NS.C.7.B Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.	4-3, 4-4
	6.NS.C.7.C Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars.	4-2, 4-3, 4-4, 4-7
	6.NS.C.7.D Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.	4-3
6.NS.C. 8	Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	4-5, 4-6, 4-7
6.EE Expressions and Equations		
Apply and extend previous understandings of arithmetic to algebraic expressions. (Major Cluster)		
6.EE.A. 1	Write and evaluate numerical expressions involving whole-number exponents.	5-1, 5-2
6.EE.A. 2	Write, read, and evaluate expressions in which letters stand for numbers.	$\begin{aligned} & 5-2,5-3,5-4,5-7,7-1,8-1,8-2 \\ & 8-3 \end{aligned}$
	6.EE.A.2.A Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-y$.	5-3
	6.EE.A.2.B Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.	5-3, 5-6
	6.EE.A.2.C Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving wholenumber exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	$5-2,5-4,7-1,8-1,8-2,8-3$
6.EE.A. 3	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	5-6, 5-7

STANDARDS FOR MATHEMATICAL CONTENT GRADE 6, CONTINUED

| | Standards for Mathematical Content | Lesson(s) |
| :--- | :--- | :--- | :--- |
| 6.EE.A.4 | Identify when two expressions are equivalent (i.e., when the two expressions name the same number
 regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are
 equivalent because they name the same number regardless of which number y stands for. | $5-7$ |
| Reason about and solve one-variable equations and inequalities. (Major Cluster) | | |

Standards for Mathematical Content

6.G Geometry

Solve real-world and mathematical problems involving area, surface area, and volume. (Supporting Cluster)
6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
6.G.A. 3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
6.G.A. 4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
$8-1,8-2,8-3,8-4,8-5$

9-1

8-5

9-2, 9-3, 9-4

STANDARDS FOR MATHEMATICAL CONTENT GRADE 6, CONTINUED

Standards for Mathematical Content		Lesson(s)
6.SP Statistics and Probability		
Develop understanding of statistical variability. (Additional Cluster)		
6.SP.A. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am l?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	10-1
6.SP.A. 2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	10-4, 10-7
6.SP.A. 3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	$\begin{aligned} & 10-3,10-4,10-5,10-6 \\ & 10-7 \end{aligned}$
Summarize and describe distributions. (Additional Cluster)		
6.SP.B. 4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	$\begin{aligned} & 10-2,10-3,10-4,10-6 \\ & 10-7 \end{aligned}$
6.SP.B. 5	Summarize numerical data sets in relation to their context, such as by:	$\begin{aligned} & 10-1,10-2,10-3,10-4 \\ & 10-5,10-6,10-7 \end{aligned}$
	6.SP.B.5.A Reporting the number of observations.	$\begin{aligned} & 10-1,10-2,10-3,10-5 \\ & 10-7 \end{aligned}$
	6.SP.B.5.B Describe the nature of the attribute under investigation, including how it was measured and its units of measurement.	10-3, 10-5, 10-7
	6.SP.B.5.C Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	$\begin{aligned} & 10-3,10-4,10-5,10-6 \\ & 10-7 \end{aligned}$
	6.SP.B.5.D Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	10-6, 10-7

Standards ør Mathematical Practi̇e, Grade 6

This correlation shows the alignment of Reveal Math, Course 1 to the Standards for Mathematical Practice, from the Common Core State Standards.

Standards for Mathematical Practice

Make sense of problems and persevere in solving them.
Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Lesson(s)

A strong problem-solving strand is present throughout the program with an emphasis on having students explain to themselves and others the meanings of problems and plan their solution strategies. Look for the Apply problems and exercises labeled as Persevere with Problems. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice.
Throughout the program, for example:
Interactive Student Edition and Teacher Edition:

- Lesson 1-2, Apply
- Lesson 3-1, Practice Exercise 15

Lesson 3-3, Apply

- Lesson 8-1, Apply
- Lesson 9-1, Apply

Students are routinely asked to make sense of quantities and their relationships, and attend to the meaning of quantities as opposed to just computing with them. Students are often asked to decontextualize a real-world problem by representing it symbolically as an expression, equation, or inequality. Look for lessons addressing these algebraic topics and the exercises labeled as Reason Abstractly. Many Talk About lt! question prompts ask students to reason about relationships between quantities. In the Teacher Edition, look for the Teaching the Mathematical Practicestips labeled as this mathematical practice.

Throughout the program, for example:
Interactive Student Edition and Teacher Edition:

- Lesson 1-6, Example 1
- Lesson 5-3, Examples 2, 4, 5
- Lesson 6-2, Example 1
- Lesson 7-1, Example 2
- Lesson 7-3, Learn Write an Equation from a Graph

	Standards for Mathematical Practice	Lesson(s)
MP3	Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.	Students are required to justify their reasoning and to find the errors in another student's reasoning or work. Look for the Apply problems (Step 4) and the exercises labeled as Make a Conjecture, Find the Error, Use a Counterexample, Make an Argument, or Justify Conclusions. Many Talk About It! question prompts ask students to justify conclusions and/or critique another student's reasoning. In the Teacher Edition, look for the Teaching the Mathematical Practicestips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 2-3, Practice Exercises 16-17 - Lesson 8-2, Practice Exercises 11, 14 - Lesson 9-1, Practice Exercise 9 - Lesson 9-4, Example 2, Talk About It!
MP4	Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.	Students apply the mathematics they know to solve realworld problems by using mathematical modeling. In the Apply problems, students determine their own strategy to solve application problems by choosing mathematical models to aid them. Look also for the exercises labeled as Model with Mathematics. In the Teacher Edition, look for the Teaching the Mathematical Practicestips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 6-2, Example 1 - Lesson 6-4, Apply - Lesson 6-5, Apply - Lesson 7-2, Examples 1-2 - Lesson 7-2, Apply

Standards for Mathematical Practice

Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Lesson(s)

In addition to traditional tools such as estimation, mental math, or measurement tools, students are encouraged to use digital tools, such as Web Sketchpad, eTools, etc. to help solve problems. Students are routinely asked to compare and contrast methods, tools, and representations and note when one tool might be more advantageous to use than another. Look for selected Talk About It! prompts and exercises labeled as Use Math Tools. Many Explore activities ask students to select and use appropriate tools as they progress through the activities. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice.

Throughout the program, for example: Interactive Student Edition and Teacher Edition:

- Lesson 1-4, Learn Use Graphs to Compare Ratio Relationships
- Lesson 1-5, Learn Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems
- Lesson 1-6, Learn Convert Larger Units to Smaller Units
- Lesson 3-3, Examples 4-5
- Lesson 5-3, Explore activity Write Algebraic Expressions

Students are routinely required to communicate precisely to partners, the teacher, or the entire class by using precise definitions and mathematical vocabulary. Look for the exercises labeled as Be Precise. Many Talk About It! question prompts ask students to clearly and precisely explain their reasoning. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice.

Throughout the program, for example: Interactive Student Edition and Teacher Edition:

- Lesson 3-1, Learn Divide Multi-Digit Numbers
- Lesson 4-4, Learn Absolute Value of Rational Numbers, Talk About lt!
- Lesson 6-2, Learn Write Addition Equations, Talk About lt!

	Standards for Mathematical Practice	Lesson(s)
MP7	Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.	Students are routinely encouraged to look for patterns or structure present in problem situations. For example, students look for structure present in algebraic expressions and use the structure of three-dimensional figures to create nets Look for the exercises labeled as Identify Structure. Many Talk About It! question prompts ask students to study the structure of expressions and figures. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice. Throughoutthe program, for example: Interactive Student Edition and Teacher Edition: - Lesson 4-6, Example 1, Talk About lt! - Lesson 4-7, Learn Find Vertical Distance, Talk About lt! - Lesson 5-3, Learn Structure of Algebraic Equations, Talk About lt! - Lesson 5-3, Example 1 - Lesson 6-1, Learn Equations, Talk About lt! - Lesson 9-2, Learn Make a Net to Represent a Rectangular Prism, Talk About It! - Lesson 9-3, Example 2
MP8	Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1)$, $(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.	Students are encouraged to look for repeated calculations that lead them to sound mathematical conclusions. For example, students notice that division ends when a remainder is zero. Look for the exercises labeled as Identify Repeated Reasoning. Several Talk About It! question prompts ask students to look for repeated calculations. In the Teacher Edition, look for the Teaching the Mathematical Practices tips labeled as this mathematical practice. Throughout the program, for example: Interactive Student Edition and Teacher Edition: - Lesson 3-1, Example 2, Talk About It! - Lesson 4-2, Example 3 - Lesson 6-2, Explore activity One-Step Addition Equations

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

© Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How can we communicate algebraic relationships with mathematical symbols? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.
Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
(1) When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of objects in freefall and the cost of attending a hockey game to introduce the idea of numerical and algebraic expressions. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Learn?
Place a checkmark (\checkmark) in each row that corresponds with how muchyou already know about each topic before starting this module.

KEY	Before			After		
- idon't know. O - ive heard of it. O -1 know it	0	0	0	0	0	0
writing products as powers						
evaluating powers						
evaluating numerical expressions						
writing numerical expressions						
writing algebraic expressions						
evaluating algebraic expressions						
finding the greatest common factor of two whole numbers						
finding the least common multiple of two whole numbers						
using the Distributive Property						
using the greatest common factor to factor numerical expressions						
identifying equivalent expressions						
simplifying expressions by combining like terms						

(1) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. Y ou can use the Foldable throughout the module as you learn about numerical and algebraic expressions.
\qquad

Interactive Presentation

Numerical and Algebraic Expressions

Module Goal

Write and evaluate numerical and algebraic expressions.

Focus

Domain: Expressions and Equations
Major Cluster(s):
6.NS.B Compute fluently with multi-digit numbers and find common factors and multiples.
6.EE.A Apply and extend previous understandings of arithmetic to algebraic expressions.
6.EE.B Reason about and solve one-variable equations and inequalities. Standards for Mathematical Content:
6.EE.A. 1 Write and evaluate numerical expressions involving wholenumber exponents.
6.EE.A. 2 Write, read, and evaluate expressions in which letters stand for numbers.
Also addresses 6.NS.B.4, 6.EE.A.2.A, 6.EE.A.2.B, 6.EE.A.2.C, 6.EE.A.3, 6.EE.A.4, and 6.EE.B.6.

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8

(2) Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- fluently add, subtract, multiply, and divide positive rational numbers

Use the Module Pretest to diagnose students' readiness for this module.
You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students wrote and interpreted numerical expressions.
5.OA.A.1, 5.OA.A. 2

Now

Students write and evaluate numerical and algebraic expressions.
6.NS.B.4, 6.EE.A.1, 6.EE.A.2, 6.EE.A.2.A, 6.EE.A.2.B, 6.EE.A.2.C, 6.EE.A.3, 6.EE.A.4, 6.EE.B. 6

Next

Students will write and solve one-step equations and inequalities.
6.EE.B.5, 6.EE.B.6, 6.EE.B.7, 6.EE.B. 8

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of the four basic operations to develop understanding of numerical and algebraic expressions. They use this understanding to build fluency with using powers and exponents, order of operations, and mathematical properties, as well as evaluating multi-step algebraic expressions and generating and simplifying equivalent algebraic expressions. They also apply their understanding of numerical and algebraic expressions to solve real-world problems.

Suggested Pacing

	Lesson	Standard(s)	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
5-1	Powers and Exponents	6.EE.A. 1	2	1
5-2	Numerical Expressions	6.EE.A.1, Also addresses 6.EE.A.2.C	2	1
5-3	Write Algebraic Expressions	6.EE.A.2, 6.EE.A.2.A, 6.EE.A.2.B, 6.EE.B.6	2	1
5-4	Evaluate Algebraic Expressions	6.EE.A.2, 6.EE.A.2.C, 6.EE.B.6	3	1.5
Put It All Together 1:Lessons 5-1, 5-2, 5-3, and 5-4			0.5	0.25
5-5	Factors and Multiples	6.NS.B. 4	2	1
5-6	Use the Distributive Property	6.NS.B.4, 6.EE.A.3, Also addresses 6.EE.A.2.B	3	1.5
5-7	Equivalent Algebraic Expressions	6.EE.A.3, 6.EE.A.4, Also addresses 6.EE.A. 2	3	1.5
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			20.5	10.25

Formative Assessment Math Probe

${ }^{\square}$ Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will determine if the expressions in each pair of expressions are equivalent.

Targeted Concept Expressions can look different but still be equivalent. Strategies such as combining like terms and distribution can be used to determine whether expressions are equivalent.

Targeted Misconceptions

- Students may incorrectly apply the Distributive Property.
- Students may incorrectly attempt to combine unlike terms.

Assign the probe after Lesson 7.
Collect and Assess Student Work

Correct Answers: 1. No; 2. Yes; 3. No; 4. No; 5. Yes

the student selects...
3.Yes
4. Yes
5.No

1. Yes
2.No
3.No

Other various patterns

the student likely...

multiplies the terms outside of the parentheses by only the first term in the expression inside the parentheses.

Example: For Exercise 3, the student multiplies 3 by m but does not multiply 3 by 5 .
combines all terms instead of only combining like terms.
Example: For Exercise 2, the student may simplify the first expression as $9 x$ by adding all of the terms together, or as $5 x$ by subtracting 2 from $7 x$.

Example: For Exercise 3, the student may simplify the first expression as $8 m$ or 18 m .
incorrectly simplifies by combining terms incorrectly and/or incorrectly applying the Distributive Property.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS' Equations and Inequalities
- Lesson 6, Examples 1-6

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

260

[^9]260

What Vocabulary Will You Learn?

EELI As you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define The Commutative Property states that the order in which numbers are added or multiplied does not change the sum or product.

Example $5 \times 8=40 ; 8 \times 5=40$
Ask If Clint wanted to organize 30 chairs into 5 or 6 rows, how would you express that as two multiplication sentences, that illustrate the Commutative Property? $5 \times 6=30$; or $6 \times 5=30$

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- multiplying whole numbers, fractions and decimals
- finding prime factors

- ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Equations and Inequalities topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

"Not Yet" Doesn't Mean "Never"
Students with a growth mindset understand that just because they haven't yet found a solution, that does not mean they won't find one with additional effort and reasoning. It can take time and continued effort to reason through different strategies that can be used to solve a problem.

How Can I Apply It?

Assign students the Formative Assessment Math Probes that are available for each module. Have them complete the probe before starting the module, and then again at the specified lesson within the module, or at the end of the module so that they can see their progress.

Learn Products as Powers

Objective

Students will learn how to write products of the same factor as powers using whole-number exponents.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 3, encourage them to revisit the definitions of exponent and base, and to make sense of the terms factor and power when accurately describing the difference between exponents and bases.

7 Look for and Make Use of Structure Students should analyze the structure of each part represented and label it using the given vocabulary terms in order to complete the activity.

Teaching Notes

SLIDE1

Students will learn the definitions of exponent, power, and base. Play the animation for the class. Students will learn how to write a power using a base and an exponent and how to label each part of the expression, including expressions with multiple bases and exponents.

(3) Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 1. The animation shows how to write an expression as a power.

Talk About It!

SUDE?

Mathematical Discourse

Explain the difference between a base and an exponent. Sample answer: A base is the factor used in evaluating a power, while an exponent indicates the number of times that base is used as a factor.

Interactive Presentation

Learn, Products as Powers, Slide 2 of 3

Powers and Exponents

LESSON GOAL

Students will write and evaluate powers.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Products as Powers
Example 1: Write Products as Powers
Example 2: Write Products as Powers
Learn: Powers as Products
Example 3: Evaluate Powers
Example 4: Evaluate Powers
Example 5: Evaluate Powers
Apply: Biology

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	S.E.	
Arfive MATH Take Another Look	\bullet		
Extension: Negative Exponents		\bullet	\bullet
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 27 of the Language Development Handbook to help your students build mathematical language related to powers and exponents.
ELIII You can use the tips and suggestions on page T27 of the handbook to support students who are building English proficiency.

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.A by writing and evaluating powers.
Standards for Mathematical Content: 6.EE.A. 1
Standards for Mathematical Practice: MP1, MP2, MP3, MP4,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students wrote simple expressions thatrecord calculations with numbers, and interpreted numerical expressions without evaluating them.

5.OA.A. 2

Now

Students write and evaluate powers.
6.EE.A. 1

Next
Students will write and evaluate numerical expressions.
6.EE.A. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of products to begin to develop understanding of powers and exponents. They use this understanding to build fluency with writing products involving rational numbers as powers using wholenumber exponents. They also build fluency with writing powers as products with whole number, fractional, and decimal factors. They apply their understanding of powers and exponents to solve realworld problems.

Mathematical Background

A power is an expression involving a base and an exponent. In a power, the exponent tells how many times the base is used as a factor. Exponents are to multiplication as multiplication is to addition. In other words, while multiplication is repeated addition, exponentiation is repeated multiplication. One of the advantages of using exponents is that they allow us to write very big numbers very compactly.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- multiplying whole numbers (Exercise 1)
- multiplying fractions (Exercises 2-3)
- multiplying decimals (Exercises 4-5)

Answers

1. 16
2. $\frac{5}{9}$
3. $\frac{1}{27}$
4. 3.75
5. 1.875 teaspoons

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the byte as one basic unit of measurement for information storage involving computers.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- In what other area(s) of math have you heard of the term base? Sample answers: the base of a parallelogram, the base of a triangle, the base of a rectangular prism
- In what other areas of math, or everyday life, have you seen exponents used? Sample answer: The formulas for the area of a square and volume of a cube use exponents. The units for area are in square units, such as square feet or square inches.
- What does power mean in everyday life? Sample answer: strength, authority, influence

Interactive Presentation

Example 2, Write Products as Powers, Slide 2 of 4

CLICK
On Slide 2 of Example 2, students identify the number of times the base is used as a factor.
online to determine if they are ready to
move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 1 Write Products as Powers

Objective

Students will write products as powers using whole-number exponents.

Questions for Mathematical Discourse

 SLIDE:1Al. What is the repeated factor in this expression? 7
AL How many times is the base used as a factor? 5
OL Explain the difference between the expressions 75 and 5 ?
7 is $7 \times 7 \times 7 \times 7 \times 7$, and 5^{7} is $5 \times 5 \times 5 \times 5 \times 5 \times 5 \times 5$.
B. How many times greater is 7 than 7 ? Explain. 7 times greater; Sample answer: $7^{6}=7 \times 7 \times 7 \times 7 \times 7 \times 7$ and $7^{5}=7 \times 7 \times$ $7 \times 7 \times 7$; There is one more factor of 7 in 7^{6} than in 7.5

Example 2 Write Products as Powers

Objective
Students will write products involving rational numbers as powers using whole-number exponents.

Questions for Mathematical Discourse

SIIDE2

ALI. What does the term factor mean? Sample answer: A factor is multiplied by another factor (or factors) to obtain a product.
OL Why is $\frac{2}{5}$ the base in this example? Sample answer: The base is the factor that is being multiplied by itself a certain number of times. In this example, that number is $\frac{2}{5}$.
OL. The base is a fraction. Does this affect the process you use to find the exponent? Sample answer: No, I still count the number of times the base is used as a fraction, and then write the base with that exponent.
BLI. A classmate wrote the power as $\frac{2^{3}}{5}$. Why is this incorrect? Sample answer: The base is the entire fraction, $\frac{2}{5}$, not just the numerator, 2.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Powers as Products

Objective

Students will learn how to evaluate powers with whole-number factors.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 2, encourage them to study the structure of the expression in order to determine what some possible missteps might be in evaluating it.

Go Online to find additional teaching notes.

Talk About It!
 SLIDE2

Mathematical Discourse

What are some mistakes that could be made when evaluating 5^{3} ?
Sample answer: I might find 5×3 by mistake, rather than finding $5 \times 5 \times 5$. I might also confuse the base and the exponent to arrive at the product of $3 \times 3 \times 3 \times 3 \times 3$, or 243 .

Example 3 Evaluate Powers

Objective
Students will evaluate powers with whole-number factors.

Questions for Mathematical Discourse

SLIDE 2

What is the base, and what is the exponent? The base is 4 , and the exponent is 5 .

OI Why is the 4 repeated five times as a factor? Sample answer: The exponent tells us how many times the factor is repeated, and in this case the exponent is 5 .
How many times greater is 4^{5} than 4 ? Explain. 16 times greater; Sample answer: $4^{5}=4 \times 4 \times 4 \times 4 \times 4$ and $4^{3}=4 \times 4 \times 4$; There are two more factors of 4 in 4^{5} than in 4 ?

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Powers as Products
To write powers as products, determine the base and the exponent The base of 3^{2} is 3 and the exponent is 2 . To read powers, conside the exponent. The power 3^{2} is read as three to the second, power or three squared, the power 3^{3} is read three to the third power or three cubed, and 3^{5} is read three to the fifth power.
To evaluate powers, find the value of the power after multiplying.
Complete the table for the first four powers of 5

Example 3 Evaluate Powers
Evaluate 4^{5}.
$4^{5}=4 \times 4 \times 4 \times 4 \times 4 \quad$ Write 4^{5} as a product.
$=1,024$
Simplify.

So, 4^{5} is $1,024$.

Check
Evaluate 8^{4}. 4,096

3 Talk About It! What are some mistakes that could be made when evaluating 5^{3} ?
Sample answer: might find 5×3 by mistake rather than $5 \times 5 \times 5.1$ might also confuse the base and the exponent to arrive at the product f $3 \times 3 \times 3 \times 3 \times 3$ or 243 .

```
L
```

\square

\longrightarrow

Talk About It! A friend evaluates the expression 4^{5} and arrives at a value of 20 for the solution. Describe the mistake
Sample answer: They multiplied the base and the exponent. They should have used the base, 4 , as a factor five times to arrive at a product of 1,024 . Lesson 5-1 • Powers and Exponents 263

Interactive Presentation

Example 3, Evaluate Powers, Slide 2 of 4

Interactive Presentation

Example 4, Evaluate Powers, Slide 2 of 4
On Slide 2 of Example 4, students move
through the steps to evaluate the
expression.

1 CONCEPTUAL UNDERSTANDING

Example 4 Evaluate Powers

Objective
Students will evaluate powers with factors that are fractions.

Questions for Mathematical Discourse

 SLIDE2AL. What is the base in this expression? $\frac{1}{3}$
OL Why is the numerator 1 and not 4 after multiplying? Sample answer: The exponent of 4 does not mean that 1 is multiplied by 4 . It means that 4 ones are multiplied.
BL. Why is the value of $\left(\frac{1}{3}\right)^{4}$ less than the base of $\frac{1}{3}$? Sample answer: When any number is multiplied by a fraction between 0 and 1 , the product is less than the number. In this problem, $\frac{1}{3}$ is multiplied by itself (a fraction between 0 and 1) four times, so the product is less than $\frac{1}{3}$.

Example 5 Evaluate Powers

Objective
Students will evaluate powers with factors that are decimals.

Questions for Mathematical Discourse

SLIDE1

AL. What is the base in this expression? 2.5
-1. How many times is the base used as a factor? 3
Ol How does the value of $(2.5)^{3}$ compare to the base? (2.5) is greater than 2.5.

OL. How can you estimate the value of $(2.5)^{3}$, without calculating it? Sample answer: $2.5<3$, and $3 \times 3 \times 3=27$, so $(2.5)^{3}$ will be less than 27 . I also know that $2.5>2$, and $2 \times 2 \times 2=8$, so $(2.5)^{3}$ will be greater than 8 .

How does the value of $(2.5)^{3}$ compare to the value of (2.5) ?
Sample answer: The value of $(2.5)^{\text {is }} 2.5$ times greater than (2.5) ${ }^{2}$, because (2.5) hhas one more factor of 2.5 than (2.5) ?

0
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Biology

Objective

Students will come up with their own strategy to solve an application problem involving the amount of bacteria in a petri dish.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What is a petri dish?

- How many total bacteria are there after 5 hours? 10 hours?
- How can you use the table to find the amount of bacteria after 30 hours?

Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

C Apply Biology

Delmar is studying the growth rate of a specific type of bacteria. He places 3 cells in a Petri dish and records the number of bacteria over time. He records the results over 20 hours in the table shown and notices a pattern. At this rate, how many bacteria are expected to be present in the Petri dish after 30 hours?

Number of Hours	Number of Bacteria
5	3×3
10	$3 \times 3 \times 3$
15	$3 \times 3 \times 3 \times 3$
20	$3 \times 3 \times 3 \times 3 \times 3$

Q Go Online watch the animation.

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times Discuss these questions with a partne

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem

2, 187 bacteria cells; See students' work.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

See students' arguments.
(2) Talk About It!

Suppose Delmar originally placed 4 cells in the Petri dish. Co method to determin the total cells after 30 hours? Explain.
no; Sample answer:
Y ou don't know the rate at which the cells grow so you cannot use the same method. \square \square \square \square

Interactive Presentation

Apply, Biology

| On Slide 1, students watch an animation |
| :--- | :--- |
| that illustrates the problem they are about |
| to solve. |

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Exit Ticket

Refer to the Exit Ticket slide. How many possible values are there for a byte? Include the expression used to calculate your answer. Write a mathematical argument that can be used to defend your solution. Sample answer: $2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=256$ different values

DIFFERENTIATE

Enrichment Activity ${ }^{3}$ BII

To further students' understanding of powers, have them make a conjecture about the value of a number raised to the zero power using the following steps.

1. Find the value of $3^{4}, 3,3$, and $3!81 ; 27 ; 9 ; 3$
2. What do you notice about the values of the expressions? Sample answer: To obtain the value of the each expression, you divide the previous expression by 3 .
3. Based on this, make a conjecture about how would you find the value of 3°. Sample answer: I would divide the value of 3 'by 3 .
4. What is the value of the expression 3^{0} ? 1

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 17, 19-23
- Extension: Negative Exponents
- D ALEKS Exponents and Order of Operations

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-16, 19, 21, 23
- Extension: Negative Exponents
- Personal Tutor
- Extra Examples 1-5
- ALEKS Exponents and Order of Operations

IF students score 65% or below on the Checks,
THEN assign:

- Arrive MATH Take Another Look
- a ALEKS Exponents and Order of Operations

Practice and Homework

The Independent Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL Practice Form B
OLPractice Form A
BL Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	write products as powers	$1-6$
1	evaluate powers	$7-15$
2	extend concepts learned in class to apply them in new contexts	16,17
3	solve application problems that involve powers and exponents	18,19
3	higher-order and critical thinking skills	$20-23$

Common Misconception

Some students may incorrectly evaluate powers. Remind students that powers can be written as products. Stress that $3^{3 i}$ is equivalent to $3 \times 3 \times 3$, not 3×3. Encourage students to write a power as a product before evaluating.

Apply *indicates multi-step problem

*18. Willa is studying the growth rate of a specific type of organism called a ciliate. She places 2 cells in a dish and records the number of cells over time. The table shows her results. If the pattern continues, how many cells will be in the dish after 12 hours?
128 cells

${ }^{*}$ 19. Christiano is performing a science experiment and studying the growth rate of a certain type of onion root cell under different conditions. He places a cell in a dish parm shown in the table, predict the number of c is pattern shown 5 las. the dish after 5 days.

1,024 cells

OHigher-Order Thinking Problems

20. Write a power whose value is greater than 500 but less than 1,000 .
Sample answer: 9^{3}
21. Kysuson Inductively Suppose the world population is about 8 billion. Is 8 billion closer to 10^{10} or 10^{11} ? Explain.
10^{10}; Sample answer: 10^{10} is equal to $10,000,000,000$ and 10^{11} is equal to $100,000,000,000.10,000,000,000$ is much closer to $8,000,000,000$ than 100,000,000,000.

Module 5. Numerical and Algebraic Expressions

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 21, students will find the mistake made in the power that has been evaluated. Encourage students to identify the error and how to correct it.

2 Reason Abstractly and Quantitatively In Exercise 22, students will reason which power is closer to 8 billion. Encourage students to use reasoning to explain their answer.

6 Attend to Precision In Exercise 23, students will explain how exponential form is similar to multiplication being the process of repeated addition.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercises 18-19 Have students work in pairs. Have students individually read Exercise 18 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 19.

Be sure everyone understands.

Use with Exercises 21-22 Have students work in groups of 3-4 to solve the problem in Exercise 21. Assign eachstudent in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 22.

Learn Numerical Expressions

Objective

Students will understand that the order of operations can be used to evaluate numerical expressions.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About lt! question on Slide 2, encourage them to create a plausible argument for why rules are needed to evaluate expressions, using the given expression as an example.

(B) Online

- Find additional teaching notes.
- Have students watch the animation on Slide 1. The animation illustrates how to use the order of operations to simplify a numerical expression.

Talk About It!

SLIDE 2

Mathematical Discourse

Use the expression $12 \div 3 \times 4$ to explain why multiplication and division must be performed in order from left to right. Sample answer: The order of operations indicates a predetermined order so that all expressions are evaluated consistently. Performing the operations in order from left to right yields a value of 60 , which is incorrect. Multiplying 3 by 4 first, and then adding that value to 12 yields a total of 24 , which is correct.

DIFFERENTIATE

Reteaching Activity AL

If any of your students have difficulty remembering the order of operations, have them create a chart for assistance. The chart should include each of the steps of the order of operations and could even include examples illustrating each step. Have them work with a partner to create several numerical expressions with multiple operations. Then have each pair trade expressions with another pair. Each pair should use their chart to simplify the expressions. Have pairs exchange solutions, and discuss and resolve any differences.

Interactive Presentation

Learn, Numerical Expressions, Slide 1 of 2
WATCH
On Slide 1, students watch the animation to learn about using the order of operations to simplify a numerical expression.

Numerical Expressions

LESSON GOAL

Students will write and evaluate numerical expressions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Numerical Expressions
Example 1: Evaluate Numerical Expressions
Example 2: Evaluate Numerical Expressions
Learn: Write Numerical Expressions
Example 3: Write and Evaluate Numerical Expressions
Apply: Art SuppliesHave your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

(11) View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al\|	51m	
Remediation: Review Resources	-	-	
Artue MATH Take Another Look	-		
Extension: Variables and Absolute Value		-	-
Collaboration Strategies	-	-	-

Language Development Support

Assign page 28 of the Language Development Handbook to help your students build mathematical language related to numerical expressions.
FIIII You can use the tips and suggestions on page T28 of the handbook to support students who are building English proficiency.

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster
6.EE.A by writing and evaluating numerical expressions.

Standards for Mathematical Content: 6.EE.A.1, Also addresses 6.EE.A.2.C

Standards for Mathematical Practice: MP1, MP3, MP4

Coherence

Vertical Alignment

```
Previous
Students wrote and evaluated powers.
6.EE.A. 1
```


Now

Students write and evaluate numerical expressions.
6.EE.A. 1

Next

Students will write algebraic expressions.
6.EE.A.2.A, 6.EE.A.2.B, 6.EE.B. 6

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of powers and exponents to develop understanding of numerical expressions. They learn to use the order of operations to build fluency with writing and evaluating numerical expressions. They also apply their understanding of numerical expressions to solve realworld problems.

Mathematical Background

A numerical expression is a mathematical expression involving numbers and one or more operations. The order of operations governs the precedence that certain operations have over others. When evaluating a numerical expression, first evaluate expressions inside grouping symbols. Powers have the next highest precedence. After powers, evaluate multiplication and division, followed by addition and subtraction. If two operations have the same precedence, e.g. multiplication and division, or even subtraction followed by another subtraction, evaluate those operations from left to right.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocabulary Wis You Learn?

makate

numerical eppeenion

onter of operstions

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- understanding exponents (Exercise 1)
- performing operations with positive rational numbers (Exercises 2-5)

Answers

1. 0.0625
2. $\frac{5}{6}$
3. $\frac{5}{6}$
4. $4 \frac{1}{2}$ days
5. 3

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the cost of admission to a circus, expressed as a numerical expression.

3 Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Can you think of a mathematical term that is similar to the term evaluate? What does it mean? Sample answer: find; To find the solution of a problem.
- What is another use of the term expression in the English language? Sample answer: A facial expression is a way of using your face to show emotion; a verbal expression is a way of communicating something using words.
- How does the meaning of the term order and what you know about mathematical operations help you understand the meaning of the term order of operations? Sample answer: The term order implies a predetermined process or workflow for completing steps in a task. Some mathematical operations are addition, subtraction, multiplication, and division. The order of operations might mean that there is a predetermined workflow that I should use to perform mathematical operations.

Interactive Presentation

Example 1, Evaluate Numerical Expressions, Slide 2 of 4
On Slide 2 of Example 1, students move
through the steps to evaluate the
expression.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 1 Evaluate Numerical Expressions

Objective

Students will evaluate numerical expressions with whole numbers.

Questions for Mathematical Discourse

SLIDE2

What should you do first? Simplify the expression inside of the grouping symbols.

OL Describe the steps, in order, for how to evaluate this expression. Sample answer: Add 6 and 4 . Find 3^{2}. Multiply 9 by 10 . Then subtract 90 from 100 . Finally, add 2.

OI. A classmate wrote the expression as $100-9 \times 10+2$. Is this equivalent? Explain. yes; Sample answer: The classmate evaluated the power and the expression inside the parentheses.

B1. Describe a mistake in evaluating the expression that might be made. Sample answer: A possible mistake is performing all of the operations in order from left to right, as in 100-9 = 91; $91 \times 6=546 ; 546+4=550 ; 550+2=552$

Example 2 Evaluate Numerical Expressions

Objective

Students will evaluate numerical expressions with rational numbers.

Questions for Mathematical Discourse

SLIDE1

Al Identify all of the operations to be performed in this expression. addition, evaluating a power, operations within the grouping symbols, division, multiplication
Ol Why is evaluating the power the first thing you should do, even before the division? Sample answer: Evaluating an expression inside the parentheses comes first, and the power is inside the parentheses. So, the power must be evaluated before the division.

BL A classmate says that the parentheses in this problem are not necessary. Is this correct? Explain. yes; Sample answer: Even without the parentheses, the power will be evaluated first, followed by the division, the multiplication, and finally the addition.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
6.EE.A. 1

Learn Write Numerical Expressions

Objective

Students will learn how to write a numerical expression to model a real-world problem.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About lt! question on Slide 2, encourage them to consider alternative ways that the expression can be written.

OGo Online to find additional teaching notes.

Talk About It!

SIDE 2

Mathematical Discourse

How else can you represent the part of the expression written as (4×4) ? Sample answer: This can also be written as a power, 4^{2}.

Example 3 Write and Evaluate Numerical Expressions

Objective

Students will write and evaluate a numerical expression that models a real-world problem.

Questions for Mathematical Discourse

SIIDE2

What does 7.80 represent in the second part of the expression? What does the 2 represent? 7.80 represents the cost of one candle in dollars; 2 represents the fact that there are 2 candles
OI. Is there another way you can write the expression representing the total cost of the lotions? Sample answer: 5×5

OII Are parentheses necessary around each part of the expression? Explain. no; Sample answer: The order of operations will indicate that the power is evaluated first and then the multiplication, so parentheses are not necessary.

What is another way to write the expression, without using multiplication? Sample answer: $5^{2}+7.80+7.80+2.49+2.49+$ $2.49+2.49$
(continued on next page)

Learn Write Numerical Expressions
In a real-world situation where one or more operations occur, you can write an expression to represent the situation.
Suppose Mariana and her friends are buying snacks at a hockey game. Hot dogs cost $\$ 4$, boxes of popcorn cost $\$ 2$, and drinks cost $\$ 2.50$. The expression below represents the total cost of 4 hot dogs, 3 boxes of popcorn, and 2 drinks.

The different colored text represents each part of the expression.
hot dogs + popcorn + drinks
$(\$ 4 \times 4)+(\$ 2 \times 3)+(\$ 2.50 \times 2)$

Example 3 Write and Evaluate Numerical Expressions
Paula is shopping for the items shown in the table.

Cost (\$) 5.007 .802 .49

Write an expression to represent the total cost of 5 lotions,
2 candles, and 4 lip balms. Then find the total cost.
Part A Write an expression.
cost of lotions + cost of candles + cost of lip balms
$\left(5^{2}\right)+(2 \times 7.80)+(4 \times 2.49)$

Part B Find the total cost.
$\left(5^{2}\right)+(2 \times 7.80)+(4 \times 2.49)=25+15.60+9.96$
$=50.56$

So, the total cost is \$ 50.56 .

Interactive Presentation

Example 3, Write and Evaluate Numerical Expressions, Slide 2 of 5
On Slide 2 of Example 3, students select
Show Expressions to view the parts of the
expression.

Math History Minute
Mary G. Ross (1908-
2008) is considered
the first known Native
American female
mathematician and
engineer. After her
retirement, Ross was an
advocate of women
studying STEM fields
(Science, T echnology
Engineering, and
Mathematics). She
earned a place in the
Silicon Valley Engineering Council's Hall of Fame.

Check

Tickets to a play cost $\$ 10.50$ for adult members of the theater, $\$ 19.95$ for adult non-members, and $\$ 8$ for students.

Part A

Suppose 4 non-members, 2 members, and 8 students are buying tickets for the play. Which expression could be used to find the total cost of the tickets?
(A) $4(19.95+10.50+8)$
(3) $(4 \times 19.95)+(2 \times 10.50)+8^{2}$
(C) $(2 \times 19.95)+(4 \times 10.50)+8^{2}$
(D) $(4 \times 19.95)+(2 \times 10.50)+8^{8}$

Part B
What is the total cost of the tickets? \$164.80

O go Online Y ou can complete an Extra Example online.

Pause and Reflect
Describe some examples of when writing an expression can help you solve problems in everyday life. How does understanding the order of operations help you to evaluate those expressions?

Example 3 Write and Evaluate Numerical Expressions (continued)

Questions for Mathematical Discourse

SLIDE 3

Al Why is 25 written as 25.00 ? These amounts represent the cost in dollars and cents.

1. How can you use estimation to know if your answer is reasonable? Sample answer: The cost of 5 lotions is $\$ 25$, the cost of the 2 candles is about $\$ 16$, and the cost of the 4 lip balms is about $\$ 10$. The total cost is about $\$ 51$, which is close to my answer. So, my answer is reasonable.
2. Why are you able to use a power on the expression representing the cost of the lotions, but not for the candles or lip balm? The cost of each lotion is equal to the number of lotions purchased.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Art Supplies

Objective

Students will come up with their own strategy to solve an application problem involving art supplies.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What items might be in a kit of art supplies?

- How does the number of sketch pads in the large kit compare to the number in the medium kit?
- What operation(s) would you use to find the total number of crayons and sketch pads purchased?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Art Supplies
An art store sells different-sized art kits that include crayons and a sketch pad. The table shows the number of boxes of crayons and sketch pads in each kit. A school buys 30 small, 35 medium, and 10 large art kits. Then they return 11 medium art kits. How many boxes of crayons and sketch pads do they have in all?

Art Kit Size Boxes of Crayons	Sketch Pads	
Small	16	20
Medium	24	40
Large	68	100

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem.

1,736 boxes of crayons and 2,560 sketch pads; See students' work.

4 How can you show your solution is reasonable?
Q Write About it! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Art Supplies
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Exit Ticket

Refer to the Exit Ticket slide. What is the total cost for 3 adults and 8 students? \$112

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 13, 15-19
- Extension: Variables and Absolute Value
- ALEKS Exponents and Order of Operations

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-12, 15-17
- Extension: Variables and Absolute Value
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- ALEKS Exponents and Order of Operations

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Exponents and Order of Operations

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	evaluate numerical expressions with whole numbers	$1-6$
1	evaluate numerical expressions with rational numbers	$7-10$
1	write and evaluate numerical expressions that model real-world problems	11,12
2	extend concepts learned in class to apply them in new contexts	13
3	solve application problems that involve numerical expressions	14,15
3	higher-order and critical thinking skills	

Common Misconception

Some students may incorrectly evaluate numerical expressions by not following the order of operations. Have students review the order of operations before evaluating each expression. Some students may find it beneficial to check off each step of the order of operations while evaluating.

Apply *indicates multi-step problem

*14. An art teacher is ordering colored pencils for the new school year. The table shows the number of colored pencils per box size. The teacher buys 24 small boxes, 3 small bes due to defects How mol 3 small boxes due to defects. How many colored pencils does the teacher have in all?

1,520 colored pencils
 table. On Monday, the bakery sold 15 minis, 8 dozens, and 6 jumbos. However, 6 of the minis sold were free lin a on Monday?
294 muffins

6 Higher-Order Thinking Problems

16.

Mersevere with Problems Refer to the expression $2+6 \div 2+4 \times 3$.
a. Place parentheses in the expression so that the value of the expression is 16 .
$(2+6) \div 2+4 \times 3$
b. Place parentheses in the expression so that the value is not equal to 16 . Then find the value of the new expression.
Sample answer:
$2+(6 \div 2)+4 \times 3 ; 17$
18. Write an expression that contains parentheses, 5 numbers, two different operations, and has a value of 20 .

Sample answer: $5 \times\left(4^{2} \div 2\right)-\left(40 \times \frac{1}{2}\right)$
17. Find the Error A student is evaluating the expression $42+6 \div 2$. Find the student's mistake and correct it $\begin{aligned} 42+6 \div 2 & =48 \div 2 \\ & =24\end{aligned}$

Sample answer: The student did not follow the order of operations. The student added first before dividing. The division should have been performed first.
$42+6 \div 2=42+3$ or 45
19. Create Write about a real-world situation that could be represented by a numerical expression. Then write and evaluate the expression.
Sample answer Frankie and his two sisters each order a hamburger, a fruit cup, and a bottled water for lunch. A hamburger costs $\$ 3$, a fruit cup cost $\$ 0.75$, and a bottled water costs $\$ 1.25 . ;{ }^{3}+(3 \times 0.75)+(3 \times 1.25) ; \$ 15$

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In Exercise 16, students will place parentheses in the expression so that the value of the expression is 16 and then another number. Encourage students to place the parentheses strategically throughout the expression.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 17, students will find the error in the evaluated expression. Encourage students to identify the error and then construct an explanation that fixes the error.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 18, students will write an expression with a value of 20. Encourage students to identify what the problem is asking and to construct the expression with all of these components.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 14 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Make sense of the problem.

Use with Exercise 17 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise thinks that you should add before dividing. Have each pair or group of students present their explanations to the class.

1 CONCEPTUAL UNDERSTANDING

Learn Structure of Algebraic Expressions

Objective

Students will learn about the structure of an algebraic expression and how to identify its parts.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 3, encourage them to analyze the structure of each term and note that in the first term, x is squared, and in the second term, y is squared. Since each term has a different exponent of both x any y, they are not like terms.

Teaching Notes

SUIDE1
Students will learn the definition of and various parts of an algebraic expression, as well as different ways of writing multiplication and division.

Talk About It!

SLIDE1

Mathematical Discourse

A classmate said that $4(3 x)=12 x$. Is the student correct? Justify your reasoning. yes; Sample answer: Another way to express $4(3 x)$ is $4 \cdot 3 \cdot x$, which is equivalent to $12 x$.
(continued on next page)

DIFFERENTIATE

Reteaching Activity A LI

If any of your students have difficulty writing algebraic expressions, encourage them to mimic the sample expression, 5 times the variable x, using different numbers. Students can use the structure of the given sample to write the different algebraic expressions. Allow students to quickly share their expressions with a classmate. Sample expressions could include $6 x, 11 x, \frac{1}{3} x$, and so on.

Interactive Presentation

Learn, Structure of Algebraic Expressions, Slide 1 of 3

Write Algebraic Expressions

LESSON GOAL

Students will write algebraic expressions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Write Algebraic Expressions
Learn: Structure of Algebraic Expressions
Example 1: Identify Parts of Algebraic Expressions
Learn: Write One-Step Algebraic Expressions
Example 2: Write One-Step Algebraic Expressions
Example 3: Write One-Step Algebraic Expressions
Learn: Write Two-Step Algebraic Expressions
Example 4: Write Two-Step Algebraic Expressions
Example 5: Write Algebraic Expressions

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	IIER	\square
ArriveMATH Take Another Look	\bullet		
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 29 of the Language Development Handbook to help your students build mathematical language related to writing algebraic expressions.
ELII You can use the tips and suggestions on page T29 of the handbook to support students who are building English proficiency.

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major clusters
6.EE.A and $6 . E E$.B by writing algebraic expressions.

Standards for Mathematical Content: 6.EE.A.2, 6.EE.A.2.A,
6.EE.A.2.B, 6.EE.B. 6

Standards for Mathematical Practice: MP1, MP2,MP3, MP5, MP6, MP7

Coherence

Vertical Alignment

Previous

Students wrote and evaluated numerical expressions.
6.EE.A. 1

Now

Students write algebraic expressions.
6.EE.A.2, 6.EE.A.2.A, 6.EE.A.2.B, 6.EE.B. 6

Next
Students will evaluate algebraic expressions.
6.EE.A.2.C, 6.EE.B. 6

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of numerical expressions as they develop understanding of writing algebraic expressions. They come to understand the importance of defining the variable, as they build fluency with writing one and two-step algebraic expressions involving the four basic operations.

Mathematical Background

13 Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Launch the Lesson

What Vocabulary Wia You Learn?

alopera
 movi ime kwe
algebenice exprenerion
 coemcient

=imesime
consumt

defining the veriable

tike terme

term
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- evaluating numerical expressions (Exercises 1-5)

Answers

1. 22
2. 29
2.4
3. \$64
4. 25

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about variables, using an infographic.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion. Additional questions are available online.

Ask:

- Algebra is defined as a mathematical language of symbols including variables. How do you think you will use algebra as you progress through the lesson? Sample answer: I may use symbols (variables) to represent numbers or unknown information in an expression.
- Using the definition of a numerical expression that you previously learned, what do you think is an algebraic expression? Sample answer: numbers and variables that are combined with operations
- The term efficient comes from a Latin term meaning to accomplish. What does the prefix co- mean, and what might that mean for the term coefficient? Sample answer: co- means with, so coefficient might mean to accomplish with.
- What does it mean to drive at a constant speed? Sample answer: It means that the speed does not change.

Explore Write Algebraic Expressions

Objective

Students will use algebra tiles to explore writing algebraic expressions.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About lt! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with information about the number of hours worked by three people (Jose, Valerie, and Leticia). Throughout the activity, students will use algebra tiles to represent the hours of work for each of the three individuals. They will use their algebra tile representation to find an algebraic expression representing the total number of hours worked. The goal is to understand that expressions involving variables and numbers can be used to represent real-world situations.

(3)
 Inquiry Question

How can you represent situations using symbols? Sample answer: I can use symbols to represent unknown values and operations to model the situation in a word problem.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3:

Mathematical Discourse

Which tile would you use to represent the number of hours that Valerie works? Explain your reasoning. Sample answer: I would use the x-tile to represent the number of hours worked. The number of hours that Valerie worked is unknown, so it should be represented by a variable.
(continued on next page)

Interactive Presentation

Write Algebraic Expressions
Q. introfucing the ingetry Ovention

Explore, Slide 1 of 8

Explore, Slide 4 of 8
WATCH

On Slide 2, students watch a video that demonstrates how to use algebra tiles to represent algebraic expressions.

DRAG \& DROP

On Slide 4, students drag algebra tiles to model a real-world scenario with an algebraic expression.

Interactive Presentation

Explore, Slide 5 of 8

DRAG \& DROP

On Slide 5 and 6, students drag algebra tiles to model real-world scenarios.

TYPE
 al

On Slide 8, students respond to the Inquiry Question and view a sample answer.

Explore Write Algebraic Expressions (continued)

113. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to identify the important quantities in the real-world problem and decontextualize them by representing them with algebra tiles.

5 Use Appropriate Tools Strategically Students will use the algebra tiles to represent the number of hours each person works.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!

SLIDE 5

Mathematical Discourse

Share your expression with your partner. Explain why you wrote it that way. Sample answer: I wrote the expression $2 x+3$ because Jose worked three more hours than twice the amount than Valerie who worked x hours.

Talk About It! the expression $2 x^{2} y+4 x y^{2}$, explain
why $2 x^{2} y$ and $4 x y^{2}$ are not like terms.
Sample answer: Like terms contain the same variables to the same powers. While both terms contain the same variables, x and y, they are not raised to the same power.

$4 x+12+2 x$
The number 12 is a constant

Pause and Reflect

How is an algebraic expression similar to a numerical expression? How is it different? How do you think knowing these differences will help you as you progress through this lesson?

Algebraic expressions can contain like terms, coefficients, variables, and constants. When addition or subtraction signs separate an algebraic expression into parts, each part is called a term.
$4 x+12+2 x \quad 4 x, 12$, and $2 x$ are terms.
Like terms contain the same variables to the same powers.
$4 x+12+2 x \quad 4 x$ and $2 x$ are like terms.

The numerical factor of each term that contains a variable is called the coefficient of the variable.
$4 x+12+2 x \quad$ The coefficient of x is 4.
The coefficient of x is 2 .

A term without a variable is called a constant

278 Module 5 - Numerical and Algebralc Expressions

Interactive Presentation

Learn, Structure of Algebraic Expressions, Slide 2 of 3

CLICK | On Slide 2, students select each button |
| :--- |
| to view the different parts of an algebraic | to view the different parts of an algebraic expression.

Learn Structure of Algebraic Expressions (continued)

Teaching Notes

SUIDE2
You may wish to have student volunteers come up to the board to select each button to reveal its meaning. Ask students to identify the difference between the vocabulary terms. For example, ask students to explain the difference between a coefficient and a constant, or the difference between a term and a variable.

Talk About It!

SLIDE 3

Mathematical Discourse

In the expression $2 x^{2} y+4 x y^{2}$, explain why $2 x^{2} y$ and $4 x y$ are not like terms. Sample answer: Like terms contain the same variables to the same powers. While both terms contain the same variables, x and y, they are not raised to the same power.

DIFFERENTIATE

To further students' understanding of the parts of an expression, have them create their own algebraic expressions that satisfy the given conditions.

- The expression should have at least four terms.
- At least two of the terms should be like terms.
- There should be at least two coefficients.
- There should be at least one constant.

Then have them trade expressions with another pair of students. Each pair should identify the terms, like terms, coefficients, variables, and constants in each other's expressions. Have pairs check each other's work.

Example 1 Identify Parts of Algebraic Expressions

Objective

Students will identify the parts of an algebraic expression.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! questions on Slide 3, encourage them to make sense of the terms in the expression in order to determine whether there are any constants in the expression that are like terms. Students should be able to use reasoning to determine that the coefficient of a term such as n is 1 .

6 Attend to Precision Students should use the definitions of each term as they identify the corresponding parts of the expression.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the expression in order to determine the terms, like terms, coefficients, and constants.

Questions for Mathematical Discourse
 \section*{SLIDE 2}

AL. What operations separate the terms? addition
Ol Why doesn't multiplication separate the terms? Sample answer: The term $6 n$ is one term, even though it is a product of 6 and n.
Ol Why isn't 4 one of the like terms? Sample answer: 4 is the only constant and does not have the same variable part as the other like terms.A classmate says that 7 is also a constant just like 4 . Why is this not correct? Sample answer: Since 7 immediately precedes a variable n, as in $7 n$, it is not a constant. It is a coefficient.

(3) Go Online

- Find additional teaching notes and the Talk About lt! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 1 Identify Parts of Algebraic Expressions

Q oo Online Y ou can complete an Extra Example online

Identify the terms, like terms, coefficients, and constants in the expression $6 n+7 n+4+2 n$.
Terms are parts of the expression that are separated by addition and subtraction, so the terms are:
($6 n, 7 n, 4,2 n$
Circle the like terms above.
Write the coefficients of the terms and the constants in the appropriate bin.

So, the terms are $6_{7}, 7 n, 4$, and $2 n$.
The like terms are $6 n, 7 n$, and $2 n$.
The coefficients are 6,7, and 2 .
The constant is 4 .

Check
Identify the terms, like terms, coefficients, and constants in the
expression $3 x+2+10+4 x$.

terms	$3 x, 2,10,4 x$
	$3 x$ and $4 x, 2$ and 10
like terms	3,4
coefficients	

Think About It! How would you begin identifying the parts of the expression?

See students' responses.

(C) Talk About It!

Are there any like

 terms in this expression that are constants? Explain.no; Sample answer: There is only one constant, 4 , in the expression.

Talk About It!
Suppose that an
additional term, n, is
added to the end of is the coefficient for n ?

Sample answer: The coefficient for the additional term n is 1 , because n can be rewritten as $1 n$.

constants 2, 10

Interactive Presentation

Example 1, Identify Parts of Algebraic Expressions, Slide 2 of 4

1 CONCEPTUAL UNDERSTANDING

Learn Write One-Step Algebraic Expressions
To write verbal phrases as algebraic expressions, use the table below. When defining the variable, choose a variable and decide what it represents.
Words
Describe the mathematics of the problem.
Variable
Define a variable to represent the unknown quantity.
Expression
Translate the words into an algebraic expression.

In order to translate a situation into an expression, it is im
correctly identify operations that are described in words.
Write each phrase below the operation that it describes.
the product of increased by less than a number
the quotient of the sum of

In order to translate a situation into an expression, it is important to
C. Talk About It!

Make a list of additional
phrases that could be
represented by
mathematical
operations. Share your
st and explain how
hose phrases
epresent that
operation.
See students' responses.

280 Module 5 . Numerical and Algebraic Expressions

Interactive Presentation

Learn, Write One-Step Algebraic Expressions, Slide 2 of 3

FLASHCARDS

On Slide 1, students use Flashcards to view the steps for writing algebraic expressions.

DRAG \& DROP

On Slide 2, students match each phrase to the operation that it describes.

Learn Write One-Step Algebraic Expressions

Objective
Students will learn how to write one-step algebraic expressions.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 3, encourage them to clearly explain why their chosen phrases represent certain operations.

Teaching Notes

SLIDE1

Be sure students understand the importance of defining the variable when writing a verbal phrase as an algebraic expression. You may wish to have students create their own verbal expressions that involve one operation, such as five degrees warmer than yesterday's temperature. Have students choose a variable, such as x or t, and clearly explain what that variable represents (yesterday's temperature). Then have them write an expression to represent the verbal phrase, such as $x+5, t+5$, $5+x$, or $5+t$.

SLIDE2

Students will learn some common phrases that describe each of the four operations. You may wish to have student volunteers come up to the board to drag each phrase to its appropriate bin. Ask students to identify the key word in each phrase that helps them match it to the appropriate operation.

Talk About It!
SLIDE 3

Mathematical Discourse

Make a list of additional phrases that could be represented by mathematical operations. Share your list and explain how those phrases represent that operation. See students' responses.

1 CONCEPTUAL UNDERSTANDING

Example 2 Write One-Step Algebraic Expressions

Objective

Students will write one-step algebraic expressions involving addition or subtraction.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to decontextualize the given real-world phrase by representing the quantities symbolically with the correct algebraic expression. Students should make sure to define the variable before writing the expression.

Questions for Mathematical Discourse

SLIDE1

AL
What is the unknown quantity? The amount Anthony earned is unknown.

Ol. Why is the expression an addition expression? The phrase "more than" corresponds to addition.
Oll Why is it important to define the variable? Sample answer: It is important because you need to know what the variables represent.

E1. A classmate says that the expression should be 10d. Why is this incorrect, and what would this expression represent? Sample answer: This expression would represent 10 times more than Anthony earned, not $\$ 10$ more than Anthony earned.

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Write One-Step Algebraic Expressions Define a variable to represent the unknown in the phrase ten dollars more than Anthony earned. Then write the phase as an algebraic expression.
Words
ten dollars more than Anthony earned
Variable
Let d represent the number of dollars Anthony earned.
Expression
$d+10$

So, the expression $d+10$ can be used to model the phrase ten dollars more than Anthony earned.

Check
Define a variable to represent the unknown in the phrase twelve dollars less than the original price. Then write the phrase as an algebraic expression.

Sample answer:
Let p represent the original price; $p-12$

O Go Online Y ou can complete an Extra Example online

Pause and Reflect
Why is it important to define the variable when writing an algebraic expression? What possible errors might be made if the variable is not correctly defined?

Interactive Presentation

Example 2, Write One-Step Algebraic Expressions, Slide 1 of 2

FLASHCARDS

Interactive Presentation

Example 3, Write One-Step Algebraic Expressions, Slide 2 of 4

Example 3 Write One-Step Algebraic Expressions

Objective
Students will write one-step algebraic expressions involving multiplication or division.

Questions for Mathematical Discourse

SLIDE2

Al. What is the operation in this problem? multiplication
Al. What number is represented by four and one-half? the mixed number $4 \frac{1}{2}$ or the decimal 4.5

OL. Can you use any letter to represent the number of gallons? Explain. yes; Sample answer: As long as you define the variable, you can use any letter you want.
ELL A classmate says that $4 g+\frac{1}{2} g$ is also a correct expression. Is this correct? yes; Sample answer: $4 \frac{1}{2}$ gallons is equivalent to 4 gallons plus $\frac{1}{2}$ of a gallon.

Wo Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Write Two-Step Algebraic Expressions

Objective

Students will learn how to write two-step algebraic expressions.

0
Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SLIDE 2

Mathematical Discourse

How can you write an algebraic expression for the phrase two more than three times a number? Sample answer: The expression $3 x+2$ can represent the phrase two more than three times a number algebraically.

1 CONCEPTUAL UNDERSTANDING

Example 4 Write Two-Step Algebraic Expressions

Objective

Students will write two-step algebraic expressions.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 3, encourage them to create a plausible argument for why the two expressions, $3 p-5$ and $5-3 p$, are not equivalent.

2 Reason Abstractly and Quantitatively Encourage students to decontextualize the given real-world phrase by representing the quantities symbolically with the correct algebraic expression. Students should make sure to define the variable before writing the expression.

Questions for Mathematical Discourse

SLIDE 2
AL What operation corresponds to less than? subtraction
OL How do you know there are two operations in this expression? Sample answer: Less than corresponds to subtraction, but times corresponds to multiplication. These are the two operations.

How do you know that 5 is subtracted from $3 p$, and not the other way around? Sample answer: The phrase says 5 less than a certain quantity, $3 p$. This means that the quantity, $3 p$, is the greater quantity.
Bhil How would you describe the expression $3(x-5)$? Sample answer: Three times the quantity five less than the number of points.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 4 Write Two-Step Algebraic Expressions
Define a variable to represent the unknown in the phrase five less than three times the number of points. Then write the phrase as an algebraic expression.

So, the expression $3 p-5$ can be written to model the phrase five less than three times the number of points.

Check
Define a variable to represent the unknown in the phrase two less than one-third of the points that the Panthers scored. Then write the phrase as an algebraic expression.

Sample answer: Let p represent the number
of points the Panthers scored; $\frac{1}{3} p-2$

Go Online Y ou can complete an Extra Example online.

Pause and Reflect
Did you make any errors when writing the two-step algebraic expressions? Were the errors the same or different from any errors you made while writing one-step algebraic expressions? What ca you do to make sure you do not repeat that error in the future?

Lesson 5-3 - Write Algebralc Expressions 28
Think About It! How would you begin writing the expression?
See students' responses.

Talk About It! Why is the expression $5-3 p$ not correct?
Sample answer: Subtraction is not commutative, so the value of the expression 5-3p is not the same as $3 p-5 ; 5-3 p$ woutd mean 3 times the number of point less than 5 , or 5 less number of points.

Interactive Presentation

Example 4, Write Two-Step Algebraic Expressions, Slide 2 of 4

Interactive Presentation

Example 5, Write Algebraic Expressions, Slide 2 of 4

FLASHCARDS

On Slide 2, students use Flashcards to view the steps for writing the algebraic expression.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

3 APPLICATION

Example 5 Write Algebraic Expressions

Objective
Students will write algebraic expressions to represent the perimeter of a geometric figure.

Teaching the Mathematical Practices

2 Reason Abstractly and QuantitativelyEncourage students to decontextualize the given real-world phrase by representing the quantities symbolically with a correct algebraic expression. Students should make sure to define the variable before writing the expression.

6 Attend to Precision While discussing the Talk About It! question on Slide 3, encourage students to use clear and precise mathematical language, such as the Commutative Property, when explaining their reasoning.

Questions for Mathematical Discourse
 SIIDE2

Al. What does it mean for the length to be twice the width? Sample answer: The length is equal to the width multiplied by 2.

OU At this point in the problem, why does it seem like there are two variables? Sample answer: There are two unknowns: length and width.
11. How do you know whether the length or the width is greater? Sample answer: Since the length is twice the width, the length must be greater than the width.
sili Could you have written the length as ℓ and then written the width in terms of the length? Explain. yes; Sample answer: If the length is ℓ, then the width is half the length, or $\frac{1}{2} \ell$.

1
 Go Online

- Find additional teaching notes, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Essential Question Follow-Up

How can we communicate algebraic relationships with mathematical symbols? In this lesson, students learned how to identify parts of algebraic expressions and write one- and two-step algebraic expressions from verbal descriptions. Encourage them to discuss with a partner the benefits of representing a verbal description as an algebraic expression. Some students may say that the algebraic expression is a succinct representation of the description, without using words.

Exit Ticket

Refer to the Exit Ticket slide. Represent the phrase 9 more than 5 times a number with an algebraic expression. $5 x+9$

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

0

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	identify the parts of algebraic expressions	$1-3$
1	write one-step algebraic expressions involving addition or subtraction	4,5
1	write one-step algebraic expressions involving multiplication or division	6,7
1	write two-step algebraic expressions	$8-11$
1	write two-step algebraic expressions to represent the perimeter of a geometric figure	12,13
2	extend concepts learned in class to apply them in new contexts	14
3	higher-order and critical thinking skills	$15-18$

Interactive Presentation

Exit Ticket

T est Practice

14. Open Response Nate scored 5 more than twice the number of points as Jake scored. Write an expression that represents the relationship of the number of points Nate scored in terms of the number of points Jake scored, p.
$2 p+5$

Higher-Order Thinking Problems

15. Identify Structure Write an expression that has four terms and at least one constant Identify the like terms, coefficients, and constants in your expression.

Sample answer: $2 x+8+x+6$;
like terms: $2 x, x ; 8,6$;
coefficients: 2, 1;
constants: 8, 6
17. Persevere with Problems Norman earns $\$ 8$ for every dog he washes plus 25% of the cost of the dog wash. Write an expression that represents the total amount of money Norman earns for one dog wash with a cost, c.
$8+0.25 c$
16. If x represents the number of questions on a test, analyze the meaning of each expression: $x+4, x-5,2 x$, and $x \div 3$

Sample answer: 4 more than the number of questions, 5 fewer than the number of questions, 2 times the number of questions, and one third the number of questions
18. Create Write about a real-world situation that can be represented with an algebraic expression. Then represent the situation with the expression.
Sample answer: The English class has half as many students as the math class. Let s represent the unknown value.; $s \div 2$

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices
7 Look For and Make Use of Structure In Exercise 15, students will write an expression using the guidelines and then identify the like terms, coefficients, and constants.
1 Make Sense of Problems and Persevere in Solving Them In Exercise 17, students will write an expression that represents the total amount of money Norman earns for one dog wash. Encourage students to identify the important information in the problem and identify what they are being asked to do.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Clearly explain your strategy.

Use with Exercise 17 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would write the expression, without actually writing it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 13, 15-18
- DALEKS' Evaluating and Writing Expressions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-11, 15, 16
- Personal Tutor
- Extra Examples 1-5
- ALEKS Exponents and Order of Operations

IF students score 65% or below on the Checks, THEN assign:

- Arrive MATH Take Another Look
- ALEKS Exponents and Order of Operations

Learn Evaluate Algebraic Expressions

Objective

Students will learn how to evaluate algebraic expressions.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 2, encourage them to use clear and precise mathematical language, such as evaluate, variables, and the value of y, to explain why the expression cannot be evaluated without further information.

Teaching Notes

SLIDE1
Students will learn how to evaluate an algebraic expression given the value for the variable. Ask students to explain why two quantities that are equal can be substituted for one another in an expression without changing the value of the expression.

Talk About It!

SUDE 2.

Mathematical Discourse

Can you evaluate the expression $2 x+5 y-1$ if you know that $x=3$? Explain your reasoning. no; Sample answer: The expression contains two variables, so it cannot be evaluated completely. In order to evaluate the expression, I would need to know the value of y.

DIFFERENTIATE

Reteaching Activity AL

If any of your students have difficulty evaluating algebraic expressions, use the following activity to remind them of the order of operations. Have them work with a partner to simplify each of the following numerical expressions. For each expression, have them explain which operations they should perform first and why. Then have them rewrite each of the original expressions by replacing the number 2 with the variable x. For example, the first expression would be written as $3-x$. Have them explain if replacing the number 2 with a variable changes the order of how they would evaluate the expressions and explain why or why not.
$3-1 \cdot 21$
$5+4 \div 27$
$10-2+5+4 \cdot 221$
$24-4 \cdot 216$

Interactive Presentation

Learn, Evaluate Algebraic Expressions, Slide 1 of 2

Evaluate Algebraic Expressions

LESSON GOAL

Students will evaluate algebraic expressions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Algebraic Expressions
Learn: Evaluate Algebraic Expressions
Example 1: Evaluate One-Step Algebraic Expressions
Example 2: Evaluate One-Step Algebraic Expressions
Example 3: Evaluate Multi-Step Algebraic Expressions
Example 4: Use Algebraic Expressions
Apply: Woodworking

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	ALI	LIE	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATH Take Another Look	\bullet		
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 30 of the Language Development Handbook to help your students build mathematical language related to evaluating algebraic expressions.
ELII You can use the tips and suggestions on page T30 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	
45 min	1.5 days

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major clusters
6.EE.A and 6.EE.B by evaluating algebraic expressions.

Standards for Mathematical Content: 6.EE.A.2, 6.EE.A.2.C,

6.EE.B. 6

Standards for Mathematical Practice: MP1, MP2, MP3, MP4,
MP5, MP6

Coherence

Vertical Alignment

Previous

Students wrote algebraic expressions.
6.EE.A.2.A, 6.EE.A.2.B, 6.EE.B. 6

Now

Students evaluate algebraic expressions.
6.EE.A.2, 6.EE.A.2.C, 6.EE.B. 6

Next
Students will solve problems by finding the greatest common factor and least common multiple of two whole numbers.

6.NS.B. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of evaluating algebraic expressions. Using given rational values, they build fluency with evaluating one-step and multi-step algebraic expressions. They also apply their understanding of evaluating algebraic expressions to solve real-world problems.

Mathematical Background

To evaluate an algebraic expression, substitute specific values for the variables, then evaluate the resulting numerical expression. The specific values for all variables present are needed in order to evaluate an expression.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- performing operations with positive rational numbers (Exercises 1-3)
- understanding exponents (Exercises 4-5)

Answers

1. 14
2. 25
3. 6
5.s.s.s
4. $\frac{1}{2}$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about making posters for a school dance, and the use of an algebraic expression to determine supplies.

3 Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following question to engage students and facilitate a class discussion.

Ask:

- How might you apply the meaning of the term evaluate and your prior experience with evaluating numerical expressions to evaluating algebraic expressions? Sample answer: I know that to evaluate a numerical expression I find the value of the expression. To evaluate an algebraic expression, I will need to use the value(s) of the variable(s) in order to find the value of the expression.

Explore Algebraic Expressions

Objective
Students will use Web Sketchpad to explore algebraic expressions.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will examine what happens to the value of an algebraic expression as the values of each of the variables change. Throughout this activity, students will use Web Sketchpad to explore the changing values of variables by using a slider. Students will use their observations to make conjectures about how the values of the variables impact the value of the algebraic expression.

(0. Inquiry Question

How can you determine the value of an algebraic expression for different given values? Sample answer: I can replace each variable with a given value and then evaluate the resulting numerical expression.

0Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 3 are shown.

Talk About It!

SLIDE3:

Mathematical Discourse

Drag the x slider. How does the value of the first term change as the value of x increases or decreases? How does the value of the expression change as the value of x increases or decreases? Sample answer: The value of the first term increases by one as x increases by one. The value of the expression increases by one as x increases by one.
(continued on next page)

Interactive Presentation

Algebraic Expressions
©) Sotrodvcing the Inputry Ouention

Explore, Slide 1 of 9

Explore, Slide 3 of 9

Interactive Presentation

Explore, Slide 6 of 9

TYPE

On Slide 8, students enter the missing values in the expression.

TYPE

al

On Slide 9, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Write Algebraic Expressions (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to represent the parts of algebraic expressions. Encourage students to think about the meaning of the different colors of the tiles and how the manipulation of them can help when writing an algebraic expression.

ω
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 6 is shown.

Talk About It!

SLIDE 6

Mathematical Discourse

Predict the value of the expression when $x=3$ and $y=4$. Explain your reasoning. Drag the sliders and press Show Values to check your answer. See students' responses.

Interactive Presentation

Example 2, Evaluate One-Step Algebraic Expressions, Slide 1 of 2

1 CONCEPTUAL UNDERSTANDING

Example 1 Evaluate One-Step Algebraic Expressions

Objective
Students will evaluate one-step algebraic expressions for given rationalnumber values.

Questions for Mathematical Discourse

SLIDE2

AL. What is b equal to? $\frac{1}{2}$
AL. Why is this a multiplication expression when there is no multiplication sign? Sample answer: When coefficients are used, multiplication is implied and no multiplication sign is needed.

OL Why is the value of $6 b$ less than the value of 6 ? Sample answer: 6 is multiplied by a fraction between 0 and 1 , which means the product is less than the original number.
3. A classmate says that the answer is 3 because the expression means one half of 6 . Is this correct? yes; Sample answer: Multiplying a number by $\frac{1}{2}$ means the same as one half of the number.

Example 2 Evaluate One-Step Algebraic Expressions

Objective

Students will evaluate one-step algebraic expressions for given rationalnumber values.

Questions for Mathematical Discourse

SLIDE1:
AL. What is the value of x ? the value of y ? $x=\frac{3}{4}$ and $y=\frac{2}{3}$
OL. Estimate the value of the expression. Sample answer: $\frac{3}{4}$ is close to 1 , and $\frac{2}{3}$ is also close to 1 . So, the value of the expression will be close to 2 , but less than 2 .

B1. A student mistakenly switched the values for x and y when substituting, but the student obtained the correct answer for the value of the expression. Why? Sample answer: Because the problem only involves the addition of two numbers, and because addition is commutative, switching the values of x and y won't change the final value of the expression.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Evaluate Multi-Step Algebraic Expressions

Objective

Students will evaluate multi-step algebraic expressions for given rationalnumber values.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the variable quantities in the expression, and be able to efficiently and accurately find the value of the expression.

6 Attend to Precision Students should be able to flexibly use the order of operations, by first evaluating the expression inside the parentheses.

Questions for Mathematical Discourse

SUDE1
AL How many variables are in this expression? Identify them. There are three variables: x, y, and z.
Older substituting the values, what should you do first? Explain. Sample answer: Following the order of operations, first evaluate the expressions inside the parentheses.
[3] Are parentheses necessary in this expression? Explain. yes; Sample answer: Removing the parentheses would cause the division operation to be $2 \div 9$, which would cause the value of the expression to change.

(3) Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

To further students' understanding of evaluating multi-step algebraic expressions, have them create their own algebraic expressions that satisfy the given conditions. They should be sure to include the values of the variables that need to be substituted into the expressions, in order to evaluate them.

- The expression should have at least four terms.
- The expression should have at least two different variables.
- There should be at least three operations, one of which is a power.

Then have them trade expressions with another pair of students. Each pair should evaluate the expression using the given values of the variables. Have pairs check each other's work.

Interactive Presentation

Example 3, Evaluate Multi-Step Algebraic Expressions, Slide 1 of 2

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 4 Use Algebraic Expressions

Objective
Students will evaluate multi-step algebraic expressions for given rationalnumber values to find area.

Teaching the Mathematical Practices

6 Attend to Precision Students should be able to find the value of the expression precisely and accurately, adhering to the order of operations.

As students discuss the Talk About lt! question on Slide 3, encourage them to clearly and precisely explain how the Commutative Property allows them to multiply in any order.

Questions for Mathematical Discourse

SUDE2.

ALI Is $\frac{1}{2}$ a constant or a coefficient? It is a coefficient since it immediately precedes a variable.

OL. Why are the parentheses necessary? Sample answer: Without the parentheses, the addition will not be performed first.

BL. How could you use mental math to tell that the area of the trapezoid is less than 100 square inches? Sample answer: Since $9.8<10$ and $19<20$, then $\frac{1}{2} \cdot 19 \cdot 9.8<\frac{1}{2} \cdot 20 \cdot 10$, or 100 .

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Woodworking

Objective

Students will come up with their own strategy to solve an application problem involving perimeter of picture frames.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What is perimeter?

- How do you find the perimeter of a rectangle?
- How would you determine the amount of wood needed for one of each type of picture frame?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Woodworking

The table shows the dimensions of three rectangular picture frame sizes that Martina is making. How much wood is needed to make two $2 \ell+2 w$, where ℓ is the length and w is the width.

Picture Frame Size		
Length (in.)	Width (in.)	
Small	3	5
Medium	5	7
Large	8	10

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.
First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem.

140 in.; See students' work.

4 How can you show your solution is reasonable?
Q Write About It! Write an argument that can be used to defend
your solution.
See students' arguments.

Interactive Presentation

Apply, Woodworking
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
Q Essential Question Follow-Up
How can we communicate algebraic relationships with mathematical symbols? In this lesson, students learned how to evaluate algebraic expressions for specific values of the variables. Encourage them to discuss with a partner some algebraic expressions they have used and evaluated in different situations. For example, how the expression $4 s$ can represent the perimeter of a square with side length s and how the expression can be evaluated to find the perimeter of any square.

Exit Ticket

Refer to the Exit Ticket slide. Write an expression for the number of markers, and evaluate the expression if the container originally has 100 markers. $\frac{1}{2} m-10$; If $m=100$, the number of markers left is $\frac{1}{2}(100)-10=50-10=40$.

ASSESS AND DIFFERENTIATE

Di) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 13, 15-19
- DALEKS Evaluating and Writing Expressions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-11, 13, 15, 17, 19
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- ALEKS Exponents and Order of Operations

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- a Aleks Exponents and Order of Operations

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
OLI Practice Form A
[31. Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	evaluate one-step algebraic expressions for given rational-number values	$1-6$
1	evaluate multi-step algebraic expressions for given rational-number values	$7-9$
1	evaluate multi-step algebraic expressions for given rational-number values to find area	10,11
2	extend concepts learned in class to apply them in new contexts	12,13
3	solve application problems that involve evaluating algebraic expressions	14,15
3	higher-order and critical thinking skills	$16-19$

Common Misconception

Some students may incorrectly evaluate algebraic expressions by either incorrectly substituting values, or by not following the order of operations. Encourage students to use precision when substituting the values of the variables in the expressions. Students should adhere to the order of operations to evaluate the expressions.

Apply *indicates multi-step problem

*14. Mr. Young is replacing the fencing around his rabbit pens | Item Length (t) Width (ti) |
| :--- |
| Rabbit Pen 3.5 | areas. How many feet of fencing will he need to replace two Rabbit Pen 3.5 rabbit pens and his garden? The perimeter of a rectangle is Garden $2 \ell+2 w$, where ℓ is the length and w is the width.

76 ft
*15. Angel is comparing the price to print shirts for summer camp at two companies Company A charges an initial fee of $\$ 50$ and $\$ 12$ per shirt. Company B charges an initial fee of $\$ 10$ and $\$ 15$ per shirt. Evaluate the expressions $50+12 x$ and What is the difference in cost between the companies?
\$80

Higher-Order Thinking Problems
16. Which One Doesn't Belong? Circle the expression that does not equal 13 when $x=3$.
$5 x-2$
$5 x^{2}-27+5$
$\left(x^{3}-1\right) \div 2 \quad x+13-x$
18. Be Precise Compare and contrast algebraic expressions and numerical expressions.
Sample answer: To evaluate both algebraic Sample answer: To evaluate both algebs
expressions and numerical expressions, expressions and numerical expressions, expression contains numbers and variables. Numerical expressions contain only numbers.

294
Module 5. Numerical and Algebraic Expressions
17. Find the Error A student was evaluating $4 b+c$ for $b=2$ and $c=3$. Find the student's mistake and correct it.
$4 b+c=4(3)+2$
$=12+$
$=14$
Sample answer: The student replaced the variables with the incorrect values. The correct value should be $\mathbf{4 (2) + 3}$ or 11 .
19. Give an example of an algebraic expression and a numerical expression that have the same value when evaluated.

Sample answer: If $a=2$, then $a+10=12 ;(15+5)-8=12$

1 CONCEPTUAL UNDERSTANDING
Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 17, students explain why another student's solution is incorrect and then correct the solution.

6 Attend to Precision In Exercise 18, students compare and contrast algebraic expressions and numerical expressions. Encourage students to use proper mathematical terminology in their explanations.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create your own application problem.

Use with Exercises 14-15 After completing the application problems, have students write their own real-world application problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Interview a student.

Use with Exercise 17 Have pairs of students interview each other as they complete this problem. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 17 might be, "How do you know that the student made a mistake while evaluating the expression?"

Learn Greatest Common Factor

Objective

Students will learn how to find the greatest common factor of two whole numbers.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 3, encourage them to think about the process they use to find factors of very large numbers in order to make a plausible argument and justify their reasoning.

3 Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to find the GCF by listing the factors.

Talk About It!
SLIDE 3

Mathematical Discourse

When is making a list of the factors difficult to do? Sample answer: It is difficult to do when the numbers are very large and have many factors.

DIFFERENTIATE

Reteaching Activity An

If any of your students are having difficulty making a list of factors, have them write down the definition of a factor, and use it to fill in the blanks for the following questions.

6 is a factor of 24 because $6 \times \underline{4}=24$
2 is a factor of 40 because $2 \times \underline{20}=40$
13 is a factor of 26 because $13 \times \underline{2}=26$
5 is a factor of 55 because $5 \times \underline{11}=55$

	Factors	Lesson 5-5 Multiples
	I Can... find the greatest common factor and least common multiple of two whole numbers. Explore Greatest Common Factor	What Vocabulary Will Y ou Learn? common factor greatest common factor least common multiple
	OOnline Activity Y ou will find the greatest common factor of two whole numbers.	
	Learn Greatest Common Factor A common factor is a number that is a factor of two or more numbers. The greatest of the common factors of two or more numbers is the greatest common factor (GCF). Y ou can find the GCF of two or more numbers using different methods. Some of these methods include: - listing the factors - making a factor tree Go Online Watch the animation to learn how to find the GCF by listing the factors.	
	The animation shows the lists of factors of each number used to find the GCF of 9,15 , and 18 . factors of $9: 1,3,9$ factors of 15: $1,3,5,15$ factors of 18: 1, 2, 3, 6, 9, 18 The common factors are 1 and 3 . Since 3 is greater than 1 , the greatest common factor is 3 .	Talk About It! When is making a list of the factors difficult to do? Sample answer: It is difficult to do when the numbers are very large and have many factors.
	Lesson 5-5 F Factors and Mutitiles 295	

Interactive Presentation

Learn, Greatest Common Factor, Slide 2 of 3
WATCH

On Slide 2, students watch an animation that explains what a greatest common factor is, and how to find the GCF of two numbers.

LESSON GOAL

Students will solve problems by finding the greatest common factor and least common multiple of two whole numbers.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Explore: Greatest Common Factor
Learn: Greatest Common Factor
Example 1: Find the GCF by Using a List of Factors
Example 2: Find the GCF by Using a Factor Tree
Explore: Least Common Multiple
Learn: Least Common Multiple
Example 3: Find the LCM by Using a List of Multiples
Example 4: Find the LCM by Using a Number Line
Apply: School Supplies
Have your students complete the Checks online.

3

REFLECT AND PRACTICE
Exit Ticket
Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	\|nex	
Artive MATHTake Another Look	-		
Extension: Extension Resources		-	\bullet
Collaboration Strategies	-	-	-

Language Development Support

Assign page 31 of the Language Development Handbook to help your students build mathematical language related to factors and multiples.
Ellinou can use the tips and suggestions on page T31 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: The Number System
Additional Cluster(s): In this lesson, students address additional cluster 6.NS.B by solving problems involving greatest common factor and least common multiple.
Standards for Mathematical Content: 6.NS.B. 4
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP7, MP8

Coherence

Vertical Alignment

Previous

Students evaluated algebraic expressions.
6.EE.A.2, 6.EE.B. 6

Now

Students solve problems by finding the greatest common factor and least common multiple of two whole numbers.

6.NS.B. 4

Next
Students will use the Distributive Property.
6.EE.A.2.B, 6.EE.A.3, 6.NS.B. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
度 Conceptual Bridge In this lesson, students draw on their		
knowledge of factors and multiples (gained in Grade 4) and their		
understanding of prime factorization to build fluency with finding the		
greatest common factor and least common multiple of two whole		
numbers. They apply their understanding of greatest common factor		
and least common multiple to solve real-world problems.		

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

```
What Vocabulary Will You Leam?
common tactor
```



``` greatest common tactop
```



```
least commen multiple
```



``` roverimmatiplt
```

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- understanding prime numbers by finding factors (Exercises 1-5)

Answers

1. $1,2,3,4,6,12$
2. $1,2,11,22$
3. $1,2,4,8,16,32$
4. $1,2,3,4,6,8,12,16,24,48$
5. 7 groups; Sample answer: They can be divided into 2 groups of 18 students, 3 groups of 12 students, 4 groups of 9 students, 6 groups of 6 students, 9 groups of 4 students, 12 groups of 3 students or 18 groups of 2 students.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about designing floral centerpieces for dinner tables.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- What part of speech is the term common? How can this term help you understand what a common factor might be? adjective; Sample answer: Something that is common is shared; A common factor might be a number that is a shared factor of two or more numbers.
- Use your knowledge of the terms greatest, common, and factor to help you understand what the greatest common factor might be. Sample answer: The greatest common factor might be the largest (greatest) factor that is shared between two or more numbers.
- What parts of speech are the terms least and common? Use your understanding of multiple to describe what you think the least common multiple might be. Sample answer: Least and common are adjectives that describe the term multiple. A multiple of a number is a product of that number and another number. The least common multiple might be the least (lowest) number that is a multiple of two or more numbers (making it common).

Explore Greatest Common Factor

Objective

Students will explore how to find the greatest common factor of two whole numbers.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with a situation where Lucy has 8 blue balloons and 12 green balloons and needs to make identical table arrangements for a birthday party. Throughout this activity, students will explore the possibility of making various numbers of arrangements (2, 3, 4, etc.). Students will use their observations to connect the greatest number of possible identical balloon arrangements with the greatest common factor.

(a) Inquiry Question

How can finding the greatest common factor help solve a real-world problem? Sample answer: I can use the greatest common factor to help make identical groups of different types of objects.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

Share your balloon arrangement with a classmate. How many balloons of each color are in each arrangement? Sample answer: 4 blue, 6 green
(continued on next page)

Interactive Presentation

Greatest Common Factor

@i) Introfucing the Inguity Question

Explore, Slide 1 of 9

Explore, Slide 2 of 9

On Slide 2, students drag the blue balloons and the green balloons to make identical arrangements on two tables.

Interactive Presentation

Explore, Slide 5 of 9

On Slide 5, students drag the balloons to test their prediction for four balloon arrangements.

TYPE

a
On Slide 9, students respond to the Inquiry Question and view a sample answer.

Explore Greatest Common Factor (continued)

113. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to examine the relationship between divisibility, factors, common factors, and the greatest common factor.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 6 are shown.

Talk About It!

