

Teacher Edition
Volume 2

Reveal MATH' Integrated I

mheducation.com/prek-12

Mc Craw Hill

Copyright © 2020 McGraw-Hill Education
All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, network storage or transmission, or broadcast for distance learning.

Cover: (t to b, I to r) whitestone/123RF , Ingram Publishing
Send all inquiries to:
McGraw-Hill Education
8787 Orion Place
Columbus, OH 43240
ISBN: 978-0-07-703205-0
MHID: 0-07-703205-5
Printed in the United States of America.
34567891011 WEB 2726252423222120
Common Core State Standards © Copyright 2010. National Governors
Association Center for Best Practices and Council of Chief State School Officers.
All rights reserved.

Contents in Brief

Module 1 Expressions
2 Equations in One Variable
3 Relations and Functions
4 Linear and Nonlinear Functions
5 Creating Linear Equations
6 Linear Inequalities
7 Systems of Linear Equations and Inequalities
8 Exponential Functions
9 Statistics
10

Reveal Math Guiding Principles

Academic research and the science of learning provide the foundation for this powerful $\mathrm{K}-12$ math program designed to help reveal the mathematician in every student.

Reveal Math is built
 on a solid foundation of RESEARCH

that shaped the PEDAGOGY of the
program.

Reveal Math Integrated I, Integrated II, and Integrated III (Reveal Math Integrated) used findings from research on teaching and learning mathematics to develop its instructional model. Based on analyses of research findings, these areas form the foundational structure of the program:

- Rigor
- Productive Struggle
- Formative Assessment
- Rich Tasks
- Mathematical Discourse
- Collaborative Learning

Instructional Model

Launch
Warm up
During the Warm Up, studen
complete exercises to activate
knowledge and review prer
concepts and skills.
IndIVIDUAL ACTIVITY
GROUP ACTIVITY
class ACTIVITY

In Launch the Lesson, students view a real-world scenario and image to pique their interest in the lesson content. They are introduced to questions that they will be able to answer at the end of the lesson.

During the Explore activity, students work in partners or small groups to explore a rich mathematical problem related to the lesson content.

2 Explore and Develop

LEARN
In the Learn section,
students gain the foundational knowledge needed to actively work through upcoming Examples.

188
 EXAMPLES \& CHECK

Students work through Examples related to the key concepts and engage in mathematical discourse.

Students complete a Check after several Examples as a quick formative assessment to help teachers adjust instruction as needed.

Reveal Math Key Areas of Focus

Reveal Math Integrated I, II, III (Reveal Math Integrated) have a strong focus on rigor-especially the development of conceptual understanding-an emphasis on student mindset, and ongoing formative assessment feedback loops.

Rigor

Reveal Math Integrated has been thoughtfully designed to incorporate a balance of the three elements of rigor: conceptual understanding, procedural skills and fluency, and application.

Conceptual Understanding

Explore activities give all students an opportunity to work collaboratively and discuss their thinking as they build conceptual understanding of new concepts. In the Explore activity to the left, students use Web Sketchpad ${ }^{\circledR}$ to build understanding of the relationships between corresponding sides and angles in congruent triangles.

Procedural Skills and Fluency

Students use different strategies and tools to build procedural fluency. In the Example shown, students build proficiency with writing equations in point-slope form.

Application

Real-world examples and practice problems are opportunities for students to apply their learning to new situations. In the real-world example shown, students apply their understanding by solving a multi-step problem with translations.

Student Mindset

Mindset Matters tips located in each module provide specific examples of how Reveal Math Integrated content can be used to promote a growth mindset in all students. Another feature focused on promoting a growth mindset is Ignite! Activities developed by Dr. Raj Shah to spark student curiosity about why the math works. An Ignite! delivers problem sets that are flexible enough so that students with varying background knowledge can engage with the content and motivates them to ask questions, solve complex problems, and develop a cando attitude toward math.

Mindset Matters

Growth vs.Fixed Mindset
Everyone has a core belief or mindset about how they learn. People with a growth mindset believe that hard work will make them smarter. Those with a fixed mindset believe that they can learn new things, but can't become smarter. When a student changes their mindset they are more likely to work through challenging problems, learn from their mistakes, and ultimately learn more deeply.

How Can I Apply It?

Assign students tasks, such as the Explore activities, that can help them to develop their intelligence. Let them know that each time they learn a new idea an electric current fires that connects different parts of the brain!

Teacher Edition Mindset Tip

Formative Assessment

The key to reaching all learners is to adjust instruction based on each student's understanding. Reveal Math Integrated offers powerful formative assessment tools that help teachers to efficiently and effectively differentiate instruction for all students.

Math Probes

Each module includes a Cheryl Tobey Formative Assessment Math Probe that is focused on addressing student misconceptions about key math topics. Students can complete these probes at the beginning, middle, or end of a module. The teacher support includes a list of recommended differentiated resources that teachers assign based on students' responses.

Example Checks

After multiple examples, a formative assessment Check that students complete on their own allows teachers to gauge students' understanding of the concept or skill presented. When students complete the Check online, the teacher receives resource recommendations which can be assigned to students.

IGNiT゙TE:

Student Ignite! Activity

A Powerful Blended Learning Experience

The Reveal Math Integrated Course I, Course II, Course III (Reveal Math Integrated) blended learning experience was designed to include purposeful print and digital components focused on sparking student curiosity and providing teachers with flexible implementation options.

Reveal Math Integrated has been thoughtfully developed to provide a rich learning experience no matter where a district, school, or classroom falls on the digital spectrum. All of the instructional content can be projected or can be accessed via desktop, laptop, or tablet.

Lesson

2 Explore and Develop

LEARN

As students are introduced to the key lesson concepts, they can progress through the Learn by recording notes in a notebook or on their own devices.

88
 EXAMPLES \& CHECK

Either in a notebook or on an individual device, students work through one or more Examples related to key lesson concepts.

A Check follows several Examples in either the Student Edition or on each student device.

3 Reflect and Practice

EXIT TICKET

The Exit Ticket is projected or accessed via student devices to provide students with lesson closure and an opportunity to revisit the lesson concepts.

89 practice

Assign students
Practice problems from their Student Edition or create a digital assignment for them to work on their device in class or at home to solidify lesson concepts.

Practice

Supporting All Learners

The Reveal Math Integrated I, II, and III (Reveal Math Integrated) programs were designed so that all students have access to:

- rich tasks that promote productive struggle,
- opportunities to develop proficiency with the habits of mind and thinking strategies of mathematicians, and
- prompts to promote mathematical discourse and build academic language.

Resources for Differentiating Instruction

When needed, resources are available to differentiate math instruction for students who may need to see a concept in a different way, practice prerequisite skills, or are ready to extend their learning.

AL

Approaching Level Resources

- Remediation Activities
- Extra Examples

```
BL
Beyond Level Resources
- Beyond Level Differentiated Activities
```

- Extension Activities

Resources for English Language Learners

Reveal Math Integrated also includes student and teacher resources to support students who are simultaneously learning grade-level math and building their English proficiency. Appropriate, research-based language scaffolds are also provided to support students as they engage in rigorous mathematical tasks and discussions.

ELL
English Language Learners

- Spanish Personal Tutors
- Math Language-Building Activities
- Language Scaffolds
- Think About It! and Talk About lt! Prompts
- Multilingual eGlossary
- Audio
- Graphic Organizers
- Web Sketchpad, Desmos, and eTools

Developing Mathematical Thinking and Strategic Questioning

Reveal Math Integrated I, II, and III (Reveal Math Integrated) are comprised of high-quality math content designed to be accessible and relevant to each student. Throughout the program, students are presented with a variety of thoughtfully designed questioning strategies related to the content. Using these questions provides you with an additional, built-in type of formative assessment that can be used to modify instruction. They also strengthen students' ownership of mathematical content knowledge and daily use of the Standards for Mathematical Practice.

Key Concept Introduction followed by a Talk About It question to discuss with a classmate.

You will find these types of questioning strategies throughout Reveal Math Integrated. The related Standard for Mathematical Practice for each is also indicated.

- Talk About It questions encourage students to engage in mathematical discourse with classmates (MP3)
- Alternate Method shows students another way to solve a problem and asks them to compare and contrast the methods and solutions (MP1)
- Avoid a Common Error shows students a problem similar to an example but with a flaw in reasoning, and students have to find and explain the error (MP3)
- State Your Assumptions requires that student state the assumptions they made to solve a problem (MP4)
- Use a Source asks students to find information using an external source, such as the Internet, and use it to pose or solve a problem (MP5)
- Think About lt questions help students make sense of mathematical problems (MP1)
- Concept Checks prompt students to analyze how the Key Concepts of the lesson apply to various use cases (MP3)

Reveal Student Readiness

 with Individualized Learning ToolsReveal Math Integrated I, II, and III (Reveal Math Integrated) incorporate innovative, technology-based tools that are designed to extend the teacher's reach in the classroom to help address a wide range of knowledge gaps, set and align academic goals, and meet student individualized learning needs.

LEARNSMART*

Topic-Mastery
With embedded LearnSmart, ${ }^{\circledR}$ students have a built-in study partner for topic practice and review to prepare for multi-module or mid-year tests.

LearnSmart's revolutionary adaptive technology measures students' awareness of their own learning, time on topic, answer accuracy, and suggests alternative resources to support student learning, confidence, and topic mastery.

ALEKS ${ }^{\circ}$

Individualized Learning Pathways

Learners of all levels benefit from the use of ALEKS' adaptive, online math technology designed to pinpoint what each student knows, does not know, and most importantly, what each student is ready to learn.

When paired with Reveal Math Integrated, ALEKS is a powerful tool designed to provide integrated instructionally actionable data enabling teachers to utilize Reveal Math Integrated resources for individual students, groups, or the entire classroom.

Activity Report

Powerful Tools for Modeling Mathematics

Reveal Math Integrated I, II, and III (Reveal Math Integrated) have been designed with purposeful, embedded digital tools to increase student engagement and provide unique modeling opportunities.

Web Sketchpad ${ }^{\circledR}$ Activities

The leading dynamic mathematics visualization software has now been integrated with Web Sketchpad Activities at point of use within Reveal Math Integrated. Student exploration (and practice) using Web Sketchpad encourages problem solving and visualization of abstract math concepts.

desmos

The powerful Desmos graphing calculator is available in Reveal Math Integrated for students to explore, model, and apply math to the realworld.

eTools
By using a wide variety of digital eTools embedded within Reveal Math Integrated, students gain additional hands-on experience while they learn and teachers have the option to create problem-based learning opportunities.

Technology-Enhanced Items
Embedded within the digital lesson, technology-enhanced items-such as drag-and-drop, flashcard flips, or diagram completion-are strategically placed to give students the practice with common computer functions needed to master computer-based testing.

Assessment Tools to Reveal Student Progress and Success

Reveal Math Integrated I, II, and III (Reveal Math Integrated) provide a

 comprehensive array of assessment tools, with both print and digital administration options, to measure student understanding and progress. The digital assessment tools include next-generation assessment items, such as multiple-response, selected-response, and technology-enhanced items.
Assessment Solutions

Reveal Math Integrated provides embedded, regular formative checkpoints to monitor student learning and provide feedback that can be used to modify instruction and help direct student learning using reports and recommendations based on resulting scores.

Summative assessments built in Reveal Math Integrated evaluate student learning at the module conclusion by comparing it against the state standards covered.

Formative Assessment Resources

- Cheryl Tobey Formative

Assessment Math Probes

- Checks
- Exit Tickets
- Put It All Together

Summative Assessment Resources

- Module Tests
- Performance Tasks
- End-of-Course Tests
- LearnSmart

Or Build Your Own assessments focused on standards or objectives.
Access to banks of questions, including those with tech-enhanced capabilities, enable a wide range of options to mirror high-stakes assessment formats.

Reporting

Clear, instructionally actionable data is a click away with the Reveal Math Integrated Reporting Dashboard.

Activity Report Real-time class and student reporting ofactivities completed by the class. Includes average score, submission rate, and skills covered for the class and each student.

- Item Analysis Report A detailed analysis of response rates and patterns, answers, and question types in a class snapshot or by student.

Standards Report Performance data by class or individual student are aggregated by standards, skills, or objectives linked to the related activities completed.

Activity Report

Professional Development Support for Continuous Learning

McGraw-Hill Education supports lifelong learning and demonstrates commitment to teachers with a built-in professional learning environment designed for support during planning or extended learning opportunities.

What You Will Find

- Best-practice resources
- Implementation support
- Teaching Strategies
- Classroom Videos
- Math Misconception Videos
- Content and Pedagogy Videos
- Content Progression Information

Why Professional Development Is so Important

- Research-based understanding of student learning
- Improved student performance
- Evidence-based instructional best practices
- Collaborative content strategy planning
- Extended knowledge of program how-to's

Reveal Math Expert Advisors

Cathy Seeley, Ed.D.

Austin, Texas

Mathematics educator, speaker, and writer, former Senior Fellow at the Charles A. Dana Center at The University of Texas at Austin, past President of NCTM, former Director of K-12 Mathematics for the State of Texas

Areas of expertise:

Mathematics Teaching, Equity, Assessment, STEM Learning, Informal Learning, Upside-Down Teaching, Productive Struggling, Mathematical Practices, Mathematical Habits of Mind, Family and Community Outreach, Mathematics Education Policy, Advocacy
"We want students to believe deeply that mathematics makes sense-in generating answers to problems, discussing their thinking and other students' thinking, and learning new material."
-Seeley, 2016, Making Sense of Math

Cheryl R. Tobey, M.Ed.

Gardiner, Maine
Senior Mathematics Associate at Education Development Center (EDC)

Areas of expertise:

Formative assessment and professional development for mathematics teachers; tools and strategies to uncovering misconceptions
"Misunderstandings and partial understandings develop as a normal part of learning mathematics. Our job as educators is to minimize the chances of students' harboring misconceptions by knowing the potential difficulties students are likely to encounter using assessments to elicit misconceptions and implementing instruction designed to build new and accurate mathematical ideäs.

- Tobey, et al 2007, 2009, 2010, 2013, 2104, Uncovering Student Thinking Series

Raj Shah, Ph.D.
 Columbus, Ohio

Founder of Math Plus Academy, a STEM enrichment program and founding member of The Global Math Project

Areas of expertise:

Sparking student curiosity, promoting productive struggle, and creating math experiences that kids love
"As teachers, it's imperative that we start every lesson by getting students to ask more questions because curiosity is the fuel that drives engagement, deeper learning and perseverance."

[^0]

Walter Secada, Ph.D.
Coral Gables, Florida

Professor of Teaching and Learning at the University of Miami

Areas of expertise:

Improving education for English language learners, equity in education, mathematics education, bilingual education, school restructuring, professional development of teachers, student engagement, Hispanic dropout and prevention, and reform
"The best lessons take place when teachers have thought about how their individual English language learners will respond not just to the mathematical content of that lesson, but also to its language demands and mathematical practices."
-Secada, 2018

Ryan Baker, Ph.D.

Philadelphia, Pennsylvania

Associate Professor and Director of Penn Center for Learning Analytics at the University of Pennsylvania

Areas of expertise:

Interactions between students and educational software; data mining and learning analytics to understand student learning
"The ultimate goal of the field of Artificial Intelligence in Education is not to promote artificial intelligence, but to promote education... systems that are designed intelligently, and that leverage teachers' intelligence. Modern online learning systems used at scale are leveraging human intelligence to improve their design, and they're bringing human beings into the decisionmaking loop and trying to inform them."
-Baker, 2016

Dinah Zike,

M.Ed.

Comfort, Texas
President of Dinah.com in San Antonio, Texas and Dinah Zike Academy

Areas of expertise:

Developing educational materials that include three-dimensional graphic organizers; interactive notebook activities for differentiation; and kinesthetic, cross-curricular manipulatives
"It is education's responsibility to meet the unique needs of students, and not the students' responsibility to meet education's need for uniformity."

[^1]
Reveal Everything Needed for Effective Instruction

Reveal Math Integrated I, II, and III (Reveal Math Integrated) provide both print and innovative, technology-based tools designed to address a wide range of classrooms. No matter whether you're in a 1:1 district, or have a classroom projector, Reveal Math Integrated provides you with the resources you need for a rich learning experience.

Blended Classrooms

Focused on projection of the Interactive Presentation, students follow along, taking notes and working through problems in a notebook during class time. Also included in the Interactive Student Edition is a glossary, selected answers, and a reference sheet.

Digital Classrooms

Projection is a focal point for key areas of the course with students interacting with the lesson using their own devices. Each student can access teacher-assigned sections of the lessons for Explore activities, Learn sections, and Examples. Point of use videos, animations, as well as interactive content enable students to experience math in interesting and impactful ways.

In Reveal Math

Integrated, R is for-

- Research
- Rigor
- Relevant Connections

Are you...

READY to start?

TABLE OF CONTENTS

Module 1
 Expressions

What Will You Learn?1
1-1 Numerical Expressions 3Explore Order of Operations
1-2 Algebraic Expressions 13
Explore Using Algebraic Expressions in the Real World
1-3 Properties of Real Numbers 23
Explore Testing the Associative Property
1-4 Distributive Property 35Explore Using Rectangles with the Distributive PropertyExplore Modeling the Distributive Property
1-5 Expressions Involving Absolute Value 45
Explore Distance Between Points on a Number Line
1-6 Descriptive Modeling and Accuracy 49
Module 1 Review 59

What Will You Learn? 63
2-1 Writing and Interpreting Equations 65
Explore Writing Equations by Modeling a Real-World Situation
2-2 Solving One-Step Equations 75Explore Using Algebra Tiles to Solve One-Step EquationsInvolving Addition or SubtractionExplore Using Algebra Tiles to Solve One-Step EquationsInvolving Multiplication
2-3 Solving Multi-Step Equations 85Explore Using Algebra Tiles to Model Multi-Step Equations
2-4 Solving Equations with the Variable on Each Side 91
Explore Modeling Equations with the Variable on Each Side
2-5 Solving Equations Involving Absolute Value 101
Explore Modeling Absolute Value
2-6 Solving Proportions 109
Explore Comparing Two Quantities
2-7 Using Formulas 117
Explore Centripetal ForceExplore Using Dimensional Analysis
Module 2 Review 129

TABLE OF CONTENTS

Module 3

Relations and Functions

What Will You Learn? 133
3-1 Representing Relations 135
Explore Choosing Scales
3-2 Functions 147
Explore Vertical Line Test
3-3 Linearity and Continuity of Graphs 157
Explore Representing Discrete and Continuous Functions
3-4 Intercepts of Graphs 167
3-5 Shapes of Graphs 179Explore Line SymmetryExplore Relative High and Low Points
3-6 Sketching Graphs and Comparing Functions 191
Explore Modeling Relationships by Using Functions
Module 3 Review. 203
What Will You Learn? 207
4-1 Graphing Linear Functions 209Explore Points on a LineExplore Lines Through Two Points
4-2 Rate of Change and Slope 219
Explore Investigating Slope
Expand 4-2 Proving the Slope Criteria (Online Only)
4-3 Slope-Intercept Form 229
Explore Graphing Linear Equations by Using theSlope-Intercept Form
Expand 4-3 Linear Growth Patterns (Online Only)
4-4 Transformations of Linear Functions 239
Explore Transforming Linear Functions
4-5 Arithmetic Sequences 251
Explore Common Differences
4-6 Piecewise and Step Functions 259
Explore Age as a Function
4-7 Absolute Value Functions 267
Explore Parameters of an Absolute Value Function
Module 4 Review 281

TABLE OF CONTENTS

Module 5
 Creating Linear Equations

What Will You Learn? 285
5-1 Writing Equations in Slope-Intercept Form 287Explore Slope-Intercept Form
5-2 Writing Equations in Standard and Point-Slope Forms 295
Explore Forms of Linear Equations
5-3 Scatter Plots and Lines of Fit 307
Explore Making Predictions by Using a Scatter Plot
5-4 Correlation and Causation 315
Explore Collecting Data to Determine Correlation and Causation319
5-6 Inverses of Linear Functions 327
Explore Comparing a Function and Its Inverse
Module 5 Review 335

What Will You Learn? \qquad .339
6-1 Solving One-Step Inequalities \qquad .341
Explore Graphing Inequalities
Explore Properties of Inequalities
6-2 Solving Multi-Step Inequalities \qquad 351
Explore Modeling Multi-Step Inequalities
6-3 Solving Compound Inequalities. \qquad 357
Explore Guess the Range
6-4 Solving Absolute Value Inequalities. \qquad .367 Explore Solving Absolute Value Inequalities

6-5 Graphing Inequalities in Two Variables \qquad .375 Explore Graphing Linear Inequalities on the Coordinate Plane

Module 6 Review . \qquad .381

TABLE OF CONTENTS

Module 7

Systems of Linear Equations and Inequalities

What Will You Learn? 385
7-1 Graphing Systems of Equations 387Explore Intersections of Graphs
7-2 Substitution 399
Explore Using Substitution
7-3 Elimination Using Addition and Subtraction 405
7-4 Elimination Using Multiplication 413Explore Graphing and Elimination Using Multiplication
7-5 Systems of Inequalities 419
Explore Solutions of Systems of Inequalities
Module 7 Review 425

Module 8
 Exponential Functions

What Will You Learn? 487
8-1 Exponential Functions 489
Explore Exponential Behavior
Explore Restrictions on Exponential Functions
8-2 Transformations of Exponential Functions 497
Explore Translating Exponential Functions
Explore Dilating Exponential Functions
Explore Reflecting Exponential Functions
8-3 Writing Exponential Functions 509
Explore Writing an Exponential Function to Model
Population Growth
8-4 Transforming Exponential Expressions 519
8-5 Geometric Sequences 523
Explore Modeling Geometric Sequences
Expand 8-5 Exponential Growth Patterns (Online Only)
8-6 Recursive Formulas 531
Explore Writing Recursive Formulas from Sequences
Module 8 Review 539

TABLE OF CONTENTS

Module 9 Statistics
What Will You Learn? 685
9-1 Measures of Center 687
Explore Finding Percentiles
9-2 Representing Data 695
9-3 Using Data 703
Explore Phrasing Questions
9-4 Measures of Spread 709
Explore Using Measures of Spread to Describe Data
9-5 Distributions of Data 715
9-6 Comparing Sets of Data 723
Explore Transforming Sets of Data by Using AdditionExplore Transforming Sets of Data by Using Multiplication
9-7 Summarizing Categorical Data 733
Explore Categorical Data
Module 9 Review 741

Module 10

Tools of Geometry

What Will You Learn? 1
10-1 The Geometric System 3
Explore Using a Game to Explore Axiomatic Systems
10-2 Points, Lines, and Planes 11
Explore Intersections of Three Planes
10-3 Line Segments 19
Explore Using Tools to Determine Betweenness of Points
10-4 Distance 27
Explore Using the Pythagorean Theorem to Find Distances
10-5 Locating Points on a Number Line 35
Explore Locating Points on a Number Line with
Fractional Distance
10-6 Locating Points on a Coordinate Plane 43
Explore Applying Fractional Distance
10-7 Midpoints and Bisectors 51
Explore Midpoints
Module 10 Review 61

1111111
 II 111 III
 H WH

What Will You Learn? .. 63
11-1 Angles and Congruence ... 65
Explore Angles Formed by Intersecting Lines
11-2 Angle Relationships ... 75
Explore Complementary and Supplementary Angles
Explore Interpreting Diagrams
11-3 Two-Dimensional Figures ... 85
Explore Modeling Objects by Using Two-Dimensional Figures
11-4 Transformations in the Plane .. 95
Explore Introducing Transformations
11-5 Three-Dimensional Figures ... 107
Explore Measuring Real-World Objects
11-6 Two-Dimensional Representations of Three-Dimensional Figures117Explore Representing Three-Dimensional Figures
11-7 Precision and Accuracy 129Explore Precision and Accuracy in Basketball
11-8 Representing Measurements 137Explore Significant Figures
Module 11 Review. 147

Module 12

Logical Argumerts and Line Relationships

What Will You Learn? 151
12-1 Conjectures and Counterexamples 153
Explore Using Inductive Reasoning to Make Conjectures
12-2 Statements, Conditionals, and Biconditionals 161
Explore Truth Values
12-3 Deductive Reasoning 171
Explore Applying Laws of Deductive Reasoning byUsing Venn Diagrams
12-4 Writing Proofs 179Explore Algebraic Proof
12-5 Proving Segment Relationships 189
Explore Segment Relationships
12-6 Proving Angle Relationships 197
Explore Angle Relationships
12-7 Parallel Lines and Transversals 207
Explore Relationships Between Angles and Parallel Lines
12-8 Slope and Equations of Lines 215
Explore Equations of Lines
12-9 Proving Lines Parallel 225
Explore Intersecting Lines
12-10 Perpendiculars and Distance 233
Explore Distance from a Point to a Line
Module 12 Review 243

TABLE OF CONTENTS

aWhat Will You Learn? 247
13-1 Reflections 249
Explore Developing the Definition of a Reflection
13-2 Translations 253
Explore Developing the Definition of a Translation
13-3 Rotations 257
Explore Developing the Definition of a Rotation
13-4 Compositions of Transformations 261
Explore Reflections in Two Lines
13-5 Tessellations 269
Explore Creating Tessellations
13-6 Symmetry 275
Explore Symmetry in Figures
Module 13 Review 283

Transformations and Symmetry

What Will You Learn? 287
14-1 Angles of Triangles 289
Explore Triangle Angle Sums
14-2 Congruent Triangles 297Explore Relationships in Congruent Triangles
14-3 Proving Triangles Congruent: SSS, SAS 305
Explore Conditions That Prove Triangles Congruent
14-4 Proving Triangles Congruent: ASA, AAS 313
14-5 Proving Right Triangles Congruent 321
Explore Congruence Theorems and Right Triangles
14-6 Isosceles and Equilateral Triangles 325
Explore Properties of Equilateral, Isosceles, and Scalene TrianglesExplore Isosceles and Equilateral Triangles
14-7 Triangles and Coordinate Proof 333
Explore Triangles and Coordinate Proofs
Module 14 Review 343
Selected Answers SA1
Glossary G1
Index IN1

Standards for Mathematical Content, Reveal Math Integrated I

This correlation shows the alignment of Reveal Math Integrated I to the Standards for Mathematical Content from the Common Core State Standards for Mathematics.

Standard		Lesson(s)
Number and Quantity		
Quantities * N.Q		
N.Q. 1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	2-7, 3-1, 9-2, 9-4
N.Q. 2	Define appropriate quantities for the purpose of descriptive modeling.	1-6
N.Q. 3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	1-6
Algebra		
Seeing Structure in Expressions A.SSE		
A.SSE. 1 Interpret expressions that represent a quantity in terms of its context. \star a. Interpret parts of an expression, such as terms, factors, and coefficients.		1-1, 1-2, 1-4, 4-6, 4-7
	b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{n}$ as the product of P and a factor not depending on P.	
Creating Equations \star A.CED		
A.CED.	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear quadratic functions, and simple rational and exponential functions.	$\begin{aligned} & 2-1,2-2,2-3,2-4,2-5,2-6,6-1,6-2,6-3, \\ & 6-4 \end{aligned}$
A.CED.:	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	$\begin{aligned} & 4-1,4-3,4-4,4-5,4-6,4-7,5-1,5-2,5-3 \\ & 5-5,5-6,8-1,8-2,8-3,8-5,8-6 \end{aligned}$
A.CED.:	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	$\begin{aligned} & 2-1,2-7,3-6,5-1,5-2,6-1,6-2,6-3,6-4, \\ & 6-5,7-1,7-2,7-3,7-4,7-5 \end{aligned}$
A.CED.	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	2-7
Reasoning with Equations and Inequalities A.REI		
A.REI. 1	xplain each step in solving a linear equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	2-2, 2-3, 2-4, 2-5, 2-6, 4-3, 5-1, 5-2
A.REI. 3	olve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 6-1, 6-2
A.REI. 5	rove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	7-4
A.REI.	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	7-1, 7-2, 7-3, 7-4
A.REI.	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	3-4, 4-1, 4-3, 8-1

Standard		Lesson(s)
A.REI. 1	xplain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	7-1
A.REI.	Graph the solutions to a linear inequality in two variables as a halfplane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	6-5, 7-5
Functions		
Interpreting Functions F.IF		
F.IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	3-1, 3-2
F.IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	-2
F.IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset the integers.	f4-5, 8-5, 8-6
F.IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	$3-3,3-4,3-5,3-6,4-4,4-6,4-7,8-1$
F.IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	-2, 3-3, 3-6, 8-1
F.IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a tab over a specified interval. Estimate the rate of change from a graph	A-2, 5-1
F.IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. \star a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	4-1, 4-3, 4-4, 8-1, 8-2
	e. Graph exponential and logarithmic functions, showing intercepts and end behavior, a trigonometric functions, showing period, midline, and amplitude.	
F.IF. 9	Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	$3-6,4-3,4-6,8-1$
Building Linear or Exponential Functions F.BF		
F.BF. 1	Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from b. Combine standard function types using arithmetic operations.	4-5 context.
F.BF. 2	Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	5, 8-5, 8-6

	Standard	Lesson(s)
F.BF. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	4-4, 4-7, 8-2
Linear and Exponential \star F.LE		
F.LE. 1	Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals; exponen functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit in to another. c. Recognize situations in which a quantity grows or decays by a constant percent interval relative to another.	Expand 4-3, 8-1, Expand 8-5 val relative per unit
F.LE. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	4-5, 8-3, 8-5
F.LE. 3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly.	Standard F.LE. 3 is taught in Integrated Math Course II, 12-8 Modeling and Curve Fitting
F.LE. 5	Interpret the parameters in a linear or exponential function in terms of a context.	4-1, 4-2, 4-3, 8-1, 8-3, 8-5
Geometry		
Congruence G.CO		
G.C0. 1	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based 10-2, 10-3, 10-4, 11-1, 11-2, 12-7 on the undefined notions of point, line, distance along a line, and distance around a circular arc.	
G.CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).		11-4
G.CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.		13-6
G.CO. 4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.		13-1, 13-2, 13-3, 13-5, 13-6
G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.		13-1, 13-2, 13-3, 13-4, 13-5, 13-6
G.CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide whether they are congruent.		13-1, 13-2, 13-3, 13-4, 13-6
G.CO. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent 14-2 if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.		

Standard		Lesson(s)
G.CO.	xplain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	14-3, 14-4
G.CO.	Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	$\begin{aligned} & 10-3,10-7,11-1,11-2,12-5,12-9,12-10 \\ & 13-1,14-3,14-4,14-6 \end{aligned}$
G.C0.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. Emphasize Standard G.C0. 13 is taught in Integrated the ability to formalize and defend how these constructions result in the desired objects.		
Expressing Geometric Properties With Equations G.GPE		
G.GPE.	Use coordinates to prove simple geometric theorems algebraically.	14-7
G.GPE	Prove the slope criteria for parallel and perpendicular lines; use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	Expand 4-2, 12-8
G.GPE.	Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	11-3
Statistics and Probability \star		
Interpreting Categorical and Quantitative Data S.ID		
S.ID. 1	Represent data with plots on the real number line (dot plots, histograms, and box plots).	9-2, 9-4
S.ID. 2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	9-4, 9-6
S.ID. 3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	9-5, 9-6
S.ID. 5	Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	9-7
S.ID. 6	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions, or choose a function suggested by the context. Emphasize linear and exponential models.	5-3, 5-5
	b. Informally assess the fit of a function by plotting and analyzing residuals. Focus on situations for which linear models are appropriate.	
	c. Fit a linear function for scatter plots that suggest a linear association.	
S.ID. 7	Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	5-1, 5-3
S.ID. 8	Compute (using technology) and interpret the correlation coefficient of a linear fit.	5-5
S.ID. 9	Distinguish between correlation and causation.	5-4

Standards for Mathematical Practice

This correlation shows the alignment of Reveal Math Integrated I to the Standards for Mathematical Practice, from the Common Core State Standards.

Standard
$\mathbf{1}$ Make sense of problems and persevere in solving them.
Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entristudents to make sense of problems
points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the fanch persevere in solving them in
and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They Examples and Practice throughout the
consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insigbtogram. Some specific lessons for
into its solution. They monitor and evaluate their progress and change course if necessary. Older students might,
review are: Lessons 1-1, 1-4, 2-5, 3-1,
depending on the context of the problem, transform algebraic expressions or change the viewing window on their 3-3, 3-4, 3-5, 4-1, 4-3, 4-4, 4-7, 5-1, 5-4,
graphing calculator to get the information they need. Mathematically proficient students can explain correspondeneess 5-6, 6-1, 6-2, 6-4, 7-2, 8-2, 9-2,
between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationshipsh, 10-4, 10-7, 11-3, 12-1, 12-7, 12-8,
graph data, and search for regularity or trends. đunger students might rely on using concrete objects or pictures to12-10, 13-2, 14-3, 14-5, 14-7
help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a
different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches
of others to solving complex problems and identify correspondences between different approaches.

2 Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3 Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4 Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Reveal Math Integrated I requires students to reason abstractly and quantitatively in Think About It features and Higher Order Thinking Skills throughout the program. Some specific lessons for review are: Lessons 1-2, 1-6, 2-1, 2-2, 2-3, 2-4, 2-6, 2-7 3-3, 3-4, 3-5, 4-2, 5-1, 5-2, 6-1, 6-2, 7-3, 7-4, $8-4,8-5,9-4,10-3,10-4,11-3,11-6,12-2$, 12-9, 13-4, 14-3, 14-7

Reveal Math Integrated I requires students to construct viable arguments and critique the reasoning of others in Talk About It features and Practice throughout the program. Some specific lessons for review are: Lessons 1-3, 2-4, 3-2, 3-3, 4-5, 5-4,
6-4, 7-5, 8-1, 8-5, 9-1, 9-3, 10-1, 10-2,
10-5, 11-2, 11-8, 12-1, 12-5, 12-6, 12-8,
12-9, 12-10, 13-1, 13-4, 13-5, 14-1, 14-3, 14-5, 14-7

Reveal Math Integrated I requires students to model with mathematics, collaborate, and discuss mathematics in Examples and Practice throughout the program. Some specific lessons for review are: Lessons 1-1, 1-2, 1-3, $1-4,1-5,1-6,2-1,2-5,2-6,3-2,3-5,4-2$, 4-3, 4-6, 5-1, 5-2, 5-6, 6-3, 6-5, 7-3, 7-4, 8-1, 8-4, 8-6, 9-1, 9-2, 9-4, 9-5, 9-6, 9-7, 10-2, 10-6, 10-7, 11-1, 11-4, 11-5, $11-6,12-3,12-4,12-6,12-9,12-10,13-1$, 13-4, 14-1, 14-4, 14-5

Standard

5 Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6 Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7 Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8 Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)(x+z+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Lesson(s)
Reveal Math Integrated I requires students to use appropriate tools strategically in Explore activities throughout the program. Some specific lessons for review are: Lessons 1-4, 2-2, 2-3, 3-4, 4-1, 4-3, 4-4, 4-7, 5-3, 5-4, 5-5, 5-6, 6-1, 6-5, 7-1, $8-2,8-5,9-5,9-6,10-2,10-6,11-4,11-8$, 12-1, 12-7, 12-8, 13-1, 13-3, 13-5, 13-6, 14-2, 14-4, 14-6

Reveal Math Integrated I requires students to attend to precision in Examples and Practice throughout the program. Some specific lessons for review are: Lessons 1-4, 1-6, 2-7, 3-1, $3-6,4-6,5-3,5-5,6-4,7-2,7-5,8-3$, 8-4, 9-3, 10-1, 11-1, 11-6, 11-7, 11-8, 12-2, 12-3, 12-4, 12-5, 12-6, 12-7, 13-2, 13-3, $13-6,14-2,14-4,14-6$

Reveal Math Integrated I requires students to look for and make use of structure in Explore activities and Higher Order Thinking Skills throughout the program. Some nspecific lessons for review are: Lessons 1-2, 1-3, 1-5, 2-2, 2-3, 2-4, 2-5, 3-6, 4-4, 4-7, 5-3, 6-3, 7-5, 8-1, 8-2, 8-6, 9-1, 9-7, 10-5, 11-5, 12-2, 13-3, 13-6, 14-2, 14-6

Reveal Math Integrated I requires students to look for and express regularity in repeated reasoning in Concept Check and Think About It features and Higher Order Thinking Skills throughout the program. Some specific lessons for review are: Lessons 1-5, 2-7, 3-1, 4-5, 5-2, 6-3, 7-1, 8-3, 8-6, 9-6, 10-3, 11-2, 12-3, 12-4, 13-2, 14-1

Exponential Functions

Module Goals

- Students write and solve exponential functions.
- Students graph and transform exponential functions.
- Students understand geometric sequences.

Focus

Domain: Functions

Standards for Mathematical Content:
F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F.LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).
Also addresses A.SSE.3c, F.LE.1c, F.LE.5, F.BF.2, F.BF.3, F.IF.3, and F.IF.8b Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

Coherence

Vertical Alignment

Previous

Students understood that linear functions have a constant rate of change.
8.F. 4

Now

Students graph exponential functions, showing intercepts and end behavior, and interpret the parameters of the function in terms of a context.
F.IF.7e, F.LE. 2

Next

Students will relate the inverses of exponential functions to logarithmic functions.
F.LE. 2 (Course 3)

Rigor

The Three Pillars of Rigor

Students will use the three pillars of rigor to help them meet standards. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.

Suggested Pacing

Lessons	Standards	45-min classes	0-min classes
Module Pretest and Launch the Module Video		1	0.5
8-1 Exponential Functions	F.IF.7e, F.LE.1c, F.LE. 5	1	0.5
8-2 Transformations of Exponential Functions	F.IF.7e, F.BF. 3	3	1.5
8-3 Writing Exponential Functions	F.LE.2, F.LE. 5	2	1
Put It All Together: Lessons 8-1 through 8-3		1	0.5
8-4 Transforming Exponential Expressions	A.SSE.3c, F.IF.8b	1	0.5
8-5 Geometric Sequences	F.BF.2, F.LE. 2	1	0.5
8-6 Recursive Formulas	F.IF.3, F.BF. 2	2	1
Module Review		1	0.5
Module Assessment		1	0.5
		14	7

Formative Assessment Math Probe Exponential Growth and Decay

Correct Answers: 1. B, D, E 2. A, D, E 3. B, C, F

Use the Probe after Lesson 8-3.
Collect and Assess Student Answers

If the student selects these responses...

1. A
2. B
3. A
4. C
5. D
6. F
7. F
8. E
the student likely...
either does not know the difference between growth and decay or is confusing the initial value (a) with the growth/decay factor (b) in the exponential equation $y=a b^{x}$.
Example: For Item 2, the initial value is $\frac{1}{2}$ and the factor is $\frac{3}{2}$. Because the factor is greater than 1 , it indicates exponential growth.
does not understand how to calculate the growth/decay rate from the growth/decay factor (1 - factor) in an equation or does not recognize the decimal form of the rate.

Example: For Item 1 , the rate is $1-0.85$, which is 0.15 . Students will often forget to subtract the factor from 1.
is confusing the factor with the rate.
Example: For Item 3, the decay rate is 8.5%. To find the factor, subtract the rate from 1: $1-0.085=0.915$.

Take Action
After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- $\mathbf{0}$ ALEKS' Exponential Functions
- Lesson 8-3, all Learns, all Examples

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

IGN|TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question.

When and how can exponential functions represent real-world situations? Sample answer: Exponential functions can be used in real life to represent situations that grow or decay. One example is representing compound interest.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLDABLES

Focus Students create a tabbed book on which they organize information about exponential functions and geometric sequences.

Teach Have students make and label their Foldables as illustrated. Before beginning each lesson, ask students to think of one question that comes to mind as they skim through the lesson. Have them write the questions on an index card of the appropriate lesson. As they read and work through the lesson, ask them to record the answers to their questions on the index cards.
(II) When to Use It Encourage students to add to their Foldables as they work through the Module and to use them to review for the Module Assessment.

Launch the Module

For this module, the Launch the Module video uses exponential growth in savings as a way of introducing the concept of exponential growth. Students are exposed to how exponential functions can model growth and decay in appropriate situations.

What Will Y ou Learn?
How nuch do you diresor know about cach topic b efore starting this module?

SEX	Before			After		
(9)-1 don't know. -3-1've heard of it (3) - know it	祭	80	6	C	B	4
graph exponential growth functions						
graph exponential decay functions						
translate exponential functions						
dilate exponential functions						
reflect exponential functions						
solve problems involving exponential growth and decay						
transform exponential expressions						
generate geometric sequences						
write recursive formulas						
translate between recursive and explicit formulas						

(1) Foldables Make this Foldable to help you organize your notes about exponential functions. Begin with a sheet of 11.71 paper and six index cards. I. Fo ld engthwise about 3^{*} trom the boltom
2. Fold the paper in thirds.
3. Open and staple the edges on either side to form three pockets.
4. Label the pockets as shown. Place two index cards in each pocket.

Interactive Presentation

What Vocabulary Will Y ou Learn?

- asymptote
- common ratio
- explicit formula
- exponential decay functions

Are Y ou Ready?
Complete the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

- exponential function
- exponential growth function
- geometric sequence
- recursive formula

Quick Review			
Example 1 Evaluate $\mathbf{2} \boldsymbol{x}^{3}$ for $\boldsymbol{x}=\mathbf{5}$. $2 x^{3}$ $=2(5)^{3}$ $=2(125)$ $=250$	Original expression Substitute 5 for x : Evaluate the exponent Multipty.	Example 2 Divide $\frac{5}{6} \div \frac{1}{3}$. $\begin{aligned} \frac{5}{6} \div \frac{1}{3} & =\frac{53}{6} \overline{1} \\ & =\frac{15}{6} \\ & =\frac{5}{2} \end{aligned}$	Muitiply by the reciprocal. Multiply the numerators and multiply the denominators. Find the simplest form.
Quick Check			
Evaluate each expression given value. 1. $-4 x^{2}$ for $x=7 \quad-196$ 2. $3 x^{2}$ for $x=3 \quad 27$ 3. $0.25 x^{4}$ for $x=1 \quad 0.25$ 4. x^{5} for $x=3 \quad 243$		Divide. 5. $128 \div 4 \quad 32$ 6. $\frac{1}{3} \div 2 \frac{1}{6}$ 7. $-9 \div 3-3$ 8. $\frac{11}{8} \div \frac{1}{2} \frac{1}{4}$	
How did you do? Which exercises did you answer correctly in the Quick Check?			

What Vocabulary Will You Learn?

ELLL As you proceed through the module, introduce the key vocabulary by using the following routine.

Define An exponential function is a function of the form $y=a b$, where $a \neq 0, b>0$, and $b \neq 1$.

Example $f(x)=2(3)^{x}$
Ask Can you identify another exponential function? Possible answers:
$g(x)=0.5(4)^{x}, h(t)=2(0.3)^{t}$

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- finding function values
- transforming linear functions
- writing linear functions
- evaluating expressions with exponents
- writing explicit formulas to represent arithmetic sequences
- writing explicit formulas to represent geometric sequences

G ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Exponents section to ensure student success in this module.

Mindset Matters

Promote Process Over Results

The process that a student takes as he or she encounters a new problem is just as important as-if not more important than-the result.

How Can I Apply It?

Encourage students to consider the Think About It! prompts in their Student Edition. Have students discuss their problem-solving strategies with a partner. Be sure to support the process and reward effort as students explore and work through problems.

LESSON GOAL

Students graph exponential functions.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2
 EXPLORE AND DEVELOP

Explore:

- Exponential Behavior

Develop:

Identifying Exponential Behavior

- Identify Exponential Behavior

Q

Explore:

- Restrictions on Exponential Functions

Develop:

Graphing Exponential Functions

- Exponential Growth Function
- Exponential Decay Function

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources		EII	
Remediation: Functions	- -		\bullet
Extension: Logarithmic Functions	- 0		\bullet

Language Development Handbook

Assign page 43 of the Language Development Handbook to help your students build mathematical language related to graphing exponential functions.
Ellil You can use the tips and suggestions on page T43 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	0.5 day
45 min	

Focus

Domain: Functions

Standards for Mathematical Content:

F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F.LE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F.LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students understood that linear functions have a constant rate of change.
8.F. 4

Now

Students graph exponential functions.
F.IF.7e, F.LE.1c, F.LE. 5

Next

Students will identify the effects of transformations on the graphs of exponential functions.
F.IF.7e, F.BF. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop understanding of exponential functions and use it to build fluency by graphing exponential functions. They apply their understanding of exponential functions by solving real-world problems.

Interactive Presentation

	X
Warm Up	
Eveluate each function at the given values of x.	
2.f(x) $=-2(x+4)$ af $x=-0.5, x=1$, and $x=2.5$	
2. $f(x)=3.3 x-2 \operatorname{at} x=0, x=5$, and $x=10$	
3. $(x)=34+1)^{2}$ at $x=-6, x=-1$, and $x=3$	
4. $f(x)=4^{x}$ at $x=0, x=2$ and $x=3$	
5. WOnx Chad makes 58.25 per hour at his wummer job. How much would Chad make ir be works th houn per week? 24 hours peet weak? 40 hours per week?	

Warm Up

Launch the Lesson

[^2]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- finding function values

Answers:

1. $-7,-10,-13$
2. $-2,14.5,31$
3. $75,0,48$
4. 1, 16, 64
5. \$132; \$198; \$330

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of exponential functions.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Mathematical Background

This lesson introduces the graphing of exponential functions in the form $y=a b^{x}$. Students explore the differences between the exponential growth function and the exponential decay function and the contexts in which each apply.

Explore Exponential Behavior

Objective
Students explore the differences between exponential and linear behavior.

Teaching the Mathematical Practices
$\mathbf{8}$ Look for a Pattern Help students to see the pattern in the rates of change in this Explore.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will be presented with a linear function and an exponential function. They will create a table of values for the two functions and then will identify the differences in the rates of change. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Exponential Behavior

1. Determine the values of $f(x)$ and $g(x)$ for the given values of x to complete the table.

Explore

Explore
TYPE
a)

Students complete the calculations to find the rates of change for exponential functions.

Interactive Presentation

Explore

TYPE

a)

Students respond to the Inquiry Question and can view a sample answer.

Explore Exponential Behavior (continued)

Questions

Have students complete the Explore activity.

Ask:

- How does looking at the rate of change help you see the relationships over an interval? Sample answer: If the change is constant, the data represent a linear function. If the rate of change varies, the data represent a nonlinear function.
- Why do you think you compared the exponential function with a linear function? Sample answer: A linear function has a constant rate of change, so it is easy to recognize and compare to other functions.

(G) Inquiry

How does exponential behavior differ from linear behavior?
Sample answer: Functions with linear behavior have a constant rate of change, whereas functions with exponential behavior have a rate of change that increases by a constant factor for each equal-sized interval.

3 Go Online to find additional teaching notes and answers for the guiding exercises.

Explore Restrictions on Exponential Functions

Objective

Students use a sketch to explore the restrictions on exponential functions.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use the sketch. Work with students to explore and deepen their understanding of exponential functions.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will be presented with an exponential function. They will use a sketch to change the parameters of an exponential function, identifying special cases for the various parameters. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Explore

WEB SKETCHPAD

Students use a sketch to explore restrictions on exponential functions.

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Explore

TYPE

Students respond to the Inquiry Question and can view a sample answer.

Explore Restrictions on Exponential Functions (continued)

Questions

Have students complete the Explore activity.

Ask:

- How does the variable a affect the exponential function $y=a b$? Sample answer: a will multiply the exponential function b^{x}.
- Does the value of x have any restrictions? Explain. No; sample answer: Changing the value of x does not determine whether the function is exponential or not, it just evaluates the exponential function at a certain value.

Inquiry
Why are exponential functions defined such that $a \neq 0, b>0$, and $b \neq 1$? Sample answer: In all three cases, the function becomes a horizontal line or ray, which means that all three cases result in a function that is linear rather than exponential.

Go Online to find additional teaching notes and answers for the guiding exercises.

Learn Identifying Exponential Behavior

Objective
Students recognize situations modeled by linear or exponential functions by examining rates of change.

Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the equations, graphs, and rates of change for linear and exponential functions.

Common Misconception

Be sure that students do not confuse quadratic functions and exponential functions. While $y=x^{2}$ and $y=2$ each have an exponent, $y=x$ is a quadratic function, and $y=2^{x}$ is an exponential function.

Essential Question Follow-Up

Students have begun to explore exponential behavior in real-world situations.

Ask:

Why is it important to identify whether a relationship is represented by a straight line or a curve? Sample answer: A relationship that is represented by a straight line is modeled with a linear equation. If a relationship is not modeled by a line, then the model will need to be based on a nonlinear function.

DIFFERENTIATE

Enrichment Activity [BLI

Ask students to write a comparison of an exponential function and a linear function.

(3) Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

TAP

Students tap on each button to see the rate of change for linear and exponential functions.

Interactive Presentation

Example 1
 move on.

Example 1 Identify Exponential Behavior

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions to the questions in the Think About It! features.

Questions for Mathematical Discourse

AL. How do you know that the change in this table is not linear? Sample answer: The change is not constant.

Ol. By what factor does the explosive power of TNT increase for each integer increase in magnitude? 10

Bil How do you know that the behavior is exponential? Sample answer: The increase is by a factor of 10 each time.

Learn Graphing Exponential Functions

Objective

Students graph exponential functions, showing intercepts and end behavior.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of graphs of exponential functions in this Learn.

Important to Know

To solidify the unique properties of exponential functions, students may need to review key features, including those for linear and other types of non-linear functions that have been previously studied. Compare the domain and range of exponential functions, both exponential growth and exponential decay, to other types of functions.

Common Misconception

Make sure students understand that the graphs of exponential functions never actually touch the asymptote. It is acceptable for hand-drawn graphs to show the graph nearly touching and parallel to an asymptote, as long as the students understand that the graph gets infinitely close to the asymptote without touching it.

DIFFERENTIATE

Language Development Activity A 니․․․․

Ask students where they have heard the term exponential before and what they think it means. Students may have heard terms like exponential growth on a television news program, and they might think that exponential means "enormous." Use students' answers to introduce the concept of exponential functions.

Explore Restrictions on Exponential Functions
© Online Activity Use graphing technology to complete the Explore.

Learn Graphing Exponential Functions
Functions of the form m_{*}) $=a b^{x}$, where $e_{c}>0$ and $b>1$, are called exponential growth functions Functions of the form $(x)=a b^{x}$, where $a>0$ and $0<b<1$, are called exponential decay functions.
The graphs of exponential functions have an asymptote An symptote is a line that a graph approaches.
Key Concept - Types of Exponential Functions
Exponential Growth Functions Exponential Decay Functions
$(x)=a b^{x}, a>0, b>1 \quad$ Equation $\quad(x)=a b^{x}, a>0,0<b<1$ Domain, Range
$D=$ all real numbers; $=\{y>0\}$ if all real numbers; $R=y ; 0\}$ Intercepts
one y-vericiph nox-intercepts one y-merces x-intercepts End Behavior

as x decomoes, 40 approsches 0 as adecreases, tolincreases
Graph

© Go Online

You can watch a video o see how to graph exponential functions

Interactive Presentation

Learn

Talk About It How can you determine the y yrovicept wathoun substituting into the original equation? (Hint: Consider what x - 0 mean in the context e situation)

Sample answer: The inforcept is be ticane of the paper when it has been folded 0 times, so it is the initial thickness of the paper, 0.05 millimeter

Problem-Solving Tip Make an Organized
List Making an List Making an
organized list of natues and corresponding graphing the function. t can also help you identify patterns in the data.

Go Online
Y ou can watch a video to see how to use a with this example.
8. Example 2 Exponential Growth Function

LDING Each time you fold a piece of paper in half, it doubles in hickness. If a piece of paper is 0.05 millimeter thick, then you can determine the thickness y of a piece of paper given the number of olds x with the function $y=0.05(2)^{x}$. Identify the key features of he function, graph it, and then identify the relevant domain and range in the context of the situation.
art A Identify key features.
Secause $b>0$ and $b>1, y=0.05\left(2^{\prime \prime}\right.$ is an exponential growth function. The domain is all real numbers and the range is $y=0$.
The y ditercept is the value of y when $x=0$

$$
y=0.05(2)^{6}
$$

$y=0.05(1)$
= 0.05
The y intercept is 0.05
Hecause $y=0.05(2)^{2}$ is an exponential growth function, as increases, γ increases, and as* decreases, x approaches 0 . art B Graph the function.
Make a table of values. Round to the nearest unit. Then, plot the points and draw a curve to approximate it

$x y=0.05(2)$	\times	y	
$-2 y$	$0.05(2)$	-2	0.0125
$-1 y$	$0.05(2)$	-1	0.025
$0 y$	$0.05(2)$	3	0.05
1	$0.05(2$	+	0.1
2	$0.05(2)$	2	0.2
$3 y$	$0.05(2)$	1	0.4
$4 y$	$0.05(2)$	+	0.8

Part C Identify relevant domain and range.

Because the number of folds cannot be negative and folds must be counted in integers, the potential domain is the set of whole numbers and the potential range is the set of integers greater than or equal to 0.05 . However, because the paper cannot be folded indefinitely, the thickness of the paper cannot continue to grow to infinity. So the domain will be restricted to the greatest possible number of folds, and the range will be restricted to the greatest thickness of the paper.
\qquad

Example 2 Exponential Growth Function

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse

Will the thickness of the paper increase or decrease as the paper is folded? increase
OL What is the domain of this function? Explain. Sample answer: The domain is the set of whole numbers. The folds must be an integer because there cannot be partial folds in this situation. The smallest number of folds is 0 because there cannot be negative folds.
BLI How would the function change if you folded the paper into thirds instead of in half? The base of the exponent would be 3 instead of 2.

Interactive Presentation

Example 2
EXPAND

Students tap to see the steps to identify key features and graph an exponential growth function.

Check

Consider $y=3^{*}$
Part A
List the key features that apply to $y=3$. Include the domain, range, y intervept, and end Dehinior of the function
$\mathrm{D}=$ \{all real numbers $\}, \mathrm{R}-(y>0\}, y$ antercept $=$
As π increases, y increanes. As x decreases, y approaches 0 .

FILM The function $y-3$ 'can be used to model a tes world socution Sarah wants to crowdfund a film project. T o spread the word, she shares the page with 3 friends, and requests that each friend share it with 3 more friends. The function that models the number of people with a link to the crowdfunding page y given the number of cycles * is defined by the function $y=3^{*}$

Part B
Select the correct graph of $y=3^{*}$. B

Math History Minute While a junior in high While a junior in high School, Britney Gallivan
(1985-) showed that a single length of toilet paper 4000 feet long can be folded in half a maximum of twelve times. Britney's proof involved the exponential equation $h=\frac{7}{6}\left(n^{n}+42^{n}-1\right)$. where L is the length of the paper! is the thickness of the material to be folded, and epresents the number of folds desired.

Part C
Describe the relevant range in the context of the situation.
$R=\{y=1,3,9,27,81, \ldots$.

Interactive Presentation

```
Question 1
Pm+2
Pwta
```



```
    A0Tlu donmes is sitmal vitery.
    OTVeracerlo colind ruabon
    0)T\amgea (v>0)
    0)TMu-mococka?
    9) ley museptes!
```


Check
MULTIPLECHOICE

Students select the graph of an exponential function.

© Example 3 Exponential Decay Function
CAFFEINE The half-life of a substance describes how long it takes for the substance to deplete by half. The half-life of caffeine in the body of a healthy adult is approximately 5 hours, meaning that it takes 5 hours for the body to break down half of the caffeine. Suppose an energy drink contains 160 milligrams of caffeine. The amount of caffeine y left in your system after x hours is modeled by the function $y=160\left(\frac{1}{2}\right)^{5}$. Identify the key features of the function, graph it, and then identify the relevant domain and range in the context of the situation

Part A Identify key features.
Because $a>0$ and $0<b<1, y=160\binom{1}{2}^{5}$ is an exponential decay function. The domain is all real numbers and the range is $y>0$. The y intercept is the value of y when $x=0$.
$y=160\left(\frac{1}{2}\right)^{5}$

* 160(1) ${ }^{-160}$

The rateccept is 160.

Part \mathbf{B} Graph the function.

Part C Identify relevant domain and range.
Because time cannot be negative, the relevant domain is $(x \geq 0\}$ Because the amount of caffeine cannot be negative and the amount of caffeine when $x=0$ is 160 mg , the relevant range is $\{0<y \leq 160\}$
O Go Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 3

CHECK

Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 3 Exponential Decay Functions

Teaching the Mathematical Practices
5 Use a Source Guide students to find external sources to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse
Is the amount of caffeine increasing or decreasing in this situation? decreasing
이 In 10 hours, how many times will the caffeine break down by half? twice
BL. How much caffeine will be left in the bloodstream 20 hours after drinking the caffeinated drink? 10 milligrams

Common Error

Because the half-life is 5 hours and Example 3 defines the independent variable as x hours, it is easy for students to become confused about where the exponent in the given equation comes from. Review the table in Part B to make it clear to the students that the half-life takes place at $x=5$ hours. Emphasize that changes in x do not represent each half-life step.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-8$	
2	exercises that use a variety of skills from this lesson	$9-15$
3	exercises that emphasize higher-order and critical-thinking skills	$16-19$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,

THEN assign:

- Practice, Exercises 1-15 odd, 16-19
- Extension: Logarithmic Functions
- DALEKS'Exponential Functions

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Functions
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Sets, Relations, and Functions

IF students score 65% or less on the Checks, THEN assign:

- Practice, Exercises 1-7
- Remediation, Review Resources: Functions
- Quick Review Math Handbook: Exponential Functions
- ArriveMATH Take Another Look
- D ALEKS'Sets, Relations, and Functions

Answers

6 c. Because time cannot be negative, the relevant domain is $\{x \mid x \geq 0\}$. Because the amount of nonrecycled paper, and cardboard cannot be negative and the amount when $x=0$ is 1000 tons, the relevant range is $\{y \mid y \geq 1000\}$.
7c. Because time cannot be negative, the relevant domain is $\{x \mid x \geq 0\}$. Because the amount of lodine 131 cannot be negative, and the amount when $x=0$ is 50 mg , the relevant range is $\{y \mid 0<y \leq 50\}$.

Mixed Exercises
MODELING Graph each function. Find the y-intercept and state the domain, range, and the equation of the asymptote. See margin for y-intercept, domain, range, and asymptote.
9. $y=2\left(\frac{1}{6}\right)^{x}$

11. $y=-3(9 x)$

13. $y=3\left(11^{x}\right)$

14. $y=4^{x}+3$

15. METEOROLOGY The atmospheric pressure in mililibars at altitude x meters above sea level can be approximated by the function $f(x)=1038(1.000134)^{-x}$ when x is between 0 and 10,000 .
a. What is the atmospheric pressure at sea level? 1038 millibars
b. The McDonald Observatory in Texas is at an altitude of 2000 meters. What is
the approximate atmospheric pressure there? about 794 millibars
c. As altitude increases, what happens to atmospheric pressure? It decreases.

OHigher-Order Thinking Skills
16. PERSEVERE Use tables and graphs to compare and contrast an exponential function $f(x)=a b^{x}+c$, where $a \neq 0, b>0$, and $b \neq 1$, and a linear function where the functions are increasing, decreasing, positive, or negativeSee Mod, 8. Answer Appendix
17. CREATE Write an exponential function that passes through $(0,3)$ and $(1,6) . \quad f(x)=3\left(2^{2}\right)$
18. ANALYZE Determine whether the graph of $y=a b^{*}$, where $a \neq 0, b>0$, and $b \neq 1$, sometimes, always, or never has an x-intercept. Justify your argument. See margin. 19. WRITE Find an exponential function that represents a real-world situation, and
graph the function. Analyze the graph, and explain why the situation is modeled by an exponential function rather than a linear function. See Mod. 8. Answer Appendix, 438 Module 8 . Exponential Functions

Answers

9. 2; $\mathrm{D}=\{$ all real numbers $\}, \mathrm{R}=\{y \mid y>0\} ; y=0$
10. $1 ; \mathrm{D}=\{$ all real numbers $\}, \mathrm{R}=\{y \mid y>0\} ; y=0$
11. $-3 ; \mathrm{D}=\{$ all real numbers $\}, \mathrm{R}=\{y \mid y<0\} ; y=0$
12. $-4 ; \mathrm{D}=\{$ all real numbers $\}, \mathrm{R}=\{y \mid y<0\} ; y=0$
13. 3; $\mathrm{D}=\{$ all real numbers $\}, \mathrm{R}=\{y \mid y>0\} ; y=0$
14. $4 ; \mathrm{D}=\{$ all real numbers $\}, \mathrm{R}=\{y \mid y>3\} ; y=3$
15. Never; the graph never intersects the x-axis because the powers of b are always positive and $a \neq 0$. Thus $a b^{x}$ is never 0 .

LESSON GOAL

Students identify the effects of transformations of the graphs of exponential functions.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore:

- Translating Exponential Functions

Develop:

Translations of Exponential Functions

- Vertical Translations of Exponential Functions
- Horizontal Translations of Exponential Functions
- Multiple Translations of Exponential Functions
- Identify Exponential Functions from Graphs (Vertical Translations)
- Identify Exponential Functions from Graphs (Horizontal Translations)

Explore:

- Dilating Exponential Functions

Develop:

Dilations of Exponential Functions

- Vertical Dilations of Exponential Functions
- Horizontal Dilations of Exponential Functions
- Describe Dilations of Exponential Functions
- Identify Exponential Functions from Graphs (Dilations)

Explore:

- Reflecting Exponential Functions

Develop:

Reflections of Exponential Functions

- Vertical Reflections of Exponential Functions
- Horizontal Reflections of Exponential Functions

Transformations of Exponential Functions

- Multiple Transformations of Exponential Functions

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice

Suggested Pacing

Focus

Domain: Functions
Standards for Mathematical Content:
F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$,
$f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the values of k given the graphs.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students transformed linear functions and graphed exponential functions.

F.BF.3, F.IF.7e, F.LE. 5

Now

Students identify the effects of transformations on the graphs of exponential functions. F.IF.7e, F.BF. 3

Next

Students will create exponential functions and solve problems involving exponential growth and decay. F.LE.2, F.LE. 5

DIFFERENTIATE

View reports of student progress on the Checks after each example.

| Resources | Al | LIE | IGLII |
| :--- | :---: | :---: | :---: | :---: |
| Remediation: Transformations of Linear
 Functions | \bullet | | \bullet |
| Extension: The Natural Base, e | | \bullet | \bullet |

Language Development Handbook

Assign page 44 of the Language Development Handbook to help your students build mathematical language related to transformations of the graphs of exponential functions.
ELII You can use the tips and suggestions on page T 44 of the handbook to support students who are building English proficiency.

Interactive Presentation

	\times
Warm Up	
IIf $f(x)=x$ is the parent function for linear functionk, describe each graph, Astume that all values of the veriables were poilitive uniess noted.	
2. $f(x)=x+1$	
$2 f(0)=x-1$	
2. $f(t)=\alpha x_{, ~ u}+>1$	
4. $f(x)=a x, a<0$	
5. $/(x)=s a x-h, a<0$	

Warm Up

Launch the Lesson

Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- transforming linear functions

Answers:

1. The graph of $f(x)$ moved up k units.
2. The graph of $f(x)$ moved down h units.
3. similar to the graph of $f(x)$, but steeper
4. similar to the graph of $f(x)$, but steeper and going down; a reflection of the graph in Exercise 3 over the y-axis
5. similar to the graph of $f(x)$, but steeper, going down, and moved down h units; a translation of the graph in Exercise $4 h$ units down

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of reflections of exponential functions.
(3)

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Mathematical Background

This lesson focuses on transformations of exponential function graphs. Students will explore various methods of performing translations, dilations, and reflections of the graphs of exponential functions, as well as combinations of these transformations, by representing graphical functions in symbolic form.

Explore T ranslating Exponential Functions

Objective

Students use a graphing calculator to explore translations of exponential functions.

Teaching the Mathematical Practices

5 Analyze Graphs Help students analyze the graphs they have generated using graphing calculators. Point out that to see all the graphs, students may need to adjust the viewing window.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a graphing calculator to explore vertical and horizontal translations of exponential functions. They will identify how different function representations relate to the parent exponential function. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Translating Exponential Punctions

Explore

Interactive Presentation

Explore

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore T ranslating Exponential Functions (continued)

Questions

Have students complete the Explore activity.

Ask:

- How do the functions $y=245$ and $y=2{ }^{(x+5)}$ differ? Sample answer: The first equation has a vertical translation, while the second has a horizontal translation.
- What does it mean to subtract a value "before it has been evaluated"? Sample answer: In this case, it means to subtract a value from x and then use the difference as the exponent.

(A) Inquiry

What effect does adding to or subtracting from a function before or after it has been evaluated have on the function? Sample answer: Adding to or subtracting from a function after it has been evaluated results in a shift up or down, while adding to or subtracting from a function before it has been evaluated results in a shift right or left.

Go Online to find additional teaching notes and answers for the guiding exercises.

Explore Dilating Exponential Functions

Objective

Students use a graphing calculator to explore dilations of exponential functions.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students are presented with a series of equations representing the dilation of exponential functions. They will graph these equations on graphing calculators and analyze the differences to identify the effects of dilating an exponential function. Then, students will answer the Inquiry Question
(continued on the next page)

Interactive Presentation

Explore

Interactive Presentation

Explore

TYPE

a
Students respond to the Inquiry Question and can view a sample answer.

Explore Dilating Exponential Functions (continued)

Questions

Have students complete the Explore activity.

Ask:

- Why does the y-intercept change between $y=3(2)$ and $y=2$?x Sample answer: The y-intercept is 1 in the graph of $y=2^{x}$ and this value is being multiplied by 3 in $y=3(2)^{x}$. So the y-intercept becomes 3 in the graph of $y=3(2)^{x}$.
-Why do the y-intercepts of $y=b$ dind $y=b$ stáa the same? Sample answer: The value of a is multiplying x, which is zero at the y-intercept. Any number multiplied by zero is still zero, so the y-intercept will not change.

(4) Inquiry

What effect does multiplying a function by a value before or after it has been evaluated have on the function? Sample answer: Multiplying by a after the function has been evaluated changes the steepness and y-intercept of the parent graph. Graphs in which a is greater are steeper. The y-intercept is multiplied by a. Multiplying by a before the function has been evaluated only changes the steepness of the parent graph.

3 Go Online to find additional teaching notes and answers for the guiding exercises.

Explore Reflecting Exponential Functions

Objective

Students use a graphing calculator to explore reflections of exponential functions.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in the Explore activity, students will need to use a graphing calculator. Work with students to explore and deepen their understanding of reflections of exponential functions.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will be presented with a series of exponential functions. They will graph these equations on graphing calculators and analyze the differences to identify the effects of reflecting an exponential functions. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

```
Refecting Exponential Functions
```


Explore

Explore

Students describe similarities and differences among the graphs.

Interactive Presentation

Explore

TYPE

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Reflecting Exponential Functions (continued)

Questions

Have students complete the Explore activity.

Ask:

- How would you describe the transformation of $y=-2$? Sample answer: vertical reflection across the x-axis
- How would you describe the transformation of $y=2$? x Sample answer: horizontal reflection across the y-axis
(-) Inquiry
What effect does multiplying a function by -1 before or after it has been evaluated have on the function? Sample answer: Multiplying a function by -1 after it has been evaluated changes the direction in which the graph slopes, while multiplying a function by -1 before it has been evaluated reverses the end behavior of the graph.

Go Online to find additional teaching notes and answers for the guiding exercises.

Learn Translations of Exponential Functions

Objective

Students identify the effects on the graphs of exponential functions by replacing $f(x)$ with $f(x)+k$ and $f(x-h)$ for positive and negative values.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 1 Vertical Translations of Exponential Functions

Questions for Mathematical Discourse
ALI What is the base in the function $g(x)$? 2
OL. What is $f(0)$? What is $g(0)$? $1 ; 4$
[BL. How does the range of $g(x)$ compare to the parent function? Sample answer: Because the function was translated up 3 units, all y-values will also increase by 3 units. The new range will be $y>3$.

Common Error

Make sure that students connect to the equation $g(x)=f(x)+k$ to recognize that the translation happens to the output, or y-values, rather than to the input, or x-values.

3
 Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

FLASHCARDS

Students tap on each card to compare

 translations of exponential functions to the parent function.

Interactive Presentation

Example 2

TAP

Students move through slides to see how to graph a horizontal translation of an exponential function.

Example 2 Horizontal Translations of Exponential Functions

n10) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the parent function and the translated function used in this example.

Questions for Mathematical Discourse
4L. What is the exponent in the function $g(x) ? x+1$
OL. When is $f(x)=1$? When is $g(x)=1$? $x=0 ; x=-1$
(B)I What would be the input of $g(x)$ that would result in $f(x)$? Why? $x-1$; Sample answer: Substituting $x-1$ for x, the exponent simplifies to $(x-1)+1=x$.

Example 3 Multiple T ranslations of Exponential Functions

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of equations of translations in this example to identify the vertical or horizontal translations in this example.

Questions for Mathematical Discourse
How can you identify a horizontal translation? Sample answer: Look for a value that is added to or subtracted from x. For exponential functions, that would be in the exponent.
OL What about $g(x)$ indicates that there will be a vertical translation? Explain. Minus four; sample answer: Subtracting 4 from the exponential function represents a vertical translation downward.
B1. What about $g(x)$ indicates that there will be a horizontal translation? Explain. Minus 2 in the exponent; sample answer: Subtracting from the exponent represents a translation to the right.

Example 4 Identify Exponential Functions from Graphs (Vertical Translations)

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to use the relationships between the graphs of the parent function and translated function and their equations in this example.

Questions for Mathematical Discourse
AII What is the y-intercept of $g(x)$? -1
OL. How is $g(x)$ vertically translated from the parent function $f(x)$? 2 units down

B1. What y-intercept would indicate a vertical translation 2 units up from the parent graph? $(0,3)$

Example 5 Identify Exponential Functions from Graphs (Horizontal Translations)

(11) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the parent function and the translated function used in this example.

Questions for Mathematical Discourse

ALI What is the base in the function $g(x)$? 2
(OL. How can you use a corresponding point on each graph to determine the horizontal translation? Sample answer: Identify points with the same y-coordinate on each function. The difference in the x-coordinates indicates the horizontal shift.
Do either $f(x)$ or $g(x)$ ever have an output value of 0 ? Explain. No; sample answer: Though both $f(x)$ and $g(x)$ get infinitely close to a value of 0 as x decreases, they will never reach that value. This is because the negative values of x in the exponent will make the output value of the exponential function closer to zero, but can never make it equal to zero.

Example 4 Identify Exponential Functions from Graphs (V ertical T ranslations)
The given graph is a translation of the parent function $f(x)=\left(\frac{1}{4}\right) x$.
$U_{\text {se }}$ the graph of the function to write its equation.

The horizontal asymptote of g^{\prime}) is different from the horizontal asymptote of (x) implingà verical bansusion of the form $(g)=\left(\frac{1}{4}\right)^{u}+k$. The parent graph has a y intercept an (0,1). The translated graph has a yintercept af(0, 1$)$. The y intercept is shithed 2 units down, so $k=-2$.

Example 5 Identify Exponential Functions from Graphs (Horizontal T ranslations)
The given graph is a translation of the parent function $n(m)=2^{x}$ Use the graph of the function to write its equation.

$g(0)=2 x \quad 3$
The horizontal asymptote of g u) is the same as the horizonts Isymptote of 6%), implying a horizontal translation of the formig -2^{x-1} The parent graph passes through $(0,1)$. The translated graph has a rvolue of 1 at (3.1). The graph is shifted 3 units right, so $n=3$.

Check

The given graph is a translation of 8 年 $=5^{\circ}$. Which is the equation for the function shown in the graph? D
A. g of $=5 *+4$
e. $g 0 x=5^{x} \quad 4$
C. $g y=5^{x-4}$
D. g. $y=5^{x+4}$

QGo Online Y ou can complete an Extra Example online.

Study Tip

Vertical Translations Any exponential parent unction has a cimeecept at $(0,1)$ and By examining how far these features are shifted up or down, you can easily determine the value of $\$$ when identifying exponential functions.

Study Tip

orizontal Translations function has a Nirtercept at 0, 1). By examining how far this point is shifted right or left, you can easily h when identifying xponential function

Interactive Presentation

Example 4

442 Module 8 . Exponential Functions

Interactive Presentation

Example 6

Students move through slides to see how to graph a dilation of an exponential function.

1 CONCEPTUAL UNDERSTANDING

Learn Dilations of Exponential Functions

Objective

Students identify the effects on the graphs of exponential functions by replacing $a f(x)$ with $f(a x)$.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of dilations of exponential functions in this Learn.

What Students Are Learning

A function $g(x)$ is a vertical dilation of $f(x)$ when it can be mapped with the relationship $g(x)=a f(x)$. This means that each y-coordinate of the function $f(x)$ is multiplied by a to get the corresponding y-coordinate of the function $g(x)$. A horizontal dilation $g(x)$ of $f(x)$ can be mapped with the relationship $g(x)=f(a x)$.

Example 6 Vertical Dilations of Exponential Functions

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. In this example, students should use clear mathematical language to describe the dilation.

Questions for Mathematical Discourse
41. What is the asymptote of $g(x)$? of $f(x)$? $y=0 ; y=0$

이 What is the y-intercept of $f(x)$? of $g(x)$? $1 ; \frac{1}{4}$
[BLI Is there any input value that will result in $f(x)=g(x)$? Explain.
No; sample answer: Each value of $g(x)$ will be one-fourth the value of $f(x)$. Because there is no output of 0 for this function, there is no value where one-fourth of the output will be equal to the original output.

Common Error

The graph of $f(x)$ and $g(x)$ in Example 6 are dilations that both have the asymptote of $y=0$. In the graph, it looks like these two functions touch each other on the left side of the graph, but it is important for students to realize that this is an illusion based on the scale of the graph. Test values or experiment with zooming in on graphing calculators to convince students that at any interval in which you look at the values, $f(x)$ and $g(x)$ will be different by a factor of a.

Example 7 Horizontal Dilations of Exponential Functions

1 Te Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the equations and graphs of the functions in this example.

Questions for Mathematical Discourse
AII What is the base of $g(x)$? The exponent? $\frac{5}{3} ; 2 x$
(O). What is the y-intercept of $f(x)$? Of $g(x)$? $1 ; 1$
[Bill How can you tell from the base of $f(x)$ and $g(x)$ that the functions will be increasing? The base is $\frac{5}{3}$, which is greater than 1 , so the function will increase.

Example 8 Describe Dilations of Exponential Functions

Teaching the Mathematical Practices
4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

Questions for Mathematical Discourse
AL What does $x=0$ represent in this situation? the year 2000
OL. Do you expect the graph of $c(x)$ to grow more or less rapidly than $f(x)$? Explain. Less rapidly; sample answer: Because each output is being multiplied by a value less than one, each y-value of $c(x)$ will be less than the y-value of $f(x)$.What will be the solar PV capacity in the year 2030 to the nearest hundredth, according to the function $c(x) ? 76,450.11$

Example 7 Horizontal Dilations of Exponential Functions
gescribe the dilation in $g_{(x)}=\left(\frac{5}{3}\right)^{2}$ as it relates to the graph of the parent function $f(x)=\left(\frac{5}{3}\right)^{t}$.
x is multiplied by the positive constant a before it has been evaluated, and $/ \sigma$ is greater than 1 , so the graph of $(0)=\left(\frac{5}{3}\right)^{x}$ is compressed horizontally by a factor of $\frac{1}{164}$ or $\frac{1}{2}$

Check

Identify the dilation in each function as it relates
to the parent function $\$ 0=*^{*}$ by copying and completing the table and writing the type of dilation and dilation factor next to each equation.

- Example 8 Describe Dilations of Exponential Functions

INERGY Since 2000, solar PV capacity in the world has been growing exponentially. It can be approximated by the function $c(x)=0.897(1.46)^{x}$, where cith is the solar PV capacky in gigawatts. x is the number of years since 2000, and 0.897 is the initial capacity. Describe the dilation in $\mathrm{e}(\mathrm{m})=0.897(1.46)^{*}$ as it is related to the parent function $f(x)=(1.46)^{x}$.
The parent function is $f \times 0)=(1.46)^{*}$. Then $(x)=a$ ofse where $a=0.897$. $c(0)=0.897(1.46)^{-}-c(x)=0.897(x)$ The function is multiplied by the positive constant ω after it has been evaluated and constant σ atter it has been evaluated and $1.46{ }^{\prime}$ is compressed vertically by a factor of (a) or 0.897 .

Study Tip

Assumptions

Assuming that the rate at which PV capacity same allows us to same allows us to with an exponential function.

Interactive Presentation

Example 7

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Example 9

TYPE	Students make a conjecture about the relationship between the y-intercept and the value of a.
a\|	

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 9 Identify Exponential Functions from Graphs (Dilations)

(1]) Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
What is the base in function $f(x)$? 2
OLI What is the y-intercept of $g(x)$? $\frac{1}{4}$
BLI Why does it make sense that $a<1$? Sample answer: The transformed function is below the parent function, so you can tell that it is a vertical compression. It makes sense that the values would be a fraction of the original.

Learn Reflections of Exponential Functions

Objective
Students identify the effects on the graphs of exponential functions by replacing -af(x) with $f(-a x)$.

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the parent function and the reflected function used in this Learn.

Example 10 Vertical Reflections of Exponential Functions

(1)Teaching the Mathematical Practices

7 Use Structure Help students to use the structure of $g(x)$ to identify the transformations in the function.

Questions for Mathematical Discourse
AL. What number is multiplied by $f(x)$ to obtain $g(x)$? -3
OL What is the range of $f(x)$? Of $g(x)$? $f(x)>0 ; g(x)<0$
[B] What about the function $g(x)$ would need to be different for it to be a vertical reflection without any vertical stretching? Instead of multiplying by -3 , it would need to be multiplied by -1 .

Example 11 Horizontal Reflections of Exponential Functions

(17) Teaching the Mathematical Practices

3 Analyze Cases The Think About It! feature guides students to examine the cases of reflections of exponential functions. Encourage students to familiarize themselves with each case.

Questions for Mathematical Discourse
4L. What is different about the two functions? Sample answer: The exponent of $f(x)$ is just x, but the exponent of $g(x)$ is $-2 x$.
OL Does $g(x)$ represent exponential growth or decay? decayHow can you rewrite $g(x)$ as a function with an exponent of x ? Show your work. $g(x)=3 \equiv-2 x(3)=-2 x \quad\left(\frac{1}{9}\right)^{x}$

Example 10 V ertical Reflections of Exponential Functions

Describe how the graph of $g(x)=-3(2)^{\prime}$ is related to the graph of the parent function $1(\mathrm{P})=\mathbf{2}^{x}$.
The function is multiplied by -1 and the positive constant p after it has been evaluated and $|a|$ is greater than 1 , so the graph of $/ \mathrm{Ne}=2^{*}$ is stretched vertically and reflected across the x-ares.

Example 11 Horizontal Reflections of Exponential Functions
Describe how the graph of $g(x)=(3)^{-2 x}$ is related to the graph of the parent function fx$)=3 \mathrm{x}$.
The function is multiplied by -1 and the constant a before it is evaluated and $|a|$ is
geater than 1 , so the graph of $(x)=3^{\prime}$ is compressed horizontally and reflected Across the raxis.

Check
Match each function with its graph.

1. $g \mathrm{~K}=\mathrm{K}^{2} \mathrm{D}$
2. $h \infty=\left(\frac{1}{3}\right)^{-x} c$
3. $k x=\left(\frac{1}{3}\right)^{\prime} A$
4. $g \hat{b}=3 \times B$

Think About It!

 The example shows exponential function of the form $f(t)=00^{\prime}$ over the rexas for the case. where $b>1$. Examine the following cases Ind describe the effect a reflection across the the end behavior of the parent function for $=$ obr.Case 1: $\rho(x)=a b^{-7}$ where $b>1$. Case 2: $g(x)=a b^{+}$ where $0<b<1$.

Sample answer: In each case, the end behavior switches. Case 1: As x decreases, y approaches infinity instead of 0 , and as increases, y approaches 0 instead of infinity. Case 2: Asr decreases, y approaches 0 instead of infinity, and as increases, y approaches infinity instead of 0 .

Interactive Presentation

Interactive Presentation

Example 12

CHECK

Students complete the Check online to determine whether they are ready to move on.

Learn Transformations of Exponential Functions

Objective
Students use transformations to identify exponential functions from graphs and write equations of exponential functions.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of transformations of exponential functions in this Learn.

Example 12 Multiple Transformations of Exponential Functions

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the parent function and the transformed function used in this example.

Questions for Mathematical Discourse

What is the exponent in $g(x)$? $x-2$ What is the value of h ? 2
OL How many different transformations are performed on $g(x)$? Explain. 4; Sample answer; There are values for a, h and k in the transformed equation. Also, $a<0$, which means there is a reflection and a dilation.

BLI Which part of $g(x)$ represents a reflection? Explain. Sample answer: The value of $a=-\frac{1}{2}$ represents a vertical reflection and a compression of the graph by one-half.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-20$	
2	exercises that use a variety of skills from this lesson	$21-43$
2	exercises that extend concepts learned in this lesson to new contexts	44,45
3	exercises that emphasize higher-order and critical-thinking skills	$46-50$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-45 odd, 46-50
- Extension: The Natural Base, e
- ALEKS'Exponential Functions

IF students score 66\%-89\% on the Checks,

THEN assign:

- Practice, Exercises 1-49 odd
- Remediation, Review Resources: Transformations of Linear Functions
- Personal Tutors
- Extra Examples 1-12
- ALEKS'Equations of Lines

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Transformations of Linear Functions
- D ALEKS'Equations of Lines
- ArriveMATH Take Another Look

Practice
0
Examples 1-3, 6-7, 10-12
Describe the transformation of $g(x)$ as it relates to the parent function $f(x)$.

1. $f(x)=6^{x}: g(x)=6^{x}+8$
translated up 8 units
2. $f(x)=3^{x}+1 ; g(x)=3^{2 x}+1$ compressed horizontally
3. $f(x)=2.3^{x}$: $g(x)=-2.3^{x-1}$
reflected across the x-axis; translated 1 unit right
4. $f(x)=5 x+2 ; g(x)=5^{-x}+6$ reflected across the y-ax
translated 4 units up
5. $f(x)=3^{x}+1 ; g(x)=2\left(3^{x}\right.$ stretched vertically,
6. $f(x)=4^{x}: g(x)=4^{x-3}$
translated right 3 units
7. $f(x)=5^{x} ; g(x)=-5^{x}$ reflected across the x-axis
8. $f(x)=4^{x}-3$; $g(x)=40.5 x-3$
stretched horizontally
9. $f(x)=2^{x}: g(x)=2^{-x}+1$
reflected across the y-axis
translated 1 unit up
10. $f(x)=1.4 x-1 ; g(x)=-1.4 x+6$
reflected across the x-axis;
translated 7 units up
$f(x)=-x^{x},(x)=\frac{1}{3}$
11. $f(x)=-4^{x}: g(x)=\frac{1}{3}(-4 x)$
compressed vertically
2. $f(x)=\left(\frac{1}{2}\right)^{x}+5 ; g(x)=\left(\frac{1}{2}\right)^{x}$
translated down 5 units

Examples 4-5, 9

Each graph is a transformation of the parent function $y=2^{x}$. Use the graph of the
function to write its equation.

Example 8

17. SAVING Celia invests $\$ 2000$ in a savings account that earns 1.25% interest per year compounded annually. The amount of money in her bank account after x years can be modeled by $g(x)=2000(1.0125)^{x}$. Describe the dilation in $g(x)$ as it relates to the parent function $f(x)=1.0125^{*}$.
stretched vertically by a factor of 2000
18. CAFFEINE SUppose an 8 -ounce cup of coffee contains 100 milligrams of caffeine. The rate at which caffeine is eliminated from an adult's body is 11% per hour. The
function $f(x)=100(0.89 y$ can be used to model the amount of caffeine left in a person's bloodstream after x hours of consuming the cup of coffee. Suppose the function $g(x)=25(0.89)$ represents the amount of caffeine left in a persons bloodstream after x hours of consuming an 8 -ounce cup of green tea. Describe $g(x)$ as a transformation of $f(x)$. compressed vertically by a factor of $\frac{1}{4}$
19. VIsाroRs The number of visitors to a new skateboarding park can be modeled by the exponentia function $g(x)=20\left(2^{\eta}\right)$ where x represents the number of months first month is a dilation of the parent function $f(x)=2^{x}$. stretched vertically by a factor of 20
20. DEPRECIATION Depreciation is the decrease in the value of an item resulting from its age or wear. When an item exponential function can be used to model its decreasing value over time. The function $g(x)=12,000(0.85)^{4}$ can be used to model the value of a $\$ 12,000$ car as it depreciates at an annual rate of 15% over x years. $g(x)$ is a diation of the parent function $f(x)=0.85 \times$. The graph shows the function $g(x)$.
a. Write the equation of a function $h(x)$ that represents the

depreciation of a $\$ 20,000$ car depreciating at the same
rate over x years. $h(x)=20,000(0,85)$
b. Describe $h(x)$ as it relates to the parent function. stretched vertically by a factor of 20,000
c. What is the difference between the values of the $\$ 12,000$ car and the $\$ 20,000$ car after 5 years? They differ by approximately $\$ 3500$.

Mixed Exercises
Describe the transformation of $g(x)$ as it relates to the parent function $f(x)=2^{x}$.
21. $g(x)=2^{x}+6$
translated up 6 units
23. $g(x)=-\frac{1}{4}(2)^{x}$ reflected across the x-axis compressed vertically
25. $g(x)=2-x$
reflected across the y-axis
22. $g(x)=3(2)^{x}$
stretched vertically
24. $g(x)=-3+2^{x}$ translated down 3 units
26. $g(x)=-5(2) x$
reflected across the x-axis; stretched vertically

448 Module 8 . Exponential Functions

$x^{2}=5^{x}$
bank account that Rebecca each put $\$ 1000$ into compounded annually. Thomas also has an ant toy automobile. The graph shows the amount of their assets over time.
a. Describe the graph of Thomas' assets as a transformation of Rebecca's assets.
translated up 500 units
b. Use the graph to extrapolate the value of Thomas

The graph of $g(x)$ is a transformation of the parent function $f(x)$. Graph $g(x)$ and describe the transformation in each function as it relates to the parent function
42. $f(x)=3^{x}$
43. $f(x)=2^{x}$
$g(x)=-3 \cdot 2^{-x}+1$
$g(x)=5 \cdot 3^{x+2}-4$
$g(x)=-3 \cdot 2^{-x}+$
4. constauct maguments n ate coordintes ofte
44. CONSTRUCT ARGUMENTS Name the coordinates of the point at which the graphs of $g(x)=2^{x}+3$ and $h(x) \neq+53$ intersect. Explain your reasoninghe parent function $f(x)=b^{x}$ raphs will the point $(0,1)$.
45. graphs will intersect at ($(0,4$). the graph of $g(x)=16 \cdot 4^{x}$. Use the properties of exponents to justify your answer. The graphs of these two exponential functions are the same. $f(x)=4^{x+2}=$ $4^{x} \cdot 4=16 \quad x^{x}-4 g(x)$
© Higher-Order Thinking Skills
46. ANAL YZE What would happen to the shape of the graph of an exponential function if the function is multiplied by a number between 0 and -1 ? What would happen to its shape if the exponent is multiplied by a number between 0 and -1 ? Justify your argument. See margin.
47. FIND THE ERROR Jennifer claims that the graph of $\left.g(x)=2(2)^{x}\right)$ is a graph that rise more rapidly than its parent function $f(x)=2^{x}$. James claims that it is actually the parent graph shifted to the left 2 units. Who is correct? Explain your reasoning. See margin.
48. WRITE A deficit is a negative amount of some quantity, such as money. A deficit that is growing exponentially can be modeled by $y=a b(x-b)+k$. Describe the constraints on a, b, and c. A deficit that is exponentially growing is modeled where $a<0$ and either $b>1$ and $c<0$ or $0<b<1$ and $c<0$.
49. WHICH ONE DOESNT BELONG? Consider each pair of transformations of the function $f(x)$ to $g(x)$. Which one does not belong? Justify your conclusion. unction $f(x)$ to $g(x)$. Which one does not belong? Justrify your conclusion
$\begin{array}{lll}f(x)=3^{\prime 2+} & f(x)=1 & \\ g(x)=3^{x-1}+2 & g(x)=2^{2+3}+3 & g(x)=4^{2+1}+4+2\end{array}$
The first pair; $g(x)$ is shifted right 3 units instead of left 3 units.
50. CREATE The graph shows a parent function $f(x)$.
a. Write a function to represent the parent function $f(x) . \quad f(x)=\left(\frac{1}{2}\right)^{x}$
b. Write a function to represent a transformation of the parent function $g(x)$. Sample answer: $g(x)=4\left(\frac{1}{2}\right)-1$
c. Describe the transformation. Sample answer: $g(x)$ is stretched

Vertically by a factor of 4 and shifted down 1 unit.
Graph the transformed function $g(x)$. See margin

450 module 8 - Exponenuaf Function

Answers

42. The graph is shifted left 2 units, stretched vertically by a factor of 5 , and then shifted down 4 units.

43. The graph has been reflected over the x-axis and reflected over the y-axis. It has been stretched vertically by a factor of 3 and shifted up 1 unit.

44. Sample answer: In each case, transformations. When multiplying the function by a number between 0 and negative 1 , reflect the graph over the x-axis and flatten its shape. When multiplying the exponent by a number between 0 and negative one, reflect over the y-axis and stretch its shape.
45. Jennifer is correct. Sample answer: As it is written, the function is multiplied by 2 , which causes the graph to rise more rapidly than the parent graph, so Jennifer is correct. However, $g(x)=2\left(2^{2}\right)$ is equivalent to $g(x)=2^{x+}+$ This graph is the parent graph of $f(x)=2$ shifted to the left one unit, but it still rises at the same rate.
50d. Sample answer:

LESSON GOAL

Students create exponential functions and solve problems involving exponential growth and decay.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Writing an Exponential Function to Model Population Growth

Develop:

Constructing Exponential Functions

- Write an Exponential Function Given Two Points
- Write an Exponential Function Given a Graph
- Write an Exponential Function Given a Description

Solving Problems Involving Exponential Growth

- Exponential Growth
- Compound Interest

Solving Problems Involving Exponential Decay

- Exponential Decay

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	18 B	(5ı\|	
Remediation: Construct Linear Functions	-			-
Extension: Continuously Compounding Interest		-		-

Language Development Handbook

Assign page 45 of the Language Development Handbook to help your students build mathematical language related to exponential growth and decay.
EIII You can use the tips and suggestions on page $T 45$ of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Functions

Standards for Mathematical Content:

F.LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).
F.LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.
Standards for Mathematical Practice:
6 Attend to precision.
8 Look for and express regularity in repeated reasoning.

Coherence

Vertical Alignment

Previous

Students identified the effects of transformations on the graphs of exponential functions.

F.IF.7e, F.BF. 3

Now

Students create exponential functions and solve problems involving exponential growth and decay.

F.LE.2, F.LE. 5

Next

Students will use the properties of exponents to transform expressions for exponential functions.
A.SSE.3c, F.IF.8b

Rigor

The Three Pillars of Rigor

```
1 CONCEPTUAL UNDERSTANDING 
```

Conceptual Bridge Working through the Explore and Learn activities can help students build a bridge to conceptual understanding. When students understand how to create exponential functions and solve problems involving exponential growth and decay, they can move to procedural fluency and apply the math to problems in everyday life.

Interactive Presentation

		X
Warm Up		
Write the slope-intercept form of the equation of the line that passes through each pair of points.		
1. $3,-3)(3,-1)$		
2. $(0,4),(4,2)$		
3. $(-3,2),(-5,4)$		
4. $(4,10), 16,-2)$		
5. 5 HOPPING in 2009 , familes spent an average of $\$ 845,98$ on supples for students going to college, In 2012 . families spemt $\$ 90721$. Assuming that this trend continues, how much would you expect families to spend in 2020 ?		

Warm Up

Launch the Lesson

Today's Vocabulary

Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- writing linear functions

Answers:

1. $y=x-4$
2. $y=-\frac{1}{2} x+4$
3. $y=-x-1$
4. $y=-6 x+34$
5. $\$ 1070.49$

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of exponential functions.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

Mathematical Background

This lesson introduces methods for writing exponential functions to fit a variety of exponential situations. Exponential behavior is defined by the rate of change. The equation for exponential growth represents the growth rate, r, in a function of the form $y=a(1+r)^{k}$, where t represents time from the beginning of the growth. The equation for exponential decay represents the decay rate, r, in a function of the form $y=a(1-r)^{t}$, where t represents time from the beginning of the decay.

Explore Writing an Exponential Function to Model Population Growth

Objective

Students explore writing exponential equations to model real-world situations.

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this Explore activity, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. The students are presented with a situation in which a population of protozoa double every day. As students answer questions related to the growth of this population, they will make connections to their understanding of exponential functions. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Explore

MULTIPLE CHOICE

Students select an equation to determine the number of protozoa after x days.

Interactive Presentation

Explore

TYPE

a

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Writing an Exponential Function to Model Population Growth (continued)

Questions

Have students complete the Explore activity.

Ask:

- How could you determine the number of days if you counted 50 protozoa? Sample answer: Because there are more than 40 protozoa, but less than 80 , it must be sometime during day 3.
- What situation could be described by $y=2(10)$? Sample answer: Two bacteria whose population increase by 10 times each day.
(4) Inquiry

How can you find an equation that models the population growth of a colony of organisms that grows exponentially? Sample answer: Find the initial size of the colony of organisms to determine the y-intercept. The original size of the population at time $x=0$ is a in the equation $y=a b^{x}$. Find the size of the population y at another time x, and use those values of x and y to determine the value for b.

3 Go Online to find additional teaching notes and answers for the guiding exercises.

2 FLUENCY

Learn Constructing Exponential Functions

Objective

Students construct exponential functions by using a graph, a description, or two points.

Teaching the Mathematical Practices
1 Special Cases Work with students to examine the three methods for writing exponential functions. Encourage students to familiarize themselves with each method, and to know the best time to use each one.

Example 1 Write an Exponential Function Given Two Points

Teaching the Mathematical Practices
4 Make Assumptions In the Study Tip, have students point out where an assumption was made in the solution.

Questions for Mathematical Discourse

AL Is the exponential function increasing or decreasing? Explain. Increasing; sample answer: From the two points, you can tell that the higher input value results in a higher output value, so it is an increasing exponential function.
OI. What about the equations $6=a b^{1}$ and $24=a b$ ₹uggests that the first equation should be solved for the variable a first? Sample answer: The exponent in the first equation is 1 , while the exponent in the second equation is 3 .
What is the value of this equation when $x=4$? 48

Common Error

Students may realize that the equation $4=b^{2}$ could result in a solution of $b=-2$. If this comes up, encourage students to consider this case, which would result in $a=-3$ and an equation of $y=(-3)(-2)^{x}$. Plot points in this equation to see if it is an exponential function, and view the results using graphing software or a graphing calculator. Students should be able to identify that the negative base is the reason why this function is not an exponential function. At that point, go back to the definition of an exponential function and remind students that there is a limitation of $b>0$ in that definition.

(3) Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

EXPAND

Students tap to see how you can construct an exponential function given two points, a graph, or a description.

Interactive Presentation

Example 2

Students tap to reveal the coordinates of points on the graph.

452 Module 8 • Exponential Functions

DIFFERENTIATE

Language Development Activity ELIL

Beginning/Intermediate Have students work in small groups. This strategy allows every student to have an opportunity to speak several times. Ask a question or give a prompt about writing exponential functions, such as "Name one way that writing an exponential function is similar to, or different from, writing a linear function." Then pass a stick or other object to the student. The student speaks, everyone listens, and then the student passes the object to the next person. The next student speaks, everyone listens, and then the student passes the object on. Repeat until everyone has had one or two turns.

Example 2 Write an Exponential Function Given a Graph

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the graph, table, and function used in this example.

Questions for Mathematical Discourse

What is the asymptote of the graphed function? $y=0$
OL. Why is it helpful to use an equation where $x=0$ when writing the system of equations? Sample answer: The exponent of zero results in $a\left(b^{9}\right)=a(1)=a$, which makes it easy to solve for the unknown value of a.
B1. Describe the behavior of the y-values as the x-values increase by 1 . Sample answer: The y-values decrease by half.

Example 3 Write an Exponential Function Given a Description

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about exponential functions to solving a real-world problem.

Questions for Mathematical Discourse

AL. What does the y-intercept represent in this situation? Sample answer: The value of the prize at the start of the contest.
OL How can you check that the situation represents exponential growth?
Sample answer: Check the ratio of consecutive terms. The ratio is $b=1.1$, so it is an example of exponential growth because $b>0$.
[Bil Write an equation that could be used to find when the prize equals $\$ 2000.2000=1000(1.1)^{\text {c }}$

Learn Solving Problems Involving Exponential Growth

Objective

Students create equations and solve problems involving exponential growth by using the exponential growth formula.

Teaching the Mathematical Practices
7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In this lesson, guide students to see what information they can gather about the equations just from looking at them.

Essential Question Follow-Up

Students have begun constructing exponential functions to describe situations.

Ask:

Why does an exponential growth function model some situations? Sample answer: Situations in which a quantity increases by a regular percentage or proportion represent exponential growth. Examples of exponential growth in the real world include monetary situations and populations that increase due to a consistent birth rate.

Check

Part A use the graph to estimate the
value of y when $x=4 y=8$
Part B Write an exponential function that models the graph. $y=0.5\left(2^{x}\right.$
Part C Ise the function in Part B to find y
when $x=4 . y=8$
© Example 3 Write an Exponential Function Given a Description
CONTEST A radio station is giving away $\$ 1000$ to the first listener who answers a question correctly. If the question goes Unanswered for one hour, the prize increases by 10% until it is answered correctly. Write a function to describe this situation

This is an example of exponential growth, so $b>1$. Divide each value
of P by the preceding term to find a common ratio of 1.1 .
The value of a can be found by identifying the γ imtercept.
a $=1000$
Write the function that best models the situation
$P=1000\left(1.1^{\prime}\right)^{\prime}$
Learn Solving Problems Involving Exponential Growth
Key Concept . Equation for Exponential Growth
$y=91+4$
yla the halal amoure
${ }^{t}$ is time
a is the initial amount.
is the rate of growth expressed as a decimal, $r>0$.
Key Concept . Equation for Compound Interest $A=P\left(1+\frac{1}{n}\right)^{n t}$
A is the current amount.
fis the annual interest rate expressed as a decimal, $r>0$. n is the number of times the interest is compounded each year. is time in years.
is the principal, or the initial amount.

Talk About It! Why is the common ratio 1.1 and not 0.1 ? Explain.

Sample answer: The prize is increasing by a rate of 10%, which signifies a 110% increase.

Think About It Why is the constant 1 in he exponential growth epresent?

Sample answer Th constant 1 is added to a constant 1 is added to a hat the multiplier is hat the multiplier is greater than I . me 1 prent that is carried amount that is carried forward.

Interactive Presentation

Example 3

Think About It
Why do you not substitute 2016 for, to capita in 2016?

Sample answer: The equation is written in terms off years since 1946; 2016 - 1946 = 70.

Study Tip

Assumptions The
ctual rates of change
or the GDP are
calculated annually and have varied from - 11% to 18\%, depending on For the purposes of this esson, we will assume a constant rate of change is present.
A. Example }4\mathrm{ Exponential Growth
A. Example }4\mathrm{ Exponential Growth
GOODS The gross domestic product (GDP) is the monetary value of
GOODS The gross domestic product (GDP) is the monetary value of
all the goods and services produced within a country in a specific
all the goods and services produced within a country in a specific
ime period. The GDP per capita is this value divided by the
ime period. The GDP per capita is this value divided by the
population. One model says that the GDP per capita in the United
population. One model says that the GDP per capita in the United
States was \$13,513 in 1946, and it has increased by 2% every year.
States was \$13,513 in 1946, and it has increased by 2% every year.
Part A Write an equation to represent the GDP per capita after years,
Part A Write an equation to represent the GDP per capita after years,
where d}\mathrm{ represents the initial GDP in 1946, and, represents
where d}\mathrm{ represents the initial GDP in 1946, and, represents
the rate of growth each year.
the rate of growth each year.
If the initial year was 1946, the initial GDP was \$13,513.
If the initial year was 1946, the initial GDP was \$13,513.
So = 13,513. The GDP grew 2% each year, so
So = 13,513. The GDP grew 2% each year, so
r=2% or 0.02
r=2% or 0.02
y=\alpha,1+n\ \quation for exponential growth
y=\alpha,1+n\ \quation for exponential growth
y=13,513(1+0.02) \quad0=13,513 and }t=2%\mathrm{ or 002
y=13,513(1+0.02) \quad0=13,513 and }t=2%\mathrm{ or 002
y=13,513(1.02)
y=13,513(1.02)
In this equation, }y\mathrm{ is the GDP per capita, and t is the time in
In this equation, }y\mathrm{ is the GDP per capita, and t is the time in
years since 1946.
years since 1946.
Part B f this trend continued, calculate the GDP per capita in 2016
Part B f this trend continued, calculate the GDP per capita in 2016
f=70
f=70
Using }y=13,513(1.02)t,t,the GDP per capita in 2016 was 54,046
Using }y=13,513(1.02)t,t,the GDP per capita in 2016 was 54,046
Check
Check
POPULATION From 2013 to 2014, the city of Austin,T Texas, saw one
POPULATION From 2013 to 2014, the city of Austin,T Texas, saw one
of the highest population growth rates in the country at 2.9%. The
of the highest population growth rates in the country at 2.9%. The
population of Austin in 2014 was estimated to be about 912,000
population of Austin in 2014 was estimated to be about 912,000
Part A f the trend were to continue, which equation represents
Part A f the trend were to continue, which equation represents
the estimated population f years after 2014? D
the estimated population f years after 2014? D
A. y =912,000(0.029)'
A. y =912,000(0.029)'
B. y=912,000(3.9)t
B. y=912,000(3.9)t
C. y =1.029(912,000)
C. y =1.029(912,000)
D. }y=912,000(1.029)
D. }y=912,000(1.029)
Part B to the nearest person, predict the population of Austin in
Part B to the nearest person, predict the population of Austin in
5 years.
5 years.
1,052,136}\mathrm{ people
1,052,136}\mathrm{ people
Go Online Y ou can complete an Extra Example online
Go Online Y ou can complete an Extra Example online

Interactive Presentation

Example 4
TYPE
Students complete the calculations to evaluate an exponential growth function.
54 Module 8 - Expo

```
eponimulal Orowe
```


mple 4

Example 4 Exponential Growth
Teaching the Mathematical Practices
4 Analyze Relationships Mathematically Point out that to write the equation and solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

Questions for Mathematical Discourse
AL. What is represented by $t=0$ in this situation? the starting year of 1946
ol Why is the expression $(1+r)$ used in the equation? Sample answer: The model says the amount increases by 2% each year, so you know that this is an exponential growth function. If the 1 is not included, the values will decrease instead of increase.

B1. Predict the GDP per capita in 2046 using this equation, rounded to the nearest dollar. \$97,897

Common Error

Models of situations that move through time are usually based on a start time from which the model is extrapolated. This means the input value of $t=0$ usually has to be translated into another time measurement that the students will be familiar with, such as a year, day, or hour of the day. Students will need to translate the time given in the description into an elapsed time in the proper units to use the model to predict the value.

©Apply Example 5 Compound Interest

NTP Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-What basic exponential equation can you use to solve this problem?

- How can you determine a reasonable estimate for the amount in Maria's account after 5 years?

\angle Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

DIFFERENTIATE

Enrichment Activity [BLI

Have students flip 50 pennies and count the number of heads. Then have students remove those pennies that landed on heads and repeat the activity. Students should record their results and make a plot of the trial number versus the number of heads counted in that trial. Have students graph their data and then explain why, in theory, their data should be modeled by the equation $y=\left(\frac{1}{2}\right)^{x}$.
©Apply Example 5 Compound Interest
COLLEGE PLANNING Maria invests $\$ 5500$ into a college savings account that pays 3.25% compounded quarterly. How much money will there be in the account after 5 years?
${ }_{1}$ What is the task?
Describe the task in your own words. Then list any questions that you may have. How can you find answers to your questions?
Sample answer: I need to determine how much money will be in Sample answer: I need to determine how much money will be in
Maria's account after 5 years. How can I write an equation to represe this situation? I can apply what I have learned about different types of functions
2 .pw will you approach the task? What have you learned that you can use to help you complete the task?
Sample answer: I will substitute the information I know into the compound interest equation and simplify. Then I will find the amount of money in Maria's account after 5 years. I will use the properties of exponents to simplify my equation.
3 What is your solution?
Use your strategy to solve the problem.
Write an equation to represent the amount of money in Maria's
account after fyears.
$A=5500(1.008125)^{2}$
How much money will be in Maria's account after 5 years?
\$6466.22
4 How can you know that your solution is reasonable?
Write About Itt Write an argument that can be used to defend
your solution.
Sample answer: My solution is reasonable because if I find the amount of money in the account after each quarter, I get the same answer as I do when I use the compound interest equation.
Check
BANKING Twin brothers Amare and Jermaine each received $\$ 1000$ for graduation. Amare invests his money in an account that pays 2.25% sompounded daily. Jermaine invests his money in an account that pays 2.25% compounded annually.
Part A Which brother will have more money at the end of 10 years? A
A. Amare
B. Jermaine
C. The accounts will be equal.

Part B T o the nearest cent, how much more money? \$ $\frac{?}{3.11}$
0 goo
Online Y ou can complete an Extra Example online.

Interactive Presentation

Check

Interactive Presentation

Example 6

TYPE

Students complete the calculation to estimate the balance of the account.

CHECK

Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Learn Solving Problems Involving Exponential Decay

Objective

Students create equations and solve problems involving exponential decay by using the exponential decay formula.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 6 Exponential Decay

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students will apply what they have learned about exponential decay to solving a real-world problem.

Questions for Mathematical Discourse

4L. What is represented by $t=0$ in this situation? Sample answer: The time when the account has been inactive for less than one year.
OL. What value of t represents 1 year? $t=12$
BL. What domain is appropriate to the function in this situation? Explain. The set of whole numbers; sample answer: The variable t represents the number of months with the fee charged every month, so they will be non-negative integer values only.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-21$	
2	exercises that use a variety of skills from this lesson	$22-28$
2	exercise that extends concepts learned in this lesson to new contexts	29
3	exercises that emphasize higher-order and critical-thinking skills	$30-35$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-29 odd, 30-35
- Extension: Continuously Compounding Interest
- D ALEKS'Exponential Functions

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Construct Linear Functions
- Personal Tutors
- Extra Examples 1-6
- ALEKS'Tables and Graphs of Lines

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Construct Linear Functions
- ALEKS'Tables and Graphs of Lines
- ArriveMATH Take Another Look
 Lesson 8.3 - Writing Exponertial Functions 457

Examples 4-6

14. INVESTING Robyn invests $\$ 1500$ at 4.85% compounded quarterly Write
equation to represent the amount of money she will have in t years. $A=1500\left(1+\frac{0.0485}{4}\right)^{4 t}$
15. POPULATION The population of New York City increased from 8,192,426 in 2010 to $8,550,405$ in 2015. The annual rate of population increase for the period was bout 0.9%.
a. Write an equation for the population, P, , years after 2010. $P=8,192,426(1.009)$
b. Use the equation to predict the population of New York City in 2025. about $9,370,872$
16. SAVINGS A company has a bonus incentive for its employees. The company pays employees an initial signing bonus of $\$ 1000$ and invests that amount for the employees. Suppose the investment earns 8% interest compounded quarterly.
a. If an employee receiving this incentive withdraws the balance of the account after 5 years, how much will be in the account? about $\$ 1485.95$
b. If an employee receiving this incentive withdraws the balance of the account after 35 years, how much will be in the account? about $\$ 15,996.47$
17. MANUFACTURING A textile company bought a piece of weaving equipment for $\$ 60,000$. It is expected to depreciate at an average rate of 10% per year.
a. Write an equation for the value of the piece of equipment z after t years. $Z=60,000(0.90$
. Find the value of the piece of equipment after 6 years. about $\$ 31,88$
18. HIGHER EDUCATION The table lists the average annual costs of attending a four-
year college in the United States during a recent year.

College Sector Tulfion and Fees Room dord Board		
Four-year Public	$\$ 9,410$	$\$ 10,138$
Four-year Private	$\$ 32,410$	$\$ 11,516$

Source: College Board
Rayelle's parents plan to invest $\$ 15,000$ in a mutual fund earning an average of 4.5 percent interest, compounded monthly. After 15 years, for how many years will public college if costs stay the same? Round your answer to the nearest month 1 year and 6 months

458 Module 8 . Exponentitial Functions
19. DEPRECIATION The value of a home theater system depreciates by about 7% 4 years after purchase? Round your answer to the nearest hundred. $\$ 2200$
20. MONEY Hans opens a savings account by depositing \$1200. The account earns 0.2 percent interest compounded weekly. How much will be in the account in 10 years if he makes no more deposits? Assume that there are exactly 52 week 5 year, and round your answer to the nearest cent. $\$ 124.24$
21. POPULATION In 2016 the U.S. Census Bureau estimated the population of the United States at 322 million. If the annual rate of growth was about 0.81%, find the expected population 2030 census. Round your answer to the nearest ten million. 360 million

Mixed Exercises
Write an exponential function for a graph that passes through the points.

22. (2, 1.4) and (4, 5.6)	23. $(1,10.4)$ and $(4,665.6)$	24. (1, 42) and (3, 2688)
$y=0.35 * 2$	$y=2.6 * 4$	$y=5.25 * 8$

25. POPULATION The population of Camden, New Jersey, has been decreasing by 0.12% a year on average. If this trend continues, and the population was 79,318 in 2006, estimate Camden's population in 2025. about 77,52
26. MEDICINE When doctors prescribe medication, they have to consider the rate at which the body fiters a drug from the bloodstream. Suppose it takes the huma emaining in the bloodstream x days after an injection is given by the equation $y=y_{0}(0.5)$, where y_{0} is the initial amount. Suppose a doctor injects a patient with $20 \mu \mathrm{~g}$ (micrograms) of the vaccine.
. How much of the vaccine will remain after 1 day? Round your answer to the nearest tenth, if necessary. $17.8 \mu \mathrm{~g}$
in after 12 days? Round your answer to the After howith necessary- 5 Hg
27. USE TOOLS Graham invested money to save for a car. After x years, the value of Graham's investment can be modeled by the equation $y=2400(0,95)$. How much did Graham originally invest? Is the value of his investment increasing or decreasing? Explain your reasoning. Use technology to find when the investment
will be worth half of its starting value. See margin.
28. USE A MODEL There is a leak in a container that holds a certain nontoxic gas. Each hour, it loses 10% of its volume
a. Write an equation that models the amount of gas left in the container after x hours, assuming there were 300 cubic centimeters in the container before the leak. Th hours. Round your answer to the nearest tenth. 1 hours. Round your answer to the near
continuous curve. Do you agree? Explain hould be a scatter plot instead of

 STRUCTURE A wildlife researcher is studying the Years of Study 0123 | population of deer in a forest. | Population |
| :--- | :--- |
| 128 | | period Write an exponential function that fits this data and can be used to predict the deer population in future years. $P(t)=128(1.25)$

b. The average rate of change is the change in the value of the dependent variable divided by the change in the value of the independent variable. What was the average rate of change in population during those three years? an increase of approximately 41 deer per year
c. If the population growth follows the model from part a , do you expect the dee population to continue to increase by the value you came up with in part b ? Explain. No; the amount of increase is exponential, not linear.
d. Use the values in the table to show how you know the function is exponential
not linear. See margin.

Higher-Order Thinking Skills
30. ANALYZE Determine the growth rate (as a percent) of a population that quadruples every year. Justify your argument. $\quad 300 \%$; Solving $y=(1+r)^{2}$ for $y=4, a=1$, and $t=1$ gives $r=3$ or 300%.
31. PERSEVERE Santos invested $\$ 1200$ into an account with an interest rate of 8% Santos's investment to reach $\$ 2500$. about 9.2 years
32. ANAL YZE The amount of water in a container doubles every minute. After 8 minutes, the container is full. After how many minutes was the container half-full? Justify you argument. See margin.
33. WRITE What should you consider when using exponential models to make decisions Jee margin
34. WRITE Compare and contrast the exponential growth formula and the exponential decay formula. See margin.
35. CREATE Honovi purchased a new car for $\$ 25,000$ and has $\$ 5000$ lett to inves. a. Choose an interest rate between 4% and 7% for Honovi's investment, and find the length of time it would take for the investment to doubleSample answer: 5%; about 14.2 years b. Choose an annual depreciation rate from 8% to 10% for the new car that Honovi purchased, and find the engher time would take for the car's value . the investment to be equal to the value of the car What is the value at that t the investment to be equal to the value of the car. What is the value at that time?
Sample answer: about 10.4 years; about $\$ 8320$

Answers

27. Sample answer: The equation can be rewritten in the form $y=a(1+r)^{x}$ to find the amount of original investment, a, and the rate of increase or decrease. Because $a=2400$, he invested $\$ 2400$. Because $1+r=0.95$ and is less than 1 , his investment is decreasing in value. We can use a graphing calculator to find that the investment will be worth $\$ 1200$ in about 13.5 years.
28b. No; sample answer: The gas leaks continuously. The domain of the function is restricted to nonnegative real numbers.
29d. Sample answer: There is no common difference over equal intervals (differences are 32,40 and 50). There is a common factor (factor is 1.25 in each case.)
28. 7; Sample answer: Because the amount of water doubles every minute, the container would be half full a minute before it was full.
29. Sample answer: Exponential models can grow without bound, which is usually not the case for the situation that is being modeled. For instance, a population cannot grow without bound due to space and food constraints. Therefore, the situation that is being modeled should be carefully considered when used to make decisions.
30. Sample answer: The exponential growth formula is $y=a(1+r)$,'where a is the initial amount, t is time, y is the final amount, and r is the rate of change expressed as a decimal. The exponential decay formula is basically the same except the rate is subtracted from 1 and r represents the rate of decay.

Suggested Pacing

Focus

Domain: Algebra, Functions
Standards for Mathematical Content:
A.SSE.3c Use the properties of exponents to transform expressions for exponential functions.
F.IF.8b Use the properties of exponents to interpret expressions for exponential functions.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students created exponential functions and solved problems involving exponential growth and decay.

F.LE.2, F.LE. 5

Now

Students use the properties of exponents to transform expressions for exponential functions.
A.SSE.3c, F.IF.8b

Next
Students will relate exponential functions to geometric sequences.
F.BF.2, F.LE. 2

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of exponential functions and apply that understanding to solving problems related to exponential growth and decay. They build fluency by using points, graphs, and situations to construct exponential functions.

Mathematical Background

Exponential functions represent rates of increase or decrease in physical situations. A rate can be evident from an exponential function written in a certain form, but it is possible to translate between rates by converting the exponential expression into another form to highlight the amount over a different time frame.

Interactive Presentation

Warm Up

[^3]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- evaluating expressions with exponents

Answers:

1. 6
2. 6
3. 16
4. 5
5. 30

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can learn how writing an equivalent exponential expression can be used to determine the best interest rate.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Example 1 Write Equivalent Exponential Expressions

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

Questions for Mathematical Discourse

AL Which interest rate is compounded monthly?
Savewell Bank's interest of 0.15\%
OL How does the compounding vary between banks? Sample answer: Savewell's interest is compounded monthly while Second Local's is compounded annually. So, Savewell's interest will compound 12 times for every 1 time of Second Local's.

BL. Would the effective monthly or annual interest rates be the same if a different value of a was used? Explain. Y es; sample answer: Because the interest rate affects the base of the exponential expression, multiplying by a different constant a does not affect the interest rate.

(3) Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1

WATCH

Students watch a video that introduces a problem about writing equivalent exponential expressions.

Talk About It Does the result in Part \mathbf{B} make sense compared ot the result of Part A? Explain.
Yes; sample answer: Like Part A, this confirms that Second Local Bank is a better choice. Whether the banks are compared using percentage rates, Second percentage rates, Secon tage rates, greater.
$A(t)=1.0015^{t}$ represents the amount earned with a savings account at Savewell Bank after t months.

Write an equivalent function that represents 1 compounding per year Since there are 12 months in a year, the exponent should be $\frac{1}{12} t$.

$$
\begin{array}{ll}
A(t)=1.0015^{1 t} & \text { Original function } \\
A(t)=1.0015^{112} \cdot \frac{12}{2} t & 1 \text { year }=12 \text { months } \cdot \frac{1 \text { year }}{12 \text { monthis }} \\
A(t)=\left(1.0015^{2}\right) \frac{1}{12 t} & \text { Power of a Power } \\
A(t)=(1.0181)^{\frac{1}{12} t} & 1.0015^{12} \approx 1.0181
\end{array}
$$

From this expression, we can determine that the effective annual interest rate of Savewell Bank is about 0.0181 , or about 1.81%, which is less than the 2% interest rate offered by Second Local Bank.

Check

SAVINGS T areq is planning to invest money into a savings account Oak Hills Financial offers 3.1% interest compounded annually. First City Bank has savings accounts with a quarterly compounded interest rate of 0.7%.

Part A Write the expression $A(t)$ to represent the amount that T areq earns after t quarters through Oak Hills Financial.
$A(t) \approx$? 1.0077^{4}
What is the effective quarterly interest rate of Oak Hills Financial, rounded to the nearest hundredth? 0.77%

Part \mathbf{B} Write the expression $A(t)$ to represent the amount that T areq earns after tyears through First City Bank.
$A(t) \approx=1.0288^{1} t^{t}$
What is the effective annual rate of First City Bank, rounded to the nearest hundredth? 2.83\%
Oak Hills Financial
? is the better bank for T areq's savings account

Common Error

While converting expressions, it is worth revisiting the conversion of percentage rates to decimals. Remind students that the rates in an exponential function are written as decimals. Discuss other times when converting between different equivalent representations has been used in mathematics, such as converting units or money or balancing equations to solve them.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Interactive Presentation

Check

Students complete the Check online to determine whether they are ready to move on.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-5$	
2	exercises that use a variety of skills from this lesson	$6-12$
3	exercises that emphasize higher-order and critical-thinking skills	$13-16$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-11 odd, 13-16
- Extension: Present Value and Future Value
- D ALEKS' Exponential Functions

> IF students score $66 \%-89 \%$ on the Checks,
> THEN assign:

- Practice, Exercises 1-15 odd
- Remediation, Review Resources: Powers of Monomials
- Personal Tutors
- Extra Example 1
- Q ALEKS'Product, Power, and Quotient Rules

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-5 odd
- Remediation, Review Resources: Powers of Monomials
- Quick Review Math Handbook: Transforming Exponential Expressions
- ArriveMATH Take Another Look
- Q ALEKS'Product, Power, and Quotient Rules

Answers

1b. Bank B has the better plan because the effective quarterly interest rate is 0.8%, which is greater than the quarterly interest rate of about 0.52% for Bank A.
1c. About 3.2\%; sample answer: This confirms the result of part b because 3.2% is greater than the annual interest rate at Bank A, so Bank B has the better plan.
2b. Sample answer: The ring is increasing in value at a faster rate because the growth rate is 0.33% per month, which is greater than the growth rate of about 0.26% per month for the necklace.
2 c. About 4.0%; sample answer: This confirms the result of part \mathbf{b} because 4.0% is greater than the annual rate of increase of the necklace, so the ring is increasing in value at a faster rate.
3. Bank A; Bank A has a quarterly interest rate of 0.95%. Bank B has a quarterly interest rate of about 0.92%. Bank A's quarterly interest rate is higher.

Practice

Example 1

1. INVESTING Kimiyo is planning to invest money in a savings account. She is comparing the interest rates of savings accounts at two banks. Bank A offers a savings account with 2.1% interest compounded annually. Bank B offers a savings account with a quarterly compounded interest rate of 0.8%.
a. Write a function to represent the amount A that Kimiyo would earn after t years through Bank A , assuming an initial investment of $\$ 1$. Then write an equivalent function that represents quarterly compounding. $A(t)=\left(1.021 ;: A(t)=(1.0052)^{4 t}\right.$
b. Which is the better plan? Explain. See margin.
c. What is the approximate effective annual interest rate at Bank B? How does your result relate to your answer to part b? See margin.
2. COLLECTIONS Keandra is comparing the growth rates in the value of two items in collection. The value of a necklace increases by 3.2% per year. The value of a ring increases by 0.33% per month
a. Write a function to represent the value A of the necklace after t years assuming an initial value of S1. Then write an equivalent function th
b. Which item is increasing in value at a faster rate? Explain. See margin.
c. What is the approximate annual rate of growth of the ring? How does your result relate to your answer to part b ? See margin.
3. SAVINGS Amir is trying to decide between two savings account plans at two different banks. He finds that Bank A offers a quarterly compounded interest rate
of 0.95%, while Bank B offers 3.75% interest compounded annually. Which is the better plan? Explain. See margin.
4. BACTERIA The scientist found that Bacteria A has a growth rate of 0.99% per minute, while Bacteria B has a growth rate of 0.018% per second. Determine which bacterium has a faster growth rate. Explain. See margin.
5. POPULATION The population of Species A is decreasing at a rate of about 0.25% per quarter. The population of Species B is decreasing at a rate of about 1.34% per year. Mixed Exercises
6. POPULATION The table shows the population of two smail towns that experience increases in population.
a. Write a function that can be used to estimate the pop $P(t)$ of Town $A t$ years after 2012 $P(t)=8,000(1.06)^{\prime}$
b. Write a function that can be used to estimate the $p \mathrm{po}$
$P(t)$ of Town $\mathrm{B} t$ years after $\left.2012 P(t)=9,500(1.05)^{\prime}\right)$

Year	Population Pop	Iation
	town A	Town B
2012	8.000	9.500
2013	8.480	9.975
2014	8.989	10,474
2015	9,528	10,997
2016	10.100	11.547

c. Use your equations and properties of exponents to find the approximate Town A: about 0.49%; effective monthly increase in the populations of Town A and Town B. $\begin{aligned} & \text { Town A: about } 0.49 \% \text { Town B: about } 0.41 \%\end{aligned}$
7. ACCOUNTS Dominic is trying to decide between two checking account plans. Plan A compounded annually. Which is the better planPlan A
8. CAR DEPRECIATION Juana is deciding between two cars to purchase. Car A depreciates annually at a rate of 3.5%, while Car B depreciates monthly at a rate of 0.32%. Which car has a better effective rate of depreciation? See margin.
9. INVESTMENT As a wedding gift, Dotty and Brad received $\$ 10,000$ cash from Dotty's grandparents. The couple is trying to decide where to invest the money. Account A offers 2.3\% interest compounded semi-annually. Account B offers 4.2\% interest compounded annually. Which account has the better rate? Explain. See margin.
10. SAVINGS Hernando is deciding between two certificate of deposit accounts. Account Y offers 4.5% interest compounded annually. Account Z offers 1.13% interest compounded quarterly. Which is the better deal? Explain. See margin.
11. FINANCE Gita is deciding between two retirement accounts. Account A offers 0.5% interest compounded monthly. Account B offers 2.5% interest compounded 0.5% interest compounded monthly. Account B offers 2
12. WILDLIFE The table shows that the population of hawks in two different nature preserves has been decreasing.
a. Write a function that can be used to estimate the population $P(t)$ of the hawks in Nature Preserve A t years after $2013 P(t)=114(0.975$

b. Write a function that can be used to estimate the population $P(t)$ of the hawks in Nature Preserve B t years after 2013. $P(t)=120(0.96)$
c. Use your equations and properties of exponents to find the approximate effective quarterly decrease in population of hawks in Nature Preserve A and Nature Preserve B. Nature Preserve A: about 0.76\%; Nature Preserve B: about 1.02%
OHigher-Order Thinking Skills
13. PERSEVERE The rate at which an object cools is related to the temperature of the surrounding environment. At the time of an experiment, Mrs. Haubner's lab temperature was $72^{\circ} \mathrm{F}$. The approximate temperature of the water at time t in minutes in Mrs. Haubner's lab is predicted by the function $T(t)=72+(212-72) 2.72^{t}$, where -0.4° per minute is defined as the rate of cooling. Rewrite this function so that the coefficient of t in the exponent is $1 . T(t)=72+140(0.67)$
14. WRITE Explain why it is important for a consumer to compare rates in the same unit before making a purchase. See margin.
15. CREATE Write a scenario that compares two accounts with interest rates compounded at different rate units. Then determine which account has the better lise.margin.
16. FIND THE ERROR Marsha is opening a savings account. Eagle Savings Bank is offering her an account with a 0.13% monthly interest rate, while Admiral Savings Bank is offering an account with a 1% annual interest rate. Marsha believes the than 0.13%. Why is Marsha incorrect? Explain your reasoning. See margin.

464 Module 8 • Exponental Function

Answers

4. Bacteria B; Bacteria A grows at a rate of 0.99% per minute. Bacteria B grows at a rate of about 1.09% per minute. Bacteria B has a faster growth rate.
5. Species B; the population of Species A is decreasing at a rate of about 0.25% per quarter. The population of Species B is decreasing at a rate of about 0.33% per quarter. The population of Species B is decreasing at a faster rate.
6. Car A; Car A has a monthly depreciation rate of about 0.29\%. Car B has a monthly depreciation rate of 0.32%. Car A's monthly depreciation rate is lower.
7. Account A; Account A has a semi-annual interest rate of 2.3%. Account B has a semi-annual interest rate of about 2.1\%. Account A's semi-annual interest rate is greater.
8. Account Z; Account Y has a quarterly interest rate of about 1.11%. Account Z has a quarterly interest rate of 1.13%. Account Z 's quarterly interest rate is greater.
9. Account B ; Account A has a monthly interest rate of 0.5%. Account B has a monthly interest rate of about 0.21%. Account B's monthly interest rate is greater.
10. Sample answer: To determine the better rate, compare rates with the same compounding frequency. Looking at only rates can be misleading if the rates have different compounding frequencies.
11. Sample answer: Bank A offers a savings account with a 0.6% interest rate compounded quarterly. Bank B offers a savings account with a 2% interest rate compounded annually. Bank A offers the better interest rate because it has a higher effective annual interest rate of about 2.4%.
12. Sample answer: The two interest rates are not being compounded at the same frequency. The 1% annual interest rate actually comes out to a 0.08% monthly interest rate, so Eagle Savings Bank is the better choice.

Geometric Sequences

LESSON GOAL

Students write and graph equations of geometric sequences.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Modeling Geometric Sequences
88 Develop:

Geometric Sequences

- Geometric Sequences
- Identify Geometric Sequences
- Find Terms of Geometric Sequences

Geometric Sequences as Exponential Functions

- Find the nth Term of a Geometric Sequence
- Use a Geometric Sequence
(8)

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	ALIAB	EIul
Remediation: Arithmetic Sequences	- -	-
Extension: Pay It Forward	-	-

Language Development Handbook

Assign page 47 of the Language Development Handbook to help your students build mathematical language related to writing and graphing equations of geometric sequences.

EIII You can use the tips and suggestions on page $T 47$ of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	0.5 day
45 min	

Focus

Domain: Functions
Standards for Mathematical Content:
F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
F.LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.

Coherence

Vertical Alignment

Previous

Students related linear functions to arithmetic sequences.
F.LE.1a, F.LE. 3

Now

Students write and graph equations of geometric sequences.
F.BF.2, F.LE. 2

Next

Students will write arithmetic and geometric sequences recursively.
F.IF.3, F.BF. 2

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge Working through the Explore and Learn activities can help students build a bridge to conceptual understanding. When students understand how to write and graph equations of geometric sequences, they can move to procedural fluency and apply the math to problems in everyday life.

Mathematical Background

A geometric sequence is a pattern of numbers that begins with a nonzero term a and is continued by multiplying each term by a nonzero constant, r. The nth term of a geometric sequence is represented by the equatip $\boldsymbol{F}_{a q_{1}} \mathrm{~F}^{-1}$

Interactive Presentation

Launch the Lesson

Today's Vocabulary

Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- writing explicit formulas to represent arithmetic sequences

Answers:

$$
\begin{aligned}
& \text { 1. } a_{n}=3 n+1 ; 4,7,10,13,16 \\
& \text { 2. } a=5 n-8 ;-3,2,7,12,17 \\
& \text { 3. } a=-4 n+6 ; 2,-2,-6,-10,-14 \\
& \text { 4. } a=-4 n+16 ; 12,8,4,0,-4 \\
& \text { 5. } a \frac{n}{n}=180(n-2) ; 2520^{\circ}
\end{aligned}
$$

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students learn how the frequencies associated with the keys of the piano can be represented by a geometric sequence.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Explore Modeling Geometric Sequences

Objective
Students use data to explore modeling real-world situations with geometric sequences.

Teaching the Mathematical Practices
$\mathbf{8}$ Look for a Pattern Help students to see the pattern in the height of the ball after each bounce in this Explore activity.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students watch a video and record data about the height of a ball bouncing. They will explore the relationship between the heights of the ball bounces, discovering that the relationship is a geometric sequence. Then students will answer the Inquiry question.
(continued on the next page)

Interactive Presentation

Explore

Explore

Students complete a table to record the height of a bouncing ball and answer questions about the ratios.

Interactive Presentation

Explore

TYPE
a
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Modeling Geometric Sequences (continued)

Questions

Have students complete the Explore activity.

Ask:

- Can a bouncing ball reach the same maximum height on every bounce? Explain. No; sample answer: The ball is losing some energy with each bounce, so the maximum height of the ball will decrease.
- Why do you think an average ratio was used for the formula? Sample answer: Because this is experimental data, the ratios are not the same between each pair of values. An average is a good way to use the information.

© Inquiry

How can you create a formula to predict how a ball bounces? Sample answer: Write an explicit equation for the geometric sequence of the tennis ball's height by substituting values into the formula $a_{n}=a_{1} r^{n-1}$.
(3) Online to find additional teaching notes and answers for the guiding exercises.

Learn Geometric Sequences

Objective

Students identify and generate geometric sequences by using the common ratio.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 1 Geometric Sequences

Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in the common ratio in this example.

Questions for Mathematical Discourse

ALI How do you determine each term in a geometric sequence? Multiply the previous term by the common ratio.

OL What operation can you perform with the first two terms to identify the common ratio? Divide the second term by the first term.

Bl How do you know the common ratio will be a negative number? Sample answer: The sequence is negative, positive, negative, positive, and so on, and the only way to achieve that is multiplying by a negative number.

Example 2 Identify Geometric Sequences

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct the argument that this sequence is not a geometric sequence.

Questions for Mathematical Discourse
ALI What is the ratio of the first two terms? $\frac{3}{4}$
OL Will this sequence ever reach 0 ? Explain. Y es; sample answer: Each term decreases by 4 , so the fifth term in the sequence will be 0 .

BEL What type of sequence is shown? Explain. Arithmetic; sample answer: There is a common difference of -4 rather than a common ratio.

Interactive Presentation

Learn
TYPE

Students answer a question to determine why the first term and common ratio of a geometric sequence cannot be zero

Interactive Presentation

Example 3

Students calculate the common ratio of a geometric sequence.

CHECK

Students complete the Check online to determine whether they are ready to move on.

DIFFERENTIATE

Language Development Activity ELLIL

Put students in groups of mixed language and math abilities. Have groups discuss the differences between arithmetic and geometric sequences. Suggest that they help each other organize clear, concise, and accurate notes about these and other concepts taught in this lesson.

Example 3 Find Terms of Geometric Sequences

Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in this example.

Questions for Mathematical Discourse

AL. In part a, what appears to be happening to each term? Sample answer: Each term is divided by 4.

OL In part a, will the term 0 ever appear? Explain. No; sample answer: Because each term is found by dividing the previous term by 4 (or multiplying by $\frac{1}{4}$), the values will continue to get smaller but will never reach 0 .

BL. For both parts, how do you know the common ratio will be a positive number? Sample answer: All numbers in the sequences are positive, so the common ratio has to be a positive number.

Learn Geometric Sequences as Exponential Functions

Objective

Students construct and use exponential functions for geometric sequences by computing common ratios and applying the explicit formula for the nth term.

Teaching the Mathematical Practices
3 Reason Inductively In this Learn, students will use inductive reasoning to make plausible arguments.

Example 4 Find the nth T erm of a Geometric Sequence

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in the sequence in this example.

Questions for Mathematical Discourse

AL What value do you substitute for a_{1} in the equation? 512
OL What value do you substitute for r ? Explain. $\frac{1}{2}$; Sample answer: We divided the terms to find the common ratio of $\frac{1}{2}$.
[B1. Why is it important to enclose the $\frac{1}{2}$ in parentheses? Sample answer: The variable r is raised to a power. When r is a fraction, like in this example, parentheses are used to make sure that both the numerator and denominator are raised to a power.

Interactive Presentation

Interactive Presentation

Example 5
TYPE
Students answer a question about the assumptions made during the calculations.

CHECK

Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 5 Use a Geometric Sequence

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about geometric sequences to solving a real-world problem.

Questions for Mathematical Discourse

AL What does a_{1} represent in this geometric sequence? the initial population of 685,242 in 2011
OL. How can you check your solution? Sample answer: Multiply 685,242 by 1.025 . Then multiply the product by 1.025 and continue this process until I reach the 20th term of the sequence.
Bil Why is the year 2030 represented by the 20th term when it is only 19 years after 2011? Sample answer: The first term is for the year 2011. This means we can think of the "Oth" term as 2010, making it 20 years between 2010 and 2030.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
2 exercises that mirror the examples		$1-31$
2	exercises that use a variety of skills from this lesson	$32-41$
2	exercises that extend concepts learned in this lesson to new contexts	$42-45$
3	exercises that emphasize higher-order and critical-thinking skills	$46-52$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-45 odd, 46-52
- Extension: Pay It Forward
- D ALEKS Geometric Sequences

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-51 odd
- Remediation, Review Resources: Arithmetic Sequences
- Personal Tutors
- Extra Examples 1-5
- CALEKS'Arithmetic Sequences

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-31
- Remediation, Review Resources: Arithmetic Sequences
- Quick Review Math Handbook: Geometric Sequences as Exponential Functions
- ArriveMATH Take Another Look
- ALEKS'Arithmetic Sequences

Answers

1. The ratios are not the same, so the sequence is not geometric.
2. The ratios are not the same, so the sequence is not geometric.
3. Because the ratio is the same for all of the terms, 5 , the sequence is geometric.
4. Because the ratio is the same for all of the terms, $\frac{1}{2}$, the sequence is geometric.
5. The ratios are not the same, so the sequence is not geometric.
6. The ratios are not the same, so the sequence is not geometric.
```
Practice
Examples 1 and 2
Determine whether each sequence is geometric. Explain. See margin,
1.4,1,2,\ldots}\mathrm{ 2. 10,20,30,40,
3.4,20,100,\ldots}\mathrm{ 4.212,106,53, ..
5. -10, -8, -6, -4,\ldots}\mathrm{ 6. 5, -10, 20,40,..
7. -96,-48,-24,-12,\ldots- 8.7, 13, 19, 25,\ldots
9. 3,9,81,6561,\ldots- 10. 108,66, 141,99,\ldots
11. }\frac{3}{8},-\frac{1}{8},-\frac{5}{8},-\frac{9}{8},\ldots=12.\frac{7}{3},14,84,504,
Find the next three terms in each geometric sequence.
13. 2, -10, 50,\ldots_6250, 14. 36, 12, 4.
\frac{44}{3}\cdot9\cdot\frac{4}{27}
17. -6, -42, -294,
    -2058;-14,406;-100,842
19. 2, 6, 18,\ldots
    54,162,486
21. 42, 5, , , , .
23. }\frac{1}{10},\frac{1}{20,},\frac{1}{40
\frac{114}{3}
    16. 400, 100, 25,\ldots
    \frac{22}{4}:\frac{15}{16}\cdot\frac{5}{64}
    18. 1024, -128, 16,\ldots
    -2, [11,-
    20. 2500,500, 100,..
    20,4,4
    22. -4, 24, -144,
        864;-5184; 31,104
    24. -3, -12, -48,
    -192,-768,-3072
Example 4
Use an explicit formula to find the 10 th term of each geometric
sequence.
\begin{tabular}{ll} 
25. \(1,9,81,729 \ldots\) \\
\(387,420,489\) & 26. \(2,8,32,128, \ldots\) \\
27. \(-9,27,-81,243, \ldots\) & 524,288 \\
177,147 & \(28.6,-24,96,-384, \ldots\) \\
& \(-1,572,864\)
\end{tabular}
Lesson 8.5. Geometic Sequences 469
```


Example 5

29. museums the table shows the annual visitors to a museum in millions. Write an equation for the projected number of visitors after n years. $a_{n}=4 \cdot\left(\frac{3}{2}\right)^{n}$
30. WORLD POPULATION The CIA estimates that the world population is growing at a rate of 1.167% each year The world population in 2015 was about 7.3 billion.

a. Write an equation for the world population after n years. $a_{n}=7,300,000,000 \cdot 1.01167^{-1}$
b. Find the estimated world population in 2025. ≈ 8.1 billion
31. DEPRECIATION Te'Andra has a computer system that she bought for $\$ 5000$. Each year, the computer system loses one-fifth of is then-current value. How much money computer system be worth after 6 years? $\$ 1310.72$

Mixed Exercises
32. POPULATION The table shows the projected population of the United States through 2060. Does this table show an arithmetic sequence, a geometric sequence, or neither? Explain. Neither, there is no common ratio or difference.
33. SAVINGS ACCOUNTS A bank offers a savings account that earns 0.5% interest each month
a. Write an equation for the bal after n months. $a_{n}=P \cdot 1.005^{n}$
b. Given an initial deposit of $\$ 500$, what will the account balance be after 15 months? $\$ 538.84$
34. Write an equation for the nth term of the geometric sequence $3,-24,192$ Then find the 9 th term of this sequence. $a_{n}=3(-8)^{n-1} ; 50,331,648$.
35. Write an equation for the nth term of the geometric seque nce $\frac{9}{16} \cdot \frac{3}{8}, \frac{1}{4}, \ldots$. Then find the 7th term of this sequence. $a_{n}=\frac{9}{16}\left(\frac{2}{3}\right)^{n-1} ; \frac{4}{81}$
36. Write an equation for the nth term of the geometric sequence $1000,200,40, \ldots$. Then find the 5 th term of this sequence $\sigma_{n}=1000\left(\frac{1}{5}\right)^{n}$
37. Write an equation for the nth term of the geometric sequence $-8,-2,-\frac{1}{2} \ldots .$. Find the 8 th term of this sequence. $a_{n}=-8\left(\frac{1}{4}\right)^{n-1}: \frac{1}{2048}$
38. Write an equation for the nth term of the geometric sequence $32,48,72, \ldots$. Find the 6 th term of this sequence. $a_{n}=32\left(\frac{3}{2}\right)^{n-1} ; 243$
39. USE A SOURCE Research the average annual salary for a 25 -year-old and the average rate of increase in salary per year. Then write an equation for the nth year of employment. Find the 20 th term of this sequence, and explain what it means. See margin.
40. STRUCTURE For each of the geometric sequences below, fill in the missing terms, write the corresponding exponential equation, and use the exponential equation Write the corresponding exponential equation
a. $0.5,6, \quad 72,864,10,368 ; f(x)=0.5\left(12 \mu^{\mu-1} ; 10\right.$ th term: $2,579,890,176$
b. $5,10,20,40,80 ; g(x)=5(2)^{x-1} ; 10$ th term: 2560
41. REASONING Find the previous three terms of the geometric sequence, -192 $-768,-3072, \ldots-3,-12,-48$
42. STATE YOUR ASSUMPTION Consider two different geometric sequences. Each starts with the same constant. The common ratio producing subsequent terms in the first is positive and is the reciprocal of the common ratio producing subsequent terms in the second. How would the graphs of the two sequences compare? Think about intercepts, asymptotes, and end behavior. Then graph an example of the situation. See margin.
43. REASONING You have just been offered a part-time job. The employer offers two different methods of payment. They are shown in the table.
a. Describe the two differ offered. See margin.
b. What kind of mathematical equations can you use to model each situation? How do you know? Write each
 equation. See margin
c. You are planning to work at this job for two years. Your manager promises to raise your salary the way it is described in the table, as long as you meet the minimum performance rating each month. Which payment plan would you choose? Explain your reasoning. See margin.
4. CONSTRUCT ARGUMENTS The terms of a geometric sequence are defined by the equation $\sigma_{n}=512(0.5)^{x}$. A second sequence contains the terms $b_{3}=7168$ and $b_{7}=28$.
a. Determine which sequence has the greater common ratio. See margin. b. What is the initial term of each sequence? Explain your reasoning. See margin.
45. REGULARITY The sum of the interior angles of a triangle is 180°. The interior angles of a pentagon add to 540°. Is the relationship between the number of sum of the measures of the interior angles of a square to justify your answer. See margin.

-Higher-Order Thinking Skills
46. PERSEVERE Write a sequence that is both geometric and arithmetic. Explain your answer. See margin
47. FIND THE ERROR Haro and Matthew are finding the ninth term of the geometric sequence $-5,10,-20, \ldots$. is either of them correct? Explain your reasoning. See margin.

Haro	Mathew
$r=\frac{10}{5}$ or -2	$r=\frac{10}{5}$ or -2
$a_{s}=-5(-2)^{p-1}$	$a_{0}=-5 \cdot(-2)^{-1}$
$=-5(512)$	$=-5 \cdot 256$
$=-2560$	$=1280$

48. ANALYZE Write a sequence of numbers that form a pattern but are neither arithmetic nor geometric. Justify your argument. Sample answer: $1,4,9,16,25,36, \ldots$; This is the sequence of squares of counting numbers.
49. WRITE How are graphs of geometric sequences and exponential functions similar? How are they different? See Mod. 8. Answer Appendix.
50. WRITE Summarize how to find a specific term of a geometric sequence. See Mod. 8. Answer Appendix.
51. CREATE Give a counterexample for the following statement: As n increases in a geometric sequence, the value of a_{n} will move farther away from zero. Sample answer: In the geometric sequence $6,3,1.5, \ldots$, the value of r is 0.5 and the absolute value of a_{n+1} will be closer to zero than the value of a_{n}
52. CREATE Write a geometric sequence. Then explain why your sequence is geometric. Sample answer: $32,16,8,4, \ldots$. Since the ratio is the same for all of the terms, $\frac{1}{2}$, the sequence is geometric.

Answers

7. Because the ratio is the same for all of the terms, $\frac{1}{2}$, the sequence is geometric.
8. The ratios are not the same, so the sequence is not geometric.
9. The ratios are not the same, so the sequence is not geometric.
10. The ratios are not the same, so the sequence is not geometric.
11. The ratios are not the same, so the sequence is not geometric.
12. Because the ratio is the same for all of the terms, 6 , the sequence is geometric.
13. Sample answer: The average annual salary is about $\$ 39,416$, and the average annual rate of increase is about 3%. $a_{n}=39,416(1.03)^{n-1}$ $\approx 69,116.19$; This means that after 20 years of employment the average annual salary will be about $\$ 69,116.19$.
14. Sample answer: The two graphs should have the same y-intercept because their first term is the same. One graph would be the reflection of the other across the y-axis, so the graphs would have the same horizontal asymptote (assuming an infinite domain), although one would approach the asymptote as it grew in a positive direction and the other would approach the asymptote as it grew in a negative direction.

43a. The first method provides a starting salary of $\$ 100$ and an $\$ 8$ per month raise. The second method provides a starting salary of \$0.01 and doubles it each month.
43b. The first situation is linear because there is a common difference of $\$ 8$. The equation is $y=8 x+92$. The second situation is exponential because it is a geometric sequence with a common ratio of 2 . The equation is $y=0.01(2)^{x-1}$.
43c. Sample answer: As long as I do not need money immediately, I would use the second method. In the last month, I would make $y=0.01\left(2^{3}=\right.$ $\$ 83,886.08$ due to the fact that the payment is growing exponentially. In the last month in the first method, I would make $y=8(24)+92=\$ 284$.
44a. The common ratio of the 2 nd sequence is $\left(\frac{28}{7168}\right)^{\frac{1}{4}}=\frac{1}{4}$ The first sequence has the greater common ratio of 0.5 .
44 b . The initial term of the first sequence is $a_{0}=512$. In the second sequence, we know that $b_{n}=b(0.25)$. Using b aुnd solving for b, we find $b_{0}=458,752$.
45. Sample answer: If the values fit a geometric sequence, then $r \sqrt{\frac{540}{180}}=$ $\sqrt{3}$. This would mean that the interior angles of a square would have a sum of $180 \sqrt{3} \approx 312^{\circ}$. Because the sum of the angles in a square is 360°, this is not a geometric sequence.
46. Sample answer: $1,1,1,1, \ldots$; The common ratio is 1 making it a geometric sequence, but the common difference is 0 making it an arithmetic sequence as well.
47. Neither; Haro calculated the exponent incorrectly. Matthew did not calculate $(-2)^{8}$ correctly.

LESSON GOAL

Students write arithmetic and geometric sequences recursively.

1 LAUNCH

88 Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Develop:

Using Recursive Formulas

- Recursive Formula for an Arithmetic Sequence
- Recursive Formula for a Geometric Sequence

Explore: Writing Recursive Formulas from Sequences

Develop:

Writing Recursive Formulas

- Write a Recursive Formula Using a List
- Write a Recursive Formula Using a Graph
- Write Recursive and Explicit Formulas
- Translate Between Recursive and Explicit Formulas

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	All	IIB	FLI	
Remediation: Geometric Sequences				0
Extension: The Fibonacci Sequence		0	0	

Language Development Handbook

Assign page 48 of the Language Development Handbook to help your students build mathematical language related to writing arithmetic and geometric sequences recursively.
Ellill You can use the tips and suggestions on page T48 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Functions
Standards for Mathematical Content:
F.IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is the subset of integers.
F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
Standards for Mathematical Practice:
4 Model with mathematics.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

Coherence

Vertical Alignment

Previous

Students wrote and graphed equations of geometric sequences.
F.BF.2, F.LE. 2

Now

Students write arithmetic and geometric sequences recursively.
F.IF.3, F.BF. 2

Next

Students will relate exponential functions to logarithmic functions.
F.LE. 2 (Course 3)

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students continue to expand their understanding of sequences as functions, and they build fluency by writing recursive formulas for arithmetic and geometric sequences.

Mathematical Background

Arithmetic sequences involve a series of numbers with a common difference between consecutive terms, while geometric sequences involve a series of numbers with a common ratio between consecutive terms. Explicit formulas for a sequence are written in reference to the initial value, but sequences can also be defined by recursive formulas that increment the sequence based on the previous value.

Interactive Presentation

Launch the Lesson

Today's Vocabulary

Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- writing explicit formulas to represent geometric sequences

Answers:

$$
\text { 1. } a=2(5) ;{ }^{2} ; 1,10,50,250,1250
$$

2. $a_{n}=8\left(\frac{2}{3}\right)^{n-1} ; 8, \frac{16}{3}, \frac{32}{9}, \frac{64}{27} \frac{128}{1}$
3. $a_{n}=4\left(-\frac{1}{3}\right)^{n-1} ; 4,-\frac{4}{3}, \frac{4}{9},-\frac{4}{27} \cdot \frac{4}{1}$
4. $a_{n}=-8\left(-\frac{1}{2}\right)^{n-1} ;-8,4,-2,1,-\frac{1}{2}$
5. $a=1000(2) ; 3 \frac{1}{2}$ hours

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world example of recursive formulas.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Explore Writing Recursive Formulas from Sequences

Objective

Students use a sketch to explore writing recursive formulas for geometric sequences.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use a sketch. Work with students to explore and deepen their understanding of formulas for geometric sequences.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students use a sketch to analyze various geometric sequences and identify relationships based on the first term and common ratio. Student use their results to determine how to write recursive formulas. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Explore
WEB SKETCHPAD
Students use a sketch to explore geometric sequences and recursive formulas.

Interactive Presentation

Explore

TYPE
al
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Writing Recursive Formulas from Sequences (continued)

Questions

Have students complete the Explore activity.

Ask:

- Why is it necessary to know a when using a recursive formula? Sample answer: The formula will tell you what to multiply each term by to get the next term, but you need to know where to start.
- How is a geometric sequence different from an exponential function, in terms of r ? Sample answer: r can be negative in a geometric sequence, but the rate in an exponential function cannot.

(․).Inquiry
How can you write a formula that relates the numbers in a geometric sequence? Sample answer: Find the relationship between the terms of the sequence, or the common ratio. Then substitute the common ratio into the formula $a_{n}=r \cdot a_{n-1}$

Wo Online to find additional teaching notes and answers for the guiding exercises.

Learn Using Recursive Formulas

Objective
Students calculate terms in sequences by using recursive formulas.
Teaching the Mathematical Practices
2 Different Properties Help students to see the difference between explicit and recursive formulas, and to know the best time to use which one.

Essential Question Follow-Up

Students have studied explicit and recursive formulas for arithmetic and geometric sequences.

Ask:

Why is it useful to know both recursive and explicit formulas for sequences? Sample answer: When a pattern can be represented by a sequence, sometimes it is useful to predict it based on the total number of terms, and sometimes it is useful to iterate the steps from the previously-known term.

Example 1 Recursive Formula for an Arithmetic Sequence

Questions for Mathematical Discourse

AL What is the common difference? -9
OLI Why are we given a_{1} ? Sample answer: We have to have a number to start from when generating the sequence.
[BL. Can you find the twentieth term using the recursive formula without finding terms six through nineteen? Explain. No; sample answer: This kind of formula requires that you know the previous term.oT find the twentieth term, you would have to find all terms before it.

Example 2 Recursive Formula for a Geometric Sequence

Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in this example.

Questions for Mathematical Discourse

AL. What is the common ratio in this geometric sequence? 3
OL. How can you easily find the value of a_{6} ? Sample answer: Because we have calculated the value of the 5th term, we can multiply by 3 to get the 6th term.
Is a_{-2} defined for this recursive formula? Explain. No; sample answer: The formula is defined for pand then for q when $n \geq 2$, so $n=-2$ is not within the defined domain of the geometric sequence.

Interactive Presentation

1 CONCEPTUAL UNDERSTANDING

Learn Writing Recursive Formulas

Objective
Students write arithmetic or geometric sequences recursively and use them to model situations.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

DIFFERENTIATE

Reteaching Activity AIㅣ프니

Divide the class into groups of two or three students. Have each student write a sequence on one note card and the recursive formula for the sequence on another note card. Check that students have written the recursive formulas correctly. Repeat the process for 10 sequences. Then, have the students lay the cards face down. Each student should take turns flipping over two cards, attempting to find a match between a sequence and its recursive formula.

Example 3 Write a Recursive Formula Using a List

Questions for Mathematical Discourse

A1. Which type of sequence has a common ratio? geometric
OL. What is the common ratio of this geometric sequence? 3
BLil. How would the sequence be different if the common ratio was -3? Sample answer: The terms in the sequence would alternate between positive and negative.

Common Error

In Step 1, point out to the students that the common difference and common ratio must be checked between all of the consecutive terms provided to be sure the sequence applies to the entire sequence.

Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Example 4 Write a Recursive Formula Using a Graph

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in the Think About It! feature, students need to determine how they can check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

Questions for Mathematical Discourse

AL. Do the graphed points form a straight line or a curve? straight line
OL. Which type of sequence is represented by a linear equation? arithmetic
B1. Will this sequence have negative values? Explain. Yes; sample answer: The sequence has a negative common difference, representing it as a decreasing function on the graph. This line will pass over the x-axis into negative values.

Example 5 Write Recursive and Explicit Formulas

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about recursive and explicit formulas to solving a real-world problem.

Questions for Mathematical Discourse

Does the number of infected persons each day illustrate a common difference or common ratio? common ratio

이 What type of sequence does the situation represent? geometricDescribe how the recursive formula would change if the number of infected persons had a common difference of 4 instead of a common ratio of 4 . Sample answer: I would add 4 to a_{n-1} to find the next term instead of multiplying by 4 . The first term and domain would remain the same; $a_{1}=3, a_{n}=a \underset{n-1}{+} 4$, and $n \geq 2$.

Check
SOCIAL MEDIA The table shows the total number of views at the end of each day for a video. Write a recursive formula for the sequence $a_{1}=? \quad 100$ $\sigma_{n}=a_{n-1} ?+8900$

Example 4 Write a Recursive Formula Using a Graph
Write a recursive formula for the graph.
Step 1 ind a common difference or common ratio, or determine that neither exists.
$84-109=-25$
$59-84=-25$
$34-59=-25$
The common difference is -25 .
The sequence is arithmetic.

Step 2 Write a recursive formula
$\sigma_{n}=a_{n-1}+d \quad$ Recursive formula for arithmetic sequence
$\left.\sigma_{n}=\sigma_{n-1}+(-25) d=-25\right)$
Step 3 State the first term and domain for n
The first term 0 , is 109 , and $n \geq 2$.
A recursive formula for the sequence is $e_{1}=109$,
$\sigma_{n}=\sigma_{n,}-25, n \geq 2$
©Example 5 Write Recursive and Explicit Formulas
MOVIES The premise of a movie is that a new virus is spreading, turning infected Persons into zombie-like creatures. The table outlines the total number of infected persons at the end of each day.
a. Write a recursive formula for the
 sequence.
Step 1 find a common difference or common ratio.

$$
12-3=9 \quad 48-12=36 \quad 192-48=144
$$

There is no common difference. Check for a common ratio by dividing each term by the term that precedes it.

$$
\begin{array}{llll}
\frac{12}{3}=4 & \frac{48}{12}=4 & \frac{192}{48}=4 & 768 \\
192 & =4
\end{array}
$$

There is a common ratio of 4 . The sequence is geometric.

Interactive Presentation

Example 4

Interactive Presentation

Example 6
SELECT

Students select phrases and values to translate between recursive and explicit formulas.

CHECK

Students complete the Check online to determine whether they are ready to move on.

476 Module 8 • Exponential Functions

Example 6 T ranslate Between Recursive and Explicit Formulas

n. Teaching the Mathematical Practices

7 Use Structure Help students to use the structure of the sequences and formulas in this example to translate between recursive and explicit formulas.

Questions for Mathematical Discourse

AL How can you tell if the given formula is recursive or explicit? Sample answer: If the formula uses a_{n-1} and lists a value for a_{1}, then it is recursive. If only n is used, the formula is explicit.
OLI. In part a, what is the common difference? 0.5
[B1 When converting from an explicit formula, why do you have to find the value of a_{1} ? Sample answer: The explicit formula has been simplified from $a_{n}=(n-1) d+a_{1}$ so the constant no longer equals the first term.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-29$	
2	exercises that use a variety of skills from this lesson	$30-33$
2	exercises that extend concepts learned in this lesson to new contexts	$34-36$
3	exercises that emphasize higher-order and critical-thinking skills	$37-42$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-35 odd, 37-42
- Extension: The Fibonacci Sequence
- D ALEKS'Geometric Sequences

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-41 odd
- Remediation, Review Resources: Geometric Sequences
- Personal Tutors
- Extra Examples 1-6
- DALEKS Geometric Sequences

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Geometric Sequences
- Quick Review Math Handbook: Recursive Formulas
- ArriveMATH Take Another Look
- DALEKS Geometric Sequences

Mixed Exercises

30. CLEANING An equation for the cost a_{n} in dollars that a carpet cleaning company harges for cleaning n rooms is $a_{n}=50+25(n-1)$. Write a recursive formula to epresent the cost $a_{n} . \quad a_{1}=50, \hat{a}_{n}=a_{n-1}+25, n \geq 2$
31. SAVINGS A recursive formula for the balance of a savings account a_{n} in dollars at the beginning of year n is $a_{1}=500, a_{n}=1.05 a_{n-1}, n \geq 2$. Write an explicit formula to represent the balance of the savings account $a_{n}: a_{n}=500(1.05)^{-1}$
32. USE TOOLS In 2010, County A had a population of 1.3 million people. The largest factory in the area produced 1700 million widgets per year. The population of County A is projected to grow at 1.2% per year, and the number of widgets produced is expected to grow by 10 milion per year
a. Develop explicit formulas for the population and annual widget production, in millions, as functions of the number of years n after 2010 population: $p_{n}=1.3(1.012)^{\prime}$; widget production: $g_{n}=1700+10$
b. The graph of $\left.y=1700+\frac{10 x}{13} 31.012\right)^{\psi}$ represents the annual widget production per person for County A from 2010 to 2020, where x is the number of years after 2010. The at a constant rate of 1200 widgets per person. Use a graphing calculator to extend the graph and find the when County A will no longer be the leader in widget production. Explain your results. See margin.

33. USE A MODEL Ramon has been tracing his family tree with his parents. He claims that he has over 250 great- great- great- great- great- great-grandparents. Is this
possible? Write both an explicit and recursive formula for this situation. See margin.
34. REASONING Carl Friedrich Gauss, a German mathematician of the 1700 s, was asked as a young boy for the sum of the integers from 1 to 100, and he unhesitatingly replied with the correct answer.
a. Identify the type of the sequence $1,2,3, \ldots 100$, and explore a way to find its sum based on grouping pairs of numbers from each end of the
how Guass was able to find the sum so quickly. See margin.
b. Find an explicit formula for the sum S of n terms of an arithmetic sequence whose first term is a_{1} and whose n th, or last, term is a_{n}. See margin.
35. REGULARITY The first ten numbers in the Fibonacci sequence can be defined by $a_{n+1}=a_{n}+a_{n-}$ spreadsheet (see column C).
. Which spreadsheet formulas could have been used to calculate the entries in cells B 3 and C 2 ? Sample answer: $\mathrm{B} 3 \overline{\bar{\sigma}}_{\mathrm{o}} \mathrm{B} 2+\mathrm{B} 1$ and $\mathrm{C} 2=\mathrm{B} 2 \div \mathrm{B} 1$. Compute the ratio $\frac{\sigma_{n-1}}{}$ up to $n=50$. What do you observe? See margin
36. STRUCTURE There is a famous puzzle called the "Tower of Hanoi." There are three pegs, and a certain number of disks of varying sizes can be set
on each peg. The puzzle starts with the disks in a stack
 left-most peg, with the largest disk on the bottom and the disks getting smaller as they are stacked. The goal is to move the disks from the left-most peg to the right-most peg at a time. Second, only the top disk on any peg can be moved. Third, at no time can a larger disk be placed on a
 smaller disk.
a. If a_{n} is the number of moves it takes to solve a puzzle consisting of n disks, discuss why the recursive formula $q_{n}=a_{n-1}+1+a_{n-1}$ makes sense. See margin b. Simplify the recursive formula. What is a_{1} ? Why? See margin.
```
-Highe-Order Thinking Skills
```

37. FIND THE ERROR Pati and Linda are working on a math problem that involves the sequence $2,-2,2,-2,2, \ldots$. Pati thinks that the sequence can be written as a formula. Is either of them correct? Explain your reasoning. See margin.
38. PERSEVERE Find $a_{\text {, }}$ for the sequence in which $a_{4}=1104$ and $a_{n}=4 a_{n-1}+16.12$
39. ANAL YZE Determine whether the following statement is true or false. Justiry you argument. There is only one recursive formula for every sequence. See margin.
40. PERSEVERE Find a recursive formula for $4,9,19,39,79 \ldots . a_{1}=4, a_{n}=2 a_{n-1}+1, n \geq 2$
41. WRITE Explain the difference between an explicit formula and a recursive formula. See margin.
42. CREATE Give a counterexample for the following statement In a recursive sequence, if $a_{1}=a_{2}$, then $a_{2}=a_{3}$, and so on. See margin.

Answers

32b. 2024; Sample answer: Graph $Y 1=\left(\frac{1700+10 x}{1.3(1.012)^{x}}\right)$ and $Y 2=1200$, and observe where the graphs intersect, $(13.7,1200)$.
33. Ramon has 2 parents, 4 grandparents, 8 great-grandparents, and so on. We can write a geometric sequence to count the number of ancestors in a given generation. The recursive formula is $\# 2, q=2 q_{n} n \geq 2$. The explicit formula is $a=2$. Ramon's claim is about the 8th generation back: $q_{8}=2^{8}=256$. Ramon is correct.
34a. Arithmetic; Group $1+2+3+\ldots+98+99+100$ as $(1+100)+$ $(2+99)+(3+98)+\ldots+(50+51)$. There are 50 sums, each equal to 101 , so the whole sum must be $50(101)=5050$.

34b. Sample answer: The sum is equal to $\left(a+{ }_{n} a\right)+(a+1+a-1)+\ldots$, and there are $\frac{n}{2}$ of these pairs. So the sum is $S \frac{n}{2}\left(a+a_{n}\right)$.
35b. The ratio approaches a constant value of $1.618034 \ldots$. For larger values of n, the Fibonacci numbers behave like a geometric sequence with a common ratio of 1.618034

36a. It takes a_{n-1} moves to move the top $n-1$ disks from the left-most peg to the middle peg. It then takes 1 move to move the largest disk from the left-most peg to the right-most peg. Finally, it takes a, moves to move the $n-1$ disks from the middle peg to the right-most peg.
36b. $a_{n}=2 a+1 ; a=1 ;$ It takes 1 move to move a single disk from the left-most peg to the right-most peg.
37. Both; sample answer: The sequence can be written as the recursive formula $a_{1}=2, a_{n}=(-1) a_{n-\eta} \eta \geq 2$. The sequence can also be written as the explicit formula $q=2(-1)-1$
39. False; sample answer: A recursive formula for the sequence $1,2,3, \ldots$ can be written as $q=1, a=a_{n-1}+1, n \geq 2$ or as $a=1, a \overline{=} 2$, $a_{n}=a_{n-2}{ }_{2}, n \geq 3$.
41. Sample answer: In an explicit formula, the nth term a is given as a function of n. In a recursive formula, the nth term a is found by performing operations to one or more of the terms that precede it.
42. Sample answer: In the recursive sequence, $a=3, q=3, a_{+1} \overline{\overline{2}}$ $a_{n}+a_{i n} \eta \geq 1$, the values of $a_{, ~} a$, and a are 3,3 , and 6 , respectively. $a_{1}=a_{2}$ but $a_{2} \neq a_{3}$

Review

Rate Yourself! 院 自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- Why is it important to identify whether a relationship is represented by a straight line or a curve?
-Why does an exponential growth function model some situations?
- Why is it useful to know both recursive and explicit formulas for sequences?

Then have them write their answer to the Essential Question.

DINAH ZIKE FOLBABLES

IELIIA A completed Foldable for this module should include the key concepts related to exponential functions.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Linear and Exponential Relationships and Quadratic Functions and Modeling.

- Build Linear and Exponential Functions Models
- Interpret Expressions for Functions
- Construct and Compare Linear, Quadratic, and Exponential Models and Solve Problems

Test Practice

1. GRAPH The table shows the function

Graph the function.

2. MUL TIPLE CHOICE The table shows the number of text messages Ernesto sent each

month. (Lesson 8-1)	
Month	Text Messages
April	2
May	6
June	18
July	54

What type of behavior is shown in the table?
A. linea !
B. piece-wise
C. exponential
none of the abov e
3. OPEN RESPONSE Describe the end behavio of the graph of the exponential function shown on the graph. Lesson 8-1)

As кincreases, y increases; and, as x decreases, Yapproaches 0 .
4. MUL TIPLE CHOICE Consider the graph. Which function represents the reflection of the parent function $|x|=3^{\prime}$ across the $y-2 x=$? (Lesson 8-2)

A $5,(x)=-3 x$
($4=3$ =
C. $P_{n}=3 \rightarrow$
D.,$(x)=-2(3)$.

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources

Put It All Together: Lessons 8-1 through 8-3
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
ALl Module Test Form B
OL Module Test Form A
[BL Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-20 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Graph	Students create a graph on an online coordinate plane.	1
Multiple Choice	Students select one correct answer.	$2,4,5,7,9$, $10,12,14$
Table Item	Students complete a table by entering the correct values.	17
Open Response	Students construct their own response.	$3,6,8,11,13$, 15,16

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
A.SSE.3c	$8-4$	$8-11$
F.IF.3	$8-6$	16,17
F.IF.4	$8-1$	3
F.IF.7e	$8-1$	1
F.LE.1c	$8-1$	2
F.LE.2	$8-3,8-5$	$7,12,13$
F.LE.5	$8-3$	8
F.BF.2	$8-5,8-6$	14,15
F.BF.3	$8-2$	$4-6$

5. MUL TIPLE CHOICE Describe the translation in $h n=2+5$ as it relates to the parent function $h=\frac{2}{}$. . Lesson $8-2$)
4 Up 5 units
B. Down 5 units

CRight 5 units
D. Left 5 units
6. Pen response biticulturists can estimate the number of hybrid plants of a certain type they will sell based on the parent function bev -2.5° Suppose a new facility starts with 4 of these plants to hybridize, which can be modeled with the function $b(x)=4(2.5)$. Describe the effect on the graph as it relates to the parent function. Lesson $8-21$ on) $=4(2.5 \%$ is a vertical stotict of the graph of the parent function.
2 MUL TIPLE CHOICE Which exponential
function models the graph? Lesson 8-3)

(2) $y=\frac{1}{4}(4 y$
B. $y=4\binom{3}{4}^{x}$
C. $y=\frac{3}{4}(0)^{\prime}$
D. $y=40 y^{2}$
8. OPEN RESPONSE A population, NM, altex years may be modeled with $5(5)=2(3)^{\prime \prime}$. What is the initial amount, growth rate, domain and range? Lesson 8-3)
initial amount is 2 ; growth rate is 3 ;
$\mathrm{D}=\{x \mid x \geq 0\}, \mathrm{R}=\{y \mid 2 \leq y \leq \infty\}$
U se the table below for Exercises 9-11 Joey wants to invest money in a savings account. The table compares two banks he is considering. Joey needs to decide which is the betterdeal for investing his money.

	Interest Co Rate	mpound Frequency
First \& Loan	0.6%	monthly
Local Credit Union	9%	mnually

9. MUL TIPLE CHOICE What is the effective monthly interest rate offered by Local Credit Union? Lesson 8-4)
A. 5.5\%
B. 2%
C. 95%
. 772%
10. MUL TIPLE CHOICE What is the effective

Annual interest rate offered by First \& Loan?
Lesson 8-4)
e. 7
B. 7.2%
C. 1.006%
D. 0.6%
11. OPEN RESPONSE Which bank gives Joey the better savings plan? Justify your answer. Lesson 8-4)

Local Credit Union; sample answer: The monthly interest rate is 0.12% higher than at First \& Loan, and the annual interest rate is 1.6% higher than at First $\&$ Loan.
12. MUL TIPLE CHOICE Whitney invests $\$ 3000$ in an account earning 4.5% interest that is compounded annually. How much money wil be in Whitney's account atter 10 years?
Lesson 8-3)
A. $\$ 1893.02$

* $\$ 4658.91$

C $\$ 4700.98$
D. $\$ 123,254.07$
13. oPEN RESPONSE Attendance for local aseball games has been increasing by an average of 10% per year for , he last few years. In 2018, the average attendance was 100 people.
predict the average number of people
attending local baseball games in 2022 if this rend continues. Round to the nearest whole number. Lesson 8-5)
146 people
14. MUL TIPLE CHOICE What equation can be written for the nth term of this geometric sequence? (Lesson 8-5)

A. $e_{n}=100(2)^{-1}$
B. $0_{n}=100(-2)^{n-1}$
(3) $o_{n}=100\left(-\frac{1}{2}\right)^{n-1}$
D. $\sigma_{n}=100\binom{1}{2}^{n}$
5. OPEN RESPONSE The table shows the number of pages Aaron read in his book each day. Write a recursive formula for the sequence. (Lesson 8-6)

Day	1	2	3	4
Pages Read	20	3	50	65

$\theta_{3}=20, a_{2}=a_{x+1}+15, n_{2} 2$
16. OPEN RESPONSE What are the first five terms of the sequence for $a_{n}-2$ and $q_{1}=2 a_{1}+5$ if $n \geq 2$.(Les5on 8 -6)

$$
-2,1,7,19,43
$$

17 OPEN RESPONSE copy and complete the table for the geometric sequencelesson 8-6)
$a_{1}=3$ and $e_{-}=4 a_{n-1}$ if $n \geq 2$

n	formula	a_{n}
1	-	3
2	$a_{n}=4(3)$	≥ 12
3	$a_{-}=4(\overrightarrow{3}, 12$	≥ 48
4	$p_{0}=4(\geq) 48$	$? 192$

16. Sample answer: Let $a=3, b=2$, and $c=1$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})=\mathbf{3} \times \mathbf{2}^{\mathbf{x}}+\mathbf{1}$	$\boldsymbol{g}(\boldsymbol{x})=\mathbf{3 x}+\mathbf{1}$
-5	1.09375	-14
-4	1.1875	-11
-3	1.375	-8
-2	1.75	-5
-1	2.5	-2
0	4	1
1	7	4
2	13	7
3	25	10
4	49	13
5	97	16

The y-intercept of $f(x)$ is 4 and the y-intercept of $g(x)$ is 1 . $f(x)$ does not have an x-intercept. The x-intercept of $g(x) \frac{1}{3}$ isAs $*$ increases, both $f(x)$ and $g(x)$ increase. As x decreases, $f(x)$ gets closer to 1 and $g(x)$ decreases. All function values for $f(x)$ are positive, while $g(x)$ has positive values for $x>\frac{1}{3}$ and negative values for $x<\frac{1}{3}$. Neither $f(x)$ nor $g(x)$ has maximum or minimum points, and neither has symmetry.
19. Sample answer: The number of teams competing in a basketball tournament can be represented by $y=2$, where the number of teams competing is y and the number of rounds is x. The y-intercept of the graph is 1 . The graph increase rapidly for $x>0$. With an exponential model, each team that joins the tournament will play all of the other teams. If the scenario were modeled with linear function, each team that joined would play a fixed number of teams.

Lesson 8-5

49. Sample answer: When graphed, the terms of a geometric sequence lie on a curve that can be represented by an exponential function. They are different in that the domain of a geometric sequence is the set of natural numbers, while the domain of an exponential function is all real numbers. Thus, geometric sequences are discrete, while exponential functions are continuous.
50. Sample answer: First find the common ratio. Then use the formula $a_{n}=\rho \cdot T^{1}$. Substitute the first term for a and the common ratio Let n represent the numbered term in the sequence. Then solve the equation.

Statistics

Module Goals

- Students represent data using numerical statistics and graphical methods.
- Students analyze the shapes of distributions.
- Students summarize and interpret categorical data using frequency tables.

Focus

Domain: Numbers and Quantity, Statistics and Probability Standards for Mathematical Content:
S.ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).
S.ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Also addresses N.Q.1, S.ID. 5

Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

Coherence

Vertical Alignment

Previous

Students used statistics to describe and draw inferences about one or two populations of data.

6.SP, 7.SP

Now

Students use appropriate statistics to represent, compare, and analyze data.
S.ID.2, S.ID. 3

Next

Students will approximate data by using a normal distribution.
S.ID. 4 (Course 3)

Rigor

The Three Pillars of Rigor
Students will use the three pillars of rigor to help them meet standards. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Independent Practice.
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

```
EXPLORE \ LEARN
```


Suggested Pacing

Lessons	Standards	45-min classes	0-min classes
Module Pretest and Launch the Module Video		1	0.5
9-1 Measures of Center	Prep for S.ID. 2	1	0.5
9-2 Representing Data	N.Q.1, S.ID. 1	1	0.5
9-3 Using Data	Prep for S.IC.1, Prep for S.IC. 6	1	0.5
9-4 Measures of Spread	N.Q.1, S.ID. 1	1	0.5
9-5 Distributions of Data	S.ID. 3	1	0.5
9-6 Comparing Sets of Data	S.ID.2, S.ID. 3	2	1
9-7 Summarizing Categorical Data	S.ID. 5	1	0.5
Module Review		1	0.5
Module Assessment		1	0.5
	Total Days	11	5.5

Formative Assessment Math Probe Comparing Data in Box Plots

Answers: 1. false 2. true 3. not enough information 4. true 5. false

${ }^{0}$ Collect and Assess Student Answers

```
If the student selects
    these responses...
    1. true
    2. false
    3. true or false
    4. false
    5. true
    1,2,4, and 5:
    not enough information
```

the student likely...
misinterprets Company Y's higher maximum with a larger spread.
does not know what Q3 and/or the median are and/or how to find them on a box plot.
does not know which measure of center is given in a box plot or does not understand how to find the median and/or mean.
does not know what an outlier is or how to determine if there are outliers in a box plot without scale values. Some students who answer true for this are still unsure and answer true because it "looks" like there are no outliers.
associates the larger lower box in Company $Y(Q 1$ - Median) as having more salaries than the corresponding Company X 's smaller lower box instead of associating the size of the boxes with spread.
does not understand how to find information to compare two data sets represented in box plots and/or is confused by not having specific scale values.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Graphical Displays
- Lesson 9-3, Learn, Examples 2 and 3

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

IGN|TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question.

How do you summarize and interpret data? Sample answer: By using statistics, you can analyze data to find meaningful results. Calculating measures of center and spread and making a dot plot, bar graph, or histogram can be used to interpret the data.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Focus Students write notes about statistics for each lesson in this module.

Teach Have students make and label their Foldables as illustrated. For each lesson, have students record definitions and examples on the appropriate sheets.

When to Use It Encourage students to add to their Foldables as they work through the module, and to use them to review for the Module Assessment.

Launch the Module

For this module, the Launch the Module video uses social media to provide a context in which to discuss the topics covered in this chapter: measures of center, histograms, measures of spread, standard deviation, and two-way frequency tables. Students learn how these statistics would be helpful in a variety of contexts, and are told that they will learn how to use and interpret statistics in real-world situations.

What will you learn?
How much do you already know about each topic before starting this module?

KEY	Before			After	
(3)-Idon't know. Ab - ive heard of it. on-1 know it	(3)	5 6	(3)	38	(6)
find measures of center in a data set					
calculate percentiles					
represent data in dot plots, bar graphs, and histograms					
collect data and analyze bias					
represent data in box plots					
calculate standard deviation					
analyze data distributions					
transform linear data					
compare two data sets					
represent data in two-way frequency tables					
find frequencies, including marginal and conditional relative frequencies					

Foldables Make this Foldable to help you organize your notes about statistics. Begin with 8 sheets of $8 \frac{1}{2}$ " by $11^{\prime \prime}$ paper

1. Fold each sheet of paper in half. Cut 1 inch from the end to the fold. Then cut 1 inch along the fold. 2. Write the lesson number and title on each page.
2. Label the inside of each sheet with Definitions and Examples
3. Stack the sheets. Staple along the left side. Write Statistics on the first page.

Module 9 . Itatistics 485

Interactive Presentation

[^4]
What Vocabulary Will You Learn?

ELLI As you proceed through the module, introduce the key vocabulary by using the following routine.

Define A sample is a subset of a population.
Example There are 120 students in the 9 grade. A sample of 8 students is randomly selected to be interviewed for a TV show.

Ask What is the population? the entire class of 120 students What is the sample? the 8 students selected to be interviewed

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- finding mean, median, and mode
- making inferences about populations
- finding measures of spread
- collecting data
- completing frequency tables

G ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Data Analysis and Probability section to ensure student success in this module.

Mindset Matters

Attitude Ownership

Part of developing a growth mindset involves acknowledging progress in growth thinking and sharing it with others. It's important for students to own their mindset, be proud of their growth, and see themselves as someone who has a growth mentality-not just in math, but with learning in general.

How Can I Apply It?

Have students complete a math mindset project to share how they have grown throughout the year. They might choose the delivery method, such as a poster, blog post, video, or podcast. Students can share their mindset journey with their classmates as part of a class discussion, or they might post their projects for others to see.

Measures of Center

LESSON GOAL

Students represent sets of data using measures of center and percentiles.

1 LAUNCH

88 Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

88 Develop:

Mean, Median, and Mode

- Measures of Center

Explore: Finding Percentiles

Develop:

Percentiles

- Find Percentiles

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

| Resources | Al | IE | IELII |
| :--- | :---: | :---: | :---: | :---: |
| Remediation: Measures of Center | \bullet | | \bullet |
| Extension: Choosing the Best Measure
 of Center | | | |

Language Development Handbook

Assign page 49 of the Language Development Handbook to help your students build mathematical language related to representing sets of data using measures of center and percentiles.
IELII You can use the tips and suggestions on page T49 of the handbook to support students who are building English proficiency.

Focus

Domain: Statistics and Probability
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students used measures of center for numerical data to draw inferences about a population.

7.SP. 4

Now

Students find measures of center and percentiles.

Next

Students will represent data using dot plots, histograms, and box plots.
S.ID. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of and fluency with mean, median, and mode (first studied in Grade 6) to prepare for comparing measures of center and spread in data distributions. They apply their understanding of measures of center by solving real-world problems.

Mathematical Background

The mean of a set of data is the average of the data values. To find the mean, add the numbers and divide the sum by the number of addends. The mode is the number that occurs most often in a data set. Some data sets have no mode; others may have one, or more than one, mode. The median is the middle number in a data set that has been ordered from least to greatest. When there are two middle numbers, the median is the mean of these two numbers. An outlier is a number that is distant from most of the other data. A percentile indicates what percent of the total number of data values fall below a particular number.

Interactive Presentation

Warm Up

Launch the Lesson

[^5]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- ordering real numbers from least to greatest

Answers:

1. $2359,2395,3052,3529,5239$
2. 5.7, 6.7, 6.8, 7.6, 8.5
3. $-521,-350,-105,125,215$
4. $-\frac{3}{4},-\frac{7}{16},-\frac{1}{5}, \frac{1}{8}, \frac{5}{62} \frac{1}{}$
5. 1607, 1776, 1787, 1812, 1861, 1917, 1929, 1954

Launch the Lesson

Teaching the Mathematical Practices
3 Construct Arguments Encourage students to consider the different methods the manager might use and construct an argument for using one method over the others.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use this practice? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Finding Percentiles

Objective
Students explore how to describe data with percentiles.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will complete an activity in which they order the students in their class according to age and then identify the percentages of students that are younger than students in particular positions in the lineup. Students learn that these percents are called percentiles. Then they answer a series of questions about the data and about various percentiles in relation to their data. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

\square
Explore

TYPE

a
Students respond to the Inquiry question and can view a sample answer.

Learn Mean, Median, and Mode

Objective

Students represent sets of data by using measures of center.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

What Students Are Learning

Students are learning important definitions pertaining to data and measures of central tendency. They will be using these concepts throughout the module.

Common Misconception

Some students may believe that the mode is not a measure of central tendency, citing that the mode can be, for example, the least value in a data set. Explain that the mode is considered to be a measure of central tendency. It represents what can be described as a typical measurement in the data set.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Interactive Presentation

Example 1

TYPE

Students answer a question to show they understand measures of center.

Students complete the Check online to determine whether they are ready to move on.

Example 1 Measures of Center

Teaching the Mathematical Practices
3 Analyze Cases Work with students to look at the Think About It! feature. Ask students to determine whether Carlos's reasoning is correct or incorrect. If Carlos's reasoning is incorrect, have students identify a counterexample that disproves his claim.

Questions for Mathematical Discourse

How do you find the mean? Add the scores and divide by the number of scores.

OL What does the mean indicate about the data in the context of the situation? Sample answer: It indicates that the average number of points scored in the games is about 137 points.Create a set of data that has the same mean, median, and mode. Sample answer: $\{10,12,15,15,15,18,20\}$

Common Error

Some students may confuse the mean with the median. Tell them they can distinguish the two by noticing that the word median contains a " d ", as does the word middle. So the median is the middle number.

1 CONCEPTUAL UNDERSTANDING

Learn Percentiles

Objective

Students represent sets of data by using percentiles.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Important to Know

A data value that represents the $50^{\text {th }}$ percentile is not necessarily equal to the mean or the median. Students should not make this assumption.

Common Misconception

You may want to discuss the differences between percent and percentile. For example, a test score at the 65th percentile means that 65% of the scores are either the same as the score at the 65th percentile or less than the score at that rank. It does not mean a test score of 65%.

Explore Finding Percentiles

(0nline Activity Use a real-world situation to complete the Explore.

```
Q INQUIRY How can you describe a data value
        based on its position in the data set?
```

Learn Percentiles
A Percentile is a measure that is often used to report test data, such as standardized test scores. It tells us what percent of the total scores were below a given score.

- Eircentiles measure rank from the bottom.
-There is no 0 percentile rank. The lowest score is at the 1st Dercentile.
-There is no 100 th percentile rank. The highest score is at the 99th sercentile
Key Concept . Finding Percentiles
To find the percentile rank of an element of a data set, use these steps.
Step 1 Order the data values from greatest to least.
Step 2 Find the number of data values less than the chosen element. Divide that number by the total number of values in the data set. Step 3 Miltiply the value from Step 2 by 100

QExample 2 Find Percentiles
FIGURE SKATIN \subseteq The table shows the total points scored by each country in the team figure skating event in the $\mathbf{2 0 1 4}$ Olympic Winter Games. Find the United States' percentile rank.

Study Tip
Percent vs Percentile mean two different hings. For example, score at the 40th percentile means tha 40% of the scores are either the same as the score at the 40th percentile or less than the score at that rank the person scored 40% of the possible points.
$3^{\text {Go Online }}$
ou can watch a video percentile rank percentile rank

Interactive Presentation
 Interactive Presentation

Learn

TYPE

Students answer a question to show they understand percentiles. .

Interactive Presentation

Example 2
EXPAND

Students can tap to see the steps for finding percentiles.

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 2 Find Percentiles

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse
What is the purpose of arranging the scores vertically from greatest to least? to see the number of scores at or below a particular score
OL. What is the least score? 8 At what percentile rank is the least score? 1st percentile What is the score at the 99th percentile? 75
B1. Suppose the best possible score is 100 points. What percent of the total number of points did Canada receive? 65% What percentile rank is Canada? 80th percentile

Common Error

Students may state that Russia's score represents the 90th percentile. Tell students that although 90% of the data falls below Russia's score, convention is to rank the greatest data value as the $99^{\text {th }}$ percentile.

DIFFERENTIATE

IF students are having trouble calculating percentiles, THEN partner them with a student who has a better understanding of how to calculate percentiles, and have them work through several problems together.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-12$	
2	exercises that use a variety of skills from this lesson	$13-23$
2	exercises that extend concepts learned in this lesson to new contexts	$24-31$
3	exercises that emphasize higher-order and critical-thinking skills	$32-39$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-31 odd, 32-39
- Extension: Choosing the Best Measure of Center
- Aleks' Data Analysis

IF students score 66\%-89\% on the Checks,
 THEN assign:

- Practice, Exercises 1-31
- Remediation, Review Resources: Measures of Center
- Personal Tutors
- Extra Examples 1-2
- $\mathbf{Q} \mathbf{A L E K S}$ Ordering Numbers from Least to Greatest

IF students score 65% or less on the Checks,
 THEN assign:

- Practice, Exercises 1-11 odd
- Remediation, Review Resources: Measures of Center
- ArriveMATH Take Another Look
- ALEKS Ordering Numbers from Least to Greatest

Answers

13. Sample answer: The mean could be slightly higher because on a few Saturday nights throughout the year, there were a very large number of people at the movies, which caused the mean to increase but did not affect the median.
14. Sample answer: The mode time it takes to fly from New York City to Chicago is the most frequent, but there could have been a few flights that were much longer due to delays, which affects the mean but does not affect the mode.

Practice
Example
Find

1. $\{17,11,8,15,28,20,10,16\}$
2. (2.5, 6.4, 7.0, 5.3, 1.1, 6.4, 3.5, 6.2, 3.9. 4.0 mean: 15.625 , median 15.5

mean: 3.3, median: 2.5 , mode: 2

3. number of students helping at a booth each hour: 3, 5, 8, 1, 4, 11, 3
mean: 5 students; median: 4 students; mode: 3 students
4. weight in pounds of boxes loaded onto a semi-truck: 201, 201, 200, 199, 199 mean: 200 lbs. , median: 200 lbs .; mode: 201 lbs . and 199 lbs.
5. car speeds in miles per hour observed by a highway patrol officer: $60,53,53,52$,
$53,55,55,57$ mean: 54.75 mph ; median: 54 mph; mode: 53 mph $53,55,55,57$ mean: 54.75 mph ; median: 54 mph ; mode: 53 mph
6. number of songs downloaded by students last week in Ms. Turner's class: 3, 7, 21, $23,63,27,29,95,23$
mean: about 32 songs; median: 23 songs; mode: 23 songs
7. ratings of an online video: $2,5,3.5,4,4.5,1,1,4,2,1.5,2.5,2,3,3.5$ mean: about 2.8; median: 2.75; mode: 2

Example 2
MARCHING BAND A competition was recently held for 12 high school marching bands. Each band received a score from 0 through 100 , with 100
being the highest.
10. Find Hamilton High School's percentile rank. $75^{\text {th }}$ percentile
11. Find Monmouth High School's percentile rank. $25^{\text {th }}$ percentile

Band	Score Band	Score
Freeport	78 Madison	69
Ross	85 Montmouth 67	
Hamilton	88 Carisle	65
Groveport 94	Dupont	48
Lakehurst 56 Cave City 90		
Benton	77 Monroe	80

12. Find Freeport High School's percentile rank.
$50^{\text {th }}$ percentile $50^{\text {th }}$ percentile
Mixed Exercises
13. REASONING The mean number of people at the movies on Saturday nights throughout the year is 425 , and the median is 412 . Explain why the mean could be slightly higher. See margin.
14. REASONING The mode length of time it takes to fly from New York Ciity to Chicago is 2 hours 35 minutes, and the mean is 3 hours 15 minutes. Explain why the mode could be slightly lower. See margin.
15. FOOTBALL Find the mean, median, and mode for the data set. The weights pounds of 5 offensive linemen of a football team: 217, 212, 285, 245, 301
mean: 252; median: $\mathbf{2 4 5}$; mode: none
16. WEB sIIES The ratings for a new recipe Web site varied from very low, 1 point, to very high, 10 points, with half of the scores receiving a rating of 7 . If a new rating of 7 were added to the data set, how would the mode be affected? Explain. mode is already 7 . Adding a data value of 7 would mean that mode is still 7 .
17. Find a mean of $(16,19,22,27,33,19,25), 23$
18. SINGING In a singing competition that involved 50 contestants, Reina's score ranked higher than 40 of the contestants. In what percentile did Reina score?
80th percentile
19. SPORTS The table shows the number of points scored by a basketball team during their first several games. Find the mean, median, and mode of the number of points scored. mean: 51.5 , median: 51 , mode: none

20. PERFORMANCE At a bodybuilding competition, Shawnte earned a score of 42 points. There were 19 competitors who received a lower score than Shawnte
and 5 competitors who earned a higher score. What was Shawnte's percentile rank in the bodybuilding competition? 76th percentile
21. GRADES On her first four quizzes, Rachael has earned scores of $21,24,23$, and 17 points. What score must Rachael earn on her fifth and final quiz so that both the
mean and median of her quiz scores is 21 ? 20 points
22. QuizzES Sequon scored $95,86,81,83$, and 95 his mati quizzes this quarter.

Find the mode of his quiz scores. 95
23. BAND Out of the 30 bands at the competition, Coastal High School's band scored higher than 27 others. Find the percentile rank for Coastal High School's band. 90th percentile

492 Module 9 . Statistics

29. STATE YOUR ASSUMPTION A data set has a mean of 37 , a median of 36.5 , and a
mode of 37 . What assumption(s) can you make about the dataset? See margin.
30. BowLING The table shows Lucinda's score for each of her last ten bowling games.
a. Find the mean, median, and mode of the scores. Round to the nearest whole number. mean: 229 , median: 223 , mode: 220 b. Why is the mean slightly higher than the median? See margin.
31. DANCE COMPETITION At a dance competition, Pascal earned a score of 73 points. There were 12 competitors who received a lower score Pascal's percentile rank in the dance competition? $75^{\text {th }}$ percentile

Higher-Order Thinking Skills

32. CREATE Create a data set that has a
Sample answer: $8,8,9,10,11,15,16$
33. WRITE Describe ho WRITE Describe how an outlier value that is great
set affects each measure of center. See margin.
34. ANALYZE Determine whether the statement is true or false. If it is false, explain how to make the statement true. See margin.
To find percentile rank, divide the selected value by the total of all the values.
35. PERSEVERE Describe the effect on the mean, median, and mode of a set when all the items in the set are multiplied by the same number. The mean, median, and mode will all be multiplied by the number.
36. WHICH ONE DOESNT BELONG? Analyze each situation. Which situation is NOT best described by the median of the data? Explain. See margin.

An art gallery has many items for sale that are reasonably priced, but it also carries luxury priced paintings.	Most of the students volunteered 2 hours each week, but James volunteered 8 hours per week.	The amusement park had about the same number of attendees each day. On the annual bring-a-friend-forfree day, the number of attendees tripled.

painings. attendees tripled.
37. FIND THE ERROR Julio is studying botany and has been tracking the growth of 10 tomato plants each week. The first week, the plants measured the following
 research paper, Julio includes the median growth value for the week. Has Julio
chosen the best measure of center to describe the plant growth? Explain Julio should have chosen the mean because all the growth values are close to 38. STRUCTURE Explain how you determine that a data set is best described by the mean. See margin.
39. WRITE Explain in your own words the process for finding a percentile rank. See margin.

494 Module 9 - Statistics

1 CONCEPTUAL UNDERSTANDING

2 FLUENCY

Answers

24b. Most retailers sell laptop computers for $\$ 425$, but the majority of prices are much lower. This means the mode is high, but the mean and median are much lower.

25b. Sample answer: The novels lower than the 50^{h} percentile would be those consisting of words in the thirty-thousands and in the upper fiftythousands. My prediction is correct because those three books are in the $47^{\text {th }}$ percentile, which is just under the 50 "percentile.
25 c. The median will change from 66,556 to 69,920 , a difference of 3,364 words. The mean will change from 109,633 to 111,065, a difference of 1,432 words.
27. Canada: $20^{\text {th }}$ percentile; France: $50^{4 \prime}$ percentile; Japan: 40 Percentile; Russia: $60^{\text {th }}$ percentile; Brazil: $10^{\text {h }}$ percentile; Great Britain: 70 percentile

Olympic Medal Counts	
Country	
Australia	Total Medals
Brazil	29
Canada	19
China	22
France	70
Great Britain	42
Japan	67
New Zealand	41
Russia	18
United States	56

28 . The mean is 20 , the median is 20.5 , and the mode is 20 . The new mean is 25 , so the mean increases. The new median is 21 , so the median increases, but not by a lot. The new mode is 20 , so the mode was not affected.
29. Sample answer: The data is tightly clustered around 37 because all three measures of center are close.
30b. Half the bowling scores are above 223 and half are below 223 , but the scores below 223 are close to 223 , whereas the scores above 223 are not as close to 223 .
33. Because the mean is an average of all the numbers in the data set, it is most affected by outliers. An outlier on the high end will cause the mean to increase. The median is the middle value in the data set, so adding one high number should not affect the median much unless the data set has values that are widely spread. The mode is the most frequent number, so the outlier will have no effect on the mode unless the outlier is the same as the mode.
34. False; list the numbers from greatest to least, then divide the number of values below the selected value by the total number of values.
36. The second choice, the hours students volunteered, would not be described by the median. Because most students volunteer 2 hours, the mode is the best representation.
38. When looking at the data set, if there are no outliers and the numbers are relatively close together, then the mean is the best descriptor.
39. Sample answer: To find a percentile rank, order the data set in decreasing order. Count the number of items below the item you are ranking, and divide that by the total number of items. Multiply this answer by 100 to arrive at the percentile rank.

LESSON GOAL

Students represent data using dot plots, histograms, and bar graphs.

1 LAUNCH

83 Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

88 Develop:

Dot Plots

- Make a Dot Plot
- Make a Dot Plot by Using a Scaled Number Line

Bar Graphs and Histograms

- Determine an Appropriate Graph for Discrete Data
- Determine an Appropriate Graph for Continuous Data

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	ALILE	[1]	Eanili
Remediation: Find the Mode	- -		-
Extension: Segmented Bar Charts	-		-

Language Development Handbook

Assign page 50 of the Language Development Handbook to help your students build mathematical language related to representing data using dot plots, histograms, and bar graphs.
ELILIMou can use the tips and suggestions on page $T 50$ of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domains: Numbers and Quantity, Statistics and Probability Standards for Mathematical Content:
N.Q. 1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
S.ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.

Coherence

Vertical Alignment

Previous

Students analyzed dot plots, histograms, and box plots.
6.SP. 4

Now

Students represent data using dot plots, histograms, and bar graphs.
N.Q.1, S.ID. 1

Next

Students will use statistics appropriate to the shape of the data distribution to compare centers and spread of two or more data sets.
S.ID.2, S.ID. 3

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students apply their understanding of data distributions by solving real-world problems. They build fluency by making dot plots, bar graphs, and histograms.

Mathematical Background

There are many ways to represent data graphically. The type of data, and the purpose of the display, typically dictate which type of display would be most appropriate. A dot plot is used for small sets of data that fall into discrete categories. A bar graph is useful for comparing data. A histogram is similar to a bar graph, but each bar represents a range of data values.

Interactive Presentation

Launch the Lesson

[^6]
Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skills for this lesson:

- finding mean, median, and mode
- determining which measure of central tendency is the best indicator to use in a given situation
Answers:

1. $17,15,12$
2. 205, 197.5, no mode
3. 1.43, 1.35, 1.3
4. \$11.32, \$11.25, \$10 and \$12.50
5. Sample answer: Median; because it is in the middle.

Launch the Lesson

Teaching the Mathematical Practices
4 Use Tools Encourage students to consider the advantages of having a visual display of the data.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Learn Dot Plots

Objective
Students represent sets of data by using dot plots.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Things to Remember

The scale for a dot plot must be chosen so that every value in the data set is represented on the number line.

Common Misconception

A common misconception some students may have is that the values on the number line must be the values in the data set. Correct this misconception by demonstrating that the number line must contain equal intervals, including numbers for which there are no data values.

Example 1 Make a Dot Plot

Teaching the Mathematical Practices
1 Explain Correspondences Guide students as they use the information in this example to plot data to represent the situation.

Questions for Mathematical Discourse
AL What are the minimum and maximum values needed for the number line? 9 and 15

OL Based on the dot plot, what is the mode of the data? 15What is the median of the data? 13

Common Error

Some students may accidentally omit a data point. Encourage them to count the number of dots they have plotted and make sure it is equal to the number of data values in the set.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn
TYPE

Interactive Presentation

Example 2

Students move through the steps to make a dot plot.

TYPE

Students answer a question to show they understand how to make a dot plot by using a scaled number line.

Learn Bar Graphs and Histograms

Objective

Students determine whether discrete or continuous graphical representations are appropriate, and then represent sets of data by using bar graphs or histograms.

Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of bar graphs and histograms in this Learn.

What Students Are Learning

Students are learning about bar graphs and their characteristics. They will use what they learn to compare bar graphs to histograms and decide which type of display is appropriate for a given set of data. They also will learn how to construct each type of display.

Common Misconception

A common misconception that students may have is that a histogram is another name for a bar graph. Explain that this is not the case and that the differences between the two types of displays will be explained in this lesson.

Interactive Presentation

Learn

©Apply Example 3 Determine an Appropriate Graph for Discrete Data
dYMPICS The table shows the total number of Olympic medals won by U.S. athletes competing in selected events from the first Summer Olympics in 1896 through 2012. Make a graph of the data to show the total medals won for each sport.
I What is the task?
Describe the task in your own words. Then list any questions that you may have. How can you find answers to your questions?
Determine whether the data should be represented as a bar graph or histogram. These data represent discrete, categorical data, so use a bar graph.
2.16 will you approach the task? What have you learned that you can use to help you complete the task?
tally the number of medals won for each sport and then l'll create the bar graph. Each event will be represented by one bar. I have
do to make a bar graph.

Use your strategy to solve the problem.

Event	Gold silver Bronze Total			
Boxing	492	3	39	111
Diving	4841		43	132
Swimming	230164	126	520	
Track \& Field 319247		193	75%	
Wrestling	5243		34	129

 Event

Interactive Presentation

				x
Determine an Appropriate Gragh for Diacrete Data				
ner	and	U-20	Suer	
Heme	\Rightarrow	20	37	
Soms	4	e	4	
Sutrriv	20	\cdots	28	
DeatFid	m	20	\$	
worly	8	\cdots	34	

Apply Example 3

TYPE | Students will complete the table to tally |
| :--- |
| the total number of medals won in |
| each event. |
 TYPE the total number of medals won in each event.

Apply Example 3 Determine an Appropriate Graph for Discrete Data

Teaching the Mathematical Practices

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

Recommended Use
Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
-Why is a bar graph a good choice to represent this data?
-What is a disadvantage of using the graph in this example?

C Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

Example 4 Determine an Appropriate

 Graph for Continuous Data
(1) Teaching the Mathematical Practices

4 Apply Mathematics In this example, students apply what they have learned about graphing continuous data to solve a real-world problem.

Questions for Mathematical Discourse

AL. What is the best interval to use for the histogram? one minute
OL Why is a histogram the best choice for this data? Sample answer: The data is continuous.
(B1. How would the graph change if the interval used was 2 minutes? Sample answer: The data would stack even higher, and there would only be one gap at 1:32:00-1:33:59.

4 How can you know that your solution is reasonable?
C. Write About Itt Write an argument that can be used to defend your solution.
Sample answer. Because the graph is supposed to represent the total number of medals in each event, it makes sense for the data to be arganizedin categories. Categorical data should be represented by a bar graph.

Check
VIDEO GAMESThe table shows the number of active video game players in each country. Make a graph that best displays the data.

Q3 Example 4 Determine an Appropriate Graph for Continuous Data
MARATHON The results of the top finishers of the 2015 New York City Marathon, wheelchair division, are given below. Determine whether the data are discrete or continuous. Then make a graph.

1:30:54 1:30:55 1:34:05 1:35:19 1:35:21 1:35:37 1:35:38 1:36:45 1:36:59 1:38:39 1:39:22 1:39:22 1:39:27 1:39:27 1:40:36 1:43:04

Step 1 Because racers can finish with any time, the data are continuous and you can use a histogram.
(continued on the next page)

Interactive Presentation

Example 4

TAP	Students move through the steps to determine an appropriate graph for continuous data.
TYPE	Students complete the calculations to determine an appropriate graph.

Interactive Presentation

Check

CHECK

Students complete the Check online to determine whether they are ready to move on.

Queation 2

 OAM

Essential Question Follow-Up
Students have been creating dot plots, bar graphs, and histograms for real-world data sets.

Ask:

Why is it useful to know how to create and interpret different types of data displays? Sample answer: Not all data can be displayed on the same type of graph. Because the type of display chosen is dependent on the type of data, it is important to know about the different types of data displays.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-5$	
2	exercises that use a variety of skills from this lesson	$6-10$
2	exercises that extend concepts learned in this lesson to new contexts	$11-12$
3	exercises that emphasize higher-order and critical-thinking skills	$13-17$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,

THEN assign:

- Practice, Exercises 1-11 odd, 13-17
- Extension: Segmented Bar Charts
- D ALEKS'Graphical Displays

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-11 odd
- Remediation, Review Resources: Find the Mode
- Personal Tutors
- Extra Examples 1-4
- Q ALEKS'Finding Mean, Median, and Mode

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-5 odd
- Remediation, Review Resources: Find the Mode
- Quick Review Math Handbook: Representing Data
- ArriveMATH Take Another Look
- ALEKS'Finding Mean, Median, and Mode

Practice
Examples 1 and 2

1. READING The table shows the number of books read by students in a summer reading program. Make a dot plot of the data. See margin.
2. Quiz SCORES Represent the quiz scores as a dot plot. Scale
 the number line as needed.
$50,45,24,28,27,38,21,22,23,42,41,35,37,25,43$ See margin.
Examples 3 and 4
3. SURVEY A survey was conducted among students in Mr. Dalton's science class to determine a field trip destination. The results are shown in the table at the right. Make a graph to display the data. See margin.
4. MOVIES In a survey, students were asked to name their favorite type of movie. Of those surveyed, 8 chose action movies, 6 chose comedies, 5 chose horror movies, 3 chose dramas, and 7 chose science fiction movies (asi). data are discrete or raph. The data are discrete and categ
5. CONCERT The table shows the number of attendees by age at a concert. Determine whether the data should be shown in a bor graph or histogram. Then make an appropriate graph for the data. See margin.
Mixed Exercises
6. PRIZES The table shows the number of prizes won by customers at a carnival game each of the past several days. Determine whether the data are discrete or continuous. Then make an appropriate graph for the data. See margin.
7. JOGGING The number of miles Lisa jogged each of the last

10 days are $3,4,6,2,5,8,7,6,4$, and 5 .
a. Choose the most appropriate type of data display and graph the data. See margin.
b. How many days did Lisa jog at least 4 miles? 8
c. What was the greatest number of miles she jogged in a day? 8
8. MOVIES The number of movies that are released theatrically each year are shown in the table.
a. Select an appropriate display for the data. Explain your reasoning. Bar graph; the data are discrete.

b. Make a graph of the data. See Mod. 9 Answer Appendix

Answers

9. RUNNING The ages of the participants in a 10 K race at Masonville are 65,47 , $23,70,41,55,32,29,56,39,12,57,25,33,15,18,35,22,63,49,23,30,37$ 40 , and 50
a. Construct an appropriate data display for the data. See Mod. 9 Answer Appendix
b. How many participants are less than 30 years old? 8
c. In what interval is the most frequent age? $\quad 30-39$
10. ORCHESTRA The ages of the members of an orchestra are $39,43,31,53,41,25$, $35,46,27,34,37,26,51,29,36,40,33,28,48,26,42$, and 38 years. Make a graph of the data. See Mod. 9 Answer Appendix.
11. PRECISION A scientific research study tracks the growth of an insect in millimeters. The growth data for each insect in the study during week 1 are 1.1, $1.25,1.3,1.67,1.9,2.35,2.1,2.3,1.5,1.7,2.25,2.1,2.45,1.37,1.83$. The scientist is preparing a histogram to show the distribution of growth across the population. How should the scientist break down his data into categories? Sample answer: The scientist should break down the data into increments of two-tenths starting at 1 and going through 2.6 .
12. PETS The pets owned by Liza's classmates are rabbit: 2 , dog: 6 , cat: 3 , horse 2 , bird: 5 , mouse: 1 , fish: 3 , and other. 1
a. Make a dot plot of the data. See Mod. 9 Answer Appendix.
b. How many types of pets are represented by the dot plot? 8
c. Which pet is the most popular? Dog
13. ANALYZE Make two conclusions about a product that received the ratings shown in the dot plot. Justify your conclusions. See Mod. 9 Answer Appendix.
14. REGULARITY Explain when a histogram is the best model for data, and describe the process of creating a histogram. See Mod. 9 Answer Appendix.

Higher-Order Thinking Skills
15. WRITE Explain why it may be necessary to scale the number line of a dot plot. See Mod. 9 Answer Appendix.
16. PERSEVERE Using the data provided in the double bar graph about peanut butter, what are two conclusions the grocery store could infer? See Mod. 9 Answer Appendix.
17. STRUCTURE How is a bar graph similar to a histogram? How is it different? See Mod. 9 Answer Appendix.

502 Module 9 . Statistics

Answers

2.

Quiz Scores

3.

4.

5. histogram

6. discrete

7 a.

Using Data

LESSON GOAL

Students analyze data collection and representation methods to determine bias or identify misleading information.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Phrasing Questions

Develop:

Collecting Data

- Sample Bias
- Question Bias

Using Statistics and Representations

- Data Summaries
- Data Representation

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AI	B	-	IEIL
Remediation: Statistical Questions	-	-		-
Extension: Sampling Methods		-	-	-

Language Development Handbook

Assign page 51 of the Language Development Handbook to help your students build mathematical language related to analyzing data collection and representation methods to determine bias or misleading information.
EELII You can use the tips and suggestions on page T51 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Statistics and Probability Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students analyzed and represented data using dot plots, histograms, and box plots.
6.SP.4, S.ID. 1

Now

Students analyze data collection and representation methods to determine bias or identify misleading information.

Next

Students will use statistics appropriate to the shape of the data distribution to compare centers and spread of two or more data sets.
S.ID.2, S.ID. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students begin to develop an understanding of collecting data to be used in data distributions. They apply their understanding to solving problems involving sampling and bias.

Mathematical Background

A sample is a portion of a group, and the population is the group from which the sample is taken. After selecting a sample, you can conduct a survey, an observational study, or an experiment to estimate the characteristics of the population and make predictions. It is important to analyze collection and representation methods to check for bias or misleading information.

Interactive Presentation

Warm Up

Launch the Lesson

[^7]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- surveying

Answers:

1. entrepreneurs who own businesses in your community
2. b and c

3a. The data were collected from only females.
3b. The data were collected from students who excel in science.
3c. The data were collected from only freshman students.

Launch the Lesson

Teaching the Mathematical Practices
6 Use Quantities Encourage students to think about the quantities indicated by the graph and what information the graph does and does not provide about music sales. Have them discuss how the graph may be misleading.Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Phrasing Questions

Objective
Students explore how the phrasing of questions can lead to bias.
Teaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will explore the different ways that the wording of a survey question may influence responses. They will use different wording to create their own survey questions, use their questions to collect data, and then answer a series of questions about their observations. Then, students will answer the Inquiry question.

(continued on the next page)

Interactive Presentation

2 EXPLORE AND DEVELOP

Interactive Presentation

\square

Explore

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Explore Phrasing Questions (continued)

Questions

Have students complete the Explore activity.

Ask:

- How did you write your first question to garner support for the new stadium? Sample answer: I used words that would make people think that if they voted "yes," it would be beneficial for them.
- Did the people you surveyed respond the way you anticipated they would? See students' responses.

Inquiry
How can the way you collect data affect the results?
Sample answer: Using positive or negative language in a survey question can influence the way people respond.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Collecting Data

Objective

Students identify potential bias in sampling methods and questions.
Teaching the Mathematical Practices
1 Seek Information Help students to see how to collect data without bias in this Learn.

Important to Know

The importance of avoiding bias is key to obtaining meaningful data that can be used to accurately estimate a characteristic of a population. It is important to avoid bias in the way the sample is selected as well as in the way survey questions are worded.

Example 1 Sample Bias

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about sample bias to solving a real-world problem.

Questions for Mathematical Discourse

AL. Which population is included in the sample? American households with a landline

OL Why is the potential bias that is identified a concern?
Sample answer: The data collected is incomplete and is not a good representation of all voters.
B. What question did the pollsters' data actually answer? Sample answer: How do people with landline phones plan to vote?

Common Error

Students are often confused when it comes to determining whether or not a study is biased. Encourage them to consider such factors as how the survey participants were chosen, how the questions were asked, and how many participants were included in the study.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

| R |
| :--- | :--- | :--- |

Interactive Presentation

Learn
SWIPE

Students drag the slider to see a sample of a population.

Interactive Presentation

Example 2

Students move through the steps to see an example of question bias.

CHECK
Students complete the Check online to determine whether they are ready to move on.

Example 2 Question Bias

Teaching the Mathematical Practices
4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

Questions for Mathematical Discourse
What is the survey question trying to determine? whether people in New York City support a ban on soft drinks
OL What key words in the question might encourage a respondent to answer one way over another? heart disease and tooth decay
Bli Give an example of another biased survey question about the soda ban. Sample answer: Do you support a ban on soda because soda is a primary cause of childhood obesity?

DIFFERENTIATE

Enrichment Activity [BL

Have students write two questions that they will use to survey their fellow students about the same issue. Have them write one question that they feel is biased and one that they feel is unbiased. Have students choose two different samples from the same population and administer their surveys. Then have them compare the results of their surveys with their expected results and share their observations with the class.

Essential Question Follow-Up

Students have been exploring bias in sampling and questioning techniques.

Ask:

How are statistics used in the real world to sway opinions? Sample answer: Studies may use biased samples or biased questions to make the resulting data appear more or less favorable.

Learn Using Statistics and Representations

Objective

Students identify potential bias in statistics and representations of data.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of statistics of a data set in this Learn.

What Students Are Learning

Students are learning that statistics and representations may be used to misrepresent data, and that this is often intentional.

Common Misconception

The information in this part of the lesson may come as a surprise to students whose conception of mathematics and statistics is that "the numbers don't lie." This quote is used often enough to make students feel that statistics are factual. Use the examples in this part of the lesson to help students see that statistics can be, and often are, manipulated to misrepresent what is true.

Example 3 Data Summaries

Questions for Mathematical Discourse

AL Which measure of center makes it appear that the students did better? mode Worse? mean

OL What is affecting the mean and keeping it from being an accurate measure of the data? the two 0 scores

BL How does removing the two 0 scores affect the mean?
Sample answer: The mean will be closer to the median and will be a better indicator of the performance of the students who took the exam.

Common Error

If students recalculate the mean of the data to not include the outliers (in order to make a comparison), make sure that they remember to reduce the number of data values by which they divide.

Learn Using Statistics and Representations
A statistic is a measure that describes a characteristic of a sample. Like data, statistics and representations of data are nonneutral. When he average of a set of data is discussed, it uses a measure of Center information is being conveyed, the whole picture of the data. Evenif the data is being discussed in
 hole, can also be misreser of of a manipulate the scales of the axes of a graph or how the data are represented graphically to misrepresent the data

Cexample 3 Data Summaries
TEACHING A teacher wants to tell his students how the average student did on an exam, so he looks at the scores in his gradebook. Two students scored a because they stopped showing up for class in the last month and did not take the exam. He uses the mean, 71, as the measure of center. Does the mean accurately represent these data?

$$
0,0,82,83,85,87,88,88,91,91,91
$$

Step 1 Identify the other measures of center. Round your answer to the nearest unit.
median $=87$
mode $=91$
Step 2 Analyze the measures of center and how they align with the information the teacher wants to convey.
Mean: The mean, 71 , is affected by the two 0 scores. However, no one who showed up for the exam scored below an 82 , so the mean does not do a good job of indicating the performance of the students who took the exam

Median: The median, 87 , is not affected by the extreme values. It provides a more accurate average for how students performed on the test because it includes the scores of the two students who did not take the exam at all

Mode: The mode, 91 , is both the score most students received and the highest score received on the exam, but it does not accurately portray how students performed on average.
Because the teacher wants to discuss the performance of students who took the exam, the mean is not the best measure of center. It indicates that all students who took the exam performed worse than their actual scores.
\qquad

Math History Minute With M. A. Girschick, David Blackwell (1919-2010) authored the classic book Theory of Games and Statistical Decisions in iirst African American president of the American Statistic Society.

Interactive Presentation

Example 3

Interactive Presentation

Example 4

TAP	Students tap to identify misleading representations.
Q	

Students complete the Check online to determine whether they are ready to move on. representations.

Example 4 Data Representation

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse

AL. What appears to be the maximum of each graph? about 30
OL. How are the graphs different? Sample answer: The scales on the vertical axes are different.

B1. Which scale is more appropriate for the data? Explain your reasoning. Sample answer: The scale used for Player 1 is more appropriate because neither player appears to have scored more than 30 goals during the season. There is no reason to have the scale go up to 90 goals.

Common Error

Students often read a graph without looking at the scales on the axes.
Remind them that the scales make a difference in how the graph looks.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1, 2 exercises that mirror the examples	$1-8$	
2	exercises that use a variety of skills from this lesson	$9-14$
3	exercises that emphasize higher-order and critical-thinking skills	$15-22$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-13 odd, 15-22
- Extension: Sampling Methods

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Statistical Questions
- Personal Tutors
- Extra Examples 1-4
- DALEKS Analyzing Survey Questions

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-7 odd
- Remediation, Review Resources: Statistical Questions
- ArriveMATH Take Another Look
- D ALEKS' Analyzing Survey Questions

Answers

1. Sample answer: The intended population is all students. By asking only students leaving basketball practice, Awan is not getting a representative example of the entire student body.
2. Sample answer: The first sentence states a positive outcome of music education, which may bias the respondent toward support. This bias may serve people trying to keep music education in schools.
3. Sample answer: If there is an outlier, the median is the better measure to use because the mean is affected by the outlier and pulled in its direction. Therefore, the median is closer to the true center.
4. Sample answer: The scale for Vendor 1 starts at 40, and because of the size of the bars, it looks like their sales doubled in one year, when they increased about 50%. Vendor 2 had the same sales figures as Vendor 1 but it appears that they had more sales than Vendor 1.

Practice

Example 1

1. SPORTS Awan wants to know what the favorite sport is among students. To find out, he asks everyone he sees leaving school after basketball practice. Identify the intended population and determine the potential sample bias. See margin.
2. STORES Raya wants to conduct a survey at a nearby mall to determine which are the mall's most popular stores. How could she choose a sample that is unbiased? Sample answer: Raya could survey people from various locations in the mall.
Example 2
3. MUSIC Shea is shopping online, and a survey question pops up that says, "Music education enriches student learning. Do you support music education in schools?" See margin.
a. Identify potential bias in the question.
b. Identify whose interests may be served by the question.
4. CANDIDATES There are three candidates for mayor. To investigate how the townspeople feel about the candidates, a newspaper posts a poll that lists the three candidates and asks which candidate people support. The poll appears on the same page as an opinion piece in support of one of the candidates.
a. Identify potential bias in the question.
b. Identify whose interests may be served by the question. Sample answer: The opinion piece creates bias because of its location on the same page as the poll. This could serve the interests of the
xample 3 candidate in the opinion piece.
5. BUTTERFLIES Tania recorded the number of butterflies she saw on her daily runs each day for a week. The numbers are: $1,8,2,2,5,6$, and 4 . Find the mean, median, and mode of the data. Which measure(s) are appropriate to accurately summarize the data? Mean: 4 , median: 4 , mode: 2 ; The mean and median are appropriate measures to use to accurately summarize the data.
6. OUTLIERS In a data set with an outlier, which measure of center, mean or median, is the better measure to use to describe the center of the data? Explain your reasoning. See margin.
Example 4
7. SALES The graphs show the number of T-shirts sold at a baseball tournament for two years by two different vendors. The tournament director wants to compare the vendors. Do the graphs misrepresent the data? How does that difference affect the interpretation? See margin.

8. SCALE If the same set of data is graphed with a scale of 0 to 10 on the y-axis and then with a scale of 0-100 on the y-axis, what effect does that have on the representation of the data? See margin.

Mixed Exercises

9. SCIENCE A school wants to know which area of science; physics, biology, or chemistry, is most interesting to its students. Would it be better to survey students in a class that is an elective or required to get a sample with the least bias? Explain your reasoning. See margin.
10. TAX Before surveying people about whether they favor or oppose a proposed tax, the surveyors want to present information about the tax. Suppose the surveyors give facts about the tax without giving opinions. How could the facts given by the surveyors introduce bias? Sample answer: Surveyors could pick which facts to share, which could introduce bias.
11. CONSTRUCT ARGUMENTS The weights, in pounds, of several dolphins at a sea animal care facility are $185,222,755,801,835,990$, and 1104 . Which measure of center best represents the data? Justify your conclusion. See margin.
12. FOOD DRIVE The chart shows the number of canned goods collected by Valley High School in 2012 and 2017. Is the graph misleading? Explain. See margin.
13. REASONING The number of participants at reading club for six weeks are $11,12,10,13,10$, and 10 . Without calculating the measures of center, how would adding an outlier of 24 participants affect which measure of center mos appropriately represents the data? See margin
14. PRECISION A community garden has 8 tomato plants with heights ranging from 0.4 to 0.9 meters. Regina found the median to be 0.7 meters, which she rounded and reported as 1 meter. Is Regina's report of the median accurate? Explain your reasoning. No; 1 m is greater than the maximum height.
Higher-Order Thinking Skills
15. REGULARITY Describe a general method for assessing a sample for bias. See margin
16. STRUCTURE How are the median and mean scores affected if all data values in a set are increased by a specific value, such as 10 ? See margin.
17. CREATE Create two sets of data and display them in a graph or chart that shows bias toward one of the sets of data. See students' work.
18. WRITE Write two scenarios that have different examples of sample bias. Have a classmate rewrite your statements without bias. See students' work.
19. CREATE Think of a topic about which you can survey the teachers at your school. Conduct the survey. Explain whether your survey question(s) introduce bias. See students' work.
20. ANALYZE Is a biased sample sometimes, a/ways, or never valid? Justify your argument. See margin.
21. PERSEVERE If the mean, median, and mode of a data set are equal, the data set is symmetric. If a data set has a mean that is less than its median, what does that tell you about the data set? Sample answer: There are more extreme values in the lower end, which causes the mean to be lower than the median.
22. FIND THE ERROR Two students collected data on the sizes of box turtle shells. Nia meas from each of 4 ponds around town. Which is more likely to be free of sample bias? Explain your reasoning. See margin

58 Module 9 • Statistlc

Answers

8. Sample answer: Graphing the same data using different scales changes the appearance of the data. Using a greater scale, 0-100, makes the data look flatter, indicating a weaker relationship; using a smaller scale, 0-10, makes the data look steeper, indicating a stronger relationship.
9. Sample answer: The required class would be better because it is more likely to contain a representative sample of students. The elective class might not be representative of the whole student body because these courses are chosen for reasons such as personal preference or future career aspirations.
10. Median; sample answer: The two lowest weights are much lower than the others, so the mean will be affected by those outliers.
11. Yes; sample answer: The can for 2017 is 2 times as wide and 2 times as high as 2012 , which implies that the school raised 4 times more canned goods, when they raised double the canned goods.
12. Sample answer: The original data are very close together, so it is likely that the measures of center will all be the same or very close. Adding an outlier of 24 to the data setwill cause the mean to go up, but the median and mode would likely stay unchanged or very close to the original number. So, in this case the median or mode would best represent the center of data.
13. Sample answer: To assess a sample for bias, identify the intended population and sample method; then, based on this information, assess whether there is potential sample bias.
14. Sample answer: The mean and median are affected the same as the data values, so if data are increased by 10 , the measures increase by 10 .
15. Sample answer: The biased sample can sometimes be true because there exists a small probability that the selected sample from which the results are obtained represent the characteristics of the group.
16. Sample answer: Caleb's data is more likely to be free of bias because his sample is drawn from multiple sites, so the turtles should be more representative of the population.