SLIDE 6

Mathematical Discourse

Did your prediction hold true? Explain why the balloons can be divided into 4 identical arrangements. Sample answer: Both 8 and 12 are divisible by 4 .

Interactive Presentation

Example 1, Find the GCF by Using a List of Factors, Slide 2 of 6
On Slide 2 of Example 1, students select
values that are the factors of 12 and 28.

Example 1 Find the GCF by Using a List of Factors

Objective

Students will find the greatest common factor of two whole numbers by listing the factors.

Questions for Mathematical Discourse
 SLIDE2

AL What are the factors of 12 ? 28 ? The factors of 12 are $1,2,3,4$, 6 , and 12 . The factors of 28 are $1,2,4,7,14$, and 28 .

OLI After selecting the factors of 12 , what happens when we select the factors of 28 ? Sample answer: Some of the factors are factors of both numbers, such as 1,2 , and 4 .

E1. Natural numbers are the set of whole numbers excluding zero. Which natural number will always be a common factor of any two natural numbers? Explain. The number 1 is always a factor of any natural number, so it will always be a common factor of any two natural numbers.

Go Online

- Find additional teaching notes, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Find the GCF by Using a Factor Tree

Objective

Students will find the greatest common factor of two whole numbers by using a factor tree.

Questions for Mathematical Discourse

SLIDE 2

AL. What is a prime number? How do you know if a number is prime? Sample answer: A prime number has exactly two different factors: the number 1 and itself. I know a number is prime if I test all possible factors and find that the only factor pair is 1 and the number itself.

OL. Where do you look to find common prime factors in a factor tree? Sample answer: Common prime factors are numbers that are in the bottom rows of both numbers.

BL. Suppose the prime factorization of Number A is $5 \times 5 \times 5$ and the prime factorization of Number B is $5 \times 5 \times 5 \times 5$. How many $5 s$ would be included in the list of common prime factors? Sample answer: Three 5 s , because the two numbers have three 5 s in common.

Example 2 Find the GCF by Using a Factor Tree (continued)

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Find the GCF by Using a Factor Tree, Slide 2 of 4

TYPE	On Slide 2 of Example 2, students enter the missing values to complete the factor tree.
CHECK	Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Learn, Least Common Multiple, Slide 2 of 3
WATCH
On Slide 2 of the Learn, students watch an animation that explains how to find the least common multiple of two whole numbers.

On Slide 3, students select each button to view the multiples of 4 and 6 on a number line.

Learn Least Common Multiple

Objective
Students will learn how to find the least common multiple of two whole numbers.

Teaching Notes

SIDE 1

Students will learn the definition of least common multiple, and several methods for finding the least common multiple. Note that only nonzero multiples will be considered when finding the LCM.

Wo Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation explains how to find the least common multiple of two whole numbers.

© Example 3 Find the LCM by Using a List of Multiples

Objective
Students will find the least common multiple of two whole numbers by listing the multiples.

(1) Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of

 Others As students discuss the Talk About It! question on Slide 4, encourage them to make a plausible argument, including an example, for why the LCM of two numbers can be one of the numbers.5 Use Appropriate Tools Strategically On Slide 2, students will use the shading tool to list the multiples of 6 and 8 in order to find the number of weeks until Ernesto and Kamala have their classes in the same week.

Questions for Mathematical Discourse

 SLIDE 2AL From 1 to 30 , what are the multiples of 6 ? 8? The multiples of 6 are $6,12,18,24$, and 30 . The multiples of 8 are 8,16 , and 24 .

OL. Are there more multiples of 6 and 8 than are shown on the shading tool? Explain. yes; Sample answer: There are an infinite number of multiples. Some of the other multiples of 6 are 36 and 48 . Some of the other multiples of 8 are 32 and 40 .

OL. How are the common multiples of 6 and 8 shown on the shading tool? They are shaded twice.

BL Does every pair of positive whole numbers have a common multiple? Explain. yes; Sample answer: The product of the two numbers is always a common multiple because it is a multiple of each of the numbers individually.

Interactive Presentation

Explore, Slide 1 of 10

Explore, Slide 4 of 10
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how to find the least common multiple of two numbers.

Explore Least Common Multiple

Objective

Students will use Web Sketchpad to explore how to find the least common multiple of two whole numbers.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with several pairs of numbers and their multiples. Throughout this activity, students will use interactive grids of multiples to recognize the patterns and to find the least common multiple of two numbers.

Inquiry Question

How can you find the least number that is a multiple of two whole numbers? Sample answer: I could make a list of the multiples, find the multiples that they share, and then find the least number that is a multiple of both.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 4 is shown.

Talk About It!

SLIDE 4

Mathematical Discourse

What patterns do you notice? Sample answer: The multiples they have in common are also multiples of 12 . In this chart, they are the numbers in the last column.
(continued on next page)

1 CONCEPTUAL UNDERSTANDING

Explore Least Common Multiple (continued)

Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically. Students will use Web Sketchpad to carefully identify any patterns in finding the common multiples. Encourage students to explore the sketches and deepen their understanding of the least common multiple.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 7 are shown.

Talk About It!

SLIDE7

Mathematical Discourse

Use the sketch to find the least common multiple of 2 and 4 . Was your conjecture correct? Why or why not? Sample answer: Y es, my conjecture was that it is not always true. The least common multiple of 2 and 4 is 4 , but the product of 2 and 4 is 8 .

Interactive Presentation

```
(2)Ta thes w
```


Explore, Slide 7 of 10

TYPE

al
On Slide 10, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION
Example 3 Find the LCM by Using a List of Multiples (continued)

Questions for Mathematical Discourse

SLIDE3:

AL. From 1 to 30, what multiple(s) do 6 and 8 have in common? 24
AL. Are there other multiples, beyond 30 , that 6 and 8 have in common? If so, identify one. yes; Sample answer: 6 and 8 both have the multiple 48 in common.

OL Why does the least common multiple help solve the problem? Sample answer: Ernesto and Kamala will both be at the center in 24 weeks, since 24 is the LCM of their respective cadences.

B1N Name some other weeks that Ernesto and Kamala will both be at the center for their classes. Sample answers: 48, 72, 96, etc. The least common multiple is 24 weeks, so they will both be at the center every 24 weeks.

1 Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 3, Find the LCM by Using a List of Multiples, Slide 3 of 5

Interactive Presentation

Example 4, Find the LCM by Using a Number Line, Slide 1 of 2
On Slide 1 , students select to view the
multiples of 2 and 3.

300 Module 5 - Numerical and Algebraic Expressions

Example 4 Find the LCM by Using a Number Line

Objective

Students will find the least common multiple of two whole numbers by using a number line.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to use the number line to help them represent the multiples of 2 and 3 , and to help them find the least common multiple by noting which multiples are common to both 2 and 3 .

Questions for Mathematical Discourse

SIDE 1

What are the multiples of 2 ? The multiples of 3 ? Sample answer: The multiples of 2 are $2,4,6,8,10,12, \ldots$ The multiples of 3 are 3 , $6,9,12, \ldots$
10. How do the buttons reveal the common multiples? the least common multiple? The common multiples have both an x and a dot above them. The least common multiple is the least number on the number line with both an x and a dot above it.

211 What is the least common multiple of 2, 3, and 4? Explain. 12; Sample answer: By listing the multiples of 2,3 , and 4 , the least of the common multiples is 12 .

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply School Supplies

Objective

Students will come up with their own strategy to solve an application problem involving items in the school store.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What types of supplies might be sold in a school store?

- How do you find the GCF of 48 and 36 ?
- What type of model could you use to solve the problem?

(
 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, School Supplies
Students watch an animation that
demonstrates the problem they are about
to solve.

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. Samantha and her sister have 250 roses and 175 peonies. If they want to use all of the flowers, how many identical centerpieces can they make, if they want to have as many as possible? Write a mathematical argument that can be used to defend your solution. 25 identical centerpieces; Sample answer: Find the prime factorization of each number. Then find the common prime factors and the GCF. Since the GCF is 25 , they can make 25 identical centerpieces.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,

IF students score 66-89\% on the Checks,
OII
THEN assign:

- Practice, Exercises 1-10, 12, 14-16
- Extension: Extension Resources
- Personal Tutor
- Extra Examples 1-4
- D ALEKS' Prime Numbers, Factors, and Multiples

IF students score 65\% or below on the Checks, THEN assign:

- Arrive MATH Take Another Look
- ALEKS Prime Numbers, Factors, and Multiples

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL Practice Form B
OLPractice Form A
[BL Practice Form C

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	find the GCF	$1-6$
1	find the LCM	$7-10$
2	extend concepts learned in class to apply them in new contexts	11,12
3	solve application problems involving the GCF and LCM of whole numbers	13,14
3	higher-order and critical thinking skills	$15-18$

Common Misconception

When finding the least common multiple, some students may incorrectly list the common factor of 1 , because they are accustomed to including it when listing factors. Remind students to reason that multiples of a given number will be equal to or greater than the number itself.

Apply "indicates multi-step problem
*13. The table shows the number of each type of cookie a bakery has left at the end of the day. The baker wants to make the greatest number of cookie boxes to sell, using chocolate chip and sugar cookies together. If all of the chocolate chip and sugar cookies are distributed evenly among the boxes and the baker charges $\$ 5$ per box, how much money will the bakery bring in if they sell all of the boxes? \$65

Type of Cookie	Number
Chocolate Chip	26
Oatmeal Raisin	34
Peanut Butter	18
Sugar	39

*14. A teacher needs to purchase notebooks and pencils for her students. Notebooks come in packages of 6 and pencils in packages of 10 . The table shows the cost of the items. What is the least amount of money the teacher can spend and have the same number of notebooks and pencils? \$31.00

Item	Cost (\$)
Folder Packages	3.50
Notebook Packages	5.00
Pencil Packages	2.00

Higher-Order Thinking Problems
15. Identify Structure Explain how the Commutative Property is applied when finding the GCF using factor trees.

Sample answer: The bottom row of the factor trees may not show the factors listed in order from least to greatest. can use the Commutative Property to write the factors in order from least to greatest.
17.

Use a Counterexample Determine if the statement is true or false. If true support with an example. If false, give a counterexample.

If one number is a multiple of another number, the LCM is the lesser of the two umbers.
false; Sample answer: 25 and 50; 50 is a multiple of 25,50 is the LCM, and 50 is the greater number. The LCM is the greater of the two numbers.
16. Make a Conjecture A student is finding the GCF of 6 and 12 . Without computing, will the GCF be odd or even? Explain.
even; Sample answer: Even numbers have a factor of 2 . The GCF will therefore have $\mathbf{2}$ as a factor. So, the GCF must be even.
18. Make a Conjecture Can two different pairs of numbers have the same LCM? Explain.
yes; Sample answer: The numbers 3 and 8 have a LCM of 24 and the numbers 12 and 24 also have a LCM of 24.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 15, students will analyze the structure of a factor tree and explain how the Commutative Property is important for finding the greatest common factor of two numbers. Because the greatest common factor is the product of the common prime factors of the two numbers, it is important to remember that these factors can be reordered and multiplied to obtain the greatest common factor.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 17, students will determine if a statement about least common multiples is true or false. In the event that the statement is false, students will provide a counterexample.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create your own application problem.
Use with Exercise 13 After completing the application problems, have students write their own real-world application problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Clearly and precisely explain.

Use with Exercise 17-18 Have students work in groups of 3-4 to solve the problem in Exercise 17. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 18.

Learn The Distributive Property

Objective

Students will understand how the Distributive Property can be applied to multiply a sum by a number.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About lt! questions on Slide 3, encourage them to use precise and clear mathematical language, such as order of operations, in their explanations.

Teaching Notes

SLIDE1
You may wish to have students select the Numbers flashcard prior to the other flashcards in order to understand, using a concrete example, what it means to multiply a sum by a number. You may wish to have them first evaluate the sum $5+6$, and then multiply by 2 , in order to illustrate that the result is equivalent to first multiplying 2 by each of the addends 5 and 6 . You may also wish to point out that, when they apply the Distributive Property, they are writing the product $2(5+6)$ as the sum $2(5)+2(6)$.
(continued on next page)

DIFFERENTIATE

Enrichment Activity IBI

For students that may need more of a challenge, have them work with a partner to expand each of the following expressions using the Distributive Property. Then have them generate their own expressions and trade them with another pair of students. Each pair should expand the expressions and compare their results. Have pairs discuss and resolve any differences.
$2 x(5 y+8) 10 x y+16 x$
$3 m(7 n+4 p) 21 m n+12 m p$
$4 a(6 b c+11 d) 24 a b c+44 a d$

Interactive Presentation

Learn, The Distributive Property, Slide 1 of 3
FLASHCARDS
On Slide 1, students use Flashcards to learn about the Distributive Property.

LESSON GOAL

Students will use the Distributive Property to expand and factor expressions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Use Algebra Tiles to Model the Distributive Property
Learn: The Distributive Property
Example 1: Use the Distributive Property
Example 2: Use the Distributive Property
Learn: Greatest Common Factor and the Distributive Property
Example 3: Use GCF to Factor Numerical Expressions
Example 4: Use GCF to Factor Algebraic Expressions
Apply: MoneyHave your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	L.B.	
Remediation: Review Resources		0	
ArriveMATH Take Another Look			
Extension: The FOIL Method			
Collaboration Strategies		0	

Language Development Support

Assign page 32 of the Language Development Handbook to help your students build mathematical language related to the Distributive Property.
Fallil You can use the tips and suggestions on page T32 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1.5 days
45 min	

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster
6.EE.A and the supporting cluster 6.NS.B by using the

Distributive Property.
Standards for Mathematical Content: 6.NS.B.4, 6.EE.A.3, A/so addresses 6.EE.A.2.B
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students found the greatest common factor and least common multiple of two whole numbers.
6.NS.B. 4

Now

Students use the Distributive Property.
6.NS.B.4, 6.EE.A.2.B, 6.EE.A. 3

Next
Students will identify and generate equivalent algebraic expressions.
6.EE.A.3, 6.EE.A. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of numerical and algebraic expressions as they explore the Distributive Property. They use the Distributive Property to build fluency with expanding an expression, multiplying a whole number and a rational number, and factoring expressions using greatest common factors. They also apply their understanding of the Distributive Property to solve real-world problems.

Mathematical Background

1 Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding prime factors (Exercises 1-2)
- finding the greatest common factor (Exercises 3-4)
- understanding operations with numbers (Exercise 5)

Answers

1. 3 and 5
2. 2 and 17
3. 4
4. 1
5. 7 and 5

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about finding the cost of concert tickets.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:
-What does it mean for a teacher to distribute pencils to the class?
Sample answer: It would mean that the teacher gives each student in the class a pencil or pencils.

- What are the factors of 12 ? How do you find them? The factors of 12 are $1,2,3,4,6$, and 12 . Sample answer: I can find them by listing the numbers that divide evenly into 12 .

Explore Use Algebra Tiles to Model the Distributive Property

Objective

Students will use algebra tiles to explore the Distributive Property.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use algebra tiles to explore the Distributive Property. Students will begin with familiar examples using only numerical expressions. They will then extend their knowledge to the use of the Distributive Property in the context of algebraic expressions. Throughout the activity students will make and test conjectures about equivalent algebraic expressions.

Q Inquiry Question

How can you use algebra tiles to model the Distributive Property? Sample answer: Place equal groups of tiles on the mat to represent the multiplication expression. Then group like tiles together to represent an equivalent addition expression.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 4 are shown.

Talk About It!
SLIDE4

Mathematical Discourse

What steps did you take to model the expression? See students' responses.

What other expressions have the same value as $2(2 x+1)$? Sample answer: Some other expressions that have the same value are $4\left(x+\frac{1}{2}\right)$ and $\frac{1}{2}(8 x+4)$.
(continued on next page)

Interactive Presentation

Use Aligebra Thies to Modet the Distributive Property
©) Introtucting the Ingeiry Ouevtion

Explore, Slide 1 of 8

Explore, Slide 4 of 8
DRAG \& DROP
Throughout the Explore, students drag algebra tiles to explore and model the Distributive Property.

WATCH

On Slide 3, students watch a video to learn about using algebra tiles to model the Distributive Property.

Interactive Presentation

Explore, Slide 7 of 8

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Use Algebra Tiles to Model the Distributive Property (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Explain to students the benefit of using algebra tiles as they can manipulate the tiles to represent and simplify the expressions, visualize the results, and make conjectures about how to use algebra tiles to model using the Distributive Property.

O
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 7 is shown.

Talk About It!

SLIDE 7

Mathematical Discourse

How is the factor outside of the parentheses related to the addends inside the parentheses once the Distributive Property is applied? Sample answer: The factor outside of the parentheses is multiplied by the addends inside of the parentheses.

(2) Talk About It! When there are only When there are only
numbers in an
numbers in an
expression, such $3(4+9)$, is the
Distributive Propert
the only way to
evaluate the
expression?
no; Sample answer: I can use the order of operations to add 4
and 9 to obtain 13
Then multiply 13 by 3 to obtain 39 .
(D) Talk About It!

Does the Distributive Property apply to
subtraction? For
example, does
$3(8-2)=3(8)-3(2)$? $3(8-2)=3(8)-3(2)$? Doesters? Explain.
yes; Sample answer $3(8-2)=18$ and $3(8)-3(2)=18$. If try other numbers the expressions are still equal.

Interactive Presentation

Learn, The Distributive Property, Slide 2 of 3

WATCH
On Slide 2, students watch the animation to learn about how the Distributive Property can be used to expand an expression.

1 CONCEPTUAL UNDERSTANDING

Learn The Distributive Property (continued)

Go Online to have your students watch the animation on Slide 2. The animation illustrates the Distributive Property.

Teaching Notes
 SLIDE2

You may wish to pause the animation after the Distributive Property was used to expand the expression $a(b+c)$. Some students may incorrectly apply the Distributive Property and think that the expanded expression is equivalent to $a b+c$. Remind them that the term outside the parentheses is multiplied by each term inside the parentheses, so a must also be multiplied by c. For each of the next two expressions in the animation, $2(3+5)$ and $3(x+4)$, you may wish to pause the animation and have students expand the expression. Then replay the animation and have students check their work.

Talk About It!
SLIDE 3

Mathematical Discourse

When there are only numbers in an expression, such as $3(4+9)$, is the Distributive Property the only way to evaluate the expression? no; Sample answer: I can use the order of operations to add 4 and 9 to obtain 13 . Then multiply 13 by 3 to obtain 39 .
Does the Distributive Property apply to subtraction? For example, does $3(8-2)=3(8)-3(2)$? Does it apply to all numbers? Explain. yes; Sample answer: $3(8-2)=18$ and $3(8)-3(2)=18$. If I try other numbers, the expressions are still equal.

Example 1 Use the Distributive Property

Objective

Students will use the Distributive Property to expand algebraic expressions.

Questions for Mathematical Discourse

SIDEE 2

ALI Which quantity is being distributed? To which quantities is it being distributed? The quantity 2 is being distributed to x and 3 .

AL What operation represents the act of the distribution? multiplication
OL. Explain why the expanded expression $2 x+6$ cannot be further evaluated or simplified. Sample answer: The expression contains a variable and is currently in simplest form, since we do not know the value of the variable.
[B1] A classmate obtained the answer $2 x+5$. What was the most likely mistake? Sample answer: The classmate may have added 2 and 3 instead of multiplying 2 by 3 .

Example 2 Use the Distributive Property

Objective
Students will use the Distributive Property to multiply a whole number and a rational number.

Questions for Mathematical Discourse

SLIDE2:

AL. How can you write $3 \frac{1}{2}$ as a sum of two numbers? Sample answer: $3 \frac{1}{2}=3+\frac{1}{2}$
OL. Why does writing $3 \frac{1}{2}$ as a sum of two terms and using the Distributive Property help you find the product mentally? Sample answer: I can mentally find the product of 8 and 3 , and the product of 8 and $\frac{1}{2}$. Then I can add them mentally.
OL. How can you estimate the product? Sample answer: $3 \frac{1}{2}$ is between 3 and 4 . So the product of 8 and $3 \frac{1}{2}$ will be between $8(3)$, or 24 , and $8(4)$, or 32 .
BE Can you use a similar process to find $8 \frac{1}{2} \cdot 3$? Explain. yes; Sample answer: Since multiplication is commutative, I can write $8 \frac{1}{2} \cdot 3$ as $3 \cdot 8 \frac{1}{2}$. Then I can write $8 \frac{1}{2}$ as $8+\frac{1}{2}$ and use the Distributive Property.

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Use the Distributive Property, Slide 2 of 4

D Talk About It! How can you determine what remains in the GCF has been factored out of the expression?
Sample answer: The remaining terms in the parentheses are the quotients of the original terms each divided by the GCF.

Learn Greatest Common Factor and the Distributive Property

Y ou can use the greatest common factor (GCF) to rewrite the sum of wo whole numbers with a common factor as a product. The Distributive Property allows you to write the sum as the product of the greatest common factor and the sum of the remaining factors.
When numerical or algebraic expressions are written as a product of their factors, the process is called factoring the expression. To factor expression, follow these steps.

1. Find the GCF of the terms.
2. Write the terms as a product of factors.
3. Rewrite the expression as the product of two terms.

Go Online Watch the animation to see how to use the GCF and the Distributive Property to factor an expression.

The animation explains how to factor the expression $8+56$.


```
\(56=2 \cdot 2 \cdot 2 \cdot 7\)
Find the GCF of the terms.
```

The GCF is 8 .
$8+56=8(1)+8(7)$
Use the GCF to write each term as a product of factors.
$=8(1+7)$
Rewrite the expression as a product of two terms.
ou can also use the GCF to factor expressions containing variables, such as $45 x+6$.
$45 x=3 \cdot 3 \cdot 5 \cdot x \quad$ Find the GCF of the termis.
$6=3 \cdot 2$
The GCF is 3 .
$45 x+6=3(15 x)+3(2)$
Use the GCF to write each term as
a product of factors.
$=3(15 x+2)$
of two terms.

Interactive Presentation

Learn, Greatest Common Factor and the Distributive Property, Slide 2 of 3
WATCH
On Slide 2, students watch an animation to learn about how to use the GCF and the Distributive Property to factor an expression.

1 CONCEPTUAL UNDERSTANDING

Learn Greatest Common Factor and the Distributive Property

Objective
Students will learn how to factor expressions using the greatest common factor.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to use reasoning about how multiplication and division are inverse operations.

Teaching Notes

SLIDE1
Students will learn how to use the greatest common factor to rewrite the sum of two whole numbers as the product of the greatest common factor and the sum of the remaining factors. This process is called factoring the expression. You may wish to point out that previously, students used the Distributive Property to write a product as a sum, but in this case, they are writing a sum of two terms that have a common factor as a product.

0
 Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates using the Distributive Property to factor an expression.

Talk About It!
 SIDEE

Mathematical Discourse

How can you determine what remains in the parentheses after the GCF has been factored out of the expression? Sample answer: The remaining terms in the parentheses are the quotients of the original terms each divided by the GCF.

DIFFERENTIATE

Reteaching Activity AL

If any of your students have difficulty finding the GCF, use the following activity to support their learning. Have students determine the factors of the following numbers. Then have them work with a partner to select 2 or 3 of the numbers and determine their common factors, and their greatest common factor. For example, they may select the numbers 10 and 15 . The common factors are 1 and 5 . So, the greatest common factor is 5 .

12 1, 2, 3, 4, 6, 12
10 1, 2, 5, 10
$151,3,5,15$
$81,2,4,8$

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Example 3 Use GCF to Factor Numerical Expressions

Objective

Students will factor numerical expressions using the greatest common factor.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language, such as commutative, when explaining why the two expressions are equivalent.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the expression, paying careful attention to rewriting each term as a product of the GCF and its remaining factor.

Questions for Mathematical Discourse

SLIDE2.

ALil How can you find the GCF of two numbers? Sample answer: I can write the factors of each number, circle the common factors, and then select the greatest of the circled numbers.

OLIW Why is 9 the number that is multiplied by both 5 and 8 ? 9 is the GCF of 45 and 72
(0) How can you determine that 5 and 8 are left inside the parentheses? After factoring out 9 from 45 and 72,5 and 8 are left because $9(5)=45$, and $9(8)=72$.
[8ill The two numbers inside the parentheses, 5 and 8 , do not haveray factors in common except for 1 . Why is this true? Sample answer: This is true because we factored out the GCF. If they had a factor in common (other than 1), then we would not have been using the GCF.

ω
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 3, Use GCF to Factor Numerical Expressions, Slide 2 of 4

Interactive Presentation

Example 4, Use GCF to Factor Algebraic Expressions, Slide 2 of 4
 steps to factor the algebraic expression.

CHECK
Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 4 Use GCF to Factor Algebraic Expressions

Objective

Students will factor algebraic expressions using the greatest common factor.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of what it means to factor an expression and explain why it is possible to use factors other than the GCF to factor an expression, even though the expression won't be factored completely.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the expression, noting that a variable has been introduced. Students should reason that $6 x$ represents 6 times x in order to factor the expression accurately.

Questions for Mathematical Discourse

SLIDE2

Al. What is the GCF of 6 and 15 ? 3
O1 What is the remaining factor when 3 is factored out of 15 ? 5
Olil What is the remaining factor when 3 is factored out of $6 x$? Explain. $2 x$; Sample answer: Since $6 x$ represents 6 times x, after factoring out the 3 , the remaining expression is $2 x$.

IBII. What would be the GCF of $6 x$ and $15 x$? Why? $3 x$; Sample answer: Both terms contain a factor of 3 and a factor of x.

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Money

Objective

Students will come up with their own strategy to solve an application problem involving calculating change.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How much does one bottle of juice cost?
- How would you estimate the cost of 5 bottles?
- Will the change be greater than or less than $\$ 10$?

\angle
 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

e Apply Money

Wen is buying bottles of apple juice and wants to mentally calculate how much they will cost. He buys 5 bottles of juice at $\$ 2.15$ each. Use mental math and the Distributive Property to determine how much change he will receive from $\$ 20$.

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(4 Write About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Money
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Check

Martin exercised four days for 65 minutes each day. His goal is to exercise for a total of 300 minutes in 5 days. How many minutes does he need to exercise on the fifth day to meet his goal?

$$
40 \text { minutes }
$$

OGo Online Y ou can complete an Extra Example online.

Pause and Reflect
Write a real-world problem that involves writing an expression using the Distributive Property. Explain how you came up with that problem. Exchange problems with a classmate and solve each other's problem.

312 Module 5. Numerical and Algebraic Expressions

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Essential Question Follow-Up

How can we communicate algebraic relationships with

 mathematical symbols? In this lesson, students learned how to rewrite expressions using the Distributive Property. Encourage them to discuss with a partner how using the Distributive Property makes it easier to simplify numerical and algebraic expressions. For example, how rewriting the expression for the perimeter of a rectangle, $2 w+2 \ell$, as $2(w+\ell)$ allows you to multiply the sum of one width and one length by two.
Exit Ticket

Refer to the Exit Ticket slide. Write an expression that represents the cost of three T-shirts for you and your two friends. Then use the Distributive Property to determine the total cost. $3(12+0.05)=3(12)+3(0.05)$, or $36+0.15$; The total cost is $\$ 36+\$ 0.15$, or $\$ 36.15$.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 13, 15, 17-20
- Extension: The FOIL Method
- D ALEKS The Distributive Property

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-12, 15, 18, 20
- Extension: The FOIL Method
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- पALEKS Evaluating and Writing Expressions

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Evaluating and Writing Expressions

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	use the Distributive Property to expand expressions	$1-3$
1	use the Distributive Property to multiply a whole number and a rational number	$4-6$
1	factor numerical expressions using the greatest common factor	$7-9$
1	factor algebraic expressions using the greatest common factor	$10-12$
2	extend concepts learned in class to apply them in new contexts	13,14
3	solve application problems that involve the Distributive Property	15,16
3	higher-order and critical thinking skills	

Common Misconception

Some students may factor algebraic expressions incorrectly when using the greatest common factor. In Exercise 11, students may use the correct GCF, but incorrectly factor part of the expression by neglecting the variable, resulting in $6(4+1)$. Encourage students to remember that $6 x$ is really $6 \cdot x$, so when factoring out 6 , only x remains.

Use the Distributive Property to simplify each expression. (Example 2)

Use the GCF to factor each numerical expression. (Example 3)

7. $16+4816(1+3)$	8. $35+637(5+9)$	9. $26+3913(2+3)$

Use the GCF to factor each algebraic expression. (Example 4)

13. Five friends each bought a shirt and a pair of shoes. The table shows the cost of the items. The expression $5(x+24)$ shows the the amount of using the Distributive Property. $5 x+120$
T est Practice
14. Multiple Choice Which expression has the same value as $9+24$?
(A) $3(3+24)$
(3) $3(3+8)$
C) $3(9+8)$
(D) $9(1+24)$

Item Cost (\$)
 Shirt x

Shoes 24.00

Apply *indicates multi-step problem
*15. The table shows the cost of snacks at a basketball game. Mrs. Cooper buys 6 nachos for her daughter and 5 friends. Use mental math and the Distributive Property to determine how much change she will receive from $\$ 30$.

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 17, students will write two equivalent numerical expressions involving fractions that illustrate the Distributive Property. Encourage students to check that their answer includes fractions and illustrates the Distributive Property correctly.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 18, students will determine if a student used the Distributive Property correctly. Encourage students to support their answer with a well-constructed explanation.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 19, students will determine if two expressions are equivalent. Encourage students to form an explanation that supports their reasoning.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Solve the problem another way.

Use with Exercises 15-16 Have students work in groups of 3-4. After completing Exercise 15 , have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method. Repeat this process for Exercise 16.

Create your own higher-order thinking problem.

Use with Exercises 17-20 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Learn Use Properties to Identify Equivalent Expressions

Objective

Students will learn how to use mathematical properties to identify equivalent expressions.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of

 Others As students discuss the Talk About It! question on Slide 4, encourage them to defend their answer using their understanding of equivalent expressions. Students may have different responses; encourage them to listen to each other and determine whether or not they make sense and/or could be plausible arguments.6 Attend to Precision In the drag-and-drop activity on Slide 2, encourage students to think about the precise meaning of each property and how the equations illustrate the properties.

7 Look for and Make Use of Structure Students should analyze the structure of each equation in order to drag it into the appropriate bin and complete the activity.

Teaching Notes

SLIDE1
Students will learn the definition of equivalent expressions and how to use the Commutative, Associative, Distributive, and Identity Properties to create pairs of equivalent expressions in the form of equations. You may wish to have students restate the properties in their own words to deepen their understanding.

Go Online to have your students watch the animation on Slide 3. The animation illustrates using properties of operations to identify equivalent expressions.
(continued on next page)

DIFFERENTIATE

If any of your students have difficulty remembering the different properties, have students create a table with each property as an entry. Then have students write an example that illustrates each property. Allow students to use this table when working through the problems throughout this lesson.

Interactive Presentation

Learn, Use Properties to Identify Equivalent Expressions, Slide 3 of 4

[^10]
LESSON GOAL

Students will identify and generate equivalent algebraic expressions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Properties and Equivalent Expressions
Learn: Use Properties to Identify Equivalent Expressions
Example 1: Identify Equivalent Expressions
Learn: Use Substitution to Identify Equivalent Expressions
Examples 2-3: Determine Equivalency Using Substitution
Learn: Combine Like Terms
Examples 4-5: Combine Like Terms
Learn: Apply Properties to Write Equivalent Expressions
Example 6: Write Equivalent Expressions
Apply: Shipping

3 REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 33 of the Language Development Handbook to help your students build mathematical language related to equivalent algebraic expressions.
FIIII You can use the tips and suggestions on page T33 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1.5 days
45 min	

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster
6.EE.A by identifying and generating equivalent algebraic expressions.
Standards for Mathematical Content: 6.EE.A.3, 6.EE.A.4, Also addresses 6.EE.A. 2
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students used the Distributive Property.
6.EE.A.2.B, 6.EE.A.3, 6.NS.B. 4

Now

Students identify and generate equivalent algebraic expressions.
6.EE.A.3, 6.EE.A. 4

Next

Students will use substitution to solve one-step equations.
6.EE.B. 5

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students identify and generate equivalent algebraic expressions to continue to expand their understanding of expressions. They learn how to use the Commutative, Associative, Distributive, and Identity Properties to write equivalent expressions, and build fluency by using substitution and combining like terms to simplify expressions. They also apply their understanding of equivalent algebraic expressions to solve realworld problems.

Mathematical Background

Wo Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

Associative Property

Commutative Property
What Goes it meme to mantorve wot
Distributive Property

equivalent expressions
 eprovises se be nownetnet

Identity Pranerty

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- evaluate numerical and algebraic expressions using order of operations (Exercises 1-4)
- using variables (Exercise 5)

Answers

1. 21
2. 11
3. 22
4. $15 x-12$
5. 11

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the cost of video games, using expressions.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion. Additional questions are available online.

Ask:

- What does it mean to be associated with someone? Sample answer: to be connected to, or grouped with, someone
- What does it mean to commute to work? Sample answer: to travel back and forth
- What is a distribution center for a large corporation, such as a chain of grocery stores? Sample answer: It is a central location that organizes and stores a large quantity of products, and then distributes them to the individual stores.
- The word equivalent has the same root as the word equal. Using this information, what do you think it means for two expressions to be equivalent? Sample answer: It means that the two expressions have the same value.

Explore Properties and Equivalent Expressions

Objective

Students will explore using mathematical properties to identify equivalent expressions.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with several algebraic expressions using the same variables. They will be asked to identify groups of expressions that are equivalent. Throughout this activity, students will use appropriate tools, such as algebra tiles, to assist them in making conjectures.

(0)
 Inquiry Question

How can you use mathematical rules and properties to identify equivalent expressions? Sample answer: Applying properties can help me reorder or regroup like terms and simplify the expression so I can determine which expressions are equivalent.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3

Mathematical Discourse

Compare your list with your partner's list. Explain what you did to determine which expressions had the same value, no matter what number a represents. Can you use the rules and properties of mathematics to justify your reasoning? See students' responses.
(continued on next page)

Interactive Presentation

Explore, Slide 1 of 8

Explore, Slide 2 of 8
DRAG \& DROP
On Slide 2, students drag algebra tiles to model mathematical properties and equivalent expressions.

Interactive Presentation

Explore, Slide 6 of 8

CLICK

On Slide 6, students highlight the expressions that have the same value as $2 a+4 b$.

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer

Explore Properties and Equivalent Expressions (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to use the algebra tiles to model each expression. Students should think about the meaning of the different colors and sizes of the algebra tiles and how the manipulation of them can help when determining the equivalent expressions.

3
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!

SLIDE 5

Mathematical Discourse

Compare your list with your partner's list. Explain what you did to determine which expressions had the same value, no matter what numbers a and b represent. Can you use the rules and properties of mathematics to justify your reasoning? See students' responses.

Interactive Presentation

Learn, Use Properties to Identify Equivalent Expressions, Slide 2 of 4

DRAG AND DROP

On Slide 2, students drag each equation into the appropriate bin that describes the property it demonstrates.

Learn Use Properties to Identify Equivalent Expressions (continued)

Teaching Notes

SLIDE2

You may wish to have student volunteers come up to the board to drag each equation to the appropriate bin. Ask students to describe what they are looking for in the equation, in order to determine which property is being applied.

Talk About It!

SLIDE 4

Mathematical Discourse

Are the expressions that are written before and after a property is applied equivalent? Explain your reasoning. yes; Sample answer: The properties applied to expressions can be used to help simplify expressions, and they do not change the value of the expression.

Example 1 Identify Equivalent Expressions

Objective

Students will use mathematical properties to identify equivalent expressions.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to simplify each expression accurately and efficiently, making sense of each step and each property applied. They should be able to explain, using the properties of operations, why the expressions are equivalent.

As students discuss the Talk About lt! question on Slide 4, encourage them to use clear and precise mathematical language to support their reasoning as to why the expressions they generated are not equivalent to $3 x+23$.

Questions for Mathematical Discourse

SIIDE2I

ALI What property can be applied to $3(x+7)$? the Distributive Property

OII In simplifying $3 x+21+2$ as $3 x+23$, what property allows you to add 21 and 2? Sample answer: The Associative Property allows us to regroup addition.

IBin Apply the Commutative Property of Multiplication to $3(x+7)$ and then simplify the expression. Did you get a different result? No; the expressions are equivalent; $(x+7) 3+2=x(3)+7(3)+2$ $=3 x+21+2$, or $3 x+23$

SLIDE3

Aㄴ. When are two expressions equivalent? Sample answer: Two expressions are equivalent when they both simplify to the same expression, or have the same value.

Why is the Commutative Property and Associative Property helpful? Sample answer: The like terms are grouped together in order to add them first.

Generate a different expression that is equivalent to $3 x+23$. Sample answer: $2(x+8)+x+7$

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1, Identify Equivalent Expressions, Slide 2 of 5
On Slide 3, students select the correct
phrase to identify an equivalent
expression.

$$
\begin{aligned}
& \text { Learn Use Substitution to Identify } \\
& \text { Equivalent Expressions } \\
& \text { Go Online Watch the animation to learn about using substitution } \\
& \text { to identify when expressions are equivalent. } \\
& \text { The animation explains how to determine whether } y+y+y \text { and } 3 y \\
& \text { are equivalent expressions using substitution. } \\
& \text { Step } 1 \text { Evaluate the expressions for the same value of the variable. } \\
& \text { Evaluate each expression when } y=0 \text {. } \\
& y+y+y=0+0+0 \quad 3 y=3(0)
\end{aligned}
$$

Repeat Step 1 using a different value for the variable. Evaluate each expression when $y=5$
$y+y+y=5+5+5 \quad 3 y=3(5)$
$=15$
$=15$

Step 2 Draw a conclusion
Based on substitution, the expressions appear to be equivalent. If you continue substituting additional values of x, you will see that the continue substituting additional values of x, you will see that the variable being substituted

The animation also explains how to determine whether $5(x+4)$ and $5 x+4$ are equivalent expressions using substitution

Step 1 Evaluate the expressions for the same value of the variable.
Evaluate each expression when $x=0$
$5(x+4)=5(0+4) \quad 5 x+4=5(0)+4$

$$
=20
$$

$=4$

Step 2 Draw a conclusion
Based on substitution, the expressions are not equivalent.

Interactive Presentation

Learn, Use Substitution to Identify Equivalent Expressions, Slide 1 of 2

WATCH

On Slide 1, students watch the animation to learn how to use substitution to identify when expressions are equivalent.

1 CONCEPTUAL UNDERSTANDING

Learn Use Substitution to Identify Equivalent Expressions

Objective

Students will understand that two expressions are equivalent if they have the same value regardless of which value is substituted into them.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 2, encourage them to use clear and precise mathematical language in their explanation to explain why it is important to substitute more than one value when determining equivalency.

0Go Online to have your students watch the animation onSlide 1. The animation illustrates using substitution to identify whether or not expressions are equivalent.

Teaching Notes

SLIDE1

You may wish to pause the animation after the expressions $y+y+y$ and $3 y$ are shown. Ask students to work with a partner to determine if they are equivalent expressions. They must be able to justify their reasoning mathematically. Have pairs of students share their responses with the class. Then have students continue watching the animation to see how substitution can be used to verify the expressions are equivalent. Repeat a similar process for the second pair of expressions, $5(x+4)$ and $5 x+4$. Students should note these expressions are not equivalent.

Talk About It!

SLIDE2

Mathematical Discourse

Why is it important to substitute more than one value into an expression to help determine equivalency? Sample answer: It is possible that two expressions could show the same value for a particular value, but not for every value. For example, $2 x$ and $3 x$ have the same value when $x=0$, but not when $x=1$.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Example 2 Determine Equivalency Using Substitution

Objective

Students will use substitution to identify equivalent expressions.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to carefully and accurately substitute varying values of x into each expression in order to determine if they are equivalent. Students should be able to explain clearly why checking more than one value is necessary.

Questions for Mathematical Discourse

SIDE 1

What happens when 0 is substituted into each expression? 1? 2? The values of the expressions are equal for these values of x.

OI Why is it important to check more than one value of x ? Sample answer: Two expressions might agree for one value of x but not for another.

ㅍㅐㅔㅔ What is another method you can use to determine if the expressions are equivalent? Sample answer: The first expression is equivalent to $4 x$, which is the same as the second expression.

ω
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Determine Equivalency Using Substitution, Slide 1 of 2
On Slide 1, students move through the
steps to determine if the expressions are
equivalent.

Interactive Presentation

Example 3, Determine Equivalency Using Substitution, Slide 1 of 2

CLICK | On Slide 1, students move through the |
| :--- |
| steps to determine if the expressions are | steps to determine if the expressions are equivalent.

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 3 Determine Equivalency Using Substitution

Objective

Students will use substitution to identify equivalent expressions.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to carefully and accurately substitute varying values of x into each expression in order to determine if they are equivalent. Students should be able to explain clearly why the expressions are not equivalent.

Questions for Mathematical Discourse

SLIDE 1

What happens when 0 is substituted into each expression? 1? 2? When 0 is substituted, the expressions have the same value, $\frac{1}{2}$ When 1 is substituted, the expressions do not have the same value, since $2 \neq 3$. When 2 is substituted, the expressions do not have the same value, since $5 \frac{1}{2} \neq 9 \frac{1}{2}$

OL. After you substitute 1 into each expression, do you need to substitute 2? Explain. no; Sample answer: After knowing that the expressions are not equivalent when substituting 1 , I can stop.
[3L. How can you study the structure of each expression in order to determine that the expressions are not equivalent without using substitution? Sample answer: Both expressions have the same constant and the same coefficient on x. But the first expression has a coefficient of 1 on x^{2}, while the second expression has a coefficient of $3-1$, or 2 on x^{2}. Since these are different, the expressions are not equivalent.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.
6.EE.A.3, 6.EE.A. 4

Learn Combine Like Terms

Objective

Students will learn how to combine like terms to simplify expressions.

Teaching Notes
 SLIDE1

Encourage students to understand how bar diagrams can be used to combine variable expressions in which the variable terms are the same. The expression $3 x+5 x$ can be thought of as three groups of x plus five groups of x. Ask students if they can use a similar method to simplify the expression $3 x+5 y$. Students should note that because the variable terms are not the same, the expressions cannot be simplified; groups of x and groups of y might not refer to groups of the same quantity, unless x and y are equal.

SUDE2

You may wish to pause the video after the expression $2 x+4+3 x$ is shown. Have students work with a partner to use algebra tiles to model the expression. Have them discuss what strategies they can use to simplify the expression. Then have them simplify the expression. Then have them continue watching the video to compare their simplified expression with the one shown. Repeat, using a similar process, for the remaining expressions in the video, $x+5 x+x$ and $1+x+4+3 x$.

0
Go Online to have your students watch the video on Slide 2. The video illustrates how to use algebra tiles to combine like terms in an algebraic expression.
(continued on next page)

DIFFERENTIATE

Reteaching Activity AL

If any of your students are struggling with combining like terms, have them work with a partner to complete the following activity for the expression $4 a+2 b+6 a$. Let a be represented by a real-world object, such as a paper clip. Let b be represented by another real-world object, such as a pencil. Ask pairs to discuss the following questions.

How many paper clips will you use to represent $4 a$? 4 paper clips
Is there another term in the expression that you will need paper clips to represent it? Explain. yes; $6 a$ will be represented by 6 paper clips.

How can you represent $2 b$? Why will you not use paper clips? Use 2 pencils; b is represented by a pencil, not a paper clip.

How many total paper clips do you have? What expression can represent it? 10 paper clips; 10a
What is the simplified expression for $4 a+2 b+6 a ? 10 a+2 b$

Interactive Presentation

Learn, Combine Like Terms, Slide 2 of 4

WATCH

On Slide 2, students watch a video to learn about how to use algebra tiles to combine like terms in an algebraic expression.

1 CONCEPTUAL UNDERSTANDING

Learn Combine Like Terms (continued)

Teaching Notes

SLIDE 3

Some students may look at the expression $3 x+5 x$ and quickly determine that the sum is $8 x$. Encourage them to pause and consider how they know these expressions are equivalent. Ask them which mathematical property allows them to combine the like terms. Encourage them to understand that they can rewrite the expression as $x(3+5)$ by using the Distributive Property.

3
Go Online to find Teaching the Mathematical Practices.

Talk About It!

SLIDE 4

Mathematical Discourse

How can you use the Distributive Property to combine like terms for the expression $2 x+3 x+3 x^{2}+6 x^{2}$? Sample answer: The first two terms share a factor of x. Factoring out the $x, 2 x+3 x$ can be written as $x(2+3)$, or $5 x$. The second two terms share a factor of x^{2}. Factoring out the $x^{2}, 3 x+6 x^{2}$ can be written as $x(3+6)$, or $9 x^{2}$. The expression can be written in simplest form as $9 x^{2}+5 x$.

1 CONCEPTUAL UNDERSTANDING

Example 4 Combine Like Terms

Objective

Students will combine like terms to simplify algebraic expressions.

Questions for Mathematical Discourse SLIDE2

AI. What property allows you to factor out x in the second step? the Distributive Property

OLI How do you know the final expression is equivalent to the original? Sample answer: When the properties of operations are used from one step to the next, each step contains equivalent expressions.
[B1all A classmate rewrote the expression as $7 x+2 x$. What was the likely mistake? The classmate probably thought that the first two terms were like terms and the last two terms were like terms.

Example 5 Combine Like Terms

Objective

Students will combine like terms to simplify algebraic expressions.

Questions for Mathematical Discourse SUIDE2

AII What is a constant? a term that does not have a variable
OII How do you know that x^{2} and $5 x$ are like terms? They have the same variable raised to the same power.
OI. When dragging the terms to the bins, why is the preceding plus sign also dragged with the term? The terms are all positive.

ㅍㅐㅔ․ If the expression was $5 x+2 x+2+x^{2}-6$, what term would be dragged to the constant bin? Explain. -6; Sample answer: 6 is being subtracted. In other words, -6 is being added.

SLIDE3

AL What term is created by combining x^{2} and $5 x$? $6 x^{2}$
OL. How can you tell how many terms will be in the simplified expression? Sample answer: Since there are two different pairs of like terms, x^{2} and constants, and one additional term, x, there will be three terms at most, after combining like terms.
[BLI Using the Commutative Property, how many different ways can you write the final expression and still keep it in simplest form? Sample answer: six different ways: $6 x^{2}+2 x+8,6 x^{2}+8+2 x$, $2 x+8+6 x^{2}, 2 x+6 x^{2}+8,8+2 x+6 x^{2}$, and $8+6 x^{2}+2 x$.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 5, Combine Like Terms, Slide 2 of 5

DRAG \& DROP

On Slide 2 of Example 5, students drag each term to the appropriate bin.

Learn Apply Properties to Write Equivalent Expressions

Objective
Students will learn how to write equivalent algebraic expressions using mathematical properties.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the $\overline{\text { Ilk }}$ About lt! question on Slide 2, encourage them to use the proper terminology when referring to the property and the parts of the expression. Students should use clear and precise mathematical language to support their claim.

Go Online to find additional teaching notes.

Talk About It!

SLIDE 2

Mathematical Discourse

What property allows you to combine like terms? Sample answer: The Distributive Property allows a common variable factor to be factored out of like terms so that their coefficients can be added.

Example 6 Write Equivalent Expressions

Objective
Students will write equivalent algebraic expressions.

Questions for Mathematical Discourse

SLIDER

AL The parentheses in the original expression suggest the use of which property? the Distributive Property
OI How can you apply the Commutative Property? Sample answer: To combine the like terms, I can move the x^{2} terms next to each other and the constants next to each other, so that I can combine them more easily.
31. Which expression can you add to the original expression to get 0 ? Sample answer: $-1 \frac{2}{5} x^{2}-7 \frac{1}{4}$

3
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Shipping

Objective

Students will come up with their own strategy to solve an application problem involving shipping comic books.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- Why does the total cost include shipping and not just the cost of the comic books?
- How would you find the cost of the books, without shipping?

Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Shipping

Dawit wants to buy some vintage comic books at a local shop and have them shipped to his cousin. The price of a comic book is based on its condition. The table shows the total cost of x number of comic books for each condition. He buys two that are in excellent conditio two that are in good condition, and two that are in fair condition. represents the total cost of buying and shipping the comic books?

Condition	Book Costs
Poor	x
Fair	$4.5 x$
Good	$9.75 x$
Excellent	$18 x$
Like New	$25.5 x$

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem.

```
    (vourate)
```

$64.5 x+5$; See students' work.
4 How can you show your solution is reasonable?
Qrite About it! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Shipping
CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Check
Y asmin bought a case of 144 beach hats for $\$ 7.39$ per hat and a case of 125 pairs ofmpllops for $\$ 2.09$ per pair. $\$ 1575$ sold x number of hat Write an expression that represents Y asmin's profit.

$$
15.75 x+4.95 y-1,325.41
$$

(\#) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Interactive Presentation

Exit Ticket

Exick

1 CONCEPTUAL UNDERSTANDING

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
OLI Practice Form A
[BII Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	use mathematical properties to identify equivalent expressions	1,2
1	use substitution to identify equivalent expressions	3,4
1	combine like terms to simplify expressions	$5-8$
1	generate equivalent expressions	9
2	extend concepts learned in class to apply them in new contexts	10
3	solve application problems that involve equivalent algebraic expressions	11,12
3	higher-order and critical thinking skills	$13-16$

Common Misconception

Some students may incorrectly use the Distributive Property when determining if two expressions are equivalent. Remind students to multiply the number outside of the parentheses by both terms inside the parentheses. Encourage students to draw arrows from the outside number to the inside numbers so they remember to do so.

Use substitution to determine whether or not the expressions
are equivalent. (Examples 2 and 3)

3. $3 x+2 x+x$ and $7 x$ not equivalent	4. $x^{2}+1$ and $\frac{2}{3} x_{3}^{2}+\frac{1}{-} x^{2}+1+x$ not equivalent

Simplify each expression. (Examples 4 and 5)
5. $3 x+4+5 x-18 x+3$
6. $10+7 x-5+4 x 11 x+5$
7. $4 x^{2}+6 x+8+x+2 \quad 4 x^{2}+7 x+10$
8. $\frac{1}{2} x^{2}+x+\frac{1}{2}+2 x+\frac{1}{2} x^{2} x^{2}+3 x+\frac{1}{2}$
9. Simplify $\frac{3}{4}+\frac{2}{3}(9 x+6)+4 x+3 \frac{1}{4}$. (Example 6) $10 x+8$

T est Practice
. Multiselect Which of the following are equivalent to $\frac{3}{4}\left(8 x^{2}+1\right)+3 x^{2}+\frac{1}{4}$? Select all that apply.
$\sqrt{ } 6 x^{2}+\frac{3}{4}+3 x^{2}+\frac{1}{4}$
$6 x^{2}+1+3 x^{2}+\frac{1}{4}$
$9 x^{2}+1 \frac{1}{4}$
$\sqrt{ } 9 x^{2}+\frac{3}{4} \frac{1}{4}$
$9 x^{2}+2$
$\checkmark 9 x^{2}+1$

Apply "indicates muili-step problem
'R. Mre. Watson is buping sintage records for a triend at a local tecord shop. The price of a receed is based on its condrion The toble showes the total cest of x nuimber of records for each condion she buys 3 har are in good condtor 2 that are in then wiverds is 5800 . What expiession tepresents Phe lotil cost of tuahy and lipeing the resoid? ?
$26.4 x+8$
"12. Jake is Buying baseball cocds tor his brothet in college. The price of a card s based on is condison. The tuble shows the total cast of x mumber of cards for eich condsion. He buys 6 that are in toir conditore 5 that are in goed condition, aod 2 that ace in excetlent cotidion. The Hipping cost for the basebat cords is 54.00 . What mpeession represents the towe cost of boyng and stipoing the
baseball carch?
$39 x+4$

© Higher-Order Thinking Problems
12. ©if Identify Structure Wite an expression that when simpltied is ecuivilent to $3 y^{2}+2 y+\frac{1}{2}$
Sample arswer: $2 y^{2}+\gamma^{2}+y+y+\frac{1}{2}$
14. (2). Avatify Conclusions. A student seit the explessions $\frac{1}{2} x+2+1 \frac{1}{2} x$ and $2 x+2$ are egulvalent is the sturbere corred? Antiy your reataning yes: Somple amwer: Hoth expresslons singlity to the same expression, $2 x+2$.
15. Whte fivo expressions that are equivalect becnute of the identity Property of zero.

Sample answer: $3 k+0$ and $3 x$
26. Remson Inductively Are the expressions $x^{2}+x^{2}+x^{2}$ and $4 x^{2}$ equikalent when $x=32$ Explain your spasoning ne: Sample answer: if $x=3$, then $\left.(3)^{2}+(3)^{2}+(3)^{2}\right) \sin 27$ and $4[3)^{2}$ is 36 $\left.(3)^{2}+(3)^{2}+(3)^{2}\right) 27$ and $4(3)$ is 36 .
$27 \neq 36$, the expressions $a l$ ne not $27 \neq 36.50$
equivalent.

DINAH ZIKE FOLBABLES

IELLI A completed Foldable for this module should include examples of how the properties of addition and multiplication apply to expressions. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 0)

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together: Lessons 5-1, 5-2, 5-3, and 5-4
Vocabulary Test
All Module Test Form B
OIII Module Test Form A
[BII Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Expressions and Equations.

- Exponents
- Algebraic Expressions

Reflec Use what you	n th d about n	Module erical and algebraic expressions to complete the graphic organizer.
Essential Question How can we communicate algebraic relationships with mathematical symbols?		
Expression	Variable	Write a real-world example to represent the given expression. What does the variable represent?
$7 \times$	x	Each ticket to the school play costs $\$ 7$. The variable x represents the number of tickets purchased.
$9+y$	y	Amanda is 9 years older than her brother. The variable y represents the age of her brother in years.
$23-p$	p	Twenty-three people went on a field trip to the museum. The variable p represents the number of parents who chaperoned. How many students went on the field trip?
$\frac{1}{4}$	${ }^{\text {d }}$	Mr . Jackson divided the number of dollars in the family fund among his four children. The variable d represents the number of dollars in the family fund.
$\frac{3}{5} c$	c	Three-fifths of the candy in the jar has been eaten. The variable c represents the amount of candy the jar will hold.
330 Module 5. Numerical and Algebraic Expressions		

Essential Question

탠․ Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How can we communicate algebraic relationships with mathematical symbols? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-11 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	7,9
Multiselect	Multiple answers may be correct. Students must select all correct answers.	1
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	2,4
Table Item	Students complete a table by correctly classifying the information.	11
Open Response	Students construct their own response in the area provided.	$3,5,6,8-10$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.NS.B.4	$5-5$	9,10
6.EE.A.1	$5-1,5-2$	$1-3$
6.EE.A.2	$5-3,5-4$	$5-8$
6.EE.A.2.A	$5-3$	6
6.EE.A.2.B	$5-3$	5
6.EE.A.2.C	$5-4$	7,8
6.EE.A.3	$5-6,5-7$	$9-11$
6.EE.A.4	$5-7$	11
6.EE.B.6	$5-3,5-4$	$4,6-8$

Test Practice

1. Multiselect Which expression is equivalent to
5^{3} ? Select all that apply. (Lesson 1)
$3 \times 3 \times 3 \times 3 \times 3$
$\checkmark 5 \times 5 \times 5$
$5 \times 5 \times 5 \times 5 \times 5$
15
$\checkmark 125$
2. Equation Editor Market researchers are studying the effects of sending an advertisement through text messaging. On the first day of the advertisement program he researcher sent a text message to 8 people. On the next day, each of those people will send the text message to another 8 people, and so on. The pattern of sending the advertisement through text messaging is shown in the table. (Lesson 1)

Predict the number of people who will receive the text message on the 8th day of the advertising program.

16777216

बनलन

\section*{$\stackrel{1}{123}$
 | 123 |
| :--- |
| $\substack{136 \\ \hline 760 \\ \hline 706}$ |}

308
3. Open Response Roberto is buying fruit from a local farmer's market. The prices are shown in the table. (Lesson 2)

Mango Peach Watermelon $\$ 1.79 \$ 0.75 \quad \$ 3.00$
A. Write an expression to represent the total cost of buying 2 peaches, 5 mangoes, and 3 watermelons.
$(2 \times 0.75)+(5 \times 1.79)+(3 \times 3)$
B. What is the total cost for the fruit? Round your answer to the nearest hundredth. 19.45
4. Equation Editor The local food bank is requesting donations in order to distribute meals during a holiday. Turkeys cost $\$ 18$ each, a bag of potatoes cost $\$ 2.55$ each, and cans of green beans cost $\$ 1.25$ each. As of last week, the food bank needed 30 turkeys, 28 bags of potatoes, and 62 cans of green beans for meals. However, this week a grocery store donated 15 of the turkeys. How much money will need to be donated to distribute meals for all the families? (Lesson 2)
418.90

5. Open Response identify the terms, like terms, coefficients, and constants in the expression $8 p+6 q+5+9 q+12 p$.
(Lesson 3)
terms: $8 p, 6 q, 5,9 q, 12 p$; like terms: $8 p$ and $12 p, 6 q$ and $9 q$; coefficients: 8, 6, 9, 12; constant: 5
6. Open Response Write fifteen dollars more than the original cost as an algebraic expression. Let c represent the original cost. Do not include dollar signs in your expression. (Lesson 3)

$15+c$

7. Multiple Choice Evaluate
$(6 x+3 y)-z^{2} \div(2 x)$ when $x=3, y=4$
and $z=6$. (Lesson 4)
(A) -1
(B) 11
. 24
(D) 96
8. Open Response Savannah is choosing between two cell phone plans. Plan A charges $\$ 60$ a month plus a one-time activation fee of $\$ 75$. Plan B charges $\$ 63$ a month plus a one-time activation fee of $\$ 15$. Evaluate the expressions $60 m+75$ and $63 m+15$ when $m=18$ to find the total cost for each cell phone plan for 18 months. What is the difference in cost between the two cell phone plans? (Lesson 4)

6
9. Multiple Choice Consider the expressio
$32 x+56$. (Lesson 6)
A. What is the GCF of $32 x$ and 56 ?
(A) 2
(B) 4
B. Use the GCF to factor $32 x+56$.
$8(4 x+7)$
10. Open Response Avery is buying cupcakes for 12 friends at the school bake sale. Each cupcake costs $\$ 1.25$ (lesson 6)
A. Write an expression using the Distributive Property to find the total cost of 12 cupcakes.
$12(1+0.25)$
B. If Avery has $\$ 24$, how much money will he have left?
\$9
11. Table Item Indicate whether or not the two expressions are equivalent using substitution. (Lesson 7)

and $y^{2}+y+5$
x

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

© Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How are the solutions of equations and inequalities different?
See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.

Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.
Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
DWen to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of scuba diving and hot air balloons to introduce the idea of equations and inequalities. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

e Essential Question How are the solutions of equations and inequalities different?

What Will You Learn?
Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
	0	0	0	0	0	0
solving equations using substitution						
writing and solving one-step addition equations						
writing and solving one-step subtraction equations						
writing and solving one-step multiplication equations						
writing and solving one-step division equations						
writing and graphing inequalities						
finding solutions of inequalities						

(1) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. Y ou can use the Foldable throughout the module as you learn about equations
and inequalities. and inequalities.

Interactive Presentation

Equations and Inequalities

Module Goal

Write and solve one-step equations and inequalities.

Focus

Domain: Expressions and Equations
Major Cluster(s):
6.EE.B Reason about and solve one-variable equations and inequalities. Standards for Mathematical Content:
6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
6.EE.B. 7 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
Also addresses 6.NS.C.6.C, 6.EE.B.5, and 6.EE.B.8.
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8

Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- fluently apply the Order of Operations to evaluate numerical expressions

Use the Module Pretest to diagnose students' readiness for this module. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students wrote and evaluated numerical and algebraic expressions.
6.NS.B.4, 6.EE.A.1, 6.EE.A.2.A, 6.EE.A.2.B, 6.EE.A.2.C, 6.EE.A.3, 6.EE.A.4, 6.EE.B. 6

Now

Students write and solve one-step equations and inequalities.
6.EE.B.5, 6.EE.B.6, 6.EE.B.7, 6.EE.B.8

Next

Students will express relationships between two variables using tables, equations, and graphs.

6.EE.C. 9

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of expressions, inequality symbols, and inverse operations to develop understanding of equations and inequalities. They use their understanding of models, properties of equality, and substitution to build fluency with writing and solving one-step addition, subtraction, multiplication, and division equations. Fluency is also built through writing, solving, and graphing inequalities. They apply their understanding of equations and inequalities to solve multi-step, real-world problems.

Suggested Pacing

	Lesson	Standard(s)	45-min c	classes
Module Pretest and Launch the Module Video			1	0.5
6-1	Use Substitution to Solve One-Step Equations	6.EE.B.5, A/so addresses 6.EE.B. 6	1	0.5
6-2	One-Step Addition Equations	6.EE.B.6, 6.EE.B. 7	3	1.5
6-3	One-Step Subtraction Equations	6.EE.B.6, 6.EE.B. 7	2	1
6-4	One-Step Multiplication Equations	6.EE.B.6, 6.EE.B. 7	2	1
6-5	One-Step Division Equations	6.EE.B.6, 6.EE.B.7	2	1
Put It All Together 1: Lessons 6-1, 6-2, 6-3, 6-4, and 6-5			0.5	0.25
6-6	Inequalities	6.EE.B.5, 6.EE.B.8, A/so addresses 6.NS.C.6.C, 6.EE.B.6	3	1.5
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			16.5	8.25

Formative Assessment Math Probe

${ }^{\circ}$ Collect and Assess Student Work

the student selects...

1. a and/or c
2. b and/or f
3. b, f, or e
4. a or e

Then the student likely...
incorrectly determines the operation needed to solve the equation.
Example: If the student chooses a or c for Exercise 1, the student views the problem as an additive relationship, instead of a multiplicative one.
believes that there is only one correct equation for each problem.
Example: The student chooses only one of the correct equations for each of the two problems (usually the first correct equation).

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS' Equations and Inequalities
- Lesson 2, Examples 1-3
- Lesson 3, Examples 1-3
- Lesson 4, Examples 1-3
- Lesson 5, Examples 1-3

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

[^11]
What Vocabulary Will You Learn?

ELIL As you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define The Addition Property of Equality states that if you add the same number to each side of an equation, the two sides remain equal.

Example

If you add 3 to each side of the equation $x-3=12.2$, the equation becomes $x=15.2$, and is an equivalent equation to $x-3=12.2$.

Ask What happens to the equation $m-9=14$ if you add 9 to each side? Sample answer: It becomes $m=23$ and this equation is equivalent to $m-9=14$.

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- writing and simplifying expressions
- performing operations with rational numbers
- using the guess, check, and revise strategy
- using bar diagrams
- using algebra tiles
- understanding number lines
- ordering rational numbers

© ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Equations and Inequalities topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

Reward Effort, Not Talent

When adults praise students for their hard work toward a solution, rather than praising them for being smart or talented, it supports students' development of a growth mindset.

How Can I Apply It?

Have students complete the Performance Task for the module. Allow students a forum to discuss their process or strategy that they used and give them positive feedback on their diligence in completing the task.

Learn Equations

Objective
Students will learn how to differentiate an equation from an expression.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 2, encourage them to think about the precise meanings of an equation and an expression. Students should analyze the structure of an equation and compare it to an expression and note that an expression does not contain an equals sign.

3 Go Online to find additional teaching notes.

Talk About It!

SLIDE 2

Mathematical Discourse

Describe the similarities and differences between equations and expressions. Sample answer: They both can contain numbers, operations, and variables. An equation always contains an equals sign, but an expression does not.

Learn Solve Equations Using Substitution

Objective

Students will learn how to solve equations using substitution.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of the equation $4.5 x=135$ in order to determine that there is only one value of x, that when multiplied by 4.5 , yields a product of 135 .

Go Online to find additional teaching notes.
(continued on next page)

Interactive Presentation

Learn, Solve Equations Using Substitution, Slide 2 of 3
On Slide 1 of Learn, Solve Equations Using
Substitution, students move through the
steps to solve the equation.

Use Substitution to Solve One-Step Equations

LESSON GOAL

Students will use substitution to solve one-step equations.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Equations

Learn: Solve Equations Using Substitution
Example 1: Solve Equations Using Substitution
Example 2: Solve Equations Using Substitution
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

DIFFERENTIATE

III) View reports of student progress of the Checks after each example to differentiate instruction.

Resources	ALI	LBI	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATHTake Another Look	\bullet		
Extension: Use Substitution to Solve		\bullet	\bullet
Two-Step Equations			
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 34 of the Language Development Handbook to help your students build mathematical language related to solving equations by substitution.

ELLL You can use the tips and suggestions on page T34 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 45 min

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.B by using substitution to solve one-step equations.
Standards for Mathematical Content: 6.EE.B.5, Also addresses

6.EE.B. 6

Standards for Mathematical Practice: MP1, MP2, MP3, MP6, MP7

Coherence

Vertical Alignment

Previous

Students identified and generated equivalent algebraic expressions. 6.EE.A. 3

Now

Students use substitution to determine whether a given number in a specified set makes an equation true. 6.EE.B. 5

Next

Students will use the Subtraction Property of Equality to write and solve one-step addition equations. 6.EE.B.6, 6.EE.B. 7

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of equivalent expressions to begin to develop understanding of one-step equations. They come to understand that solving an algebraic equation means finding a value for the variable that results in a true sentence, and they build fluency with using the substitution method to solve one-step equations. They also apply this understanding to solve real-world problems.

Mathematical Background

An equation is a mathematical sentence showing the equality of two expressions by using an equals sign, $=$. When thevariable is replaced with a value that results in a true sentence, the substituted value is called a solution of the equation. Equations can be solved using the guess, check, and revise strategy. To use this strategy, first make an initial guess, then substitute this value into the equation. If the guess does not make the equation true, increase or decrease the guess based on the value of the expressions on each side of the equation. Repeat this process until the solution is obtained.

Interactive Presentation

```
Warm Up
For each verbal phvase, define a varinble to represent the unknown quantlo. Then wite the phrase as an
algebrack expertalon:
    1.4 more then your uncle') ege
```



```
    2.12 more van twice the recomesended amount of calclum
    Let c cepheserathe recommended amourt of calcum: \c - प%
    3. We latal gations of gas olviseo by $2.25
    Letg mpreserst tie ceal gotives of gas \frac{1}{15}
    4. %5 fewer tren 3 smen your tge
    Lat a repevent your apk;70-9%
```

Warm Up

Ginump to Lemos
Use Substution to Solve One-Step Equations

 ofeent book?

Launch the Lesson, Slide 1 of 2

What Vocabidey wh bou usmo
equals sign

equation

guess, check, and revise strategy

solution
 methenstics?
solve
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- writing expressions (Exercises 1-4)
- writing and evaluating expressions (Exercise 5)

Answers

1. Let a represent your uncle's age; $a+14$
2. Let c represent the recommended amount of calcium; $2 c+12$
3. Let g represent the total gallons of gas; $\frac{g}{2.25}$
4. Let a represent your age; $3 a-16$
5. $1.5 x+25.99 ; \$ 213.49$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about using an equation to determine the cost of books for a book drive.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion. Additional questions are available online.

Ask:

- How does the meaning of the term equals help you understand the meaning of the term equals sign? Sample answer: Equals means that two things are the same or alike in quantity. An equals sign might be a mathematical symbol that sets things equal to one another.
- Equation sounds similar to equal. Using what you know about the term equals, what do you think an equation is? Sample answer: An equation might be a way of setting things equal to one another.
- What do you think is involved in the guess, check, and revise strategy? Sample answer: The guess, check, and revise strategy might involve guessing numbers and checking them in an equation to find a solution.
-When you encounter a problem in your everyday life, you look for a solution. What do you think is a solution in mathematics? Sample answer: A solution in mathematics might be the answer to an equation.
- In your everyday life, you use a solution to solve your problems. Can you infer what solve means in mathematics? Sample answer: To solve in mathematics might be to find a solution to a problem or an equation.

Your Notes ${ }^{\text {, }}$
(8) Talk About It that is a solution of that is a solution of $4.5 x=135$? Explain your reasoning.
no, Sample answer: Since $4.5(30)=135$, if you substitute a different number for x, then the product of the factors will no longer be 135.

Y ou can also use theguess, check, and revise strategy to find the solution of an equation. To find the solution of the equation $4.5 x=135$, begin by choosing a reasonable value for x. For example, $\operatorname{try} x=20$.

Value of x	$4.5 x=135$	Is the value a solution?
20	$4.5(20)=135$ $90 \neq 135$	No, because $90<135$, the value of x is too small. Try revising the number guessed.
25	$4.5(25)=135$ $112.5 \neq 135$	No, because $112.5<135$, the value of x is too small. Try revising the number guessed.
30	$4.5(30)=135 Y$ es, because 135 $=135$,	
$135=13530$ is the correct solution.		

Example 1 Solve Equations Using Substitution
Is $\mathbf{3 , 4}$, or 5 the solution of the equation $p+9.7=13.7$?
Complete the table to find the solution of the equation.

Value of p	$p+9.7=13.7$	Is the value a solution?
3	$\begin{gathered} 3+9.7 \\ 12.7 \neq 13.7 \end{gathered}$	no
4	$\begin{gathered} 4+9.7=13.7 \\ 13.7=13.7 \end{gathered}$	yes
5	$\begin{gathered} 5+9.7 \neq 13.7 \\ 14.7 \neq 13.7 \end{gathered}$	no

So, the solution is 4 .

Check
Is 1,2 , or 3 the solution of the equation $m+\frac{4}{5}=2 \frac{4}{5}$? 2

336 Module 6 . Equations and Inequalities

Interactive Presentation

Example 1, Solve Equations Using Substitution, Slide 1 of 2
On Slide 1, students enter each value into
each equation to determine if it is a
solution.

1 CONCEPTUAL UNDERSTANDING

Learn Solve Equations Using Substitution (continued)

Talk About It!
SLIDE 3

Mathematical Discourse

Is there another value that is a solution of $4.5 x=135$? Explain your reasoning. no; Sample answer: Since $4.5(30)=135$, if you substitute a different number for x, then the product of the factors will no longer be 135 .

Example 1 Solve Equations Using
 Substitution

Objective
Students will use the substitution method to solve one-step equations.

Questions for Mathematical Discourse

SLIDE1

|l. What is the unknown in the given equation? p
O1 Why is 3 not a solution? When 3 is substituted for p, the statement $12.7=13.7$ is not true. So, 3 is not a solution.

Ol. Once you know that 3 is not a solution, how do you know to check numbers greater than 3 , as opposed to less than 3 ?
Sample answer: Since $3+9.7=12.7$, and $12.7<13.7$, I need to try values that are greater than 3 .
[Bill Once you know that 4 is a solution, do you need to check whether 5 is a solution? Explain. no; Sample answer: There is only one number than when added to 9.7 yields a sum of 13.7.

0
 Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Enrichment Activity [BLI

Have students work with a partner to use substitution and the guess, check, and revise strategy to solve each equation. Then have them analyze the structure of each equation to make a conjecture as to how they might solve the equation without having to use the guess, check, and revise strategy.
$22=x+2 x=20$; Sample answer: Subtract 2 from each side.
$y-5.1=3.7 y=8.8$; Sample answer: Add 5.1 to each side.
$m+3 \frac{1}{2}=9 \frac{3}{4} \quad m=6 \frac{1}{4}$; Sample answer: Subtract $3 \frac{1}{2}$ from each side.
$13.75=b-0.8 b=14.55$; Sample answer: Add 0.8 to each side.

Example 2 Solve Equations Using Substitution

Objective

Students will use the substitution method to solve one-step equations.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Students should pause after checking each value to determine whether or not the value is a solution of the equation. If not, students should move to the next value, continuing to use the guess, check and revise strategy.

As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of the real-world problem and that two planks together have a combined width of 9 inches. Students can solve the problem by determining the combined width, and then reason about how many total planks are needed.

6 Attend to Precision Encourage students to calculate accurately and efficiently, paying careful attention to the values on each side of the equals sign as to whether or not they are equivalent.

Questions for Mathematical Discourse

SLIDE 2

AI.. What is the unknown value for which we are solving the equation? p, the number of planks Nevaeh will need
Onill If you substitute a number into this equation and find that the value of the left side of the equation is less than the right side, what does this tell you about your guess? Sample answer: This tells me that I need to increase the value of my guess.

OL. Use estimation to determine that the number of planks must be greater than 7 . Sample answer: $4 \frac{1}{2}$ is halfway between 4 and 5 . Since $4(7)=28$, and $5(7)=35$, and both products are still less than 36 , then I know the number of planks must be greater than 7.

How many planks will be needed if each plank is 6 inches wide? Explain. 6; Sample answer: The solution to $6 p=36$ is $p=6$.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

```
A Example 2 Solve Equations Using Substitution
Navaeh is building a door that is }36\mathrm{ inches wide using wooden
planks that are }\frac{4}{2}\mathrm{ inches wide.
Use the guess, check, and revise strategy to solve the equation
4\frac{1}{2}p=36 to find p, the number of planks Nevaeh will need to make
her door.
Begin by substituting }6\mathrm{ into the equation.
    4\frac{1}{2}p=36
4\frac{1}{2}}(6)\xlongequal{}{=}3
27 # = 36
Since 27<36, try a greater number of planks.
Substitute 7 into the equation.
    4\frac{1}{2}p=36
    4\frac{1}{2}
    31\frac{1}{2}\not=36
Since 31\frac{1}{2}<36, try a greater number of planks.
Substitute 8 into the equation.
    4\frac{1}{2}p=36
4\frac{1}{2}(8)}=3
36=36
The sentence is true, so 8 is the solution of the equation }4\frac{1}{2}p=36
So, Nevaeh needs to use 8 planks to build the door.
Lesson 6-1. Use Substitution to Solve One-Step Equations 337
```


Interactive Presentation

Example 2, Solve Equations Using Substitution, Slide 2 of 4
CLICK
On Slide 2, students move through the
steps to find the solution.
Students complete the Check exercise
online to determine if they are ready to
move on.

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. The equation $23 b=61.87$ can be used to represent Rylie's purchase. Solve the equation to find b the cost of each book. \$2.69

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 9, 11, 13-16
- Extension: Use Substitution to Solve Two-Step Equations
- ALEKS One-Step Equations

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-10, 14, 15
- Extension: Use Substitution to Solve Two-Step Equations
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- D ALEKS Introduction to One-Step Equations

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Introduction to One-Step Equations

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	use the substitution method to solve one-step equations	$1-10$
2	extend concepts learned in class to apply them in new contexts	11,12
3	higher-order and critical thinking skills	$13-16$

Test Practice
12. Multiple Choice Consider the following equation
$x+9=17$
Which of the values can be substituted for x to make the equation true?
(A) 7
(8) 8
(D) 26

Higher-Order Thinking Problems
13. Create Write a real-world problem that can be solved using the equation 7.5+ $x=16$.

Sample answer: Jack had \$7.50. His mother gave him his allowance at the end of the week. Now Jack has \$16. Solve the equation $7.5+x=16$ to find how much money his mother gave him.
15. Be Precise Compare and contrast the expression $x+1$ and the equation
$x+1=2$.

Sample answer: $x+1$ is an algebraic
expression and is not equal to a specific
value. So, there are no restrictions placed on the value of $x \cdot x+1=2$ is an algebraic equation. Each side of an algebraic equation must be equal, so x can only be equal to one value. In this case, $x=1$.
14. Justify Conclusions A student said that for $x+7=11$, the value of x can be any value. Is the student correct? Write an argument that can be used to defend your response.
no; Sample answer: There is only one value for x that makes this equation true. The only value for x is 4 .
16. Give an example of an addition equation and a subtraction equation that each have a solution of 10 .

Sample answer: $x+10=20 ; 20-x=10$

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 14, students will determine if the statement made by the student is correct and justify their reasoning.
Encourage students to determine the error in the statement and support their findings with a valid explanation.

6 Attend to Precision In Exercise 15, students will compare and contrast the given expression and equation. Encourage students to use precision when comparing and contrasting the equation and expression.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 16, students will give an example of an addition equation and a subtraction equation that each have a solution of 10 .

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Listen and ask clarifying questions.

Use with Exercises 14-15 Have students work in pairs. Have students individually read Exercise 14 and formulate their strategy to solve the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 15.

1 CONCEPTUAL UNDERSTANDING

Learn Write Addition Equations

Objective

Students will learn how to model a real-world problem with a one-step addition equation.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language, such as variable and equation, to explain why defining a variable is an important step in modeling a realworld problem with an equation.

Teaching Notes

SIIDE1
Be sure students understand the importance of defining the variable when writing an equation to model a real-world problem. You may wish to have students create their own word problem that involves addition, such as Today, the temperature was eight degrees warmer than yesterday. Today's temperature was 66 degrees Fahrenheit. What was yesterday's temperature? Have students choose a variable, such as x or t, and clearly explain what that variable represents (yesterday's temperature). Then have them write an equation that models the problem, such as $x+8=66, t+8=66,66=8+x$, or $66=8+t$. Be sure they understand there can be more than one way to write the equation.

Talk About It!

SLIDE3

Mathematical Discourse

Why is defining a variable an important step in writing the equation for a real-world problem? Sample answer: If you do not define the variable, it is not clear what the variable represents in the real-world problem.
(continued on next page)

DIFFERENTIATE

Language Development Activity ㅌLㄴ

Some students may struggle with identifying words that signify addition. Have students work with a partner to brainstorm words that signify addition. Have them create a poster to display in the classroom.
Sample answer: add, join, both, combined, how many, increase, plus, sum, total

Interactive Presentation

Learn, Write Addition Equations, Slide 1 of 3

On Slide 1, students use Flashcards to view the steps for writing an equation to model a real-world problem.

One-Step Addition Equations

LESSON GOAL

Students will use the Subtraction Property of Equality to write and solve one-step addition equations.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

EXPLORE AND DEVELOP

Explore: Use Bar Diagrams to Write Addition Equations
Learn: Write Addition Equations
Example 1: Write Addition Equations
Explore: One-Step Addition Equations
Learn: Solve Addition Equations
Examples 2-3: Solve Addition Equations
Apply: Money
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 35 of the Language Development Handbook to help your students build mathematical language related to solving onestep addition equations.
FElili You can use the tips and suggestions on page T35 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1.5 days
45 min	

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.B by using the Subtraction Property of Equality to write and solve one-step addition equations.
Standards for Mathematical Content: 6.EE.B.6, 6.EE.B.7
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7, MP8

Coherence

Vertical Alignment

Previous

Students used substitution to solve one-step equations.
6.EE.B. 5

Now

Students use the Subtraction Property of Equality to write and solve one-step addition equations.
6.EE.B.6, 6.EE.B. 7

Next

Students will use the Addition Property of Equality to write and solve one-step subtraction equations.
6.EE.B.6, 6.EE.B. 7

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION
Conceptual Bridge In this lesson, students develop understanding of one-step addition equations. They learn how to use a model and the Subtraction Property of Equality to build fluency with solving one-step addition equations involving whole numbers and fractions. They apply their understanding of writing and solving one-step addition equations to solve multi-step, real-world problems.		

Mathematical Background

O
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- performing operations with whole numbers (Exercises 1-4)
- writing and evaluating expressions (Exercise 5)

Answers

1. 17
2. 8
3. 12
4. 17
5. $16+2 x ; 84$ flowers

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about finding the lifespans of plants and trees, using the information given.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- The inverse of walking forward is walking backward. How does what you know about mathematical operations help you understand the meaning of the term inverse operations? Sample answer: Inverse operations must be operations that are opposite of one another, like addition and subtraction.
- Describe how you have used the word equality in everyday life. How can this help you determine the meaning of the Subtraction Property of Equality? Sample answer: Equality means that two things are equal. The Subtraction Property of Equality might involve subtracting a number from each side of an equation to keep both sides equal.

Explore Use Bar Diagrams to Write Addition Equations

Objective

Students will explore how to use a model to write addition equations.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with a word problem involving an unknown value. Throughout this activity, students will use various strategies, including drawing bar diagrams, to write addition equations for real-world problems.

(0)Inquiry Question
How can you use a model to write addition equations? Sample answer: I can write an addition equation using a bar diagram with a section representing what I know and a section representing what I don't know. The entire bar represents the total.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3

Mathematical Discourse

How can you use a bar diagram to represent what you know and what you need to find? Sample answer: Draw a bar diagram to represent the total, 97 , and then divide the bar into two seasons.
(continued on next page)

Interactive Presentation

Explore, Slide 7 of 8
 diagram can be created to model the situation.

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Use Bar Diagrams to Write Addition Equations (continued)

(1) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Students should be able to identify the important quantities in the real-world situation, decontextualize them, and use the bar diagrams to represent them symbolically.

5 Use Appropriate Tools Strategically Encourage students to examine the correspondences between the bar diagrams and equations, and how they could eventually transition from the problem statement to writing the equation without the bar diagram.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 6 are shown.

Talk About It!

SLIDE6

Mathematical Discourse

What is the known and what is the unknown in the situation? How did you set up the bar diagram? Sample answer: The known is the total amount of money Terrell started with, and the amount he spent on the music service. The unknown is the amount he spent on the digital music player. Draw a bar diagram and label the total $\$ 135$. Divide the bar into two sections, label one $\$ 25.95$ and the other with the variable.

Interactive Presentation

Example, Write Addition Equations, Slide 4 of 6

On Slide 2 of the Learn, students watch an animation to model a real-world problem with an addition equation.

On Slide 4 of Example 1, students drag the objects to write an addition equation that models the problem.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Learn Write Addition Equations (continued)

3 Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to write an addition equation to model a real-world problem.

Q Example 1 Write Addition Equations

Objective

Students will model a real-world problem with a one-step addition equation.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to decontextualize the real-world problem by representing it symbolically with a correct addition equation, paying careful attention to each quantity and how it can be represented in the equation.

As students discuss the Talk About lt! question on Slide 5, encourage them to determine other equations that can model the problem. They should be able to explain why the equations are equivalent.

6 Attend to Precision Students should use precision in defining the variable prior to writing the equation.

Questions for Mathematical Discourse

SLIDE2

All What information are you given? Ruben and Tariq downloaded 245.5 megabytes of music, and Ruben downloaded 132 MB of that total.
(0) How many megabytes of music did Ruben and Tariq download altogether? 245.5 megabytes
(OLI Why does it make sense that Ruben downloaded a value that is less than 245.5 MB? Sample answer: Ruben downloaded a subset of the total amount, 245.5 MB . This means the amount he downloaded must be less than 245.5 MB .
[BL. How many more MB did Ruben download than Tariq? Explain. 18.5 MB; Sample answer: Ruben downloaded 132 MB. Tariq downloaded $245.5-132$, or 113.5 MB. So, Ruben downloaded $132-113.5$, or 18.5 more MB than Tariq.

Example 1 Write Addition Equations (continued)

Questions for Mathematical Discourse

SLIDE3

A1. Why is it important to define the variable? Sample answer: We need to specify what we mean by using m in the equation. Otherwise, it is not clear.

OL. How do you know that m needs to represent the number of MB that Tariq downloaded? Sample answer: I know how many megabytes Ruben downloaded, but I do not know how much music Tariq downloaded. That is the unknown.

OII Can you use any other letter for the unknown, other than m ? Explain. yes; Sample answer: It does not matter what letter is used, as long as the variable is defined correctly.
Bin Maria downloaded 69.7 MB of music. How would you write an equation to represent the total amount that Ruben, Tariq, and Maria downloaded? $132+m+69.7=315.2$

SLIDE 4

AI.. Explain why it makes sense that this is an addition equation. Sample answer: We are given the total amount that Tariq and Ruben downloaded, which represents an addition problem.

Olill How can you determine which quantities belong to the left of the equals sign? Sample answer: The left side of the equation uses addition. The two quantities that are added together are m and 132, the number of megabytes downloaded by each person belong to the left side of the equation.
B․․․ Are the equations $m+132=245.5$ and $132+m=245.5$ equivalent? Explain. yes; Sample answer: Since addition is commutative, the terms on the left side of the equals sign can be added in any order.

(3) Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Check
T ogether, Zacharias and Paz have $\$ 756.80$. If Zacharias has $\$ 489.50$, how much does Paz have? Write an addition equation that can be used to find the amount of money that belongs to Paz.

Sample answer: $\mathbf{4 8 9 . 5 0 + p = 7 5 6 . 8 0}$

O Go Online You can complete an Extra Example online.
Explore One-Step Addition Equations
OOnline Activity You will use a balance to explore how to solve one-step addition equations.

Pause and Reflect
In the Explore, you used a balance to solve equations, such as $x+3=5$ and $x+3=7$. Then you made a conjecture as to how to solve an addition equation without using a balance. When might a balance not be the most advantageous method to use?

Learn Solve Addition Equations
Y ou can use substitution, models, or properties of mathematics to solve addition equations.
Q go Online Watch the video to learn how to solve one-step addition equations using algebra tiles.

The video demonstrates how to find the value of x for the equation $x+4=7$.
To model the equation, place one x-tile and four 1 -tiles on the left side of the mat. Place seven 1 -tiles on the right side of the mat.

To isolate the variable, or the x-tile, remove the same number of 1 -tiles from each side of the mat until the x-tile is by itself.

There are three 1 -tiles remaining on the right side, so $x=3$.
Another way to solve an addition equation is to usinverse operations Another way to solve an addition equation is to usinverse operations
which are operations that undo each other. When you solve an addition equation by subtracting the same number from each side of the equation, you are using theSubtraction Property of Equality

Words	Examples
If you subtract the same	If $5=5$, then
number from each side of	$5-2=5-2$.
an equation, the two sides	If $x+2=3$, then
remain equal.	$x+2-2=3-2$.

To solve the addition equation $x+4=7$ by using inverse operations, undo the addition of 4 by subtracting 4 from each side of the equation.
$x+4=7 \quad$ Write the equation
$-4-4 \quad$ Subtraction Property of Equality
$x=3$
The solution is $x=3$.

Interactive Presentation

Learn, Solve Addition Equations, Slide 2 of 3

WATCH

On Slide 1, students watch a video to learn about how to use algebra tiles to solve one-step addition equations.

On Slide 2, students use Flashcards to learn more about the Subtraction Property of Equality.

Learn Solve Addition Equations

Objective
Students will learn how to solve one-step addition equations using a model and the Subtraction Property of Equality.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 3, encourage them to explain how the structure of using algebra tiles to remove equal numbers of tiles from each side of the workmat mirrors the Subtraction Property of Equality. Go Online to have your students watch the video on Slide 1. The video illustrates how to solve one-step addition equations using algebra tiles.

Teaching Notes
 SLIDE1

You may wish to pause the video after the equation $x+4=7$ is shown, and ask students to work with a partner to use algebra tiles to model and solve the equation. Have them share their process and solution with another pair of students, or the entire class. Then have them continue watching the video to compare their process and solution with the one shown. Repeat using a similar process for the second equation in the video, $3+x=8$.

SIDE 2

Remind students that addition and subtraction are inverse operations. To solve an addition equation for a variable, such as $x+2=3$, students can undo the addition of 2 by subtracting 2 . Point out that the same number must be subtracted from each side of the equation, in order for the equation to remain equal. Have students select the Words and Examples flashcards to view the Subtraction Property of Equality expressed in these multiple representations.

Talk About It!

SLIDE 3

Mathematical Discourse

How does using algebra tiles to solve an addition equation model the Subtraction Property of Equality? Sample answer: To keep each side of the mat equal, I need to remove equal numbers of tiles from each side. This models the Subtraction Property of Equality.

Interactive Presentation

Explore, Slide 1 of 8

Explore, Slide 2 of 8

WEB SKETCHPAD

Throughout the Explore, students use Web Sketchpad to explore solving one-step addition equations using a balance.
a
On Slide 2, students enter the weight of the x-weight.

Explore One-Step Addition Equations

Objective
Students will explore solving one-step addition equations using a balance.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity
Students will be presented with a balance and explore the idea of keeping the scale balanced. Students will relate the idea of the balance to an equation and learn that an equation is similar to a balance, in that both sides need to be equal at all times.

©. Inquiry Question

How is solving an addition equation like using a balance? Sample answer: To keep a scale in balance, you need to subtract the same weight from each side. To keep an equation in balance, you need to subtract the same number from each side. Otherwise the two sides of the equation will not be equal.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

How could you use the balance to find the weight of the x-weight? Sample answer: By adding 1-weights to the opposite side of the balance until the sides are equal.
(continued on next page)

1 CONCEPTUAL UNDERSTANDING

Explore One-Step Addition Equations (continued)

1 Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore how an equation is similar to a balance.

8 Look for and Express Regularity in Repeated Reasoning
Encourage students to use repetitive reasoning when finding the x-weight on the balance in order to find an equation that represents the balance.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 6 is shown.

Talk About It!

SLIDE 6

Mathematical Discourse

What steps did you take to solve the equation without the model? Some methods could include subtracting the same number from each side of the equation to isolate the variable.

Interactive Presentation

Explore, Slide 6 of 8

On Slide 6, students use Web Sketchpad to practice solving one-step equations.

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer.

Example 2 Solve Addition Equations

Objective

Students will solve one-step addition equations involving whole numbers, using a model and the Subtraction Property of Equality.

Questions for Mathematical Discourse
 \section*{SUIDE 2}

Anill How can you represent 8 on the left side of the mat? Place eight 1 -tiles on the left side of the mat.

Al. How can you represent $x+3$ on the right side of the mat? Place one x-tile and three 1 -tiles on the right side of the mat.
OLII In order to isolate x on the right side of the mat, what do you need to do? Sample answer: Remove three 1 -tiles from each side of the mat, in order to isolate x.

OLIW Why is it not enough to only remove three 1 -tiles from the right side of the mat? Sample answer: By doing so, the equation would not remain balanced. If I subtract three 1-tiles from the right side, I need to subtract three 1 -tiles from the left side.

Bill If the equation is written as $8=3+x$, would the process and/or solution change? Explain. no; Sample answer: $3+x$ is equivalent to $x+3$ because addition is commutative. I would still need to subtract three 1 -tiles from each side of the mat.

SLIDE 3

AI. Why is it important to subtract 3 from each side of the equation? Sample answer: In order to keep each side of the equation balanced, 3 needs to be subtracted from each side of the equation.

OL. Explain how solving the equation algebraically mirrors solving the equation using algebra tiles. Sample answer: Subtracting 3 from each side of the equation is the same as removing three 1 -tiles from each side of the mat.

OLI How can you check your solution? Sample answer: To check my solution, I can substitute 5 for x in the equation to verify that the statement $8=5+3$ is true, which it is.
[31. If x is equal to twice the value of y, and $8=x+3$, what is the value of y ? Explain. $y=2.5$; Sample answer: Since $x=5$, then $y=2.5$.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Solve Addition Equations
Solve $8=x+3$. Check your solution.
Method 1 Use a model.
Step 1 Place eight 1-tiles on the left side of the mat and one x-tile and three 1 -tiles on the right side of the mat.

Step 2 Remove three 1-tiles from each side of the mat.

Method 2 Use the Subtraction Property of Equality.

$8=x+3$		Write the equation.
$-3-3$		Subtraction Property of Equality
$5=x$		Simplify.

Method 3 Use a bar diagram.
Draw a bar diagram to represent the equation.

The total length of the bar represents 8 , which represents the value of the equation. What is the value of x ? 5

So, the solution of the equation is 5 .
Check the solution.
$8=x+3 \quad$ Write the equation.
$8 \stackrel{y}{=} 5+3 \quad$ Replace x with 5 .
$8=8 \quad$ The sentence is true.

Think About It! What property will you use to solve for x ? of Equality

Talk About It! Give an example of when it might be more efficient or appropriate to use Method 2 rather than Method 1. Explain your reasoning
Sample answer: If the equation involves large equation involves large
numbers, using Method 2 numbers, using Metho
will be more efficient than using Method 1. If the equation involves fractions or decimals, it is more appropriate to use Method 2 since algebra tiles cannot be used with fractions or decimals.

Interactive Presentation

Example 2, Solve One-Step Addition Equations, Slide 2 of 5

DRAG \& DROP

On Slide 2, students use algebra tiles to model the equation.

On Slide 3, students move through the steps to solve the equation.

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Example 3, Solve One-Step Addition Equations, Slide 2 of 3
On Slide 2, students move through the
steps to solve the equation.

1 CONCEPTUAL UNDERSTANDING

Example 3 Solve Addition Equations

Objective
Students will solve one-step addition equations involving fractions using the Subtraction Property of Equality.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to adhere to the Subtraction Property of Equality to solve the equation algebraically. Students should be able to calculate with mixed numbers and fractions efficiently and accurately.

Questions for Mathematical Discourse

SLIDE1

Al What property can you use to isolate the variable? Subtraction Property of Equality

OL. Why is it important to rewrite the mixed numbers with like denominators? Sample answer: I need to subtract $3 \frac{3}{4}$ from each side of the equation. In order to subtract $3 \frac{3}{4}$ from $7 \frac{1}{2}$, the fractions need to have a common denominator.

OL. How can you use mental math to solve the equation? Sample answer: I know that $3 \frac{3}{4}+4=7 \frac{3}{4}$. Since the sum needs to be $7 \frac{1}{2}$, not $7 \frac{3}{4}$, the second addend should be $\frac{1}{4}$ less than 4 , which is $3 \frac{3}{4}$.
[BI․ A classmate stated that $m=11 \frac{1}{4}$. Explain the mistake. Sample answer: Instead of subtracting $3 \frac{3}{4}$ from each side of the equation, the classmate subtracted $3 \frac{3}{4}$ from the left side of the equation and added $3 \frac{3}{4}$ to the right side of the equation.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Money

Objective

Students will come up with their own strategy to solve an application problem involving buying books from an online bookstore.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What information from the table is extra?
- How much did she spend altogether?
-What is the first step to writing the equation?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Money
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to write and solve one-step addition equations. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. Suppose the lifespan of a tumbo tree is 1,850 years. Suppose you also know that the combined life span of a tumbo tree and a bristlecone pine is 6,910 years. Write and solve an equation to find the lifespan of a bristlecone pine. Sample answer: Let x represent the lifespan of the Bristlecone pine tree; $1,850+x=6,910$; $x=5,060$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 9, 11, 13-16
- ALEKS One-Step Equations, Applications of Equations

IF students score 66-89\% on the Checks,
10.

THEN assign:

- Practice, Exercises 1-9, 11, 13, 14
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- ALEKS' Introduction to One-Step Equations

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- a Aleks Introduction to One-Step Equations

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	model a real-world problem with a one-step addition equation.	$1-4$
1	solve one-step addition equations involving whole numbers using a model and the Subtraction Property of Equality	5,6
1	solve one-step addition equations involving fractions using the Subtraction Property Equality	7,8
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving one-step addition equations	11,12
3	higher-order and critical thinking skills	

Common Misconception

Some students may struggle with subtracting fractions and/or mixed numbers. In Exercises 7 and 8, students may understand how to solve one-step addition equations, but incorrectly find the solution because they made a mistake in their calculations with the mixed numbers. Remind students that, when subtracting with mixed numbers, it is often helpful to write the mixed numbers as improper fractions first. Then they can rewrite the improper fractions with a common denominator. You may wish to have students practice their fluency with operations of fractions.

Name	Period Date
Practice	Q Go Online Y ou can complete your homewiork oniline.
1-4. Sample answers given.	
1. On Saturday and Sunday, Jarrod went running and burned a total of 647.5 Calories. He burned 320 of those Calories on Saturday. Write an addition equation that could be used to find the number of Calories Jarrod burned on Sunday. (Example 1)	2. Maggie and her sister bought a gift for their mother that cost $\$ 54.75$. Maggie contributed $\$ 26$ to the cost of the gift. Write an addition equation that could be used to find how much money Maggie's sister contributed to the gift. (Example 1)
$320+c=647.5$	$26+d=54.75$
3. A piece of material measures 38.25 inches. Courtney cuts the piece of material into two pieces. One piece measures 19.5 inches. Write an addition equation that could be used to find the length of the other piece of material. (Example 1)	4. On a two-day car trip, the Roberts family drove a total of 854.25 miles. On Day 1 , the family drove 497.75 of those miles. Write an addition equation that could be used to find how many miles the Roberts family drove on Day 2 of their trip. (Example 1)
$19.5+m=38.25$	$497.75+m=854.25$

ractice

1-4. Sample answers given.
On Saturday and Sunday, Jarrod went
He burned 320 of those Calories on
Saturday. Write an addition equation that
could be used to find the number of Calories
Jarrod burned on Sunday. (Example 1)
. A piece of material measures 38.25 inches.
the piece of material int
.5 inches. Write an addition equ
be used to find the length of
$19.5+m=38.25$
2. Maggie and her sister bought a gift for their mother that cost $\$ 54.75$. Maggie contributed equation that could be used to find how much money Maggie's sister contributed to the gift. (Example 1)
$26+d=54.75$
drove a total of 854.25 miles. On Day 1 , the amily drove 497.75 of those miles. Write an and Day 2 of their trip. (Example 1
$497.75+m=854.25$

Solve each equation. Check your solution. (Examples 2 and 3)
7. $3 \frac{1}{4}+z=6 \frac{3}{4} 3 \frac{1}{2} \quad$ 8. $9 \frac{1}{2}=b+2 \frac{1}{4} 7 \frac{1}{4}$
9. $18.35=c+5.113 .25$

10. Equation Editor Solve $x+5.15=23.85$.

18.7

लहबए
$\frac{123}{456}$
${ }_{789}^{456}-$
7898

Apply "indicates multi-step problem

*11. Jeremiah has $\$ 35$ to spend on items for his dog at the pet store. The table shows the cost of the items. He bought a collar, two toys, two biscuits, and a ball. Write an addition equation that can be used to determine how much more money Jeremiah still has to spend. Then solve the equation.

Sample equation: $8.99+2(5.75)+2(1.15)+$
$3.45+x=35 ; \$ 8.76$

Hem Cost(\$)	
Ball	3.45
Biscuit	1.15
Bone	2.50
Collar	8.99
Toy	5.75

'12. Jasmine has $\$ 30$ to spend on ice cream for a party. The table shows the cost of each size of ice cream. She bought five quarts and one gallon. Write an addition equation that can be used to determine how much more money Jasmine still has to spend. Then solve the equation.

Ice Cream Size	Cost (\$)
Gallon	6.99
Pint	1.59
Quart	3.35

Sample equation: $5(3.35)+6.99+x=30 ; \$ 6.26$

Higher-Order Thinking Problems
13. Reason Abstractly Suppose $a+b=20$ and the value of a is increased 1. The value of b must be decreased by 1 .
\$3 Persevere with Problems In the equation $m+n=12$, the value for m is a whole number greater than 5 but less than 9. Determine the possible solutions for n.
14. Find the Error A student is solving the equation $x+9=14$. Find the student's mistake and correct it
$x+9=14$
$+9=+9$

The student added 9 to each side of the equation instead of subtracting 9 from each side. The correct solution should be $x=5$.
16. Create Write and solve a real-world problem that can be solved with a one-step addition equation.
Sample answer: Chad is saving money to buy a scooter that costs $\$ 47$. He has already saved $\$ \mathbf{2 5}$. Write and solve an equation to find how much more money Chad needs to save; $25+m=47 ; \$ 22$

Learn Write Subtraction Equations

Objective

Students will learn how to model a real-world problem with a one-step subtraction equation.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 3, encourage them to use clear and precise mathematical language to share which key words, from the animation, they thought were important and why those are important in writing the equation.

Teaching Notes

SLIDE1
Be sure students understand the importance of defining the variable when writing an equation to model a real-world problem. You may wish to have students create their own word problem that involves subtraction, such as Jackson spent $\$ 3.15$ less on lunch than his sister. Jackson spent $\$ 5.50$ on lunch. How much did his sister spend? Have students choose a variable, such as x or s, and clearly explain what that variable represents (the dollar amount his sister spent on lunch). Then have them write an equation that models the problem, such as $x-3.15=5.50$ or $s-3.15=$ 5.50 . Be sure they understand there can be more than one way to write the equation. Have them explain, however, why the equation $3.15-x=$ 5.50 does not model the problem.
(continued on next page)

DIFFERENTIATE

Language Development Activity EELILI

Some students may struggle with identifying words that signify subtraction. Have students work with a partner to brainstorm words that signify subtraction. Have them create a poster to display in the classroom.

Sample answers: how many more, less than, subtract, take away, remain, minus, difference, left

Interactive Presentation

Learn, Write Subtraction Equations, Slide 1 of 3
FLASHCARDS
On Slide 1, students use Flashcards to view the steps for writing an equation to model a real-world problem.

One-Step Subtraction Equations

LESSON GOAL

Students will use the Addition Property of Equality to write and solve one-step subtraction equations.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Use Bar Diagrams to Write Subtraction Equations
Learn: Write Subtraction Equations
Example 1: Write Subtraction Equations
Learn: Solve Subtraction Equations
Example 2: Solve Subtraction Equations
Example 3: Solve Subtraction Equations
Apply: Shopping

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 36 of the Language Development Handbook to help your students build mathematical language related to solving one-step subtraction equations.
튼I You can use the tips and suggestions on page T36 of the handbook to support students who are building English proficiency.

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.B by using the Addition Property of Equality to write and solve one-step subtraction equations.
Standards for Mathematical Content: 6.EE.B.6, 6.EE.B.7
Standards for Mathematical Practice: MP1, MP2, MP3, MP4,
MP5, MP6

Coherence

Vertical Alignment

Previous

Students used the Subtraction Property of Equality to write and solve one-step addition equations.
6.EE.B.6, 6.EE.B. 7

Now

Students use the Addition Property of Equality to write and solve one-step subtraction equations.
6.EE.B.6, 6.EE.B. 7

Next
Students will use the Division Property of Equality to write and solve one-step multiplication equations.
6.EE.B.6, 6.EE.B. 7

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of one-step subtraction equations. They learn how to use a model and the Addition Property of Equality to build fluency with solving one-step subtraction equations involving whole numbers and fractions. They apply their understanding of writing and solving one-step subtraction equations to solve multi-step, real-world problems.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Wit You Lramit

Addition Property of Equality

 Addition Propenty a fowier migre nute?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- solving one-step addition equations (Exercises 1-4)
- writing and solving one-step addition equations (Exercise 5)

Answers

1. 3
2. $\frac{3}{4}$
3. 0.7
4. 4
5. $24.50+m=45 ; m=20.50$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the record for most runs scored in the Cricket World Cup.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Y ou previously learned about the Subtraction Property of Equality. How can you use that property to infer what the Addition Property of Equality might state? Sample answer: The Subtraction Property of Equality states that, as long as the same number is subtracted from each side of an equation, the sides of the equation remain balanced. The Addition Property of Equality might mean that, as long as the same number is added to each side of an equation, the sides of the equation will remain balanced.

Explore Use Bar Diagrams to Write Subtraction Equations

Objective

Students will explore how to use a model to write subtraction equations.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will work through two real-world situations, first using a bar diagram and then writing an equation, to illustrate the situation. Students will explore how to use a model to write subtraction equations.

(3)Inquiry Question

How can you use a model to write subtraction equations? Sample answer: I can write a subtraction equation using a bar diagram with two sections representing what I know. The total bar represents the original number, which is the unknown.

ω
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE 3 :

Mathematical Discourse

How could you use a bar diagram to represent what you know and what you need to find? Sample answer: I could draw a bar and label the total c. I could separate the bar into two sections labeled 17 and 41.
(continued on next page)

Interactive Presentation

Explore, Slide 1 of 8

Solect the Whar 100 Know and Whot You Need so Find buttors to detemine the known vilues and the urknown velue.

Explore, Slide 3 of 8

CLICK

On Slide 3, students highlight what they know and what they need to find.

On Slide 4, students move through the slides to see how a bar diagram can be created to model the situation.

Interactive Presentation

Explore, Slide 7 of 8

CLICK

On Slide 7, students move through the steps used to draw the bar diagram.

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Use Bar Diagrams to Write Subtraction Equations (continued)

117. Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Students should identify the important quantities in the real-world situation, decontextualize them, and use the bar diagram to represent them symbolically.

5 Use Appropriate Tools Strategically Encourage students to examine the correspondences between the bar diagrams and equations, and how they could eventually transition from the problem statement to writing the equation without the bar diagram.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 6 is shown.

Talk About It!

SLIDE 6

Mathematical Discourse

What is known and what is unknown in the situation? How did you set up the bar diagram? Sample answer: The amount Logan had originally is unknown, the snack amount and change is known. The bar diagram could be set up with x being the total and the bar being split into two sections, \$5.33 and \$12.67.

Interactive Presentation

Example 1, Write Subtraction Equations, Slide 1 of 6

On Slide 3 of Example 1, students drag the objects to write a subtraction equation to model the problem.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Learn Write Subtraction Equations (continued)

Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to write a subtraction equation to model a real-world problem.

Talk About It!

SLIDE3

Mathematical Discourse

What key words are in the situation? gave, left, total number of beads

Example 1 Write Subtraction Equations

Objective
Students will model a real-world problem with a one-step subtraction equation.

Questions for Mathematical Discourse

SUDE3

Al. What is the unknown you are trying to find? John Glenn's age
\triangle Aㄴ. How do you know that the unknown is not the youngest person's age? I know they were 25 years old.
(0) How do you know that the equation is not $52-a=25$?

Sample answer: John Glenn's age, represented by a, is the greater age. So, it cannot be subtracted from 52. This would mean that John Glenn's age was 25 years younger than the age of 52 , which is not correct.
|․․․ Why is it correct to write the equation as either $a-52=25$ or $a-25=52$? Sample answer: The equation $a-52=25$ states that John Glenn's age minus the difference between the ages equals 25 , which is correct. The equation $a-25=52$ states that John Glenn's age minus the age of the youngest person to travel in space is equal to the difference in their ages, 52 . This is also correct.

Bo Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Solve Subtraction Equations

Objective

Students will learn how to solve one-step subtraction equations using a model and the Addition Property of Equality.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to reason about the similarities and differences between the processes used to solve one-step addition equations and subtraction equations.

0Go Online to have your students watch the video on Slide 1. The video illustrates how to solve one-step subtraction equations using a bar diagram.

Teaching Notes

SLIDE1
You may wish to pause the video after the equation $x-15=11$ is shown, and ask students to work with a partner to use bar diagrams to model and solve the equation. Have them share their process and solution with another pair of students, or the entire class. Then have them continue watching the video to compare their process and solution with the one shown. Repeat using a similar process for the second equation in the video, $x-32=14$.

SUDE2

Remind students that addition and subtraction are inverse operations. To solve a subtraction equation for a variable, such as $n-6=7$, students can undo the subtraction of 6 by adding 6 . Point out that the same number must be added to each side of the equation, in order for the equation to remain equal. Have students select the Words and Examples flashcards to view the Addition Property of Equality expressed in these multiple representations.

Talk About It!

SLIDE3

Mathematical Discourse

Compare and contrast solving one-step addition equations and solving one-step subtraction equations. Sample answer: They are both similar in that I use inverse operations to undo the addition or subtraction. They are different in that to undo addition, I use subtraction, and to undo subtraction, I use addition.

Interactive Presentation

Learn, Solve Subtraction Equations, Slide 2 of 3

On Slide 1, students watch a video to learn about how to use a model to solve a onestep subtraction equation.

FLASHCARDS

On Slide 2, students use Flashcards to learn more about the Addition Property of Equality.

Interactive Presentation

Example 3, Solve Subtraction Equations, Slide 1 of 2
On Slide 1 of Example 2, students move
through the steps to solve the equation.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 2 Solve Subtraction Equations

Objective
Students will solve one-step subtraction equations involving whole numbers using the Addition Property of Equality.

Questions for Mathematical Discourse SLIDE 1

AL What is the inverse operation of subtraction? addition

1. How is the Addition Property of Equality relevant to solving this equation? Sample answer: The Addition Property of Equality states that the equation is true as long as the same number is added to each side of the equation. This allows me to add 7 to each side, and isolate the variable.

OL. How can you check your solution? Sample answer: To check my solution, I can substitute 39 for x in the equation to verify that the statement $32=39-7$ is true, which it is.
181. If x is equal to twice the value of y, and $32=x-7$, what is the value of y ? Explain. $y=19.5$; Sample answer: Since $x=39$, then $y=19.5$.

Example 3 Solve Subtraction Equations

Objective
Students will solve one-step subtraction equations involving fractions using the Addition Property of Equality.

Questions for Mathematical Discourse

SuldF1

What property can you use to isolate the variable? Addition Property of Equality

OL. Why is it important to rewrite the mixed numbers with like denominators? Sample answer: I need to add $13 \frac{2}{3}$ to each side of the equation. In order to add $13 \frac{2}{3}$ to $2 \frac{1}{6}$, the fractions need to have a common denominator.

OL How can you use mental math to solve the equation? Sample answer: I know that m has to be $2 \frac{1}{6}$ more than $13 \frac{2}{3}$. This means that m must be the sum of $2 \frac{1}{6}$ and $13 \frac{2}{3}$. Add two wholes to $13 \frac{2}{3}$ to obtain $15 \frac{2}{3}$. Then add $\frac{1}{6} \cdot 35^{\frac{2}{2}}+1=15 \frac{5}{6}$.
BLㄴ Explain how someone might get $m=11 \frac{1}{2}$ as the solution.
Sample answer: If you subtract $2 \frac{1}{6}$ from $13 \frac{2}{3}$, you will get $11 \frac{1}{2}$, which is incorrect.

Go Online

- Find additional teaching notes and Teaching the Mathematical Practices.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Shopping

Objective

Students will come up with their own strategy to solve an application problem involving shopping.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How much did Tyson spend on each item?
- What operation would you use to determine how much he spent altogether?
- Is the amount that he originally had in his savings account going to be greater than or less than the amount he had after withdrawing money?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Shopping
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to write and solve one-step subtraction equations. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. The current runner-up for the most runs scored in the Cricket World Cup has 1,743 runs, which is 535 runs fewer than the current record holder. Write and solve an equation that represents the number of runs of the current record holder. Sample answer: Let x represent the number of runs of the record holder; $x-535=1,743 ; x=2,278$

ASSESS AND DIFFERENTIATE

I) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 9, 11, 13-16
- ALEKS One-Step Equations, Applications of Equations

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-9, 11, 13, 14
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- D ALEKS Introduction to One-Step Equations

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Introduction to One-Step Equations

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	model a real-world problem with a one-step subtraction equation	$1-4$
1	solve one-step subtraction equations involving whole numbers using the Addition Property of Equality	5,6
1	solve one-step subtraction equations involving fractions using the Addition Property of Equality	7,8
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving one-step subtraction equations	11,12
3	higher-order and critical thinking skills	

Common Misconception

Some students may struggle with adding or subtracting decimals. In exercises 9 and 10 , students may understand how to solve one-step subtraction equations, but incorrectly find the solution because they made a mistake in their calculations with decimals. Remind students that, when adding vertically, they need to line up the decimal places and annex a zero if necessary. You may wish to have students practice their fluency with operations with decimals.

Name

Practice
1-4. Sample answers give

1. On Monday, Homeroom 104 turned in 64 canned goods. This is 17 less than the number of canned goods turned in by Homeroom 106. Write a subtraction equation that could be used to find the number of canned goods turned in by Homeroom 106 on Monday. (Example 1) $c-17=64$
2. To make a cake, Rose needed $\frac{1}{2}$ cups of sugar. This is $\frac{1}{4}$ cups less than the amount of flour she needed for the cake. Write a
subtraction equation that could be used
to find the amount of flour she needed
for the cake. (Example 1)
$f-1 \frac{1}{4}=1 \frac{1}{2}$
Solve each equation. Check your solution. (Examples 2 and 3)
3. $67.9=c-4.4572 .35$
4. $24=x-529$
5. $z-9 \frac{1}{3}+=1 \frac{5}{9} 10 \frac{8}{9}$
6. $5 \frac{1}{2}=b-12 \frac{1}{4} 1 \frac{3}{4}$
7. $z-7=1926$
8. Go Online Y ou can complete your homework online.
9. Izan's youngest relative is 5 years old. This is 79 years less than the age of his oldest relative. Write a subtraction equation that could be used to find the age of his oldest relative. (Example 1)
$a-79=5$
10. On Sunday, Jax biked 10.25 miles. This is 3.5 fewer miles than the number of miles he biked on Saturday. Write a subtraction t could be used to find the number of miles Jax biked on Saturday. (Example 1)
$m-3.5=10.25$
11. Equation Editor Solve $x-7.49=87.3$. 94.7
당
123
456
789
O.

Apply *indicates multi-step problem
*11. After spending money for a golf outing, Gus had $\$ 517.92$ remaining in his checking account. The table shows how much money he spent on different items to participate in the outing. Use an equation to find how much money Gus originally had in his checking account.
\$667.92

Item	Cost (\$)
Entry Fee	94.50
Golf Shoes	44.25
Gloves	11.25

*12. Robin made two batches of every item shown in the table. At the end of the day, she had $\frac{1}{4}$ cups of flour left. Use an equation to find how much flour Robin originally had on Saturday.
$11 \frac{3}{4}$ cups of flour

Baking Item Amount of Flour	
Bread	$\frac{1}{4}$ cups
Muffins	2 cups
Pancakes	$\frac{1}{2}$ cups

Higher-Order Thinking Problems
13. Reason Abstractly During a test flight, Jeri's rocket reached a height of 18 yards above the ground. This was 7 yards less than the height that Devon's rocket reached Did Devon's rocket reach a height greater than 23 yards? Explain
yes, Sample answer: Solve the equation
$x-7=18$ to find the height of Devon's
rocket. Devon's rocket reached a height of $18+7$ or 25 yards. Since $25>23$, Devon's
rocket reached a height greater than 23 yards.
15. Multiple Representations The bar diagram represents a subtraction equation.

a. Words Write a real-world situation for the bar diagram.
Sample answer: Today's high
temperature is $64^{\circ} \mathrm{F}$. This is $9^{\circ} \mathrm{F}$ less than yesterday's high temperature. What was yesterday's high temperature?
b. Algebra Write a subtraction equation fo the bar diagram. $x-9=64$
c. Numbers Solve the equation from part b $73^{\circ} \mathrm{F}$

358
14. Find the Error A student is solving th equation $x-3.2=5.5$. Find the student's mistake and correct it
$x-3.2=5.5$

-3.2	-3.2

Sample answer: The student subtracted 3.2 from each side of the equation instead of adding 3.2. The solution should be $x=8.7$.
16. Create Write and solve a real-world problem involving decimals that can be solved with a one-step subtraction equation.

Sample answer: Frank's allowance is $\$ 8.50$ a week. This is $\$ 0.75$ less than Bonnie's weekly allowance. Write and solve a subtraction equation to find Bonnie's weekly allowance; $a-8.5=0.75 ; \$ 9.25$

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 13, students will determine if the rocket reached a height greater than 23 yards. Encourage students to use reasoning and an equation to answer the problem.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 14, students will find the error made by the student. Encourage students to find the error and then rework the problem correctly.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 11 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Make sense of the problem.

Use with Exercise 14 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise thinks you need to subtract 3.2 from each side of the equation. Have each pair or group of students present their explanations to the class.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

 3 APPLICATION
Learn Write Multiplication Equations

Objective

Students will learn how to model a real-world problem with a one-step multiplication equation.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language to share which key words they thought were important and how they are helpful in writing the equation.

Teaching Notes
 \section*{SLIDE1}

You may wish to have students create their own word problem that involves multiplication, such as Felicia sent 3 times as many text messages as Hector. Felicia sent 36 text messages. How many text messages did Hector send? Have students choose a variable, such as x or t, and clearly explain what that variable represents (the number of text messages Hector sent). Then have them write an equation that models the problem, such as $3 x=36,3 t=36,36=3 x$, or $36=3 t$. Be sure they understand there can be more than one way to write the equation.
(continued on next page)

DIFFERENTIATE

Enrichment Activity ${ }^{2} 1 \mathrm{~B}$

If any of your students need more of a challenge, have students work with a partner to create three different real-world problems. One problem should be able to be modeled with a one-step addition equation. Another problem should be able to be modeled with a one-step subtraction equation. The third problem should be able to be modeled with a one-step multiplication equation.
Have pairs trade problems with another pair of students. Each pair should generate the appropriate equations that model each problem. Have them check their equations with the original pair of students, and discuss and resolve any differences. Finally, have pairs solve the addition and subtraction equations using inverse operations and properties of equality, and then make a conjecture as to how they might be able to solve the multiplication equations.

Interactive Presentation

Learn, Write Multiplication Equations, Slide 1 of 3

FLASHCARDS

On Slide 1, students use Flashcards to view the steps for writing an equation to represent a real-world problem.

One-Step Multiplication Equations

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.B by using the Division Property of Equality to write and solve one-step multiplication equations.
Standards for Mathematical Content: 6.EE.B.6, 6.EE.B. 7
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6

Coherence

Vertical Alignment

Previous

Students used the Addition Property of Equality to write and solve one-step subtraction equations.
6.EE.B.6, 6.EE.B. 7

Now

Students use the Division Property of Equality to write and solve one-step multiplication equations.

6.EE.B.6, 6.EE.B. 7

Next
Students will use the Multiplication Property of Equality to write and solve one-step division equations.
6.EE.B.6, 6.EE.B. 7

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of one-step multiplication equations. They learn how to use a model and the Division Property of Equality to build fluency with solving one-step multiplication equations involving whole numbers and fractions. They apply their understanding of writing and solving one-step multiplication equations to solve multi-step, realworld problems.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- using bar diagrams (Exercises 1-2)
- using algebra tiles (Exercises 3-4)
- solving one-step multiplication equations using the guess, check, and revise strategy (Exercise 5)

Answers
1-4. See Warm Up slide online for correct answers.
5. 6 additional toppings

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about Mali's population in relation to its percentage of Internet users.

3 Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Use your knowledge of the Addition and Subtraction Properties of Equality to infer what the Division Property of Equality might state. Sample answer: The Addition and Subtraction Properties of Equality state that as long as I perform the same operation (addition or subtraction of the same number) to each side of an equation, the equation remains unchanged. The Division Property of Equality might state that if I divide each side of an equation by the same nonzero number, the equation remains unchanged.

Explore Use Bar Diagrams to Write Multiplication Equations

Objective
Students will explore how to use a model to write multiplication equations.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with a real-world situation that can be represented by a multiplication equation. Throughout this activity, students will explore how to solve the real-world problem by identifying key information and writing an equation modeled by a bar diagram that could be solved to find the missing piece of information.

(0) Inquiry Question

How can you use a model to write multiplication equations? Sample answer: I can write a multiplication equation using a bar diagram. The total is represented by the entire bar. The bar is divided into the same number of sections as the factor you know. Each section represents the value of the variable.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE 3

Mathematical Discourse

How can you use a bar diagram to represent what you know and what you need to find? Sample answer: Label the total 10 miles, and divide the bar into 5 equal parts. Label each part d, for the number of miles Hamza ran each day.
(continued on next page)

Interactive Presentation

Use Bar Diagrams to Write Multiplication Equations

©I. Introducing the Inquary Question

Explore, Slide 1 of 8

Explore, Slide 3 of 8

CLICK

On Slide 3, students highlight what they know and what they need to find.

CLICK
On Slide 4, students move through the slides to see how a bar diagram can be created to model the situation.

Interactive Presentation

Explore, Slide 7 of 8

CLICK
On Slide 7, student move through the sides to model the problem with a bar diagram.

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Use Bar Diagrams to Write Multiplication Equations (continued)

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Students should identify the important quantities in the real-world situation, decontextualize them, and use the bar diagram to represent them symbolically.

5 Use Appropriate Tools Strategically Encourage students to examine the correspondences between the bar diagrams and equations, and how they could eventually transition from the problem statement to writing the equation without the bar diagram.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 6 is shown.

Talk About It! SLIDE 6

What is known and what is unknown in the situation? How did you set up the bar diagram? Sample answer: Label the total 12 months, and divide the bar into 3 equal parts. Label each part m, for the number of months Allie has owned her cell phone.
6.EE.B.6, 6.EE.B. 7

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Example 1, Write Multiplication Equations, Slide 4 of 6

Learn Write Multiplication Equations (continued)

O

Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to write a multiplication equation to model a real-world problem.
- Find a sample answer for the Talk About It! question on Slide 3.

Example 1 Write Multiplication Equations

Objective
Students will model a real-world problem with a one-step multiplication equation.

Questions for Mathematical Discourse

SLIDE3

Aㄴ. Why is it important to define a variable? In order to write an equation, we need to use a variable to represent the unknown. It is important to state what that unknown represents, so that it is clear.
(1) Why do you think f was used as the variable? Sample answer: f may have been used because the first letter of friends is f.

OI Does it matter what letter is used for the variable? Sample answer: No, any letter can be used as long as the variable is defined.
|31. Why is the unknown neither the total cost, nor the cost per ticket? Both of those values are known.

SLIDE 4

Al How do you know that this should be a multiplication equation? Each friend contributed an equal amount, that when multiplied by the total number of friends, equals the total cost.

OL. Why is the equation not $745 f=186.25$? Sample answer: If the equation was $745 f=186.25$, then each friend would have contributed $\$ 745$ for a total of $\$ 186.25$. The number of friends would be a fraction or decimal between 0 and 1 , and that is impossible.
[BL Can you solve the problem without writing an equation? Explain. yes; Sample answer: Divide $\$ 745$ by $\$ 186.25$ to find the number of people that contributed, 4.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Solve Multiplication Equations

Objective

Students will learn how to solve one-step multiplication equations using a model and the Division Property of Equality.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language, such as inverse operations, in order to explain why the Division Property of Equality is used when solving a multiplication equation.

Go Online to have your students watch the video on Slide 1. The video illustrates how to solve one-step multiplication equations using algebra tiles.

Teaching Notes
 SUDE1

You may wish to pause the video after the equation $4 x=12$ is shown, and ask students to work with a partner to use algebra tiles to model and solve the equation. Have them share their process and solution with another pair of students, or the entire class. Then have them continue watching the video to compare their process and solution with the one shown. Repeat using a similar process for the second equation in the video, $18=3 x$.
(continued on next page)

Interactive Presentation

Learn, Solve Multiplication Equations, Slide 1 of 3

WATCH

On Slide 1, students watch a video to learn about how to use algebra tiles to solve a one-step multiplication equation.

To solve a multiplication equation, use the inverse operation, which is division. When you solve a multiplication equation by dividing each side of the equation by the same nonzero number, you are using the Division Property of Equality

Words	Examples
If you divide each side of	If $9=9$, then
an equation by the same	$9 \div 3=9 \div 3$.
nonzero number, the two	If $4 x=8$, then
sides remain equal.	$4 x \div 4=8 \div 4$.

Example 2 Solve Multiplication Equations
Solve $2 x=10$. Check your solution.
Method 1 Use a model.
Step 1 Place two x-tiles on the left side of the mat to represent $2 x$ and ten 1 -tiles on the right side of the mat to represent 10 .

Step 2 Group the 1-tiles on the right side into two equal groups because there are two x-tiles on the left side.

Because there are five 1 -tiles for every x-tile, the value of x is 5 $x=5$

Interactive Presentation

Example 2, Solve Multiplication Equations, Slide 2 of 5

[^12]1 CONCEPTUAL UNDERSTANDING

Learn Solve Multiplication Equations (continued)

0Go Online to find additional teaching notes.

Talk About It!

SLIDE 3

Mathematical Discourse

Why is the Division Property of Equality used when solving a multiplication equation? Sample answer: When solving equations, use the inverse operation to undo the operation in the equation. The inverse operation of multiplication is division.

Example 2 Solve Multiplication Equations

Objective
Students will solve one-step multiplication equations using a model and the Division Property of Equality.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others, 5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 4, encourage them to present a plausible argument for a situation in which it might not be possible to use algebra tiles to solve a multiplication equation.

Questions for Mathematical Discourse

SIDER

An How can you represent $2 x$ on the left side of the mat? Place two x-tiles on the left side of the mat.
\triangle How can you represent 10 on the right side of the mat? Place ten 1 -tiles on the right side of the mat.

OL. In order to determine the value of x, what do you need to do? Sample answer: Group the tiles on each side of the mat into two equal groups, since there are two x-tiles. Then count the number of 1 -tiles that are in one group. This represents the value of x.

OL. How can you check the solution? Sample answer: Substitute 5 in for x in the equation $2 x=10$ to verify that it is a true statement.
[BLI Can you model the same equation by placing ten 1 -tiles on the left side of the mat and two x-tiles on the right side? Explain. yes; Sample answer: The equations $2 x=10$ and $10=2 x$ are equivalent.
(continued on next page)

Example 2 Solve Multiplication Equations (continued)

Questions for Mathematical Discourse SLIDE3:

ALI Why is it important to divide each side of the equation by 2 ? Sample answer: In order to keep the equation balanced, each side of the equation needs to be divided by 2 .

OI Explain how solving the equation algebraically mirrors solving the equation using algebra tiles. Sample answer: Dividing each side of the equation by 2 is the same as grouping the ten 1 -tiles into two equal groups using algebra tiles.

OL How can you check your solution? Sample answer: To check my solution, I can substitute 5 for x in the equation to verify that the statement $2 x=10$ is true, which it is.

R1. If x is equal to four times the value of y, and $2 x=10$, what is the value of y ? Explain. $y=1.25$; Sample answer: Since $x=5$, then $y=1.25$ because $4(1.25)=5$.

1 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Solve Multiplication Equations, Slide 3 of 5
On Slide 3, students move through the
steps to solve the equation.

Interactive Presentation

Example 3, Solve Multiplication Equations, Slide 2 of 4
On Slide 2, students move through the
steps to solve the equation.

Example 3 Solve Multiplication Equations

Objective
Students will solve one-step multiplication equations involving fractions using the Division Property of Equality.

(11) Teaching the Mathematical Practices

6 Attend to Precision Encourage students to adhere to the Division Property of Equality to solve the equation algebraically. Students should be able to calculate with fractions efficiently and accurately.

As students discuss the Talk About It! question on Slide 3, encourage them to precisely explain the property that they think will be used to solve division equations, using what they know about the inverse operations and how to solve multiplication equations.

Questions for Mathematical Discourse

SLIDE2

\triangle Li. What is the operation on the left side of the equation? How do you undo this operation? multiplication; Use division to undo multiplication.

OLI How do you divide fractions? Sample answer: To divide fractions, multiply the first fraction by the reciprocal of the second fraction.

Olil Is it necessary to find a common denominator first? Explain. no; Sample answer: Common denominators are only needed when fractions are added or subtracted, not when multiplying or dividing fractions.
|․․․ A classmate solved the equation by first multiplying each side of the equation by 3 to eliminate the fraction, thus obtaining the equation $2 m=\frac{15}{8}$. Then they divided each side of the equation by 2 to obtain $m=\frac{15}{16}$. Is this a correct method? Explain. yes; Sample answer: Dividing each side of the equation by $\frac{2}{3}$ is the same as multiplying each side by 3 , and then dividing by 2 .

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Nutrition

Objective

Students will come up with their own strategy to solve an application problem involving grams of sugar per serving.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What is the serving size for each brand of tea?
- How would you determine the amount of sugar per serving for each brand?
- How many grams of sugar are in each serving of each type of tea?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

e Apply Nutrition

The nutrition information for two different bottles of iced tea is shown. Alicia wants to compare the grams of sugar in a single serving for each brand. Which brand has more sugar per serving? How much more?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem.

Aunt Maggie's Iced Tea; $\mathbf{2 . 5}$ grams; See students' work.
4 How can you show your solution is reasonable?
Write About it! Write an argument that can be used to defend your solution.

See students' arguments.

Q Talk About It Suppose a third brand of tea has 42 grams of
sugar in 2 servings. sugar in 2 servings. How does this compare to the brand that has to the brand that has
more sugar per serving?
Sample answer: This brand has the same amount of sugar per serving as Aunt Maggie's lced Tea.

 \square
 \square
\qquad

Interactive Presentation

Apply, Nutrition

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to write and solve one-step multiplication equations. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. In a recent year, 12.2\% of Mali's population were active Internet users. There are 2.21 million active Internet users in Mali. What is the total population of Mali? Write and solve an equation. Let p represent the total population of Mali in millions; $0.122 p=2.21$; $p \approx 18.11$ million people

ASSESS AND DIFFERENTIATE

(II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 9, 11, 13-16
- Extension: Extension Resources
- ALEKS One-Step Equations, Applications of Equations

IF students score 66-89\% on the Checks,
Ol
THEN assign:

- Practice, Exercises 1-9, 11, 13, 14
- Extension: Extension Resources
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- Q ALEKS Introduction to One-Step Equations

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- \square ALEKS Introduction to One-Step Equations

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	model a real-world problem with a one-step multiplication equation	$1-4$
1	solve one-step multiplication equations using a model and the Division Property of Equality	5,6
1	solve one-step multiplication equations involving fractions using the Division Property of Equality	7,8
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving one-step multiplication equations	11,12
3	higher-order and critical thinking skills	

Common Misconception

Students may struggle with division of fractions. In Exercises 7-8, students may confuse their understanding of dividing fractions with other operations with fractions. They may try to find a common denominator before dividing. You may wish to have students practice their fluency with all of the four operations with fractions. It may be helpful to have them create a chart that illustrates how to add, subtract, multiply, and divide with fractions.
 0. Go online Y ou can complete your homework online
Y esterdat $\frac{1}{5}$ hour to waik a mile. Write a multiplication equation that can d the number of miles
${ }_{5}^{1} m=\frac{1}{2}$
4. An express delivery company charges $\$ 3.25$ per pound to mail a package Write a multiplication equation that can be used to find the weight of the package in pounds. Example 1)
$3.25 p=9.75$

Solve each equation. Check your solution. (Examples 2 and 3)
5. $12=6 \times 2$
6. $3 z=15 \quad 5$
7. $\frac{3}{4} z=\frac{2}{3} \frac{8}{9}$
8. $\frac{1}{2}=\frac{5}{8} w \frac{4}{5}$
9. $60.536=9.2 j 6.58$

Apply *indicates multi-step problem
*11. Mira is comparing two different types of popcorn. The table shows the nutritional information. She wants to compare the number of Calories per cup for each type of popcorn. Which type has more Calories per cup? How many more?
Caramel Popcorn; 38 Calories
"12. The table shows the nutritional information for two different brands of apple juice. Marcus wants to compare the number of carbohydrates in a single serving of each brand. Which brand has more carbohydrates per serving? How many more?

Brand A; 1 g

Higher-Order Thinking Problems
13. Reason Abstractly Earline needs to save $\$ 367.50$ for her summer vacation. She plans on saving $\$ 52.50$ per week. in 6 weeks, will she have enough money? Explain.
no; Sample answer: Solve the equation $52.5 x=367.50$ to find the number of weeks she needs to save. She needs to save for 7 weeks. Since $7>6$, she will not have enough money in 6 weeks.
15.

NTIF Persevere with Problems Do the equations $\frac{1}{3}=3 x$ and $\frac{1}{3} \div x=3$ have the same solution? Explain why or why not.
yes; Sample answer: If you solve each equation you get a value of $x=\frac{1}{9}$. If you replace x with $\frac{1}{9}$ in each equation it makes the equation true. So, $\frac{1}{3}=3 \times \frac{1}{9}$
or $\frac{1}{3}$ and $\frac{11}{\div} \div=3$.
368 \qquad

$\begin{aligned} & \text { Light Popcorn } \\ & 3 \frac{1}{2} \text { cups } \end{aligned}$	Caramel Popcorn $2 \frac{1}{2}$ cups
Calories: 105	Calories: 170
Carbohydrates: 21 g Carbohydrates: 15 g	
Fat: Og	Fat: 11 g

Brand A (4 servings)	Brand B (3 servings)
Calories: 480	Calories: 360
Carbohydrates: 120 g Carbohycrates: 87 g	
Sugars: 120 g	Sugar: 78 g

14. Find the Error A student is solving the equation $3 x=9$. Find the student's mistake and correct it.
$3 x=9$
$3 \cdot 3 x=9 \cdot 3$
$x=27$
Sample answer: The student multiplied each side by 3 instead of dividing each side by 3 . The correct solution should be $x=3$.
15. Create Write and solve a real-world problem involving decimals that can be solved with a one-step multiplication equation.
Sample answer: A grocery store is selling a can of cat food for $\$ 0.60$. Piper spent $\$ 3.60$ on cans of cat food. Write and solve a multiplication equation to find how many cans she bought; $0.6 \cdot c=3.6 ; 6$ cans

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 13, students will determine if Earline will have enough money. Encourage students to use reasoning to determine if she will have enough money.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 14, students will find the error made by another student and correct it. Students should be able to explain how the error was made and how to fix it.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 15 , students will determine if the equations have the same solution. Encourage students to solve each equation and then compare the solutions to each other.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Be sure everyone understands.

Use with Exercises 11-12 Have students work in groups of 3-4 to solve the problem in Exercise 11. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 12.

Create your own higher-order thinking problem.

Use with Exercises 13-16 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Learn Write Division Equations

Objective

Students will learn how to model a real-world problem with a one-step division equation.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 3, encourage them to construct a plausible argument to explain why defining a variable is an important part of the process of writing an equation.

Teaching Notes
 \section*{SUIDE1}

You may wish to have students create their own word problem that involves division, such as One fourth of the students at Hamilton Middle School play a sport. There are 180 students that play a sport. How many students attend Hamilton Middle School? Have students choose a variable, such as x or s, and clearly explain what that variable represents (the number of students attending Hamilton Middle School). Then have them write an equation that models the problem, such as $\frac{x}{4}=180$, $\frac{s}{4}=180,180=\frac{X}{4}$, or $180=\frac{s}{4}$. Be sure they understand there can be more than one way to write the equation. Have them explain, however, why the equation $4 x=180$ does not model the problem. Some students may choose to write a multiplication equation, such as $\frac{1}{4} x=180$. Have students explain why the expressions $\frac{X}{4}$ and $\frac{1}{4} x$ are equivalent.
(continued on next page)

DIFFERENTIATE

Enrichment Activity |BL

Have students work with a partner to create two different real-world problems. One problem should be able to be modeled with a onestep multiplication equation. The other problem should be able to be modeled with a one-step division equation. Have pairs trade problems with another pair of students. Each pair should generate the appropriate equations that model each problem.
Have them check their equations with the original pair of students, and discuss and resolve any differences. Finally, have pairs solve the multiplication equation using inverse operations and properties of equality, and then make a conjecture as to how they might be able to solve the division equations.

Interactive Presentation

Learn, Write Division Equations, Slide 1 of 3
FLASHCARDS
On Slide 1, students use Flashcards to view the steps for writing an equation to represent a real-world problem.

One-Step Division Equations

LESSON GOAL

Students will use the Multiplication Property of Equality to write and solve one-step division equations.

1 LAUNCH

Launch the lesson with a warm up and an introduction.
EXPLORE AND DEVELOP

Explore: Use Bar Diagrams to Write Division EquationsLearn: Write Division Equations
Example 1: Write Division Equations
Learn: Solve Division Equations
Example 2: Solve Division Equations
Example 3: Solve Division Equations
Apply: Catering

Have your students complete the Checks online.

REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 38 of the Language Development Handbook to help your students build mathematical language related to solving onestep division equations.

ELL. You can use the tips and suggestions on page T38 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.B by using the Multiplication Property of Equality to write and solve one-step division equations.
Standards for Mathematical Content: 6.EE.B.6, 6.EE.B. 7
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5

Coherence

Vertical Alignment

Previous

Students used the Division Property of Equality to write and solve one-step multiplication equations.

6.EE.B.6, 6.EE.B. 7

Now

Students use the Multiplication Property of Equality to write and solve one-step division equations.
6.EE.B.6, 6.EE.B. 7

Next
Students will write, solve, and graph inequalities.
6.EE.B.5, 6.EE.B. 8

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of one-step division equations. They learn how to use a model and the Multiplication Property of Equality to build fluency with solving one-step division equations involving whole numbers and fractions. They apply their understanding of writing and solving one-step division equations to solve multi-step, real-world problems.

Mathematical Background

To solve a one-step division equation of the form $\frac{x}{a}=b$, where a and b are given values, $a \neq 0$, and x is an unknown, use the Multiplication Property of Equality to multiply each side of the equation by a. The solution is $x=a b$.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vorablifiy will. Wan Lewn?

Multiplication Property of Equality

 tuen

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- performing operations with whole numbers (Exercises 1-4)
- writing and evaluating expressions (Exercise 5)

Answers

1. 2
2. 4
2.7
3. Let x be the number of pictures developed;
4. 15
$\$ 2.75+\$ 0.05 x ; \$ 8.50$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the budget of an amusement park, as an equation.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Using what you know about the Division Property of Equality, what do you think the Multiplication Property of Equality states? Sample answer: I think the Multiplication Property of Equality might state that when each side of an equation is multiplied by the same number, the equation remains equal.

Explore Use Bar Diagrams to Write Division Equations

Objective

Students will explore how to use a model to write division equations.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with two word problems that can be represented by a division equation. Throughout this activity, students will identify known and unknown pieces of information and then use a bar diagram to write an equation for each situation.

@Inquiry Question
How can you use a model to write division equations? Sample answer: The bar is divided into the same number of sections as the given divisor. The unknown is represented by the entire bar.

(3)
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3-

Mathematical Discourse

How could you use a bar diagram to represent what you know and what you need to find? Sample answer: Label the total with c, the total amount available for the gift. Divide the bar into 12 equal sections and label each section $\$ 8$.
(continued on next page)

Interactive Presentation

x

Use Bar Diagrams to Write Division Equations
(1) Introducing the Incpiry Owostion

Explore, Slide 1 of 8

Select the What Hou Know and whot You Nevd to And butbins to determine the ketome vilues and the uninown yalve.

Explore, Slide 3 of 8

CLICK
On Slide 3, students highlight what they know and what they need to find.

On diagram can be created to model the situation.

Interactive Presentation

Explore, Slide 7 of 8

CLICK
On Slide 7, students move through the slides to model the problem with a bar diagram.

On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Use Bar Diagrams to Write Division Equations (continued)

15 Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Students should identify the important quantities in the real-world problem, decontextualize them, and use the bar diagram to represent them symbolically.

5 Use Appropriate Tools Strategically Encourage students to examine the correspondences between the bar diagrams and equations, and how they could eventually transition from the problem statement to writing the equation without the bar diagram.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 5 are shown.

Talk About It!

SLIDE 5

Mathematical Discourse

What was the equation you wrote? How did the bar diagram help you write the equation? See students' responses.

Can you also write a multiplication equation to represent the situation? If so, explain how it relates to the division equation. Sample answer: The multiplication equation 12 times 8 represents the problem. Because division and multiplication are inverse operations, equations can be written using each operation to represent the same situation.

1 CONCEPTUAL UNDERSTANDING

Learn Write Division Equations (continued)

3 Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to write a division equation to model a real-world problem.

Talk About It!
SLIDE3

Mathematical Discourse

Why is it important to define a variable before writing an equation?
Sample answer: Before writing an equation, it is important to define what is the unknown quantity so that it is clear what is meant by the variable.

Example 1 Write Division Equations

Objective

Students will model a real-world problem with a one-step division equation.

Questions for Mathematical Discourse

SLIDE 4

Al How do you know that this should be a division equation? Sample answer: The average distance per day is the quotient of the total distance and the number of days traveled.

OL How can you read the equation in words? Sample answer: The total distance, b, divided by the total number of days, 3 , equals the average distance per day, 48.5.

O]. Can you write the equation as $3 \div b=48.5$? Explain. no; Sample answer: Division is not commutative. The total distance divided by 3 is not equivalent to 3 divided by the total distance.
[BL Can you solve the problem without writing an equation? Explain. yes; Sample answer: Multiply the number of days, 3, by the average distance per day, 48.5 , to find the total distance traveled, 145.5 .

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Solve Division Equations

Objective

Students will learn how to solve one-step division equations using a model and the Multiplication Property of Equality.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively, 5 Use Appropriate Tools Strategically As students discuss the Talk About It! question on Slide 3, encourage them to reason about the types of tiles that are available for use when using algebra tiles, and why it might be difficult to use algebra tiles to model a division equation in which the variable is being divided by a number.

Go Online to have your students watch the video on Slide 1. The video illustrates how to solve one-step division equations using a bar diagram.

Teaching Notes

SUIDE1

You may wish to pause the video after the equation $\frac{X}{4}=6$ is shown, and ask students to work with a partner to use bar diagrams to model and solve the equation. Have them share their process and solution with another pair of students, or the entire class. Then have them continue watching the video to compare their process and solution with the one shown. Repeat using a similar process for the second equation in the video, $\frac{x}{3}=7$.

Talk About It!

SLIDE 3

Mathematical Discourse

Why might it be difficult to use algebra tiles to model a division equation, such as $\frac{x}{3}=4$? Sample answer: There are only whole x-tiles to model quantities such as $x, 2 x$, and so on. There are no fractional x-tiles to model $\frac{x}{3}$ कुr ${ }^{-1} x$.

Check
Sophia has $\$ 16.50$ to spend on party favors. She wants to spend $\$ 2.75$ per person. Write a multiplication equation that can be used to find the number of people Sophia can have at the party.

$$
\text { Siow Sample answer: } \frac{16.50}{f}=2.75
$$

Qoo Online Y ou can complete an Extra Example online

Learn Solve Division Equations
Y ou can use substitution, models, or properties of mathematics to solve division equations.
Qo Online Watch the video to learn how to solve one-step division equations using bar diagrams.

The video demonstrates how to find the value of x in the equation $\frac{x}{4}=6$.
Draw a bar to represent the total. The total length of the bar represents the original amount, x. Divide the bar into four sections to show division by 4 . Then work backward to solve the equation.

Because \times represents the entire length of the bar, and there are four equal sections of 6 , multiply 6 by 4 to find the value of x. So, $x=24$.

To solve a division equation, use the inverse operation, multiplication. When you solve an equation by multiplying each side of the equation by the same number, you are using the Multiplication Property of by the same number, you are using the Multiplication Property of Equality.

Words	Examples
If you multiply each side of	If $6=6$, then
an equation by the same	$6 \times 5=6 \times 5$
number, the two sides	If $x \div 3=4$, then
remain equal.	$x \div 3 \times 3=4 \times 3$.

Interactive Presentation

Learn, Solve Division Equations, Slide 2 of 3

Interactive Presentation

Example 3, Solve Division Equations, Slide 1 of 2

TYPE	On Slide 1 of Example 3, students solve the equation.
CHECK	Students complete the Check exercises online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Example 2 Solve Division Equations

Objective
Students will solve one-step division equations involving whole numbers using the Multiplication Property of Equality.

Questions for Mathematical Discourse

SLIDE 2

A… How can you read the equation in words? Sample answer:
x divided by 9 equals 13 .
Olin Explain why you multiply each side of the equation by 9 . Sample answer: The variable is being divided by 9 . To undo that operation, use the inverse operation, which is multiplication.
10I. How can you check your solution? Sample answer: Substitute 117 for x in the original equation to verify that the statement is true.
|31. Write a real-world scenario that can be represented by this equation. Sample answer: Nine players are splitting the cost of a hotel room. If each player pays $\$ 13$, what is the total cost of the room?

Example 3 Solve Division Equations

Objective

Students will solve one-step division equations involving fractions using the Multiplication Property of Equality.

Questions for Mathematical Discourse

SIDE1

Aㄴ. How can you read this equation in words? Sample answer: c divided by three is equal to two fifths.
OII Explain why you multiply each side of the equation by 3. Sample answer: The variable is being divided by 3 . To undo that operation, use the inverse operation, which is multiplication.
OL How can you check your solution? Sample answer: Substitute $1 \frac{1}{5}$ for c in the original equation to verify that the statement is true.
BL. Write a multiplication equation that is equivalent to this equation. Sample answer: $\frac{1}{3} c=\frac{2}{5}$

(Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Catering

Objective

Students will come up with their own strategy to solve an application problem involving serving portions of food during a party.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What are the important numbers and words in the problem?

- How could you define the variables to use in the equations for the ounces of chicken and fish being served?
- What do you notice about the total ounces of chicken and fish being served?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

et Apply Catering

Dario is catering a party and serves 5.5 -ounce servings of chicken to twelve guests, and 5.25 -ounce servings of fish to nine guests. Did Dario serve more total ounces of chicken or fish? How much more?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies
3 What is your solution?
Use your strategy to solve the problem.

Dario served 18.75 more ounces of chicken than fish; See students' work.

4 How can you show your solution is reasonable?
Qrite About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Catering
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. Describe the steps you can take to solve the equation $\frac{X}{5}=4,475$. What is the total budget the amusement park director allotted for updates this year? Sample answer: Multiply each side of the equation by 5 . The overall total budget is $\$ 22,375$.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
B1 THEN assign:

- Practice, Exercises 9, 11, 13-16
- Extension: Solve One-Step Literal Equations
- ALEKS One-Step Equations, Applications of Equations

IF students score 66-89\% on the Checks, THEN assign:

- Practice, Exercises 1-9, 11, 14, 15
- Extension: Solve One-Step Literal Equations
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- ALEKS' Introduction to One-Step Equations

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Introduction to One-Step Equations

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	model a real-world problem with a one-step division equation	$1-4$
1	solve one-step division equations involving whole numbers using the Multiplication Property of Equality	5,6
1	solve one-step division equations involving fractions using the Multiplication Property of Equality	7,8
2	extend concepts learned in class to apply them in new contexts	9,10
3	solve application problems involving one-step division equations	11,12
3	higher-order and critical thinking skills	

Common Misconception

In Exercises 5-10, students may think that they need to multiply by a fraction instead of just the denominator. For example, in Exercise 5, students might multiply each side of the equation by $\frac{1}{8}$ instead of 8 . If students are having trouble with the fractions, encourage them to rewrite each expression in long-form instead of fraction form.
For Exercise 5 , students could rewrite $\frac{j}{8}$ as $j \div 8$. This should help students to understand that they need to multiply by 8 instead of $\frac{1}{8}$.

Solve each equation. Check your solution. (Examples 2 and 3)
5. $6=\frac{j}{8} 48 \quad$ 6. $\frac{k}{7}=749$
$\begin{array}{ll}\text { 7. } \frac{2}{4}=\frac{2}{3} \quad \frac{8}{3} \text { or } 2 \frac{2}{3} & \text { B. } \frac{1}{2}=\frac{w}{8} \quad 4\end{array}$
9. $5.31=\frac{p}{9.2} 48.852$
2. A box of Mason's cereal contains 479.4 cereal per serving. Write a division equation that could be used to find the number of sevigs of cereal Mason can eat from one $\frac{479.4}{s}=28.2$
3. On a 3 -hour bike ride, Rod averaged 5.25 miles per hour. Write a division auation that could be used to find th
$d \div 5.25=3$
Contained 54 ounces of jelly beans that divided 54 ounces of jelly beans. She contained 6.75 ounces each. Write a division equation that could be used to find the $\frac{54}{b}=6.75$

Apply *indicates multi-step problem
${ }^{*} 11$. Each month the student council sells snack bags The table shows the number of ounces in each bag. The first month, the student council sold 50 bags of cheese crackers and 65 bags of pretzels. How many total ounces of each snack did they sell? What is the difference in the total number of ounces?
cheese crackers: $\mathbf{1 1 2 . 5}$ oz; pretzels: $\mathbf{2 2 7 . 5} \mathbf{~ o z}$; 115 oz
*12. Jason bought two different types of boards to make picture frames. He bought a red cedar board and will cut it into eight 10.25 -inch pieces. He also bought a tiger maple board that he will cut into sixteen 10.5 -inch pieces. Determine the difference between the boards' total lengths.

86 in.
F) Higher-Order Thinking Problems
13. Reason Abstractly Shawna noticed that the distance from her house to the distance from her house to the mountains. What is the distance from her house to the mountains? Explain how you solved. 200 miles; Sample answer: Write and solve the division equation $\frac{m}{5}=40$; 5×40 is 200 . So, $m=200$ miles.
. Justify Conclusions A model car is $\frac{1}{24}$ the size of the actual car. If a model car is Justify your answer. ustify your answer.
186 in .; Sample answer: The length of the actual car c divided by 24 , the scale, equals the length of the model car: $\frac{c}{24}=7.75$; So $c=186$ in
14.
. 7. Find the Error A student is solving the equation $\frac{x}{3}=6$. Find the student's mistake and correct it. $\frac{x}{3}=6$ $\frac{x}{3} \div 3=6 \div 3$
$x=2$
Sample answer: The student divided Sample answer: The student divided each side by 3 . The correct solution is $x=18$.
16. Create Write and solve a real-world problem that can be solved with a one-step division equation. Samplen. Sample answer: At the end of a soccer season, four families decide to buy the coach a gift certificate to a sporting goods store. Each family contributes $\$ 25$ towards the gift certificate. Write and solve a division equation to fin
how much the gift certificate is how much the gift certificate is worth.; $\frac{g}{4}=25 ; \$ 100$

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 13, students will determine the distance from Shawna's house to the mountains. Encourage them to use reasoning to determine the distance.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 14, students will find the student's mistake and correct it. Students should provide a short explanation of the error.

In Exercise 15, students will determine how long the car actually is. Encourage students to find the length and then construct a explanation that supports their findings.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Solve the problem another way.

Use with Exercises 11-12 Have students work in groups of 3-4. After completing Exercise 11, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method. Repeat this process for Exercise 12.

Clearly explain your strategy.
Use with Exercise 15 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would find the length of the actual car, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.
6.EE.B.5, 6.EE.B. 8

Learn Inequalities

Objective

Students will understand how to differentiate between an inequality and an equation.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 3, encourage them to analyze the structure of an equation in order to identify the differences and similarities between an equation and an inequality.
(3) Go Online to find additional teaching notes.

Talk About It!
 SLIDEBE

Mathematical Discourse

Compare and contrast an equation and an inequality. Sample answer: They both can contain numbers, operations, and variables. The solution of an equation is exactly one value. The solution of an inequality is a range of values.

DIFFERENTIATE

Enrichment Activity 필

To extend students' understanding of inequalities, have them complete the following activity.

Have students work in pairs to generate four real-world scenarios in which either an equation or an inequality can be used to model each. Have them be sure to define the variable in each of their scenarios. Then have them trade their real-world scenarios with a partner. Each pair should determine whether an equation or an inequality can be used to model each scenario, and then write the corresponding equation or inequality. Have pairs check each other's work, and discuss and resolve any differences. Some sample scenarios are shown.

The minimum cost c of the repairs was $\$ 150.00$. inequality; $c \geq 150$
The number of people p who participated in the contest was 400 . equation; $p=400$

A chicken lays less than 3 eggs e per week. inequality; $e<3$

Interactive Presentation

[^13]
LESSON GOAL

Students will write, solve, and graph inequalities.

1 LAUNCH

8. Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Inequalities
Learn: Inequalities
Learn: Write Inequalities
Example 1: Write Inequalities
Learn: Graph Inequalities
Examples 2-3: Graph Inequalities
Learn: Find Solutions of an Inequality
Examples 4-6: Find Solutions of an Inequality
Apply: Earnings

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	LIB	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATH Take Another Look	\bullet		
Extension: Graph Compound Inequalities		\bullet	\bullet
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 39 of the Language Development Handbook to help your students build mathematical language related to understanding inequalities.
IELIL You can use the tips and suggestions on page T39 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.B by writing, solving, and graphing inequalities.
Standards for Mathematical Content: 6.EE.B.5, 6.EE.B.8, Also addresses 6.NS.C.6.C, 6.EE.B. 6
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7, MP8

Coherence

Vertical Alignment

Previous

Students used the Multiplication Property of Equality to write and solve one-step division equations.
6.EE.B.6, 6.EE.B. 7

Now

Students write, solve, and graph inequalities.
6.EE.B.5, 6.EE.B. 8

Next

Students will identify and use independent and dependent variables in relationships between two variables.
6.EE.C. 9

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of the four inequality symbols and the substitution method to develop understanding of inequalities. They use this understanding to build fluency with writing, solving, and graphing inequalities involving whole numbers, decimals, and fractions.
They also apply this understanding to solve multi-step, real-world problems.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- writing and evaluating expressions, operations with decimals (Exercise 1)
- understanding number lines (Exercise 2)
- ordering rational numbers (Exercise 3)

Answers

1. $\$ 3.50+\$ 2.75 \cdot 4=\$ 14.50$	$3.7^{\circ}, 5^{\circ}, 3^{\circ}, 1^{\circ}, 1^{\circ}, 0^{\circ},-2^{\circ}$,
2. See Warm Up slide online	$-4^{\circ},-4^{\circ}$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about using inequalities when adhering to fishing regulations.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- The term inequality has the same prefix as the term incorrect. Using what you know about the terms equality, correct, and incorrect, how might you infer the meaning of the term inequality? Sample answer: Since incorrect means not correct, and equality implies that two quantities are equal, an inequality might mean that two quantities are not equal.

Explore Inequalities

Objective

Students will explore inequalities using a balance and shapes with unknown values.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with a balance and various shapes.
Throughout this activity, students will use inequalities to express the comparisons they find on the balance. Encourage students to analyze the relationship between the shapes using the movements of the scale when the shapes are added.

Q Inquiry Question

How can you use a balance to analyze inequalities? Sample answer: I can use a balance to determine which value is greater.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

What happens to the balance? What does this result tell you about the star and the heart? Sample answer: The left side goes up and the right side goes down. The star weighs less than the heart.
(continued on next page)

Interactive Presentation

Explore, Slide 4 of 7

DRAG AND DROP

Throughout the Explore, students use a drag and drop activity to write an inequality to represent the balances.

On Slide 7, students respond to the Inquiry Question and view a sample answer.

Explore Inequalities (continued)

TiP Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to examine the correspondences between the shapes and how they affect the position of the scale.
5 Use Appropriate Tools Strategically Students will use Web Sketchpad in order to write an inequality to represent the balance.

8 Look for and Express Regularity in Repeated Reasoning Students will use repetitive reasoning in order to make observations about the weight of the objects and use precision to order the objects from lightest to heaviest.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 4 are shown.

Talk About It!

SLIDEA

Mathematical Discourse

What happens to the balance? What does this result tell you about the square and the star? Sample answer: The left side goes up and the right side goes down; the square weighs less than the star.

Your Notes,	Learn Write Inequalities

Your Notes	Learn Write Inequalities You can use these steps to write an inequality to represent a real-world problem.
Describe the mathematics of the problem. Use only the most important words. Identify key words. Variables	
Define a variable to represent the unknown quantity.	
Inequality	
	Translate the words into an algebraic inequality.

To write an inequality to represent a real-world problem, look for key words, such as at least, at most, no more than, no less than, less than, or greater than

Go Online Watch the animation to see how to write an inequality for the following scenario.
A person must be at least 18 years old to vote. Write an inequality to represent the possible ages of a voter.
Words
Describe the mathematics of the problem.
The age of a voter is greater than or equal to 18 years.
Variable
Define the variable.
Let a represent the age of a voter.
Inequality
Write an inequality.
$a \geq 18$

Pause and Reflect

Compare and contrast the equation $a=18$ and the inequality $a \geq 18$. Why does the inequality represent the voter's age scenario and not the equation? Describe a scenario for which the equation might be the better representation.


```
378 Module 6. Equations and Inequalities
```


Interactive Presentation

Learn, Write Inequalities, Slide 1 of 3

378 Module 6 - Equations and Inequalities

1 CONCEPTUAL UNDERSTANDING

Learn Write Inequalities

Objective
Students will learn how to model a real-world problem with an inequality.

(113) Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language to explain how they know "at least" means using the \geq symbol.

0Go Online to have your students watch the animation on Slide 2. The animation illustrates how to write an inequality to model a real-world problem.

Teaching Notes
 SLIDE1

Point out that the steps for writing an inequality to model a real-world problem are similar to writing an equation to model a real-world problem. You may wish to have students list the key words that would indicate an inequality should be written, as opposed to an equation. Sample responses can include, but are not limited to, at least, at most, no more than, greater than, no less than, etc.

SLIDE2

You may wish to pause the animation after the real-world scenario is presented. Ask students to work with a partner to determine the key words from the scenario that indicate an inequality best represents the scenario, as opposed to an equation. Students should note that the key words at least indicate an inequality. Have students make a conjecture as to possible inequalities that can be written. Remind them that they must define a variable before writing the inequality. Have them share their inequalities with the class. Then have them continue watching the animation to compare their inequalities with the one shown.

Talk About It!

SLIDE 3

Mathematical Discourse

How do you know that the key words "at least" indicate using the \geq symbol? Sample answer: "At least" means that the quantity can be that same number or greater.

3 APPLICATION

Example 1 Write Inequalities

Objective

Students will model a real-world problem with an inequality.

Questions for Mathematical Discourse

SLIDE 2:

AL. In your own words, describe what your age must be in order to have a valid driver's license. Sample answer: My age must be greater than or equal to 16.

OL What key words are used in the statement of the problem? at least

OL Can you be exactly 16 years old? Explain. yes; Sample answer: The words at least mean that you can be 16 or older.
[B1. What are some values of a that would meet the minimum age requirement? Sample answers: $a=17, a=21, a=35, a=49$

SLIDE3

AL What is the unknown you need to represent with the variable? the ages at which I can have a driver's license

OL. What symbol can be used in the inequality to represent the situation? Explain your reasoning. Sample answer: \geq; Because I can be exactly 16 and have a driver's license, the symbol is greater than or equal to.

P1. You have to be at least 18 years old to vote in a government election. What variable might you choose to use in this situation? Define that variable. Sample answer: a, representing the ages of people that can vote

SLIDE 4

AL How does the variable a relate to the number 16 , within the context of the problem? Sample answer: a, my current age, must be at least 16 in order to have a license

OL. Why is the inequality $a \leq 16$ not correct? Sample answer: The inequality $a \leq 16$ means that 16 is the maximum age I can be in order to have a driver's license.
[BL. Is there another way you can write the inequality? Explain. yes; Sample answer: $16 \leq a$; This inequality means that 16 is the minimum age I can be in order to have a driver's license.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
a Example 1 Write Inequalities
In some states, you must be at least 16 years old to have a driver's license.
Write an inequality to represent the age at which you can have a driver's license.

So, the inequality $a \geq 16$ represents the situation.

Check
A certain hotel only permits dogs that weigh less than 50 pounds to
stay with hotel guests. Write an inequality that can be used to represent the weight w of dogs that are permitted to stay at the hotel. Sample answer: $w<50$

Q go Online Y ou can complete an Extra Example online.

Pause and Reflect
Refer to the Example and Check. Why do both of these situations represent inequalities and not equations? Explain your reasoning.

Think About It What are the key words that will help you determine which use?

See students' responses.

Talk About It!
Explain why the inequality is $a \geq 16$ and not $a>16$.

Sample answer: The inequality $a>16$ means that I must be means that 16 not older than 16, no exactly 16 . Butican a driver's license.

a driver's license.
Lesson 6 -6 . inequalties 379

Interactive Presentation

Example 1, Write Inequalities, Slide 4 of 6
On Slide 2 and Slide 3, students describe
the problem and define a variable.

Learn Graph Inequalities

Because an inequality like $x>5$ or $y \leq 100$ has infinitely many solutions, it is impossible to list all of them. So, inequalities can be graphed on a number line. A number line graph helps you to visualize all of the values that make the inequality true.
When you graph an inequality on a number line, place a dot at the value shown in the inequality. An open dot means the number is not included (< or >) and a closed dot means the number is included ($<$ or \geq) Then draw an arrow in the correct direction to include all of the solutions.

Q Go Online Watch the video to learn more about graphing inequalities on a number line.

The video demonstrates how to graph the inequalities $x>3, x<-1$, $x \leq 2$, and $x \geq-7$.
Graph the inequality $x>3$.
Place an open dot at 3 to indicate that 3 is not a solution
$+1+1+1+$
0123456

Draw an arrow to the right of 3 to indicate that any number greater
than 3 is a solution. For example, $3.1,3.5,4,4.8$, and 6 are all solutions to the inequality, There are, in fact, an infinite number of olutions
$\xrightarrow[0123456]{+1 \rightarrow}$

Graph the inequality $x<-1$
Place an open dot at -1 to indicate that -1 is not a solution.

$-4-3-2-1012$

Draw an arrow to the left of -1 to indicate that any number less than -1 is a solution. For example, $-1.01,-1.9,-3$, and -3.4 are all solutions to the inequality. As with $x>3$, there are an infinite number
of solutions to the inequality $x<-1$. of solutions to the inequality $x<-$
$-4-3-2-1012$

Interactive Presentation

Learn, Graph Inequalities, Slide 2 of 2
WATCH

On Slide 1, students watch a video to learn more about how to graph inequalities on a number line.

CLICK
On Slide 2, students use the interactive tool to understand how to graph inequalities.

1 CONCEPTUAL UNDERSTANDING

Learn Graph Inequalities

Objective
Students will learn how to graph inequalities on a number line.

Teaching Notes

SLIDE1

To emphasize that an inequality can have infinitely many solutions, you may wish to ask students to name all of the possible solutions of the inequality $x>5$. Draw a number line on the board and ask students to make a conjecture as to how they can represent all of the possible solutions. Some students may only think of whole-number solutions, such as 6,7 , and 8 . Remind them that any rational number greater than 5 is a solution, such as 5.1 or 5.01 . Be sure students understand they can draw or shade a line to include all of the possible solutions, and how to indicate whether a number is included (closed dot) or excluded (open dot) from the solution set. Have students watch the video to help solidify their understanding of graphing inequalities on a number line.

Go Online to have your students watch the video on Slide 1. The video illustrates how to graph inequalities on a number line.
(continued on next page)

Learn Graph Inequalities (continued)

Teaching Notes

SUDE 2

Have students work with a partner to use the interactive tool on Slide 2. Prior to selecting one of the inequalities, have them describe how they would graph the inequality. After they select each inequality, they will determine whether to use an open or closed dot, and in which direction to draw the line. Have them use the structure of the inequality - in particular, the inequality symbol - to explain why they should use an open or closed dot, and to justify the direction in which they will draw the line.

Example 2 Graph Inequalities

Objective
Students will graph inequalities involving decimals on a number line.

Questions for Mathematical Discourse SUIDE 2

AL What does < mean? How can you use this information to determine whether or not -5.75 should be included as a solution for x ? < means strictly less than; Sample answer: Since x must be strictly less than $-5.75, x$ cannot be equal to -5.75 .

OL How does knowing that -5.75 is not included as a solution for x help you determine whether the dot is open or closed? Sample answer: Since -5.75 is not a solution for x, the dot should be open. An open dot indicates that that value is not part of the graphed solution.

OL. Why is the graph a solid line that extends forever to the left? Sample answer: There are infinitely many solutions. All of the possible fractions and decimals between the whole number values that are to the left of -5.75 are solutions of this inequality. To represent them, I draw a solid line that extends forever in that direction.
31. How will the graph change if the inequality was $x \leq-5.75$? How will it remain the same? Sample answer: The dot will be closed because -5.75 would now be a solution. The arrow would still extend forever to the left.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Graph the inequality $x \leq 2$.

Place a closed dot at 2 to indicate that 2 is a solution.

0123456

Draw an arrow to the left of 2 to indicate that any number less than 2 is also a solution.
$+1+1+1+$
0123456

Graph the inequality $x \geq-7$.
Place a closed dot at -7 to indicate that -7 is a solution

```
-10-9-8-7 -6 -5 -4
```

Draw an arrow to the right of -7 to indicate that any number greater than -7 is also a solution.
$\xrightarrow[-10-9-8-7]{\rightarrow-1}$
\qquad
Example 2 Graph Inequalities
Graph the inequality $x<-5.75$.
Place an open dot at -5.75 . Draw an arrow to the left of -5.75 . The values that lie on the line make the inequality true.

Check
Graph the inequality $x>1 \frac{2}{5}$.

Q Talk About It! Why do you think a closed dot indicates the number is a solution?

Sample answer: Filling in the dot means the number is graphed and included. \square \square \square \square | \square |
| :--- |
| \square | \square

Think About It What does the symbol <tell you about the graph?

The graph will have an open dot with an arrow that points to the left.

Talk About It! How can you check tha your graph is correct?

Sample answer:
The numbers that are included in the graph, $-6,-7,-8 \ldots$ are numbers that are less than -5.75 .

Interactive Presentation

Example 2, Graph Inequalities, Slide 2 of 4
On Slide 2, students move through the
steps to determine how to graph the
inequality.

- Think About It! What does the symbol z tell you about the graph?
The graph will have a closed dot with an arrow that points to the right.

(P)Talk About It!

How can you check that your graph is
correct?
Sample answer: The

$$
\frac{1}{-1.75-1.5-1.25-1.0-0.75-0.5-0.25}
$$ numbers that are included in the graph, $\frac{3}{5} \frac{4}{5}, 1$, and so on are numbers that are greater than $\frac{2}{5}$.

Example 3 Graph Inequalities
Graph the inequality $x \geq \frac{2}{5}$.

Check
Graph the inequality $x \leq-0.75$

Q Go Oniline Y ou can complete an Extra Example online.

Pause and Reflect
Did you make any errors when completing the Check exercise? What can you do to make sure you don't repeat that error in the future?

32 Module 6 . Equations and Inequalities

Interactive Presentation

Example 3, Graph Inequalities, Slide 2 of 4

On Slide 2, students use the Number Line eTool to graph the inequality.

Students complete the Check exercise online to determine if they are ready to move on.

Example 3 Graph Inequalities

Objective
Students will graph inequalities involving fractions on a number line.

(17) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to make sense of the graph by checking possible values of their graphed solution to verify they are solutions of the inequality.
5 Use Appropriate Tools Strategically Students will use the Number Line eTool to graph the inequality.

6 Attend to Precision Have students pay careful attention to whether the dot should be open or closed, and in which direction the arrow should extend.

Questions for Mathematical Discourse

SUIDE 2

Between which two whole numbers will you graph $\frac{2}{5}$? between 0 and 1

ALI How can you read the inequality? Sample answer: x is greater than or equal to $\frac{2}{5}$.
OL Is $\frac{2}{5}$ a solution of the inequality? How do you know? yes; Sample answer: The inequality symbol means greater than or equal to.
OL. In which direction does the symbol \geq indicate that the arrow will be pointing? Why does this make sense? to the right; Sample answer: This makes sense because numbers that are greater than $\frac{2}{5}$ are numbers to the right of $\frac{2}{5}$.
B․ The inequality $-\frac{2}{5}<x<\frac{2}{5}$ means that x is between $-\frac{2}{5}$ and $\frac{2}{5}$. What do you think the graph representing this inequality might look like? Sample answer: The graph would have open dots at $-\frac{2}{5}$ and $\frac{2}{5}$ and a solid line between them, since x can be any value that lies between these numbers.

3
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Find Solutions of an Inequality

Objective

Students will learn how to solve one-step inequalities using substitution.

Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SLIDE 2

Mathematical Discourse

You found that 8 and 9 are solutions of the inequality $2+x>9$. Are there other solutions? Can you list them all? Explain your reasoning. Sample answer: There are other solutions such as $10,8.1,9 \frac{4}{5}$, etc. It is impossible to list them all, because there are infinitely many solutions.

Example 4 Find Solutions of an Inequality

Objective
Students will solve one-step inequalities using substitution.

Questions for Mathematical Discourse

SLIDE 2

AL. How can you check to see if 6 is a solution to the inequality? Sample answer: Replace a with 6 , and determine if $6+4 \leq 11$.

OL. Is the inequality true when $a=7$? Explain. yes; Sample answer: When $a=7$, the statement is $11 \leq 11$, which is a true statement.

OL. Is 7.1 a solution of the inequality? Explain. no; Sample answer: By replacing a with 7.1 , the left side of the inequality is $7.1+4$, or 11.1 , which is not less than or equal to 11.

BL. Do you think you can list the minimum number that is not a solution of the inequality? Explain. no; Sample answer: 7.1 is not a solution, but neither are 7.01 or 7.001 . Any number that is greater than 7 cannot be a solution, but there are infinitely many numbers between 7 and 7.1, or between 7 and 7.01, or between 7 and 7.001. It is impossible to list the minimum number.

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Find Solutions of an Inequality
When you replace a variable with a value that results in a true sentence, you solve the inequality. That value for the variable is a solution of the inequality. Some inequalities have infinitely many solutions. For example, any rational number greater than 4 will make the inequality $x>4$ true.
Use substitution to determine if the whole numbers 5, 6, 7, 8, and 9 are solutions of the inequality $2+x>9$.

The whole numbers 8 and 9 are solutions of the inequality.

Example 4 Find Solutions of an Inequality
Which of the following are solutions of the inequality
$a+4 \leq 11: 6,7,8$?
Complete the table to determine whether or not each number is a solution of the inequality.

So, of the given values, the solutions are 6 and 7 .

Sample answer: There are other solutions such as 10, 8. $1, \frac{2}{5}$, etc. It is impossible to list them all, because here are infinite many solutions.

D Talk About It! Y ou found that 8 and 9 nequality $2+x>9$. here other solutions? Can you list them all? Explain your reasoning.

\square

\square

\square

Sample answer:
Because 6 and 7 are
included in the graphed inequality, graphed inequality, The number 8 is not included, and therefore is not herefore is not solution of
C. Talk About It! $\xrightarrow[456789]{+}+\square$ The graph shows the How can you use the graph to see if 6,7 , or 8 are solutions of the inequality?

Interactive Presentation

Example 4, Find Solutions of an Inequality, Slide 2 of 4
On Slide 1 of the Learn, students click to
see if certain values are solutions of the
inequality.

Math History
Minute
The symbols < and >
were first introduced in
1631 in a mathematics text. The author of the
text was English
Harriot (1560 - 1621) While Harriot initially used triangular symbols to represent inequality, his editor changed them to < and >.

Check

Which of the following are solutions of the inequality
$c+28>72: 44,45,46$?

3) Oo Online Y ou can complete an Extra Example online.

Example 5 Find Solutions of an Inequality
Which of the following are solutions of the inequality $16 b>5.6: \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$?

Complete the table to determine if the inequality is true for each value of b.

Interactive Presentation

Example 5, Find Solutions of an Inequality, Slide 1 of 2

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 5 Find Solutions of an Inequality

Objective
Students will solve one-step inequalities using substitution.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to calculate accurately and efficiently when substituting the given values into the inequality to check if the inequality is true, paying careful attention to the meaning of the inequality symbol. Students should be able to efficiently and accurately calculate with fractions and decimals.

Questions for Mathematical Discourse

SIDE 1

AL How can you test to see if the given fractions are solutions of the inequality? Sample answer: I can substitute each fraction into the inequality and check to see if the statement is true or not.
OL Why is $\frac{1}{2}$ the only solution of the given numbers? $\frac{1}{2}$ is the only solution because, when substituted into only that inequality, the statement was true.
OL. How can you determine mentally that $\frac{1}{2}$ is a solution, but $\frac{1}{4}$ is not a solution? Sample answer: 16 multiplied by $\frac{1}{2}$ is the same as finding half of 16 , which is 8 , and I know 8 is greater than 5.6 ; 16 multiplied by $\frac{1}{4}$ is the same as finding one fourth of 16 , which is 4 , and I know 4 is not greater than 5.6.
BL․ Is $\left(+\frac{1}{2}\right)$ a solution of the inequality? Explain. yes; Sample answer: $3+\frac{1}{2}=3 \frac{1}{2}$. When $3 \frac{1}{2}$ is substituted into the inequality, the statement is true.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 6 Find Solutions of an Inequality

Objective

Students will solve a real-world inequality using substitution.

(1) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to make sense of the fact that since 7 is a solution of the inequality, any number less than 7 will also be a solution of the inequality.

6 Attend to Precision Encourage students to calculate accurately and efficiently when substituting the given values into the inequality to check if the inequality is true, paying careful attention to the meaning of the inequality symbol.

Questions for Mathematical Discourse

SLIDE 2

AL. How can you check to see if 9 is a solution of the inequality? Sample answer: Replace t with 9 , and determine if $60 \geq 8.40$ (9).

AL What does it mean within the context of the problem that 9 is not a solution? Sample answer: Raven cannot purchase 9 T-shirts, which means that not every teammate could receive a T -shirt.

OI Why does it make sense to only check whole number values? Sample answer: A fraction or a decimal would not make sense within the context of this problem, since Raven can only purchase whole number quantities of T -shirts.

OL How many teammates cannot receive a T-shirt? Explain. 2 teammates; Sample answer: Since 7 is a solution of the inequality, Raven can purchase 7 T-shirts. She cannot purchase 8 or 9 T-shirts, since 8 and 9 are not solutions. This means that $9-7$, or 2 teammates cannot receive a T-shirt.

How much more money would Raven need to have in order to purchase all 9 T-shirts? Explain. $\$ 15.60$; Sample answer: She has $\$ 60$. To purchase 9 T-shirts, she needs 9(\$8.40), or \$75.60. So, she needs $\$ 75.60$ - $\$ 60$, or $\$ 15.60$ more.

Wo Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Check

Which of the following are solutions of the inequality $11.75 b \leq 24.675: 2.1,2.3,2.5$?

(3) Go Online Y ou can complete an Extra Example online.

4 Example 6 Find Solutions of an Inequality Raven has $\$ 60$ to spend on matching T-shirts that cost $\$ 8.40$ each for her running team. The inequality $60 \geq 8.49$ represents the number of T -shirts t she could buy.
If there are 9 teammates on the team, how many could receive a T-shirt?
To find a solution of the inequality, substitute varying values for t. Try 9 first because that represents the number of teammates. If 9 is a solution of the inequality, then every single one of the 9 members could receive a T-shirt.

Substitute 9 Substitute 8 Substitute 7		
$60 \geq 8.40 t$	$60 \geq 8.40 t$	$60 \geq 8.40 t$
$60 \geq 8.40$ (9) 60	≥ 8.40 (8) 60	≥ 8.40 (7)
$60 \neq 75.60$	$60 \neq 67.20$	$60 \geq 58.80$

For which values is the inequality true? $\quad 7$
So, Raven can purchase no more than $\frac{7}{}$ T-shirts. This means that 7 or fewer teammates could receive a T-shirt.

Interactive Presentation

Example 6, Find Solutions of an Inequality, Slide 2 of 4
On Slide 2, students identify the solutions
of the inequality.

Apply Earnings

Objective

Students will come up with their own strategy to solve an application problem involving earning money to attend a festival.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How will you find the total hours each person worked?
- Since they get paid per hour, what will you do to find the total amount each person earned?
- What do you notice about the total amount earned for each person when compared to the cost to attend the festival?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Earnings

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Essential Question Follow-Up

How are the solutions of equations and inequalities different?

In Lessons 2-5, students learned how to solve one-step equations. In this lesson, students learned about inequalities. Encourage them to discuss with a partner how the solutions of equations might be different than the solutions of inequalities. For example, have them compare and contrast the statements $x=5, x<5, x>5, x \leq 5$, and $x \geq 5$ and their graphs on a number line.

Exit Ticket

Refer to the Exit Ticket slide. Which fish can Ollie keep? Write a mathematical argument that can be used to defend your solution. Sample answer: Substitute each length, 12,21 , and 28 , into the inequality. If the statement is true for each length, then Ollie can keep the fish. Since 12 $+3,15$, is not greater than or equal to 23 , Ollie cannot keep the 12 -inch grouper. Ollie can keep the other two groupers because $21+3,24$, is greater than 23 , and $28+3,31$, is greater than 23 .

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 13, 15-18
- Extension: Graph Compound Inequalities
- DALEKS Writing and Graphing Inequalities

IF students score 66-89\% on the Checks,
IL
THEN assign:

- Practice, Exercises 1-11, 13, 16, 18
- Extension: Graph Compound Inequalities
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-6
- ALEKS One-Step Equations, Applications of Equations

IF students score 65\% or below on the Checks, THEN assign:

- Remediation: Review Resources
- ArriveMATH Take Another Look
- ALEKS One-Step Equations, Applications of Equations

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL Practice Form B
OLPractice Form A
[BL Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK \mathbf{T}	opic	Exercises
1	model a real-world problem with an inequality	1,2
1	graph inequalities involving decimals on a number line	3,4
1	graph inequalities involving fractions on a number line	5,6
1	solve one-step inequalities using substitution	$7-10$
1	solve a real-world inequality problem using substitution	11
2	extend concepts learned in class to apply them in new contexts	12
3	solve application problems involving inequalities	13,14
3	higher-order and critical thinking skills	$15-18$

Common Misconceptions

Some students may draw the arrow facing the incorrect direction when graphing the solution of an inequality on a number line. In Exercise3, students may incorrectly draw the arrow facing to the right of -1.5 instead of to the left. They may mistakenly assume that since the less than sign opens to the right, they should draw the arrow to the right. Remind students to adhere to the meaning of each inequality symbol. Encourage them to think about what the inequality less than means, and to translate the inequality into words. If b is a number less than negative one and five-tenths, then only numbers that are to the left of -1.5 will satisfy the inequality.

Some students may confuse the symbols $<$ and \leq, or \geq and $>$. In Exercise 4, students may incorrectly use an open dot to represent the inequality instead of a closed dot. Encourage them to make sense of whether or not a closed dot would include the value 4.75 or not. Have them adhere to the precise definitions of the inequality symbols. You may wish to have them say aloud the meaning of each inequality symbol as they read it.

Apply "indicates multi-step problem
'13. Some members of a sennis spart wast to astend a semis day camp that conts $\$ 74.50$ each to attend. To earn monty. mey washed cars for \$8.25 per hour The taor shows the eatred etough monery to attend the tenns thy camp? mas inequality causpos withe to teresent ha blamion)

China, Maris: 8.25h 274.50
"14. Severail triends eacti woan to buy new bashetbal shoes than cost $\$ 597$. To eam money, they do yard work for $\$ 9$ an hour. The thoie heors the number of hours esch person dr ywr work for esch day Who eaned enougi mowe
 represen tis stuabon?
Chad, Jasent $9 \mathrm{t}=5977$

Q Higher-Order Thinking Problems
15. Create Wine a reakworid sevtence pat can be represented with an iocqualify. The inze the inequalify that repeeserts the situotion.
Sarple answer: More than 2,500 people attended the game: $x>2,500$
17. For each inequality, name a whole number that is a possibie solution. Sample answers
a. $18+a>214$ aregiven.
B. $7+r \geq 1812$
c. $24-x \leq 19$ ह
16. (W) Find the Error A stusent a writing an inequibity tor the expeession a minimyn. twhotion of $\$ 25$. Find she sludent's mistake and correct in
ass 25
Sample anverer The studeer wsed the incorect inequality symbol. The phrase "minimum" means the values will be grevter than or equal to $25 ; d \geq 25$
te. Aeason Abstractly A roler conster at a theme park requites chidres to be over 48 inches tull to nide it. lay is 48 nches tat Can he ride the roter cosster? Explan why or why not
no; Sample answer: the inequatily $f>4$ \& represents the situation. Replace h with Jays heipht in the inequality $48>48$ 48 is not greater than 48, it is equal to in. Sa, he cimnot ride the rollier coaster.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 16, students will find the student's mistake and correct it. Encourage students to find the error and then correct it, supplying a well-constructed explanation.
2 Reason Abstractly and Quantitatively In Exercise 18, students will determine if Jay can ride the roller coaster. Encourage students to use abstract reasoning to answer the question. Students should provide a well-constructed explanation along with their answer.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 13 Have students work together to prepare a brief demonstration that illustrates why this problem might require multiple steps to solve. For example, students must first determine the total hours worked for each person before solving the problem. Have each pair or group of students present their response to the class.

Be sure everyone understands.

Use with Exercises 16 and 18 Have students work in groups of 3-4 to solve the problem in Exercise 16. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 18.

Review

DINAH ZIKE FOLBABLES

[EILII A completed Foldable for this module should include a review of equations and inequalities. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! (b)

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together: Lessons 6-1, 6-2, 6-3, 6-4, and 6-5
Vocabulary TestModule Test Form B
Module Test Form A
ㄹII. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Expressions and Equations.

- Equations
- Inequalities

Essential Question

EGLㄴ․ Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How are the solutions of equations and inequalities different? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises $1-13$ mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	$1,7,10$
Multiselect	Multiple answers may be correct. Students must select all correct answers.	3,13
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	4,6
Table Item	Students complete a table by correctly classifying the information.	8,12
Grid	Students create a graph on an online number line.	11
Open Response	Students construct their own response in the area provided.	$2,5,9$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.EE.B.5	$6-1,6-6$	$1,2,12,13$
6.EE.B.6	$6-2,6-3,6-4,6-5$	$3,5,9,10$
6.EE.B.7	$6-2,6-3,6-4,6-5$	$3-10$
6.EE.B.8	$6-6$	$11-13$

Test Practice

1. Multiple Choice Which of the following is a solution of the equation $y+\frac{1}{3}=3 \frac{2}{3}$?
(Lesson 1)
(4) $2 \frac{1}{3}$
(®) $2 \frac{2}{3}$
(C) 3
2. Open Response T onya is using $\frac{1}{2}$ inch tiles along the 28 inch ledge of her bathroom counter. Use the guess, check, and revise strategy to solve the equation $3 \frac{1}{2} t=28$ to find t, the number of tiles T onya will need. Show your work. (Lesson 1)

8; Sample work:	
$3 \frac{1}{2} t=28$	$3 \frac{1}{2} t=28$
$3 \frac{1}{2}(7) \stackrel{28}{=}$	$3 \frac{1}{2}(8) \stackrel{?}{=} 28$
$24.5 \neq 28$	$28=28$

3. Multiselect T ogether, Rhonda and Margo saved $\$ 478.50$. If Rhonda saved $\$ 225$ of that total, how much did Margo save? Select the addition equation that could be used to find how much money m Margo saved. Select all that apply. (Lesson 2)
$m+478.50=225$
$\checkmark m+225=478.50$
$225+478.50=m$
$\checkmark 225+m=478.50$
$478.50+m=225$
4. Equation Editor (Lesson 2)
A. Solve $625=219+x$ for x.

$x=406$

B. Check the solution.

```
Sample work:
625=219+x
625\stackrel{?}{=}219+406
625=625
```

5. Open Response A one-topping pizza costs $\$ 12.99$. This is $\$ 6.50$ less than the cost of a specialty pizza. Write a subtraction equati that could be used to find the cost c of a specialty pizza. (Lesson 3)
$c-6.50=12.99$
6. Equation Editor Solve $1,785=x-414$ for x. (Lesson 3)
$x=2199$

7. Multiple ChoiceSolve $\frac{3}{8} d=\frac{5}{24}$ for d
(Lesson 4)
(4) $d=\frac{5}{64}$
(B) $d=\frac{5}{9}$
(C) $d=\frac{1}{6}$
(D) $d=\frac{3}{4}$
8. Table Item The nutrition information for two different bottles of orange juice is shown. Kylie wants to compare the Calories in a

	Brand A Brand B(3 servings) (2 servings)	
Calories	150	220
Protein (g)	3	4
Sugar (g)	30	44

A. Find the number of Calories per serving of each brand, then indicate the correct each brand, then hdicat Calories Brand A Brand B Neither \begin{tabular}{|c|c|c|}
per Serving \& Brand A Brand B \& $\begin{array}{c}\text { Neither } \\
\text { A nor B }\end{array}$

\hline 50 \& X \&

\hline

\hline 85 \& \& \& X

\hline 110 \& \& X \&

\hline
\end{tabular}

B. Which brand has more Calories per serving? How many more?

Brand B ; 60 more calories per serving
9. Open Response Solve $\frac{y}{11}=28$. Show your work. (Lesson 5)

$$
\frac{y}{11}(11)=28(11)
$$

$$
y=308
$$

10. Multiple Choice Mr. Wolfe has a box of 144 pencils. If he wants to give 6 pencils to each of his students, which equation can be used to find the number of students s to whom Mr . Wolfe can give pencils? (Lesson 5)
(2) $\frac{144}{s}=6$
(8) $\frac{s}{144}=6$
(C) $144 s=6$
(D) $144(6)=s$
11. Grid Graph $x<\frac{1}{3}$. (Lesson 6)

12. Table Item Use the table to indicate whether 11,12 , or 13 is a solution of the inequality $b+8 \geq 20$. (Lesson 6)

Value of b	Y es	No
11		X
12	X	
13	X	

13. Multiselect Brandi has $\$ 50$ to spend on matching bracelets that cost $\$ 3.75$ each for her volleyball team. The inequality $50 \geq 3.75 b$, where b is the number of bracelets, represents the situation. If there are 16 teammates, how many will possibly receive a bracelet? (Lesson 6)
16 teammates
15 teammates
14 teammates
$\checkmark 13$ teammates
$\checkmark 12$ teammates

394 Module 6 . Equations and Inequalities

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

What are the ways in which a relationship between two variables can be displayed? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLDABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.

Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.
Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.

When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of converting temperature from degrees Celsius to Fahrenheit and running a dog-sitting business to introduce the idea of relationships between two variables. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Leam?
Place a checkanak (v) in each row that conresponds with how much you ah eady hrow aboit each lopic before stortion this modvie.

(1) Fortates Cut out the Foldabie and woe it to one Modile Review it the end of the mpdule. Yeu can use phe Foldesble troughout the module as yoy learn about relationstias fetmeen tmo weritfles.

Interactive Student Presentation

Module 7

Relationships Between Two Variables

Module Goal

Express relationships between two variables using tables, equations, and graphs.

Focus

Domain: Expressions and Equations
Major Cluster(s): 6.EE.C Represent and analyze quantitative relationships between dependent and independent variables.
Standards for Mathematical Content:
6.EE.C. 9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ to represent the relationship between distance and time.
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8

(3) Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- solve one-step equations involving each of the four operations, with positive rational numbers
- graph points in all four quadrants of the coordinate plane

Use the Module Pretest to diagnose readiness. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students represented ratio relationships using tables and graphs.
6.RP.A.3, 6.RP.A.3.A

Now

Students express relationships between two variables using tables, equations, and graphs.
6.EE.C. 9

Next

Students will use tables and graphs to determine if a relationship between two quantities is proportional.
7.RP.A. 2

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of tables, equations, and the coordinate plane to develop understanding of relationships between two variables. They build fluency with using a table to find variable values, writing equations, and graphing the relationship. They also apply their understanding of relationships between two variables to solve real-world problems.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY

3 APPLICATION

EXPLORE
LEARN

EXAMPLE \& PRACTICE

Suggested Pacing

	Lesson	Standard(s)	45-min classes 90-min classes	
Module Pretest and Launch the Module Video			1	0.5
7-1	Relationships Between Two Variables	6.EE.C.9, Also addresses 6.EE.A.2.C	3	1.5
7-2	Write Equations to Represent Relationships Represented in Tables	6.EE.C.9, Also addresses 6.EE.B.6, 6.EE.B. 7	2	1
Put It All Together 1: Lessons 7-1 and 7-2			0.5	0.25
7-3	Graphs of Relationships	6.EE.C.9, Also addresses 6.RP.A.3.A, 6.NS.C.6.C, 6.EE.B.6, 6.EE.B. 7	1	0.5
7-4	Multiple Representations	6.EE.C.9, Also addresses 6.RP.A.3.A, 6.NS.C.6.C, 6.EE.B.6, 6.EE.B. 7	1	0.5
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			10.5	5.25

Formative Assessment Math Probe

Assign the probe after Lesson 2.
Correct Answers: A. No; B. No;
Collect and Assess Student Work
if
the student selects...
A. Yes
C. No
B. Yes
D. No

the student likely...

uses the order of the numbers and the position of key words to incorrectly translate the verbal description.
interprets the phrase " 6 times as many" to mean "add 6".
chooses correctly between equations such as in items A and C , but has difficulty recognizing $c=\frac{1}{6} s$ as a correct equation.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- Q ALEKS' Equations and Inequalities
- Lesson 1, Examples 1-2
- Lesson 2, Examples 1-2
- Lesson 3, Examples 1-2

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

What Vocabulary Will You Learn?

ELLAs you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define The independent variable is the variable that does not depend upon the other quantity in a relationship.

Example At top speed, a peregrine falcon can travel about 352 feet in 1 second. The independent variable is the time in seconds.

Ask If Maribella earns $\$ 7$ per hour babysitting, what is the independent variable in the relationship? the number of hours

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- writing and evaluating algebraic expressions
- solving one-step algebraic equations
- graphing on the coordinate plane

ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Equations and Inequalities topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

Mistakes = Learning

When anyone makes a mistake and goes on to learn from it, that person can actually build new connections in his or her brain as he or she determines a new path or process that can be used toward a solution to the problem.

How Can I Apply It?

Have students complete the Checks after each Example, either digitally or in their Interactive Student Edition, as a form of student-centered formative assessment. Encourage them to analyze any mistakes they might have made and what they could do to self correct.

ALEKS is a great tool to not only individualize learning for each student, but to also help students understand that making mistakes and trying new problems will help them to learn and grow long term. Have students keep track of their ALEKS Pie Chart to view their progress.

Learn Identify Independent and Dependent Variables

Objective

Students will learn how to identify independent and dependent variables.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to use clear and precise mathematical language to explain why the terms independent and dependent are appropriate names for the variables.

13
Go Online to find additional teaching notes.

Talk About It!

SLIDE2

Mathematical Discourse

Use what you know about the terms independent and dependent to explain why the variables are named this way. Sample answer: When something is independent, it does not rely on anything else, so the value of an independent variable does not rely on any other variables or values. A dependent variable relies on something else to determine its value.

DIFFERENTIATE

Language Development Activity [ELLㄴㅣㅣㅣ․

Some students may confuse the independent and dependent variables when analyzing a real-world situation or a rule that describes the relationship between the variables. Encourage them to use the everyday meanings of independent and dependent to help them determine which variable is the independent variable and which variable is the dependent variable. Remind them that the dependent variable depends on the independent variable, and that the independent variable is thus not dependent on the dependent variable. Have them work with a partner to respond to each question below about the situations presented in the Learn. Sample responses for the scenario about how fast a cheetah can travel are shown.

1. What are the two quantities, or variables? distance traveled in feet and time in seconds
2. Which variable depends on the other variable? Explain. The distance traveled by a cheetah depends on how long the cheetah has been running. So, distance is the dependent variable.
3. Which variable does not depend on the other variable? The time a cheetah spends running is not dependent on the distance it travels. So, time is the independent variable.

Interactive Presentation

Learn, Identify Independent and Dependent Variables, Slide 1 of 2

CLICK

On Slide 1, students highlight the independent and dependent variables in several real-world situations.

LESSON GOAL

Students will identify and use independent and dependent variables in relationships.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Relationships Between Two Variables
Learn: Identify Independent and Dependent Variables
Learn: Find Dependent Variable Values in a Table
Example 1: Find Dependent Variable Values in a Table
Learn: Find Independent Variable Values in a Table
Example 2: Find Independent Variable Values in a Table
Apply: Measurement

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

```
Practice
```


DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	4,	
Remediation: Review Resources	-	-	
Arrive MATH Take Another Look	\bullet		
Extension: Domain and Range		\bullet	-
Collaboration Strategies	-	-	\bullet

Language Development Support

Assign page 40 of the Language Development Handbook to help your students build mathematical language related to relationships between two variables.

EIIII You can use the tips and suggestions on page T40 of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing
 | 90 min | 1.5 days |
| :--- | :--- |
| 45 min | |}

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.C by identifying and using independent and dependent variables in relationships.
Standards for Mathematical Content: 6.EE.C.9, Also addresses 6.EE.A.2.C

Standards for Mathematical Practice:: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students represented ratio relationships using tables and graphs.
6.RP.A.3, 6.RP.A.3.A

Now

Students identify and use independent and dependent variables in relationships.
6.EE.C. 9

Next

Students will write equations to represent relationships.
6.EE.C. 9

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of simplifying expressions to develop understanding of relationships between two variables. They identify independent and dependent variables and use a table to build fluency with finding the variable values, given either the independent variable or the dependent variable. They also apply this understanding to solve multi-step, real-world problems.

Mathematical Background

3
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- evaluating algebraic expressions (Exercises 1-2)
- solving one-step algebraic equations (Exercise 3)

Answers

1. $\$ 12.25$
2. $\$ 57$
3. 36 colored pencils

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about a fundraiser as an example of an input-output relationship.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- When you are dependent on someone, you require their support and guidance. Using what you know about dependent, what can you infer about a dependent variable? Sample answer: A dependent variable's value may be dependent on another variable's value.
- The prefix in- can mean in, on, or not. In this case, in- means not. What can you hypothesize about an independent variable? Sample answer: An independent variable's value does not depend on another value.

Explore Relationships Between Two Variables

Objective

Students will use Web Sketchpad to explore the relationship between two variables.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About lt! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with the input-output machine. Students need to provide different inputs in order to make conjectures about the outputs. Throughout this activity, students will explore the idea of inputs and outputs and rules that are used to find outputs from inputs.

(B)Inquiry Question
How can you find the rule for a relationship between two variables? Sample answer: Input different numbers into the machine. Then record the different outputs. Look for a pattern that applies to all inputs and outputs.

Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About lt! questions on Slide 3 are shown.

Talk About It!

SLIDE 3

Mathematical Discourse

Did your conjecture work? What is the rule for the machine? Explain how you determined the rule. Sample answer: Yes, my conjecture worked. I was able to determine the rule, which is add 2 . I had an input of 3 and the output was 5 .
(continued on next page)

Interactive Presentation

Relationships Between Two Variables
©) Introducing the tingatry Guestion

Explore, Slide 1 of 7

Explore, Slide 3 of 7

WEB SKETCHPAD

Throughout the Explore, students use Web Sketchpad to explore the relationship between two variables.

TYPE
On Slide 2, students determine the output.

Interactive Presentation

Explore, Slide 5 of 7

TYPE

a|
On Slide 7, students respond to the Inquiry Question and view a sample answer.

Explore Relationships Between Two Variables (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to discover a hidden rule that, when given an input value, provides a corresponding output value. Encourage students to input different values and run the machine to deepen their understanding of the rule that gives the output.

(3)
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 5 are shown.

Talk About It!

SLIDE 5

Mathematical Discourse

What is the rule for the new machine? How did you determine the rule? How many numbers did you have to try? subtract 3 ; Sample answer: । tried an input of 6 and got an output of 3 . This was either subtract 3 or divide by 2 . I then tried an input of 10 to see if the output was 7 or 5 ; See students' responses.

QTalk About It! The unit cost is $\$ 0.25$ per game. How is this rate shownine table? Explain
reasoning. Sample answer: The unit cost is the coefficient in the rule 0.25 g .

Think About It!
How many columns
will your table have?
What will they be
named?
3 columns; Input,
Rule, Output
Q Talk About It!
If Joe chooses a
different drink with his
breakfast, at a different
price, how will it
change the rule?
Sample answer: The
amount added to the
independent variable
f will change.

Learn Find Dependent Variable Values in a Table
Suppose it costs $\$ 0.25$ to play one game at an arcade. Y ou can use a table to show the relationship between the independent variable (input) and the dependent variable (output). In the table, the input value is the number of games played g, and the rule is 0.25 g . The output is the total cost c. T o find the output, replace g with the input, and evaluate the expression.

Input (independent variable)	Rule (relationship between he input and otwtput)	Output (dependent variable)
Number of Games Played, g	0.25 g	Total Cost (\$), c
5	$0.25 \cdot 5$	1.25
10	$0.25 \cdot 10$	2.50
15	$0.25 \cdot 15$	3.75

Q Example 1 Find Dependent Variable Values in a Table
Joe bought an iced coffee for $\$ 2.95$. The total cost of his breakfast c is equal to the cost of his food f plus $\$ 2.95$. The rule is $f+2.95$.
Make a table using the rule to find the total cost of Joe's breakfast if his food costs $\$ 5.50, \$ 7.75$, or $\$ 10.00$.
Step 1 Identify the independent and dependent variables.
The cost of the food f is the independent variable. The total cost of his breakfast c is the dependent variable, because the total cost depends on the cost of Joe's food.
Step 2 Find each output.
Use the rule to complete the table.

Input Cost of food (\$), f	Rule $f+2.95$	Output Total Cost $(\mathbf{\$}), \mathrm{c}$
5.50	$5.50+2.95$	8.45
7.75	$\mathbf{7 . 7 5 + 2 . 9 5}$	10.70
10.00	$10.00+2.95$	12.95

So, if his food costs $\$ 5.50$, his total cost is $\$ 8.45$
If his food costs $\$ 7.75$, his total cost is $\$ 10.70$
If his food costs $\$ 10.00$, his total cost is $\$ 12.95$.

Interactive Presentation

Example 1, Find Dependent Variable Values in a Table, Slide 3 of 5

On Slide 3 of Example 1, students complete the table to calculate the dependent variable using the independent variable and the rule.

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY

Learn Find Dependent Variable Values in a Table

Objective

Students will learn how to use a table to find the dependent variable values, given the independent variable values.

13 Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SLIDE 2

Mathematical Discourse

The unit cost is $\$ 0.25$ per game. How is this rate shown in the table? Explain. Sample answer: The unit cost is the coefficient in the rule 0.25 g .

Example 1 Find Dependent Variable Values in a Table

Objective

Students will use a table to find the dependent variable values, given the independent variable values.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 4, they should use clear and precise mathematical language in explaining how different drinks and different prices might affect the rule.

Questions for Mathematical Discourse

SLIDE3!

AL. What does f represent in the rule? What does 2.95 represent in the rule? the cost of Joe's food; the cost of the iced coffee

OL. How did you find the total cost when the cost of the food was $\$ 7.75$? Sample answer: I substituted 7.75 for f in the rule and simplified to find the total cost.

BL. How would the rule change if Joe received a $\$ 5$ discount by using a coupon? What would the total cost be if the cost of the food was $\$ 12$? You would subtract 5 from $f+2.95$; $\$ 9.95$

3
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Find Independent Variable Values in a Table

Objective

Students will learn how to use a table to find the independent variable values, given the dependent variable values.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About It! questions on Slide 2, encourage them to think about how the work backward strategy can be used in this situation and to explain how this process is similar to writing and solving an equation.

Teaching Notes

SLIDE1]

Have students study the table to understand the relationship between the two variables and explain how the rule describes the relationship. Then have them discuss how to determine each input value. Some students may incorrectly think that to find each value of g, they should multiply the corresponding output value by 0.25 . Remind them to study the rule carefully. To find each value of g, they must use inverse operations. You may wish to have students work in pairs to complete the table. They should be able to justify how they found each value of g.

Talk About It!

SLIDE 2

Mathematical Discourse

How can you use the work backward strategy to find each input value, instead of writing and solving an equation? How are these strategies similar and different? Sample answer: To undo multiplication by 0.25 , use the inverse operation to divide each output value by 0.25 . Dividing by 0.25 is essentially how you solve the equation.

Interactive Presentation

Learn, Find Independent Variable Values in a Table, Slide 1 of 2

e Example 2 Find Independent Variable Values in a Table

Each small pizza at the local pizza shop costs $\$ 6.75$. The total cost c of p small pizzas is equal to 6.75 times p.
Make a table to find the number of small pizzas purchased if the total cost is $\$ 13.50, \$ 27$, or $\$ 33.75$.
Step 1 Identify the independent and dependent variables.
The number of pizzas p is the input, or independent variable.
The total cost of the pizza c is the output, or dependent variable. The total cost is 6.75 times p, so the rule is $6.75 p$
Step 2 Find each input.
o find the number of pizzas for each of the total costs given in the table, use the work backward strategy. To undo multiplication by 6.75 , use the inverse operation to divide each output value by 6.75 Complete the table.

Input Number of Pizzas, \boldsymbol{p}	Rule $6.75 p$	Output Total Cost (\$) c
2	$6.75(2)$	13.50
4	$6.75(4)$	27.00
5	$6.75(5)$	33.75

Check
Leslie has 48 stickers to give to her friends. The number of stickers s ach friend will receive is equal to 48 divided by f, the number of each friend wilr receive is equal to 48 divided by f, the number of tickers to if each friend receives 12,8 , or 6 stickers.

Input Number of Friends, f	Rule $48 \div f$	Output Number of Stickers, s
4	$48 \div 4$	12
6	$48 \div 6$	8
8	$48 \div 8$	6

0 g
0 Module 7. Relacionshps Beween Two Valiables

Interactive Presentation

Example 2, Find Independent Variable Values in a Table, Slide 3 of 5

CLICK

On Slide 2, students identify the dependent and independent variables.

CHECK

(II)

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Find Independent Variable Values in a Table

Objective

Students will use a table to find the independent variable values, given the dependent variable values.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Students should make sense of the real-world situation, the quantities p and c, and the rule that describes the relationship between them, in order to identify the independent and dependent variables.

As students discuss the Talk About lt! question on Slide 4, encourage them to make sense about what it means to find the input and output values in a table, and how this is related to solving an equation.

Questions for Mathematical Discourse

SLIDE 2

AL. Which quantity depends on the other quantity? Is this the independent or the dependent variable? the total cost of the pizza depends on the number of pizzas; dependent variable

Ol. Why is the independent variable the number of pizzas? The independent variable is the number of pizzas because we can choose this quantity and it does not depend on another value.

Bill If the cost for each small pizza were increased, would the total cost still be the dependentvariable? Yes, if the cost of each pizza was increased, the total cost would still be the dependent variable.

SLIDE 3

AL. In the rule, what operation occurs between 6.75 and p ? What is the inverse operation of multiplication? multiplication; division

OL. Explain how you would use the work backward strategy to find the number of pizzas. Sample answer: I will work backward using the rule and the total cost. The number of pizzas will be equal to the total cost divided by 6.75.

BL. Suppose you added a $\$ 5$ tip to the cost of the pizzas. How will the rule change? Does that change the independent and dependent variables? Explain. Sample answer: You would add $\$ 5$ to the rule so the new rule would be $6.75 p+5$. This does not change the independent and dependent variables as the total cost still depends on the number of pizzas ordered.

1 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Measurement

Objective

Students will come up with their own strategy to solve an application problem involving comparing measurements.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What is the best way to compare the three sculptures?

- How do you convert measurements between feet and inches?
-What steps do you need to perform to solve the problem?

(Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

A Apply Measurement

Sondra is placing sculptures on a 3 -foot-tall base to display in a cabinet in the school entryway. The height including the base b is equal to the height h of the sculpture plus 3 . If the cabinet is 84 inches tall, which sculpture(s) will fit in the cabinet?

Height of Sculpture (ft), h Rule $h+3$ Height with Base (ft), b		
$2 \frac{1}{4}$	$2 \frac{1}{4}+3$	$5 \frac{1}{4}$
$3 \frac{3}{4}$	$3 \frac{3}{4}+3$	$6 \frac{3}{4}$
$5 \frac{1}{8}$	$5 \frac{1}{8}+3$	$8 \frac{1}{8}$

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner
First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.
3 What is your solution?
Use your strategy to solve the problem.

Show
yourwolk

The $2 \frac{1}{4}$-foot-tall sculpture and the $3 \frac{3}{4}$-foot-tall sculpture will fit; See students' work.

4 How can you show your solution is reasonable?
Q Write About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Measurement
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Check

Kotaring wants to tope four fiencis to an amusement poxk lor bes bithicay. The total cost c is equar to the aderission rate r tiries 5 it is ohe ath spewd no more thian $\$ 150$ on admission bickets, which amsterpent parkis can they vise? Amusemeet Pank a

Aryament Park	Atmintien gmers 3.5	Sule 5	Tow Cont 152. 5
A	30	51309	150
8	35	5935	175
c	40	5440)	200

1) Poldohies tit teme to updato your Foldable, iocoted in the Module Reviow, based co what you losened in ens lesson. it you boweet akendy assembled your Folawbie. yoo can lnd the enstuctions so page FLL

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. You may wish to have students share their Foldables with a partner to compare the information they recorded.

Essential Question Follow-Up

What are the ways in which a relationship between two variables can be displayed? In this lesson, students learned how to identify dependent and independent variables. Encourage them to discuss with a partner the benefits of using a table to display the relationship. Some students may say that they can use the input and output values that are displayed in the table to find the rule that describes the relationship between the two variables.

Exit Ticket

Refer to Exit Ticket slide. How many packages of cookies will they need to sell to cover the registration fee if they charge $\$ 1.25$ per package? Write a mathematical argument that can be used to defend your solution. 280 packages; Sample answer: You can work backward using the output value $\$ 350$ and the rule $1.25 p$ to find the input value. Since $1.25(280)=350$, they need to sell 280 packages to cover the $\$ 350$ registration fee.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-7 odd, 9-12
- Extension: Domain and Range
- Q ALEKS Graphs and Functions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-5, 7, 9, 10
- Extension: Domain and Range
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- Q ALEKS' Ordered Pairs

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- \square ALEKS Ordered Pairs

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	use a table to find the dependent variable values, given the independent variable values	$1-3$
2	use a table to find the independent variable values, given the dependent variable values	4,5
2	extend concepts learned in class to apply them in new contexts	6
3	solve application problems involving the relationship between two variables	7,8
3	higher-order and critical thinking skills	$9-12$

Common Misconception

Students may have difficulty knowing how to use the rule to work backward to find the independent variable values given the dependent variable values. In Exercise 4, students may mistakenly attempt to multiply each value of c by 4.98 to determine the value of y. Encourage students to first make sense of the quantities given in the real-world problem and their relationship to one another. Students should make sense of the rule $4.98 y$ to determine that each independent variable y is multiplied by 4.98 to find each dependent variable value of c. Since the values of c are known, they must perform the inverse operation and divide each value of c by 4.98 to find each value of y.

Apply *indicates multi-step problem
*. Mara lives in a state that has no sales tax on apparel. She has a coupon for $\$ 15$ off the price one pair of shoes. The total cost c of a pair of shoes is equal 15 . ff en a poir shoes, which pais) could she buy?

She could buy the pair that originally cost $\$ 65$ or the pair that originally cost $\$ 73$.
8. An empty suitcase weighs 224 ounces. The total weight t of the suitcase is equal to the weight of its contents w plus 224 . To not be charged an additional fee for a flight, the total weight must be no more than 50 pounds. Which suitcase(s) would be charged a fee?
The suitcase with the contents that weigh $576 \frac{1}{2}$ ounces.

Higher-Order Thinking Problems
9. Kinitify Structure Complete the table by finding the input values.

Input, x	Rule, $2 x-2.5$ Output, y	
5	$2(5)-2.5$	7.5
6.5	$2(6.5)-2.5$	10.5
8	$2(8)-2.5$	13.5

11. Persevere with Problems A concession stand sells soft pretzels for $\$ 2.75$ each and drinks for $\$ 1.50$ each. The equation $c=2.75 p+1.50 d$ can be used to represent the total cost c of p pretzels and d drinks. What is the total cost of 3 pretzels and 4 drinks? Explain how you solved.
\$14.25; Sample answer: In the equation $=2.75 p+1.5 d$, replace p with 3 and d with 4 and then simplify. $c=2.75 \times 3+1.5 \times 4$ or 14.25 .

12. Wiason Inductively A student said that the independent variable for the following situation is the number of days, d. Is the student correct? Explain

Jess walks 1.5 miles every day for d days. What is the total number of miles she walks? yes; Sample answer: The number of days is the independent variable because it does not depend on the other quantity, total mileage. The total number of miles is the dependent variable because it changes with the number of days.
12. Describe a real-world situation that has an independent variable and a dependent variable. Identify each variable.

Sample answer: A bakery sells muffins for \$2.50 each. What is the total cost?; number of muffins is the independent variable; total cost is the dependent variable

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 9, students will use the structure of an expression and its corresponding equation to find the value of the independent variable given a rule and a value for the dependent variable.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 10, students are asked to evaluate the reasoning of a fellow student in identifying the independent variable in a situation involving the number of miles walked per day, the number of days, and the total number of miles walked.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 11, students will persevere through a problem that has two independent variables in which they are asked to proceed step by step in finding the total cost and explain their reasoning.

Collaborative Practice
Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercises 7-8 Have students work in pairs. Have students individually read Exercise 7 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 8.

Be sure everyone understands.

Use with Exercises 9-10 Have students work in groups of 3-4 to solve the problem in Exercise 9. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 10.

Learn Write One-Step Equations

Objective

Students will learn how to model a relationship shown in a table with a one-step equation.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 2, encourage them to recall what they previously learned about rates and to make sense of the words in the scenario that can help them understand where they can see the unit rate in the table.

Teaching Notes

SLIDE1]
Students will learn that an equation can be used to represent the relationship shown in a table. Students should note that equations express a dependent variable in terms of the independent variable. Have students identify which variable in the table represents the dependent variable and which variable represents the independent variable. They should be able to explain that the input value is the independent variable, and the output value is the dependent variable.

Talk About It!

SLIDE 2

Mathematical Discourse

What connections do you see in this relationship that relate to what you already know about rates? Where can you see the unit rate in the table? Sample answer: The coefficient in the rule, 8 , is the same as the unit rate. The unit rate is the output value for 1 hour worked.

Teaching Notes

SLIDE 3

Have students study the relationship between the variables in the table. Ask them to work with a partner to come up with a verbal phrase that describes the relationship, using their own words. For example, some students may say the value of the output is eight times the input. Having them understand the relationship and being able to describe it in their own words can help them write the equation that represents the relationship.

LESSON GOAL

Students will write equations to represent relationships.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2

Learn: Write One-Step Equations
Example 1: Write One-Step Equations
Explore: Relationships with Rules that Require Two Steps

Learn: Write Two-Step Equations
Example 2: Write Two-Step Equations
Apply: Art

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice
Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AII	TH3	
Remediation: Review Resources	-	-	
Arive MATH Take Another Look	\bullet		
Extension: Write Quadratic Equations for Input-Output Tables		-	-
Collaboration Strategies	-	-	\bigcirc

Language Development Support

Assign page 41 of the Language Development Handbook to help your students build mathematical language related to equations of relationships between two variables.
IEllill You can use the tips and suggestions on page T41 of the handbook to support students who are building English proficiency.

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.C
by writing equations to represent relationships.
Standards for Mathematical Content: 6.EE.C.9, Also addresses
6.EE.B.6, 6.EE.B. 7

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5

Coherence

Vertical Alignment

Previous

Students identified and used independent and dependent variables in relationships.
6.EE.C. 9

Now

Students write equations to represent relationships.
6.EE.C. 9

Next
Students will write equations and graph lines to represent relationships.
6.EE.C. 9

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of equations to begin to develop understanding of writing equations to model relationships represented in tables. They build fluency with writing one- and two-step equations to model relationships shown in tables. They apply their understanding of writing equations to model relationships represented in tables to solve multi-step, real world problems.

Mathematical Background

O
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

	\times
What Vocuncier Win Youlent	
input-output table	
Inverse operation	
mexiame imeso wemsen eramber.	

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- writing and evaluating algebraic expressions (Exercises $1-5$)

Answers

1. $x+12 ; 20$
2. $10 x ; 80$
3. $\frac{x}{2} ; 4$
4. Let $x=$ Parker's aunt's age; $5 x-97 ; 3$ years old
5. $4 x+2 ; 34$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the cost of ride tickets at a fair.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

-What information does an input-output table display? Sample answer: An input-output table displays input and output values based on a given rule.
-What is the inverse operation of division? multiplication

How would you begin
solving the problem?
responses.

Q Talk About It
What connections do
you see in this
relationship that relate
to what you already
know about unit price?
know about unit price?
Where can you see the unit price in the table?

Sample answer: The coefficient in the rule, 9 , is the same as the unit price. The unit price is the output value for buying 1 T -shirt.

Use the rule $8 h$ to write an equation relating the two variables h and d.

Q Example 1 Write One-Step Equations

The table shows the total cost c , in dollars, of buying t souvenir T-shirts.
Write an equation to represent the relationship between c and t

Step 1 Identify the variables.
The independent variable is t, the number of shirts

The dependent variable is $\quad c$, total cost
Step 2 Determine the rule.
The output values increase by the same number, 9 , as the input values increase by 1 . Because repeated addition can be written as multiplication, check each pair of input-output values to determine if the rule $9 t$ accurately describes the relationship.

Input	Rule $9 t$	Output Total Cost (\$), c
1	$9(1)$	$9 \checkmark$
2	$9(2)$	$18 \checkmark$
3	$9(3)$	$27 \checkmark$
4	$9(4)$	$36 \checkmark$
5	$9(5)$	$45 \checkmark$

So, the rule $9 t$ accurately describes the relationship.
Step 3 Write the equation.
Use the rule $9 t$ to write an equation relating the two variables t and c.

So, the equation that represents the total cost c of buying t souvenir T-shirts is $c=9 t$

Interactive Presentation

Example 1, Write One-Step Equations, Slide 2 of 6

On Slide 2, students define the independent and dependent variables.

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Example 1 Write One-Step Equations

Objective

Students will model a relationship shown in a table with a one-step equation.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to examine the relationship between the independent and dependent variables represented in the table to decontextulaize the real-world problem by representing it symbolically with the correct one-step equation.

As students discuss the Talk About lt! question on Slide 5, encourage them to make sense of how the unit price is represented both in the table and in the equation.

Questions for Mathematical Discourse

SLIDER

AL What are the two quantities and the variables representing them? The number of T -shirts is represented by t, and the total cost is represented by c.

Ol. How do you know that the number of T -shirts is the independent variable? Sample answer: The number of T-shirts is the independent variable because it is not affected by the total cost.

Bill How could you find the cost of 50 T-shirts? Sample answer: I could use repeated addition, or I could multiply the number of T -shirts by $\$ 9$, the cost of each shirt.

[SIDFF3

Al. What is a coefficient? the numerical factor in a term
AL. How do you know the input should be multiplied by 9 ?
Sample answer: If I use repeated addition to find consecutive terms, that is the same as multiplying by 9.

OL Why would you write the equation using multiplication? Sample answer: Writing the equation using multiplication makes it easier to use when working with larger values.

EB․ Explain why you could not write a multiplication rule for an input of $0,1,2$, and an output of $2,4,8$. Sample answer: Since the difference between consecutive terms is not the same, repeated addition does not apply, so multiplication will not work.

Example 1 Write One-Step Equations

 (continued)
Questions for Mathematical Discourse

SLIDE4

AL. What does it mean to substitute a value into the equation? Sample answer: Replace t in the equation with one of the input values, and then multiply by 9 . Then check to see if it matches the output value.

OL How do you know that the constant is 0 ? Sample answer: Since the product of the input value and nine is equal to the output value, I know the constant is zero.
[BL. What is the fewest number of input values you can test for a multiplication rule to make sure your rule is correct and that no constant is added? Explain. 1; Sample answer: Since I know there is repeated addition, if I test one value and find it matches the output, then all of the other values should match as well.

W Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Check
The table ahow the totm cost c of belonging to the gym for m months. Witte an equation to represent the relabinship betweenc and ine $c=24.950$ en

Explore Ralationetios with Rujes mai Requice

Two stcep

Ondine Aethity You wit use Web Sistchpad to expiore the relationship betmeen two variables with two -step pules

Math Kistor Sinute
In 1993 Elen Ochos
tose-) bochme ow volers fest hopanic nes flown in woce fois. onies and nas wogied nestr, tooo nourth wite Oowors Nipt renodicilidis tescher nspived her to partue tuites in miath and rieece.
 \square
\qquad 407

DIFFERENTIATE

Reteaching Activity

Some students may struggle with the idea that adding a number to the previous output value is the same as multiplying the input value by that same number. In Example 1, students determine that the total cost increases by $\$ 9$ with each increase in one T-shirt. To help students understand this concept, it may be beneficial to use counters. Have students make a group of 9 counters to represent the cost of one shirt. Then have them make another group of counters to represent the cost of another shirt. They should continue making groups of counters until there is one group for each of the 5 shirts from the Example. Once they have 5 groups of counters, they should recognize that adding 5 groups of 9 counters is the same as multiplying 5 by 9 .
6.EE.C. 9

Interactive Presentation

Learn, Write Two-Step Equations, Slide 2 of 4

CLICK

On Slide 2, students move through the slides to determine the rule.

1 CONCEPTUAL UNDERSTANDING

Learn Write Two-Step Equations

Objective

Students will learn how to model a relationship shown in a table with a two-step equation.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to make sense of the equation and how it represents the scenario, in order to understand how the equation would be different without the shipping fee.

Teaching Notes

SLIDE1

Present the scenario. Before moving on to Step 1, ask students to work with a partner to determine possible strategies they can use to write an equation that represents the relationship between the two variables. Encourage them to first study the table to describe the relationship in their own words. They may use any strategy they wish to write the equation, but they must be able to explain their strategy and defend why it works. Have students share their strategies with the class.

SLIDE 2

After students determine that the rule $2 b$ does not accurately describe the relationship, you may wish to have students brainstorm ways in which they can determine the correct rule. Students may try multiplying by a different number for each input. For example, for an input of 1 and an output of 6 , they may say to multiply by 6 , and for an input of 2 and an output of 8 , multiply by 4 , and so on. Remind them that they need to determine the rule that describes the relationship for all inputs.

SLIDE 3

Remind students that the purpose of determining the rule is to find an output value c for any input value b. So, to write the equation, they should set the rule equal to c.

Talk About It!

SLIDE 4

Mathematical Discourse

If the store did not charge a shipping fee for the bats, how would the equation be different? What is the cost of the shipping fee? Sample answer: The equation would not have a constant. It would be $c=2 b$; $\$ 4$

Interactive Presentation

Explore, Slide 1 of 8

Explore, Slide 3 of 8

WEB SKETCHPAD

Throughout the Explore, students use Web Sketchpad to explore the relationship between two variables when two steps are required.

Explore Relationships with Rules that Require Two Steps

Objective

Students will use Web Sketchpad to explore the relationship between two variables when two steps are required.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with an input-output machine. Throughout the activity, students will use the machine to write a rule that involves two steps to transform the input value into the output value.

(3) Inquiry Question

How can you find a rule involving two steps for a relationship? Sample answer: Look for a pattern between the differences in consecutive outputs to discover the first step. Then determine the additional step needed in order to get the correct output.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3:

Mathematical Discourse

Can you determine the rule for the machine? Explain your reasoning. Sample answer: I still cannot determine the rule. I know the input is not multiplied by 7, nor is 6 added to it. I need to find the outputs for a few more inputs to see if repeated addition occurs.

1 CONCEPTUAL UNDERSTANDING

Explore Relationships with Rules that Require Two Steps (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to perform two operations on an input value to obtain a corresponding output value. Encourage students to use the input-output machine to write two-step equations and record their results in the tables.

(3)
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 6 is shown.

Talk About It!

SLIDE 6

Mathematical Discourse

Make a conjecture about the rule. Explain your reasoning. Use the values in the table to support your conjecture. Then press the Show Step 2
button to check. Sample answer: With an input of 1 , if I multiply by 3 , then I need to add 4 to get an output of 7 . The rule is multiply by 3 , add 4 .

Interactive Presentation

Explore, Slide 6 of 8

TYPE

On Slide 8, students respond to the Inquiry Question and view a sample answer.

Example 2 Write Two-Step Equations

Objective

Students will model a relationship shown in a table with a two-step equation.

Questions for Mathematical Discourse SLIDE 2I

An. How will you check for repeated addition in the output? Sample answer: I can subtract the consecutive values for the output and see if the difference is the same.

OI How did you find that the number of necklaces produced increased by 2 ? Sample answer: I found this by subtracting 5 from 7 necklaces, then 7 from 9.
[BL. How can you use the table to find the number of necklaces that will have been made after 6 hours? Sample answer: I can extend the pattern in the table to find that 15 necklaces will have been made after 6 hours.

SLIDE3:

Aㄴ. The coefficient of the input, h, is 2 because there was repeated addition in the output. How do you know you need to find a constant to add to $2 h$? Sample answer: If I use the rule $2 h$, the input will not match the output. I need to add a number to make them match.

Ol. The first part of the rule is to multiply by 2 . How did you find the second part? Sample answer: To find the second part, I multiplied the input by 2 and then found the difference between the number of necklaces produced in that time and the product.
[31. The solution used the first set of information, 1 hour and 5 necklaces, to find the constant. Could you use a different set? Explain. yes; Sample answer: If you used 2 hours, 2 times 2 is 4 so you would still need to add 3 to get 7 necklaces. You could use any set of information to find the constant.

(3) Go Online

- Find additional teaching notes, discussion questions, Teaching the Mathematical Practices, and the Talk About It! question to promote matematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Write Two-Step Equations, Slide 2 of 6

DIFFERENTIATE

Enrichment Activity

To further students' understanding of how to model a relationship expressed as a table with a two-step equation, have them work with a partner to complete the following activity.

Present them with the two tables shown. Students should note that the values of the variables B and x do not increase by increments of 1. Students should also note that the values of the variable x do not increase by a consistent number.

Have students use any strategy they wish to write the two-step equation that can model each relationship. Then have them explain their strategy to another pair of students, or to the entire class.

B	p
3	7
6	13
9	19
12	25

$p=2 B+1 \quad y=3 x-1$

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Art

Objective

Students will come up with their own strategy to solve an application problem involving painting signs for a school election campaign.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- Is this a one- or two-step rule?
- Who do you think painted more signs?
-What steps do you need to perform to solve the problem?

\angle
 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

(a) Apply Art

Each evening, Autumn and Bernett paicted sligns fot a schoof campripit the thitho mows the total number of signs painted atter a cortain number of hours. II the partern cominues, now many more: signs wall futuint hove paimed than Beoneth ater painting fors hours?

Hourn	Yotaisione Auticn	Totol Siont Benhott
1	6	4
2	3	6
3	12	1
4	15	10

1 What is the task?
Make sure you undesstand exactiy what doestion to answer on probleis to sovie. Nou may want to read the protion thee times. Discuss these questions wath a partise

First Time Describe the contest of the problem, in your own words Second Time What maithematics do you see in the probilem? Third Time What are you wondering about?
2. Mow can you appronch the task? What strategies can you use?

See students'strategies.

3 What is your solution?
Use your stategy lo sofve the probiem.

Autums painted 10 more slyns: See studeots' werk.

4 How can you show your solution is reasonable?
Q Write About ite wite an arganient that can be used to deleod yeu solution.
See students' arguments.

Interactive Presentation

Apply, Art
 move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to write an equation that represents a relationship shown in a table. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

What are the ways in which a relationship between two variables can be displayed? In this lesson, students learned how to write oneand two-step equations that describe the relationship between two variables from tables. Encourage them to work with a partner to compare and contrast using tables and equations to display and describe the relationship between two variables. Some students may say that while a table helps them see individual values, the equation describes the relationship between the variables that is true for all of those values.

Exit Ticket

Refer to the Exit Ticket slide. Each ride requires 3 tickets. If a ticket costs $\$ 1.50$, write an equation to find the total cost y of x rides. How much will it cost to ride 10 rides? $y=4.5 x ; \$ 45$

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-5 odd, 6-10
- Extension: Write Quadratic Equations for Input-Output Tables
- ALEKS Graphs and Functions

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-4, 6, 8, 9
- Extension: Write Quadratic Equations for Input-Output Tables
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- a AleKS Ordered Pairs

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- Q ALEKS Ordered Pairs

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	model a relationship shown in a table with a one-step equation	1,2
2	model a relationship shown in a table with a two-step equation	3,4
2	extend concepts learned in class to apply them in new contexts	5
3	solve application problems involving writing equations to represent relationships between two variables	6
3	higher-order and critical thinking skills	$7-10$

Common Misconception

Some students may confuse the independent and dependent variables when writing an equation to model the real-world scenario. In Exercise 1, students may incorrectly write the equation $t=7 \mathrm{c}$ instead of $c=7 \mathrm{t}$. Encourage them to study the situation and table carefully to determine that the total cost c is dependent on the number of tickets t. Have them make sense of why the equation $t=7 c$ does not represent this situation by substituting the values from the table to determine that the equation is not true. Encourage students to check each equation they write by replacing the values from the table to verify that the equations are true. If the equations they wrote are not true, then they may have confused the variables or made a miscalculation.

Apply *indicates multi-step problem
*6. On weekends, Peter and Aiden washed cars to raise money for a school trip. The table shows ertain number of hours. If the pattern ertain number of hours. It the pater have washed than Peter after 8 hours? 6 cars

Hours	Cars Washed: Cars Washed: Peter	
1	5	4
2	7	7
3	9	10
4	11	13

QHigher-Order Thinking Problems
7. PiPersevere with Problems Write an equation to represent the relationship shown in the table.

$y=\frac{1}{3} x+3$
9.
(1F) Find the Error A student wrote the equation $c=20 h+12$ to represent the elationship shown in the table. Find the student's error and correct

Hours, h 1234 Cost. c $\$ 32 \$ 44 \$ 56 \$ 68$

Sample answer: The student switched the coefficient and the constant. The coefficient is 12 and the constant is 20 . The equation should be $c=12 h+20$.

Modte 7. Relationships Between Two Variables
> 8. Reason Abstractly A dance studio charges $\$ 45$ per month, plus a $\$ 30$ registration fee. Willa has $\$ 210$ for dance lessons. How many months can she take lessons? Explain how you solved

> 4 months; Sample answer: $c=45 m+30$, where c represents the total cost and m represents the number of months

> Months, 11234 Cost, c $\$ 75$ \$120 $\$ 165 \$ 210$
> 10. Write about a real-world situation that can be represented with a two-step equation. Write the equation and explain the meaning of the variable

> Sample answer: To rent a bounce house it costs $\$ 20$ plus $\$ 15$ for each hour.; $c=15 h+20$, where c represents the total cost and h represents the number of hours.

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In Exercise 7, students are asked to write an equation that models the relationship shown in the table without a verbal description of the relationship. Students will have to conjecture, check, and revise their equation until it fits all the values in the table.

2 Reason Abstractly and Quantitatively In Exercise 8, students will write an equation that serves as a model, and they will use this equation to generate data in order to answer the original question.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 9, students will find the error in an equation that is supposed to represent the relationship shown in the table. In order to do this, students will write the correct equation and use it to compare to the incorrect solution.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create your own application problem.
Use with Exercise 6 After completing the application problems, have students write their own real-world problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Listen and ask clarifying questions.

Use with Exercises 8-9 Have students work in pairs. Have students individually read Exercise 8 and formulate their strategy to solve the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 9.

Learn Graph a Relationship from an Equation

Objective

Students will learn how to graph a relationship given an equation by creating a table of ordered pairs.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to compare and contrast the difference between graphing ordered pairs from an equation and graphing ordered pairs from a ratio table. Students should analyze the structure of an equation and the structure of a table in order to compare the two methods.

Go Online to find additional teaching notes.

Talk About It!

SLIDE2

Mathematical Discourse

How is graphing ordered pairs from an equation similar to graphing ordered pairs from a ratio table? How is it different? Explain your reasoning. Sample answer: Graphing ordered pairs from an equation is similar to graphing from a ratio table because there is a relationship between the numbers. The consecutive values always increase by the same number. They are different because the ordered pairs from an equation are not always equivalent ratios.

DIFFERENTIATE

Enrichment Activity 표IN

To further students' understanding of graphing a relationship from an equation, have them work in pairs to complete the following.

1. Study the equation presented in the Learn, $y=2 x+500$. Explain why the ordered pair $(0,500)$ is a solution of this equation. Sample answer: When $x=0, y=2(0)+500$, or 500 . So, the equation $y=2 x+500$ is true for the ordered pair $(0,500)$.
2. Describe the location of the ordered pair $(0,500)$ on the graph. Sample answer: It is the point at which the line crosses the y-axis.
3. Why do you think a break was used on the graph between the origin and the point $(0,500)$? Sample answer: Without the break, the vertical axis does not increase by even increments. The break is necessary to show the jump from 0 to 500 .
4. Study the table. Make a conjecture as to how you can find the next three ordered pairs in the table without referring back to the equation. Sample answer: As the x-values increase by 1 , the y-values increase by 2 . So, the next three ordered pairs will be $(4,508),(5,510)$, and $(6,512)$.

Interactive Presentation

Learn, Graph a Relationship from an Equation, Slide 1 of 2

On Slide 1, students select the buttons to see how to graph a relationship from an equation.

Graphs of Relationships

LESSON GOAL

Students will write equations and graph lines to represent relationships.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Graph a Relationship from an Equation
Example 1: Graph a Relationship from an Equation
Learn: Write an Equation from a Graph
Example 2: Write an Equation from a Graph

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al\|	TB	
Remediation: Review Resources	-	-	
Arive MATH Take Another Look	-		
Extension: Linear or Nonlinear Relationships		-	-
Collaboration Strategies	-	-	-

Language Development Support

Assign page 42 of the Language Development Handbook to help your students build mathematical language related to graphs of relationships between two variables.
FElill You can use the tips and suggestions on page T42 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 0.5 day 45 min 1 day

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.C
by writing equations and graphing lines to represent
relationships.
Standards for Mathematical Content: 6.EE.C.9, Also addresses 6.RP.A.3.A, 6.NS.C.6.C, 6.EE.B.6, 6.EE.B.7

Standards for Mathematical Practice: MP2, MP3, MP5, MP6, MP7

Coherence

Vertical Alignment

Previous

Students wrote equations to represent relationships.

6.EE.C. 9

Now

Students write equations and graph lines to represent relationships.
6.EE.C. 9

Next

Students will use tables, equations, and graphs to represent relationships.
6.EE.C. 9

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of tables and the coordinate plane to continue to develop understanding of relationships between two variables. They use graphs to build fluency with writing equations to model relationships shown on graphs, and with representing a relationship given an equation. They apply their understanding of graphs of relationships to solve real-world problems.

Mathematical Background

.
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

coordinate plane

ordered pair
What anon morowel monterspurt

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- graphing on the coordinate plane (Exercise 1)
- understanding input-output tables (Exercise 2)

Answers

1. See Warm Up slide online for answer.
2. 11 miles; 17 miles

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about times when displaying information on a graph might be better than a table.

3 Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

-What are some of the parts of the coordinate plane? Sample answer: origin, x-axis, y-axis

- What is an example of an ordered pair? Sample answer: $(2,8)$

WThink About It!
variable? the
independent variable?
number of apples; number of bushels

(C) Talk About It! How can you
determine the unit rate comparing the number of apples to the

Sample answer: The expression $126 b$ shows that the unit rate is 126 apples to 1 bushel, or 126 apples per bushel.

Q Example 1 Graph a Relationship from an Equation
The equation $\alpha=126 b$ represents the approximate number of apples a in b bushels of apples. Graph the relationship on the coordinate plane.
Step 1 Determine the independent and dependent variables. independent variable: number of bushels dependent variable: number of apples

Step 2 Make a table.

Use the equation $a=126 b$ to make
a table of values. Place the independent variable in the first column, and the dependent variable in the second column.

Number of Bushels, b Bupples, a 0	0
1	126
2	252

Step 3 Use the values to make a list of ordered pairs.

(b, a)
$(0,0)$
$(1,126)$
$(2,252)$

Step 4 Graph the ordered pairs. Then draw the line.
Because you cannot have partial apples, the line representing the relationship should be dashed.

Interactive Presentation

Example 1, Graph a Relationship from an Equation, Slide 2 of 7

Example 1 Graph a Relationship from

 an Equation
Objective

Students will graph a relationship given an equation by creating a table of ordered pairs.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 6, encourage them to make sense of how they can use the table to find the unit rate comparing the number of apples to the number of bushels.

5 Use Appropriate Tools Strategically Students will use the Coordinate Graphing eTool to graph the relationship.
6 Attend to Precision Students should use precise mathematical language to correctly identify the independent and dependent variables.

Questions for Mathematical Discourse

SLIDER

Al. How do you know what the independent variable represents? Sample answer: The number of apples depends on the number of bushels picked, so the number of bushels is the independent variable.

OIl How is the independent variable shown in the equation $a=126 b$? the dependent variable? Sample answer: The independent variable is b, the number of bushels multiplied by 126 . The dependent variable is the answer to that multiplication problem, the number of apples in b bushels, or a.

Bㅡㄴ Describe a situation in which the independent variable is the number of apples. Sample answer: Andrew writes an equation to show how many bottles of apple juice, j, can be made from a apples.

SLIDE 3

AL. What do the variables a and b represent? The variable a represents the number of apples and the variable b represents the number of bushels of apples.

OL. How can you find the values of the dependent variables? Sample answer: To find the number of apples a, I will substitute each of the b values in the equation and simplify.
[B1. Why do you think the independent variable is in the first column? Sample answer: Since it is the independent variable, I use that value to substitute in the equation $a=126 b$ to find the value for the dependent variable, so it makes sense that it comes first.
(continued on next page)

Example 1 Graph a Relationship from an Equation (continued)

Questions for Mathematical Discourse

SLIDE 4 II

AL. Why do we write the variables as ordered pairs? Sample answer: In order to graph the relationship, the values need to be expressed as ordered pairs.

OL. Why is the ordered pair $(126,1)$ incorrect? The ordered pair $(126,1)$ is incorrect because this ordered pair is in the form (a, b) instead of (b, a).
[31. Why is the ordered pair (b, a) and not (a, b) ? Sample answer: Ordered pairs are written as (independent variable, dependent variable). The form (a, b) is (dependent variable, independent variable) in this example.

SLIDE 5

AL How will you graph the point $(1,126)$? Sample answer: I will find 1 on the horizontal axis, then move up 126 units.

OI. What can you tell about the relationship between the apples and the bushels looking at the graph? Sample answer: The graph goes up to the right; as the number of bushels increase, so does the number of apples.
|nI․ What is the unit rate? How can you use the graph to find the unit rate? 126 apples per bushel; Sample answer: Since the points appear to fall in a straight line, I can use the value of a when the independent variable is 1 to find the unit rate.

1 Go Online

- Find additional teaching notes and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1, Graph a Relationship from an Equation, Slide 5 of 7

Learn Write an Equation from a Graph
An equation can be used to symbolically describe the graph of a relationship. Use the work backward strategy to make a table of ordered pairs, then write the equation to represent the relationship.
OGo Online Watch the animation to learn how to write an equation from the following graph.

The graph shows the relationship between the cost to rent a canoe and the number of hours the canoe is rented.

Step 1 Determine the independent and dependent variables.

The time h in hours is the independent variable, and the cost c in dollars is the dependent variable.

Step 2 Identify the ordered pairs on the graph.

The graph includes the ordered pairs $(1,15),(2,25)$, and $(3,35)$
Step 3 Make a table.

Time (\mathbf{b}) \boldsymbol{h}	Cost (\$), \boldsymbol{c}
1	15
2	25
3	35

 St 2 Ir

Step 4 Write the equation.
The values of the dependent variable c increase by 10 every hour.

After multiplying by 10 , you add 5 to obtain the correct value for c.

So, the equation to find the total cost c after h hours is $c=10 h+5$.

Interactive Presentation

Learn, Write an Equation from a Graph, Slide 1 of 2

WATCH

On Slide 1, students watch an animation that explains how to use the work backward strategy to make a table of ordered pairs from a graph in order to write the equation.

1 CONCEPTUAL UNDERSTANDING

Learn Write an Equation from a Graph

Objective

Students will learn how to write the equation of a relationship graphed on the coordinate plane by first creating a table of ordered pairs.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to make sense of the quantities to explain why it does not make sense for the rental time to be 0 hours and still have a payment.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to use an equation to represent a relationship that is displayed in a graph.

Teaching Notes

SLIDE1

You may wish to pause the animation after the graph is presented, and ask students to work with a partner to determine possible strategies they can use to write an equation that represents the graph. They may use any strategy they wish, but must be able to explain their strategy and defend why it works. Some students may choose to create a table of values, describe the relationship in their own words, and then writean equation. Have students share their strategies with the class. Then have them continue to watch the animation to compare their strategy with the one shown.

Talk About It!

SLIDE 2

Mathematical Discourse

In this situation, why does it not make sense for the graph of the line to cross the y-axis? Sample answer: If the line crossed the y-axis, it would mean a rental time of 0 hours for $\$ 5$. It would not make sense for someone to rent a canoe for 0 hours and pay $\$ 5$.

Example 2 Write an Equation from a Graph

Objective

Students will write the equation of a relationship graphed on the coordinate plane, by first creating a table of ordered pairs.

Teaching the Mathematical Practices
2 Reason Abstractly and QuantitativelyEncourage students to decontextualize the situation to represent the relationship symbolically with a correct equation. They should carefully study the relationship between the independent and dependent variables.

6 Attend to Precision Students should use precise mathematical language to identify the independent and dependent variables.
As students discuss the Talk About It! question on Slide 6, they should be able to explain why it is important to identify the independent and dependent variables before writing the equation illustrated by the graph.

Questions for Mathematical Discourse

SIIDE 2

Al What information does the graph display and how is it displayed? the years of growth are on the x-axis and the heights of Martino's cactus are on the y-axis

Ol. Describe a different independent variable that would affect the height of the cactus. Sample answer: the amount of sun or water the plant receives
[Bill In which situation might the height be the independent variable and time be the dependent variable? Sample answer: If Martino constructed a graph to show how many years it takes for cactus to grow to specific heights.

SLIDE 3 -

Using the terms independent variable and dependent variable what is the general form of an ordered pair? (independent variable, dependent variable)

OL How could you check that the ordered pairs are correct? Sample answer: I could plot them on the coordinate plane and make sure they are the points plotted on the original graph.

What would the points $(1.5,43)$ and $(2.5,45)$ mean in the context of the problem? After 1.5 years, the cactus grew to a height of 43 inches, and after 2.5 years the cactus grew to a height of 45 inches.

ω
 Go Online

- Find additional teaching notes, additional discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
e Example 2 Write an Equation from a Graph
Martino constructed the graph that shows the height of his cactus after several years of growth.
Assuming the cactus grows at a constant rate, write an equation from the graph that could be used to find the height h of the cactus after g years.

Step 1 Determine the independent and dependent variables.

he graph shows the relationship between time and the height of the cactus, where time is the independent variable and the height is the dependent

Step 2 Identify the ordered pairs on the graph
The ordered pairs are $(1,42),(2,44)$, and $(3,46)$.

Step 3 Make a table.

Step 4 Write the equation

The values of the dependent variable h increase by $\quad 2$ each year.
After multiplying by 2 , you add 40 to obtain the correct value for h.
Check each pair of values to determine if the rule $2 g+40$ accurately describes the relationship.
So, the equation to find the height of the cactus h after g years of growth is $h=2 g+40$.

Think About It! What arethe ordered pairs you can use to write the equation?
$(1,42),(2,44)$, $(3,46)$

Talk About It!
Why is it important to dentify the independer and dependent the equation?

Sample answer: When I write an equation I need to first write an expression with the expression with variable, and then set the expression set the expre dependent variable.
\square \rightarrow
 \square

Interactive Presentation

Example 2, Write an Equation from a Graph, Slide 4 of 7

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to graph a relationship given an equation and how to write an equation to represent a relationship shown in a graph. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

What are the ways in which a relationship between two variables can be displayed? In this lesson, students learned how to use a graph to describe the relationship between two variables. Encourage them to work with a partner to compare and contrast using tables, graphs, and equations to represent and describe the relationship. Have them state which representation they may prefer over the others. Some students may prefer the graph because it is more visual. Others may prefer the equation because it specifies the operations that relate the variables.

Exit Ticket

Refer to the Exit Ticket slide. Graph the equation for the price of the item after x years on a coordinate plane using at least three points. What isthe price after 7 years? $\$ 21$; See students' graphs.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1, 3, 5-9
- Extension: Linear or Nonlinear Relationships
- ALEKS Graphs and Functions

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-4, 5, 7, 8
- Extension: Linear or Nonlinear Relationships
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- a Aleks' Ordered Pairs

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arrive MATHTake Another Look
- ALEKS Ordered Pairs

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
2	graph a relationship given an equation	1,2
2	write an equation to represent a relationship graphed on the coordinate plane	3,4
3	solve application problems involving graphs of relationships	5
3	higher-order and critical thinking skills	$6-9$

Common Misconception

Students may struggle to graph the relationship when the equation contains a constant. For example, in Exercise 2, students may incorrectly write and graph the ordered pairs $(1,2),(2,4)$, and $(3,6)$ instead of the ordered pairs $(1,8),(2,10)$, and $(3,12)$ because they did not include the constant when finding the y-coordinate. Remind students that to find the y-coordinate, they should substitute a value for b and solve the equation, rather than just evaluating the expression $2 b$.

Apply "indicates multi-step problem
*5. Nancy and Elsa like to ride bikes. The equation $m=12 h$ represents the approximate number of miles m Nancy bikes in h hours. The equation $m=9 h$ represents the approximate number of miles m Elsa bikes in h hours. How much longer will it take Elsa to bike 72 miles than Nancy?

2 more hours

OHigher-Order Thinking Problems
6. Write a real-world situation for the graph. Then write the equation that represents the situation.

Sample answer: The total cost c of t tickets to a football game; $c=8 t$
8. Ruson Inductively Explain the difference between the graphs $y=3 x$ and $y=3 x+2$.

Sample answer: The graph of $y=3 x$ is a straight line that passes through the origin. The graph of $y=3 x+2$ is linear but does not pass through the origin.
7. Find the Error The graph shows the total amount saved s for w weeks. A student said that the equation for the line is $s=10 w+5$. Find the student's mistake and correct it.

Sample answer: The student switched the Sample answer: The student switched
coefficient and constant. The correct equation is $s=5 w+10$.
9. Make a Conjecture What would the graph of $y=\frac{1}{2} x$ look like? Name three ordered pairs that lie on the line. Sample answer: a straight line through the origin; $(0,0),(2,1),(4,2)$

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 7, students explain why another student's solution is incorrect and then correct the solution.

In Exercise 8, students are given two similar equations ($y=3 x$ and $y=3 x+2$) and are asked to reason inductively to explain the difference between their two corresponding graphs.

In Exercise 9, students will make a conjecture about what the graph of $y=\frac{1}{2} x$ looks like and will find three ordered pairs on the graph in order to test their conjecture.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Be sure everyone understands.

Use with Exercise 5 Have students work in groups of 3-4 to solve the problem in Exercise 5. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class.

Clearly explain your strategy.

Use with Exercise 8 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would determine the difference between the graphs of $y=3 x$ and $y=3 x+2$, without actually graphing them. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Learn Multiple Representations of Relationships

Objective

Students will learn that relationships between two variables can be represented in multiple ways (words, tables, equations, and graphs).

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them

 As students discuss the Talk About It! question on Slide 3, they should be able to explain why the table might be a better representation for their situation, even though all the representations are valid and display the same information between the two variables.Go Online to find additional teaching notes.

Talk About It!

SLIDE3

Mathematical Discourse

Give an example of a situation where a table might be a better representation for a relationship than a graph. Explain your reasoning Sample answer: If the input-output values are very large and you need to know a specific ordered pair, a table would be a better representation.

DIFFERENTIATE

Enrichment Activity 1 Bid

To further students' understanding of how relationships can be expressed in multiple ways, have them work in groups of 4 students to complete the following activity.

Assign each member of the group one of the four representations of relationships (words, table, equation, and graph). Have the group work together to create a real-world scenario that is represented in each of these four ways. Have them use one piece of paper for each representation. When each group has completed creating each representation, have them turn in their papers to you. Shuffle the papers so that they are in random order. Distribute one paper to each person at random. Then have the class walk around the room, each student looking for the other three remaining representations that correctly represent the relationship that matches the one they are carrying. To increase the challenge, have each student tape their given representation to their back without looking at it first, so that they do not know which relationship they have. Instead, each student must help others in the classroom find their matches.

Interactive Presentation

Learn, Multiple Representations of Relationships, Slide 1 of 3

FLASHCARDS

On Slides 1 and 2, students use Flashcards to learn how a relationship can be represented with words, equations, tables, and graphs.

LESSON GOAL

Students will use tables, equations, and graphs to represent relationships.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Multiple Representations of Relationships
Example 1: Multiple Representations of Relationships

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	1 B	
Remediation: Review Resources	-	-	
Collaboration Strategies	-	-	-

Language Development Support

Assign page 43 of the Language Development Handbook to help your students build mathematical language related to multiple representations of relationships between two variables.

FInlil You can use the tips and suggestions on page T43 of the handbook to support students

Suggested Pacing
 90 min 45 min
 \square

Focus

Domain: Expressions and Equations
Major Cluster(s): In this lesson, students address major cluster 6.EE.C
by using tables, equations, and graphs to represent
relationships.
Standards for Mathematical Content: 6.EE.C.9, Also addresses 6.RP.A.3.A, 6.NS.C.6.C, 6.EE.B.6, 6.EE.B. 7

Standards for Mathematical Practice: MP1, MP2, MP5

Coherence

Vertical Alignment

Previous

Students wrote equations and graphed lines to represent relationships.

6.EE.C. 9

Now

Students use tables, equations, and graphsto represent relationships.
6.EE.C. 9

Next
Students will use tables and graphs to determine if a relationship between two quantities is proportional.

7.RP.A. 2

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of relationships between two variables through the use of multiple representations. They build fluency by using tables, equations, and graphs to represent relationships between two variables. They also apply this understanding by representing realworld relationships between variables.

Mathematical Background

A relationship between two quantities can be expressed using words, an equation, a table, or a graph. Each representation has advantages. Words can help express the relationship in a clear way by defining each of the variables and describing how they are related. An equation is useful to finding values of the independent or dependent variable if only one value is known. A table is useful for organizing input/output pairs, and a graph is useful to viewing the trends of the relationship visually.

Interactive Presentation

Warm Up

Muiliple Representations
nerithan in 262 miter bong
 tis uns dose in 2 heris. 4 minask, se reconth Tis

 TV. 1 (TWe

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- writing algebraic expressions and equations (Exercise 1)
- finding a rule (Exercise 2)
- graphing relationships (Exercise 3)

Answers

1. Let $c=$ the total cost and $g=$ the number of gigabytes purchased; $c=12.99 g+49.99 ; \$ 101.95$
2. Sample answer: $y=3 x-1$
3. See Warm Up slide online for answer.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about using different representations to compare specifics about a marathon.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:
-When are equations useful? Sample answer: Equations can be written to represent a situation and find missing input or output values.

- What are the different ways you have learned to represent a relationship between two variables? words, tables, graphs, and equations
6.EE.C. 9

a Example 1 Multiple Representations of Relationships
The student council has already earned $\$ 150$ this year. For the next fundraiser, they are holding a car wash and charging $\$ 7$ for each car they wash.
Represent the relationship between the number of cars washed c and the total earnings t with an equation, a table, and a graph.

Part A Represent the relationship with an equation.
Step 1 Determine the independent and dependent variables.
In this relationship, the number of cars washed c is the independent variable and the total earnings t is the dependent variable.

Step 2 Write the equation.
Before the car wash, the student council had already earned $\$ 150$. For washing cars, they will earn \$ 7 per car.
To determine the total earned t, multiply the number of cars washed c by 7 and add 150 .
The equation that represents the situation is $t=7 c+150$.
Part B Represent the relationship with a table.

Number of Eamings (\$). Cars, Cit	
1	157
2	164
3	171
4	178
5	185

Interactive Presentation

Example 1, Multiple Representations of Relationships, Slide 2 of 7

On Slide 2, students move through the steps to write an equation that represents a real-world situation.

On Slide 3, students complete the table to represent the situation.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Example 1 Multiple Representations of Relationships

Objective

Students will represent a real-world relationship between variables with an equation, a table, and a graph.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 6, encourage them to make sense of the different types of representations and why some may be more helpful than others, based on what information they might want to highlight in the relationship between the two variables.

Encourage students to represent the real-world situation with multiple representations - an equation, a table, and a graph.

5 Use Appropriate Tools Strategically Students will use the Coordinate Graphing eTool to graph the relationship.

Questions for Mathematical Discourse

SLIDER2

AL What information do you know? What do the variables c and t represent? Student council has already earned $\$ 150$. Students are charging $\$ 7$ for each car they wash. c represents the number of cars they wash. t represents their total earnings.

OI. Why is the independent variable multiplied by 7 ? The independent variable needs to be multiplied by $\$ 7$, the charge for each car washed.
[sill If there was an original donationto the student council of $\$ 20.00$, how would the equation change? $t=7 c+170$

SLIDE3

AL. How will you find the values in the right column of the table? Sample answer: To find the values in the right column of the table, I will substitute each value of c into the equation to find its corresponding t value.

OL Why is a table used? Sample answer: A table helps you organize information. It is easy to see the cost for any number of cars washed with a table of values
[31. Do you think it would it be easier to create the table after you write the equation or before? Explain. Sample answer: Sometimes I need the table to be able to write the equation so I can see if there is repeated addition in the problem. In this case, the equation was easier to write first since I already knew that "cost per car" would indicate multiplication.

Example 1 Multiple Representations of

 Relationships (continued)
Questions for Mathematical Discourse

SLIDE 4

AIII What is the general form of the ordered pairs for this relationship?
Use the variables c and $t .(c, t)$
OLI Why do you need to write the ordered pairs in the table? Sample answer: I need to know the ordered pairs in order to graph the relationship on a coordinate plane.
[B1.I. What will be the ordered pair when the total earned is $\$ 255$? $(15,255)$

SLIDE5

All How will you create the graph? Sample answer: I will use the ordered pairs and graph each one of the points.

What do you expect the graph to look like? Sample answer: I expect the points to fall in a straight line.
|BII. Is $(8,200)$ a point represented by the equation? Explain. no; Sample answer: $(8,200)$ is not a point represented by the equation because the total earnings for washing 8 cars will be $\$ 206$.

Wo Online

- Find additional teaching notes and the Talk About $l t$! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1, Multiple Representations of Relationships, Slide 5 of 7

eTOOLS

On Slide 5, students use the Coordinate Graphing eTool to graph the relationship.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Check

An online stores sells trail mix for $\$ 2.75$ per pound and charges a shipping fee of $\$ 4$. Represent the relationship between the pounds of trail mix bought p and the total cost c with an equation, a table, and a graph.

Part A Represent the relationship with an equation
$c=2.75 p+4$
Part B Represent the relationship with a table.

Pounds of Trail Mix, p T otal Cost $(\mathbf{\$}), c$	
1	6.75
2	9.50
3	12.25
4	15.00
5	17.75

Part C Represent the relationship with a graph

Q Go Online Y ou can complete an Extra Example online.
Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Between Two Variables

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to use words, tables, equations, and graphs to represent a relationship. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up
What are the ways in which a relationship between two variables can be displayed? In this lesson, students summarized all of the representations that can be used to describe the relationship between two variables (words, equations, tables, and graphs). Encourage them to work with a partner to prepare a presentation by generating a real-world relationship that exists between two variables. Have students represent that relationship in each of these four ways, and present their multiple representations to the class. During their presentations, students should clearly explain how each representation shows the same relationship.