LESSON GOAL

Students represent sets of data using measures of spread.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Using Measures of Spread to Describe Data

Develop:

Range and Interquartile Range

- Range
- Make a Box Plot
- Interquartile Range

Standard Deviation

- Calculate Standard Deviation

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket
Practice
Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL	B14		F6.all
Remediation: Compare Populations	-	-		-
Extension: Chebyschev's Theorem		-	-	-

Language Development Handbook

Assign page 52 of the Language Development Handbook to help your students build mathematical language related to representing sets of data using measures of spread.
ELililyou can use the tips and suggestions on page T52 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	0.5 day
45 min	

Focus

Domain: Statistics and Probability Standards for Mathematical Content:
N.Q. 1 Use units as a way to understand problems and to guide the
solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
S.ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.

Coherence

Vertical Alignment

Previous

Students analyzed and represented data using dot plots, histograms,
and box plots.
7.SP.1, S.ID. 1

Now

Students represent sets of data using measures of spread.
N.Q.1, S.ID. 1

Next

Students will analyze the shapes of distributions to determine appropriate statistics and identify extreme data points. S.ID. 3

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students apply their understanding of data distributions by solving real-world problems. They build fluency by making box plots and finding variance and standard deviation.

Mathematical Background

Measures of variation describe the spread of the data in a data set. The range describes the overall spread and is the difference between the greatest and least data values. Quartiles and interquartile range provide information about how the data is distributed. The variance and standard deviation describe the spread around the mean. Two data sets can have the same range and mean, but the spread around the mean can be quite different.

Interactive Presentation

Warm Up

Launch the Lesson

[^8]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- finding the minimum, median, and maximum data values in a set of data

Answers:

1. $\$ 25, \$ 130, \$ 380$
2. $-12,4,14$
3. $0.05,0.1,1$
4. $0,0.5,1$
5. $\frac{3}{5} ; \frac{3}{4}, \frac{75}{100}$, or $\frac{1.5}{210}$. $\frac{9}{4}$

Launch the Lesson

Teaching the Mathematical Practices
2 Attend to Quantities Encourage students to consider why the statistic Mr. Frond announced misled the student and why she says that she would have preferred knowing the mean.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Using Measures of Spread to Describe Data

Objective

Students use a sketch to explore how standard deviation can be used to describe data sets.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a sketch to enable them to create two different sets of real-world data that have the same mean. They will then answer questions about the data and follow a series of steps to calculate the standard deviation for each set of data. Finally, students will analyze and compare the standard deviations. Then, students will answer the Inquiry question.
(continued on the next page)

Interactive Presentation

Explore

Explore

Students use a sketch to explore measures of spread.

TYPE spread.

2 EXPLORE AND DEVELOP

Interactive Presentation

Explore

TYPE

Students respond to the Inquiry question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Using Measures of Spread to Describe Data (continued)

Questions

Have students complete the Explore activity.

Ask:

- In the context of this situation, which is more useful, the mean or the standard deviation? Explain. Sample answer: The standard deviation is more useful because the weights all need to be very close to the mean, not just produce the mean when calculated.
- In what type of situation is knowing the mean sufficient? Sample answer: a situation in which all the data are very close to the mean
(9) Inquiry

Why might you describe a data set with more than the mean?
Sample answer: Data sets may have the same mean but be very different from each other. Other statistics can provide more information about the spread of the data.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

2 FLUENCY

3 APPLICATION

Learn Range and Interquartile Range

Objective

Students determine measures of spread, including the range and interquartile range, of a set of data.

Teaching the Mathematical Practices
2 Create Representations Students learn how a box plot can be used to represent the five-number summary of a data set.

Important to Know

Two data sets may have the same mean, but the spread of the data in one of the data sets may be very different from that of the other data set. A box plot is a very useful tool for analyzing spread, and double box plots are often used to compare the spreads of two related data sets.

Common Misconception

A common misconception that some students may have is that Q_{2} is the mean of the data. Correct this thinking and help students understand that because the median divides the data into two equal-sized groups, each containing 50% of the data, it represents Q_{2}.

Example 1 Range

Questions for Mathematical Discourse

AL What is the highest score? 99 the lowest score? 62
인 What does the range represent? Sample answer: The difference between the greatest data value and the least data value. It represents the overall spread of the data.
Create a set of data with 9 values, a mode of 6 , and a range of 5 . Sample answer: $\{4,3,6,5,4,6,6,7,8\}$

Common Error

If students get the wrong answer, it may be because they incorrectly identify the greatest data value and/or the least data value. Encourage students to either arrange the data in order so that they don't miss a number or to circle the numbers in the data list that they plan to use for their calculation and then double-check that those numbers truly are the maximum and minimum values.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Example 1

TAP

Students tap to explore range and

 interquartile range.(3) Example 2 Make a Box Plot

BOX OFFICE A financial analyst for a movie studio wants to determine how much most of the top-earning movies have grossed to compare his studio's recent grosses. The worldwide grosses, in millions of dollars, for the top 10 highest-grossing films of all time are given. Determine the five-number summary and draw a box plot of the data to see the spread of the data.

2788	2187	2060	1670	1520
1516	1405	1342	1277	1215

Part A Determine the five-number summary.
Step 1 Arrange the data in ascending order.
1215, $1277,1342,1405,1516,1520,1670,2060,2187,2788$ Step 2 Determine the five-number summary of the data.

Part B Construct a box plot.
Step 1 Construct a number line
Because the minimum is 1215 and the maximum is 2788 , you number line must include those values.
Step 2 Draw the box-
Draw and label a box from Q_{1} to Q_{F}, with a vertical line at the median.
Step 3 Draw the whiskers.
Draw a line from the minimum to Q. Draw a line from Q_{2} to maximum

$$
\begin{gathered}
a-U_{42} \\
D_{2}=151
\end{gathered}
$$

1200140016001800200020024002602800

3 go Online Y ou can complete an Extra Example online. 510 Module 9 . 5 tatistics

Interactive Presentation

Example 2
EXPAND
Students tap to see how to make a box plot.

TYPE

Students answer a question to show they understand how to construct a box plot.

1 CONCEPTUAL UNDERSTANDING

510 Module 9 • Statistics

Example 2 Make a Box Plot

Teaching the Mathematical Practices
1 Explain Correspondences Guide students as they use the information in this example to plot data to represent the situation.

Questions for Mathematical Discourse

What statistics make up the five-number summary? minimum, maximum, median, lower quartile, upper quartile

OL When drawing a box plot, how do you know where the box starts and ends? Sample answer: Calculate the first quartile and the third quartile. Then draw the box so that it starts at the first quartile and ends at the third quartile.

BL. Why does it not make sense for the number line to start at 0 ? Sample answer: If the number line started at 0 , and included the maximum value, the graph would end up in a very small portion and would not be very clear or helpful.

Common Error

Some students may forget that the vertical line inside the box represents the median of the data and may, in error, draw the line in the middle of the box. Point out this common error so that students will avoid making it.

Example 3 Interquartile Range

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about interquartile range to solving a real-world problem.

Questions for Mathematical Discourse

AL. What is a quartile? one of four equal groups into which data can be divided
OL. What is the median? - 15 the lower quartile? - 18 the upper quartile? - 13What does the interquartile range represent? Sample answer: The difference between the upper quartile and the lower quartile, or the middle 50% of the data.

Common Error

Some students may count the median as a data value in the lower half, and then again in the upper half of the data when calculating the first and third quartiles. Correct this error, and tell students to use the median as a dividing point between the two halves but not as a data point in either half.

Check
MARRIAGE The average age at which women first get married differs by country. The ages for eight countries are shown. Select the box plot for the data. B

$$
25,26,21,27,31,31,29,20
$$

A. Average Age of Women at First Marriage

B. Average Age of Women at First Marriage

c. Average Age of Women at First Marriage

Θ Example 3 Interquartile Range
AUDIO Sarah wants to upload a song that she recorded and share it with her friends. She wants to know whether her song, which is currently $\mathbf{- 1 2}$ decibels on average, is the right volume compared to she wites 1 m so listere do have to adjust Find interquartile range of these average volumes.

Step 1 Order the data: $-20,-18,-18,-15,-14,-13,-8$ Step 2 Determine Q_{1} and Q_{3}
Step 3 Determine the $/ Q R$.
$I Q R=Q_{3}-Q_{1}=-13-(-18)$ or 5
Check

WRITING Cora is writing a novel and tracks the number of pages she writes each day for a week. The number of pages she wrote each day for a week is shown. Find the interquartile range of the data set. 5 $6,5,0,3,8,1,4$
O Go Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 3
CHECK

-11) | Students complete the Check online |
| :--- |
| to determine whether they are ready |
| to move on. |

Students complete the Check online
to determine whether they are ready to move on.

Interactive Presentation

1 CONCEPTUAL UNDERSTANDING | 2 FLUENCY

Learn Standard Deviation

Objective
Students determine the standard deviation of a data set.
Teaching the Mathematical Practices
4 Use Tools Students follow a set of steps to learn how to use the formula for finding the standard deviation of a set of data.

About the Key Concept

Calculating the standard deviation involves finding the differences between each data value and the mean, finding the average of the squares of those differences, and taking the square root of the result. The resulting value is the standard deviation, which is a measure of how much the data deviate from the mean.

Example 4 Calculate Standard Deviation

Questions for Mathematical Discourse

AL Why do you first need to find the mean? Sample answer: Y ou need the mean to find the differences in the next step.

OL. Explain how to find the sum of the squares of the differences. Subtract each data value from the mean, square each difference, and then add the results.

BL What is the interval that contains values that lie within one standard deviation of the mean in this example? Explain. 14,719 to 24,775 ; You find the values that are 5028 more and 5028 less than the mean of 19,747.

Common Error

Some students may think that they have made an error if the calculation of the standard deviation results in a number that is not close to the mean. Remind students that the standard deviation is not a measure of center but is instead a measure of spread, and that the value indicates how much the data deviate from the mean.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-20$
2	exercises that use a variety of skills from this lesson	$21-26$
3	exercises that emphasize higher-order and critical-thinking skills	$27-30$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,

THEN assign:

- Practice, Exercises 1-25 odd, 27-30
- Extension: Chebyschev's Theorem
- ALEKS'Data Analysis

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Compare Populations
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Making Inferences About Population

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Compare Populations
- Quick Review Math Handbook: Statistics and Parameters
- ArriveMATH Take Another Look
- Q ALEKS'Making Inferences About Population

22. FOOTBALL The table shows information about the number of carries a running back had over a number of years. Find and interpret the standard deviation of the number of caries. See margin.
23. MOVIES The manager at a movie theater kept track of the age of each person in a matinee movie: $67,62,65,38,69,67,59,41,43$ $36,45,22,69,68,18,15,9,60,64$
a. Determine the five-number summary for the data set. $9,36,59,67,69$
b. Draw a box plot of the data. See margin.
24. GAS PRICES Renee is planning a road trip to her aunt's house. To estimate how much the trip will cost, she goes online and finds the price of a gallon of gasoline for 5 randomly selected gas stations along the route: $\$ 2.09, \$ 2.19, \$ 3.99, \$ 2.39, \$ 2.29$. a. Determine the five-number summary for the data set. $2.09,2.14,2.29,3.19,3.99$ b. Draw a box plot of the data. See margin.

Find the range, five-number summary, interquartile range, and standard deviation for each data set. Then draw a box plot of the data.
25. SEASHELLS Jorja collected the following number of seashells for the last nine trips to the beach: $5,11,7,12,13,17,3,15,18$ gee margin
26. SHOE SIZE The following shoe sizes of students at a high school were randomly recorded for one hour: $6,8,8.5,10,12,6.5,7,8,8.5,7.5,9,11.5,10,13,5.5,6.5,5,9.5$. see margin.
Qigher-Order Thinking Skills
27. FIND THE ERROR Jennifer and Megan are determining one way to decrease the size of the standard deviation of a set of data. Is either correct? Explain your reasoning. See margin.

28. ANAL YZE Determine whether the statement Two random samples taken from the same population will have the same mean and standard deviation is sometimes, always, or never true. Justify your argument. See margin.
29. CREATE Write your own survey question and collect data about your question from 8 classmates. Use that data to find the range, five-number summary, interquartile range, and standard deviation for the data set. Then draw a box plot of the data. See students' work.
30. WRITE What does the interquartile range tell you about how data clusters around the median of the data? See margin.

514 Module 9. Statistics

Answers

6. 309, 311, 312, 314, 399

60646872768084889296100
8. $2,5,10,17,18$

012345678910111213141516171819
9. 35.2, 35.7, 35.9, 36.2, 36.5

3535.235 .435 .635 .83636 .236 .436 .636 .8

21. 2.16; Because the standard deviation is large compared to the mean of 3 , the number of goals scored each game is not relatively close to the mean.
22. The standard deviation is approximately 42.3 carries, which is large compared to the mean of 100.6 . This suggests that the number of carries per season is not relatively close to the mean of 100.6 carries.

23b.

24b.

22.22 .42 .62 .833 .23 .43 .63 .84 .0
25. range: 14 ; minimum: 3 ; lower quartile: 6 ; median: 12 ; upper quartile: 14.5; maximum: 17; interquartile range: 8.5 ; standard deviation: 4.5

012345678910111213141516171819

26. range: 8 ; minimum: 5 ; lower quartile: 6.5 ; median: 8.25 ; upper quartile: 10; maximum: 13 ; interquartile range: 3.5 ; standard deviation: 2.19

27. Both; sample answer: When an outlier is removed from a set of data, the spread and standard deviation of the data will decrease. When more values that are equal to the mean of a data set are added to the data set, the mean will be stronger and outliers will have less influence.
28. Sometimes; sample answer: If the samples are truly random, they would rarely contain identical elements, and the mean and standard deviation would differ. If the sample produces identical elements, the mean and standard deviation would be the same.
29. Sample answer: The interquartile range represents the middle 50\% of data values. Because this data is not affected by outliers, it accurately shows whether the data is closely centered around the median or spread out.

LESSON GOAL

Students analyze the shapes of distributions to determine appropriate statistics and identify extreme data points.

1 LAUNCH

283 Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

88 Develop:

Shapes of Distributions

- Analyze Distribution by Using Technology
- Choose Appropriate Statistics by Using a Histogram
- Choose Appropriate Statistics by Using a Box Plot

Extreme Data Points

- Choose Appropriate Statistics with Extreme Data Points

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

DIFFERENTIATE

View reports of student progress on the Checks after each example

Resources	Al\| 4 E	ELIL
Remediation: Measures of Variation	- -	-
Extension: Happy Birthday	-	\bullet

Language Development Handbook

Assign page 53 of the Language Development Handbook to help your students build mathematical language related to analyzing the shapes of distributions to determine appropriate statistics and identifying extreme data points.
ELillilyou can use the tips and suggestions on page T53 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Statistics and Probability Standards for Mathematical Content:
S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
Standards for Mathematical Practice:
4 Model with mathematics.
5 Use appropriate tools strategically.

Coherence

Vertical Alignment

Previous

Students represented sets of data using measures of spread.
6.SP.4, 6.SP.5c, N.Q.1, S.ID. 1

Now

Students analyze the shapes of distributions to determine appropriate statistics and identify extreme data points.

S.ID. 3

Next

Students will use statistics appropriate to the shapes of the distributions to compare the measures of center and spread of two data sets.
S.ID.2, S.ID. 3

Rigor

The Three Pillars of Rigor
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of and fluency with measures of center and spread to explore shapes of data distributions. They apply their understanding of data distributions by solving real-world problems.

Mathematical Background

A distribution of data shows the frequency of each possible data value. The shape of a distribution can be determined by looking at its histogram or box-and-whisker plot. When describing a distribution, use the mean and standard deviation if the graph is symmetric and the five-number summary if the distribution is skewed.

Interactive Presentation

	\times
Warm Up	
For each dats set, state whether the mean or medion is great	
1,0,3,1,0,12, 7, 3, 1,9	
2. 0.25 .0 , $0.5,1-1,0.075,0.25,1,0$	
3.5000,572, 5721 \$96. 5135.5133	
4. $-6,-3,-70,-5,-5,-4,-7$	
5. GRaDES M2. Fyrn scores her expms out of 900 , and seven	
$\begin{array}{lllllll}78 & 88 & 82 & 79 & 90 & 80 & 92\end{array}$	

Warm Up

Launch the Lesson

[^9]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- comparing the mean and median of a set of data

Answers:

1. mean
2. equal
3. median
4. median
5. mean

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world situation in which it would be helpful to analyze its data distribution.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Learn Shapes of Distributions

Objective

Students interpret differences in the shape of distributions by examining histograms and box plots.

M1
 Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the graphs used in this Learn.

Important to Know

When data are symmetric, the mean and the median are located near the center of the data and are close in value. When data are skewed, the median will be closer to the side of the data that contains more data values, and the mean will be pulled away from the median, toward the other direction.

Common Misconception

A common misconception some students may have is that the term negatively skewed indicates a distribution in which the mean and the median lie closer to the left side of the graph, and the term positively skewed indicates a distribution in which the mean and the median lie closer to the right side of the graph. This misconception is actually the opposite of the true distributions for each case. Use the visuals in this lesson to correct this thinking.

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

DIFFERENTIATE

Language Development Activity 태L

Intermediate Instruct a small group of students to write a paragraph describing what is happening in each figure illustrating the types of distributions. Students \square paragraphs should describe each part of the diagrams in their own words. Ask for volunteers to read their paragraphs. Have students ask for clarification as needed.

Interactive Presentation

Example 1

TAP	Students tap to select a calculator to help analyze a distribution.
Students answer a question to show they understand analyzing a distribution using technology.	

516 Module 9 • Statistics

Example 1 Analyze Distribution by Using Technology

13) Teaching the Mathematical Practices

5 Analyze Graphs Help students analyze the graph they have generated using graphing calculators. Point out that to see the entire graph, students may need to adjust the viewing window.

Questions for Mathematical Discourse

Describe the shape of the graph. Sample answer: The graph is high on the right and goes lower and lower as it moves to the left.
OL What type of distribution is this? negatively skewed
BL. Can you tell from the box plot that the data is negatively skewed as well? Explain. \es; sample answer: There is a longer whisker to the left, showing that most of the data is on the right side of the graph.

Example 2 Choose Appropriate Statistics by Using a Histogram

10) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
ALI Describe the shape of the histogram. symmetric
OL. Which statistics best represent the data? mean and standard deviation

Bil Why would the mean and standard deviation not be the best statistics to use for skewed data? When the data is skewed, there are values far from the mean, making it less representative of the data than the median.

Example 3 Choose Appropriate Statistics by Using a Box Plot

Teaching the Mathematical Practices

5 Analyze Graphs In this example, students will analyze a box plot that they generate using a graphing calculator.

Questions for Mathematical Discourse

What does the line inside the box plot represent? the median of the data

OL Why does this box plot indicate that you should use a five-number summary to describe the data? Sample answer: The whiskers are very different lengths, showing that most of the data have lower values, but there are high values that will raise the mean.
[Bil What would a histogram for this data look like? Sample answer: The histogram would also be positively skewed. So the bars on the left would be taller than those on the right.

DIFFERENTIATE

IF students are having difficulty understanding how extreme data points affect the statistical measures associated with the data, THEN pair them with students that have a better grasp of the concept, and have them go back and review the material on this slide together. Have the students discuss the results obtained when using the sketch, focusing on how and why each measure is or is not affected by different outliers.

Interactive Presentation

Example 3
 create a box plot for the data.

Interactive Presentation

Example 4

Students tap to select a calculator to help create a box plot for the data.

Students complete the Check online to determine whether they are ready to move on.

Learn Extreme Data Points

Objective
Students account for the possible effects of extreme data points.

Teaching the Mathematical Practices

4 Use Tools Students will use an interactive sketch to investigate how the mean, median, and standard deviation of a data set are affected by an extreme data point.

What Students Are Learning

Students will explore how extreme data points (outliers) affect the mean, standard deviation, and median of a set of data. They will use a sketch to change the value of the outlier and observe the effect on the related statistics. They will then record their observations in a table.

Example 4 Choose Appropriate Statistics with Extreme Data Points

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this example, students will need to use a graphing calculator. Work with students to explore and deepen their understanding of extreme data points.

Questions for Mathematical Discourse

What does the point that is separated from the whiskers represent? Sample answer: There is a value that is much higher than the rest, or the outlier of the data.

OL. Which statistics best represent the data? the five-number summaryCould there be an outlier for this data that lies below the minimum value? Explain. No; sample answer: The minimum value is close to 0 , and negative values do not make sense in this context.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-8$	
2	exercises that use a variety of skills from this lesson	$9-18$
2	exercises that extend concepts learned in this lesson to new contexts	$19-23$
3	exercises that emphasize higher-order and critical-thinking skills	$24-27$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-23 odd, 24-27
- Extension: Happy Birthday

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-27 odd
- Remediation, Review Resources: Measures of Variation
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Finding Measure of Spread

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-7 odd
- Remediation, Review Resources: Measures of Variation
- Quick Review Math Handbook: Distributions of Data
- ArriveMATH Take Another Look
- D. ALEKSFinding Measures of Spread

Answers

1. symmetric

[24, 78] scl: 6 by [0, 10] scl: 1
2. negatively skewed

[33, 57] scl: 3 by [0, 10] scl: 1

[24, 78] scl: 6 by [0, 5] scl: 1

[33, 57] scl: 3 by [0, 5] scl: 1

Practice

Example 1
se a graphing calculator to construct a histogram and a box plot for the data.
Then describe the shape of the distribution. See margin.

1. $55,65,70,73,25,36,33,47,52,54,55,60,45,39,48,55,46,38$
2. 42, 48, 51, 39, 47, 50, 48, 51, 54, 46, 49, 36, 50, 55, 51, 43, 46, 37 $50,52,43,40,33,51,45,53,44,40,52,54,48,51,47,43,50,46$
xample 2
Describe the center and spread of the data using either the mean and standard
deviation or the five-number summary. Justify your choice by constructing a
histogram for the data. See margin.
3. $32,44,50,49,21,12,27,41,48,30,50,23,37,16,49,53,33,25$
$35,40,48,39,50,24,15,29,37,50,36,43,49,44,46,27,42,47$
4. $82,86,74,90,70,81,89,88,75,72,69,91,96,82,80,78,74,94$ $85,77,80,67,76,84,80,83,88,92,87,79,84,96,85,73,82,83$
Example 3
Describe the center and spread of the data using either the mean and standard deviation or the five-number summary. Justify your choice by constructing a box
plot for the data. See margin.
$64,58,27,67,72,68,31,95,37,41,97,56,49,71,84,66,45,93$
5. $64,36,32,65,41,38,50,44,39,34,47,35,46,36,53,35,68,40$ 6. $64,36,32,65,41,38,50,44,39,34,47,35,46,36,53,35,68,40$ Example 4
6. FL YING The various prices of a flight from Los Angeles to New Y ork are shown.
$\$ 182, \$ 234, \$ 264, \$ 271, \$ 277, \$ 314, \$ 317, \$ 455$ See margin.
a. Make a box plot of the data.
b. Calulae he that best represent the data.
c. Describe the effect of the outlier.
7. EXERCISE Y oshiko tracked her minutes of exercise each day for 10 days as shown. $57,60,53,59,57,61,61,54,62,10$ See margin. a. Make a box plot of the data. b. Calculate the statistics that best represent the data. c. Describe the effect of the outiier.

Mixed Exercises

USE TOOLS Use a graphing calculator to construct a histogram and a
box plot for the data. Then describe the shape of the distribution. 9-11. See Mod. 9 Answer Appendix.
9. 14, 71, 63, 42, 24, 76, 34, 77, 37, 69, 54, 64, 47, 74, 59, 43, 76, 56
$78,52,18,54,39,28,56,74,68,36,20,49,67,47,69,68,72,69$
10. $53,34,36,38,43,49,52,36,39,37,58,45,37,38,46,52,45,39$
$55,39,40,55,38,40,42,38,45,36,46,39,35,41,49,43,52,34$
11. $51,19,46,64,29,51,58,30,55,31,34,31,50,37,40,39,40,41$
$42,32,24,48,43,45,38,43,58,47,34,36,50,54,46,28,60,22$
12. TRACK Daryn recorded the number of laps he walked around the track each week. Use a graphing calculator to construct a histogram for the data, and describe the shape of the distribution.
17, 21, 23, 26, 27, 28, 28, 27, 33, 34, 33, 27, 29, 22, 19, 28, 35 See Mod. 9 Answer Appendix.
13. GOLF Mr. Swatsky's geometry class's miniature golf scores are shown below. Use a graphing calculat to constucta box plot tor he data, and cescribe ne shap of the distribution. See Mod. 9 Answer Appendix.
$36,38,38,39,40,42,44,46,46,47,48,48,50$.
$52,52,53,54,55,56,56,56,60,57,58,63$
14. HAIR LENGTH Ruth recorded the lengths, in centimeters, of hair of students in her school. Describe the center and spread of the data using either the mean and standard deviation or the five-number summary. Justify your choice by creating box plot for the data. See Mod. 9 Answer Appendix.
$40,39,37,26,25,40,35,34,26,39,42,33,26,25,34,38,41,34$
$37,39,32,30,22,38,36,28,27,39,34,26,36,38,25,39,23,8$
15. PRESIDENTS The ages of the presidents of the United States at the time of their inaugurations are shown. Describe the center and spread of the data using either the mean and standard deviation or the five-number summary. Justify your choice by creating a box plot for the data. See Mod. 9 Answer Appendix.

Ages of Presidents $57,61,57,57,58,57,61,54,68,51,49,64,50,48,65$.
$52,56,46,54,49,51,47,55,55,54,42,51,56,55,51$,
54, 51, 60, 62, 43, 55, 56, 61, 52, 69, 64, 46, 54, 47
16. AUTOMOTIVE A service station tracks the number of cars they service per day.

40, 47, 37, 42, 46, 31, 50, 41, 17, 43, ,36, 45, 21, 43, 45, 23, 49, 50,
48, 26, 42, 46, 35, 52, 27, 51, 31, 44, 35, 27, 46, 39, 33, 50, 45, , 50
a. Use a graphing calculator to construct a histogram for the data, and describe
the shape of the distribution. See Mod. 9 Answer Appendix.
b. Describe the center and spread of the data using either the mean and
standard deviation or the five-number summmary. Justify your choice. Sample answer:
The distribution is skewed, so use the five-number summary. min: 17 , max: 52 , med: $42.5,01: 34$ 03: 46.5

20 Module 9 - Satatatics

21. REASONING Gerardo live streams with 15 of his friends. Most of his streams have lasted 10-15 days so far, however he has two streams that have lasted 93 days. Describe what Gerardo's data distribution would look like currently and how it
would be affected if he lost his longest streams. Currently, Gerardo's distribution would be positively skewed. If he lost his longest streams, the data would represent a symmetric distribution,
22. CONSTRUCT ARGUMENTS Examine the two box plots shown. Without knowing the data points but assuming the same scale, what conclusion can be made? set, but remained consistent in the second set.

$\rightarrow \square$
$+1+1+1+1+1+1+$
23. SUPREME COURT The table gives the ages of the Suprem Court Justices in 2017 . See Mod. 9 Answer Appendix. data, and describe the shape of the distribution. b. Describe the center and spread of the data using appropriate statistics. Justify your choice. c. If there is an outier, describe its effect on the statistics.

Higher-Order Thinking Skills
24. PERSEVERE Identify the box plot that corresponds to each of the following histograms.

25. ANAL YZE Research and write a definition for a bimodal distribution. How can the See Mod. 9 Answer And spread
26. CREATE Give an example of a set of real-world data with a distribution that is symmetric and one with a distribution that is not symmetric. See Mod. 9 Answer Appendix.
27. WRITE Explain why the mean and standard deviation are used to describe the center and spread of a symmetrical distribution and the five-number summary is used to describe the center and spread of a skewed distribution. See Mod. 9 Answer Appendix.

522 Module 9 . Statistics

Answers

3. Sample answer: The distribution is skewed, so use the fivenumber summary. The range is $53-12$, or 41 . The median is 39.5 , and half of the data are between 28 and 48 .

[10,55] scl: 5 by [0, 10] scl: 1
4. Sample answer: The distribution is symmetric, so use the mean and standard deviation. The mean is 82 with a standard deviation of about 7.4

[66, 99] scl: 3 by [0, 8] scl: 1
5. Sample answer: The distribution is symmetric, so use the mean and standard deviation. The mean is about 58.7 with standard deviation of about 22.8 .

[10, 100] scl: 10 by [0, 5] scl: 1
6. Sample answer: The distribution is skewed, so use the five-number summary. The minimum is 32 , the maximum is 68 , the median is 43.5 , and half of the data are between 37 and 56 .

[30, 70] scl: 4 by [0,5] scl: 1
7. a.

b. min: 182, Q1: 249, median: 274, Q3: 315.5, max: 455
c. The outlier mainly affects the mean. When the outlier is removed, the median decreases, but only $\$ 3$ to $\$ 271$. However, the mean changes from $\$ 289$ to $\$ 266$, which is more representative of the data as a whole.
8. a.

b. min: 10, Q1: 54, median: 58, Q3: 61, max: 62
c. The outlier affects the mean. When the outlier is removed, the median increases by 1 ; however, the mean increases from 53.4 to 58.2 , which is more representative of the data as a whole.

Comparing Sets of Data

LESSON GOAL

Students use statistics appropriate to the shapes of the distributions to compare the measures of center and spread of two data sets.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore:

- Transforming Sets of Data by Using Addition
- Transforming Sets of Data by Using Multiplication

Develop:

Linear Transformations of Data

- Transformations Using Addition
- Transformations Using Multiplication
- Compare Symmetric Distributions of Data
- Compare Skewed Distributions of Data

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL LAB	EI․․
Remediation: Statistical Questions	- -	-
Extension: Mean Absolute Deviation	-	-

Language Development Handbook

Assign page 54 of the Language Development Handbook to help your students build mathematical language related to measuring the center and spread of two data sets.
EIII You can use the tips and suggestions on page T54 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Statistics and Probability

Standards for Mathematical Content:

S.ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
Standards for Mathematical Practice:
4 Model with mathematics.
5 Use appropriate tools strategically.
8 Look for and express regularity in repeated reasoning.

Coherence

Vertical Alignment

Previous

Students analyzed the shapes of distributions to determine appropriate statistics and identify extreme data points.

S.ID. 3

Now

Students use statistics appropriate to the shapes of the distributions to compare the measures of center and spread of two data sets.

S.ID.2, S.ID. 3

Next

Students will summarize and interpret categorical data using frequency tables.
S.ID. 5

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand their understanding of and fluency with the shapes of data distributions to compare measures of center and spread in two or more data distributions. They apply their understanding of comparing data distributions by solving real-world problems.

Interactive Presentation

Warm Up

Launch the Lesson

Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skills for this lesson:

- analyzing the distribution of a set of data
- determining appropriate measures of center and spread

Answers:

1. positively skewed; median; five-number summary
2. symmetric; mean; standard deviation
3. negatively skewed; median; five-number summary
4. symmetric; mean; standard deviation

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics Encourage students to consider how they can apply what they have learned about statistical measures and representations to the situation described in the video. Have them discuss how the manager might use these concepts to make good business decisions.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the question below with the class.

Mathematical Background

If a real number k is added to every value in a set of data, the mean, median, and mode of the data set can be found by adding k to the mean, median, and mode of the original data set. The range and standard deviation will be the same. If every value in a set of data is multiplied by a constant $k, k>0$, then the mean, median, mode, range, and standard deviation of the new data set can be found by multiplying each original statistic by k.

Explore T ransforming Sets of Data by Using Addition

Objective
Students use a calculator to explore how using addition to transform a set of data affects the measures of center and spread.

Teaching the Mathematical Practices
8 Look for a Pattern Help students see the pattern in this Explore activity.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a graphing calculator to find the mean, median, mode, range, and standard deviation of a given set of data. Then they will add 3 to each data value and recalculate the statistics. They will compare their results. Then, students will answer the Inquiry question.
(continued on the next page)

Interactive Presentation

Explore

Explore

TYPE

a|
Students complete the calculations to find statistics on a transformed set of data.

Interactive Presentation

Explore

TYPE

a|
Students respond to the Inquiry question and can view a sample answer.

Explore T ransforming Sets of Data by Using Addition (continued)

Questions

Have students complete the Explore activity.

Ask:

-Why does the median increase by 3? Sample answer: Each data value increases by 3 . So the middle number increases by 3 .

- Suppose the range of a data set is 6.6 . If 0.4 is added to each data value, what would be the range of the new data set? 6.6

Inquiry
How can you find the measures of center and spread of a set of data that has been transformed using addition? Sample answer: Add the number that has been added to the data values to the measures of center. The measures of spread will be the same as those for the original data set.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

Explore T ransforming Sets of Data by Using Multiplication

Objective

Students use a calculator to explore how using multiplication to transform a set of data affects the measures of center and spread.

Teaching the Mathematical Practices
5 Compare Predictions with Data Point out that in this Explore activity, students should use a graphing calculator to compare their predictions with the data.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore activity is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will use a graphing calculator to find the mean, median, mode, range, and standard deviation of a given set of data. Then they will multiply each data value by 2 and recalculate the statistics. They will compare their results. Then, students will answer the Inquiry question.

Interactive Presentation

Explore

Explore

Students complete the calculations to find the statistics on a transformed set of data.

Interactive Presentation

Explore

TYPE

Students respond to the Inquiry question and can view a sample answer.

Explore T ransforming Sets of Data by Using Multiplication (continued)

Questions

Have students complete the Explore activity.

Ask:

- Why does the mode double? Sample answer: The number that was the mode is now twice the value that it was before.
- Suppose the range of a data set is 2.5 . If each data value is multiplied by 4 , what would be the range of the new data set? 10

Inquiry

How can you find the measures of center and spread of a set of data that has been transformed using multiplication? Sample answer: Multiply the measures of center and spread by the number by which the data values have been multiplied.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Linear T ransformations of Data

Objective

Students describe the effects that linear transformations have on measures of center and spread.

Teaching the Mathematical Practices
7 Use Structure Help students explore the structure of linear transformations of data in this Learn.

About the Key Concept

In the Key Concept, students will learn how transforming a set of data affects the measures of center and spread of the data. Students consider transformations by addition and transformations by multiplication.

Common Misconception

A common misconception some students may have is that transforming a data set by addition will affect not only the measures of center, but also the range and the standard deviation. Remind students that the range and the standard deviation are measures of spread, and help them to see that the spread of the data in the new data set will be exactly the same as the spread of the original set of data.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

TAP

Students tap to compare transformations using addition and multiplication.

Interactive Presentation

Example 1
TAP
Q

Students tap to choose a method for transforming data using addition.

TYPE | Students answer a question to show |
| :--- |
| they understand transformations using |
| addition. |

1 CONCEPTUAL UNDERSTANDING

Example 1 Transformations Using Addition

Teaching the Mathematical Practices
1 Special Cases Work with students to evaluate the two methods shown. Encourage students to familiarize themselves with both methods, and to know the best time to use each one.

Questions for Mathematical Discourse
Al. What happens to the sum of the data values if each value is increased by 6 ? The sum increases by 72 because each of the 12 values has been increased by 6 .
OL. Why is the range of a set of data unaffected when the data are all increased by the same value? Sample answer: The least value and greatest value are increased by the same amount, so the difference between the two remains the same.
[31. Each value in a data set with n values and a mean of x is increased by y. What is the mean of the new data set? $x+y$

Common Error

Students may add the constant to the range and to the standard deviation. Check that students understand why this would be incorrect.

Example 2 Transformations Using Multiplication

(17) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL. How do you determine the mean of this data? Add all the data values and divide by 12.
OL Is it necessary to multiply every data value by 4 to solve the problem? Explain. No; sample answer: The mean, median, mode, range, and standard deviation of the original data set can be multiplied by 4 instead.
BL. Why is the range of a set of data affected when the data are all multiplied by the same value? Explain verbally and algebraically. Sample answer: The least value and greatest value are both multiplied by the same amount, so the difference between the two will also be multiplied by the same amount. $4 x-4 y=4(x-y)$

Example 3 Compare Symmetric

 Distributions of Data
(17)
 Teaching the Mathematical Practices

4 Analyze Relationships Mathematically Point out that to solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

Questions for Mathematical Discourse

AL How do the three histograms compare? Sample answer: They all are relatively symmetric, although the distributions have different shapes and lie in different areas of the window.
OL. Which statistics best represent the data? mean and standard deviation
[BIL How can you use the histograms to support the fact that the standard deviations are so close in value but the means are so different? Sample answer: The histograms show that the centers of the data are different, with breakfast the lowest and lunch the highest, but they also show that for each of the three times of day, the spread of the data is about the same.

Common Error

Some students may describe the data for breakfast and lunch as being asymmetric because the bars are not clustered in the middle of the graph, as they are in the dinner graph. Help students to recognize that, while the location of the bars on the horizontal axis is determined by the values of the data, the shape is determined by the relative heights of the bars.

A Example 3 Compare Symmetric Distributions of Data
RESTAURANTS The numbers of customers eating at a restaurant during breakfast, lunch, and dinner each day are shown below. Breakfast: 74, 58, 65, 48, 44, 56, 68, 64, 51, 67, 74, 62, 59, 53, 62, 73, $54,49,63,55$
Lunch: 115, 105, $87,108,117,110,92,101,114,91,109,96,100,98$, $103,111,95,94,102,106$
Dinner $76,82,91,76,79,68,65,89,81,76,90,82,79,74,71,73$, 84, 87, 81, 64
Part A Construct a histogram or box plot for each set of data. Then describe the shape of each distribution.
Method 1 Histogram
Enter the data in $1 \mathbf{1}, 12$. and 13 . From the STAT PLOT menu, enterts \#s the Xlist for Plot 1, L2 for Plot 2, and L3 for Plot 3. Select hlm as the plot type for each Plot. View each histogram by turning on Plot 1 , Plot 2, and then Plot 3 . Use the same window dimensions and bin width for each graph.
 For each time of day, the distribution is high in the middle and low on the left and right. Therefore, all of the distributions are symmetric.

Mehod 2 Box Plot

Enter the data using the same process. Select dilthe plot type for each set of data. To view all of the box plots at once, turn on Plot 1 , Plot 2 , and Plot 3 and graph. For each time of day, the lengths equal and the medion is in the middle of the data. The left and right sides are approximately mirror images of one another. Therefore, all of the distributions are symmetric.

Study Tip

 Window and Bin Settings When setting for windtiple sets of of data try setting the minimum and maximum as the east and greatest values of all the sets. When selecting a bin width, consider the context of the situation. For example, if the data does not include fractional numbers, as would number of people, use a whole number as the bin width.
Interactive Presentation

Example 3

Students tap to select a calculator to compare symmetric distributions of data.

Part B Compare the data sets using the means and standard

 deviation s .All of the distributions are symmetric, so use the means and standard deviation to describe the centers and spreads.

The means vary, with breakfast having the lowest average number of customers and lunch having the highest average number of customers. However, the standard deviations are approximately equal. This mean that, while the average number of customers for each time of day is very different, the number of customers for each time of day generally varies by the same amount from day to day.

Check
OOGS The weights, in pounds, for a sample of the three most popular reeds of dogs are shown below.
Labrador Retriever: $75,559,63,68,67,59,69,63,60,76,70,74,67$, $68,71,65,62,74,66,78$
German Shepherd: $53,61,58,74,85,80,72,57,64,69,81,75,73$, $53,61,58,74,85,80,72,57$
$64,76,68,66,51,67,73$
Golden Retriever: $2,59,67,72,64,67,69,76,63,64,73,69,71$, $75,59,64,69,59,74,68$
Part A Use a graphing calculator to construct a histogram or box plot for each set of data. Then complete the statement about the shape of each distribution.
All of the distributions are \quad symmetric
Part \mathbf{B} Compare the data sets using the means and standard deviations. What conclusion(s) can you make about the sets of data? Select all that apply. A, C, E, F
A. The average weight of each breed is about the same.
B. The weights of all three breeds are very close to their means.
C. The weights of the German shepherds vary more than the other breeds.
0. On average, the golden retrievers weigh much more than the other breeds
E. The means of the weights differ by less than 1.5 pounds.
F. The weights of the Labrador retrievers and golden retrievers are generally closer to their means than the German shepherds' weights are to their mean.

DIFFERENTIATE

Reteaching Activity Aㄴ․ 린..

IF students are having difficulty using their graphing calculators to construct the graphs and obtain the related statistics,
THEN pair the students who are struggling with students who are meeting with success, and have them work through several examples together. Encourage students who were struggling to create a list of helpful hints that they can use when they are working on their own.

Interactive Presentation

Check

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 4 Compare Skewed

 Distributions of Data
Teaching the Mathematical Practices

5 Analyze Graphs Help students analyze the graph they have generated using graphing calculators. Point out that to see the entire graph, students may need to adjust the viewing window.

Questions for Mathematical Discourse
4IL What do the histograms indicate about the similarities and the differences between the two sets of data? Sample answer: They are both negatively skewed, but the data for the girls is much greater than the data for the boys.
인 Why are the mean and standard deviation not appropriate measures for describing the data? Sample answer: The mean and standard deviation are good descriptions of the data only when the data are symmetric. These data are skewed, so it is better to use the five-number summary.
[B1. Compare the medians of the two data sets, and tell what they indicate about the data in the context of the situation. Sample answer: The median for the girls is 2 million greater than the median for the boys. This means that the median number of girls participating in tennis during that time period was 2 million more than the median number of boys.

Common Error

Some students may use the wrong statistics to describe the data, forgetting to use the shape of the distribution to decide between using the mean and standard deviation, and the five-number summary. Remind students about the importance of graphing the data so that they can make the correct determination of which statistics to use.

A Example 4 Compare Skewed Distributions of Data SPORTS The numbers of high school boys and girls, in hundred thousands, participating in tennis from 2001-2015 are shown below.

Boys (hundred thousands) \quad Girls (hundred thousands) 144, 139, 145, 153, 149, 153, 157, 156, 164, 160, 163, 168, 169, 174, 177, 172.	$157,163,161,160,157,161,157$	$178,182,182,181,181,184,183$

Part A Construct a histogram or box plot for each set of data. Then describe the shape of each distribution.
Method 1 Histogram
Enter the data in $\mathbf{L 1}$ and $\mathbf{L 2}$. From the STATPLOT menu, entert1 as the Xlist for Plot 1 and $\mathbf{L 2}$ for Plot 2 . Select dha as the plot type for each Plot. View each histogram by turning on Plot 1 , and then Plot 2 . Use the same window dimensions and bin width for each graph.

(139, 189] scl: 5 by $[0,6]$ scl: 1
[139, 189] scl: 5 by $[0,6]$ scl: 1
Both distributions are high on the right and have tails on the left. Therefore, both distributions are negatively skewed.

Method 2 Box Plot

Enter the data using the same process. Select Δ as the plot type for each set of data. T o view both box plots at once, turn on Plot 1 and Plot 2 and graph.
For each distribution, the left whisker is longer than the right, Ind the median is closer to the right whisker. Therefore, both distributions are negatively skewed.

(1399. 189 scl: 5 by 0.6 iscl: 1

Part B Compare the data sets using the five-number summaries. Both distributions are skewed, so use the five-number summary to compare the data.
(continued on the next page)
O co Oniline Y ou can complete an Extra Example online.

Interactive Presentation

Example 4

TAP

Students select a calculator to create a histogram of the data.
(3) Go Online
to see how to use a graphing calculator with
this example.
Θ Think About It
compare two other statistics from the five number summates
What does this tell you bout the number of girts and boys that participated in tennis?
Sample answer: The maximum for the number of while the minimum for the number of girts that participated is 160 . This paricicpated is 160. This means hhat the greatest participated was only 3000 more than the fewest number ef girist that ever participated.

The upper quartile for the number of boys that participated in tennis is 160 , hile the minimum number of girls that pricipated is 160 . This means there ere only 160,000 or more boys participating in tennis for 25% of the years, while at least 160,000 girls participated every year.
We can conclude that many more girls participated in tennis from 2001 to 2015 in tennis from 2001 to 2015 than boys.

Check
FUNDRAISIN 0 The number of raffle tickets sold by Darius and Makya each day are shown below.
Darius: 5, 1, 15, 4, 10, 23, 9, 3, 17, 2, 6, 21, 5, 13, 28, 10, 14, 7, 5, 19, 9, 22, $10,8,15,9,13,19,22,30$
Makya: $18,1,17,10,19,3,7,20,9,22,12,13,16,18,16,5,17,15,6,11,18$, 14, 16, 18, 1, 16, 18, 23, 15, 10
Part A Use a graphing calculator to construct a histogram or box plot for each set of data. Then complete the statement about the shape of each distribution. positively skewed
The distribution of Darius' raffle ticket sales ?
The distribution of Makya's raffle ticket sales is
Part B Compare the data sets using the five-number summaries. What conclusion(s) can you make about the sets of data? Select all that apply. B, C, E, F
A. The median number of tickets Darius sold is much higher than the median number of tickets Makya sold.
B. The median number of tickets Darius sold is the same as the lower quartile of Makya's sales.
C. The data from Darius' sales is spread over a wider range than the data from Makya's sales.
. The median number of tickets each student sold was the same
E. The fewest number of tickets each student sold in a day was 1 .
E. The upper 50% of Darius' data spans from 10 to 30 , while the upper 75% of Makya's data spans from 10 to 23.
\qquad
528 muleg. Statistics
528 muleg. Statistics

Interactive Presentation

Check

CHECK

Students complete the Check online to determine whether they are ready to move on.

Essential Question Follow-Up
Students are using technology to create data displays that they then use to compare data sets.

Ask:

How are histograms and box plots useful for comparing real-world data? Sample answer: They provide a picture of each data set, which makes it easy to compare the shapes of the distributions and to identify and compare important statistics about the data sets.

DIFFERENTIATE

Enrichment Activity 1 B1

Have students use the Internet to find data about two cities in the United States that they can use for a comparison-of-data display. This data could be population data, median household incomes, weather data, or something similar. Ask students to make box plots for each data set and compare them. Their analyses should include a comparison using either the means and standard deviations or the five-number summaries. Have students summarize their observations in the context of the data situation and share their work with the class.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-10$	
2	exercises that use a variety of skills from this lesson and extend concepts learned in this lesson to new contexts	$11-28$
3	exercises that emphasize higher-order and critical-thinking skills	$29-33$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90\% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-27 odd, 29-33
- Extension: Mean Absolute Deviation

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Statistical Questions
- Personal Tutors
- Extra Examples 1-4
- ALEKS

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-9 odd
- Remediation, Review Resources: Statistical Questions
- Quick Review Math Handbook: Comparing Sets of Data
- ArriveMATH Take Another Look
- DALEKS

Answers

9a. both negatively skewed

[45, 100] scl: 5 by $[0,5]$ scl: 1

```
Practice
Example 1
Find the mean, median, mode, range, and standard deviation of each data set that is obtained
after adding the given constant to each value.
```



```
    3. 27,21,34,42,20,19, 18, 26,25,33;+(-4) 4.72, 56,71,63,68,59,77,74,76,66;+16
        22.5; 21.5; no mode: 24; 7.4
                                    84.2; 8.5; no mode; 21; 6.8
Example 2
Find the mean, median, mode, range, and standard deviation of each data set that is obtained
after multiplying each value by the given constant.
5. 11, 7, 3, 13, 16, 8, 3, 11, 17, 3; \times4 6. 64,42,58,40, 61, 67, 58,52, 51, 49; \times0.2
        36.8; 38; 12; 56;20.0 10.8; 11; 11.6; 5.4;1.7
7. 33, 37, 38,29,35,37, 27,40,28,31; \times0.8 8.1, 5, 4, 2, 1, 3, 6, 2, 5,1; \times6,5
        26.8;272;29.6:10.4;3.5 , % 8, 31; \times0.8 8.1, 5, 4, 2, 1, 3, 6, 2, 5, 1; \times6.5
Examples 3 and 4
9. BASEBALL The total wins per season for the first 17 seasons of the Marlins are shown
    The total wins over the same time period for the Cubs are also shown,
        MMarlhs
```

``` 83, 83, 78, 71, 84, 87
```

a. Use a graphing calculator to construct a box plot for each set of data. Then describe the shape of each distribution. See margin.
b. Compare the data sets using either the means and standard deviations or the five-number summaries. Justify your choice. See margin.
10. HEALTH CLUBS To plan their future equipme purchases, the Northville Health Club many minutes they spend on the treadmill. . a. Use a graphing calculator to construc a histogram for each set of data.
Then describe the shape of each distribution. See margin.
b. Compare the data sets using either the means and standard deviations or the means and standard deviations or the
five-number summaries. Justify your choice. See margin.

Minutes on Treadmill Last Week Treadmill This Week	
30	20
30	30
45	45
20	45
60	30
30	60
30	50
45	45

Mixed Exercises
Find the mean, median, mode, range, and standard deviation of each data set that is obtaine
after adding or multiplying each value by the given constant(s).
11. $98,95,97,89,88,95,90,81,87,95 ;+2$ 12. 32, 30, 27, 29, 25, 33, 38, 26, 23, 31; $\times 1.6$ 93.5; 94.5; 97; 17; 5.1 47; 47.2; no mode; 24; 6.7
13. $14,17,13,9,15,7,12,16,8,9: \times 5$
14. 5, 12, 7, 3, 8, 5, 7, 1, 4, 7, 3, 9; +22 13. 14, 17, 13, 9, 15, 7, 12,
$60 ; 62.5 ; 45 ; 50 ; 16.9$ 27.9; 28; 29; 11; 2.9
15. 12, 15, 15, 12, 12, 15, 17, 19, 22, 27, 42, 42; +5 16. 49, 43, 26, 39, 40, 30, 33, 64 25.9; 21.5; 17:30; 10.3 103, 100,70, 123, 34.7
17. $71,72,68,70,72,67,68,72,65,70 ; \times 0.218 .112,91,108,129,80,99,78,80 ;+(-15)$ 13.9; 14; 14.4; 1.4; 0.5 82.1; 80; 65; 51; 17.1
19. $57,38,42,51,39,44,33,55 ;+(-7), \times 220.55,50,58,52,56,57,50,55,50 ; \times 2,+5$
$75.8,72$, no mode, $48,16.1$
$112.3 ; 115 ; 105 ; 16 ; 6.0$
21. BOWLING The scores of 15 bowlers are shown in the table.

score

211, 123, 183, 176, 224, 115, 109, 136, 152, 177, 127, 196, 143, 166, 170
a. Find the mean, median, mode, range, and standard deviation of the scor 160.5; 166; no mode; 115; 33.9
b. The handicap of the bowling team will add 56 points to each score. Find the statistics of the scores while including the handicap. 216.5; 222; no mode; 115; 33.9
22. the table

$96,94,114,85,96,109,90,109,67,82,98,79,69,70,106,96,112,84$
a. Find the mean, median, mode, range, and standard deviation of the participants' distances. $92 ; 95 ; 96 ; 47 ; 14.5$
b. Find the statistics of the participants" distances in yards. $\quad 30.7 ; 31.7 ; 32 ; 15.7 ; 4.8$
23. TEMPERATURE The monthly average high temperatures for Lexington, Kentucky are shown in the table

Temperature (F)

$40,45,55,65,74,82,86,85,78,67,55,44$
. Find the mean, median, mode, range, and standard deviation of the temperatures. $64.7,66,55,46,15.9$
b. Find the statistics of the temperatures in degrees Celsius. Recall that $C=\frac{5}{9}(F-32) . \quad$ 18.1, 18.9, 12.8, 25.6. 8.9

530 Module 9 - Statistics
24. FANTASY SPORTS The weeky
teams are shown in the tables

a. Use a graphing calculator to construct a box plot for each set of data. Then describe the shape of each distribution. See margin.
b. Compare the data sets using either the means and standard deviations or the five-number summaries. Justify your choice. See margin.
c. How does eliminating the outliers of each data set affect the statistics and comparison from part b? See margin.
25. BUSINESS Saeed owns an electronics store. He is revising his pricing for phone accessories. His current prices for an assortment of accessories are listed at the right. He has also determined that
the mean price for the same assortment of accessories at a rival store is $\$ 10.99$.
a. Saeed wants to match his rival's prices. Make a table to list the new prices. Explain. See margin.

b. Compare the mean and standard deviation of the current prices to the new prices. See margin.
26. REASONING Two different samples on the shell diameter of a species
of snail are shown.

Sample $\mathbf{A}(\mathrm{mm})$					
453537					
404240					
283831		$	$	Sample $\mathbf{B}(\mathrm{mm})$	
:---:	:---:				
264440					
273528					
263931					

a. Use the median and interquartil
b. Based on your findings andia
b. Based on your findings and on the data points in
each sample, which sample appears to be more representative? Explain your reasoning. See Mod. 9 Answer Appendix.
27. STRUCTURE Height data samples of 17 -year-old male and female students are shown. Use the mean and standard deviation to compare the samples. See Mod. 9 Answer Appendix.

28. CONSTRUCT ARGUMENTS Francisca is planning a two-week vacation to one of two cities and wants to base her decision on the weather history for the same dates as her vacation. She has collected the number of days that it has rained during this the
results are shown.

a. Determine the shape of each distribution, and use the appropriate statistics to find the center and spread for each set of data. See Mod. 9 Answer Appendix.
b. Which city do you think Francisca should visit on her vacation? Justify your argument. See Mod. 9 Answer Appendix.

O Higher-Order Thinking Skills
29. WRITE Compare and contrast the benefits of displaying data using histograms and box plots. See Mod. 9 Answer Appendix.
30. ANALYZE If every value in a set of data is multiplied by a constant $k, k<0$, then how can the mean, median, mode, range, and standard deviation of the new data how can the mean, median, mode, range, and
set be found? See Mod. 9 Answer Appendix.
31. PERSEVERE A salesperson has 15 SUVs priced between $\$ 33,000$ and $\$ 37,000$ and 5 luxury cars priced between $\$ 44,000$ and $\$ 48,000$. The average price for the SUVs by $\$ 2000$ per vehicle. What is the new average price for all of the vehicles? $\$ 37,750$
32. ANALYZE If k is added to every value in a set of data, and then each resulting value is multiplied by a constant $m, m>0$, how can the mean, median, mode argument. See Mod. 9 Answer Appendix
33. WRITE Explain why the mean and standard deviation are used to compare the center and spread of two symmetrical distributions, and the five-number or a symmetric distribution and a skewed distribution. See Mod. 9 Answer Appendix.

532 Module 9 -Statistics

Answers

9b. Sample answer: The distributions are skewed, so use the five-number summaries. The medians for both teams are 79. The upper quartile and maximum for the Marlins are 83.5 and 92 . The upper quartile and maximum for the Cubs are 88 and 97 . This means that the upper 50\% of data for the Cubs is slightly higher than the upper 50% of data for the Marlins. Overall, we can conclude that the Cubs were slightly more successful than the Marlins during this time period.
10a. last week: positively skewed; this week: negatively skewed

10 b . Sample answer: The distributions are skewed, so use the five-number summaries. The median for last week is 30 , and for this week is 45 . The lower quartile and minimum for both weeks are 30 and 20. The maximum for both weeks is 60 . The upper quartile for this week is $\$, 7$ and for last week it is 45 . This means that the middle 50% of data for this week is higher than the middle 50% of data for last week. Overall, we can conclude that the median time spent on the treadmill was higher this week than last week.
24a. both symmetric

[40, 180] scl: 10 by [0, 10] scl: 1
24b. Sample answer: The distributions are symmetric, so use the means and standard deviations. Scott's mean: about 113.9 with standard deviation of about 25.4, Azumi's mean: about 116.3 with standard deviation of about 23.9. Azumi's totals are slightly higher and more consistent than Scott's.

24c. Sample answer: Scott's new mean: about 117.3 and standard deviation 20.5, Azumi's new mean: about 116.8 with standard deviation 15.2. Scott's totals are slightly higher than Azumi's, but Azumi's are slightly more consistent than Scott's.
25a. Sample answer: The mean of Saeed's prices is $\$ 11.79$, which is $\$ 0.80$ more than his rival's mean price. The new prices come from subtracting $\$ 0.80$ from each price, which will reduce the mean price to be the same as his rival's.

New Prices				
14.19	3.69	9.19	17.69	12.19
6.19	7.69	21.19	12.69	13.19
9.19	10.19	11.69	3.69	12.19

25b. Current prices: $\mu=11.79, \sigma=4.60$
New prices: $\mu=10.99, \sigma=4.60$
The mean has dropped by 0.8 , but the standard deviation has remained constant.

Lesson 9-7

Summarizing Categorical Data

LESSON GOAL

Students summarize and interpret categorical data using frequency tables.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Categorical Data

88 Develop:

Two-Way Frequency Tables

- Use a Two-Way Frequency Table

Two-Way Relative Frequency Tables

- Use a Two-Way Relative Frequency Table
- Use a Two-Way Conditional Relative Frequency Table

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	Al	I.B.		ELIL
Remediation: Two-Way Tables				0
Extension: Conditional Probability				0

Language Development Handbook

Assign page 55 of the Language Development Handbook to help your students build mathematical language related to summarizing and interpreting categorical data using frequency tables.
FㄴIII You can use the tips and suggestions on page T 55 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Statistics and Probability
Standards for Mathematical Content:
S.ID. 5 Summarize categorical data for two categories in two-way
frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students used appropriate measures of center and spread based on the shape of the distribution.
7.SP.4, S.ID.2, S.ID. 3

Now

Students will approximate data by using a normal distribution. S.ID. 4 (Course 3)

Rigor

The Three Pillars of Rigor

```
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION
```

Conceptual Bridge In this lesson, students develop understanding of two-way frequency tables and build fluency by making frequency tables and interpreting frequencies. They apply their understanding of two-way frequency tables by solving realworld problems.

Mathematical Background

A two-way frequency table is used to show the frequencies of data from a survey or experiment classified according to two categories, with the rows indicating one category and the columns indicating the other. To create a two-way relative frequency table, divide each of the values by the total number of observations and replace them with their corresponding decimals or percents.

Interactive Presentation

Warm Up

Launch the Lesson

[^10]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- completing frequency tables

Answers:

1. 6
2. $\frac{3}{5}$
3. 16\%
4. 24%
5. 2

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of two-way frequency tables.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Categorical Data

Objective
Students explore using a two-way table to organize data.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Ideas for Use

Recommended Use Present the Inquiry question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor students' progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore activity is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students will explore how a two-way frequency table can provide detailed information about the results of a survey. They will answer a series of questions related to a two-way frequency table displaying data on social media use. Then, students will answer the Inquiry question.
(continued on the next page)

Interactive Presentation

Explore

Interactive Presentation

Explore

TYPE

Students answer questions about data presented in a two-way table.

TYPE

al
Students respond to the Inquiry question and can view a sample answer.

Explore Categorical Data (continued)

Questions

Have students complete the Explore activity.

Ask:

-What information does the second table show that the first does not? social media usage by age

- What would be another type of two-way frequency table that could be created for social media usage? Sample answer: social media usage by gender

(3) Inquiry

What is the advantage of organizing data in a two-way table? Sample answer: The table displays how people's responses are or are not related to other characteristics of the people responding to the question.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Two-Way Frequency Tables

Objective
Students organize and determine categorical data in a two-way frequency table.

117 Teaching the Mathematical Practices

7 Use Structure Students will use the structure of a two-way frequency table to explore how it represents data.

What Students Are Learning

Students are learning how to read a two-way frequency table. They learn how to identify the subcategories, joint frequencies, and marginal frequencies and what each of these represents in the given context.

Common Misconception

Some students may have a misconception about what a two-way frequency table indicates about a set of data. If this is students' first experience working with such tables, it may be helpful to spend some time discussing what each value in the table indicates about the data (in context).

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

TAP

Students tap buttons to see the breakdown of data in a two-way frequency table.
(9xample 1 Use a Two-Way Frequency T able
vasess Unisex names are names often used for both males and females. Until 2013, the top two unisex names in the U.S. were Casey and Riley, with 176,544 Caseys and 154,861 Rileys. There are 104,161 males with the name Casey and 75,882 females with the ame Riley. Organize the data in a two-way frequency table.

Steps $\mathbf{1}$ and $\mathbf{2}$ bter the given data in a table. Then use the
information given to fill in the rest of the cells.

Top Unisex Names in the U.S.				
	Casey	Riley	Totals	
Male	104,161	78,979	183,140	
Female	72383	75,882	148,265	
Totals	176,544	154,861	331,405	

Male Rileys: 154,861-75,882 - 78,979
Total Males: 104,161* 78,979* 183,140
Female Caseys: 176,544-104,161 = 72,383
T otal Females: $72,383+75,882=148,265$
T otals: 176,544 + 154,861-331,405
Check
TECHNOLOGY Pew Research Center released a survey that asked whether participants thought technological advancements in the future will make people's lives better or worse. Of the people interviewed, 423 earned less than $\$ 50,000$ per year and 328 earned $\$ 50,000$ or more. Of those earning less than $\$ 50,000$ per year, 262 thought that people's ives would get better, and 240 of those who earned $\$ 50,000$ or m.

Qoo Online Y ou can complete an Extra Example online.

Interactive Presentation

Example 1

Students move through the slides to complete a two-way frequency table.

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 1 Use a Two-Way Frequency Table

(1)

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse
How can you determine the number of males named Riley? Sample answer: You can subtract the number of females named Riley from the total number of Rileys. 154,861 - 75,882 = 78,979
OL. What are two ways to find the number that goes in the last row of the last column? Sample answer: Add the numbers in the two cells above it, or add the numbers in the two cells to the left of it.
Bil. What does the first number in the last column represent? the total number of males included in the sample

Common Error

Students may place one of the given data values in the wrong cell, which then affects the calculations of values for other cells. Prompt students to reread the problem after they have placed the given data into the table, and check that their entries are in the correct cells.

DIFFERENTIATE

Enrichment Activity AL BL

Have students work in pairs to create a survey that can be used to gather data that can be represented in a two-way relative frequency table. Have them survey their classmates, gather the data, construct the table, and summarize their findings. Then have students share their results with the class.

Learn Two-Way Relative Frequency Tables

Objective

Students determine and interpret the values in a two-way relative frequency table.

118
 Teaching the Mathematical Practices

7 Use Structure Students will focus on the structure of twoway relative frequency tables and two-way conditional relative frequency tables to understand how they can be constructed from the data in a two-way frequency table.

Important to Know

Because the relative frequencies are often numbers that have been rounded to the nearest percent, the totals in each row and column, as calculated by division, may not be equal to the sum of the percents in the related row or column.

Common Misconception

Some students may misconceive the meaning of the percents in a relative or conditional relative frequency table. It may be helpful to spend some time having students write statements that summarize what each percent in the given table represents.

Example 2 Use a Two-Way Relative Frequency Table

Questions for Mathematical Discourse

Al. What is the total number of parents that were surveyed? 1060
OIL What must the sum of the joint frequencies always be? about 100% Why? Sample answer: The sum represents the entire sample.
[B1. What does the first joint relative frequency (28.2%) represent? the percent of parents surveyed that check the Internet usage of their 13-to-14-year-old children

Common Error

Some students may have difficulty using the table to complete statements like the one in Part B. Help students to see how they can use the row and column headings in the table to help guide them to the cells whose entries will enable them to complete the statement correctly.

Learn Two-Way Relative Frequency T ables
Areletive frequency is the ratio of the number of observations in a category to the total number of observations. A two-way relative frequency table can help you see patterns of association in the data. To create a two-way relative frequency table, divide each of the valu the total number of observations and replace them with ther crresponding decimals or percents.

Aconditional relative frequency is the ratio of the joint frequency to he marginal frequency. Because each two-way frequency table has wo categories, each two-way relative frequency table can providetwo different conditional relative frequency tables.
Qxample 2 Use a Two-Way Relative Frequency T able
PARENTING Many parents monitor their teenagers' Internet usage. The Pew Research Center conducted a survey of whether parents do or do not check what sites their teens had visited and whether they are the parent of a teen between the ages of 13 and 14 or between the data in 15 and 17. The results of the survey are shown. Organize the ata in a relative frequency table by age group, and interpret the da

How Parents Monitor Teenagers' Internet Usage			
Teen's Age	Does Check Does Not Check	Totals	
13 to 14	299	140	439
15 to 17	348	273	621
Totals	647	413	1060

Part A Organize the data in a relative frequency table.

How Parents Monitor Teenagers' internet Usage			
Teen's Age	Does Check D	5 Not Check	Totals
13 to 14	$\frac{299}{1060}=28.2 \%$	$\frac{140}{1060} \approx 13.2 \%$	$\frac{439}{0.060} \approx 41.4 \%$
15 to 17	${ }_{1060}^{348} \approx 32.8 \%$	${ }_{1060}^{273}=25.8 \%$	$\frac{621}{1060} \approx 58.6 \%$
Totals	$\frac{647}{1050} \approx 61.0 \%$	$\frac{413}{1060} \approx 39.0 \%$	$\frac{1050}{1060} \approx 100 \%$

Part B Interpret the data.

Do more parents check what sites their teens have visited, or do more parents not check?
61% of parents do check the sites their teens have visited compared to 39% who do not.

Think About It Based on the data, do you think there is an association between a their parents check heir Internet usage? Explain.
Yes; sample answer: A lower percentage of 14-vear-olds check 14 -year-olds check Internet usage than the 7-year-olds.

Interactive Presentation

Interactive Presentation

Example 3

EXPAND	Students tap to show how to organize data in a two-way conditional relative frequency table.
TYPE	Students answer a question to show they understand conditional relative frequency tables.
Cl	

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 3 Use a Two-Way Conditional Relative Frequency Table

(11)

Teaching the Mathematical Practices
7 Use Structure Help students use the structure of conditional frequency tables in this example to organize and interpret the data.

Questions for Mathematical Discourse
What does the entry 13,275 represent? the number of 18 - to 24 -year olds that did not vote
OL. Why do you eliminate the bottom row of the table in Part A? Sample answer: Eliminate the bottom row of the table because the problem asks for a conditional relative frequency table by age group, and the age groups are represented by the rows. The totals in the bottom row are for the columns and are not relevant for the conditional relative frequency table.
[BLII In Step 2, how do you decide what number to divide each entry by? Explain. Sample answer: To organize the data by age group, divide each entry by the total number of people in that age group.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-10$	
2	exercises that use a variety of skills from this lesson	$11-32$
2	exercises that extend concepts learned in this lesson to new contexts	33,34
3	exercises that emphasize higher-order and critical-thinking skills	$35-38$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks, THEN assign:

- Practice, Exercises 1-31 odd, 35-38
- Extension: Conditional Probability
- GALEKS'Data Analysis

IF students score 66\%-89\% on the Checks, THEN assign:

- Practice, Exercises 1-37 odd
- Remediation, Review Resources: Two-Way Tables
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Completing Frequency Tables

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-9 odd
- Remediation, Review Resources: Two-Way Tables
- Quick Review Math Handbook: Two-Way Frequency Tables
- ArriveMATH Take Another Look
- D ALEKS Completing Frequency Tables

Answers

	Small	Large	Total
Cherry	35	20	55
Grape	25	15	40
Watermelon	15	15	30
Total	75	50	125

Practice

Example 1

TREATS The owner of a snow cone stand keeps track of the sizes and flavors sold
one afternoon. He sold 125 snow cones in all. Of these, $\mathbf{4 0 \%}$ were large snow cones, 32% were grape, and 12% were small watermelon snow cones. The stand sold 15 more cherry snow cones tian grape day was small cherry, with a total of 35 sales.

1. Construct a two-way frequency table to organize the data. See margin.
2. How many large grape snow cones were sold? 15
3. How many watermelon snow cones were sold in all? 30
4. How many more small snow cones were sold than large snow cones? 25

Example 2
FOREIGN LANGUAGE Christy surveyed several students at her school and asked
each person what foreign language he or she is studying. The results are shown in the table

	Male Female Total		
Spanish	18	20	38
French	16	12	28
German	6	8	14
Total	40	40	80

5. Construct a relative frequency table by converting the data in the table to percentages. Round to the nearest tenth, if necessary. See margin.
6. Find the joint relative frequency of a female student who is studying French. 15\% 7. Interpret the data. Sample answer: Most of the students are studying Spanish.

Example 3
CLASS PRESIDENT In a poll for senior class president, $\mathbf{6 8}$ of the 145 male students said they planned to vote for Santiago. Out of 139 female students, 89 planned to vote for his opponent, Measha
8. Construct a conditional relative frequency table based on voter preference. Show your calculations. See margin.
9. What does each conditional relative frequency represent? Sample answer: Each conditional relative frequency represents the proportion of each candidate's support from each gender.
10. What is the probability that a vote for Measha will come from a female student? How is this different from the probability that a female student intends to vote for Measha? $\frac{89}{166} \approx 54 \%$; Sample answer: This probability represents the proportion of Measha's support that is female rather than the proportion of female students voting for Measha, which is 64%.

Mixed Exercises

VETERINARIAN The two-way frequency table shows the number of dogs and cats
that were seen at a veterinarian's office and the primary purpose of their visit.

	Dog	Cat	Total
Exam	12	5	17
Shots	6	3	9
Grooming 7		2	9
Total	25	10	35

11. How many dogs were seen for an exam today? 12
12. How many more dogs than cats were seen at the veterinarian's office? 15

BIRD WATCHING A group of bird-watchers has been tracking the number of tree swallows, cardinals, and goldfinches in a region. Over the weekend, a total of 40 birds were observed. Of those, 45\% were male, $\mathbf{3 7 . 5 \%}$ were cardinals, and 12.5% were male tree swallows. Twice as many female cardin
13. Construct a two-way frequency table to organize the data. See margin.
14. How many more female tree swallows were seen than male cardinals? 2
15. How many male goldfinches and female cardinals were seen? 18
16. How many more female birds were seen than male birds? 4

SCHOOLACTIVITIES The two-way frequency table shows the number of students
who participate in school sports or clubs at Monroe High School.

17. Construct a relative frequency table by converting the data in the table to percentages. Round to the nearest tenth, if necessary. See margin
18. Find the joint relative frequency of a sophomore who participates in or clubs. 12.5%
19. What percentage of freshmen do not participate in school sports or clubs? Round to the nearest tenth percent, if necessary. 55.6%
20. What percentage of seniors participate in school sports or clubs? Round to the nearest tenth percent, if necessary. 47.5%

Answers

CHOOL MASCOT The freshmen and sophomores at Lakeview High School are tasked with adopting a new school mascot next school year. The district asked a
representative group of students to vote for one of the three mascot finalists and
to indicate to which grade they belong. The results are shown in the table.

School Mascot Vote Results			
Freshmen Sophomores			
Panthers	30	36	66
Hornets	17	33	50
Lions	28	31	59
Total	75	100	175

21. How many students voted for Panthers? 66
22. How many students voted for Lions? 59
23. How many sophomores were in the representative group? 100
24. Of the students who voted for Hornets, how many of them are freshmen? 17
25. Of the students who voted for Lions, how many of them are sophomores? 31
26. To the nearest whole, what percent of all the students voted for Lions? 34\%
27. To the nearest whole, what percent of all the students voted for Panthers? 38%
28. To the nearest whole, what percent of all the students who voted were freshmen? 43%

THANKSGIVING PIE An online poll collected a sample of Thanksgiving pie
preferences for different U.S. regions.

| Region | Apple Syeet Potato | Pumpkin Iotals | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| West | 77 | 4 | 13 | |
| Midwest | 32 | | 54 | |
| South | | 63 | 24 | |
| Northeast | 92 | 2 | | |
| Total | 213 | 75 | 117 | |

29. PRECISION Copy and complete the table. Then find each relative frequency to the nearest lenth of a percent. See margin.
30. USE A MODEL ASsuming the poll is representative of the whole population, what is a be eating pumpkin pie on Thanksgiving? A reasonable estimate is the corresponding relative frequency, 6.4%.
31. STRUCTURE Construct a table of conditional relative frequencies based on pie preference. Round each percent to the nearest tenth. Interpret the meaning of
the probabilities in the context of the problem. See margin.
32. REGULARITY If we had found the conditional relative frequencies by dividing by the total replies from each region, what would be the meaning of the probability in each cell?
Sample answer: The percent in each cell would represent the probability of a person from that region preferring that type of pie. For example, the entry in the row for West and the column for Apple would be $77 / 94 \approx 81.9 \%$ and that means that there is an 81.9% probability that a person from the West prefers apple pie.

VEHICLES The table shows the relative frequencies of drive systems for
different vehicle types in a school parking lot. There are 215 vehicles in the lot,

Vehicle Type 2 WD	AWD	Totals	
Hatchbacks 42%	4%		
Sedans	28%	6%	
SUVs	1%	19%	
Total			215

33. USE TOOLS Construct a table to show the joint and marginal frequencies. See Mod. 9 Answer Appendix.
34. REASONING Without calculating individual frequencies, how many times greater the relative frequencies for AWD, and why? See Mod. 9 Answer Appendix.
()) Higher-Order Thinking Skills
35. PERSEVERE Len conducted a survey among a random group of 1000 families in his home state of California. He wanted to determine whether there is an association between gasoline prices and distances traveled on family vacations.
He collected the following information. According to Len's two-way frequency table, does there appear to be an association between gasoline prices and vacation distances traveled? Explain. See Mod. 9 Answer Appendix.

36. CREATE Select your own data for a two-way frequency table, write a question related to the data in the table, and provide the solution. See Mod. 9 Answer Appendix.
37. WRITE Compare two-way relative frequency tables and two-way conditional relative frequency tables. See Mod. 9 Answer Appendix.
38. FIND THE ERROR Magdalena took a survey of students in her school to find out what snack was most popular

Favorite Snack Vote Results			
	Freshmen Sophomores	Total	
Fruit Snack	65	61	126
Granola	27	21	48
Y ogurt	21	18	39
T otal	113	100	213

a. Interpret the data based on the conditional relative frequency related to age groups. See Mod. 9 Answer Appendix.
b. Magdalena claims that fruit snack is the most popular snack for freshmen and snack than do freshmen. Is either correct? Explain your reasoningsee Mod. 9 Answer Appendix.

540 Module 9 . Statistics
5.

	Male	Female	Total
Spanish	22.5%	25%	47.5%
French	20%	15%	35%
German	7.5%	10%	17.5%
Total	50%	50%	100%

8.

	Santiago	Measha
Female	$\frac{50}{118} \approx 42 \%$	$\frac{89}{166} \approx 54 \%$
Male	$\frac{68}{118} \approx 58 \%$	$\frac{77}{166} \approx 46 \%$
Total	100%	100%

13.

	Male	Female	Total
Tree Swallow	5	7	12
Cardinal	5	10	15
Goldfinch	8	5	13
Total	18	22	40

17.

	Sports or Clubs	No Sports or Clubs	Total
Freshmen	10%	12.5%	22.5%
Sophomores	12.5%	15%	27.5%
Juniors	10.6%	14.4%	25%
Seniors	11.9%	13.1%	25%
Total	45%	55%	100%

29.

	Apple	Sweet Potato	Pumpkin	Totals
West	$77 \approx 19.0 \%$	$4 \approx 1.0 \%$	$13 \approx 3.2 \%$	$94 \approx 23.2 \%$
Midwest	$32 \approx 7.9 \%$	$6 \approx 1.5 \%$	$54 \approx 13.3 \%$	$92 \approx 22.7 \%$
South	$12 \approx 3.0 \%$	$63 \approx 15.6 \%$	$24 \approx 5.9 \%$	$99 \approx 24.4 \%$
Northeast	$2 \approx 22.7 \%$	$2 \approx 0.5 \%$	$26 \approx 6.4 \% 120 \approx 29.6 \%$	
Total	$213 \approx 52.6 \%$	$75 \approx 18.5 \% 117 \approx 28.9 \% 405=100 \%$		

31. Sample answer: The conditional relative frequencies based on pie preference give the probability of a person preferring a particular pie choice being from one of the U.S. regions. For example, there is an 84% probability that a person who prefers sweet potato pie is from the south.

	Apple	Sweet Potato	Pumpkin
West	36.2%	5.3%	11.1%
Midwest	15.0%	8.0%	46.2%
South	5.6%	84%	20.5%
Northeast	43.2%	2.7%	22.2%
Total	100%	100%	100%

LESSON GOAL

Construct probability distributions and use normal distributions to analyze data.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Develop:

Probability Distributions

- Analyze a Probability Distribution

The Normal Distribution

- Approximate Data by Using a Normal Distribution
- Use the Empirical Rule to Analyze Data

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Language Development Handbook

A variety of resources are available to support students as they build mathematical language and understanding of key math concepts, including:

- Scaffolds and supports in the Language Development Handbook
- Activities designed to build mathematical discourse

Eㅌ․․l|You can use these resources as well as point-of-use ELL tips and strategies to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Statistics
Standards for Mathematical Content:
MAFS.912.S-ID.1.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
Standards for Mathematical Practice:
5 Use appropriate tools strategically.
8 Look for and express regularity in repeated reasoning.

Coherence

Vertical Alignment

Previous

Students summarized and interpreted categorical data using frequency
tables. S.ID.5, MAFS.912.S-ID.2.5

Now

Students construct probability and normal distributions.
MAFS.912.S-ID.1.4

Next

Students will graph and analyze rational functions.
MAFS.912.F-IF.3.7d

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of distributions by extending to normal distributions and build fluency by estimating population percentages. They apply their understanding of normal distributions by solving real-world problems.

Mathematical Background

The graphs of all normally distributed variables have essentially the same shape. With appropriate labeling of the mean and the points that are one standard deviation from the mean, the same normal curve can represent any normal distribution.

Interactive Presentation

Warm Up

Launch the Lesson

[^11]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skills for this lesson:

- finding the variance
- finding the standard deviation

Answers:

1. 17.5
2. 19
3. 20.5
4. 22
5. 23.5
6. 25
7. 26.5

Launch the Lesson

(113) Teaching the Mathematical Practices

8 Look for and express repeated reasoning Encourage
students to look for the repeated reasoning with the normal distribution and large data sets, such as heights, weights, and test scores.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

Learn Probability Distributions

Objective

Students construct probability distributions.
Teaching the Mathematical Practices
5 Use appropriate tools strategically Students will use technology to construct a probability distribution.

About the Key Concept

A random variable is a variable with possible values that are the outcomes of a random event. A probability distribution is a mapping of those outcomes to their probabilities of occurrence. It is usually shown as a histogram or bar graph. The probability distribution of a random variable X must satisfy these conditions: the probability of each value of the random variable X must be between 0 and 1 , and the sum of the probabilities of all of the values of X must equal 1 . A discrete random variable is finite and can be counted, and are represented by a bar graph. A continuous random variable can take on any value, and are represented by a histogram.

(3) Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

TYPE

Students explain why the probability of each value must be between 0 and 1 .

Interactive Presentation

Example 1
Students enter the relative frequencies to
complete the probability distribution table.

Example 1 Analyze a Probability Distribution

Teaching the Mathematical Practices 5 Use Mathematical Tools Point out that to construct the probability distribution and its graph, students will need to use pencil and paper, a calculator, or a statistical package.

Leveled Discussion Questions
ALI What does a relative frequency represent? Sample answer: The number of data values in an interval out of the total number of data values, which gives the probability of data being within each interval.
OL. Why can the endpoint of one interval not be the same as the beginning point of the next interval? Sample answer: Because if a data value was the value of the endpoint, it could be placed in both intervals and be counted twice.
[Bil In this situation, why do you think the probability distribution is symmetric about the mean? Sample answer: Some customers will have only a few items and other customers may have a large amount, but most customers will probably buy similar amounts of items.

Common Error

Encourage students to round correctly when constructing probability distributions. Since the probability of each interval should sum to 1 , rounding errors may affect this rule of a probability distribution.

Learn The Normal Distribution

Objective

Students determine if data sets are normally distributed and apply the Empirical Rule.

Teaching the Mathematical Practices

5 Use appropriate tools strategically Students will use technology to analyze the area under a normal distribution for a given interval.

8 Look for and express repeated reasoning Students will understand how the mean, standard deviation, and a normal distribution relate in order to solve a problem.

About the Key Concept

The normal distribution is the most common continuous probability distribution. The graph of a normal distribution is continuous, bellshaped, and symmetric with respect to the mean. The mean, median, and mode are equal and located at the center. The curve approaches, but never touches, the x-axis. The total area under the curve is equal to 1 or 100%. The area under the curve between two values for X represents the probability that a data point will fall in that interval.

Common Misconception

A common misconception some students may have is that any symmetric distribution is normally distributed. Symmetric does not imply normal as data sets with two peaks can be symmetric without be normally distributed. Reinforce that normal distributions are bell-shaped and symmetric about the mean.

Learn The Empirical Rule

Objective
Students determine if data sets are normally distributed and apply the Empirical Rule.

About the Key Concept

When a set of data is normally distributed, or approximately normal, the Empirical Rule can be used to determine the area under the normal curve at specific intervals. Approximately 68% of the data fall within 1σ of the mean, approximately 95% of the data fall within 2σ of the mean, and approximately 99.7% of the data fall within 3σ of the mean.

Key Concept - The Normal Distribution
-The graph of a normal distribution is continuous, bell-shaped, and symmetric with respect to the mean.
The mean, median, and mode are
The curve approaches, but never touchend located at the center.
-The total area under the curve is equal to 1 , or 100%.

The area under the normal curve is 1 because the probability of a data point falling between the lowest and highest possible values is 1 . Thus, the area under the curve between two values for X represents the probability that a data point will fall in that interval.

Learn The Empirical Rule
When a set of data is normally distributed, or approximately normal, the Empirical Rule can be used to determine the area under the normal curve at specific intervals.

Key Concept . The Empirical Rule
In a normal distribution with mean μ and standard deviation \&.

approximately 68% of the data fall within 10 of the mean, approximately 95% of the data fall within 20 of the mean, and - approximately 99.7% of the data fall within 30 of the mean.

When a set of data is not approximately normal, it cannot De represented by the Empirical Rule. Skewed data like the graph The the riots is one example of a set of data that is not
 approximately normal.

Study Tip

Interactive Presentation

Learn

Interactive Presentation

Example 2

Students move through the steps to determine if the data are approximately normally distributed.

Example 2 Approximate Data by Using a Normal Distribution

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to construct the probability distribution and its graph, students will need to use pencil and paper and a graphing calculator.

Leveled Discussion Questions

AL. What does a normal curve look like? Sample answer: bell shaped and symmetric about the mean
OLI. Why are positively skewed data not considered normally distributed? Sample answer: Because a normal curve is bell shaped and symmetric about the mean. If a distribution is skewed, there will not be an even number of data points to either side of the mean.

BLi Suppose a histogram reveals a distribution seems to be symmetric about the mean. How can we further verify the distribution is approximately normal?Sample answer: Find the percent of data within one standard deviation, two standard deviations, and three standard deviations. Those percentages should be roughly 68%, 95\% and 99.7\%.

Example 3 Use the Empirical Rule to
 Analyze Data

Leveled Discussion Questions

AL. How many standard deviations away from the mean is 42 ? 2 How many standard deviations away from the mean is 54 ? 1
OLI To find the percent of data less than 42 , why do we use -2 on the table? Sample answer: -2 represents the number of standard deviations 42 is below the mean.
BL.I. Between what other two values will approximately 81.85% of the data be? 46 and 58

Exit Ticket

Recommended Use
At the end of class, have students respond to the Exit Ticket prompt using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, have students respond to the Exit Ticket prompt verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-12$	
2	exercises that use a variety of skills from this lesson	$13-14$
3	exercises that emphasize higher-order and critical-thinking skills	$15-18$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-13 odd, 15-18
- Extension: Sample Deviation of Sample Data
- Daleks

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Measures of Spread
- Personal Tutors
- Extra Examples 1-3
- DALEKS'Population Standard Deviation

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-11 odd
- Remediation, Review Resources: Measures of Spread
- ArriveMATH Take Another Look
- ALEKS Population Standard Deviation

Construct a probabiity distribution to represent each set of data,

Example 2
Determine whether each set of data can be approximated with a normal
distribution. Explain your reasoning.

7. Men's Shot Put Distances (m) 21.3019 .4918 .5820 .0819 .70 18.9118 .2118 .9719 .2618 .49 18.3118 .7319 .5318 .8119 .63 18.9417 .5717 .0920 .3818 .89 18.6017 .1918 .6318 .5218 .67 Yes. 1 He $\quad 44.5444 .5144 .6844 .6144 .71$

Example 3

A normal distribution has a mean of 455 and a standard deviation of 24 .
9. Find the percent of the data between 407 and $455 . \quad 47.72 \%$
10. What percent of the data are greater than 479 ? 15.87

11 Find the percent of the data that are less than 407. 2.28\%
12. What percent of the data are between 431 and 503 ? M1.85\%

Mixem Exercises
13. BIRTHS The table shows the numbers of births in the Births \mid States Relative United States in a recent year.
a. Complete the relative frequency column.

- Construct a probability distribution to represent the oun. See margin.

14. REACTION TIME in a test of 1200 teenagers, the reaction times to a visual cue were normally Gistributed with a mean of 0.25 second and a Mandard deviation of 0.05 second.
a. About how many teenagers had reaction times
between 0.15 and 0.35 second? 1140
D. What is the probabiity that a teenager selected at

Births	States Relative	
Frequency		

random had a reaction time greater than 0.3 secondzbowt 16%

- Higher-Order Thinking Skills

15. ANALYZE The graphing calculator screen shows the graph el a normal distribution for a large set of data that has a mean of 50 and a standard deviation of 10 . If every data and in she set is increased by 5 points, describe how the mean, standard deviation, and graph of the data changes.
represent normal distributions with the grame mean b different standard deviations. Michael says that only the middle graph represents a normal distribution. Is either correct? Explain. See margin.

$[0,80]$ scct 10 by $[0,0.05]$ scl: 0.01

Iz CREATE Create a probability distribution in which one possible value of the random Sample answer: aoling a 10 orcur as is one on swice as ikely a s rolling a 3 on a die.
11. PERSEVERE The boxes of cereal in a shipment are normally distributed with a mean weight of 17.1 ounces and a standard deviation of 0.2 ounce. Nine of the boxes weigh more than 17.5 ounces. How many boxes are in the shipment? 395

Answers

2.

3.

4.

Age of U.S. President at Inauguration

15. The mean would increase by 25 ; the standard deviation would not change; and the graph would be translated 25 units to the right.
16. Courtney; all three graphs are normal distributions with the same mean. The first graph has the least standard deviation, the standard deviation of the middle graph is slightly greater, and the standard deviation of the last graph is greatest.

Review

Rate Yourself! 院 合

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.

- Why is it useful to know how to create and interpret different types of data displays?
- How are statistics used in the real world to sway opinions?
- How are histograms and box plots useful for comparing real-world data?

Then have students write their answer to the Essential Question.

DINAH ZIKE FOLDABLES

IELII A completed Foldable for this module should include the key concepts related to statistics.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Descriptive

Statistics.

- Interpreting Categorical and Quantitative Data
- Summarize, Represent, and Interpret Data on Two Categorical and Quantitative Variables

Test Practice

1. GRAPH Make a dot plot of the quiz scores of 3. M L LI-SELECT Which of the statements are
Ms. Perez s third period class.

Quiz Scores

85	88	75	100
90	90	88	12
72	79	88	15

(Lesson 9-2)
Sample atriver:

2. OPEN RESPONSE When is it a good idea to scale the number line when making a dot plot?
(Lesson 9-2)
Sample answer: Scaling the number line of a dotplot provides a meaningful way to present data with a broad range specificsentation of the data than a number line that consists of single, unstacked dots.
true regarding dot plots, bar graphs, and listograms? Select all that apply
Lesson 9-2
A. Oot plots use a number line and dots to epresent very large amounts of data.
B. Bar graphs are used to represent data that Is continuous.

SHistograms are used to represent data hat is continuous
4. Bar graphs are used to represent data that is discrete.
E. Histograms are used to represent dat that is discrete
4. MUL TIPLE CHOICE Which dot plot correctly itrodels these data values? $36,38,42,36,36,40,42,38,38,39,40,38$,

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources

Vocabulary Activity
Module Review

Assessment Resources

Vocabulary Test
All Module Test Form B
OL Module Test Form A
BLil Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-14 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)
Graph	Students create a graph online.	$1,6,9$
Open Response	Students construct their own response.	$2,5,7,10$, 12,14
Multi-Select	Multiple answers may be correct. Students must select all correct answers.	3
Multiple Choice	Students select one correct answer.	$4,8,11,13$

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
S.ID.1	$9-2,9-4$	$1,3,4,6-9$
S.ID.2	$9-6$	12
S.ID.3	$9-5$	11
S.ID.5	$9-7$	13,14
N.Q.1	$9-2,9-4$	$2,5,10$

5. OPEN RESPONSE Given the set of data in the $\mathbf{7}$. table, describe what size intervals could be used when making a histogram. (Lesson 9-2)

Ages of Guests at a Picnic

4, 26, 32, 4, 61, 56, 16, 15, 17, 28, 39, 42, 47, 77 $66,12,16,38,35,8,16,11,10,41,47,5,13,77$

The data could be separated into intervals of 10 , from $0-9,10-19,20-29$, and so on through $70-79$
6. GRAPH A survey was conducted among
students in Mr. Sadiq's history class to
determine their favorite major topic covered
in class this semester. The results are shown in the table. Make a bar graph to display the data Lesson 9-2)

Sample answer:

PENRESPONSE Akeem wants to determine how long it took students in his class to complete a 1 -mile run.

State two types of displays Akeem could use to appropriately display his data. (Lesson 9-2) scaled dot plot; histogram
8. MUL TIPLE CHOICE Which box plot correctly models these data values ${ }^{7} 95,72,84,98,87$. $75,100,86,90,81,93,90$ (Lesson 9-4)

Module 9 Review • Statistics 549

10. OPEN RESPONSE ifteen people in their fifties were surveyed about the number of apps they have on their cell phone. (There a cell phone). The results are listed, below. $0,0,11,8,9,6,7,3,1,2,10,7,22,5,13$ (Lesson 9-4)

A box plot to represent this data would have to begin at I because that is the minimum value, and would have to extend to ? 22 because that is the maximum value The most appropriate scale to display the data in the box plot should be 1 or 2

1. MUL TIPLE CHOICE The table shows the annual snowfall amounts for several towns.

Town	Snowfall (in.)
Westield	241
Bratteboro	73
Cambridge	54
Danville	73
Shelburne	86
Lowell	67

Which measure(s) of center and measure(s) of spread best describe the set of data?
(Lesson 9-5)
A. mean

B median
C. standard deviation
(9) five-number summary

550 Module 9 Review. Statistic
12. OPEN RESPONSE True or false: Histogram has more variability than Histogram A. (Lesson 9-6) False

Histogram A

13. MUL TIPLE CHOICE The junior varsity danc leam is selecting the color of their new niforms. The team consists of 28 freshmen and sophomores. Of the 16 freshmen, 7 want red uniforms and 9 want black $u^{\text {niforms. Only } 4}$ of the sophomores want lack uniforms. How many total team members want red uniforms? Lesson 9-7)
A. 7
8. 13
C. 15
14. OPEN RESPONSE The table shows the requencies of positions for different offensive players on a school football team. There are 38 offensive players on the team.

Position Serior Junior Sophopore			
Quarterback	1	1	0
Running Back	2	1	1
Keceiver	1	2	2
Linemmn	13	6	6

Suppose a junior player was picked at andom. What is the probability that player s a receivert (Lesson 9-7)
15. PEN RESPONSE A normal distribution has a mean of 347.2 and a standard deviation of 13.9. Lesson 9-8)
The data that is less than 319.4 represents 2.5 ? x of the data.

The data that is greater than 361. 16 lepresents ? \% of the data.

Lesson 9-2
8 b.

9a.

10.

12a.

13. Sample answer: 1) Because the data is clustered around ratings $7-10$, it can be concluded that the product is well-liked by most customers and may have minor inconsistencies that certain people did not like. 2) Because there are only two low ratings, it can be concluded that dissatisfaction with the product could be a result of personal preference or manufacturer defect in a specific item.
14. A histogram is the best model for a data set when there is continuous data. To create a histogram, first determine an appropriate scale for the data set, draw bars for each scale, label the axes, and include a title, if appropriate.
15. Sample answer: If the range of the data is broad with specific, unrepeating values, then it makes the dot plot more meaningful if the range is divided up into equal intervals.
16. Sample answer: 1) The grocery store could infer that consumers are gaining interest in more natural products because the natural peanut butter had the largest sales growth. 2) They could also infer that the convenience of having the jelly already in the jar with the peanut butter is not a significant priority for consumers because the sales have decreased significantly.
17. Sample answer: Bar graphs and histograms are similar because each displays data with bars. They are different because a bar graph is best used with data that are discrete and a histogram represents data that are continuous. For this reason, the bars in a bar graph do not touch and represent single values while the bars in a histogram touch and represent a range of values.

Lesson 9-5
9. negatively skewed

[10, 80] scl: 10 by [0, 10] scl: 1
10. positively skewed

[30, 60] scl: 5 by [0, 20] scl: 2
[30, 60] scl: 5 by [0, 20] scl: 2
11. symmetric

[10, 70] scl: 10 by [0, 20] scl: 2

$[10,70]$ scl: 10 by $[0,20]$ scl: 2
12. symmetric

[15, 40] scl: 5 by [0, 10] scl: 1
13. symmetric

[35, 65] scl: 3 by [0, 5] scl: 1
14. Sample answer: The distribution is skewed, so use the five-number summary. The range is $42-8$, or 34 . The median is 34 , and half of the data are between 26 and 38.5.

$[0,50]$ scl: 5 by $[0,5] \mathrm{scl}: 1$
15. Sample answer: The distribution is approximately symmetric, so use the mean and standard deviation. The mean is about 54.7 years with standard deviation of about 6.2 years.

[40, 70] scl: 3 by $[0,5]$ scl: 1
16a. negatively skewed

[15, 55] scl: 5 by [0, 10] scl: 1
17b. Sample answer: The distribution is symmetric, so use the mean and standard deviation. The mean is about 92.4 with standard deviation of about 18.4.

$[60,125]$ scl: 5 by [0, 5] scl: 1
18a.

$10,00012,00014,00016,00018,00020,000$
The data is positively skewed.
b. The data is skewed so use the five-number summary; $\min : 12,799, Q$: 13,161 , median: $13,800, Q_{3}: 14,433$, max: 20,237.
c. Mt. McKinley is an outlier. When the outlier is removed, the median decreases slightly from 13,800 to 13,796 , however, the mean decreases from 14,380 to 13,729 , which is more representative of the data as a whole.

19a. Sample answer: 225-230 g would be a reasonable advertised weight for either brand, so it is quite likely that they have the same advertised weight. Rafaello appears to have better control over the exact quantity in each package because its distribution is grouped more closely about the mean.

19b. Sample answer: Both distributions have an inverted, symmetric U-shape with "tails" on either side. Leonardo's distribution is lower and wider.
20. Sample answer: Because the distributions are skewed, compare using fivenumber summary. 1981-1985: $\mathrm{min}=2, \mathrm{Q}_{1}=5$, median $=7, \mathrm{Q}_{3}=8$, $I Q R=3, \max =10 ; 2005-2011: \min =11, Q_{1}=13$, median $=13.5$, $Q_{3}=15, I Q R=2, \max =16$. From 1981-1985, all the flights were shorter. From 2005-2011, all flights were longer, and the durations were more closely and evenly grouped around the median.

23a.
Supreme Court Justices

negatively skewed
23b. The data is skewed, so use the five-number summary; min: $49, Q_{;} 59.5$, median: 67, $\mathrm{Q}_{3}: 79$, max: 84.
23c. There are no outliers in the data.
25. Sample answer: A bimodal distribution is a distribution of data that is characterized by having data divided into two clusters, thus producing two modes and having two peaks. The distribution can be described by summarizing the center and spread of each cluster of data.
26. Sample answer: The average high temperature over the course of a year for a city may have a symmetrical distribution. The attendance at a baseball stadium over the course of a season may be skewed.
27. Sample answer: In a symmetrical distribution, the majority of the data are located near the center of the distribution. The mean of the distribution is also located near the center of the distribution. Therefore, the mean and standard deviation should be used to describe the data. In a skewed distribution, the majority of the data lie either on the right or left side of the distribution. Because the distribution has a tail or may have outliers, the mean is pulled away from the majority of the data. The median is less affected. Therefore, the five-number summary should be used to describe the data.

Lesson 9-6

26a. Sample answer: For sample $A, m=38 \mathrm{~mm}, I Q R={ }_{3} Q-Q=41-33=8 \mathrm{~mm}$. For sample $B, m=31 \mathrm{~mm}, I Q R=Q_{1}-Q=39.5-26.5=13 \mathrm{~mm}$. Sample A has a higher median but a lower IQR. Therefore, sample A tends to be less spread out than B, but also tends to be larger than sample B.

26b. Sample answer: Sample A is more closely and more evenly grouped around its median. Sample B is skewed toward smaller diameters. So sample A is more representative.
27. Sample answer: Male students, $X=70.0 \mathrm{in}$., $\sigma=2.0 \mathrm{in}$. Female students, $x=66.3 \mathrm{in} ., \sigma=2.7 \mathrm{in}$. Sample answer: For male students, the mean is 70.0 in., and the standard deviation is 2.0 in. For female students, the mean is 66.3 in., and the standard deviation is 2.7 in . On average, males are taller. However, because the standard deviation of males is smaller than that of females, the heights of females are more spread out.

28a. The distribution for each set of data is skewed. For City A, the median is 5.5 and $I Q R=6-3=3$. For City B, the median is 4.5 and $I Q R=6-4=2$.

550b Module 9 • Answer Appendix

28b. Sample answer: I would advise Francisca to visit City B because there is less risk with the number of rainy days. With the spread of City A being as large as it is, there is potential for the number of rainy days to be far more than desired for a vacation.
29. Sample answer: Histograms show the frequency of values occurring within set intervals. This makes the shape of the distribution easy to recognize. However, no specific values of the data set can be identified from looking at the histogram, and the overall spread of the data can be difficult to determine. The box plot shows the data divided into four sections. This aids when comparing the spread of one set of data to another. However, the box plots are limited because they cannot display the data any more specifically than showing it divided into four sections.
30. Sample answer: The mean, median, and mode of the new data set can be found by multiplying each original statistic by k. The range and the standard deviation can be found by multiplying each original statistic by $|k|$.
32. Sample answer: The mean, median, and mode of the new data set can be found by adding k to each original statistic and then multiplying each resulting value by m. Because the range and the standard deviation are not affected when a constant is added to a set of data, they can be found by multiplying each original value by the constant m.
33. Sample answer: When two distributions are symmetric, determine how close the averages are and how spread out each set of data is. The mean and standard deviation are the best values to use for this comparison. When distributions are skewed, determine which direction the data is skewed and the degree to which the data is skewed. The mean and standard deviation cannot provide information in this regard, but get this information by comparing the range, quartiles, and medians found in the five-number summaries. So if one or both sets of data are skewed, it is best to compare their five-number summaries.

Lesson 9-7

33.

Vehicle Type	2WD	AWD	Total
Hatchbacks	90	9	99
Sedans	60	13	73
SUVs	2	41	43
Total	152	63	215

34. $\frac{215}{63} \approx 3.41$; Sample answer: The conditional relative frequencies use the same numerators as the relative frequencies but have denominators of 63 instead of 215 . So, the percents will be greater by a factor of $\frac{215}{63}$ or about 3.41.
35. Sample answer: Yes, there does appear to be an association. When the gasoline prices are higher, the distances traveled appear to be lower; when the gasoline prices are lower, the distances traveled appear to be higher.
36. Sample answer:

	Male	Female	Total
Purchased Class Ring	100	125	225
Did NOT Purchase Class Ring	150	35	185
Total	250	160	410

Find the joint relative frequency of a male who did not purchase a class ring. 36.6%
37. Sample answer: A relative frequency is the ratio of the number in a category to the overall total of both categories. A conditional relative frequency is the ratio of the joint frequency to the marginal frequency. Therefore, it is important to understand what relationship is being analyzed because each two-way relative frequency table can provide two different conditional relative frequency tables.

38a. Sample answer: Both freshmen and sophomores like fruit snacks the most and yogurt the least, and, by percentage, their preferences are almost equal.
38b. They are both correct. Fruit snack has a higher relative frequency for both grades than the other snacks. Also, 61% of sophomores and 57.5% of freshmen prefer fruit snacks.

Tools of Geometry

Module Goals

- Students understand the basic elements of geometry, including points, lines, segments, planes, and angles.
- Students measure distances and compute midpoints on number lines and the coordinate plane.

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Also addresses G.CO. 12 and G.MG.1.
Standards for Mathematical Practice:
All standards for Mathematical Practice will be addressed in this module.

C) Be Sure to Cover

To completely cover G.CO.12, go online to assign the following constructions.

- Copy a Line Segment (Lesson 10-3)
- Bisect a Segment (Lesson 10-7)

Coherence

Vertical Alignment

Previous

Students graphed points on a number line and graphed points and lines on a coordinate plane.

6.NS.6c, 8.EE.5, 8.EE.8a

Now

Students derive and use the distance, slope, and midpoint formulas to verify geometric relationships, and students construct segments and lines using a variety of tools.
G.CO.12, G.GPE. 6

Next

Students will represent transformations in the plane and make formal geometric constructions using a variety of tools and methods.
G.CO.9, G.C0. 12

Rigor

The Three Pillars of Rigor

To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. After they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Suggested Pacing

Lessons	Standards	45-min classes	90-min classes
Module Pretest and Launch the Module Video		1	0.5
10-1 The Geometric System		1	0.5
10-2 Points, Lines, and Planes	G.C0.1, G.MG. 1	1	0.5
10-3 Line Segments	G.C0.1, G.C0. 12	1	0.5
10-4 Distance	G.C0.1	1	0.5
10-5 Locating Points on a Number Line	G.GPE. 6	1	0.5
10-6 Locating Points on a Coordinate Plane	G.GPE. 6	1	0.5
10-7 Midpoints and Bisectors	G.GPE.6, G.C0.12	2	1
Module Review		1	0.5
Module Assessment		1	0.5
		11	5.5

Formative Assessment Math Probe Fractional Distance

Answers: 1. A and D; 2. F

Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will select statements that accurately describe fractional distances and explain their choices.

Targeted Concepts The position of a point between two other points can be used to analyze and compare segment lengths using ratios.

Targeted Misconceptions

- Students may incorrectly use the directed line, often going in alphabetical order or the order in which the letters first appear on the line without regard to the fractional distance described.
- Students may confuse the fractional distance with the ratio comparing the two smaller segment lengths. Often students see ratios as fractions and only consider part to whole relationships.
Use the Probe after Lesson 10-5.
Collect and Assess Student Answers

If the student selects these responses...

1. B and/or C
2. A, B, C, D
used the wrong fractional distance with the line direction.
Example: Three fifths is the correct fractional distance from D to F, not from F to D.
used a fractional distance for the ratio (part to whole) instead of a part to part ratio to describe the relationship between segments $D E$ and $E F$.
Example: For Item 2A, the student uses the fractional distance $\frac{3}{5}$ to describe the relationship between $D E$ and $E F$ instead of 3:2 (3 partitions to 2 partitions).
3. E
is confusing the direction of the line and comparing using the ratio 2:3.

Take Action

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS* Distances and Midpoints on a Number Line, Distances and Midpoints in the Coordinate Plane
- Lesson 10-5, all Learns, all Examples

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

IGN゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question.

How are points, lines, and segments used to model the real world?
Sample answer: Points, lines, and segments allow something that is abstract to be seen as a drawing. It in turn allows for certain calculations to solve for missing measures.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLBABLES

Focus Students read about the basic elements of geometry and compute distances and midpoints on number lines and coordinate planes.
Teach Throughout the module, have students take notes under the tabs of their Foldables while working through each lesson. They should include definitions of terms and key concepts. Encourage students to record examples of each type of basic element of geometry. Also encourage them to record formulas for distance and midpoint.

(II)
When to Use It Use appropriate tabs as students cover each lesson in this module. Students should add to the vocabulary tab during each lesson.

Launch the Module

For this module, the Launch the Module video uses playing a game of chess to model the basic rules of geometry, such as finding the distance between two points. Students learn about using rules of geometry in astronomy and traveling.

Interactive Presentation

What Vocabulary Will Y ou Learn?		
- analytic geometry	- defined term	- midpoint
- axiom	- definition	- plane
- axiomatic system	- directed line segment	- point
- betweenness of points	- distance	- postulate
- bisect	- equidistant	- segment bisector
- collinear	- fractional distance	- space
- congruent	- intersection	- synthetic geometry
- congruent segments	- line	- theorem
- coplanar	- line segment	- undefined terms

Are Y ou Ready?

Complete the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

552 Module $10 \cdot T$ ools of Geometry

What Vocabulary Will You Learn?

ㅌLL As you proceed through the module, introduce the key vocabulary by using the following routine.

Define Betweenness of points refers to the relationship between points on a line. Point C is between A and B if and only if A, B, and C are collinear and $A C+C B=A B$.

Example Point F is between points D and $E . D F=3$ centimeters and $F E=5$ centimeters.

Ask How are $D F$ and $F E$ related to $D E$? What is the measure of $\overline{D E}$? The sum of $D F$ and $F E$ should equal $D E . D E=8 \mathrm{~cm}$

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- adding integers
- subtracting integers
- solving one-step equations
- solving multi-step equations
- measuring line segments on a coordinate plane
- converting fractions and decimals
- adding rational numbers

D ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Segments and Angles section to ensure student success in this module.

Mindset Matters

Promote Growth Over Speed

Learning requires time and effort-time to think, reason, make mistakes, and learn from your mistakes and the mistakes of others. Ultimately, it's about the deep connections students make in their thinking and reasoning that matter more than the speed at which a problem is solved.

How Can I Apply It?

Have students complete the Rate Yourself chart before starting the module, discuss their mistakes and progress as you work through each lesson, and then reflect on their growth at the end of the module.

The Geometric System

LESSON GOAL

Students analyze axiomatic systems and identify types of geometry.

1 LAUNCH

8 Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Using a Game to Explore Axiomatic Systems

Develop:

The Axiomatic System of Geometry

- Apply an Axiomatic System

Types of Geometry

- Identify Types of Geometry

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	A1)	Fİ	
Remediation: Add Integers	- -			-
Extension: Writing Good Definitions		-		-

Language Development Handbook

Assign page 56 of the Language Development Handbook to help your students build mathematical language related to axiomatic systems and types of geometry.
FIII You can use the tips and suggestions on page T 56 of the handbook to support students who are building English proficiency.

Suggested Pacing

Focus

Domain: Geometry
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students graphed points on a number line and graphed points and lines on a coordinate plane.
6.NS.6c, 8.EE.5, 8.EE.8a

Now

Students learn about axiomatic systems and apply axioms to draw correct conclusions and identify examples of synthetic and analytic geometry.

Next

Students will identify points, lines, and planes and intersections of lines and planes. G.CO. 1

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students begin to develop an understanding of the different geometrical systems, and they are introduced to some of the terms they will use throughout the course.

Mathematical Background

Axiomatic systems start with a set of undefined terms that are never formally explained by means of more basic concepts. In geometry, these undefined terms are points, lines, and planes. These undefined terms are then used to write definitions, which assign properties to other mathematical objects, like line segments and angles. Axioms or postulates, statements that are accepted as true without proof, are assumed to be true in the axiomatic system. Theorems are statements that can then be proved using the undefined terms, defined terms, axioms, and other theorems.

While there are many different types of geometry, this lesson introduces the two used most in this course: synthetic geometry and analytic geometry.

Interactive Presentation

	\times
Warm Up	
Ade.	
1-12+5	
2. $-4+(-1)$	
3. $12+1-7)$	
4, - $5+11$	
5. WEATHER The iow serriperatuces for the post 0ve doys were $2^{\circ} \mathrm{F},-5 \mathrm{~F},-37$, 47 , and $3^{\circ} \mathrm{F}$. What was the averoge fow tempecisure for those days?	
Powtamis	

Warm Up

Launch the Lesson

[^12]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- adding integers

Answers:

1. -7
2. -5
3.5
4.3

Launch the Lesson

Teaching the Mathematical Practices
3 Construct Arguments In this Launch the Lesson, students can use the infographic to learn about how an axiomatic system is used to construct arguments.

(1)
Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Using a Game to Explore Axiomatic Systems

Objective

Students analyze and apply the properties of an axiomatic system in a game.

Teaching the Mathematical Practices
4 Apply Mathematics In this Explore, students can see a realworld situation represented by an axiomatic system.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Alternate Use

Read aloud the Inquiry Question to set up the Explore activity, or have a student read it aloud. After having students complete the activity, lead the class in discussion to complete the exercises and answer the Inquiry Question.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students are given the definition of an axiomatic system. Then they read the set of rules for a game. Next, students complete the guiding exercises. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore
TYPE

Students respond to guiding exercises and explain why they agree or disagree.

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Explore

TYPE

Students can respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Learn The Axiomatic System of Geometry

Objective

Students learn about axiomatic systems and apply axioms to draw correct conclusions.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of the axiomatic system of geometry in this Learn.

Common Misconception

Students sometimes struggle with understanding that postulates cannot be proven and must be taken as true. Share some postulates with students and point out why it seems they can be assumed to be true.