Exit Ticket

Refer to the Exit Ticket slide. Decide which representation you would like to use to represent the relationship between the number of laps run by a runner and the total time. Create your representation. Sampleanswer: I would like to use a graph to represent the relationship. See students' graphs.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1, 3-8
- D ALEKS Graphs and Functions

IF students score 66-89\% on the Checks, ID
THEN assign:

- Practice, Exercises 1, 2, 4, 6, 7
- Remediation: Review Resources
- Personal Tutor
- Extra Example 1
- ALEKS Ordered Pairs

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- a AleKs Ordered Pairs

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.
AIII Practice Form B
OII Practice Form A
[BI
Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
2	represent a real-world relationship between variables with an equation, a table, and a graph	1,2
2	extend concepts learned in class to apply them in new contexts	3
3	solve application problems involving multiple representations	4
3	higher-order and critical thinking skills	$5-8$

Apply "indicates multi-step problem
*4. Zari is comparing the costs of having cupcakes delivered from two different bakeries. Betty's Bakery offers free delivery and sells cupcakes by the dozen. The table shows the total cost c of d dozens from Betty's Bakery. The Sweet Shoppe charges $\$ 20$ for delivery and $\$ 18$ per dozen. The equation $c=18 d+20$ represents the total cost
of d dozens of cupcakes and delivery from the Sweet Shoppe If Zari has $\$ 110$ do Sweet Shoppe. If Zari has $\$$ no to spend, whit bakery shit If Zar The
The Sweet Shoppe; Sample answer: For $\$ 110$ at The Sweet Shoppe, she can get 5 dozen cupcakes with delivery because $\$ 18(5)+\$ 20$ is $\$ 110$. At Betty's Bakery she does not have enough money for 5 dozen because $\$ \mathbf{2 4 (5)}$ is $\$ 120$ and $\$ 120$ is greater than $\$ 110$. So, she could only buy 4 dozen at Betty's Bakery.

9 Higher-Order Thinking Problems
5. Persevere with ProblemsRyder plays a and players earn more points by catching bugs. Write an equation to represent the total number of points p earned for catching b bugs. Use the equation to find Ryder's points after catching 10 bugs.

$p=5 b+5 ; 55$ points
7. Reason Abstractly Reese and T amara both babysit. Reese earns $\$ 5$ per hour and T amara earns $\$ 10$ per hour. Will the amount earned for each girl ever be the same for the same number of hours after zero hours? Explain.
no; Sample answer: The graphs of the lines will never meet other than zero hours.

28 Module 7- Relationships Between Two Variables

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In Exercise 5, students will solve an application problem in which they first have to model with an equation a video game situation involving points and then use the equation to find the number of points a player receives for catching 10 bugs.

2 Reason Abstractly and Quantitatively In Exercise 7, students will use abstract reasoning by referring to a graph to see if two babysitters, each charging a different hourly rate, will ever earn the same amount of money.

Common Misconception

In Exercise 5, students may forget to include the y-intercept as part of the equation and instead write $p=5 b$. It is particularly tempting to do so on this problem because both the slope and the y-intercept are 5 . Students should be allowed to discover their own error by substituting points from the graph. Each point on the graph should satisfy the equation. If students have written $p=5 b$, the should be able to see that their values of p are off by 5 from what the graph shows.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 4 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Interview a student.

Use with Exercises 6-7 Have pairs of students interview each other as they complete these problems. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 6 might be, "What are the independent and dependent variables in the situation?"

DINAH ZIKE FOLBABLES

[태II A completed Foldable for this module should include ways to display relationships between two variables, using equations, tables, and graphs. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 10 O

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together: Lessons 7-1 and 7-2
Vocabulary Test
All Module Test Form B
Oll Module Test Form A
[12ll Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Expressions and Equations.

- Algebraic Expressions
- Equations

Essential Question

EGLㄴ Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

What are the ways in which a relationship between two variables can be displayed? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-9 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	2
Multiselect	Multiple answers may be correct. Students must select all correct answers.	6,9
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	1,4
Grid	Students create a graph on an online coordinate plane.	7
Open Response	Students construct their own response in the area provided.	$3,5,8$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.EE.C. 9	$7-1,7-2,7-3,7-4$	$1-9$

6. Multivelect The nable shows the totir coss for A hows a plomber charges to make a setice cab to a cutboser. Which of se foltowisg. two step equitions represents the total cost. for the number of hours of service the plumhe provides? select all that appls INew il

$C=30 n+40$
$<c=40 n+30$
$130 n+40=c$
$20 n+50=c$
$<40 n+30=c$.
7. Ond The equation $A=8 p$ represents the number of biscuts oin p pockgets of biscuts-thene If
A Complese ene tsole of vatues that tepreseres mes situation.

purberctisatoms	
0	9
1	8
2	56
3	24

B. Graph the equation on the coordinme piane.

8. Open Response the gaph shows the amourt of monny in in doters. Stucey somed for a nouns of work whe an equation that couid be used to tind the amount of money Sacky ewns for my numbet of hous hime?

2. Multiple Choice Heath is selling magasine ubscribsons. He cemin 510 lor avey wisnctopion sodd. Uhe s to represent the number sodd and tor twels ewnigh. thesen e.
A. Which of the following equatoms can be ined so find Heonis totas earringit oven is subscriptions scid?
(1) $z=105$
(5) $t=50+1$
(C) $s=50 t$
(C) $s=10+1$
A. Geach tie ordered poirs and draw the line a. Gesoh the ordered psin and
on the cesodicute plane.

Magmine Sobncriptions

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How are the areas of triangles and rectangles used to find the areas of other polygons? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.

Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.
Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.

When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of buildings and beehives to introduce the idea of area. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Leam?
Phace il checkmak (4) in etch row that cortesponds wath how much you alieody krow mbout each topic before entimp this module.

(1) Yoidabler Cut out the Foidroble ind tope it to the Modive Firvew at the enid of the module. You can use the Fordable throughon the module as you lewn about areat

Interactive Student Presentation

Module Goal

Find areas of parallelograms, triangles, trapezoids, regular polygons, and polygons on the coordinate plane.

Focus

Domain: Geometry
Major Cluster(s): 6.EE.A Apply and extend previous understandings of arithmetic to algebraic expressions.
Supporting Cluster(s): 6.G.A Solve real-world and mathematical problems involving area, surface area, and volume.
Standards for Mathematical Content:
6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
6.G.A. 3 Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.
Also addresses 6.EE.A. 2 and 6.EE.A.2.C.
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- find the area and perimeter of rectangles
- fluently perform all four operations with positive rational numbers
- solve one-step equations

Use the Module Pretest to diagnose readiness. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students classified two-dimensional figures.

5.G.B.3, 5.G.B. 4

Now

Students find areas of parallelograms, triangles, trapezoids, regular polygons, and polygons on the coordinate plane.
6.G.A.1, 6.G.A.3, 6.EE.A.2, 6.EE.A.2.C

Next

Students will find volume and surface area of triangular and rectangular prisms and pyramids.
6.G.A.2, 6.G.A. 4

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of polygons, basic computation, and the coordinate plane to develop understanding of area. They use this understanding to build fluency with finding the area of parallelograms, triangles, trapezoids, and regular polygons. They also build fluency with finding area by using coordinates of polygons on the coordinate plane. They apply their understanding of area to solve multi-step, real-world problems.

| EXPLORE \rangle LEARN \sum EXAMPLE \& PRACTICE | |
| :---: | :---: | :---: |
| 1 CONCEPTUAL UNDERSTANDING 2 FLUENCY | 3 APPLICATION |

Suggested Pacing

Lesson		Standard(s)	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
8-1	Area of Parallelograms	6.G.A.1, 6.EE.A.2, 6.EE.A.2.C	2	1
8-2	Area of Triangles	6.G.A.1, 6.EE.A.2, 6.EE.A.2.C	3	1.5
8-3	Area of Trapezoids	6.G.A.1, 6.EE.A.2, 6.EE.A.2.C	2	1
8-4	Area of Regular Polygons	6.G.A. 1	2	1
Put It All Together 1:Lessons 8-1, 8-2, 8-3, and 8-4			0.5	0.25
8-5	Polygons on the Coordinate Plane	6.G.A.3, Also addresses 6.G.A. 1	3	1.5
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			15.5	7.75

Correct Answers:

Enough Information: A, C, E, G, H, I
Not Enough Information: B, D, F

Collect and Assess Student Work

the student selects...

Enough Information:
B, D, F
Not Enough
Information: A, E

Enough Information:
B, F
Not Enough
Information:
A, E, G, H, I
the student likely...
used the incorrect measurement as the height of the triangle.
Example: For items B and D, the student uses the two given measurements to determine the area.
does not understand how to compose and decompose the shapes into triangles and rectangles.

Example: For item A, the student may believe they need to find the area of the triangle.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS' Perimeters, Areas, and Volumes
- Lesson 1, Examples 1-2
- Lesson 2, Examples 1-3
- Lesson 3, Examples 1-4

Revisit the probe at the end of the module to be sure your students no longer carry these
misconceptions.

What Vocabulary Will You Learn?	
Check the box next to	m that you may already know.
\square base	- parallelogram
\square congruent figures	\square regular polygon

```
Are You Ready?
Study the Quick Review to see if you are ready to start this module.
```

Then complete the Quick Check

Quick Review	
Example 1 Find area of rectangles. Find the area of the rectangle. 5 in. $\begin{aligned} A & =\ell w & & \text { Area of a rectangle } \\ & =8 \cdot 5 & & \text { Replace } \ell w i t h 8 \text { and } w \text { with } 5 . \\ & =40 & & \text { Multiply. } \end{aligned}$ The area of the rectangle is 40 square inches.	Example 2 Multiply fractions by whole numbers. Find $\frac{1}{2} \cdot 22$. $\frac{1}{2} \cdot 22=\frac{1}{2}^{2} \cdot \frac{2}{1} \quad \text { Write } 22 \text { as } \frac{22}{1}$
Quick Check	
1. A garden is in the shape of a rectangle. The length of the garden is 12 feet and the width is 7 feet. What is the area of the garden? 84 square feet	$\begin{aligned} & \text { 2. Find } \frac{1}{2} \cdot 34 \text {. } \\ & 17 \end{aligned}$
How Did Y ou Do? Which exercises did you answer correctly in the Quick Check? Shade those exercise numbers at the right.	

[^14]434

What Vocabulary Will You Learn?

Eㄴ․ As you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define Congruent figures are figures that have the same shape and size.

Example If two right triangles have side lengths of 3 inches, 4 inches, and 5 inches, then the triangles are congruent.

Ask What do you think will be true about the perimeter and area of congruent figures? They will be the same.

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- finding the perimeter and area of a rectangle
- solving one-step equations
- classifying quadrilaterals
- performing operations with fractions
- graphing on a coordinate plane

O ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Perimeters, Areas, and Volumes topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

Promote Process Over Results
The process that a student takes as he or she encounters a new problem is just as important-if not more important-than the results achieved.

How Can I Apply It?

Encourage students to consider the Think About lt! prompts that precede many of the Examples. These prompts often ask students how they might begin to solve the problem, or have them digest the information they are given in attempts to understand what they might do next. Have students discuss their strategies with a partner and/or engage in a whole-class discussion. Be sure to support the process and reward student effort as they explore and work through problems, instead of merely rewarding the correct answer.
6.G.A.1, 6.EE.A.2.C

Teaching Notes

Before moving from the Explore, Area of Parallelograms, to the Learn, Area of Parallelograms, have students discuss the Pause and Reflect question with a partner. Encourage each student to openly talk about what they may have previously learned that might help them prepare for today's lesson. Students should discuss using a formula to find the area of a square or rectangle. They could also discuss multiplying rational numbers. Pairs should work together to determine whether or not this prior knowledge is useful in this context. If they are unable to identify any helpful prior knowledge, have them meet with other pairs of students in the class. Walk around the room, listening to the conversations and encourage students to assist each other before stepping in.

DIFFERENTIATE

Enrichment Activity ㅍN

If any of your students need more of a challenge, have them use the formula $A=b h$ to find the area of the parallelograms described below.
Parallelogram A: $b=\frac{1}{2} \mathrm{ft}, h=3 \mathrm{in}$. 18 in $\mathrm{br} \frac{1}{8} \mathrm{ft}^{2}$
Parallelogram B: $b=30 \frac{3}{8} \mathrm{in}$., $h=4 \frac{1}{3} \mathrm{ft} 1,579 \frac{1}{2} \mathrm{in}^{2}$ or $10 \frac{31}{32} \mathrm{ft}^{2}$
Parallelogram C: $b=2.8 \mathrm{~m}, h=350.4 \mathrm{~cm} 98,112 \mathrm{~cm}^{2}$ or $9.8112 \mathrm{~m}^{2}$
Parallelogram D: $b=120.9 \mathrm{~mm}, h=1.5 \mathrm{~m} 181,350 \mathrm{~mm}$ or $0.18135 \mathrm{~m}^{2}$

Area of Parallelograms

LESSON GOAL

Students will find and use the area of parallelograms.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Area of Parallelograms
Learn: Area of Parallelograms
Example 1: Find Area of Parallelograms
Example 2: Find Missing Dimensions of Parallelograms
Apply: Landscaping

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	TAE:	
ArriveMATH Take Another Look	\bullet		
Extension: Rectangle with Maximum Area		\bullet	0
Collaboration Strategies	\bullet	\bullet	

Language Development Support

Assign page 44 of the Language Development Handbook to help your students build mathematical language related to the area of parallelograms.
ELIII You can use the tips and suggestions on page T44 of the handbook to support students who are building English proficiency.

Focus

Domain: Geometry
Major Cluster(s): In this lesson, students address major cluster 6.EE.A and the supporting cluster 6.G.A by finding and using the area of parallelograms.
Standards for Mathematical Content: 6.G.A.1, 6.EE.A.2,

6.EE.A.2.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students classified two-dimensional figures.
5.G.B. 4

Now

Students find and use the area of parallelograms.
6.G.A.1, 6.EE.A.2, 6.EE.A.2.C

Next
Students will find and use the area of triangles.
6.G.A.1, 6.EE.A.2.C

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3APPLICATION
用 Conceptual Bridge In this lesson, students draw on their		
knowledge of polygons and basic computation to develop		
understanding of area of parallelograms. They learn how to find the		
area of a parallelogram and build fluency with finding the area, and		
finding the missing dimension of a parallelogram when given the		
area. They apply their understanding of area of parallelograms to		
solve multi-step, real-world problems.		

Mathematical Background

A parallelogram is a quadrilateral with opposite sides equal in length and parallel. To find the area of a parallelogram, multiply the lengths of the base and the height. The height is the perpendicular distance from the base to its opposite side, and the base can be any of the sides, often the bottom side.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding the perimeter and area of a rectangle (Exercise 1)
- solving one-step equations (Exercise 2)
- classifying quadrilaterals (Exercise 3)

Answers

1. perimeter: 22 inches; area: 24 inches 2
2. Let m be the total amount he made; $m=\$ 1.25 a ; \$ 56.25$
3. parallelogram

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the area of the parallelogram-shaped glass front of the Dockland Office Building in Hamburg, Germany.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- A computer monitor sits on its base, the part that holds the monitor up and supports it. How would this help you infer where the base of a shape is? Sample answer: The base of a shape may be the bottom of the shape.
- When you go to the doctor, the nurse usually measures your height. How is your height measured? Sample answer: I stand against a measuring stick that forms a right angle with the platform where I am standing. The marker on the measuring stick that corresponds with the top of my head is my height.
- The word parallel is found within the word parallelogram. What does parallel mean? Sample answer: Parallel means that two coplanar lines have the same distance between them as far as they are extended. Parallel lines never touch.

Explore Area of Parallelograms

Objective

Students will use Web Sketchpad to explore the area of a parallelogram.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use Web Sketchpad to explore the similarities between finding the area of a parallelogram and finding the area of a rectangle. Students should manipulate the parallelogram and observe how the area is affected. Encourage students to identify the similar structure between all of the parallelograms.

(0) Inquiry Question

How is finding the area of a parallelogram like finding the area of a rectangle? How is it different? Sample answer: Finding the area of a parallelogram is like finding the area of a rectangle because both involve multiplying the base by the perpendicular distance between the bases. In a parallelogram, you multiply base and height. In a rectangle, you multiply length and width.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

Share your method of creating a rectangle with your partner. Do you think a rectangle is a parallelogram? Explain your reasoning. Sample answer: I dragged point B directly above point A, and then point D up on the same horizontal line as point A. I think a rectangle is a parallelogram because the opposite sides are the same length and parallel.
(continued on next page)

Interactive Presentation

Area of Parallelograms

©) Introdicing the Ingoliry Question

Explore, Slide 1 of 8

Explore, Slide 2 of 8

Throughout the Explore, students use Web Sketchpad to explore the area of a parallelogram.

Interactive Presentation

Explore, Slide 5 of 8

TYPE

a)

On Slide 8, students respond to the Inquiry Question and view a sample answer.

Explore Area of Parallelograms (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore how finding the area of a parallelogram is similar to finding the area of a rectangle. Encourage students to deepen their understanding about how the area of a parallelogram is affected when its dimensions are changed.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 5 is shown.

Talk About It!

SLIDE5

Mathematical Discourse

Describe any changes in the height of the parallelogram. Sample answer: The height was 3 centimeters when I created the rectangle, and stayed 3 centimeters after I dragged point B horizontally.

Interactive Presentation

Learn, Area of Parallelograms, Slide 1 of 3
WATCH
On Slide 1, students watch a video to view how the area of a parallelogram is related to the area of a rectangle.

CLICK
On Slide 2, students select base and height to view the definitions of the terms in relation to a parallelogram.

FLASHCARDS

On Slide 3, students use Flashcards to view the area formula of a parallelogram expressed in multiple representations.

1 CONCEPTUAL UNDERSTANDING

Learn Area of Parallelograms

Objective

Students will understand how the area of a parallelogram is related to the area of a rectangle.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 3, encourage them to analyze the structure of the parallelogram in order to explain how the formula for the area of a parallelogram is similar to the area of a rectangle.

Go Online to have your students watch the video on Slide 1. The video illustrates how to find the area of a parallelogram.

Teaching Notes
 SLIDE1

Students will learn that a parallelogram is a quadrilateral with opposite sides that are parallel and have the same length. Play the video to the class. Students will learn how to find the area of a parallelogram. You may wish to have students recreate the activity shown in the video that demonstrates how a parallelogram can be decomposed into a triangle and a trapezoid, and then rearranged to form a rectangle. Have students explain how the area formula of a rectangle can help them come up with the area formula of a parallelogram.

SLIDE 2

Students will learn that the formula to find the area of a parallelogram uses its base and height. Have students select each button to see how to identify these parts of a parallelogram. A common misconception is that students may think the slanted side is the height of a parallelogram. Remind them that the height of a figure represents its perpendicular distance from the base to the opposite side.

Talk About It!

SLIDE 3

Mathematical Discourse

How is the formula for the area of a parallelogram, $A=b h$, similar to the area of a rectangle, $A=\ell w$? Sample answer: In both formulas, the length of the base is multiplied by the perpendicular distance between the bases.

3 APPLICATION

Example 1 Find Area of Parallelograms

Objective

Students will find the area of parallelograms.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 4, encourage them to be precise in their explanations for why the unit for area is square units.

7 Look for and Make Use of Structure Encourage students to study the structure of the flag in order to precisely identify the base and height of the indicated parallelogram.

Questions for Mathematical Discourse SLIDE 2

AL. Why do we need to identify the base and the height of the parallelogram? The base and height are the measurements used in the formula for the area.

AL. How will you identify the base? the height? Sample answer: Since the height in this flag is the same as one of the sides of the rectangle, the height is 30 inches. That leaves the portion of the bottom as the base of the parallelogram.
OL How do you know the base of the parallelogram is $6 \frac{3}{4}$ inches? Sample answer: The base is $6 \frac{3}{4}$ inches because this measurement represents the length of the bottom of the parallelogram. 30 inches is not the base because it represents the vertical height. Suppose the bottom of the flag measured 18 inches. How can you find the area of the flag that is not part of the black parallelogram? Sample answer: I can find the area of the entire flag, or $30 \cdot 18$, then subtract the area of the parallelogram.

SLIDE 3

ALI What do b and h represent in the area formula? b represents the base and h represents the height.
OL. How can you mentally multiply $6 \frac{3}{4}$ and 30 ? Sample answer: I can multiply 6 by 30 , then find $\frac{3}{4}$ of 30 , and add.
Suppose each measurement on the flag was doubled. By what number can you multiply $202 \frac{1}{2}$ to get the new area? Be prepared to support your answer. Sample answer: The area of the flag would be multiplied by 4 . If I double the height and base, I get 60 inches and $13 \frac{1}{2}$ inches; $60 \cdot 13 \frac{1}{2}=810 ; 4 \cdot 202 \frac{1}{2}=810$

13
 Go Online

- Find additional teaching notes and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1, Find Area of Parallelograms, Slide 3 of 5

Interactive Presentation

Example 2, Find Missing Dimensions of Parallelograms, Slide 2 of 5
DRAG \& DROP
On Slide 2, students drag the dimensions to the appropriate area.

CLICK

On Slide 3, students move through the steps to find the measure of the missing dimension.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 2 Find Missing Dimensions of Parallelograms

Objective
Students will find the missing dimension of a parallelogram when given the area.

Questions for Mathematical Discourse

SUIDE2

AI. How do you know that the missing dimension is the height? Sample answer: I knew the height was missing because where the label for the measurement should be, the variable h is used.

OL Why is it helpful to identify the information before you begin solving for the missing dimension? Sample answer: Since I am using a formula, I need to identify what to substitute for each variable in the formula. After I substitute, I can solve for the missing variable.
|Bla In this figure, do you think the height of the parallelogram is the same as the length of the shorter side? Explain. no; Sample answer: Unless the parallelogram is a rectangle, the height is not the same as the length of the shorter side.

SLIDE 3

An Why is each side of the equation divided by 9 ? Sample answer: In order to solve for the height, I need to divide each side of the equation by 9 to get the variable by itself.

OL. Would you expect the unknown slanted side length in the parallelogram to be greater than, less than, or equal to 5 inches? Explain. Sample answer: Since the height of the parallelogram is inside the figure, I would expect the unknown side length to be greater than the height. Since the height is 5 inches, I think the unknown slanted side length will be greater than 5 inches.
[BL. Can you find the perimeter of the parallelogram with the information you have? Explain. no; Sample answer: I know the length of two sides, and I know the height of the parallelogram, but I don't know the lengths of the other set of sides. You cannot find the perimeter with the height unless the parallelogram is a rectangle.

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Landscaping

Objective

Students will come up with their own strategy to solve an application problem involving landscaping a city park.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What mathematical term is related to the word "cover"?
- How do you find the area of a parallelogram?
- What operation will you need to perform so that the pond is not included in the area?

2 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Landscaping
CHECK
Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add the formula that is used to find the area of the parallelogram. Then give an example of how to use that formula to find the area of a parallelogram. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

How are the areas of triangles and rectangles used to find the areas of other polygons? In this lesson, students learned how to use the area formula of a rectangle to discover the area formula of a parallelogram. Encourage them to work with a partner to prepare a brief demonstration (using grid paper or other drawings) that illustrates how the area of a rectangle can be used to find the area of a parallelogram. Have them present their demonstration to the class.

Exit Ticket

Refer to the Exit Ticket slide. The height of the building is about 25 meters and the length of the base is 86 meters. What is the approximate area of the glass front? Write a mathematical argument that can be used to defend your solution. about 2,150 m²; Sample answer: The glass front is shaped like a parallelogram. To find the area of a parallelogram, multiple the base by the height. $25(86)=2,150$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 5, 7, 9-12
- Extension: Rectangle with Maximum Area
- D ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-4, 7, 9, 11
- Extension: Rectangle with Maximum Area
- Personal Tutor
- Extra Examples 1 and 2
- a AleKs Area of Rectangles

IF students score 65% or below on the Checks, THEN assign:

- ArriveMATH Take Another Look
- a ALEKS Area of Rectangles

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

0

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK \mathbf{T}	opic	Exercises
1	find the area of parallelograms	1,2
1	find the missing dimensions of a parallelogram when given the area	3,4
2	extend concepts learned in class to apply them in new contexts	5,6
3	solve application problems involving area of parallelograms	7,8
3	higher-order and critical thinking skills	$9-12$

Common Misconception

When finding the area of a parallelogram, students may incorrectly identify the height of the parallelogram as the length of the slanted side of the parallelogram. If students need to find the area of a parallelogram where both the slanted side length and the height are given, remind students that the height of a parallelogram is the perpendicular distance between the two parallel sides.

3. Find the missing dimension of the parallelogram. (Example 2)
$b=7 \mathrm{~m}$

the flag of the Republic of the Congo.
4. Find the missing dimension of the parallelogram. (Example 2)
$h=5$ in.

T est Practice
6. Open Response What is the area of the parallelogram?
2. A group of students is painting the flag of Brunei for a geography project. Joseph is for painting only the square inches will he cover with white paint? (-1.

 13.6 in 2

Apply *indicates multi-step problem

*7. Liam is designing a patio and fountain for his backyard The fountain will cover 50 square feet. The remaining space will be covered with tiles. If one tile covers 2.25 square feet, how many tiles will Liam need? 41 tiles

*8. Tara and Veronica are making a parallelogram-shaped banner for a football game. They will paint the entire anner except for a rectangular section where a photo escor an wis bquce. The photo of the fprimer corers 24 sqa fet, how bltle primer covers 24 square feet, how many bottles
3 bottles

O Higher-Order Thinking Problems
9. Identify Structure Find the area of the shaded region.

$480 \mathrm{~mm}^{2}$

11.
12. Reason Abstractly if you were to draw three different parallelograms each with a base of 5 units and a height of 4 units, how would the areas compare? Write an argument that could be used to defend your solution.
Sample answer: Because the area of a parallelogram is found by multiplying the base and height, the area of each of the three parallelograms would be 20 square units, because $5 \times 4=20$.
13. Create Draw and label a parallelogram with a base that is 2 times its height and has an area that is less than 100 square yards.
Sample answer:

14. Persevere with Problems A rectangle and a parallelogram have the same area of 24 square inches. Describe the possible dimensions for each figure.

Sample answer: rectangle: $\ell=12 \mathrm{in}$. and $w=2 \mathrm{in}$.; parallelogram: $h=4 \mathrm{in}$. and $b=6 \mathrm{in}$.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 9, students find the area of the shaded region. Encourage students to use the structure of the blue and white shaded figures to find the area of the shaded region.

2 Reason Abstractly and Quantitatively In Exercise 11, students will determine how the areas compare when drawing three different parallelograms with the same base and height lengths. Encourage students to use reasoning when explaining the comparison.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 12, students describe possible dimensions for each figure. Encourage students to decide the correct pathway that can be implemented to solve the problem.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 7 Have students work together to prepare a brief demonstration that illustrates why this problem might require multiple steps to solve. For example, before they can find the number of tiles needed, they must first find the combined area of the patio and fountain. Then subtract to find the area that will be covered by tiles. Have each pair or group of students present their response to the class.

Create your own higher-order thinking problem.

Use with Exercises 9-12 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Teaching Notes

Before moving from the Explore, Parallelograms and Area of Triangles, to the Learn, Area of Triangles, have students discuss the Pause and Reflect question with a partner. Encourage each student to openly talk about what they may have previously learned that might help them prepare for today's lesson. Students should discuss using a formula to find the area of a parallelogram. They could also discuss multiplying rational numbers. Pairs should work together to determine whether or not this prior knowledge is useful in this context. If they are unable to identify any helpful prior knowledge, have them meet with other pairs of students in the class. Walk around the room, listening to the conversations and encourage students to assist each other before stepping in.

DIFFERENTIATE

Some students may struggle with identifying the base and height of different triangles. Have students work in pairs. Together, they should write out the definitions for base and height. If they have difficulty writing the definitions, remind them that any side of a triangle can be the base, but the height must be perpendicular to the base. After writing the definitions, have students draw pictures of several right, acute, and obtuse triangles. They should then draw a height for each triangle and label the base and the height.

Area of Triangles

LESSON GOAL

Students will find and use the area of triangles.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

Explore: Parallelograms and Area of Triangles
Learn: Area of Triangles
Example 1: Find Area of Right Triangles
Explore: Area of Triangles
Example 2: Find Area of Triangles
Example 3: Find Missing Dimensions of Triangles
Apply: Home Improvement

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	515	
Remediation: Review Resources	-	-	
ArtiveMATH Take Another Look	-		
Extension: Area of Kites		-	-
Collaboration Strategies	\bullet	-	-

Language Development Support

Assign page 45 of the Language Development Handbook to help your students build mathematical language related to the area of triangles.
FElili You can use the tips and suggestions on page T45 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1.5 days
45 min	3 days

Focus

Domain: Geometry
Major Cluster(s): In this lesson, students address major cluster 6.EE.A and the supporting cluster 6.G.A by finding and using the area of triangles.
Standards for Mathematical Content: 6.G.A.1,6.EE.A.2,
6.EE.A.2.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

Coherence

Vertical Alignment

Previous

Students found and used the area of parallelograms.
6.G.A.1, 6.EE.A.2.C

Now

Students find and use the area of triangles.
6.G.A.1, 6.EE.A.2, 6.EE.A.2.C

Next

Students will find and use the area of trapezoids by composing and decomposing into other shapes.
6.G.A.1, 6.EE.A.2.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of area as they explore area of triangles. They build fluency with finding the area of a triangle, and finding missing dimensions, given the area. They apply their understanding of area of triangles to solve multi-step, real-world problems.

Mathematical Background

Two figures are congruent if they have the same shape and size. A parallelogram can be formed by two congruent triangles, and since the triangles are congruent, they have the same area. This means that the area of each of these triangles is equal to one-half the area of the parallelogram. The base can be any side of the triangle and the height is the perpendicular distance from the base to the opposite vertex.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding the area of a rectangle (Exercise 1)
- understanding quadrilaterals (Exercise 2)
- performing operations with fractions (Exercise 3)

Answers

1. 112 inches 2
2. bases
3. 18 gallons

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the interlocking triangles of the glass exterior of the Biosphere 2 complex in Tucson, Arizona.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Some of the synonyms for base are foundation and support. Using the synonyms, where do you think the base of a figure is found? Sample answer: The base of a figure is the side upon which the height rests.
- The word congruent comes from a Latin word congruere, meaning to come together, to agree. What do you think congruent figures might mean? Sample answer: If two shapes come together, to agree, then they may be the same figure, or have the same size and shape.
- Think about how you measure your height. How do you think the height of a triangle is measured? Sample answer: I think the height of a triangle is measured by the shortest distance from the base to the highest point.

Explore Parallelograms and Area of Triangles

Objective

Students will use Web Sketchpad to explore how the area of a triangle is related to the area of parallelograms.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About lt! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with a parallelogram using Web Sketchpad. Students will use the parallelogram and what they know about the area of a parallelogram to find the area of a triangle. Students should note how the parallelogram can be decomposed into two congruent triangles.

(8)Inquiry Question
How can you use the area of a parallelogram to find the area of a triangle? Sample answer: To find the area of a triangle I can find the area of a parallelogram with the same base and height measurements as the triangle, and then divide by 2 .

(W)
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

What line segments represent the bases of the parallelogram and what line segment represents the height? Explain how you know. Sample answer: $\overline{D F}$ or $\overline{E G} ; \overline{E H}$, it is perpendicular to the bases.
(continued on next page)

Interactive Presentation

Parallelograms and Area of Triangles
(G) Introducing the Insuiry Orestion

Explore, Slide 1 of 8

Explore, Slide 2 of 8
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how the area of a triangle is related to the area of parallelograms.

On Slide 2, students enter the area of the parallelogram.

Interactive Presentation

Explore, Slide 7 of 8
a|
On Slide 8, students respond to the Inquiry Question and view a sample answer.

Explore Parallelograms and Area of Triangles (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore how they can use the area of a parallelogram to find the area of a triangle.

(3)
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 7 is shown.

Talk About It!

SLIDE 7

Mathematical Discourse

How does the area of the new triangle compare to the area of the new parallelogram? Sample answer: The area of the triangle is half the area of the parallelogram.

Interactive Presentation

Learn, Area of Triangles, Slide 2 of 3

On Slide 1 of the Learn, students watch a video to view how a parallelogram can be used to find the area of a triangle.

FLASHCARDS

On Slide 3, students use Flashcards to view the area formula of a triangle expressed in multiple representations.

CLICK
On Slide 2 of Example 1, students move through the steps to find the area of the triangle.

Learn Area of Triangles

Objective

Students will understand how they can use the area formula for a parallelogram to find the area formula for a triangle.

Teaching Notes

SLIDE 2

Students will learn that the formula used to find the area of a triangle uses the triangle's base and height. Students should select each button to see how to identify those parts of a triangle. As with parallelograms, point out to students that the base and height must be perpendicular to each other. You may wish to ask students if they can think of a triangle in which the height is one of the triangle's sides (a right triangle).

3 Go Online

- Find additional teaching notes.
- Have your students watch the video on Slide 1. The video illustrates how to find the area of a triangle.

Example 1 Find Area of Right Triangles

Objective
Students will find the area of a right triangle.

Questions for Mathematical Discourse

SLIDE2
AL. What formula will you use to find the area? $A=\frac{1}{2} b h$
AL. How do you know what values to substitute for b and h ? Sample answer: I know the height is perpendicular to the base, so I look for a segment with the right angle symbol. One of the sides of the right angle is the height, the other one is the base.

OL In this triangle, does it matter if you substitute 6 in for b or h ? Explain. It does not matter; Sample answer: Since the two sides are perpendicular, either one could be the base with the other one being the height.

How is the area of the triangle affected if you double the height and the base? Explain your reasoning. The area is multiplied by 4; Sample answer: When the base and height are doubled, the area is $\frac{1}{2} \cdot 12 \cdot 8$ or 48.48 is 4 times the current area of 12 .

(3) Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Find Area of Triangles

Objective

Students will find the area of a triangle.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to precisely identify the correct base and height and to generate the correct equation that represents the area of the triangle. They should be able to calculate the area accurately and efficiently.

Questions for Mathematical Discourse

SLIDE2

How do you know you need to find the area of the front of the tent and not a different measure, like the perimeter? Sample answer: I am asked to find the amount of fabric for the front of the tent, which is the inside of a two-dimensional figure. I am not asked to find the distance around the front of the tent.

OL. The lengths are given as mixed numbers. Will you obtain the correct area regardless of whether you use mixed number or decimals in your calculation? Explain. yes; Sample answer: If I am precise in my conversions and calculations, then I will obtain the correct area regardless of whether I use mixed numbers or decimals.
31. If it takes 2 minutes to spray every one-half square foot with a water repellant substance, how long will it take to spray the front of the tent? 36.4 minutes

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Find Area of Triangles, Slide 2 of 4

1 CONCEPTUAL UNDERSTANDING

Explore Area of Triangles

Objective
Students will use Web Sketchpad to explore the area of a triangle.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use Web Sketchpad to investigate the area of triangles and if it changes depending on the location of the height of the triangle. Students will investigate how the length, base, and position of the triangle affects the area.

(Q) Inquiry Question

How does the location of the height of a triangle change the area when the base and height remain the same? Sample answer: The location of the height of the triangle has no effect on the area of the triangle if the base and height are the same.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

What do you notice about the location of $\overline{B D}$ as the triangle changes? Sample answer: There are times $\overline{B D}$ is inside the triangle, there are times it is outside the triangle, and there are times it is a side of the triangle.
(continued on next page)

Interactive Presentation

Area of Triangles
©) Introdacing Use Inquiry Guention

Explore, Slide 1 of 6

Explore, Slide 2 of 6

Throughout the Explore, students use Web Sketchpad to explore the area of a triangle.

On Slide 3, students make a conjecture about how a triangle's classification relates to the location of its height.

Interactive Presentation

Explore, Slide 5 of 6

TYPE

On Slide 6, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Area of Triangles (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and deepen their understanding of the area of the triangle while they change the location of the height of the triangle.

1 Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About It! questions on Slide 5 are shown.

Talk About It!

SLIDE 5

Mathematical Discourse

What do you notice about the area? Why do you think this is the case? Sample answer: The area of the triangle does not change when the height is moved. If the height and base measures are unchanged, then the area will remain the same no matter how the triangle is classified.

Interactive Presentation

Example 3, Find Missing Dimensions of Triangles, Slide 3 of 5

1 CONCEPTUAL UNDERSTANDING

Example 3 Find Missing Dimensions of Triangles

Objective

Students will find the missing dimension of a triangle when given the area.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question, encourage them to choose a method they can use to check their answer. They should be able to explain why they chose that method and how it verifies the answer.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the figure in order to identify its known and unknown measures.

Questions for Mathematical Discourse

SLIDE 2

AL. What do you notice about the measures that are known and unknown? Sample answer: I am given the area and the height. I need to find the base.

OL Estimate the length of the base. Sample answer: The area is about $24 \mathrm{~cm}^{2}$, and the height is about 6 cm . So, the base is about 8 cm .

Bl If the height doubles, but the base remains the same, what happens to the area of the triangle? Explain. it doubles; Sample answer: In the formula $A=\frac{1}{2} b h, h$ is replaced with $2 h$, which doubles the total area.

SLIDE 3

AL. In the third step, why is each side of the equation multiplied by 2 ? Sample answer: Multiplying by 2 eliminates the fraction since the denominator is 2 .

OL In the third step, instead of multiplying each side by 2 , explain how you could simplify the equation in another way. How would that change the rest of the steps? Would the answer change? Sample answer: On the right side of the equation, I can multiply $\frac{1}{2}$ by 6.2 to obtain 3.1 b remaining on the right side. Then I can divide each side

BL Without using the area formula, explain how you can find the area of a parallelogram with the same base and height? Sample answer: Since the area of a triangle is half the area of a corresponding parallelogram, I just need to multiply the area, 24.8, by 2 to find the area of the parallelogram.

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Home Improvement

Objective

Students will come up with their own strategy to solve an application problem involving the cost of painting a cabin.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What do you notice about the shape of the cabin?
- How can you find the area of the cabin, without including the windows?
- What operation(s) will help you find the total cost?

(2)
 Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Home Improvement

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add the formula that is used to find the area of the triangle. Then give an example of how to use that formula to find the area of a triangle. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. Each pair of interlocking triangles creates a parallelogram with a base of 4 feet and a height of 2 feet. What is the area of one triangle in the pair of interlocking triangles? Write a mathematical argument that can be used to defend your solution. $4 \mathrm{ft}^{2}$; Sample answer: The area of a triangle is one-half the area of a parallelogram formed from two congruent triangles. Since the area of the parallelogram is $4(2)$ or 8 square feet, the area of one triangle is $\frac{1}{2}(8)$ or 4 square feet.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 7, 9, 11-14
- Extension: Area of Kites
- Q ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-6, 9, 11, 13
- Extension: Area of Kites
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- a AleKs Area of Rectangles

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- ArriveMATH Take Another Look
- ALEKS Area of Rectangles

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	find the area of a right triangle	1,2
1	find the area of a triangle	3,4
1	find the missing dimension of a triangle when given the area	5,6
2	extend concepts learned in class to apply them in new contexts	7,8
3	solve application problems involving area of triangles	9,10
3	higher-order and critical thinking skills	$11-14$

Common Misconception

Some students may use the incorrect formula when finding the area of a triangle. For example, in Exercise 1, students may forget to multiply 30 square yards by $\frac{1}{2}$. Students may benefit from writing the formula for the area of a triangle at the top of their page.

Apply *indicates multi-step problem

*9. Aubrey is painting a mural of an ocean scene. The triangular sail on a sailboat has a base of 6 feet and a height of 4 feet. Aubrey will paint the sail using a special
white paint. A container of this paint covers 10 square feet and costs $\$ 6.79$ per container. How much will Aubrey spend nd costs $\$ 6$ per container. How much will Aubrey spend on the white paint?
\$13.58
'10. Silas is a making a wildflower meadow with the dimensions shown. He plans to cover the entire meadow with a wildflower seed mix. One bag of wildflower seed mix covers 22 square yards and costs $\$ 12.79$. How much will Silas spend on the wildflower seed mix?
\$51. 16

OHigher-Order Thinking Problems
11. Find the Error A student is finding the height of the triangle. Find the student's mistake and correct it.

$A=68 \mathrm{~m}^{2}$
Sample answer: The formula for the area of a triangle is $A=\frac{1}{2} b h$, not $b h \cdot \frac{1}{2}(17) h=68$; $h=8 \mathrm{~m}$

Ti. Reason Abstractly Mrs. Giuntini's lawn is triangle-shaped with a base of 25 feet and a height of 10 feet. Is the area of Mrs. Giuntini's lawn greater than 250 square feet? Write an argument that can be used to defend your solution.
no; Sample answer: The area of her lawn is $125 \mathrm{ft}^{2}$ because the area of a triangle is
$A=\frac{1}{2} b h . S o, \frac{1}{2}(25 \times 10)=125$.
12. Create Draw and label a triangle with a base that is 3 times its height and has an area that is less than 50 square inches.

14.

ITF Justify Conclusions Determine if the following statement is a/ways, sometimes, or never true. Write an argument that can be used to defend your solution. If a triangle and a parallelogram have the same bose and height, the area of the triangle will always be greater never; Sample answer: The area of the parallelogram will always be greater because the area of the triangle will always be half the area of the parallelogram.
\qquad

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 11, students find the student's mistake and correct it. Encourage students to find the error and explain how to fix it.

In Exercise 14, students will determine the validity of the statement. Encourage students to determine what makes the statement never true.

2 Reason Abstractly and Quantitatively In Exercise 13, students will determine if the area of the lawn is greater than 250 square feet. Encourage students to use reasoning to explain why the area of the lawn is less than 250 square feet.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercises 9-10 Have students work in pairs. Have students individually read Exercise 9 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 10.

Make sense of the problem.
Use with Exercise 11 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise used the formula $A=b h$ instead of $A=\frac{1}{2} b h$. Have each pair or group of students present their explanations to the class.

Learn Find Area of Trapezoids by Decomposing

Objective

Students will understand how to decompose a trapezoid and apply the area formulas for a rectangle and a triangle to find the area of the trapezoid.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 2, encourage them to make sense of how decomposing a figure into familiar figures can help them understand how to find the area of the original figure.

Teaching Notes

SLIDE 1

Students will learn that a trapezoid is a quadrilateral with one pair of parallel sides. Students can decompose a trapezoid into triangles and rectangles, find the area of each, and then add to find the total area of the trapezoid. Have students watch the animation to learn how to find the area of a trapezoid by decomposing it into figures with which they are already familiar. You may wish to pause the animation after the dimensions of the trapezoid are given, and ask students to come up with possible strategies for finding the area of the trapezoid. They may use any strategy they wish, but must be able to explain it, and defend why it works. Ask students to share their strategies with the class.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to find the area of a trapezoid by decomposing.

Talk About It!

SLIDE 2

Mathematical Discourse

How does decomposing the trapezoid help determine the area? Sample answer: I can calculate the area of triangles and rectangles, so I can separate the trapezoid into those polygons to determine the area of the trapezoid.

Interactive Presentation

Learn, Find Area of Trapezoids by Decomposing, Slide 1 of 2

WATCH

On Slide 1, students watch the animation to learn how to find the area of a trapezoid by decomposing.

Area of Trapezoids

LESSON GOAL

Students will find and use the area of trapezoids by composing and decomposing into other shapes.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Find Area of Trapezoids by Decomposing
Example 1: Find Area of Trapezoids by Decomposing
Learn: Find Area of Trapezoids by Composing
Learn: Find Area of Trapezoids by Using the Formula
Example 2: Find Area of Trapezoids
Example 3: Find Area of Right Trapezoids by Using the Formula
Example 4: Find Area of Trapezoids
Example 5: Find Missing Dimensions of Trapezoids
Apply: Budgets

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	ras	
Remediation: Review Resources	\bullet	\bullet	
Artive MATH Take Another Look			
Extension: Changes in Dimensions		\bullet	
Collaboration Strategies		\bullet	

Language Development Support

Assign page 46 of the Language Development Handbook to help your students build mathematical language related to the area of trapezoids.
EILII You can use the tips and suggestions on page T46 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1 day
45 min	

Focus

Domain: Geometry
Major Cluster(s): In this lesson, students address major cluster 6.EE.A and the supporting cluster 6.G.A by finding and using the area of trapezoids by composing and decomposing into other shapes.
Standards for Mathematical Content: 6.G.A.1, 6.EE.A.2,
6.EE.A.2.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP6, MP7

Coherence

Vertical Alignment

Previous

Students found and used the area of triangles.
6.G.A.1, 6.EE.A.2.C

Now

Students find and use the area of trapezoids by composing and decomposing into other shapes.
6.G.A.1, 6.EE.A.2, 6.EE.A.2.C

Next

Students will find the area of regular polygons by decomposing the figure into other figures.
6.G.A. 1

Rigor

The Three Pillars of Rigor
1 CONCEPTUAL UNDERSTANDING \quad 2 FLUENCY \quad 3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of area as they explore area of trapezoids. They build fluency with finding the area, by composing and decomposing and using the formula, and finding the missing dimension of a trapezoid when given the area. They apply their understanding of area of trapezoids to solve multi-step, real-world problems.

Mathematical Background

A trapezoid is a quadrilateral with one pair of parallel sides. A trapezoid can be decomposed into triangles and rectangles or composed with itself to form a parallelogram. Since the areas of triangles, rectangles, and parallelograms are known, either of these methods can be used to calculate the area of a trapezoid.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding the area of a rectangle (Exercise 1)
- finding the area of a triangle (Exercise 2)
- finding the area of a parallelogram, solving one-step equations (Exercise 3)

Answers

1. $72 \mathrm{ft}^{2}$
2. $10 \mathrm{in}^{2}$
3. 14 inches

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the trapezoidal walls of the Eye Bank building in Venice, Italy.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Where is the base of a triangle located? Where do you think the base of a trapezoid is located? Sample answer: The base of a triangle is the side that is perpendicular to the height of the triangle. The base of a trapezoid might be a side that is perpendicular to the height of the trapezoid.
- A trapezoid is a four-sided shape that has one pair of opposite sides that are parallel. How would you measure the height? Sample answer: To find the height of a trapezoid, I would measure the shortest distance between the two parallel sides.
- If a trapezoid has one pair of opposite sides that are parallel, can the other pair of sides be parallel? Sample answer: No, since a trapezoid has one pair of opposites sides that are parallel, the other pair of opposite sides will not be parallel. If the shape had two pairs of opposite sides that were parallel, it would be a parallelogram.

Takk About It!
Is there another way
you can decompose
the trapezoid? Will this
result in the same area
musureme measurement? Explai
your reasoning.

Sample answer: I could draw a line could draw a line between opposite two triangles, each with a height of 5 inches and bas 5 inches and bases
of 7 inches and
12 inches. The area is
equal to $17.5+42$
or 47.5 sq
inches.
\square

Interactive Presentation

Example 1, Find Area of Trapezoids by Decomposing, Slide 3 of 6

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

3 APPLICATION

Example 1 Find Area of Trapezoids by Decomposing

Objective

Students will decompose a trapezoid and apply the area formulas for a rectangle and a triangle to find the area of the trapezoid.

Questions for Mathematical Discourse

SLIDE 2

AL. What does it mean to decompose a figure? Sample answer: When I decompose a figure, I divide it into shapes with which I am familiar.

Al. How do you know that the base of the triangle on the left is 3 inches? Sample answer: The length of the top side of the trapezoid is 10 inches plus 2 inches. The 10 -inch section is divided into two parts, the base of the triangle and the length of the rectangle. Since the length of the rectangle is 7 inches, the base of the triangle on the left must be $10-7$, or 3 inches.
Ol Why is it helpful to decompose the trapezoid into two right triangles and one rectangle? Sample answer: I was given the distance between the two parallel lines which form right angles with the two sides. Right triangles and rectangles use right angles, so I was given the measures of some of the sides of those figures.
BL. Draw and label a different trapezoid into which you can decompose it into one rectangle and one triangle. What kind of trapezoid is it? See students' drawings; a right trapezoid

AL. Why are the formulas you are using different? Sample answer: One of the formulas is for the area of a triangle, the other formula is for the area of a parallelogram.
OL. Instead of finding the area of two triangles, can you find the area of one of the triangles and double it? Explain. no; Sample answer: The two triangles have the same height but different bases, so they have different areas.
[BL. How can you divide the trapezoid into only two triangles? Describe the triangles. Can you use the given information to find the areas of those triangles? Explain. Sample answer: I can draw a diagonal and separate the trapezoid into two triangles. One triangle has a base of 12 inches and a height of 5 inches. The other one has a base of 7 inches and a height of 5 inches. Since I know those measurements, I can find the areas of the two triangles.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Find Area of Trapezoids by Composing

Objective

Students will learn how to compose two congruent trapezoids into a parallelogram to find the area of the trapezoid.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to analyze the structure of a trapezoid in order to explain how they can compose two trapezoids together to form a parallelogram.

Teaching Notes

SLIDE1

Students will learn that two congruent trapezoids can be composed to create a parallelogram. Students already know how to find the area of a parallelogram. Have them view the video to see how to find the area of a trapezoid by composing. You may wish to have students recreate the activity shown in the video. Have them explain how they can use their understanding of parallelograms to find the area of trapezoids.

Go Online to have your students watch the video on Slide 1. The video illustrates how to find the area of a trapezoid by composing two congruent trapezoids into a parallelogram.

Talk About It!

SLIDE2

Mathematical Discourse

How can you use the concept of composing to find area if you do not know the formula for the area of a trapezoid? Sample answer: By duplicating a trapezoid, flipping it, and placing it beside the original trapezoid, you are creating a parallelogram. Use the formula for the area of a parallelogram and then divide the area by two to find the area of the original trapezoid.

Interactive Presentation

Learn, Find Area of Trapezoids by Composing, Slide 1 of 2

WATCH

On Slide 1, students watch the video to learn how to find the area of a trapezoid by composing two congruent trapezoids into a parallelogram.

Math History
Minute
Minute
Júlio César de Mello e
Souza (1895-1974)
Souza (1895-1974)
was a Brazilian
professor , and writer
His writings weave
mathematics into
entertaining word
problems and puzzles.
His most famous book,
The Man Who Counted,
tells of the adventures of Beremiz Samir who uses mathematics as superpower. In Rio
Janeiro, Brazil, his birthday, May 6, is declared as
Mathematician's Day.

Learn Find Area of Trapezoids by Using
the Formula
Q Go Online Watch the animation to see how the formula for the area of a trapezoid is derived by composing it into a parallelogram.
In the trapezoid shown, base one, b_{1}, is the shorter base and base two, b_{2}, is the longer base. The height, h, is the perpendicular distance between the bases.

Step 1 Make a copy of the trapezoid.

Step 2 Rotate the second trapezoid and align as shown

The two congruent trapezoids form a parallelogram.
The height of the parallelogram is the same as the height of the trapezoid. The base of the parallelogram is the sum of b_{1} and b_{2} of the trapezoid. The area of one trapezoid is half the area of the parallelogram.
 and the height is the perpendicular distance between the bases.
$A_{\text {parallelogram }}=b h \quad$ Write the formula. $=\left(b_{1}+b_{2}\right) h \quad$ The base of the parallelogram is $b_{1}+b_{2}$
$A_{\text {trapezoid }}=\frac{1}{2}\left(b_{1}+b_{2}\right) h \quad$ The area of one trapezoid is hall the area of the parallelogram.
$=\frac{1}{2} h\left(b_{1}+b_{2}\right) \quad$ Commutative Property

the sum of its bases, b_{1} and b_{2}.

Interactive Presentation

Learn, Find Area of Trapezoids by Using the Formula, Slide 2 of 3

On Slide 1, students select base and height to view the definitions of the terms in relation to a trapezoid.

On Slide 2, students watch the animation to learn how the formula to find the area of a trapezoid is derived.

On Slide 3, students use the Flashcards to view the area formula of trapezoids expressed in multiple representations.

1 CONCEPTUAL UNDERSTANDING

Learn Find Area of Trapezoids by Using the Formula

Objective

Students will learn the formula used to find the area of a trapezoid.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to derive the formula for the area of a trapezoid.

Teaching Notes

SLIDE1

Students will learn about the parts of a trapezoid. Be sure they understand that the height is the perpendicular distance between the two parallel bases. In a right trapezoid, the height will be one of the sides of a trapezoid. If the trapezoid is not right, the height will not be one of the sides. You may wish to have students draw several examples of trapezoids to identify the location of the height of each.

SLIDE2

Play the animation for the class. Students will learn how the formula for the area of the trapezoid is derived. Be sure students understand how the trapezoid and its copy form a parallelogram. Have students explain why the base of the parallelogram can be represented by the sum of the bases of the trapezoid.

SLIDE3

Have students select the Words and Symbols flashcards to learn about how the area formula of a trapezoid can be represented in these multiple representations.

DIFFERENTIATE

Language Development Activity ELL

Now that students have learned three different methods for finding the area of a trapezoid (decomposing, composing, and using the formula), have them work with a partner to prepare a brief presentation that summarizes each method, and then compares and contrasts the methods. They should use diagrams and illustrations in their presentation. Have them present to the class. Some students may be uncomfortable speaking in front of others. Encourage them to use clear pronunciation, and speak in a volume that is appropriate for the context.

Example 2 Find Area of Trapezoids

Objective

Students will find the area of a trapezoid by composing and using the formula for the area of a trapezoid.

Questions for Mathematical Discourse

SLIDE3:

AL How can you find the length of the base of the parallelogram? I can add the two base lengths of the trapezoid; $10+6=16$.

Ol Why is the area of the parallelogram not the final answer? The parallelogram is composed of two congruent trapezoids. The final answer will be the area of one trapezoid.
In. Why was the height unchanged when composing the parallelogram? The height was unchanged when composing the parallelogram because the two trapezoids were put side by side. The height was not increased nor decreased; it stayed the same.

SLIDE 4

ALI Why is the area of the parallelogram divided by 2 ? it is composed of two trapezoids
(0) Do you prefer finding the area of a trapezoid by composing or decomposing? Explain. Sample answer: composing; when composing I only need to find the area of one figure and then divide by two. When I decomposed, I found the area of 3 figures and then added.
31. How is finding the area of a trapezoid by composing related to finding the area using the formula $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$? Sample answer: When I found the area by composing, I added the two bases, $\left(b_{1}+b_{2}\right)$, multiplied the sum by the height, $h\left(b_{1}+b_{2}\right)$, and then divided it by two, which is the same as multiplying by onehalf. Those are the same steps that are in the formula.

SLIDE $5-$

AL. What do the variables b_{1} and b represent? They represent the lengths of the two parallel sides in the trapezoid.

OL. When using the formula, how do you know what to do first? The order of operations tells me I need to first find the sum of the two bases.
In the formula, why do you need to multiply by $\frac{1}{2}$? Sample answer: Since I am adding the two bases, and then multiplying by the height, it is as if I am finding the area of two figures. Multiplying by $\frac{1}{2}$ makes the answer apply to one figure.

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Find Area of Trapezoids, Slide 5 of 7

Interactive Presentation

Example 3, Find Area of Right Trapezoids by Using the Formula, Slide 2 of 4
On Slide 2, students determine the
approximate area of the county.

1 CONCEPTUAL UNDERSTANDING

Example 3 Find Area of Right Trapezoids by Using the Formula

Objective

Students will use an area formula to solve a real-world problem involving a right trapezoid.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 3, encourage them to pause and consider how the height of different figures may or may not be one of the sides, and to explain why the height is one of the sides in this figure.

6 Attend to Precision Encourage students to generate the correct formula for the area of a trapezoid, and to accurately find the area using the appropriate units.

Questions for Mathematical Discourse

SLIDE 2

AL. Why do you think the trapezoid is called a right trapezoid? Sample answer: One of the sides of the trapezoid forms a right angle with both bases, so it is a right trapezoid.

OL. In the solution, 48 was substituted for b_{1} and 16.4 was substituted for b_{2}. Can those values be switched? Explain your reasoning. yes; Sample answer: Since I am adding two numbers, the order in which I add them doesn't matter; $48+16.4$ is the same as $16.4+48$.

BL. There are about $1,051,008$ acres in Osceola County. How could you find the unit rate, acres per square mile? About how many acres are in a square mile? Sample answer: I can divide the number of acres, $1,051,008$, by the number of square miles, $1,642.2$; 640 acres per square mile.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

Example 4 Find Area of Trapezoids

Objective

Students will use an area formula to solve a real-world problem involving a trapezoid.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to use the structure of the shape of the wing to accurately identify the two parallel bases and the height of the trapezoid.

Questions for Mathematical Discourse

SLIDE1

What are the measurements you will need to use for the formula? $h=16.5, b_{1}=4.5$ and $b_{2}=6.3$

OL. What is the area of both of the plane's front wings? $178.2 \mathrm{ft}^{2}$
Suppose you wanted to make a model of the plane that is $\frac{1}{50}$ of the actual size of the plane. What is the area of one of the wings of the model? Explain how you found the area. 0.03564 square foot; Sample answer: I converted each measure for the model, and then I found the area using the formula.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 4, Find Area of Trapezoids, Slide 1 of 2
On Slide 1, students determine the area of
the wing.

Interactive Presentation

Example 5, Find Missing Dimensions of Trapezoids, Slide 2 of 5

DRAG \& DROP

On Slide 2, students drag each term to identify the given information and what needs to be found.

CLICK
On Slide 3, students move through the steps to find the height of the trapezoid.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 5 Find Missing Dimensions of Trapezoids

Objective

Students will find the missing dimension of a trapezoid given its area.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 4, encourage them to make sense of the bases and how they are used in the formula to explain why the area does not change depending on which values are substituted for b_{1} and b_{2}

Questions for Mathematical Discourse

SLIDE 2

AL. How do you know that the missing dimension is the height? Sample answer: I have numerical values for the area and two bases, so the only remaining value I need is the height.

OL. Why do you need to identify what you know and what you need to find before using the area formula? Sample answer: I need to be able to identify what variables have values and what variable I need to find.

BL. If you were given the area, the height, and the length of one base, how could you find the length of the second base? Sample answer: I would still use the area formula, and work backward. I could multiply the area by 2 , then divide the area by the height, and subtract the given base.

SLIDE 3

AL In the fourth step, where did the value 13.5 or $13 \frac{1}{2}$ come from? Sample answer: It is the result of multiplying 27 by $\frac{1}{2}$.
OL In the final step, why did you divide each side by 13.5 ? Sample answer: To get h by itself on one side of the equation. If one side is divided by 13.5 , the other side also needs to be divided by 13.5 .
BL. You can write the formula $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ as $A=\frac{h\left(b_{1}+b_{2}\right)}{2}$. Explain why the two are equivalent. Sample answer: Multiplying by $\frac{1}{2}$ is the same as dividing by 2 . Since the entire expression $h\left(b_{1}+b_{2}\right)$ is multiplied by $\frac{1}{2}$, the entire expression needs to be divided by 2 .

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Budgets

Objective

Students will come up with their own strategy to solve an application problem involving determining if enough money was budgeted for a repaving project.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How can you decompose the figure into two different polygons?
- How will you use the area formulas to find the area of the original polygon?
- How can you use the cost per square foot to determine if the office manager budgeted enough money?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Budgets

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add the formula that is used to find the area of a trapezoid. Then give an example of how to use that formula to find the area of a trapezoid.

Essential Question Follow-Up
How are the areas of triangles and rectangles used to find the areas of other polygons? In this lesson, students found the area of a trapezoid by decomposing it into triangles and rectangles, or by composing it into a parallelogram. Encourage them to work with a partner to prepare a brief demonstration that illustrates how the area of these shapes can help them find the area of a trapezoid.

Exit Ticket

Refer to the Exit Ticket slide. What is the area of the design? Explain different methods you can use to find the area. $522 \mathrm{~m}^{2}$; Sample answer: I can decompose the trapezoid into a parallelogram and a triangle and add the areas of each. I can also compose the trapezoid into a parallelogram, find the area of the parallelogram and then divide that area by 2 . Or I can use the area formula for a trapezoid to find the area.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 9-13
- Extension: Changes in Dimensions
- D ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-7, 9, 11, 13
- Extension: Changes in Dimensions
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-5
- D ALEKS Area of Rectangles

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATHTake Another Look
- ALEKS Area of Rectangles

1 CONCEPTUAL UNDERSTANDING

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	decompose a trapezoid and apply the area formulas for a parallelogram and a triangle to find the area of the trapezoid	1,2
1	find the area of a trapezoid by composing and using the formula for the area of a trapezoid	3,4
1	use an area formula to solve a real-world problem involving a right trapezoid	5
1	use an area formula to solve a real-world problem involving a trapezoid	6
1	find the missing dimension of a trapezoid given its area	7
2	extend concepts learned in class to apply them in new contexts	8
3	solve application problems involving area of trapezoids	9
3	higher-order and critical thinking skills	

Common Misconception

When finding the area of a trapezoid, some students may incorrectly use the formula. As more dimensions and operations are included in mathematical formulas, students have a greater chance for mathematical error. For example, some students may neglect to multiply the sum of the bases by the height or by $\frac{1}{2}$. Students may benefit from writing the formula for the area of a trapezoid at the top of their page and completing a thorough check of each part of the process of solving using the formula.

Apply *indicates multi-step problem
"9. Greta has budgeted $\$ 1,500$ to have a concrete patio poured in her backyard like the one shown. Find cost per square foot of the concrete is $\$ 5 . \mathrm{So}$ has budgeted enough money to comple the project.

The cost of the patio is $\$ 1,443.75$. Since this is less than $\$ 1,500$, Greta has budgeted enough money.

Higher-Order Thinking Problems
10. Create Draw and label a trapezoid that has no right angles and an area greater than 75 square meters. Sample answer:

The area of the trapezoid is $112.5 \mathrm{~m}^{2}$.
12. Create Write and solve a real-world problem where you need to find the area of a trapezoid.
Sample answer: A tray in a school cafeteria has the dimensions shown. Find the area of the tray; $320 \mathrm{in}^{2}$

11. Explain the steps needed to rewrite the formula for the area of a trapezoid to find b_{2}.
Start with the area formula:
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Multiply each side by 2 :
$2 A=h\left(b_{1}+b_{2}\right)$. Multiply each side by
$\frac{1}{b}, \underline{2 A}=b p+{ }_{2}$. Subtract b_{1} from each
side: $\frac{2 A}{h}-b_{1}=b_{2}$, or $b_{2}=\frac{2 A}{h}-b_{1}$.
13. Filason Inductively The area of a trapezoid is 48 square centimeters. The height is 6 centimeters and one base is 3 times the length of the other base. What are the lengths of the bases?
4 cm and 12 cm

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 13, students will determine the lengths of the bases. Encourage students to use reasoning to determine the lengths.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 9 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Be sure everyone understands.

Use with Exercises 11 and 13 Have students work in groups of 3-4 to solve the problem in Exercise 11. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution to the class. Repeat the process for Exercise 13.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Learn Area of Regular Polygons

Objective

Students will learn how to find the area of regular polygons by decomposing them into triangles, parallelograms, and trapezoids.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 2, they should be able to explain whether or not their method is a valid approach.

0Go Online to have your students watch the animation on Slide 1. The animation illustrates how to decompose a regular polygon to find its area.

Teaching Notes

SLIDE 1

Students will learn that to find the area of a regular polygon, they can decompose the figure into triangles, parallelograms, or trapezoids, and then add the individual areas to find the total area. Play the animation for the class. You may wish to pause the animation after the regular hexagon is shown with a side length of 2 centimeters. Ask students to work with a partner to come up with possible strategies for finding the area of the polygon. They may use any strategy they wish, but must be able to explain their strategy and defend why it works. Have students share their strategies with the class. Then have them continue watching the animation to compare their strategy with the one shown. The animation shows the polygon decomposed into two congruent trapezoids. Another possible method is to decompose the polygon into six congruent triangles.

Talk About It!

SLIDE 2

Mathematical Discourse

Is there another way to decompose the figure in the animation? Sample answer: You can decompose the hexagon into six congruent triangles around the center, or it can be decomposed into two triangles on the outer sides and a rectangle in the center.

DIFFERENTIATE

For students who need more of a challenge, have pairs of students look around the classroom or around the school for composite figures, figures that are made up of two or more shapes, that include regular polygons. For example, students could use a star from the flag of the United States. Students should find the dimensions of the figure using a ruler and then calculate the area of the composite figure.

Interactive Presentation

Learn, Area of Regular Polygons, Slide 1 of 2
WATCH
On Slide 1, students watch an animation to learn how to decompose a regular polygon to find its area.

Area of Regular Polygons

LESSON GOAL

Students will find the area of regular polygons by decomposing the figure into other figures.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Area of Regular Polygons
Learn: Area of Regular Polygons
Example 1: Find Area of Regular Polygons
Apply: Home Improvement

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

(11) View reports of student progress of the Checks after each example to differentiate instruction.

Resources	AL	118	
Remediation: Review Resources	-	-	
AriveMATH Take Another Look	-		
Extension: Area of Circles		-	-
Collaboration Strategies	-	-	-

Language Development Support

Assign page 47 of the Language Development Handbook to help your students build mathematical language related to the area of regular polygons.

Ellill You can use the tips and suggestions on page T47 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Geometry
Supporting Cluster(s): In this lesson, students address supporting cluster 6.G.A by finding the area of regular polygons by decomposing the figure into other figures.
Standards for Mathematical Content: 6.G.A. 1
Standards for Mathematical Practice:e: MP1, MP2, MP3,MP4,
MP5, MP7

Coherence

Vertical Alignment

Previous

Students found and used the area of trapezoids by composing and decomposing into other shapes.
6.G.A.1, 6.EE.A.2, 6.EE.A.2.C

Now

Students find the area of regular polygons by decomposing the figure into other figures.
6.G.A. 1

Next
Students will use the coordinate plane to draw and find attributes of polygons.
6.G.A. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of area as they explore regular polygons. They learn how to compose and decompose regular polygons into triangles, parallelograms, and trapezoids to build fluency with finding the area. They apply their understanding of area of regular polygons to solve multi-step, real-world problems.

Mathematical Background

A regular polygon is a polygon that has congruent sides and congruent angles. To find the area of a regular polygon, decompose it into triangles, parallelograms, and trapezoids. Add the areas of the smaller shapes to find the area of the regular polygon.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

regutar polygon

 Doy you meat tir vent pubponigle ment

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding the area of a triangle (Exercise 1)
- Using the area of a parallelogram to find the base (Exercise 2)
- classifying polygons (Exercise 3)

Answers

1. $154 \mathrm{~cm}^{2}$
2. 16 in.
3. Sample answer: regular octagon

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the shape of many road signs, including the pentagonal shape of the school zone road sign.

Wo Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- The word polygon comes from the Greek work polygonon, where polys means many, and gonon means angled. What do you thinkthe word polygon might mean? Sample answer: A polygon is a figure with many angles like a triangle or a square.

Explore Area of Regular Polygons

Objective

Students will use Web Sketchpad to explore how the area of triangles, parallelograms, and trapezoids can be used to find the area of regular polygons.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use Web Sketchpad to explore how the areas of triangles, parallelograms, and trapezoids can be used to find the area of polygons. Encourage students to think of how they could use what they know to further their investigation.

(2) Inquiry Question

How can you use the areas of triangles, parallelograms, and trapezoids to find the areas of other polygons? Sample answer: If I can divide a polygon into triangles, parallelograms, or trapezoids, without any gaps or overlap, I can add the areas of those to find the area of the larger polygon.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About tt! question on Slide 2 is shown.

Talk About It!

SLIDE 2

Mathematical Discourse

How did you use triangles to create a six-sided figure? See students' workspace. Sample answer: I lined up a vertex of six triangles in a single location, then moved them around until they formed a six-sided figure.
(continued on next page)

Interactive Presentation

Atea of Regrular Polygona
-1.) Introducing the Inevily Cowation

Explore, Slide 1 of 8

Explore, Slide 2 of 8
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how the area of triangles, parallelograms, and trapezoids can be used to find the area of regular polygons.

Interactive Presentation

Explore, Slide 7 of 8
TYPE
al
On Slide 8, students respond to the Inquiry Question and can view a sample answer.

Explore Area of Regular Polygons (continued)

(13) Teaching the Mathematical Practices

5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and examine the correspondences between the areas of the triangles, parallelograms, and trapezoids and polygons.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 6 is shown.

Talk About It!

SLIDE 6

Mathematical Discourse

Can you use any of the other figures to create a hexagon. If so, describe what you did. Sample answer: I used two trapezoids. I rotated one of them so the two longer bases matched up.

- Think About It!

 Is the area less than, to 36^{2}, or 1,296 square inches? How do you know?
less than; Sample

 answer: The stop sign takes up less area than a square with a side length of 36 inches.
C) Talk About It!

 With the given information, candecompose the octagon into different shapes to find the area? Why or why not?
no; Sample answer: The measurements given are the same measurements for a triangle. I would need to know or find other measurements of the octagon to decompose into other shapes to find the area.

A Example 1 Find Area of Regular Polygons
a stop sign is shaped like a regular octagon ach side of the sign is 15 inches long and measures 36 inches between parallel sides.
Find the area of the octagon.
Step 1 Decompose the octagon into congruent

The octa
triangles.

Step 2 Find the area of each triangle.
$A=\frac{1}{2}(15)(18)=135$
The area of each triangle is 135
Step 3 Multiply to find the total area of the octagon.
Because the triangles are congruent, multiply the number of triangles, 8 , by the area of each triangle. $8(135)=1,080$
So, the area of the stop sign is 1,080 square inches.

Check
The white section of the soccer ball is a regular hexagon. Each side of the hexagon is 1.8 inches. Find the area of the hexagon. Round to the nearest hundredth. $8.42 \mathrm{in}^{2}$

Qcoo onine You can compelete an Exta Evenple online.

Interactive Presentation

Example 1, Find Area of Regular Polygons, Slide 2 of 6
On Slide 2, students move through the
slides to decompose the octagon into
eight congruent triangles.

Example 1 Find Area of Regular

 Polygons
Objective

Students will find the area of regular polygons by decomposing them into triangles, parallelograms, and trapezoids.

Questions for Mathematical Discourse

SLIDE 2

Al. How did you know there were 8 triangles? Sample answer: I drew diagonals from all the vertices through the center of the octagon and then counted the triangles.

Oi. How would you describe the center of the octagon?
Sample answer: the point inside the octagon where the diagonals intersect

B1. How many triangles would be needed to compose a regular pentagon? a regular hexagon? What pattern do you notice? 5 triangles; 6 triangles; Sample answer: the numbers of triangles needed is equal to the number of sides of the regular polygon.

SLIDE3

Al. How will finding the area of one triangle help you find the area of the octagon? Sample answer: I divided the octagon into 8 triangles with the same shape and size. If I find the area of one of the triangles, I can multiply it by 8 to find the area of the octagon.

OL. Explain what 135 square inches means in the context of the problem. Sampleanswer: The area of one triangle is 135 square inches. The octagon is made up of 8 triangles with that area.

Suppose a model of the sign has dimensions that are one-third of the original sign. What fraction of the original triangle area is the area of one triangle in the model? Explain. $\frac{1}{9}$; Sample answer: The base length of the model is 5 inches and the height is 6 inches, so the area of that triangle is 15 square inches; 15 is $\frac{1}{9}$ of 135 .

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Apply Home Improvement

Objective

Students will come up with their own strategy to solve an application problem involving the cost to cover a floor with tiles.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What do you notice about the measurements given and the smaller shapes within the decagon?
- How will you find the total area?
- How will you need to use the cost per square foot?

Write About lt!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Home Improvement
CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING

Essential Question Follow-Up

How are the areas of triangles and rectangles used to find the areas of other polygons? In this lesson, students learned how to find the area of a regular polygon by decomposing it into trapezoids and/or triangles. Encourage them to work with a partner to prepare a brief demonstration (using grid paper or other drawings) that illustrates how the area of trapezoids and triangles can help them find the area of a regular polygon. Have them present their demonstration to the class.

Exit Ticket

Refer to the Exit Ticket slide. A stop sign has eight sides. Suppose each side has a length of 12 inches and the perpendicular distance from the center of the sign to one of the sides is 14.5 inches. What is the area of the sign? Write a mathematical argument that can be used to defend your solution. 696 square inches; Sample answer: I decomposed the octagon into 8 congruent triangles, found the area of each triangle, and then multiplied by 8 .

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 3, 5-9
- Extension: Area of Circles
- \square ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-3, 5, 7, 9
- Extension: Area of Circles
- Remediation: Review Resources
- Personal Tutor
- Extra Example 1
- Q ALEKS' Polygons and Quadrilaterals

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Polygons and Quadrilaterals

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

0

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	find the area of regular polygons by decomposing them into triangles, parallelograms, and trapezoids	1,2
2	extend concepts learned in class to apply them in new contexts	3
3	solve application problems involving area of regular polygons	4,5
3	higher-order and critical thinking skills	$6-9$

1. Kendra knitted the coaster shown as a present for her grandmother. The coaster is shaped like a regular hexagon Each side of the hexagon is 3.5 inches. Find the area of the coaster. Round to the nearest hundredth. (Example 1) $31.82 \mathrm{in}^{2}$

2. Paul bought a new rug in the shape of a regular decagon. Each side of the decagon is 4.25 feet. Find the area of the rug. Round to the nearest hundredth. (Example 1) $138.98 \mathrm{ft}^{2}$

T est Practice
3. Open Response A regular pentagon is shown. What is the area of the pentagon?

```
281.92 cm
```

```
281.92 cm
```


Apply *indicates multi-step problem
*4. Julian is going to build a picnic table. The top of the picnic table Is shaped like an octagon with sides measuring 2.5 feet the wood costs $\$ 3.95$ per square foot, what is the least he will spend on the top of the picnic table? \$119.29

*5. Williana's mother wants to buy a glass tabletop for their dining room table. The tabletop is shaped like a hexagon with sides measuring 27.75 inches. If the glass costs $\$ 0.06$ per square inch, how much will she spend on the glass table top? \$120.03

Higher-Order Thinking Problems
6. Draw a regular pentagon and use dashed lines to show the ways it can be decomposed. Describe the shapes in the decomposed figure. Sample answer

Sample answer: 5 triangles; 1 triangle and 1 trapezoid
8. Reason Abstractly The area of a regular hexagon is about 65 square units. Y ou decompose the figure into 6 triangles. The height of one triangle is about 4.3 units. What is the approximate length of the base of the triangle? 5 units

468
468 Module 8. Area
7. Identify Structure What is the area of the figure below? $473.2 \mathrm{~cm}^{2}$

9. Reason Inductively The figure shown is a regular decagon. If the perimeter is 80 inches, what is the area of the decagon? Write an argument that can be used to defend your solution.

$492 \mathrm{in}^{2}$; the base length of each triangle is $80 \div 10$ or 8 in . So, $10\left(\frac{1}{2} \times 8 \times 12.3\right)=492$.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure In Exercise 7, students determine the area of the figure. Encourage students to use the structure to find the area of the figure without doing a lot of unnecessary calculations.

2 Reason Abstractly and Quantitatively In Exercise 8, students use reasoning to determine the base of the triangle.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 9, students find the area of the decagon. Encourage students to plan how to solve the problem and then reason inductively to find the area.

Common Misconception

In Exercise 4, some students may multiply incorrectly when finding the total cost of the top of the table. Students may incorrectly place the decimal after multiplying and find the total cost to be $\$ 1,192.90$ instead of $\$ 119.29$.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create your own application problem.

Use with Exercises 4-5 After completing the application problems, have students write their own real-world problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Solve the problem another way.

Use with Exercise 7 Have students work in groups of 3-4. After completing Exercise 7, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method.

Learn Draw Polygons on the Coordinate Plane

Objective

Students will learn how to draw polygons in the first quadrant of the coordinate plane given coordinates for the vertices.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to make connections between the number of points plotted (vertices) and the number of sides of the polygons.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the polygons that were plotted as they discuss the Talk About lt! question on Slide 3.Go Online to find additional teaching notes.

Talk About It!

SLIDE 3

Mathematical Discourse

What does the number of coordinate points given tell you about the polygon? Sample answer: The number of points tells you how many sides the polygon has, unless three or more points lie on the same line.

DIFFERENTIATE

Reteaching Activity 1 IL

If students have difficulty with graphing points on the coordinate plane, have pairs of students interview each other about how to graph a point on the coordinate plane. Students could ask questions similar to the following:

- Which coordinate is listed first in an ordered pair, the x-coordinate or the y-coordinate?
- If the ordered pair is $(4,2)$, which value is the x-coordinate? the y-coordinate?
- When graphing, does the x-coordinate indicate horizontal or vertical movement on the coordinate plane?
- When graphing, does the y-coordinate indicate horizontal or vertical movement on the coordinate plane?

Interactive Presentation

Learn, Draw Polygons on the Coordinate Plane, Slide 1 of 3

WEB SKETCHPAD

On Slides 1 and 2, students use Web Sketchpad to graph polygons on the coordinate plane.

CLICK
On Slides 1 and 2, students select the correct term to identify the polygons.

Polygons on the Coordinate Plane

LESSON GOAL

Students will use the coordinate plane to draw and find attributes of polygons.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Explore the Coordinate Plane
Learn: Draw Polygons on the Coordinate Plane
Learn: Find Perimeter and Area on the Coordinate Plane
Example 1: Find Perimeter of an Irregular Figure
Example 2: Find Perimeter Using Coordinates
Example 3: Find Area Using Coordinates
Apply: Business Finance

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

(11) View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al\|	THE	
Remediation: Review Resources	-	-	
Arive MATH Take Another Look	-		
Extension: Pick's Theorem		-	-
Collaboration Strategies	-	-	-

Language Development Support

Assign page 48 of the Language Development Handbook to help your students build mathematical language related to polygons on the coordinate plane.
ㅌIII You can use the tips and suggestions on page T48 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Geometry
Supporting Cluster(s): In this lesson, students address supporting cluster 6.G.A by finding the area of regular polygons by using the coordinate plane to draw and find attributes of polygons.
Standards for Mathematical Content: 6.G.A.3, Also addresses 6.G.A. 1

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

Coherence

Vertical Alignment

Previous

Students found the area of regular polygons by decomposing the figure into other figures.

6.G.A. 1

Now

Students use the coordinate plane to draw and find attributes of polygons.
6.G.A. 3

Next

Students will find and use the volume of rectangular prisms.
6.G.A. 2

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of area to expand their understanding to area of polygons on the coordinate plane. They build fluency with finding perimeter and area of polygons and irregular figures on the coordinate plane. They apply their understanding to solve multi-step problems.

Mathematical Background

The perimeter or area of a polygon graphed on the coordinate plane can be found by finding the distance between vertices. To find the distance between two points with the same x - or y-coordinates, subtract the y - or x-coordinates, respectively. The distances between points correspond to the side lengths of the polygon. Perimeter or area formulas as well as decomposition can be used to find the perimeter or area of the polygon.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

Wheivemativivi vicues?

area

coordinate plane

perimeter

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding perimeter (Exercise 1)
- graphing on a coordinate plane (Exercises 2-3)

Answers
1-3. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about video game designers using the coordinate plane system.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Use?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Describe a real-world situation when you would need to find an area. Sample answer: If I'm covering the top of a box with fabric, I would need to know how much fabric I need.
-When plotting points on a coordinate plane, what is the general form of the points plotted? (x, y)
- How would you explain perimeter in your own words? Sample answer: The perimeter is the distance around an object.

Explore Explore the Coordinate Plane

Objective

Students will use Web Sketchpad to explore finding perimeter and area on the coordinate plane.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use Web Sketchpad to form shapes in the coordinate plane. Students will then investigate the perimeter and area of the shapes created applying what they have learned in the previous lessons.

(2) Inquiry Question

How can you use the coordinate plane to find perimeter and area of a polygon? Sample answer: The coordinate plane can be used to find the dimensions of the polygon. To find the perimeter, find the sum of all the sides. To find the area, I can count the squares inside the polygon or use the polygon's dimensions and the area formula.

Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About It! questions on Slide 3 are shown.

Talk About It!

SLIDE3

Mathematical Discourse

How did you find the perimeter and area of the rectangle? How did the coordinate plane help you? Sample answer: I can count the units around the figure to find the perimeter. Multiply the length and width to find the area. The coordinate plane is structured using a grid of unit squares that are easily counted.
(continued on next page)

Interactive Presentation

Explore the Coordinate Plane

Q Introbsedng the Inquiry Quevtion

Explore, Slide 1 of 7

Explore, Slide 3 of 7

WEB SKETCHPAD

Throughout the Explore, students use Web Sketchpad to explore finding perimeter and area on the coordinate plane.

Interactive Presentation

Explore, Slide 4 of 7

TYPE

TYPE
a
On Slide 7, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Explore the Coordinate Plane (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore how they can find the perimeter and area of polygons plotted on the coordinate plane.

0
Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About It! questions on Slide 4 are shown.

Talk About It!

SLIDE4

Mathematical Discourse

How did you find the area of the trapezoid? How did the coordinate plane help you? Sample answer: I used the coordinates of the vertices to find the lengths of the bases and the height of the trapezoid. Then I used the area formula.

Interactive Presentation

Learn, Find Perimeter and Area of the Coordinate Plane, Slide 1 of 2
WATCH

On Slide 1, students watch an animation to learn how to find the perimeter of a polygon on the coordinate plane.

1 CONCEPTUAL UNDERSTANDING

Learn Find Perimeter and Area on the Coordinate Plane

Objective

Students will learn how to use coordinates to find the perimeter of a polygon on the coordinate plane.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, they should make sense of the vertices and dimensions of the polygon in order to use the dimensions in the polygon's area formula.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the polygon and how it is plotted on the coordinate plane, as they discuss the Talk About It! question on Slide 2.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to find the perimeter of a polygon on the coordinate plane.

Teaching Notes

SLIDE1

Play the animation for the class. Students will learn that the coordinates of a polygon can be used to find its dimensions. Students will also learn how to find the distance between two points with the same x - or y-coordinates. Students will view the animation to learn how to apply these techniques in order to find the perimeter and/or area of these polygons.

Talk About It!
SLIDE 2

Mathematical Discourse

How can the coordinates of vertices be used to find the area of a polygon? Sample answer: I can use the x - and y-coordinates to find the lengths of the sides of the polygon, and then use the polygon's area formula to calculate the area.

Example 1 Find Perimeter of an Irregular Figure

Objective

Students will find the perimeter of an irregular figure given the figure and coordinates drawn on a coordinate plane.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

2 Reason Abstractly and Quantitatively Encourage students to make sense of the coordinates to find the perimeter of the irregular figure by using the length of each side.

Questions for Mathematical Discourse

SLIDE 2

How will you keep track of what you have counted? Sample answer: I will count the units on each side of the figure and write it down.

OL. Why is it not efficient to count the units when finding the perimeter? Sample answer: I can forget where I started or what | have already counted.

Suppose each interval was 0.25 mile. What would the perimeter of the exhibit be? 10.5 miles

SLIDE 3

AL. Why do you subtract the x-coordinates when finding the length of a horizontal line segment? Sample answer: The y-coordinates of a horizontal line segment are the same, so to find the length of the line segment, you need to subtract the x-coordinates.