3

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

©Example 1 Apply an Axiomatic System

ANIMALS In the fictional country of Rythoth, blue animals are from he mountains, and red animals are from the valleys. These animals eptiles. Mammals tre coe distinct classes: mammals, birds, and feathers, and reptiles are covered by scales.

Talk About It What conclusion the provided axioms?

Sample answer: The axioms cannot be used to conclude why animals from the mountains are blue and animals from the valleys are red .

Study Tip

Theorems Theorems,
r conclusions, made
from a set of axioms
must be frue in every situation. It takes only Contradicts the
Conjecture to show
hat a theorem or
conclusion is not true.

Part A Categorize the animals.
Write the name of each animal in the corresponding categories in the table

Birthplace	Mammal	Bird	Reptile
Mountains	Rorx	Pax	Awub
Valleys	Kub	Prit	Zog

Part B Ise axioms.
Use the previously given axioms and the table you filled in to draw three conclusions about the species of animals shown.

The Brx is a mammal from the mountains of Rythoth
-The Zog is a reptile from the valleys of Rythoth.
The Prit is a bird from the valleys of Rythoth

Interactive Presentation

Example 1
DRAG \& DROP

Students drag objects to classify them according to definitions and axioms.

CHECK
Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 1 Apply an Axiomatic System
Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated axioms to draw conclusions.

Questions for Mathematical Discourse

AL. How would you label the Klub according to its color, class, and body covering? red; mammal; fur
OL. In Part A, can any of these animals be classified into multiple cells of the grid? Explain. No; each animal only fits into one class, has one body covering and is one color.
BL. What additional characteristic can be used to label each animal? number of legs

Common Error

Students may confuse the different types of properties of the animals. Help them keep straight the types of animal and the colors, which are linked to the regions where the animals live by the axioms.

Learn Types of Geometry

Objective

Students identify examples of synthetic and analytic geometry.
Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between synthetic and analytic geometry in this Learn.

Important to Know

There are actually many axiomatic systems of geometry, not just the ones mentioned here. For example, spherical geometry is a synthetic geometry that is useful for modeling air travel and mapping continents in the real world. Polar coordinates are included in analytic geometry and sometimes taught in trigonometry.

Check
PLANETS The fictional galaxy of Yogul contains at least 20 planets including Mothera, Sothera, and Kothera. An animal can live on any pranet in the Yogul galaxy that contains its biome. Lizards and

Bears and foxes can be found in the tundra. The biomes of each plat
Bears and foxes can be found in the tundra. The biomes of each planet are permanent and will not change over time.

Use the axioms given to determine what conclusions can be made about the planets of Y ogul. Select all that apply.A, F
A. Bears and foxes can live on Sothera
B. Lizards and scorpions can only live on Mothera.
C. Only frogs and monkeys can survive on Kothera
D. Bears and foxes can survive on Sothera at temperatures as low as -20^{\prime}
E. All animals can live on Kothera
F. Scorpions and lizards can live on Mothera.

Learn T ypes of Geometry
There are several types of geometry that are built upon different sets of postulates including synthetic geometry and analytic geometry.

Symbetic gevereetry is the study of Analyic geometifis the study of geometric ngures without the use geometry using a coordinate
of coordinates. Synthetic geometry system. Analytic geomerry is
is sometimes called pure geometry sometimes called coordinote
or Euclidean geometry geometry or Cartesian geometry.

Interactive Presentation

Interactive Presentation

Example 2

TAP	
Students tap on each button to reveal	
solutions.	

Students complete the Check online to determine whether they are ready to move on.

Example 2 Identify Types of Geometry

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use definitions to classify figures as illustrating synthetic or analytic geometry.

Questions for Mathematical Discourse

AL What is a coordinate system? Every point is numerically specified on the plane.
OL. How can you determine which type of geometric figure is studied in analytic geometry? Sample answer: All geometric figures in analytic geometry are on coordinate systems.
BLIL How can you create two of your own geometric figures, one for each type of geometry? Explain. Sample answer: When sketching a figure using synthetic geometry, identify congruent sides, and label the bases and the height. When sketching a figure using analytic geometry, plot the endpoints on a coordinate plane and label congruent sides and angles.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-10$	
2	exercises that use a variety of skills from this	$13-14$
	lesson	$11-12$,
2	exercises that extend concepts learned in this	$15-18$
3	lesson to new contexts	exercises that emphasize higher-order and critical-thinking skills

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-17 odd, 19-23
- Extension: Writing Good Definitions

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-23 odd
- Remediation, Review Resources: Add Integers
- Personal Tutors
- Extra Examples 1-3
- ALEKS Addition and Subtraction with Integers

IF students score 65% or less on the Checks,
 THEN assign:

- Practice, Exercises 1-15 odd
- Remediation, Review Resources: Add Integers
- ALEKS Addition and Subtraction with Integers

Answers

1. Sample answer: Kelsey's jersey number is greater than 5 and less than 11. Marie and Kelsey are on the same team. Kylie's team scored 26 points.
2. Sample answer: Mercedes bought 5 short sleeve T-shirts and 5 long sleeve T-shirts. Quinn paid $\$ 80.00$. Rachel bought 5 long sleeve T-shirts. Hector bought 5 black sweatshirts and 5 yellow short sleeve T-shirts.
3. Sample answer: Tom mulched the yard of all three clients this week. Ms. Martinez paid Tom $\$ 115$ this week. Mr. Hansen paid Tom to mow his lawn and mulch his yard. Mrs. Johnson used all of Tom's services this week.
4. Sample answer: Mateo bought a small vanilla cupcake and a small cupcake with vanilla icing. Bethany's cupcake had strawberry icing.

Practice

1. BASKETBALL The Badgers' basketball team has 10 players. During practice, half of the players wear red jerseys numbered $1-5$, and the other half wear yellow jerseys numbered $6-10$. The yellow team wins the practice game 32-26. -Kylie wears number 5 and scores 9 points.
Kelsey's team wins the game.
are on opposing teams.
Use the axioms to make three conclusions about the game played. See margin.
2. PRINTING Rico's T-shirt Company sells customized short sleeve T-shirts, long sleeve T-shirts, and sweatshirts. Each type of shirt sells in multiples of 5 . It costs $\$ 25.00$ for 5 short sleeve T-shirts, $\$ 30.00$ for 5 long sleeve T-shirts, and $\$ 40.00$ for 5 sweatshirts. Short sleeve and long sleeve T-shirts can be made in any color except navy or black. Sweatshirts are only made in navy and black. - Mercedes bought green shirts for $\$$

- Rachel paid $\$ 30.00$ for several red shir
- Hector bought black and yellow shirts for $\$ 65.00$.

Use the axioms to make four conclusions about the shirts sold. See margin.
3. LANDSCAPING Tom owns a landscaping business. He charges $\$ 40$ for a yard cleanup. $\$ 50$ to mow a lawn, and $\$ 75$ to mulch a yard. On average, it takes Tom 25 minutes for a yard cleanup, 40 minutes to mow a lawn, and 2 hours to mulch a yard. Tom's clients are Mr. Hansen, Ms. Martinez, and Mrs. Johnson. - Mr. Hansen paid $\$ 125$ for lawn services this week

- Tom spent more than an hour at Ms. Martinez' house this week.
- Mrs. Johnson wrote Tom a check for $\$ 165$ for the week.
- Tom made $\$ 405$ from his three clients this week.

Use the axioms to make four conclusions about the landscaping that Tom did. See margin.
4. CUPCAKES Olivia's Cupcake Shoppe sells small and large cupcakes in three flavors.

- Niamh paid $\$ 3$ for a cupcake with buttercream icing. - Bethany bought a small vanilla cupcake.

Mateo paid sa.se cura cupe. and a chocolate cupcake.
Use the axioms to make two conclusions about the cupcakes that were purchased. See margin.

Example 2
Classify each figure as illustrating synthetic geometry or analytic geometry.

analytic geometry

analytic geometry

analytic geometry

synthetic geometry

synthetic geometry

Mixed Exercises
11. RESTAURANT Damon sells three types of salads at his restaurant: cobb, wedge, and spinach. Each salad is served with 2 dinner rolls. The price of the cobb salad is $\$ 7.99$, the price of the wedge salad is $\$ 8.99$, and the price of the spinach
Malik spent $\$ 7.99$ on a salad.
-Pedro and Deandra each sp

- Rafael ate a wedge salac

Drake did not add chicken to his sala
Rafael ate the same type of salad.
12. CLASSROOM Mrs. Fields teaches high school geometry. Her classroom tools include a compass, straightedge, pencil, and protractor. Does Mrs. Fields likely leach analytic geornetry or synthetic geometry? Explain your reasoning. Sample answer: The to Mrs. Fields uses in her classroom are better suited for synthetic geometry, which is not done in the coordinate plane
use a given formula to find the distance between two points on a graph. Is The using analytic geometry or synthetic geometry? Explain your reasoning. Sample answer: Theo is likely doing analytic geometry, because he is using a graph with points.
14. USE A SOURCE Survey a group of students in your classroom about favorite
huse your axioms to
write a conclusion. Explain your reasoning. See margin.
558 Module 10 . Tools of Gearnetry
15. STATE YOUR ASSUMPTION Sydney is an engineer. She is sing a blueprint for a project that is drawn on a grid, as shown. Is Sydney likely using onalytic geometry or synt

 used as a coordinate system.
16. Mr. Sail assigns a project where students identify shapes that represent real-world objects. Is this an example of onoffic geomet yor synthetic geometry? Explain your reasoning. Sample answer: This is an example of synthetic geometry because a coordinate plane is not used.

17. SONSTRUCT ARGUMENTS Consider the following axiomatic system for bus routes. See margin. , ach bus route lists the stops in the order at
EEach route visits at least four distinct stops.
same as the last stop.
There is a stop called Cowntown, which is visited by each route

- ivery stop other than D. wntown is visited by at most two routes

The city has stops at Downtown, King St, Maxwell Ave, Stadium District, State
St, Grace Blvd, and Charlotte Ave. Are the following three routes a model for the axiomnatic system? Justry your argument.
ROUTE 1 D Downtown King St Stad District State St, Downtown
ROUTE 2: Stadium District, State St, Grace Blvd, Maxwell Ave, Downtow
Madium District
ROUTE 3: King St, Stadium District, Downtown, Maxwell Ave, Stadium District, King St

Iccessories are 30% off.

- Jaisa bought two necklaces.
- Sheree bought a shirt and a purs

Use the axioms to make one conclusion
Higher-Order Thinking Skills
19. WRIT: Write a comparison of the rules and plays of a game and the elements of Exp axiomatic system. Then choose a game or sport for which you know the rules violate or fall within the rule? Explain. See margin.
20. CREATE Given the following list of axioms, draw a model to properly represen

The information. See margin.
-There exist five points.
. Tach line contains onl
Each line contains at least two points.
21. WHICH ONE DOESN'T BELONG? Three-point geometry is a finite subset of geometry with the following four axioms.
-There exists exactly three distinct points.

- Kich par ot ditinct points are on exactly one line.
- Not all the points are on the same line.

Which of the following does ab satisfy alleast one point.
satisfy all the axioms of three-point geometry Justify

Sample answer: The second figure does not satisfy all the axioms. The axioms do not specify that the
pecify that
a video game he is playing.
There are fou Gra shen the payer collevel.
The game has 10 levels.
From these axioms, Grant concluded:

- to complete the game, he will need to find 30 keys.
-there are 40 keys in the game.
the can collect all 40 keys in the game.
Are Grant 5 conclusions correct? Explain your reasoning. Sample answer: Grant's third conclusion is incorrect because the second axiom says that each level will end when the third key is collected; herefore, Grant couldn t collect more than 30 keys.

23. WHICH ONE DOESN'T BELONG? Using your understanding of analytic and synthetic The triangle on the coordinate grid does not belong because it illustrates analytic geometry while the other two figures illustrate synthetic geometry.

Answers

14. Sample answer: Suppose we have the following axioms:

- There are exactly five colors chosen: red, orange, yellow, green and blue.
- Given any two colors, there is exactly one child who likes these two colors.
- Every student likes exactly two different colors among the five. Conclusion: There were 10 students surveyed. The following are the color combinations chosen: red-orange, red-yellow, red-green, red-blue, orange-yellow, orange-green, orange-blue, yellow-green, yellow-blue, green blue.

17. The three routes are not a model for the axiomatic system. Axioms 1 , 2, and 4 are satisfied. Axiom 3 is not satisfied because Route 3 visits Stadium District twice and it is not the first/last stop. Axiom 5 is not satisfied because all three routes visit Stadium District.
18. Sample answer: The rules of a game are like the axioms of an axiomatic system. They establish what can happen within the game. Plays are like theorems. They are tested against the rules or axioms to see whether they are legal in the game. In basketball, it is a rule that during playing time 5 players from each team shall be on the playing court. Aplay in which 6 players are on the court is a violation because the rules allow exactly 5 players.
19. Sample answer:

Points, Lines, and Planes

LESSON GOAL

Students analyze figures to identify points, lines, planes, and intersections of lines and planes.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Develop:

Points, Lines, and Planes

- Name Lines and Planes
- Model Points, Lines, and Planes

Explore: Intersections of Three Planes
Intersections of Lines and Planes

- Draw Geometric Figures
- Interpret Drawings
- Model Intersections

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	ALI	LIM	FLII	
Remediation: Subtract Integers				0
Extension: Fano Plane				0

Language Development Handbook

Assign page 57 of the Language Development Handbook to help your students build mathematical language related to points, lines, planes, and the intersections of lines and planes.
Ellill You can use the tips and suggestions on page $T 57$ of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	0.5 day
45 min	

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students drew points, lines, line segments, and rays, and identified these in two-dimensional figures.

Now

Students analyze figures to identify points, lines, and planes and identify intersections of lines and planes.
G.CO.1, G.MG. 1

Next

Students will calculate measures of line segments and apply the definition of congruent line segments to find missing values.
G.C0.1, G.C0.12

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students begin to develop an understanding of points and lines, and they apply their understanding by using these shapes and their measures to model real-world objects.

Interactive Presentation

Warm Up

Launch the Lesson

[^13]
Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- subtracting real numbers

Answers:

1. -4
2. 10
3. 33
4. -11
5. $-10^{\circ} \mathrm{C}$

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of points, lines, and planes.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Mathematical Background

In geometry, a point is a location without shape or size. A line contains points and has no thickness or width. Points on the same line are collinear, and there is exactly one line through any two points. The intersection of two lines is a point.
A plane is a flat surface made of points. A plane has no depth and extends infinitely in all directions. Points on the same plane are coplanar, and the intersection of two planes is a line.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Intersections of Three Planes

Objective

Students construct the intersection of three planes and identify the appropriate geometric definition that describes the intersection.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to understand the content in the Explore activity, students will need to make and use concrete models. Work with students to explore and deepen their understanding of points, lines, and planes.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students construct a paper model of three planes that intersect at a point using heavy paper, scissors, and tape. Then students complete guiding exercises on what they learn from this model. Next students construct a paper model of three planes that intersect in a line. Students then complete guiding exercises on the second model. Then, students will answer the Inquiry Question.

Interactive Presentation

intersections of Treee Planes (Part 8)

 56

Explore

Students tap to watch a video demonstrating how to build a model.

TYPE
Students type answers to guiding exercises
(continued on the next page)

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Explore

TYPE

Students respond to the Inquiry Question and can view a sample answer.

Explore Intersections of Three Planes (continued)

Questions
Have students complete the Explore activity.

Ask:

- What are some examples of real-world objects that could model planes? Sample answers: tables, walls, desk
- What are the limitations of these objects as the model? Sample answer: The walls don't continue in all directions infinitely, so I have to imagine them continuing.
(1) Inquiry

What figures can be formed by the intersection of three planes? Sample answer: Three planes can intersect in a point or a line.

3
Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Points, Lines, and Planes

Objective
Students identify points, lines, and planes.

117 Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Common Misconception

Students may want to name a line using all of the labeled points. Remind them that only two letters are needed to name a line. This means there are often many possible correct names for a single line. Ask: How many different names can be written for a line with four labeled points? 12

Q Essential Question Follow-Up

Students learn about the undefined terms point, line, and plane.

Ask:

Why are the terms point, line, and plane undefined? Sample answer: because they are the most basic building blocks of geometry, they cannot be explained using simpler terms.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Reteaching Activity $A 1$

Explain how points, lines, and planes exist in nature. For example, planes can model leaves, lily pads, and the surface of a pond; lines can model spider webs, sunbeams, tree trunks, the edge of a riverbed, and the veins of a leaf.

Interactive Presentation

TYPE

Students answer a question to show they understand points, lines, and planes.

Interactive Presentation

Example 1
 determine whether they are ready to
move on.

Example 1 Name Lines and Planes

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of points, lines, and planes in this example to name lines and planes.

Questions for Mathematical Discourse
In part a, what other points are located on the line containing point Q ? T and R
OL. How do you name a line? Either use two letters representing points on the line or use the lowercase script letter that identifies the line.
[Bill In part a, is $\overleftrightarrow{T R}$ the same line as $\overleftrightarrow{R T}$? Explain. Y es; the line is named by two points on the line, T and R.

Common Error

Students may think that different names refer to different lines.
Example 2 Model Points, Lines, and Planes
Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse
4I. What geometric figure is named by a single letter? a point
OL Why are two letters used to name the line that models the top edge of the notebook? Sample answer: Because the top corners of the notebook are modeled by two points and there exists exactly one line through any two points, the line that models the top edge of the notebook is named using two letters.
BLi Does the pen lie on plane JKL? Explain. Y es; sample answer: Because a plane extends infinitely in all directions, the pen lies on the plane.

Learn Intersections of Lines and Planes

Objective
Students identify intersections of lines and planes.
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 3 Draw Geometric Figures

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. In Example 3, ask students to justify their conclusions.

Questions for Mathematical Discourse

AL. What is the meaning of coplanar and collinear? Coplanar means on the same plane; collinear means on the same line.
(1) How do you know that point V is coplanar with the other points? Because it is graphed on the same coordinate plane, it is coplanar with the other points.
[B1. Is it possible for two points to be collinear but not coplanar? No ; if two points fall on the same line, then they are on the same plane.

Explore Intersections of Three Planes

Online Activity se a concrete model to complete the Explore.

```
    N NQUIRY What figures can be formed by the
```

 intersection of three planes?
 Learn Intersections of Lines and Planes
The intersection of two or more geometric figures is the set of points they have in common. Two lines intersect in a point. Lines can intersect planes, and planes can intersect each other.

Example 3 Draw Geometric Figures
oraw and label a figure to represent the relationship.
$\dot{C P}$ and $\$ \overrightarrow{\$ T}$ intersect at U for $Q(-3,-2) R(4,1), S(2,3)$, and $\mid-1,-5)$ on the coordinate plane. Point V is coplanar with these points but not collinear with $6 \mathrm{CR}^{2}$ and ST^{\prime}
Graph each point and draw $\overleftrightarrow{Q R}$ and $\stackrel{S T}{ }$
Label the intersection point as U
An infinite number of points are coplanar
with O R S, T and UOUS arenct colinem
$\xrightarrow{\sim} \rightarrow$
point is $\mathrm{V}(-2,3$).

Check
Draw and label a figure to represent the relationship. \overleftrightarrow{K} and $L \bar{M}$ intersect at Pfor $J(-4,3), N(G)-3), L(-4,-5)$, and M3.3.3) on the coprdinupe plone. Point O is coplanar with these points, but not collinear with \overparen{R} and $\frac{1 M}{L M}$

Sample answer:

O Go Online Y ou can complete an Extra Example online.

Interactive Presentation

Learn

© Example 5 Model Intersections
AVIATION A biplane has two main wings that are stacked one above the other. Struts connect the wings and are used for support. Flying wires run diagonally from the main body of the plane to the wings and between the stacked wings.
Complete the statements regarding the geometric terms modeled by the biplane.
Each wing models a Dlane.
The intersection of a strut and a wing models a Doint
The crossing of two flying wires models a point
Q go online Y ou can complete an Extra Example online.
564 Module 10 . Tools of Geometry

Interactive Presentation

Example 4

Example 4 Interpret Drawings

Teaching the Mathematical Practices
7 Use Structure Help students to use the structure of points, lines, and planes in this example to identify collinear points and name planes.

Questions for Mathematical Discourse
ALI When looking for planes, which figure would you look at and why? The pyramid; sample answer: Because the pyramid is threedimensional, the faces of the pyramid are planes.
OL. What three points are considered to be coplanar? Sample answer: Points E, F, and A are coplanar because they lie on the same plane.Does \overleftrightarrow{J} intersect plane $C D E$? If so, name the intersection. yes; point /

© Example 5 Model Intersections

Teaching the Mathematical Practices

4 Analyze Relationships Mathematically Point out that to identify the geometric terms modeled in this example, students will need to analyze the parts of a biplane and determine how they are related mathematically.

Questions for Mathematical Discourse
AL What geometric objects are modeled by the wires? lines
OL. What other part of the biplane can represent a line? a strut
[BLI Is a strut a part of the top wing? Use geometric terms to explain your reasoning. No; sample answer: The strut is a line that intersects the plane of the top wing.

Common Misconception

Students may assume that a line must be drawn between two or more points for the points to be collinear. Ask: Draw a point A on your paper and place your pencil above it. If the tip of your pencil is point B, are points A and B collinear? yes Any two points are said to be collinear because it is possible to draw a line through them.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-31$
2	exercises that use a variety of skills from this lesson	$32-44$
3	exercises that emphasize higher-order and critical-thinking skills	$45-50$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks, THEN assign:

- Practice, Exercises 1-43 odd, 45-50
- Extension: Fano Plane
- G ALEKS'Points, Lines, and Planes

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-49 odd
- Remediation, Review Resources: Subtract Integers
- Personal Tutors
- Extra Examples 1-5
- ALEKS'Addition and Subtraction with Integers

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Subtract Integers
- Quick Review Math Handbook: Points, Lines, and Planes
- G ALEKS'Addition and Subtraction with Integers

Answers

20. Sample answer:

21. Sample answer:

Mked Exer then
.
32. $\overleftrightarrow{L M}$ and $\grave{N P}$ are coplanar but do not intersect. See margin.
33. $\stackrel{F G}{ }$ and $\overleftrightarrow{\pi}$ intersect at $F A, 3)$, where point $F i s$ wh $(-2,5)$ and point J is at $(7,9)$. See margin.
34. Lines tand fitternect, and line r ibes not ktenyd ether one See margin.

Refer to the figure for Exercises 35-38.
35. Name a line that contains point $\&$. Sample answer: line ef
36. Name a point contained in line $n=A$ or B
37. What is another name for line $p>\overline{C D}$ or $\overrightarrow{D C}$
38. Name the plane containing lines n and p Sample answer: plane 6
THE TOOLS Draw and label a figure for each relationship.
39. Alint Klies on $\overrightarrow{R T}$. See margin.
40. Plane Jcontains line : See Mod. 10 Answer Appendix.

42 Lines fand /intersect at point An plane /I See Mod. MEAnswer Appendix.
43. Name the geometric term modeled by the object. lines perpendicular to a plane

44 Name the geometric term modeled by a partially-opened folder. planes intersecting in a line

OHigher-Order Thinking Skills
45. TREATE Sketch three planes that intersect in a point. See Mod. 10 Answer Appendix.
46. ANALYZE Is it possible for two points on the surface of a prism to be neither collinear nor coplanar? Justify your argument. No; sample answer: There is exactly one line through any two points and exactly one plane through any three points that are not on the same line. Therefore, any two points on the prism must be collinear and coplanar.
47. FIND THE ERROR Camille and Hiroshi are trying to determine the greatest number Explain your reasoning. Sample answer: Hiroshi is correct. After you draw the line from the first point to the other three, one of the lines from the second point is already drawn.
 the points A. \& Cand Vif no three points are collinear? A

4 WRITEA inite plane is a plane that has boundaries or does not extend indefinitely. The sides of a cereal box shown are finite planes. Give a real-life example of a finite plane. Is it possible to have a real-life object that is an Snite dane? Ex lain our reasoning, It is not possible to have a real life abject that is an infinite plane because all real-life objects have boundaries.
50. CREATE Sketch three planes that intersect in a line. See Mod. 10 Answer Appendix.

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
Standards for Mathematical Practice:
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students solved one-step equations to find missing values.
6.EE.7, A.REI. 3

Now

Students apply betweenness of points to calculate measures of line segments and apply the definition of congruent line segments to find missing values.
G.Co.1, G.C0. 12

Next

Students will apply the Distance Formula to find the length of line segments. G.CO. 1

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING	2 FLUENCY	3APPLICATION
庸 Conceptual Bridge In this lesson, students develop an		
understanding of line segments, and they build fluency by making		
constructions related to segments. They apply their understanding by		
solving real-world problems related to line segments.		

Mathematical Background

A line cannot be measured because it extends infinitely in each direction. A line segment, however, has two endpoints and can be measured. Two segments with the same measure are said to be congruent. The symbol for congruence is \cong. An equal number of tick marks also indicates that segments are congruent.

Interactive Presentation

Warm Up

[^14]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- solving one-step equations

Answers:

1. 55
2. 180
3. 60
4. -51
5. $c+2,740,991=6,592,800 ; 3,851,809 \mathrm{mi}^{2}$

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see real-world objects that can be modeled by congruent line segments.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Using Tools to Determine Betweenness of Points

Objective

Students derive the definition of betweenness of points using graphing and measuring tools.

Teaching the Mathematical Practices

5 Use Mathematical Tools Point out that to complete the activity in the Explore, students will need to use pencil, paper, and a ruler. Work with students to explore and deepen their understanding of dividing segments.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students tap buttons to see the instructions for the activity. They use pencil, paper, and a ruler to draw line segments and divide them into multiple parts. Students then complete the guiding exercises by measuring the lengths of each part of the line and finding the sum of the measures. Then students write equations that can be used to find the lengths of the entire segments. Next students compare the results of their equations to the actual lengths of the segments and state conclusions based on their comparison. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

TAP

Students tap to explore betweenness of points.

Interactive Presentation

Explore

TYPE

a|
Students will respond to the Inquiry Question and can view a sample answer.

Explore Using Tools to Determine Betweenness of Points (continued)

Questions

Have students complete the Explore activity.

Ask:

- What would happen if you had drawn the point at a different location on the line segment? Sample answer: The lengths of the line segments created by the new point would be different, but the sum of the lengths would still equal the total length of the original line segment.
- Compare the lengths with a partner. How is his/her example different than yours? How is it similar? Sample answer: The other person's segments have different measurements. The sum of the lengths of their line segments equals the sum of the lengths of my line segments.

(${ }^{2}$ Inquiry

How can a line segment be divided into any number of line segments? Sample answer: There are an infinite number of points between the endpoints of a line segment. New line segments can be created by connecting any of the points on the original line segment.
(3o Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Betweenness of Points

Objective
Students apply betweenness of points to calculate measures of line segments.

Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the drawing and the notation of a line or line segment.

Common Misconception

Review how to use a ruler. For metric rulers, explain how centimeters and millimeters are marked. For standard rulers, some students may need to be shown how an inch ruler is divided using marks for $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$, and $\frac{1}{16}$. These fractions often need to be added and reduced to get a measurement in inches.

Example 1 Find Measurements by Adding

Teaching the Mathematical Practices
2 Attend to Precision Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse
AL How can you name all three line segments in the diagram?
Sample answer: $\overline{X Y}, \overline{Y Z}$, and $\overline{X Z}$
OI What is $X Z$ in meters? 0.151 mSuppose point W is between Y and Z such that $Y W=1.2 x$ and $W Z=3 x-0.4$. If $Y Z=4.6$, what is $Y W ? Y W=1.2$

DIFFERENTIATE

Have students create a game that requires measurement to determine a winner. Many competitive games and sports use measurement to compare athletes and determine the winner. Examples include bocce ball and discus throw.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn
TAP
Students tap to reveal information on betweenness of points.

Problem-Solving Tip Draw a Diagram Draw a diagram to help you see and correctly interpret a situation that has been described in words.

Think About It! How can you check your solution for 57

Sample answer: Y ou Can substitute the value of z into the original equation to check your elution. If the two sides of the equation are not equal, then you have made an error.
$4 x-12=x+2 x+3$
$4(15)-12=15+2(15)$
$60-12 \stackrel{\sim}{=} 15+30+3$ $48=48$

9 Think About It| Once you find $B C$, how could you find $A C$ $A C=A x-12 ?$

Sample answer: Y ou csold add the value of $B C$ to the value of $A B$, which is the same as the value of x.
$33+15=48$.

Example 2 Find Measurements by Subtracting
Find the measure of $Q R$.
Foint Q is between points P and R

$$
P Q+Q R=P R \quad \text { Betweenness of }
$$

ENoints

$$
\hbar_{8}^{5}+Q R=13_{4}^{3}
$$

$$
Q R=7_{8}^{1} \mathrm{ft} \text { Subtrictes } \quad \text { from each side and simplify. }
$$

Check
Find the measure of $\overline{P Q}$. Round your answer to the nearest tenth if necessar 6.5 ? cm

Example 3 Write and Solve Equations to Find Measurements
Find the value of x and $\Theta C i t$ is between A and $C, A C=4 x-12$,
$A B=x$, and $B C=2 x+3$.
$\begin{gathered}\text { Step } 1 \text { 月ot two points and label them } \\ \boldsymbol{A} \text { and } C \text {. Connect the points. } \\ x\end{gathered} \quad 4 x-12$ $\begin{array}{rl}\text { A and } C \text {. Connect the points. } & x=2 x+3 \\ \text { Step } 2 \text { Plot point } \boldsymbol{B} \text { between points } A & A B\end{array}$ and C

Step 3 Label segments $A B, B C$, and $A C$ with their given measures. Step 4 Use betweenness of points to write an equation and solve for

$$
A C=A B+B C \quad \text { Betweenness of points }
$$

$4 x-12=x+2 x+3 \quad$ Fatritution

$x-12=3 \quad$ Siblitact $3 x$ from each side. Simplify.
$x=15 \quad$ Add 12 to each side. Simplify.
Now find $B C$
$B C=2 x+3 \quad$ Given
$=2(15)+3 \quad-=15$
-33
\qquad

Example 2 Find Measurements by Subtracting

(1)

Teaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Questions for Mathematical Discourse

ALI What inequality statement compares $\overline{P R}$ and $\overline{Q R}$?
Sample answer: $\overline{P R}>\overline{Q R}$
OL Suppose $P Q=4 \frac{1}{3} \mathrm{ft}$. What is $Q R ? 9 \frac{5}{12} \mathrm{ft}$
Bill If point D is between points P and Q and $D Q=6 \mathrm{ft}$, how far from point P would point D have to be? $\frac{5}{8} \mathrm{ft}$

Common Error

Students may add instead of subtracting or subtract fractional quantities incorrectly. Guide them to set up and compute their answers correctly.

Example 3 Write and Solve Equations to Find Measurements

Teaching the Mathematical Practices
8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students will evaluate the reasonableness of their answer.

Questions for Mathematical Discourse

Of the three line segments, which is the longest? $\overline{A C}$
Ol. Which two segment lengths should be added together to equal the third? $A B$ and $B C$ should be added together to equal $A C$.

BL. If $A B$ is ten more than twice the length of $B C$, and $A C$ is two less than four times the length of $B C$, how long is $B C$? 12 units

Common Error

Students may incorrectly set up the equation. Help them model their equation based on a correctly drawn figure.

1 CONCEPTUAL UNDERSTANDING

Apply Example 4 Use Betweenness

 of PointsTeaching the Mathematical Practices
2 Attend to Quantities Point out that it is important to note the meaning of the quantities used in this problem.

Recommended Use

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

Encourage Productive Struggle

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

Signs of Non-Productive Struggle

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.

- H ow can you write phrases such as 10 feet more than six times the distance as expressions?
-W hat do you notice about the height of the Space Needle?

- Write About It!

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

- Apply Example 4 Use Betweenness of Points

SPACE NEEDLE Darrell is visiting the Space Needle in Seattle, Washington. He knows that the total height of the Space Needle is 605 feet. The distance from the ground to the observation deck is 10 feet more than six times the distance from the observation deck to the top of the Space Needle. Help Darrell find the distance from the ground to the observation deck.
1 What is the task?
Describe the task in your own words. Then list any questions that you may have. How can you find answers to your questions?

Sample answer: I need to find the distance from the ground to the observation deck. How does the distance from the ground tothe observation deck compare to the total height of the Space Needle? I can express the information that I am given in the exercise as an equation, solve for any missing information, and then use that information to find the answer.
2 Now will you approach the task? What have you learned that you can use to help you complete the task?

Sample answer: I will express the information that I am given into an equation that represents the total height of the Space Needle. I have learned how to convert written information into expressions, and I have learned how to solve equations
3 What is your solution?

4 How can you know that your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.
Sample answer: 520 feet seems reasonable for the distance from the ground to the observation deck. The distance from the observation deck to the top of the Space Needle is 85 feet. The combined heights are realistic compared to the total height.

Interactive Presentation

Apply Example 4
DRAG \& DROP
Students drag justifications to complete the solution.

CHECK

Students complete the Check online to determine whether they are ready to move on.

Interactive Presentation

Example 5
 determine whether they are ready to move on.

Learn Line Segment Congruence

Objective
Students apply the definition of congruent line segments to find missing values.
(1) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 5 Write and Solve Equations by Using Congruence

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their solution makes sense and whether they have answered the problem question.

Questions for Mathematical Discourse

How do you determine whether a quotient is negative or positive when dividing with negative numbers? The quotient of a positive dividend and a positive divisor is positive; the quotient of a negative dividend and a negative divisor is positive; the quotient of a negative dividend and a positive divisor is negative; and the quotient of a positive dividend and a negative divisor is negative.
OL. What is $P Q$? 68 units
BLi. If your result was a negative segment length, what should you do? Explain. Negative lengths are not possible. Distance is always positive. You should look for a mistake in your solution.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-33$	
2	exercises that use a variety of skills from this lesson	$34-38$
2	exercises that extend concepts learned in this lesson to new contexts	$39-46$
3	exercises that emphasize higher-order and critical-thinking skills	$47-51$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-33 odd, 47-51
- Extension: Solving One-Step Equations
- D ALEKS'Points, Lines, and Planes

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-51, odd
- Remediation, Review Resources: Solving One-Step Equations
- Personal Tutors
- Extra Examples 1-5
- D ALEKS'One-Step Linear Equations

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Solving One-Step Equations
. Quick Review Math Handbook: Linear Measure
- C ALEKS' One-Step Linear Equations

Example 4

24. RAILROADS A straight railroad track is being built to connect two cities. The measured distance of the track between the two cities is 160.5 miles. A mail stop
is 28.5 miles from the first city. How far is the mail stop from the second city? 132 mi
25. CARPENTRY A carpenter has a piece of wood that is 78 inches long. He wants to cut it so that one piece is five times as long as the other piece. What are the lengths of the two pieces? 13 in . and 65 in.
26. WALKING Marshall lives 2300 yards from school and 1500 yards from the pharmacy. The school, pharmacy, and his home are all collinear, as shown in the figure.
$\longrightarrow 2300$ yards \longrightarrow School Pharmacy 1500 yards $\xrightarrow{ }$

What is the distance from the pharmacy to the school? 800 yd
27. COFFEE SHOP Chenoa wants to stop for coffee on her way to school. The distance from Chenoa's house to the coffee shop is 3 miles more than twice the distance from the coffee shop to Chenoa's school. The total distance from Chenoa's house
o her school is 5 times the distance from the coffee shop to her school.
a. What is the distance from Chenoa's house to the coffee shop? Write your
answer as a decimal, if necessary. 6 mi
b. What assumptions did you make when solving this problem? Sample answer: 1 assumed the three locations were in a straight line.

Example 5
Find the measure of each segment.

Mked Exercises

34. Find the length of $O W$ if W is between U and $V, U V=16.8$ centimeters, and w -7.9 centimeters. 8.9 cm
35. Find the value of x if $R S-24$ centimeters. $3 \quad \vec{R} \quad \frac{T}{T}$
36. Find the length of $L O$ if M is between L And $O L M=7 *-9 M O=14$ inches and $L O=10 x-7.33 \mathrm{in}$.
37. Find the value of sif $P Q \cong R S, P Q=9$, \quad, and $R S=29.4$
38. Find the measure of N .3 .70 em

39. PRECISION Ipoint As between fand Mwrite a true statement. Sample answer: $A P=P M^{-} A M$
40. HIkING A hiking trail is 20 kilometers long. Park organizers want to build 5 rest stops for hikers with one on each end of the trat and the other 3 spaced evenly between. How much distance will separate successive rest stops? 5 km
41. RACE The map shows the route of a race. You are at $\mathrm{V}, \mathrm{K} 00$ feet from the first checkpoint A. The second checkpoint B is located at the midpoint between Aand is 31 miles. How far apart are the two checkpoints? 5184 ft $\vec{F} \quad \vec{A} \quad \vec{B} \quad \vec{Z}$

42- FIELD TRIP The marching band at Jefferson High School is taking a field trip from Lansing, Michigan, to Detroit, Michigan. The bus driver was told to stop 53 miles into the trip. If the rest of the trip is 41 miles and the entire journey can be represented by the expression $3 x+16$, find the value of $x 26$

Lesson 10.3. Line Segmems 575
43. Distance Madison lives between Anoa and Jamie as depicted on the line segment. The distance between Anoa's house and Madison's house is represented by $3 x+2$ miles, the distance between Madison house and Jamie's house is represented by $3 x+4$ miles and the
 9s ance between Anoa's house and Jamie shouse is represented by 9\% - 3 miles. Find the value of x . $\mathrm{men} \mathbf{0 0 5}$ the distance between Madison's house and Jamie's house $x=3 ; 13 \mathrm{mi}$

44, FIREFIGHTIN IA firefighter training course is taking place in a high-rise building. The high-rise building where they practice 48 stories high. If the emergency happens on the top floor and hey still need to go? 19 stories
5. CAFE You are waiting at the end of a long straight line at Coffee Express. Your friend Denzel is +12 feet in front of you. Denzel is $2 r+4$ feet away from the font of the line. If Denzel is in the exact middle of the line, how many feet away are you from the front of the line? 40 ft
46. REASONING For $A C$, write and solve an equation to find $A B .1 .5+A B=3.7 ; A B=2.2 \mathrm{~cm}$

OHigher-Order Thinking Skills
47 PERSEVERE Point K is between points J and L if $X-\gamma^{2}-4 z, K L=3 x-2$, and $L=28$, find $J K$ and $K L . J K=12, K K=16$
48. ANALYZE Determine whether the statement If point Mis between points C and D then $C D$ is greater than either $C M$ and $M D$ is sometimes, always, or never rue Justify your argument. Always; sample answer: If point u is between points C and D
then $C O+M D=C D$ Because measures cannot be negative, $C D$ which represents the whole, must always be greater than either of the meenres of its parts, Car or MD
49. PERSEVERE Point as located between points B and D Also, $B C-8+7$, $C D-3 y+4, B D=38$, and $B D=2 \varepsilon+8 y$. fins the values of x and $y x=3: y=4$
50. WRITE If point B is know $A B$ and $B C$ Explain how you can find $B C$ if you know $A B$ and $A C$. If point Is is between oints A and a and you know $A B A=B C$, then add $A E$ and $B C$ to find $A C$. If you know $A d$ and $A C$, then

1. GREATE Sketch line segment $A C$ Plot point abetween fand C Use a ruler to find $A C$ and $A B$ Then write and solve an equation to find $B C$. Sample answer: $2.8+B C=5.3 ; B C=2.5$ in

LESSON GOAL

Students apply the Distance Formula to find lengths of line segments.

1 LAUNCH

88 Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Develop:

Distance on a Number Line

- Find Distance on a Number Line
- Determine Segment Congruence

Explore: Using the Pythagorean Theorem to Find Distances
Distance on the Coordinate Plane

- Find Distance on the Coordinate Plane
- Calculate Distance in the Real World

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	ALII	IAB	FIII	
Remediation: Solving Multi-Step Equations				0
Extension: Taxicab Geometry				0

Language Development Handbook

Assign page 59 of the Language Development Handbook to help your students build mathematical language related to applying the Distance Formula to find the lengths of line segments.
Elili You can use the tips and suggestions on page $T 59$ of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min 0.5 day

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students used the Pythagorean Theorem to find the distance between two points on the coordinate plane.

8.G. 8

Now

Students apply the Distance Formula to find the length of a line segment.
G.C0. 1

Next

Students will determine the coordinates of a point that is a given fractional distance less than one from one end of a line segment to the other.
G.GPE. 6

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop an understanding of distance along a line. They apply their understanding by solving real-world problems related to linear distance.

Mathematical Background

The coordinates of the endpoints of a segment can be used to find the length of the segment. On a number line, the distance between the endpoints is the absolute value of their difference. On a coordinate plane, you can use the Distance Formula or the Pythagorean Theorem to calculate the distance between two points.

Interactive Presentation

Warm Up

Launch the Lesson

[^15]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- solving multi-step equations

Answers:

1. 45
2. 20
3. 21
4. 37
5. $3 g-5=19 ; 8 \mathrm{lb}$

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of measures of line segments.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the question below with the class.

Explore Using the Pythagorean Theorem to Find Distances

Objective

Students use dynamic geometry software to calculate the distance between two points on the coordinate plane using the Pythagorean Theorem

Teaching the Mathematical Practices

5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as dynamic geometry software. Help them see why using these tools will help to solve problems and what the limitations are of using the tools.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students tap to reveal the parts of the diagram that is used to compute the distance between two points on the coordinate plane. Then students complete the guiding exercises. As they do this, students use the Pythagorean Theorem to compute the distance between the two given points. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

WEB SKETCHPAD

Students use a sketch to explore using the Pythagorean Theorem to find distances on the coordinate plane.

Students tap to reveal parts of the diagram.

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Explore

TAP
Students tap to select the correct answer to an exercise.

Students respond to the Inquiry Question and can view a sample answer.

Explore Using the Pythagorean Theorem to Find Distances (continued)

Questions

Have students complete the Explore activity.

Ask:

- Which side of a triangle is the hypotenuse? The side opposite the right angle is the hypotenuse.
- Why is distance found using the Pythagorean Theorem? Can it be found just by counting spaces of the coordinate plane? The line is diagonal, so you cannot just count squares. Bu need to use the Pythagorean Theorem instead.
(B) Inquiry

How can you find the distance between two points on the coordinate plane? Sample answer: $d=\sqrt{\left(x_{2}-x\right)_{1}{ }^{2}+\left(y_{2}-y\right)_{1}^{2}}$
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Distance on a Number Line

Objective

Students apply the Distance Formula to find the length of a line segment on a number line.

(11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Essential Question Follow-Up

Students learn how to compute distances on a number line.

Ask:

Why is it important to know how to compute distances on a number line? Sample answer: You can compute distances along a straight line in the real world.

Example 1 Find Distance on a Number Line

(11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

ALI What is absolute value? Absolute value is the distance between two numbers.

OL. When using the distance formula to find the distance between points F and C, does it matter which endpoint is used for x_{1} and which endpoint is used for x_{2} ? Explain. No; distance is the absolute value of the difference between two points.
BBLI. What line segments are congruent to $\overline{C F} ? \overline{A D}$ and $\overline{B E}$

Common Error

Students may incorrectly subtract negative numbers. Remind them that subtracting a negative number is the same as adding the absolute value of that number.

(3) Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Learn

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Example 2
SELECT
Students select the solution from a list of choices.

Students complete the Check online to determine whether they are ready to move on.

Example 2 Determine Segment Congruence

(11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
How do you subtract negative numbers? Add the opposite of the 2nd number to the 1st number.

OLI Is $|2-(-6)|=|-6-2|$? Explain. Yes; both equal 8.
BL. If each of the four coordinates was its opposite, would the two segments be congruent? No ; the distances would still equal 2 and 3.

Learn Distance on the Coordinate Plane

Objective
Students apply the Distance Formula to find the distance between two points on the coordinate plane.
Nit) Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Common Misconception

After subtracting in the Distance Formula, students will need to square a negative number. Remind them that the square of a negative number is a positive number.

DIFFERENTIATE

Enrichment Activity [B1

Have each student pair or group of three create a scenario that uses adding and subtracting negative numbers in real-life situations. Scenarios may include buying something at a store, borrowing money, paying debts, or depositing money. Ask pairs/groups to share their scenarios with the class.

Example 3 Find Distance on the Coordinate Plane

Teaching the Mathematical Practices

1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse

AII Explain why the distance is not $\sqrt{-149}$. When you square a negative value, the result is a positive value, $s a \sqrt{(-7)^{2}+(-10)^{2}}=$ $\sqrt{49+100}=\sqrt{149}$.

OL Does it matter if you use $(4,3)$ or $(-3,-7)$ for $\left(x_{19} y\right)$? Explain. No; sample answer: The distance between the points will be the same no matter which point you use.
BE- You can also use a right triangle and the Pythagorean Theorem to find the distance. If $J(4,3)$ and $K(-3,-6)$ are two vertices of the right triangle, name two other points that could be used to form a right triangle. $(-3,3)$ or $(4,-7)$

Common Error

Students may take the square roots of the addends in the sum before adding, when they should add first and then take the square root. Make sure that students understand that they cannot separate a square root into two square roots at a plus sign.

Think About It compare and contras he Distance Formula on a number line with he Distance Formula on the coordinate plane.

Both formulas include

 finding the difference between corresponding coordinates such as ${ }^{5}$? and s. However, on the Coordinate plane you must also square these differences. Then you have to take the square root of the sum of these perfect squares.
Watch Out!

Simplity Redicals Do not forget to leave your answer in simplest radical form when using the Distance
Formula or the Pythagorean Theorem.

Interactive Presentation

Example 3

Interactive Presentation

Example 4
 determine whether they are ready to
move on.

DIFFERENTIATE

IF Students are struggling to remember the Distance Formula and/or its steps
THEN use a graphic organizer to help students organize and label their steps.

Example 4 Calculate Distance

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

Questions for Mathematical Discourse

What ordered pair represents Chelsea's position when the girls notice each other? ($212.0,151.6$)
OLL What ordered pair represents a distance of 100 feet from point C ? Sample answer: $(312,151.6)$If you made a right triangle to find the distance, what is the length of each leg of the triangle? 223.3 ft and 159.7 ft

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-30$	
2	exercises that use a variety of skills from this lesson	$31-46$
2	exercises that extend concepts learned in this lesson to new contexts	$47-48$
3	exercises that emphasize higher-order and critical-thinking skills	$49-54$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-47 odd, 49-54
- Extension: Taxicab Geometry
- ALEKS'Distances and Midpoints on a Number Line, Distances and Midpoints in the Coordinate Plane

IF students score $66 \%-89 \%$ or more on the Checks,
THEN assign:

- Practice, Exercises 1-53 odd
- Remediation, Review Resources: Solving Multi-Step Equations
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Multi-Step Linear Equations

IF students score 65% or less on the Checks,

THEN assign:

- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Solving Multi-Step Equations
- Quick Review Math Handbook: Distance and Midpoints
- D ALEKS Multi-Step Linear Equations

24. $A(2,6), M(5,10)$
25. $R(3,4), T(7,2)$ $\sqrt{20}$ or about 4.5 units
26. $X(-3,8), Z(-5,1)$

Example 4

27. SPIRALS Denise traces the spiral shown in the figure. The spiral begins at the origin. What is the shortest distance between Denise's starting point and her ending point? $\sqrt{20}$ or approximately 4.5 units
28. zooLoGY A tiny songbird called the blackpoll warbler migrates each fall from North America. A tracking study
showed one bird flew from Vermont at map coordinates $(63,45)$ to Venezuela at map coordinates (67, 10) in three days. If each map coordinate represents 75 kilometers, how far did the bird travel? 2642 km

29. CONSTRUCT ARGUMENTS Mariah is training for a sprint-distance triathlon.
She plans on cycling from her house to he library shown on the gid with a to In miles. If the cycling portion of the riathlon is 12 miles, will Mariah have cycled at least $\frac{2}{3}$ of that distance during her bike ride? Justify your argument. Y es; sample answer: The distance between Mariah's house and the library is $\sqrt{74}$ or about 8.6 miles. Because $\frac{2}{3}$ of 12 miles is 8 miles, Mariah's bike ride is more than $\frac{2}{3}$ of the cycling portion of the triathion.

30. sports the distance between each base on

Sovebull infield is 90 feet. The third baseman
nearest foot, how far did the player throw the ball? 150 ft

Mixed Exercises

Find the distance between each pair of points. Round to the nearest tenth, if necessary.
31. $M(-4,9), N(-5,3)$
$32 \mathrm{Cl}(2,4), D(5,7)$
 $\sqrt{37}$ or about 6.1 units 18 or about 4.2 un
33. $A 5,1, B B, 6$) $\sqrt{29}$ or about 5.4 units
35. 9 (6,4), 71,2 $\sqrt{13}$ or about 2.6 units
 $\sqrt{89}$ or about $\$ 4$ units
39. $R(6,11)$, ra, -7$)$ 3.37 or about 18.2 units

1. $M(4,-3)$ and $M^{(-2,1)}$ $\sqrt{52}$ or about 7.2 units
 $\sqrt{17}$ er athoot 48 units
2. $M(1,8), \mathrm{M}(3,3)$ $\$ 29$ or about 5.4 units
3. $8(3,4),(5,-5)$ $\sqrt{5}$ or about 2.2 units
4. $A(-3,8)$ and $B(-1,4)$ / 20 or about 4.5 units
$42 \times(1-3,5)$ and n. 2.2 . 58 or about 7.6 units
5. Usuthe number line to determine whether $\$ \mathbb{V}$ and $\sqrt{\mathbb{K}}$ are congruent. Write ye orno. no

Name the point(s) that satisfy the given condition.
44. two points on the Xabis trut are 10 unis tiom \} , 8: $(-5,0),(7,0)$
45. two points on the paon trat are 25 unat rons $(-24,3(10,-4),(0,10)$
46. Fefer to the figure. Are $V T$ and 30 congruent ${ }^{*}$
46. "efer tot the figure. Are $V T$ and
$V T$ andsit are congruent.

47. knitting Mei is knitting a scarf with diagonal stripes. Before she began, she laid out the pattern on a coordinate grid where each unit represented 2 inches. On the length. How many inches long is each stripe on the scarf? 10 in. as shown. All the triangles are about the same size and can be represented on a coordinate plane with vertices at points ($0,6.8$). (4.5, 6.8), and ($2.25,0$). If each unit represents 1 centimeter, what is the approximate perimeter of each triangle, to the nearest tent of a centimeter? 18.8 cm

OHigher-Order Thinking Skills
49. ANALYZE Consider rectanglepe IS with QR $=S T \quad 4$ centimeters and $R S=O T=2$ centimeters. If point U is on $Q R$ such that $Q U=U Q$ and point V is on $R S$ such that $R V=V S$, then is $O U$ congruent to $R V$? Justify your argument. No; sample answer: We know that $Q U+U Q=O R=4$ and $Q U=$
 not congruent to kz
50. WRITE Explain how the Pythagorean Theorem and the Distance Formula are related. See margin.
51. PERSEVERE Point is located on the segment between point 1, 4) and soint 197,13). The distance from Δ to ψ is twice the distance from μ to D What are the coordinates of point P ? $(5,10)$
52. CREATE Plot points' ant Formula to find $Y Z$ See margin.
53. PERSEVERE Suppose point A is located at $(1,3)$ on a coordinate plane. I is B is and the vcoordinate of point B is 9 , explain how to use the Distance Formula to find the r coordinate of point B. See margin.
54. werte Explain how to use the Distance Formula to find the distance between

Answers

50. Sample answer: The Pythagorean Theorem relates the lengths of the legs of a right triangle to the length of the hypotenuse using the formula $c^{2}=a^{2}+b$. If you take the square root of the formula, you get $c=\sqrt{a^{2}+b^{2}}$. Think of the hypotenuse of the triangle as the distance between the two points, the a value as the horizontal distance $x_{2}-x_{1}$ and the b value as the vertical distance $y_{2}-y_{1}$ if you substitute, the Pythagorean Theorem becomes the Distance Formula, $c=\sqrt{\left(x_{2}-x\right)^{2}{ }^{2} \quad\left(y_{2}-y\right)^{2}}$.
51. Sample answer: Plot point Y at $(2,6)$ and Z at $(-2,8)$. Substitute $(2,6)$ for $\left(x_{1}, y_{1}\right)$ and $(-2,8)$ for ($x_{22} y$) in the Distance Formula:
$D=\sqrt{(-2-2)^{2}+(8-6)^{2}}$. Solve for D :
$D=\sqrt{(2)^{2}+(-4)^{2}}=\sqrt{4+16}=\sqrt{20}$ or about 4.5
52. Sample answer: Substitute 10 for $d,(1,3)$ for (x, y), and $(9, y)$ for $\left(x_{p 2} y\right)$ in the Distance Formula: $10=\sqrt{(y-3)^{2}+(9-1)^{2}}$. Solve for y :

$$
\begin{aligned}
100 & =(y-3)^{2}+(9-1)^{2} \\
& =(y-3)^{2}+8^{2} \\
& =(y-3)^{2}+64 \\
36 & =(y-3)^{2} \\
6 & =y-3 \text { or }-6=y-3 \\
9 & =y \text { or }-3=y . \text { So, the } y \text {-coordinate of point } B \text { is } 9 \text { or }-3 .
\end{aligned}
$$

LESSON GOAL

Students find points that partition directed line segments on number lines.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Locating Points on a Number Line with Fractional Distance

Develop:

Locating Points on a Number Line with Fractional Distance

- Locate a Point at a Fractional Distance
- Locate a Point at a Fractional Distance in the Real World

Locating Points on a Number Line with a Given Ratio

- Locate a Point on a Number Line Given a Ratio
- Partition a Directed Line Segment

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

P
 Practice

Formative Assessment Math Probe

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	A10	TB	F1.	
Remediation: Find Distance on the Coordinate Plane	-			-
Extension: Relationships Among Lines		- -		-

Language Development Handbook

Assign page 60 of the Language Development Handbook to help your students build mathematical language related to finding points that partition directed line segments on number lines.
Enlilyou can use the tips and suggestions on page T 60 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	0.5 day
45 min	1 day

Focus

Domain: Geometry
Standards for Mathematical Content:
G.GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students found the distance between two points on a coordinate plane by applying the Distance Formula.
G.CO. 1

Now

Students find points that partition directed line segments on number lines.
G.GPE. 6

Next
Students will find the midpoints of line segments.
G.GPE. 6

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of how a point on a directed line segment can partition the segment in a given ratio. They build fluency by locating points on the coordinate plane when given a ratio or fractional distance, and they apply their understanding by solving real-world problems.

Mathematical Background

To find the coordinate of a point that divides a directed line segment into a ratio of $a: b$, first add a and b to find the total number of partitions on the directed line segment. Then make sure that there are a partitions to the left of the point and b partitions to the right of the point. Later, you can use this mathematical reasoning to develop the Midpoint Formula.

Interactive Presentation

Warm Up

Launch the Lesson

[^16]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- measuring line segments on the coordinate plane

Answers:

1. $<$
2. $>$
3. $>$
4.5
5.5

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of proportional reasoning.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Locating Points on a Number Line with Fractional Distance

Objective

Students use dynamic geometry software to find the point on a directed line segment on a number line that is a given fractional distance from the initial point.

Teaching the Mathematical Practices
7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In this Explore, guide students to see what information they can gather about the expression just from looking at it.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. Students answer the guiding exercises and tap to reveal steps in the solution. Next students complete the guiding exercises to display their understanding of finding the coordinate using fractional distance. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Locating Points on a Number Line with Fractional Distance

cinglineorl.
$\rightarrow \operatorname{tanc}$


```
[Snow Fractional Distance
```

Explore

Students use a sketch to explore points on a number line.

TYPE

Students type answers to the guiding exercises.

1 CONCEPTUAL UNDERSTANDING

Interactive Presentation

Explore

TYPE

a|
Students respond to the Inquiry Question and can view a sample answer.

Explore Locating Points on a Number Line with Fractional Distance (continued)

Questions

Have students complete the Explore activity.

Ask:

-What does the word fractional mean? Sample answer: in pieces

- How do you think you would find fractional distance? Sample answer: Divide a distance into parts and then count however many are needed.
- Given point A at 2 and point C at 12 , how would you find the coordinate of point B such that B is $\frac{2}{}$ f the distance from A to C ? I would divide $\overline{A C}$ into five equal parts. Then I would place point B two parts from point A.

(4) Inquiry

What general method can you use to locate a point some fraction of the distance from one point to another point on a number line? Sample answer: Multiply the difference between the two coordinates by the given fraction. If you are locating the point a fractional distance to the right of one endpoint, then add the product to that endpoint. If you are locating the point a fractional distance to the left of one endpoint, then subtract the product from that endpoint.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Locating Points on a Number Line with Fractional Distance

Objective

Students find a point on a directed line segment on a number line that is a given fractional distance from the initial point.

Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

About the Key Concept

Notice how the process of locating a point at a fractional distance on a number line is related to finding the length of a line segment.

Common Misconception

Students frequently switch the initial endpoint and the terminal endpoint in the equation that they use to calculate the location of the point in the directed line segment. Remind students to be sure to differentiate between the initial endpoint $\left(x_{1}\right)$ and terminal endpoint $\left(x_{2}\right)$.

Essential Question Follow-Up
Students learn about fractional distance along directed line segments.

Ask:

Why might locating a fractional distance along a line segment be useful in applying points, lines, and planes in the real world? Sample answer: You might need to know where to locate pit stops or water stations along a race course.

0
 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Interactive Presentation

Example 1

CHECK
(II)

Students complete the Check online to determine whether they are ready to move on.

Example 1 Locate a Point at a Fractional Distance

Teaching the Mathematical Practices
8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students will evaluate the reasonableness of their answer.

Questions for Mathematical Discourse
AL. What is the midpoint of $\overline{A C}$? 1
OL. What point is $\frac{1}{4}$ of the distance from A to C ? 3
Bil. If Y lies $\frac{1}{6}$ the distance from A to C, where does it fall on the number line? - 3

Example 2 Locate a Point at a Fractional Distance in the Real World

Teaching the Mathematical Practices
4 Apply Mathematics Students apply what they have learned about locating points at a fractional distance to solve a real-world problem.

Questions for Mathematical Discourse

Which building is located in the opposite position of Julio's resting point? The library is located at positive four on the number line which is opposite of -4 .
OL. What point is $\underset{6}{1} \mathrm{f}$ the distance from Julio's house to the library? -6
[BII What points are $\frac{1}{6}$ of the distance from the midpoint of the segment from Julio's house to the library? -4 and 0

Common Error

Students might mix up the endpoints of the directed line segment. Remind students that in this problem, the order of the endpoints matters and that they should use them correctly.

DIFFERENTIATE

Enrichment Activity

Have students plan a road trip with four to five cities. Ask students to research the distances between the cities and to calculate the total distance from their starting city to their final destination. Ask students to describe the location of each city using fractional distance.

Learn Locating Points on a Number Line with a Given Ratio

Objective

Students find a point that partitions a directed line segment on a number line in a given ratio.

Teaching the Mathematical Practices

3 Analyze Cases The Concept Check guides students to examine the cases of the ratio used in the Section Formula. Encourage students to familiarize themselves with all of the cases.

Example 3 Locate a Point on a Number Line When Given a Ratio

Teaching the Mathematical Practices
1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the problem question.

Questions for Mathematical Discourse

AL. What formula would you used to determine the coordinate of point B ? Section Formula: $B=\frac{n x_{1}+m x_{2}}{m+n}$
Ol. What would be the coordinate of point D such that the ratio of $A D$ to $D C$ is $2: 3 ?-\frac{1}{5}$
[B1. What would be the coordinate of point E such that the ratio of $B E$ to $E C$ is 3:1? Use a method other than the one described in this lesson and explain your method. Find the midpoint M of $A B$ and then find the midpoint of $M B$.

Common Error

Students may substitute incorrectly into the formula for the location of a point on a number line given a ratio. Make sure they understand how the quantities relate in the formula.

Check
DECORAT NG T aji is hanging a picture ${ }^{5}$ of the distance from the floor to the ceiling. If the distance between the floor and the ceiling is 12 feet, how high should he hang the picture? 7.5 ft

Learn Locating Points on a Number Line with a Given Ratio
Y ou can calculate the coordinate of an intermediary point that partitions the directed line segment into a given ratio.
Key Concept - Section Formula on a Number Line
IC C has coordinate x, and D has coordinate $x_{\text {p }}$, then a point "thec Dartitions the line segment in a ratio of 10 n is located at coordinate $\frac{m+\cdots x_{2}}{m}$, where $m \neq-n$.

Example 3 Locate a Point on a Number Line When Given a Ratio

B Go Online Y ou may want to Check to check your understanding.

Study Tip

 Checking Solutions When using the Section Formula can check your solution by converting he given ratio into a rraction. Use this fraction and the coordinate equation distance from your initial endpoint to your terminal endpoint. If you don't calculate the same coordinate, you have made an error.
Interactive Presentation

Example 3

Interactive Presentation

Example 4

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 4 Partition a Directed Line

Segment
Teaching the Mathematical Practices
5 Use Estimation Point out that in this example, students need to include an estimate and check against the estimate at the end.

Questions for Mathematical Discourse

(Al) Let A be New York, B be San Francisco, and C be where Jorge stops for gas. The ratio of $A C$ to $C B$ is $2: 5$. Into how many equal sections can you divide $\overline{A B}$ to find point C ? 7
OLI Where does Jorge stop for gas? Use the graph to estimate the answer. 700 mi
BLi. Find the distance from New York where Jorge stops again for gas if the ratio of the distance traveled to the distance left to go is 3:1. 1922.3 mi

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-25$	
2	exercises that use a variety of skills from this lesson	$26-28$
3	exercises that emphasize higher-order and critical-thinking skills	$29-32$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-25 odd, 29-32
- Extension: Relationships Among Lines
- ALEKS'Distances and Midpoints on a Number Line, Distances and Midpoints in the Coordinate Plane

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Distance on the Coordinate Plane
- Personal Tutors
- Extra Examples 1-4
- DALEKS'Applying the Pythagorean Theorem

IF students score 65% or less on the Checks, THEN assign:

- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Distance on the Coordinate Plane
- ALEKS Applying the Pythagorean Theorem

Important to Know

Digital Exercise Alert Exercise 29 requires a construction. Students will need to complete the construction by using a compass and straightedge.


```
Refer to the number line.
\
15. Find the coordinate of point X on AF that is }\frac{1}{3}\mathrm{ of the distance from A to F. -2
16. Find the coordinate of point }Y\mathrm{ on }\overline{AC}\mathrm{ that is }\frac{1}{4}\mathrm{ of the distance from }A\mathrm{ to }C. -
Refer to the number line.
```



```
17. Which point on }\overline{AE}\mathrm{ is }\frac{2}{3}\mathrm{ of the distance from }A\mathrm{ to }E\mathrm{ ? }
18. Point }X\mathrm{ is what fractional distance from }E\mathrm{ to }A\mathrm{ ? }\frac{2}{3
19. Find the coordinate of point M on \overline{AE that is }\frac{1}{5}\mathrm{ of the distance from A to E. -4}
Refer to the number line.
N-GH
20. The ratio of FX to XK is 1:1. Which point is located at X? H
21. Find the coordinate of Q on \overline{FL such that the ratio of FO to }QL\mathrm{ is 12:7. -3}
Examples 2 and 4
22. TRAVEL Caroline is taking a road trip on 1-70 in Kansas. She stops for gas at mile
    stop at an attraction }\frac{3}{4}\mathrm{ of the way after stopping for gas. At about which mile
    marker did Caroline stop to visit the attraction? 274
590 Module 10 - Tools of Geomety
```

23. HIKING A hiking trail is 24 miles from start to finish. There are two rest areas ocated along the trail.

a. The first rest area is located such that the ratio of the distance from the start of he trail to the rest area and the distance from the rest area to the end of the rrail is $2: 9$. To the nearest hundredth of a mile, how far is the first rest area from the starting point of the trail? 4.36 mi
b. Kadisha claims that the distance she has walked and that the distance she has
left to walk has a ratio of $5: 7$. How many miles has Kadisha walked? 10 mi
24. Melany wants to hang a canvas, which is 8 feet wide, on his wall. Where on the canvas should Melany mark the location of the hangers if the canvas requires a hanger every $\frac{5}{5}$ of its length, excluding the edges? , Justity your answer.
Sample answer. The canvas requires hangers every $\frac{5}{5}$ of its length or every 1.6 feet, excluding the endpoints. So the canvas needs hangers at 1.6 feet, 3.2 feet, 4.8 feet, and 6.4 feet from the edge.
25. MIGRATION Many American White Pelicans migrate each year, with hundreds of them way. The ratio of the distance some flocks travel way. The ratio of the distance some flocks travel
from their summer home to one stopover to the distance from the stopover to the winter home is 3:4. If the total distance that the pelicans migrate is 1680 miles, how long is the distance from the summer home to the stopover? 720 mi

Mixed Exercises
26. Write an equation that can be used to find the coordinate of point K that is $\frac{2}{5}$ of the distance from Q to R. $K=-3+\frac{2}{5}[4-(-3)]$

27. SOCIAL MEDIA Tito is posting a photo and needs to resize it to fit. The photo's width should fill $\frac{4}{5}$ of the width of the page. On Tito's screen, the total width of the page is 3 inches. How wide should the photo be? $2 \frac{2}{5}$ in.
28. NEONATAL At birth, the ratio of a baby's head length to the length of the rest of its body is $1: 3$. If a baby's total body length is 22 inches, how long is the baby's head? $5 \frac{1}{2}$ in.

Higher-Order Thinking Skills
29. CREATE Draw a segment and label it $\overline{A B}$. Using only a compass and a straightedge, construct a segment $\overline{C D}$ such that $C D=5 \frac{1}{4} A B$. Explain and then
justify your construction. Sample answer: Draw $\overline{A B}$. Next, draw a construction line and place point C on it. From C, strike 6 arcs in succession of length $A B$. On the sixth segment of length $A B$, perform a segment bisector two times to create a $\frac{1}{4} A B$ length. Label the endpoint D.
30. WRITE Naoki wants to center a canvas, which is 8 feet wide, on his bedroorn wall which is 17 feet wide. Where on the wall should Naoki mark the location of the
 the canvas using the midpoint formula. $M_{w}=\frac{17+0}{2}=8.5$, and $M_{C}=\frac{8+0}{2}=4$. Because the midpoint of the canvas aligns with the midpoint of the wall, I know that one edge of the canvas will be at least . 5.5 - 4.5 leel rom he comer the wall, and he 1 her canvas edge whe be $8.5+4$ 12.5 leel from he con the wall.
31. ANALYZE Determine whether the following statement is sometimes, always, or never true. Justify your argument.
If $\overline{X Y}$ is on a number line and point W is $\frac{2}{5}$ of the distance from X to Y, then the coordinate of point W is greater than the coordinate of point X.
Sometimes; sample answer. If the coordinate of X is 0 and the coordinate of Y is negative, then the coordinate of W will be negative and less than the coordinate of X. If the coordinate of X is positive and the coordinate of Y is greater than the coordinate of X, then the coordinate of W will be greater than the coordinate of X.
32. PERSEVERE On a number line, point A is at 5 , and point B is at -10 . Point C is on $\overline{A B}$ such that the ratio of $A C$ to $C B$ is $1: 3$. Find D on $\overline{B C}$ that is $\frac{3}{8}$ of the distance from B to C. $-\frac{185}{32}$ or about -5.78

Suggested Pacing

90 min	0.5 day
45 min	
	1 day

Focus

Domain: Geometry
Standards for Mathematical Content:
G.GPE. 6 Find the point on a directed line segment between
two given points that partitions the segment in a given ratio.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students used the Distance Formula to find the distance between two points on the coordinate plane.

G.C0. 1

Now

Students determine the coordinates of a point on a directed line segment that partitions the segment in a given ratio on the coordinate plane.
G.GPE. 6

Next
Students will find midpoints and bisect line segments.
G.GPE. 6

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students expand on their understanding of how a point on a directed line segment can partition the segment in a given ratio. They build fluency by locating points on the coordinate plane when given a ratio or fractional distance, and they apply their understanding by solving real-world problems.

Mathematical Background

To find the coordinate of a point that divides a directed line segment into a ratio of $a: b$, first add a and b to find the total number of partitions on the directed line segment. Then make sure that there are a partitions to the left of the point and b partitions to the right of the point in both the horizontal and vertical directions. Later, you can use this mathematical reasoning to develop the Midpoint Formula.

Lesson 10-6 • Locating Points on a Coordinate Plane 593a

Interactive Presentation

	\times
Warm Up	
Converr beteven tractions and decimata. Whete al in simptest form.	
2 -5.75	
2.31	
3.-1	
4. 0092	
5.8	

Warm Up

Launch the Lesson

Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- converting fractions and decimals

Answers:

1. $-8 \frac{3}{4}$
2. 3.4
3. -3.5
4. $\frac{3}{250}$
5. 0.85

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of proportional reasoning.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Explore Applying Fractional Distance

Objective
Students locate points that partition a directed line segment on a coordinate plane a given fractional distance from an initial point.

Teaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will complete guiding exercises throughout the Explore activity. Students watch a video about two people who are texting each other with their locations as they are on their way to meet. Students then use the information given in the texts to compute the coordinates of the locations for the guiding exercises. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Interactive Presentation

Explore

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Explore Applying Fractional Distance (continued)

Questions

Have students complete the Explore activity.

Ask:

- Which fractional distance was the easiest to approximate? Why? Sample answer: It's easiest to approximate half the distance because it's easier to tell where the middle appears to be.
- Why does it matter where the starting point is for a fractional distance other than $\frac{1}{2}$? Sample answer: One-half is just the middle, so it doesn't matter which point you start from. But if you are going some other fractional distance, like one-fourth, you will be closer to one point or another. That means you need to know where you started from.

(9) Inquiry

How do we use fractional distances in the real world? Sample answer: We use fractional distances to describe distance traveled and to estimate arrival times. We can also use fractional distances to hang art and arrange furniture.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Locating Points on the Coordinate Plane with Fractional Distance

Objective

Students find a point on a directed line segment on the coordinate plane that is a given fractional distance from the initial point.

Teaching the Mathematical Practices
6 Use Definitions In this Learn, students will use definitions to examine claims.

About the Key Concept

Notice how the formulas for the x - and y-coordinates are related to the formula for locating a point at a fractional distance on a number line.

Example 1 Fractional Distances on the Coordinate Plane

Teaching the Mathematical Practices

7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. Guide students to see what information they can gather about the expression just from looking at it.

Questions for Mathematical Discourse

AL. How can you locate a point at a fractional distance on the coordinate plane? The coordinates of a point on a line segment that is $\frac{a}{b}$ of the distance from initial endpoint $A\left(x_{11} y\right)$ to terminal endpoint $C\left(x_{222} y\right)$ are given by $\left(x_{1}+\frac{a}{b}\left(x_{2}-x\right)_{14} y+\frac{a}{b}(y-y)\right)$ where $\frac{a}{b}$ is the fraction of the distance if $b \neq 0$.
OL. How do you know which values to use when calculating fractional distance on the coordinate plane? The values for x and y are obtained from the initial end point, x_{2} and y ąre obtained from the terminal end point.
What is an easy mistake that people could make when calculating fractional distance on the coordinate plane? A common mistake may be that people don't always use each x and y in the correct order.

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Interactive Presentation

1 CONCEPTUAL UNDERSTANDING 2 FLUENCY

Common Misconception

Students may forget that the order of endpoints is important in locating points that are a fractional distance along a directed line segment. Thus they frequently will switch the initial endpoint and the terminal endpoint in the equation that they use to calculate the location of the point in the directed line segment. Remind students to be sure to differentiate between the initial endpoint $\left(x_{1}\right)$ and the terminal endpoint $\left(x_{2}\right)$.

Essential Question Follow-Up

Students learn how to locate points on the coordinate plane at fractional distances along a directed line segment.

Ask:

Why might it be important to locate points at fractional distances on the coordinate plane? Sample answer: For distances in the real world, it might be useful to find a fractional distance between locations for various stops along a route.

Learn Locating Points on the Coordinate Plane with a Given Ratio

Objective
Students find a point that partitions a directed line segment on the coordinate plane in a given ratio.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of the Section Formula in this Learn.

Example 2 Locate a Point on the Coordinate Plane When Given a Ratio

Teaching the Mathematical Practices
4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

Questions for Mathematical Discourse
ALI What is the Section Formula? $C=\left(\frac{m x_{1}+m x_{2}}{m+n},+\frac{m y_{1}+m y_{2}}{m+n}\right)$
OL. How do you know which values to use in the Section Formula? The values for x_{1} and y are obtained from the initial endpoints, and x_{2} and y are obtained from the final endpoints.
BL How can you avoid making a common mistake when substituting into the Section Formula? Be sure not to switch the order of the x and y coordinates.

DIFFERENTIATE

Have students create a Venn Diagram to compare the Fractional Distance Formula to the Section Formula. Ask students to share what they wrote down with the class.

Example 3 Partition a Directed Line Segment on the Coordinate Plane

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about partitioning directed line segments to solving a real-world problem.

Questions for Mathematical Discourse

AI. How do you know that the Pythagorean Theorem can be used to find the horizontal distance of the zip-line?
Sample answer: Two of the three sides in a right triangle are provided in the diagram.
OL. How high is Kendrick when the photo is taken? Use the graph to estimate the distance. 400 m

B1. If a second photo is taken when the ratio of Kendrick's distance traveled to distance remaining is 7:10, how far has Kendrick traveled horizontally? Estimate the distance. 600 m
(continued on the next page)

Check
pind S on $\overline{Q R}$ such that the ratio of $Q S$ to
$S R$ is 2:1.
A. $(4,8)$
(B) $(2,3)$
C. $(1,1)$

D(0,1)

-Example 3 Partition a Directed Line Segment on the Coordinate Plane
ZIP LINES Kendrick is riding a zip line. The zip line is 1800 meters long and starts at a platform 600 meters above the ground. After he jumps, someone takes a picture of his descent. When the picture is taken, the ratio of the distance Kendrick has traveled to the distance he has remaining is 1.2 . The picture will show the horizontal distance he verical distace from minkern Will Kendrick be in the frame of the picture?

To o determine whether Kendrick is in the frame of the picture, first, determine the horizontal distancex of the zip line. Then, use this information to determine Kendrick's location using the Section Formula. Step 1 Determine the horizontal distance sof the zip line.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
60 c^{2}+x^{3} & =1800^{2} \quad \text { Substitute. } \\
x & \approx 1697.1 \text { Solve. }
\end{aligned}
$$

The horizontal distance of the zip line is about 1697.1 meters.
(continued on the next page)

- Go Online Y ou can complete an Extra Example online.

Lesson 10-6. Locating Points on a Coordinate Plane 595

Interactive Presentation

Example 3

TAP

Students move through the slides to solve the problem.
$=(565.7,400) \quad$ Simplify

Step 2 Model the area captured by the photograph.

Step 3 Determine Kendrick's location on the zip line.
Use the Section Formula to calculate Kendrick's coordinates.

```
\(\left(\frac{n x_{1}+m x_{n} y}{m+n}, \frac{1+m y_{2}}{m+n}\right)\)
```

$\left(\frac{n x_{1}+m x_{n} y}{m+n}, \frac{1+m y_{2}}{m+n}\right)$
Section Formula
Section Formula
$=\left(\frac{2(0)+41697.1)}{1+2}, \frac{2(600)+1(0)}{1+2}\right)$

```
\(=\left(\frac{2(0)+41697.1)}{1+2}, \frac{2(600)+1(0)}{1+2}\right)\)
```

Kendrick is at $(565.7,400)$ when the picture is taken.
trame

Y es. Kendrick is in the frame when the picture is taken.

Check
TRAVEL Andre is traveling from Jeffersonville to Springfield. He plans to stop for a break when the distance he has traveled and the distance he has left to travel have a ratio of 3:7. Where should Andre stop for his break?

A. $(13,12.5)$ B. $(22,12.5)$ C. $(-3,6.5)$ D. $(-12,6.5)$
(-) Go Online Y ou can complete an Extra Example online.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-15$	
2	exercises that use a variety of skills from this lesson	$16-20$
3	exercises that emphasize higher-order and critical-thinking skills	$21-25$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-15 odd, 21-25
- Extension: Fractional Distances
- ALEKS Distances and Midpoints on a Number Line, Distances and Midpoints in the Coordinate Plane

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:
THEN assign:

- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Rational Numbers
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Converting Fractions to Decimals

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-15 odd
- Remediation, Review Resources: Rational Numbers
- ALEKS Converting Fractions to Decimals

Practice

Example 1
Find the coordinates of point X on the coordinate plane for each situation.

1. Point X on $\overline{A B}$ is $\frac{1}{5}$ of the 2. Point X on $\quad R S$ is $\frac{1}{6}$ of the 3. Point X on $J K$ is $\frac{1}{3}$ of th distance from A to B.

$(-3.6,-2.2)$

$\left(-3,1 \frac{1}{3}\right)$
distance from J to K.

$\left(1,1 \frac{2}{3}\right)$

Example 2

Refer to the coordinate grid.
4. Find point X on $\overline{A B}$ such that the ratio of $A X$ to $X B$ is 1:3. $\left(\frac{5}{4}, 4\right)$
5. Find point Y on $\overline{C D}$ such that the ratio of $D Y$ to $Y C$ is 2:1. $\left(\frac{14}{3}, 1\right)$
6. Find point Z on $\overline{E F}$ such that the ratio of $E Z$ to $Z F$ is $2: 3$. $\left(\frac{16}{5}, 0\right)$

Examples 1 and 2
Refer to the coordinate grid.
7. Find point C on $\overline{A B}$ that is $\frac{1}{5}$ of the distance from A to B. $\left(-\frac{7}{5}, 4\right)$
8. Find point Q on $\overline{R S}$ that is $\frac{5}{8}$ of the distance from R to S. $\left(4, \frac{13}{8}\right)$
9. Find point W on $U V$ that is $\frac{1}{7}$ of the distance from U to V. $\left(\frac{16}{7},-3\right)$
10. Find point D on $\overline{A B}$ that is $\frac{3}{4}$ of the distance from A to B. $\left(3, \frac{5}{4}\right)$
11. Find point Z on $R S$ such that the ratio of $R Z$ to $Z S$ is $1: 3$. $\left(1, \frac{5}{4}\right)$
12. Find point G on $\overline{A B}$ such that the ratio of $A G$ to $G B$ is $3: 2 .\left(\frac{9}{5}, 2\right)$
13. Find point E on $U V$ such that the ratio of $U E$ to $E V$ is $3: 4 .\left(\frac{20}{7},-1\right)$

Example 3
14. MAPS Leila is walking from the park at point ho a restaurant at point R. She wants to stop for a break when the distance she has traveled and the distance she has left to travel has a ratio of 3:5. At which point should Leila stop for her break? $(6.25,3.375)$
15. GTY PLANNING The United States Capitol is located at $(2,4)$ on a coordinate grid. The White House is located at $(-10,16)$ on the same coordinate grid. Find two points on the straight line between the United States Capitol and the White House such that the ratio is 1:3. |-7, 11) and|- 1, 1

Mixed Exercises

Refer to the coordinate grid.

16. Find X on $M \overline{10}$ that is $\frac{3}{4}$ of the distance from M to $N \quad(3,2)$
17. Find Yon $\overline{M N}$ such that the ratio of MY to WWis t3. $(-3,-2)$

Point D is located on $M V$. The coordinates of D are $\left(0,-\frac{3}{4}\right)$.
18. What ratio relates MD to $D \sim 7$ 3:1
19. What fraction of the distance from Mto Vis MD? $\frac{3}{4}$
20. What ratio relates $D V$ to $M D$? $1: 3$

OHigher-Order Thinking Skills

21. FIND THE ERROQ PointW is located at (0,7) , and point X is located at (4,0)

Julianne wants to find poiff onX such that WF10 FPR is 2 a. What error did Julianne make when solving this problem? b. What abstated the wrong values for ($\boldsymbol{v}_{\psi} 7$) and $\left(\sigma_{2} y_{2}\right.$)
22. ANAL YZE is the point one-third of the distance from $0=-y$) to $\left(x_{2}, y_{2}\right)$ sometimes always, or neve the point $\left(\frac{x_{1}+x_{2}}{3}, \frac{y_{1}+y_{2}}{3}\right)$? Justify your argument.
sometimes; only when the segment lies on the or ranes
23. WRITE Point P is located on the segment between point $A(1,4)$
 and point D (13 . D distance from A is thice the distance that P is from A to ${ }^{2}$. What are the coordinates of point P ? Sample answer: Because the distance from A for tomce fle dianoce from $P_{10} \quad D$, the distance from A to P could be 2 and the distance fromto D could be 1 . Therefore, the fractional distancet that is from A to could be 2 and the distance from
from A to D a $\frac{2}{2+1}$ or $\frac{2}{3}$ The coordinates of poine are $(5,10)$.
24. PERSEVERE Point $C[6,9)$ is located on the segment between point $A(4,8)$ and point d. Point C is $\frac{1}{4}$ of the distance from A to B. What are the coordinates of point \& $(12,12)$
25. CREATE Draw a line on a coordinate plane. Label two points on the line fand G Locate a third point on the line between points F and G and label this point H. The point H on $\overline{F G}$ is what fractional distance from F to G ? See margin.

598 Module 10 - Tools of Geometry

Answers

25. Sample answer:

H is $\frac{1}{3}$ of the distance from F to G.

LESSON GOAL

Students find midpoints and bisect line segments.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Midpoints

Develop:

Midpoints on a Number Line

- Find the Midpoint on a Number Line
- Midpoints in the Real World

Midpoints on the Coordinate Plane

- Find the Midpoint on the Coordinate Plane
- Find Missing Coordinates

Bisectors

- Find Missing Measures
- Find the Total Length

You may want your students to complete the Checks online.

3

REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	A14	In 3		
Remediation: Add Rational Numbers	- -			-
Extension: Archimedes' Law of the Lever		- ${ }^{\text {- }}$		-

Language Development Handbook

Assign page 62 of the Language Development Handbook to help your students build mathematical language related to midpoints and bisecting line segments.
Fallilyou can use the tips and suggestions on page $T 62$ of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1 day
45 min	

Focus

Domain: Geometry
Standards for Mathematical Content:
G.GPE. 6 Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
G.CO.12 Make formal geometric constructions with a variety of tools and methods. (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.)
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
8 Look for and express regularity in repeated reasoning.

Coherence

Vertical Alignment
Previous
Students partitioned segments in a given ratio on the coordinate plane.
G.GPE. 6

Now

Students find midpoints and bisect line segments.
G.GPE.6, G.C0. 12

Next

Students will prove theorems about lines and angles, and use theorems about lines and angles to solve problems.

G.Co.1, G.C0. 12

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students extend their understanding of fractional distances to midpoints and segment bisectors. They build fluency by finding midpoints, and they apply their understanding by solving real-world problems related to midpoints.

Mathematical Background

The midpoint of a segment is the point halfway between its endpoints. The midpoint divides a segment in a ratio of $1: 1$. The midpoint of a segment with endpoints a and b on a number line is the sum of a and b divided by 2. The Midpoint Formula is used to find the midpoint of a segment on the coordinate plane.

Interactive Presentation

	\times
Warm Up	
Add.	
$1.2 .3+(-1.4)$	
2. $-105+3.07$	
2. $4+\left(-\frac{1}{2}\right)$	
4. $-\frac{1}{4}+\frac{1}{3}$	
5. Persontal. FiNANCE Ma. Takanwa has tree bank accounts. The balances in the accounts are $\$ 43812, \$ 1778.05$, and $-\$ 005$. How much money does she have allogether in these iccounts?	
Sowactur	

Warm Up

Launch the Lesson

Today's Vocabulary

Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- adding rational numbers

Answers:

1. 0.9
2. -37.43
3. $-\frac{1}{6}$
4. $-\frac{3}{8}$
5. \$1614.12

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of locating the midpoint of a line segment.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align to the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Midpoints

Objective
Students use paper folding to find the midpoint of a number line.
Teaching the Mathematical Practices
3 Construct Arguments In this Explore, students will use stated assumptions, definitions, and previously established results to draw conclusions.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will complete guiding exercises throughout the Explore activity. Students begin the Explore by watching a video. This video leads them through a paper-folding activity where they find the midpoint of a segment on the paper. Then students complete the guiding exercises leading them to discover the Midpoint Formula. Then, students will answer the Inquiry Question.

(continued on the next page)

Interactive Presentation

Explore

Interactive Presentation

Explore

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Midpoints (continued)

Questions

Have students complete the Explore activity.

Ask:

- How is a number line a helpful tool? Sample answer: Number lines provide a visual representation.
- What are some skills that you need to have to be able to find midpoints? Sample answer: Y ou need to be able to add positive and negative numbers.

What general formula can you use to find the midpoint of a line segment? Sample answer: If the line segment has endpoints x_{1} and x_{2} then you can find the midpoint using the formula $M=\frac{x_{1}+x_{2}}{2}$.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Midpoints on a Number Line

Objective

Students find the coordinate of a midpoint on a number line by using the Midpoint Formula.

(11) Teaching the Mathematical Practices

1 Explain Correspondences Encourage students to explain the relationships between the Midpoint Formula used in this example and the formula for locating a point on a number line given a fractional distance or ratio.

Important to Know
To find the Midpoint Formula, you can use the Fractional Distance Formula with a fractional distance of $\frac{1}{2}$. The fractional distance is $\frac{1}{2}$ because the midpoint is exactly halfway between the endpoints.

Example 1 Find the Midpoint on a Number Line

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to justify their conclusions.

Questions for Mathematical Discourse

ALI How do you determine which points represent x_{1} and x_{2} Sample answer: Choose the location of both endpoints on a segment.
OL. What is the relationship between the distance and the midpoint? Sample answer: The midpoint is found by dividing the distance into two equal parts and identifying the point in the middle.
BL. How is finding the midpoint of a segment like finding the mean between two numbers? Sample answeroor add two numbers and divide by 2 to find both. The midpoint is the mean of the two endpoints.

Common Error

A common mistake is that students subtract the coordinates in the Midpoint Formula because subtraction is used in the distance and the slope formulas. Remind students that the midpoint is the mean of each coordinate and that to find the mean or the average, the sum is divided by the number of terms.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

| Midpoints and Bisectors |
| :--- | :--- |

Interactive Presentation

Example 2 Midpoints in the Real World
Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about midpoints to solve a real-world problem.

Questions for Mathematical Discourse

1 Is there enough information to determine the midpoint of the back wall? Explain. No; there is unmeasured space to the right of the dressing room.
How wide is each dressing room door? 3 ftIf the wall space to the right of the dressing room is $\frac{1}{5}$ the width of the space to the left of the dressing room, how many feet mark the midpoint of the wall? 7.5 ft

DIFFERENTIATE

Enrichment Activity [BL

Have students share with a partner the different methods they used to find the midpoint, or center. After a couple of minutes, bring the class together to share their ideas. Write on the board so students can see how many students used similar methods and different methods that other students used.

Interactive Presentation

Example 2

Students complete the Check online to determine whether they are ready to move on.

Learn Midpoints on the Coordinate Plane

Objective
Students find the coordinates of the midpoint or endpoint of a line segment on the coordinate plane by using the Midpoint Formula.

(11) Teaching the Mathematical Practices

8 Notice Regularity In this lesson, help students see the regularity in the way that midpoint coordinates are computed on number lines and coordinate planes.

Example 3 Find the Midpoint on the Coordinate Plane

Teaching the Mathematical Practices

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

Questions for Mathematical Discourse

AL What is $A M$ and $M B$? Both lengths are congruent and equal $\sqrt{26}$.
OL. What are two additional ordered pairs, points X and Y, for which M is also a midpoint? Sample answer: $X(-2,-1)$ and $Y(8,5)$
B1. How do you compare the two formulas for the midpoint of a line segment? Sample answer: Both involve adding the two endpoints and dividing by 2 . Because one is on the coordinate plane, there are two coordinates for the endpoint.

DIFFERENTIATE

Enrichment Activity [BL

Have students sketch three different segments that each have $(0,0)$ as the midpoint. Write the coordinates of the endpoints of each segment. What do you notice about the coordinates? Sample answer: In each pair, the x-coordinates and the y-coordinates are opposites.

Learn Midpoints on the Coordinate Plane
The Section Formula can be used to derive the Midpoint Formula for a segment on the coordinate plane.
Because the midpoint separates the line segment into a ratio of E , substitute 1 for m and into the formula


```
    -(\frac{k}{2}+\mp@subsup{x}{2}{}},\frac{v+n}{2})\quad\mathrm{ Widpoint Formula
```

Key Concept - Midpoint Formula on the Coordinate Plane
If $P Q$ has endpoints at $P\left(x_{0}, y\right.$ and $\left.Q x_{2}, y_{j}\right)$ on the coordinate plane,
then the midpoint M of $P O$ has coordinates $M\left(\frac{x_{2}+x_{2}}{2}, \frac{y_{1}+x_{2}}{2}\right)$.

Example 3 Find the Midpoint on the Coordinate Plane
Find the coordinates of M, the midpoint of $\overline{A B}$, for $A(-2,1)$
and $\left.\begin{array}{l}\text { (} \\ 8,3\end{array}\right)$.

$$
\begin{aligned}
M & =\left(\frac{\alpha+x+\frac{n}{2}}{2}, \frac{2}{2}\right) & & \text { Sidpoint Formula } \\
& =\left(\frac{2+1}{2}, \frac{1+3}{2}\right) & & \text { Substitution } \\
& =\left(\frac{6}{2, \frac{1}{2}}\right) \text { or }(3,2) & & \text { Simplify_ }
\end{aligned}
$$

Check
Find the coordinates of B, the midpoint of $A C$, for $A-3,-2$) and
$C(5,10)$.
(17,47)

Talk About It

 Would the coordinates of the midpoint be different if you use point A is $\left(x_{y} y\right)$ and point 8 as $x_{0} y$? Explain.No; sample answer: The midpoint would have the same coordinates because you are still partitioning $\overline{48}$ into two segments that have a ratio of 1:1.

Interactive Presentation

Learn
TAP $\begin{aligned} & \text { Students tap to see steps in the derivation } \\ & \text { of the Midpoint Formula and select a }\end{aligned}$ solution to a problem.

TYPE

Students type to answer questions.

Example 4 Find Missing Coordinates
Find the coordinates of A if $P\left(3, \frac{1}{2}\right)$ is the midpoint of $A E$ and B ta coordinates $(\mathbf{8}, 3)$.
First, substitute the known information into the Midpoint Formula. Let $A b e\left(x_{2} y_{1}\right)$ and $A b e\left(x_{2}, y_{2}\right)$.

$$
\begin{aligned}
& M=\left(\frac{x_{1}+v_{2}}{22}, \frac{x+x_{2}}{}\right) \\
&\left(x \cdot \frac{1}{2}\right)=\left(\frac{x+1}{2} \frac{x+3}{2}\right) \text { Midpoint Formula } \\
& \text { Simeitution }
\end{aligned}
$$

$$
\text { Next, write two equations to solve for } x \text {, and } y \text {, }
$$

$$
\begin{array}{ll}
3=\frac{x_{1}+8}{2} & \text { Equation for } 2 \\
6=x_{1}+8 & \text { Multiply each side by } 2 . \\
-2=x_{1} & \text { Solve. } \\
\frac{1}{2}=x_{2}+3 & \text { Equation for } n \\
1=y_{1}+3 & \text { Wultiply each side by } 2 . \\
-2=y_{1} & \text { Solve. }
\end{array}
$$

The coordinates of A are $(-2,-2)$.
Plot the points on a coordinate plane to check your answer fo noswonableness.

Check
Find the coordinates of Q if $R(6,-1)$ is the midpoint of \bar{Q} and S has coordinates $(12,4)$. $\quad(0,-6)$

Q Go Online Y ou can complete an Extra Example online
602 Module 10 - T ools of Geometry

Interactive Presentation

Example 4
Students tap to reveal steps in the
solution.

Example 4 Find Missing Coordinates

Teaching the Mathematical Practices
8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students will evaluate the reasonableness of their answer.

Questions for Mathematical Discourse

AL. What formula will you use to solve this problem?
$M=\left(\frac{\left(x_{1}+x\right)_{2}(y+y)_{2}}{2}, \frac{1}{2}\right)$
OL. Does P have to fall on $\overline{A B}$? Explain. Y es; by definition, the midpoint is part of the line segment.
[31. Suppose you found the coordinates of A to be $(-4,7)$. How would the check tell you the answer is incorrect? Sample answer: Point P would not be on the line segment $\overline{A B}$, so the answer would be incorrect.

Common Error

Students may try to find the midpoint of $\overline{B P}$ rather than find the coordinates of A. Make sure that students understand how they should use the formula based on what is given in the problem.

DIFFERENTIATE

Language Development Activity ALL ELL

Mark the back of a meterstick with one endpoint and the midpoint of a segment. Hold the meterstick up for students so they can see your marks but not the centimeter marks. Ask a volunteer to mark on the back of the stick about where they visualize the other endpoint of the segment. Have a second volunteer verify the first student's mark or add another mark. Place a pen upright on the endpoint so it shows exactly where the endpoint of the segment is and compare to the students' marks.

Learn Bisectors

Objective
Students apply the definition of a segment bisector to find missing values.

Teaching the Mathematical Practices
3 Analyze Cases This Learn guides students to examine cases of types of segment bisectors. Encourage students to familiarize themselves with all of the cases.

Example 5 Find Missing Measures

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation that models the situation in this example. Then use the equation to solve the problem.

Questions for Mathematical Discourse

AL What happens to a line segment that is bisected? It is cut into two shorter line segments that have equal length.
OLL How do you determine the length of $R Q$? Explain. Because $R T=11$, and $R T=T Q, 11+11=22$. Therefore, $R Q=22$.Why did we write $2 x+3=4 \mathrm{x}-5$? Sample answer: The line segment was bisected into two shorter line segments of equal length.

```
Learn Bisectors
Because the midpoint separates the segmentinto two congruent
segments, we can say that the midpoint bisects the segment. Any
segment, line, plane, or point that bisects a segment is called a
segment bisector
Example 5 Find Missing Measures
Find the measure of }\mp@subsup{\boldsymbol{R}}{T}{}\mathrm{ if }T\mathrm{ is the midpoint ofRQ
    R 2x+3 <T
Because T is the midpoint, RT = TQ Use this equation to solve for }
    RT=TQ Definition of midpoint
2x+3=4x-5 Substitution
    3=2x-5 Subtract 2% from each side
    8=2x Add 5 to each side
    4 =x Divide each side by 2.
Substitute 4 for Xin the equation for }A
    RT=2\pi+3 Equation for RT
        =2(4) +3 Substitutio"
        =11 Simplify.
Check
Find the measure of }\overline{RS}\mathrm{ if }S\mathrm{ is the midpoint of }R
R 2x-5 S 部 6x+4 T
A. }5
B. }5
C. }11
D. }11
Qgo Online Y ou can complete an Extra Example online.
```


Interactive Presentation

Example 5
TAP
Students tap to reveal steps in the solution and enter solutions.

Interactive Presentation

Example 6

CHECK
Students complete the Check online to determine whether they are ready to move on.

Example 6 Find the T otal Length

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

is the midpoint of $\overline{A C}$, then $A B=B C$.
Ol. What is $A B$? 17
Bil Suppose $A B=-9 y-2$ and $B C=14-5 y$. When you solve the equation, $y=-4$. Is this possible? Explain. Y es; sample answer: Although y is a negative number, when you substitute it into the expressions, the length is a positive number.

Common Error

Students may think they are finished with the problem when they find the solution to the equation. Remind them to check the problem statement to make sure they have solved the problem.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
2 exercises that mirror the examples		$1-48$
2	exercises that use a variety of skills from this lesson	$49-52$
2	exercises that extend concepts learned in this lesson to new contexts	$53-58$
3	exercises that emphasize higher-order and critical-thinking skills	$59-61$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-47 odd, 59-61
- Extension: Archimedes' Law of the Lever
- ALEKS'Distances and Midpoints on a Number Line, Distances and Midpoints in the Coordinate Plane

IF students score 66\%-89\% on the Checks,

THEN assign:

- Practice, Exercises 1-61 odd
- Remediation, Review Resources: Add Rational Numbers
- Personal Tutors
- Extra Examples 1-6
- D ALEKS'Addition and Subtraction with Fractions; Addition and Subtraction

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-47 odd
- Remediation, Review Resources: Add Rational Numbers
- ALEKS Addition and Subtraction with Fractions; Addition and Subtraction

Practice
Example 1
0°

1. $\overline{K M}-2$	2. $\overline{J P}-1$	3. $\overline{L N} 0.5$
4. $\overline{M P} 2.5$	5. $\overline{L P} 1.5$	6. $\overline{J N}-2$


```
13. \overline{ E 9 14. }\overline{BC}1
15.\overline{BD}3}10.\overline{AD}1\frac{1}{2
```

17. HOME IMPROVEMENT Callie wants to build a fence halfway between her house and her neighbor's house. How far away from Callie's house should the fence be built? 9 yd

18. DINING Calvino's home is located at the midpoint between Fast Pizza and Pizza Now. Fast Pizza is a quarter mile away from Calvino's home. How far away is Pizza Now from Calvino's home? How far apart are the two pizzerias? Pizza Now is a quarter mile from Calvino's home; the two pizzerias are a half mile apart.

Lesson 10.7 • Madpoints and Bisectors 605

```
Example 3
Find the coordinates of the midpoint of a segment with the given endpoints.
19.(5, 11), (3, 1) 20. (7,-5).(3, 3) 21. (-8,-11), (2,5)
Cu.(7,0),(2,4)}\begin{array}{c}{\mathrm{ 22. (-5,1),(2,5)}}\\{(-1.5,3.5)}
25.(2,8),(8,0) 26. (9,-3), (5,1) 2, (5, )
\2.(12,2),(7,9)
31.(2.4., 14).,(6, 6.8) (4.2, 10.4)
Example 4
Find the coordinates of the missing endpoint if B}\mathrm{ is the midpoint of }\overline{AC
33. C(-5,4),B(-2,5) A(1,6)}\begin{array}{l}{\mathrm{ 34. A(1,7),B(-3,1)}}\\{C(-7,-5)}
35. A(-4, 2),B(6,-1) 36. C(-6,-2),B(-3,-5)
37.A(4, -0.25),B(-4,6.5) 38.C ( 
    C(-12, 13.25) A.5)
Examples 5 and 6
Suppose M}\mathrm{ is the midpoint of }\overline{FG}\mathrm{ . Find each missing measure,
39. FM=5y+13,MG=5-3y,FG=? 40. FM = 3x-4,MG=5x-26,FG=?
41. 2M=8a+1,FG=42,a=? 
43. FM=3n+1,MG=6-2n,FG=? 44. FM=12x-4,MG=5x+10,FG=?
45. FM=2k-5,FG=18,k=? 46. FG % = 14a+1,FM=14.5,a=?
47.MG = 13x+1,FG=15,x=? 48. FG = 111x-15.6,MG = 10.9, x=?
Mixed Exercises
Find the coordinates of the missing endpoint if P is the midpoint of }\overline{NQ}\mathrm{ .
M.N(2,0),P(5, 2) (8, 4)
606 Module 10. Tools of Geomety
```


57. SCHOOL LIFE Bryan is at the library doing a research paper. He leaves the library at point A and walks to the soccer field for a game at point C. The supermarket at point il is exactly halfway between walks to the supermarket to buy a snack, and then he walks back to the soccer field for his second game. Not including the time spent at the soccer game, how far does Bryan walk? 48 m

58. REASONING A drone flying over a field of corn identifies a dry area. The coordinates of the vertices of the area are shown. To what The coordinates of the vertices of the area are shown. To what
coordinates should the portable irrigation system be sent to water the dry area? Explain your reasoning. Sample answer: (516, 672); This is the midpoint of the segment with endpoints at $(144,289)$ and (888,1055). This is the approximate center of the dry area, so the irrigation system should be placed here

-Higher-Order Thinking Skills
59. PERSEVERE Describe a method of finding the midpoint of a segment that has one endpoint at (0,0 , Derive the midpoint formula, give an example using you method, and explain why your method works.
Sample answer: The midpoint of a segment is the average of the coordinates of the endpoints. Diviec redicsordinate at the mepeies that is not liccimed at the arigin br 2 . For example, if th segment has coordinates $(0,0)$ and $(-10,6)$, then the midpoint is located at $\left(\frac{-0}{2} \cdot \frac{2}{2}\right)$ $(-5,3)$ USing the Hiltrive Formula, a Be modpobith al Me seperant ant $(0,0)$ and (a, b) then the midpoint is $\left(\frac{\mu+0}{2}, \frac{t+0}{2}\right)$ or $\left(\frac{g}{2}, \frac{p}{2}\right)$.
50. Write Explain how the Midpoint Formula is a special case of the Section Formula The Midpoint Formula is a special case of the Section Formula where the segments into which the larger segment is divided are in a $1: 1$ ratio.
51. CREATE Construct $\overrightarrow{A C}$ given $\overline{A B}$ if B is the midpoint of $\lambda \mathcal{Z}$. Sample answer:

Rate Yourself!

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

Answering the Essential Question

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.
-Why are the terms point, line, and plane undefined?

- Why is it important to know how to compute distances on a number line?
- Why might locating a fractional distance along a line segment be useful in applying points, lines, and planes in the real world?
- Why might it be important to locate points at fractional distances on the coordinate plane?

Then have them write their answer to the Essential Question.

DINAH ZIKE FOLDA8LES

[ELIII A completed Foldable for this module should include the key concepts related to points, lines, and planes, and distances and midpoints.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Congruence, Proof, and Constructions.

- Make Geometric Constructions

Test Practice

1: MUL TI-SELECT Select all real-worid objects that model a line. (Lesson 10-2)
A. electric tablet

Bpool stick
C. scoop of ice cream

Blight pole
E. emoji

A. plane $V W Y$

B plane WWX

- plane RYV

D plane VWZ
E. plane AnX

intersecting planes; line m
4. ULTIPLE CHOICE Which sequence dentifies the correct order for completing the construction to copy a line segment using a compass and straightedge?
(Lesson 10-3)

A. $X Y, Z, W$

B W, Z, X, Y
C. W, Y, X, Z
© Z, X, w, Y

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Vocabulary Activity
Module Review

Assessment Resources

Vocabulary Test
AL Module Test Form B
OL. Module Test Form A
BLil Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-16 mirror the types of questions your students will see on online assessments.

Question Type	Description	Exercise(s)					
Multiple Choice	Students select one correct answer. 4, 7, 9, 11-12,						
$15-17$			$	$	Multi-Select	Multiple answers may be correct. Students must select all correct answers.	2
:---	:---	:---:					
Table Item	Students complete a table by entering the correct values.	1					
Open Response	Students construct their own response.	$3,5-6,8,10$, $13-14$					

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
G.C0.1, G.MG.1	$10-2$	$1-3$
G.CO.1, G.C0.12	$10-3$	$4-6$
G.C0.1	$10-4$	$7-9$
G.GPE.6	$10-5$	10,11
G.GPE.6	$10-6$	12,13
G.GPE.6, G.C0.12	$10-7$	$14-17$

5. CPEN RESPONSE find the value of \approx if Q is betweenf and $R P Q \quad 5 r \quad 10, R$ 蒗

11
6. PEN RESPONSE On a straight highway, the distance from Loretta's house to a park is 43 miles. Her friend Jamal lives along this ame highway between Loretta's house and the park. The distance from Loretta's house to Jamal's house is 31 miles. How many miles is it from Jamal's house to the park? [Lesson 10-3\} 12 miles

7- MULTIPLE CHOICE Find the distance between the two points on a coordinate plane. Lesson 10-4
A 5, 1) and $B(-3,-3)$
ब $4 \sqrt{5}$
B. $4 \sqrt{ } 3$
C. $2 \sqrt{2}$
a. $2 \sqrt{3}$
8. OPEN RESPONSETrue or false: $\overline{X Y} \approx \overline{W Z}$ Lesson 10-4)

false
9. MUL TIPLE CHOICE The coordinates of A and B on a number line are 7 and 9 . The coordinates of C and D on a number line are B and CD congruent? the length of each segment? (Lesson 10-4)
A. no

Cyes; 16
D. yes; 8
10. OPEN RESPONSE The coordinate of point $X \circ \sim P Q$ that is $\frac{3}{4}$ of the distance from ${ }^{F}$ to Q s - Resson 10-5)

4
11. MUL TIPLE CHOICE On a number line, point S is located at -3 and point T is located at 9 Where is point R located on 5 I if the ratio of SR to RI is 3:4? (Lesson 10-5)
A $\frac{37}{7}$
B. $2 \frac{1}{4}$
C. $1 \frac{1}{4}$
(3) $\frac{15}{7}$

12 Module 10 Review - Tools of Geometry
40. Sample answer:

41. Sample answer:

42. Sample answer:

45. Sample answer:

50. Sample answer:

Module 11

Angles and Geometric Figures

Module Goals

- Students find measures of angles.
- Students find measures of two- and three-dimensional figures.
- Students use precision and accuracy when reporting measurements.

Focus

Domain: Geometry

Standards for Mathematical Content:
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects.
Also addresses G.CO.2, G.CO.12, G.GPE.7, and G.GMD.3.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this Module.

Be Sure to Cover

To completely cover G.CO.12, go online to assign the following activities:

- Bisect an Angle (Construction, Lesson 11-1)
- Copy an Angle (Construction, Lesson 11-1)
- Construct a Perpendicular Bisector of a Segment (Construction, Lesson 11-2)
- Construct a Perpendicular Line Through a Point on the Line (Construction, Lesson 11-2)
- Construct a Perpendicular Line Through a Point Not on the Line (Construction, Lesson 11-2)
- Representing Transformations (Tracing Activity, Lesson 11-4)

Coherence

Vertical Alignment

Previous

Students studied angles and two- and three-dimensional figures in Grades 7-8.
6.G, 7.G, 8.G

Now

Students represent transformations in the plane and make formal geometric constructions using a variety of tools and methods.
G.CO.2, G.C0. 12

Next
Students will prove theorems about lines and angles.
G.CO. 9

Rigor

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.

LEARN

Suggested Pacing

Formative Assessment Math Probe Name the Shape

Analyze the Probe

Review the probe prior to assigning it to your students.
In this probe, students will determine the correct names for three-dimensional shapes and explain their thinking.

Targeted Concepts Understand that polyhedra are solid (three-dimensional) figures with polygonal faces, and recognize the difference between prisms and pyramids.

Targeted Misconceptions

- Students may see all solid figures as polyhedra, including ones with nonpolygonal faces.
- Students may incorrectly interchange the labels pyramid and prism, especially when a triangular prism is not "sitting" on its base.
- Students may name solid figures by a shape other than the base.

Use the Probe after Lesson 11-5.

Answers: 1. A and E

2. A and B
3. E

Collect and Assess Student Answers
if)
the student selects these responses...
3. A, D

1. B, D
2. C, E
3. B
4. B, C
5. D, E
6. B, C
does not recognize the term polyhedron, does not understand that polyhedra have polygonal faces, and/or does not recognize that a pyramid is a polyhedron.
has confused a pyramid with a prism and/or vise a versa. This often happens with a triangular prism when the solid is "sitting" on one of its rectangular sides instead of a base.
uses a side other than the base to identify a name for the figure.

Take Action
After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.

- ALEKS*' Solids and Cross Sections
- Lesson 11-5, Learn, Examples 1-2

Revisit the Probe at the end of the module to be sure that your students no longer carry
these misconceptions.

IGN゙TE!

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

Essential Question

At the end of this module, students should be able to answer the Essential Question.

How are angles and two-dimensional figures used to model the real
world? Sample answer: Architects use two-dimensional figures to design structures that use the space effectively. Angles are used in aviation, architecture, design, and are found in nature.

What Will You Learn?

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

DINAH ZIKE FOLDA8LES

Focus Students read about angles, two- and three-dimensional objects, accuracy, and significant figures.
Teach Throughout the module, have students take notes under the tabs of their Foldables while working through each lesson. They should include definitions of terms and key concepts. Encourage students to record examples from each lesson in their Foldable.

When to Use It Use the appropriate tabs as students cover each lesson in this module.

Launch the Module

For this module, the Launch the Module video uses real-world things to model angles, two-dimensional objects, and three-dimensional objects. Students learn about using two- and three-dimensional objects in architecture and art.

Interactive Presentation

What Vocabulary Will Y ou Learn?			
- accuracy	- concave	- opposite rays	- rigid motion
- adjacent angles	- cone	- orthographic drawing	- rotation
- angle	- congruent angles	- perimeter	- sides
- angle bisector	- convex	- perpendicular	- significant figures
- angle of rotation	- cylinder	- Platonic solid	- sphere
- approximate error	- edge of a polyhedron	- polygon	- straight angle
- area	- equiangular polygon	- Polyhedron	- supplementary angles
- base of a pyramid or cone	- equilateral polygon	- precision	- surface area
	- exterior	- Preimage	-transformation
- bases of a prism or cylinder	- face of a polyhedron	- prism	- translation
	- geometric model	- pyramid	- translation vector
- center of rotation	- image	- ray	- vertex
- circumference	- interior	- reflection	- vertex of a polyhedron
- complementary	- line of reflection	- regular polygon	- vertical angles
angles	- linear pair	- regular polygon	- volume
- component form	- net	- regular polyhedron	

Are Y ou Ready?
Complete the Quick Review to see if you are ready to start this module.
Then complete the Quick Check

614 Module 11 - Angles and Geometric Figures

614 Module 11 • Angles and Geometric Figures

What Vocabulary Will You Learn?