OL. Could you use Method 2 if the aquarium was located at (10,2)? Explain your reasoning. no; Sample answer: To use this method, two points need to have the same x-coordinate or the same y-coordinate. If the aquarium was at $(10,2)$ it does not have the same x-coordinate as the rhinoceros, nor does it have the same y-coordinate as the tiger.

If each unit requires 2 shrubs, how many shrubs will be needed to go around the entire exhibit? 84 shrubs

Example 1 Find Perimeter of an Irregular Figure

Find the perimeter of the exhibit shown on the coordinate plane.

Method 1 Count the units.

Count the units as you move along the perimeter of the exhibit Start at the entrance, or $(0,0)$. How many units do you need to travel along the y-axis to reach the monkeys? 10 units

How many units do you need to travel along the x-axis from the monkeys to reach the gorillas? 7 units
Continue counting along the perimeter until you return to the entrance.

Add to find the perimeter.
$10+7+3+4+4+4+3+7=42$ units
Method 2 Use the coordinates to find the distances.

Find the lengths of the horizontal line segments by subtracting the x-coordinates.
tigers to elephants: $11-7=4$
aquarium to rhinoceros
$11-7=4$
reptiles to entrance:
$7-0=7$
gorillas to monkeys:
$7-0=7$

Find the lengths of the vertical line segments by subtracting the y-coordinates.
gorillas to elephants: $10-7=3$
tigers to aquarium: $7-3=4$
rhinoceros to reptiles: $3-0=3$
monkeys to entrance $10-0=10$

Find the sum of the sides.
$4+4+7+7+3+4+3+10=42$
So, using either method, the perimeter of the exhibit is 42 units.
\qquad

Interactive Presentation

Example 1, Find Perimeter of an Irregular Figure, Slide 3 of 5

Interactive Presentation

Example 2, Find Perimeter Using Coordinates, Slide 2 of 6.
eTOOLS
On Slide 2, Students use the Coordinate Graphing eTool to graph vertices to form a rectangle.

Example 2 Find Perimeter Using Coordinates

Objective
Students will find the perimeter of a polygon given the coordinates of the vertices.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the coordinates given in order to identify the sides of the polygon.

6 Attend to Precision As students discuss the Talk About lt! question on Slide 4, they should use clear and precise mathematical language, such as x - and y-coordinates, in their response.

Questions for Mathematical Discourse

SLIDE 3

AL. How do you know that a segment is vertical? Sample answer: If the two endpoints have the same x-coordinate, the segment is vertical.

OL. Since the polygon is a rectangle, what do you know about $\overline{A B}$ and $\overline{B C}$? Sample answer: They are the length and width of the rectangle, and they are perpendicular.
BL. How do you know that $\overline{A D}$ and $\overline{A B}$ are not parallel sides of the polygon? Sample answer: Since they share an endpoint, A, they cannot be parallel.

1 CONCEPTUAL UNDERSTANDING

Example 2 Find Perimeter Using Coordinates (continued)

Questions for Mathematical Discourse

SLIDE4-

AL Why do you subtract the y-coordinates to find the length of $\overline{A D}$ or $\overline{B C}$? Sample answer: $\overline{A D}$ or $\overline{B C}$ are the vertical sides of the rectangle, so the x-coordinates are the same. To find a vertical distance on the coordinate plane, you subtract the y-coordinates.

OL. Why is it necessary to only calculate the length of one horizontal side and one vertical side? Sample answer: The figure is a rectangle so the two parallel sides are the same length.
31. Could another rectangle have a perimeter of 16 without having the same dimensions? If so, give an example using coordinates. If not, explain why not. yes; Sample answer: The width could be 2 units and the length could be 6 units, so the points could be $A(0,0)$, $B(0,2), C(6,0)$, and $D(6,2)$.

1 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Find Perimeter Using Coordinates, Slide 4 of 6
TYPE
On Slide 4, students determine the
perimeter of the figure.
\square Example 3 Find Area Using Coordinates
A polygon has vertices $A(2,5), B(2,8)$, and $C(5,8)$.
Find the area of the polygon.
Step 1 Identify the polygon.
Graph the vertices. Draw line segments to connect them to form the polygon.
What polygon is formed? triangle

Step 2 Find the area of the polygon.

The base is side $A B$, and the height is
side $B C$.
Length of $\overline{A B}: 3$ units
Length of $\overline{B C}: 3$ units
Find the area.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$=\frac{1}{2}(3)(3) \quad$ Replace b with 3 and h with 3 .
$=4 \frac{1}{2}$
Simplify.
So, the area of the polygon is $4 \frac{1}{2}$ square units.
Check
A polygon has vertices $A(2,4), B(2,9)$, and $C(9,9)$. Find the area of the polygon. Use the coordinate plane if needed.

Q go Online Y ou can complete an Extra Example oniline.

Interactive Presentation

Example 3, Find Area Using Coordinates, Slide 3 of 4

On Slide 3, students move through the steps to find the area of the polygon.

CHECK
Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 3 Find Area Using Coordinates

Objective

Students will find the area of a polygon given the coordinates of the vertices.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to make sense of the given coordinates in order to identify the sides of the polygon.
6 Attend to Precision Students should calculate accurately and efficiently, paying careful attention to the order of operations.

Questions for Mathematical Discourse

SLIDE 2

AL. Without graphing, how do you know the number of sides of the polygon? Sample answer: I am given three points, or vertices of the polygon, so I know it is a triangle.
A.. What formula will you use to find the area? $A=\frac{1}{2} b h$

OL. Suppose point A was located at (3, 4). Explain how you could find the area of the triangle. Sample answer: Since $\overline{B C}$ is horizontal, that can be my base. I need to find the height, which will be a vertical line from point A to $\overline{B C}$. I can subtract the y-coordinates, $8-4$, to get a height of 4 and use the area formula to find the area.

BL. Can you classify the triangle by its sides and angles? Explain your reasoning. Sample answer: yes; right isosceles; The endpoints of $\overline{A B}$ have the same x-coordinate so that side is a vertical line. The endpoints of $\overline{B C}$ have the same y-coordinate so that side is a horizontal line. The two sides are perpendicular so the triangle is a right triangle. The two sides are the same length so it is an isosceles triangle.

1

Go Online

- Find additional teaching notes and discussion questions.
- View performance reports of the Checks.
- Assign or present an Extra Example.

1 CONCEPTUAL UNDERSTANDING
 2 FLUENCY
 3 APPLICATION

Apply Business Finance

Objective

Students will come up with their own strategy to solve an application problem involving selecting a rental space in a mall.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions toverify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How can you find the dimensions needed to find each area?
- How will you need to use the cost per square foot of each space?
- What do you notice about the total monthly rental cost for the two spaces?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.
reang they use to derend their solion.

A Apply Business Finance

Miyu, a craft store owner, plans to rent a location in the mall and is considering the two spaces shown. On the map, one unit is equal to one foot. Space A has a monthly rental cost of $\$ 13.89$ per square foot. Space B has a monthly rental cost of $\$ 13.49$ per square foot. Miy wants to pay the lower total monthly rental price. Which location should she choose to rent?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem

Space B; See students' work.

4 How can you show your solution is reasonable?
QWrite About It! Write an argument that can be used to defend
your solution.
See students' arguments.

Interactive Presentation

Apply, Business Finance
Students watch an animation that
illustrates the problem they are about
to solve.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING

Exit Ticket

Refer to the Exit Ticket slide. A video game designer graphed the points $(2,3),(10,3),(10,6)$, and $(2,6)$ on a coordinate plane. What is the perimeter and the area of the figure formed by the points? Write a mathematical argument that can be used to defend your solution. perimeter: 22 units; area: 24 units 2; Sample answer: When the points are graphed on a coordinate plane, they form a rectangle. The vertical sides of the rectangle are $6-3$ or 3 units long and the horizontal sides are $10-2$ or 8 units long. So, the perimeter of the rectangle is $3+3+8+8$ or 22 units and the area is $3(8)$ or 24 square units.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
BII THEN assign:

- Practice, Exercises 7-11
- Extension: Pick's Theorem
- D ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 66-89\% on the Checks,
Oll THEN assign:

- Practice, Exercises 1-7, 9, 11
- Extension: Pick's Theorem
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- a AleKS Area of Rectangles

IF students score 65\% or below on the Checks, THEN assign:

- Remediation: Review Resources
- ArriveMATH Take Another Look
- ALEKS Area of Rectangles

Practice and Homework
The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL. Practice Form B		
OL. Practice Form A		
[3] Practice Form C		
Suggested Assignments		
Use the table below to select appropriate exercises for your students' needs.		
DOK	T opic	Exercises
1	find the perimeter of an irregular figure given the figure and coordinates drawn on a coordinate plane	1,2
1	find the perimeter of a polygon given the coordinates of the vertices	3, 4
1	find the area of a polygon given the coordinates of the vertices	5
2	extend concepts learned in class to apply them in new contexts	6
3	solve application problems involving polygons on the coordinate plane	7
3	higher-order and critical thinking skills	8-11

Common Misconception
Some students may prefer to count the units on the coordinate plane to find the perimeter. However, if given only the coordinates of a polygon, then they may obtain an incorrect answer due to neglecting to include measurements for all sides, or including a side more than once. Students may benefit by writing a list of sides with the corresponding coordinates, so that they can be certain all sides are included appropriately.

Name

Practice

1. Find the perimeter of the summer camp shown on the coordinate plane. (Example 1)

38 units
2. Find the perimeter of the science center shown on the coordinate plane. (Example 1)

42 units
3. A rectangle has vertices $W(2,7), X(2,0)$, $Y(6,0)$, and $Z(6,7)$. Use the coordinates to find the perimeter of the rectangle. (Example 2) 22 units
4. A rectangle has vertices $H(3,0), /(3,7), J(6,7)$, and $K(6,0)$. Use the coordinates to find the perimeter of the rectangle. (Example 2) 20 units

T est Practice
5. A polygon has vertices $A(3,3), B(3,6)$, and $C(9,3)$. Find the area of the polygon(Example 3) 9 square units
6. Multiple Choice A polygon has vertices $J(2,3), K(4,3), L(4,7)$, and $M(2,7)$. What is the area of the polygon? (Example 3) 8 square units (B) 10 square units C) 12 square units (D) 16 square units

Apply *indicates multi-step problem

7. Ethan wants to open a pet store in a town mall and is considering the two spaces shown. On the map, one unit is equal to one foot. Space A has a monthy cost of $\$ 14.50$ per square foot. Ethan wants to pay the lower total monthly ental price. Which location should he ch that can be used to justify your solution.

Space A; Sample answer: The
monthly rental price of Space A is $\$ 4,720$. The monthly rental price of Space B is $\$ 4,756$. $\$ 4,720$ is less than $\$ 4,756$.

6 Higher-Order Thinking Problems
8. Draw and label a triangle on the coordinate plane that has an area of 20 square units. Sample answer:

10. Persevere with Problems Mrs. Palmer is placing a retaining wall around a garden. are $(1,1),(1,5),(6,5)$ and (6,1 , If each grid square has a length of 2 feet what is the perimeter of the area? Write an argument that can be used to justify your solution. 4 1 S the figure is $4+5+4+5$ or 18 units. Since each grid square represents 2 feet, then 18×2 feet is 36 feet.
9. Reason Inductively A certain rectangle meter of 10 units and an are 6 units. Two of the vertices have d the two rdinates. Sample answer: $(3,4)$ and $(3,7)$
11. Find the Error Rectangle $A B C D$ has vertices $A(2,1), B(2,7), C(10,7)$, and $D(10,1)$. A classmate states that the perimeter of the rectangle is 16 units. Find the student's mistake and correct it.

Sample answer: The student subtracted $10-7$ and $7-2$ to find lengths 3 and 5 . The student should have subtracted 7 -1 and $10-2$ to find lengths 6 and 8 . The perimeter is 28 units.

Essential Question

ELLIL Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How are the areas of triangles and rectangles used to find the areas of other polygons? See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-9 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	2,6
Multiselect	Multiple answers may be correct. Students must select all correct answers.	4
Equation Editor	Students use an online equation editor to construct their response, often using math notation and symbols.	5,9
Open Response	Students construct their own response in the area provided.	$1,3,7,8$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.EE.A.2	$8-1,8-2,8-3$	$1-6$
6.EE.A.2.C	$8-1,8-2,8-3$	$1,4,6$
6.G.A.1	$8-1,8-2,8-3,8-4$	$1-8$
6.G.A.3	$8-5$	9

6. Multiple Choice The shape of the park resembles a trapezoid. Which of the following is the approximate area of the park? (Lesson 3)

(A) $109,242 \mathrm{~km}^{2}$
(8) $154,602 \mathrm{~km}^{2}$
(C) $231,903 \mathrm{~km}^{2}$
D. $309,204 \mathrm{~km}^{2}$
7.Open Response A tapestry is shaped like a regular hexagon. (Lesson 4)

A. Explain how you can decompose the hexagon in order to find its area

Sample answer: I would decompose the hexagon into two trapezoids.
B. Find the area of the tapestry.
$261 \mathrm{~cm}^{2}$
. Open Response Kim wants to replace the rea covered by this rug with hardwood looring. The rug is shaped like a regular octagon with 3 -foot sides.
Resson 4)

A. What is the area of the floor?
(A) $38.2 \mathrm{ft}^{2}$
(B) $40.1 \mathrm{ft}^{2}$
$43.2 \mathrm{ft}^{2}$
(D) $45.0 \mathrm{ft}^{2}$
B. If hardwood flooring costs $\$ 9.50$ per square foot, how much will she spend to resurface the floor? Explain why you need to round the area up to the nearest whole square foot in order to calculate the cost.
\$418; Sample answer: It is necessary to round the area upto $44 \mathrm{ft}^{2}$ because hardwood flooring is sold by the whole square foot, and 43 square feet would not be enough to cover the area of the floor.
9. Equation Editor A rectangle has vertices $A(1,2), B(1,9), C(7,9)$, and $D(7,2)$. Find the perimeter of the rectangle in units. (Lesson 5)

482 Module 8 . Area

IGNiTE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

© Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

How can you describe the size of a three-dimensional figure?
See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE fOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.

Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
(1) When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of cereal boxes to introduce the idea of volume and surface area. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

What Will You Learn?
 abovit each topic before sterting thes module.

(1) Foldablen Cut out tre Foldable and woe it to the Module Review at the end of the mooule. You can use the foldable throughout the madule as you lewn about volune and suirtace med.

Interactive Student Presentation

Volume and Surface Area

Module Goal

Find volume of rectangular prisms and surface area of triangular and rectangular prisms and pyramids.

Focus

Domain: Geometry
Supporting Cluster(s): 6.G.A Solve real-world and mathematical problems involving area, surface area, and volume.
Standards for Mathematical Content:
6.G.A. 2 Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=B h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
6.G.A. 4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.
Also addresses 6.EE.B.6.
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- find the area of triangles and quadrilaterals
- fluently perform all four operations with positive rational numbers
- solve one-step equations

Use the Module Pretest to diagnose readiness. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students found areas of parallelograms, triangles, trapezoids, regular polygons, and polygons on the coordinate plane.

6.G.A.1, 6.G.A.3, 6.EE.A.2.C

Now

Students find volume of rectangular prisms and surface area of triangular and rectangular prisms and pyramids.

6.G.A.2, 6.G.A. 4

Next

Students will solve problems involving volume and surface area of prisms and pyramids.

7.G.B. 6

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of polygons and area to develop understanding of volume and surface area. They use this understanding to build fluency with finding the volume of rectangular prisms, and making and using nets to find the surface area of rectangular prisms, triangular prisms, and pyramids. They also apply their understanding of volume and surface area to solve multi-step, real-world problems.

Suggested Pacing

Lesson		Standard(s)	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
9-1	Volume of Rectangular Prisms	6.G.A.2, Also addresses 6.EE.B.6	2	1
9-2	Surface Area of Rectangular Prisms	6.G.A. 4	3	1.5
Put It All Together 1: Lessons 9-1 and 9-2			0.5	0.25
9-3	Surface Area of Triangular Prisms	6.G.A. 4	3	1.5
9-4	Surface Area of Pyramids	6.G.A. 4	2	1
Module Review			1	0.5
Module Assessment			1	0.5
		Total Days	13.5	6.75

Formative Assessment Math Probe

${ }^{\square}$ Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students determine the correct volume for each figure, and explain their choice.

Targeted Concepts Reason about volume both conceptually and procedurally when given the side lengths, or the area of the base and the height.

Targeted Misconceptions

- Students may only understand volume as the product of three numbers.
- Students may incorrectly find the volume by adding the side lengths, or by confusing volume with surface area.
- Students may not understand volume as multiple layers of the base.

Assign the probe after Lesson 1.

Collect and Assess Student Work

Correct Answers: 1. c; 2. e; 3. e; 4. b

	the student likely...
1. a	applied a flawed procedure by adding the length, width, and height, instead of multiplying.
2. a	
3. ${ }^{\text {a }}$	
4. a	
1. b	applied a flawed procedure by determining or trying to determine the surface area, instead of volume.
2. C	
3. c	
4. C	
3. b	does not understand how the measures provided relate to finding the volume.
2.b	makes assumptions about measurements based on the drawing of the shape (i.e., assumes the area of the base is found by finding 5×5).

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS' Perimeters, Areas, and Volumes
- Lesson 1, Examples 1-2

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

What Vocabulary Will You Learn?
Check the box next to each vocabulary term that you may already know.
\square cubic units \square slant height
\square lateral face $\quad \square$ surface area
\square net \square three-dimensional figure
\square prism \quad triangular prism
\square pyramid \quad volume
\square rectangular prism

Are You Ready?
Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check

Quick Review	
Example 1 Multiply rational numbers. Find $12 \times 3.5 \times 18$. $\begin{aligned} 12 \times 3.5 \times 18 & =42 \times 18 \text { Multiply } 12 \text { and } 3.5 .(8 \\ & =756 \text { Multiply by } 18 . \end{aligned}$	Example 2 Evaluate numerical expressions. Evaluate $(8 \times 6)+(3 \times 9)$. $\begin{aligned} \times 6)+(3 \times 9) & =48+27 \text { Multiply. } \\ & =75 \quad \text { Add. } \end{aligned}$
Quick Check	
1. Find $12 \times 2.2 \times 17.5 .462$	$\begin{aligned} & \text { 2. Evaluate }(12.5 \times 40)+(16.25 \times 6) \text {. } \\ & 597.5 \end{aligned}$
How Did Y ou Do? Which exercises did you answer correctly in the Quick Check? Shade those exercise numbers at the right.	

What Vocabulary Will You Learn?

E[LI As you proceed through the module, introduce each vocabulary term using the following routine. Ask the students to say each term aloud after you say it.

Define Volume is the amount of space inside a three-dimensional figure.

Example A rectangular prism has a length of 4.5 feet, a width of 1.5 feet, and a height of 6.5 feet. The volume of the prism is found by multiplying the length, width, and height, which is 43.875 cubic feet.
Ask Why do you think that volume is measured in cubic units? Sample answer: There are three dimensions (length, width, and height). So, the units will be cubed since the dimensions are multiplied.

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- writing and solving one-step equations
- performing operations with rational numbers
- finding area of rectangles and triangles

OALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Perimeters, Areas, and Volumes topic - who is ready to learn these concepts and who isn't quite ready to learn them yet - in order to adjust your instruction as appropriate.

Mindset Matters

Promote Growth Over Speed

Learning requires time and effort - time to think, reason, make mistakes, and learn from your mistakes and the mistakes of others. Ultimately, it's about the deep connections students make in their thinking and reasoning that matter more than the speed at which a problem is solved.

How Can I Apply It?

Have students complete the What Will You Learn? chart in their Interactive Student Edition before beginning each module and note the topics they don't know very well. At the end of each module, have them follow the Rate Yourself! directions in the module review by returning to this chart to view how their knowledge has increased throughout the module. Encourage them to celebrate the topics with which their knowledge has increased, and take steps to strategize over how they can continue to grow in the topics about which they still might have questions.

Learn Volume

Objective

Students will learn about volume of prisms.

Teaching Notes

SLIDE1

Be sure students understand the vocabulary presented: threedimensional figure, prism, rectangular prism, volume, and cubic units. Students previously learned about volume of rectangular prisms, involving whole-number measurements. Remind them that they can find the volume of a rectangular prism with whole-number measurements by packing the prism with unit cubes. To preview what students are about to learn, draw two rectangular prisms on the board - one with wholenumber measurements and one with fractional measurements. Ask students how they can use reasoning about unit cubes to find the volume of the prism with whole-number measurements. Then ask them to make a conjecture about how they might be able to use reasoning to find the volume of the prism with fractional measurements.

DIFFERENTIATE

Reteaching Activity Al

Students may have difficulty counting cubes that they cannot see when finding the volume of a rectangular prism. It may be helpful to give students a rectangular prism that has a grid of cubes drawn on the faces. Students can turn the prism in a variety of ways to count the cubes. As students examine the prisms, ask them the following questions.

How many cubes are in the bottom layer?
How many cubes are in the top layer?
How many cubes are on the front face?
How many cubes are on the back face?
How many cubes are on the side faces?
How many layers are there?
How many cubes are there in all?

Interactive Presentation

[^15]
Volume of Rectangular Prisms

LESSON GOAL

Students will find and use the volume of rectangular prisms.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Volume
Learn: Volume of a Rectangular Prism
Example 1: Find the Volume of a Rectangular Prism
Learn: Find Missing Dimensions
Example 2: Find Missing Dimensions
Apply: Comparisons

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice
Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 49 of the Language Development Handbook to help your students build mathematical language related to volume of rectangular prisms.
IElilil You can use the tips and suggestions on page T49 of the handbook to support students who are building English proficiency.

Focus

Domain: Geometry
Supporting Cluster(s): In this lesson, students address supporting cluster 6.G.A by finding and using the volume of rectangular prisms. Standards for Mathematical Content: 6.G.A.2, Also addresses 6.EE.B. 6

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP6

Coherence

Vertical Alignment

Previous

Students used the coordinate plane to draw and find attributes of polygons.
6.G.A. 3

Now

Students find and use the volume of rectangular prisms.
6.G.A. 2

Next

Students will make nets and use them to find the surface area of rectangular prisms.
6.G.A. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of attributes of polygons to develop understanding of volume of rectangular prisms. They learn how to use cubes and the volume formula to build fluency with finding the volume of rectangular prisms with fractional edge lengths, and finding a missing dimension given the volume. They apply their understanding of volume to solve multi-step, real-world problems.

Mathematical Background

A prism is a three-dimensional figure with two congruent parallel bases. A rectangular prism has rectangles on all sides. Volume is the measure of the amount of space in a three-dimensional figure. The volume of a rectangular prism is $V=B h$, where B is the area of the base and h is the height. For a rectangular prism, the volume is $V=\ell w h$, where ℓ is the length of the base, w is the width, and h is the height.

Interactive Presentation

Warm Up

Launch the Lesson

What Vocabuitary Wis You Levin?

cuble units

prism

rectangular prism

three-dimensional figure

volume
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- solving one-step equations (Exercises 1-4)
- writing and solving one-step equations (Exercise 5)

Answers

1. 18
2. 4
3. 15
4. 88
5. Let x be the price per rose; $16 x=47.84 ; \$ 2.99$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about volume, using an infographic.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion. Additional questions are available online.

Ask:

- How is a cube different from a square? What do you think cubic units might measure? Sample answer: A cube has three dimensions, length, width and height, and they are all the same. A square only has two dimensions, length and width, and they are the same; volume.
- Cubes and boxes are examples of prisms. What do you think a prism is? Sample answer: a three-dimensional object made of rectangles or squares
- Thinking of a prism as a three-dimensional object, what do you think a rectangular prism is? Sample answer: a three-dimensional figure with 6 rectangular sides
- How is a 3-D movie different than a normal movie? How could this help you infer what a three-dimensional figure is? Sample answer: 3-D movies pop out of the screen. Three-dimensional objects are objects that have height, depth, and width.

Math History
Minute
Benjamin Banneker
(1731-1806) was an
African-American
astronomer , inventor
and writer. When he
was 22 , he used his
own drawings and
calculations to construct
a working clock that
was made almost
entirely out of wood.

Learn Volume of a Rectangular Prism
You can find the volume of a
rectangular prism with fractional measurements using different methods.

Method 1 Use unit cubes.

You can pack a rectangular prism with unit cubes. A cube is a special rectangular prism volume of a cube is found by cubing the side length.

Step 1 Find the number of unit cubes needed to fill the prism. Each unit cube has a side length of $\frac{1}{2}$ inch.
Length The length of the prism is $2 \frac{1}{2}$ inches. So, the length is composed of $2 \frac{1}{2} \dot{z}^{\frac{1}{2}}$ or 5 unit cubes.
Width The width of the prism is 3 inches. So, the width is composed of $3 \div \frac{1}{2}$ or 6 unit cubes.
Height The height of the prism is $1 \frac{1}{2}$ inches. So, the height is
composed of $1 \frac{1}{2} \div \frac{1}{2}$ or 3 unit cubes.
The base layer of the prism contains 5×6, or 30 unit cubes. There are three total layers in the prism. So, the rectangular prism contains 30×3, or 90 unit cubes.

Step 2 Find the volume of one unit cube
$V=s^{3} \quad$ Volume of a cube with side length s.
$=\left(\frac{1}{2}\right)^{3} \quad$ Replace s with $\frac{1}{2}$.
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) \quad$ Definition of exponen
$=\frac{1}{8}$
Multiply. The volume of each cube is $\frac{1}{8}$ in ${ }^{3}$

Step 3 Multiply the volume of each unit cube by the total number of unit cubes, 90
$V=90\left(\frac{1}{8}\right) \quad$ There are 90 unit cubes, each with a volume of $\frac{1}{8} \mathrm{in}^{3}$.
$=11 \frac{1}{4} \quad$ Multiply. The volume of the prism is $1 \frac{1}{4} \mathrm{in}^{3}$.

Interactive Presentation

Learn, Volume of a Rectangular Prism, Slide 1 of 3

CLICK

On Slide 1, students move through the steps to use unit cubes to find the volume of the rectangular prism.

1 CONCEPTUAL UNDERSTANDING

Learn Volume of a Rectangular Prism

Objective

Students will understand different methods for finding the volume of a rectangular prism with fractional edge lengths.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 3, encourage them to make sense of the formula for the volume of a rectangular prism and to understand why the formula for the area of the base, ℓw, can be substituted for B.

Teaching Notes

SLIDE 1

Have students imagine the rectangular prism composed of multiple unit cubes, packed together so that there are no gaps and no overlap. Ask students to respond to the following questions.
Why does the unit cube have a side length of $\frac{1}{2}$ inch? The fractional measurements of the prism's dimensions are in multiples of $\frac{1}{2}$ inch.

How can you find the number of unit cubes to fill one layer of the prism? Five unit cubes can fit along the side labeled $2 \frac{1}{2}$ inches, and 6 unit cubes can fit along the side labeled 3 inches. So, one layer can hold $5(6)$, or 30 unit cubes.

How can you find the number of layers? Three unit cubes can fit along the side labeled $1 \frac{1}{2}$ inches. So, there are three layers.

SLIDE 2

Ask students to compare and contrast the two formulas shown for finding the volume of a rectangular prism. They should be able to explain how B is equivalent to ℓw. Point out that the capital letter B represents the area of the base of the prism. In many area formulas, lowercase b represents the length of the side of the base. Ask students to explain how packing a rectangular prism with unit cubes to find the volume corresponds to using the volume formula. Students should note that the area of the base B represents one layer of unit cubes. Multiplying the number of unit cubes in one layer (B) by the total number of layers (h) gives the volume (V).

Talk About It!

SLIDE 3

Mathematical Discourse

The formula $V=B h$ can be used to find the volume of any right prism. You know that for a right rectangular prism the area of the base, B, is represented by the expression ℓw. Think of a prism that doesn't have a rectangular base, such as a triangular prism. What expression could you use to represent the area of the base? Sample answer: A prism with a triangular base would use the expression $\frac{1}{2} h$ to represent B.

Example 1 Find the Volume of a

 Rectangular Prism
Objective

Students will use unit cubes and the volume formula to find the volume of a rectangular prism with fractional edge lengths.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Encourage students to reason about how packing a prism with unit cubes can help them find the volume, and how that method corresponds to using the volume formula.

6 Attend to Precision As students discuss the Talk About lt! question on Slide 4, encourage them to be precise in their explanation of why the volume of a cube can be found by cubing the side length.

Questions for Mathematical Discourse
 SLIDE 2

Is each mini sugar cube a unit cube? Explain. yes; Sample answer: Because the measure of each side has a one in the numerator, it represents one unit so it is a unit cube.

How will you determine how many cubes will fit along the length of the box? Sample answer: First I need to divide the length of the box, $3 \frac{1}{2}$ nches, by the length of the mini sugar cube, int $\frac{1}{4} \mathrm{~h}$.
OL The length of one side of the mini sugar cube is $\frac{1}{4}$ inch. How can you find the volume of a unit cube? Because it is a cube, I can find the volume by cubing the length of a side.

Why do you multiply the volume of one sugar cube by the total number of sugar cubes to find the volume? Sample answer: The box is completely filled with cubes so the volume of the box is equal to the volume of one cube times the total number of cubes.

Is the volume of the box 2,016 cubic inches? Explain. no; Sample answer: 2,016 cubes will fit in the box. Each cube represents $\frac{1}{64}$ cubic inch, not 1 cubic inch.

BL. How many cubic inches of empty space would be in the box if there were only 1,500 cubes? 8.0625 cubic inches

(continued on next page)

Method 2 Use the formula.
The formula for the volume of a right prism is $V=B h$ where B represents the area of the base of the prism and h represents the height of the prism. In a rectangular prism the base is a rectangle, so $B=\ell \mathrm{w}$. So, the volume of a right rectangular prism can also be found using the formula $V=\ell w h$.
$V=\ell w h \quad$ Volume formula
$V=2 \frac{1}{2} \cdot 3 \cdot 1 \frac{1}{2} \quad \ell=2 \frac{1}{2}, w=3, h=1 \frac{1}{2}$
$V=11 \frac{1}{4} \quad$ Multiply.
So, using either method, the volume of the rectangular prism is $11 \frac{1}{4}$ cubic inches.

Q Example 1 Find the Volume of a Rectangular Prism Mini sugar cubes measure $\frac{1}{4}$ inch on each side. The box show is packed full of sugar cubes. What is the volume of the box? Method 1 Use unit cubes.
Step 1 Find the number of mini sugar cubes.
Each sugar cube has a side length of $\frac{1}{4}$ inch.

Length of Prism: $3 \frac{1}{2}$ inches
Because $3 \frac{1}{2} \div \frac{1}{4}=14$, there are 14 mini sugar cubes that fit along the length of the prism.
Width of Prism: $1 \frac{1}{2}$ inches
Because $1 \frac{1}{2} \div \frac{1}{4}=6$, there are 6 mini sugar cubes that fit along the width of the prism.
Height of Prism: 6 inches
Because $6 \div \frac{1}{4}=24$, there are 24 mini sugar cubes that fit along the height of the prism.
The base layer of the prism contains 14×6, or 84 mini sugar cubes. There are 24 total layers of unit cubes in the prism. So, the rectangular prism contains 84×24, or 2,016 total mini sugar cubes.
(continued on next page)

Talk About It! The formula $V=B h$ can be used to find the volume of any right prism. Y ou know that for a right rectangular prism, the area of the base, B, is represented by the expression ℓw. Think of a prism that doesn have a rectangula
base, such as a triangular prism. Wh expression can you use to represent the area of the base?

Sample answer: A prism with a triangular base would use the expression $\frac{1}{2} b h$ to represent B.

QThink About It! Estimate the volume of the box of mini sugar cubes.
See students responses.

Interactive Presentation

Example 1, Find the Volume of a Rectangular Prism, Slide 2 of 5

On Slide 2, students move through the steps to find the number of cubes needed to fill the box.

TYPE
On Slide 2, students determine the volume by using unit cubes (Method 1).
Step 3 Multiply the volume of each cube by the total number of unit
cubes, 2,016.
$V=2,016\left(\frac{1}{64}\right) \quad \begin{aligned} & \text { There are } 2,016 \text { unit cubes, each with a volume }\end{aligned}$
$=31 \frac{1}{2} \quad$ Multiply. The volume of the prism is $3 \frac{1}{2}$ in 3.
Method 2 Use the volume formula.
The formula for the area of a right rectangular prism is $V=B h$ or
$V=\ell w h$.
Substitute the dimensions of the box for the variables in the formula
and multiply.
$V=\ell w h \quad$ Write the volume formula.
$V=3 \frac{1}{2} \dot{2}^{1-1} \cdot 6 \quad$ Replace ℓ with $3 \frac{1}{2}, w$ with $\frac{1}{2}$, and h with 6 .
$V=31 \frac{1}{2} \mathrm{in}^{3} \quad$ Muttiply.
So, using either method, the total volume of the box is $31 \frac{1}{2}$
cubic inches.
Check
Find the volume of the prism. 249. $\mathbf{1 5} \mathrm{in}^{3}$

```
Step 2 Find the volume of one mini sugar cube.
```

Step 2 Find the volume of one mini sugar cube.
V=s
V=s
=(\frac{1}{4}\mp@subsup{)}{}{3}\quad\quad\mathrm{ Replace s with }\frac{1}{4}.
=(\frac{1}{4}\mp@subsup{)}{}{3}\quad\quad\mathrm{ Replace s with }\frac{1}{4}.
=(\frac{1}{4})(\mp@subsup{)}{4}{\prime})(\mp@subsup{f}{4}{})\quad\mathrm{ Definition of exponent}
=(\frac{1}{4})(\mp@subsup{)}{4}{\prime})(\mp@subsup{f}{4}{})\quad\mathrm{ Definition of exponent}
= = 1}64 Multiply.The volume of each cube is \frac{1}{64 in in.

```
    = = 1}64 Multiply.The volume of each cube is \frac{1}{64 in in.
```


QGo Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 1, Find the Volume of a Rectangular Prism, Slide 3 of 5

| TYPE | On Slide 3, students use the volume
 formula to find the volume of the box
 (Method 2). |
| :--- | :--- | online to determine if they are ready to move on.

Example 1 Find the Volume of a Rectangular Prism (continued)

Questions for Mathematical Discourse

SLIDE 3

All In the problem, why is ℓw used in place of B ? Sample answer: B represents the area of the base of the three-dimensional figure. In the figure, the base is a rectangle, so $B=\ell w$.

Ol. Why are the two formulas, $V=B h$ and $V=\ell w h$, equivalent? Sample answer: Because the base of the figure is a rectangle, $B=\ell w$, so the two formulas are equal.
31. Suppose the manufacturer wants a larger box. Which side should the company double to get the largest volume? Explain your reasoning. any side; Sample answer: When you double any side, it is the same as multiplying the volume by 2 . So when you double the length, the volume is 63 cubic inches. If you double the height, the volume is also 63 cubic inches.

Go Online

- Find additional teaching notes and the Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Find Missing Dimensions

Objective

Students will learn how to find a missing dimension in a rectangular prism, given the volume.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 2, encourage them to make sense of the known and unknown values and how using an equation can help them find the unknown value.

0Go Online to have your students watch the animation on Slide 1. The animation illustrates how to find a missing dimension in a rectangular prism.

Teaching Notes

SLIDE1

You may wish to pause the animation after the prism and its given dimensions are shown. Ask students to work with a partner to come up with a strategy for finding the unknown height of the prism. They may use any strategy they wish, but must be prepared to explain their strategy and defend why it works. Some students may use an equation as the animation suggests. Other students may use reasoning and say that the area of the base is 15 square feet. Since the volume is the product of the area of the base and the height, divide the volume by the area of the base to find the height. Ask students to compare strategies to understand the correspondences between them.

Talk About It!

SLIDE 2

Mathematical Discourse

How can understanding variables and equations help you solve geometry problems? Sample answer: If there is an unknown value in a geometry problem involving area or volume, I can write an equation using variables, and solve for the unknown value.

Learn Find Missing Dimensions

When you know the volume of a rectangular prism and 2 out of 3 dimensions, you can write and solve an equation to find the missing dimension. Using the volume formula, replace the variables with the known values. Then solve the equation to find the unknown value.

O Go Online Watch the animation to learn how to find the missing dimension for the rectangular prism shown.

The rectangular prism shown has a volume of 60 cubic feet. The width of the prism is 3 feet and the length is 5 feet. The height of the prism is unknown
rectangular prism.
$V=\ell w h$
$60=(5)(3) h \quad$ Replace V with $60, \ell$ with 5 , and w with 3 .
$60=15 h$
Multiply.
$\frac{60}{15}=\frac{5 h}{15} \quad$ Division Property of Equality
$4=h \quad$ Simplify.

So, the height of the rectangular prism is $\mathbf{4}$ feet.

Interactive Presentation

Learn, Find Missing Dimensions, Slide 1 of 2

Example 2 Find Missing Dimensions
The rectangular prism shown has a volume of $94 \frac{1}{2}$ cubic inches.
What is the height of the prism?
Step 1 Identify the known dimensions.

Y ou know the length, width, and
volume. Y ou need to find the
height.
Step 2 Find the missing dimension.

$$
\begin{array}{ll}
V=\ell w h & \text { Volume of a rectangular prism } \\
94 \frac{1}{2}=6 \cdot 4 \frac{1}{2} \cdot h & \text { Substitute the known quantities. } \\
94 \frac{1}{2}=27 h & \text { Multiply. } \\
\frac{94 \frac{1}{2}}{27}=\frac{27 h}{27} & \text { Divide. } \\
3 \frac{1}{2}=h & \text { Simplify. } \\
\text { So, the height of the prism is } \quad 3 \frac{1}{2} \text { inches. }
\end{array}
$$

Check
Find the height of a rectangular prism with a volume of 126 cubic inches, a width of $7 \frac{7}{8}$ inches, and a length of 2 inches. $8 \mathrm{in}$.

Interactive Presentation

Example 2, Find Missing Dimensions, Slide 2 of 5.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 2 Find Missing Dimensions

Objective

Students will find a missing dimension in a rectangular prism, given the volume.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to engage in the drag and drop activity in order to make sense of the dimensions they are given, and which dimension they are asked to find.

Questions for Mathematical Discourse

SLIDE 2

AL. How do you know what variable you need to solve for in the formula $V=\ell w h$? Sample answer: I know the values for V, ℓ, and w, so I need to find h.

OL Why is it important to identify the given values? Sample answer: I need to identify what variables in the formula have numeric values so I know what variable to solve for.

B1. Suppose you were not given values for the height or the width of the prism. Could you still find the length? Explain your reasoning. no; Sample answer: If I didn't know h and w, I would not have enough information to find the length. When I solve an equation, I can only have one unknown.

SLIDE3

AL. How can you check your value of h ? Sample answer: I can substitute all of the values back into the equation to make sure the left side of the equation is equivalent to the right side of the equation.

OL. In the third step of the solution, where did the value 27 come from? 27 is the product of 6 and $4 \frac{1}{2}$

BL. If the length and the width of the prism remained the same but the volume doubled, how would that affect the height? Explain. the height would double; Sample answer: The right side of the equation stays the same if the volume doubles. The left side becomes 189 cubic inches, so when I divide each side by 27 , the height is 7 , which is two times $3 \frac{1}{2}$

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Comparisons

Objective

Students will come up with their own strategy to solve an application problem involving comparing the prices of different sizes of theater popcorn.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning

 of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.
Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How do you find the volume of each container?
-What is the best way to compare the three prices?
-What do you need to do to solve the problem?

(2)

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Comparisons

CHECK

> Students complete the Check exercise
online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add the formula that is used to find the volume of a rectangular prism. Then give an example of how to use that formula to find the volume of a rectangular prism. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

How can you describe the size of a three-dimensional figure? In this lesson, students learned how to find the volume of rectangular prisms. Encourage them to discuss with a partner what it means to describe the size of a geometric figure, and how volume might be considered one way to do that. For example, they may say that volume describes the amount of space inside a three-dimensional figure. While the term size can mean many things, describing the volume of a figure is one way to describe the size of that figure.

Exit Ticket

Refer to the Exit Ticket slide. What is the volume of the box? Write a mathematical argument that can be used to defend your solution. 135 in 3 , Sample answer: The figure is 9 cubes long, 3 cubes wide, and 5 cubes tall. So, the volume of the figure is $9(3)(5)$ or 135 cubic inches.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1-7 odd, 8-11
- Extension: Volume of a Pyramid
- ALEKS Volume of Rectangular Prisms

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-4, 7, 9, 10
- Extension: Volume of a Pyramid
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- $\mathbf{\square}$ ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- \square ALEKS Area of Parallelograms, Triangles, and Trapezoids

Practice and Homework
The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK T opic	Exercises	
1	find the volume of a rectangular prism with fractional edge lengths	1,2
1	find a missing dimension in a rectangular prism, given the volume	3,4
2	extend concepts learned in class to apply them in new contexts	5,6
3	solve application problems involving volume of rectangular prisms	7
3	higher-order and critical thinking skills	$8-11$

Common Misconception
On exercises where a missing dimension is sought, some students may treat the volume as one of the linear dimensions. For example, in Exercise 3, students may substitute 52 for the width instead of the volume. Have students construct a chart like the one below and fill in the missing values, including a "?" for the value that is asked for in the problem. That value represents the unknown. Completing a chart like this may help students correctly set up the equation to solve for the unknown.

$\boldsymbol{V}=$	$\boldsymbol{\ell}$	\boldsymbol{w}	\boldsymbol{h}
52	$6 \frac{1}{2}$	$\boldsymbol{?}$	2

Apply "indicates multi-step problem
'7. The Lagusch family needs to reets a dumpsesc The dumpsters they can choose ficm are shiged ike rectanguts prims and tave the dumpster is the best volue to rent based on the coss per cubic foot?

Ster	Lergth (1)	Whas 100	Henght (湤)	Ceat (5)
5 mal	16	8	2	20480
Medum	20	8	35	420.00
Large	22	8	5	67760

OHigher-Order Thinking Problems
8. Create Draw and lisbel a rectongulas prisme that has a volume less than 100 catic meters Sample aovwes:

CII Aeason Abstractly A lown provides a rectaspilar tegioling bin for each nousehold. The volume of each bin 13 3,840 cubic inches is the height of the recycing bin graster than one toor whel an wrgument thist can be used to sofend your solution

yes; Sarple answer: Find the height of the bir using the volume formda for a iectangular Pritum: $3840=20 \times 12 \times+50, \mathrm{~h}=16 \mathrm{ln}$. Since to inches is greatee tian 12 inches, the beight is greater than one foot.

$90 \mathrm{in}^{2}$. Sample answen: The volume of the pan is $9 \times 5 \times 3$ or 135 cubic inches. Multipiby that by tro thicds to tind the volume that is filied with batter. $135 \times \frac{7}{2}=90$.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 9, students are presented with a classmates' work for finding the height of a prism, and students must find the error in the work.

2 Reason Abstractly and Quantitatively In Exercise 10, students are given the volume, the length, and the width of a bin, and they must reason quantitatively to determine if the height is greater than or less than 1 foot without actually calculating.

In Exercise 11, students are given the dimensions of a partially filled rectangular prism and are asked to reason through how much more volume it can hold.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 7 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Make sense of the problem.
Use with Exercise 9 Have students work together to prepare a brief explanation that illustrates the flawed reasoning. For example, the student in the exercise substituted the incorrect values to find the missing dimension. Have each pair or group of students present their explanations to the class.

Learn Make a Net to Represent a Rectangular Prism

Objective

Students will learn how to make a net to represent a rectangular prism.
Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 2, encourage them to analyze the structure of the net in order to explain the similarities between the length, width, and height of the prism and the given dimensions of the net.

Teaching Notes

SLIDE1]
Students will learn that a net is a two-dimensional representation of a three-dimensional figure. Have students watch the brief animation that illustrates a rectangular prism unfolding to show its net. You may wish to have students create their own nets by unfolding rectangular prisms by providing students with boxes, such as tissue boxes or cereal boxes. It is important to note that many manufactured boxes have lids and bottom faces that are almost duplicated and glued to each other. Have students cut around the lid so that just an entire face forms that part of the net. Have them label the faces of their net as front, back, top, bottom, side 1, and side 2.

Talk About It!

SLIDE 2

Mathematical Discourse

What similarities do you notice between the length, width, and height of the prism, and the dimensions given in the net? Sample answer: The three dimensions of the prism - length, width, and height - are the same measurements given for the dimensions of the rectangles in the net of the prism. There are 3 sets of combinations of those measurements.

Interactive Presentation

Learn, Make a Net to Represent a Rectangular Prism, Slide 1 of 2

Surface Area of Rectangular Prisms

LESSON GOAL

Students will make nets and find surface area of rectangular prims.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Cube Nets
Learn: Make a Net to Represent a Rectangular Prism
Example 1: Make a Net to Represent a Rectangular Prism
Learn: Surface Area of a Rectangular Prism
Example 2: Surface Area of a Rectangular Prism
Apply: Home Improvement
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al\|	I.	
Remediation: Review Resources			
ArriveMATH Take Another Look			
Extension: Changes in Dimension			
Collaboration Strategies			

Language Development Support

Assign page 50 of the Language Development Handbook to help your students build mathematical language related to surface area of rectangular prisms.
IEIII
You can use the tips and suggestions on page T50 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1.5 days
45 min	3 days

Focus

Domain: Geometry
Supporting Cluster(s): In this lesson, students address supporting cluster 6.G.A by making nets and finding surface area of rectangular prisms.
Standards for Mathematical Content: 6.G.A. 4
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students found and used the volume of rectangular prisms.
6.G.A. 2

Now

Students make nets and use them to find the surface area of rectangular prisms.
6.G.A. 4

Next

Students will make nets and use them to find the surface area of triangular prisms.
6.G.A. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students draw on their knowledge of rectangular prisms and area to begin to develop understanding of surface area of rectangular prisms. They learn to make and use nets to build fluency with finding the surface area of rectangular prisms and apply their understanding to solve multi-step, real-world problems.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- performing operations with rational numbers (Exercises 1-4)
- finding area of rectangles (Exercise 5)

Answers

1. $\frac{23}{30}$
2. 0.1455
3. 3.936
4. 4.82 5. $192 \mathrm{in}^{2}$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about covering gift boxes with wrapping paper.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- An insect net can wrap around a garden to protect plants from insects. What do you think the net of a three-dimensional figure does? Sample answer: I think the net would wrap around the figure.
- Based on the meaning of the words surface and area, what might be the surface area of a three-dimensional figure? Sample answer: Surface area is the area covering the entire surface of the figure.

Explore Cube Nets

Objective

Students will use Web Sketchpad to explore nets of prisms.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use Web Sketchpad to explore the idea of nets. Students will use colors to form a net that resembles the cube. Students should end up with the correct net for the cube after using different strategies.

(9) 1
 Inquiry Question

How can a net help you visualize a three-dimensional figure? Sample answer: It can help me see each of the faces of the prism and how they connect.

ω
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3

Mathematical Discourse

Label the correct face on the net with the letter C. Explain how you can tell which one is face C . Sample answer: On the net, the face below the A should be labeled C. On the cube, the face labeled C is adjacent to the faces labeled A and B. On the net, the face that should be labeled C is adjacent to A and will be adjacent to B once wrapped around the cube.

Interactive Presentation

Explore, Slide 6 of 8

TYPE

a
On Slide 8, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Cube Nets (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad in order to construct the correct net. Encourage students to think about the strategies they could use to match the colors of the faces.Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About It! questions on Slide 6 are shown.

Talk About It!

SUIDE 6

Mathematical Discourse

Did you have to change your strategy from the previous net to place the letters? See students' responses.

What strategies did you use to label the net? Sample answer: This net was more challenging because the A and B faces did not share an edge, but I used the same strategy of identifying which faces will share an edge with the labeled A and B faces on the cube.

Example 1 Make a Net to Represent
a Rectangular Prism
A rectangular prism has a length of
10 centimeters, a width of
6 centimeters, and a height of
8 centimeters.
Draw and label a net to represent the rectangular prism.

Step 1 Draw and label the front face and side faces.

The dimensions of the front of the prism are 10 centimeters by 8 centimeters. Use grid paper. Let each grid unit represent icentimeter. The dimensions of each side are 6 centimeters by 8 centimeters.

Step 2 Draw and label the top and bottom faces.
The dimensions of the top and bottom are 10 centimeters by 6 centimeters.

Interactive Presentation

Example 1, Make a Net to Represent a Rectangular Prism, Slide 2 of 4
On Slide 2, students move through the
steps to make a net of the rectangular
prism. move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

Example 1 Make a Net to Represent a Rectangular Prism

Objective

Students will make a net to represent a rectangular prism.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to analyze the structure of the prism in order to construct a net to represent the rectangular prism.

As students discuss the Talk About lt! question on Slide 3, encourage them to analyze the structure of the prism in order to explain why there are only three measurements for a rectangular prism, with each face using two of the three measurements.

Questions for Mathematical Discourse

SLIDE 2

AL. In the first step, how can you tell which measure on the prism is the height of the front? the length? Sample answer: The height of the prism is the same as the height of the front. The length of the front is the same as the length of the prism.

ALII In the third step, how do you know that the measurements of the highlighted side are the same as the other side and not the front? Sample answer: Because it is a rectangular prism, the pairs of faces are congruent. The front is congruent to the back.

OL. In the first step, why are the heights of the front and the sides the same? Sample answer: Both the sides and the front make up the faces of the prism so they are the same height.

OL. In the fifth step, the top of the prism is not labeled. How do you know what the dimensions are? Sample answer: The dimensions are shown on the bottom of the prism. The dimensions of the top are the same as the bottom.
151. Suppose you found the area of all of the rectangles in the net. Is that the same as the volume of the prism? Explain. no; Sample answer: The volume of the prism is the space inside of the prism. The area of the rectangles in the net is the area of the space covering the prism.

3
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Enrichment Activity [B]

There is more than one way to unfold a rectangular prism into a net. That said, not all drawings that consist of the "correct" faces are actual nets of the prism. Give students several nets, some of which are correct and others that are incorrect. Have students identify which ones are incorrect and why. In looking at Step 3 on page 497, ask the students the following questions:

Is it possible to draw a net where the back is not lined up with a side? If so draw it. yes; See students' drawings.

Is it possible to draw a net that is not a shape that resembles the letter "t"? If so, draw it. yes; See students' drawings.

Evie has the correct two sides, top, bottom, front, and back, and has even calculated the surface area correctly. Malik says that Evie's net is still incorrect. Draw a net that Evie may have drawn that supports Malik's claim. See students' drawings.

Step 3 Draw and label the back face.
The dimensions of the back are the same as the front, 10 centimeters by 8 centimeters.

Check
Draw and label a net to represent the rectangular prism. Let each grid unit represent 1 inch.

QTalk About It Explain why there are
only three measurements for a rectangular prism, with each face using two of the three
measurements. measurements.
Sample answer: The prism has three dimensions length, width, and height - and each face is two-dimensional. So, the prism has only three measurements, and each face uses two of the three.

[^16] In the video, the student beasured, front and back and side 1 and side 2 . What shortcut can you use when finding the surface area of a rectangular prism?
Sample answer: I can find the area of one of each pair of faces, then multiply each of them by 2 .

Learn Surface Area of a Rectangular Prism
The surface area of a rectangular prism is the sum of the areas of the faces. Using a net can help you deconstruct the prism into two-dimensional shapes so you can find the area of each face.
QGo Online Watch the video to learn how to use a net to find the surface area of the rectangular prism shown.

The video shows the net of a rectangular prism.

The length ℓ of the rectangular prism is 3 inches, the width w is 2 inches, and the height h is 4 inches.
Step 1 Find the area of each face.

Front and Back

The front and back faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the front and back faces.
$A=\ell h \quad$ The front face has dimensions ℓ and h.
$=3(4) \quad$ Replace ℓ with 3 and h with 4 .
$=12$ Multiply. The area of the front face is $12 \mathrm{in}^{2}$
The combined area of the front and back faces is 2(12), or 24 square inches.
Top and Bottom
The top and bottom faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the top and bottom faces
$A=\ell w \quad$ The top face has dimensions ℓ and w.
$=3(2) \quad$ Replace ℓ with 3 and w with 2 .
$=6 \quad$ Multiply. The area of the top face is $6 \mathrm{in}^{2}$.

Interactive Presentation

Learn, Surface Area of a Rectangular Prism, Slide 1 of 2
WATCH
On Slide 1, students watch a video to learn how to use a net to find the surface area of a rectangular prism.

1 CONCEPTUAL UNDERSTANDING

Learn Surface Area of a Rectangular Prism

Objective

Students will learn how to use a net to find the surface area of a rectangular prism.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to make sense of the area of each face of the prism in order to determine a shortcut that can be used when finding the surface area of a rectangular prism.

0Go Online to have your students watch the video on Slide 1. The video illustrates how to use a net to find the surface area of a rectangular prism.

Teaching Notes

SLIDE1

You may wish to have students recreate the activity shown in the video. Provide them with several rectangular prisms, such as tissue boxes, cereal boxes, or other kinds of boxes you can find at the grocery store. Have them deconstruct the boxes as demonstrated in the video. It is important to note that many manufactured boxes have lids and bottom faces that are almost duplicated and glued to each other. Have students cut around the lid so that just an entire face forms that part of the net. Ask students what they notice about the net. Students should note that there are six rectangular faces, and that opposite faces are congruent.

Talk About It!

SLIDE 2

Mathematical Discourse

In the video, the student measured the top and bottom, front and back, and side 1 and side 2 . What shortcut can you use when finding the surface area of a rectangular prism? Sample answer: I can find the area of one of each pair of faces, and then multiply each of them by 2.

1 CONCEPTUAL UNDERSTANDING
 2 FLUENCY

3 APPLICATION
Example 2 Surface Area of a
Rectangular Prism

Objective

Students will use a net to find the surface area of a rectangular prism.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About tt! question on Slide 4, encourage them to use clear and precise mathematical language in their explanations of why the unit of measure is square centimeters, instead of centimeters or cubic centimeters.

7 Look for and Make Use of Structure Encourage students to use the structure of the prism and its net to understand that the corresponding faces (front and back, left and right sides, and top and bottom) are congruent.

Questions for Mathematical Discourse

SLIDE 2

AL What pairs of faces on the net are congruent? front and back, top and bottom, and the two sides

OL. Why do the instructions tell you to multiply the area of one face by 2? Sample answer: The areas of opposite faces are equal, so if you find one area, then all you need to do is multiply it by two to find the area of the pair of faces.
31. If this was a cube, how many different areas would you need to find? Explain what you would do. 1; Sample answer: Because a cube has six congruent sides, I would find the area of one side and then multiply it by 6 .

SEIDE3

AL. Why do you add the areas of the faces? Sample answer: Surface area is the total area of all of the faces of a prism. You add to find the total.
OL. Is surface area the same as volume? Explain your reasoning. Sample answer: no; Sample answer: Surface area is the area that covers a three-dimensional figure. Volume is the space inside the figure.

BL. Would a piece of wrapping paper that was 20 centimeters by 25 centimeters be enough? Explain. yes; Sample answer: The area of the wrapping paper is 500 square centimeters which is more than 376 square centimeters.

(3) Online

- Find additional teaching notes and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

The combined area of the top and bottom faces is 2(6), or 12 square inches.
Sides
The two side faces are congruent. Find the area of one. Then multiply by 2 to find the total area of the side faces.
$A=$ wh \quad Each side face has dimensions w and h.
$=2(4) \quad$ Replace w with 2 and h with 4 .
$=8 \quad$ Multiply. The area of each side face is $8 \mathrm{in}^{2}$.
The combined area of the two side faces is $2(8)$, or 16 square inches. Step 2 Add the areas to find the total surface area.
$24+12+16=52$
So, the total surface area of the rectangular prism is 52 square inches.

C Example 2 Surface Area of a Rectangular Prism
Jon is covering the faces of the gift box shown with wrapping paper.

Use the net to determine the minimum amount of wrapping paper he will need to cover the box. Step 1 Find the area of each face.

Front and Back

The front and back faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the front and back faces.
$A=\ell \quad$ The front face has dimensions ℓ and h.
$=10(8)$ Replace ℓ with 10 and h with 8 .
$=80$ Multiply. The area of the front face is $80 \mathrm{~cm}^{2}$.
The combined area of
the front and back faces
is $2(80)$, or 160 square
centimeters.

(continued on next page)
Think About It! How many differentsized faces are there?
There are 3 differentsized faces. \square
\square \square \square \square
\qquad

Interactive Presentation

Example 2, Surface Area of a Rectangular Prism, Slide 2 of 5

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Apply Home Improvement

Objective

Students will come up with their own strategy to solve an application problem involving painting a room.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About lt! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- What effect does the area of the windows and doors have on the problem?
-Why do you need to know how much area each can of paint covers?
-What does it mean if your answer is not a whole number?

- Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Home Improvement

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add a description of how to find the surface area of a rectangular prism. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

How can you describe the size of a three-dimensional figure?
In this lesson, students learned how to use a net to find the surface area of a rectangular prism. Have students work with a partner to compare and contrast volume and surface area of prisms. Some students may say that both can be used to describe the size of figures. While volume is a measure of the space inside a figure, surface area is a measure of space occupied by each two-dimensional surface of the figure. Volume is measured in cubic units, while surface area is measured in square units.

Exit Ticket

Refer to the Exit Ticket slide. Suppose you have a box in the shape of a rectangular prism with a length of 12 inches, a width of 8 inches, and a height of 10 inches. Will a 600 -square inch roll of wrapping paper be enough to cover the box? Write a mathematical argument that can be used to defend your solution. yes; Sample answer: The box has a surface area of 592 square inches. Since $592<600$, there will be enough paper to cover the box.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1, 3-8
- Extension: Changes in Dimension
- ALEKS Surface Area

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1, 2, 4, 5, 7
- Extension: Changes in Dimension
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- ALEKS'Area of Parallelograms, Triangles, and Trapezoids

IF students score 65% or below on the Checks, THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Area of Parallelograms, Triangles, and Trapezoids

Practice and Homework
The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	make a net to represent a rectangular prism	1
2	use a net to find the surface area of a rectangular prism	2
2	extend concepts learned in class to apply them in new contexts	3
3	solve application problems involving surface area of rectangular prisms	4
3	higher-order and critical thinking skills	$5-8$

Common Misconception
When drawing and labeling a net, particularly when the faces of the prism are nearly square, students may mix up which label goes on which edge. Give students a net that they can cut out and fold into a prism. When the prism is formed, have them label each edge. That way, when they unfold the prism, the correct labels will be on the correct edges. This will help students visualize the net with the appropriate side measures.

Apply "indicates multi-step problem No, the volumes of Blocks A and B are the same.
*4. Jing is putting a special restorative stain on the entire surface of her rectangular prism shaped hope chest, except for he name plate that measures $\frac{1}{2}$ foot by $\frac{3}{4}$ foot. If one can of stain covers about 35 square feet, how many cans of stain will she need to buy? 3 cans

Higher-Order Thinking Problems
5. Mike a Conjecture Write a formula that could be used to find the surface area of a rectangular prism. Define each variable you choose to use in your formula.
Sample answer: S.A. $=2 \ell w+2 \ell h+2 w h$, where $\ell=$ length, $w=$ width and $h=$ height.
6. Create Draw and label a rectangular prism its volume.

7. Reason Abstractly Find the surface area and volume of each rectangular prism shaped block. Which block has the greater surface area? Does the same block have a surface area? Does write an argument that can be used to defend your solution.

Block A: 94 in $^{2} ; 60$ in 3; Block B: 104 in 2; $60 \mathrm{in}^{3}$; Block B has a greater surface area.
8. Meredith is painting rectangular prisms like the one shown. If she covers all the surfaces, how many square inches need to be painted? Describe two different ways to be painted? Describe the problem.
sol

$24 \mathrm{in}^{2}$; Sample answer: Since a cube has 6 congruent faces, you can multiply the area of one face by $6,6(2)(2)$ or you can find the area of the top and bottom $2(2)(2)$, the sides $2(2)(2)$, and the front and back $2(2)(2)$, then add them together $8+8+8=24$.

Learn Make a Net to Represent a Triangular Prism

Objective

Students will learn how to make a net to represent a triangular prism.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to analyze the structure of a net of a rectangular prism and a net of a triangular prism in order to find similarities and differences between the nets.

Teaching Notes

SLIDE1

Have students watch the brief animation that illustrates a triangular prism being unfolded to show its net. Be sure students understand why a triangular prism gets its name. Students should be able to explain that prisms are named by the shape of their base. Thus, rectangular prisms have rectangular bases, and triangular prisms have triangular bases. Point out that the remaining faces are rectangles for both rectangular and triangular prisms. Ask students what is true about the two triangular bases. They should note that the bases of any prism are both parallel and congruent.

Talk About It

SLIDE2

Mathematical Discourse

Compare and contrast the net of a rectangular prism and the net of a triangular prism. Sample answer: Both nets have two bases with rectangular faces between the bases. The rectangular prism has rectangles for bases, while the triangular prism has triangles for bases.

Interactive Presentation

Learn, Make a Net to Represent a Triangular Prism, Slide 1 of 2

Surface Area of Triangular Prisms

LESSON GOAL

Students will make nets and find surface area of triangular prisms.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Non-Rectangular Prism Nets
Learn: Make a Net to Represent a Triangular Prism
Example 1: Make a Net to Represent a Triangular Prism
Learn: Surface Area of a Triangular Prism
Example 2: Surface Area of a Triangular Prism
Example 3: Find Surface Area of a Triangular Prism
Apply: Food

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All		R	
Remediation: Review Resources		-		
ArriveMATH Take Another Look				
Extension: Find Surface Area of Triangular Prisms Using a Formula				
Collaboration Strategies				

Language Development Support

Assign page 51 of the Language Development Handbook to help your students build mathematical language related to surface area of triangular prisms.

Flul You can use the tips and suggestions on page T51 of the handbook to support students who are building English proficiency.

Focus

Domain: Geometry
Supporting Cluster(s): In this lesson, students address supporting cluster 6.G.A by making nets and finding the surface area of triangular prisms.
Standards for Mathematical Content: 6.G.A. 4
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,
MP6, MP7

Coherence

Vertical Alignment

Previous

Students made nets and used them to find the surface area of rectangular prisms.
6.G.A. 4

Now

Students make nets and use them to find the surface area of triangular prisms.
6.G.A. 4

Next

Students will make nets and use them to find the surface area of pyramids.
6.G.A. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of surface area as they explore surface area of triangular prisms. They learn to make and use nets to build fluency with finding the surface area of triangular prisms. They also apply their understanding of surface area of triangular prisms to solve multi-step, real-world problems.

Mathematical Background

A triangular prism is composed of two congruent triangular bases and three rectangular sides. Similar to the process of finding the surface area of a rectangular prism, the surface area of a triangular prism can be found by creating a net. The net of a triangular prism has five components: two triangular bases and three rectangular faces. The surface area is the sum of the areas of these five faces.

Interactive Presentation

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Use?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- perform operations with rational numbers (Exercise 1)
- finding the area of triangles (Exercise 2)
- finding the area of rectangles (Exercise 3)

Answers

1. 2 数.
2. $374 \mathrm{~cm}^{2}$
3. $18 \mathrm{~cm}^{2}$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about wheel chair ramps and the amount of material needed to build one.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- A rectangular prism has two congruent rectangular bases. Based on that, what might be an attribute of a triangular prism? Sample answer: a prism with two congruent triangular bases

Explore Non-Rectangular Prism Nets

Objective

Students will use Web Sketchpad to explore nets of prisms with non-rectangular bases.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will use Web Sketchpad to explore how the number of edges on the base of the prism compares to the number of rectangular faces on the net of the prism. Students will also observe how the number of rectangular faces changes with the shape of the bases. Students will then hypothesize how the shape of the base of a prism affects the number of rectangular faces.

© Inquiry Question

How does the shape of the base of a prism affect the number of rectangular faces? Sample answer: The number of edges on the base determines the number of rectangular faces needed to make the prism. If the base is a regular polygon, the faces will all be congruent.

3 Go Online to find additional teaching notes and sample answers for the Talk About lt! questions. Sample responses for the Talk About lt! questions on Slide 2 are shown.

Talk About It!

SLIDE 2

Mathematical Discourse

How many edges does the base of the prism have? How does this compare to the number of rectangular faces shown on the net of the prism? Explain why you think this is the case. 5; Sample answer: There are also 5 rectangular faces. There needs to be the same number of rectangular faces as the number of edges on the base in order to connect the two bases together with no curved surfaces or openings in the prism.
(continued on next page)

Interactive Presentation

```
Non-Rectangular Priam Nets
Oilmmotucleg the Inguiry Overtion
```


Explore, Slide 1 of 7

Explore, Slide 2 of 7
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore nets of prisms with non-rectangular bases.

TYPE
On Slide 4, students make a conjecture about the edge lengths and rectangular faces in a prism.

Interactive Presentation

Explore, Slide 5 of 7

TYPE

On Slide 7, students respond to the Inquiry Question and view a sample answer.

Explore Non-Rectangular Prism Nets (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and deepen their understanding about the correspondences between the shape of the base of a prism and the number of rectangular faces the prism has.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 5 are shown.

Talk About It!

SLIDE 5

Mathematical Discourse

An equilateral triangle has three congruent edge lengths. Does your conjecture about the octagonal prism faces hold true for this prism? Explain your reasoning. Sample answer: Yes, if the bases are regular polygons, the rectangular faces of the prism will always be congruent.

Can you draw the net of the triangular prism another way? If so, draw it on a piece of paper and share your work. Explain why your drawing of the net of the prism still represents the prism. See students' drawings and responses.

Interactive Presentation

Example 1, Make a Net to Represent a Triangular Prism, Slide 2 of 4
On Slide 2, students move through the
steps to make a net of the triangular
prism. prism.

Students complete the Check exercise online to determine if they are ready to move on.

Example 1 Make a Net to Represent a Triangular Prism

Objective

Students will make a net to represent a triangular prism.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! question on Slide 3, encourage them to make sense of the base of the triangular prism in order to construct an argument for why there are no pairs of congruent faces in the given prism.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the prism in order to construct and label the net precisely, making sure that the net can be folded to compose the triangular prism.

Questions for Mathematical Discourse

SLIDE 2

Al How do you know which two faces are the bases of the prism? Sample answer: The two bases are the two congruent faces that are parallel.

AL Are any of the three faces of the prism congruent? Explain. no; Sample answer: One face has dimensions of 15 feet by 12 feet, one face has dimensions of 15 feet by 5 feet, and one face has dimensions of 15 feet by 13 feet.
OL. Without drawing a net, or seeing the prism, how can you tell that a triangular prism has five faces? Sample answer: There are two triangular bases, and a face that connects the bases along each side of the triangle; $3+2=5$.

BL. Describe a triangular prism where all three of the faces that connect the bases are congruent. Sample answer: The triangular bases of that prism would be congruent equilateral triangles.

(3) Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Enrichment Activity |BIL

One way to extend the process of drawing nets is to have students think creatively about the possible nets that can be drawn. The prism on page 526 represents an opportunity to draw a unique net. Have students complete the following exercise.

Gregory has drawn a net for the prism in Example 1 that has exactly four rectangles. Draw a net that Gregory could have drawn. Is this net an accurate representation of the triangular prism? Why or why not? Students' drawings should show a total of four rectangles, three that are the faces of the prism, and one that is composed of the two triangular bases; Sample answer: The net is not an accurate representation of the prism because this net cannot be used to make the prism.

Step 3 Draw and label the remaining rectangular face
The top face is a rectangle with side lengths of 15 feet and 13 feet.

Check
Draw and label a net to represent the triangular prism. Let each grid unit represent
1 centimeter.

Interactive Presentationz

Learn, Surface Area of a Triangular Prism, Slide 1 of 2

WATCH
On Slide 1, students watch an animation to learn how to use a net to find the surface area of a triangular prism.

1 CONCEPTUAL UNDERSTANDING

Learn Surface Area of a Triangular Prism

Objective

Students will learn how to use a net to find the surface area of a triangular prism.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to study the structure of the base of the prism in order to determine the circumstances in which all three rectangular faces could be congruent.

0Go Online to have your students watch the animation on Slide 1. The animation illustrates how to use a net to find the surface area of a triangular prism.

Teaching Notes

SLIDE1]

You may wish to pause the animation after the dimensions of the triangular prism are shown. Ask students to work with a partner to draw a net that represents the prism and use their net to find the prism's surface area. Have pairs share their nets with another pair of students or the class. Then have them continue watching the animation to compare their net and surface area with the one shown. Be sure students understand that the three rectangular faces are not all congruent, for this particular prism. Ask them to explain why.

Talk About It!

SLIDE 2

Mathematical Discourse

Because the bases are isosceles triangles, two of the three rectangular faces are congruent. Is there a way that all three rectangular faces could be congruent? Explain. yes; Sample answer: if the bases are equilateral triangles, all three rectangular faces will have the same dimensions, so they would be congruent.

Example 2 Surface Area of a Triangular Prism

Objective

Students will use a net to find the surface area of a triangular prism with bases that are scalene triangles.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About $I t$! question on Slide 4, encourage them to use clear and precise mathematical language to explain why the bases of the triangular prism have the same area.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the net of the prism in order to determine that the three rectangular faces all have different areas, because the triangular bases are scalene.

Questions for Mathematical Discourse

SLIDE 2

Are any parts of the net congruent? Explain. yes; Sample answer; The bases are congruent because they are triangles with the same side measures.

OL. After the areas of each figure in the net are found, what is the next step? Sample answer: I will need to find the sum of all of the areas to find the total surface area of the prism.
How can the net be drawn a different way? Sketch the net and explain why it works. See students' responses.
(continued on next page)

Example 2 Surface Area of a Triangular Prism

Step 1 Find the area of the triangular bases.
The triangles are congruent, so the area of each triangular base is the same. Find the area of one base. Then multiply by 2 to find the total area of both bases.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$A=\frac{1}{2}(12)(5) \quad b=12$ and $h=5$
A $=30$ Multiply.
The combined area of the triangular bases is $2(30)$, or 60 square feet.
Step 2 Find the area of each rectangular face.
Because the triangular bases of the prism are scalene, all three rectangular faces have different dimensions.

Bottom

The length ℓ of the bottom face is 12 feet and the width w is 15 feet.
$A=\ell w \quad$ Area of a rectangle
$=12(15) \quad \ell=12$ and $w=15$
The area of the bottom face is 180 square feet.
Top
The length ℓ of the top face is 13 feet and the width w is 15 feet
$A=\ell w \quad$ Area of a rectangle
$=13(15) \quad \ell=13$ and $w=15$
$=195$ Multiply.
The area of the top face is 195 square feet
Side
The length ℓ of the side face is 15 feet and the width w is 5 feet.
$A=\ell w \quad$ Area of a rectangle
$=15(5) \quad \ell=15$ and $w=5$
$=75$ Multiply.
The area of the side face is 75 square feet. (continued on next page)

> Think About It! What shapes are the faces and bases? What formulas can you use to find the area of each face and base? rectangles and triangles; $A=\ell W$; $A=\frac{1}{2} b h$

Interactive Presentation

Example 2, Surface Area of a Triangular Prism, Slide 2 of 5

| CLICK |
| :--- | :--- |
| On Slide 2, students select to view the
 areas of the bases and each side of the
 triangular prism. |

Interactive Presentation

Example 2, Surface Area of a Triangular Prism, Slide 3 of 5

CHECK
(11)

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Surface Area of a Triangular Prism (continued)

Questions for Mathematical Discourse

SLIDE3

A… Why is there only one value shown for the bases when there are two bases? Sample answer: The two bases are congruent, so they have the same area. The area of one of the bases is 30 square feet, so when I calculated that, I multiplied it by 2 to get the area of both bases.

OI. The triangular prism has 5 faces. Why is the sum of all the surface areas the sum of four numbers? Sample answer: The two bases have the same area, so the area of the two bases is given as one number. The surface area is the sum of the area of the bases and the areas of the three other faces.
31. Suppose this is a ramp and you want to paint the rectangular sides of the ramp. If a container of paint can cover 170 square feet, how many containers will you need to paint the entire prism? 3

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
-View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find Surface Area of a Triangular Prism

Objective

Students will use a net to find the surface area of a triangular prism with bases that are equilateral triangles.

Questions for Mathematical Discourse

SLIDE 2

A. Why is the area of one of the rectangles multiplied by 3 ? Since the triangular base has 3 congruent sides, there will be three congruent faces.

OL. A classmate says the surface area is 6 square centimeters. What is the likely mistake? Sample answer: 6 square centimeters is the total area of the three faces. To find the total surface area you need to include the area of the bases.

IBlill In the net, the three rectangular sides form a larger rectangle. How can you use that information to help find the surface area of the figure? Will that only work if the triangular bases are equilateral triangles? Explain. Sample answer: Instead of finding the area of three separate rectangles, I can find the perimeter of one of the bases and then multiply by the height of the faces. In this case it would be $1+1+1=3,3 \cdot 2=6$. It will work for any prism because when unfolded, the faces form a rectangle.

SLIDE3-

AL. How do you know the units for the final answer should be in square centimeters? Sample answer: The measurements on the prism are in centimeters. This problem requires finding the area so the units should be square centimeters.

OL. How could you check your answer? Sample answer: To check my answer, I would go back to the original net and make sure I used the correct pieces of information for each calculation. I would then check my final addition.

BL. Would the surface area double if the height of the prism changed from 2 centimeters to 4 centimeters? Explain. no; Sample answer: Doubling just that measurement only affects the rectangular bases, the triangular bases are not affected by that change, so the total surface area is not doubled.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find Surface Ares of o
Triangular Prism

Step 1 Find the areo of the triangular beses.
The triangles me congrvert so the ares of each triangular base is the saine. Find the ares of one bise. Then multily by 2 to find the fotet aves of both bases:
$A=\frac{1}{2} b n \quad$ Nssoratmange
$A=\frac{1}{2} \operatorname{cog} 99-1$ end $n=05$
$A=0.45 \quad$ Wuricy
The combined ares of the triangiour bases is 210.45\%, or 09 square sensmetec.
Stes 2 Find the ares of eoch reciangulse thes.
Brichuse the tivingutar bases of the piym are equilaseral. the rectengutar fakes of the pism are congruent.
The sength cof each rectangular face is $\dot{2}$ centimetars and the width wis i centimptet.

$\begin{array}{ll}=20 & \text { (-2 } \\ =2 & \text { mat } \\ =2 & \end{array}$
The conbined aree of the tivee iectongular faces is 3 [2] or 6 square centimeters

Step 3 Add the areas to find the fotal surface ares.
$0.9+6=69$
So. the totes suidace tree of the triangular pelism is 59 squate ceesimeters.

ThinkAbout it How meay oiterent trad thices sive there

Thece are 2 difforentsiped facen; the tiangles are exngruent, and the rectangles are coenguint. \square
 \square

QTalk About 14
Eplusinty s opism
nim meoghters indingle beur his ony foces.

The orlangular Bases are congruent. The ofber sot of congruent faceslas mude of rectangles. Since the base of the prium is anse oquilateral triangle, all vides are triangle, all vides are coscruent Therstoxe. the rectangles have belight.

Interactive Presentation

Example 3, Find Surface Area of a Triangular Prism, Slide 2 of 5

6.G.A. 4

DIFFERENTIATE

Language Development Activity 태닌

To help build students' vocabulary, have them create a graphic organizer or table that compares and contrasts nets of rectangular prisms with nets of triangular prisms. Encourage them to use the terms rectangle, triangle, face, congruent, etc. in their graphic organizer. Have students share their graphic organizers with another student or the entire class.

A sample table is shown.

Nets of Rectangular Prisms	Nets of Triangular Prisms
Shape of Faces All faces are rectangles.	Shape of Faces Two faces are triangles. The remaining three faces are rectangles.
Number of Faces There are six faces: front, back, top, bottom, side, side	Number of Faces triangular bases, three lateral faces
Congruent Faces The front and back faces are congruent. The top and bottom faces are congruent. The two side faces are congruent.	Congruent Faces The two triangular faces are
may or may not be congruent	
depending on what type of	
triangle forms the bases.	

Apply Food

Objective

Students will come up with their own strategy to solve an application problem involving finding the greater unit price.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What is the difference between the height of the triangular base and the height of the prism?
-Why do you find the surface area and not the volume?

- How do you find the cost per square inch?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

© Apply Food

The Powing Priza focd truck semes theit indevidoal slices of pirza in Dowsthur are shapedt the trianguik pismy. The box for a smat piect co pizza costs $\$ 0.25$ to make and the box for the large piece costs $\$ 0,32$ to matio. Which box has the greater cont ber square inch?

1 What is the tank?
Moke wep you undersand exactly what goestion to answer of problein to solve. You may wart to read the protion there times. Discuss these quertions walt a partivec

First Time Describe the conteat of the problem, an your own wores. Second Timpe. What mathematics do you sed in the probleen? Third Time What mee ytu wondering about?
2. How can you sporonch the task? What strategies can you use?

```
See students' strategles,
```

3 What is your sotutiont
Use your stategy to sofve the probiem.
The mall box has the greatier cost per square inch: See students"
work.

4 How can you thow your solution is reasenable?
Q Write About it Wite an argument that can be uned to dotend your solution.
See stodients' argaments.

Interactive Presentation

Apply, Food

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add a description of how to find the surface area of a triangular prism. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

How can you describe the size of a three-dimensional figure?

In this lesson, students learned how to use nets to find the surface area of triangular prisms. Encourage them to work with a partner to compare and contrast the surface area of rectangular prisms and triangular prisms. Some students may say that both have rectangular faces that connect the two bases. While rectangular prisms have six rectangular faces, triangular prisms have two triangular faces and three rectangular faces.

Exit Ticket

Refer to the Exit Ticket slide. Suppose you are helping to build a ramp up to the front door of a house. This ramp needs to be 30 inches, or 2.5 feet, tall and 30 feet long to reach the landing. You will use material to cover all of the sides of the ramp. How many square feet of materials will be needed to build the ramp if the ramp is 3 feet wide? $262.8 \mathrm{ft}^{2}$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 3-8
- Extension: Find Surface Area of Triangular Prisms Using a Formula
- D ALEKS Surface Area

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1, 2, 4, 5, 7
- Extension: Find Surface Area of Triangular Prisms Using a Formula
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- ALEKS Area of Parallelograms, Triangles, and Trapezoids

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form APractice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK \mathbf{T}	opic	Exercises
1	make a net to represent a triangular prism	1
2	use a net to find the surface area of a triangular prism	2,3
3	solve application problems involving surface area of triangular prisms	4,5
3	higher-order and critical thinking skills	$6-8$

Common Misconception

Because a rectangular prism has faces that are all rectangles, some students may think that a triangular prism consists of faces that are all triangles, and they may draw their nets accordingly. To dispel this misconception, gives students a triangular prism made out of cardstock, and encourage them to cut it along the edges to make a net. They will see that only two of the faces are triangles. The other faces are rectangles. The number of rectangular faces that are congruent depend on whether the triangular base is scalene, isosceles, or equilateral.

Apply *indicates multi-step problem

*4. Mr. Saldivar is building a ramp in the shape of a triangular prism with the dimensions shown. Sheets of plywood are 8 feet long and 4 feet wide. What is the minimum number of sheets of plywood he needs to buy in order to have enough to build the ramp? 103 sheets of plywood

*5. A tent is in the shape of the triangular prism with the dimensions shown. If the canvas to make the tent costs $\$ 4.99$ per square yard, how much will it cost for the fabric to make the tent? \$106.79

Higher-Order Thinking Problems
6. Reason Abstractly Why is the surface area of a triangular prism measured in Explain.

Sample answer: Surface area measures the area of the faces. Area is a twodimensional measurement, so it is measured in square units.
7. Find the surface area of a triangular prism that has the base triangle shown and a prism height of 7 feet. $75 \mathrm{ft}^{2}$

8. Fitifi the Error

A classmate found the surface
area of the triangular prism shown. Find the error and correct it.
Area of Bases $A=2\left(\frac{1}{2}\right)(6)(8)$ Area of Faces
$A=48$ $A=3(7)(10$

Sample answer: The classmate multiplied the area of one face by 3 . Since the base is not an equilateral triangle, the bases all have different dimensions. The surface area of the triangular prism is $48+7(10)+7(8)+7(6)$ or 216 square inches.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively In Exercise 6, students will explain why surface area is measured in square units instead of cubic units.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 7, students will find the surface area of a triangular prism without being given the original diagram or the net. Instead, they are given a diagram of the base and the height of the prism.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 8, students find and correct a student's mistake.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Create your own application problem.
Use with Exercise 4 After completing the application problems, have students write their own real-world application problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Listen and ask clarifying questions.

Use with Exercises 5 and 8 Have students work in pairs. Have students individually read Exercise 5 and formulate their strategy to solve the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 8.

Learn Make a Net to Represent a Pyramid

Objective
Students will learn how to make a net to represent a pyramid.
Teaching the Mathematical Practices
7 Look for and Make Use of Structure As students discuss the Talk About It! question on Slide 2, encourage them to analyze the structure of a prism and a pyramid in order to identify the similarities and differences between prisms and pyramids.

Teaching Notes

SLIDE1

Students will learn that a pyramid is a three-dimensional figure that has one polygon for a base and triangles for sides that meet at a point. Students should note that the sides are called lateral faces (lateral means side) and, in a regular pyramid, the height of one of the lateral faces is the slant height of the pyramid. Have students compare and contrast the slant height of a pyramid with the height of a pyramid. Students should note the height of a pyramid is perpendicular to the base, while the slant height is at an angle.

Talk About It!

SIIDE2:

Mathematical Discourse

Compare and contrast pyramids and prisms. Sample answer: Prisms and pyramids both have a base with lateral faces. Prisms have two bases with rectangular lateral faces, while pyramids only have one base, with triangular lateral faces that meet at a point.

Interactive Presentation

Learn, Make a Net to Represent a Pyramid, Slide 1 of 2

Surface Area of Pyramids

LESSON GOAL

Students will make nets and find surface area of pyramids.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Make a Net to Represent a Pyramid
Example 1: Make a Net to Represent a Square Pyramid
Example 2: Make a Net to Represent a Triangular Pyramid
Learn: Surface Area of a Pyramid
Example 3: Find Surface Area of a Square Pyramid
Example 4: Find Surface Area of a Triangular Pyramid
Apply: Set Design
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

| Resources | All | I_B | |
| :--- | :---: | :---: | :---: | :---: |
| Remediation: Review Resources | | - | |
| Extension: Surface Area of Cones | | \ddots | |
| Collaboration Strategies | | | |

Language Development Support

Assign page 52 of the Language Development Handbook to help your students build mathematical language related to surface area of pyramids.
Ellil You can use the tips and suggestions on page T52 of the handbook to support students who are building English proficiency.

Focus

Domain: Geometry
Supporting Cluster(s): In this lesson, students address supporting cluster 6.G.A by making nets and finding surface area of pyramids.
Standards for Mathematical Content: 6.G.A. 4
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP6, MP7
Coherence
Vertical Alignment

Previous

Students made nets and found surface area of triangular prisms.
6.G.A. 4

Now

Students make nets and use them to find the surface area of pyramids.
6.G.A. 4

Next

Students will solve problems involving the surface area of prisms and pyramids.
7.G.B. 5

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of surface area to include pyramids. They learn to make and use nets to build fluency with finding the surface area of square and triangular pyramids. They also apply their understanding of surface area of pyramids to solve multi-step, real-world problems.