ELIL As you proceed through the module, introduce the key vocabulary by using the following routine.

Define Complementary angles are two angles with measures that have a sum of 90°.

Example $m \angle A B C=48^{\circ}$ and $m \angle C B D=42^{\circ}$
Ask Do the measures of the two angles add up to 90° ? Y es;
$48^{\circ}+42^{\circ}=90^{\circ}$

Are You Ready?

Students may need to review the following prerequisite skills to succeed in this module.

- subtracting rational numbers
- classifying angles
- using angle pairs
- finding perimeter and area
- identifying three-dimensional figures
- evaluating expressions with absolute value
- converting measurements

D ALEKS

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You can use the ALEKS pie report to see which students know the topics in the Angles, Introduction to Perimeter and Area, and Solids and Cross Sections modules-who is ready to learn these topics and who isn't quite ready to learn them yet-and then adjust your instruction as appropriate.

Mindset Matters

Model Constructive Feedback

For students to grow, they need to receive timely, constructive feedback that references a specific skill or area. You can also model what appropriate feedback looks and sounds like so that students can collaborate and give one another constructive feedback in a way that is positive and helpful.

How Can I Apply It?

Use the Questions for Mathematical Discourse in the Teacher Edition to ask students questions and to share feedback on their thinking. This is a great opportunity to model feedback for the class so that students can give one another feedback during collaborative activities.

LESSON GOAL

Students identify and use different kinds of angles.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Angles Formed by Intersecting Lines
88 Develop:

Angles

- Identify Angles

Congruent Angles

- Congruent Angles and Angle Bisectors

Special Angle Pairs

- Vertical Angles and Angle Pairs

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

Practice

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	AL In	텐)	
Remediation: Subtract Rational Numbers	-		-
Extension: Using a Compass	- 0		-

Language Development Handbook

Assign page 63 of the Language Development Handbook to help your students build mathematical language related to angles.
Ellill You can use the tips and suggestions on page T63 of the handbook to support students who are building English proficiency.

Suggested Pacing

90 min	1 day
45 min	

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students analyzed angles formed by two parallel lines cut by a transversal.
8.G.5

Now

Students identify and use different kinds of angles.
G.CO.1, G.C0. 12

Next
Students will find measures of angles using complementary and supplementary angles.
G.C0.1, G.C0.12

Rigor
The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING	2 FLUENCY	3 APPLICATION

Conceptual Bridge In this lesson, students develop a precise understanding of angles, and they build fluency by making constructions related to angles. They apply their understanding by solving real-world problems about pairs of angles.

Mathematical Background

This lesson introduces the definition of an angle and special types of angle pairs. Adjacent angles are two angles that lie in the same plane, have a common vertex and a common side, but have no common interior points. Vertical angles are two non-adjacent angles formed by two intersecting lines. All vertical angles are congruent. A linear pair is a pair of adjacent angles whose noncommon sides are opposite rays.

Interactive Presentation

Warm Up

Launch the Lesson

Today's Vocabulary

Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- subtracting rational numbers

Answers:

1. -7.1
2. -3.65
3. $-\frac{17}{20}$
4. $-\frac{3}{14}$
5. $\$ 39.92$

Launch the Lesson

Teaching the Mathematical Practices
4 Model with Mathematics In this Launch the Lesson, students can see a real-world application of angles.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

615b Module 11• Angles and Geometric Figures

Explore Angles Formed by Intersecting Lines

Objective
Students use dynamic geometry software to discover the angle relationships created by intersecting lines.

Teaching the Mathematical Practices
4 Model with Mathematics Throughout the Explore, encourage students to identify relationships between angles formed by intersecting lines.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will complete guiding exercises throughout the Explore activity. They will use a sketch to investigate angle relationships when angles are formed by intersecting lines. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Explore
WEB SKETCHPAD
Students use a sketch to complete an activity in which they explore angle relationships.

Interactive Presentation

\square
Explore
a
Students respond to the Inquiry Question and can view a sample answer.

Explore Angles Formed by Intersecting Lines (continued)

Questions

Have students complete the Explore activity.

Ask:

- What relationships help us determine the measurements of the set of angles created by two intersecting lines? Sample answer: angle-based relationships help us determine the measurements of the set of angles.
- What are the angle sets created by intersecting lines called? Sample answer: adjacent angles, linear pair, vertical angles

(c) Inquiry

What angle relationships are formed by two intersecting lines? Sample answer: The sum of two adjacent angle measures is 180°. Two angles across from one another are congruent.
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

3 APPLICATION

Learn Angles

Objective
Students apply the definitions of angles and parts of angles to analyze figures.

Teaching the Mathematical Practices
5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as a protractor. Help them see why using these tools will help to solve problems and what the limitations are of using the tools.

Common Misconception

Students may think that a straight angle is a straight line with a measure of 0°. Have students draw a straight line containing three named points. Have them use a protractor to measure the straight angle having one of the points as its vertex. Students should notice that the angle measures 180°.

Essential Question Follow-Up

Students have begun identifying angles.

Ask:

Why are angles important in the real world? Sample answer: In architecture, angles are important to make buildings structurally sound. In art, angles can change the viewing angle to change the perspective.

(3) Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Interactive Presentation

Example 1

Students move through the slides to identify angles and parts of angles.

TYPE

Students determine whether a point can be in the interior of one angle and also be in the exterior of another angle.

CHECK

Students complete the Check online to determine whether they are ready to move on.

Example 1 Identify Angles

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
All What is the significance of the vertex of an angle? The vertex is a common endpoint of the two sides of the angle.What is the vertex of $\angle 9$? D
BLI What is another name for $\angle 3$? Sample answers: $\angle G B C, \angle C B G$, $\angle D B C$, or $\angle C B D$

Common Error

Often students name angles incorrectly because they do not place the vertex as the center letter. Remind students that when naming an angle with three letters, the letters should follow the shape of the angle.

Learn Congruent Angles

Objective

Students apply the definitions of congruent angles and angle bisectors to calculate angle measures.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of congruent angles in this Learn.

What Students Are Learning

Congruent angles have the same measure. An angle bisector is a ray or segment that divides an angle into two congruent angles.

Common Misconception

Students may assume that the measure of an angle depends on the lengths of the line segments shown on the sides of the angle. Remind students that the sides of an angle are rays that extend infinitely, and thus, the sides have no length. The points on the rays are useful only in naming the angle, not for determining the measures of the angle.

Check

Use the figure to identify the angles or parts of angles that satisfy the given condition. Which angle has sides $D B$ and $D C$ Select all that apply.

(A) $\angle 2$	B. $\angle 3$
C. $\angle A D B$	D. $\angle B D C$
E. $\angle C D B$	F. $\angle E D C$

Learn Congruent Angles
The measure of an angle is the measure in degrees of the space between the sides of an angle. Angles that have the same measure are congruent angles. Congruent angles are indicated on the figure by matching numbers of arcs.

A ray or segment that divides an angle into two congruent parts is an angle bisector. In the figure, $\overrightarrow{T R}$ bisects $\angle O T S$.

Interactive Presentation

Learn

TAP

Students tap the given figure to see congruent angles.

Interactive Presentation

Example 2

Students move through the steps to solve for the missing value.

TYPE

Students discuss their solution process when given a different piece of information.

CHECK

(1)

Students complete the Check online to determine whether they are ready to move on.

Example 2 Congruent Angles and Angle Bisectors

(10) 1

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
Why isn't $\angle B$ an appropriate way to name any of the angles in this diagram? Because B is the vertex of multiple angles, it doesn't specify just one angle.
OL. Why can the equation $4 x+14=8 x-32$ be used to solve for x ? Sample answer: Because $\overrightarrow{B D}$ is the angle bisector of $\angle A B E$, we know the two angles are congruent. So, their measures must be equal.
B1. What is the measure of $\angle A B E$? Show all work. 120°; $m \angle A B E=2(60)=120^{\circ}$

Common Error

Students may confuse the kind of figure that can be bisected. Remind students that a line of reflection must exist. When the figure is folded along this line, each point on one side maps to a corresponding point on the other side of the line. A ray cannot be bisected.

618 Module 11 • Angles and Geometric Figures

Learn Special Angle Pairs

Objective

Students apply the characteristics of adjacent angles, linear pairs of angles, and vertical angles to analyze figures.

Teaching the Mathematical Practices
3 Analyze Cases This Learn guides students to examine cases of special angle pairs. Encourage students to familiarize themselves with all of the cases.

Important to Know

Adjacent angles are two angles that lie in the same plane with a common vertex and common side. A linear pair is a special type of adjacent angles with noncommon sides that are opposite rays. Two nonadjacent angles formed by intersecting lines are called vertical angles, and these angles are congruent.

Common Misconception

Students may assume that all adjacent angles are also linear pairs. Have students draw two adjacent angles and a linear pair. Then compare and contrast the two different types of angle pairs.

DIFFERENTIATE

IF students have difficulty using the special angle relationships,
THEN have students draw two intersecting lines. Instruct them to write one or two sentence describing each relationship and to provide an example. For extra practice, have students analyze the figures found throughout the lesson and determine which angle relationships are or are not present in them.

Interactive Presentation

Learn

Students move through the definitions to see examples and non-examples of special angle pairs.

Interactive Presentation

Example 3

CHECK

1 CONCEPTUAL UNDERSTANDING

Example 3 Vertical Angles and Angle Pairs

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about special angle pairs to solving a real-world problem.

Questions for Mathematical Discourse

AL Why are angles $A B E$ and $C B D$ not considered adjacent? Although they share the same vertex, they do not share the same side.
OIL Can $m \angle E B C=42^{\circ}$? Explain. No; because angles $A B D$ and $E B C$ are vertical, they have the same angle measure.
B1니 Can the two angles of a linear pair be congruent? Explain. Y es; sample answer: If both angles are 90°, then they will be congruent angles.

Common Error

Students may not correctly identify pairs of vertical angles or not realize that vertical angles are congruent. Remind students that vertical angles share a vertex but are nonadjacent.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-17$	
2	exercises that use a variety of skills from this lesson	$18-48$
3	exercises that emphasize higher-order and critical-thinking skills	$49-50$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
 THEN assign:

- Practice, Exercises 1-47 odd, 49-50
- Extension: Using a Compass
- D ALEKSAngles

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-47 odd
- Remediation, Review Resources: Subtract Rational Numbers
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Addition and Subtraction with Fractions; Decimals: Addition and Subtraction

IF students score 65% or less on the Checks,

- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Subtract Rational Numbers
- Quick Review Math Handbook: Angle Measure
- ALEKS Addition and Subtraction with Fractions;

Decimals: Addition and Subtraction

```
Practice
Example 1
Use the figure to identify angles and parts of angles that
satisfy each given condition.
1. Name the vertex of \(\angle 1\). \(A\)
```

```
2. Name the sides of }\angle4,\vec{CA},\vec{CD
```

2. Name the sides of }\angle4,\vec{CA},\vec{CD
3. What is another name for }\angle3\mathrm{ ? }\angleADC,\angleCD
4. What is another name for }\angleCAD\mathrm{ ? }\angle1,\angleDA
Example 2
Example 2 In the figure, }\vec{LF}\mathrm{ and }\vec{LK}\mathrm{ are opposite rays. }\vec{LG}\mathrm{ bisects }\angleFLH
\mathrm{ 5. If mLFLG = 14x+5 and m OHLG = 17x-1, find m\&FLH. 66 '}
In the figure, \vec{BA}}\mathrm{ and }\vec{BC}\mathrm{ are opposite rays. }\vec{BH}\mathrm{ bisects }\angleEBC and \vec{BE
bisects }\angleABF\mathrm{ .
5. If m}\angleABE=2n+7\mathrm{ and }m\angleEBF=4n-13\mathrm{ , find }m\angleABE.27
6. If }m\angleEBH=6x+12\mathrm{ and }m\angleHBC=8x-10, find m\angleEBH. 78 ' %
7. If }m\angleABF=7b-24\mathrm{ and }m\angleABE=2b,\mathrm{ find }m\angleEBF\mathrm{ . }
8. If }m\angleEBC=31a-2\mathrm{ and }m\angleEBH=4a+45\mathrm{ , find }m\angleHBC.6\mp@subsup{1}{}{\circ
```

```

10. If m}\angleABF=8w-6\mathrm{ and }m\angleABE=2(w+11),\mathrm{ find }m\angleEBF. 47 %
11. If }m\angleEBC=3r+10\mathrm{ and }m\angleABE=2r-20, find m\angleEBF. 56 %
Example 3
Refer to the figure
12. Name two adjacent angles. Sample answer: }\angleMON\mathrm{ and }\angleNO
13. Name two vertical angles. Sample answer: }\angleSRQ\mathrm{ and }\angleTR
14. Find m\angleSUV. 122
```
```

Lesson 11-1 - Angles and Congruence $\mathbf{6 2 1}$

```

45. Pool Felipe uses a computer program to model the
paths of pool balls. \(\angle \mathrm{GFH}\) is a straight angle that paths of pool balls. \(\angle G F H\) is a straight angle that
represents the rail of the pool table. If \(\overline{F K}\) bisects \(\angle J F L\), and \(m \angle J F L=90^{\circ}\), what is \(m \angle L F K\) ? \(45^{\circ}\)
46. WOODWORKING Oliver makes rectangular blocks like the one shown and then glues them together to make a plaque. Find \(m \angle 1, m \angle 2\), and \(m \angle 3\), so he can cut the pieces of the plaque. \(113^{\circ}, 67^{\circ}, 113^{\circ}\)
47. WOODWORKING Naomi cuts two pieces of baseboard molding to meet in a comer at a \(90^{\circ}\) angle.
a. To what degree should she set her table saw for
the cut? \(45^{\circ}\)
the cut? \(45^{\circ}\)
b. Which ray represents the angle bisector of the molding angle? \(\overrightarrow{E F}\)
48. TEXTING Moving your head forward to look at a screen can stress your spine. Experts recommend aligning your ears with your shoulders and arms. They form a linear pair
a. In the forward posture, what is the relationship between \(\angle C S E\) and \(\angle E S A\) ?
b. In a correct posture, what is the relationship between ? They are opposite rays.
c. If you are standing so that \(m \angle C S E=26^{\circ}\), what is \(m \angle E S A\) ? \(154^{\circ}\) d. Standing so that \(m \angle C S E \geq 15^{\circ}\) puts more than 27 pounds of pressure on your spine. If there is 34 pounds of pressure on
your spine, what inequality describes \(m \angle E S A\) ? \(m \angle E S A \leq 165^{\circ}\)


France, there are eight lanes of traffic. Tell whether each angle pair satisfies the given condition.

42. vertical angles
a. \(\angle Z C Y\) and \(\angle T C U\) yes b. \(\angle X C W\) and \(\angle S C T\) no
c. \(\angle Q C R\) and \(\angle W C V\) yes d. \(\angle T C U\) and \(\angle U C T\) no
43. linear pair
a. \(\angle R C U\) and \(\angle W C U\) yes b. \(\angle O C R\) and \(\angle S C R\) no
c. \(\angle V C X\) and \(\angle W C Y\) no d. \(\angle Z C R\) and \(\angle U C W\) no
44. adjacent angles
a. \(\angle W C U\) and \(\angle R C U\) yes b. \(\angle Q C S\) and \(\angle S C R\) no
c. \(\angle V C W\) and \(\angle Q C R\) no d. \(\angle V C X\) and \(\angle V C U\) yes



Higher-Order Thinking Skills
49. PERSEVERE \(\overrightarrow{M P}\) bisects \(\angle L M N, \overrightarrow{M O}\) bisects \(\angle L M P\), and \(\overrightarrow{M R}\) bisects \(\angle O M P\) If \(m \angle R M P=21\), find \(m \angle L M N\). Explain your reasoning. \(168^{\circ}\), sample answer: If \(m \angle R M P=21^{\circ}\) and \(M R\) bisects \(\angle Q M P\), then \(m \angle O M P=2(21)\) or \(42^{\circ}\). If \(m \angle O M P=42^{\circ}\) and
\(M O\) bisects \(\angle L M P\), then \(m \angle L M P=2(42)\) or \(84^{\circ}\). If \(m \angle L M P=84^{\circ}\) and MAsects \(\angle L M N\), then \(m \angle L M N\) \(=2(84)=168^{\circ}\).
50. ANAL YZE Maria constructed a copy of \(\angle P V Q\) and abeled it \(\angle F G H\).
a. Are \(\angle F G H\) and \(\angle O V\) a linear pair? Explain. No; sample answer: Because even though they are supplementary, they are not adjacent angles. h. Maria must also copy \(\angle O V S\). Sal says she can
create a copy of \(\angle Q V S\) if she extends \(G H\) past \(G\). Mona says Maria can create a copy of LQVS by extending \(\overrightarrow{G F}\) past \(G\). Who is correct? Justify your argument.
Both Sal and Mona are correct. Extending either line will create a linear pair. Because \(\angle F G H\) is in both linear pairs and the sum of the angles in both pairs must be \(180^{\circ}\), the other angle in each pair will have the same measure and be congruent.

\section*{Suggested Pacing}


\section*{Focus}

Domain: Geometry

\section*{Standards for Mathematical Content:}
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.C0.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students wrote simple equations to find missing angle measures formed by complementary or supplementary angles. 7.G.5

\section*{Now}

Students find measures of angles using complementary and supplementary angles.
G.CO.1, G.C0. 12

Next
Students will find measures of two-dimensional objects.
G.GPE.7, G.MG. 1

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline 展 Conceptual Bridge In this lesson, students develop a precise \\
understanding of angle relationships, and they build fluency by making \\
constructions related to angles. They apply their understanding by \\
solving real-world problems about pairs of angles. \\
\hline
\end{tabular}

\section*{Mathematical Background}

Dynamic geometry software is used to help students explore angle relationships, such as complementary and supplementary angles, by manipulating associated points and then examining the relationships.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- classifying angles

Answers:
1. \(45^{\circ}\)
2. \(70^{\circ}\)
3. \(90^{\circ}\)
4. \(\angle A P E, \angle A P D, \angle F P B\), and \(\angle B P E\)
5. acute

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of complementary angles.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Complementary and Supplementary Angles}

\section*{Objective}

Students use dynamic geometry software to explore the relationships between complementary and supplementary angles.

Teaching the Mathematical Practices
3 Make Conjectures In this Explore, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a sketch to explore complementary and supplementary angles. They will answer questions leading them to the formal definitions of each angle pair. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}

\section*{Compuituntivy and Sompitnemary Angles.}

NQUIRY + low do complennectary angles comoone to supplemortary angles?

You can use the shetch to oxplore complornemary and rupptementary angles.

Explore


\section*{Explore}

\section*{WEB SKETCHPAD}

Students use a sketch to complete an activity in which they explore complementary and supplementary angles.

TYPE
a
Students answer questions about the angle relationships.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}

Students respond to the Inquiry Question and can view a sample answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Complementary and Supplementary Angles (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- How are complementary angles and right angles similar, and how are they different? Sample answer: The sum of the measures of two complementary angles equals \(90^{\circ}\). A right angle also measures \(90^{\circ}\). Only one right angle is needed to form a \(90^{\circ}\) angle, but two complementary angles are needed to form a \(90^{\circ}\) angle.
- How are supplementary angles and straight angles similar, and how are they different? Sample answer: The sum of the measures of two supplementary angles equals \(180^{\circ}\). A straight angle also measures \(180^{\circ}\). Only one straight angle is needed to form a \(180^{\circ}\) angle, but two supplementary angles are needed to from a \(180^{\circ}\) angle.

\section*{(C) Inquiry}

How do complementary angles compare to supplementary angles? Sample answer: The sum of the measures of two complementary angles is \(90^{\circ}\). The sum of the measures of two supplementary angles is \(180^{\circ}\), twice the sum of two complementary angles.
3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Explore Interpreting Diagrams}

Objective
Students use dynamic geometry software to discover what can and cannot be assumed about angles in a diagram.

\section*{(11) Teaching the Mathematical Practices}

3 Reason Inductively In this Explore, students will use inductive reasoning to make plausible arguments.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will complete guiding exercises throughout the Explore activity. They will use a sketch to explore how to interpret a diagram. They will answer questions about angle measurements formed during the exploration. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}

Hiwnoroling Elatymitr



Explore


Explore

Students use a sketch to interpret a diagram.

TYPE
a
Students answer questions about angle measures and assumptions.

\section*{Interactive Presentation}


Explore

\section*{TYPE}

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Interpreting Diagrams (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- What is the measure of a right angle? \(90^{\circ}\)
-Why should you not make assumptions about the information presented in diagrams? Sample answer: If you assume the measure of a segment or angle or the relationships between segment and angle pairs based on how they appear in a diagram, you may be assuming measures or relationships that are not true.

\section*{(B) Inquiry}

What information can be assumed from a diagram, and what information cannot be assumed? Sample answer: Y ou can assume figures are coplanar if they appear to be so. Kou can assume that points are collinear. You can assume that points or lines of intersection are represented, and you can assume the relationship among angle pairs. Bu cannot assume that two line segments or angles are congruent just because they appear to have the same measure. You cannot assume that an angle is a right angle unless it is marked with a right angle symbol.

Wo Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Complementary and Supplementary Angles}

\section*{Objective}

Students apply the characteristics of complementary and supplementary angles to calculate angle measures.

Teaching the Mathematical Practices
4 Analyze Relationships Mathematically Point out that to solve the problem in this Learn, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

What Students are Learning
Complementary angles are two angles whose measures have a sum of \(90^{\circ}\). Supplementary angles are two angles whose measures have a sum of to \(180^{\circ}\). Angles do not have to be adjacent to be complementary or supplementary angles. All linear pairs are supplementary angles.

\section*{Common Misconception}

Students often believe only adjacent angles can be complementary or supplementary. Point students back to the example showing nonadjacent complementary and supplementary angles.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity}

Can vertical angles ever be complementary or supplementary?
Explain. Yes; sample answer: Vertical angles are complementary when each angle measures \(45^{\circ}\). They are supplementary when each angle measures \(90^{\circ}\).

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn



\section*{Interactive Presentation}


Example 1


Students move through the steps to find the measures of two complementary angles.
TYPE
व

Students type to answer a question about supplementary and complementary angles.

\section*{CHECK}

\section*{Example 1 Complementary and Supplementary Angles}

\section*{(1) Teaching the Mathematical Practices}

8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students will evaluate the reasonableness of their answer.

\section*{Questions for Mathematical Discourse}

AL Can complementary angles also be adjacent? Explain. Y es; if two angles share a common side and a common vertex, and have a sum of \(90^{\circ}\), then they are adjacent and complementary.
OL. What expression represents the sum of the two angles? \(x+4 x+5\)
[BL Suppose the angles had instead been supplementary angles. What is the value of \(x\) ? Explain. \(x=35\); \(x+4 x+5=180\), so \(5 x=175\), which means \(x=35\).

\section*{Common Error}

Students often mix up whether the sum is \(90^{\circ}\) or \(180^{\circ}\) when using the definition of complementary and supplementary angles. A quick way to remember is: ' \(c\) ' comes before ' \(s\) ' in the alphabet, as 90 comes before 180 on the number line.

\section*{Learn Perpendicularity}

Objective
Students apply the characteristics of perpendicular lines to calculate angle measures.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of perpendicular lines in this Learn.

\section*{Key Concept}

Lines, segments, or rays that intersect at \(90^{\circ}\) angles are perpendicular. The right angle symbol indicates that lines are perpendicular.

Example 2 Perpendicular Lines
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

What is true of the angles formed by perpendicular lines? All four angles are congruent; they each measure \(90^{\circ}\).
OL What is the relationship between \(\angle E B F\) and \(\angle F B D\) ? They are complementary angles; the sum of these two angles is \(90^{\circ}\).

1BL Besides right angles and vertical angles, how else can you describe \(\angle A B C\) and \(\angle E B D\) ? They are supplementary angles.

\section*{DIFFERENTIATE}

\section*{}

IF students show difficulty determining angle relationships from a diagram,
THEN encourage students to use color-coding to avoid confusion. For example, they can color code vertical angles with red, perpendicular lines with yellow, and so on.


Interactive Presentation


Learn


Students tap to see examples of perpendicular lines and right angles.


\section*{Interactive Presentation}


Learn
TAP \(\begin{aligned} & \text { Students move through the slides to learn } \\ & \text { about interpreting figures. }\end{aligned}\)

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Learn Interpreting Diagrams}

\section*{Objective}

Students demonstrate understanding of what can and cannot be assumed from a diagram by analyzing line and angle relationships in a given figure.

Teaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made in this Learn.

\section*{Important to Know}

Geometry uses figures, which are sketches used to depict various situations. Often sketches are not drawn accurately which means that certain relationships cannot be assumed from figures. Features such as points of intersection can be assumed as can vertical angles and linear pairs, but congruence and perpendicularity cannot be assumed.

\section*{Common Misconception}

Students tend to make certain assumptions about the geometric relationships of figures in a diagram based on the appearance of the diagram. For example, two angles may look congruent when they are not. Remind students that congruent angles or segments and perpendicular or parallel lines cannot be assumed from a figure.

\section*{Essential Question Follow-Up}

Students have begun learning about interpreting diagrams.

\section*{Ask:}

Why should we not assume certain relationships are present based on a diagram? Sample answer: Diagrams are only sketches, which means that they lack accuracy. Assuming that a relationship is present could cause calculations to be incorrect. In the real world, this means construction projects could fail or people could be injured by the lack of precision.

\section*{Example 3 Interpreting Diagrams}

\section*{Teaching the Mathematical Practices}

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions for Mathematical Discourse}

Al What angle relationships can be assumed from a diagram? Sample answer: linear pairs, vertical angles, and adjacent angles
Oll Based on the figure, what statement can be made about \(\angle A B G\) ? Sample answer: It is an obtuse angle.To say that \(\angle I E B\) and \(\angle B E C\) are congruent, what must be given about the figure? \(\overline{B E}\) and \(\overline{I F}\) are perpendicular.

\section*{Common Error}

Despite the lesson, students may still assume that angles are congruent or that lines are perpendicular based on the diagram. Remind students that those relationships can never be assumed based on a figure, unless it is stated.

Because points of intersection can be assumed, you can identify vertical angles from the figure. Because linear pairs can be assumed from the figure, you can apply known characteristics of a linear pair, such as supplementary angles.
\(\angle A B D\) and \(\angle C B E\) are vertical
angles.
\(\angle E B A\) and \(\angle A B D\) form a linear paik. som \(\angle E B A+m \angle A B D=180^{\circ}\).
Example 3 Interpreting Diagrams
Determine whether sach statement
can be assumed from the figure.
Explain.
a. \(\overrightarrow{C E}\) and \(\overrightarrow{C F}\) are opposite rays. \(Y\) es; \(;\) is a common endpoint.
b. \(\angle \theta O C\) and \(\angle N G C\) form a linear pair \(Y\) es; their noncommon sides are opposite rays.
c. \(\angle A B\) ánd \(C B G\) are vertical angles.
\(Y\) es; these angles are nonadjacent and are formed by two intersecting lines.
d. \(\angle B C G\) and \(\angle D C F\) re congruent.

No; these angles are not vertical angles. There isn't enough information given to determine this.
e. \(B E\) and \(\vec{F}\) are perpendicular.

No; there isn't enough information given to determine this.
i. \(\angle E B\) and \(\angle G B C\) re complementary angles.

No; there isn't any information about perpendicularity or angle moasure so this cannot be determined.
g. \(\angle I C H\) and \(\angle H C D\) are adjacent angles.
\(Y\) es; these angles share a common side.
h. \(\overline{B C}\) is an angle bisector of \(\angle E C G\)

No; there isn't any information about congruent angles so this cannot be determined.


About It| If you are given that \(B E \perp I \bar{C}\) can you determine whether \(B E I=\angle E E C\) Explain

Y es; sample answer: the segments are lerpendicular, then the angles are both right angles. Because they both have the same measure, \(90^{\circ}\), they are congruent.

\section*{Interactive Presentation}


Example 3
Students move through different
statements and determine whether they
can be assumed from the figure.


\section*{Interactive Presentation}


Check
CHECK
Students complete the Check online to determine whether they are ready to move on.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-14\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(15-28\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(29-35\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-28 odd, 29-35
- Extension: Runway Angles
- ALEKSAngles

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Vertical and Adjacent Angles
- Personal Tutors
- Extra Examples 1-3
- © ALEKS'Angle Relationships

IF students score \(65 \%\) or less on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Vertical and Adjacent Angles
- Quick Review Math Handbook: Angle Relationships
- © ALEKS'Angle Relationships

\section*{Practice}

0
Example
1. Find the measures of two supplementary angles if the difference between the measures of the two angles is \(35^{\circ} .72 .5^{\circ}, 107.5^{\circ}\)
2. \(\angle E\) and \(\angle F\) are complementary. The measure of \(\angle E\) is \(54^{\circ}\) more than the measure of \(\angle F\). Find the measure of each angle. \(m \angle F=18^{\circ} ; m \angle E=72\)
3. The measure of an angle's supplement is \(76^{\circ}\) less than the measure of the angle. Find the measures of the angle and its supplement \(128^{\circ} ; 52^{\circ}\)
4. \(\angle O\) and \(\angle R\) are complementary. The measure of \(\angle Q\) is \(26^{\circ}\) less than the measure of \(\angle R\). Find the measure of each angle. \(m \angle O=32^{\circ} ; m \angle R=58^{\circ}\)
5. The measure of the supplement of an angle is three times the measure of the angle. Find the measures of the angle and its supplement. \(45^{\circ} ; 135^{\circ}\)
6. The bascule bridge shown is opening from its horizontal position to its fully vertical position. So far, the bridge has lifted \(35^{\circ}\) in 21 seconds. At this rate, how much longer will it take for the bridge to reach its vertical position? 33 s

7. Rays \(B A\) and \(B C\) are perpendicular. Point \(D\) lies in the interior of \(\angle A B C\). If \(m \angle A B D=(3 r+5)^{\circ}\) and \(m \angle D B C=(5 r-27)^{\circ}\), find \(m \angle A B D\) and \(m \angle D B C\) \(m \angle A B D=47^{\circ} ; m \angle D B C=43^{\circ}\)
8. \(W_{X X}\) and \(\overline{Y Z}\) intersect at point \(V\). If \(m \angle W V Y=(4 a+58)^{\circ}\) and \(m \angle X V Y=(2 b-18)^{\circ}\) find the values of \(a\) and \(b\) such that \(\overline{W X}\) is perpendicular to \(\stackrel{\rightharpoonup}{Y}\). \(a=8 ; b=54\)
9. Refer to the figure at the right. If \(m \angle 2=(a+15)^{\circ}\) and \(m \angle 3=(a+35)^{\circ}\), find the value of \(a\) such that \(\overrightarrow{H L} \perp \stackrel{H}{H} . a=20\)
10. Rays \(D A\) and \(D C\) are perpendicular. Point \(B\) lies in the interior of \(\angle A D C\). If \(m \angle A D B=(3 a+10)\) and \(m \angle B D C=13 a^{\circ}\), find \(a, m \angle A D B\), and
 \(m \angle B D C . a=5 ; m \angle A D B=25^{\circ} ; m \angle B D C=65^{\circ}\)

Lesson 11-2. Angle Relationships 631
```

Example 3
Determine whether each statement can be assumed from the
given figure. Explain.
11. }\angle6\mathrm{ and }\angle8\mathrm{ are complementary. Y es; because }\angle7\mathrm{ is a right
angle, }\angle6\mathrm{ and }\angle8\mathrm{ must form a right angle.
12. }\angle7\mathrm{ and }\angle8\mathrm{ form a linear pair. No; the angles do not share a
common side.

```

```

13. }\angle2\mathrm{ and }\angle4\mathrm{ are vertical angles. }Y\mathrm{ es; the angles are nonadjacent
and are formed by two intersecting lines.
14. m\angle9=m\angle6+m\angle8 Y es; because }\angle9\mathrm{ and }\angle7\mathrm{ are vertical angles, m }\angle9=9\mp@subsup{0}{}{\circ}\mathrm{ . Because
\angle6 and }\angle8\mathrm{ are complementary angles, m }\angle6+m\angle8=9\mp@subsup{0}{}{\circ}\mathrm{ . Thus, m }\angle9=m\angle6+m\angle8
Mixed Exercises
15. The measure of the supplement of an angle is 60% less than four times the
measure of the complement of the angle. Find the measure of the angle. }4
16. }\angle6\mathrm{ and }\angle7\mathrm{ form a linear pair. Twice the measure of }\angle6\mathrm{ is twelve more than fou
times the measure of }\angle7\mathrm{ . Find the measure of each angle}\angle6=12\mp@subsup{2}{}{\circ};m\angle7=5\mp@subsup{8}{}{\circ
Refer to the figure at the right
17. If m\angleADB=(6x-4) and m\angleBDC = (4x+24\mp@subsup{)}{}{\circ}\mathrm{ , find the value of }x\mathrm{ such}
that }\angleADC\mathrm{ is a right angle. }
18. If }m\angleFDE=(3x-15\mp@subsup{)}{}{\circ}\mathrm{ , and }M\angleFDB=(5x+59), find the value of x such
that }\angleFDE\mathrm{ and }\angleFDB\mathrm{ are supplementary. 17
19. If m\angleBDC= (8x+12\mp@subsup{)}{}{\circ}\mathrm{ and m}m\angleFDB=(12x-32\mp@subsup{)}{}{\circ}\mathrm{ . find }m\angleFDE.92
Determine whether each statement can be assumed from the
given figure. Explain.
20. }\angle4\mathrm{ and }\angle7\mathrm{ are vertical angles. Y es; the angles are nonadjacent
and are formed by two intersecting lines.
21. }\angle3\cong\angle6 No; the measures of the angles are unknowm
22. m\angle5=m\angle3+m\angle6 Y es; m\angle5=90
and m\angle3+m\angle6=9\mp@subsup{0}{}{\circ}\mathrm{ because }\angle3\mathrm{ and }\angle6\mathrm{ are complementar)}
23. angles.}\angle7\mathrm{ and form a linear pair. No; the angles are not adjacent.
```



For Exercises 24 and 25 , lines \(p\) and \(q\) intersect to form adjacent angles 1 and 2.
24. If \(m \angle 1=(7 x+6)^{\circ}\) and \(m \angle 2=(8 x-6)^{\circ}\), find the value of \(x\) such that \(p\) is perpendicular to \(q\). \(x=12\)
25. If \(m \angle 1=(4 x-3)^{\circ}\) and \(m \angle 2=(3 x+8)^{\circ}\), find the value of \(x\) such that \(\angle 1\) is
supplementary to \(\angle 2 \quad x=25\) supplementary to \(\angle 2 . x=25\)
26. COLOR GUARD Shannon is designing a new rectangular flag for the school's color guard and is determining the angles at which to cut the fabric. She wants the measure of 2 to be three times as great as the measure of \(\angle 1\). She hinks the measures of \(\angle 3\) and \(\angle 4\) should be equal. Finally, Determine the measure of \(\angle 6\) to be half that of \(\angle 5\). Determine the measures of the angles. \(m \angle 1=22.5^{\circ}\), \(m \angle 2=67.5^{\circ} \cdot m \angle 3=45^{\circ} ; m \angle 4=45^{\circ} \cdot m \angle 5=120^{\circ} \cdot\)
27. STRING ART String art is created by wrapping string around nails or wires to form patterns. Use the string art pattern below to find the values of \(x, y\), and \(z\).
\(x=94, y=79, z=26\)


28. USE TOOLS Draw an acute angle, \(\angle A B C\). Let \(m \angle A B C=(6 x-1)^{\circ}\)
a. Use a protractor to determine the measure of \(\angle A B C\). Use this measure to determine the value of \(x\). See margin.
b. Explain how you would determine the measure of an angle that is complementary to \(\angle A B C\). To find the measure of an angle that is complementary to \(\angle A B C\), you would subtract \(m \angle A B C\) from \(90^{\circ}\).
c. Explain how you would determine the measure of an angle that is supplementary to \(\angle A B C\). To find the measure of an angle that is supplementary to \(\angle A B C\), you would subtract \(m \angle A B C\) from \(180^{\circ}\).

\section*{Answers}

28a. After drawing an acute angle, label vertex \(B\) and point \(A\) on one ray and point \(C\) on the other ray. Then use a protractor to find the measure of \(\angle A B C\). Let the measure of \(\angle A B C\) equal \(6 x-1\) and solve for \(x\).
33. Sample answer:


Higher-Order Thinking Skills
29. ANALYZE Are there angles that do not have a complement? Justify your argument. Yes, sample answer: Angles that are right or obtuse do not have complements because their measures are greater than or equal to \(90^{\circ}\).
30. PERSEVERE If a line, line segment, or ray is perpendicular to a plane, then it is perpendicular to every line, line segment, or ray in the plane that intersects in.
a. If a line is perpendicular to each of two intersecting lines at their point of intersection, then the line is perpendicular to the plane determined by them. If line
\(\sigma\) is perpendicular to line \(\ell\) and line \(m\) at point \(X\), what must also be true? Line \(a\) is perpendicular to plane \(P\).

b. If a line is perpendicular to a plane, then any line perpendicular to the given line at the point of intersection with the given plane is in the given plane. If line \(a\) is perpendicular to plane \(P\) and line \(m\) and point \(X\), what must also be true? Line \(m\) is in plane \(P\).
c. If a line is perpendicular to a plane, then every plane containing the line is perpendicular to the given plane. If line \(a\) is perpendicular to plane \(P\), what must also be true? Any plane containing line \(a\) is perpendicular to plane \(P\).
31. WRITE Describe three different ways you can determine that an angle is a right angle. Sample answer: \(Y\) ou can determine whether an angle is right if it is marked with a right angle symbol, if the angle is a vertical pair with a right angle, or if the angle forms a linear pair with a right angle.
32. FIND THE ERROR Kaila solved the problem, as shown. Is her solution correct? If it is, explain your reasoning. If not, explain Kaila's mistake and correct the work. No ; Kaila solved the problem for complementary angles.
\((6 x-9)^{\circ}+(2 x+13)^{\circ}=180^{\circ}\)
\(8 x+4=180\)
\(8 x=176\)
\(x=22\)
\(17 m \angle F=(6 x-9)^{\circ}\) and \(m \angle G=(2 x+\)
\(13)^{\prime}\) find \(\angle G\) are supplementary.
\((6 x-9)^{\prime}+(2 x+13)^{\prime}=90^{\circ}\)
\(\begin{aligned} & \\ & 8 x-4=\infty 0 \\ & 8 x=86\end{aligned}\)
33. CREATE Create \(\angle 1\) along with its complement and supplement by drawing only a line and two rays. See margin.
34. WHICH ONE DOESNT BELONG Three students used the figure to write a statement is each statement correct? Justify your conclusion.

Samar: \(\angle W Z U\) is a right angle.
Jana: \(\angle Y Z U\) and \(\angle U Z V\) are supplementary.
Antonio: \(\angle V Z U\) is adjacent to \(\angle Y Z X\). Samar is correct; \(\angle W Z U\) is marked. Jana is correct; the angles form a linear pair, Antonio is incorrect; the angles do not share a common side.
35. ANALYZE Do all angles have a supplement? Explain. No
 sample answer: Straight angles or angles that are greater than
\(180^{\circ}\) do not have supplements because their measures are greater than or equal to \(180^{\circ}\).
634 Module 11 . Angles and Geometric Figures

\section*{LESSON GOAL}

Students find measures of two-dimensional figures.

\section*{1 LAUNCH}


Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

\section*{Develop:}

Perimeter, Circumference, and Area
- Find Perimeter, Circumference, and Area

Explore: Modeling Objects by Using Two-Dimensional Figures

\section*{Develop:}

Modeling with Two-Dimensional Figures
- Modeling with Two-Dimensional Figures
- Using a Two-Dimensional Model

You may want your students to complete the Checks online.
\(\square\)

\section*{REFLECT AND PRACTICE}

\section*{Exit Ticket}

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & AL & 1.3 & FLI & \\
\hline Remediation: Angle Relationships & - 0 & & & - \\
\hline Extension: Pick's Theorem & & - \({ }^{-1}\) & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 65 of the Language Development Handbook to help your students build mathematical language related to finding measures of two-dimensional figures.
ㅌ․… You can use the tips and suggestions on page T65 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 0.5 day \\
45 min & \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.GPE. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students understood and used area formulas for two-dimensional figures.
6.G.1, 7.G.4, 7.G. 6

\section*{Now}

Students find measures of two-dimensional objects.
G.GPE.7, G.MG. 1

\section*{Next}

Students will identify transformations and represent reflections, translations, and rotations.
G.CO. 2

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students draw on their understanding of plane figures to model real-world objects. They build fluency by using coordinates to find perimeters and areas of figures and apply what they know about plane figures to solve real-world problems.

\section*{Mathematical Background}

A polygon is a closed figure formed by a finite number of coplanar segments. The perimeter of a polygon is the sum of the lengths of its sides. The circumference of a circle is the distance around the circle.
The area is the number of square units required to cover a surface.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


Today's Vocabulary

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying angle pairs

Answers:
1. \(\angle B E C\) and \(\angle A E D\)
2. \(\angle A E D, \angle C E B\) or \(\angle A E B, \angle C E D\)
3. \(70^{\circ}\)
4. \(110^{\circ}\)
5. sometimes

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of two-dimensional geometric shapes.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Modeling Objects by Using Two-Dimensional Figures}

\section*{Objective}

Students use two-dimensional shapes to model real-world objects and use dynamic geometry software to calculate measures.

\section*{Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of modeling objects using two-dimensional figures.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a sketch to approximate the shape of a coin and a television to find the circumference or perimeter and the area. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore

Students use a sketch to explore circumference, perimeter, and area.

\section*{Students type to answer the guiding exercises.}

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Modeling Objects by Using Two-Dimensional Figures (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- What is the first step in finding the perimeter or circumference of an object? Sample answer: Measure the sides or diameter of the object.
- Which area formulas will be useful to know when modeling objects with two-dimensional figures? Sample answer: the area formulas for rectangle, circle, and triangle

\section*{(1) Inquiry}

How can you apply the properties of two-dimensional figures to solve real-world problems? Sample answer: Two-dimensional figures can be used to model real-world objects such as the coastline of a country or the area of a construction site. Then you can use the known formulas for calculating the perimeter and area of the two-dimensional figures to approximate the perimeter and area of the real-world objects.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Perimeter, Circumference, and Area}

\section*{Objective}

Students find perimeters, circumferences, and areas of two-dimensional geometric shapes by using coordinates and the Distance Formula.

\section*{(11) Teaching the Mathematical Practices}

3 Analyze Cases This Learn guides students to examine cases of perimeter, circumference, and area for various polygons. Encourage students to familiarize themselves with all of the cases.

\section*{What Students Are Learning}

A figure bounded by three or more straight sides is called a polygon. The perimeter of a polygon is found by adding the lengths of all the sides. The circumference of a circle is the distance around the circle. Area is the number of square units needed to cover a surface. The Distance Formula calculates different characteristics of two-dimensional figures on the coordinate plane, which can be used to determine perimeter, circumference, or area of the figure.

\section*{Common Misconception}

Students often interchange perimeter and area, believing the two represent the same measurement. Remind students that perimeter is a one-dimensional measurement and that area is a two-dimensional measurement.

\section*{DIFFERENTIATE}

\section*{AL}

IF students have difficulty using or remembering the formulas for perimeter,
THEN have them build their intuition by measuring cutouts of triangles, squares, and rectangles. They can use string to measure circumference of a circle.

Consider the shape shown below.


What is the perimeter of the shape?
34 cm


Interactive Presentation


Learn

TAP


Students tap to see the formulas for perimeter and area of various shapes.


\section*{Interactive Presentation}


Example 1
 the perimeter and circumference of the given figures.


CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 1 Find Perimeter, Circumference, and Area}

(1)Teaching the Mathematical Practices 5 Use Estimation Point out that in this example, students can use estimation to check the reasonableness of their answer.

Questions for Mathematical Discourse
What other shape names can be used to classify the rectangle? quadrilateral and parallelogram
OL What formulas are used when finding the area of a square, a triangle, or a circle? The formula for the area of a square is \(A=s^{2}\). The formula for the area of a triangle is \(A=\frac{1}{2} b h\). The formula for the area of a circle is \(A=\pi r^{2}\).
BL. Suppose you forgot the Distance Formula. How else could you determine the lengths of the sides of the rectangle? I could use the Pythagorean Theorem.

3

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{Common Error}

Students often write the wrong units for area. If the problem is measured in inches, then they will write area as inches rather than square inches. Remind students that area is a two-dimensional measurement because area involves multiplying two different dimensions.

\section*{DIFFERENTIATE}

\section*{Language Development Activity 틴}

The word perimeter comes from the Greek peri, which means around and meter which means measure. The term is used for the path or for its length. Have students discuss how this can help them remember the definition of perimeter.


\section*{Interactive Presentation}


Example 1

\section*{TAP}

Students move through the steps to find the perimeter, circumference, and area of a circle.


\section*{Interactive Presentation}


Example 2


\section*{Learn Modeling with Two-Dimensional} Figures

\section*{Objective}

Students calculate the measures of real-world objects by using twodimensional geometric shapes and their perimeters, circumferences, areas, and properties to model the objects.

Teaching the Mathematical Practices
7 Use Structure Mathematically proficient students can see real-world objects as being composed of several two-dimensional figures.

\section*{About the Key Concept}

Geometric models are geometric figures that represent real-life objects.
A good model displays all the important characteristics of the object even though some of the detail may be lost. Geometric models are good tools to study objects.

\section*{Essential Question Follow-Up}

Students have begun learning about geometric models.

\section*{Ask:}

Why are geometric models a useful tool when dealing with real-world two-dimensional objects? Sample answer: Often real-world objects do not form perfect shapes, so a geometric model can help approximate the shape. Then the perimeterarea, and circumference can be calculated. For example, a building may be constructed and it seems to be circular Even though the building may not be perfectly circular, we can still use a circle to approximate the characteristics of the building.

\section*{Example 2 Modeling with Two-Dimensional Figures}

Teaching the Mathematical Practices
4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Questions for Mathematical Discourse
ALI. How do you know the figure is a square? Sample answer: All four angles are right angles, and all of the sides are congruent.
OL How many plates could fit length-wise on a table that is six feet long? Explain. 5 plates; Because \(6 \mathrm{ft}=72\) inches, and each plate is 12.5 inches wide, then \(72 \div 12.5=5.76\).
BEL Suppose the platter is a rectangle and the width is still 12.5 inches. If the length was four more than the width, what is the area of the serving platter rounded to the nearest tenth? \(A=12.5(16.5)=206.3\) ir

\section*{Common Error}

Although a square is a rectangle, students may not pick the most accurate shape for the serving platter. A rectangle is used when opposite sides are not the same length. Because the serving platter has opposite sides of the same length, students should use a square to model the object.

\section*{Example 3 Using a Two-Dimensional} Model

\section*{Teaching the Mathematical Practices}

4 Apply Mathematics In this example, students apply what they have learned about two-dimensional geometric shapes to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

What shapes are present in the diagram? 3 rectangles, 1 triangle
OL How can you find the area of the two tables in the café? Use the Distance Formula to calculate the length and width, then multiply to find the area.

B1. Suppose Isaiah decided to add a small outdoor seating space that is roughly circular. If the diameter of the space is 10 feet, how many people can be in the area if there are no tables?
\(A=25 \pi \approx 78.5\) square feet, which means that a maximum 5 people can be in this area at a time.

\section*{Common Error}

Many students enter the entire Distance Formula into their calculator, including the radical sign. This results in rounding at a very early stage in the problem-solving process. When rounded answers are used in another step and those answers are then rounded, answers can be pretty far off the mark. Remind students to leave answers in radical form until the very end to avoid rounding errors.
© Example 3 Using a Two-Dimensional Model BUSINESS Isaiah owns a small café.
Part A A new fire code states that there must be 15 square feet of customer in the café. How many people can how in peopl be in the café?
Step 1 Find the amount of free space available. Find the total area of the café.
Area of the café =
\(15 \times 15\) or \(225 \mathrm{ft}^{2}\)
Then, find the area of
the counter and the
drink station
C \(=3 \times 11\) or \(33 \mathrm{ft}^{2}\)
D \(=\frac{1}{2}(5 \cdot 6)\) or \(15 \mathrm{ft}^{2}\)
Find the areas of the tables by using the Distance Formula.
\(\ell=\sqrt{(3-1)^{2}+(9-5)^{2}}\) or \(\sqrt{20}\) and \(w=\sqrt{(3-1)^{2}+(4-5)^{2}}\) or \(\sqrt{5}\)
\(T=\ell \cdot w=\sqrt{20} \cdot \sqrt{5}\) or \(10 \mathrm{ft}^{2}\)
Find the amount of free space available for Isaiah's customers.
\(A=\) area of the café \(-C-D-2 T\)
\(=225-33-15-(2 \times 10)\) or \(157 \mathrm{ft}^{2}\)
Step 2 Find the number of people that can be in the cafe.
\(157 \mathrm{ft}^{2} \cdot \frac{1 \text { person }}{15 \mathrm{ft}^{2}} \approx 10.5\) or 10 people
The café can hold 10 people.
Part B Isaiah wants to hang garland around the tables and the drink station. How much garland does Isaiah need?
Find the sum of the perimeters of the tables and drink station.
length of garland \(=2 \cdot\) perimeter of table + perimeter of drink station
\(=2(2 \sqrt{20}+2 \sqrt{5})+\left(6+5+\sqrt{(15-9)^{2}+(5-0)^{2}}\right)\)
\(\approx 45.6\) feet
Isaiah would need at least 45.6 feet of garland.

Problem-Solving
Tip
Evaluate Your Answer
It canbe tempting to complete the final calculation in a multistep exercise and conclude that you have arrived at the answ
However, always remember to defin remember to define when solving a realworld problem. In this example, it does not make sense to have 10.5 people. Y ou can determine that a correct answer for this exercise must be a whole number.

\section*{Study Tip}

Radical Form
Leave answers in radical form until the last calculation. This will prevent compounding errors throughout steps within a problem.
(continued on the next page)

Interactive Presentation


Example 3



\section*{Interactive Presentation}


Check
CHECK
Students complete the Check online to determine whether they are ready to move on.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-13\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from \\
this lesson
\end{tabular} & \(14-23\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(24-27\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-23 odd, 24-27
- Extension: Pick's Theorem
- ALEKS'Introduction to Perimeter and Area

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-23 odd
- Remediation, Review Resources: Angle Relationships
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Angle Pairs

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Angle Relationships
- Quick Review Math Handbook: Two-Dimensional Figures
- ALEKS'Angle Pairs

\section*{Answers}

13b. Sample answer: In part a, I assumed that there was no space between the field and the first lane of the track. I also assumed that the athlete's body was centered on the border of the track.

```

Example 3
10. DESIGN Dev is designing a new sign for his art studio. However, he
needs to make several improvements to the sign before it is ready to
be hung.
a. Dev wants to add a metal trim around the perimeter of the
sign. How much trim should Dev purchase? Round answer
b. The front of the sign also needs to be waterproofed with a protective sealer. How much area
needs to be covered by the sealer? Round answer to the nearest square foot. 28 ft
c. If a pint of sealer covers an area of 20 square feet, then how many pints of sealer should Dev
purchase? 2 pints
11. WORLD RECORD The world's largest ice cream cake was created on May 10, 2011, in T oronto, Canada. The cake was 4.45 meters long, 4.06 meters wide, and 1 meter tall. All surfaces of the cake except the bottom were covered with a cookie crumble topping. Use an appropriate two-dimensional model to approximate the area covered by the cookie crumble topping. Round the answer to the nearest tenth of a square meter. $35.1 \mathrm{n}^{2}$
12. POOL Eight-ball pool is a popular game played on a pool table that has six pockets. In eight-ball pool, there are 7 striped balls, 7 solid-colored balls, and a black eight ball. At the beginning of each game, players position the 15 balls in a rack in preparation or the first shot.
a. Find the area contained by the rack using an appropriate twodimensional model. Round the answer to the nearest tenth of Approximate the area
Appp a tenth of a square inch. 3.8 in 2
13. TRACK A 400-meter Olympic-size track can be modeled with a rectangle and two semicircles.
a. If an athlete runs around the track once, then how far has the
athlete traveled to the nearest meter? 398 m
b. What assumption can be used to explain the difference between your answer in part a and the actual length ck? See margin.
Each lane is 1.22 meters wide. If the athlete runs in the center of
has she traveled after a single lap to the nearest meter? 402 m
d. How far inside the track should the athlete be positioned to run exactly 400 meters? Round the answer to the nearest centimeter. 30 cm
642 Module 11 • Angles and Geometric Figures

```

\section*{Mixed Exercises}

Identify the figure with the given vertices. Find the perimeter and area of the figure.
14. \(A(3,5), B(3,1), C(0,1)\)
triangle; 12 units; 6 units \(^{2}\)
16. \(G(-4,1), H(4,1), N(0,-2)\)
triangle; 18 units; 12 units \({ }^{2}\)
17. \(K(-1,1), L(3,4), M(6,0) . N(2,-3)\)
18. Rectangle \(W X Y Z\) has a length that is 5 more than three times its width.
a. D raw and label a figure for rectangle \(W X Y Z\). See margin.
b. Write an algebraic expression for the perimeter of the rectangle. An expression for the perimeter, where \(x\) is the width, would be either \(2(3 x+5)+2 x\) or \(8 x+10\).
c. Find the width if the perimeter is 58 millimeters. Explain how you can check that your answer is correct. Solving \(58=8 x+10\) for \(x\), the width is found to be 6 mm . To check he length, 23. The sum of all four sides, \(23+23+6+6\), should equal 58 .
Use a ruler to draw and label \(P Q\), which is co of rectangle \(W X Y Z\). What is the measure of \(P Q\) ? See margin.
19. FENCING The figure shows Derek's house and his backyard on coordinate grid. Derek is planning to fence in the play area in his backyard. Part of the play area is enclosed by the house and does not The cost for the fencing materials and installation is \(\$ 10\) per foot How much will it cost Derek to install the fence? Explain. See margin.

20. Explain a method to find the area of \(\triangle Q R S\) given that \(\overline{R T} \perp \overline{O S}\). The
ind the area. Show your work.
see margin.


Lesson 11-3 - Two-Dimensional Figures 643
21. SONAR Sonar is used by oceanographers to locate marine animals and to map the contours of the ocean fioor. Sonar sends out sound pulses, caled sound echo to detect the location of animals or the distance from a rock formation. If each unit on the coordinate grid measures 1 mile, then what area does the sonar system cover? Round to the nearest tenth. 78.5 square miles

22. Two vertices of square \(A B C D\) are \(C(5,8)\) and \(D(2,4)\)
a. Do you need to find the coordinates for the other two vertices to find the perimeter and area of the square? Justify your argument. No; sample answer: The perimeter and area of a square can be found using the length of just one side.
b. Find the perimeter and area of square \(A B C D\). Show your work. \(C D=5 ; P=4(5)=20\) units; \(A=(5)^{2}=25\) square units
23. The coordinate grid shows an equilateral triangle that fits inside a square.
a. Find the area of the square. Show your work.
\(s=4\), so \(A=4^{2}=16\) units
b. Find the area of the triangle. Show your work
\(b=2, h=\sqrt{3}\), so \(A=\frac{1}{2}(2)(\sqrt{3})=\sqrt{3}\) units \(^{2}\)
\(b=2, h=\sqrt{3}\), so \(A=\frac{1}{2}(2)(\sqrt{3})=\sqrt{3}\) units \(^{2}\)
an exact value and then round to the covered by the triangle. Write reasoning. 14.3 units \({ }^{2}\); sample answer: The area not covered by
the he triangle is equal to the area of the square minus the area of the triangle. So, \(A=(16-\sqrt{3})\) units \({ }^{2}\), 14.3 units \(^{2}\).

\section*{Higher-Order Thinking Skills}
24. PERSEVERE The floor plan of a rectangular room has the coordinates \((0,12.5),(20,12.5),(20,0)\). and \((0,0)\) when it is placed on the coordinate plane. Each unit on the coordinate plane measures 1 foot. How many square tiles will it take to cover the floor of the room if the tiles have a side length of 5 inches? Explain. 1440 square tiles; sample answer. The space is \(20-12\) or 240 inches long and \(12.5 \cdot 12\) or 150 inches wide. The area of the floor is \(240 \cdot 150\) or 36,000 square inches. The area of a square tile is \(5 \cdot 5\) or 25 square inches. So, the number of tiles needed is \(36,000 \div 25\) or 1440 tiles.
25. PERSEVERE The vertices of a rectangle with side lengths of 10 and 24 units are on a circle of radius 13 units. Find the area between the figures. 290.93 units \({ }^{2}\)
26. WRITE Give an example of a polygon that is equiangular but not a regular polygon. Explain your reasoning. Sample answer: rectangle; A rectangle has 4 right angles so it is equiangular. The adjacent sides of a rectangle are not always congruent, so a rectangle may not be a regular polygon.
27. ANAL YZE Find the perimeter of equilaterat Explain your reasoning. Sample answer: An equilateral triangle has congruent side lengths. Use the Distance Formula to find \(K M=\sqrt{ }(10-(-2))^{2}+(6-1)^{2}=13\). So, \(P=3(K M)=3(13)\) or 39 units.

\section*{Answers}

18a. Sample answer: Let \(x\) represent the width of \(W X Y Z\).


18d. 23 mm ; Sample answer:

19. \(\$ 650\); Sample answer: The side of the play area that is adjacent to the house does not need fencing. The remaining three sides of the play area on the grid have lengths of 4,5 , and 4 units. The perimeter of the play area on the grid is \(P=4+5+4=13\) units. Each unit on the grid represents 5 ft , so Derek will need \(13(5 \mathrm{ft})\) or 65 ft of fencing. The cost of the fencing is \(\$ 10\) per foot, so the total cost will be \(65(\$ 10)=\$ 650\).
20. Sample answer: Use the Distance Formula to find the base \(Q S\) and the height \(R T\). QS \(=\sqrt{72}\), and the height \(R T=\sqrt{18}\). Then use the area formula: \(A=\frac{1}{2}(\sqrt{72})(\sqrt{18})=\frac{1}{2}(36)=18\). So, the area is 18 units \(^{2}\).

\section*{LESSON GOAL}

Students calculate the coordinates of the vertices of transformed images given the coordinates of the preimages.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Introducing Transformations

\section*{88 Develop:}

\section*{Identifying Transformations}
- Identify Transformations in the Real World
- Identify Transformations on the Coordinate Plane

\section*{Representing Reflections}
- Reflections in the \(x\) - or \(y\)-Axis

Representing Translations
- Translations

Representing Rotations
- Rotations

You may want your students to complete the Checks online.

\section*{3}

REFLECT AND PRACTICE
Exit Ticket
Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.


\section*{Language Development Handbook}

Assign page 66 of the Language Development Handbook to help your students build mathematical language related to the transformations of figures.
Elill You can use the tips and suggestions on page \(T 66\) of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing}


\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

Standards for Mathematical Practice:
4 Model with mathematics.
5 Use appropriate tools strategically.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students described the effect of transformations on two-dimensional figures using coordinates. 8.G. 3

\section*{Now}

Students identify transformations and represent reflections, translations, and rotations.
G.C0. 2

\section*{Next}

Students will find measures of three-dimensional objects.
G.MG.1, G.GMD. 3

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students develop an understanding of transformations in the plane. They apply their understanding by solving real-world problems related to transformations.

\section*{Mathematical Background}

A translation is an operation that maps one geometric figure, the preimage, onto another geometric figure, the image. A rigid motion is one in which the position of the image may differ from the preimage, but the segment and angle measures are preserved. Reflections, translations, and rotations are three types of rigid motions.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


Today's Vocabulary

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- reviewing perimeter and area

Answers:
1. \(121 \mathrm{in}^{2}\)
2. 9 ft
3.8 m
4. \(90 \mathrm{~cm}^{2}\)
5. 40 ft

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of a translation.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Introducing Transformations}

Objective
Students use dynamic geometry software to identify and represent transformations in the plane.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Throughout the Explore, encourage students to use the sketch to help identify the different transformations.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will complete guiding exercises throughout the Explore activity. They will use a sketch to investigate the different types of transformations that can be performed on a figure in the plane. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore

Students use a sketch to explore transformations in the plane.

\section*{TYPE}

Students answer guiding exercises about transformations.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a|
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Introducing Transformations (continued)}

Questions
Have students complete the Explore activity.
Ask:
- How do the preimage and the image compare? Sample answer: They are congruent.
- How do the distance between the vertices of the preimage and the vertices of the image compare? Sample answer: They are preserved.
(4) Inquiry

How are reflections, translations, and rotations similar? Sample answer: Each transformation results in a figure that is identical to the original figure. Shape and size are preserved. In each of the three transformations, the position of the copy differs from that of the original figure.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Identifying T ransformations}

Objective
Students analyze figures to identify the types of rigid motions represented.

\section*{(11) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Important to Know}

Transformations map the preimage onto a new figure, called the image. Transformations can change the position, size, or shape of a figure. Rigid motions are transformations that produce an image that remains congruent to the preimage. Reflections are transformations over a line of reflection. Translations are transformations that move all points of the preimage the same distance and direction. Rotations are transformations about a fixed point, through a specific angle, and in a specific direction.

\section*{Common Misconception}

Many students confuse rotations with reflections, believing that they are the same transformation. Remind students that reflections occur over a line of reflection whereas rotations occur around a point of rotation.

\section*{O Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{DIFFERENTIATE}

\section*{}

IF students have difficulty identifying the different rigid motions,
THEN have students draw a shape on a piece of paper and translate the shape. Next have student reflect the shape, and then rotate the shape. Performing the transformations helps make identifying easier.

\section*{}

Have students photograph or draw representations of rigid motions found in nature. Each photo or drawing should include a description of the transformation shown.


Interactive Presentation



\section*{Example 2 Identify T ransformations on the Coordinate} Plane
Identify the type of rigid motion shown as a reflection, translation, or rotation-


Each vertex and its image can be connected by lines with the same length and slope. This is a translation


Each point and its image are the same distance from the y aros. This is a reflection

0 \(\qquad\)

\section*{Interactive Presentation}


\section*{Example 1}

© Example 1 Identify T ransformations in the Real World

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about rigid motions to real-world situations.

\section*{Questions for Mathematical Discourse}

AL. Which transformation moves each point in a figure the same distance in the same direction? translation

OL Over what is a figure reflected about? the line of reflection
[BLI Suppose the image was placed on a coordinate plane with the line of reflection being the \(x\)-axis and the mountaintop falling on \((4,25)\). What are the coordinates of the reflected mountaintop \(\{4,-25\) )

\section*{Common Error}

Students may incorrectly identify transformations in a real-world setting. Encourage students to memorize the definition of each rigid motion and then to look for the indicators in each image.

\section*{Example 2 Identify T ransformations on the Coordinate Plane}

Teaching the Mathematical Practices
4 Analyze Relationships Mathematically Point out that to identify the transformations in each part, students will need to analyze the relationship between the two figures.

Questions for Mathematical Discourse
4LI If the blue triangle is translated five units to the left, what points identify the vertices of the image? \((-4,2),(-3,5)\), and \((2,3)\)
OL Suppose an image of the blue triangle is plotted using the following points: \((1,-2),(2,-5)\), and \((7-3)\). What transformation was applied? The triangle was reflected in the \(x\)-axis.Suppose the blue triangle is rotated about the origin in the opposite direction of the green image. What points identify the vertices of the new image? \((2,-1),(5,-2)\), and \((3,-7)\)

\section*{Common Error}

Students may believe that all transformations preserve congruence, meaning that the shapes will always be the same size and shape. Remind students that translations, reflections, and rotations preserve congruence, and that those are not the only transformations.

\section*{Learn Representing Reflections}

\section*{Objective}

Students calculate the coordinates of the vertices of reflected images given the coordinates of the preimages.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{About the Key Concept}

A reflection is a function in which the preimage is reflected in the line of reflection. The preimage and the image are the same distance from the line of reflection. When an image is reflected in the \(x\)-axis, the \(y\)-coordinates of the preimage are multiplied by -1 . When an image is reflected in the \(y\)-axis, the \(x\)-coordinates of the preimage are multiplied by -1 .
\(c\)

\(£^{\text {ach vertex } \text { and its image are the same distance }}{ }_{\text {from the origin. The }}\) angles formed by each pair of corresponding points and the origin are congruent. This is a rotation.

Check
The type of rigid motion shown is a


Learn Representing Reflections
h a reflection, each point of the preimage and its corresponding point on the image are the same distance from the line of reflection. A reflection can be described as a function in which the preimage is eflected in the line of reflection. The points of the preimage are the input, and the corresponding points on the image are the output.
Key Concept - Reflections in the \(x\) - or \(y\)-axis
Reflections in the \(x=\) arseflections in the paris


Study Tip
What is Preserved? motion, all lengths and angle measures are preserved in a reflection

\section*{Interactive Presentation}


Learn



\section*{Interactive Presentation}


\section*{Example 3}


1 CONCEPTUAL UNDERSTANDING

\section*{Example 3 Reflection in the \(x\) - or \(y\)-Axis}

Teaching the Mathematical Practices
5 Compare Predictions Point out that in this example, students make a prediction and then check against the prediction at the end

\section*{Questions for Mathematical Discourse}

AII When a point is reflected in the \(x\)-axis, how can you find its coordinates? Sample answer: The \(x\)-coordinate remains the same, but the \(y\)-coordinate is multiplied by -1 .
OII When a point is reflected in the \(y\)-axis, how can you find its coordinates? Sample answer: The \(y\)-coordinate remains the same, but the \(x\)-coordinate is multiplied by -1 .
BLI. Suppose a triangle with the vertices \(A(1,1), B(3,5)\) and \(C(6,6)\) is reflected in the coordinate plane. If the vertices of the image are \(A^{\prime}(-1,-1), B^{\prime}(-3,-5)\) and \(C^{\prime}(-6,-6)\), what reflection(s) occurred? The triangle was reflected in the \(x\)-axis, and then reflected in the \(y\)-axis.

\section*{Common Misconception}

Students may invert the order of the coordinate pair when they represent a reflection in the \(x\) - or \(y\)-axis. Have students draw a point on a piece of paper, then fold the paper vertically and horizontally. Have them consider what changed and what did not.

\section*{Common Error}

When a figure is reflected in the \(x\)-axis, many students will multiply the \(x\)-coordinates by -1 . The same thing occurs when a figure is reflected in the \(y\)-axis; they multiply the \(y\)-coordinates by -1 . Remind students that the axis of reflection is the coordinate that does not change, so reflections in the \(x\)-axis have the same \(x\)-coordinates, and reflections in the \(y\)-axis have the same \(y\)-coordinates.

\section*{DIFFERENTIATE}

\section*{Bin 댄}

Allow the class to discuss examples of reflections in nature and in everyday objects that they use. Students can explain where lines of reflection are in objects. Natural examples could be leaves, flowers, fruits, vegetables, animals, eggs, and so on. Everyday objects could be pencils, paper, cars, clothing, and so on.

\section*{Learn Representing Translations}

\section*{Objective}

Students calculate the coordinates of the vertices of translated images given the coordinates of the preimages.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of translations in this Learn.

\section*{About the Key Concept}

A translation is a function in which all of the points of a figure move the same distance in the same direction. A preimage is translated along a translation vector, which describes both the magnitude and direction of the slide. A vector in component form is often used to describe a translation, so \(\langle x, y\rangle\) would describe the horizontal and vertical shift of the preimage.

\section*{Common Misconception}

Students may believe that translations change the size of the figure, not just move it a set distance and direction. Remind students that translations are rigid motions and that the size of the image is preserved.


\section*{Interactive Presentation}


Learn
TAP

\section*{Students tap to reveal a Study Tip.}

\section*{Example 4 T ranslations}


Find the coordinates of the vertices of the image. \((x, y) \rightarrow x+7, y+1)\)
C( \((-8,-2) \rightarrow\) OF-7 \(7,-2+1\) or ( (1-1, -1\()\)

S( \(-4,-7)-54+7,-7+5\) or \(5(2,6)\)
r(-4, -2) \(-4+7,2+\) \#or \(7(3,-1)\)
CHECK The image matches the prediction.
Check
Quadrilateral \(A B C D\) has vertices \(A(-3,1), B(-5,3), C-2,5)\), and \(a(-1,3)\). What are the coordinates of the vertices of the image after a translation along vector ( \(5,-3\) )
A. \(A^{\prime}(2,-2), B(0,0), C^{\prime}(3,2)\), and \(D^{\prime}(4,0)\)
B. \(A(8,2), B^{\prime}(10,0), C(7,2)\), and \(D^{\prime}(6,0)\)
C. \(\left.A(2,4), B^{\prime}(0,6), C l 3,8\right)\), and \(D^{\prime}(4,6)\)
6. \(A(-8,4), B^{\prime}(-10,6), C(-7,8)\), and \(\left.D^{\prime} 6,6\right)\)

\section*{Pause and Reflect}

Oid you struggle with anything in this lesson? I f so, how did you deal with it?

See students' observations.

\section*{Interactive Presentation}


Example 4

\section*{DRAG \& DROP}

Students drag operations to complete the translation.

\section*{CHECK}
(II)

Students complete the Check online to determine whether they are ready to move on

\section*{Example 4 T ranslations}

Teaching the Mathematical Practices
1 Explain Correspondences Guide students as they use the information in this example to graph data to represent the situation.

Questions for Mathematical Discourse
What is the horizontal movement for the translation along \(\langle 7,1\rangle\) ? 7 units right
이 How will a figure move if it is translated along \(\langle 7,1\rangle\) ? 7 units right and 1 unit up
Bill Suppose the point \((2,3)\) were translated to \((-1,-1)\). Along what vector would the point be translated? \(\langle-3,-4\rangle\)

\section*{Common Error}

Students tend to reverse the operation based on the sign of the numbers in the vector For example, students may say subtract 7 and subtract 1 for the vector \(\langle 7,1\rangle\). Remind students that the figure moves in the same direction as the sign of each number in the vector. Positive numbers mean addition, and negative numbers mean subtraction.

\section*{DIFFERENTIATE}

\section*{}

IF students are not mastering translations,
THEN create three or four large coordinate grids using poster board. Provide several laminated shapes, such as rectangles, hexagons, pentagons, and trapezoids. Students can practice physically translating shapes on the grids. Students can use examples of translations in the lesson or create their own.

\section*{Learn Representing Rotations}

Objective
Students calculate the coordinates of the vertices of rotated images given the coordinates of the preimages.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{About the Key Concept}

A rotation is a function that moves every point of a preimage through a specified angle (the angle of rotation) and direction about a fixed point (the center of rotation.) Rotations can either be clockwise or counterclockwise. Rotations of \(90^{\circ}, 180^{\circ}\), and \(270^{\circ}\) each have a function rule that can be applied to find the coordinates of the resulting image.

\section*{Common Misconception}

Students often think that rotations are always about the origin. Remind students that the center of the rotation can be any point. Illustrate using graph paper and varying centers of rotation to help students have a better understanding about rotations.

Learn Representing Rotations
A rotation is a function that moves every point of a preimage through a specified angle and direction about a fixed point, called the center of otation. Under a rotation, each point and its image are at the same ssume that or of the spelifed angle is called the angle of rotation

The direction of a rotation can be clockwise or counterclockwise. In this course, you can assume that all rotations are counterclockwise nless stated otherwise.
When a point is rotated \(90^{\circ}, 180^{\circ}\), or \(270^{\circ}\) counterclockwise about the origin, you can use the following rules. A rotation of \(360^{\circ}\) will map the image onto the preimage.
Key Concept • Rotations in the Coordinate Plane \(90^{\circ}\) Rotation Example
To rotate a point \(90^{\circ}\) counterclockwise bout the origin, multiply the ycoordivate b -1 and then interchange the \(x\) - and reocrdingle:
Symbols \(x_{i} \geqslant \|-y\), ,


Example
To rotate a point \(270^{\circ}\) counterclockwise bout the origin, muttiply the \(x\)-coordinate by -1 and then interchange the \(x\) - and

Symbols (at \(-y, \quad\),


Study Tip
What is Preserved?
motion, all lengths an angle measures are preserved in a rotation.

Q Talk About It Would \({ }_{\text {two successive }}\) \(90^{\circ}\) rotations counterclockwise about the origin result in the same image as a \(80^{\circ}\) rotation clock Explain.
\(Y\) es; sample answer: Because two \(90^{\circ}\) Because two \(90^{\circ}\)
rotations will turn the figure \(180^{\circ}\) total, the image will be the same as the image from a \(180^{\circ}\) rotation even though the rotations were performed in opposite directions.

\section*{Interactive Presentation}


Learn


\section*{DIFFERENTIATE}

IF students confuse the terms clockwise and counterclockwise, THEN ask students to think about the direction of the hands on a clock. This direction is clockwise.

\section*{Enrichment Activity [81}

Have students draw a triangle in Quadrant I. Then have students apply each of the three congruent transformations so that Quadrant II, Quadrant III, and Quadrant IV each contain a triangle congruent to the original triangle.
understand rotations.

Example 5 Rotations
parallelogram \(F G H_{2}\), has vertices \(\left.f(2,1), G 7,1\right), H(6, \ldots 3)\), and \(J(1,-3)\). What are the coordinates of the vertices of its image after a rotation of \(180^{\circ}\) about the origin?
\#REDICT Graph parallelogram FGHJ,


Before performing the rotation, predict your results.
The image of the parallelogram rotated \(180^{\circ}\) will be a parallelogram in the second and third quadrants.
T o rotate a point \(180^{\circ}\) counterclockwise about the origin, multiply the \(x\) - and \(y\)-coordinates by -1 . Find the coordinates of the vertices of the image.
\[
\begin{aligned}
& k, y \rightarrow(-,-1 \\
& K 2,1) \rightarrow F(2,-1) \\
& G(7,1) \rightarrow(7,-1)- \\
& (6,-3) \rightarrow H(-6,3) \\
& (1,-3) \rightarrow J(1,3)
\end{aligned}
\]

\section*{CHECK The image meets the prediction.}

Check
Quadrilateral \(\mathcal{M C M}\) has coordinates \(J(1,2), K(4,31, L(6,1)\), and \(M(3,1)\). Determine the coordinates of the vertices of the image after a \(270^{\circ}\) otation about the origin
A. \(J^{\prime} 2,-8 K^{\prime}(3,-4) L(1,-6\}\) ant \(M(1,-3)\)
B. \(\left.J^{\prime}(2,1), K^{\prime} B, 4\right), L(1,6)\), and \(M^{\prime}(1,3)\)
C. \(J(2,1), K^{\prime}(-3,4), L(-1,6)\), and \(M^{\prime}(-1,3)\)
D) \(J^{\prime}(-2,-1), K^{\prime}(-3,-4), L^{\prime}(-1,-6)\), and \(M(-1,-3\)

06 \(\qquad\)
Study Tip
Rotations
of the image by
Graphing the prein
and image on the
coordinate grid.


\section*{Interactive Presentation}


Example 5


\section*{CHECK}

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 5 Rotations}

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

Do rotations change the size or shape of an object? no
OL. What happens to each coordinate when a \(180^{\circ}\) counterclockwise rotation about the origin is performed? Sample answer: The \(x\) - and \(y\)-coordinates are multiplied by -1 .

Bill What is the difference between rotating a point \(180^{\circ}\) clockwise about the origin and rotating a point \(180^{\circ}\) counterclockwise about the origin? Sample answer: The direction of each rotation is different, but the image is the same.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-21\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(22-31\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(32-38\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
(1) 3

THEN assign:
- Practice, Exercises 1-31 odd, 32-38
- Extension: Compositions of Transformations

IF students score 66\%-89\% on the Checks, THEN assign:
- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Area of Parallelograms
- Personal Tutors
- Extra Examples 1-5
- ALEKSReviewing Perimeter and Area

IF students score \(65 \%\) or less on the Checks
THEN assign:
- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Area of Parallelograms
- Quick Review Math Handbook: Transformations in the Plane
- D ALEKS Reviewing Perimeter and Area

\section*{Answers}

\section*{26. \\ }
\(Q(2,-4), R(3,0), S(4,-4)\)
27.

\(D(3,-1), E(1,-1), F(1,-4)\)

Practice
Examples 1 and 2
Identify the type of rigid motion shown as a reflection, translation, or rotation.



7.

8.


Examples 3-5
Triangle \(A B C\) has coordinates \(A(2,0), B(-1,5)\), and \(C(4,3)\). Determine the coordinates of the vertices of the image after each transformation.
9. reflection in \(x\)-axis
10. reflection in \(y\)-axis
\(A^{\prime}(2,0), B^{\prime}(-1,-5)\), and \(C^{\prime}(4,-3) \quad A^{\prime}(-2,0), B^{\prime}(1,5)\), and \(C^{\prime}(-4,3)\)
translation along the vector \((0,2)\) 12. translation along the vector \((3,-4)\)
11. translation along the vector ( 0,2 ) 12. translation along the vector ( 3 , -4 )
\(\begin{array}{ll}A^{\prime}(2,2), B^{\prime}(-1,7) \text {, and } C^{\prime}(4,5) & A^{\prime}(5,-4), B^{\prime}(2,1) \text {, and } C^{\prime}(7,-1) \\ \text { 13. rotation 180 about the origin } & \text { 14. rotation } 90^{\prime} \text { counterclockwise about }\end{array}\) \(A^{\prime}(-2,0), B^{\prime}(1,-5)\), and \(C^{\prime}(-4,-3) \quad\) the origin \(A^{\prime}(0,2), B^{\prime}(-5,-1)\), and \(C^{\prime}(-3,4)\)
 CMBINATION LOCkS Benicio locks his safe by seting each of the three dials 8. To unlock the safe, he turns the left dial \(90^{\circ}\) counterclockwise, the middle dial \(270^{\circ}\) clockwise, and the right dial \(180^{\circ}\) counterclockwise. Which three numbers,
in order, unlock the safe? \(2-2-4\)


5-BEEKEEPING A beekeeper uses a frame of partial honeycomb cells that bees fill with honey and complete with wax. When the honey is ready for harvest, the beekeeper turns the tap allowing the honey to flow out of the hive without bon thing the bees. By what transformation are the sides of the partial honeycomb cells related when the tap is closed? when the tap is open? Jeflection; translation

nd the coordinates of the figure with the given coordinates after the
transformation on the plane. Then graph the preimage and image.
26. preimage: \(\Lambda \quad 3,0,,<(-2,4), L(-1,0)\), image: triangle \(O R S\), translation of \(K L\) along vector \(\langle\), , 4) See margin.
27. preimage: \(A(1,3), B 1,1), C(4,1)\), image: triangle \(D E F\) roution \(\alpha \angle 2 C 270\) counterclockwise about the origin See margin.
28. FIND THE ERROR Saurabh and Elena visit a craft fair and notice a quilt with a pattern. Saurabh claims the pattern is is m uing translations. Elena believes that the patter is made using rotations. Who is correct? Justify your argument. Elena; sample answer. The triangles shown in
the pattern appear to be made using translations but the the pattern appear to be made using translations but the
29. The vertices of \(\triangle A O C\) are \(A(-1,1), B(4,2)\), and \((1,5)\). The vertices of \(\triangle D E F\) are \(D(-1,-1), E(4,-2)\), and \(\cap(-5)\) such that \(\triangle A B C \equiv \triangle D F F\) Identify the congruence transtormation, refliection in the ratl
 the endpoints \(X 16,5\) ) and \(Y(4,0)\), and \(\overline{X Y} \cong \overline{X^{\prime} Y}\). Identify the transformation. rotation of \(270^{\circ}\) about the origin
31. STRUCTURE The vertices of quadrilateral PGCUwe Fa-3), Of \(-2,-5), H(-3,6)\). and \(₫(3,5)\). The vertices of quadrilateral quadrilateral \(6 \Delta \mathrm{SN}\) is the image, identify the transformation. franslation 3 units right and 2 units down
Higher-Order Thinking Skills
32. ANAL YZE The image of \(\triangle A D C\) iefected in \(n\) e raen \(\triangle \triangle A^{\prime} B^{\prime} C\) a. Describe the result of reflecting \(\triangle A^{\prime} B^{\prime} C\) in the \(y\) oest Extion See margin. b. Describe the result of reflecting \(\triangle A B^{\prime} C^{\prime}\) inthexami. Fepain. See margin.
32. FIND THE ERROR Antwan and Diamond are finding the coordinates of the image
 leasoning.

Antwan
\(P(2,-3)\)

\section*{Diamond}

Antwan; sample answer: When you reflect a point across the \(z\) aik \(=0\) eflected point is in the same place horizontally, but not ve athertes poirt au \((2,-3)\) because it is in the same location horizontally, but the other side of the exais veticaly.
34. WRITE in the diagram, LOF is called a bide reflection of ABC. Based on the diagram, define a glide reflection. Explain your reasoning. Sample answer: A glide reflection is a reflection over a line and then a translation in a direction that is parallel to the line of reflection.
35. CREATANa polygon on the coordiate plane that when reflected in the \(y\) ticions exactly like the original figure See margin.
36. ANAL YZE Is the reflection of a figure in the ram equratect to the otation of that same figure \(180^{\circ}\) about the origin? Explain. See margin.


32a. \(\triangle A B C\); Sample answer: To find the coordinates of the vertices of \(\triangle A^{\prime} B^{\prime} C^{\prime}\), you would multiply the \(x\)-coordinates of the vertices of \(\triangle A B C\) by -1 . To find the coordinates of the vertices of the reflection of \(\triangle A^{\prime} B^{\prime} C^{\prime}\), you would multiply the \(x\)-coordinates of the vertices by -1 .
Because \((-1)(-1)=1\), the coordinates of the vertices of the image are the same as the coordinates of the vertices of \(\triangle A B C\).
32 b . This reflection results in a \(180^{\circ}\) rotation of \(\triangle A B C\) about the origin. To find the coordinates of the vertices of \(\triangle A^{\prime} B^{\prime} C^{\prime}\), you would multiply \(x\)-coordinates of the vertices of \(\triangle A B C\) by -1 . To find the coordinates of the vertices of the reflection of \(\triangle A^{\prime} B^{\prime} C^{\prime}\) in the \(x\)-axis, you would multiply \(y\)-coordinates of the vertices by -1 . If a vertex of \(\triangle A B C\) has coordinates \((x, y)\), then the coordinates of the image of that point would have coordinates \((-x,-y)\). Those coordinates describe a \(180^{\circ}\) rotation about the origin.
35. Sample answer:

36. No; sample answer: When a figure is reflected in the \(x\)-axis, the \(x\)-coordinates of the transformed figure remain the same, the \(y\)-coordinates are negated. When a figure is rotated \(180^{\circ}\) about the origin, both the \(x\)-and \(y\)-coordinates are negated. Therefore, the transformations are not equivalent.

\section*{LESSON GOAL}

Students find measures of three-dimensional figures.

\section*{1 LAUNCH}


Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

\section*{Develop:}

Identifying Three-Dimensional Figures
- Identify Properties of Three-Dimensional Figures
- Model Three-Dimensional Figures

Explore: Measuring Real-World Objects

\section*{Develop:}

\section*{Measuring Three-Dimensional Figures}
- Find Measurements of Three-Dimensional Figures
- Calculate Measurements by Using Three-Dimensional Models
- Solve for Unknown Values


You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

\section*{Practice}

Formative Assessment Math Probe

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & AL & LB & ELI & \\
\hline Remediation: Three-Dimensional Figures & \multicolumn{2}{|l|}{- -} & & - \\
\hline Extension: Cubes & & - - & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 67 of the Language Development Handbook to help your students build mathematical language related to finding? measures of three-dimensional figures.
Elill You can use the tips and suggestions on page \(T 67\) of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l|}
90 min & 0.5 day \\
45 min & \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g. modeling a tree trunk or a human torso as a cylinder).
G.GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
Standards for Mathematical Practice:
4 Model with mathematics.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students understood and used surface area and volume formulas for two-dimensional figures.
6.G.2, 6.G.4, 7.G.6, 8.G.9

\section*{Now}

Students find measures of three-dimensional objects.
G.MG.1, G.GMD. 3

\section*{Next}

Students will model three-dimensional figures with two-dimensional representations.

\section*{G.MG. 1}

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students draw on their understanding of solid figures to model real-world objects. They build fluency by using coordinates to find volumes of solid figures and apply what they know about solid figures to solve real-world problems.

\section*{Mathematical Background}

A solid with all flat surfaces that encloses a single region of space is called a polyhedron. Each flat surface, or face, is a polygon. A regular polyhedron has all congruent edges and all of its faces are congruent regular polygons. Two common types of polyhedra are prisms and pyramids. A prism has two parallel congruent faces called bases.

\section*{Interactive Presentation}

\section*{}

Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying three-dimensional figures

\section*{Answers:}
1. triangular prism
2. cylinder
3. cone
4. sphere
5. triangular pyramid

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of modeling objects using threedimensional geometric figures.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the question below with the class.

\section*{Explore Measuring Real-World Objects}

Objective
Students use dynamic geometry software and what they know about area and volume to calculate the surface area and volume of a Platonic solid.

Teaching the Mathematical Practices
5 Use appropriate tools strategically Throughout the Explore, encourage students to use the appropriate tools to explore their understanding of area and volume.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a sketch to explore the surface area and volume of a Platonic solid. They will answer questions regarding surface area and volume of different shapes, and they will consider the units required. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore

\section*{WEB SKETCHPAD}

Students use a sketch to explore the surface area and volume of a Platonic solid.

TYPE
Students answer questions about the surface area and volume of
a| the solids.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a|
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Measuring Real-World Objects (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- What is the formula used to find the area of a triangle? \(A=\frac{1}{2} b h\)
- Consider a regular die with square faces. How would you find the surface area of this type of die? Sample answer: Find the area of one square face and then multiply by 6 .

\section*{(4. Inquiry}

How can you apply the properties of three-dimensional figures to solve real-world problems? Sample answer: Three-dimensional figures can be used to model real-world objects such a grain silos, water tanks, jewelry, or pottery. Then you can use the known formulas for calculating the surface area and volume of the three-dimensional figures to approximate the amount of material it would take to build an object or how much material an object can hold.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{1 CONCEPTUAL UNDERSTANDING}

2 FLUENCY

\section*{Learn Identifying Three-Dimensional Figures}

Objective
Students identify and determine characteristics of three-dimensional figures.

\section*{(11) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.
7 Use Structure Help students to explore the structure of polyhedra in this Learn.

\section*{Important to Know}

Three-dimensional figures are often used as models for real-world objects. Polyhedrons are closed three-dimensional figures made up of flat polygonal regions. The faces are flat surfaces on the polyhedron. The edges are line segments where the faces intersect. The vertex is the intersection of three edges. A prism is a polyhedron with two parallel congruent faces connected by parallelogram faces. A pyramid is also a polyhedron, but it has a polygonal base with three or more triangular faces that meet at the common vertex. Cylinders, cones, and spheres are not polyhedral because they have curved surfaces.

\section*{Common Misconception}

Students may believe that all three-dimensional figures are polyhedral, including those with curved surfaces. Remind students that a polyhedron must have bases by which it can be named, such as a square, triangle, or rectangle, but it cannot contain curved surfaces.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity \(A \operatorname{LI}\) BLL}

IF students confuse the terms pyramid and prism,
THEN have students create nets for a rectangular prism and triangular prism along with a rectangular pyramid and a triangular pyramid to make a visual connection to the properties of each figure.


Interactive Presentation


1 CONCEPTUAL UNDERSTANDING


Math History Minute The Platonic solids are named for the Greek philosopher Plato (c. \(428 \mathrm{BCE}-\mathrm{C} .348 \mathrm{BCE}\) who theorized in his dialogue, the Timaeus, that made of them of all the Platonic solids, the greeks belleved that the dodecahedron represented the entire universe.

A polyhedron is a regular polyhedron if all of its faces are regular congruent polygons and all of the edges are congruent. There are exactly five types of regular polyhedra, called platonic solids because Plato used them extensively.

\section*{Platonic Solids}


4 equilateral square 8 equilateral 12 regular 20 equilateral triangular faces triangular pentagonal triangular faces faces faces faces
Example 1 Identify Properties of Three-Dimensional Figures
etermine whether each solid is a polyhedron. Then identify the solid. If it is a polyhedron, name the bases, faces, edges, and vertices.


The solid is formed by polygonal faces, so it is a polyhedron There is no ase, but the olid has 8 equilateral triangular faces, so it is an octahedron

Bases: llone
Faces: \(\triangle D R U, \triangle Q R S, \triangle Q S T, \triangle\) QTU, \(A S V, \triangle S T V, \triangle T U V, \triangle R U V\) Edges: QR.OS, OT, CU, RV UV, TV. SV RS, ST, TV RU Vertices: \(Q, R, S, T, U, V\)


\section*{Example 1 Identify Properties of Three-Dimensional Figures}

\section*{13) Teaching the Mathematical Practices}

7 Use Structure Help students to use the structure of each solid in this example to classify them as polyhedra or not polyhedra.

\section*{Questions for Mathematical Discourse}

AL. What is the difference between shapes that are polyhedral and not polyhedral? All polyhedra have polygonal surfaces. Other 3-D shapes with curved surfaces are not polyhedra.
OL. What 3-D shapes make up the octahedron? two square pyramids BL. What shape has 10 faces, 24 edges and 16 vertices? octagonal prism

\section*{Common Error}

Students may think that only Platonic solids with a flat base, such as tetrahedrons or cubes, are polyhedra. They may try and classify the octahedron as a nonpolyhedra. Encourage students to consider if the faces are flat or curved, rather than looking only at the base.

\section*{Interactive Presentation}


Example 1

\section*{DRAG \& DROP}

Students drag shapes to classify them.

\section*{TAP}

Students tap to see the descriptions for various solids.

\section*{1 CONCEPTUAL UNDERSTANDING \\ 3 APPLICATION}

\section*{Example 2 Model Three-Dimensional} Figures

\section*{1 Teaching the Mathematical Practices}

4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

\section*{Questions for Mathematical Discourse}

Al. What shape would best model the base of the beverage container? a circle
이 Would the beverage container be considered a polyhedron? Explain. No; sample answer: The beverage container has curved surfaces, so it would not be a polyhedron.
[B] Suppose the beverage container was packaged in a box. What three-dimensional figure could model the box? a rectangular prism

\section*{Learn Measuring Three-Dimensional Figures}

Objective
Students solve for unknown measures of three-dimensional figures by calculating surface areas and volumes.

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{What Students Are Learning}

Surface area is the sum of the areas of all faces and side surfaces of a three-dimensional figure. Volume is the measure of the amount of space enclosed by a three-dimensional object. Geometric figures are used to model real-world objects in order to estimate those measurements.

\section*{Common Misconception}

Students may not realize units are an important part of any measurement, including volume and surface area. Remind the students to use square units when dealing with area, use cubic units when dealing with volume.

\section*{DIFFERENTIATE}

\section*{}

IF students struggle to calculate surface area,
THEN have students create nets for various figures, cut the out nets and put them together to form a solid. Then they can physically see the different sides that generate surface area.


\section*{Interactive Presentation}


Example 2



\section*{Interactive Presentation}


Example 3
TYPE
Students complete the calculations to find
a) the slant height, surface area, and volume.

\section*{Example 3 Find Measurements of Three-Dimensional Figures}

Teaching the Mathematical Practices
\(\mathbf{2}\) Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. In this example, notice the relationship between the problem variables and the units involved.

Questions for Mathematical Discourse
4L. Using words, how can you describe is the slant height of a pyramid? the height of each lateral face of the pyramid
OL. In the formula for the surface area of a pyramid, what do the variables \(P, \ell\), and \(B\) represent? \(P\) is the perimeter of the base, \(\ell\) is the slant height, and \(B\) is the area of the base.
BL. What would be the approximate volume of a cylinder with the same height and congruent base as the given cone? 5655 in

\section*{Common Error}

When dealing with volume, many students will use the slant height rather than the height of the cone. Remind students that when calculating area, the height is the perpendicular distance from the center of the base to the vertex of the cone.

\section*{Example 4 Calculate Measurements by Using Three-Dimensional Models}

\section*{Teaching the Mathematical Practices}

4 Apply Mathematics In this example, students apply what they have learned about surface areas and volumes to solving a realworld problem.

\section*{Questions for Mathematical Discourse}

AI. What is the difference in finding surface area and volume of a sphere? Sample answer: When finding the volume, multiply four times pi times the radius cubed, and divide the product by three. When finding the surface area, multiply four times pi times the radius squared.
이 If the diameter doubled in size, would the surface area also double in size? Explain. No; if the diameter was 24 feet, then the surface area would equal approximately 1809 square feet, which is four times as big.
In Part B, suppose a second section of the ball must be repaired. If the section is 6 cubic feet, how much does that section weigh? Show all work. \(\frac{6 \mathrm{ft}^{3}}{1} \times \frac{11,875 \mathrm{lb}}{904.8 \mathrm{ft}^{3}}=78.7 \mathrm{lbs}\)

\section*{Common Error}

Students that do well with surface area and volume of shapes may have difficulty when presented with an application problem. They may not know how to use surface area and volume with the given information of lights and weight. Encourage students to write down the given information and then underline the important values for the question asked.
```

Example 4 Calculate Measurements by Using Three-Dimensional Models
NEW YEAR'S EVE The New Year's Eve ball is a geodesic sphere that is 12 feet in
diameter. It weighs 11,875 pounds, is lit by 32,256 LED lights, and is covered with 2688 crystal triangles.
Part A jpw many lights are contained on the ball's surface within an area of 4 square feet?

```

```

Step 1 Find the surface area of the ball.
Because the diameter is 12 feet, the radius of the sphere is 6 feet. $S=4 m^{2} \quad$ Surface area of a sphere $=4 \pi /\left.\right|^{2} \quad I=6$
$=144 \pi$ or about 452.4 Use a calculator
The surface area of the ball is about 452.4 iquare feet.
Step 2 Determine the number of lights within an area of 4 square feet.
$4 \mathrm{ft}^{\mathrm{t}} \times{ }_{452.4 \mathrm{t}^{\mathrm{t}}}^{32.256 \text { lights }}=285.2$ or 285s lights
There are 285 lights within an area of 4 square feet.
Part B Tony is repairing a section of the ball that has an area of 8 cubic feet. How much does the section weigh?
Step 1 Find the volume of the ball.
$V=\frac{4}{3} \pi r^{3}$ Volume of a sphere
$={ }_{3}^{4} \pi \cdot \sigma_{6}$
$r=$
388 orm
Step 2 Determine the weight of the section.
$8 \mathrm{ft}^{7} \times \frac{11,875 \mathrm{Ib}}{904 \mathrm{If}}=105.0$
The section of the ball weighs about 105.0 pounds.
Check
OOLS Mateo's family is building a new inground poo A cross section of the pool is shown.
Part A What is the volume of the pool to the nearest tenth?
$V=$? $n^{3} 3142.5$
Part B Mateo's family needs to install a protective liner to cover the walls and flat base of the deep end of the pool. How much liner is required to cover the deep end of the pool in square feet?
$\begin{array}{llll}\text { A. } 570 \mathrm{ft}^{2} & \text { B. } 750 \mathrm{ft}^{2} & \text { C. } 900 \mathrm{ft}^{2} & \text { D. } 1800 \mathrm{ft}^{2}\end{array}$

```

Think About It What assumption did you make about the New \(Y\) ear's Eve ball to solve the problem?

Sample answer assumed that the ball is a perfect sphere and that the weight of the ball is evenly distributed throughout the object.


\section*{Interactive Presentation}


Example 4

Students move through the steps to solve the problem.

TYPE
Students respond to a question about making assumptions.


\section*{Interactive Presentation}


Apply Example 5


\section*{1 CONCEPTUAL UNDERSTANDING} 2 FLUENCY

\section*{Apply Example 5 Solve for Unknown Values}

\section*{Teaching the Mathematical Practices}

1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

\section*{Recommended Use}

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

\section*{Encourage Productive Struggle}

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

\section*{Signs of Non-Productive Struggle}

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
- W hat three-dimensional object can model the shape of the funnel?
-W hy does the formula for the surface area for the funnel not include the base?

\section*{Write About It!}

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

\section*{Common Error}

The problem asked students to find the diameter at the widest part of the funnel, but when solving the surface area formula, students will calculate the radius. Some students may stop at this answer, but remind students to read the question carefully to ensure that they have found the requested measurement.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-19\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(20-24\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(25-30\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
I) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-24 odd, 25-30
- Extension: Cubes
- © ALEKS'Solids and Cross Sections

IF students score \(66 \%-89 \%\) on the Checks,
A14.
THEN assign:
- Practice, Exercises 1-30 odd
- Remediation, Review Resources: Three-Dimensional Figures
- Personal Tutors
- Extra Examples 1-4
- ALEKS Identifying Three-Dimensional Figures

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Three-Dimensional Figures
- Quick Review Math Handbook: Three-Dimensional Figures
- ALEKS'Identifying Three-Dimensional Figures

\section*{Answers}
1. not a polyhedron; cone
2. polyhedron; rectangular prism; bases \(\square D E F G\), \(\square H J K L\); faces \(\square D E F G\), \(\square H J K L, \square D E J H, \square E F K J, \square F K L G, \square L G D H ;\) edges \(\overline{D E}, \overline{E F}, \overline{F G}\), \(\overline{G D}, \overline{D H}, \overline{E J}, \overline{F K}, \overline{G L}, \overline{H J}, \overline{J K}, \overline{K L}, \overline{L H}\);vertices \(D, E, F, G, H, J, K, L\)
3. polyhedron; rectangular pyramid; base \(W X Y Z\); faces \(\square W X Y Z, \triangle V W X\), \(\triangle V X Y, \triangle V Y Z, \triangle V Z W\); edges \(\overline{W X}, \overline{X Y}, \overline{Y Z}, \overline{Z W}, \overline{W V}, \overline{X V}, \overline{Y V}, \overline{Z V}\);vertices \(W, X, Y, Z, V\)

Practice
Example 1
Determine whether each solid is a polyhedron. Then identify the solid. If it is a polyhedron, name the bases, faces, edges, and vertices. 1-3. See margin.


Identify the three-dimensional figure that can model each object. State whether Identify the three-dimensional figure
the model is or is not a polyhedron.
4.

cone; not a polyhedron


Example 3
Find the surface area and volume of each solid. Round each measure to the nearest tenth, if necessary.

9.

10.
\(228 \%\) or about \(716.3 \mathrm{in}^{2}\)
\(468 \%\) or about 1470.3 in 468 or about \(1470.3 \mathrm{in}^{1}\)


12.
\(800 \mathrm{ft}^{2} ; 1280 \mathrm{ft}^{3}\)

12.96 \({ }^{2}\) or about \(40.7 \mathrm{~cm}^{2}\). \(7.776 \mathrm{~F}+\mathrm{m}_{\mathrm{tb}} \mathrm{tbut} 24.4 \mathrm{~cm}^{3}\)

\section*{Example 4}
13. GAROENING The plans for constructing a raised vegetable garden use corrugated metal in a wooden frame. The finished garden is 4 feet long, 30 inches wide, and 32 inches tal.
a. The metal is only used on the lateral faces, so how mary square feet of metal should
square foot. \(15 \mathrm{ft}^{2}\)
b. How many bags containing 2 cubic feet of soil will be needed to fill the garden if the soil level is 1 inch below the top of
 the frame? 13 bags
14. TRASH CANS A cylindrical trash can is 30 inches high and has a base radius of 7 inches. A manufacturer wants to know the surface area of this trash can, including the top of the lid. What is the surface area? Round to the nearest squave nen. Wal in

15. ALGAE A scientist has a fish tank in the shape of a rectangular prism. The tank is 18 inches high, 14 inches wide, and 30 inches long. After one month, the scientist found that the sides and bottom of his fish tank were covered with algae. The cientist wants to run tests on the algae to help determine why it started to grow. bw much algae is there for the scientist to test? \(2004 \mathrm{in}^{2}\)
16. GEOLOGYA ionkeng is a sinkhole with nearly vertical walls. The Tianpingmiao tiankeng is approximately cylindrical with a diameter of 180 meters and a depth of 420 meters.
a. If the top of the tiankeng is open and plants can grow on the bottom and sides, what is the surface area available for plants? Round to the nearest square meter. \(262,951 \mathrm{~m}^{2}\) b. What is the volume of water that could fill the Tianpingmiao
tiankeng? \(10,687,698 \mathrm{~m}^{3}\)
 tiankeng? \(10,687,698 \mathrm{~m}^{3}\)

Example 5
17. The model of a roof is in the shape of a square pyramid, as shown. If the urface area of the model is 64 cm , what is the slant height? 3.9 cm
18. A candle is in the shape of a pyramid. The volume of a candle is 27 cubic centimeters and its height is 6 centimeters. Find the area of the base ft the candle. \(13.5 \mathrm{~cm}^{2}\)
19. A disposable cup is in the shape of a cone, as shown. The cup has a volume of about 48.8 in What is the radius of the cup to the nearest inch? 3 in.


44 Module 11. Angles and Geometric Figures

\section*{Mxed Exercisen}
20. PLANETS For a time, Johannes Kepler thought that the Platonic solids were related to the orbits of the planets. He made models of each of the Platonic solids He made a frame of each of the Matonic solids by fashioning together wooden edges. How many edges did Kepler have to make for the cube? 12

21-SIL A silo used for storing grain is shaped like a cylinder with a cone on top. cylindrical part is 25 feet, and the height of the cone is 6 feet.
a. What is the volume of the cylindrical part of the silo? Round to the nearest curic foot. 5027 n
b. What is the volume of the conical part of the silo? Round to the nearest cubic foot. \(402 \mathrm{ft}^{3}\)
c. What is the volume of the entire silo? Round to the nearest cubic foot. \(5429 \mathrm{ft}^{\prime}\)
22. USE A SOURCE Find a real object that can be modeled with one or more threedimensional figures. Identify the best three-dimensional model and calculate the surface area and volume of the object. Sev students' work.
23. A garden shop sells pyramid-shaped lawn ornaments that each have a base area of 900 square centimeters and a height of 40 centimeters. The
a. What is the volume of one lawn ornament in cubic meters? Explat \(0.012 \mathrm{~m}^{2} ; V=\frac{1}{3} B h\), so \(V=\frac{1}{3}(900)(40)\) or \(12,000 \mathrm{~cm}^{3}\). One cubic meter equals million cubic centimeters, so the volume of one pyramid shaped lawn ornament is \(0.012 \mathrm{~m}^{2}\).
D. Find the weights of three of these onnaments that are each made fr ma dilferent material: Round to the nearest tenth of a kilogram
concrete: 28.5 kg ; granite: 32.3 kg ; marble 32.5 kg
c. What generalization can you make about the relationships among the volum of an ornament, the weight of the lawn ornament, and the density of the material used to make it
If the volume of the lawn omament stays the same, then the weight of the ornament increases as the density of the material used to make it increases.
24. REASONING The volume of a new extra large toy tennis ball for pets is about 221 cubic centimeters. If 3 extra large toy tennis balls are packaged and sold in cylindrical package as shown, what is the approximate volume of the cylindrical package? Explain. See margin.
 als

\section*{}

\section*{e}

- Higher-Order Thinking Skills
25. FIND THE ERROR Alex and Sia are calculating the surface area of the rectangular prism shown. Is either of them correct? Explain your reasoning.


Neither; sample answer: The surface area is twice the sum of the areas of the top, front, and left side of the prism or \(2(5 \cdot 3+5 \cdot 4 * 3 \cdot 4)\), which is 94 square inches.
26. An C YZE Consider a pyramid and a prism that have bases that are regular polygons inscribed in a circle. What solid results if the number of sides of themses is increased infinitely?

The pyramid becomes a cone; the prism becomes a cylinder.

27 WRITE Which solid nas igreater volume: cone with a base radius of 7 centimeters and a height of 28 centimeters or a pyramid with base area of 154 square centimeters and height of 28 centimeters? Explain your reasoning. Sample answer: The cone and pyramid have nearly the same volumes. Cone: The area of the base is approximately 154 square centimeters, so \(V=\frac{1}{3}(154)(28)\) or about 1437 cubic centimeters. The volume of the pyramid is greater by such a small amount that we can say
that the volumes are approximately equal.
28. CREATE Draw an irregular 14-sided polyhedron that has two congruent bases. See margin.
29. PERSEVERE Find the volume of a cube that has a total surface area of 54 square
millimeters \(27 \mathrm{~mm}^{2}\)
24. \(994 \mathrm{~cm}^{2}\), substitute 221 for \(V\) in the formula \(V=\frac{4}{3} \pi r^{3}, 221\) \(=\frac{4}{3} \pi r^{3}\), so \(52.8 \approx \beta\) and \(r \approx 3.75\). The base of the cylindrical package will have a radius equal to that of the tennis ball, or 3.75 cm . The height of the package will equal the diameter of three tennis balls, or 3[2(3.75)] \(=3(7.5)\) or 22.5 cm . So, the volume of the package is \(V=\pi(3.75)(22.5)\) or about 994 cubic centimeters.
28.

30. Nui YZE is a cube a regular polyhedron? Justify your argument.

Yes; sample answer: All of the faces are regular congruent squares, and all of the edges are congruent.

\title{
Two-Dimensional Representations of Three- Dimensional Figures
}

\section*{LESSON GOAL}

Students model three-dimensional figures with two-dimensional representations.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Representing Three-Dimensional Figures

\section*{88 Develop:}

\section*{Representing Three-Dimensional Figures with} Orthographic Drawings
- Make a Model from an Orthographic Drawing
- Make an Orthographic Drawing

Representing Three-Dimensional Figures with Nets
- Use a Net to Find Surface Area
- Identify Platonic Solids
- Draw Nets for Three-Dimensional Figures
- Represent a Real-World Object with Nets

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & A1 & In 8 & Fal & \\
\hline Remediation: Three-Dimensional Figures & - - & & & - \\
\hline Extension: Polyhedrons & & - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 68 of the Language Development Handbook to help your students build mathematical language related to modeling threedimensional figures with two-dimensional representations.
Enll You can use the tips and suggestions on page T68 of the handbook to support students


\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 0.5 day \\
45 min \\
& \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students represented three-dimensional figures with nets.
6.G. 4

\section*{Now}

Students model three-dimensional figures with two-dimensional representations.

\section*{G.MG. 1}

\section*{Next}

Students will identify the shapes of two-dimensional cross sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
G.GMD. 4

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{l}
\hline 1 CONCEPTUAL UNDERSTANDING \\
\hline 2 FLUENCY \\
\hline Bith Conceptual Bridge In this lesson, students extend their \\
understanding of solid figures to nets and orthographic drawings, \\
and they apply their understanding to solve real-world problems. \\
\hline
\end{tabular}

\section*{Mathematical Background}

Two-dimensional shapes can be represented using an orthographic drawing or a net. An orthographic drawing shows the top, left, front, and right side of an object. Nets show all surfaces of a three-dimensional figure in one two-dimensional drawing.

\section*{Interactive Presentation}


Warm Up


\section*{Launch the Lesson}


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying three-dimensional figures

Answers:
1. c; sphere
2. b; triangular prism
3. a; square pyramid
4. d; octagonal prism
5. f; pentagonal pyramid
6. e; cube

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of two-dimensional representations of three-dimensional figures.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standard? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Representing Three-Dimensional Figures}

\section*{Objective}

Students explore how to represent three-dimensional figures with orthographic drawings.

\section*{Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of representing three-dimensional figures with orthographic drawings.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share his or her responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will explore different viewpoints of a three-dimensional shape as orthographic drawings, and they will use orthographic drawings to identify possible three-dimensional shapes. Then, students will answer the Inquiry Question.
(continued on the next page)

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Representing Three-Dimensional} Figures (continued)

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why are color-coded blocks easier to visualize when creating a three-dimensional figure from an orthographic drawing? Sample answer: The color-coded blocks make it easier to spot the different views in the three-dimensional object.
- Does a right and a left view need to be given? Explain. No; sample answer: The views are just mirror images of each other, so if one is not given we could create it.

\section*{(0) Inquiry}

How can you accurately represent a three-dimensional figure with two-dimensional drawings? Sample answer: Visualize the object from various perspectives and draw a sketch of each one.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Representing Three-Dimensional Figures with Orthographic Drawings}

\section*{Objective}

Students identify which orthographic drawings best model threedimensional geometric figures.

\section*{Teaching the Mathematical Practices}

7 Use Structure Help students to explore the structure of orthographic drawings in this Learn.

\section*{What Students Are Learning}

Three-dimensional figures can be represented in two dimensions using orthographic drawings. Two-dimensional views of the top, left, front and right sides of a three-dimensional object are called orthographic drawings.

\section*{Common Misconception}

Students often believe right- and left-side drawings are not both needed even though many objects do not have matching left and right sides. Remind students that orthographic drawings must represent the front, top, left and right sides to be complete.

\section*{Example 1 Make a Model from an Orthographic Drawing}

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

AL. What shape does the front of the three-dimensional figure follow? an L shape
아
How many blocks high is the figure? 3What is the best order in which to consider the two-dimensional views? top, front, left, then right


Interactive Presentation


Learn

TAP
Students tap to learn about orthographic drawings.


\section*{Interactive Presentation}


Example 1


668 Module 11 • Angles and Geometric Figures

1 CONCEPTUAL UNDERSTANDING

\section*{Common Error}

Students may draw the left side of the three-dimensional figure backwards because they follow the order of the given two-dimensional drawing. Remind students that the left view is reversed and instead of considering the shape from left to right, they should look right to left.

\section*{DIFFERENTIATE}

\section*{AL En}

IF students struggle drawing either the orthographic drawing or the three-dimensional object,
THEN have the entire class make the same three-dimensional figure and give students time to draw the four orthographic views. Repeat as many times as needed to help students to master the concept.

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{Example 2 Make an Orthographic Drawing}
(17) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
All What will be the shape of the left and right view of the object? a rectangle
OLI How many blocks will be needed for the bottom row of the front view? 4 How many blocks will be needed for the top row of the front view? 2
Suppose the figure was made of two identical rows of blocks matching the shape of the current bottom row of the figure. Which view(s) of the orthographic drawing will change? Explain. Front view; sample answer: The location of the orange segments would not be needed in the top view, and they would change in the right view.

\section*{Common Error}

Students may forget to identify the breaks of the figure on the orthographic drawing. Remind students that after they create the different views, they should identify all breaks.

Example 2 Make an Orthographic Drawing
Make an orthographic drawing of the figure shown.
Step 1 Draw the visible features of each view


Step 2 Mark each segment where a break occurs.


Check
make an orthographic drawing of the figure shown. Write the letter of the drawing that epresents the correct view.

a Talk About It1 What profession do you think utilizes orthographic drawings? Explain.
Sample answer: Architects use orthographic drawin to depict multiple viewpoints of design
constructions, and plans.

\section*{Interactive Presentation}


Example 2



\section*{Interactive Presentation}


Learn
WEB SKETCHPAD
Students use a sketch to view the net of a prism.

\section*{Learn Representing Three-Dimensional Figures with Nets}

\section*{Objective}

Students calculate surface areas of three-dimensional figures represented by nets and determine the correct nets for three-dimensional geometric figures.

\section*{Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that in this Learn, students will need to use a sketch. Work with students to explore and deepen their understanding of representing three-dimensional figures with nets.

\section*{What Students Are Learning}

Nets show all of the surfaces of a three-dimensional figure in a two-dimensional drawing. If a net is folded, the three-dimensional object is formed.

\section*{Common Misconception}

Students tend to draw or describe shapes with a lack of precision. If a three-dimensional figure contains congruent sides, then students may not illustrate that relationship when drawing a net. Remind students that nets show the exact relationships of a three-dimensional object as a two-dimensional drawing.

\section*{Example 3 Use a Net to Find Surface Area}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

AL Are the triangles of the triangular prism similar or congruent? congruent
OL How can the net be used to find the surface area of the threedimensional object? Sample answer: The area of each shape of the net can be found and added together.
BEIL Check your answer by finding the surface area of the triangular prism. Show all work. \(S=P h+2 B\), the perimeter of the base is 72 inches and the height is 10 inches. The area of each base is \(\frac{1}{2}(16)(6)=48\), so the surface area is \(72(10)+2(48)=\) 816 square inches.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity BL}

Surface area of a sphere is found by \(S=4 \pi r^{2}\), and the volume of a sphere is found by \(V=\frac{4}{3} \pi r^{3}\). If the measure of a sphere's volume is the same as the measure of its surface area, what is the radius of the sphere? Explain. A sphere with radius 3 has a surface area of \(36 \pi\) square units, and a volume of \(36 \pi\) cubic units.

\section*{Common Error}

When finding the area of the triangle, students may not find the height of the triangle, or altitude, but instead use the leg length. Remind students that when finding the area of the triangle, the vertical height is a requirement.

\section*{Example 4 Identify Platonic Solids}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions for Mathematical Discourse}

AL
What shape is each face of the solid? equilateral triangle
Suppose the net only had 8 equilateral triangles. What Platonic solid would the net represent? octahedron
[B1. What shape would comprise the net of a dodecahedron? regular pentagon

\section*{Common Error}

Students may not know all of the five Platonic solids by name. Encourage students to make a list of the most common solids for easy reference.


\section*{Interactive Presentation}


\section*{Example 3}
 figure.

\section*{TYPE}


Students answer a question to show that they understand how to use a net to find surface area.


\section*{Interactive Presentation}

Draw Nets for Three-Dimensional Figures


 секани


\section*{Example 5}

TAP
Students tap to see the pyramid unfold.

672 Module 11 • Angles and Geometric Figures

\section*{Example 5 Draw Nets for Three- Dimensional} Figures

\section*{(1) Teaching the Mathematical Practices}

4 Make Assumptions In the Study Tip, have students point out where an assumption or approximation was made in the solution.

\section*{Questions for Mathematical Discourse}
1. What shape is the base of the solid? regular hexagon

OL. What shape are the faces of the solid? triangles How many faces does the solid have? 6
[Bil. How would the net change if the solid were a hexagonal prism? Sample answer: The net would have two hexagons and six rectangles.

\section*{Common Error}

Students may try to place the faces together for the pyramid when drawing the net because of previous examples. Encourage students to watch the illustration of the solid being unfolded to see how the faces are connected to the base.

\section*{Example 6 Represent a Real-World} Object with a Net

\section*{(117) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

What shapes make up the surfaces of the tent? 2 pentagons, 2 squares, and 3 rectangles
OLI Which surfaces have the same area? the 2 pentagons (front and back), the 2 squares (roof), and the 2 rectangles (sides)
Bil Where else could the two parts of the roof be connected to the net instead of the rectangular sides? Sample answer: Each roof part could be attached to one slanted side of each side pentagon.

Q Example 6 Represent a Real-World Object with a Net TENTS Draw a net to represent the three-dimensional figure that can be used to model the tent


The tent can be modeled by a(n) pentagonal prism. Step 1 Start by drawing the bottom of the tent.


Step 2 Next, draw the pentagonal bases of the prism in the net. The pentagonal faces will attach to the rectangle at the 7 -foot edges.

(continued on the next page)
Lesson 11-6 • Two-Dimensional Representations of Three-Dimensional Figures 673

\section*{Interactive Presentation}


Example 6



\section*{Interactive Presentation}


\section*{Check}

\section*{CHECK}

411
Students complete the Check online to determine whether they are ready to move on.

\section*{Common Error}

Students may not know how to connect the rectangular roof pieces of the tent to the net. Encourage students to visualize taking the tent apart by each shape and seeing what piece it is connected to. The roof shapes have two possible connections.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-22\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(23-26\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(27-32\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
OLIBL THEN assign:
- Practice, Exercises 1-25 odd, 27-32
- Extension: Polyhedrons
- ALEKS'Solids and Cross Sections

IF students score 66\%-89\% on the Checks,
ALIOL
THEN assign:
- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Three-Dimensional Figures
- Personal Tutors
- Extra Examples 1-6
- D ALEKS'Three-Dimensional Figures

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Three-Dimensional Figures
- ALEKS'Three-Dimensional Figures

\section*{Answers}
1.


top view

left view

front view

right viev


Lesson 11-6 . Two-Dimensional Representations of Three-Dimensional Figures 675



OHigher-Order Thinking Skills
27. ANALYZE Julia knows that a figure has a surface area of 40 square centimeters. The net shown has 5 -entimeters and Justify your argument
No: the area of this net is 48 square centimeters

28. WHICH ONE DOESN'T BELONG The model represents a building. Which orthographic drawing does not belong? Justify your conclusion. Front view the right column in the front view should be 3 squares high, instead of 4 sequares.

29. IND THE ERROR Julian and Caleb were planning to make a square pyramid like the one shown. They both decided to make a net of the square eyramid as a plan for how to build it. Who has the correct plan? Explain your
eeasoning Julian; All of Julian's triangles are congruent. Caleb's top triangle will not match with the others when folded together.


CREATE Adriana works for a company called Boxes R Us making different iz 85 nd pobes dr boxes for packages. Adriana's boss wants her to sketch nets of one of the boxes. Sketch a possible net that Adriana could have drawn. See margin
31. WRITE Describe the similarities and differences in orthographic drawings and nets. See margin.
32. PERSEVER:How many Platonic slids are there? Give a description of each solid that includes the number of two-dimensional shapes that meet at each vertex number of faces, number of vertices, and number of edges. See margin.

678 meda - Angles and Geometic Figures
19. Sample answer:


18 in.
21. Sample answer:

23.

24.

top view
30. Sample answer:
left and right views

front view

31. Orthographic drawings and nets are both two-dimensional shapes used to describe three-dimensional figures. Orthographic drawings are views of the top, left, front, and right sides of an object, whereas nets can be folded to create a three-dimensional object.
32. There are 5 Platonic solids. A tetrahedron has 3 triangles that meet at each vertex, 4 faces, 4 vertices, and 6 edges. A cube has 3 squares that meet at each vertex, 6 faces, 8 vertices, and 12 edges. An octahedron has 4 triangles that meet at each vertex, 8 faces, 6 vertices, and 12 edges. A dodecahedron has 3 pentagons that meet at each vertex, 12 faces, 20 vertices, and 30 edges. An icosahedron has 5 triangles that meet at each vertex, 20 faces, 12 vertices, and 30 edges.

\section*{Precision and Accuracy}

\section*{LESSON GOAL}

Students apply the definitions of precision, accuracy, and error to measurements and computed values.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Precision and Accuracy in Basketball

\section*{83 Develop:}

Precision and Accuracy
- Identify Precision and Accuracy

\section*{Approximate Error}
- Find Approximate Error

Calculating with Rounded Measurements
- Calculate with Rounded Measurements

You may want your students to complete the Checks online.

\section*{REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l|l|l|l|l|}
\hline Resources & Al & I.B. & FLII & \\
\hline \begin{tabular}{l} 
Remediation: Expressions \\
Involving Absolute Value
\end{tabular} & & & & \\
\hline \begin{tabular}{l} 
Extension: Comparing Precision: \\
Metric and Customary \\
Measurements
\end{tabular} & & & & \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 69 of the Language Development Handbook to help your students build mathematical language related to applying the defintions of precisions, accuracy, and error to measurements and computed values.
Ellill You can use the tips and suggestions on page T69 of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing}


\section*{Focus}

Domain: Number and Quantity Standards for Mathematical Content:
N.Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students calculated percent error.
7.RP. 3

\section*{Now}

Students apply the definitions of precision, accuracy, and error to measurements and computed values.

\section*{N. \(\mathbf{Q} .3\)}

Next
Students will use significant figures in measurements.
N.Q. 3

\section*{Rigor}

The Three Pillars of Rigor
1CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION

Conceptual Bridge In this lesson, students develop an understanding of precision and accuracy. They apply their understanding by determining the levels of precision and accuracy in real-world scenarios.

\section*{Mathematical Background}

All measurements are approximations. Two main factors of approximation are precision and accuracy. Precision refers to the repeatability or reproducibility of a group of measurements. Accuracy refers to the nearness of a measured value to the actual or desired value. The positive difference between an actual measurement and an approximate measurement is called approximate error.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- evaluating expressions with absolute value

Answers:
1. 8
2. 5
3. \(3 \frac{2}{5}\)
4. 19
5. 2

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of accuracy and precision of measurements

\(\omega\)
Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Precision and Accuracy in Basketball}

\section*{Objective}

Students apply the definitions of precision and accuracy in a real-world setting.

Teaching the Mathematical Practices
5 Use Appropriate Tools Strategically Throughout the Explore, encourage students to use the necessary tools, including the sketch, to explore the concepts of precision and accuracy.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use different illustrations to understand the concept of precision and accuracy. Students will use a sketch to explore precision and accuracy. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}



 nen
 nprosition

A"Lucy

Explore


Explore

\section*{WEB SKETCHPAD}

Students use a sketch to explore precision and accuracy.

Students answer guiding exercises about precision and accuracy.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Precision and Accuracy in Basketball (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- If the player always hits the left corner of the backboard, but misses the shot, does this description relate to accuracy and precision? Sample answer: The player has high precision but low accuracy.

\section*{(4) Inquiry}

How are the concepts of precision and accuracy similar and how are they different? Sample answer: Precision and accuracy both represent the ability of someone to perform consistently relative to a given goal. Precision describes the repeatability of a result, regardless of how close to the goal someone is. Accuracy describes how close someone is to achieving the desired goal.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION

\section*{Learn Precision and Accuracy}

Objective
Students determine the level of accuracy in real-world scenarios.

(1)
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Important to Know}

Accuracy is the nearness of a measurement to the true value of the measure. On a target accuracy is represented by the marks being close to the bulls-eye.

\section*{Common Misconception}

Students may not believe that there is a difference between precision and accuracy. Remind students that precision is how close the measured values are to each other, and that accuracy is how close measured values are to achieving the desired goal.

\section*{DIFFERENTIATE}

\section*{}

IF students do not know how to distinguish between accuracy and precision, THEN give students this easy way to remember the difference
between accuracy and precision:
ACCuraCy is Correct (or Close to the real value)
PRecision is Repeating (or Repeatable)

\section*{(3) Go Online}
- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
T oday's Goals \\
- Duvermine the levels of precision and accuracy in real-world scenarios.
\end{tabular} \\
\hline & - Calculate the approximate error of ineasurements. \\
\hline & - Choose the appropriate evel of accuracy of eeasurements when eporting quantities. \\
\hline & Today's Vocabulary precision accuracy approximate error \\
\hline & Think About It! How do you determine how to round when measuring a line segment? \\
\hline & Sample answer: If the endpoint of a segment is between consecutive units \(A\) and \(\#\) on the ruler, use measure \(A\) if the endpoint is between \(A\) and the midpoint of \(A\) and \(B\). Use measure \({ }^{\left[\frac{1}{} \text { if the endpoint }\right.}\) is between 5 and the midpoint of \(A\) and \(B\) \\
\hline & Think About It! Why are only the first and second targets accurate? \\
\hline
\end{tabular}

Sample answer: The first and second targets are considered hecrirate because the desired result of target practice is to hir the center circle.

Interactive Presentation


Learn



680 Module 11 • Angles and Geometric Figures

\section*{Interactive Presentation}


Example 1
FLASHCARDS
Students flip cards to view the precision and accuracy of each horseshoe toss.

\section*{CHECK}
(11)

Students complete the Check online to determine whether they are ready to move on.

\section*{Example 1 Identify Precision and Accuracy}

Teaching the Mathematical Practices
2 Different Properties Mathematically proficient students look for different ways to solve problems. Encourage them to work through both ways to solve the problem and to choose the method that works best for them.

\section*{Questions for Mathematical Discourse}

ALI What is the goal when playing horseshoes? Throw the horseshoe closest to the stake in the middle of the pit.

OL. When considering how close the horseshoes are to the stake, does that describe accuracy or precision? Explain. Accuracy; sample answer: Accuracy is the nearness to the goal, and because the goal is to hit the stake, this would describe accuracy.

BL If you were playing horseshoes, would you want accuracy, precision, or both? Explain. Both; sample answer: Accuracy will put me close to the stake and precision will put my horseshoes closer together, so both will put my horseshoes close together at the stake.

\section*{Common Error}

Students may forget the critical step of finding the absolute value of the difference. This could lead to negative answers, which are incorrect. Remind students that approximate error represents the difference in the actual and estimate measurements, regardless of direction.

\section*{Common Error}

Many students interchange the definition of accuracy with precision. Encourage students to write the definitions down with an example so they can refer back to them when in doubt.

\section*{Learn Approximate Error}

Objective
Students calculate the approximate error of measurements.

\section*{117 Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{About the Key Concept}

Measurements are always approximations, which means they have error. The approximate error of a measurement helps determine how accurate the calculation will be using the measurement. The formula is the absolute value of the difference between the actual measurement and the estimated measurement.

\section*{Common Misconception}

Students often believe the measurement with the most decimals is the actual measurement, not the estimate. Remind students that the actual measurement is the true weight, length, height, etc. of an object while the estimate is the measurement taken.

\section*{Example 2 Find Approximate Error}

Teaching the Mathematical Practices
6 Use Precision Students use approximate error as a means to evaluate the precision of measurements.

\section*{Questions for Mathematical Discourse}
(4) What is the actual weight of the mass? 10 grams

OLI Suppose the mass were weighed again on the spring scale, and the approximate error was found to be 0.7 grams. What could be the possible weight reported by the spring scale? Either 10.07 grams or 9.93 grams
[BII Suppose a different scale reported the object as 9.7 grams. Why will the approximate error be the same as the food scale? Sample answer: Because both scales are measuring 0.3 grams away from the actual weight, they have the same approximate error. Approximate error is always the absolute value of the difference, so the negative does not matter.

\section*{Learn Calculating with Rounded \\ Measurements}

\section*{Objective}

Students choose the appropriate level of accuracy of measurements when reporting quantities.
(17) Teaching the Mathematical Practices

2 Reason Abstractly and Quantitatively Students will make sense of quantities and their relationships in problem situations.
6 Attend to Precision Guide students to express numerical answers with a degree of precision appropriate for the problem context.

Learn Approximate Error
\({ }^{n}\) the physical world, measurements are always approximate. The approximate error of a measurement can help you determine how accurate your calculations can be using the measurement.
Key Concept - Approximate Error
The positive difference between an actual measurement and an approximate or estimated measurement is its approximate error \(t\).
\(\varepsilon_{\infty}=\) lactual measurement - estimated measurement

Example 2 Find Approximate Error
A student weighs a 10 -gram precision mass on three different scales. Find the approximate error for each measurement.
a. pring scale: 9.86 grams
\(\begin{aligned} E_{11} & =\text { |actual measurement } \text { - estimated measurement } \\ & =10-9.86 \mid\end{aligned}\)
\(=10-9.86 \mid\) or 0.140
B. lab scale: 9.92 grams
\(\mathcal{E}_{\alpha}=\) |actual measurement - estimated measurement
\(=10-9.92\) or 0.08 g
c. food scale: 10.3 grams
\(\tau_{n}=\) lactual measurement - estimated measurement
\(=10-10.3\) or 0.3 g
Check
The temperature in Portland, Oregon, is \(35^{\circ} \mathrm{F}\). Declan measures the temperature outside his house. The thermometer measures \(34.2^{\circ} \mathrm{F}\). What is the approximate error of the temperature? \({ }_{0.8}{ }^{7}\)

Learn Calculating with Rounded Measurements When rounding to a place value, look at the value immediately to the fight of that position. If the value is 5 or greater, then round up. 42.64 rounds to 42.6 . Becaute \(4<5\), do not round to the next tenth. 42.57 rounds to 42.6 Because \(7 \geqslant 5\), round to the next tenth Given a measurement of 42.6 centimeters rounded to the nearest tenth, the actual measurement could be any value in a range of values that round to 42.6 .
42.55 sactual measurement \(<42.65\)

Think About It In what real-world situation would it be helpful to find an approximate error?

Sample answer: Determining the approximate error of your car's speedometer would allow you to ensure that you drive within the speed limit.

\section*{Think About It Why is it important to calculate approximate} errors when using scales?

Sample answer: The pproximate error wil thow the degree of
encurs with that
ocecific scale. It is
especially important especially important to when doing scientific experiments.

\section*{Interactive Presentation}


Example 2
EXPAND



\section*{Interactive Presentation}


\section*{Example 3}


\section*{1 CONCEPTUAL UNDERSTANDING}

2 FLUENCY

\section*{Example 3 Calculate with Rounded Measurements}

\section*{(10) Teaching the Mathematical Practices}

4 Apply Mathematics in this example, students apply what they have learned about accuracy of measurements to solving a real-world problem.

Questions for Mathematical Discourse
4L. How can you find the area of the room? length times width
OL. When calculating the area of the room, why do we only find the least and greatest possible area? Sample answer: We only find the least and greatest because all other values will fall in-between those two values. Knowing the least and greatest allows us to find the smallest and largest price.
BLI Suppose Alejandro has a friend who works in construction measure his room, and the dimensions were found to be 9.76 feet by 8.16. What is the possible range for the area of the room now? 9.755 s actual length \(<9.765\) while \(8.155 \leq\) actual width < 8.165; Least possible area: \(9.755(8.155)=79.552025 \mathrm{ff} ;\) Greatest possible area: \(9.7655(8.165)=79.7353075 \mathrm{ff}\)

\section*{Common Error}

Students may not understand how to calculate the range of values for the length and width of the room. Encourage students to plot the reported length on a number line scaled with the same precision as the number. Then students can mark half a unit below and half a unit above to see the range.

\section*{DIFFERENTIATE}

\section*{}

IF students have a hard time rounding,
THEN have them plot the number on an appropriately scaled number line. Students can then see to which digit the number is closer. For example, if the number 31.42 is to be rounded to the nearest tenth, scale the number line from 31 to 32 by tenths. Then students can see 31.42 is close to 31.4 than 31.5 .

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-7\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from \\
this lesson
\end{tabular} & \(8-16\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(17-20\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(1l) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-15 odd, 17-20
- Extension: Comparing Precision: Metric and Customary Measurements

\section*{IF students score 66\%-89\% on the Checks, \\ ALbl}

THEN assign:
- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Expressions Involving Absolute Value
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Evaluating Expressions with Absolute Value

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-7 odd
- Remediation, Review Resources: Expressions Involving Absolute Value
- DALEKS'Evaluating Expressions with Absolute Value
```

Practice
Example 1

1. PRECISION A manufacturer claims that its rice cakes are packaged with }20\mathrm{ in
each package. A sample of 12 packages is counted for accuracy. The sample
sields a count of (18, 17, 17, 17, 18,18, 18, 17, 18, 17, 18, 17) rice cakes. How
The sample is precise because there are consistently 17 or or 18 rice cakes
in each package. The sample indicates an inaccurate claim of 20 rice cakes
per package.
Example 2
2. SCALES A 10-pound weight is weighed on two different scales. Find the
approximate error of each weight.
= digital bathroom scale: }9.59\mathrm{ pounds }0.41\textrm{lb
b. food scale: 10.09 pounds}0.09 lb
3. PHYSICS A circuit has amperage of 0.01 milliamp. A multimeter measures the
Parmerage ir the circuit at 0.06 milliamp. What is the approximate erre.05 milliamp
4. CARPENTRY A door frame is 2.13 meters high. Chandra measures the height of
the door frame with a carpenter's rule. She measures 2.22 meters. What is the
approximate error of the height? }0.09\textrm{m
3. COOKING Water boils at 212.0%F.Jeremiah uses a kitchen thermometer to
measure the temperature of a pot of boiling water. The thermometer measures
Example 3
C. CONSTRUCTION The public works department
is repaving some of the roads in the city. The
materials needed to repave this section of
the road cost \$2.50 per square foot.
a. What is the possible range for the area of
the road? least possible area =4427.75 f\mp@subsup{f}{}{2}
greatest possible area =4572.75 ft
b. What is the possible range for the cost, < of the materials needed to repave
this section of the road? \$11,069.38 \leqc<\$11,431.88
```
7. GRASS SEED George is buying grass seed for his lawn. Grass seed is sold at \(\$ 0.40\) per square yard
2. What is the least value for the length of The liwn? 16.5 yd

B What is the greatest value for the width of That liwn? 12.5 yd
c. What is the possible range for the area of the lawn?
做 possible area 189.75 yd.; greatest possible area \(=218.75 \mathrm{yd}^{\text {d }}\)
\&. What is the possible range for the cost of the grass seed?
The cost would be at least \(\$ 75.90\) but less than \(\$ 87.50\)

Mixed Exercises
8. THERMOMETER The thermostat on a heated pool is set at 6.5 \({ }^{\circ}\). A thermometer in the pool is shown. What is the approximate error of the temperature? 0.6 F

9 SANDWICHE 3 A sandwich shops claims to sell foot-long sandwiches. X So Mi . Wh.
The ruler measures 11 inches What is the approximate error of the length? 1 in
10. SPEED A police officer uses a radar detector to measure the speed of Roya's car roya's speed speed at 56.71 miles per hour what is the approximate error of the speed 711 mph
11. BICYCLES An assembly line supervisor weighs three 25 -pound bicycle frames on a scale. Find the approximate error of each weight.
2. firicycle A: 25.11 pounds 0.11 lb
s. licycle B: 24.99 pounds 0.01 lb
c. Bicycle C: 24.36 pounds 0.64 lb
12. DEL Josephina works at a deli. She is testing the scales at the deli to make sure they are accurate. She uses a weight that 5 exactly 1 pound and gets the following results shown in the table. Which scale is the most accurate? scale 2


684 Module 11 - Angles and Geametric Figure
13. GARDEN Mr. Granger wants to spread fertiizer on his vegetable garden that has dimensions 41.5 teet by 30.8 feet. The fertilizer he chose costs \(\$ 0.75\) per square oot for adequate coverage. What is the possible range for the cost of the


14. HEIGHT Lucas was proud of how much he had grown over the last six months since his grandma had seen him last. He told her that he was 6 feet 3 inches. His What is the approximate error of Lucas' height? 2 in.
15. PAINT Y ou measure a wall of your room as 8 feet high and 12 feet vide. \(Y\) ou want to apply wallpaper to only this wall. The wallpaper is expensive and will cost \(\$ 1.25\) per square foot. What is the possible range for the cost of the wallpaper? The cost would be at least \(\$ 107.81\) but less than \(\$ 132.81\).
16. Four measurements were taken three different times. The correct measurement is 52.4 cm . Determine whether the set of measurements is accurate, precise, both, or neither. Explain your reasoning.
a. \(56.1 \mathrm{~cm}, 48.9 \mathrm{~cm}, 24.2 \mathrm{~cm}, 5 \mathrm{~cm}\) This set is neither accurate nor precise. The measures are not close to each other, and they are not close to the correct value.
b. \(73.1 \mathrm{~cm}, 74.0 \mathrm{~cm}, 73.5 \mathrm{~cm}, 73.7 \mathrm{~cm}\) This set is precise. All the measures are very close together. They are not, however, close to the correct value, so the set very close toget
is not accurate.
c. \(52.6 \mathrm{~cm}, 52.5 \mathrm{~cm}, 52.2 \mathrm{~cm}, 52.3 \mathrm{~cm}\) This set is both accurate and precise. All the measures are close to each other, and they are close to the correct value.

Lesson 11.7. Precition and 68

\section*{OHigher-Order Thinking Skills}
17. WRITE Many people confuse the definitions of accuracy and precision. What is the dirference between accuracy and precision? Give an example of a set of four numbers that represents accurate and precise measurements for a cut of meat at a steakhouse that advertises a 16 -ounce the true values. Precision is the repeatability of the measurement and level of measurement. Sample answer: 16. \(1 \mathrm{oz}, 16.3 \mathrm{oz}, 15.93 \mathrm{oz}, 15.8 \mathrm{oz}\).
18. WRITE I sabel says that if a set of measurements is accurate, then it is also precise. If you agree, explain your reasoning. If you disagree, provide a counterexample. Sample answer: A set of measurements may be accurate and close to the actual measurement of 0.5 inches, for example. values.
19. PERSEVE
of a box.
There are two faces that have an area of \(111.4 \mathrm{in}^{2}\), tw faces that have an area \(35.82 \mathrm{in}^{2}\), and two faces that have an area 75.3 in \(^{2}\)
b. Determine the surface area of the box. \(445.0 \mathrm{in}^{2}\)
c. Determine the range of values that should contain the actual (true) measure of the surface area of the box. Explain your reasoning. The calculation of surface area is accurate to the nearest tenth. The true surface area falls between \(444.95 \mathrm{in}^{2}\) and \(445.05 \mathrm{in}^{2}\)
d. Suppose that Jayden had incorrectly measured the first dimension as 15.1 inches. Find the surface area of the box using this measure. \(440.1 \mathrm{if}^{2}\)

20.CREATE A manufacturer claims that its bags of sweetener contain 9.7 ounces in each bag. Create a sample of weights of 10 bags of sweetener such that the sample is precise and accurate. Explain your reasoning. See margin.

\section*{Answers}
20. Sample answer: \(\{9.8,9.7,9.7,9.6,9.6,9.8,9.7,9.7,9.6,9.8\} ;\) The set is precise because there are consistently \(9.6,9.7\), or 9.8 ounces of sweetener in each bag. The sample is also accurate to their claim of 9.7 ounces per bag.

\section*{LESSON GOAL}

Students use significant figures in measurements.

\section*{1 LAUNCH}
8. Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Significant Figures

\section*{8 Develop:}

\section*{Determining Significant Figures}
- Determine Significant Figures
- Find Significant Figures by Using Tools

Calculating with Significant Figures
- Calculate with Significant Figures
- Use Significant Figures in the Real World
- Use Tools to Calculate Measurements

8
You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket
QPractice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & A 1 & 183 & ミム & \\
\hline Remediation: Convert Customary Measurement Units & - - & & & - \\
\hline Extension: While Loops & & - \({ }^{-}\) & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 70 of the Language Development Handbook to help your students build mathematical language related to significant figures.
EIII You can use the tips and suggestions on page T70 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l|}
90 min & 0.5 day \\
45 min & \\
\hline
\end{tabular}

\section*{Focus}

Domain: Number and Quantity Standards for Mathematical Content:
N.Q. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students applied the definitions of precision, accuracy, and error to measurements and computed values

\section*{N.Q. 3}

\section*{Now}

Students use significant figures in measurements.

\section*{N.Q. 3}

\section*{Next}

Students will analyze conjectures by using inductive reasoning and disprove conjectures by using counterexamples.

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|c|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline \multicolumn{3}{|l|}{Conceptual Bridge In this lesson, students draw on their understanding of precision and accuracy. They apply their understanding by determining the correct numbers of significant figures in recorded measurements.} \\
\hline
\end{tabular}

\section*{Mathematical Background}

The digits that are used to express a measure to the appropriate degree of accuracy are called significant figures. The rules to determine whether digits are considered significant are: nonzero digits are always significant; in whole numbers, zeros are significant if they fall between nonzero digits; in decimal numbers greater than or equal to 1 , every digit is significant; in decimal numbers less than 1 , the first nonzero digit and every digit to the right are significant.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- converting measurements

Answers:
1. 4
2. 5000
3. 0.08
4. \(2 ; 1\)
5. 13; 1

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see real-world applications of significant figures in measurements.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet this standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the questions below with the class.

\section*{Explore Significant Figures}

Objective
Students explain the level of accuracy of measurements and choose the level of accuracy appropriate for measurements.

Teaching the Mathematical Practices
1 Understand the Approaches of Others Mathematically proficient students can explain the methods used to solve a problem. This Explore asks students to justify a step.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will investigate different measurements and the number of significant figures in each measurement. Students will answer questions to help find the process that might be used to determine the significant figures in a measurement. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}

Sankenlfipira


 berliture



\section*{Explore}


Explore

Students move through the steps to Explore significant figures.

Students answer guiding exercises about significant figures.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}

Students respond to the Inquiry Question and can view a sample answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Significant Figures (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Which measurement only has one significant figure: 1.0 centimeter, 0.30 gram, or 0.08 liter? 0.08 liter
- How does the presence of a decimal point affect significant figures? Sample answer: The presence of a decimal point can indicate a greater level of accuracy, and therefore the existance of more significant figures in a measurement.

\section*{(9) Inquiry}

How can you determine the number of significant figures in a measurement? Sample answer: To determine the number of significant figures in a measurement, you must identify the place value to which the measurement is accurate. When the measurement is greater than 1 , count the number of digits including and to the left of the place value you previously identified. When the measurement is less than 1 , count the number of digits including and to the left of the place value you identified, but do not count zeros that are to the left of the place value and act as placeholders.

Wo Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Determining Significant Figures}

\section*{Objective}

Students determine the correct number of significant figures in recorded measurements.
(11) Teaching the Mathematical Practices

6 Use Precision In this Learn, students learn how to calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

\section*{About the Key Concept}

Significant figures allow us to maintain the correct level of precision when working with measurements. Nonzero digits are always significant. In whole numbers, zeros are significant when they are between nonzero digits. In decimal numbers greater than or equal to 1 , every digit is significant. However in decimal numbers less than 1 , the first nonzero digit and every digit to the right are significant.

\section*{Common Misconception}

Students often count zero as a significant digit without considering the value of the number or the presence of a decimal. Remind students that zero is a special digit and that there are only certain times it is considered significant.

\section*{Essential Question Follow-Up}

Students have begun learning about significant figures.

\section*{Ask:}

Why are significant figures important in the scientific field? Sample answer: Scientists need a precise way of reporting measurements based on the tool used, so that others know how precise the measurement is.

\section*{Example 1 Determine Significant Figures}

\section*{(17) \\ Teaching the Mathematical Practices}

3 Compare Arguments Mathematically proficient students can compare arguments, determine which one is flawed, and explain the flaw. In this example, students have to identify the flawed argument and choose the correct one.

\section*{Questions for Mathematical Discourse}
[4. How many significant figures are in 1500 inches? 2
OL How many significant figures are in 1501 inches? 4
[BL How many significant figures are in 0.00500 ? 3

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.
\begin{tabular}{|c|c|}
\hline Representing M & Lesson 11 -8 asurements \\
\hline \begin{tabular}{l}
Explore Significant Figures \\
OOnline Activity Use the guiding exercises to complete the Explore. \\
NQUIRY How can you determine the number of significant figures in a measurement?
\end{tabular} & \begin{tabular}{l}
Today's Goals \\
Qumber of significant \\
number of significan \\
easurements. \\
- 2t und measurements \\
of significant figures \\
Today's Vocabulary
\end{tabular} \\
\hline \begin{tabular}{l}
Learn Determining Significant Figures \\
Using significant figures allows you to maintain the correct level of secision when you are working with measurements. The significant figures, or significant digitis. of a number are the digits that are used to express a measure to the appropriate degree of accuracy. \\
Example 1 Determine Significant Figures \\
Determine the number of significant figures in each measurement. 0.0320 inches \\
This is a decimal number less than 1 . The first nonzero digit is 3 , and there are two digits to the right of \(3 ; 2\) and 0 . So, this measurement has 3 significant figures. \\
107,000 centimeters \\
tecause this is a whole number, zeros are only significant if they fall So, this measurement has 3 significant figures.
\end{tabular} & \begin{tabular}{l}
Watch Out! Look for the Decimal decimal place, then zeros are only significant if nonzero digits. For example, 165,000 has only 3 significant zeros fall after the 5 . If a number does have a follow the rules listed \\
Talk About It! What is the purpose of
using significant figures? \\
Sample answer: We use IIgnificant figures because a accurate than the measurements that are used in it. \\
\(\theta\) Think About It measurements that each have fou! significant figures. \\
Sample answer: 6,891,000 pounds, 12.87 meters, 0.08127 liter
\end{tabular} \\
\hline Lesson 11.8 & Nting Messurements 687 \\
\hline
\end{tabular}

\section*{Interactive Presentation}


Learn


Check
etermine the number of significant figures in each measurement
a. 0.03927 milliliter les ? 4 significant figures
b. \(5,134,180\) pounds has ? isignificant figures

Example 2 Find Significant Figures by Using T ools
Find the possible range for the length of the segment using the correct number of significant figures.


The length of the segment is approximately \(1 \frac{1}{2}\) echer. This measurement was given to the nearest \(\frac{1}{4}\) inch, so the possible ange of this measurement is within \(\frac{1}{2}\left(\frac{1}{4}\right)\) or \(\frac{1}{1}\) inch of the measured ength.

The exact measurement is between \(1 \frac{1}{1}\) ind \(1 \frac{5}{8}\) inches or 1375 sod 1.625 inches.


Due to the precision of the ruler, the length of the segment has 4 significant figures.

Check
ind the possible range for the length of the segment.

A. 2.0 cm to 2.2 cm
B. 200 cm to 3.00 cm
C. 2.5 cm to 2.25 cm
0. 208 cm to 2.12 cm

0

\section*{Interactive Presentation}


Example 2
 to determine the correct number of significant figures.

CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 2 Find Significant Figures by Using Tools}

\section*{(1)}

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this example, students will need to use a ruler. Work with students to explore and deepen their understanding of significant figures.

\section*{Questions for Mathematical Discourse}

AL Suppose a ruler measured to the nearest centimeter. What will the possible range of any measurement be within the measured length? 0.5 cm

OL Suppose a ruler measured to the quarter of an inch. What will the possible range of any measurement be within the measured length? 0.125 of an inch
BiL What is the possible range for the length of a segment measured on the same ruler as \(2 \frac{1}{4}\) inches? \(2 \frac{1}{8}\) in. to \(2 \frac{3}{8} \mathrm{in}\).

\section*{Common Error}

Students may not understand finding the range of possible values using the measurement tool. Remind students that the precision of the answer is based on the reported measurement.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity \(\operatorname{Al}\) 니 큰}

IF students do not know how to write the correct number of decimal places after adding or subtracting measurements,
THEN remind students to leave the same number of decimal places in the answer as there are in the measurement with the least amount of significant figures.

\section*{Learn Calculating with Significant Figures}

\section*{Objective}

Students round measurements to the correct number of significant figures.

Teaching the Mathematical Practices
\(\mathbf{2}\) Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. In this Learn, notice the relationship between the problem variables and the units involved.

\section*{Important to Know}

When calculating with significant figures, the accuracy of the result is limited by the least accurate measurement. When adding or subtracting, the result cannot have more decimal places than either of the original numbers. When multiplying or dividing, the number of significant figures of the result is determined by the original number with the least amount of figures. Significant figures are not affected by conversion factors.

\section*{Common Misconception}

Students tend to believe the answer should have the same number of significant figures as the original measurements, without regard to the operation or significant figures of the original numbers. Remind students that calculating with significant figures has rules to follow, and answers must be precise based on the situation.

\section*{Example 3 Calculate with Significant Figures}

Teaching the Mathematical Practices
6 Use Precision In this example, students will calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

Questions for Mathematical Discourse
4L. When adding a measurement with three decimal places to a measurement with one decimal place, how many decimal places will the result have? 1 decimal place
OL. When dividing a measurement with three significant figures by a measurement with four significant figures, how many significant figures will the quotient have? 3

BL. Give an example of a multiplication of measurements where the product has 2 significant figures.
Sample answer: 4.5 inches \(\times 100.0\) inches \(=450\) square inches

\section*{Common Error}

Students may assume the product should have the total number of decimal places as the values being multiplied, due to the rules when multiplying decimals. Remind students that when calculating with measurements, we must follow the rules of significant figures.

Learn Calculating with Significant Figures
When you are calculating with significant figures, the accuracy of the result is limited by the least accurate measurement.
\begin{tabular}{|c|l|l|}
\hline Key Concept - Calculations with Significant Figures & Qalk About It! \\
\hline Addition and Subtraction & Multiplication and Division & Why is it important to
\end{tabular}
Addition and Subtraction Multiplication and Division When using addition and
subtraction, a calculation cannot division, the number of significant have more digits to the right of figures in the final product or the decimal point than either of quotient is determined by the the original numbers. original number that has the fewest number of figures.
Numbers that are not measured are not considered when determining significant figures. For example, if you have 5 cereal boxes that weigh 14 ounces each, then the significant figures used in a calculation would te determined from the measurement, 14 ounces, not the quantity Significant figures are also not affected by conversion factors. For example, when using the conversion 12 inches \(=1\) foot, the significant figures are determined by the original measurement being converted.

Example 3 Calculate with Significant Figures
Find each measurement rounded to the correct number of significant figures.
a volume of an \(\mathbf{8 3 7 . 2 4 - m L}\) sample after \(\mathbf{2 7 6 . 5 1 6 ~ \mathbf { m L }}\) is removed 837.24 has 2 digits after the decimal, and 276.516 has 3 . So the lesult should have 2 digits after the decimal.
Find the difference. Then round to the hundredths place. \(837.24-276.516-560.724\) or 560.72 mL .
b. area of the rectangle
\(A=(4.25)(2.5)\)
\(=10.625\)
Using significant
figures, the area is 11
square inches.


Check
A mixing bowl contains 8.5 fluid ounces of water. If 4.25 fluid ounces are removed from the bowl, how many fluid ounces of water remain? Found to the correct number of significant figures.
?. \({ }^{\text {fl oz }}\)
O go online Y ou can complete an Extra Example online.

Why is it importan
have a standard method for calcul with significant figures?

Sample answer: Having a standard method for

\section*{Interactive Presentation}


Example 3

\section*{TAP}

\section*{Students tap to reveal a Common Error}


\section*{Interactive Presentation}


Example 4


690 Module 11 • Angles and Geometric Figures

\section*{Common Error}

Students may not know the conversion factor for an acre to a square yard. Encourage students to look up the conversion factor when working through the problem.

\section*{Example 5 Use Tools to Calculate Measurements}

\section*{(1) Teaching the Mathematical Practices}

6 Use Precision In this example, students will calculate accurately and efficiently and to express numerical answers with a degree of precision appropriate to the problem context.

\section*{Questions for Mathematical Discourse}

To how many centimeters is the measurement given?
0.1 centimeters
(I) How do you know the length of the radius has 3 significant figures? The range of the measurement is from 7.55 to 7.65 , which both have 3 significant figures.
BEL Why do you need to calculate two areas of the circle? Using significant figures tells you the greatest and least length of the radius of the circle. You need to calculate the area for each measure.

Example 5 Use T ools to Calculate Measurements
The radius of a circle has the measurement shown. What is the possible range for the area of the circle? Round to the correct number of significant figures.


Step 1 Find the possible range for the length of the radius.
The approximate length of the segment is 7.6 centimeters. This measurement is given to the nearest 0.1 centimeter, so the approximate error is \(\frac{1}{2}(0.1)\) or 0.05 centimeter. Therefore, the exact length is between 7.55 and 7.65 centimeters.

Step 2 Determine the number of significant figures.
Because the range of the length is between 7.55 and 7.65 centimeters, the length has 3 significant figures.
Step 3 Calculate the area of the circle.
The area of a circle is equal to \(\pi r^{2}\), where \(r\) is the length of the radius. Complete the expressions to calculate the least and greatest possible areas of the circle
least possible area: \(\pi 17.559=179.0786352 \mathrm{~cm}^{2}\)
greatest possible area: \(\pi(7.65) \approx 183.8538561 \mathrm{~cm}^{2}\)
Using significant figures, the area of the circle is between 179 and 184 square centimeters.

\section*{Check}

The radius of a circle has the measurement shown. What is the ossible range for the area of the circle? Round to the correct number of significant figures.


\section*{Interactive Presentation}


Example 5


\section*{Pause and Reflect}

Did you struggle with anything in this lesson? If so, how did you deal with it?

See students' observations.

\section*{Practice}

Example 1
Determine the number of significant digits in each measurement


Find the possible range for each length of the segment using the correct number of significant figures.
8.

2.85 to 2.95 cm

in.
4.5 to 5.5 in.

28.5 to 29.5 mm

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-26\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(27-42\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(43-48\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks,}

THEN assign:
- Practice, Exercises 1-41 odd, 43-48
- Extension: While Loops

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-47 odd
- Remediation, Review Resources: Convert Customary Measurement Units
- Personal Tutors
- Extra Examples 1-5
- © ALEKS Converting Measurements

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Convert Customary Measurement Units
- ALEKS Converting Measurements


Example 3
The base of a triangle is fixed at \(\mathbf{2 . 2 1 8}\) millimeters. Determine the number of significant figures of the area of the triangle with each given height.
\begin{tabular}{ll} 
14. 1.86 mm & 15. 0.099 mm \\
3 & 2 \\
16. 0.1279 mm & 17. 2.109 mm \\
\begin{tabular}{l}
4 \\
18. 11.0 mm \\
3
\end{tabular} & \begin{tabular}{l}
4.17 mm \\
3
\end{tabular} \\
\hline
\end{tabular}
20. Using significant figures, which of the following students wrote a calculation that could have a sum or difference of 51.9? Nobu


Example 4
21. CHEmISTRY Angel has 8.341 mL of saline. She pours 1.1 mL of saline into another solution. How much saline does Angel have left? Round your measurement to the correct number of significant figures. 7.2 mL
22. A parallelogram with base \(b\) and height \(h\) has area, \(A\), given by the formula \(A=b\) h. Find the area of the given parallelogram. Round you measurement to the correct number of significant figures. \(4.7 \mathrm{~cm}^{2}\)

23. AREA Find the area of a triangle with a height of 4.90 centimeters and a base length of 6.174 centimeters. Round your measurement to the correct number of significant figures. \(15.1 \mathrm{cn}^{2}\)
24. DIMENSIONS Rafael is building a horseshoe pit in his backyard. The width of the pit is 29.71 inches, and the length is 30.1 inches.

Part A Estimate the area of Rafael's horseshoe pit. \(900 \mathrm{in}^{2}\)
Part B Rafael finds the exact area of the horseshoe pit and rounds his answer to the correct number of significant figures. What area did Rafael find? 894 in \(^{2}\)

Example 5
25. AREA The radius of a circle has the measurement shown. What is the possible range for the area of the circle? Round to the correct number of significant
figures. The area of the circle is between 31.2 and \(33.2 \mathrm{~cm}^{2}\).

26. CIRCUMFERENCE The radius of a circle has the measurement shown. What is the CIRCUMFERENCE The radius of a circle has the measurement shown. What is the
possible range for the circumference of the circle? Round to the correct number of significant figures. The circumference of the circle is between 21.598 and 22.384 inches.


Mixed Exercises
Determine the number of significant digits in each measis
2. 5.14
30. 6.102 .0
 CHEMISTRY A beaker contains a sample of NaCl weighing 49.8767 grams. If the the correct number of significant figures. 0.663 gram the correct number of signicant figures. 0.663 gram
34. COOKING Jordan makes a sandwich on a paper plate weighing 32.47 grams The bread weighs 60.13 grams. Jordan adds 12.3 grams of turkey, 2.4 grams of mayonnaise, and 3.0 grams of lettuce. What is the final weight of the plate and sandwich? 110.3 g
38. AEMISTRY Three chemists weigh an item using different scales. The values
they report are shown on the scales. How many significant figures should be they report are shown on the scales. How many significant figures should be used for each measurement? scale 1: 4; scale 2:3; scale \(3: 4\)


3 swimming pooL A rectangular swimming pool measures 24.2 feet by 76 feet. a. Firidtile perimeterot he pool. Round to the correct umber of significant figures. 200 ft
BFina theearea iffite pool. Round to the correct
umber of significant figures. \(1800 \mathrm{a}^{2}\)
Umber of significant figures. \(1800 \mathrm{ft}^{2}\)
37. AREA Find the area of the given triangle. Round your measure to the correct number of significant figures.
32. MURAL Krista is painting a rectangular wall that has an area of 247 square feet. If she can paint 5.25 square feet
in an hour, about how long will t take for Krista to finish the in an hour, about how long will it take for Krista to finish the significant figures. 471

9. MAss Suppose that you measured the volume of a rock to be 2.3 cm and you know the density to be und your measur
8.30
40.
family and The distance between Cincinnati, where during her trip. Yeandra Keandra made the stop is 54 miles. The distance between Dayton and T oledo,
whiere Keandra's family lives is 150.2 miles. How far did Keandra travel on her trip? Round to the correct number of significant figures. 204 mi
4t.
VOLUME A rectangular box has a length of 10.876 inches, width of 4.34 inches, and a height of 13.22 inches. What is the
volume of the rectangular prism? Round to the correct number of significant figures. \(624 \mathrm{in}^{3}\)
42. TRAVEL Y ou estimate that your car gets 28 miles per gallon. The cost of gas per gallon is shown. Round to the correct number of significant figures. \(\$ 40\)


Yigher-Order Thinking Skills
43. FIND THE ERROR A student found that the dimensions of a ectangle were 1.40 meters and 1.60 meters. She was asked to report the area using the correct number of significant error did the student make? Explain your reasoning. Sample answer: The 0 in each dimension, 1.40 cm and 1. is significant. The answer should be given with 3 significant figures as 2.24 square centimeters.
44. PERSEVERE The \(\operatorname{Sin}\) is an excellent source of electrical energy. A field of solar panels yields 19.23 Watts per square
foot. Determine the amount of electricity produced by a fild fot Determine the ammor of solar panels that is 410 feet by 201 yards. \(4,800,000 \mathrm{~W}\)

45. WRITE When explaining the process of finding the perimeter of a triangle using significant digits, Trinidad claimed that 0.045 inch and 0.0045 inch have
 es, sample answer. The zeros before and afer them. Therefore, both numbers have two significant figures.
46. WRITE How do you use significant figures to determine how to report a sum or product of two measures? for addition, the sum should be rounded to the same place value of the least-precise measure. For multiplication, the product hould be rounded to have the same number of significant figures as the original measure with the fewest significant figures.
wing statement is sometimes, always, or Zeros ore significant figures.
Sometines, wisple minec. \(A\) zero between two nonzero significant figures is always significant, a leading zero is never significant, and a zero at the end of a number is only significant when a decimal point is given in the number.
48. CREATE The swim team measures time to the hundredth of a second. Amanda's dime was slower than Jocelyn's time in the 100 -meter freestyle. What are possible Sample answer: Amanda's time \(=72.50 \mathrm{~s}\) and Jocelyn's timew 70.91 s

\section*{Rate Yourself! 园 (自}

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

\section*{Answering the Essential Question}

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.
-Why are angles important in the real world?
- Why should we not assume certain relationships are present based off a diagram?
- Why are geometric models a useful tool when dealing with real world two-dimensional objects?
- Why are significant figures important in the scientific field?

Then have them write their answer to the Essential Question.

\section*{DINAH ZIKE FOLBA8LES}
[EIIII A completed Foldable for this module should include the key concepts related to angles, geometric figures, transformations, accuracy, precision, and significant figures.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Congruence, Proof, and Constructions and Extend to Three Dimensions.
- Experiment with transformations in the plane
- Make Geometric Constructions
- Visualize the relation between two-dimensional and three-dimensional objects


\section*{Test Practice}


698 Module 11 Review • Angles and Geometric Figures

\section*{Review and Assessment Options}

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

\section*{Review Resources}

Vocabulary Activity
Module Review

\section*{Assessment Resources}

Vocabulary Test
ALl Module Test Form B
OL Module Test Form A
[BL Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

\section*{Test Practice}

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-15 mirror the types of questions your students will see on online assessments.
\begin{tabular}{|l|l|c|}
\hline Question Type & Description & Exercise(s) \\
\hline Multiple Choice & Students select one correct answer. 4-6, 9, 11, 15 \\
\hline Multi-Select & \begin{tabular}{l} 
Multiple answers may be correct. \\
Students must select all correct \\
answers.
\end{tabular} & 1 \\
\hline Open Response & \begin{tabular}{l} 
Students construct their own \\
response.
\end{tabular} & \begin{tabular}{c}
\(2,3,7,8,10\), \\
\(12-14\)
\end{tabular} \\
\hline
\end{tabular}

To ensure that students understand the standards, check students' success on individual exercises.
\begin{tabular}{|l|c|c|}
\hline Standard(s) & Lesson(s) & Exercise(s) \\
\hline G.C0.1 & \(11-1,11-2\) & \(1,2,4,5\) \\
\hline G.CO.2 & \(11-4\) & \(9-11\) \\
\hline G.C0.12 & \(11-1\) & 3 \\
\hline G.GPE.7 & \(11-3\) & \(6-8\) \\
\hline G.GMD.3 & \(11-5\) & 12,13 \\
\hline G.MG.1 & \(11-6\) & 14,15 \\
\hline
\end{tabular}

11. MUL TIPLE CHOICE \(\triangle a M\) has coordinates K04. -2\(), L(6,-1)\), and \(M(5,5)\). What would be the coordinates of the vertices of the image after a reflection in the \({ }_{x \text {-coos? }}\) (Lesson 11-4)
A \(\left.K_{1}-4,2\right), 4(-6,-1)\), and \(M_{(-5}, 5\)
B. \(\left.K(-4,2), L_{-}-6,-1\right)\), and \(\left.M_{Y}-5,-5\right)\)
© \(\kappa(4,2), L^{\prime}(6,1)\), and \(M^{\prime}(5,-5)\)
\(\left.\left.D_{K} K-2,4\right), L ;-1,6\right)\), and \(M^{\prime}(5,5)\)
12. oPEN RESPONSE What is the volume, in cubic centimeters, of the cylinder? ,Lesson 11-5

782.49 cm
13. PEN RESPONSE A beach ball has a radius of 8 inches. Find how many cubic inches to the nearest hundredth of air was used to fill the beach bay L-esson 11-5)
7144.66 in \(^{3}\)
4.O PEN RESPONSE Identify two three dimensional shapes that are represented by the grain silo. Lesson 11-6)

hemisphere and cylinder

c.


0


700 Module 11 Review - Angles and Geometric Figures

\section*{Lesson 11－6}
4.


left view

front view right view
5.

top view

left view front view right view
6.


left

front

right
7.

top

left

front

right
8.

right
9.

10.

11.

12.


17．Sample answer：


6 ft

18．Sample answer：


\section*{Module 12}

\section*{Logical Arguments and Line Relationships}

\section*{Module Goals}
- Students look for patterns and write conjectures based on those patterns.
- Students prove conjectures using logical arguments or disprove conjectures using counterexamples.
- Students apply logical arguments to basic line and angle relationships.

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO. 9 Prove theorems about lines and angles.
G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
Also addresses G.C0.1, G.GPE.5, and G.MG.3.

Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

\section*{Be Sure to Cover}

To completely cover G.CO.12, go online to assign the following construction activities:
- Construct a Segment Twice as Long as a Given Segment (Lesson 12-5)
- Construct a Line Parallel to a Given Line Through a Given Point (Lesson 12-9)

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students defined and used lines, line segments, angles, and twodimensional figures.
G.CO. 1

\section*{Now}

Students prove theorems about lines, line segments, and angles.
G.C0. 9

\section*{Next}

Students will prove theorems about triangles.
G.CO.10

\section*{Rigor}

\section*{The Three Pillars of Rigor}

To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. After they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Independent Practice.


\section*{Suggested Pacing}
\begin{tabular}{|c|c|c|c|}
\hline Lessons & Standards & 45-min classes & 90-min classes \\
\hline \multicolumn{2}{|l|}{Module Pretest and Launch the Module Video} & 1 & 0.5 \\
\hline 12-1 Conjectures and Counterexamples & & 1 & 0.5 \\
\hline 12-2 Statements, Conditionals, and Biconditionals & & 1 & 0.5 \\
\hline 12-3 Deductive Reasoning & & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Put It All Together: Lessons 1 through 3} & 1 & 0.5 \\
\hline 12-4 Writing Proofs & & 3 & 1.5 \\
\hline 12-5 Proving Segment Relationships & G.C0.9, G.CO. 12 & 1 & 0.5 \\
\hline 12-6 Proving Angle Relationships & G.C0.9 & 2 & 1 \\
\hline 12-7 Parallel Lines and Transversals & G.C0.1, G.C0. 9 & 1 & 0.5 \\
\hline 12-8 Slope and Equations of Lines & G.GPE. 5 & 2 & 1 \\
\hline 12-9 Proving Lines Parallel & G.CO.9, G.CO. 12 & 1 & 0.5 \\
\hline 12-10 Perpendiculars and Distance & G.CO.12, G.MG. 3 & 2 & 1 \\
\hline \multicolumn{2}{|l|}{Module Review} & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Module Assessment}} & 1 & 0.5 \\
\hline & & 19 & 9.5 \\
\hline
\end{tabular}

\section*{Formative Assessment Math Probe \\ Conjectures}


\section*{Answers:}
- Students think the converse of a true statement is also always true.

Use the Probe after Lesson 12-1.
\begin{tabular}{llll} 
1. T & 2.F & 3.F & 4.F \\
5. F & 6.T & 7.F & \(8 . F\)
\end{tabular}

Collect and Assess Student Answers
(if)
the student selects these responses...
2. true
4. true
7. true
8. true
2. true
3. true
4. true
5. true
7. true
8. true
1. false
2. false

Then the student likely...
is basing his or her decision on the converse statements being true.
Example: For Item 2, the converse is true (parallel lines never meet) but students are not including skew lines to analyze this statement.
is not considering exceptions (counterexamples); believes that if there is only one counterexample, then the statement is still true; and/or believes that if the statement is true some of the time, then it is considered true.

Example: For Item 8, the student does not consider situations where congruent segments \(A B\) and \(B C\) are perpendicular, or the student does not know that if point \(A\), \(B\), and \(C\) are collinear, the statement is true.
is not considering that an angle can be complementary to more than one angle or does not have a thorough understanding of the term complementary.

\section*{Take Action}

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.
- ALEK \(^{*}\) Patterns and Inductive Reasoning
- Lesson 12-1, Learn, Examples 1-4

Revisit the Probe at the end of the module to be sure that your students no longer carry
these misconceptions.

\section*{IGN|TE!}

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

\section*{Essential Question}

At the end of this module, students should be able to answer the Essential Question.

What makes a logical argument, and how are logical arguments used in geometry? Sample answer: A logical argument is well organized and has statements that can be justified using postulates, which are assumed to be true, or previously proved statements.

\section*{What Will You Learn?}

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

\section*{DINAH ZIKE FOLDABLES}

Focus Students write about reasoning and proofs.
Teach Throughout the module, have students take notes under the tabs of their Foldables. Instruct students to take notes while reading each lesson and listening to instruction. They should include definitions of terms and key concepts. Encourage students to record examples of each type of logical reasoning from a lesson on the back of the Foldable.

When to Use It Use the appropriate tabs as students cover each lesson in this module. Students should add to the vocabulary tab during each lesson.

\section*{Launch the Module}

For this module, the Launch the Module video shows how the process of conducting experiments involves making a conjecture, gathering evidence, and then making a conclusion. Students will learn how proving geometric theorems follows a similar pattern of thinking.
- Essential Question What makes a logical argument, and how are logical arguments used in geometry?

What Will Y ou Learn?
How much do you already know about each topic efore starting this module?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ae- - ive heard of it (\% - ik} & \multicolumn{3}{|c|}{Before} & \multicolumn{3}{|c|}{After} \\
\hline & 橧 & (b) & 合 & (1) & \% & 6 \\
\hline \multicolumn{7}{|l|}{make and analyze conjectures based on inductive reasoning} \\
\hline \multicolumn{7}{|l|}{disprove conjectures by using counterexamples} \\
\hline \multicolumn{7}{|l|}{determine truth values of statements, negations, conjunctions, and disjunctions} \\
\hline \multicolumn{7}{|l|}{write and analyze conditionals and biconditionals using logic} \\
\hline \multicolumn{7}{|l|}{distinguish correct logic or reasoning from that which is flawed using the Laws of Detachment and Syllogism} \\
\hline \multicolumn{7}{|l|}{construct viable arguments by writing paragraph proofs} \\
\hline \multicolumn{7}{|l|}{construct viable arguments by writing flow proofs} \\
\hline \multicolumn{7}{|l|}{prove statements about segments and angles by writing two-column proofs} \\
\hline \multicolumn{7}{|l|}{identify and use relationships between pairs of angles} \\
\hline \multicolumn{7}{|l|}{identify and use parallel and perpendicular lines using the slope criteria} \\
\hline solve problems using distances and parallel and perpendicular lines & & & & & & \\
\hline
\end{tabular}
(10) Foldables Make this Foldable to help you organize your notes about logic, reasoning, and (prool Begin with ionel'sheet bfintebook pape
1. Fold lengthwise to the holes.
2. Cut five tabs in the top sheet.
3. Label the tabs as shown


Interactive Presentation
GM03_001sC


What Vocabulary Will Y ou Learn?
\begin{tabular}{|c|c|c|}
\hline - alternate exterior angles & - deductive argument & - paragraph proof \\
\hline - alternate interior angles & - deductive reasoning & - parallel lines \\
\hline - biconditional statement & - disjunction & - parrallel planes \\
\hline - compound statement & - equidistant & - proof \\
\hline - conclusion & - exterior angles & - skew lines \\
\hline - conditional statement & - flow proof & - slope \\
\hline - conjecture & - hypothesis & - slope criteria \\
\hline - conjunction & - if-then statement & - statement \\
\hline - consecutive interior angles & - inductive reasoning & - transversal \\
\hline - contrapositive & - interior angles & - truth value \\
\hline - converse & - inverse & - two-column proof \\
\hline - corresponding angles & - logically equivalent & - valid argument \\
\hline - counterexample & - negation & \\
\hline
\end{tabular}

Are \(Y\) ou Ready?
Complete the Quick Review to see if you are ready to start this module.


702 Madule 12 . Logical A Manents and Relationships

\section*{What Vocabulary Will You Learn?}

ELLI As you proceed through the module, introduce the key vocabulary by using the following routine.

Define A conditional statement is a compound statement that consists of a premise, or hypothesis, and a conclusion, which is false only when its premise is true and its conclusion is false.

Example If you finish your homework, then you can go to the movies.
Ask Is this statement in if-then form? yes What is the hypothesis? Y ou finish your homework. What is the conclusion? You can go to the movies.

\section*{Are You Ready?}

Students may need to review the following prerequisite skills to succeed in this module.
- using patterns
- analyzing angles
- finding slopes
- finding square roots

\section*{G ALEKS}

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Reasoning; Lines section to ensure student success in this module.

\section*{Mindset Matters}

\section*{Attitude Ownership}

Part of developing a growth mindset involves acknowledging progress in growth thinking and sharing it with others. It's important for students to own their mindset, be proud of their growth, and see themselves as someone who has a growth mentality-not just in math, but with learning in general.

\section*{How Can I Apply It?}

Have students complete a math mindset project to share how they have grown throughout the year. They might choose the delivery method, such as a poster, blog post, video, or podcast. Students can share their mindset journey with their classmates as part of a class discussion, or they might post their projects for others to see.

\section*{Conjectures and Counterexamples}

\section*{LESSON GOAL}

Students analyze conjectures by using inductive reasoning and disprove conjectures by using counterexamples.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Using Inductive Reasoning to Make Conjectures

\section*{Develop:}

\section*{Inductive Reasoning and Conjecture}
- Patterns and Conjectures
- Algebraic Conjectures
- Geometric Conjectures
- Make Conjectures from Data

\section*{Counterexamples}
- Find Counterexamples

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice
\(\Sigma\)
Formative Assessment Math Probe

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|}
\hline Resources & Al \({ }^{\text {a }}\) L & FIL & \\
\hline Remediation: Powers and Exponents & - - & & - \\
\hline Extension: Mathematical Induction & - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 71 of the Language Development Handbook to help your students build mathematical language related to making conjectures and finding counterexamples.
IEllil You can use the tips and suggestions on page T 71 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 0.5 day \\
\hline 45 min \\
& 1 day \\
\hline
\end{tabular}

\section*{Focus}

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Throughout Grades 6-8 and Course 1, students have made conjectures and cited counterexamples.
MP3
Now
Students write and analyze conjectures by using inductive reasoning.

\section*{Next}

Students will determine the truth values of given statements.

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students develop an understanding of conjectures. They write and analyze conjectures by using inductive reasoning and disprove conjectures by using counterexamples.

\section*{Mathematical Background}

A conjecture is an educated guess based on known information. Examining several specific situations to arrive at a conjecture is called inductive reasoning. If just one example contradicts the conjecture, then the conjecture is not true. The example that is used to disprove the conjecture is called a counterexample.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- using patterns

Answers:
1. odd
2. even
3. odd
4. zero
5. 3

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of inductive reasoning.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Using Inductive Reasoning to Make Conjectures}

\section*{Objective}

Students use dynamic geometry software and inductive reasoning to make conjectures.

Teaching the Mathematical Practices
8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" to evaluate the reasonableness of their answer.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students enter a length for the side of a regular hexagon into the dynamic geometry software. The software computes the perimeter and area of the regular hexagon. Students can press buttons to double the side length, and then double it again, to see what happens with the perimeter and area. Then students record their results in a table and try new numbers for the length. Students then answer guiding exercises that lead them to write conjectures about their observations. Then, students answer the Inquiry Question.

\section*{Interactive Presentation}

\section*{}


\section*{[Stiow Measures}
[Doutolo Orginal Sido Length
[Double Previous Side Length

Explore

Students use the sketch to complete the activity in which they explore inductive reasoning.

\section*{Interactive Presentation}


Explore

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Using Inductive Reasoning to Make} Conjectures (continued)

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- How does the side length of a regular hexagon relate to the perimeter? Because each side length is the same, the perimeter is 6 times the side length, or \(P=6 \mathrm{~s}\).
-Why does it make sense to explore with a regular polygon instead of an irregular polygon? Sample answer: Using a regular polygon makes finding the perimeter and area easier because all information can be found with one side length. By simplifying the calculations, I can focus on the relationships.

\section*{(0) Inquiry}

How can you use observations and patterns to make predictions? Sample answer: If you use data to quantify your observations, then patterns within the data can help you make predictions about the situation you are observing.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Inductive Reasoning and Conjecture}

\section*{Objective}

Students write and analyze conjectures by using inductive reasoning.
Teaching the Mathematical Practices
7 Look for a Pattern Help students to see the pattern in this Learn.

\section*{Important to Know}

Tell students to test all fundamental operations, including powers and roots, when they are looking for patterns in a series of numbers. Advise students that sometimes a pattern requires two operations.

\section*{Common Misconception}

Students have used inductive reasoning to find missing terms in a pattern. They might be good at finding the next term, or the tenth term, but then have trouble finding a generic term or rule to describe the pattern. If the sequence is linear (the difference between terms is constant), then they can use methods that they learned in Algebra for writing the equation of a line.

\section*{Example 1 Patterns and Conjectures}

Teaching the Mathematical Practices
3 Make Conjectures In this example, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

\section*{Questions for Mathematical Discourse}

In your own words, what is a conjecture? Sample answer: an idea without proof
OLI An arithmetic sequence is one in which there is a constant difference between each term. Is this an arithmetic sequence? Explain. The sequence is arithmetic, the constant difference is 45 minutes.
[B]. When using the expression \(4^{n-1}\) to find the \(n\)th term in a sequence, what is an example of three consecutive terms in that sequence? Sample answer: 1, 4, 16

\section*{b \\ Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.
T oday's Goals conjectures by using inductive reasoning. - Disprove conjectures by using courterexamples. T oday's Vocabulary inductive reasoning conjecture counterexample
Learn Inductive Reasoning and Conjecture
Inductive reasoning is the process of reaching a conclusion basedon a rattern of examples. When you assume that an observed pattern will continue, you are applying inductive reasoning. \(Y\) ou can use inductive easoning to make an educated guess based on know as conjecture pecific examples. This educated guess is also known as a conjecture Example 1 Patterns and Conjectures
Write a conjecture that describes the patterm in the sequence. Then use your conjecture to find the next term in the sequence. Appointment times: 8:30 A M..9:15 A. M, 10:00 A M \(=10: 45 \mathrm{~A} . \mathrm{M} \ldots\). Step 1 Look for a pattern.
\[
\begin{aligned}
& 8: 30 \mathrm{AM} \text {. } 15 \mathrm{AM} 10: 00 \mathrm{AM} 10: 45 \mathrm{AM} \\
& +45 \text { min }+45 \text { min }+45 \text { min }
\end{aligned}
\]

\section*{Step 2 Make a conjecture.}
Fach appointment time is 45 minutes after the previous appointment time. The next appointment time will be \(10: 45 \mathrm{k} \mathrm{m} .+0: 45\) or \(11: 30 \mathrm{Am}\) Check
Write a conjecture that describes the pattern in the sequence. Then \({ }^{4}\) se your conjecture to find the next term in the sequence.
\(\frac{1}{2}, 1,2,4\),
The next number in the sequence is 2 times the preceding number. The next number in the sequence is
8
8

Interactive Presentation


Learn


\section*{Interactive Presentation}


Example 2


704 Module 12 • Logical Arguments and Line Relationships

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 2 Algebraic Conjectures}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

Questions for Mathematical Discourse
ALI If you are having trouble finding a pattern, what steps can you take to help? Sample answer: generate more examples

OL What conjecture can be made about the sum of three odd numbers? Sample answer: The sum of three odd numbers is an odd number.

BL. What conjecture can be made about the square of a number? Sample answer: If the number is odd, then the square of that number is odd. If the number is even, then the square of that number is even.

\section*{Common Error}

Students may write a conjecture based on only a couple of examples. Encourage them to generate multiple examples in a pattern, and to check that their conjecture works with each example.

Essential Question Follow-Up
Students have begun to write conjectures.
Ask:
Why are conjectures important in a logical argument? Sample answer: Conjectures are the statements that logical arguments are trying to prove.

\section*{Example 3 Geometric Conjectures}

Teaching the Mathematical Practices
3 Make Conjectures In this example, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

Questions for Mathematical Discourse
AL. Measure the legs in Step 1 with a ruler. What can you infer? Sample answer: The legs in each trapezoid are the same length.

OL What conjecture can be made about the diagonals of a trapezoid? Sample answer: The diagonals are congruent.

Bi. What conjecture can be made about the diagonals of a square? Sample answer: The diagonals are congruent and perpendicular bisectors of each other.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Example 4 Make Conjectures from Data}

Teaching the Mathematical Practices
3 Reason Inductively In this example, students will use inductive reasoning to make plausible arguments.

\section*{Questions for Mathematical Discourse}

All What kind of statistical display best shows change over time? Sample answer: a scatter plot or a line graph
이 Which year has shown the greatest increase in gas price? 2011
[BLIL Make a conjecture about the price of gas in 2020. Sample answer: The price of gas will begin to decrease after increasing for a few years.

\section*{Common Error}

Students may try to prove that their conjecture based on data is correct using a logical argument, but the only way to determine whether such a conjecture is correct is by finding out what the data is for the time of their prediction.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity AI}

IF students have trouble recognizing geometric patterns, THEN have them write down the sequence of numbers that may be contained in the pattern.

Check
vake a conjecture about the relationships between \(A D\) and \(A B\), if \(C\) is the midpoint of \(\overline{A B}\) and \(D\) is the midpoint of \(\overline{A C}\).
\(A D\) is \(\underset{\text { one fourth }}{\text { a }} A B\).
QExample 4 Make Conjectures from Data
GAS PRICES The table shows the average price of gasoline in the United States for the years 2010 through 2018. Make a conjecture about the price of gas in 2019. Explain how this conjecture is supported by the data given.
Look for patterns in the data.
The price of gasoline increased from 2010 to 2012. From 2012 to 2016, the Frice of gas decreased, at first at a teady rate, and then more dramatically. Beginning in 2017 , the price of gas began
\begin{tabular}{|c|c|}
\hline Year & \begin{tabular}{c} 
Price (dollars \\
per gallon)
\end{tabular} \\
\hline 2910 & 2.84 \\
\hline 2011 & 3.58 \\
\hline 2012 & 3.68 \\
\hline 2013 & 3.58 \\
\hline 2014 & 3.44 \\
\hline 2015 & 2.43 \\
\hline 2016 & 2.14 \\
\hline 2017 & 2.42 \\
\hline 2018 & 2.84 \\
\hline
\end{tabular} to increase at a steady rate.
The data shows that the price of gas follows an oscillating pattern, increasing in price for several years before decreasing in price for several years.
Conjecture: In 2019, the price of gas will continue to increase.

\section*{Check}

HEARING Loss Almost \(50 \%\) of young adults between the ages of 12 and 35 years old are exposed to damaging evels of sound from the use of personal electronic devices. The intensity of a sound and the time spent listening to a sound highly affects the amount of damage that can be done to someone's earing. The intensity of a sound to the uman ear is measured in A-weighted

decibels, or IBA. For every 3 decibels over 85 decibels, the exposure time it takes to cause hearing damage is cut in half. How long does it take to cause hearing damage at 106 decibels? Write your answer as a decimal
3.75 minutes
- Go Online Y ou can complete an Extra Example online

Think About It Could the pattern of the data change over time? Explain your reasoning.

Yes; sample answer: If the supply of crude oil decreases, then the price of gasoline will begin to increase.

Use a Source Find data about the igital music revenue in recent years. Make conjecture about the future trends in digital music revenue.
Sample answer: In the future, the revenue for digital music in the United States will continue to increase.

\section*{Interactive Presentation}


Example 4



\section*{Interactive Presentation}


Learn
FLASHCARDS
Students use flashcards to see different counterexamples of given conjectures.

CHECK


Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

\section*{Learn Counterexamples}

Objective
Students disprove conjectures by using counterexamples.

\section*{Teaching the Mathematical Practices}

3 Analyze Cases Work with students to look at the Think About It! feature. Have students identify a counterexample that disproves the conjecture.

\section*{Important to Know}

To help students understand what a counterexample of a particular conjecture will look like, ask them to explain what must be true about a counterexample to prove that the conjecture is false.

\section*{Example 5 Find Counterexamples}

Teaching the Mathematical Practices
3 Analyze Cases Work with students to look at each conjecture in this example. Ask students to identify a counterexample that disproves each erroneous conjecture.

Questions for Mathematical Discourse
4L. In part a, what is another counterexample, and what is not a counterexample? Sample answer: \(n=-5\) is a counterexample and \(n=\frac{1}{4}\) is not a counterexample
Oli. In part a, what other numbers work as a counterexample? Sample answer: any number < 0
[BLI In general, when would you use a counterexample to prove a statement false? Sample answer: When you can find one instance where the statement is false, you can use it as a counterexample.

\section*{Common Error}

Students may try to find examples that support the conjecture rather than examples that prove it to be false.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-23\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(24-30\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(31-36\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-29 odd, 31-36
- Extension: Mathematical Induction
- Q ALEKS' Patterns and Inductive Reasoning

\section*{IF students score 66\%-89\% on the Checks,}

THEN assign:
- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Powers and Exponents
- Personal Tutors
- Extra Examples 1-5
- ALEKS' Exponents and Order of Operations

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-23 odd
- Remediation, Review Resources: Powers and Exponents
- ALEKS Exponents and Order of Operations

\section*{Answers}
20. Sample answer:

21. Sample answer:

```

Practice
Example 1
Write a conjecture that describes the pattern in each sequence. Then use your conjecture to find the next term in the sequence.

```
```

 2.2, 22, 222, 2222
    ```
    2.2, 22, 222, 2222
    Each term in the pattern is four more
    than the previous term; 24.
3. 1, }\frac{1}{2},\frac{1}{4},\frac{1}{8
        Each term is one half the previous
        term; }\frac{1}{16
5. A rrival times: 3:00 P.M., 12:30 P.M., 10:00 A.M..... Each arrival time is 2 hours
    S. Arrival times: 3:00 P.M., 12:30 P.M., 10:00 A.M..... Each
6. Percent humidity: 100%,93%,86%,\ldots. Each percentage is 7% less than the
        previous percentage; 79%.
```



```
Examples 2 and 3
Make a conjecture about each value or geometric relationship.
9. the product of two odd numbers The product is an odd number.
10. the product of two and a number, plus one The result is odd.
11. the relationship between \(a\) and \(c\) if \(a b=b c, b \neq 0\) They are equal.
12. the relationship between \(a\) and \(b\) if \(a b=1\) They are reciprocals.
13. the relationship between two intersecting lines that form four congruent angles
The lines are perpendicular.
14. the relationship between the angles of a triangle with all sides congruent All the angles are congruent.
15. the relationship between \(N P\) and \(P Q\) if point \(P\) is midpoint of \(N O N P=P O\)
16. the relationship between the volume of a prism and a pyramid with the same base and equal heights. The volume of the prism is three times the volume of the pyramid.

\section*{Example 4}
17. RAMPS Xio is rolling marbles down a ramp. Every second that passes, she measures how far the marbles travel. She records the information in the table shown below.

\section*{}

Make a conjecture about how far the marble will roll in the fifth second. 180 cm

Example 5
Determine whet
false conjecture.
false conjecture.
18. If \(n\) is a prime number, then \(n+1\) is not prime. False; sample answer: If \(n=2\), then \(n+1=3\), a prime number.
19. If \(x\) is an integer, then \(-x\) is positive. False; sample answer: Suppose \(x=2\), then \(-x=-2\).
20. If \(\angle 2\) and \(\angle 3\) are supplementary angles, then \(\angle 2\) and \(\angle 3\) form a linear pair False; see margin for counterexample.
21. If you have three points \(A, B\), and \(C\), then \(A, B\), and \(C\) are noncollinear

False; see margin for counterexample.
22. If in \(\triangle A B C,(A B)^{2}+(B C)^{2}=(A C)^{2}\), then \(\triangle A B C\) is a right triangle. true
23. If the area of a rectangle is 20 square meters, then the length is 10 meters and the width is 2 meters. False; sample answer: The length could be 4 m , and the width could be 5 m .

Mixed Exercis
24. REASONING Given: \(2 a^{2}=72\). Conjecture: \(a=6\). Write a counterexample. \(a=-6\)
25. CONSTRUCT ARGUMENTS Barbara is in charge of the award medals for a sporting event She has 31 medals to present to various individuals on 6 competing teams. believe her assertion? Justify your argument. \(Y\) es; sample answer: If no team got 5 medals, then the total number of medals could not be more than \(5 \times 6\) or 30 medals.
26. USE TOOLS Miranda is developing a chart that shows her * ancestry. She makes the three sketches shown. The first dot epresents herself. The second sketch represents herself and her parents. The third sketch represents herself, her parents, and her grandparents. Sketch what you think would be the next figure in the sequence. See margin.

\section*{Answers}
26. Sample answer:


28c. Let \(L\) be line segments and \(P\) be points. 1 triangle: \(L-P=0\); 2 triangles: \(L-P=1 ; 3\) triangles: \(L-P=2 ; 4\) triangles: \(L-P=3\); 5 triangles: \(L-P=4\). To draw \(n\) triangles, \(L-P=n-1\). There will be \(n-1\) more line segments than points if \(n\) triangles are drawn.
30. The new length of the line segment at each step is \(\frac{2}{3}\) the length of the previous line segment. The length of the line segment after being shortened \(n\) times is \(\left(\frac{2}{3}\right)^{n}\).
31b. Sample answer:

32. Sample answer: \(2,4,8,16,32, \ldots\). Each number in the sequence can be generated by adding each number to itself to form the next number. Each number in the sequence is \(2^{n}\), where \(n \geq 1\).
33. False; sample answer: If the two points create a straight angle that includes the third point, then the conjecture is true. If the two points do not create a straight angle with the third point, then the conjecture is false.
34. Sample answer: A postulate states that a plane contains at least three noncollinear points. Another postulate states that if two points lie in a plane, then the line containing the points lies in the plane. Because the points are noncollinear, the points determine at least two distinct lines that lie in the plane.
35. Sample answer: A postulate states that a line contains at least two points. These two points and all the points between them are line segments, by the definition of a line segment.

36b. No; sample answer: The number of tiles is \(2 n+2\), where \(n\) is the length. For any whole-number value of \(n\), the value of \(2 n+2\) is even; however, 103 is odd, so this cannot be the number of tiles.

\section*{LESSON GOAL}

Students write and analyze compound statements by using logic.

\section*{1 LAUNCH}

88 Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Truth Values

\section*{Develop:}

\section*{Using Logic}
- Truth Values of Conjunctions
- Truth Values of Disjunctions

\section*{Conditionals}
- Identify the Hypothesis and Conclusion
- Write a Conditional in If-Then Form
- Related Conditionals

\section*{Biconditionals}
- Write Biconditionals
- Determine Truth Values of Biconditionals

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket
Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & Al| & 5E & IEI & \\
\hline Extension: Sudoku & & - & & \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 72 of the Language Development Handbook to help your students build mathematical language related to writing and analyzing compound statements by using logic.
FIIII You can use the tips and suggestions on page \(T 72\) of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Reason abstractly and quantitatively.
4 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students wrote and analyzed conjectures by using inductive reasoning.

\section*{Now}

Students write and analyze compound statements by using logic.

\section*{Next}

Students will use conditional statements to solve math problems.

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3APPLICATION \\
\hline 僉 \\
understanding of statements. They write, analyze, and determine truth \\
values of conditional statements.
\end{tabular}

\section*{Mathematical Background}

A statement is a sentence that is either true or false, but not both. The truth or falsity of a statement is called its truth value. The negation of a statement \(p\) is denoted not \(p\) or \(\sim p\) and has the opposite meaning as well as an opposite truth value.

A conditional statement is a statement that can be written in if-then form: if \(p\), then \(q\). A conditional statement is true in all cases except where the hypothesis is true and the conclusion is false. A biconditional statement, or \(p\) if and only if \(q\), is true when both the conditionals, if \(p\), then \(q\) and if \(q\), then \(p\), are true.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- determining truth values of statements

\section*{Answers:}
1. true
2. false
3. false
4. true
5. If a number is even, then it is divisible by 2 . If a number is divisible by 2 , then it is even.

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of conditional statements.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

711b Module 12 - Logical Arguments and Line Relationships

\section*{Explore T ruth Values}

Objective
Students watch a video about red pandas and determine the truth value of statements in a series of questions.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students watch a video about red pandas. They use the information given in the video to determine the truth value of given statements. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}

Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore T ruth Values (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why is a statement that uses the word or true if only one part of the statement is true? Sample answer: Because the statement uses or, if one part of the statement is true or the other part of the statement is true, then the statement is true.
- How else can you complete the following statement so that it is true? If an animal is a red panda, then it__. Sample answer: is an endangered species; is more similar to a racoon than a giant panda; spends most of its time in trees.

Inquiry
How can you determine the truth value of a statement? Sample answer: You can use given information to determine whether all or part of a statement is true. If you believe a statement is false, you can provide a counterexample that proves the statement is false.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Using Logic}

\section*{Objective}

Students write compound statements for conjunctions and disjunctions and determine truth values of statements.

\section*{(11) Teaching the Mathematical Practices}

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Learn asks students to justify their conclusions.

\section*{Essential Question Follow-Up}

Students have begun to learn to use logic.

\section*{Ask:}

Why is it important to understand the truth values of combinations of statements? Sample answer: If you know that a statement or a combination of statements is true, then you can use it in a logical argument.

\section*{Example 1 T ruth Values of Conjunctions}
(17) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

AL In part a, why is \(p\) false? Sample answer: A trapezoid has exactly one pair of parallel sides, but this shape has two pairs of parallel sides.
OLI Using the given statements, write another compound statement. What is its truth value? Sample answer: \(q \wedge r\). The figure has four congruent sides, and the figure has four right angles. Both \(q\) and \(r\) are true, so \(q \wedge r\) is true.
BEI Write a compound statement for \(p \wedge q \wedge \sim r\). What is its truth value? The figure is a trapezoid and the figure has four sides and the figure does not have four right angles. The compound statement is false.

\section*{Common Error}

Students may assume that the negation of a statement is always false, when it has the opposite truth value of the original statement.

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Watch Out!
Negation Just as the
opposite of an integer is not always negative, the negation of a
statement is not always false. The negation of a \({ }^{3}\) stetement has the opposite truth value of

\section*{Study Tip}

If and Then The word II is not part of the hypothesis, and the word then is not part of the conclusion. However, where the hypothesis and conclusion begin. Consider the conditional below.
If Felipe has band practice, then he will come home after dinner Felipe has band practice is the hypothesis, and Felipe will come home atheromer is the conclusion

\section*{Study Tip}

Logically Equivalent A
Logically Equivalen
conditional and its
condrional and its
both true or both false.
Similarly, the converse
and inverse of a
conditional are either
both true or both false Statements with the same truth value are said to be logically

Example 2 T ruth V alues of Disjunctions
Use the statements to write a compound statement for the disjunction \(p \vee \rightarrow \sim\). Then find its truth value. Explain your reasoning p. \(\angle A B C\) and \(\angle C B D\) are complementary. q: \(\angle A B C\) and \(\angle C B D\) are vertical angles. r \(\overline{A B} \cong B D\)

\(\rho \vee \sim r: \angle A B C\) and \(\angle C B S\) are complementary, or \(\overline{A B}\) and \(B D\) are not congruent.
\(\rho \vee \sim i s\) false, because \(p\) is false and \(-r\) is false

Learn Conditionals
A conditional statement is a compound statement that consists of of a remise, or hypothesis and a conclusion, which is false only when its premise is true and its conclusion is false.
Conditional Statements and Related Conditionals
Words
Examples
An if-then statement is a compound
statement of the form "if \(p\), then "," where \(p\)
and \(q\) are statements.
Symbols: \(\rho \rightarrow\); read if , then , or implies
The hypothesis of a conditional statement is
the phrase immediately following the word If. If it rains, then the parade
Symbols: \(p \rightarrow q\); read if e, then \(q\), or will be canceled.
implies \({ }^{2}\)
The conclusion of a conditional statement is
then
Symbols: \(\rho \rightarrow\); readifin then or \(p\)
implies
The converse is formed by exchanging the
hypothesis and conclusion of the conditional. If the frarade is canceled,
Symbols: \(q \rightarrow p\), read if =, then \(p\), or \(\quad\) then it has rained implies
The inverse is formed by negating both the If it does not rain, then hypothesis and conclusion of the conditional. the parade will not be Symbols: \(\rightarrow p \rightarrow \sim\). read if not s, then not \(\rho\) canceled
The contrapositive is formed by negating the hypothesis and the conclusion of the converse of the conditional.
\(\qquad\) Symbols: \(-u \rightarrow-p\), read if not s, then not not tain.

O Go Online Y ou can complete an Extra Example online.
712 Module 12 . Logical Arguments and Line Relationships

\section*{Interactive Presentation}


Example 2

Students tap to learn about negation.

CHECK
Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

\section*{Example 2 T ruth Values of Disjunctions}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Important to Know}

To help students understand when a disjunction is true, list all the possible combinations of the two statements and their negations, and ask students the truth value in each situation.

\section*{Questions for Mathematical Discourse}

AL What is the difference between a conjunction and a disjunction? Sample answer: If the compound statement uses and then it is a conjunction. However, if the compound statement uses or then it is a disjunction.
OLI Is it possible for a disjunction to be written with more than one true statement? Explain. Y es; sample answer: If three statements are used to write the disjunction, then two of the statements will be true.
B1. Write a compound statement for \(p \vee q \vee \sim r\). What is its truth value? \(\angle A B C\) and \(\angle C B D\) are complementary or \(\angle A B C\) and \(\angle C B D\) are vertical angles or \(\overline{A B} \not \equiv \overline{B D} . p \vee q \vee \sim r\) is false, because \(p\) is false and \(q\) is false and \(\sim r\) is false.

\section*{Common Error}

Students may confuse the symbols for conjunctions and disjunctions. Tell them that the symbol \(\wedge\) looks like the \(A\) in And.

\section*{Learn Conditionals}

Objective
Students identify hypotheses and conclusions of conditional statements, and write related conditionals.

Teaching the Mathematical Practices
2 Represent a Situation Symbolically Guide students to define variables to solve the problem in this Learn. Help students to identify the different variables. Then work with them to find the other relationships in the problem.

\section*{Example 3 Identify the Hypothesis and Conclusion}

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

AL How do you know which statement is the hypothesis? Sample answer: The hypothesis follows the word if.
OLI In part \(\mathbf{b}\), what is the statement if it is written with the hypothesis before the conclusion? If the first performance is sold out, then another performance will be scheduled.
[Bil In a conditional statement, does the hypothesis always precede the conclusion? No; sample answer: In part b, the conclusion precedes the hypothesis.

\section*{Common Error}

Students may not recognize conditional statements that are written without the words if and then. For example, the statement all squares are rectangles can be written as a conditional as if a figure is a square, then it is a rectangle.

\section*{Example 4 Write a Conditional in If-Then Form}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions for Mathematical Discourse}

AL
In a conditional statement, what depends on the hypothesis? the conclusion
아. In part b, how do you know that the hypothesis is Two angles are supplementary? Sample answer: Having an angle sum of \(180^{\circ}\) depends on having angles that are supplementary.
In part b, switch the hypothesis and conclusion. Is this new statement true? Explain. Y es; sample answer: If the sum of the measures of two angles is \(180^{\circ}\), then the two angles are supplementary.

Example 3 Identify the Hypothesis and Conclusion
Identify the hypothesis and conclusion of each conditional statement.
a. If a polygon has six sides, then it is a hexagon.

Hypothesis: A polygon has six sides.
Conc/usion: The polygon is a hexagon.
b. Another performance will be scheduled if the first one is sold out.

Notice that the word /f appears in the second portion of the
lentence.
Hypothesis: The first performance is sold out.
Conclusion: Another performance will be scheduled.
Check
Identify the hypothesis and conclusion of each conditional statement.
a. If the forecast is rain, then I will take an umbrella.

Hypothesis: ?
Conclusion: The forecast is rain.
Conclusion: I will take an umbrella.
b. A number is divisible by 10 if its last digit is a 0 .

Hypothesis: ?
Conclusion: The last digit of a number is 0 .
Concrusion. A number is divisible by 10 .
Example 4 Write a Conditional in If-Then Form Identify the hypothesis and conclusion for each conditional statement. Then write the statement in if-then form.
a. Four quarters can be exchanged for a 3 bill.

Hypothesis: Y ou have four quarters.
Conclusion: \(Y\) ou can exchange them for a \(\$ 1\) bill.
If-then If you have four quarters, then you can exchange them for a \(\$ 1\) bill.
b. The sum of the measures of two supplementary angles is \(\mathbf{1 8 0}\) *

Hypothesis: Two angles are supplementary.
Conclusion: The sum of their measures is \(180^{\circ}\).
If-then If two angles are supplementary, then the sum of their
measures is \(180^{\circ}\)
13) Think About It! If a conditional is true, sre the converse and inverse sometimes,
a/ways, or neve true Support your answer with an example.

Sample answer: Sometimes; for the conditional if a square has a side length of 4 inches, then it has an erea of 16 square inches, the converse and inverse are true. However, for the conditional if an insect is a monarch butterfly, then it is has orange wings, the converse and inverse are false.

Think About It How do you identify the hypothesis and conclusion of a conditional statement is not in if-then form?
Sample answer: The hypothesis implies the canclusion in a Conditional statement To determine the conclusion, identify the cauw and the effect. The hypothesis is the twist and the cenclusion is the effect.


\section*{Interactive Presentation}


Example 3
TYPE
Students type their answers for the Think About It! question.


\section*{Example 5 Related Conditionals}

\section*{Teaching the Mathematical Practices}

1 Check Answers Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students need to check their answer. Point out that they should ask themselves whether their answer makes sense and whether they have answered the question.

\section*{Questions for Mathematical Discourse}

AL. What are related conditionals? the converse, the inverse, and the contrapositive that can be formed from the original conditional statement

OL What pairs of statements are logically equivalent? the conditional and the contrapositive; the converse and the inverse

BL. How do you form the converse from the original conditional? the inverse? the contrapositive? Exchange the conclusion and the hypothesis; negate the hypothesis and the conclusion; negate the hypothesis and the conclusion, then exchange them.

\section*{Common Error}

Students may assume that the truth value of the converse is the same as the truth value of the original statement, but this is not always the case.

\section*{Interactive Presentation}


Example 5


Students tap through the parts of the Example.

Students complete the Check online to determine whether they are ready to move on.

\section*{Learn Biconditionals}

Objective
Students write and analyze biconditional statements and determine truth values of biconditional statements.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Common Misconception}

Students may assume that a biconditional is true when one of the related conditionals is true, but students must check both of the related conditionals. The biconditional is true only when both of the related conditionals are true.

\section*{Example 6 Write Biconditionals}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

ALI What conditional statement applies to the following statement? The intersection of two lines is a point. Sample answer: If two lines intersect, then they intersect at a point.
OI Does every true statement have a true biconditional? Explain. No; sample answer: Some true statements have a false converse, so they have a false biconditional statement.
B1. How do you form the biconditional from the original conditional? Sample answer: If the conditional statement and its converse are both true, then delete if and then from the conditional, and write if and only if between the hypothesis and conclusion.

\section*{Loarn Biconditionats}

\section*{You cso use loge and biconditinot stovitments to indicato exclusivity In stuasong. For examphe, Ascon is applyigg for adinistion into culinary} school. He must eam a 35 GPA or higher this somester to be accepted You con eropess this as two dithen statimentes
- It he earm a 3.5 Gpa or highes this semessec then he wall be accepted.
- "I Aurbe is accepted into cillinmy school then toe has earned a 3.5 GPA or higher for the senerthe

\section*{Wends A bicenditional statement is the confustion of} condesons and its comene
Symbols \(\quad(\rho \rightarrow q) \wedge(q \rightarrow \rho) \rightarrow(p+q)\). read \(p\) if ond ony in
So, the biconditonal statement for the example above is Aorden will be accepted into cwinay school/ and on'yi/ he eums o 35 GAA or iogher mis sementor

Example 6 Write Biconditionals
Write the conditional and correerse for each stetement. Determine The truth values of the conditionals and converses, if alse, find a counterexampla. Wrive a Biconditional ststement if possible.
a. Rasha listens to munic when she is in study hail.

Condricenat it Rotha is in study trat, then the a statening so musk is the condtionas atotemern tive or folset II talse, provide a courtereanmple, the
Converse If Rosha an fittering to munic, ther she is in study inat
is the comerse thie of fote? \(\%\) fabe provioe a coumperangie
False; smple answer: Racha coold be istering to music in the cheterla
Because the convenc is table. a bicondtionis statement cannot be wesen.

Condriosal if two sines are paralec then they have the same slope Converse: if twa ines have the same slope, then they ate parabel The consitiond and the converse ace tue. So, a biconationdican be writer.
Bicondisonat Two lines ave parailel if and only is they hwe the same slope

Stady 7 Pe
Mand Onty if
 \(4 \operatorname{con}\) be qberientiend Wha

OThink-About to Compore the nothernaticel ceenings of the smows and an

Sample atrwwr: in Dir
Sample atrwwr: in the yymbol \(\rightarrow\) mewes thut Rmplas o to tive Pmplese in the ymbol \(\rightarrow\) mosest then pimplese and 9 Peples \(q\) and \(q\) arow goes in beth. firections boith \(p\) and \(\varphi\) inndy the othes:

Q Think About It ta bikotsstisne Is rie rhatt co you inom and comernelis bicendronat is thise. what do yeu enow pboul the condeiona and comese?

Sample anww: if a Sienditionalis tue. tots thic cosstiont and concerse are thit It a biconstional is: labe, wher the cencolinne to telter er secooverye is talis or beth.


\section*{Interactive Presentation}


Learn
TYPE


Students compare the mathematical meanings of symbols.


\section*{Interactive Presentation}


Example 7
Students type to complete the example.
\begin{tabular}{l} 
Students complete the Check online to \\
determine whether they are ready to \\
move on.
\end{tabular}

716 Module 12 • Logical Arguments and Line Relationships

\section*{Example 7 Determine Truth Values of Biconditionals}

\section*{(1)}

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

\section*{Questions for Mathematical Discourse}

AL. When are biconditionals true? Sample answer: Both a conditional and its converse must be true for a biconditional to be true.
OLI Does the order of the hypothesis and conclusion of a biconditional affect its truth value? Explain. No; sample answer: Because a conditional and its converse must both be true to write a biconditional, the order of the hypothesis and conclusion does not affect the truth value of the biconditional.

Bil. If the inverse of a conditional statement is false, can a biconditional statement be written? Explain. No; sample answer: Because the converse and inverse of a conditional statement are logically equivalent, if the inverse is false, then the converse is false. Therefore, a biconditional cannot be written.

\section*{DIFFERENTIATE}

\section*{}

IF students are having difficulty determining the truth values of the two conditional statements related to a biconditional,
THEN have students write the biconditional on a strip of paper. Cut the paper into pieces, separating the two component statements. Then make a framework on which to place the pieces of paper with the words "If \(\qquad\) is true, does this mean that \(\qquad\) must also be true?" Have students place the pieces of paper into the blanks in each order and have them answer the question.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1, 2 exercises that mirror the examples & \(1-26\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(27-31\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(32-38\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(39-50\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-37 odd, 39-50
- Extension: Sudoku
- D. ALEKS' Deductive Reasoning

\section*{IF students score 66\%-89\% on the Checks, \\ THEN assign:}
- Practice, Exercises 1-49 odd
- Personal Tutors
- Extra Examples 1-7
- Q Aleks

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-25 odd
- DALEKS

\section*{Answers}
1. \(-3-2=-5\), and vertical angles are congruent; \(p\) is true, and \(q\) is true, so \(p\) and \(q\) is true.
2. \(-3-2=-5\), and \(2+8>10 ; p\) is true, and \(r\) is false, so \(p \wedge r\) is false.
3. Vertical angles are congruent, or \(2+8 \leq 10\); \(q\) is true, and \(\sim r\) is true, so \(q \vee \sim r\) is true.
4. \(2+8>10\), or vertical angles are congruent; \(r\) is false, and \(q\) is true, so \(r\) \(\vee q\) is true.
5. \(-3-2 \neq-5\), and not all vertical angles are not congruent; \(\sim p\) is false, and \(\sim q\) is false, so \(\sim p \wedge \sim q\) is false.
\(6.2+8 \leq 10\) or \(-3-2 \neq-5 ; \sim r\) is true, and \(\sim p\) is false, sol \(\sim p\) is true.
12. H: you buy a 1-year membership; C: you get a free water bottle; If you buy a 1 -year membership, then you get a free water bottle.
13. H: you were at the party; C: you received a gift; If you were at the party, then you received a gift.

Practice
Examples 1 and 2
Use the statements to write a compound statement for each conjunction or
disjunction. Then find the truth values. Explain your reasoning.
p: \(-3-2=-5\)
q: Vertical angles are congruent.
r: \(2+8>10\)
1. \(p\) and \(q\) See margin. 2. \(p \wedge r\) See margin. 3. \(q \vee \sim r\) See margin. 4. \(r \vee q\) See margin. 5. \(\sim p \wedge \sim q\) See margin. 6. \(\sim r \vee \sim p\) See margin. Example 3
Identify the hypothesis and conclusion of each conditional statement.
7. "If there is no struggle, there is no progress." (Frederick Douglass).

It: there is no struggle; C: there is no progress
H: two angles are adjacent: C: they have a common side
9. If you lead, then I will follow, H. you lead C. I will follow
9. If you lead, hent whinow. H. yorleau, C.I who
11. If two angles are vertical, then they are congruent.

H: tow angles are vertical; \(C\) : they are congruent
Example 4
Identify the hypothesis and concl
each statement in if-then form.
12. Get a free water bottle with a one-year membership. See margin.
13. Everybody at the party received a gift. See margin.
14. The intersection of two planes is a line. See margin.
15. The area of a circle is \(\pi r^{2}\). See margin
16. Collinear points lie on the same line. See margin.
17. A right angle measures 90 degrees. See margin.

Example 5
Write the converse, inverse, and contrapositive of each true conditional statement. Determine whether each related conditional is true or false. If a statement is false, then find a counterexample.
18. AIR TRAVEL Ulma is waiting to board an airplane. Over the speakers she hears a flight attendant say "lf you are seated in rows 10 to 20 , you may now board." See margin.
19. RAFFLE If you have five dollars, then you can buy five raffle tickets. See margin.
20. GEOMETRY If two angles are complementary, then the angles are acute. See margin.
21. MEDICATION A medicine bottle says "lf you will be driving, then you should not take this medicine." See margin.

\section*{Example 6}

Write the conditional and converse for each statement. Determine the truth values of the conditionals and converses. If false, find a counterexample. Write a biconditional statement if possible.
22. 89 is an even number ifit is divisible by 2 . See margin.
23. The game will be cancelled if it is raining. See margin.
24. Laura's soccer team plays on Saturdays. See margin.

Example 7
Write each biconditional as a conditional and its converse. Then determine whether the biconditional is true or false. If it is false, give a counterexample.
25. A polygon is a quadrilateral if and only if it has four sides. See margin.
26. An angle is acute if and only if it has a measure less than \(90^{\circ}\). See margin.

Mixed Exercises
27. Find the truth value of \((p \wedge q) \vee r\). true
\(p:(-4)^{2}>0\)
9: An isosceles triangle has at least two congruent sides.
\(r:\) Two angles, whose measure have a sum of 90 , are supplements
28. Suppose \(\rho\) and \(q\) are both false. What is the truth value of \((\rho \wedge \sim q) \vee \sim p\) ? true
29. What is the truth value of \((\sim p \vee q) \wedge r\) if \(p\) is true, \(q\) is false, and \(r\) is true? false
30. What is the truth value of \((\sim p \wedge q) \vee r\) if \(p\) is true, \(q\) is false, and \(r\) is true? true
31. CHOCOLATE Luca has a bag of miniature chocolate bars that come in two distinct types: dark and mik. Luca picks a chocolate out of the bag. Use the following statements to determine whether the statement \(\sim(\sim p \vee \sim q)\) is true. yes
\(\rho\) : the chocolate bar is dark chocolate
\(q\) : the chocolate bar is milk chocolate
```

718 Module 12 . Logical Arguments and Lire Relationstips

```
> 32. Clark says that a parallelogram is a quadrilateral with equal opposite angles. Write his statement in if-then form.
> Ir a figure is a parallelogram, then it is a quadrilateral with equal opposite angles.
> 33. REASONING Kala asked Elijah whether his hockey team won the game last night and whether he scored a goal. Elijah said "yes." Kalia then asked Goldi whether her Elijh scored a goal a bout whether or not cold scored? nothing
34. PRECISION If 1 roll two 6 -sided dice and the sum of the numbers is 11 , then one die must be a 5 . Write the converse, inverse, and contrapositive of the true folse. If a statement is false, then find a counterexample. See margin.

For Exercises 35 and 36 , use the following statement.
If a ray bisects an angle, then it divides the angle into two congruent angles.
35. Write the inverse of the given statement. If a ray does not bisect an angle, then it does not divide the angle into two congruent angles.
36. Write the contrapositive of the given statement. If a ray does not divide an angle into two congruent angles, then it does not bisect the angle.
37. Write the statement All right angles ore congruent in if-then form. If two angles are right angles, then they are congruent.
38. Use the segment to write a statement that has the same truth value as \(3=5\). Sample answer: \(B C=3+x\)
\(\theta_{\text {Higher-Order Thinking Skills }}\)
99. CREATE Consider a situation that can be represented with an if-then statement a. Write a true if-then statement for which the converse is false. Sample answer. If you
are in Houston, then you are in Texas.
b. Write the converse, inverse, and contrapositive of your sentence. Sample answer: Converse: you are in Texas, then you are in Houston. Inverse: If you are not in Houston, then you are not in rexas. Give the truth volue of each statement you wrote for part b.
40. ANAL YZE \(Y\) ou are evaluating a conditional statement in which the hypothesis is true, but the conclusion is false. Is the inverse of the statement true or false? Justify your argument. True; sample answer: Because the conclusion is false, the converse of the statement must be true. The converse and inverse are logically equivalent, so the
inverse is also true.

PERSEVERE To negate a statement containing the words all or for every, you can use the phrase at least one or there exists. To negate a statement containing the phrase there exists, use the phrase for all or for every.
q. There exists a problem that has no solution. \(\sim\) q. For every poblem, there is

解
p: For every real number \(x, x^{2} \geq 0\)
\(\sim p\) : There exists a real number \(x\), such that \(x^{2}<0\).
Use the information above to write the negation of each statement
41. Every student at Hammond High School has a locker.

There exists at least one student at Hammond High school that does not have a locker.
42. All squares are rectangles. There exists at least one square that is not a rectangle.
43. There exists a real number \(x\), such that \(x^{2}=x\). For every real number \(x, x^{2} \neq x\)
44. There exists a student who has at least one class in the C -Wing. No students have classes in the C -wing.
45. Every real number has a real square root

There exists a real number that does not have a real square root
46. There exists a segment that has no midpoint. Every segment has a midpoint.
47. CREATE Research truth tables online. Then make a truth table to prove that a if then statement is equivaren to its contrapositive and its inverse is equivalent to its converse. See Mod. 12 Answer Appendix.

Describe the relationship among a conditional, and its contrapositive. See Mod. 12 Answer Appendix.
49. FIND THE ERROR Nicole and Kiri are evaluating the conditional /f 15 is prime, hen 20 is divisible by 4 . Both think that the conditional is true, but their answer: When the hypothesis of a condititional is false, the conditional is always true.

50. CREATE Write a conditional statement for which the corverse inverse, an contrapositive are all true. Explain your reasoning. See Mod. 12 Answer Appendix.

720 Module 12 - Logical Arguments and Line Relationship

\section*{Answers}
14. H: two planes intersect; C: the intersection is a line; If two planes intersect, then the intersection is a line.
15. H : a figure is a circle; C : the area is \(\pi r^{2}\), If a figure is a circle, then the area is \(\pi r^{2}\).
16. H : points are collinear; C : they lie on the same line; If points are collinear, then they lie on the same line.
17. H : an angle is right; C : the angle measures \(90^{\circ}\); If an angle is right, then the angle measures \(90^{\circ}\).
18. Converse: If you may board now, then you are seated in rows 10 to 20 . The converse is true. Inverse: If you are not seated in rows 10 to 20 , then you may not board now. The inverse is true. Contrapositive: If you are not allowed to board now, then you are not seated in rows 10 to 20 . The contrapositive is true.
19. Converse: If you can buy five raffle tickets, then you have five dollars. The converse is true. Inverse: If you do not have five dollars, then you cannot buy five raffle tickets. The inverse is true. Contrapositive: If you cannot buy five raffle tickets, then you do not have five dollars. The contrapositive is true.
20. Converse: If you have two acute angles, then the angles are complementary. Counterexample: \(\begin{array}{r} \\ \text { have two acute angles, and the sum of the measures }\end{array}\) of the angles is less than \(90^{\circ}\). The converse is false. Inverse: If two angles are not complementary, then the angles are not acute. Counterexampleal \(Y\) have two acute angles, and the sum of the measures of the angles is not \(90^{\circ}\). The inverse is false. Contrapositive: If you have two angles that are not acute, then the angles are not complementary. The contrapositive is true.
21. Converse: If you do not take this medicine, then you can drive. The converse is true. Inverse: If you are not driving, then you can take this medicine. The inverse is true. Contrapositive: If you take this medicine, then you are not driving. The contrapositive is true.
22. Conditional: If 89 is divisible by 2 , then it is an even number. The conditional is true. Converse: If 89 is an even number, then it is divisible by 2 . The converse is true. Biconditional: 89 is divisible by 2 if and only if 89 is an even number.
23. Conditional: If it is raining, then the game will be cancelled. The conditional is true. Converse: If the game is cancelled, then it is raining. Counterexample: The game could be cancelled, and it is not raining. The converse is false. Because the converse is false, a biconditional statement cannot be written.
24. Conditional: If it is Saturday, then Laura's soccer team is playing. The conditional is true. Converse: If Laura's soccer team is playing, then it is Saturday. Counterexample: Laura's soccer team could be playing on Thursday. The converse is false. Because the converse is false, a biconditional statement cannot be written.
25. Conditional: If a polygon has four sides, then it is a quadrilateral. Converse: If a polygon is a quadrilateral, then it has four sides. The conditional and the converse are true, so the biconditional is true.
26. Conditional: If an angle is acute, then it measures less than \(90^{\circ}\). Converse: If an angle measures less than \(90^{\circ}\), then it is acute. The conditional and the converse are true, so the biconditional is true.
34. Converse: If I roll two 6 -sided dice and one die is a 5 , then the sum of the number is 11 . Counterexample: I roll two 6 -sided dice and one die is a 5 , then the sum of the numbers is 9 . The converse is false. Inverse: If I roll two 6 -sided dice and the sum of the numbers is not 11 , then one die is not a 5 . Counterexample: I roll two 6 -sided dice and the sum of the numbers is not 11 , but one die is a 5 . The inverse is false. Contrapositive: If I roll two 6 -sided dice and one of the die is not a 5 , then the sum is not 11 . The contrapositive is true.

\section*{Deductive Reasoning}

\section*{LESSON GOAL}

Students apply the Laws of Detachment and Syllogism.

\section*{1 LAUNCH}

8 Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Applying Laws of Deductive Reasoning by Using Venn Diagrams

\section*{Develop:}

\section*{The Law of Detachment}
- Inductive and Deductive Reasoning
- The Law of Detachment

The Law of Syllogism
- The Law of Syllogism

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket


Practice

\section*{DIFFERENTIATE}


\section*{Language Development Handbook}

Assign page 73 of the Language Development Handbook to help your students build mathematical language related to applying the Laws of Detachment and Syllogism.
[EAII You can use the tips and suggestions on page T 73 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 0.5 day \\
\hline 45 min & \\
\hline
\end{tabular}

\section*{Focus}

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students explored the concept of conditional statements.

\section*{Now}

Students apply the Laws of Detachment and Syllogism in deductive reasoning.

\section*{Next}

Students will write proofs using various arguments.

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline 有 Conceptual Bridge In this lesson, students develop an \\
understanding of deductive reasoning. They apply the Law of \\
Detachment, determine the validity of conclusions, and they apply the \\
Law of Syllogism to draw valid conclusions.
\end{tabular}

\section*{Mathematical Background}

Deductive reasoning uses facts, rules, definitions, and properties to reach logical conclusions. A form of deductive reasoning that is used to draw conclusions from true conditional statements is called the Law of Detachment. This law states that if \(p \rightarrow q\) is true and \(p\) is true, then \(q\) is also true. The Law of Syllogism is another law of logic. It states that if \(p \rightarrow q\) and \(q \rightarrow r\) are true, then \(p \rightarrow r\) is also true.