Mathematical Background

A pyramid is a three-dimensional figure with one polygonal base and triangular sides that meet at one point. Each of these triangular sides is referred to as a lateral face. In a regular pyramid, the lateral faces are congruent, and the height of each lateral face is its slant height. To find the surface area of a square pyramid, a pyramid with a square base, make a net and add the area of the square base to the areas of the triangular lateral faces. To find the surface area of a triangular pyramid, a pyramid with a triangular base, make a net and add the area of the triangular base to the areas of the triangular lateral faces.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

	\times
What Vocititay Wull Wou twem?	
tateral face	
peivenare?	
pyramid	
slant height	

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- finding area of rectangles (Exercise 1)
- finding area of triangles (Exercise 2)
- operations with rational numbers (Exercise 3)

Answers

1. $153 \mathrm{in}^{2}$
2. $6 \mathrm{yd}^{2}$
3. 0.91

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about a pyramid-shaped climbing section of a swing set.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standard.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- The term lateral originates from a Latin word meaning of the side. What do you think the lateral faces of a rectangular prism are? Sample answer: The sides that are not a base.
- Thinking of the Egyptian pyramids, what characteristics come to mind? Sample answer: All of the sides meet together at one point above the base.
- Using what you know about the word slant and the height, what do you think a slant height is? Sample answer: Slant height is the height of a lateral face.

Interactive Presentation

Example 1, Make a Net to Represent a Square Pyramid, Slide 2 of 4

CLICK | On Slide 2, students move through the |
| :--- |
| steps to make a net of the square | steps to make a net of the square pyramid.

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 1 Make a Net to Represent a Square Pyramid

Objective

Students will make a net to represent a square pyramid.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to analyze the structure of the pyramid in order to construct the net, making sure that their net can be folded to make the pyramid.

As students discuss the Talk About lt! question on Slide 3, encourage them to study the structure of the square pyramid to note that the lateral faces are congruent, so the slant heights are equal.

Questions for Mathematical Discourse

SLIDE 2

AL. Since the base of the pyramid is a square, how many lateral faces will the net have? Explain. The net will have 4 lateral faces because each side of the square will have an attached face.

OL. How do you think the surface area of the pyramid can be found? Sample answer: In order to find the surface area, I will find the area of each part of the net and then find the sum of the areas.
31. The height of a pyramid measures the perpendicular distance from the top point, or vertex of the pyramid to the base. Do you think this is the same length as the slant height? Explain your reasoning. no; Sample answer: You can form a right triangle with the height, the slant height, and a line segment connecting the bottom of the height to the bottom of the slant height. The slant height is opposite the right angle which makes it the hypotenuse of the right triangle. This is the longest side of the triangle, so the two lines cannot be the same length.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Reteaching Activity \triangle AL

Students often have difficulty visualizing how to draw a net to represent a three-dimensional figure. Using three-dimensional models that can be unfolded to form a net is a great method to help students see how the figure relates to its corresponding net. Give students graph paper and the following instructions:
Draw a net on the graph paper that represents a square pyramid.
Cut out the net and fold it into the pyramid, taping the sides together.
Exchange your pyramid with a partner, and attempt to draw a net of your partner's pyramid without disassembling the pyramid.
Cut and unfold your partner's pyramid to see if your net is correct.

Interactive Presentation

Example 2, Make a Net to Represent a Triangular Pyramid, Slide 2 of 4
On Slide 2, students move through the
steps to make a net of the pyramid.

Students complete the Check exercise
online to determine if they are ready to
move on.

On Slide 2, students move through the steps to make a net of the pyramid. online to determine if they are ready to move on.

Example 2 Make a Net to Represent a Triangular Pyramid

Objective
Students will make a net to represent a triangular pyramid.

Teaching the Mathematical Practices
3 Construct Viable Arguments and Critique the Reasoning of
Others As students discuss the Talk About It! question on Slide 3 , encourage them to use a counterexample to explain why not all triangular pyramids have congruent faces and bases.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the pyramid in order to construct the net, making sure that their net can be folded to make the pyramid.

Questions for Mathematical Discourse

SLIDE 2

AL. How does the completed net help you understand the properties of this pyramid? Sample answer: After I have drawn the net, I can see that there are four triangles that make up the pyramid and that they are all congruent.

OL. Compare and contrast the nets for a triangular pyramid and a square pyramid. Sample answer: The nets for both pyramids have triangles for the lateral faces. The net for a triangular pyramid has a triangle for the base so it contains only triangles whereas the net for a square pyramid contains triangles and a square.

This pyramid is made up of four congruent triangles. Do you think the faces of all triangular pyramids are made up of four congruent triangles? Explain. Sample answer: No; you could have a triangular base that has different side lengths. The lateral faces would all be triangles with different bases.

13
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Language Development Activity IELIL

To help build students' vocabulary, have them create a graphic organizer or table that compares and contrasts nets of rectangular pyramids with nets of triangular pyramids. Encourage them to use the terms rectangle, triangle, face, congruent, etc. in their graphic organizer. Have students share their graphic organizers with another student or the entire class.
A sample table is shown.

Nets of Rectangular Pyramids
 Nets of Triangular Pyramids

Shape of Faces

One face is a rectangle. The remaining four faces are triangles.

Number of Faces

There are five faces: the rectangular base and four triangular faces.

Congruent Faces

Shape of Faces

All faces are triangles.

Number of Faces

There are four faces: one triangular base and three triangular faces.

Congruent Faces

There are two pairs of congruent Two of the three triangular side triangular faces, formed from faces are congruent if the base opposite sides of the rectangular face is an isosceles triangle. All base. All four triangular faces three triangular side faces are are congruent if the base face is congruent if the base face is an a square. equilateral triangle.

Check
Draw and label a net to represent the pyramid shown.

QGo Online Y ou can complete an Extra Example online.

Pause and Reflect
Draw a triangular pyramid in the space below, one that is different from the ones in Example 2 and Check. Trade your drawing with partner. Draw and label a net that can be used to represent your partner's pyramid.

Interactive Presentation

Learn, Surface Area of a Pyramid, Slide 1 of 2

WATCH

On Slide 1, students watch an animation to learn how to use a net to find the surface area of a pyramid.

1 CONCEPTUAL UNDERSTANDING

Learn Surface Area of a Pyramid

Objective

Students will learn how to use a net to find the surface area of a pyramid.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About lt! questions on Slide 2, encourage them to make sense of the base of the pyramid to construct an argument about the number of lateral faces and about whether the lateral sides would be congruent using correct mathematical terminology.

Teaching Notes
 SLIDE1

You may wish to pause the animation after the net of the square pyramid is drawn and labeled with its dimensions. Have students work with a partner to determine the surface area, by using the net. Have pairs of students share the process they used and the surface area they found with another pair of students, or with the entire class. Be sure students understand that since the base is a square, the four lateral faces are triangles that have the same base length. Some students may find the area of each lateral face and add them. Others may find the area of one lateral face, and multiply that area by 4 . Encourage students to understand that these methods are both valid.

Go Online to have your students watch the animation on Slide 1. The animation illustrates how to use a net to find the surface area of a pyramid.

Talk About It!

SLIDE 2

Mathematical Discourse

If the base of a pyramid was a regular octagon, how many lateral faces would the pyramid have? Would they all be congruent? Explain. Sample answer: The pyramid would have 8 lateral faces. They would all be congruent because a regular octagon has 8 congruent sides.

Example 3 Find Surface Area of a Square Pyramid

Objective

Students will use a net to find the surface area of a square pyramid.

Teaching the Mathematical Practices
7 Look for and Make Use of Structure Encourage students to analyze the structure of the net of the pyramid in order to find the surface area.

Questions for Mathematical Discourse SLIDE 2]

AL. How do you know that all of the lateral faces of the pyramid have the same area? Sample answer: The base of the pyramid is a square so the base length of each lateral face is the same. Since the slant height is the same for all four faces, the area of the triangles that makes up the lateral faces is the same.

OL. How can you find the total area of all lateral sides? Find the area of one triangle and multiply it by 4.

BLI. If the base was a rectangle, would the lateral faces have the same area? Explain. no; Sample answer: There would be two pairs of congruent faces, because a rectangle has two pairs of congruent sides.

SLIDE3-

Al. How will you find the surface area? I will find the sum of the area of the base and the area of the lateral faces.

OL Suppose the sides of the square base were doubled. How would that affect the total surface area? Sample answer: The area of the base would become $8 \cdot 8$ or $64 \mathrm{~cm}^{2}$ instead of $16 \mathrm{~cm}^{2}$, and the area of the lateral faces would become $4 \cdot \frac{1}{2} \cdot 8 \cdot 7.23$ or $115.68 \mathrm{~cm}^{2}$. So, the total surface area would increase from $73.84 \mathrm{~cm}^{2}$ to $64+115.68$ or $179.68 \mathrm{~cm}^{2}$.

BL Suppose the sides of the square base were doubled. Do you think you could still have a pyramid without changing the slant height? How would the pyramid look compared to the original pyramid? Explain. yes; Sample answer: if the slant height is greater than one-half the length of the new base, the lateral faces would still meet at the vertex of the pyramid. The pyramid would be shorter than the original pyramid, with a longer base for the lateral sides.

3
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find Surface Areb of a Square Pyramid Use the net to find the surface ares of the square pyramid.

Step 1 Find the area ot the square base.
The base of tre pyramid is a squate
$A=s^{2} \quad$ सando onowne
$A=(4)^{2} \quad$ Arobice 1 NTh i
$A=\infty \quad$ sincat.
The afea of the squate base it 16 soupre centicwort
Step 2 Find the aree of esch istecd toce
Eecone the base is a squate, the loteral faces we congruent. The faces sre congrient triangles with a base length of 4 centinieties and at beight of 723 cemtimesers
$A=\frac{1}{2}$ ob \quad Anso of a tibege

$A=34.46 \quad$ Wischy
The combined stel of the tour 2abival faces is $4(94,461$, or 57.84 square centimeters.

Step 3 Add ene aress to find the totor surface area.
$6+5784=7384$

So, the total surface aree of the square pramid is 73.84 square contineters

OTHink About 5 What uhoges de the offerent thes mond Dtive? Whip formbles canyeu use to find and base?
triangles and a tesure: $A=\frac{1}{2}$ an: $A=\mathrm{s}^{2}$ \square \square \square

Q. Thik About hy

Con you think of a
ismerent Nipe ot
pryamid where the:
fecerate noes
congruent triangits?
Explhin as
chencimensics
Sample Answer: A rectanguler pyranid would hive a base with offerent Jetgeths and width. If would have 2 pains of congruest triangutar fecen. bit not all four would be congriveet.

Interactive Presentation

Example 3, Find Surface Area of a Square Pyramid, Slide 2 of 5
On Slide 2, students select to find the
area of the base and the lateral faces.

Example 4 Find Surface Area of a Triangular Pyramid

Objective

Students will use a net to find the surface area of a triangular pyramid.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About lt!! question on Slide 4, encourage them to consider an alternative approach to solving the problem and explain whether the alternative approach will work for all triangular pyramids.

7 Look for and Make Use of Structure Encourage students to analyze the structure of the net of the pyramid in order to find the surface area.

Questions for Mathematical Discourse

SLIDE 2

AL. How many equilateral triangles do you see in the net? Describe the triangles. 5; Sample answer: I see the base, the three lateral faces, and then the entire net is an equilateral triangle.

OL. What do you notice about the base and the lateral faces? Sample answer: They all have the same dimensions and areas.

BL. The outer perimeter of the net is an equilateral triangle. What are the dimensions of this triangle? How could you use this to find the surface area? The length of each side is 18 meters and the height is $2 \cdot 7.8$ or 15.6 meters. Sample answer: The area of this triangle is equal to the surface area of the pyramid.

SLIDE 3

AL. Why is it helpful to draw a net to find the surface area of this pyramid? Sample answer: When I created the net, I could see that all four faces of the pyramid were congruent triangles, and the dimensions were easily shown.
OL. Think of the vocabulary used in this lesson and make a conjecture about what lateral surface area means. Sample answer: Lateral surface area is the total area of the lateral faces of a pyramid not including the base.

BL. A quart of paint will cover about 9 square meters. If you only wanted to paint the lateral surface area, how many quarts of paint would you need? Explain. 12; Sample answer: The lateral surface area is the area of the lateral faces, or $105.3 \mathrm{~m}^{2}$. If one quart covers $9 \mathrm{~m}^{2}$, I would need to have 12 quarts of paint.

Go Online

- Find additional teaching notes and the Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 4 find Sorface Area of a
Triangutar Pyrsmid
Use the net to find the surface aree of the triangular pyramid.

Step 1 Find the area of the triangular bose.
The base is an equitherat tringle wath 9 meter sides and a nesght of 78 meters
$A=\frac{1}{2} b t \quad A$ inctationge

$A=35$: Mity
The area or the thiangula base is 351 squank meters.
Step 2 Find the anso of each interns face
Electase ve base is an equataveral triangle, the lateral toces we congrvent the toces we congruent trangles with 9 -meter vides and heights of 78 meters.
$A=\frac{1}{2} B H \quad$ Avenalnimenote

$A=351 \quad$ Mityh
The conbined ared of the tivee latwal faces is 335), or 1053 square metens

Step 3 Add phe areav to find the total surface area.
$351+1053=140.4$
So, the totel surtace ares of the tringular pronive is 140.4 spuare meters.

CTHink About II How many ditlenent. ulifod tioces ab merer

Interactive Presentation

Example 4, Find Surface Area of a Triangular Pyramid, Slide 2 of 5

CLICK

On Slide 2, students select the buttons to view the steps to determine the area of the base and lateral faces.
On Slide 3, students determine the
surface area of the triangular pyramid.

Apply Set Design

Objective

Students will come up with their own strategy to solve an application problem involving finding the price to construct pyramids for a school play.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What are the shapes that make up the faces and base of each pyramid?

- What is the formula used to find the area of a square? the area of a triangle?
- How does the price per square foot affect this problem?

2. Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

© Apply Set Design

Morgan needs to construct three different square pyramids for the school play. The dimensions of the pyramids are shown in the table. The cost of materials to build the pyramids is $\$ 0.29$ per square foot How much will Morgan spend on materials for all three pyramids?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies.

3 What is your solution?
Use your strategy to solve the problem.
\$70.83; See students' work.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.
See students' arguments.
\qquad

Interactive Presentation

Apply, Set Design
CHECK

Students complete the Check exercise online to determine if they are ready to move on.
\square

Check

Unis construcing trce oifterent rquate pyamias for a claswoom Wistry about Esppt The dinensions of the pranids are show in the table how much more surface acoa does the pyramid was ste greatest surface areal have than the gramid with the least
surface area? 46 suame inches

Avamid	$\begin{aligned} & \begin{array}{l} \text { fiato } \\ \text { ESop }(a) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Moloht of } \\ & \text { fiecesich) } \end{aligned}$
A	5	8.5
8	8	5
c	6	10

(5) Poldables its time to uposte your Foidable, located in the Module Revew, bosed on what you lowned in Bis lesson. If you haverit aliendy assembled your foldable, you cen find the impuctions on page: FLT

528 Modie 9-Moume nal Satice hey

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could add a description of how to find the surface area of a pyramid. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

How can you describe the size of a three-dimensional figure?

In this lesson, students learned how to use nets to find the surface area of pyramids. Encourage them to work with a partner to compare and contrast the surface area of prisms and pyramids - both rectangular and triangular. Some students may say that rectangular/triangular prisms and pyramids both have at least one rectangular/triangular base. While prisms have two parallel and congruent bases, pyramids have only one base.

Exit Ticket

Refer to the Exit Ticket slide. Suppose you need to cover 3 of the 4 sides of a climbing section at the local park with non-slip paint. The section is shaped like a square pyramid with a base length of 6 feet and a slant height of 8.25 feet. How many squarefeet will be painted?
74.25 square feet

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
[BL
THEN assign:

- Practice, Exercises 3, 5-9
- Extension: Surface Area of Cones
- D ALEKS Surface Area

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-6, 9
- Extension: Surface Area of Cones
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- D ALEKS Area of Parallelograms, Triangles, and Trapezoids

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- \quad ALEKS Area of Parallelograms, Triangles, and Trapezoids

Practice and Homework
The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments
Use the table below to select appropriate exercises for your students' needs.

DOK $\mathbf{~ o p i c ~}$	Exercises	
1	make a net to represent a pyramid	1,2
2	use a net to find the surface area of a pyramid	3,4
3	solve application problems involving nets of triangular pyramids	5
3	higher-order and critical thinking skills	$6-9$

Common Misconception
When finding the surface area of triangular pyramids, some students may find the sum of the areas incorrectly by multiplying the base by three, instead of the lateral faces. Consider having students clearly label each lateral face and the base on the net with the correct area, or perhaps make a table to record each face and base with the corresponding area.

Sume

1. Deave and label a net to represent the square pyramid.atanotes

2. Use the net to find the surface ares of the pyrantid ficompie in $56 \mathrm{fl}^{2}$

3. Draw and labef a net to nepresem the triangular pyranidi. feemple al

Teat Practice
4. Open Response Use the net to find the surface area of the pytamid in mpuare inches iteunete al
$190.4 \mathrm{in}^{7}$

Apply "indicates multi-step problem

'5. Me. Poter makes two types of wooden pramid puazles The bave of Purabe 1 is a square with side longtor of 5 inches and s want height of 7 inches. Purxe 2 is Soth peer souse inch thetis is the sitterence in sono per cuse in mint b he aherencel. cort to make pen pariflest $\$ 1.76$

QHigher-Order Thinking Problems
6. Fi) Be Precise Compare and contrms finding the surtace ares of s square pyramid and a reguiar branguler pyramid. Sample answer: For bots figures, you find the area of the base and areas of the laces. which aro triangles. Tben add the area of the bane and ares of the faces to find the surface area. The difference is the shape of the tase. For a square pyramid, the figure hs a square and the aven formuta is $\mathrm{A}=/ \mathrm{w}$ For a regutar triangolar pyramid the figure is a triangle and the ares formula is $\mathrm{A}=\frac{1}{2}$ bh.
8. Create Clam and lebet a square gryamid thet has a surfice seea that is less then 100 tguare metens. Then find the wifluce area of the prranid Sample answer: $74.4 \mathrm{~m}^{2}$

7. Persevere with Problems A square Dyramid has a surface area of 210 square ysuls. The fength of the base is 7 yords. What is the slant heighta?
74.5 ye
2. 51 Persevere with Probiems A viangiar pyramid has a surface arean cf 174 souare feet it is mido op of equilteral triengles with side lengths of 10 foet What is the slant heighin Round to the newest tevel. 8.7 ft

Teaching the Mathematical Practices

6 Attend to Precision In Exercise 6, students compare and contrast finding the surface area of a triangular pyramid and a square pyramid by using precise mathematical vocabulary.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 7, students solve for the missing slant height of a square pyramid given the surface area and the length of the base.

In Exercise 9, students solve for the missing slant height of a triangular pyramid formed with four equilateral triangles given the surface area and the length of the side of the equilateral triangles.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 5 Have students work together to prepare a brief demonstration that illustrates why this problem might require multiple steps to solve. For example, before they can find the difference in the costs, students must first find the surface area of each puzzle. Have each pair or group of students present their response to the class.

Create your own higher-order thinking problem.

Use with Exercises 6-9 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

DINAH ZIKE FOLBABLES

[FIIII A completed Foldable for this module should include examples of how to calculate volume and surface area. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 0

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources
Vocabulary Activity
Module Review

Assessment Resources

Put It All Together: Lessons 9-1 and 9-2
Vocabulary Test
All Module Test Form B
Oll Module Test Form A
Bill Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Geometry.

- Surface Area of Rectangular Prisms
- Surface Area of Solids with Triangular Faces
- Volume

532 Module 9 - Volume and Surface Area

Essential Question

ELIL Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

How can you describe the size of a three-dimensional figure?
See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-7 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	1,7
Multiselect	Multiple answers may be correct. Students must select all correct answers.	5
Table Item	Students complete a table by correctly classifying the information.	6
Open Response	Students construct their own response in the area provided.	$2,3,4$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.G.A.2	$9-1$	$1-3$
6.G.A.4	$9-2,9-3,9-4$	$4-7$

IGN"T゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Q Essential Question

At the end of this module, students will complete a graphic organizer to help them answer the Essential Question.

Why is data collected and analyzed and how can it be displayed? See students' graphic organizers.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. At the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Foldables are three-dimensional graphic organizers that help students create study guides for each module.
Step 1 Have students locate the module Foldable at the back of the Interactive Student Edition. They should follow the cutting and assembly instructions at the top of the page.

Step 2 Have students attach their Foldable to the first page of the Module Review, by matching up the tabs. Dotted tabs indicate where to place the Foldable. Striped tabs indicate where to tape the Foldable.
(1) When to Use It Students add information to their Foldables as they complete selected lessons. Once they've completed their Foldable, they can use it to help them study for the module assessment.

Launch the Module

The Launch the Module video uses the topics of zoo attendance and types of animal species to introduce the idea of statistical measures. Use the video to engage students before starting the module.

Pause and Reflect

Encourage your students to engage in the habit of reflection. As they progress through the module, they will be encouraged to pause and think about what they just learned. These moments of reflection are indicated by the Pause and Reflect questions that appear in the Interactive Student Edition. You may wish to have your students share their responses with a partner or use these questions to facilitate a whole-class discussion.

e Essential Question Why is data collected and analyzed and how can it be displayed?

What Will You Learn?
Place a checkmark (\checkmark) in each row that corresponds with howmuch you already know about each topic before starting this module.

KEY
identifying statistical questions displaying data in a table constructing dot plots constructing histograms finding the mean and median of a data set finding the range and interquartile range of a data set constructing box plots finding the mean absolute deviation of a data set identifying outliers of a data set and identifying their effect on the measures of center and variation interpreting the distribution of a data set

interpreting the distribution of a data set
(4) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. Y ou can use the Foldable throughout the module as you learn about statistical measures.

Interactive Student Presentation

Statistical Measures and Displays

Module Goal

Find and use statistical measures.

Focus

Domain: Statistics and Probability
Additional Cluster(s):
6.SP.A Develop understanding of statistical variability.
6.SP.B Summarize and describe distributions.

Standards for Mathematical Content:
6.SP.A. 3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
6.SP.B. 5 Summarize numerical data sets in relation to their context.

Also addresses 6.SP.A.1, 6.SP.A.2, 6.SP.B.4, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C, 6.SP.B.5.D.

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

3 Be Sure to Cover

Students need to have a thorough understanding of the prerequisite skills required for this module.

- fluently perform all four operations with positive rational numbers
- solve one-step equations
- graph positive rational numbers on the number line
- find the absolute value of integers

Use the Module Pretest to diagnose readiness. You may wish to spend more time on the Warm Up for each lesson to fully review these concepts.

Coherence

Vertical Alignment

Previous

Students represented and interpreted data.
5.MD.B. 2

Now

Students find and use statistical measures.
6.SP.A.1, 6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B. 5

Next

Students will use statistics to compare two populations.
7.SP.B. 4

Rigor

The Three Pillars of Rigor
In this module, students draw on their knowledge of representing and interpreting data to develop understanding of statistical measures.
They use this understanding to build fluency with finding measures of center and variation as well as identifying outliers. They also build fluency with constructing and interpreting dot plots, histograms, and box plots. They apply their understanding of statistical measures to solve real-world problems.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY
3 APPLICATION

Suggested Pacing

Lesson		Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video			1	0.5
10-1	Statistical Questions	6.SP.A. 1	1	0.5
10-2	Dot Plots and Histograms	6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A	1	0.5
10-3	Measures of Center	6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C	3	1.5
Put It All Together 1:Lessons 10-1, 10-2, and 10-3			0.5	0.25
10-4	Interquartile Range and Box Plots 6.SP .A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C		1	0.5
10-5	Mean Absolute Deviation	6.SP.A.3, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B. 6.SP.B.5.C	1	0.5
10-6	Outliers	6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C, 6.SP.B.5.D	2	1
10-7	Interpret Graphical Displays	6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C, 6.SP.B.5.D	2	1
Put It All Together 2:Lessons 10-2, 10-3, 10-4, 10-5, 10-6, and 10-7			0.5	0.25
Module Review			1	0.5
Module Assessment			1	0.5
Total Days			15	7.5

${ }^{\square}$ Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students state whether they agree or disagree with each statement about the measures of center, and explain their choice.

Targeted Concept Understand that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

Targeted Misconceptions

- Students may view the measure of variation (range) as a fixed measure based on the measures of center, rather than a measure that can vary based on the entire data set.
- Students may view the measures of center as arbitrary numbers based on a procedure.

Assign the probe after Lesson 4.

Correct Answers: 1. Yes; 2. No; 3. Yes; 4. No; 5. Yes

Collect and Assess Student Work

```
the student selects...
```

2. Yes
3. Yes

Various other patterns
the student likely...
does not consider that different data sets can have the same measures of center.
Example: For Exercise 2, the student simply adds and subtracts 9 to the median, without considering other possibilities.
views the measures of center as numbers without context.
Example: For Exercise 3, the student understands the median to be the middle number, without considering that an even number of scores do not have a middle number. Or the student does not consider that more than one student can score 91, thus varying the number of scores below and/or above the median.
misunderstands or confuses terms of measures of center with spread.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS' Data Analysis and Probability
- Lesson 3, Examples 1-4
- Lesson 4, Examples 1-3

Revisit the probe at the end of the module to be sure your students no longer carry these misconceptions.

What Vocabulary Will You Learn?

Eㅌ․ As you proceed through the module, introduce each vocabulary term using the following routine.

Define The measures of center are numbers that are used to describe the center of a data set; these measures include the mean and median.

Example A data set consists of the numbers 2, 3, 3, 4, 18, and 3.
Ask Find the mean and median of the data set. Then compare them. mean: 5.5; median: 3; Sample answer: The mean is greater than the median, because of the data value 18 being far away from the other data values.

Are You Ready?

Students may need to review the following prerequisite skills to succeed.

- plotting points on a number line
- understanding bar diagrams
- understanding ratios and rates
- ordering rational numbers
- absolute value
- subtracting, multiplying, and dividing rational numbers

OALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the concepts in the Data Analysis and Probability topic in order to adjust your instruction as appropriate.

Mindset Matters

Attitude Ownership

Part of developing a growth mindset involves acknowledging progress in growth thinking and sharing it with others. It's important for a student to own his or her mindset, attitude, and beliefs and be proud of the growth. Students should view themselves as people who have a growth mentality-not just in math, but with learning, in general.

How Can I Apply It?

Have students complete a math mindset project to share how they have grown throughout the year. They might choose their own delivery method, such as a poster, blog post, video, or podcast. Encourage them to give specific examples from their journey, such as times when they made a mistake and learned from it, times when they took a risk to solve a challenging problem, or times when they engaged in reflection. Students can share their mindset journey with their classmates, or might post their projects for others to see.

Learn Statistical Questions

Objective

Students will understand that statistical questions are answered by collecting data and anticipate a variety of responses.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About lt! questions on Slide 3, encourage them to adhere to the definition of a statistical question in order to explain why the question is not a statistical question.

Go Online to find additional teaching notes.

Talk About It!

SLIDE 3 -

Mathematical Discourse

Why is How many people attended last night's jazz concert? not a statistical question? How can you rewrite the question so it is a statistical question? Sample answer: The question is not a statistical question because it does not anticipate a variety of answers from data. There is only one value that answers that question. In order to be a statistical question, I can rewrite it to be How many concerts do typical students attend? or How early do people typically arrive before concerts begin?

DIFFERENTIATE

Language Development Activity 태니니․

Some students may struggle to understand the difference between statistical questions and questions that are not statistical. Give students the following additional examples of each type of question and then have students create their own statistical question and a question that is not statistical.

Statistical Questions:

How many times a day do students in your school typically check their phone?
How many times a week do people typically check their email?

Not Statistical Questions:

How many customers attended the grand opening of the new restaurant last night?
How many registered voters voted in the last election?

Interactive Presentation

Learn, Statistical Questions, Slide 2 of 3

EXPAND

On Slide 2, students expand to reveal the steps needed to answer statistical questions.

Statistical Questions

LESSON GOAL

Students will identify and use statistical questions.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Statistical Questions
Example 1: Identify Statistical Questions

Explore: Collect Data
Learn: Display Data in a Table
Example 2: Display Data in a Table

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	14B	
Remediation: Review Resources	-	-	
ArriveMATH Take Another Look	-		
Extension: Biased and Unbiased Samples		-	-
Collaboration Strategies	-	\bullet	-

Language Development Support

Assign page 53 of the Language Development Handbook to help your students build mathematical language related to statistical questions.
FIII You can use the tips and suggestions on page T53 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 0.5 day 45 min 1 day

Focus

Domain: Statistics and Probability
Additional Cluster(s): In this lesson, students address additional cluster
6.SP.A by identifying and using statistical questions.

Standards for Mathematical Content: 6.SP .A.1, Also addresses 6.SP.B.5.A

Standards for Mathematical Practice: MP2, MP3, MP6

Coherence

Vertical Alignment

Previous

Students represented and interpreted data.

5.MD.B. 2

Now

Students identify and use statistical questions.
6.SP.A. 1

Next

Students will construct dot plots and histograms using collected data.
6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A

Rigor

The Three Pillars of Rigor
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

> 雵 Conceptual Bridge In this lesson, students draw on their knowledge of representing and interpreting data (gained in grade 5) to begin to develop understanding of statistical measures. They come to understand that statistical questions anticipate a variety of answers based on data. They also learn how to organize collected data in a table and analyze the results.

Mathematical Background

Statistics is the collection and analysis of data. Data are often collected using surveys with statistical questions. A statistical question is a question that has varying answers. Examples include wait times at an amusement park, heights of individuals in a school, or ages of trees in a forest. A table can be used to organize the results of a survey, where one column lists the possible survey responses and the other column records the number of respondents indicating a specific response.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- solving equations (Exercises 1-3)

Answers

1. 11 crafts; 17 crafts
2. 60 packages; 90 packages
3. $\$ 20$; $\$ 22.50$

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about wait times for rides at an amusement park.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Statistics deals with collecting, analyzing, interpreting, and presenting data based on statistical questions. What might a statistical question ask? Sample answer: What are the heights of students in my class?
- Statistics is a branch of mathematics as is arithmetic, geometry, and algebra. What do you think makes statistics differentthan the other branches? Sample answer: Statistics deals with working with data, while the others concentrate on numbers, figures, and equations.

Interactive Presentation

Example 1, Identify Statistical Questions, Slide 1 of 2
On Slide 1, students move through the
steps to identify whether or not each
question is a statistical question. move on.

Example 1 Identify Statistical Questions

Objective

Students will identify statistical questions.

Teaching the Mathematical Practices
6 Attend to Precision As students study each of the given questions, encourage them to adhere to the definition of a statistical question, in order to determine whether or not each question is a statistical question. For any question they determine is not a statistical question, have them explain why not.

Questions for Mathematical Discourse

SLIDE1

AL How can you determine if a question is a statistical question? Sample answer: The question needs to have a variety of answers and I can answer it based on data I collect.

OL. Why is In what year did Alaska become a state? not a statistical question? Sample answer: This question is not a statistical question because it has one answer.

BL Identify a topic that interests you and write a statistical question you might want to answer about that topic. Sample answer: How many different video games does the typical middle school student own?

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Display Data in a Table

Objective
Students will learn how to display the responses to a statistical question in a table.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of the data in the table in order to make observations about the data.

Talk About It!

SLIDE2

Mathematical Discourse

What are some other observations you can make about the data in the table? Sample answer: About half of the people exercise 2 or 3 hours each week.

Example 2 Display Data in a Table

Objective

Students will organize the responses to a statistical question in a table and analyze the results.

Questions for Mathematical Discourse

SIDEE2

AL
How will you record the data in the table? Sample answer: I will count the number of responses for each number of hours and put that number in the column on the right.

OL. How is recording the responses in a table helpful? Sample answer: It shows me how many responses there were to each number of hours. The list does not show the total number of responses.
[BL If someone reports 7 hours as a response, how could you alter the table? Sample answer: Add a row to the existing table and record the result.
(continued on next page)

Interactive Presentation

Example 2, Display Data in a Table, Slide 2 of 6

1 CONCEPTUAL UNDERSTANDING

Explore Collect Data

Objective

Students will explore how statistical questions can produce a variety of answers.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will pick a statistical question, survey their classmates, and then record the results and find any patterns in the data. Students should use their statistical question to explain how a good statistical question allows for a variety of responses.

Q Inquiry Question

How does a good statistical question allow for a variety of responses? Sample answer: A statistical question asks a group of people about a specific topic that can have a variety of answers. To create a good statistical question, anticipate and predict possible responses before collecting numerical data.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 2 are shown.

Talk About It!

SLIDE 2

Mathematical Discourse

How do you know the question is a statistical question? Sample answer: The question anticipates a variety of answers based on data.

How do you plan to record the responses to the survey? Sample answer: I will create a table that includes possible answers, and a place for recording answers from survey participants.
(continued on next page)

Interactive Presentation

Collect Data
(1) Introducing the Incuiry Quention
 Hewhest

Explore, Slide 1 of 5

Explore, Slide 3 of 5

CLICK

On Slide 3, students select a statistical question.

Interactive Presentation

Explore, Slide 4 of 5

TYPE

a
On Slide 5, students respond to the Inquiry Question and view a sample answer.

Explore Collect Data (continued)

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively Students should pause, as needed, during the process to explain that a statistical question produces a variety of answers in order to write a new statistical question.
6 Attend to Precision Encourage students to use precision when recording their data and use the data to explain any trends.

3 Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 4 are shown.

Talk About It!

SIIDE 4

Mathematical Discourse

How did you go about writing your question? What types of responses would you expect to get from your question? Why do they vary? Sample answer: Using topics that interest me, I wrote a question that anticipates a variety of responses. For the statistical question How many hours of television did the average middle school student watch last week?, I expect responses to range from 0 hours to 10 or more hours. The responses will vary because students watch a varying amount of television each week.

Part B Analyze the results.
Step 1 Find the total number of students surveyed
Find the sum of the number of responses.
$5+4+2+4+2+1=18$ students
Step 2 Summarize the data.
Study the responses to determine if there is an overall trend.
One observation you can make is that half of the students in the survey studied fewer than 3 hours per week.

Check
Suppose you want to answer the statistical question How mony times does the typical middle school student exercise each month? Y ou survey your friends using the question How many times each month do you typically exercise?
The responses were $14,12,6,2,1,0,10,6,3,4$, and 5 times.
Organize the data in a table. Then analyze the results.
Part A
Organize the data by completing the table.

Number of Times Spent Exercising	Number of Responses
fewer than 4	4
$4-7$	4
$8-11$	1
12 or more	2

Part B
Select the statement that best represents the data
(A) Most students surveyed typically exercise at least 8 times each month.
B Most students surveyed typically exercise more than 7 times each month.
Most students surveyed typically exercise 7 or fewer times each month.
D) Exactly half of the students surveyed typically exercise 4 or more times each month.
\qquad

Interactive Presentation

Example 2, Display Data in a Table, Slide 4 of 6
On Slide 4 of Example 2, students select
the correct phrase to summarize the data.
Students complete the Check exercise
online to determine if they are ready to
move on.

540 Module 10 •Statistical Measures and Displays

1 CONCEPTUAL UNDERSTANDING

Example 2 Display Data in a Table (continued)

Questions for Mathematical Discourse

SLIDE 3

Al How will you find the total number of responses? I will add the numbers in the right side of the column.
ol. What does the value of 4 mean when the number of hours is 2 ? There were four people surveyed that reported that they spent 2 hours studying last week.
31. How could you make sure that you correctly represented the data? Sample answer: I could check to make sure that each response is represented once in the left side of the table, and then make sure that each response is recorded in the table.

SLIDEA

Al. What values will you add when the statement says, "...fewer than 3 hours..."? Explain. 5 and 4; Sample answer: Fewer than 3 hours means 1 hour or 2 hours. The number of responses for 1 hour is 5 , and the number of responses for 2 is 4 .

OL Make another observation about the data. Sample answer: Less than half of the people studied more than 3 hours.
3. What percent of the people studied more than 3 hours? Roundto the nearest percent. Does writing the value as a percent help you to make observations? Explain. 39\%; yes; Sample answer: When I write a value as a percent, I can see how it relates to the entire group of people surveyed, or 100%.

ω

Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Essential Question Follow-Up

Why is data collected and analyzed and how can it be displayed? In this lesson, students learned how to identify examples and non-examples of statistical questions, and how to collect and organize data from a survey. Have them discuss with a partner why collecting data is important. Some students may say collecting data is important because it helps answer questions about their world. Encourage students to be inquisitive about their everyday lives and how they can collect data to help them answer their questions.

1 CONCEPTUAL UNDERSTANDING

Exit Ticket

Refer to the Exit Ticket slide. Brady does not have a pass and wants to know how many minutes he can expect to wait in line for the new roller coaster. He surveys a group of people who rode the roller coaster about the number of minutes they waited. The responses were $45,30,28,35$, $20,60,60,60,60,90,45,30$, and 45 . Use a table to estimate how long Brady can expect to wait to ride the roller coaster. Write a mathematical argument that can be used to defend your solution. Sample answer: 60 minutes is the most common response from the survey participants, so Brady should expect to wait about that long.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	identify statistical questions	$1-4$
1	organize the responses to a statistical question in a table and analyze the results	$5-7$
2	extend concepts learned in class to apply them in new contexts	8
3	higher-order and critical thinking skills	$9-12$

Common Misconception

Students may confuse statistical questions and survey questions. A survey question is a question that students ask to answer a statistical question. In Exercise 6, How many toppings do you like on an ice cream sundae? is a survey question designed to answer the statistical question How many toppings do students typically like on an ice cream sundae?. Remind students that statistical questions anticipate a variety of responses.

Interactive Presentation

Exit Ticket

T est Practice

8. Multiselect Which of the following are statistical questions? Select all that apply.
\checkmark How many DVDs does a typical student own?
How many oceans are there in the world?
\checkmark How many times did a typical student go to the zoo last year?

Higher-Order Thinking Problems
9. Create Write a survey question that is a statistical question. Then write a survey question that is not a statistical question. Explain why each question is or is not a statistical question.
Sample answers: How many smartphones does a typical family own?; In what year does a typical family own?; In what year
was the cell phone invented?; The first was the cell phone invented?; The first
question is a statistical question because it question is a statistical question because
anticipates a variety of responses. The anticipates a variety of responses. The
second question is not a statistical question second question is not a statistical question
because it does not anticipate a variety of responses.
11. Reason Abstractly Mara surveyed her friends as to the number of tablets their family owns. The responses were $1,2,2,1$, $0,3,1,2,4$ and 2 tablets. Mara concludes that of her friends' families, most own 1 or 2 tablets. Is she correct? Explain.
yes; Sample answer: Of the 10 families, 3 own one tablet and 4 own two tablets. Since $3+4$ is 7 and 7 is close to 10 , this is a reasonable conclusion.
10. Find the Error Pete surveyed his friends as to the amount of their weekly allowance. The responses were $\$ 5, \$ 0, \$ 8$, $\$ 10, \$ 8, \$ 10, \$ 0, \$ 0$, and $\$ 1$. Pete analyzed the results and stated that more than half
of his friends earned $\$ 8$ or more per week. of his friends earned $\$ 8$ or more per week.
Find his mistake and correct it. Find his mistake and correct it.
Sample answer: Only 4 out of 9 friends earn $\$ 8$ or more, which is less than half. Pete may not have been counting the \$0 responses, but he must still include them in the results. A correct analysis would be the results. A correct analysis would be
that more than half of his friends earn $\$ 5$ or less. Another correct analysis would be that a third of his friends do not earn an
allowance. allowance.
12. Refer to Exercise 8. Choose one of the questions that is not a statistical question and rewrite it so that it is a statistical question.
Sample answer: Revise the question How many continents are there? to be How many continents has the typical adult in your community visited?

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 10, students will find the error and correct it. Encourage students to find the error and then explain how the error of the friend can be corrected.

2 Reason Abstractly and Quantitatively In Exercise 11, students explain whether Mara is correct or not. Encourage students to use reasoning to explain why Mara is correct.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Interview a student.

Use with Exercises 10-11 Have pairs of students interview each other as they complete this problem. Students take turns being the interviewer and interviewee for each problem. Interview questions should include asking the interviewee to think aloud through their solution process. An example of a good interview question for Exercise 10 might be, "Does the number of people that Pete surveyed affect the data? Why or why not?"

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-7odd, 9-12
- Extension: Biased and Unbiased Samples
- D ALEKS Collecting Data

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-7, 10, 11
- Extension: Biased and Unbiased Samples
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- D ALEKS Collecting Data

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- ArriveMATH Take Another Look
- \quad ALEKS Collecting Data

Learn Construct Dot Plots

Objective
Students will learn how to construct a dot plot to represent a data set.

3
Go Online to find additional teaching notes and Teaching the Mathematical Practices.

Talk About It!

SLIDE2

Mathematical Discourse

How does using the visual representation allow you to make observations more easily? Sample answer: The dot plot helps to quickly see values and patterns, such as values that do not have responses, or values that have a lot of responses.

Example 1 Construct Dot Plots

Objective
Students will construct a dot plot to represent a data set and summarize the results.

Questions for Mathematical Discourse

SLIDE 2

How will you determine what numbers to label on the number line? Sample answer: I will look at the range of data values, then label the greatest value, the least value, and the others in between.

OI Why do you think negative numbers are not part of the number line? Sample answer: There are no negative data values because you can't have a negative number of pets.
31. Looking at the table, where do you think the tallest parts of the graph or a peak will occur? Explain. Sample answer: I think a peak will occur on 2 as it seems more people have 2 pets than any other number.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About lt! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1, Construct Dot Plots, Slide 2 of 6

Dot Plots and Histograms

LESSON GOAL

Students will construct dot plots and histograms using collected data.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Construct Dot Plots
Example 1: Construct Dot Plots
Learn: Construct Histograms
Example 2: Construct Histograms

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

(11) View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	LEA	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATH Take Another Look	\bullet		
Extension: Stem-and-Leaf Plots		\bullet	
Collaboration Strategies	\bullet	\bullet	

Language Development Support

Assign page 54 of the Language Development Handbook to help your students build mathematical language related to dot plots and histograms.
EIIII You can use the tips and suggestions on page T54 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min
 45 min
 ```0.5 day```
 1 day

Focus

Domain: Statistics and Probability
Additional Cluster(s): In this lesson, students address additional cluster
6.SP.B by constructing dot plots and histograms using collected data.

Standards for Mathematical Content: 6.SP .B.4, 6.SP.B.5,

6.SP.B.5.A

Standards for Mathematical Practice: MP2, MP3

Coherence

Vertical Alignment

Previous

Students identified and used statistical questions.
6.SP.A. 1

Now

Students construct dot plots and histograms using collected data.
6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A

Next
Students will understand and apply different measures of center.
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of statistical measures as they learn about dot plots and histograms. They build fluency with constructing dot plots and histograms using collected data, and also with summarizing the results of real-world scenarios.

Mathematical Background

Two ways to display quantitative data are dot plots and histograms. A dot plot displays the distribution of data values by placing a dot above each data value on a number line. A histogram can be created from a frequency table by creating equal intervals spanning the range of the data, counting the number of data values falling in each interval, and plotting the results using a bar graph.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Win You Leam?

dot plot

hithogram

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- plotting points on a number line (Exercise 1)
- creating tables (Exercise 2)
- understanding bar graphs (Exercise 3)

Answers

1-2. See Warm Up slide online for correct answers.
3. Sample answer: The bars would represent the different types of music and the height of each bar would represent the number of people indicating that type of music.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the height of the peaks of mountains in Rocky Mountain National Park.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- Thinking about the meaning of the words dot and plot, what is a dot plot? Sample answer: A dot plot could represent data using a number line and dots that represent each answer to a survey question.
- A histogram is one type of graphical display. What other kinds of graphical displays have you seen? Sample answer: bar diagram, line plot

Interactive Presentation

Learn, Construct Histograms, Slide 2 of 3

CLICK
 On Slide 2, students select the markers to learn how histograms are structured.

1 CONCEPTUAL UNDERSTANDING

Learn Construct Histograms

Objective

Students will learn how to construct a histogram to represent a data set.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others Encourage students to construct a plausible argument to explain why it is important that the intervals in a histogram are equally spaced. Have them think about how easy or difficult it would be to study the data displayed in a histogram if the intervals were not equally spaced.

0Go Online to find additional teaching notes.

Talk About It!

SLIDE 3

Mathematical Discourse

For which representation - a dot plot or a histogram - can you see all of the individual data values? When might you choose to use a histogram as opposed to a dot plot? dot plot; Sample answer: If the number of data values is a large number, a histogram can be more efficient to construct.

DIFFERENTIATE

Enrichment Activity BBL_{1}

To further students' understanding of dot plots and histograms, have them work with a partner to compare and contrast the structure and purpose of dot plots and histograms. Have them make predictions as to when it might be more useful to create one type of display instead of the other. Have them create a Venn diagram or other type of graphic organizer that compares the two types of displays. They should share their graphic organizer with another pair of students and discuss and resolve any differences.

Sample responses can include the following:
A dot plot shows all of the individual data values in a data set, while a histogram does not.

Both types of plots display numerical data.
A dot plot might be more useful to create when the total number of data values is relatively small, since each data value is plotted on the number line.

A histogram might be more useful to create when the total number of data values is relatively large, or there is a large range of data values.

Example 2 Construct Histograms

Objective

Students will construct a histogram to represent a data set.

Questions for Mathematical Discourse
 SLIDE2

A… After the intervals have been decided, what do you need to do? Sample answer: I need to determine the number of data values that are in each interval.

OL Why is 50 a good interval size to use for the histogram? Sample answer: If the interval was smaller, the histogram might be too long, and if the interval was larger, there would be too many data values in each interval.

B1. Why aren't the intervals labeled $100-150,150-200,200-250, \ldots$? Sample answer: Those intervals have 51 whole number data values, not 50. They also overlap, so a value of 150 would be in two intervals.

SLIDE 3

Al. What intervals will you use for the x-axis? 100-149, 150-199, 200-249, 250-299, 300-349, 350-399

OI. What are the labels for each axis? "Visitors" will be on the x-axis and "Frequency" will be on the y-axis.

B1. If the scale of the vertical axis was increased by a factor of 2 , how would the labels change? Sample answer: Each line on the y-axis would be labeled $0,2,4,6$, and 8 .

SLIDE 4

AL. How do you know how many sections to shade for each bar? Sample answer: Using the table, I will shade the frequency for each interval. For example, the interval 100-149 has a frequency of 2 , so I will shade two sections above that interval.

OL. How does the histogram help you detect patterns in the data? Sample answer: The histogram is a visual display of the data. I can see what intervals have a low frequency of occurrence and which have a high frequency.

How can you use the histogram to find the number of days the park had between 100-249 visitors? Sample answer: I can add the frequencies for the intervals 100-149, 150-199, and 200-249.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
e Example 2 Construct Histograms
 asked the question How many daily visitors attended the park each doy for 20 days? The table shows the results.
Construct a histogram to represent the data.

Step 1 Make a frequency table.
Use a scale to include all of the values, 100 through 399 , with equally-spaced intervals.
Complete the frequency table to organize the data.
Daily Visitors 108209171152236 165244263212161 327185192226137 193235207382241

Daily Visitors	
Visitors Frequency	
$100-149$	2
$150-199$	7
$200-249$	8
$250-299$	1
$300-349$	1
$350-399$	1

Step 2 Draw and label the axes.
When you construct the histogram, first draw the axes. Label the horizontal axis using the intervals from the frequency table, 100-149 through 350-399. Label the vertical axis with the frequencies, 1-10.

Step 3 Graph the intervals.
For each interval, draw a bar with a height that is indicated by the frequency table. Complete the histogram by drawing and shading the correct bar heights.

Think About It What intervals will you select for the histogram? See students' responses.

Interactive Presentation

Example 2, Construct Histograms, Slide 2 of 6

Check
The students in Mrs. Angelo's class were asked the question How many books did you read over summer vacation? The responses are shown in the table.

Construct a histogram to represent the data.
Sample answer:

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

546 Module 10 . Statistical Measures and Displays

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of when to use dot plots and histograms. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

Why is data collected and analyzed and how can it be displayed?
In this lesson, students learned how to display data using dot plots and histograms. Encourage them to work with a partner to compare and contrast how dot plots and histograms display data. For example, they may say that both kinds of graphs represent numerical data. While a dot plot shows every single data value, a histogram does not.

Exit Ticket

Refer to the Exit Ticket slide. Suppose in one certain region of the Rocky Mountains there are 7 peaks with elevations of 12,361 feet, 12,618 feet, 13,308 feet, 13,631 feet, 13,829 feet, 14,100 feet, and 14,440 feet. Describe the intervals you would use to make a histogram to represent the data. Sample answer: I would use the intervals 12,000-12,499, 12,500-12,999, $13,000-13,499,13,500-13,999$, and 14,000-14,499. An interval of 1,000 would be too large and patterns in the data might not be seen.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-5 odd, 6-9
- Extension: Stem-and-Leaf Plots
- ALEKS Graphs of Data

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-3, 5, 7, 8
- Extension: Stem-and-Leaf Plots
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- D ALEKS Collecting Data

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATH Take Another Look
- D ALEKS Collecting Data

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

AL	Practice Form B
OL	Practice Form A
Bl	Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	construct a dot plot to represent a data set and summarize the results	1
1	construct a histogram to represent a data set	2,3
2	extend concepts learned in class to apply them in new contexts	4
3	solve application problems involving dot plots and histograms	5
3	higher-order and critical thinking skills	$6-9$

Common Misconception

In Exercise 1, some students may misinterpret the meaning of zero in the data set. Students may think that the zeros in the table should not be counted in the total number of tournaments. Encourage students to reread the problem and to reason about the given data values. Students should understand that even though there are four responses of zero, those four responses should still be counted in the total number of tournaments.

Apply *indicates multi-step problem
*5. Lou wanted to determine how much his friends pay for video games. He surveyed them using the question How much did you pay for the last video game you bought? The responses were $\$ 29, \$ 45, \$ 50, \$ 55, \$ 34, \$ 28, \$ 35, \$ 35, \$ 45$, $\$ 30, \$ 34$, and $\$ 55$. How many more games cost between $\$ 30$ and $\$ 39$ than between $\$ 40$ and $\$ 49$?
3 video games

Higher-Order Thinking Problems
6. Provide a data set that can be represented by the histogram shown.

Sample answer: 21, 23, 20, 25, 35, 38, $34,36,39,44,42,48,50,52,57,51,50$ 50 , and 65 books
8. R ITson Abstractly Laura recorded the daily temperatures, in degrees Fahrenheit, during January in Minnesota. What changes might she have to make in a number line for a dot plot that starts at zero and goes to 20 , so that it could be used to make a dot plot of the temperatures? Explain.
Sample answer: The number line might need to change to have numbers less than zero because the temperatures in January in Minnesota most likely will be below $0^{\circ} \mathrm{F}$.
7. Make a Conjecture Refer to the histogram. In one or two sentences, write a conclusion you can make about the data.

Sample answer: Most students have 3 or fewer siblings. The most common number of siblings is 2 or $\mathbf{3}$.
9. Justify Conclusions Determine if the statement is true or false. Justify your conclusion.
Histograms display individual data values. false; Sample answer: Dot plots display individual data values. Histograms display data by equal intervals, not individual data values.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 7, students write a conclusion about the data. Encourage students to construct a conclusion that correctly illustrates the histogram.

2 Reason Abstractly and Quantitatively In Exercise 8, students explain changes that Laura might have to make in a number line for a dot plot that starts at zero and goes to 20. Encourage students to use reasoning to determine that the number line might need to have negative numbers.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 9, students determine the validity of the statement. Encourage students to construct an explanation that correctly determines the statement is false.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Listen and ask clarifying questions.

Use with Exercise 5 Have students work in pairs. Have students individually read Exercise 5 and formulate their strategy for solving the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection.

Be sure everyone understands.

Use with Exercises 7-8 Have students work in groups of 3-4 to solve the problem in Exercise 7. Assign each student in the group a number. The entire group is responsible to ensure that every group member understands how to solve the problem. Group members should ask each other clarifying questions and check each other's understanding. Call on a randomly numbered student from one group to share their group's solution with the class. Repeat the process for Exercise 8.

Learn Measures of Center

Objective

Students will understand that the measures of center are used to represent a data set with a single value.

Teaching Notes

SLIDE1
You may wish to ask students if they have heard of the measures of center before. Many students may be familiar with the terms mean and median. Be sure that students understand the purpose of describing a data set using a measure of center. You may wish to present students with a few examples of data sets that have many numerical values. Using a measure of center to describe the data set is an efficient way to summarize the data with a single number that best represents it.

SLIDE 2

Point out that the mean of 84 summarizes the data set with a single number. You may wish to ask students what this number means. For example, it does not mean that each of the four test scores were equivalent to 84 . In fact, in this case, none of the data values are equivalent to the mean of 84 . However, it does mean that the data is centered around the score of 84 . The mean is often referred to as the balance point of the data. You may wish to have students create a line plot of the data values. Then have them visualize the number line as a tray that they need to carry with the palm of their hand supporting the tray. Ask them where they would position their hand in order to balance the tray. That location represents the mean of the data.
(continued on next page)

Interactive Presentation

Learn, Measures of Center, Slide 1 of 3

LESSON GOAL

Students will understand and apply different measures of center.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Mean

Learn: Measures of Center
Example 1: Find the Mean
Learn: Find a Missing Data Value Using the Mean
Example 2: Find a Missing Data Value Using the Mean
Learn: Find the Median
Example 3: Find the Median Given an Odd Number of Data Values
Example 4: Find the Median Given an Even Number of Data Values
Apply: Track

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of the Checks to differentiate instruction.

Resources	All	IAB	
Remediation: Review Resources	\bullet	\bullet	
ArriveMATH Take Another Look	\bullet		
Extension: Weighted Average		\bullet	\bullet
Collaboration Strategies	\bullet	\bullet	

Language Development Support

Assign page 55 of the Language Development Handbook to help your students build mathematical language related to the measures of center.
FElill You can use the tips and suggestions on page T55 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	
45 min	

Focus

Domain: Statistics and Probability
Major Cluster(s): In this lesson, students address major cluster 6.EE.B and additional clusters 6.SP.A and 6.SP.B by understandingand applying different measures of center.
Standards for Mathematical Content: 6.SP .A.3, 6.SP.B.4, 6.SP.B.5,
6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C, Also addresses 6.EE.B. 6

Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5,

MP6

Coherence

Vertical Alignment

Previous

Students constructed dot plots and histograms using collected data.
6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A

Now

Students understand and apply different measures of center.
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C

Next

Students will understand interquartile range and create box plots.
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to develop understanding of statistical measures as they explore measures of center. They use real-world scenarios to build fluency with finding the mean and median of a data set. They also build fluency with finding a missing data value given the mean.

Mathematical Background

(3) Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson

```
What Vocabuiary Wil⿴囗⿱一一⿰亻⿱丶⿻工二十
avenge
```



```
mean
```



```
mesucas of certer
```



```
median
```


[^17]
Warm Up

Prerequisite Skills
The Warm－Up exercises address the following prerequisite skill for this lesson：
－ordering rational numbers（Exercises 1－3）
Answers
1． $1.8 \mathrm{mi}, 1.9 \mathrm{mi}, 2.1 \mathrm{mi}, 2.7 \mathrm{mi}, 3.1 \mathrm{mi}, 3.8 \mathrm{mi}$ ，and 4.7 mi
2． 0.31 in．， 0.48 in．， 0.68 in．， 1.2 in．， 1.88 in．， 4.28 in．， 4.55 in．， 4.7 in．， 6.42 in．， 6.92 in．， 7.18 in．，and 12.1 in．

3． $7.9 \mathrm{oz}, 8.8 \mathrm{oz}, 9.4 \mathrm{oz}, 9.8 \mathrm{oz}, 10.5 \mathrm{oz}, 10.8 \mathrm{oz}, 11.1 \mathrm{oz}$ ，and 12.2 oz

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real－world situations that reflect the mathematics of the lesson．This lesson launches with a discussion about measures of center，using an infographic．Go Online to find additional teaching notes and questions to promote classroom discourse．

Today＇s Standards

Tell students that they will be addressing these content and practice standards in this lesson．You may wish to have a student volunteer read aloud How can I meet these standards？and How can I use these practices？，and connect these to the standards．

What Vocabulary Will You Learn？

Use the following questions to engage students and facilitate a class discussion．

Ask：

－In what real－world contexts have you used the word average？Sample answer：the average test score，the average height of students in the class
－The mean of the data set 2,3 ，and 10 is 5 ．How would you describe what a mean is？Sample answer：A mean is the average value of a set of data．
－How might you measure or describe the center of a set of numbers？ Sample answer：I would put the numbers in order from least to greatest，and then find the middle number．
－How does the median divide a road that you drive on？Sample answer： The median divides the road in half．

Explore Mean

Objective
Students will explore how to find the mean.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with different survey results. Students should use the results of the survey and rearrange them. Throughout this activity, students will use interactive workmats to determine if a single value can represent the data set.

(3) Inquiry Question

How can you represent a data set with a single value? Sample answer: To find the average value of a data set I can use a model to evenly distribute the values, or I can find the sum of the values and divide the sum by the number of participants.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE3

Mathematical Discourse

Compare your strategy with a partner. If your strategies were the same, is there another way to find the value? Sample answer: I could plot all of the data values on a number line and then find the number in the middle, or I could divide the values into an equal number of groups.
(continued on next page)

Interactive Presentation

Explore, Slide 4 of 7

DRAG \& DROP

On Slide 4, students drag the boot to equally distribute the values among all of the hikes.

TYPE

On Slide 7, students respond to the Inquiry Question and view a sample answer.

Explore Mean (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to ask statistical questions and record their observations using the workmat. Students should explore and deepen their understanding of data to determine if a single data value can represent the entire data set.
(3) Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 4 is shown.

Talk About It!

SLIDE4-

Mathematical Discourse

Of the five distances, which value best represents the group? Is there a different value, not included in the group, that could represent the distance of a typical hike? If so, explain how you found this value. See students' responses.

Interactive Presentation

Example 1, Find the Mean, Slide 1 of 4
On Slide 2 of Example 1, students move
through the steps to find the mean of the
data set.

Learn Measures of Center (continued)

Talk About It! SLIDE3-

Mathematical Discourse

What are some ways you have seen mean used in real life?
Sample answer: average scores for a video game, average points scored in a basketball game, average visitors to a website

Example 1 Find the Mean

Objective

Students will calculate the mean to summarize a data set with a single value.

Teaching the Mathematical Practices

6 Attend to Precision Encourage students to adhere to the definition of mean in order to calculate the mean accurately. Students should be able to explain how the mean summarizes the data set with a single value.

As students discuss the Talk About lt! question on Slide 3, encourage them to use clear and precise mathematical language to explain how the mean would chang e if an additional data value of $0^{\circ} \mathrm{F}$ was added to the set. They should note that while the sum of the values would not change, the mean would decrease since the total number of values would increase.

Questions for Mathematical Discourse

SLIDE 2

AL Do any of the data values need to equal the mean? Explain.
no; Sample answer: Because the mean is the sum of the data values divided by the number of data values, it is possible that the mean value will not appear in the data set.

OL.Why do you think we add the data values and then divide by the number of data values to find the mean? Sample answer: Adding all of the data values gives a total of all the data combined. When you divide the total by the number of data values, you are equally distributing the data, so you find the average or mean.

IBLA A classmate found the mean temperature to be $57.6^{\circ} \mathrm{F}$. How do you know that the classmate made a mistake? Sample answer: All of the data values are less than 57.6°. The mean cannot be greater than all of the data.

0
 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

550 Module 10 - Statistical Measures and Displays

Learn Find a Missing Data Value Using the Mean

Objective

Students will understand how the mean can be applied to find a missing value in a data set.

Teaching Notes SLIDE1

Students will learn how to use the mean as a balance point. You might consider leading with a discussion about the meaning of the word balance. Ask students what it means to balance something, or how they might know something is in balance. Point out that in using the mean as a balance point, students are trying to balance the sum of the values of the distances from the mean, above and below the mean. In order to find the fifth quiz score, students need to balance the distances above and below the mean. They first need to determine if the quiz score will be above or below the mean of 90 , and then use the difference in distances to determine the precise score.

> (continued on next page)

DIFFERENTIATE

Reteaching Activity An

Some students may struggle with the concept of the balance point when using a dot plot to find the mean. If students need help, remind them that there does not have to be an even number of data values less than and greater than the mean. Have them picture a balance. When using a balance, the weight of the items on each side needs to be the same, but the number of items can be different. In this case, the number of data values on each side of the mean does not matter, it is the "weight" or the total distance that each value is from the mean, that needs to be the same.

Interactive Presentation

88

Interactive Presentation

Example 2, Find a Missing Data Value Using the Mean, Slide 2 of 5

On Slide 2 of Example 2, students use a dot plot to find the missing data value.

Learn Find a Missing Data Value Using the Mean (continued)

Teaching Notes

SLIDER

When creating the bar diagram to represent the situation, ask students why they need to multiply 90 by 5 , not 4 . Remind students that Caitlin wants to earn a mean of 90 after all 5 quizzes, not just on the four she has already taken. Encourage students to reason that 450 is the total number of points she would need to earn on all 5 quizzes, and she has already earned 356 of those points. Point out to students that by using this reasoning, and perhaps with the help of a bar diagram, they can easily set up an equation to find the missing quiz score. You might consider mentioning that if they know the total points they have earned in a class, they can use this method when determining what score they need to earn on an assignment to obtain a certain average in their class.

Example 2 Find a Missing Data Value Using the Mean

Objective

Students will apply the mean to find a missing value in a data set.

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them As students discuss the Talk About lt! question on Slide 4, encourage them to understand the benefits of each method and identify the correspondences between them.

6 Attend to Precision Students should calculate the mean precisely and accurately and make sense of the missing data using a bar diagram.

Questions for Mathematical Discourse

SLIDE 2

AL What values do you need to graph on the dot plot? 494, 502, 486, 690 , and 478

ALI Which value(s) are to the left of the mean on the dot plot? Which value(s) are to the right? $478,486,494$, and $502 ; 690$

OL What is the distance between each data value and the mean on the number line? $38,30,46,158$, and 54
[BL Do you think the missing value is greater than or less than 532 ? Explain. greater than; Sample answer: Most of the values given are less than the mean, so I would expect the missing one to be greater than the mean.
BLII The equation $532=\frac{2,650+m}{6}$ could also be used to find the mean. Explain how you could solve this equation to find the mean. Sample answer: First multiply each side of the equation by 6 . Then subtract 2,650 from each side to find that $m=542$.

1 CONCEPTUAL UNDERSTANDING

Example 2 Find a Missing Data Value

 Using the Mean (continued)
Questions for Mathematical Discourse

SLIDE 3 I

AL. Why do you need to multiply the mean by 6 ? Sample answer: Multiplying the mean by 6 gives you the total number of messages sent over 6 months.

OL. How does the bar diagram help you write the equation? Sample answer: I can see that the sum of the known numbers of messages and the unknown number of messages is equal to the total messages.
[BLII If Alex sends 550 messages next month, would you expect the mean to increase or decrease? Explain your reasoning. Sample answer: I would expect the mean to increase since 550 is greater than the current mean of 532 .

(Wo Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.
distance below the mean $=54+46+38+30$, or 168
distance above the mean $=158$
The distances are not the same because the sixth amount is not plotted. There is a greater distance below the mean. This means the missing value must be above the mean. In order for the total distance above the mean to be equal to 158 , the missing value must be
10 units above the mean, because $158+10=168$.
The missing value is $532+10$, or 542

Method 2 Use an equation.
Draw a bar diagram to represent the situation. To find the total amount needed for the mean number of messages to be 532, multiply the mean by the number of data values.
$532(6)=3,192$
The sum of the known data values is $494+502+486+690+478$ or 2,650 . Let m represent the number of messages Alex sent during the sixth month.

The equation that can be used to find the missing data value is $2,650+m=3,192$. Solve the equation.

So, using either method, Alex sent 542 messages during the sixth month.

Interactive Presentation

Example 2, Find a Missing Data Value Using the Mean, Slide 3 of 5
On Slide 3, students more through the
slides to use a bar diagram to find the
missing value.

Interactive Presentation

Learn, Find the Median, Slide 2 of 3
On Slide 2, students select the markers to
learn how to find the median of a data set with an odd number of data values.

1 CONCEPTUAL UNDERSTANDING

Learn Find the Median

Objective

Students will understand what the median of a data set represents.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of what the median of a data set represents in order to explain why it is important to write the values in order.

Teaching Notes

SLIDE1

Students will learn that the median is the numerical value appearing at the center when the list is ordered from least to greatest. Students should pay close attention to the process used to find the median of an odd number of values and an even number of values.

SUIDE2

When finding the median, if there is an even number of data values, the median may or may not be part of the data set. If there is an odd number of data values, the mean is always part of the data set. Have students determine the total number of data values and explain why the median is a data value from the data set. Students should recognize that there isan odd number of data values, which means that the median is part of the data set.

Talk About it!

Mathematical Discourse
Why must the data be ordered from least to greatest before finding the median? Sample answer: The median is the middle value. If the data are not in order, the value in the middle of the list might not be the actual middle value of the data set.

3 APPLICATION

Example 3 Find the Median Given an

 Odd Number of Data Values
Objective

Students will find the median given an odd number of values in a data set.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively, 3 Construct Viable Arguments and Critique the Reasoning of Others As students discuss the Talk About It! questions on Slide 4, encourage them to reason about the relationship between mean and median and how the mean compares to the median for this data set. Students could also reason about whether this will be true for the mean and median of every data set. They should also be able to use their knowledge of mean and median to determine how changing a data value will affect each measure.

Questions for Mathematical Discourse

SLIDE 2
AL. How many data values are in the data set? What is the least value? the greatest value? 7 data values; 2; 12

OL. How could you make sure you don't miss any values? Sample answer: I can write the values in increasing order, and cross the numbers off of the original list as I go.
13.I. Would the median change if the values were put in decreasing order? Explain. no; Sample answer: It is the same group of numbers in order so the middle number is the same whether the order is increasing or decreasing. Explain. no; Sample answer: There is an odd number of values.

OL In this data set do the median and the mean have the same value? Explain. no; Sample answer: The mean in this data set is about 6.3 which is not the same value as the median.

B1. Add two data values to the set that do not change the median. Explain why they do not change the median. Sample answer: 5 and 7 ; If I add a value less than the median and a value greater than the median, the middle value remains the same.

(3) Online

- Find additional teaching notes and the Talk About lt! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Find the Median Given an Odd Number of Data Values

Between 2009 and 2015 , the number of Atlantic hurricanes each year were 3, 12, 7, 10, 2, 6, and 4

Find the median of the data.
There are 7 data values. Since the number of data values is odd, the median is the middle data value.

Step 1 Order the values from least to greatest.

The center of the data can be represented by the single value, 6 So, the median number of hurricanes from 2009 to 2015 is 6 hurricanes

Check
Dina's scores on recent science tests were 86, 98, 85, 90, 85, 91, 89 , 88 , and 89 points. Find the median of her test scores. 89 points
 A classmate
A classmate
mmediately stated the median is 10 . What
the likely mistake?

Sample answer: The classmate likely did not order the data from least to greatest.

C Talk About It! Find the mean of the data set to the nearest tenth. What do you notice about its value when compared to the median? Why do you think that is?
6.3 hurricanes; Sample answer: The mean is close to the median. It is slightly greater than the median because the data values 10 and 12 are farther from the mean than the data values 2 and 3 .

Talk About It!

 If the data value of 12 was changed to 13 , how would the mean be affected? the median?The mean would be slightly greater because of the inclusion of a greater data value. The median would not be affected because the middle value would still be 6 .

Interactive Presentation

Example 3, Find the Mean Given an Odd Number of Data Values, Slide 1 of 5

58
 6.SP.A.3, 6.SP.B. 4

 Example 4 Find the Median Given an

 Example 4 Find the Median Given an Even Number of Data Values

 Even Number of Data Values}

no; Sample answer: The histogram does not show the individual data values. Y ou can find the interval in which the median lies, but not the actual median the actual median.

Interactive Presentation

Example 4 Find the Median Given an Even Number of Data Values

The table shows the number of monkeys at ten different zoos. Find the median of the data.

Number of Monkeys		
2736182512		
1842341630		

There are 10 data values. Because the number of data values is even, the median is the mean (average) of the two middle data values. Step 1 Order the values from least to greatest.

In order from least to greatest, the values are $12,16,18,18,25,27,30$, 34,36 , and 42 .

Step 2 Find the median.
Because there is an even number of data values, find the two value closest to the middle.
The two values closest to the middle are 25 and 27 .
Find the mean of the two middle data values.
mean $=\frac{25+27}{2} \quad$ Find the mean of 25 and 27
$=\frac{52}{2} \quad$ Add.
$=26 \quad$ Divide.
So, the median of the data is $\mathbf{2 6}$
6 monkeys. The summarized by describing the center of the data as 26 monkeys.

Check
The table shows the prices of different packages of juice boxes at a local store. Find the median of the data.

Go Online Y ou can complete an Extra Example onlin

Example 4, Find the Median Given an Even Number of Data Values, Slide 1 of 5

Objective

Students will find the median given an even number of values in a data set.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 4, encourage them to make sense of the histogram and the range of values that represent numbers from a problem to explain why the histogram cannot be used to find the mean or median of the values.

6 Attend to Precision Students should represent the data from the table precisely, using small steps to find the median of the set of values by finding the mean of the two numbers in the middle of the set.

Questions for Mathematical Discourse

SLIDE 2

AL. How will you order the numbers? Sample answer: I will write the least number, followed by the next greatest number. I will continue doing so until all of the numbers have been included.

OL. Why do the numbers need to be in order? Sample answer: I need to order the numbers to find the middle two values.

BLI There are 10 data values in the set. How can you determine without crossing off numbers, where the median will be? Sample answer: I can divide 10 in half and get 5 . Five data values will be in the lower half and 5 data values will be in the upper half. The median will be between the fifth and sixth data values.

SLIDE3

AL. Why do you add the two central values and divide by 2? I need to find the value that is in the center of 25 and 27 . I can find the mean or the average of those two numbers.

OL. Why does the process for finding the median for an odd number of values not work with an even number of values? Sample answer: If a set has an even number of values, there are two values in the middle of the set, not one.

B1lㅣ When will the median of a data set, with an even number of values, be a member of the data set? when the two central values are the same

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Track

Objective

Students will come up with their own strategy to solve an application problem involving the mean and median of 100-meter dash times.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How do you find the median of a data set?
- How do you find the mean of a data set?
-Would a greater or lesser value be used to show a faster time?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Apply Track
The table shows Kendra's 100 -meter dash times. Kendra wants to record the measure of center that describes her times as the fastest. Which measure should she use, the mean or median? Why?

Kendra's					100-meter	Dash Times (seconds)
15.1	17.2	14.6	16.2			
17.9	16.5	17.8	17.1			
14.7	17.1	19.5	13.8			

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. Y ou may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

See students' strategies
3 What is your solution?
Use your strategy to solve the problem.
Yitere
ean, Sample answer: The mean of the data is about 16.46 seconds and the median is 16.8 seconds. Since Kendra wants to use a measure that represents a faster time, she should choose the least of the two measures, the mean; See students' work.

4 How can you show your solution is reasonable? Qrite About It! Write an argument that can be used to defend your solution.
See students' arguments.

Interactive Presentation

Apply, Track
CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING

Essential Question Follow-Up

Why is data collected and analyzed and how can it be displayed?
In this lesson, students learned how the measures of center can be used to summarize numerical data. Encourage them to discuss with a partner the benefits of summarizing a set of numerical data with a single number. For example, using a measure of center to summarize a data set means that not every data value needs to be mentioned in order to have an overall picture of the data.

Exit Ticket

Refer to the Exit Ticket slide. Find the mean and median of the number of goals scored per game. Round to the nearest tenth if necessary. Write a mathematical argument that can be used to defend your solution. The mean is 3.3 goals and the median is 2 goals. Sample answer: The mean is 3.3 goals because
$\frac{4+3+9+1+2+1+2+4+1+2+3+3+7+2+1+1+2+5+10}{19} \approx 3.3$.
The median is 2 because when the data are listed in order from least to greatest, 2 is the middle value of the data set.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 8-14
- Extension: Weighted Average
- Q ALEKS Mean, Median, and Mode

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-7, 9, 12, 13
- Extension: Weighted Average
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-4
- D ALEKS Collecting Data

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Arrive MATHTake Another Look
- ALEKS Collecting Data

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK	opic	Exercises
1	calculate the mean of a data set	1,2
1	apply the mean to find a missing value of a data set	3,4
1	find the median of a data set	$5-7$
2	extend concepts learned in class to apply them in new contexts	8
3	solve application problems involving measures of center	9,10
3	higher-order and critical thinking skills	

Common Misconceptions

When finding the mean, students may not include all of the given data values, especially when data values repeat or are equal to zero. For example, in Exercise 2, students might say that there are only 6 data values because they did not include 0 in their calculation. Remind students that each data value must be included in the sum and the total number of data values.

Apply *indicates multi-step problem
'9. The table shows the number of minutes Kenny spent practicing the piano. Kenny wants to record the greater measure of center that describes his time spent practicing. Which measure should he use, the mean or median? Why?
the mean; Sample answer: The mean of the data is 31 minutes, and the median is 25.5 minutes. Since Kenny wants to use a measure that represents a greater number of minutes spent practicing, he should choose the greater of the two measures, the mean.
'10. The table shows the number of push-ups Jade completed each day this week. Jade wants to record the greater measure of center that describes her ability to do push-ups. Which measure should she use, the mean or median? Why?
the median; Sample answer: The mean of the data is 61 pushups, and the median is 65 push-ups. Since Jade wants to use a measure that represents a greater number of push-ups completed, she should choose the greater of the two measures, the median.

Higher-Order Thinking Problems

11. Create Generate a real-world data set that has a mean of 8 .
Sample answer: Shoe sizes of the Holden family: $8,10,7,9$, and 6
12.
13. Find the Error A student said the mean of the data set shown is 17 . Find the student's error and correct it
number of texts sent in an hour: 15, 11, 25 , 19, 11, 27
Sample answer: The student found the median of the data set. The mean of the data set is 18 texts.
14. Use a Counterexample Determine if the following statement is true or folse. If false, provide a counterexample.
The mean and median of a data set cannot be the same value false; Sample answer: The data set 4, 6, 9 , $11,8,13$, and 12 has a mean of 9 and a median of 9 .
15. Reason Abstractly Ty worked 5 nights this week at an ice cream shop. He earned $\$ 23, \$ 29, \$ 25$, and $\$ 16$ in tips. The average amount he earned in tips for the 5 nights was $\$ 22$. Is the amount he earned in tips on night 5 more or less than the average amount? Explain.
less than; Sample answer: The sum of the five data values must equal 22×5 or 110 So, $110-(23+29+25+16)=17 . \$ 17$ is less than $\$ 22$.

20242560

Number of Push-ups

 65706738 556864560
dule 10 . Stall Displays

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 12, students determine the validity of the statement and provide a counterexample if the statement is false. Encourage students to construct a counterexample that shows the statement is false.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 13, students find the student's error and correct it. Students should determine that the value the student found was actually the median. Students should then find the mean of the data set.

2 Reason Abstractly and Quantitatively In Exercise 14, students will determine if the amount Ty earned in tips on night 5 is more or less than the average amount. Encourage students to use reasoning to determine that the amount he earned in tips on night 5 is less than the average amount.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Explore the truth of statements created by others.
Use with Exercises 9-10 Have students work in pairs. After completing the application problems, have students write two true statements and one false statement about each situation. An example of a true statement for Exercise 9 might be, "The mean of the data set is 31 minutes" An example of a false statement might be, "The median of the data set is 24 minutes." Have them trade statements with another pair or group. Each pair identifies which statements are true and which are false. Have them discuss and resolve any differences.

Create your own higher-order thinking problem.

Use with Exercises 11-14 After completing the higher-order thinking problems, have students write their own higher-order thinking problem that involves the concepts from this lesson. Have them trade their problems with a partner and solve them. Then have them check each other's work, and discuss and resolve any differences.

Learn Measures of Variation

Objective

Students will understand that the measures of variation describe the variation of a data set using a single value.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to relate the term quartile with other words that have the same prefix quart-, such as quarter or quarterly. This can help them remember that a data set can be divided into four parts.

As students discuss the Talk About lt! question on Slide 4, encourage them to use clear and precise language, such as variation, spread, middle 50%, etc., in order to explain what the interquartile range of a data set describes.Go Online to find additional teaching notes and the Talk About It! question on Slide 2.

Talk About It!

SLIDE4

Mathematical Discourse

If the median describes the center of a data set, what does the interquartile range describe? Sample answer: The interquartile range describes how spread out the middle 50% of the values are around the median.

DIFFERENTIATE

Reteaching Activity AL

If any of your students are struggling to determine the interquartile range of a data set, encourage them to work with a partner to create a list of steps that they need to follow in order to find the interquartile range. Have them write a reason that justifies each step, so that they understand why they need to complete it. Then have them share their steps and reasons with a partner, and discuss and resolve any differences. Sample response shown.

1. Write the data in numerical order. Reason: Before I can find the first and third quartiles, I need to find the median.
2. Divide the data into quartiles. Reason: In order to find the interquartile range, I need to find the range from the first quartile to the third quartile.
3. Subtract the first quartile from the third quartile. This is the interquartile range. Reason: The interquartile range is the range from the first quartile to the third quartile.

Interactive Presentation

Learn, Measures of Variation, Slide 2 of 4
On Slide 1, students select a button to
show the range of the data set.

LESSON GOAL

Students will understand interquartile range and construct box plots.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Measures of Variation
Example 1: Find the Range and Interquartile Range
Learn: Construct Box Plots
Example 2: Interpret Box Plots
Example 3: Construct and Interpret Box Plots
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al	In	
Remediation: Review Resources	-	-	
Extension: Constructing and Interpreting a Double Box Plot		-	-
Collaboration Strategies	-	-	-

Language Development Support

Assign page 56 of the Language Development Handbook to help your students build mathematical language related to interquartile range and box plots.
FEllil You can use the tips and suggestions on page T56 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 45 min

Focus

Domain: Statistics and Probability
Additional Cluster(s):In this lesson, students address additional clusters
6.SP.A and 6. SP.B by understanding interquartile range and creatingbox plots.
Standards for Mathematical Content: 6.SP .A.2, 6.SP.A.3, 6.SP.B.4,
6.SP.B.5, 6.SP.B.5.C

Standards for Mathematical Practice: MP2, MP3, MP6

Coherence

Vertical Alignment

Previous

Students understood and applied different measures of center.
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C

Now

Students understand interquartile range and create box plots.
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C

Next

Students will understand mean absolute deviation.
6.SP.A.3, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING
2 FLUENCY
itive Conceptual Bridge In this lesson, students begin to expand
on their understanding of statistical measures as they explore
interquartile range and box plots. They learn about measures of
variation, including range and interquartile range, to build fluency
with describing the variation of a data set and constructing a box plot
to represent a data set.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skills for this lesson:

- understanding bar diagrams (Exercise 1)
- dividing rational numbers (Exercise 2)
- plotting rational numbers on a number line (Exercise 3)

Answers

1-3. See Warm Up slide online for correct answers.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the large variation of life expectancy within the animal family Felidae.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion. Additional questions are available online.

Ask:

- A dot plot uses dots to organize the values in a data set. How do you think a box plot organizes data values? Sample answer: Abox plot could display data using boxes.
- What is the relationship between a quart and a gallon? What might be a first quartile? Sample answer: A quart is one fourth of a gallon. A first quartile might be the first of four parts of something.
-The prefix inter- means between or among. Based on this and the word quart, what might interquartile mean? Sample answer: a section between two quartiles of data
- What does it mean when something varies? Sample answer: When something varies, it differs in size or amount from other things in the same group.
6.SP.A.3, 6.SP.B. 4
 numerical order? Why?
yes; Y ou need to find. the middle number.

QTalk About It! Which value, the interquartile range, the first quartile, or the third quartile tells you more about the spread of the data values? Explain your reasoning.
Sample answer: The interquartile range tells you more about the spread of the data, specifically the spread of the midal
half of the data.

70 miles per hour. The least speed in
the data set is 1 mile per hour.
The range is $70-1$, or 69 miles per hour
The speeds of animals vary by 69 miles per hour.
Part \mathbf{B} Describe the variation of the data using the interquartile
range.
Step 1 Find the median.
Write the speeds in order from least to greatest.

$\begin{array}{ll}\text { least } & \left.\begin{array}{l}\text { greatest } \\ \text { Find the mean of the two middle numbers, } \\ \text { The median is } \\ 25\end{array}\right) .27 .5 \text { and } 30 .\end{array}$
Step 2 Find the first and third quartiles.
The first quartile is 8 Find the median of the lower half of the data.
The third quartile is 50 . Find the median of the upper half of the data.
Step 3 Find the interquartile range.
Interquartile range $=Q_{3}-Q_{1}$

$$
\begin{array}{ll}
=50-8 & Q_{3}=50 ; Q_{1}=8 \\
=42 & \text { subtract. }
\end{array}
$$

So, the spread of the middle 50% of the data is $\frac{42}{}$. This means that the middle half of the data values vary by 42 miles per hour.

Interactive Presentation

Example 1, Find the Range and Interquartile Range, Slide 2 of 7

Objective

Students will describe the variation of a data set using the range and interquartile range.

Questions for Mathematical Discourse

SLIDE2

Al How do you find the range? The range is found by subtracting the least value from the greatest value.
OL Why don't you subtract the greatest value from the least value? If you subtract the greatest value from the least value, the difference is a negative number.
31. What does the range mean? Sample answer: The difference between the least and greatest speeds is 69 mph . So, this means that the speeds vary by 69 miles per hour.

SLIDE 3

Al. How do you find the median of a data set with an odd number of values? I order the values from least to greatest and then find the middle value.

Ol Why do the numbers have to be in order from least to greatest when finding the median? The numbers have to be listed in order from least to greatest so that the middle value is found correctly.

EBill Can the median be represented by a quartile? Explain. yes; Sample answer: If the first quartile represents the first quarter of the data set, the second quartile represents the second quarter or half of the data set. This is the same as the median.

SLIDE 4

AL. How will you find the first quartile? Sample answer: I will find the median of 1,8 , and 25 .

OL. How would finding the first and third quartiles be different if each half had an even number of values? Sample answer: I would need to find the average of the middle two values to find the quartiles.

ELL. Do you think you could add a value to the data set that would have no effect on the first and third quartiles? Explain. yes; Sample answer: If I added a median, 26, that would not affect the lower half nor upper half of the data.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Construct Box Plots

Objective

Students will understand how to construct a box plot to represent a data set.

Teaching Notes

SLIDE1
Have students use the interactive tool to see how to construct a box plot. Point out that they need to identify the lower extreme, first quartile $\left(Q_{1}\right)$, median, third quartile $\left(Q_{3}\right)$, and upper extreme values before constructing the plot. The median is also known as the second quartile $\left(Q_{2}\right)$.

Some students may confuse the length of a box or whisker with the quantity of data represented by that section. It is important to stress to students that each section represents 25% of the data values. A box or whisker that is longer than the other sections means that the data is more spread out in that section, not that that section has more data values.

Interactive Presentation

Learn, Construct Box Plots
CLICK
Students move through the slides to see
how to construct a box plot.

Students move through the slides to see how to construct a box plot.

564 Module 10. Statistical Measures and Displays

Interactive Presentation

Example 2, Interpret Box Plots, Slide 2 of 4

CLICK | On Slide 2, students more through the |
| :--- |
| steps to describe the distribution of |

steps to describe the distribution of the data.

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Interpret Box Plots

Objective

Students will analye the distribution of data displayed in a box plot.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About lt! question on Slide 3, encourage them to make sense of what the interquartile range tells them about the data, given the context of the problem.

Questions for Mathematical Discourse

SLIDE 2 :

AL. What do you know about the lower extreme and upper extreme? Sample answer: The lower extreme is the least value included in the box plot and the upper extreme is the greatest value included in the box plot.

OL. Can you find the mean from the box plot? Explain. no; Sample answer: The box plot doesn't show all of the values in the data set. I need to know that information in order to find the mean.
3. Do you think the data are evenly distributed? Explain. no; Sample answer: If the data were evenly distributed, the whiskers and the two portions inside of the box would be the same length. The whiskers are not the same, and the portions inside of the box are shorter than the whiskers.

3 Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 3 Construct and Interpret Box Plots

Objective

Students will construct a box plot to represent a data set and interpret the distribution of the data.

Questions for Mathematical Discourse
 SLIDE 2

AL Why do you need to order the numbers? Sample answer: I need to order the numbers because the box plot uses values in order and I need to calculate the median.

OL What strategy do you use to order the numbers? Sample answer: I identify the least number in the list and write it down, cross it out from the original list, and repeat the process until l've crossed all the numbers out.

Bill If another car drove by at 42 miles per hour, where would this data value fall in the ordered list? It would be placed at the end of the list because it would be the greatest speed.

SLIDE3

AL. How will you find the first quartile? To find the first quartile, I will find the median of the lower half of the data set, $19,20,22,23$, and 25 .

OL Does the order in which you graph the points matter? Explain. no; Sample answer: As long as I graph the points before I construct the box plot, the order doesn't matter. They will still be graphed in the same location.

BL The graphed numbers can be referred to as the five-number summary. Why do you think it is called this? Sample answer: There are five numbers and together, you can get an idea about what the data set looks like as a whole.

SLIDE 4

Why is it helpful to draw the box first? Sample answer: Drawing the box first helps me find the endpoints for the whiskers.

OL. Why isn't the box drawn around the point for 19 ? 19 is the lower extreme and isn't included in the box. It is an endpoint for a whisker.

Looking at the finished box plot, make an observation about half of the speeds in the data set. Sample answer: Half of the speeds were between 22 and 34 miles per hour.
(continued on next page)

Q Example 3 Construct and Interpret Box Plots The table shows the recorded speeds of cars traveling on a country road.

Car Speeds (mph)
25352722344020192325

Construct a box plot to represent the data. Then describe the distribution of the data.
Part A Construct a box plot
Step 1 Order the values from least to greatest.
In order from least to greatest, the speeds are 19, 20, 22, 23, 25, 25, $27,30,34,35$, and 40 miles per hour.
Step 2 Graph the values above a number line.
Find the median, the extremes, and the first and third quartiles. Graph the values above a number line.

Step 3 Draw the box plot.

Draw a box around the first寿 Draw a line through the median

Draw a line from the first quartile to the least value. Draw a line from the third quartile to the
greatest value. Add a title.
15202530354045
Part B Describe the distribution of the data.
The recorded speeds range from 19 miles per hour to 40 miles per hour. The middle half of the data range from 22 miles per hour to hour. The middle half of the data range from 22 miles per hour to
34 miles per hour. Because the boxes are longer than the whiskers, there is more variation among the middle half of the data. Having more variation means there is a lesser consistency among the middle 50% of the data than in either whisker.

Think About It! What are the different measures of variation you need to find in order to constructa box plot?
quartiles, extremes, median
\square
\square \square \square

\square

QTalk About It! How does constructing box plot to represent the data help you to understand the distribution of the data?

Sample answer: From

 the box plot, I can compare the sizes of the boxes and whiskers to makeconclusions abou the distribution of the data.

Interactive Presentation

Example 2, Construct and Interpret Box Plots, Slide 4 of 7
DRAG \& DROP

On Slide 2, students drag to order the numbers from least to greatest.

On Slide 3, students select the buttons to indicate the location of the median, extremes, and quartiles.

CLICK
On Slide 4, students move through the slides to construct the box plot.

Interactive Presentation

Example 3, Construct and Interpret Box Plots, Slide 5 of 7
CLICK
On Slide 5, students more through the
steps to describe the distribution.

On Slide 5, students more through the steps to describe the distribution. online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 3 Construct and Interpret Box Plots (continued)

Questions for Mathematical Discourse

SLIDE 5

Are the whiskers shorter or longer than the boxes? shorter
OL Does a shorter box or whisker indicate data that are more spread out or closer together? closer together

Bi. The next day, speeds of $21,24,34$, and 39 miles per hour were recorded. How does adding these data values to the data set affect the box plot? Sample answer: Even though four values were added to the data set, the box plot is not affected because the extremes, quartiles, and median did not change.

(1)
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of how to construct a box plot and when a box plot should be used to represent a data set. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

Why is data collected and analyzed and how can it be displayed? In this lesson, students learned how the measures of variation can be used to describe the spread of a data set, and how to represent numerical data with a box plot. Encourage them to work with a partner to compare and contrast how box plots, dot plots, and histograms are used to display data. For example, they may say that all three kinds of graphs represent numerical data. While a dot plot shows every single data value, histograms and box plots do not.

1 CONCEPTUAL UNDERSTANDING

Exit Ticket

Refer to the Exit Ticket slide. Find the median, first and third quartile, and extremes of the data set. median: 18 , first quartile: 15 , third quartile: 22 , extremes: 11, 23

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.
\(\left.$$
\begin{array}{|c|l|c|}\hline \text { DOK } & \text { opic } & \text { Exercises } \\
\hline 1 & \begin{array}{l}\text { describe the variation of a data set using the range } \\
\text { and interquartile range }\end{array}
$$ \& 1,2

\hline 1 \& interpret box plots \& 3

\hline 1 \& construct and interpret a box plot to represent a data set\end{array}\right] 4.4\)| 2 | extend concepts learned in class to apply them in new
 contexts | 5 |
| :---: | :---: | :---: |
| 3 | solve application problems involving box plots | 6 |
| 3 | higher-order and critical thinking skills | $7-10$ |

Common Misconception

In Exercise 1, students may find the range of the numbers by subtracting the first number from the last number without putting the values in order. Remind students that the range is found by finding the difference between the greatest and the least data values.

Interactive Presentation

Exit Ticket

Apply *indicates multi-step problem
*6. The table shows the number of points scored by the seventh and eighth grade girls basketball teams in each of their games this season. Construct a box plot to represent the data for each team. Then use the box plots to compare the data.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 7, students determine the validity of the statement. Encourage students to use the structure and characteristics of a box plot to determine the statement is false.

In Exercise 9, students determine if the student's thinking is correct. Encourage students to explain why the student's thinking is correct.

In Exercise 10, students will determine a conclusion for the information provided. Encourage students to use reasoning to determine the data is equally spread out among each quartile.
Sample answer: Overall, the ranges of the points scored by each team are the same, 13 points. However, the interquartile range for the eighth grade team is 5.5 points and the interquartile range for the seventh grade team is 7.5 points. This means that the eighth grade team had a greater consistency among the middle half of the data than the seventh grade team.

Higher-Order Thinking Problems
7. Jif Justify Conclusions Determine if the following statement is true or fa/se. If folse, justify your reasoning.
Y ou can determine the mean of a data set from a box plot.
false; Sample answer: A box plot does not show individual data values, so you cannot find the mean of the data from a box plot alone.
9. Make an Argument A student said that, in a box plot, if the box to the right of the median is longer than the box to the left of the median, there are more data values represented by the longer box. Is the student's reasoning correct? Construct an argument to defend your solution.
no; Sample answer: Each section of the box plot represents 25% of the total values. This means that each whisker and each box represents the same amount of data values. The length of each section depends on the spread of the data.
8. Create Provide a set of real-world data and then construct a box plot of the data. Sample answer: Marc and 7 friends played 9 holes of golf. Their combined scores on each hole were $45,58,52,58,40,56,61$ and 47 .

$40444852565064+\square$
10. Reason Inductively What can you conclude about a data set shown in a box plot where the whiskers and boxes are all the same length?
Sample answer: The data is spread out equally among each section.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Listen and ask clarifying questions.

Use with Exercises 9-10 Have students work in pairs. Have students individually read Exercise 9 and formulate their strategy to solve the problem. Assign one student as the coach. The other student should talk through their strategy, while the coach listens, asks clarifying questions, and offers encouragement and/or redirection. Have students switch roles to complete Exercise 10.

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks, THEN assign:

- Practice, Exercises 1-5 odd, 6-10
- Extension: Constructing and Interpreting a Double Box Plot
- aleks Measures of Variation, Graphs of Data

IF students score 66-89\% on the Checks,
OL
THEN assign:

- Practice, Exercises 1-4, 6, 7, 9
- Extension: Constructing and Interpreting a Double Box Plot
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1-3
- DALEKS Collecting Data

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- ALEKS Collecting Data

Learn Mean Absolute Deviation

Objective

Students will understand what the mean absolute deviation of a data set represents, and how to calculate it.

Teaching the Mathematical Practices
6 Attend to Precision As students discuss the Talk About It! question on Slide 2, encourage them to adhere to the definition of absolute value in order to explain how absolute value is related to mean absolute deviation.

Go Online

- Find additional teaching notes.
- Have students watch the animation on Slide 2. The animation illustrates how to calculate the mean absolute deviation.

Talk About It!

SLIDE $2-$

Mathematical Discourse

The term absolute in mean absolute deviation refers to the absolute value of a number. How do you think absolute value relates to mean absolute deviation? Sample answer: The absolute value of a number is the distance that number is from 0 on a number line. Distance is always positive and absolute value is always positive. When finding the mean absolute deviation, the distance each data value is from the mean is always positive.
(continued on next page)

DIFFERENTIATE

Language Development Activity ELLL

To support students' understanding of the mean absolute deviation of a data set, and how to calculate it, have students brainstorm different strategies they can use to find the mean absolute deviation without needing to graph the data values on a number line. Have them work with a partner to describe other strategies they can use, and have them share their strategies with another pair of students, or with the entire class. Sample answer: After finding the mean of the data set, find the distance each data value is from the mean by finding the difference between the greater value and the lesser value for each data value in the set. Then find the average of these values.

Interactive Presentation

Learn, Mean Absolute Deviation, Slide 2 of 3
WATCH

On Slide 2, students watch an animation that illustrates how to find the mean absolute deviation of a data set.

Mean Absolute Deviation

LESSON GOAL

Students will understand mean absolute deviation.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Mean Absolute Deviation
Example 1: Find Mean Absolute Deviation
Example 2: Compare Mean Absolute Deviations
Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Language Development Support

Assign page 57 of the Language Development Handbook to help your students build mathematical language related to the mean absolute deviation.
FElili You can use the tips and suggestions on page T 57 of the handbook to support students who are building English proficiency.

Suggested Pacing
 90 min 45 min
 ```0.5 day```
 1 day

Focus

Domain: Statistics and Probability
Additional Cluster(s): In this lesson, students address additional clusters
6.SP.A and 6.SP.B by understanding mean absolute deviation.