\section*{Interactive Presentation}


Warm Up


\section*{Launch the Lesson}


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- determining the truth values of conditional statements

Answers:
1. true
2. false
3. false
4. true
5. false

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of deductive reasoning.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Applying Laws of Deductive Reasoning by Using Venn Diagrams}

\section*{Objective}

Students use dynamic geometry software to create Venn diagrams to determine the truth value of a statement.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of Venn diagrams.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students are given three true conditional statements. They must then use these statements to create a Venn diagram that represents the statements. The guiding exercises relate students' knowledge to the information in the diagram. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore

Students use the sketch to explore Venn Diagrams.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Applying Laws of Deductive Reasoning by Using Venn Diagrams (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Which statement gives the most specific location? Which gives the most generic location? Sample answer: The first statement is the most specific because it gives the city of Tucson. The last statement is the most generic because it gives the continent.
- How does looking for generic or specific information help you draw the Venn diagram? Sample answer: Generic information will be the bigger or outer-most circles in your diagram. You know that more specific information will belong inside these circles.

\section*{(0) Inquiry}

How can you use Venn Diagrams to determine the truth value of a statement? Sample answer: Y ou can use the relationships between or among the circles of a Venn diagram to determine whether the conclusion of a statement is true based on whether the hypothesis is true.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn The Law of Detachment}

\section*{Objective}

Students apply the Law of Detachment to determine the validity of conclusions.

Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in this Learn.

\section*{Common Misconception}

Students may think that the Law of Detachment also implies that if \(p\) implies \(q\) is true and \(q\) is true, then \(p\) must be true. Help them understand that the Law of Detachment only works if you know that the conditional and its hypothesis are true.

\section*{Example 1 Inductive and Deductive Reasoning}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions for Mathematical Discourse}
4. What's the difference between using inductive reasoning and deductive reasoning? Sample answer: Inductive reasoning uses examples or observations to make a conjecture while deductive reasoning uses facts and rules.
OL. In part a, are facts or examples used to make the conjecture? On which type of reasoning is it based? facts; deductive
[B] Do science experiments use inductive or deductive reasoning? Explain. Sample answer: Some experiments use inductive reasoning to determine if a pattern or relationship exists.

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


Interactive Presentation


Learn
MULTI-SELECT



\section*{Interactive Presentation}


Example 2


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 2 The Law of Detachment}

Teaching the Mathematical Practices
1 Special Cases Work with students to evaluate the two methods shown. Encourage students to familiarize themselves with both methods, and to know the best time to use each one.

\section*{Questions for Mathematical Discourse}

AL. How do you know if a conclusion is valid or invalid? Sample answer: If the information presents a logical argument, then the conclusion is valid. If not, then the conclusion is invalid.
이 The conclusions are valid if the conditional statement is true. When is a conditional false? when the hypothesis is true and the conclusion is false

B1. In part b, the conclusion of the conditional is true. Why can't you conclude that the hypothesis is also true? When the conclusion of a conditional is true, the entire conditional is true whether the hypothesis is true or false.

\section*{Common Error}

The Law of Detachment can be applied only when the hypothesis of a conditional statement is true. If only the conclusion of a conditional statement is true, then the Law of Detachment cannot be used to make a conclusion about the situation.

\section*{Learn The Law of Syllogism}

\section*{Objective}

Students apply the Law of Syllogism to make valid conclusions from given statements.

\section*{Teaching the Mathematical Practices}

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Learn asks students to justify their conclusions.

\section*{Common Misconception}

Students cannot just match any two components of the two given conditionals. The conclusion of one conditional must match the hypothesis of the other conditional for the Law of Syllogism to work.

\section*{Essential Question Follow-Up}

Students learn the two main laws of deductive reasoning.

\section*{Ask:}

Why is it important to understand the laws of Detachment and Syllogism for understanding logical arguments? Sample answer: These two laws are important tools for writing valid logical arguments.

\section*{DIFFERENTIATE}

\section*{}

Write an example to illustrate the correct use of the Law of Syllogism.
Sample answer:
1. Students need to be organized.
2. If you are organized, then you have good study habits.
3. If you have good study habits, then you get good grades.
4. Students who are organized get good grades.

\section*{Check}
getermine whether the conclusion is valid based on the given information. Select the correct answer and justification.
a. Given: If three points are noncollinear, then they determine a plane. Points \(A, B\) and \(C\) lie in plane \(G\)
Conclusion ; points \(A, B\), and \(C\) are noncollinear
A Valid; points \(A B\) and cdetermine plane \(G\). Therefore, they are oncollinear
B. Valid; ecause points A, Band care noncollinear, they determine plane \(G\)
C. nvalid; points \(A B\), and cdetermine plane \(Q_{\text {Therefore, they }}\) are noncollinear.
D. Ivalid; points \(A, B\), and cean be collinear and lie in plane \(G\)
b. Given : HDakota goes to the video game store, then he will buy a new game. Dakota went to the video game store this afternoon.
Conclusion: Dakota bought a new game.
A. nvalid; because the statement Dokoto bought a new game does not satisfy the hypothesis of the conditional statement, the conclusion is not true.
B. Valid; because the statement Dakota went to the video game store this ofternoon satisfies the conclusion of the conditional statement, the hypothesis of the conditional is true.
C. Valid; because the statement Dakoto went to the video game store this ofternoon satisfies the hypothesis of the conditional statement, the conclusion is true
D ivvalid; because the statement Dakota went to the video game store this ofternoon satisfies only the hypothesis, the conclusion Sbot true.

Learn The Law of Syllogism
One law that is related to deductive reasoning is the Law of Syllogism. This law allows you to draw conclusions from two true conditional
statements when the conclusion of one statement is the hypothesis of the other
Key Concept - Law of Syllogism
Words \(\quad \| p \rightarrow q\) and \(q \rightarrow\) are true statements, then \(p \rightarrow r\) is a true statement.
Given: f you get a job, then you will earn money
If you earn money, then you will bury a car. Valid Conclusion: If you get a job, then you will buy a car.
\(Q_{\text {Tak About It }}\) Do you think that the order of the given when applying the Law of Syllogism? Justify your argument.

No; sample answer: As long as the conclusion of one statement is the hypothesis of the other statement, the Law of Syllogism can be applied.

\section*{Interactive Presentation}


Study Tip
True vs. Valid Conclusions A true same as a valid same as a a valion. True conclusions reached using invalid reasoning are still invalid.

> Think About It!
> Can the Law of Syllogism be applied if
> the two given
> statements have the
> same conclusion? Justify your argument.

Mo; sample answer: fiven though both statements have the same conclusion, the statements are not connected to each other unless there is a nypothesis and conclusion that are the same. Therefore, the Law of Syllogism cannot te applied.

Q Go Online to practice what you've learned about
deductive reasoning in the Put It All T ogether the Put It AlI ogether
over Lessons 12-1 through 12-3.

\section*{CExample 3 The Law of Syllogism}

SLEEP Scientists have found that the quality and amount of sleep greatly impact learning and memory. Lack of sleep causes students to have trouble focusing and receiving new information. Sleep deprivation also makes it difficult to retrievep reviously-learned information. Draw a valid conclusion from the given statements, if possible.
Given: f you are tired, then you will not do well on your test.
If you do not get enough sleep, then you will be tired. Step 1 dentify the hypothesis and conclusion that are the same. Determine whethel the conclusion of one statement is the hypothesis of the other statement.
Given: " you are tired, then you will not do well on your test. f you do not get enough sleep, then you will be tired
Reorder the given statements so the conclusion of the first statement is Reorder hypothesis of the second statement. This will allow you to make a valid conclusion using the Law of Syllogism.

Given: If you do not get p: Y ou do not get enough enough sleep. sleep. then you will be tired \(q\) : \(Y\) ou will be tired.
    If you are tired, then : \(Y\) of will not do well on your
    you will not do well on est.
    your test.

Step 2 Represent the statem with symbols
Let \(p, q\). and \(r\) represent the parts of the given conditional statements. Analyze the logic of the given conditional statements using symbols. Statement 1: \(p \rightarrow q\)
Statement 2: \(q \rightarrow\) r
Because both statements are true and the conclusion of the first itatement is the hypothesis of the second statement, \(p \rightarrow \rho\) by the Law of Syllogism. A valid conclusion is If you do not get enough sleep, then you will not do well on your test.

Check
GRAND CANYON The Grand Canyon covers an area of 1900 square miles ind contains 277 miles of the Colorado River. Since the Grand Canyon became a national park in 1919, over 193 million people have visited. Draw a valid conclusion from the given statements, if possible. Given: If Ebony takes a vacation, then she will go to the Grand Canyon. If Ebony goes to the Grand Canyon, then she will hike to the Colorado River.
IEbony takes a vacation, then she will hike to the Cotloratto/Rive.
O Go Online Y ou can complete an Extra Example online.
```

724 Module 12. agical Arguments and Line Relationships

```

\section*{Interactive Presentation}


Example 3


724 Module 12 • Logical Arguments and Line Relationships

\section*{Example 3 Law of Syllogism}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse

AL In the first statement, what is the hypothesis? conclusion? The hypothesis is you are tired, and the conclusion is you will not do well on your test. In the second statement, what is the hypothesis? conclusion? The hypothesis is you do not get enough sleep and the conclusion is you will be tired.
OLI How is the Law of Syllogism related to deductive reasoning? Sample answer: Both allow you to reach valid conclusions based on properties and facts.
[BII Use the inverses of the original conditionals. Can you write a statement that is valid based on the Law of Syllogism? Show your work. Sample answer: Inverses: If you get enough sleep, then you won't be tired. If you are not tired, then you will do well on your test. So, if you get enough sleep, then you will do well on your test.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-17\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(18-23\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(24-31\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higherorder and \\
critical-thinking skills
\end{tabular} & \(32-39\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-31 odd, 32-39
- Extension: Necessary and Sufficient Conditions
- ALEKS' Deductive Reasoning

\section*{IF students score 66\%-89\% on the Checks, \\ THEN assign:}
- Practice, Exercises 1-39 odd
- Remediation, Review Resources: Statements, Conditionals, and Biconditionals
- Personal Tutors
- Extra Examples 1-3
- D ALEKS Deductive Reasoning

\section*{IF students score \(65 \%\) or less on the Checks, \\ THEN assign:}
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Statements, Conditionals, and Biconditionals
- ALEKS' Deductive Reasoning

Practice
Example 1
Determine whether each conclusion is based on inductive or deductive reasoning.
1. At Fumio's school, if a student is late five times, then the student will receive a detention. Fumio has been late to school five times. Therefore, he will receive a detention. deductive
2. A dental assistant notices that a patient has never been on time for an appointment. She concludes that the patient will be late for her next appointment. inductive
3. A person must have a membership to work out at a gym. Jessie is working out at that gym. Jessie has a membership to that gym. deductive
4. If Emilio decides to go to a concert tonight, then he will miss football practice. Tonight, Emilio went to a concert. Emilio missed football practice. deductive
5. Every Wednesday, Jacy's mother calls. Today is Wednesday, so Jacy concludes that her mother will call. inductive
6. Whenever Juanita has attended a tutoring session, she notices that her grades have improved. Juanita attends a tutoring session, and she concludes her grades will improve. inductive

Example
Determine whether each conclusion is valid based on the given information
Write valid or invalid. Explain your reasoning.
7. Given: Right angles are congruent. \(\angle 1\) and \(\angle 2\) are right angles Conclusion: \(\angle 1 \cong \angle 2\) valid; Law of Detachment
8. Given: If a figure is a square, then it has four right angles. Figure \(A B C D\) has four right angles.
Conclusion: Figure \(A B C D\) is a square. Invalid; the figure could be a rectangle.
9. Given: If you leave your lights on while your car is off, then your battery will die,
Your battery is dead. Your battery is dead
Conclusion: You left your lights on while your car was off. Invalid; your battery
could be dead because it was old.
```

10. Given: If Dennis gets a part-
```
can afford a car payment.
Conclusion: Dennis got a part-time job. Invalid; Dennis could afford a car payment because he paid off his other bills.
11. Given: If \(75 \%\) of the prom tickets are sold, then the prom will be held at the country club. \(75 \%\) of the prom tickets were sold. Conclusion: The prom will be held at the country club. valid; Law of Detachment

\section*{Example 3}

Use the Law of Syllogism to draw a valid conclusion from each set of given
statements, if possible. If no valid conclusion can be drawn, write no valid
conclusion and explain your reasoning.
12. If you interview for a job, then you wear a suit.
you interview for a job, then you will update your resume.
No valid conclusion; the conclusion of statement (1) is not the hypothesis of statement (2).
13. If Tina has a grade point average of 3.0 or greater, she will be on the honor role. If Tina has a grade point average of 3.0 or greater, nhen she will have her name in the school paper.
14. If two lines are perpendicular, then they intersect to form right angles. Lines \(s\) and \(r\) form right angles.
No valid conclusion; the conclusion of statement (1) is not the hypothesis of statement (2)
15. If the measure of an angle is between \(90^{\circ}\) and \(180^{\circ}\), then it is obtuse. If an angle is obtuse, then it is not acute.
If the measure of an angle is between \(90^{\circ}\) and \(180^{\circ}\), then it is not acute.
16. If two lines in a plane are not parallel, then they intersect

If two lines intersect, then they intersect in a point.
If two lines in a plane are not parallel, then they intersect in a point.
17. If a number ends in 0 , then it is divisible by 2 .

No valid conclusion; the conclusion of statement (1) is not the hypothesis of statement (2)
Mixed Exercises
CONSTRUCT ARGUMENTS Draw a valid conclusion from the given statements,
if possible. Then state whether your conclusion was drawn using the Law of
Detachment or the Law of Syllogism. If no valid conclusion can be drawn, write
no valid conclusion. Justify your argument.
18. Given: If a figure is a square, then all the sides are congruent. Figure \(A B C D\) is a square. Figure \(A B C D\) has all sides congruent; Law of Detachment.
19. Given: If two angles are complementary, the sum of the measures of the angles is \(90^{\circ} . \angle 1\) and \(\angle 2\) are complementary angles. The sum of the measures of \(\angle 1\) and \(\angle 2\)
20. Given: Ballet dancers like classical music. If you like classical music, then you nioy the operal ther the you enjoy the Syllogism.
21. Given: If you are an athlete, then you enjoy sports. If you are competitive, then you enjoy sports. No valid conclusion; the conclusion of statement (1) is not the hypothesis of statement (2).
22. Given: If a polygon is regular, then all of its sides are congruent. All of the sides of polygon \(W X Y Z\) are congruent. No valid conclusion; knowing a conclusion is true does not imply the hypothesis will be true.
23. Given: If Terryl completes a course with a grade of C , then he will not receive If Terry completes a course with a grad of thave to take the course again. again; Law of Syllogism.
726 Module \(12 \cdot\) Logical Arguments and Line Relationships

\section*{Answers}
2. TUTORING Marla sometimes stays atter school to tutor classmates. If it is Tuesday, then Marla tutors chemistry. If Marla tutors chemistry, then she arrives is Tuesday? Explain your reasoning. No; sample answer: Today could be Thursday, and Marla could have arrived home at \({ }^{4} \mathrm{~F} . \mathrm{M}\). due to softball practice.
27 MUSIC Composer Ludwig van Beethoven wrote 9 symphonies and 5 piano concertos. If you lived in Vienna in the early 1800 s, then you could attend a conc conducted by Beethoven himself. Write a valid conclusion to the hypothesis / I Mozona in the early 1800 s. Vienna in the early 1800 s.
28. DIRECTIONS Paolo has an appointment to see a financial advisor on the fifteenth floor of an office building. When he gets to the building, the people at the front elevator. While looking for the red elevator, a guard informs himm that if he wants to find the red elevator, then he must find the replica of Michelangelo's David. When he finally got to the fifteenth floor, his financial advisor greeted him asking. "What did you think of the Michelangelo?" How did Paolo's financial advisor conclude that Paolo must have seen the Michelangelo statue? He used the Law of Syllogism to conclude that if Paolomede in to the ficheerth thace, tean he must have found the statue and then used the Law of Detachment to conclude that " aolo did find the statue
29. SIGNS Two signs are posted outside a trampoline park. Write a valid conclusion based on the given information about the age of the child. The child is at least 5 years old
30.
. LOGIC As Maite"s mother left for work, she quickly gave Maite some instructions. If you need me, call my cell The meeting will not last more than 30 minutes, and I will call you back when the meeting is over." Later that day. Maite tried to call her mother's cell phone, but her mother was in a meeting and could not answer the ohone. Maite concludes that she will have to wait no more than 30 minutes before she gets a call back from her mother. What law of logic did Maite use to
draw this conclusion? Law of Detachment
31. ENERGY Use deductive reasoning to draw a valid conclusion from the following statements: If a heat wave occurs, then air conditioning will be used more frequently, if air conditioning is used more frequently, then energy costs will higher; there is a heat wave in Florida. If no valid conclusion can be drawn, then write no valid conclusion and explain your reasoning. Energy costs will be higher in Florida.
Higher-Order Thinking Skills
32. WRITE Explain why the Law of Syllogism cannot be used to draw a conclusion from these conditionals.
If you wear winter gloves, then you will have warm hands. ffyou do not have warm hands, then your gloves are too thin. See margin.
33. PERSEVERE Use symbols for onjunction isjunction and implies to represen the Law of Detachment and the Law of Syllogism symbolically. Let p represent the
 kaw or Spogame \(\rightarrow \|\) in \(\rightarrow\) h \(\rightarrow 0 \rightarrow h\)
34. CREATE Write a pair of statements in which the Law of Syllogism can be used to each a valid conclusion. Specify the conclusion that can be reached. See margin.
35. ANALYZE Students in Mr. Kendrick's class are divided into two groups for an activity. Students in Group A must always tell the truth. Students in Group B must always lie. Jonah and Janeka are in Mr. Kendrick's class. When asked whether he and Janeka are in group A or B, Jonah says, "We are both in Group B." To which group does each student belong? Justify your argument. See margin
36. WRITE Compare and contrast inductive and deductive reasoning when making conclusions and proving conjectures. See margin.
37. CREATE Write three statements that illustrate the Law of Syllogism. See margin.
38. CREATE Write three statements that illustrate the Law of Detachment. See margin.
39. WHICH ONE DOESNT BELONG? Use statements (1) and (2). Determine which statement does not belong. Justify your conclusion. (1) If a triangle is equilateral, then it has three congruent sides. (2) If all the sides of a triangle are congruent, then each angle measures \(60^{\circ}\) A If a triangle is not equilateral, then it cannot have congruent angles. B. A figure with three congruent sides is always an equilateral triangle. C. If a triangle is not equilateral, then none of the angles measures \(60^{\circ}\) D. If a triangle is equilateral, then each of its angles measures 60 * See margin.

728 Module 12 - Logical Acguments and Line Relationships
24. Valid; Monday is outside of the days when the temperature drops below \(32^{\circ} \mathrm{F}\), so it cannot be inside the days when it snows circle either. Thus, the conclusion is valid.

25. Valid; Theo is inside the small and large circles, so the conclusion is valid.

People who don't eat meat

32. Sample answer: The Law of Syllogism cannot be used, because the hypothesis of the second conditional is the negation of the conclusion of the first conditional. To use the Law of Syllogism, the conclusion of one conditional must be the hypothesis of the other conditional.
34. Sample answer: (1) If a student earns 40 credits, then he or she will graduate from high school. (2) If a student graduates from high school, then he or she will receive a diploma. Conclusion: If a student earns 40 credits, then he or she will receive a diploma.
35. Sample answer: Jonah's statement can be restated as, "Jonah is in Group B, and Janeka is in Group B." For this compound statement to be true, both parts of the statement must be true. If Jonah was in Group A, he would not be able tosay that he is in Group B, because students in Group A must always tell the truth. Therefore, the statement that Jonah is in Group B is true. For the compound statement to be false, the statement that Janeka is in Group B must be false, Therefore, Jonah is in Group B, and Janeka is in Group A.
36. Sample answer: Inductive reasoning uses several specific examples to reach a conclusion, and deductive reasoning relies on established facts, rules, definitions, and/or properties to reach a conclusion. One counterexample is enough to disprove a conjecture reached using inductive or deductive reasoning.
37. Sample answer: Given: If you are at the Willis Tower, then you are in Chicago. If you are in Chicago, then you are in Illinois. Conclusion: Therefore, if you are at the Willis Tower, then you are in Illinois.
38. Sample answer: Given: If two numbers are even, then their sum is even. The numbers 4 and 6 are even. Conclusion: The sum of 4 and 6 is even.
39. D; Statement D follows logically from statements (1) and (2). Statements A, B, and C do not follow logically from statements (1) and (2).

\section*{LESSON GOAL}

Students analyze and construct viable arguments.

\section*{1 LAUNCH}

8 Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Algebraic Proof

\section*{Develop:}

Postulates About Points, Lines, and Planes
- Identify Postulates
- Use Postulates

\section*{Two-Column Proofs}
- Two-Column Proof

Flow Proofs
- Flow Proofs

Paragraph Proofs
- Paragraph Proof

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l||c|c|c|}
\hline Resources & Al| & IE & IIII \\
\hline Remediation: Biconditoinals & \(\bullet\) & \\
\hline Extension: Even and Odd & & \(\bullet\) & \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 74 of the Language Development Handbook to help your students build mathematical language related to analyzing and constructing viable arguments.
FIII You can use the tips and suggestions on page T 74 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}


\section*{Focus}

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students developed an understanding of the validity of arguments.

\section*{Now}

Students analyze and construct viable arguments.

\section*{Next}

Students will constructarguments to prove geometric relationships.
G.CO. 9

Rigor
\begin{tabular}{|l|c|c|}
\hline 1CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3APPLICATION \\
\hline \begin{tabular}{l} 
FIN Conceptual Bridge In this lesson, students develop an \\
understanding of the process of writing proofs, and they begin to \\
build fluency in writing proofs.
\end{tabular} \\
\hline
\end{tabular}

\section*{Mathematical Background}

In geometry, a postulate is a statement that describes a fundamental relationship between the basic terms of geometry. Postulates are accepted as true without proof.

After a statement or conjecture is proved to be true, it is called a theorem. A theorem can be used like a definition or postulate to justify whether other statements are true.

A proof is a logical argument in which each statement you make is supported by a statement that is accepted as true. A proof states the hypotheses and conclusion and develops a system of deductive reasoning to prove the conclusion, assuming that the hypotheses are true.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- determining the validity of arguments

Answers:
1. invalid
2. valid
3. invalid
4. valid
5. valid

\section*{Launch the Lesson}

Teaching the Mathematical Practices 3 Construct Arguments In this Launch the Lesson, students see a historical example of mathematical proof.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Algebraic Proof}

Objective
Students apply the properties of real numbers to algebraic proofs.
Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Explore asks students to justify their conclusions.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will read properties of real numbers. Then students will complete four guiding exercises where they determine which property is being used or complete a statement based on a property. Then students use the properties of real numbers to complete two proofs. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}
```

Algebraic Proof

```


Sey Concopt Properties of Weai Fumbers






Explore


Explore

\section*{Interactive Presentation}


Explore


\section*{Explore}


Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Algebraic Proof (continued)}

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why is it important to justify or explain each step when solving an algebraic problem? Sample answer: If you can justify each step, then there is a mathematical reason for it and it must be true.
- How is writing an algebraic proof similar to solving a problem? Sample answer: I follow the same steps as I would to solve, but make sure to justify each step and use the correct properties.

\section*{( \\ Inquiry}

How can you write an algebraic proof? Sample answer: Write each step in solving an algebraic equation in the Statements column of a twocolumn proof, and then write the corresponding property of real numbers in the Reasons column for each corresponding step.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Postulates About Points, Lines, and Planes}

\section*{Objective}

Students analyze figures to identify and use postulates about points, lines, and planes.

Teaching the Mathematical Practices
3 Analyze Cases This Learn guides students to examine cases of postulates on points, lines, and planes. Encourage students to familiarize themselves with all of the cases.

\section*{Common Misconception}

Students occasionally think that postulates must be proved. However, postulates are accepted as true and are used to prove conjectures and theorems.

\section*{Example 1 Identify Postulates}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about postulates to solving a real-world problem.

Questions for Mathematical Discourse
AL Why are postulates helpful? Sample answer: Postulates are used to create mathematical proofs.
OI Which postulates relate to lines? 3.1, 3.3, 3.5, 3.6, 3.7
[BII In the photo, what is an example of Postulate 3.4 ? Sample answer: Points \(A, E\), and \(D\) lie in the same plane.

\section*{Common Error}

Students may incorrectly match geometric objects with hypotheses of postulates. Remind them that they can rewrite postulates in if-then form to more easily identify the hypotheses.

\section*{1 Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn

\section*{EXPAND}

Students tap to see a diagram of each postulate.


\section*{Interactive Presentation}


Example 1

Students tap to view answers to the exercise.

\section*{Example 2 Use Postulates}

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to respond to the arguments of others.

\section*{Questions for Mathematical Discourse}

In part a, there are three planes. Which postulates relate to planes? 3.2, 3.4, 3.5, 3.7

Oll In part a, what counterexample shows that the statement is only sometimes true? The intersection of three planes could be a point.
|B1. Determine whether the following statement is sometimes, always, or never true. Plane \(T\) and Plane \(S\) intersect at a single point \(P\). Never; sample answer: Postulate 3.7 states that if two planes intersect, then their intersection is a line.

\section*{Learn Two-Column Proofs}

Objective
Students analyze and construct viable arguments in a two-column format.
Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of twocolumn proofs in the Learn to use them to write logical arguments.

\section*{About the Key Concept}

Using a two-column proof style can be very useful in making sure that students understand that there must be a reason for each step in a proof.

\section*{Example 2 Use Postulates}

Determine whether each statement is a/ways, sometimes, or never true. Justify your argument.
a. The intersection of three planes is a line.

Sometimes; if three planes intersect, then their intersection could be a line or a point.
b. tine rcontains only point \(\boldsymbol{\beta}\)

Never, Postulate 12.3 states that a line contains at least two points.
c. Through points Hand \(K\), here is exactly one line.

Always; Postulate 12.1 states that through any two points, there is exactly one line.

Check
Determine whether the statement is a/ways, sometimes, or never true Justify your argument.
Two intersecting lines detemise a plisne. Always; sample answer: Between any two intersecting lines there are always at least three noncollinear points, and Postulate 2.2 states that through any three noncollinear points there is exactly one plane.

Learn Two-Column Proofs
A proof is a logical argument in which each statement is supported by a statement that is accepted as true. These supporting statements can include definitions, postulates, and theorems. A two-column proof is a Proof that contains statements and reasons that are organized in a two-column format. \(Y\) ou can develop a deductive argument to prove a statement by building a logical chain of statements and reasons.

Key Concept • How to Write a Proof
Step 1 List the given information. Draw a diagram if needed.
Step 2 Create a deductive argument that links the given information to the statement that you are proving.
Step 3 Justify each statement with a reason. Reasons include definitions, postulates, theorems, and algebraic properties.
Step 4 State what it is that you have proven.

PThink About It! Martin claims that this is a true statement. Through any three points, there is exactly agree? Explain.

No; sample answer: This statement is sometimes true. If the three points were noncollinear, there would be exactly one plane per Postulate 12.2 If the points were collinear, then there would be infinitely many planes.

Interactive Presentation


Example 2



\section*{Interactive Presentation}


Example 3
DRAG \& DROP
Students drag the statements and reasons to complete the proof.

CHECK
Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

\section*{Example 3 Two-Column Proof}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to complete the given proof.

\section*{Questions for Mathematical Discourse}

AL. How are postulates used to write a proof? Sample answer: Postulates can be used to support a statement in a proof.
OL. What is the difference between reasons 2 and 3 ? Sample answer: The definition of midpoint refers to equality while the definition of congruence refers to equal distances.
B1. If \(P Q=3 x\) and \(Q R=\frac{1}{4} x+11\), what is the value of \(x ? x=4\)

\section*{Common Error}

Students may confuse distance, from the definition of midpoint, with congruence, from the conclusion of the Midpoint Theorem. The two are related but not the same thing.

\section*{Learn Flow Proofs}

\section*{Objective}

Students analyze and construct viable arguments in a flow proof format.
Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of flow proofs in the Learn so they can use them to write logical arguments.

\section*{Important to Know}

The advantage of flow proofs in helping students understand logical reasoning is that they show how one step leads to another. This is not always obvious in two-column format, especially in proofs where some steps could occur in a different order. In this case, use a flow proof to show students why the order of some steps may not matter.

\section*{Example 4 Flow Proofs}

Teaching the Mathematical Practices
1 Analyze Givens and Constraints In this example, guide students through the meaning of the problem and look for entry points to its solution.

\section*{Questions for Mathematical Discourse}

Why is the first item in the flow proof the statement \(P\) is the midpoint of \(\overline{J K}\) ? Sample answer: It is the given information in the proof.
OL. What does the Midpoint Theorem state? If a point is the midpoint of a segment, then it divides the segment into two congruent segments.
B1. If \(J P=7\) and \(P K=2 y-3\), what is \(y\) ? \(y=5\)

Essential Question Follow-Up
Students learn proof methods such as the two-column proof.

\section*{Ask:}

Why is it important to learn different proof methods? Sample answer: So that you can better write logical arguments for geometric facts and theorems.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity \(\triangle\) In}

IF students are having difficulty knowing where to start writing a paragraph proof, or they do not know how to correctly order the steps of the proof,
THEN have them outline the proof beforehand, or write the proof using the two-column proof or flow proof method first, and then write the full proof in paragraph form.


Interactive Presentation


Example 4
DRAG \& DROP
Students drag and drop the steps of the proof. determine whether they are ready to move on.


\section*{Interactive Presentation}


Example 5
 move on.

\section*{1 CONCEPTUAL UNDERSTANDING}

2 FLUENCY

\section*{Learn Paragraph Proofs}

Objective
Students analyze and construct viable arguments in a paragraph proof format.

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

What Students Are Learning
Writing a geometric proof in paragraph form may be preferable to some students. Explain that the steps for each type of proof are the same, but that the execution varies. Encourage students to first plan the steps of their proof out entirely before starting to write the paragraph.

\section*{Example 5 Paragraph Proof}

Teaching the Mathematical Practices
3 Compare Arguments Mathematically proficient students can compare arguments, determine which one is flawed, and explain the flaw. In this example, students have to identify the flawed argument and choose the correct one.

\section*{Questions for Mathematical Discourse}

AL. What is a paragraph proof? Sample answer: It is a proof where the givens, statements, and conclusion are written in sentences and paragraphs.
OL. How should you start a paragraph proof? Sample answer: Write the Given and Prove statements, then draw a diagram and label any given information.
Bill How do you determine if a paragraph proof is correct? Sample answer: Determine whether each statement is logically true and whether the statements progress from the given information to the conclusion without skipping any steps.

\section*{Common Error}

A common error in writing paragraph proofs is to skip steps in the logical progression of the argument. Outlining the proof beforehand may help avoid this.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline \multicolumn{2}{|c|}{2 exercises that mirror the examples } & \(1-18\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(19-20\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(21-24\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(25-30\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-23 odd, 25-30
- Extension: Even and Odd
- ALEKS Proofs Involving Segments and Angles

\section*{IF students score 66\%-89\% on the Checks, \\ THEN assign:}
- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Angle Relationships
- Personal Tutors
- Extra Examples 1-5
- D ALEKS' Angles

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Angle Relationships
- Quick Review Math Handbook: Postulates and Paragraph Proofs
- Daleks Angles

\section*{Answers}
5. Always; Postulate 3.2 states that through any three noncollinear points, there is exactly one plane.
6. Never; Postulate 3.1 states that through any two points, there is exactly one line.
7. Sometimes; the points do not have to be collinear to lie in a plane.
8. Always; Postulate 3.5 states that if two points lie in a plane, then the entire line containing those points lies in that plane.

\section*{Practice}

MUSIC Explain how the figure illustrates that each statement is
true. Then state the postulate that can be used to show that
each statement is true.
1. Planes \(O\) and \(M\) intersect in line \(L\). The two planes meet at the edge, which lies on line \(t\). Postulate: If two planes intersect, the their intersection is a line.

2. Line \(p\) lies in plane \(N\). Points \(A\) and \(D\) both lie on line \(p\) and in plane \(N\). Postulate: If two points lie in a plane, then the entire line containing those points lies in that plane.

SIGNS In the figure, \(\overleftrightarrow{D G}\) and \(\overrightarrow{D P}\) are in plane \(J\) and \(H\) lies on \(\overleftrightarrow{D G}\). State the postulate that can be used to show that each statement is true.
3. Points \(G\) and \(P\) are colli near. Postulate 12. 1; Through any two points, there is exactly one line.
4. Points \(D, H\), and \(P\) are coplanar. Postulate 12.2; Through any three noncollinear points, there is exactly one plane.

Example 2
CONSTRUCT ARGUMENTS Determine whether each statement is always,
sometimes, or never true. Justify your argument. 5-10. See margin.
5. There is exactly one plane that contains noncollinear points \(A, B\), and \(C\).
6. There are at least three lines through points \(J\) and \(K\).
7. If points \(M, N\), and \(P\) lie in plane \(X\), then they are collinear.
8. Points \(X\) and \(Y\) are in plane \(Z\). Any point collinear with points \(X\) and \(Y\) is in plane \(Z\).
9. The intersection of two planes can be a point.
10. Points \(A, B\), and \(C\) determine a plane.

Example 3
11. PRoof Point \(Y\) is the midpoint of \(X \bar{Z}\). Point \(W\) is collinear with \(X, Y\), and \(z . Z\) is the midpoint of \(\overline{Y W}\). Write a two-column proof to prove that \(\overline{X Y} \cong \overline{Z W}\). See margin.

Prove: w=3.5 See margin
Lesson 12.4. Wrtaing Proots 735

15. PROOF Point \(L\) is the mid point of \(\overline{J K} . \overline{J K}\) intersects \(\overline{M K}\) at \(K\). If \(\overline{M K} \cong \bar{J}\),write a
flow proof to prove that \(\overline{L K} \cong \overline{M K}\). See margin.
16. PROOF Copy and complete the flow proof to prove that if \(\overline{M N} \cong \overline{P O}\),
\(M N=5 x-10\), and \(P Q=4 x+10\), then \(M N=90\).


\section*{Example 5}
    \(C\) is the midpoint of \(\overline{B D}\). Write a paragraph proof to prove that \(A B=C D\). \(A B C D\)
See
    See margin.
18. PROOF Write a paragraph proof to prove that if \(P Q=4(x-3)+1\),
    \(Q R=x+10\), and \(x=7\), then \(\overline{P Q} \cong \overline{Q R}\). See Mod. 12 Answer Appendix \({\underset{Q}{x}}_{4(x-3)+1 x+10}^{R}\)
Mixed Exercises
9. What postulate can be used to show the following statement is true?
    Line \(m\) contoins points \(A\) and \(F\). Postulate 3.3 A line contains at least two points.
20.ROOFING Fal and Max are building a new roof. They wanted a roof with two
    Sloping planes that intersect in a curved arch. Is this possible?
    21. Carson claims that a line will always intersect a plane at only one point,
    and he draws this picture to show his reasoning. Iza thinks it is possible for
    Iza is because a line can lie in a plane and intersect it in infinite points.
22. REASONING The figure shows a straight portion of the course for a city
    marathon. The water station \(W\) is
    ocated at the midpoint of \(A B\).
        a. What is the length of the course
        from point A to point W? 240 m

    b. Write a paragraph proof for your
            answer to part a.
            Because \(W\) is the 110 of \(A B, A W \cong W B\) and \(A W=W B\), This means
            \(5 x-110=2 x+100\), so \(3 x-110=100\) by the Subtraction Property of Equality
            and \(3 x=210\) by the Addition Property of Equality. Therefore, \(x=70\) by the
            Division Property of Equality. By the Substitution Property of Equality,
            \(A W=5(70)-110=240\) meters.
        A. Explain how - you used a defferition in your paragraph proof.
The definition of midpoint allows you to conclude that \(A W=W B\)
23. AIRLINES An airline company wants to provide service to San Francisco, Los Angeles, Chicago, Dallas, Washington D.C.,. and New York City. The company's the cities are collinear. How many lines did the president draw? 15
24. SMALL BUSINESSES A small company has 16 employees. The owner placed 16 points on a sheet of paper in such a way that no 3 were collinear. Each point represented a different employee. He then connected two points with a line segment if they represented coworkers in the same department.
pairs among the 16 points? 120
b. When the owner finished the diagram, he found that his company was split into two groups, one with 10 people and the other with 6 . All the people
within a group were in the same was from the other group. How many line segments were there? 60
Higher-Order Thinking Skills
25. FIND THE ERROR Omair and Ana were working on a paragraph proof to prove that if \(A B\) is congruent to \(\overline{B D}\) and \(A, B\), and \(D\) are collinear. then \(B\) is the midpoin correct? Explain your reasoning. See Mod. 12 Answer Appendix.

26. CREATE Draw a figure that satisfies five of the seven postulates you have learned. Explain which postulates you chose and how your figure satisfies each postulate. See Mod. 12 Answer Appendix.
27. PERSEVERE Use the following true statements and the definitions and postulates you have learned to answer each question.
Two planes are perpendicular if and only if one plane contains a line perpendicular to the second plane.
a. Through a given point, there passes one and only one plane perpendicular to a given line. If plane \(Q\)
is perpendicular to line \(\ell\) at point \(X\) and line \(\ell\) lies in is perpendicular to ine \(\ell\) at point \(X\) and line \(\ell\) lies in


Through a given point, there passes one and ont given plane. If plane \(Q\) is perpendicular to plane \(P\) at point \(X\) and line \(a\) lies in plane \(Q\), what must also be true? Line \(a\) is perpendicular to plane \(P\).
28. WRITE How does writing a proof require logical thinking? See Mod. 12 Answer Appendix.

ANAL YZE Determine whether each statement is sometimes, always, or never true. Justify your argument.
29. Through any three points, there is exactly one plane. See Mod. 12 Answer Appendix.
30. A plane contains at least two distinct lines. See Mod. 12 Answer Appendix.

738 Module 12 - Logical Acguments and Line Relatonships

\section*{Answers}
9. Never; Postulate 3.7 states that if two planes intersect, then their intersection is a line.
10. Sometimes; the points must be noncollinear.
11. Proof:

Statements (Reasons)
1. \(Y\) is the midpoint of \(\overline{X Z}\). \(W\) is collinear with \(X, Y\), and \(Z . Z\) is the midpoint of \(\overline{Y W}\). (Given)
2. \(\overline{X Y} \cong \overline{Y Z}\) and \(\overline{Y Z} \cong \overline{Z W}\) (Midpoint Theorem)
3. \(X Y=Y Z\) and \(Y Z=Z W\) (Definition of congruent segments)
4. \(X Y=Z W\) (Transitive Property of Equality)
5. \(\overline{X Y} \cong Z W\) (Definition of congruent segments)
12. Proof:

Statements (Reasons)
1. \(J K \cong L M\) (Given)
2. \(J K=L M\) (Definition of congruent segments)
3. \(4 w+1=6 w-6\) (Substitution Property of Equality)
4. \(4 w+7=6 w\) (Addition Property of Equality)
\(5.7=2 w\) (Subtraction Property of Equality)
6. \(3.5=w\) (Division Property of Equality)
7. \(w=3.5\) (Symmetric Property of Equality)
15.


Midpoint Theorem


Def. of congruent
segments

17. Given: \(B\) is the midpoint of \(\overline{A C} . C\) is the midpoint of \(\overline{B D}\).

Prove: \(A B=C D\)
Proof: Because \(B\) is the midpoint of \(\overline{A C}\) and \(C\) is the midpoint of \(\overline{B D}\), we know by the Midpoint Theorem that \(\overline{A B} \cong \overline{B C}\) and \(\overline{B C} \cong \overline{C D}\). Because congruent segments have equal measures, \(A B=B C\) and \(B C=C D\). Thus, by the Transitive Property of Equality, \(A B=C D\).

\section*{LESSON GOAL}

Students prove theorems about line segments.

\section*{1 LAUNCH}

\section*{Launch the lesson with a Warm Up and an introduction.}

\section*{2 EXPLORE AND DEVELOP}

Explore: Segment Relationships

\section*{Develop:}

\section*{Segment Addition}
- Segment Addition Postulate

Segment Congruence
- Prove Segment Congruence
- Determine Congruence

You may want your students to complete the Checks online.

\section*{REFLECT AND PRACTICE}

Exit Ticket
Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & Al & IAB & F61 & \\
\hline Remediation: Deductive Reasoning & - - & & & - \\
\hline Extension: Axioms and Propositions & & - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 75 of the Language Development Handbook to help your students build mathematical language related to proving relationships about line segments.

ELillyou can use the tips and suggestions on page \(\mathrm{T75}\) of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing}


\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.9 Prove theorems about lines and angles.
G.C0.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.
Coherence
Vertical Alignment

\section*{Previous}

Students wrote proofs in two-column, flow, and paragraph styles.

\section*{Now}

Students prove theorems about line segments.
G.C0.9

Next
Students will write proofs of theorems about angles.
G.CO. 9

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline 庿 Conceptual Bridge In this lesson, students expand on their \\
understanding of proofs, and they build fluency by proving theorems \\
about line segment relationships. \\
\hline
\end{tabular}

\section*{Mathematical Background}

A segment can be measured, and measures can be used in calculations because they are real numbers. The Ruler Postulate states that the points on any line or line segment can be paired with real numbers such that, given any two points \(A\) and \(B\) on a line, \(A\) corresponds to 0 , and \(B\) lies between points \(A\) and \(C\) on the same line, \(A B+B C=A C\). The Reflexive, Symmetric, and Transitive Properties of Equality can be used to write proofs about segment congruence.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- making a valid argument about algebra

Answer:
2., 4., 1., 3.

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of segment relationships.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Explore Segment Relationships}

\section*{Objective}

Students use dynamic geometry software to prove theorems about line segments.

\section*{Teaching the Mathematical Practices}

3 Make Conjectures In this explore, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students make a series of constructions involving midpoints of segments. Then students make a conjecture about lengths of related segments. Students then make some constructions designed to show how to prove the conjecture. Then students fill in the missing parts of a proof of their conjecture. Finally, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore

Students use the sketch to explore segment length relationships.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Interactive Presentation}


\section*{Explore}

TYPE


Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Segment Relationships (continued)}

\section*{Question}

Have students complete the Explore activity.

\section*{Ask:}
- How is finding the midpoint related to the segment length? Sample answer: The midpoint divides the segment into two congruent segments. So, the length of each segment is half of the original.
- Describe what happens each time you find the midpoint in this activity. Sample answer: Each midpoint is dividing a segment in half. First I found one-half, then one-fourth, and finally one-eight of the original segment length.

\section*{(4) Inquiry}

How can you use what you have already learned to prove segment relationships? Sample answer: Y ou can use properties of real numbers to help prove relationships between lengths of segments.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Segment Addition}

Objective
Students prove theorems about line segments by using the Segment Addition Postulate.

\section*{(11) Teaching the Mathematical Practices}

3 Analyze Cases Work with students to look at the Think About It! feature. Ask students to determine whether the statement is true or false. If false, have students identify a counterexample that disproves the claim.

About the Key Concept
The Ruler Postulate and Segment Addition Postulate are important because they give us a way to measure the lengths of line segments using real numbers. This is needed to be able to define congruence of segments as segments with the same length.

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}



\section*{Interactive Presentation}


Example 1
DRAG \& DROP
Students drag statements and reasons to complete a two-column proof.

CHECK


Complete the Check exercise online to determine whether students are ready to move on.

\section*{Example 1 Segment Addition Postulate}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to complete the given proof.

Questions for Mathematical Discourse
AL. What is the Segment Addition Postulate in your own words? Sample answer: If three points are on the same line, then point \(B\) is between \(A\) and \(C\) if \(A B+B C=A C\).

OL. How does the definition of congruence help you in the final step of the proof? If you know that two segments have the same length, then you can say that they are congruent.
Bl. In Step 6, how are you using substitution to say that \(Q R=T V\) ? In Step 5, you can substitute \(Q R\) for the left side of the equation, and substitute \(T V\) for the right side.

\section*{Common Error}

Students will often assume that line segments that look congruent in a figure are congruent. Remind students to check this against the given information in the proof.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity \(\triangle\)}

IF students have difficulty identifying the given information implicit in a given figure,
THEN encourage students to read through the given information, identifying each point and line segment in the figure. Have students mark the figures so they can easily refer to the relationships while writing their proofs.

\section*{Learn Segment Congruence}

Objective
Students prove theorems about line segments by using properties of segment congruence.

Teaching the Mathematical Practices
3 Analyze Cases This Learn guides students to examine cases of the properties of segment congruence. Encourage students to familiarize themselves with all of the cases.

\section*{Common Misconception}

Students may assume that all relations have the reflexive, symmetric, and transitive properties. For a counterexample, remind them that the relation " \(<\) " is not reflexive or symmetric.

\section*{Example 2 Prove Segment Congruence}
(17) Teaching the Mathematical Practices

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to complete the given proof.

\section*{Questions for Mathematical Discourse}

How is what we have in Step 2 from the Midpoint Theorem different from what the definition of midpoint tells us? Sample answer: The definition tells us that the segments are the same length, and the theorem tells us that they are congruent.
OLI In Step 4, what are the two individual congruence statements that allow you to state that \(\overline{Q R} \cong \overline{T S}\) ? \(\overline{Q R} \cong \overline{V T}\) and \(\overline{V T} \cong \overline{T S}\)
[BLI In Step 5, why do you need to use the Symmetric Property to change \(\overline{Q R} \cong \overline{R S}\) to \(\overline{R S} \cong \overline{Q R}\) ? Sample answer: The congruence must be in the correct order, then you can use the Transitive Property in Step 6.


Interactive Presentation


\section*{Example 2}


Students drag statements and reasons to complete a two-column proof.


\section*{Interactive Presentation}


\section*{Example 3}

Students select the correct term to complete the argument.

CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 3 Determine Congruence}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about segment congruence to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL. Which property of congruence requires knowing the relationships between two pairs of objects? Explain. The Transitive Property requires knowing that one pair of objects is congruent and that another pair of objects is congruent.

Oㄴ․ State the Transitive Property of Congruence in your own words. If one object is congruent to two other objects, then those two objects are congruent to each other.

Bl. What would the Reflexive Property tell you about the 1st balloon string? It is the same length as itself.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-7\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(8-10\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(11-12\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(13-19\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(II) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-11 odd, 13-19
- Extension: Axioms and Propositions
- ALEKS'Proofs Involving Segments and Angles

IF students score 66\%-89\% on the Checks, THEN assign:
- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Deductive Reasoning
- Personal Tutors
- Extra Examples 1-3
- ALEKS Conditional Statements and Deductive Reasoning

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-7 odd
- Remediation, Review Resources: Deductive Reasoning
- Quick Review Math Handbook: Proving Segment Relationships
- ALEKS Conditional Statements and Deductive Reasoning

Example 2
PROOF Write a two-column proof to prove each geometric relationship,
3. If \(\overline{V Z} \cong \overline{V Y}\) and \(\overline{W Y} \cong \overline{X Z}\).
then \(\overline{V W} \cong \overline{V X}\).


Example 3
5. FAMIL Y Maria is 11 inches shorter than her sister Clara. Luna is 11 inches shorter than her brother Chad. If Maria is shorter than Luna, how do the heights of Clara and Chad compare? What else can be concluded if Maria and Luna are the same heigiftara is shorter than Chad when Maria is shorter than Luna; Clara and Chad are the same height when Maria is the same height as Luna.
6. LUMBER Byron works in a lumberyard. His boss just cut a dozen planks and asked

Byron to double check that they are all the same length. The planks were
planks are all the same length as plank 1 . He concluded that they must all be the
same length. Explain how you know that plank 7 and plank 10 are the same length
even though they were never directly compared to each other. Plank 7 is the same length as plank 1 , and plank 1 is the same length as plank 10. By the Transitive Property, plank 7 must be the same length as plank 10.
7. NEIGHBORHOODS Karla, Lola, and Mandy live in three houses that are on the same
line. Lola lives between Karla and Mandy. Karla and Mandy live a mile apart. Is it
possible for Lola's house to be a mile from both Karla's and Mandy's houses? No, it's not possible Lola's house must be less than a mile from each house because she lives between them.
Mixed Exercises
8. PRoof Five lights, \(A, B, C, D\), and \(E\), are aligned in a row. The middle light is
the midpoint of the segment between the second and fourth lights and also the midpoint of the segment between the first and last lights.
a. Draw a figure to illustrate the situation. See margin.
b. Complete this proof.

Given: \(C\) is the midpoint of \(\overline{B D}\) and \(\overline{A E}\).
Prove: \(A B=D E\)
Statement 1. \(C\) is the midpoint of \(B \bar{D}\) and \(\overline{A E}\).
2. \(B C=C D\) and ? \(A C=C E\) 3. \(A C=A B+B C, C E=C D+D E\) 4. \(A C-B C=A B\) 5. ? \(C E-C D=A B\) 6. \(\quad\) ? \(C E-C D=D E\) 7. \(A B=C E-C D\) 6. ? Subtr. Pro \(\begin{array}{ll}\text { 8. } & \text { ? } \\ \text { 8. } & A B=D E \\ \text { Module } & \text { 12 } \\ \text { - Logical Arguments and Line Relationstips }\end{array}\)


12. PROOF Write a paragraph proof for each property of segment congruence.
a. Reflexive Property of Segment Congruence

Given: \(\overline{X Y}\)
Prove: \(\overline{X Y} \cong \overline{X Y}\)
Proof:
It is given that \(\overline{X Y}\) is a segment. By the Reflexive Property of Equality, \(X Y=X Y\). Thus,
b. Symmetric Property of Segment Congruence

Given: \(\overline{A B} \cong \overline{C D}\)
Prove: \(\overline{C D} \cong \overline{A B}\)
Proof:
It is given that \(\overline{A B \cong C D \text {. By the definition of congruent segments, } A B=C D \text {. By the Symmetric }}\) Property of Equality, \(C D=A B\). So by the definition of congent
Property of Equality, \(C D=A B\). So, by the definition of congruent segments, \(\overline{C D} \cong \overline{A B}\)
OHigher-Order Thinking Skills
13. FIND THE ERROR In the diagram, \(\overline{A B} \cong \overline{C D}\) and \(\overline{C D} \cong \overline{B F}\). Examine the conclusions made by Leslie and Shantice. Is either of them correct? Explain your reasoning. Neither; because \(\overline{A B} \cong \overline{C D}\) and \(\overline{C D} \cong \overline{B F}\), then \(\overline{A B} \cong \overline{B F}\) by the Transitive Property
 of Congruence.

14. PRoof \(A B C D\) is a square. Prove that \(\overline{A C} \cong \overline{B D}\). See Mod. 12 Answer Appendix.
15. CREATE Draw a representation of the Segment Addition Postulate in which the segment is two inches long, contains four collinear points, and contains no congruent segments. See Mod. 12 Answer Appendix.
16. CREATE Write an example of the Transitive Property and the Substitution Property that illustrates the difference between them. See Mod. 12 Answer Appendix.
17. FIND THE ERROR Justin knows that point \(R\) is the midpoint of \(\overline{Q S}\), and he knows that this means that \(Q R=R S\). He says that \(P R=P Q+Q R\) by the Segment Addition Postulate. So, \(P R=P O+R S\) by substitution. Do you agree with Justin's reasoning? Explain your reasoning. See Mod. 12 Answer Appendix.
18. WRITE Compare and contrast paragraph proofs and two-column proofs. See Mod. 12 Answer Appendix.
19. \(\overline{P R O O F}\) Write a paragraph proof to prove that if \(P, Q, R\), and \(S\) are collinear \(\overline{P Q} \equiv \overline{R S}\), and \(Q\) is the midpoint of \(\overline{P R}\), then \(R\) is the midpoint of \(\overline{O S}\). See Mod. 12 Answer Appendix.

\section*{Answers}
3. Given: \(\overline{V Z} \cong \overline{V Y}\) and \(\overline{W Y} \cong \overline{X Z}\)

Prove: \(\overline{V W} \cong \overline{V X}\)
Proof
Statements (Reasons)
1. \(\overline{V Z} \cong \overline{V Y}\) and \(\overline{W Y} \cong \overline{X Z}\) (Given)
2. \(V Z=V Y\) and \(W Y=X Z\) (Definition of \(\cong\) segments)
3. \(V Z=V X+X Z\) and \(V Y=V W+W Y\) (Segment Addition Postulate)
4. \(V X+X Z=V W+W Y\) (Substitution Property)
5. \(V X+W Y=V W+W Y\) (Substitution Property)
6. \(V X=V W\) (Subtraction Property of Equality)
7. \(V W=V X\) (Symmetric Property)
8. \(\overline{V W} \cong \overline{V X}\) (Definition of \(\cong\) segments)
4. Given: \(E\) is the midpoint of \(\overline{D F}\) and \(\overline{C D} \cong \overline{F G}\).

Prove: \(\overline{C E} \cong \overline{E G}\)
Proof
Statements (Reasons)
1. \(E\) is the midpoint of \(\overline{D F}\) and \(\overline{C D} \cong \overline{F G}\). (Given)
2. \(D E=E F\) (Definition of midpoint)
3. \(C D=F G\) (Definition of \(\cong\) segments)
4. \(C D+D E=E F+F G\) (Addition Property of Equality)
5. \(C E=C D+D E\) and \(E G=E F+F G\) (Segment Addition Postulate)
6. \(C E=E G\) (Substitution Property)
7. \(\overline{C E} \cong \overline{E G}\) (Definition of \(\cong\) segments)

8a. Sample answer:


Light 1 Light 2 Light 3 Light 4 Light 5
9. Given: \(\overline{A C} \cong \overline{G I}, \overline{F E} \cong \overline{L K}, A C+C F+F E=G I+M+L K\)

Prove: \(\overline{C F} \cong \bar{I}\)
Proof
Statements (Reasons)
1. \(\overline{A C} \cong \overline{G I}, \overline{F E} \cong \overline{L K}, A C+C F+F E=G I+I L+L K\) (Given)
2. \(A C=G I\) and \(F E=L K\) (Definition of \(\cong\) segments)
3. \(A C+C F+F E=A C+I L+L K\) (Substitution Property)
4. \(A C-A C+C F+F E=A C-A C+I L+L K\)
(Subtraction Property of Equality)
5. \(C F+F E=I L+L K\) (Substitution Property)
6. \(C F+F E=I L+F E\) (Substitution Property)
7. \(C F+F E-F E=I L+F E-F E\) (Subtraction Property of Equality)
8. \(C F=I L\) (Substitution Property)
9. \(\overline{C F} \cong \bar{L}\) (Definition of \(\cong\) segments)

10b. Yes; the Segment Addition Postulate can be used to show that \(P R=P Q+Q R\) and \(Q S=Q R+R S\). Both equations can be solved for \(Q R\), and substituting \(P R\) for \(Q S\) will lead to \(\overline{P Q} \cong \overline{R S}\).
11a. Both segments are half the length of two congruent segments, so the lengths of the shorter segments must be the same.

\section*{LESSON GOAL}

Students prove theorems about angles.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Angle Relationships

\section*{8 Develop:}

\section*{Angle Addition}
- Angle Addition Postulate
- Complement and Supplement Theorems

\section*{Congruent Angles}
- Congruent Supplements and Complements
- Vertical Angles

Right Angle Theorems
- Right Angle Theorems in Proofs

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}


Exit Ticket

\section*{Practice}

\section*{DIFFERENTIATE}

View reports on student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & AL & In & F디 & \\
\hline Remediation: Deductive Reasoning & - - & & & - \\
\hline Extension: Symmetric, Reflexive, and Transitive Properties & & - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 76 of the Language Development Handbook to help your students build mathematical language related to proving relationships about angles.
Enlilyou can use the tips and suggestions on page T 76 of the handbook to support students who are building English proficiency.

\section*{Suggested Pacing}


\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.9 Prove theorems about lines and angles.

Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students proved theorems about line segments.
G.CO. 9

\section*{Now}

Students prove theorems about angles using the Angle Addition Postulate. G.CO. 9

\section*{Next}

Students will identify special angle pairs, parallel lines, and transversals.
G.C0. 1

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students expand on their understanding of proofs, and they build fluency by proving theorems about angle relationships.

\section*{Mathematical Background}

This lesson introduces postulates and theorems about angle relationships. The Protractor Postulate and the Angle Addition Postulate can be used to prove theorems about angle relationships.

\section*{Interactive Presentation}


Warm Up


\footnotetext{
Launch the Lesson
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- making a valid argument about geometry

Answers:
1. 5
2. 6
3. 3
4.1
5. 4
6. 2

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of angle relationships.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Explore Angle Relationships}

Objective
Students use dynamic geometry software to explore angle relationships.
Teaching the Mathematical Practices
1 Monitor and Evaluate Point out that in this Explore, students must stop and evaluate their progress and change course to find the ultimate solution.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students perform a number of guided steps with dynamic geometry software, interspersed with guiding exercises intended to guide students through proving that the complements of an angle are congruent. Then, students answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}

\section*{Angle Relationships}



                                    - 0.0

Explore

Students use a sketch to explore angle relationships.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}

Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Angle Relationships (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Why does it matter that point \(D\) is in the interior of \(\angle A B C\) ? Sample answer: You know that angle \(A B C\) is a right angle, so its measure is \(90^{\circ}\). If you place point \(D\) in the interior, you also know that the two angles are complementary, because they have to add to \(90^{\circ}\).
- What would the relationship be if you constructed \(\angle J K L\) congruent to \(\angle D B C\) ? Sample answer: Then \(\angle J K L\) would be complementary to \(\angle A B D\), because \(\angle A B D\) is complementary to \(\angle D B C\).

\section*{(B) Inquiry}

How is the complement of a given angle \(A\) related to an angle congruent to \(\angle A\) ? Sample answer: It is the complement of the congruent angle. By the definition of congruence, the measures of two congruent angles are equal. By the Transitive Property, you can substitute the measure of one angle for the measure of a congruent angle.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Angle Addition}

Objective
Students prove theorems about angles by using the Angle Addition Postulate.
(11) Teaching the Mathematical Practices

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Learn asks students to respond to the arguments of others.

\section*{About the Key Concept}

The Protractor Postulate and Angle Addition Postulate perform the same function for angles as the Ruler Postulate and Segment Addition Postulate do for line segments.

\section*{Example 1 Angle Addition Postulate}

Teaching the Mathematical Practices
1 Understand the Approaches of Others Mathematically proficient students can explain the methods used to solve a problem. This example asks students to justify reasoning.

\section*{Questions for Mathematical Discourse}

AL What other postulate is similar to the Angle Addition Postulate? Segment Addition Postulate
이 What Property could be used as justification in Step 2 of the solution? Substitution Property of EqualitySuppose \(m \angle A B C=145^{\circ}, m \angle 1=2 x\), and \(m \angle 2=x+10\). What are the measures of \(\angle 1\) and \(\angle 2\) ? \(90^{\circ}\) and \(55^{\circ}\)

Go Online
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


Interactive Presentation


Learn



\section*{REASONS}

Complement Theorem Substitution Property
Subtraction Property
Supplement Theorem
- Example 2 Complement and Supplement

Theorems
SHELVING Mae Lin is installing helves in her room. One of the brackets she chose for her shelves is shown. If \(m \angle 3=55^{\circ}\), what is \(m<4\) ?
Choose from the reasons provided to justify each step.

\[
\begin{aligned}
& m \angle 3+m \angle 4=180^{\circ} \\
& \text { Supplement Theorem } \\
& 55^{\circ}+m \angle 4=180^{\circ} \\
& \text { Substitution Property } \\
& m \angle 4=125^{\circ} \\
& \text { Subtraction Property }
\end{aligned}
\]

Check
CITY PLANNING A city planner is designing an entrance ramp for a freeway. In the diagram, \(m \angle A C D=45^{\circ}\). What is \(m \angle B C A\) ? Copy and complete the calculations and justify each step.



Interactive Presentation


Example 2

\section*{DRAG \& DROP}

Students drag statements and reasons to complete a proof.

\section*{CHECK}


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 2 Complement and}

Supplement Theorems

\section*{(1) Teaching the Mathematical Practices}

4 Apply Mathematics In this example, students apply what they have learned about the Angle Addition Postulate to solving a realworld problem.

Questions for Mathematical Discourse
Based on the diagram, what is another pair of supplementary angles? Sample answer: \(\angle 1\) and \(\angle 2\)
OL. Which of the angles in the diagram are not needed to answer the question? the right angle, \(\angle 1, \angle 2\)
[31. Suppose \(\angle 2\) and \(\angle 3\) are congruent. What is the measure of \(\angle 1\) ? \(135^{\circ}\)

\section*{Common Error}

Students may confuse complementary angles and supplementary angles. One way to remember them is that the name that comes earlier in the alphabet, complementary, coincides with the smaller angle sum, \(90^{\circ}\).

\section*{Learn Congruent Angles}

Objective
Students prove theorems about angles by using properties and theorems of angle congruence.

\section*{nhi) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Learn Congruent Angles
The properties of algebra that apply to the congruence of segments and the equality of their measures also hold true for the congruence of angles and the equality of their measures.
Theorem 12.5: Properties of Angle Congruence
Reflexive Property of Congruence
\(\angle 1 \cong \angle\)
Symmetric Property of Congruence If \(\angle 1=\angle 2\), then \(\angle 2=61\).
Transitive Property of Congruence

Proof: Symmetric Property of Congruence
Given: \(\angle J \cong \angle K\)
Prove: \(\angle K>\angle J\)
Paragraph Proof:
We are given that \(\angle J=\angle K\). By the definition of congruent angles, \(m \angle J=m / K\) Using the Symmetric Property of Equality, \(m \angle K=m \angle J\). Thus, \(\angle K \cong \angle \Delta\) by the definition of congruent angles. Theorem
Theorem 12.6: Congruent
Theorem 12.6: Congruent
Supplements Theorem
Angles supplementary to the same
angle or to congruent angles are
congruent.
Abbreviation \(\angle \mathrm{s}\) suppl. to same \(\angle\) or
\(\cong \angle\) sare \(=\)

Theorem 12.7: Congruent
Complements Theorem
Angles complementary to the same
angle or to congruent angles are
congruent.
Abbreviation \(\angle \mathrm{s}\) compl. to same \(\angle\) or
\(\cong \angle \mathrm{s}\) are \(\cong\)
Theorem 12.8: Vertical Angle
Theorem
If two angles are vertical angles, then
they are congruent.


Go Online
Proofs of the Reflexive Property of Congruence and the \(T\) ransitive Property of Congruence are available.

Q Talk About It
Explain the difference etween the and the Congruent and the Congrue
Complements Theorem.

Sample answer: The Complement Theorem states that if the
noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles. The Congruent Complements Theorem states that angles complementary to the same angle or to congruent angles are congruent.
```

ou will prove one case of Theorems 12.6 and \.7 in Exercises 21-22.Y %u will

```
prove the second case of each theorem in Exercise 31 .

\section*{Interactive Presentation}



\section*{Interactive Presentation}

Congruent Supplements and Complements



Howe \(\angle A B D\) W \(\angle A B C\)


Example 3
DRAG \& DROP
Students drag statements and reasons to complete a proof.

\section*{Example 3 Congruent Supplements and Complements}

\section*{(1) Teaching the Mathematical Practices}

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to respond to the arguments of others.

Questions for Mathematical Discourse
Do you need to know \(m \angle A B D\) and \(m \angle E B C\) to prove that they are congruent? Explain. No; sample answer: Y ou can use definitions and theorems to prove that the angles are congruent without knowing the measures.
OL. What do you know about a pair of angles that comprise a right angle? They are complementary angles.
BLil If you extend \(\overrightarrow{B A}\) past point \(B\) to a new point \(F\), what angle can you prove is congruent to \(\angle C B F\) ? \(\angle D B E\)

\section*{Common Error}

Students may think that complements are congruent to each other, rather than two complements of the same angle are congruent to each other.

\section*{Example 4 Vertical Angles}

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to respond to the arguments of others.

\section*{Questions for Mathematical Discourse}

AL. What are vertical angles? a pair of nonadjacent angles formed when two lines intersect
OL. What does the Vertical Angles Theorem say about a pair of nonadjacent angles formed when two lines intersect? Vertical angles are congruent.
[BLIL If the Given and Prove statements were switched, would the reasons remain the same? Explain. Yes; sample answer: The thought process would remain the same even though the angles would be different.

\section*{Learn Right Angle Theorems \\ Objective \\ Students prove theorems about right angles.}

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of right angle theorems to understand and prove theorems about right angles.

\section*{Common Misconception}

Students may forget that the only time supplementary angles are congruent to each other is when they are right angles.

Essential Question Follow-Up
Students learn to use angle congruence theorems.
Ask:
Why is it important to know how to use right angle theorems?
Sample answer: These theorems are useful for writing logical arguments in geometry.


Interactive Presentation


\section*{Learn}

\section*{EXPAND}

Students tap to see various right angle
theorems.


\section*{DIFFERENTIATE}

\section*{Language Development Activity ALI 픈.}

IF students have difficulty remembering the difference between complementary and supplementary angles,
THEN have them write a short poem or rhyme to help them remember the definitions.


\section*{Interactive Presentation}


Example 5
DRAG
Students drag statements and reasons to complete a two-column proof.

Students complete the Check online to determine whether they are ready to move on.

\section*{Example 5 Right Angle Theorems in Proofs}

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

\section*{Questions for Mathematical Discourse}
4. This proof has a right angle in its conclusion. Which right angle theorems have a right angle in their conclusion? Theorem 3.12 and Theorem 3.13
Oll Why can't we use Theorem 3.10 to write this proof? Sample answer: Being a right angle is part of its givens, not its conclusion.
BLI Which angles form linear pairs in the diagram? \(\angle 1\) and \(\angle 2\), \(\angle 2\) and \(\angle 3, \angle 3\) and \(\angle 4, \angle 4\) and \(\angle 1\)

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

The Practice pages are meant to be used as a homework assignment. You will also find these questions online in the Practice Bank for customization, digital assignment, and auto-scoring.

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-10\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(11-18\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(19-27\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(28-31\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks,}

THEN assign:
- Practice, Exercises 1-27 odd, 28-31
- Extension: Symmetric, Reflexive, and Transitive Properties
- \(\square\) ALEKS' Proofs Involving Segments and Angles

IF students score 66\%-89\% on the Checks, THEN assign:
- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Writing Proofs
- Personal Tutors
- Extra Examples 1-5
- ALEKS'Proofs Involving Segments and Angles

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-9 odd
- Remediation, Review Resources: Writing Proofs
- Quick Review Math Handbook: Proving Angle Relationships
- D ALEKS Proofs Involving Segments and Angles


Example 5
PROOF Write a two-column proof. 9-10. See margin. \(\angle A B C\) and \(\angle D E F\) are supplementary Prove: \(\angle A B C\) and \(\angle D E F\) are right angles



Mixed Exercises
11. Find \(m \angle A B C\) and \(m \angle C B D\) if \(m \angle A B D=120^{\circ}\). 12. Find \(m \angle J K L\) and \(m \angle L K M\) if \(m \angle U K M=140\)


Find the measure of each numbered angle and name the theorems that you used to justify

\section*{your work}


\section*{PROOF Write a two-column proof for each theorem.}
19. Supplement Theorem

Given: \(\angle P O T\) and \(\angle T O R\) form a linear pair. Prove: \(\angle P Q T\) and \(\angle T Q R\) are supplementary. statements (Reasons)
1. \(\angle P Q T\) and \(\angle T O R\) form a linear pair. (Given)
2. \(\angle P Q R\) is a straight angle. (Given from figure)
3. \(m \angle P O R=180^{\circ}\) (Def. of straight angle)
4. \(m \angle P O T+m \angle T O R=m \angle P O R\) (Angle Add. Post.)
5. \(m \angle P O T+m \angle T O R=180^{\circ}\) (Substitution)
6. \(\angle P O T\) and \(\angle T O R\) are supplementary. (Def. of supp. angles)
2. Complement Theorem

Given: \(\angle A B C\) is a right angle.
Prove: \(\angle A B D\) and \(\angle C B D\) are complementary.
Statements (Reasons)
1. \(\angle A B C\) is a right angle. (Given)
2. \(m \angle A B C=90^{\circ}\) (Def. of rt. angle)
3. \(m \angle A B C=m \angle A B D+m \angle C B D\) (Angle Add. Post.)
4. \(m \angle A B D+m \angle C B D=90^{\circ}\) (Substitution)
5. \(\angle A B D\) and \(\angle C B D\) are complementary. (Def. of comp. angles)
21. Congruent Supplements Theorem (Case 1)

Given: \(\angle 1\) and \(\angle 2\) are supplementary.
\(\angle 2\) and \(\angle 3\) are supplementary.
Prove: \(\angle 1 \equiv \angle 3\)
Statements (Reasons)
. \(\angle 1\) and \(\angle 2\) are supplementary.
\(\angle 2\) and \(\angle 3\) are supplementary. (Given)
2. \(m \angle 1+m \angle 2=180^{\circ}\)
\(m \angle 2+m \angle 3=180^{\circ}\) (Def. of supp. angles)
3. \(m \angle 1+m \angle 2=m \angle 2+m \angle 3\) (Substitution)
4. \(m \angle 1=m \angle 3\) (Subtraction Prop. of Equality)
\(5 . \angle 1 \cong \angle 3\) (Det. of congruent angles)
ent Complements Theorem (Case Given: \(\angle 4\) and \(\angle 5\) are complementary \(\angle 5\) and \(\angle 6\) are complementary.
Prove: \(\angle 4 \cong \angle 6\)
Statements (Reasons)
1. \(\angle 4\) and \(\angle 5\) are complementary.
\(\angle 5\) and \(\angle 6\) are complementary. (Given)
2. \(m \angle 4+m \angle 5=90^{\circ}\)
\(m \angle 5+m \angle 6=90^{\circ}\) (Def. of comp. angles)
4. \(m \angle 4=m \angle 6\) (Subtraction Prop. of Equality)
5. \(\angle 4 \cong \angle 6\) (Def. of congruent angles)


\section*{PROOF Use the figure to write a proof of each theorem} 3. Pern-23. See Mod. 12 Answer Appendix. (Theorem 12.9)
24. Perpendicular lines form congruent adjacent angles, (Theorem 12.11)

25. If two angles are congruent and supplementary, then each angle is
ight angle. (Theorem 12.12)
26. If two congruent angles form a linear pair, then they are right angles. (Theorem 12.13)
27. CONSTRUCT ARGUMENTS For a school project, students are making a giant cosahedron, which is a large solid with twenty identical triangular faces. John is in all the triangles are the same. He dees this by using a precut template and comparing the corner angles of every triangle to the template. How does this assure that the angles in all the triangles will be congruent to each other? By the Transitive Property, if any two angles are equal to the angle of the template, be equal to each
-Higher-Order Thinking Skills
28. ANAL YZE Find \(m \angle C\) if \(\angle C \cong \angle A, m \angle A=3 x^{\circ}, m \angle B=(x+20)^{\circ}\), and \(\angle A\) and \(\angle B\) are supplementary Justify your argument See Mod. 12 Answer Appendix
29. CREATE Draw \(\angle W X Z\) such that \(m \angle W X Z=45^{\circ}\). Construct \(\angle Y X Z \cong \angle W X Z\). Make conjecture about the measure of \(\angle W X Y\), and then prove your conjecture. See Mod 12 Answer Appendix
30. WRITE Write the steps that you would use to complete the proof. See Mod. 12 Answer Appendix. Given: \(\overline{B C} \cong \overline{C D}, A B=\frac{1}{2} B D\) \begin{tabular}{ll}
\(A\) & \(B\) \\
\(\sim\) & \(C\) \\
\hline
\end{tabular} Prove: \(A B \equiv C D\)
31. PERSEVERE In Exercises 21 and 22, you proved one case of the Congruent Supplements Theorem and one case of the Congruent Complements Theorem. of this second case for each theorem. See Mod. 12 Answer Appendix.

\section*{Answers}
6. Proof:

Statements (Reasons)
1. \(\angle 1\) and \(\angle 2\) form a right angle.
\(\angle 3\) and \(\angle 4\) form a right angle. (Given)
2. \(\angle 1\) and \(\angle 2\) are complementary.
\(\angle 3\) and \(\angle 4\) are complementary. (Complement Thm.)
3. \(\angle 2 \cong \angle 4\) (Given)
4. \(\angle 1 \cong \angle 3\) (Congruent Complements Thm.)
7. Proof:

Statements (Reasons)
1. \(\angle 1\) and \(\angle 2\) form a linear pair.
\(\angle 3\) and \(\angle 4\) form a linear pair. (Def. of linear pair)
2. \(\angle 1\) and \(\angle 2\) are supplementary.
\(\angle 3\) and \(\angle 4\) are supplementary. (Supp. Thm)
3. \(\angle 1 \cong \angle 3\) (Given)
4. \(\angle 2 \cong \angle 4\) (§Supp. Thm)
9. Proof:

Statements (Reasons)
1. \(m \angle A B C=m \angle D E F\) (Given)
2. \(\angle A B C \cong \angle D E F\) (Def. of \(\cong\) angles)
3. \(\angle A B C\) and \(\angle D E F\) are supplementary. (Given)
4. \(\angle A B C\) and \(\angle D E F\) are rt. angles. (If two \(\angle \mathrm{s}\) are \(\cong\) and supp., then each \(\angle\) is a rt. \(\angle\).
10. Proof:

Statements (Reasons)
1. \(\angle 1 \cong \angle 2 ; m \perp p\) (Given)
2. \(\angle 1\) and \(\angle 2\) form a linear pair. (Def. of linear pair)
3. \(\angle 1\) and \(\angle 2\) are right angles. (If \(2 \cong \angle \mathrm{~s}\) form a linear pair, they are it. \(\angle \mathrm{s}\).)
4. \(\angle 3\) is a right angle. ( \(\perp\) lines form 4 rt . angles.)
5. \(\angle 2 \cong \angle 3\) (All rt. \(\angle \mathrm{s}\) are congruent.)

\section*{Parallel Lines and Transversals}

\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 0.5 day \\
\hline 45 min & \multicolumn{1}{c}{1 day }
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
G.CO.9 Prove theorems about lines and angles.

Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students analyzed angle relationships.
8.G.5, G.C0. 9

\section*{Now}

Students identify and use relationships between parallel lines and transversals.
G.CO. 1

Next
Students will classify lines as parallel, perpendicular, or neither by using the slope criteria.
G.GPE. 5

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students develop an understanding of parallel line relationships and build fluency by proving theorems related to parallel lines. They apply their understanding by solving real-world problems related to parallel lines and transversals.

\section*{Mathematical Background}

The angles created by parallel lines and transversals have properties that can be used to make conjectures and to determine the validity of the conjectures.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skills for this lesson:
- finding missing angle measures using angle relationships
- analyzing angles and parallel lines

Answers:
1. \(m \angle 1=m \angle 3=65^{\circ}, m \angle 2=115^{\circ}\)
2. \(m \angle 1=m \angle 3=148^{\circ}, m \angle 2=32^{\circ}\)
3. \(x=10 ; m \angle 1=5 x=50^{\circ}, m \angle 2=13 x=130^{\circ}\)
4. \(\angle M X H, \angle A X T ; \angle M X A, \angle H X T\)
5. \(\angle M X H, \angle H X T ; \angle H X T, \angle T X A ; \angle T X A, \angle A X M ; \angle A X M, \angle M X H\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of parallel lines, transversals, and angles.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

757b Module 12 • Logical Arguments and Line Relationships

\section*{Explore Relationships Between Angles and Parallel Lines}

Objective
Students use dynamic geometry software to determine the relationships between special angle pairs and parallel lines.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students use dynamic geometry software to explore the relationships between angles formed when parallel lines are cut by a transversal. They record their observations and make conjectures about the relationships they find between various types of angles. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore

\section*{Interactive Presentation}


\section*{Explore}

TYPE
Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Relationships Between Angles and Parallel Lines (continued)}

Question
Have students complete the Explore activity.
Ask:
- W hat do you know about the angles formed by \(\overleftrightarrow{A B}\) and \(\overleftrightarrow{F G}\) ? Sample answer: Several angles are formed by the intersection of these two lines. I know that vertical angles are congruent and linear pairs are supplementary.
- W hy does it matter that \(\overleftrightarrow{F G}\) and \(\overleftrightarrow{K K}\) are parallel? Sample answer: The parallel lines intersect with the transversal in the same way, so the angles have special relationships.

\section*{(9) Inquiry}

How do parallel lines affect the relationships between special angle pairs? Sample answer: Parallel lines make special angle pairs that are either congruent or supplementary.

Wo Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Parallel Lines and T ransversals}

Objective
Students identify special angle pairs, parallel and skew lines, and transversals.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Example 1 Identify Parallel and Skew Relationships}

\section*{Teaching the Mathematical Practices}

3 Find the Error This example requires students to read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

\section*{Questions for Mathematical Discourse}

AL Are \(\overline{A D}\) and \(\overline{B C}\) coplanar? \(\overline{D E}\) and \(\overline{B C}\) ? yes; no
이 How are skew lines different from parallel lines? Parallel lines are coplanar, and skew lines are not.
EBli. Are lines in parallel planes always, sometimes, or never parallel? Explain. Sometimes; sample answer: If there is a plane that can be drawn that will contain both lines, then they are parallel. If there is no plane that can contain both lines, then they are skew.

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}



\section*{Interactive Presentation}


Example 2


\section*{1 CONCEPTUAL UNDERSTANDING \\ 2 FLUENCY \\ 3 APPLICATION}

\section*{Example 2 Classify Angle Pair Relationships}

\section*{Teaching the Mathematical Practices}

4 Analyze Relationships Mathematically Point out that to solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

\section*{Questions for Mathematical Discourse}

A1L What does it mean for an angle to be an interior angle? Sample answer: The angle lies in the region bounded by the two lines that are cut by the transversal.
OLI Are angles 4 and 5 interior or exterior angles? Are they on the same or alternate sides of the transversal? interior; alternate
[BLI Name a pair of alternate interior angles. angles 4 and 5 or angles 3 and 6

\section*{Common Error}

Students tend to confuse the angle pair relationships. Return to this example as needed to reinforce the correct definitions.

\section*{DIFFERENTIATE}

\section*{Language Development Activity \(A L\) BL}

Kinesthetic Learners Use masking tape to mark two parallel lines and a transversal on the floor. Have pairs of students stand in angles that are congruent or supplementary, and have them explain whether their angles are alternate interior, alternate exterior, corresponding, or consecutive interior angles.

\section*{Example 3 Identify T ransversals and Classify Angle Pairs}

\section*{(17) Teaching the Mathematical Practices}

4 Analyze Relationships Mathematically Point out that to solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

Questions for Mathematical Discourse
AL. What line connects the vertices of angles 1 and 8 ? line \(f\)
이 Are angles 6 and 7 on the same side or different sides of the transversal? What angle pairs have that relationship? same; consecutive interior angles and corresponding angles
BL. Name a pair of corresponding angles with line \(d\) as a transversal connecting them. angles 2 and 3

\section*{Learn Angles and Parallel Lines}

Objective
Students find values by applying theorems about parallel lines and transversals.

Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in this Learn.

\section*{Common Misconception}

Students may assume that special angle pairs like corresponding angles are always congruent, but they only are if the two lines cut by a transversal are parallel.

\section*{Essential Question Follow-Up}

Students learn theorems about parallel lines that are cut by transversals.

\section*{Ask:}

Why is it important to understand and use theorems about parallel lines? Sample answer: These theorems are very useful in writing logical arguments about geometry.


\section*{Interactive Presentation}


Learn
EXPAND


Students tap to see a proof of the Alternate Interior Angles Theorem.


\section*{Interactive Presentation}


Example 4


\section*{Example 4 Use Theorems About Parallel Lines}

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse
IL. What is one pair of alternate exterior angles created by transversal \(k\) ? Sample answer: \(\angle 12\) and \(\angle 6\)
OLI If line \(h\) is perpendicular to lines \(i\) and \(k\), what is true about angles \(1-8\) ? All angles are right angles.If \(m \angle 1=83^{\circ}\), what is \(m \angle 5 ? m \angle 5=83^{\circ}\)

\section*{Example 5 Find Values of Variables}

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation that models the situation in this example. Then use the equation to solve the problem.

Questions for Mathematical Discourse
I. Name the relationship between \(\angle 3\) and \(\angle 5 ; \angle 5\) and \(\angle 6\).
consecutive interior; linear pair
OL In part b, what angle relates to both \(\angle 8\) and \(\angle 3\) ? Possible answers: \(\angle 1, \angle 4, \angle 5, \angle 6, \angle 7\)
BLI In part b, what alternative path could be taken to solve the problem? Sample answer: \(\angle 8 \cong \angle 4\), so \(m \angle 4=68^{\circ} ; \angle 3\) and \(\angle 4\) are supplementary, so their measures total \(180^{\circ}\); so, \((3 y-2)+\) \(68=180 ; y=38\).

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-31\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(32-42\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(43-48\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(49-55\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-47 odd, 49-55
- Extension: Parallelism in Space
- ALEKS'Parallel Lines and Transversals

IF students score 66\%-89\% on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-55 odd
- Remediation, Review Resources: Angle Relationships and Parallel Lines
- Personal Tutors
- Extra Examples 1-5
- OALEKS'Parallel Lines

IF students score \(65 \%\) or less on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Angle Relationships and Parallel Lines
- Quick Review Math Handbook: Parallel Lines and Transversals
- Q ALEKS'Parallel Lines

\section*{Answers}
29. \(x=28, y=47\); Use the supplementary angles to find \(x\). Then use alternate exterior angles to find \(y\).
30. \(x=10, y=15\); Use alternate interior angles to find \(x\). Then use supplementary angles to find \(y\).

Practice

Identify each of the following using the figure shown. Assume lines and planes that appear to be parallel or perpendicular are parallel or perpendicular, respectively 1. three segments parallel to \(\overline{A E}\) \(\overline{B F}, \overline{C G}\), and \(\overline{D H}\)
3. a pair of parallel planes 2. a segment skew to \(\overline{A B}\)
\(A B C D\) and \(E F G H\) or \(A B F E\) and \(C D H G\)
5. three segments parallel to \(\overline{E F} \overline{A B}\)
4. a segment parallel to \(\overline{A D}\)
\(\overline{A E}, E H, H G, E F\), and \(D H\)
7. How could you characterize the relationship between faces \(A B C D\) and \(D C G H\) ? Explain. Sample answer: \(A B C D\) and \(D C G H\) could be characterized as perpendiculars, because \(D C G H\) contains segment \(\overline{C G}\) which is perpendicular to \(A B C D\).
Examples 2 and 3
Identify the transversal connecting each pair of angles. Then classify the relationship between each pair of angles as alternate interior, alternote
8. 4 , corresponding, or consecutive interior angles.
line \(a\); consecutive interio
10. \(\angle 12\) and \(\angle 14\)
line \(b\); alternate interior
12. \(\angle 2\) and \(\angle 12\)
line \(c\), alternate interior
14. \(\angle 1\) and \(\angle 9\)
line \(c\); corresponding
16. \(\angle 10\) and \(\angle 16\)
line \(b\); altemate exterior
\(\qquad\)

Example 4

27.

Exercises 18 and 19 , use the figure.
18. What type of angles are \(\angle 3\) and \(\angle 10\) ? alternate exterior angles
19. State the transversal that connects \(\angle 11\) and \(\angle 13\). Tine p
20. ESCALATORS An escalator at a shopping mall runs up severar levels. The escalator railing can be modeled by a straight line running past horizontal lines that represent the floors. Describe the relationships of these lines. The lines representing floors \(\mathrm{A}, \mathrm{B}\), and C are paralle, and he escalator raling is a transversal intersecting each of the three lines.
27. RAMPS A parking garage ramp rises to connect two horizontal levels of a parking lot. The ramp makes a \(10^{\circ}\) in the figure? \(170^{\circ}\)

28. CITY ENGINEERING Seventh Avenue runs perpendicular to 1st and 2nd Streets, which are parallel. However, Maple Avenue makes a \(115^{\circ}\) angle with 2 nd Street. What is the measure of angle 1? \(65^{\circ}\)


Examp
Find
29.
1 *
T 5



See margin
\[
\text { ne figure. } \quad \begin{array}{r}
\text { See margin. } \\
x=12, y=31
\end{array}
\]

Mixed Exercises

rer
32. \(\angle 2105^{\circ}\)
33. \(\angle 5 \quad 105^{\circ}\)
34. \(\angle 7 \quad 105^{\circ}\)
35. \(\angle 15 \quad 105^{\circ}\)
37. \(\angle 9 \quad 75^{\circ}\)
36. \(\angle 1475^{\circ}\)


762 Module 12 . Logica Argurnents and Line Relationshiph

USE A MODEL Lines \(a\) and \(b\) are parallel and are cut by transversal \(t\) to form interior angles \(\angle 7\). \(\angle 8, \angle 9\), and \(\angle 10 . \angle 7\) and \(\angle 8\) are consecutive interior angles, and \(m \angle 7=94^{\circ} . \angle 8\) and \(\angle 10\) are alternate interior angles. Find the measure of each angle.
\(\begin{array}{llll}38 . ~ & 10 & 86^{\circ} & 39 . \angle 9 \\ 94 & 40 & \angle 8 & 86^{\circ}\end{array}\)
41. CARPENTRY A carpenter is building a podium. The side panel of the podium is cut from a rectangular piece of wood. The rectangle must e sawed along the dashed line in the figure. What is the measure of Expan your reasoningSee margin.
42. MAPPING Copy the figure.
a. Connor lives at the angle that forms an alternate interior angle with Georgia's residence. Label the location of Connor's home on the map. interior angle with Connor's residence. Label the location of Quincy's home on the map.
43. USE A SOURCE Research the flag for the Solomon Islands. Sketch the flag. Label angles formed by the
yellow stripe, or transversal. Describe the relationship between the angles you labeled on the flag. See margin.
44. PRECIIION Find the values of \(x\) and \(y\) in the 45. PROOF In the figure, lines \(m\) and \(n\) are parallel trapezoid. Justify your answer. \(\quad \begin{aligned} & \text { and lines } p \text { and } q \text { are parallel. Write a paragrap } \\ & \text { proof to prove that if } m \angle 1-m \angle 4=25^{\circ} \text {, then }\end{aligned}\) proof to prove that if
\(m \angle 9-m \angle 12=25^{\circ}\).

See margin.
6. In the figure each step.
each
a. \(m \angle 8 \quad \angle 4 \cong \angle 8\) by Alt. Ext. \(\angle \mathrm{s} \mathrm{Thm} . m \angle 4=m \angle 8\) by the
b. \(m \angle 7 \quad\) See margin
47. P
7. PROOF Write a paragraph
proof of the Alternate Exterio
Angles Theorem. Given: \(a \| r\)
Prove: \(\angle 1 \cong \angle 7\). See margin.


Lesson 12.7. Perallel Lines and Trensversals 763
48. PROOF Write a two-column proof to prove each theorem.
a. Consecutive Interior Angles Theorem

Given: \(q \| r\)
Prove: \(\angle 2\) and \(\angle 5\) are supplementary
Statements (Reasons)
1. \(q \| r\) (Given)
2. \(\angle 1 \cong \angle 5\) (Corresponding Angles Thm)
3. \(\angle 1\) and \(\angle 2\) are a linear pair. (Def. of linear pair)
4. \(\angle 1\) and \(\angle 2\) are supplementary. (Supplement Thm )
5. \(m \angle 1+m \angle 2=180^{\circ}\) (Def. of supp. angles)
6. \(m \angle 5+m \angle 2=180^{\circ}\) (Substitution)
7. \(\angle 2\) and \(\angle 5\) are supplementary. (Def. of supp. angles)
b. Perpendicular Transversal Theorem.

Given: \(m \| n ; p \perp n\)
Prove: \(p \perp m\)
Statements (Reasons)
1. \(m \| n ; p \perp n\) (Given)

2. \(\angle 2\) is a right angle. (Def. of perpendicul6r) \(m \angle 1=90^{\circ}\) (Substitution)
3. \(m \angle 2=90^{\circ}\) (Def. of right angle) 7. \(\angle 1\) is a right angle. (Def. of right angle)
4. \(\angle 1 \cong \angle 2\) (Corresponding Angles Theoren@. \(p \perp m\) (Def. of perpendicular)

Higher-Order Thinking Skills
49. CREATE Plane \(P\) contains lines \(a\) and \(b\). Line \(c\) intersects plane \(P\) at point \(J\). Lines \(a\) and \(b\) are parallel lines, lines \(a\) and \(c\) are skew, and lines \(b\) and \(c\) are not skew Draw a figure based upon this description. See margin.
ANALYZE Plane \(X\) and plane \(Y\) are parallel and plane \(Z\) intersects plane \(X\). Line \(\stackrel{A B}{ }\) is in plane \(X\),
line \(\overline{C D}\) is in plane \(Y\) and line \(E F\) is in plane \(Z\).
line \(\overleftrightarrow{C D}\) is in plane \(Y\), and line \(\overleftrightarrow{E F}\) is in plane \(Z\). Determine whether each statement is a/ways,
somelimes, or never true. Justify your argument.
50. \(\overleftrightarrow{A B}\) is skew to \(\overleftrightarrow{C D}\). See margin. 51. \(\overleftrightarrow{A B}\) intersects \(\overleftrightarrow{E F}\). See margin.
52. WRITE Compare and contrast the Alternate Interior Angles Theorem and the Consecutive Interior Angles Theorem. See margin.
53. PERSEVERE Find the values of \(x\) and \(y\), \(x=171\) or \(x=155 ; y=3\)

54. ANALYZE Determine the minimum number of angle measures you would have to know to find the measures of all the angles formed by two parallel lines cut by a transversal. Justify your argument. See margin.
55. WRITE Can a pair of planes be described as skew? Explain. See margin.
\(\mathbf{7 6 4}\) Module 12 - Logical Arguments and Line Relationships

\section*{Answers}
41. \(64^{\circ}\); Sample answer: Opposite sides of a rectangle are parallel. So, the top and bottom lines on the side panel are parallel and cut by a transversal, which is the dashed line. Therefore, \(\angle 1\) and the \(116^{\circ}\)-angle are consecutive interior angles, so their sum is \(180^{\circ} . m \angle 1+116^{\circ}=180^{\circ}\), so \(m \angle 1=64^{\circ}\).
43.


Sample answer: \(\angle 1\) and \(\angle 4\) are alternate interior angles. \(\angle 2\) and \(\angle 3\) are alternate interior angles. \(\angle 1\) and \(\angle 2\) are complementary angles, and \(\angle 3\) and \(\angle 4\) are complementary angles.
44. \((2 x+12)^{\circ}+86^{\circ}=180^{\circ}\) (Consecutive Interior Angles Theorem and definition of supplementary angles); \(2 x+98^{\circ}=180^{\circ} ; x=41 ;(y+44)^{\circ}\)
\(+(3 y)^{\circ}=180^{\circ}\) (Consecutive Interior Angles Theorem and the definition of supplementary angles); \(4 y+44^{\circ}=180^{\circ} ; y=34\).
45. By the Corresponding Angles Postulate, \(\angle 1 \cong \angle 13\) and \(\angle 13 \cong \angle 9\).

By the Transitive Property, \(\angle 1 \cong \angle 9\). So, \(m \angle 1=m \angle 9\). By the Corresponding Angles Postulate, \(\angle 4 \cong \angle 8\) and \(\angle 8 \cong \angle 12\). By the Transitive Property, \(\angle 4 \cong \angle 12\). So, \(m \angle 4=m \angle 12\). It is given that \(m \angle 1-m \angle 4=25^{\circ}\). By the Substitution Property, \(m \angle 9-m \angle 12=25^{\circ}\).
46 b. Sample answer: \(\angle 4 \cong \angle 6\) by Vert. \(\angle s\) Thm., so \(m \angle 6=118^{\circ}\) (def. of cong. \(\angle\) s). \(\angle 6\) and \(\angle 7\) are supplementary angles by Cons. Int. \(\angle s\) Thm., so \(m \angle 6+m \angle 7=180^{\circ}\). By substitution, \(118^{\circ}+m \angle 7=180^{\circ}\), and by subtraction, \(m \angle 7=62^{\circ}\).
47. By the Vertical Angles Theorem, \(\angle 7 \cong \angle 5\). By the Corresponding Angles Theorem \(\angle 5 \cong \angle 1\). By the Transitive Property, \(\angle 1 \cong \angle 7\).

50. Sometimes; sample answer: \(\overleftrightarrow{A B}\) is either skew or parallel to \(\overleftrightarrow{C D}\) because the lines will never intersect and are not parallel.
51. Sometimes; sample answer: \(\overleftrightarrow{A B}\) intersects \(\overleftrightarrow{E F}\) depending on where the planes intersect.
52. Sample answer: In both theorems, a pair of angles is formed when two parallel lines are cut by a transversal. However, in the Alternate Interior Angles Theorem, each pair of alternate interior angles that are formed is congruent, whereas in the Consecutive Interior Angles Theorem, each pair of angles that are formed is supplementary.
54. One; sample answer: When the measures of one angle is known, the rest of the angles are congruent or supplementary to the given angle.
55. No; sample answer: From the definition of skew lines, the lines must not intersect and cannot be coplanar. Different planes cannot be coplanar, but they are always parallel or intersecting. Therefore, planes cannot be skew.

\section*{Slope and Equations of Lines}

\section*{LESSON GOAL}

Students classify lines as parallel, perpendicular, or neither by using the slope criteria.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

\section*{Develop:}

Slope Criteria for Parallel and Perpendicular Lines
- Determine Line Relationships When Given Points
- Determine Line Relationships When Given Graphs

Explore: Equations of Lines

\section*{Develop:}

\section*{Equations of Lines}
- Determine Line Relationships When Given Equations
- Use Slope to Graph a Line
- Write Equations of Parallel and Perpendicular Lines

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & ALI & IB & 텢) & \\
\hline Remediation: Parallel Lines and Transversals & - - & & & - \\
\hline Extension: Polygons on a Coordinate Plane & & - - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 78 of the Language Development Handbook to help your students build mathematical language related to using slope criteria to classify lines as parallel or perpendicular.
Ellillyou can use the tips and suggestions on page T 78 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l}
90 min & 1 day \\
45 min \\
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point.).
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students analyzed linear equations in slope-intercept form to determine if two lines are parallel.

\section*{8.EE.7a}

\section*{Now}

Students classify lines as parallel, perpendicular, or neither by using the slope criteria.
G.GPE. 5

\section*{Next}

Students will identify and use parallel lines using angle relationships. G.C0. 9

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students extend their understanding of parallel line relationships to the coordinate plane. They build fluency and apply their understanding by solving real-world problems related to parallel and perpendicular lines.

\section*{Mathematical Background}

The slope of a line is the ratio of its vertical rise to its horizontal run. The slope of a vertical line is undefined, and the slope of a horizontal line is zero. Two nonvertical lines have the same slope if and only if they are parallel. Two nonverticall lines are perpendicular if and only if the product of their slopes is -1 . This means that you can use slope to identify parallel and perpendicular lines. You can also use slope to graph parallel and perpendicular lines.

\section*{Interactive Presentation}


\section*{Warm Up}


\section*{Launch the Lesson}


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- classifying lines as parallel, perpendicular, or neither

Answers:
1. -3
2. \(\frac{2}{5}\)
3. \(-\frac{4}{3}\)
4. 2
5. 0

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of slope.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the (standards).

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Equations of Lines}

Objective
Students use dynamic geometry software to make conjectures about whether lines are parallel or perpendicular.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of parallel and perpendicular lines.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity
Students will construct parallel and perpendicular lines using dynamic geometry software. Students will observe relationships between slopes of parallel and perpendicular lines. Then students will write conjectures about the relationships of the slopes of parallel and perpendicular lines. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Equations of Lines}





Eevetions ef Dines

- 000000000

Explore


Explore
WEB SKETCHPAD
Students use the sketch to explore equations of lines.

Lesson 12-8 • Slope and Equations of Lines 765c

\section*{Explore Equations of Lines (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- If the slope of the original line is positive, what is the slope of a line parallel to the original line? Of a line perpendicular? Sample answer: The parallel line should have a positive slope because they should be going in the same direction. The perpendicular line would have a negative slope because the slopes are negative reciprocals.
- G iven a line \(y=-3 x+2\), what is the slope of a line perpendicular? Sample answer: Because the slopes of perpendicular lines are negative reciprocals, the slope of a perpendicular line would be \(\frac{1}{3}\).

\section*{(3) Inquiry}

How do the equations of parallel lines compare to the equations of perpendicular lines? Sample answer: The slopes of parallel lines are the same, and the slopes of perpendicular lines are negative reciprocals.
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Slope Criteria for Parallel and Perpendicular Lines}

\section*{Objective}

Students classify lines as parallel, perpendicular, or neither by comparing the slopes of the lines.

\section*{Teaching the Mathematical Practices}

3 Analyze Cases The Concept Check guides students to examine the cases of vertical and horizontal lines being parallel or perpendicular. Encourage students to familiarize themselves with all of the cases.

\section*{Important to Know}

Students may be curious why slopes of nonvertical perpendicular lines are negative reciprocals. To explain why, sketch a graph of two such lines. Note that one line must be increasing, or going up, from left to right, and that the other must be decreasing, so the signs of the slopes must be different. Note that the rise and run of one line are interchanged in the slope of the other line and that the slope have opposite signs.

\section*{Example 1 Determine Line Relationships When Given Points}

Teaching the Mathematical Practices
8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students will evaluate the reasonableness of their answer.

\section*{Questions for Mathematical Discourse}

4LI What do you know about the slopes of parallel lines? They are equal. What do you know about the slopes of perpendicular lines? The product of the slopes is equal to -1 .
OL Suppose the slope of a line is \(\frac{5}{4}\). What is the slope of a parallel line? \(\frac{5}{4}\) What is the slope of a perpendicular line? \(-\frac{4}{5}\)
[Bil Choose a point \(F\) such that \(\overleftrightarrow{C F}\) is perpendicular to \(\overleftrightarrow{A B}\). Sample answer: \((6,1)\)

\section*{Common Error}

Students may incorrectly compute slopes. Remind them that slope \(=\frac{\text { nise }}{\text { run }}\), so the rise, or change in \(y\) values, is divided by the run, or change in \(x\) values.

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


Interactive Presentation


Learn

\footnotetext{
Students tap on each button to see slope information about line relationships.
}


\section*{Interactive Presentation}


Example 2


CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 2 Determine Line Relationships When Given Graphs}

\section*{(11) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

All What is another method for finding the slope of \(\overleftrightarrow{E F}\) ? Sample answer: Start at point \((3,6)\) and count down, then over, to point \((6,-1)\). The slope of the line is equal to \(-\frac{7}{3}\).
OII. The line containing \((-2,1)\) and \((x,-2)\) has a slope of \(\frac{3}{7}\). What is the value of \(x\) ? \(x=-9\)
B1. Choose a point \(B\) so that \(\overleftrightarrow{B F}\) is parallel to \(\overleftrightarrow{D G}\) ? Sample answer: \((-1,-4)\)

\section*{Common Error}

Students may confuse \(x\)-coordinates and \(y\)-coordinates. Encourage them to slow down and check their work in finding coordinates on a graph.

\section*{Learn Equations of Lines}

\section*{Objective}

Students classify lines as parallel, perpendicular, or neither by comparing the equations of the lines.

Teaching the Mathematical Practices
1 Explain Correspondences Encourage students to explain the relationships between the equations of a line used in this Learn.

\section*{Common Misconception}

Students often neglect horizontal and vertical lines when they think about or discuss equations of lines and their relationships. Make sure you remind them about these possibilities when you are discussing these topics.

\section*{Explore Equations of Lines}

O Online Activity Use dynamic geometry software to complete the Explore.
```

S INQUIRY How do the equations of parallel lines compare to the equations of oerpendicular lines?

```

Learn Equations of Lines
An equation of a nonvertical line can be written in different but equivalent forms
Key Concept • Nonvertical Line Equations
The slope-intercept form of a linear
equation is \(y=m x+b\), where \({ }^{\text {" }}\) is
the slope of the line and is the
rinsercept


The point-slope form of a linear
equation is \(\gamma-\gamma,=m(x-x)\).
where (, , \()\) is any point on he
ine and \(m\) is the slope of the line


The equations of horizontal and vertical lines involve only one variable. Key Concept • Horizontal and Vertical Line Equations The equation of a horizontal line is \(y=b\), where \(b\) is the ysitencept af the line

The equation of a vertical line is \(=a\), where II is the \(\times\)-ntencept of the line:


Math Histor
Minute
French mathematician Gaspard Monge ( 1746 1818) is known as the father of the point-slope form of the linear equation. He is also in print the relationship between the slopes of perpendicular lines as \(a a^{\prime}+1-0\). For his work in mathematics, his name is one of 72 names inscribed on the base of the Eiffel T ower


When given the equations of two lines, you can compare the equations to determine the relationship between the lines.

\section*{Interactive Presentation}


Learn

\section*{Tap to reveal definitions and examples.}


\section*{Interactive Presentation}


\section*{Example 3}

TAP
Students tap to reveal a Study Tip.

768 Module 12 • Logical Arguments and Line Relationships

\section*{Example 3 Determine Line Relationships When Given Equations}

\section*{Teaching the Mathematical Practices}

1 Explain Correspondences Encourage students to explain the relationships between the equations of a line used in this example.

\section*{Questions for Mathematical Discourse}

What is the difference between slopes of horizontal and vertical lines? Sample answer: Horizontal lines have a slope of zero while vertical lines have an undefined slope.
OII. In part \(\mathbf{c}\), what is the \(y\)-intercept of \(y=-\frac{3}{4}(x+2)\) ? \(-\frac{3}{2}\)
BL. What is the slope of a line that is perpendicular to a vertical line? 0

\section*{Common Error}

Students may think that they are unable to solve a problem like Example 3 when they cannot find a slope of the line. This usually occurs when the lines are horizontal or vertical, so ask them whether they are sure that the line is nonvertical.

\section*{CONCEPTUAL UNDERSTANIING}

\section*{Example 4 Use Slope to Graph a Line}

Teaching the Mathematical Practices
5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as dynamic geometry software. Help them see why using this tool will help them solve problems and what the limitations are of using the tool.

\section*{Questions for Mathematical Discourse}

ALI Will the slope of \(\overleftrightarrow{Q R}\) be positive or negative? Explain. Negative; sample answer: The line goes down from left to right.
OLI. What is the slope of \(\overleftrightarrow{Q R}\) ? What is the slope of a line perpendicular to \(\overleftrightarrow{Q R}\) ? \(-\frac{2}{3} ; \frac{3}{2}\)
[Ble Write the equation of the perpendicular line in slope-intercept form. \(y=\frac{3}{2} x+1\)

\section*{Common Error}

Students may try to graph perpendicular lines, so that the lines intersect at a point with whole number coordinates. This is not always the case, as can be seen in Example 4.

Check
petermine whether each pair of lines is parallel perpendicular or neither.
a. \(y=3 x-9\); \(y=\frac{1}{j} x+2\) perpendicular
b. \(y=\frac{3}{2}-\frac{19}{9}: y-1=9(x+3) \quad\) paratlel
c. \(x=3 x=4\) parallel

8 Example 4 Use Slope to Graph a Line
DESIGN Valentina is designing a park using grid paper. She wants with the fountain that connect is perpendicular to the existing , malk that passes through points \(Q(-6,-2)\) and \(R(0,-6)\) Graph the line that represents Graph the line that represents the new sidewalk.
The slope of the existing sidewalk, \(\overleftrightarrow{Q R}\) is \(\frac{-6-(-2)}{0-(-2)}=\frac{4}{6}\)

or \(\frac{2}{3}\)
Blecause \(-\frac{2}{2}\binom{3}{\lambda}=-1\), the slope of the line perpendicular to \(\widetilde{G R}\)
through PIs ?
Graph the line that represents the new sidewalk
Step 1 Plot a point at \(\ell_{0}, 1\) ).
Step 2 Move up 3 units and then right 2 units. Plot a second point at this location.
Step \(\mathbf{3}\) Graph the line connecting these
two points.


Qoo Online Y ou can complete an Extra Example online

\section*{Interactive Presentation}


Example 4

Students use the sketch to graph parallel and perpendicular lines.

Grhink About It! Kennedy suggests that there is another line parallel to \(y=-z^{x}+3\) that contains the point \((-3,6)\). She says that the equation of the line is \(y-6=-\frac{4}{4}(x+3)\) Do you agree? Ex

No; sample answer: The equations \(y=-\frac{3}{4} z+\frac{15}{4}\) and \(y-6=-\frac{3}{3}(x+3)\) are equations for the same line. One equation is presented in slopeintercept form, and the other equation is presented in point-slope form.

Q Go Online An alternate method is available for this example.

\section*{Check}

MAPS sabella is creating a map of her town's metro lines. She knows that the A Line and the E Line are parallel. On her map, the equation that represents the \(A\) Line is \(y>8 x+11\) and the \(E\) Line passes through \((9,5)\). Write the equation in slope-intercept form that represents the Line. \(y=0-67\)


Example 5 Write Equations of Parallel and
Perpendicular Lines
Write an equation in slope-intercept form for the line parallel to
\(y=-\frac{3}{4} x+3\) containing \((-3,6)\).
The slope of \(y=-\frac{3}{4}{ }^{x}+3\) is \(-\frac{3}{4}\) so the slope of the line parallel to
it is \(-\frac{3}{4}\)
\(y=m \times+b \quad\) Slope-intercept form
\(6=-\frac{3}{4}\left(-3\left|+b \quad m=-\frac{3}{4}=d\right| x, n=(-3,6)\right.\)
\(6=\frac{3}{4}+b \quad\) Simplify.
\({ }_{4}^{15}-b \quad\) Subtract \({ }_{4}^{3}\) from each side.
So, the equation is \(y=-\frac{3}{4} x+\frac{15}{4}\).
Check
Write an equation in slope-intercept form for the line parallel to
\(y=\frac{1}{2} x+\frac{5}{2}\) containing \(\binom{3}{2}\)
\(y=\frac{1}{2}+\frac{1}{4}\)

0

\section*{Interactive Presentation}


\section*{Example 5}


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 5 Write Equations of Parallel and Perpendicular Lines}

\section*{(11) Teaching the Mathematical Practices}

3 Find the Error This example requires students to read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

\section*{Questions for Mathematical Discourse}

AL. What is the slope of a line that is perpendicular to the given line? \(m=\frac{4}{3}\)
(I). What equation represents a line that is parallel to the given line?

Write the equation in slope-intercept form. Sample answer:
\(y=-\frac{3}{4} x+21\)
BL. Write the equation of the line that is perpendicular to the line \(y=-5\) containing \((-6,-3) \cdot x=-6\)

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 2 exercises that mirror the examples & \(1-25\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(26-35\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(36-40\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(41-46\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, THEN assign:}
- Practice, Exercises 1-39 odd, 41-46
- Extension: Polygons on a Coordinate Plane
- DALEKS'Slopes of Lines, Equations of Lines

IF students score 66\%-89\% on the Checks, THEN assign:
- Practice, Exercises 1-45 odd
- Remediation, Review Resources: Parallel Lines and Transversals
- Personal Tutors
- Extra Examples 1-5
- D ALEKS'parallel, perpendicular, or oblique

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-25 odd
- Remediation, Review Resources: Parallel Lines and Transversals
- Quick Review Math Handbook: Slopes of Lines
- ALEKS parallel, perpendicular, or oblique

\section*{Practice}

Example 1
Determine whether \(\overleftrightarrow{A B}\) and \(\overrightarrow{C D}\) are parallel, perpendicular, or neither. Graph each line to verify your answer. See margin for graphs.
1. \(A(1,5), B(4,4), C(9,-10), D(-6,-5) 2 \cdot A(-6,-9), B(8,19), C(0,-4), D(2,0)\)
parallee
paraliel
3. \(A(4,2), B(-3,1), C(6,0), D(-10,8) 4 . A(8,-2), B(4,-1), C(3,1), D(-2,-9)\)
neither
perpendicular
5. \(A(8,4), B(4,3), C(4,-9), D(2,-1)\)
perpendicular \(\quad \begin{gathered}\text { 6. } A(4,-2), B(-2,-8), C(4,6), D(8,5) \\ \text { neither }\end{gathered}\) Example 2
Determine whether each pair of lines is parallel, perpendicular, or neither.

perpendicular
Example 3
Determine whether each pair of lines is parallel, perpendicular, or neither.
\(\begin{array}{ll}\text { 10. } y=2 x+4, y=2 x-10 & \text { 11. } y=-\frac{1}{2} x-12, y-3=2(x+2)\end{array}\)
12. \(y-4=3(x+5) \cdot y+3=-\frac{1}{3}(x+1)\) 13. \(y-3=6(x+2) \cdot y+3=-\quad \frac{1}{3}(x-4)\)
perpendicular
neither
14. \(x=-2, y=10\)
\(\begin{array}{ll}\begin{array}{l}x=-2, y=10 \\ \text { perpendicular }\end{array} & \begin{array}{c}\text { 15. } y=5, y=-3 \\ \text { parallel }\end{array}\end{array}\)
Example 4
Graph the line that satisfies each condition. 16-19. See margin.
16. passes through \(A(2,-5)\), parallel to \(\overleftrightarrow{B C}\) with \(B(1,3)\) and \(C(4,5)\)
17. passes through \(X(1,-4)\), parallel to \(\overleftarrow{Y Z}\) with \(Y(5,2)\) and \(Z(-3,-5)\)
18. passes through \(K(3,7)\), perpendicular to \(I \overrightarrow{L M}\) with \(L(-1,-2)\) and \(M(-4,8)\)

20. SKIING Gavin is working on an animated film about skiing. The figure shows a ski slope, represented by \(\stackrel{A B}{ }\), and one of the chairs on the chair lift, represented by point \(C\).
a. The chair needs to move along a straight line that is parallel to \(\stackrel{A B}{ }\). What is the equation of this line? \(y=\frac{1}{2} x+\frac{5}{2}\)
b. The top of the chair lift occurs at \(y=20\). Explain how Gavin can find the
coordinates of the chair when it reaches the top of the chair lift. See margin.