Standards for Mathematical Content: 6.SP .A.3, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B. 6.SP.B.5.C

Standards for Mathematical Practice: MP1, MP2, MP3, MP6

Coherence

Vertical Alignment

Previous

Students understood interquartile range and created box plots.
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C

Now

Students understand mean absolute deviation.
6.SP.A.3, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C

Next

Students will understand outliers and their effect on measures of center.
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C, 6.SP.B.5.D

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of statistical measures as they learn about mean absolute deviation. They build fluency with finding the mean absolute deviation and explaining what it represents. They also build fluency with comparing the mean absolute deviation of two data sets.

Mathematical Background

The spread of a data set can be described using the mean absolute deviation. This measure of spread describes the average distance between each data value and the mean. Higher values of the mean absolute deviation indicate higher levels of spread. To calculate the mean absolute deviation, first calculate the mean. Find the distance between each data value and the mean by subtracting. Finally, divide the sum of the results by the number of data values.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2
\square
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills

The Warm-Up exercises address the following prerequisite skill for this lesson:

- absolute value (Exercises 1-5)

Answers

1. 125
2. 4
3. 36
4. 1
5. Club C

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about the small variation of life expectancy within the animal family Canidae.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- The term deviate means to stray or veer away from an established path. Using what you know about the mean of a data set and absolute value, what operations might be used to calculate the mean absolute deviation? Sample answer: For a number in the set, itmight be compared to the mean by calculating its distance from the mean using absolute value.
6.SP.A.3, 6.SP.B. 5

1 CONCEPTUAL UNDERSTANDING

Learn Mean Absolute Deviation (continued)

Talk About It!

SLIDE 3

Mathematical Discourse

The mean absolute deviation is a measure of variability that compares each data value's distance to the mean. In the animation, the MAD of the team scores is 4 . Do you think the MAD indicates the data set has a great deal of variation? Explain. no; Sample answer: If you look at the number line, the point totals could have been spread out much more than they were. I think the MAD of 4 means the data are fairly close together.

Example 1 Find Mean Absolute Deviation

Objective

Students will find the mean absolute deviation of a data set and explain what it represents.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to use the mathematics they know to solve the real-world problem and find the mean absolute deviation. Students should make sense of the mean absolute deviation and explain what it represents in the context of the problem.

As students discuss the Talk About lt! question on Slide 6, encourage them to make sense of the MAD to explain whether it indicates a large or small variation in this data set.
6 Attend to Precision Students should calculate the mean and the distance between each data value and the mean precisely and accurately.

Questions for Mathematical Discourse

SLIDE 2

How is the mean of a data set found? To find the mean, find the sum of the values and then divide by the total number of values.

OL When finding the MAD, why is the first step calculating the mean? Sample answer: The MAD is the average distance of the data values from the mean, so you need to find the mean before you can find the distance from each data value to the mean.

BL Without calculating the MAD, do you think there is a great deal of variation in the data set? Explain. yes; Sample answer: I can look at the range of values, $88-40$ or 48 , and see that there is a great deal of variation in the data set.

(3) Go Online

- Find additional teaching notes, discussion questions, and the Talk About lt!! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 2 Compare Mean Absolute

 Deviations
Objective

Students will compare the mean absolute deviations of two data sets, in order to compare their variations.

Questions for Mathematical Discourse

SIDE 21

AL. What do you notice about the means and the MADs of the two data sets? The means are equal and the MAD of School A is greater than the MAD of School B.

OII. What do you think the greater MAD for School A indicates about the two data sets? Sample answer: I think the scores were closer to the mean in School B because the MAD is smaller.
[B1 Suppose you were given the mean of 81.2 and the MAD of 9.8 for School C. What, if anything, could you determine about the individual values in the data set? Explain. Sample answer: I can only generalize about the variation in the data set from the given information. I can't determine the number of data values nor what individual data values are.

SIDEF3:

All How does the MAD for School A compare to the MAD for School B? Sample answer: The MAD of School B means that the scores are grouped closer together than that of School A.

OL. What does the difference in the MAD between School A and School B indicate? Sample answer: The data for School A are more spread out (farther from the mean) than the data for School B.
[BLI For School A, the range is 25 and the IQR is 14 . For School B, the range is 6 and the IQR is 4 . Does this information support the conclusion about the variation in the data for the two schools? Explain. yes; Sample answer: The range of the data for School B is less than the range for School A. This means the data are less spread out. The IQR of the data for School B is also much less than the IQR for School A. This means that half of the data is more clustered around another measure of center, the median.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and the Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Compare Mean Absolute Deviations, Slide 2 of 5

Check
The table shows the height of waterslides at two different water parks.

Part A Find the mean absolute deviations.

> Splash Lagoon: 10.32 feet; Wild Water Bay: 12.8 feet

Part B Compare the variations.
Sample answer: The mean absolute deviation of the heights at Splash Lagoon is less than the mean absolute deviation of the heights at Wild Water Bay. This means that the waterslide heights at Splash Lagoon are closer to the mean.
(3) Go Oniline Y ou can complete an Extra Example online
(1)Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Interactive Presentation
 Interactive Presentation

Exit Ticket

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record an example of how to use a dot plot to find the mean absolute deviation of a data set. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Exit Ticket

Refer to the Exit Ticket slide. Find the mean absolute deviation of the data for the life expectancy of wild dogs. Round to the nearest tenth.
Write a mathematical argument that can be used to defend your solution. 2.2 years; Sample answer: The mean of the data set is about 12.6 years.

So, the mean absolute deviation is
$\frac{2.6+2.6+2.4+1.4+2.6+1.4+2.4}{7}$ or 2.2 years.

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1-5 odd, 6-10
- ALEKS Measures of Variation

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-4, 6, 8, 9
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- D ALEKS Collecting Data

IF students score 65\% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- D ALEKS Collecting Data

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	find the mean absolute deviation of a data set and explain what it represents	1,2
1	compare the mean absolute deviations of two data sets in order to compare their variations	3,4
2	extend concepts learned in class to apply them in new contexts	5
3	solve application problems involving mean absolute deviation	6
3	higher-order and critical thinking skills	$7-10$

Common Misconception

Some students struggle with remembering to complete all of the steps needed to find the mean absolute deviation. They may forget to use the absolute value to represent the distance from each data value to the mean, or they may forget to find the mean of these distances. Encourage them to understand what the mean absolute deviation of a data set actually means. If they understand that it is the average distance each data value is from the mean, they are more likely to remember to complete all of the steps necessary to find that average.

Apply *indicates multi-step problem
*6. The table shows the number of laps Candice and her two friends ran each day fo five days. Which friend ran the most consistent number of laps each day? Use the mean absolute deviation to construct an argument to justify your response.

Girl	Day 1 Day 2 Day 3 Day 4 Day 5				
Candice	5	6	8	5	7
Malaya	4	5	3	3	5
Zoe	7	8	6	8	8

Zoe; Sample answer: The MAD for Candice is 1.04 laps, for Malaya
is 0.8 laps, and for Zoe is 0.72 laps. Since $0.72<0.8<1.04$,
Zoe ran the most consistent number of laps each day.

Higher-Order Thinking Problems
7. Persevere with Problems The table shows the highway fuel economy of various popular vehicles. Find the mean absolute deviation. How many data values are closer than one mean absolute deviation away from the mean?
Fuel Economy (miles per gallon)
3448253533
3732342330
4.5 miles per gallon; 7 data values
9. Make an Argument Use the meanings of the terms mean, absolute, and deviation to make an argument for why the mean absolute deviation of a data set is named using these terms.
Sample answer: The term absolute refers to the absolute value of a number, which is the distance a number is from 0 on a number line and distance is always positive. To deviate means to vary or change. So, the mean absolute deviation of a data set is the average (mean) distance from each data value to the mean, which is a description of how the data values deviate or vary from the mean.
8. Justify Conclusions The table shows the high temperatures for the last 6 days. If today's high temperature was $61^{\circ} \mathrm{F}$, how is the mean absolute deviation affected? Justify your response. High T emperature (F) 755872686966

Sample answer: The mean absolute deviation increases from 4 to about 4.6. Since the mean is affected, then the mean absolute deviation is also affected.
10. Reason Inductively If the distance between the mean and a data value on a number line is 0 , what do you know about the data value? Explain.
The data value must be equal to the mean; Sample answer: For example, if the mean is 7 and the data value is 7 , the distance between the two points is 0 units.

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them In
Exercise 7, students find the mean absolute deviation and determine how many values are closer than one mean absolute deviation away from the mean. Encourage students to plan a solution pathway that can be implemented to solve the problem.

3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 8, students determine how adding another value to the data set affects the mean and mean absolute deviation. Encourage students to support their answer with a logical explanation.
In Exercise 9, students explain why the mean absolute deviation is named as such. Encourage students to explain that the term absolute refers to the absolute value, which is the distance a number is from 0 , and to deviate means to vary or change. So, the mean absolute deviation is a description of how the data values vary from the mean.
In Exercise 10, students will determine what they know about the data value. Encourage students to use reasoning to form an explanation that concludes the data value must be equal to the mean.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Make sense of the problem.

Use with Exercise 6 Have students work together to prepare a brief demonstration that illustrates why this problem might require multiple steps to solve. For example, before they can order the students, they have to find the mean and mean absolute deviation for each student. Have each pair or group of students present their response to the class.

Clearly explain your strategy.

Use with Exercise 7 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would find the number of data values that are closer than one mean absolute deviation from the mean, without actually solving it. Have each student use their partner's strategy to solve the problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Learn Outliers

Objective

Students will understand what an outlier is and how to determine if a data value is an outlier.

Teaching the Mathematical Practices
2 Reason Abstractly and Quantitatively As students discuss the Talk About It! question on Slide 2, encourage them to understand that outliers can be values that are much less than the other data values. They should be able to reason that if there was a value that was 262.5 units less than Q_{1}, it would also be considered an outlier.
(3) Online to find additional teaching notes.

Talk About It!

SLIDE 2

Mathematical Discourse

If the outlier was removed from the data set, will the median still be 387.5? Why or why not? no; Sample answer: There would now be an odd number of data values. The median would be 387 .

DIFFERENTIATE

Enrichment Activity Bㅣ닌

To further students' understanding of outliers, have them work with a partner to create their own data sets. Each pair of students should create one data set that has an outlier, and one data set that does not have an outlier, according to the definition of outlier presented in the Learn. Remind students that an outlier does not always have to be much greater than the other data values; it can be much less. Then have students trade data sets with another pair of students. Each pair should determine which data set has an outlier, and what that value is. Have pairs check each other's work and discuss and resolve any differences.

Interactive Presentation

Learn, Outliers, Slide 1 of 2
CLICK
On Slide 1, students move through the slides to determine whether or not an outlier exists in the data set.

LESSON GOAL

Students will understand outliers and their effect on measures of center.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Outliers
Example 1: Identify Outliers
Explore: Mean, Median, and Outliers

Learn: Describe the Effect of Outliers
Example 2: Describe the Effect of Outliers

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

(11) View reports of student progress of the Checks after each example to differentiate instruction.

Resources	Al\|	INB	
Remediation: Review Resources		0	
ArriveMATH Take Another Look			
Collaboration Strategies		0	

Language Development Support

Assign page 58 of the Language Development Handbook to help your students build mathematical language related to outliers.
IELII You can use the tips and suggestions on page T58 of the handbook to support students who are building English proficiency.

Focus

Domain: Statistics and Probability
Additional Cluster(s): In this lesson, students address additional clusters 6.SP.A and 6.SP.B by understanding outliers and their effects on measures of center.
Standards for Mathematical Content: 6.SP .A.3, 6.SP.B.4, 6.SP.B.5,
6.SP.B.5.C, 6.SP.B.5.D

Standards for Mathematical Practice: MP2, MP3, MP4, MP5, MP6

Coherence

Vertical Alignment

Previous

Students understood mean absolute deviation.
6.SP.A.3, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B, 6.SP.B.5.C

Now

Students understand outliers and their effect on measures of center.
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C, 6.SP.B.5.D

Next

Students will interpret dot plots, histograms, and box plots.
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B,
6.SP.B.5.C, 6.SP.B.5.D

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students further expand their understanding of statistical measures as they explore outliers. They come to understand that outliers affect measures of center, as they build fluency with identifying outliers and describing the effect outliers have on the mean and median of a data set from real-world scenarios.

Mathematical Background

0
Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2
\square
What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skills for this lesson:

- subtracting and multiplying rational numbers (Exercises 1-4)
- finding the interquartile range (Exercise 5)

Answers

1. $\frac{3}{8}$
2. $\frac{12}{35}$
3. $\frac{14}{9}$ or $1 \frac{5}{9}$
4. $\frac{2}{5}$
5. 13

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about outliers of the populations of Illinois and Florida.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following question to engage students and facilitate a class discussion.

Ask:

- Based on words you recognize within outlier, what do you think an outlier might be in a data set? Sample answer: I think an outlier is a number that is outside most of the other numbers in a data set.

Your Notes,
9 Think About It!
What measures of
variation do you need to find in order to identify any outliers?
median, quartiles, interquartile range

Talk About It! What does it mean that 23 is an outlier?
Sample answer: The age of the youngest person is an extreme value in the data set and is significantly less than the other data values.

Q Example 1 Identify Outliers
The ages, in years, of the candidates in an election are $55,49,48,57$. 23,63 , and 72 .
Identify any outliers in the data set.
Step 1 Find the quartiles and interquartile range.
List the data values from least to greatest.

Find the quartiles and interquartile range.
Median $=\underline{55} \quad \mathrm{Q}_{1}=48 \quad \mathrm{Q}_{3}=\underline{63} \quad 1 \mathrm{QR}=15$
Step 2 Determine the upper and lower limits for the outliers.
Upper Limit
Lower Limit
$Q_{3}+(1.5 \cdot 1 Q R)$
$\mathrm{Q}_{1}-(1.5 \cdot \mathrm{IQR})$

$=63+(1.5 \cdot 15)$	Substitute.	$=48-(1.5 \cdot 15)$
$=63+22.5$	Multiply.	$=48-22.5$
$=85.5$	Simplify.	$=25.5$

Step 3 Identify any outliers.
Any data values that are greater than 85.5 or less than 25.5 are outliers. So, the value 23 is an outlier. Because the data set does not contain any values that are greater than 85.5 , the only outlier is 23 .

Check
The lengths, in feet, of various bridges are $354,88,251,275,727$, and 1,121. Identify any outliers in the data.

There are no outliers in the data set.

O

Interactive Presentation

Example 1, Identify Outliers, Slide 2 of 6

DRAG \& DROP

On Slide 2, students drag to order the values from least to greatest and identify the quartiles.

CLICK

On Slide 3, students move through the steps to determine the boundary for any outliers.

CHECK
(II)

Students complete the Check exercise online to determine if they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 1 Identify Outliers

Objective

Students will use the definition of an outlier to identify any outliers in a data set.

Questions for Mathematical Discourse

SLIDE2

AL. How does ordering the values help you determine Q_{1} and Q_{3} ? Sample answer: I need to order the values so I can separate the values into two halves. The quartiles are the medians of each half.

OL How is the first quartile found? The first quartile is the median of the lower half of the data.

BLII Is there a value you think may be an outlier? Explain. yes; Sample answer: I think 23 may be an outlier because it seems much less than the other data values.

SLIDE3

Al Why do you subtract 22.5 from 48 , and add 22.5 to 63 ? Sample answer: Subtracting the number I calculated from the IQR from the lower quartile and adding it to the upper quartile helps me set the boundaries for the outliers.

Ol Based on the limits for outliers, would 85 be considered an outlier? Explain. no; Sample answer: 85 is between the lower limit, 25.5 , and the upper limit, 85.5 , so it is not an outlier.

IBL. Why do you need to establish a boundary for outliers? The boundary will help me determine if a data value is actually an outlier. I may not be able to detect an outlier just by looking at the data set.

SLIDE 4

AL. How will you determine if there are any outliers? Sample answer: | will look at the lower boundary, 25.5 , and see if there are values in the data set less than that. Then I will look at the upper boundary, 85.5 , and see if there are values in the data set greater than that.

OL. How do you know there is not an outlier other than 23? There are no other values less than 25.5 or greater than 85.5.

If a new candidate with the age of 25 is added, how would the outlier change? Sample answer: there wouldn't be an outlier in the set anymore, because the lower limit would become 1.25 and the upper limit would become 95.25.

0
 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, and Talk About It! questions to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Describe the Effect of Outliers

Objective

Students will understand the effects an outlier can have on the measures of center.

Teaching the Mathematical Practices

6 Attend to Precision As students discuss the Talk About lt! question on Slide 2, encourage them to use clear and precise mathematical language to explain which measure(s) of center and variation were and were not affected by adding Saturday's temperature, as an outlier, to the data set. If Saturday's temperature was not technically an outlier, have them explain the effects of adding that data value on the mean and median.
(continued on next page)

Interactive Presentation

Learn, Describe the Effect of Outliers, Slide 1 of 3

Explore Mean, Median, and Outliers

Objective

Students will use Web Sketchpad to explore how outliers affect the mean and median.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will be presented with the heights of people in a line. Students will use the Web Sketchpad to explore how the outliers will change the measures of center. Encourage students to share their predictions with one another.

Inquiry Question

How does an outlier affect measures of central tendency? Sample answer: The outlier can have an effect on both the mean and the median, but the mean is more likely to be affected. The mean is affected more by the outlier because it uses the sum of all data values.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About tt! question on Slide 3 is shown.

Talk About It! SLIDE3!

Mathematical Discourse

Look at the data set in the sketch to compare the mean and the median. By looking at the sketch, which value do you think better represents the data? Sample answer: The mean and median are close together, with the mean being slightly lower. I think the mean better represents the data because it seems to be more centrally located on the number line.
(continued on next page)

Interactive Presentation

Mean, Median, and Outtiers

(S) Introducing the Incuiry Cueetion

How cum men inct meners if comer sobieng?

Explore, Slide 1 of 7

Explore, Slide 3 of 7

On Slide 5, students use Web Sketchpad to explore how outliers affect the mean and median.

Interactive Presentation

Explore, Slide 5 of 7
WEB SKETCHPAD

On Slide 6, students use Web Sketchpad to explore how outliers affect the mean and median.

TYPE

a)

On Slide 7, students respond to the Inquiry Question and view a sample answer.

Explore Mean, Median, and Outliers (continued)

TiP
Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Encourage students to use Web Sketchpad to explore and deepen their understanding between outliers and the measures of center.

0
Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 6 are shown.

Talk About It!

SLIDE 6

Mathematical Discourse

Do the results match your prediction? Why do you think the mean was more affected by the outlier? Sample answer: Yes; the mean was more affected because I took away a small value and added a much greater value.

To the nearest tenth, the MAD is $\mathbf{1 . 7}$.

Median Interquartile Range (IQR)
 The median is 72
 The IQR is 3

The median was not affected by the inclusion of the outlier. Without the outlier, the mean, MAD, and IQR all increased in value. With the utlier, the mean is not the best representation of center, because most of the values are higher than 67.7

Use either the mean or median when the data does not contain any outliers. Use only the median when the data contains an outlier. While the median might change a little when an outlier is included or emoved, it does not change as much as the mean.
Use the corresponding measure of variation to describe the spread of the data.
If you choose the mean to describe the center, choose the MAD to describe the variation.

If you choose the median to describe the center, choose the IQR to describe the variation.

Interactive Presentation

Learn, Describe the Effect of Outliers, Slide 2 of 3

Learn Describe the Effect of Outliers (continued)

Talk About It!
SLIDE3

Mathematical Discourse

Suppose Saturday's temperature had been $59^{\circ} \mathrm{F}$, which does not qualify as an outlier, but is cooler than the rest. How does this affect the mean? the median? Sample answer: The mean and median without Saturday's temperature was 72 , when Saturday's temperature was added, the mean decreased to 70 , but the median was unchanged.

DIFFERENTIATE

Enrichment Activity

To support students' understanding of how an outlier affects the mean, have students think of a time when they earned a low score on a test or assignment. Ask students, "How did that single score affect your overall grade in the class?" Then have students think of a time when they earned a high score on a test or assignment. Ask students, "How did that single score affect your overall grade in the class?" Have students refer to the Learn to notice the change in mean with and without the outlier.

Example 2 Describe the Effect of Outliers

Objective

Students will describe the effect outliers can have on measures of center.

Questions for Mathematical Discourse SLIDE 21

AL How are the mean and median found? The mean is found by finding the sum of the data and dividing by the total number of values. The median is found by finding the value in the middle of the data set once the values are listed in increasing order.

OL How could you confirm that 200 is an outlier? Sample answer: Determine the upper and lower limits for the outliers by adding 1.5 times the IQR to Q_{3} and subtracting 1.5 times the IQR from $Q_{\text {, The }}$ only data value greater than or less than the limits is 200 .
IBill One of the boundaries for finding an outlier is -30 . Why is that not relevant to this problem? Sample answer: The lifespan of an animal in years cannot be negative.

SLIDE3

AL Do you think the mean will increase or decrease when the outlier is removed from the data set? Explain. decrease; Sample answer: The outlier is much greater than the other data values, so removing it will cause the mean to decrease.

OL. When finding the mean with the outlier you divided by 7 and without the outlier, you divided by 6 . Why are those divisors different? Sample answer: The data set has seven data values with the outlier. When I remove the outlier, I only have 6 data values, which is why the divisors are different.

Compare the mean and the median with and without the outlier. What do you notice about them when you remove the outlier? How is this related to the concept of measure of center? Sample answer: With the outlier, the mean and median have very different values. When I remove the outlier, the mean changes to a value that is much closer to the median. When there are outliers in a data set, the median represents the center, while the mean will be a value pulled away from the center by the outlier.

(3) Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 2, Describe the Effect of Outliers, Slide 4 of 6

Interactive Presentation

Exit Ticket

Exit Ticket

Refer to the Exit Ticket slide. The populations, rounded to the nearest thousand, of five cities in Florida are shown. Is there an outlier in the data set? If so, what value is the outlier? Write a mathematical argument that can be used to defend your solution. no outliers; Sample answer: The upper and lower limits for the outliers are $-285,250$ and $1,184,750$. There are no values that are less than the lower limit or greater than the upper limit, so there are no outliers.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,

THEN assign:

- Practice, Exercises 1-7 odd, 9-12
- D ALEKS Graphs of Data

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-7, 11, 12
- Remediation: Review Resources
- Personal Tutor
- Extra Examples 1 and 2
- D ALEKS Collecting Data

IF students score 65% or below on the Checks,
THEN assign:

- Remediation: Review Resources
- Artive MATH Take Another Look
- D ALEKS Collecting Data

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY
3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	identify outliers in a data set	$1-4$
1	describe the effect outliers can have on the measures of center	$5-7$
2	extend concepts learned in class to apply them in new contexts	8
3	higher-order and critical thinking skills	$9-12$

Common Misconception

Students might indicate that a data value is an outlier simply by observing the values in the data set. For example, in Exercise 4, they might indicate that 96 is an outlier because it appears to be much greater than the other values in the data set. Remind students that a data value is only an outlier if it is 1.5 times greater than or less than the interquartile range. In Exercise 4, 96 is greater than the other data values, but it is not 1.5 times greater than the interquartile range, so it is not an outlier.

Teat Frattice

8. Open Response The table shoms the number
 data? Explain your reasooing
mean Sample angwer: There are no outliech, wo the mean best rapeerents the data.

\bigcirc Highei-Order Thinking Problems

9. Cresse Generate a set of now wond data that contains two ocfiers. Sample answer: age, in years, of people Sample answer. age, in yeark, of peop,
attending a plenic. $4,32,34,40,45$. and 72
H. (4) Construct an Argument Explain how an outter may or may not affect the mean and median
Sample answer: An outber may mahe the mean signiticantly greater of less than the mean would be without the outliec. An outier may change the median stightly or not at all, depending upon the apeened of the data.

10. ID Juntify Conclivaions The ages, in year, of particlparts in a melty race ste 12. 15. 14. 13, $85.12,22.16$ and 10 ideneify any outhers in the cata sel Jatify your response 22: Sample answec: 1 found the interquartile range of the data, 3.5, and interquartie range of the data, 3.5, and
theo multiplied ix by 1.5 to get 5.25 . Nert theo multiplied it by 1.5 to get 5.25 . Nent Iadded 5.25 to the third quartile vatue 15.5, to get the uppor kist er 20.75 . Since 22 is greater than 20.75 , I know Bat 22 is an outlier.
11. (1) Justify Conclusions Dons an outler affect the range of a data set? Explainyes; Somple answer: The outier incroases the range. For example, for the data set $98,102,102,97,85,105,100$, 98 , and 101 the range would be 20. Without the outlier of 85, the range would be a.

Teaching the Mathematical Practices

3 Construct Viable Arguments and Critique the Reasoning of
Others In Exercise 10, students identify an outlier in a data set and then justify their response. Encourage students to support their answer with a precise and logical explanation.
In Exercise 11, students explain the effect an outlier may or may not have on measures of center. Encourage students to construct a logical argument for each measure of center.

In Exercise 12, students determine if an outlier affects the range of a data set. Encourage students to support their answer with a logical explanation.
-

Collaborative Practice

Have students work in pairs or small groups to complete the following exercise.

Solve the problem another way.

Use with Exercise 10 Have students work in groups of 3-4. After completing Exercise 10, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method.

Learn Interpret Dot Plots

Objective

Students will understand that a dot plot can be described by its overall shape.

Teaching the Mathematical Practices
6 Attend to Precision Encourage students to clearly and precisely explain why the mean and median will be the same value for data that is symmetric. Encourage them to use the definitions of mean and median to help support their explanation.

13 Go Online to find additional teaching notes.

Talk About It!

SLIDE2

Mathematical Discourse

Why will the mean and median for a symmetric graph always be the same value? Sample answer: When the data set is symmetric, both the mean and median will be in the middle and at the balance point of the data.

DIFFERENTIATE

Enrichment Activity [BL

For students that need more of a challenge, use the following exercise.
Have students work with a partner to generate a set of values that will have a symmetric distribution and a set of values that will not have a symmetric distribution. Have students construct the dot plot for each set and then explain why the sets are symmetric and not symmetric.

Interactive Presentation

Learn, Interpret Dot Plots, Slide 1 of 3
FLASHCARDS
On Slide 1, students use Flashcards to see an example of a symmetric distribution and a distribution that is not symmetric.

Interpret Graphical Displays

LESSON GOAL

Students will interpret dot plots, histograms, and box plots.

1 LAUNCH

Launch the lesson with a warm up and an introduction.

2 EXPLORE AND DEVELOP

Learn: Interpret Dot Plots
Example 1: Interpret Dot Plots
Learn: Interpret Histograms
Example 2: Interpret Histograms

Explore: Interpret Box Plots

Learn: Interpret Box Plots
Example 3: Interpret Box Plots
Apply: Travel

Have your students complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress of the Checks after each example to differentiate instruction.

Resources	All	S.E	
ArriveMATH Take Another Look	\bullet		
Extension: Select an Appropriate Display		\bullet	0
Collaboration Strategies	\bullet	\bullet	\bullet

Language Development Support

Assign page 59 of the Language Development Handbook to help your students build mathematical language related to interpreting graphical displays.
Ellil You can use the tips and suggestions on page T59 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Statistics and Probability
Major Cluster(s): In this lesson, students address major cluster 6.RP.A and additional clusters 6.SP.A and 6.SP.B by interpreting dot plots, histograms, and box plots.
Standards for Mathematical Content: 6.SP .A.2, 6.SP.A.3, 6.SP.B.4,
6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B,6.SP.B.5.C, 6.SP.B.5.D, A/so addresses 6.RP.A.1, 6.RP.A. 3
Standards for Mathematical Practice: MP1, MP2, MP3, MP4, MP5, MP6, MP7

Coherence

Vertical Alignment

Previous

Students understood outliers and their effect on measures of center.
6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.C, 6.SP.B.5.D

Now

Students interpret dot plots, histograms, and box plots.
6.SP.A.2, 6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5.A, 6.SP.B.5.B,
6.SP.B.5.C, 6.SP.B.5.D

Next
Students will use statistics to compare two populations.
7.SP.B. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students deepen their understanding of statistical measures as they interpret graphical displays. They use measures of center and variation to build fluency with describing data sets represented in dot plots, histograms, and box plots. They apply their understanding of graphical displays to solve multi-step, real-world problems.

Mathematical Background

1 Go Online to find the mathematical background for the topics that are covered in this lesson.

Interactive Presentation

Warm Up

Launch the Lesson, Slide 1 of 2

```
What Vocabulary Will You Learn?
```


datiel


```
diatribution
```



```
gep
```



```
peak
```



```
symumetric distribution
```


What Vocabulary Will You Learn?

Warm Up

Prerequisite Skills
The Warm-Up exercises address the following prerequisite skill for this lesson:

- understanding symmetry (Exercises 1-5)

Answers

1. yes
2. no
3. no
4. yes
5. See Warm Up slide online for correct answer.

Launch The Lesson

The Launch the Lesson feature is designed to engage students with real-world situations that reflect the mathematics of the lesson. This lesson launches with a discussion about different winning times for different events in a recent Summer Olympics.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

What Vocabulary Will You Learn?

Use the following questions to engage students and facilitate a class discussion.

Ask:

- A synonym for the word cluster is a bunch or a mass. What do you think is a cluster in a data set? Sample answer: I think a cluster is a group of data values bunched together.
- What does it mean to distribute papers to the class? Sample answer: to pass them out to students in the classroom.
- What does the word gap mean in everyday life? Sample answer: A gap is an empty spot.
- How would you describe the peak of a mountain? Sample answer: The peak is the highest point.
- How can you determine if a figure is symmetric? Sample answer: A figure is symmetric if it can be folded and both sides are the same.

Think About It What do you notice about the shape of the distribution?

See students' responses.
(2) Talk About It!

What do you notice center's location on the dot plot?

Sample answer: The measure of center is 2 where the data values are piled up on the dot plot. Most of the students in the class responded near this value.

Interactive Presentation

Example 1, Interpret Dot Plots, Slide 3 of 5

Students complete the Check exercise online to determine if they are ready to move on.

584 Module 10 - Statistical Measures and Displays

Learn Interpret Histograms

Objective

Students will understand that a histogram can be described by its overall shape, including clusters, gaps, and peaks.

Teaching the Mathematical Practices

7 Look for and Make Use of Structure As students discuss the Talk About lt! question on Slide 2, encourage them to use the structure of the histogram to describe, in their own words, the heights of the buildings in Seattle.

Go Online to find additional teaching notes.

Talk About It!
 SLIDE 2

Mathematical Discourse

Use the histogram to describe the heights of the buildings in Seattle. Sample answer: Most of the buildings are between 400-599 feet tall, and only one of the twenty-one buildings is taller than 799 feet. The measure of center that best describes the data is in the 500-599 feet range.

Check
The results of a class survey about the number of hours spent on the Internet each week by students are shown in the dot plot.

Number of Hours Spent on the Internet

Part A Choose the appropriate measure of center and variability Sample answer: There are no outliers, and the distribution is symmetric. I should use the mean to describe the measure of center and the mean absolute deviation to describe the measure of spread.
Part B Use the chosen measures to describe the distribution.
Sample answer: The data are centered around the mean of 4 hours. The spread of the data around the center is of 4 hours. The spread of the data around the center is

Ogo Online Y ou can complete an Extra Example online
Learn Interpret Histograms
Y ou can also describe the distribution of histograms, including symmetry, clusters, gaps, and peaks. A cluster occurs when data values are grouped together. A gap occurs where there are no data values. A peak is the most frequently occurring value or interval of values in a data set.
Data were collected on the heights of some buildings in Seattle, Washington and are displayed in the histogram. The graph shows an
 symmetric and does not contain any outliers.

There is a peok from 400 to 499 feet.

sson 10.7.

Interactive Presentation

Learn, Interpret Histograms, Slide 1 of 2
CLICK
On Slide 1, students select each button to see an example of a peak, a gap, and a cluster.

GThink Aboutte
 How many solar

 eclipses are representedin the data set?
16 eclipses

C Talk About tel
What can you infer about solar eclipses
using the cluster of
data values?
Sample answer: Most solar eclipses last for at most 7 minutes and 30 seconds.

C Example 2 Interpret Histograms

Step 1 Identify any symmetry, clusters, and outliers. The distribution is not symmetric. There is a cluster from 0:01-7:30. There are no outliers.

Step 2 Identify any peaks.
There is a peak from 0:01-2:30.
Step 3 Identify any gaps.
There is a gap from 7:31-10:00.
Step 4 Describe the distribution.
Summarize the information you found.
The distribution is not symmetric and does not contain any outliers. The data cluster around 1 second to 7 minutes and 30 seconds and have a peak at 1 second to 2 minutes and 30 seconds. There is a gap at 7 minutes and 31 seconds to 10 minutes.

Check

Sample answer: The distribution is not symmetric, and does not contain any outliers. The data cluster around 3 laps to 14 laps, and have a peak from 9 to 11 laps. There are no gaps in the distribution.

Q Go Online Y ou can complete an Extra Example online

Interactive Presentation

Example 2, Interpret Histograms, Slide 2 of 7

CLICK

On Slides 4 and 5, students identify gaps and summarize the data.

CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Example 2 Interpret Histograms

Objective

Students will describe the shape of a distribution, displayed in a histogram.

Questions for Mathematical Discourse

 SLIDE2AL. How do you know the histogram is not symmetric? Sample answer: If I draw a line through the middle of the histogram, the left side does not match the right side.

OL. How can you determine if there is a cluster? Sample answer: I can look for places where the data values are grouped together.
3. What do the clusters in the histogram represent? Sample answer: The clusters in this histogram represent most of the eclipses, and they last between one second and 7 minutes and 30 seconds.

SSIDEB3

All How will you determine if there is a peak? Sample answer: I will check to see if there is a bar that is the tallest.
(0) Does every histogram have a peak? Explain. no; Sample answer: If a histogram has all of the bars at the same height, there will not be a peak.
31. Why isn't the peak from 0:01 to 5:00? Sample answer: The bar for 0:01-2:30 is taller than the bar for 2:31-5:00, soit is the only peak.

SLIDE 4

AI How will you determine if there is a gap? Sample answer: I will check to see if there is an interval with no data.

OL. What does the gap at 7:31-10:00 mean? The gap means that there were no eclipses that lasted between 7 minutes and 31 seconds and 10 minutes.

BL. If there was one eclipse that lasted 16 minutes, would there be another gap? If yes, where would it be located? yes; Sample answer: If the intervals were extended, the category 12:31 to 15:00 would represent a gap.

3 Go Online

- Find additional teaching notes, Teaching the Mathematical Practices, discussion questions, and the Talk About $l t$! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Learn Interpret Box Plots

Objective

Students will understand how to use the structure of a box plot to interpret the data that it represents.

Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Encourage students to make sense of what it means for one whisker on a box plot to be longer than the other whisker. Students should reason that a longer whisker means the data are more spread out in that section, than in the shorter whisker.

Teaching Notes

SUIDE1
Remind students that a box plot is constructed using the lower extreme, first quartile, median, third quartile, and upper extreme. These values separate the data into quartiles, so each section of a box plot represents 25% of the data. Some students think that a longer box or a longer whisker mean that there are more data values in that section. Remind students that each section contains the same number of data values. A longer section indicates that the data within that section are more spread out.

Talk About It!
SIIDE2

Mathematical Discourse

What percent of the data is represented by each box and whisker? What do shorter boxes or whiskers indicate about the data? longer boxescar whiskers? Sample answer: Each box and each whisker on a box plot contains 25% of the data values. Shorter boxes or shorter whiskers mean the values in those sections are closer together. Longer boxes or longer whiskers mean the data in those sections are more spread out.

Interactive Presentation

Learn, Interpret Box Plots, Slide 1 of 2

On Slide 1, students select the buttons to learn about symmetry in box plots.

On Slide 2, students move through the steps to learn more about the structure of box plots.

1 CONCEPTUAL UNDERSTANDING

Explore Interpret Box Plots

Objective
Students will use Web Sketchpad to explore how changes in a data set affect a box plot.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the Talk About It! questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? You may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of Activity

Students will explore how changing data values affects the different parts of a box plot.

Q. Inquiry Question

How does a box plot reflect changes in a data set? Sample answer: The whiskers and the boxes can change lengths depending on the changes in the values.

Go Online to find additional teaching notes and sample answers for the Talk About It! questions. A sample response for the Talk About It! question on Slide 3 is shown.

Talk About It!

SLIDE 3

Mathematical Discourse

What points changed the box plot the most? Explain how they changed the box plot. Sample answer: The fifth largest data point directly affects the median. The minimum and maximum values directly affect the whiskers. The second and third largest, and the seventh and eighth largest indirectly affect the whiskers by changing the values of the quartiles.
(continued on next page)

Interactive Presentation

Interpres Box Phots
©) Introducing uhe Ingoliny Conenbion

© Fin -

Explore, Slide 1 of 10

menamo cintien

Explore, Slide 3 of 10
WEB SKETCHPAD
Throughout the Explore, students use Web Sketchpad to explore how changes in a data set affect a box plot.

Interactive Presentation

Explore, Slide 7 of 10

TYPE
 a

On Slide 10, students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Interpret Box Plots (continued)

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Students will use Web Sketchpad to explore and deepen their understanding about the box plots and observe how changing the data values in a set will impact the box plot.
(Go Online to find additional teaching notes and sample answers for the Talk About It! questions. Sample responses for the Talk About It! questions on Slide 7 are shown.

Talk About It!

SLIDE7

Mathematical Discourse

The median divides the box into two sections. What do you notice about the median when the two sections are not equal? What do you notice about the median when the two sections are equal? Sample answer: The two sections of the box are unequal when the median is closer to one quartile than the other. The two sections of the box are equal when the distance between the median and the lower quartile is equal to the distance between the median and the upper quartile.
6.SP.B.4, 6.SP.B. 5

Q Example 3 Interpret Box Plots
attendance at a fitness club.
Describe the distribution of the data, including any symmetry, outliers, measures of center, and \qquad 5060708090100110 measures of variation.

The distribution is not symmetric.
The data contain an outlier, 110 people, indicated by the asterisk.
The median is 70 people. This means that for half of the days, the daily attendance at the fitness club was below 70, and for half of the days, the dally attendance was above 70
The interquartile range is $80-65$, or 15 . This means that the middle 50% of the data vary by 15 .

The left box is the shortest. This means that 25% of the data is between 65 and 70 people, and these data values are closer
logether than the data values in the other box or whiskers.

Check
The average gas mileage for various sedans is shown in the box plot. Describe the distribution of the data, including any symmetry, outliers, measures of center, and measures of variation.

The distribution is not symmetric
The data do not contain any outliers.
The median is 27 mpg . Half of the sedans had a gas mileage greater than 27 mpg , and half had a gas mileage less than 27 mpg .
The interquartile range is 8 . This means that the middle 50% of the data vary by 8 mpg .
The left box and left whisker are the shortest. This means that $\mathbf{5 0 \%}$ of the data is between 23 and 27 mpg , and these data values are closer together than the data values in the other box or whisker
Q go Online You can complete an Extra Example online

Interactive Presentation

Example 3, Interpret Box Plots, Slide 2 of 4
On Slide 2, students find the median,
range, and interquartile range.

588 Module 10 •Statistical Measures and Displays

Example 3 Interpret Box Plots

Objective

Students will use the median and measures of variation to describe a data set represented by a box plot.

Teaching the Mathematical Practices

6 Attend to Precision Encourage students to describe the data set using clear and precise mathematical language, including what the lengths of the boxes and whiskers indicate about the data.

As students discuss the Talk About lt! question on Slide 3, encourage them to clearly explain what the box plot tells them about the attendance at the fitness club.

7 Look for and Make Use of Structure Encourage students to study the structure of the box plot to determine the median, range, and interquartile range.

Questions for Mathematical Discourse

SLIDE 2

AL. What do you notice about the lengths of the whiskers? Sample answer: The whiskers are approximately the same length.

OL. What does it mean when the lengths of the whiskers are the same? Sample answer: The lengths of the two whiskers indicate that they are similarly distributed.

OL. Why is the outlier included when finding the range? Sample answer: The outlier is still part of the data set. The range is a measure of variation, so it is important to know that the range is 55 , including the outlier, and not 35 , without the outlier.
[B1. How could you check that 110 is definitely an outlier? Sample answer: I could use the interquartile range to make sure that 110 is an outlier.

BL. Make a conjecture about the attendance of the fitness club on a daily basis. Sample answer: The club usually has between 65 and 80 members that attend each day.

Go Online

- Find additional teaching notes and the Talk About It! question to promote mathematical discourse.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Apply Travel

Objective

Students will come up with their own strategy to solve an application problem involving travel distances of a volleyball team.

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change directions, if necessary.

3 Construct Viable Arguments and Critique the Reasoning of Others As students respond to the Write About It! prompt, have them make sure their argument uses correct mathematical reasoning. If you choose to have them share their responses with others, encourage the listeners to ask clarifying questions to verify that the reasoning is correct.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustration, or disengagement, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- How will you use the frequency data for the bar labeled $20-24$?
- How can you determine the total number of times the team traveled?
- Notice which number is the part and which is the whole. How can you express these as a fraction in order to find the percent of games for which the team traveled $20-24$ miles?

Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Interactive Presentation

Apply, Travel
CHECK

Students complete the Check exercise online to determine if they are ready to move on.

Interactive Presentation

Exit Ticket

Foldables

Have students update their Foldables based on what they learned in this lesson. For this lesson, students could record examples of the measures of center and variation that can be used to describe different data displays. You may wish to have students share their Foldables with a partner to compare the information they recorded, discussing and resolving any differences.

Essential Question Follow-Up

Why is data collected and analyzed and how can it be displayed?
In this lesson, students learned how to interpret data represented in dot plots, histograms, and box plots. Encourage them to work with a partner to compare and contrast how they can interpret these displays. For example, they may see they can find the median from a dot plot or a box plot, but not a histogram. They can find the mean from a dot plot, but not from a histogram or box plot.

Exit Ticket

Refer to the Exit Ticket slide. Choose the appropriate measure of center and variation and use the measures to describe the data set. Sample answer: The median is 32 and the interquartile range is 4 . This means that the time to swim the length of the school pool is centered on 32 seconds. The interquartile range means the spread of the data around the center is about 4 seconds.

ASSESS AND DIFFERENTIATE

(III) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or above on the Checks,
THEN assign:

- Practice, Exercises 1-7 odd, 8-11
- Extension: Select an Appropriate Display
- D ALEKS Graphs of Data

IF students score 66-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-4, 7-9
- Extension: Select an Appropriate Display
- Personal Tutor
- Extra Examples 1-3
- DALEKS Collecting Data

IF students score 65\% or below on the Checks, THEN assign:

- Arlive MATH Take Another Look
- ALEKS Collecting Data

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

3 APPLICATION

Practice and Homework

The Practice pages are meant to be used as a homework assignment. Students can complete the practice exercises in their Interactive Student Edition.

The following online homework options are available for you to assign to your students. These assignments include technology-enhanced questions that are auto-scored, as well as essay questions. Many of the Practice exercises on these pages are found in the online assignments, as well as additional exercises.

Practice Form B
Practice Form A
[1] Practice Form C

Suggested Assignments

Use the table below to select appropriate exercises for your students' needs.

DOK T	opic	Exercises
1	choose the appropriate measure of center and variation to describe a data set represented by a dot plot	1,2
1	describe the shape of a distribution, displayed in a histogram	3
1	use the median and measures of variation to describe a data set represented by a box plot	4
2	extend concepts learned in class to apply them in new contexts	5
3	solve application problems involving interpreting graphical displays	6,7
3	higher-order and critical thinking skills	$8-11$

Apply *indicates multi-step problem

*6. The histogram shows the number of candy bars each player on a football team sold. One player claimed that more than 50% of the players sold 90 or more candy bars. Is the player correct? Write an argument that can be used to defend your solution. yes; Sample answer: There were 21 players that sold 90 or more candy bars, out of 39 total players. Since $\frac{21}{39} \approx 54 \%$, which is greater than $\mathbf{5 0 \%}$, the player was correct.
7. The histogram shows the weights of pumpkins picked by students on pumpkin farm. One student claimed that more than 25% of the pumpkins picked weighed 20 pounds or more. Is the student correct? Write an argument that can be used to defend your solution. no; Sample answer: There were 6 pumpkins that weighed 20 pounds or more, out of 40 total pumpkins picked. $\frac{6}{40}=15 \%$, which is less than 25%, so the student was not correct.

Higher-Order Thinking Problems
8. Be Precise The dot plot shows the number of runs scored by a baseball team for last season. Use clusters, gaps, peaks, outliers, and symmetry to describe the shape of the distribution.

012345678
Sample answer: The shape is not symmetric There are gaps from 2-4 and 6-8. There is a peak at 5 . There are clusters from 0-2 and
$4-6$. There are no outliers.
10. Create Draw a dot plot that is not symmetric.
Sample answer:
Practice Time (min)
\qquad : : : : : . 30405060708090
9. Juitify Conclusion histogram, do more According to the coasters have a speed 50% of the rolle greater? Explain. Speeds of Roller Coasters
 no: Sample anwer: There : There are a total of 13 roller coasters. There are 6 roller coasters that have speeds 70 mph or greater. $\frac{6}{13}$ is about $\mathbf{4 6 . 2 \%} .46 .2 \%$ is less than 50%.
11. Persevere with Problems If a box plot's distribution is symmetric, which measure of center and measures of spread are most appropriate to use? mean; mean absolute deviation

1 CONCEPTUAL UNDERSTANDING

Teaching the Mathematical Practices

6 Attend to Precision In Exercise 8, students describe the shape of the distribution shown in the dot plot. Encourage students to use precision when explaining the data displayed.
3 Construct Viable Arguments and Critique the Reasoning of Others In Exercise 9, students determine if more than 50\% of the roller coasters have a speed of 70 mph or greater. Encourage students to use information from the graph to support their answer.

1 Make Sense of Problems and Persevere in Solving Them In Exercise 11, students determine which measure of center and measures of spread are the most appropriate to use. Encourage students to check each measure of center and spread before determining an answer.

Collaborative Practice

Have students work in pairs or small groups to complete the following exercises.

Clearly explain your strategy.

Use with Exercise 7 Have students work in pairs. Give students 1-2 minutes to individually consider the problem and formulate their strategy. Then ask them to clearly explain their strategy to their partner how they would solve the problem, without actually solving it. Have each student use their partner's strategy to solvethe problem. Have them compare and contrast strategies to determine if one or both strategies were viable, and discuss and resolve any differences.

Solve the problem another way.

Use with Exercise 9 Have students work in groups of 3-4. After completing Exercise 9, have one student from each group rotate to form a different group of students. Each student should share the solution method they previously used to solve the problem. Have students compare and contrast the different methods for solving the problem, and determine if each method is a viable solution. If the solutions were the same, have them brainstorm another way to solve the problem. Have one group present two viable solution methods to the class, and explain why each method is a correct method.

DINAH ZIKE FOLBABLES

[FIII A completed Foldable for this module should include a review of dot plots, histograms, and box plots. Have students share their completed Foldables with a partner, comparing the similarities and differences in the examples recorded. Students can use their completed Foldables to study for the module assessment.

Rate Yourself! 1 O

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Interactive Student Edition and share their responses with a partner.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technology-enhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Put It All Together 1: Lessons 10-1, 10-2, and 10-3
Put It All Together 2: Lessons 10-2, 10-3, 10-4, 10-5, 10-6, and 10-7
Vocabulary Test
An Module Test Form B
Oll Module Test Form A
Bill Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable and editable document. A scoring rubric is included.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice with these topics for Statistics and Probability.

- Statistical Questions and Frequency Distributions
- Dot Plots
- Measure of Center
- Measure of Variability
- Measure of Center and Variability
- Histograms
- Box Plots

Essential Question

ELIL Have students complete the graphic organizer to organize their thoughts related to the Essential Question. You may wish to have students work in pairs or groups to answer the Essential Question, or facilitate a whole class discussion. You may wish to have students watch the Launch the Module video again in which the module Essential Question was first presented.

Why is data collected and analyzed and how can it be displayed?
See students' graphic organizers.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-8 mirror the types of questions your students will see on the online assessments.

Question Type	Description	Exercise(s)
Multiple Choice	Students select one correct answer.	4,6
Multiselect	Multiple answers may be correct. Students must select all correct answers.	1,7
Table Item	Students complete a table by correctly classifying the information.	5
Open Response	Students construct their own response in the area provided.	$2,3,8$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
6.SP.A. 1	$10-1$	1
6.SP.A.2	$10-4,10-7$	$2,3,5$
6.SP.A.3	$10-3,10-4,10-5,10-6,10-7$	$2,3,5,6$
6.SP.B.4	$10-2,10-3,10-4,10-6,10-7$	$4,5,8$
6.SP.B.5	$10-2,10-3,10-4,10-5,10-6,10-7$	$2-8$
6.SP.B.5.A	$10-2,10-3,10-5,10-7$	4,8
6.SP.B.5.B	$10-3,10-5,10-7$	2,6
6.SP.B.5.C	$10-3,10-4,10-5,10-6,10-7$	$2,3,5-7$
6.SP.B.5.D	$10-6,10-7$	8

5. Table Item The ages of the current students attending an art class at a local community center are shown in the box plot. Consider the parts of the box plot and indicate which of the parts are correctly named. (Lesson 4) Ages of Art Class Students

	Correct Intorrect	
Lower Extreme $=24$		X
Median $=39$	X	
$\mathrm{Q}_{1}=33$	X	
$\mathrm{Q}_{3}=44$		X
Upper Extreme $=58$	X	

6. Multiple Choice The table shows the top ten test scores of the students in Ms. Schneider's science class. (Lesson 5)

A. Which of the following represents the mean absolute deviation of the data?
(A) 3.2 points
(B) 3.4 points

C 3.6 points
(D) 4.1 points
B. Describe what the mean absolute deviation represents.

Sample answer: The average distance each test score is from the mean is 3.6 points.
7. Multiselect The heights, in feet, of various trees in the park are $32,10,70,40,34,44$, and 36 . Identify any outliers in the data set. Select all that apply. (Lesson 6)
$\checkmark 10$ feet
34 feet

- 36 feet

40 feet
$\checkmark 70$ feet
8. Open Response The histogram shows the distances Jerome's co-workers have commute to work each morning. What percent of his co-workers travel more than 10 miles to work? Round to the nearest percent. (Lesson 7)

51\%

III Foldables Study Organizers

What Are Foldables and How Do I Create Them?
Foldables are three-dimensional graphic organizers that help you create study guides for each module in your book.
Step 1 Go to the back of your book to find the Foldable for the module you are currently studying. Follow the cutting and assembly instructions at the top of the page.
Step 2 Go to the Module Review at the end of the module you are currently studying. Match up the tabs and attach your Foldable to this page. Dotted tabs show where to place your Foldable. Striped tabs indicate where to tape the Foldable.

How Will I Know When to Use My Foldable?
You will be directed to work on your Foldable at the end of selected lessons. This lets you know that it is time to update it with concepts from that lesson. Once you've completed your Foldable, use it to study for the module test.

How Do I Complete My Foldable?
No two Foldables in your book will look alike. However, some will ask you to fill in similar information. Below are some of the instructions you'll see as you complete your Foldable. HAVE FUN learning math using Foldables!

[^18]

FL6 Foldables Study Organizers

FL12 Foldables Study Organizers

Glossary

A

Arrive Math, see Tier 2 Intervention
Assessment, see Review and Assessment Options, Formative Assessment

Differentiate

Enrichment Activities, 8, 14, 30, 40, 67, 81, 97, $113,157,177,193,208,218,231,266,289$, $305,336,359,369,377,410,415,423,435$, $463,497,507,544,575,578,583$
Language Development Activities, 4, 37, 47, $57,58,86,143,170,172,202,210,227$, 239, 278, 299, 315, 341, 351, 397, 443, 454, 512, 521, 537, 569
Reteaching Activities, 23, 103, 122, 136, 160, 195, 199, 237, 245, 269, 277, 287, 295, 308, 321, 407, 469, 485, 519, 551, 561
Dinah Zike Foldables ${ }^{\oplus}$, see Foldables ${ }^{\oplus}$

E

ELL Support, 2, 3a, 4, 13a, 23a, 29a, 37a, 37, $47 a, 47,57 a, 57,58,65 a, 73,74,78,79 a, 85 a$, 86, 93a, 103a, 113a, 121a, 129, 130, 134, 135a, 143a, 143, 155a, 167a, 170, 172, 177a, 187, 188, 192, 193a, 199a, 202, 205a, 210, 215a, 225a, 227, 237a, 239, 245a, 255, 256, 260, 261a, 269a, 277a, 278, 287a, 295a, 299, 305a, 315a, $315,329,330,334,335 a, 341 a, 341,351 a, 351$, 359a, 369a, 377a, 391, 392, 396, 397a, 397, 405a, 415a, 423a, 429, 430, 434, 435a, 443a, 443, 451a, 454, 463a, 469a, 479, 480, 484,

485a, 495a, 505a, 512, 517a, 521, 531, 532, 536, 537a, 537, 543a, 549a, 561a, 569a, 569, 575a, 583a, 593, 594
Essential Question, 1, 74, 77, 130, 133, 188, 191, 256, 259, 330, 333, 392, 395, 430, 433, 480, 483, 532, 535, 594

Essential Question Follow-Up, 10, 20, 26, $44,62,70,100,110,118,153,164,174,184$, 234, 285, 292, 312, 326, 388, 402, 412, 420, 426, 440, 460, 466, 482, 492, 502, $514,512,546,558,566,590$

Foldables, 1, 20, 26, 34, 73, 77, 100, 120, 133, 164, 174, 184, 187, 191, 212, 222, 255, 259, 326, $329,333,348,356,366,392,402,412,415$, $420,433,440,448,460,479,483,492,502$, 514, 528, 535, 531, 546, 566, 572, 590, 593

Formative Assessment Math Probe
(Cheryl Tobey), 1b, 77b, 133b, 191b, 259b,
333b, 395b, 433b, 483b, 535b

G

Growth Mindset, see Mindset Matters

I

Intervention, see Tier 2 Intervention

Mathematical Discourse, 3c, 3d, 4, 5, 6, 7, 8, $13 c, 13 d, 14,15,16,17,18,24,25,29,30,31,32$, $38,39,41,42,47,48,49,50,51,57 c, 57 d, 58$, $59,60,66,68,80,81,82,85,86,87,88,89$, 90, 93c, 93d, 93, 94, 95, 97, 98, 103c, 103d, $103,104,105,106,107,114,115,116,122,123$, $124,135,136,137,138,143,144,145,146,147$, 148, 149, 150, 155, 156, 157a, 158, 159, 160, 161, $162,167,168,169,171,178,179,180,181,182$, 193c, 193d, 194, 196, 199c, 199d, 199, 200, 201, 202, 205, 206, 207, 209, 210, 215, 216, 217, $218,219,220,225 c, 225 d, 225,226,227,228$, 229, 230, 232, 237c, 237d, 237, 238, 239, 240, 245c, 245d, 245, 246, 247, 248, 249, 250, 261, 262, 263, 264, 269, 270, 271, 272, 277c, 277d, 277, 278, 279, 280, 281, 282, 283, 284, 287c, 287d, 287, 288, 289, 290, 295c, 295d, 295, 296, 298c, 298d, 298, 299, 300, 305c, 305d, $306,307,308,309,310,315 c, 315 d, 316$, $317,318,319,320,322,323,324,335,336$, $337,341 \mathrm{c}, 341 \mathrm{~d}, 341,342,343,344 \mathrm{a}$, 344b, $344,345,346,351 c, 351 d, 352,353,354$, 359c, 359d, 360, 362, 363, 364, 369c, 369d, 370, 371, 372, 377c, 377d, 377, 378, 379, 381, $382,383,384,385,397 c, 397 d, 397,398,399$, 400, 405, 406, 407, 408a, 408b, 408, 409,
by multiplication, 361-364 by substitution, 336-337 by subtraction, 353-354 ubtraction, 351-354 writing
addition, 342
division, 370
from a graph, 418-419 multiplication, 36
Equivalent expressions, 315-320
Equivalent rates, 67-68
Equivalent ratios, and graphs, 23-25
and tables, 13-17
to find percent of a number
104-108, 113-115
find the whole, 123
to write decimals as
percents, 98
to write fractions as
percents, 94-97
to write percents, 85-90
to write percents as fractions,
93-94
use scaling to find, 14-17
Evaluation of algebraic
expressions, 287-290
Exponents, 261-264
Expressions
algebraic, 277-284
factoring, 308-310
numerical, 269-271
F
Factoring
algebraic expressions, 310
greatest common factor,
308-310
numerical expressions, 309
First quartile, 561
Foldables ${ }^{\ominus}$, 20, 26, 34, 100, 129,
164, 174, 184, 187, 212, 222, 255,
$326,329,348,356,366,391$,
$402,412,420,426,429,440,448$
$460,479,492,502,514,528,531$
$546,566,572,590,593$
Formulas
area of parallelograms 436 rea of trapezoids, 451-454 rea of triangles, 444 volume of cube, 486 volume of right prism, 487 olume of rectangular prism, 487

Fractions

as percents and decimals,
93-98
dividing by whole numbers,
177-180
dividing whole numbers by,
157-162
division, 167-172

Gap, 585
Greatest common factor (GCF), 295-297
and the Distributive Property, 308-310
Graphic Organizers, $73,130,188$,
256, 330, 392, 430, 480, 532
594
Graphing,
equations, 415-416
inequalities, 380-383
lines, 415-419
ordered pairs, 231-232
ratio relationships, 23-25, 29-30
rational numbers, 225-232
reflections of points, 237-240
Guess, check, and revise strategy, 336

H

Height
of a parallelogram, 436 of a trapezoid, 45
of a triangle, 444
Histogram, 544-545, 585-586

Identity Property, 316 Independent variable, 397 399-400
Inequalities, 377
graphing, 380-382 solving, 383-385 writing, 378-379

Integers

absolute value of, 201-202 209-210
comparing, 205-206 graphing, 195-196
opposites of, 199-201 ordering, 207 representing, 193-194 Interquartile range (IQR), 561, 583
Inverse operations, 344 in solving, 351, 362, 369 Inverse Property of Multiplication, 155

L

Lateral face, 517
Least common multiple
(LCM), 298-300
Like terms, 278-279, 321-323 combining, 321-323 Line plots. See dot plots

Mean, 549-550 Mean absolute deviation (MAD), 569-572, 583 Measures of center , 549 Measures of variation, 561 Median, 553, 561 Missing data, 551 Missing dimensions of parallelograms, 437 of rectangular prisms, 489-490 of trapezoids, 458 of triangles, 446
Mixed numbers
as percents, 97 division of, 181-182
Multi-digit numbers, 134-138
Multiple representations of relationships, 423-425 Multiplication
of decimals, 147-148
Multiplication equations solving, 361-364 writing, 359-360
Multiplication Property of Equality, 371 Multiplicative inverse, 155

Negative integer , 193 Nets, 495 of rectangular prisms, 495-497
of square pyramids, 517-519 of triangular prisms, 505-507 of triangular pyramids, 519-521
Numerical expressions, 269-271 evaluating, 270, 271 writing, 271

0

Opposites, 199-201
Order of operations, 269-270
Ordered pair ,
identifying, 227-232 writing equivalent ratios as, 23-26, 29-30
Origin, 23, 227-228
Outlier, 575-576 effect on data, 577-580

Parallelogram, 436 area of, 436-438
base of, 436
height of, 436
missing dimensions of, 438
Part-to-part ratio, 6, 8 Part-to-whole ratio, 6-7 Peak, 585
Percent, 79-82, 85-90 as decimals and fractions, 93-98
as mixed numbers, 97 benchmark, 113-116 estimating, 113-116 model, 79-82, 85-90 of a number, 103-108
Perimeter
on the coordinate plane, 470 , 471-473
Positive integer, 193
Powers, 261-264
as products, 261-263 evaluating, 263-264

Prism, 485
nets of, 495-497,505-507 rectangular , 485-494 496-500
surface area of, 498-500, 508-512
triangular , 505-512 volume of, 486-490
Pyramid, 517 nets of, 518-521 regular , 517 square, 518-519, 522-524 surface area of, 522-526 triangular , 519-521,525-526

Quadrants, 225-226
Quartiles, 561
Quotient, 135 interpretation of, 161-162, 169

Range, 561
interquartile, 561, 583
Rates, 57-58, 65-68
Ratios, 3-5
and bar diagrams, 3-4, 6,
13, 37
and double number lines,
18, 40
comparing ratio relationships,
29-32
equivalent (see equivalent
ratios)
graphing ratio relationships,
23-25, 29-30
part-to-part ratio, 6, 8
part-to-whole ratio, 6-7
ratio relationships, 3-5, 29-32
to convert measurements,
47-52
unit ratio, 47
Ratio table, 14-17, 29-32, 104 107-108, 122
Rational numbers, 215 absolute value of, 217 comparing, 218-219 graphing, 215-216 ordering, 220
Reciprocal, 155-156, 158-162

Rectangular prisms, 485 missing dimensions of, 489-490
nets of, 495-497
surface area of, 498-500 surface area of, 498-
volume of, 486-490
Reflections on the coordinate
plane, 237-240
Regular polygon, 463
Regular pyramid, 517

s

Scaling, 14-17, 104, 107-108, 122 Simplest form, 321-322
Slant height, 517
Solution, 335
Solve, 335
addition equations, 342-346
by guess and check, 336
by substitution, 336-337
division equations, 371-372
inequalities, 383-385
multiplication equations,
361-364
subtraction equations
352-354
Square pyramids
nets of, 517-519
surface area of, 522-523
Statistical question, 537-538
Statistics, 537
Subtraction Property of Equality, 344
Subtraction equations,
solving, 353-354 solving, 353-354
Surface area
of rectangular prisms 498-500
of square pyramids, 522-524 of triangular prisms, 508-511 of triangular pyramids. 525-526
Symmetric distribution, 583

T ape diagrams. See bar diagrams

415, 416, 417, 418, 419, 423, 424, 425, 435c, 435d, 436, 437, 438, 443c, 443d, 444, 445a, 445b, 445, 446, 451, 452, 453, 455, 456, 457, 458, 463c, 463d, 463, 464, 469c, 469d, 469, 470, 471, 472, 473, 474, 486, 487, 488, 489, 490, 495c, 495d, 495, 496, 498, 499, 505c, 505d, 505, 506, 508, 509, 510, 511, 517, 518, $520,522,523,525,537,538,539 a, 539$ b, 539, 540, 543, 544, 545, 549c, 549d, 550, 552, 553, 554, 555, 556, 561, 562, 564, 565, $566,569,570,571,575,576,577 a, 577$ b, 578, 579, 583, 584, 585, 586, 587a, 587b, 587, 588

Mindset Matters, 2, 78, 134, 192, 260, 334, 416, 434, 484, 536

P

Prerequisite Skills

Are You Ready?, 2, 78, 134, 192, 260, 334, 416, 434, 484, 536
Warm Up, 3b, 13b, 23b, 29b, 37b, 47b, 57b, 68b, 79b, 85b, 93b, 103b, 113b, 121b, 135b, 143b, 155b, 167b, 177b, 193b, 199b, 205b, 215b, 225b, 237b, 245b, 261b, 269b, 277b, 287b, 295b, 305b, 315b, 335b, 341b, 351b, 359b, 369b, 377b, 397b, 405b, 415b, 423b, 435a, 443b, 451b, 463b, 469b, 485b, 495b, 505b, 517b, 537b, 543b, 549b, 561b, 569b, 575b, 583b

R

Review, see Review and Assessment Options
Review and Assessment Options, 73, 129, 187, 225, 329, 391, 449, 480, 531, 593

Rigor, 1a, 3a, 13a, 23a, 29a, 37a, 47a, 57a, 65a, 77a, 79a, 85a, 93a, 103a, 113a, 121a, 133a, 135a, 143a, 155a, 167a, 177a, 191a, 193a, 199a, 205a, 215a, 225a, 237a, 245a, 259a, 261a, 269a, 277a, 287a, 295a, 305a, 315a, 333a, 335a, 341a, 351a, 359a, 369a, 377a, 395a, 395a, 405a, 415a, 423a, 433a, 435a, 443a, 451a, 463a, 469a, 483a, 485a, 495a, 505a, 517a, 535a, 537a, 543a, 549a, 561a, 569a, 575a, 583a

s

Standardized Test Practice, see Test Practice

T

Test Practice, 75-76, 131-132, 189-190, 257-258, 331-332, 393-394, 431-432, 481-482, 533-534, 595-596

Tier 2 Intervention, 3a, 11, 13a, 21, 23a, 27, 29a, 35, 37a, 45, 47a, 55, 57a, 63, 65a, 71, 79a, 83, 85a, 91, 93a, 101, 103a, 111, 113a, 119, 121а, 127, 135a, 141, 143a, 153, 155a, 165, 167a, 175, 177a, 185, 193a, 197, 199a, 203, 205a, 213, 215a, 223, 225a, 235, 237a, 243, 245a, 253, 261a, 267, 269a, 275, 277a, 285, 287a, 293, 295a, 303, 305a, 313, 315a, 327, 335a, 339, 341a, 349, 351a, 357, 359a, 367, 369a, 375, 377a, 389, 397a, 403, 405a, 413, 415a, 421, 423a, 427, 435a, 441, 443a, 449, 451a, 461, 463a, 467, 469a, 477, 485a, 493, 495a, 503, 505a, 515, 517a, 529, 537a, 542, 543a, 547, 549a, 559, 561a, 568, 569a, 573, 575a, 581, 583a, 591

T erms of an algebraic
expression, 278, 279
Third quartile, 561
Three-dimensional figures, 485
Trapezoid
area of, 290, 451-458
base of, 454
missing dimensions of, 458
Triangle
area of, 444-446
base of, 444
height of, 444
missing dimensions of, 446
Triangular prisms
nets of, 505-507
surface area of, 508-512
Triangular pyramids
nets of, 519-521
surface area of, 525-526

U

Unit price, 60
Unit rate, 57-58

Unit ratio, 47
Units
conversion of, 47-52

V

Variables, 277-278, 280-284, 341-342
Variation, measures of, 561
Volume, 485
of cube, 486
of rectangular prisms, 486-490 of right prism, 487

```
W
```

Whole numbers, 135-138, 156-162, 177-180

X

x-axis, 23,225
x-coordinate, 23, 225-228

Y

y-axis, 23, 225 y-coordinate, 23, 225-228

2

Zero, annexation of, 143-150

Selected Answers

SA6-SA7 Selected Answers

Mathematics Reference Sheet

FormulaS					
Perimeter	Square	$P=4 s$	Rectangle	$P=2 \ell+2 w$ or $P=2(\ell+w)$	
	Square	$A=s^{2}$	Rectangle	$A=\ell w$	
Area	Parallelogram	$A=b h$	Triangle	$A=\frac{1}{2} b h$	
	Trapezoid	$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$			
Volume	Cube	$V=s^{3}$	Prism	$V=\ell w h$ or $B h$	
Temperature	Fahrenheit to Celsius	$C=\frac{5}{9}(F-32)$	Celsius to Fahrenheit	$F=\frac{9}{5} C+32$	

Measurement Conversions		
Length	$\begin{aligned} & 1 \text { kilometer }(\mathrm{km})=1,000 \text { meters }(\mathrm{m}) \\ & 1 \text { meter }(\mathrm{m})=100 \text { centimeters }(\mathrm{cm}) \\ & 1 \text { centimeter }=10 \text { millimeters }(\mathrm{mm}) \end{aligned}$	$\begin{aligned} & 1 \text { foot }(\mathrm{ft})=12 \text { inches (in.) } \\ & 1 \text { yard }(\mathrm{yd})=3 \text { feet or } 36 \text { inches } \\ & 1 \text { mile }(\mathrm{mi})=1,760 \text { yards or } 5,280 \text { feet } \end{aligned}$
Volume and Capacity	1 liter $(\mathrm{L})=1,000$ milliliters (mL) 1 kiloliter $(k L)=1,000$ liters	$\begin{aligned} & 1 \text { cup (c) }=8 \text { fluid ounces (fl oz) } \\ & 1 \text { pint }(\mathrm{pt})=2 \text { cups } \\ & 1 \text { quart }(\mathrm{qt})=2 \text { pints } \\ & 1 \text { gallon (gal) }=4 \text { quarts } \end{aligned}$
Weight and Mass	$\begin{aligned} & 1 \text { kilogram }(\mathrm{kg})=1,000 \text { grams }(\mathrm{g}) \\ & 1 \text { gram }=1,000 \text { milligrams (} \mathrm{mg} \text {) } \\ & 1 \text { metric ton }=1,000 \text { kilograms } \end{aligned}$	$\begin{aligned} & 1 \text { pound }(\mathrm{lb})=16 \text { ounces (oz) } \\ & 1 \text { ton }(\mathrm{T})=2,000 \text { pounds } \end{aligned}$
Time	$\begin{aligned} & 1 \text { minute }(\min)=60 \text { seconds }(\mathrm{s}) \\ & 1 \text { hour }(\mathrm{h})=60 \text { minutes } \\ & 1 \text { day }(\mathrm{d})=24 \text { hours } \end{aligned}$	```1 week \((w k)=7\) days 1 year (yr) \(=12\) months (mo) or 52 weeks or 365 days 1 leap year \(=366\) days```
Metric to Customary	1 meter $=39.37$ inches 1 kilometer $=0.62$ mile 1 centimeter $=0.39$ inch	$\begin{aligned} & 1 \text { kilogram }=2.2 \text { pounds } \\ & 1 \text { gram }=0.035 \text { ounce } \\ & 1 \text { liter }=1.057 \text { quarts } \end{aligned}$

Reveal MATM

Course 1

CONTHNHS

VOLUME 1
MODULE 1 RATIOS AND RATES
MODULE 2 FRACTIONS, DECIMALS, AND PERCENTS
MODULE 3 COMPUTE WITH MULTI-DIGIT NUMBERS AND FRACTIONS
MODULE 4 INTEGERS, RATIONAL NUMBERS, AND THE COORDINATE PLANE
VOLUME 2
MODULE 5 NUMERICAL AND ALGEBRAIC EXPRESSIONS
MODULE 6 EQUATIONS AND INEQUALITIES
MODULE 7 RELATIONSHIPS BETWEEN TWO VARIABLES
MODULE 8 AREA
MODULE 9 VOLUME AND SURFACE AREA
MODULE 10 STATISTICAL MEASURES AND DISPLAYS
mheducation.com/prek-12

[^0]: "As teachers, it's imperative that we start every lesson by getting students to ask more questions because curiosity is the fuel that drives engagement, deeper learning and perseverance."
 -Shah, 2017

[^1]: CLICK $\begin{aligned} & \text { On Slide 3, students select buttons to see } \\ & \text { how the cups of lemon juice compare to }\end{aligned}$
 CLICK
 On Slide 3, students select buttons to see
 how the cups of lemon juice compare to
 CLICK $\begin{aligned} & \text { On Slide 3, students select buttons to see } \\ & \text { how the cups of lemon juice compare to }\end{aligned}$ the total cups of lemonade.

[^2]: What Vocabulary Will You Learn?

[^3]: What Vocabulary Will You Use?

[^4]: 224
 Module 4-Integers, Rational Numbers, and the Coordinate Plan

[^5]: What Vocabulary Will You Learn?

[^6]: 226 Module 4 • Integers, Rational Numbers, and the Coordinate Plane

[^7]: What Vocabulary Will You Use?

[^8]: FL2 Foldables Study Organizer

[^9]: Module $5 \cdot$ Numerical and Algebraic Expressions

[^10]: WATCH
 On Slide 3, students watch an animation to learn about using properties to identify equivalent expressions.

[^11]: 334 Module 6 . Equations and Inequalties

[^12]: FLASHCARDS
 On Slide 2 of the Learn, students use Flashcards to learn more about the Division Property of Equality.

 On Slide 2 of Example 2, students use algebra tiles to model the equation.

 ## CLICK

 On Slide 2 of Example 2, students move through the steps to model the equation.

[^13]: Learn, Inequalities, Slide 2 of 3

[^14]: Module 8 . Area

[^15]: Learn, Volume

[^16]:

[^17]: What Vocabulary Will You Learn？

[^18]: FL2 Foldables Study Organizer