Write equations in slope-intercept form for a line that is parallel and a line that is perpendicular to the given line and that passes through the given point.
30. passes through \(B(6,3)\)

\section*{31. passes through \(S(-2,-4)\) \\ }


RECISION Determine whether any of the lines in each figure are parallel or perpendicular. Justify your answers. 32-34. See Mod. 12 Answer Appendix.
32.

35. CITY BLOCKS The figure shows a map of part of a city consisting of two pairs of parallel roads. If a coordinate grid is applied to this map, Ford Street would have a slope of -3 .
a. The intersection of \(\mathbf{B}\) Street and Ford Street is 150 yards east of the intersection of Ford Street
How many yards south is it? 450 yd
How many yards south is it? 450 yd
b. What is the slope of 6 th Street? Explain. -3 ; Ford Street
and 6 th Street are parallel, so they have the same slope.

C.What are the slopes of Clover and B Streets? Explain.
c. What are the slopes of Clover and B Streets? Explain. See Mod. 12 Answer Appendix. intersection of B Street and Ford Street. How many yards east of the many yards north is it? 200 yd
36. REASONING \(\overparen{A B}\) is parallel to \(\overparen{C D}\). The coordinates of \(A, B\), and \(C\) are \(A(-3,1)\), \(B(6,4)\), and \(C(1,-1)\). What is a possible set of coordinates for point \(D\) ? Describe
the reasoning you used to find the coordinates. See Mod. 12 Answer Appendix.
37. USE A MODEL A video game designer is using a coordinate plane to plan the path of a helicopter. She has already determined that the helicopter will move along straight segments from \(P\) to \(Q\) to \(R\). The designer wants the next part of the path, \(\overline{R S}\), to be perpendicular to \(\overline{Q R}\), and she wants point \(S\) to lie on the \(y\)-axis. What should the coordinates of point \(S\) be?
Justify your answer. See Mod. 12 Answer Appendix.
\[
\text { Lesson 12.8 : Slope ard Equations of Lines } 773
\]
38. Line \(p\) passes through \((1,3)\) and \((4,7)\), and line \(q\) passes through \((0,-2)\) and \((a, b)\) a. Find the slopes of lines \(p\) and \(q\). slope of \(p: \frac{4}{3}\); slope of \(q: \frac{b+2}{a}\)
b. Find possible values of \(a\) and \(b\) if \(p \| q\). Sample answer: \(a=3\) and \(b=2\)
39. STRUCTURE Let \(a\) and \(b\) be nonzero real numbers. Line \(p\) has the equation
\(y=a x+b\).
. Find the equation of the line through (5, 1) that is parallel to line \(p\). Write the equation in point-slope form. Explain your reasoning. \(y-1=a(x-5)\); the life must have slope \(a\) to be parallel to line \(p\).
b. Find the equation of the line through \((2,3)\) that is perpendicular to line \(p\). Write Find the equation of the ine through (2,3) that is perpendicular to line \(p\). Witte
the equation in slope-intercett form. Explain your reasoning. \(y=-\frac{1}{a} x+\frac{2}{a}+3\); the
line must have slope \(-\frac{1}{a}\) to be perpendicular to line \(p\).
40. CONSTRUCT ARGUMENTS The equation of line \(\ell\) is \(3 y-2 x=6\).
a. Line \(m\) is perpendicular to line \(\ell\) and passes through the point \(P(6,-2\) ). Find the equation of line \(m . y=-\frac{3}{2} x+7\)
Line \(n\) is parallel to line \(m\). Is it possible to write the equation of line \(n\) in the form \(2 x+3 y=k\) for some constant \(k\) ? Justify your argument. See Mod. 12 Answer Appendix.

Higher-Order Thinking Skills
41. ANALYZE Draw a square \(A B C D\) with opposite vertices at \(A(2,-4)\), and \(C(10,4)\). a. Find the other two vertices of the square and label them \(B\) and \(D . \quad B(2,4)\) and \(D(10,-4)\) b. Show that \(\overline{A D} \| \overline{B C}\) and \(\overline{A B} \| \overline{D C}\). See Mod. 12 Answer Appendix.
c. Show that the measure of each angle inside the square is equal to \(90^{*}\). See Mod. 12 Answer Appendix.
42. PERSEVERE Find the value of \(n\) so that the line perpendicular to the line with the equation \(-2 y+4=6 x+8\) passes through the points \((n,-4)\) and \((2,-8)\). 14
43. ANALYZE Determine whether the points at \((-2,2),(2,5)\), and ( 6,8 ) are collinear. Justify your argurment. See Mod. 12 Answer Appendix.
44. CREATE Write equations for a pair of perpendicular lines that intersect at the point at \((-3,-7)\). Sample answer: \(y=2 x-1, y=-\frac{1}{2} x-\frac{17}{2}\)
45. WRITE Write biconditionals to determine whether lines are parallel or perpendicular using slopes.
See Mod. 12 Answer Appendix.
46. FIND THE ERROR A student was asked to find the through point \(P\), given that \(A, B\), and \(P\) have passes oordinates \(A(0,3), B(2,2)\), and \(P(1,4)\). The work is shown at the right. Do you agree with the student's solution? Explain your reasoning.
See Mod. 12 Answer Appendix.

Sope of \(\overleftrightarrow{A B}=\frac{2-3}{2-0}=-1\)
So, the slope of the required line is 2 . The equation of this the is \(y=2 x+b\). The line passes through R(1, ).
To find b: \(\quad 1=2(a)+b\)
\(\begin{aligned} 1 & =8+b \\ -7 & =b\end{aligned}\)
So, the equation is \(v=2 x-7\).

774 Module 12 - Logical Arguments and Line Relationships

\section*{Answers}
1.

3.

5.

16.

18.

2.

4.

6.

17.

19.


20b. The \(y\)-coordinate will be 20, so let the coordinates of the point be \((x, 20)\). Then \(20=\frac{1}{2} x+\frac{5}{2}\). Solving for \(x\) shows that \(x=35\). The coordinates of the chair at the top of the chair lift are \((35,20)\).

\section*{LESSON GOAL}

Students identify and use parallel lines by using angle relationships.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Intersecting Lines

\section*{Develop:}

Identifying Parallel Lines
- Identify Parallel Lines
- Use Angle Relationships
- Prove Lines Parallel

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket


Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & \(\Delta l\) & INB & FIII & \\
\hline Remediation: Rate of Change and Slope & & & & 0 \\
\hline Extension: Eratosthenes & & & & \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 79 of the Language Development Handbook to help your students build mathematical language related to parallel lines and angle relationships.


\section*{Suggested Pacing}
\begin{tabular}{|c|c|}
\hline 90 min & 0.5 day \\
\hline 45 min & 1 day \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.9 Prove theorems about lines and angles.
G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper foldering, dynamic geometry software, etc.).
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students classified lines as parallel, perpendicular, or neither by using the slope criteria.
G.GPE. 5

\section*{Now}

Students identify and use parallel lines by using angle relationships.
G.CO. 9

Next
Students will use perpendicular lines to find distance between a point and a line. G.CO. 12

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students expand on their understanding of parallel lines, and they build fluency by proving theorems about parallel lines. They apply their understanding by solving real-world problems related to parallel lines.

\section*{Mathematical Background}

If two lines in a plane are cut by a transversal so that corresponding angles are congruent, then the lines are parallel. This postulate justifies the construction of parallel lines. A transversal is drawn through a given point to intersect a given line. The given point becomes the vertex for constructing an angle congruent to the one formed by the line and the transversal. The result is a pair of parallel lines cut by a transversal. This construction leads to the Parallel Postulate: If given a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skills for this lesson:
- finding slopes
- describing slopes of parallel and perpendicular lines

Answers:
1. -4
2. 0
3. \(\frac{1}{5}\)
4. equal slopes

5 . The product of the slopes is -1 .

\section*{Launch the Lesson}

Teaching the Mathematical Practices
3 Construct Arguments Students will use stated assumptions, definitions, and previously established results to prove that lines are parallel.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Explore Intersecting Lines}

Objective
Students use dynamic geometry software to analyze the relationship between pairs of related angles and parallel lines.

Teaching the Mathematical Practices
5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as dynamic geometry software. Help them see why using these tools will help to solve problems and what the limitations are of using the tools.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students use dynamic geometry software to construct alternate exterior and alternate interior angles that are congruent, and measure the slopes of the lines to see that they are parallel. Then, students will answer the Inquiry Question.

\section*{Interactive Presentation}


Explore


Explore

Students use a sketch to explore angle relationships.

\section*{Interactive Presentation}


\section*{Explore}

TYPE


Students respond to the Inquiry Question and can view a sample answer.

\section*{Explore Intersecting Lines (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Describe where alternate exterior angles lie in relation to the transversal. Sample answer: By definition, alternate exterior angles lie outside a pair of lines and on opposite (or alternate) sides of the transversal.
- Why does stating alternate exterior or interior angles congruent prove that the lines cut by the transversal are parallel? Explain using your knowledge of parallel lines. Sample answer: We found that when parallel lines are cut by a transversal, then the alternate exterior angles are congruent and the alternate interior angles are congruent. If two lines are cut by a transversal, and the alternate exterior or interior angles are congruent, then the angle relationships are true and the lines must be parallel.

\section*{(3) Inquiry}

If a pair of alternate exterior or alternate interior angles is congruent, what relationship is formed? Sample answer: The two lines being cut by the transversal are parallel.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Identifying Parallel Lines}

Objective
Students apply angle relationship theorems to identify parallel lines and find missing values.

\section*{(11) \\ Teaching the Mathematical Practices}

7 Use Structure Help students to explore the structure of parallel lines in the Learn to be able to apply them later.

\section*{Common Misconception}

Students may think that these new theorems are not necessary, because they are converses of previous theorems. Remind them that the converse of a true conditional statement is not necessarily also true, but these particular statements are special because the converses are also true.

\section*{Essential Question Follow-Up}

Students learn the theorems used to prove that lines are parallel.

\section*{Ask:}

Why is it important to know how to prove that lines are parallel using angles? Sample answer: This is useful for writing logical arguments to prove geometry theorems.

\section*{13 \\ Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Lesson 12-9} \\
\hline Explore Intersecting Lines & \multirow[t]{3}{*}{\begin{tabular}{l}
T oday's Goals \\
- Apply angle relationship theorems to identify parallel lines and find missing values.
\end{tabular}} \\
\hline OOnline Activity Use dynamic geometry software to complete the Explore. & \\
\hline INQUIRY If a pair of alternate exterior or alternate interior angles is congruent, what relationship is formed? & \\
\hline Corresponding angles are congruent when the lines cut by the transversal are parallel. The converse of this relationship is also true. & \(\xrightarrow{P} \longrightarrow\) \\
\hline Theorem 12.19: Converse of Corresponding Angles Theorem & \\
\hline If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel. & \multirow[t]{6}{*}{\begin{tabular}{l}
Study Tip \\
Euclid's Postulates \\
The father of modern geometry, Euclid (c. 300 B.C.), realized that only a few postulates were needed to prove the theorems in his day. The Parallel Postulate is one of Euclid's five original postulates.
\end{tabular}} \\
\hline Postulate 12.13: Parallel Postulate & \\
\hline If given a line and a point not on the line, then there exists exactly one line through the point that is parallel to the given line. & \\
\hline Parallel lines that are cut by a transversal create several pairs of congruent angles. These special angle pairs can be used to prove that a pair of lines is parallel. & \\
\hline Theorem 12.20: Alternate Exterior Angles Converse & \\
\hline If two lines in a plane are cut by a transversal if \(\cong \angle 5\), then so that a pair of alternate exterior angles is o\| D. congruent, then the lines are parallel. & \\
\hline Theorem 12.21: Consecutive Interior Angles Converse & , \\
\hline If two lines in a plane are cut by a transversal If \(m \quad+m \angle 6 \quad 180^{\circ}\), so that a pair of consecutive interior angles is then supplementary, then the lines are parallel. &  \\
\hline Theorem 12.22: Alternate Interior Angles Converse & 8/7 6/5 \\
\hline If two lines in a plane are cut by a transversal if \(\cong \mathbb{Z B}\), then so that a pair of alternate interior angles is congruent, then the lines are parallel. &  \\
\hline Theorem 12.23: Perpendicular Transversal Converse & \\
\hline If two lines in a plane are perpendicular to the same line, then the lines are parallel. & Go Online \\
\hline Y ou will prove Theorems 12.20,12.22, and 12.23 in Exercises 20, 19, and 18 . respectively. & 12.19 and 12.21 are available. \\
\hline \multicolumn{2}{|r|}{Lesson 12.9 - Howing Lines Parallel 775} \\
\hline
\end{tabular}

\section*{Interactive Presentation}



\section*{Interactive Presentation}


Example 1

Students tap to move through the steps.

\section*{Example 1 Identify Parallel Lines}

Teaching the Mathematical Practices
2 Different Properties Mathematically proficient students look for different ways to solve problems. Encourage them to consider the different theorems to solve the problem and to choose the method that works best for them.

\section*{Questions for Mathematical Discourse}

AL In part a, what is the relationship between \(\angle 2\) and \(\angle 8\) ? They are alternate interior angles of lines \(a\) and \(b\).

Ol. In part a, what theorem will you use to show that \(a \| b\) ? Theorem 3.22: Alternate Interior Angles Converse
B1. If you know that \(\angle 1\) and \(\angle 10\) are supplementary, determine a set of lines, if any, that are parallel. Justify your answer. Sample answer: \(\ell \| m ; \angle 10\) and \(\angle 9\) form a linear pair; \(m \angle 9+m \angle 10=\) \(180^{\circ}\) and \(m \angle 1+m \angle 10=180^{\circ} ; m \angle 9+m \angle 10=m \angle 1+m \angle 10\); \(m \angle 9=m \angle 1\). By Theorem 3.19, \(\ell \| m\).

\section*{Common Error}

Students may incorrectly think that the transversal is one of the lines they can prove is parallel to another because the transversal passes through both vertices of any angle pair that can be used to prove lines parallel. Remind students that this line is the transversal, and the parallel lines cross it but not each other.

\section*{Example 2 Use Angle Relationships}

\section*{Teaching the Mathematical Practices}

2 Create Representations Guide students to write an equation that models the situation in Example 2. Then use the equation to solve the problem.

\section*{Questions for Mathematical Discourse}

4L. What do you know about the three angles formed by the intersection of lines \(d\) and \(f\) that are not marked? Sample answer: The three angles are right angles.
Ol. What do you need to show about the angle marked \((4 y+10)^{\circ}\) to show that \(e \| f\) ? that the angle marked \((4 y+10)^{\circ}\) is a right angle
EBII Suppose the marked right angle was instead adjacent to the angle marked \((4 y+10)^{\circ}\). Could you still prove that \(e \| f\) ? Explain. No; sample answer: In that case all the angles you could use have vertices on line \(f\) and none on line \(e\).

Example 2 Use Angle Relationships
Find the value of \(y\) so that \(e I f\).
dis perpendicular to line \(\ell\) For lines eand fo to be parallel, line /must also be perpendicular to line \(d\) If linef is Merpendicular to line \(d\) then \((4 y+10)\) \(=90^{\circ}\). Solve for \(y\)

\(90=4 y+10 \quad\) Defirition of perpendicular

\(20=y\)
Check


1 Converse of Corresponding Angles Theorem b. Find \(m \angle\) CMEso that \(a \geqslant b\).

\(\begin{array}{llll}\text { A 3.6 } & \text { C. } 100^{\circ} & \text { D } 159.4^{\circ}\end{array}\)
Think About It! Lakeisha argues that we do not have enough information to determin the correct value of She says that the two angles are not corresponding angles, therefore, it does not help to assume that the two angles are
congruent. What theorems can you use to prove that line is parallel to linef?

Sample answer: Y ou can use Theorem 3.9 to show that because \(d\) and \(e\) are
perpendicular, all of the angles formed by the intersection are right angles. \(Y\) ou can then use the Converse of the Corresponding Angles Theorem to show that \((4 y+10)^{\circ}=90^{\circ}\)

\section*{Interactive Presentation}


Example 2



\section*{Interactive Presentation}


\section*{Example 3}


CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{Example 3 Prove Lines Parallel}

Teaching the Mathematical Practices
4 Apply Mathematics In Example 3, students apply what they have learned about proving lines parallel to solving a real-world problem.

Questions for Mathematical Discourse

Al. What kinds of angle relationships do we need to see in a special angle pair to prove that two lines are parallel? congruent or supplementary
OLI In the diagram, what are the parallel lines and what is the transversal? The oars are the parallel lines and the side of the boat is the transversal.
BL. What angle would the bottom pair of oars need to make with the side of the boat to ensure that both pairs of oars are parallel? \(56^{\circ}\)

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-17\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(18-22\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(23-24\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order \\
and critical-thinking skills
\end{tabular} & \(25-30\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-23 odd, 25-30
- Extension: Eratosthenes
- Q ALEKS'Proofs Involving Parallel Lines, Parallel and Perpendicular Lines

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Rate of Change and Slope
- Personal Tutors
- Extra Examples 1-3
- ALEKS'finding slopes

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Rate of Change and Slope
- Quick Review Math Handbook: Proving Lines Parallel
- ALEKS'finding slopes

\section*{Important to Know}

Digital Exercise Alert Exercises 21-22 and 27 require constructions and are not available online. To fully address G.CO.12, have students complete these exercises using their books.


Example 3
14. sooks Each orange book on the bookshelf makes a \(70^{\circ}\) angle two orange books? Explain.
Sample answer: They are parallel. congruent, the books are parallel.
IS PATTERNS A rectangle is cut along the slanted, dashed line shown in the figure. The two pieces are rearranged to form another figure. figure. Explain.
Parallelogram; sample answer: The top edges are perpendicular to the vertical line, so they are a single line.
The bottom edge is also a single line and perpendicular to
the same line as the top, so it is parallel to the top. The top edge is a transversal to the left and
right slanted edges, and the angles are supplementary. So, the left and right edges are parallel.
16. FiREWORKS The designers of a fireworks display want to have
four fireworks travel along parallel trajectories. They decide to four fireworks travel along parallel trajectories. They decide to place two launchers on a dock and two launchers on the roof of a building. To make this display work correctly,
the measure of angle 1 be? Explain. See margin.
17. REASONING Chaska is making a giant letter \(A\) to put on the
7. REASONING Chaska is making a giant letter A to put on the
rooftop of the A Is for Apple Orchard Store. The figure shows sketch of the design. of the design.

a. What should the measures of angles
tand 2 be so the horizontal part of the \(A\)
truly horizontal? Explain. See margin.
urlizo see margin.
B. When building the \(A\), Chaska makes sur
that angle 1 is correct, but when he


Mixed Exercises
18. PROOF Provide a reason for each statement in the proof of the Perpendicular

Transversal Converse.
Given: \(A\) and 2 are complementary; \(\mathbb{E C D}+\mathbb{C D}\)
Prove: \(\overline{B A}|\mid C D\)
Proof:
1. \(\mathbb{C}+C D\)
2. \(m \angle A B C=m \angle 1+m \angle\)
3. \(\angle 1\) and \(\angle 2\) are complementary
4. \(m \Delta+m, 2=90\)
5. \(\angle A B C=90\)
5. \(\angle A B C=9\)
6. \(B A \perp C\)
7. \(\overline{B A} \| \overline{C D}\)

Reasons


Angle Addition Postulate 3


Definition of complementary angles Draninsitive Property of Equality Transitive Property of Equality Definition of perpendicular if 2 lines are \(\perp\) to the same line, the
lines are


\section*{© Higher Order Thinking Skills}
25. FIND THE ERROR Sean and Daniela are determining which lines are \(\frac{\text { parallel in the figure at the right. Sean says that because } \angle 1 \equiv \angle 2 \text {, }}{W Y \| X Z}\) \(\| \frac{1}{Y Z}\). Is either of them correct? Explain your reasoning.
Daniela is correct. \(\angle 1\) and \(\angle 2\) are alternate interior angles for \(W X\) Daniela is correct. \(\angle 1\) and \(\angle 2\) are alternate interior angles for \(W X\)
and \(Y Z\). So, if atternate interior angles are congruent, then the lines are parallel.
26. ANALYZE Is Theorem 3.23 still true if the two lines are not coplanar? Draw a figure to justify your argument. See margin.
27. CREATE Draw a triangle \(A B C\).
a. Construct the line parallel to \(\overline{B C}\) through point \(A\). See margin.
b. Use measurements to justify that the line you constructed is parallel to \(\overline{B C}\)

Sample answer: Using a straightedge, the lines are equidistant. So, they are parallet.
c. Justify the construction. See margin.
28. PROOF Use the figure at the right to complete the two-column proof to prove that two lines parallel to a third line are parallel to each other.
Given: \(a \| b\) and \(b \| c\)
Prove: \(a \| c\)
Proof:

\section*{1. \(a \| b\) and \(b \| c\)}
2. \(\angle 1 \equiv \angle 3\)
3. ? \(\angle 3 \cong \angle 2\)
4. ? \(\angle 2 \cong \angle 4\)
5. ? \(\angle 1 \cong \angle 4\)
6. \(a \| c\)


WRITE Can a pair of angles be supplementary and congruent? Explain your reasoning.
Y es; sample answer: A pair of angles can be supplementary and congruent if the measure of both angles is \(90^{\circ}\), because the sum of the angle measures would be \(180^{\circ}\).
30. PROOF Refer to the figure at the right. a. If \(m \angle 1+m \angle 2=180^{\circ}\), prove that \(a \| c\). See margin. b. Given that \(a \| c\), if \(m \angle 1+m \angle 3=180^{\circ}\), prove that \(t \perp c\). See margin.

782 Module 12 - Logical Arguments and Line Relafionships

781-782 Module 12 • Logical Arguments and Line Relationships

\section*{Answers}
16. \(80^{\circ}\); The supplementary angle to the \(30^{\circ}\)-angle and \(\angle 1\) is a corresponding angle to the \(70^{\circ}\)-angle. This means that the supplementary angle to the \(30^{\circ}\)-angle and \(\angle 1\) is a \(70^{\circ}\)-angle. Therefore, \(30^{\circ}+m \angle 1+70^{\circ}=180^{\circ}\). So, \(m \angle 1=80^{\circ}\).
17a. \(108^{\circ}\); Sample answer: To ensure that the horizontal part of the \(A\) is truly horizontal, it should be parallel to the dashed line. Therefore, \(\angle 2\) and the \(108^{\circ}\)-angle are alternate interior angles, and \(m \angle 2=108^{\circ} . \angle 1\) and \(\angle 2\) are congruent angles, so \(m \angle 1=108^{\circ}\).
21.

22.

26. No; sample answer: In the figure shown, \(\overline{A B} \perp \overline{B C}\) and \(\overline{G C} \perp \overline{B C}\), but \(\overline{A B} \pm \overline{G C}\)


27a.


27c. Sample answer: \(\angle A B C\) was copied to construct \(\angle D A E\). So, \(\angle A B C \cong \angle D A E . \angle A B C\) and \(\angle D A E\) are corresponding angles, so by the Converse of the Corresponding Angles Theorem, \(\overleftrightarrow{A E} \| \overleftrightarrow{B C}\).
30a. We know that \(m \angle 1+m \angle 2=180^{\circ}\). Because \(\angle 2\) and \(\angle 3\) are a linear pair, \(m \angle 2+m \angle 3=180^{\circ}\). By substitution, \(m \angle 1+m \angle 2=m \angle 2+\) \(m \angle 3\). By subtracting \(m \angle 2\) from both sides, we get \(m \angle 1=m \angle 3\). \(m \angle 1 \cong m \angle 3\), by the definition of congruent angles. Therefore, \(a \| c\) because the corresponding angles are congruent.
30b. We know that \(a \| c\) and \(m \angle 1+m \angle 3=180^{\circ}\). Because \(\angle 1\) and \(\angle 3\) are corresponding angles, they are congruent and their measures are equal. By substitution, \(m \angle 3+m \angle 3=180^{\circ}\) or \(2 m \angle 3=180^{\circ}\). By dividing both sides by 2 , we get \(m \angle 3=90^{\circ}\). Therefore, \(t \perp c\) because they form a right angle.

\section*{Perpendiculars and Distance}

\section*{LESSON GOAL}

Students use perpendicular lines to find distance.

\section*{1 LAUNCH}

8 Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Distance from a Point to a Line

\section*{88 Develop:}

Distance Between a Point and a Line
- Distance from a Point to a Line on the Coordinate Plane
- Solve a Design Problem by Using Distance

Distance Between Parallel Lines
- Distance Between Parallel Lines

You may want your students to complete the Checks online.

\section*{3}

\section*{REFLECT AND PRACTICE}

Exit Ticket


Practice

\section*{DIFFERENTIATE}
II) View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & All & LIB & Fll| & \\
\hline Remediation: Roots & \(\bullet\) & & & \(\bullet\) \\
\hline \begin{tabular}{l} 
Extension: Perpendicular Lines in Spherical \\
Geometry
\end{tabular} & & \(\bullet\) & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 80 of the Language Development Handbook to help your students build mathematical language related to using perpendicular lines to find distance.
Elilill You can use the tips and suggestions on page T 80 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l|}
90 min & 1 day \\
45 min \\
& \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.C0.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).
G.MG. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
Coherence
Vertical Alignment

\section*{Previous}

Students identified and used parallel lines by using angle relationships.
G.CO. 9

\section*{Now}

Students use perpendicular lines to find distance.
G.C0. 12

\section*{Next}

Students will study perpendicular bisectors of triangles.
G.CO. 9 (Course 2)

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students expand on their understanding of perpendicular lines, and they build fluency by making constructions related to perpendicular lines. They apply their understanding by solving real-world problems about distances between points and lines and between parallel lines.

\section*{Mathematical Background}

The distance from a line to a point not on the line is the length of the segment perpendicular to the line from the point. This is the shortest distance from the point to the line. Distance can be used to determine parallel lines. Two lines in a plane are parallel if they are equidistant everywhere. To find the distance between two parallel lines, measure the length of a perpendicular segment whose endpoints lie on the two lines.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


Today's Vocabulary

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- finding square roots

Answers:
1. 2.24
2. 6.71
3. 9.27
4. 11.49
5. 16

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of perpendicular lines.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the questions below with the class.

\section*{Explore Distance from a Point to a Line}

\section*{Objective}

Students use dynamic geometry software to determine how to measure the shortest distance between a point and a line.

Teaching the Mathematical Practices
5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as dynamic geometry software. Help them see why using these tools will help to solve problems and what the limitations are of using the tools.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students will use dynamic geometry software to explore the distance between a line and a point not on the line. In doing so, students will discover that the shortest distance between the point and the line is along the perpendicular to the line through the point. Students apply this knowledge to a real-world situation. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}
```

Distance from a Point to a Line

```


```

Finding the Shortest Distance

```


```

 < Steg:thens the to som.7.0.
 $$
000000
$$

```

Explore


Explore

\section*{Interactive Presentation}


Explore


Explore

\section*{TYPE}
\(\square\) Students respond to the Inquiry Question and can view a sample answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Distance from a Point to a Line (continued)}

Questions
Have students complete the Explore activity.

\section*{Ask:}
- How is finding the distance between a line and a point not on the line related to finding the distance between two points? Sample answer: A line is a collection of points that follow a certain rule. To find the distance between a line and a point not on the line, you have to first find the point on the line that's closest to the point not on the line.
- Think about crossing the street. Does it make sense that the shortest distance from your location to the other side of the street is along a perpendicular line? Sample answer: My location is the point not on the line and the other side of the street is the line. When I want to use the shortest distance, it makes most sense to travel in a path perpendicular to the sidewalk and not at a different angle.

\section*{© Inquiry}

How do you measure the distance between a point and a line? Sample answer: You must first find a line that is perpendicular to the given line and passes through the given point. Then you must calculate the distance between the given point and the intersection point of the perpendicular line and the given line.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Distance Between a Point and a Line}

Objective
Students use perpendicular lines to find the distance between a point and a line.

\section*{(11) Teaching the Mathematical Practices}

1 Explain Correspondences Encourage students to explain the relationships between the point and the line used in this Learn.

\section*{Common Misconception}

Students may not understand why going through the thinking behind this concept is important. However, looking at the other lines between the point and the line shows visually why the perpendicular is the shortest, even though students do not yet have the tools to prove it.

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Talk About It
Why do you use the to find the distance between a line and a Point not on the line?

Sample answer: The perpendicular distance will always be the shortest distance between a line and \(a\) point not on the line. Study Tip Solving Systems of Equations Systems of equations can be
solved by graphing. substitution, or elimination. Kee elimination. Keep this
mind when you are finding the intersection point of perpendicular ines.

\section*{Example 1 Distance from a Point to a Line on the} Coordinate Plane
Line \(\ell\) contains points ( 1,2 ) and (5, 4). Find the distance between line \(\ell\) and the pointp 1,7 ). Step 1 Find the equation of line \(\ell_{-}\).
gegin by finding the slope of the line through points (1, 2) and \((., 4)\)
\(m=\frac{\frac{1}{x}-n}{2_{2}-1}-\frac{1-2}{1-1}-\frac{3}{4} \otimes \frac{1}{2}\)


Then write the equation of the line using the point \((1,2)\).
```

r-mv+b Slope-intercept form
m=\frac{1}{2}m|(x,y)=(1,2)
2=\frac{1}{2}+b Simplify.
\mp@subsup{2}{2}{3}=b Subtract ' from each side
The equation of line \ell is }y-\frac{1}{2}\frac{1}{2}+\mp@subsup{}{}{3

```

Step 2 Find the equation of the line perpendicular to line \(\ell\).
Write the equation of line \(w\) that is perpendicular to line \(\ell\) and contains (1, 7). Because the slope of line \(f\) is \(\frac{1}{2}\), the slope of line \(w\) is \(\rightarrow\). Write the equation of line = through \((1,7\) ) with slope - 2
\begin{tabular}{ll}
\(y=m x+b\) & Slope-intercept form \\
\(7=2(1)+b\) & in \(--2 .(6, y)-(1.7)\) \\
\(7=-2+b\) & Simplify.
\end{tabular}
\(9=b \quad\) Add 2 to each side.
The equation of the line is \(y=-2 x+9\)
Step 3 Solve the system of equations.
Find the point of intersection of lines \(\ell\) and ar
Solve the system of equations to determine the point of intersection.
\begin{tabular}{|c|c|}
\hline \(y=\frac{1}{2} \Sigma+3\) & fquation of line \(\ell\) \\
\hline \(y=-2 x+9\) & Fruation of line \(w\) \\
\hline \(y=3\) & Solve for \(y\) \\
\hline \multicolumn{2}{|l|}{Solve for \(x\)} \\
\hline \(y=-2 x+9\) & fauation of line \(w\) \\
\hline \(3=-2 x+9\) & Substitute 3 fory \\
\hline \(-6--2 x\) & Subtract 9 from each side \\
\hline \(3=x\) & Ovide each side by -2. \\
\hline
\end{tabular}

Qgo \(\qquad\)

\section*{Interactive Presentation}


\section*{Example 1}

Students tap to see the steps in the problem, enter solutions, and choose correct answers.

\section*{Example 1 Distance from a Point to a Line on the Coordinate Plane}

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation that models the situation in Example 1. Then use the equation to solve the problem.

\section*{Questions for Mathematical Discourse}

4L. How do you find the distance between two points on a coordinate plane? Use the Distance Formula: \(d=\sqrt{\left(x_{1}-x\right)^{2}+\left(y_{1}-y\right)_{2}^{2}}\)
ol In Step 1, why do you need to find the equation of line \(\ell\) ? Sample answer: You need to find the equation of line \(\ell\) to write the equation of the perpendicular line that passes through point \(P\).

BLi. Why can't you determine the coordinates of \(Q\) by looking at the diagram? Sample answer: The diagram is not always an accurate representation. To find an exact answer, you need to calculate the exact coordinates.

\section*{Common Error}

Students may find the information needed for one of the intermediate steps in the problem and stop. Remind them that this problem has multiple steps.

\section*{Apply Example 2 Solve a Design Problem by Using Distance}

\section*{1 Teaching the Mathematical Practices}

1 Make Sense of Problems and Persevere in Solving Them,
4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

\section*{Recommended Use}

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

\section*{Encourage Productive Struggle}

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

\section*{Signs of Non-Productive Struggle}

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
- H ow can you restate the problem outside of the real-world context?
-W hat information can you use to write an equation of a line in slopeintercept form?


Write About It!
Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.
(continued on the next page)

\section*{Step 4 Calculate the distance between pand \(Q\).}
use the Distance Formula to determine the distance between \(P(1,7)\)
and \(\mathrm{Q}(\mathrm{P}, 3)\).
\begin{tabular}{|c|c|}
\hline \(d=\sqrt{(x-1)^{2}}+(6-x)^{2}\) & Distance Formula \\
\hline \(=\sqrt{(3-1)^{2}+(1-7)^{2}}\) & \(t_{2}=3, x_{0}=1\) and \(y_{2}=3\) and \(y_{2}=7\) \\
\hline \(-\sqrt{20}\) & Simplify. \\
\hline
\end{tabular}

The distance between point \(\rho\) and line \(\ell\) is \(\sqrt{ } 20\) or about 4.47 units.

\section*{Check}

Line \(i\) contains points \((-5,3)\) and \((4,-6\), Find the distance between line \(n\) and point \(G(2,4)\). Found to the nearest tenth, if necessary.
-1.5 .7 units

- Apply Example 2 Solve a Design

Problem by Using Distance

\section*{AMUSEMENT PARK Th}
developers of an
to build a new attraction.
According to park
regulations, the entran
to each attraction must be
at least 10 yards from the center of Main Street. In the design plans, the entrance to the new attraction is located at \(A(-6,-10)\), and Main Street contains the points ( \(-1,3\) ) and ( \(11,-9\) ). If each unit represents


1 yard, will the new attraction comply with park regulations? 1 What is the task?
Describe the task in your own words. Then list any questions that you may have. How can you find answers to your questions?
Sample answer: I need to determine whether the entrance to the new attraction is at least 10 yards from the center of Main Street. How can I epresent Main Street as a linear equation? How can I find the
Aerpendicular distance from the entrance to the center of Main Street? can review using points to write the equation of a line, and I can feview finding the perpendicular distance between a point and a line.
(continued on the next page)

\section*{Interactive Presentation}


Example 2



786 Module 12 • Logical Arguments and Line Relationships

\section*{DIFFERENTIATE}

\section*{Language Development Activity ALI ㅋL}

Kinesthetic Learners Identify examples of lines in the classroom, like the grout lines of the tile floor or the frame of the chalkboard. Have students work in pairs to measure the distance of various points along one line to a fixed point. Have students discuss their findings. Facilitate the discussions so that students are able to see the relationships of the segments and distances between a point and a line.

\section*{Learn Distance Between Parallel Lines}

Objective
Students find the distance between parallel lines by using perpendicular distance.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of parallel lines to understand how to find the distance between them.


\section*{Interactive Presentation}

\section*{Distance Betmeen Paraibet Uines}






Learn
TYPE
C| \(\begin{aligned} & \text { Students answer a question to show they } \\ & \text { understand distance between parallel } \\ & \text { lines }\end{aligned}\) lines.


\section*{Interactive Presentation}


\section*{Example 3}


Students tap to move through the steps of the solution.

Students complete the Check online to determine whether they are ready to move on.

\section*{Example 3 Distance Between Parallel Lines}

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation that models the situation in Example 3. Then use the equation to solve the problem.

\section*{Questions for Mathematical Discourse}

Al. What do you know about the distance between two parallel lines? Sample answer: Parallel lines are everywhere equidistant.
OLL What is the slope of a line perpendicular to the parallel lines? \(\frac{1}{3}\)
B1. Is the point used in the problem the only point through which to draw the perpendicular? No; sample answer: You could use any point because the distance between the lines is always the same.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-17\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(18-24\) \\
\hline 2 & \begin{tabular}{l} 
exercises that extend concepts learned in this \\
lesson to new contexts
\end{tabular} & \(25-28\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(29-34\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks,}

THEN assign:
- Practice, Exercises 1-27 odd, 29-34
- Extension: Perpendicular Lines in Spherical Geometry
- ALEKS'Parallel and Perpendicular Lines

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Roots
- Personal Tutors
- Extra Examples 1-3
- ALEKS'Radicals

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Roots
- Quick Review Math Handbook: Perpendiculars and Distance
- D ALEKS Radicals

\section*{Important to Know}

Digital Exercise Alert Exercises 23-24 and 32 require constructions and are not available online. To fully address G.C0.12, have students complete these exercises using their books.

\section*{Practice}

Examples 1 and 2
Find the distance between point \(P\) and line \(\ell\).
1. Line \(\ell\) contains points \((0,-3)\) and (7, 4). Point \(P\) has coordinates (4, 3). \(\sqrt{2}\) or about 1.41 units
2. Line \(\ell\) contains points \((11,-1)\) and \((-3,-11)\). Point \(P\) has coordinates \((-1,1)\). \(\sqrt{74}\) or about 8.60 units
3. Line \(\ell\) contains points ( \(-2,1\) ) and (4, 1). Point \(P\) has coordinates (5, 7). 6 units
4. Line \(\ell\) contains points ( \(4,-1\) ) and (4, 9). Point \(P\) has coordinates ( 1,6 ). 3 units
5. Line \(\ell\) contains points (1.5) and (4, -4). Point \(P\) has coordinates \((-1,1)\) ). \(\sqrt{10}\) or about 3.16 units
6. Line \(\ell\) contains points \((-8,1)\) and (3, 1). Point \(P\) has coordinates \((-2,4) . \quad 3\) units
7. DESIGN Dante is designing a poster for prom using a design program with a coordinate grid. He starts by creating a geometric border. Dante wants the text
on the poster to be at least 3 inches away from the top left-hand comer of the
border. The border contains the points \((0,7)\) and \((7,14)\). If Dante places the text at
( 7,8 ), is the text at least 3 inches away from the border? If yes, how far away is the text from the border? Let every unit represent an inch. Round your answer to the nearest hundredth, if needed. yes; 4.24 in .
8. PHYsics Mrs. Holmes's physics class is using 3D-printing software to create miniature bridges that can hold at least 5 pounds. Teams will print multiple parts 6 of the bridges and then assemble the parts. One team wants there to be at least the bridge contains the points \((2,10)\) and \((16,3)\). If the upper rail contains the point ( 5,1 , will the bridge meet the tearn's specifications? If yes, how far apart are the rails? Let every unit represent an inch. Round your answer to the nearest hundredth, if needed. yes; 6.71 in.

Lesson 12-10 . Perpendiculary and Distance 789

\section*{Example 3}
\(\begin{array}{lcl}\text { Find the distance between each pair of parallel lines with the given equations. } \\ \begin{array}{ccc}\text { 9. } y=7 & \text { 10. } x=-6 & x=5\end{array} & \begin{array}{l}\text { 11. } y=3 x \\ y=-1\end{array} & y=3 x+10 \\ 8 \text { units } & 11 \text { units } & \sqrt{10} \text { or about } 3.16 \text { unit }\end{array}\)


Mixed Exercises
Find the distance from the line to the given point.
\(\begin{array}{ccc}\text { 18. } y=-3 ;(5,2) & \text { 19. } y=\frac{1}{6} x+6 ;(-6,5) & 20 . x=4 ;(-2,5) \\ 5 \text { units } & 0 \text { units } & 6 \text { units }\end{array}\)
21. TELEPHONE WIRES Isaiah works for a telephone company. He rewired some telephone wires on a pole. How can Isaiah use perpendicular distances to confirm that
the wires are parallel? Sample answer saiah can measure the perpendicular distance between the wires in two different places. If the distances are equal, then the wires are parallel.

2. STATE YOUR ASSUMPTION A city planner is designing a new park using a map of the city on a coordinate plane. The planner wants the entrance of the park to be at least 4 meters away from Washington Avenue. On the map, Washingto venue contains the points \((2,-4)\) and \((11,-1)\)

4 fthe city planner wants to build the entrance of the park at ( 3,3 , will the entrance be at least 4 meters away from Washington Avenue? If yes, how far
away will the entrance be from the street? Let every unit represent 1 meter. Round your answer to the nearest hundredth, if needed yes; 6.32 m
b. What assumption did you make while solving this problem? Sample answer: I assumed that the section of Washington Avenue between the given points was straight.
23. \(c_{0}\) to EF
 Constr

25. REASONING The diagram at the right show the pat walked from the tee box to where his ball the path that Mark path the shortest possible one from the tee box to the golf ball? Explain why or why not
No; sample answer: A path that is perpendicular to the tee box would be the shortest. The angle that the tee box makes with the path that Mark walked is less than \(90^{\circ}\), so it is not the shortest possible path.
26. \(A B\) has a slope of 2 and midpoint \(M B, 2)\). \(A\) segment perpendicu
to \(\overline{A B}\) has midpoint \(P(4,-1)\) and shares endpoint \(B\) with \(A B\)
a. Graph the segments. See margin.
\(A(4,4), B(2,0)\)
27. What does it mean if the distance between a point fand

Sample answer: The point is on the line. The two lines are the same line.
28. PROOF Copy and complete the two-column proof of Theorem 12.24. Given: \(\ell\) is equidistant to \(m\) and \(n\) is equidistant to \(m\)


\section*{- Higher-Order Thinking Skills}

29 Wirt Summarize the steps that are necessary to find the distance between a Tair of parallel lines given the equations of the two lines.
Sample answer: First, a point on one of the parallel lines is found. Then the line that is perpendicular to the line through the point is found. Then the point of intersection is step. Last, the Distance Formula is used to determine the distance between the pair of intersection points. This value is the distance between the pair of parallel lines.
30. PERSEVERE Suppose a line perpendicular to a pair of parallel lines intersects th lines at the points \((a, 4)\) and \((0,6)\). If the distance between the parallel lines is \(\sqrt{ } 5\). find the value of \(\sigma\) and the equations of the parallel lines. \(a= \pm 1 ; y=\frac{1}{2^{*}}+6\) and \(y=\gamma^{t}+\frac{\}}{2}\) ocy \(y=-\frac{1}{2^{*}}+6\) and \(y=\frac{1}{y^{2}} v+\frac{7}{2}\)
```

31. ANAL YZE Determine wh
Justify your argument.
```

The distance between a line and a plane can be found
Sometimes; sample answer: The distance can only be found if the line is parallel to the plane.
32. CREATE Draw an irregular convex pentagon using a straightedge

Use a compass and straightedge to construct a perpendicular line between
one vertex and a side opposite the vertex. See margin.
. Use measurement to justify that the constructed line is perpendicular to the
side chosen. See margin.
c. Use mathematics to justify this conclusion. See margin.
33. werTE Rewrite Theorem 12.24 in terms of two planes that are equidistant from
a third plane. Sketch an example. See margin.
34. FIND THE ERROR Harold draws the segments \(A B\) and \(C D\) shown below using a straightedge. He claims that these two lines, if extended in both directions, wil ever intersect. Olga claims that the lines wisenty intersect. Who is correct? Explain your reasoning.
points fand \(D\) is 1.35 cm . Because the lines are not equidistant everywhere,
the lines will eventually intersect when they are extended.


792 Module 12. agical Arguments and Line Relationships

\section*{Answers}
23.

24.

\(26 a\).


32a. Sample answer:
32b. Sample answer: Using a protractor, the measurement of the constructed angle is equal to \(90^{\circ}\). So, the line constructed from vertex \(P\) is perpendicular to the nonadjacent chosen side.

32c. Sample answer: The same compass setting was used to construct points \(A\) and \(B\). Then the same compass setting was used to construct the perpendicular line to the chosen side. Because the compass setting was equidistant in both
 steps, a perpendicular line was constructed.
33. If two planes are each equidistant from a third plane, then the two planes are parallel to each other.


\section*{Rate Yourself \(\overbrace{8}^{8}\) 名}

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

\section*{Answering the Essential Question}

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.
-Why are conjectures important in a logical argument?
- Why is it important to understand the truth values of combinations of statements?
- Why is it important to understand the laws of Detachment and Syllogism for understanding logical arguments?
-Why is it important to learn different proof styles?
-Why is it important to know how to use right angle theorems?
- Why is it important to understand and use theorems about parallel lines?
- Why is it important to know how to prove that lines are parallel using angles?

Then have them write their answer to the Essential Question.

\section*{DINAH ZIKE FOLDABLES}

A completed Foldable for this module should include the Key Concepts related to reasoning and proof.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on this topic:

\section*{Congruence, Proof, and Constructions.}
- Prove Geometric Theorems

Test Practice
2 OPEN RESPONSE Foints \(X, Y\), and \(Z\) are collinear, and \(Y\) is the midpoint of \(X Z\). Find value of \(B\) (Lesson 12-5)

11
3. MUL TIPLE CHOICE Point \(B\) is the midpoint of \(\operatorname{CC}: A B=2 x+5\) and \(B C=5-1\). What is the length of \(A B\) ? Lesson 12-5)
A. 2 units
C. 18 units
D. 21 units
4. MUL TIPLE CHOICE Vm/C \(=(20)\) and m/3-( 3 र), whet is \(m \angle 1\) in degrees?

A 111
C. 54
D. 72
of \(A C\), and point \(C\) is the midpoint of \(A D\).
of \(A C\), and point \(C\) is the midpoint of \(A D\).
    e midpoint of \(A D\)
    e midpoint of \(A D\)
        5
        5

\section*{Review and Assessment Options}

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

\section*{Review Resources}

Put It All Together: Lessons 12-1 through 12-3
Vocabulary Activity
Module Review

\section*{Assessment Resources}

Vocabulary Test
ALl Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

\section*{Test Practice}

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-15 mirror the types of questions your students will see on online assessments.
\begin{tabular}{|l|l|c|}
\hline Question Type & Description & Exercise(s) \\
\hline Multiple Choice & Students select one correct answer. & \(3,4,12,15\) \\
\hline Multi-Select & \begin{tabular}{l} 
Multiple answers may be correct. \\
Students must select all correct \\
answers.
\end{tabular} & 7,13 \\
\hline Table Item & \begin{tabular}{l} 
Students complete a table by \\
entering in the correct values.
\end{tabular} & 9 \\
\hline Open Response & \begin{tabular}{l} 
Students construct their own \\
response.
\end{tabular} & \begin{tabular}{c}
\(1,2,5,6,8\), \\
\(10,11,14\)
\end{tabular} \\
\hline
\end{tabular}

To ensure that students understand the standards, check students' success on individual exercises.
\begin{tabular}{|l|c|c|}
\hline Standard(s) & Lesson(s) & Exercise(s) \\
\hline G.C0.1 & \(12-7\) & 7 \\
\hline G.C0.9 & \(12-5,12-6,12-712-91-6,11-13\) \\
\hline G.C0.12 & \(12-10\) & 15 \\
\hline G.GPE.5 & \(12-8\) & \(8-10\) \\
\hline G.MG.3 & \(12-10\) & 14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 7. Mul ti-SELECT\$ elect all the statements that 10 . describe parallel lines. (Lesson 12-7) & PENRESPONSE Write an equation in slope-intercept form for the line that passes \\
\hline (-) Il lines are parallel, then they are coplanar. & through ( \(-3,2\) ), perpendicular to \(=\frac{1}{2} v+9\). \\
\hline B. If lines are parallel, then they are not coplane & Lesson 12-8)
\[
y=-2 x-4
\] \\
\hline C. If lines are parallel, then they intersect. & \\
\hline 6) "l lines are parallel, then they do not htersect. & 11. Pen response \(A \vec{A} \mid \overrightarrow{C D}\), what is \(m \angle A C D\) ? (Lesson 12-9) \\
\hline Elf lines are parallel, then they are not skew. & \\
\hline 8. OPEN RESPONSE A line passes through points at \((9,5)\) and \((4,3)\). What is the slope of the line perpendicular to this line? (Lesson 12-8)
\[
-\frac{5}{2}
\] & \[
102^{*}
\] \\
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
2. OPEN RESONSE Three lines have these equations: \\
Line \(m: y=3 x-7\) \\
Line \(n: y=\frac{2}{3}(x+0\) \\
Line \(p: y=-\frac{3}{2} x+4\) \\
Identify the lines that have a perpendicular relationship. Lesson 12-8) \\
tines \(m\) and \(p\)
\end{tabular}} & 12. MUL TIPLE CHOICE \(h\) the diagram, \(\angle G D E\) and \(\angle P E F\) are supplementary, but \(\angle G O E\) is not congruent to \(\angle E F G\) \\
\hline & * \\
\hline &  \\
\hline &  \\
\hline & Which lines are parallel? (Lesson 12-9) \\
\hline & A. \(D=1 \overleftrightarrow{G F}\) \\
\hline & - \(\stackrel{\rightharpoonup}{\text { b }} \| \overrightarrow{E F}\) \\
\hline & C. \(\overleftrightarrow{D E} \| \overrightarrow{O F}\) and \(\stackrel{\rightharpoonup}{D G} \backslash \overleftrightarrow{E F}\) \\
\hline & D. Neither pair of lines is parallel. \\
\hline \multicolumn{2}{|r|}{Module 12 Review - logical Arguments and Line Relationships 795} \\
\hline
\end{tabular}
13. \(\#\) LT-SELECT Usin \({ }_{0}\) the given figure, which theorem(s) could be used to prove the lines gre parallel? Select all that apply.
Lesson 12-9


A Alternate Exterior Angles Converse
Alternate Interior Angles Converse
Consecutive Interior Angles Converse e) corresponding Angles Converse (F) Perpendicular Transversal Converse (F) None of the above
14. OPEN RESPONSE Two ships follow the parallel paths shown on the map.

15. MUL TIPLE CHOICE Which indicates the correct order of steps for the construction of a perpendicular line through a point on the ine using dynamic software? (Lesson \(12-19\)
w
x

A. \(X, W, Y, Z\)
(8) \(X, W, Z, Y\)
C. \(W, X, Y, Z\)
O.W, X, Z, Y


If one unit is 1 nautical mile, what is the shortest distance between the two paths? Round your answer to the nearest tenth. Lesson 12-10
2.8 nautical mi
47.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(p\) & \(q\) & \(\sim \sim p-q p\) & \(q q \rightarrow p\) & \(\sim p \rightarrow \sim q\) & \(\sim q \rightarrow \sim p\) & \\
\hline T & T & F & F & T & T & T & T \\
\hline T & F & F & T & F & T & T & F \\
\hline F & T & T & F & T & F & F & T \\
\hline F & F & T & T & T & T & T & T \\
\hline
\end{tabular}

Sample answer：Because column 5 is the same as column 8，the conditional is equivalent to its contrapositive．Because column 6 is the same as column 7 ， the converse and the inverse are equivalent．
48．Sample answer：Because they are logically equivalent，a conditional and its contrapositive always have the same truth value．The inverse and converse of conditional are also logically equivalent and have the same truth value．The conditional and its contrapositive can have the same truth value as its inverse and converse，or it can have the opposite truth value of its inverse and converse．
50．Sample answer：If four is divisible by two，then birds have feathers．For the converse，inverse，and contrapositive to be true，the hypothesis and the conclusion must both be either true or false．

\section*{Lesson 12－4}

18．Given：\(P Q=4(x-3)+1, Q R=x+10\) ，and \(x=7\)
Prove：\(\overline{P Q} \cong Q R\)
Proof：From the given，\(P Q=4(x-3)+1\) and \(Q R=x+10\) ．
Because \(x=7, P Q=4(7-3)+1=17\) and \(Q R=7+10=17\) by
the Substitution Property of Equality．By substitution \(P Q=Q R\) ．Any two line segments that have the same length are congruent，so \(\overline{P Q} \cong Q R\) ．
25．Ana；sample answer：The proof should begin with the given，which is that \(\overline{A B}\) is congruent to \(\overline{B D}\) and \(A, B\) ，and \(D\) are collinear．Therefore，Ana began the proof correctly．
26．Sample figure shown．Sample answer：It satisfies Postulates 3.1 and 3.3 because points \(A\) and \(B\) are on line \(n\) ．It satisfies Postulates 3.2 and 3.4 because 3 points lie in the plane．It satisfies Postulate 3.5 because points \(A\) and \(B\) lie in plane \(P\) ，so line \(n\) also lies in plane \(P\) ．


28．Sample answer：When writing a proof，you start with something that you know is true（the given），and then use logic to develop a series of steps that connect the given information to what you are trying to prove．
29．Sometimes；sample answer：If the points were noncollinear，then there would b exactly one plane by Postulate 3.2 shown by Figure 1 ．If the points were collinear， then there would be infinitely many planes．Figure 2 shows what two planes through collinear points would look like．More planes would rotate around the three points．

Figure 1
Figure 2



30．Always；sample answer：Because a plane contains at least three noncollinear points and there is exactly one line through any two points， there must be at least two distinct lines in plane．


\section*{Lesson 12－5}

14．Given：\(A B C D\) is a square．
Prove：\(\overline{A C} \cong \overline{B D}\)
Proof：
Statements（Reasons）
1．\(A B C D\) is a square．（Given）
2．\(A B=B C=C D=D A\)（Definition of a square）
3．\((A C)^{2}=(A B)+(B C),{ }^{2}\)
\((B D)^{2}=(A B)^{2}+(A D)\) ，4Pythagorean Theorem）
4．\((B D)^{2}=(A B) \neq(B C)\)（Sabbstitution Property）
5．\((A C)^{2}=(B D)\)（Pransitive Property of Equality）
6．\(A C= \pm \sqrt{(B D)^{2}}\)（Square Root Property）
7．\(A C=B D\)（Definition of square root）
8．\(\overline{A C} \cong \overline{B D}\)（Definition of \(\cong\) segments）
15．Sample answer：


16．Sample answer：An example of the Transitive Property could be If \(A B=B C\) and \(B C=E F\) ，then \(A B=E F\) ．However，an example that illustrates the Substitution Property，and cannot be justified using the Transitive Property， would be If \(A B=B C\) and \(A B+E F=G H\) ，then \(B C+E F=G H\) ．
17． No ；sample answer：The Segment Addition Postulate only applies to points that are collinear，but points \(P, Q\) ，and \(R\) are not collinear．
18．Sample answer：Paragraph proofs and two－column proofs both use deductive reasoning presented in a logical order along with the postulates， theorems，and definitions used to support the steps of the proofs．
Paragraph proofs are written as a paragraph with the reasons for each step incorporated into the sentences．Two－column proofs are numbered and itemized．Each step of the proof is provided on a separate line with the support for that step in the column beside the step．
19．Because \(\overline{P Q} \cong \overline{R S}\) and congruent segments have equal lengths，\(P Q=R S\) ． Because \(Q\) is the midpoint of \(\overline{P R}, P Q=Q R\) ．By the Substitution Property of Equality，\(Q R=R S\) so \(R\) is the midpoint of \(\overline{Q S}\) ．

\section*{Lesson 12－6}

23．Statements（Reasons）
1．\(\ell \perp m\)（Given）
2．\(\angle 1\) is a right angle．（Def．of \(\perp\) ）
3．\(m \angle 1=90^{\circ}\)（Def．of rt．angles）
4．\(\angle 1 \cong \angle 4\)（Vert．Angles Thm）
5．\(m \angle 1=m \angle 4\)（Def．of \(\cong\) angles）
6. \(m \angle 4=90^{\circ}\) (Subs.)
7. \(\angle 1\) and \(\angle 2\) form a linear pair.
\(\angle 3\) and \(\angle 4\) form a linear pair. (Def. of linear pairs)
8. \(m \angle 1+m \angle 2=180^{\circ}, m \angle 4+m \angle 3=180^{\circ}\) (Linear pairs are supp.)
9. \(90^{\circ}+m \angle 2=180^{\circ}, 90^{\circ}+m \angle 3=180^{\circ}\) (Subs.)
10. \(m \angle 2=90^{\circ}, m \angle 3=90^{\circ}\) (Subtraction)
11. \(\angle 2, \angle 3\), and \(\angle 4\) are rt. angles. (Def. of rt. angles (Steps 6,10 ))
24. Statements (Reasons)
1. \(\ell \perp m\) (Given)
2. \(\angle 1\) and \(\angle 2\) are rt. angles ( \(\perp\) lines intersect to form 4 rt . angles.)
3. \(\angle 1 \cong \angle 2\) (All rt. angles \(\cong\).)
25. Statements (Reasons)
1. \(\angle 1 \cong \angle 2, \angle 1\) and \(\angle 2\) are supplementary. (Given)
2. \(m \angle 1+m \angle 2=180^{\circ}\) (Def. of supp. angles)
3. \(m \angle 1=m \angle 2\) (Def. of \(\cong\) angles )
4. \(m \angle 1+m \angle 1=180^{\circ}\) (Subs.)
5. \(2(m \angle 1)=180^{\circ}\) (Subs.)
6. \(m \angle 1=90^{\circ}\) (Div. Prop.)
7. \(m \angle 2=90^{\circ}\) (Subs. (steps 3, 6))
8. \(\angle 1\) and \(\angle 2\) are rt. angles. (Def. of rt. angles)
26. Statements (Reasons)
1. \(\angle 1 \cong \angle 2\) (Given)
2. \(\angle 1\) and \(\angle 2\) form a linear pair. (Given)
3. \(\angle 1\) and \(\angle 2\) are supplementary. (Linear pairs are suppl.)
4. \(\angle 1\) and \(\angle 2\) are rt. angles. (If angles \(\cong\) and suppl., they are rt. angles.)
28. \(120^{\circ}\)
\(m \angle A+m \angle B=180^{\circ}\)
\(3 x+(x+20)=180\)
\[
4 x+20=180
\]
\[
4 x=160
\]
\[
x=40
\]
\(m \angle A=3 x=3\left(40^{\circ}\right)=120^{\circ}\)
Because \(\angle C \cong \angle A, m \angle C=m \angle A\) so \(m \angle C=120^{\circ}\).
29. Sample answer: \(m \angle W X Y=90^{\circ}\)

Given: \(m \angle W X Z=45^{\circ}, \angle W X Z \cong \angle Y X Z\)
Prove: \(m \angle W X Y=90^{\circ}\)
Proof:
Statements (Reasons)
1. \(m \angle W X Z=45^{\circ}, \angle W X Z \cong \angle Y X Z\) (Given)
2. \(m \angle W X Z=m \angle Y X Z\) (Def. of \(\cong \angle s)\)
3. \(m \angle Y X Z=45^{\circ}\) (Substitution)
4. \(m \angle W X Y=m \angle W X Z+m \angle Y X Z\) (Angle Add. Post.)
5. \(m \angle W X Y=45^{\circ}+45^{\circ}\) (Substitution)
6. \(m \angle W X Y=90^{\circ}\) (Substitution)
30. Sample answer: First, show that \(B C=C D\) and \(B C+C D=B D\). Then use substitution to show that \(C D+C D=B D\) and \(2 C D=B D\). Divide to show that \(C D=\frac{1}{2} B D\), so \(A B=C D\). That means that \(A B \cong C D\)
31. Each of these theorems uses the words or to congruent angles indicating that this case of the theorem must also be proved true. The first proof of each theorem only addressed the to the same angle case of the theorem.

\section*{Proof of the Congruent Complements Theorem}
(Case 2: Congruent Angles)
Given: \(\angle A B C \cong \angle D E F, \angle G H\) is complementary to \(\angle A B C, \angle J K L\) is complementary to \(\angle D E F\).
Prove: \(\angle G H I \cong \angle J K L\)



\section*{Proof:}

\section*{Statements (Reasons)}
1. \(\angle A B C \cong \angle D E F, \angle G H\) is complementary to \(\angle A B C, \angle J K L\) is complementary to \(\angle D E F\). (Given)
2. \(m \angle A B C+m \angle G H I=90^{\circ}, \angle D E F+\angle J K L=90^{\circ}\) (Def. of compl. angles)
3. \(m \angle A B C=m \angle D E F\) (Def. of cong. angles)
4. \(m \angle A B C+m \angle J K L=90^{\circ}\) (Substitution)
5. \(90^{\circ}=m \angle A B C+m \angle J K L\) (Symmetric Property of Equality)
6. \(m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L\) (Transitive Property of Equality)
7. \(m \angle A B C-m \angle A B C+m \angle G H I=m \angle A B C-m \angle A B C+m \angle J K L\) (Subtraction Property)
8. \(m \angle G H I=m \angle J K L\) (Substitution)
9. \(\angle G H I \cong \angle J K L\) (Def. of \(\cong\) angles)

Proof of the Congruent Supplements Theorem (Case 2: Congruent Angles)
Given: \(\angle A B C \cong \angle D E F, \angle G H\) I is supplementary to \(\angle A B C\),
\(\angle J K L\) is supplementary to \(\angle D E F\).
Prove: \(\angle G H I \cong \angle J K L\)


\section*{Proof:}

\section*{Statements (Reasons)}
1. \(\angle A B C \cong \angle D E F, \angle G H\) is supplementary to \(\angle A B C, \angle J K L\) is supplementary to \(\angle D E F\). (Given)
2. \(m \angle A B C+m \angle G H I=180^{\circ}, m \angle D E F+m \angle J K L=180^{\circ}\) (Def. of suppl. angles)
3. \(m \angle A B C=m \angle D E F\) (Def. of cong. angles)
4. \(m \angle A B C+m \angle J K L=180^{\circ}\) (Substitution)
5. \(180^{\circ}=m \angle A B C+m \angle J K L\) (Symmetric Property of Equality)
6. \(m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L\) (Transitive Property of Equality)

796b Module 12 - Answer Appendix
7. \(m \angle A B C-m \angle A B C+m \angle G H I=m \angle A B C-m \angle A B C+m \angle J K L\) (Subtraction Property)
8. \(m \angle G H I=m \angle J K L\) (Substitution)
9. \(\angle G H I \cong \angle J K L\) (Def. of \(\cong\) angles)

\section*{Lesson 12-8}
26. \(x=8\)

28. \(x=15\)

27. \(y=-8\)

29. \(y=0\)

32. Yes,\(\underset{A B \perp}{ } \overleftrightarrow{A C} C\) because the slope of \(\overleftrightarrow{A B}\) is \(-\frac{1}{3}\), the slope of \(\overleftrightarrow{A C}\) is 3 , and \(-\frac{1}{3} \cdot 3=-1\).
33. No; none of the slopes are equal, and no two of the slopes have a product of -
34. Yes; \(\overleftrightarrow{P Q \|} \overleftrightarrow{T U}\) because both lines have a slope of \(-\frac{2}{3}\).
\(35 c\). Both have a slope of \(\frac{1}{3}\) because both are perpendicular to Ford and 6th, and the slope of a perpendicular is given by the negative reciprocal.
36. Sample answer: \(D(4,0)\). The slope of \(A \overleftrightarrow{A \text { is }} \frac{4-1}{6-(-3)}=\frac{1}{3} ; \overleftrightarrow{A B} \| \overleftrightarrow{C D}\), so the slope of \(\overleftrightarrow{C D}\) must also be \(\frac{1}{3}\). To find the possible coordinates for \(D\), start at \(C(1,-1)\) and move 3 units right and 1 unit up. The point is \(D(4,0)\).
37. \(S\left(0,-5 \frac{1}{2}\right)\); The slope of \(\overline{Q R}\) is \(\frac{2-4}{3-(-2)}=-\frac{2}{5}\) so the slope of \(\overline{R S}\) is \(\frac{5}{2}\). Let the coordinates of \(S\) be \((0, y)\) because \(S\) must be on the \(y\)-axis. Solve \(\frac{5}{2}=\frac{y-2}{0}\) for \(y . y=-5 \frac{1}{2}\), so the coordinates of \(S\) are \(\left(0,-5 \frac{1}{2}\right)\).
40b. No; sample answer: Because line \(n\) is parallel to line \(m\), its slope must be \(-\frac{3}{2}\), but any line with the equation \(2 x+3 y=k\) would have a slope of \(-\frac{2}{3}\) because \(2 x+3 y=k\) can be rewritten in slope-intercept form as \(y=-\frac{2}{3} x+\frac{k}{3}\).
41b. Sample answer: The slopes of \(\overline{A B}\) and \(\overline{D C}\) are undefined, so they are parallel to each other. The slopes of \(\overline{A D}\) and \(\overline{B C}\) are 0 , so they are parallel to each other.

41c. Sample answer: Because the slope of \(\overline{A B}\) is undefined and the slope of \(\overline{B C}\) is zero, the lines are perpendicular to each other. Therefore, they form a right angle, which measures \(90^{\circ}\). The same logic applies to all of the sides.
43. \(Y\) es; the slope of the line through the points \((-2,2)\) and \((2,5)_{4}^{3}\) is The slope of the line through the points \((2,5)\) and \((6,8) \frac{3}{4}\) Because these lines have the same slope and have a point in common, their equations would be the same. Therefore, all the points are on the same line, and all the points are collinear.
45. Two nonvertical lines are parallel if and only if they have the same slope. Two nonvertical lines are perpendicular if and only if the product of their slopes is -1 .
46. Disagree; sample answer: The student calculated the value of \(b\) incorrectly. The student should have substituted \(x=1\) and \(y=4\) and written \(4=2(1)+\) \(b\), which means \(b=2\). So the correct equation of the line is \(y=2 x+2\).

\section*{Module Goals}
- Students perform and use rigid motions including rotations, translations, and reflections.
- Students perform and use compositions of transformations.
- Students explore symmetry using transformations.

\section*{Focus}

\section*{Domain: Geometry}

Standards for Mathematical Content:
G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Also addresses G.CO.3, G.CO.4, and G.CO.6.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

\section*{3 Be Sure to Cover}

To completely cover G.CO.5, go online to assign the following activities:
- Reflect a Figure in a Line (Construction, Lesson 13-1)
- Determining Congruence with Reflections (Tracing Activity, Lesson 13-1)
- Representing Reflections (Tracing Activity, Lesson 13-1)
- Determining Congruence with Translations (Tracing Activity, Lesson 13-2)
- Representing Translations (Tracing Activity, Lesson 13-2)
- Determining Congruence with Rotations (Tracing Activity, Lesson 13-3)
- Rotating About a Point That is Not the Origin (Tracing Activity, Lesson 13-3)
- Representing Compositions of Transformations (Tracing Activity, Lesson 13-4)

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students described the effect of transformations on two-dimensional figures using coordinates.

\section*{8.G. 3}

\section*{Now}

Students perform transformations on two-dimensional figures.
G.CO. 3

\section*{Next}

Students will use the definition of congruence in terms of rigid motions to show that two triangles are congruent and use the congruence criteria to solve problems and prove relationships.
G.C0.7, G.CO.8, G.SRT. 5

\section*{Rigor}

The Three Pillars of Rigor
To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.
1 CONCEPTUAL UNDERSTANDING 2 FLUENCY 3 APPLICATION


\section*{Suggested Pacing}
\begin{tabular}{|c|c|c|c|}
\hline Lessons & Standards & 45-min classes & \(90-\mathrm{min}\) classes \\
\hline \multicolumn{2}{|l|}{Module Pretest and Launch the Module Video} & 1 & 0.5 \\
\hline 13-1 Reflections & G.CO.4, G.CO.5, G.CO. 6 & 1 & 0.5 \\
\hline 13-2 Translations & G.CO.4, G.CO.5, G.C0. 6 & 1 & 0.5 \\
\hline 13-3 Rotations & G.CO.4, G.CO.5, G.C0. 6 & 1 & 0.5 \\
\hline 13-4 Compositions of Transformations & G.CO.5, G.C0.6 & 2 & 1 \\
\hline 13-5 Tessellations & G.C0.4, G.C0.5 & 1 & 0.5 \\
\hline 13-6 Symmetry & G.CO.3, G.C0.5 & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Put It All Together: Lessons 13-1 through 13-6} & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Module Review} & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Module Assessment} & 1 & 0.5 \\
\hline & Total Days & 11 & 5.5 \\
\hline
\end{tabular}

Module 13 - Transformations and Symmetry
ry 797a

\section*{Formative Assessment Math Probe Transformations}

\section*{\({ }^{-}\)Analyze the Probe}

Review the probe prior to assigning it to your students.
In this probe, students will determine which transformations map one figure onto another and explain their choices.

Targeted Concepts Understand how transformations map preimages onto images.

\section*{Targeted Misconceptions}
- Students are not able to visualize reflections across \(y=x\) and \(y=-x\) and/or confuse them with reflecting across one of the axes.
- Students do not check to see whether each point of the preimage is mapped onto corresponding points of the image.
- Students may recognize only one transformation as being correct.
- Students have difficulty visualizing compositions of transformations.
- Students have difficulty with angles of rotation and/or rotating around a point.

Use the Probe after Lesson 13-4.
\({ }^{\circ}\) Collect and Assess Student Answers


Answers: 1. C; 2. C, E, F, and G
```

If the student selects
these responses...
1. A
1. D, E
1. F, G
Not choosing 1C
2.A
2. B, D
is having difficulty recognizing the angle of rotation or rotating an image about
a point other than the origin. With choice D, they may not be able to visualize a
composition of transformations.

```

Not choosing all of the correct transformations for Item 2.
is not checking to see whether a rotation will map point \(B\) onto \(B \square\) and point \(A\) onto \(A \square\). (A rotation in this case will map \(A\) onto \(B \square\) and \(B\) onto \(A \square\).)
is having difficulty visualizing compositions of transformations.
is having difficulty understanding transformations.
is having difficulty visualizing a reflection across the lines \(y=x\) and \(y=-x\). This often happens when the preimage has horizontal and/or vertical lines.
is having difficulty recognizing the angle of rotation or rotating an image about a point other than the origin. With choice D , they may not be able to visualize a composition of transformations.
is unaware that a preimage can be mapped onto an image using various and/or multiple transformations. By looking at the student's explanations, the difficulty can be narrowed down.

\section*{Take Action}

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.
- ALEK5' Reflections, Translations, or Rotations
- Lesson 13-4, all Learns, all Examples

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

\section*{IGN|TE!}

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

\section*{Essential Question}

At the end of this module, students should be able to answer the Essential Question.

How are rigid motions used to show geometric relationships?
Sample answer: Rigid motions are used to show that figures are congruent. If no series of rigid motions exists from one figure to another, then the figures are not congruent.

\section*{What Will You Learn?}

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

\section*{DINAH ZIKE FOLBABLES}

Focus Students read about transformations and symmetry.
Teach Throughout the module, have students take notes under the tabs of their Foldables while working through each lesson. They should include definitions, terms, and key concepts. Encourage students to record examples of each type of transformation from a lesson on the back of their Foldable.

When to Use It Use the appropriate tabs as students cover each lesson in this module. Students should add to the vocabulary tab during each lesson.

\section*{Launch the Module}

For this module, the Launch the Module video uses a photograph of a reflection in water to describe rigid motions. Students learn about using transformations in photography, beekeeping, and dance.

\section*{What Will Y ou Learn?}

How much do you already know about each topic before starting this module?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline KEY & \multicolumn{3}{|c|}{Before} & \multicolumn{3}{|c|}{After} \\
\hline (1)-1 don't know. Sb-l've heard of it. (i) 1 know it! & (3) & \[
0
\] & \[
2
\] & \[
7
\] & 3 & 会 \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{reflect figures} \\
\hline \multicolumn{7}{|l|}{draw and analyze reflected figures} \\
\hline \multicolumn{7}{|l|}{translate figures} \\
\hline \multicolumn{7}{|l|}{draw and analyze translated figures} \\
\hline \multicolumn{7}{|l|}{rotate figures} \\
\hline \multicolumn{7}{|l|}{draw and analyze rotated figures} \\
\hline \multicolumn{7}{|l|}{draw and analyze figures under multiple transformations} \\
\hline \multicolumn{7}{|l|}{identify tessellations} \\
\hline \multicolumn{7}{|l|}{identify line symmetries in two-dimensional figures} \\
\hline identify rotational symmetries in two-dimensional figures & & & & & & \\
\hline
\end{tabular}
(1) Foldables Make this Foldable to help you organize your notes about transformations and symmetry. Begin with two sheets of paper.
1. Ndd each sheet of paper in half.
2. Open the folded papers and fold each paper lengthwise two inches, to form a pocket
3. Glue the sheets side-by-side to create a booklet.

4 . Label each of the pockets as shown.


Module 13 . Transformations and Symmetry 797

\section*{Interactive Presentation}


What Vocabulary Will Y ou Learn?
- center of symmetry
- composition of transformations
- glide reflection - composition of transformations - line of symmetry - line symmetry
- rotational symmetry - semiregular tessellation - symmetry . uniform tessellation

Are Y ou Ready?
Complete the Quick Review to see if you are ready to start this module. Then complete the Quick Check.


How Did Y ou Do?
Which exercises did you answer correctly in the Quick Check?

798 Medule 13 . Transformations and Symmety

\section*{What Vocabulary Will You Learn?}

ELLI As you proceed through the module, introduce the key vocabulary by using the following routine.

Define The center of rotation is the fixed point about which an angle of \(x^{\circ}\) maps a point to its image.

\section*{Example}


Ask What point is the center of rotation? In what direction is the rotation? point \(C\); counterclockwise

\section*{Are You Ready?}

Students may need to review the following prerequisite skills to succeed in this module.
- graphing ordered pairs and slope
- graphing ordered pairs and changing coordinates
- identifying translations, rotations, and reflections
- identifying angles formed by parallel lines cut by a transversal

\section*{G ALEKS}

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Transformations section to ensure student success in this module.

\section*{Mindset Matters}

\section*{Growth Mindset vs. Fixed Mindset}

Everyone has a core belief or mindset about how they learn. People with a growth mindset believe that hard work will make them smarter. Those who have a fixed mindset believe that they can learn new things, but can't become smarter. A student who changes his or her mindset is more likely to work through challenging problems, to learn from mistakes, and ultimately to learn more deeply.

\section*{How Can I Apply It?}

Assign students tasks, celebrate mistakes, and provide opportunities for critique, revision, and reflection. The Explore activities and discussion prompts are a great tool to begin this journey.

\section*{Reflections}


\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students described the effect of reflections on two-dimensional figures using coordinates.

\section*{8.G. 3}

\section*{Now}

Students use rigid motions to reflect figures on the coordinate
plane.
G.CO.5, G.CO. 6

Next
Students will use rigid motions to translate figures on the coordinate plane. G.CO.5, G.CO. 6

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students extend their understanding of transformations in the plane to reflections on the coordinate plane. They build fluency by reflecting figures, and they apply their understanding by solving real-world problems related to reflections.

\section*{Interactive Presentation}


Warm Up

Lisunctine Lerson
 able lo vee allove the surtice of the water Uhink
retiections, me peostope wis inperted so ment this need
A periscope en Along tiche with thod memon parilelt to eech

 fort introt ted then tefieds in the besond amros, wlowing. you so seest the lewiot the sas of the percosppe: Peoccuper cen be used ass took ift sorme opun wolla Videg pimes es in advintege when playgg otrars.


\footnotetext{
Launch the Lesson
}

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- graphing ordered pairs and slope

Answers:
1. \((-1,2)\)
2. \((2,-1)\)
3. \((-1,-2)\)
4. \((-2,-1)\)
5. -1
6. undefined
7. 0
8.3

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of reflections.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Explore Developing the Definition of a Reflection}

\section*{Objective}

Students use dynamic geometry software to explore reflections.

\section*{Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of reflections.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on his or her device. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students use the graph of a reflection of a line segment to answer guiding exercises designed to lead them to writing a definition of a reflection. Students then use their definition to study reflections in the rest of the lesson. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore
TYPE
Students respond to the Inquiry Question and can view a sample answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Developing the Definition of a Reflection (continued)}

\section*{117) Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their mathematical thinking. Point out that they should use clear definitions when they discuss their ideas with others.

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Over what line is \(\overline{A B}\) reflected? \(y\)-axis
- What does preserved mean? Sample answer: Preserved means that a property of an object remains unchanged after a transformation.

\section*{(ㅇ) Inquiry}

How can you define a reflection? Sample answer: If \(\overline{A B}\) is reflected in the \(a\) line, then point \(A\) maps to point \(A^{\prime}\) such that \(\overline{A A^{\prime}}\) is perpendicular to the line and the distance from \(A\) to the line is the same as the distance from \(A^{\prime}\) to the line. Likewise, \(\overline{B B^{\prime}}\) is perpendicular to the line and point \(B\) maps to point \(B^{\prime}\) such that the distance from \(B\) to the line is the same as the distance from \(B^{\prime}\) to the line.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{1 CONCEPTUAL UNDERSTANDING \\ 2 FLUENCY \\ 3 APPLICATION}

\section*{Learn Reflections}

\section*{Objective}

Students reflect figures on the coordinate plane and describe the effects of the reflections.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of reflections to develop rules to use when reflecting in specific types of lines.

\section*{Things to Know}

While the examples presented in this module occur on the coordinate plane, remind students that the properties of rigid motions also apply to figures off the coordinate plane.

\section*{Example 1 Reflection in a Horizontal or Vertical Line}

\section*{Teaching the Mathematical Practices}

8 Attend to Details Mathematically proficient students continually ask themselves, "Does this make sense?" Point out that in this example, students will evaluate the reasonableness of their answer.

\section*{Questions for Mathematical Discourse}

ALI In part a, how far is point \(S\) from the line of reflection? 5 units
OL Which vertical line contains point \(R\) ? \(x=2\) Which vertical line contains point \(R^{\prime} ? x=2\)
[Bil How far is point \(R\) from point \(R^{\prime}\) ? 4 units How far is point \(S\) from point \(S^{\prime}\) ? 10 units In general, how far are points from their images? twice as far as the points are from the line of reflection

\section*{Common Error}

Students may try to reflect the quadrilateral in the \(x\)-axis rather than the line \(y=-1\). Make sure they remember which is the correct line of reflection.

\section*{DIFFERENTIATE}

\section*{Language Development Activity ELL}

Beginning Define the vocabulary words in the module in English and provide examples and explanations. Say the terms aloud and have students repeat the words. Then have students write the word in their notes.
Advanced/Advanced High Allow students to use a search engine to find images for each vocabulary term in the module. Have pairs of students choose a representative image for each term to share with the class. Ask them to explain why their image represents the term.


\section*{Interactive Presentation}
```

Reflection in a Horizontal or Vertical Line
Combor wivetbouk eshk
Nomym

```





Example 1
Students tap to reveal steps in locating points in a reflection.

\section*{Check}
Triangle \(B C D\) has coordinates \(B(-3,3)\),
\(C(1,4)\), and \(D(-2,-4)\).
Select the coordinates of the vertices of the
image after a reflection in the line \(x=3\).
\(A B^{\prime}(3,3), C^{\prime}(-1,4), D^{\prime}(2,-4)\)
B \(B^{\prime}(-3,-3), C^{\prime}(1,-4), D^{\prime}(-2,4)\)
C \(B^{\prime}(9,3), C^{\prime}(5,4), D^{\prime}(8,-4)\)

D \(B^{\prime}(-3,-3), C^{\prime}(1,2), D^{\prime}(-2,10)\)
Q Example 2 Reflection in the Line \(y=x\)
DESIGN Winona is designing a logo for her blog header. She graphs a figure on the coordinate plane and wants to reflect it in the line \(y=x\) to complete the basic shape for her logo design. What are the coordinates of the vertices of the image after the reflection?
\[
(x, y) \rightarrow(y, x)
\]
\(A(-2,1) \rightarrow A^{\prime}(1,-2)\)
\(B(1,8) \rightarrow B^{\prime}(8,1)\)
\(C(1,4) \rightarrow C^{\prime}(4,1)\)
\(D(4,4) \rightarrow D^{\prime}(4,4)\)
\(E(2,2) \rightarrow E^{\prime}(2,2)\)
Check

LANDSCAPE T omas is designing a sculpture garden for an art museum. There is a sidewalk connecting the center of the museum entrance to the edge of the lawn. T omas has a set of 4 sculptures in es \(Q\) and \(R\) are a pair and \(X\) d \(Y\) be placed in the garden?
\(A R(3,1), Y(4,2)\)
B \(R(3,-1), Y(4,-2)\)
C \(R(-3,1), Y(-4,2)\)
D \(R(-3,-1), Y(-4,-2)\)

You may want to
complete the
onstruction activities
300 Module 13 . Transtormations and Symmetry

\section*{Interactive Presentation \\ Interactive Presentation}


Example 2


CHECK
(II)

Students complete the Check online to determine whether they are ready to move on.
 or to choose an answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

2 FLUENCY
\(\qquad\)

Example 2 Reflection in the Line \(y=x\)

\section*{(1)}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about reflections to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL How does reflecting an object in the line \(y=x\) affect the coordinates? Sample answer: The \(x\) - and \(y\)-coordinates are interchanged.

OL How will the size and shape of the image compare to the size and shape of the preimage? Sample answer: Reflections are rigid motions and do not change the lengths of line segments or measures of angles.
Bi. If you interchange the \(x\) - and \(y\)-coordinates of the image, what will be the result? the preimage

\section*{Common Misconception}

When reflecting over an axis, some students think they should multiply by -1 the coordinate that matches the name of the axis. Remind students that reflecting in the \(x\)-axis means that the \(x\)-coordinate stays the same but the \(y\)-coordinate changes. Reflecting in the \(y\)-axis means that the \(y\)-coordinate stays the same but the \(x\)-coordinate changes.

0Go Online
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{DIFFERENTIATE}

\section*{Language Development Activity A는 ㄹLL}

Allow the class to discuss examples of reflections in nature and in everyday objects that they use. Students can explain where lines of reflection are in objects. Examples from nature could be leaves, flowers, fruits, vegetables, animals, eggs, etc. Everyday objects could be pencils, paper, cars, compact discs, clothing, and so on.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-8\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(9-15\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(16-22\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-15 odd, 16-22
- Extension: Reflections in the Coordinate Plane
- Q ALEKS'Reflections

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Slope of a Line
- Personal Tutors
- Extra Examples 1, 2
- ALEKS'Graphing Ordered Pairs and Slope

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-7 odd
- Remediation, Review Resources: Slope of a Line
- Quick Review Math Handbook: Reflections
- DALEKS'Graphing Ordered Pairs and Slope

\section*{Answers}

2.


Practice
Examples 1 and 2 1-4. See margin for graphs.
Graph the image of each figure under the given reflection. Determine the
coordinates of the image.
1. \(\triangle A B C\) in the line \(y=x\)

\(A^{\prime}(2,-3), B^{\prime}(1,0), C^{\prime}(-3,-2)\)
3. parallelogram RSTU in the line \(y=x\)

\(R^{\prime}(3,-2), S^{\prime}(4,2), T^{\prime}(-3,2), U^{\prime}(-4,-2)\)

5. Determine the coordinates of \(S(-7.1)\) after a reflection in the line \(y=3 . S^{\prime}(-7,5)\)
6. Determine the coordinates of \(Q(6,-4)\) after a reflection in the line \(x=2\). \(O^{\prime}(-2,-4)\)
7. BANNERS Fiona is making a banner in the shape of a triangle for a school project. She graphs the banner on a coordinate plane with vertices at \(P(0,4), Q(2,8)\), and \(R(-3,6)\). She wants to reflect the banner over the line \(x=1\). Draw the image of the banner reflected in the line \(x=1\). See margin.
8. SANDBOX Aliyah is drawing the top view of a square sandbox on a coordinate plane with vertices at \(D(1,1), E(1,6), F(6,6)\), and \(G(6,1)\). She wants to change the location of the sandbox so that it is in the shade. She reflects the sandbox in the line \(x=1\). Find the coordinates of the image of the sandbox \(D^{\prime}(1,1), E^{\prime}(1,6), F^{\prime}(-4,6), G^{\prime}(-4,1)\)

\section*{Mixed Exercises}
9. Determine the coordinates of \(W(-7,4)\) after a reflection in the line \(y=9 . W^{\prime}(-7,14)\)

\section*{Answers}
3.

7.

11.

13.

4.

10.

12.

16. No; sample answer: Evelyn is correct that the point on the line of reflection will stay on the line when it is reflected, and she is correct that there are three other pairs of points equidistant to the line of reflection. However, they are not corresponding points. We cannot say that AEFG is a reflection of \(A B C D\), but we could say that \(A G F E\) is a reflection of \(A B C D\).
18. Sample answer: Draw a line through each vertex of the image that is perpendicular to the line of reflection. Next, measure the distance from each vertex to the line of reflection. Locate each vertex the same perpendicular distance on the perpendicular from the opposite side of the line. Connect each of the vertices to form the reflected image.

\section*{LESSON GOAL}

Students use rigid motions to translate figures on the coordinate plane.

\section*{1 LAUNCH}

88 Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Developing the Definition of a Translation
88 Develop:

\section*{Translations}
- Determine a Translation Vector
- Translations on the Coordinate Plane

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}


Exit Ticket

\section*{Practice}

\section*{DIFFERENTIATE}


View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & ALI & L. B & ILII & \(\square\) \\
\hline Remediation: Graph Translations & & & & 0 \\
\hline Extension: Reflections over Parallel Lines & & & & 0 \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 82 of the Language Development Handbook to help your students build mathematical language related to translating figures on the coordinate plane.
태닌 You can use the tips and suggestions on page T82 of the handbook to support students who are building English proficiency.


\section*{Mathematical Background}

A translation is a transformation that moves all points of a figure the same distance in the same direction. Translations on the coordinate plane can be drawn if you know the direction and how far the figure is moving horizontally and/or vertically. One way to translate a figure in the coordinate plane is to count units on the \(x\)-axis and on the \(y\)-axis, similar to counting for slope.

\section*{Suggested Pacing}


\section*{Focus}

\section*{Domain: Geometry}

\section*{Standards for Mathematical Content:}
G.CO. 5 Given a geometric figure and a rotation, reflection or translation, draw the transformed figure using: e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students described the effect of translations on two-dimensional figures using coordinates.

\section*{8.G. 3}

\section*{Now}

Students translate figures on the coordinate plane.
G.CO.5, G.C0. 6

\section*{Next}

Students will rotate figures around points on the coordinate plane.
G.C0.5, G.C0. 6

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students extend their understanding of transformations in the plane to translations on the coordinate plane. They build fluency by translating figures, and they apply their understanding by solving real-world problems related to translations.

\section*{Interactive Presentation}


\section*{Warm Up}


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- graphing ordered pairs and changing coordinates

Answers:
1. \((-x, y)\)
2. \((x,-y)\)
3. \((x-1, y+1)\)
4. \((x-4, y-1)\)
5. right
6. up
7. left

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of translations.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then discuss the questions below with the class.

\section*{Explore Developing the Definition of a Translation}

\section*{Objective}

Students use dynamic geometry software to explore translations.Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students will use the graph of a translation of a line segment to answer guiding exercises designed to lead them to writing a definition of a translation. Students will then use their definition to study translations in the rest of the lesson. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}

\section*{Developing the Definition of Translation}


Explore

Students use a sketch to explore the definition of a translation.

\section*{Students type answers to the guiding exercises.}

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a|
Students respond to the Inquiry Question and can view a sample answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Developing the Definition of a Translation (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- How can you verify that \(\overline{A B}\) and \(\overline{A^{\prime} B^{\prime}}\) are congruent? Sample answer: You can compute their lengths and see that they are the same.
- How do the slopes of \(\overline{A B}\) and \(\overline{A^{\prime} B^{\prime}}\) compare? Sample answer: The slopes are the same.

\section*{(3) Inquiry}

How can you define a translation if \(\overline{A B}\) is translated along a vector? Sample answer: If \(\overline{A B}\) is translated along a vector, then point \(A\) maps to point \(A^{\prime}\) such that the distance from \(A\) to \(A^{\prime}\) is the same as the distance from \(B\) to \(B^{\prime}\), both of which are the same length as the magnitude of the vector. The vector is parallel to both \(\overline{A B}\) and \(\overline{A^{\prime} B^{\prime}}\).
3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn T ranslations}

Objective
Students determine the translation vector.
Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of translations in this Learn to determine if figures were translated.

\section*{Common Misconception}

Students may confuse the terms translation and transformation as the words are similar. Work with students to understand the relationship between the terms and the differences between the terms.

\section*{Example 1 Determine a T ranslation Vector}


Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in Example 1.

\section*{Questions for Mathematical Discourse}

AL What is a vector? a quantity that has both magnitude and direction
OL Does it matter which vertex you choose to check first? Explain. Yes; sample answer: If you check the vertex with a different length to its image first, then you will only need to check one other vertex.
[BL. What would happen if you translated the image along \(\langle 4,2\rangle\) ? Sample answer: The translation of the image would be in the same place as the preimage.

\section*{Common Error}

Students may try to compute the translation vector starting from the image rather than the original point. Make sure that students are considering the points in the correct order.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity 4 LI}

Have students graph images and have them translate them on the coordinate plane.

\section*{Reteaching Activity \(\mid\) IIL 组L}

Kinesthetic Learners Create three or four large coordinate grids using poster board. Provide several laminated shapes, such as rectangles, hexagons, pentagons, and trapezoids. Students can practice physically translating shapes on the grids. Students can use examples of translations in the lesson or create their own.


\section*{Interactive Presentation}


Learn

Students tap through the slides to determine whether a translation occurs.

\section*{(3) Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


\section*{Apply Example 2}


\section*{Q Apply Example 2 T ranslations on the Coordinate Plane}

\section*{Teaching the Mathematical Practices}

\section*{1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a} task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

\section*{Recommended Use}

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

\section*{Encourage Productive Struggle}

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

\section*{Signs of Non-Productive Struggle}

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
- How far along the \(x\)-axis is the boat from the buoy?
-W hat does the direction the boat has to move say about the sign of the sign of the values in the translation vector?

\section*{Write About It!}

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-4\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(5-14\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(15-18\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-14 odd, 15-18
- Extension: Reflections Over Parallel Lines
- ALEKS Translations

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Translations
- Personal Tutors
- Extra Examples 1, 2
- D ALEKS'Translations

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-3 odd
- Remediation, Review Resources: Translations
- Quick Review Math Handbook: Translations
- ALEKS'Translations

\section*{Answers}
1. \(\triangle J^{\prime} K^{\prime} L^{\prime}\) is a translation of \(\triangle J K L\). This translation vector can be represented as \(\langle 2,5\rangle\).
2. Quadrilateral \(L M N P\) is a translation of quadrilateral \(L^{\prime} M^{\prime} N^{\prime} P^{\prime}\). This translation vector can be represented as \(\langle-4,-3\rangle\).

Name the image of each point after the given translation vector.
8. \(F(-3,1) ;(5,-1\rangle F^{\prime}(2,0) \quad\) 9. \(Q(4,-2):\langle-2,-5\rangle \quad Q^{\prime}(2,-7)\) 10. \(P(9,1.5) ;(3,-0.5\rangle P^{\prime}(12,1)\)
11. The image of \(A(-3,-5)\) under a translation is \(A^{\prime}(6,-1)\). Find the image of \(B(3,-2)\) under the same translation. \(B^{\prime}(12,2)\)
12. CONSTRUCT ARGUMENTS Explain why \(\triangle A^{\prime} B^{\prime} C^{\prime}\) with vertices \(A^{\prime}(-1,-2)\). \(B^{\prime}(0,0)\), and \(C^{\prime}(-6,0)\) is not a translation image of \(\triangle A B C\) with vertices \(A(1,2), B(0,0)\), and \(C(6,0)\). Sample answer: All the points are not all moved the same distance or in the same direction.
13. Determine whether \(\triangle P^{\prime} Q^{\prime} R^{\prime}\) is a translation image of \(\triangle P Q R\). Explain. No; sample answer: The size has been changed.

14. Determine the translation vector that moves every point of a preimage 4 units left and 6 units up. \(\langle-4,6\rangle\)

Higher-Order Thinking Skills
15. PERSEVERE Yolanda reflects an object in the . Then she reflects it in the line \(y=\) Describe the translation. \((x, y) \rightarrow(x, y+4)\)
16. ANALYZE Determine w translations. Justify your argument. a-b. See margin.
a. Lengths and angle measures of the image are preserved.
b. All the segments drawn from a vertex of the preimage to the corresponding vertex of the image are parallel.
c. The vector \((a, b)\) wiff ranslate each coordinate of a preimage \(a\) units right and \(b\) units up. Sometimes; if \(a>0\) and \(b>0\), then the statement is true.
17. WRITE A square in the coordinate plane has vertices of \((2,3),(4,3),(2,1)\), and \((4,1)\). It is translated such that one of the vertices is at the origin. Find the coordinates of each vertex of the image if the translation vector has the least possible length. Explain your reasoning. Draw the image and preimage on a coordinate plane. See margin.
18. PERSEVERE \(A\) triangle with vertices \((-3,1),(-1,4)\), and \((1,1)\) represents the area on a map covered by a fleet of fishing ships, where each square represents a square mile. This region is translated along the vector \(\langle 4,-5\rangle\). Draw the fleet and its image. List the vertices of the image (1, 4) \((3,-1),(5,-4) \cdot \sqrt{41}\) a about 6.4 miles See
\((1,-4) \cdot(3,-1) \cdot(5,-4) \cdot \sqrt{41}\) or about 6.4 miles: See margin for graph

806
6 Module 13. Transformations and Symmetry

\section*{Answers}

4b.


16a. Always; sample answer: Translations move each point of a figure along a vector, the same distance in the same direction, so the figure itself looks the same.
16b. Always; sample answer: Because all the points of the preimage all slide along the same vector that represents the translation, all these lines are parallel.
17. (0, 2), (2, 2), (0, 0), (2, 0); Sample answer: To minimize the length of the vector, I used the vertex closest to the origin, (2, 1), as the preimage for the point translated to the origin.

18.


\section*{LESSON GOAL}

Students use rigid motions to rotate figures about points on the coordinate plane.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Developing the Definition of a Rotation

\section*{83 Develop:}

Rotations About Points That Are Not the Origin
- Rotation About a Point That Is Not the Origin
- Describe the Effect of a Rotation
(
You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}


Exit Ticket

Practice

\section*{DIFFERENTIATE}

1i) View reports of student progress on the Checks after each example.
\begin{tabular}{|l|c|c|c|c|}
\hline Resources & ALI & IIB & ELII & \\
\hline Remediation: Translations & & & & 0 \\
\hline Extension: Reflections over Intersecting Lines & & & & 0 \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 83 of the Language Development Handbook to help your students build mathematical language related to rotating figures on the coordinate plane.
ELIM You can use the tips and suggestions on page T83 of the handbook to support students who are building English proficiency.


\section*{Mathematical Background}

A rotation is a transformation that turns every point of a preimage through a specified angle and direction about a fixed point. The fixed point is called the center of rotation. The angle of rotation is the angle formed by a point on the preimage, the center of rotation, and the corresponding point on the rotated image. A rotation exhibits all the properties of isometries, including preservation of distance and angle measure.

\section*{Suggested Pacing}


\section*{Focus}

\section*{Domain: Geometry}

\section*{Standards for Mathematical Content:}
G.CO.5 Given a geometric figure and a rotation, reflection or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students described the effect of rotations on two-dimensional figures using coordinates.

\section*{8.G. 3}

\section*{Now}

Students use rigid motions to rotate figures about points on a coordinate plane
G.C0.5, G.C0. 6

Next
Students will learn about compositions of transformations and use two or more transformations on the coordinate plane.
G.CO.5, G.C0. 6

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|c|c|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline 雨 Conceptual Bridge In this lesson, students extend their \\
understanding of transformations in the plane to rotations on the \\
coordinate plane. They build fluency by rotating figures, and they apply \\
their understanding by solving real-world problems related to rotations.
\end{tabular}

\section*{Interactive Presentation}


Warm Up


Launch the Lesson

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying translations

Answers:
1. \(A^{\prime}(2,4), B^{\prime}(5,4), C^{\prime}(6,1)\), and \(D^{\prime}(1,1)\)
2. \(A^{\prime}(-1,-1), B^{\prime}(2,-1), C^{\prime}(3,-4)\), and \(D^{\prime}(-2,-4)\)
3. \(A^{\prime}(-1,8), B^{\prime}(2,8), C^{\prime}(3,5)\), and \(D^{\prime}(-2,5)\)
4. \(A^{\prime}(-3,4), B^{\prime}(0,4), C^{\prime}(1,1)\), and \(D^{\prime}(-4,1)\)
5. \(A^{\prime}(1,1), B^{\prime}(4,1), C^{\prime}(5,-2)\), and \(D^{\prime}(0,-2)\)
6. \(A^{\prime}(-5,7), B^{\prime}(-2,7), C^{\prime}(-1,4)\), and \(D^{\prime}(-6,4)\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of rotations.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Explore Developing the Definition of a Rotation}

Objective
Students use dynamic geometry software to explore rotations.

\section*{Teaching the Mathematical Practices}

4 Analyze Relationships Mathematically Point out that to solve the problem in this Explore, students will need to analyze the mathematical relationships in the problem and draw a conclusion.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students will use the graph of a rotation of a line segment to answer guiding exercises designed to lead them to writing a definition of a rotation. Students will then use their definition to study rotations in the rest of the lesson. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


\section*{Explore}

\section*{WEB SKETCHPAD}

Students use a sketch to reveal information about rotations.

TYPE
Students type answers to the guiding exercises.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Developing the Definition of a Rotation (continued)}

Questions
Have students complete the Explore activity.

\section*{Ask:}
- How does \(\triangle X Y Z\) compare to \(\triangle X^{\prime} Y^{\prime} Z^{\prime}\) ? Sample answer: The image is turned almost but not quite completely upside down compared to the original triangle.
- How do the slopes of the line segments compare to their images? Sample answer: The slopes are different.

\section*{(0) Inquiry}

How can you define a rotation if a point \(T\) is rotated through an angle of \(a^{\circ}\) about point \(P\) ? Sample answer: If \(T\) is a point in the plane rotated through an angle of \(a^{\circ}\) about point \(P\), then point \(T\) is sent to point \(T \square\) such that \(T P=T \square P\) and \(m \angle T P T \square=a^{\circ}\).

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Rotations About Points that Are Not the Origin}

\section*{Objective}

Students use rigid motions to rotate figures about points that are not the origin and describe the effects of the rotations.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of rotations to develop rules to use when rotating about a point.

\section*{Important to Know}

Notice that rotations do not change the lengths of line segments or the measures of angles. Like reflections and translations, rotations are rigid motions. So they do not change the size or shape of objects. This will be important later for showing that an image and its preimage in a rotation are congruent.

\section*{Example 1 Rotate About a Point That Is Not the Origin}

17 Teaching the Mathematical Practices
8 Look for a Pattern Help students to see the pattern in Example 1.

\section*{Questions for Mathematical Discourse}

AL. How are rotations different from translations? Sample answer: Instead of transforming a figure along a vector, a rotation involves angle rotation around a point.
OL Does it matter which point you choose to rotate first? Explain. No; sample answer: Because the center of rotation is a fixed point, you can rotate the vertices of a figure in any order.What degree of rotation would result in the same image as the preimage? \(360^{\circ}\)

\section*{Common Error}

Students may rotate the figure in the wrong direction. Make sure that students are considering the angle in the counterclockwise direction unless specified otherwise.
\begin{tabular}{|l|l|l|l|}
\hline & \\
\hline
\end{tabular}

Interactive Presentation


Example 1

Students move through the steps to graph a rotation.


\section*{Interactive Presentation}


\section*{Example 2}


Students tap to type answers and to reveal images of the answer.

Students complete the Check online to determine whether they are ready to move on.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{DIFFERENTIATE}

\section*{}

Tell students to develop a system for rotating images. First, they should read the problem and locate or plot the figure for visual recognition. They should also carefully note the specifications, especially the direction of the rotation. Finally, they can apply the rotation. Students can use a system similar to this, or they can create their own.

\section*{Example 2 Describe the Effect of a Rotation}

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Questions for Mathematical Discourse
4L. How would you describe the counterclockwise direction? Sample answer: A counterclockwise direction is the reverse (or counter) of the hands on a clock.
OL. If the two yellow stars were directly above the white star, how would they be affected by this rotation? Sample answer: The yellow stars would be directly to the left of the white star.
B1. How would the two yellow stars be affected if they were rotated \(90^{\circ}\) clockwise around the center of the white star? Sample answer: The yellow stars would be below and to the right of the white star.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity}

Have students list real-world examples of objects that rotate and discuss the rotational aspect of those objects.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 & exercises that mirror the examples & \(1-5\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(6-12\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(13-19\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-11 odd, 13-19
- Extension: Reflections Over Intersecting Lines
- D ALEKS Rotations

IF students score 66\%-89\% on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-19 odd
- Remediation, Review Resources: Translations
- Personal Tutors
- Extra Examples 1, 2
- Q ALEKS'Translations

IF students score \(65 \%\) or less on the Checks,

\section*{THEN assign:}
- Practice, Exercises 1-5 odd
- Remediation, Review Resources: Translations
- Quick Review Math Handbook: Rotations
- Q ALEKS'Translations

\section*{Important to Know}

Digital Exercise Alert Exercise 8 requires drawing a transformed figure and is not available online. To fully address G.CO.5, have students complete this exercise using their books.

```

Practice
0

``` \(\qquad\)
```

 1. Triangle }XYZ\mathrm{ has vertices }X(0,2),Y(4,4),\mathrm{ ,and }Z(3,-1). Graph \triangleXYZ
 and its image after a rotation of }18\mp@subsup{0}{}{\circ}\mathrm{ about (2,-3). See margin.
 2. Triangle }ABC\mathrm{ has vertices }A(1,7),B(3,2), and C(-2,-2).Graph
 \triangleABC and its image after a rotation of 270 counterclockwise
 about (-4, 2). See margin.
 3. Triangle }FGH\mathrm{ has vertices }F(-3,4),G(2,0)\mathrm{ , and }H(-1,-2). Graph \triangleFG
 and its image after a rotation of }18\mp@subsup{0}{}{\circ}\mathrm{ about (-3, -6). See margin.
 4. Quadrilateral }ABCD\mathrm{ has vertices }A(-2,4),B(1,3),C(2,-3), an
 D(-3,-1). Graph quadrilateral }ABCD\mathrm{ and its image after a rotation
 D(-3,-1). Graph quadriateral }ABCD\mathrm{ and its image
 5. BASEBALL A scale drawing of a baseball field is shown on the
 coordinate plane, where home plate is at (3, 3), first base is
 at (13, 3), second base is at (13, 13), and third base is at (3, 13)
 Suppose the baseball field is rotated 270* counterclockwise
 about second base, what are the coordinates of each base?
 base: (13, 23)
 Mixed Exercises
6. Point Q with coordinates (4,-7) is rotated 270
(5,1). What are the coordinates of its image? }\mp@subsup{Q}{}{\prime}(13,0
7. Parallelogramm }JKLM\mathrm{ has vertices }J(2,1),K(7, 1),L(6,-3), and M(1,-3)
What are the coordinates of the image of }K\mathrm{ if the parallelogram is
rotated 270 counterclockwise about (-2, -1)? K}(0,-10
8. USE TOOLS Use a protractor and ruler to draw a rotation of }\trianglePQR21
about T. See margin.
9. The line segment XY with endpoints X(3,1) and Y(2,-2) is rotated

```
\(90^{\circ}\) counterclockwise about \((-6,4)\). What are the endpoints of \(X^{\prime} Y^{\prime}\) ? \(X^{\prime}(-3,13), Y^{\prime}(0,12)\)
10. HIKING A damaged compass points northwest instead of north.I you travel west by the compass, what is your angle of rotation to true north? \(45^{\circ}\) clockwise or \(315^{\circ}\) counterclockwise
 Suppose the baseball field is rotated \(270^{\circ}\) counterclockwise about second base, what are the coordinates of each base?
home plate: \((3,23)\), first base: \((3,13)\), second base: \((13,13)\), third base: \((13,23)\)
6. Point \(Q\) with coordinates ( \(4,-7\) ) is rotated \(270^{\circ}\) clockwise about \((5,1)\). What are the coordinates of its image? \(O^{\prime}(13,0)\)
7. Parallelogram \(J K L M\) has vertices \(J(2,1), K(7,1), L(6,-3)\), and \(M(1,-3)\). rotated \(270^{\circ}\) counterclockwise about \((-2,-1) ? K^{\prime}(0,-10)\)
8. USE TOOLS Use a protractor and ruler to draw a rotation of \(\triangle P Q R 210^{\circ}\) about T. See margin.


\section*{Answers}
11. A circular dial with the digits 0 through 9 evenly spaced around its edge is rotated clockwise \(36^{\circ}\). How many times would you have to perform this rotation in order to bring the dial back to its original position? 10 times
12. Under a rotation about the origin, the point \(A(5,-1)\) is mapped to the point \(A^{\prime}(1,5)\). What is the image of the point \(B(-4,6)\) under this point \(A^{\prime}(1,5)\). What is the image of the point \(B(-4,6)\) under this
rotation? Explain. \(B^{\prime}(-6,-4)\). The rotation maps \((x, y)\) to \((-y, y)\), is a \(90^{\circ}\) rotation. Therefore, the image of \((-4,6)\) is \((-6,-4)\).
-Higher-Order Thinking Skills
13. CREATE Draw a right triangle \(A B C\) and point \(P\) not on the triangle
a. Rotate triangle \(A B C\) about point \(P 90^{\circ}\) counterclockwise. See margin.
b. Name a clockwise rotation that would map triangle \(A B C\) onto triangle \(A^{\prime} B^{\prime} C^{\prime}\). Sample answer: \(270^{\circ}\) clockwise rotation about point \(P\)
14. In the figure, \(\triangle D^{\prime} E^{\prime} F^{\prime}\) is the image of \(\triangle D E F\) after a rotation about point \(Z\).
a. What is the distance from \(E^{\prime}\) to \(Z ?\) Justify your reasoning: b. What is \(m \angle F Z F\) ? Justify your reasoning. See margin.
15. ANAL YZE What is the result of a rotation followed by another rotation about the same point? Give an example. See margin
16. FIND THE ERROR Thomas claims that a reflection in the \(x\)-axis followed by a reflection in the \(y\)-axis is the same thing as a rotation is Thomas correct? Explain your reasoning. See margin.
17. WRITE Which properties of a figure are preserved under a rotation from the preimage to the image? Explain. See margin
18. FIND THE ERROR Shanice is looking at the figure shown, which shows two congruent triangles. She measures the angle that
rotates \(A\) to \(A^{\prime}\) about \(O\) and finds it to be \(30^{\circ}\). She measures the angle that rotates \(B\) to \(B^{\prime}\) about \(O\) and also finds it to be \(30^{\circ}\). She then claims that because the two triangles are congrue a \(30^{\circ}\) rotation has occurred about point \(O\). Is Shanice correct?
 Explain your reasoning. See margin
19. WRITE Are colinearity and betweerness of points maintained under rotations? Explain. See margin.
3.
8.

4.


13a. Sample answer:


14b. \(31^{\circ}\); Sample answer: The measure of the angle formed by a point, the center of rotation, and the point's image is equal to the angle of rotation, which is \(31^{\circ}\).
15. Sample answer: A rotation followed by another rotation is still a rotation. For example, a rotation of \(30^{\circ}\) clockwise followed by a rotation of \(20^{\circ}\) counterclockwise is the same as a rotation of \(10^{\circ}\) clockwise, or \(350^{\circ}\) counterclockwise. A rotation of \(30^{\circ}\) counterclockwise followed by a rotation of \(15^{\circ}\) counterclockwise is the same as a rotation \(45^{\circ}\) counterclockwise.
16. Yes; sample answer: A reflection in the \(x\)-axis followed by a reflection in the \(y\)-axis is the same as a rotation of \(180^{\circ}\) about the origin. This can be seen with the mapping functions. The point \((x, y)\) maps to \((x,-y)\) when reflected in the \(x\)-axis. The point \((x,-y)\) maps to \((-x,-y)\) when reflected in the \(y\)-axis. So, \((x, y)\) maps to \((-x,-y)\), which is the same as a \(180^{\circ}\) rotation.
17. Sample answer: Distance is preserved because the lengths of segments remain the same measure. Angle measures are preserved because angle measures remain the same measure. Parallelism is preserved because parallel lines remain parallel. Collinearity is preserved because points remain on the same lines.
18. No; sample answer: Point \(C\) has not been rotated \(30^{\circ}\) around \(O\). It appears that a reflection has occurred in addition to a rotation. The two triangles are congruent, but it is not a rotation that only maps one triangle to the other.
19. Yes; sample answer: A rotation is a transformation that maintains congruence of the original figure and its image. So, the preimage can be mapped onto the image, and corresponding segments will be congruent. Therefore, collinearity and betweenness of points are maintained in rotations.

\section*{Compositions of Transformations}

\section*{LESSON GOAL}

Students use two or more rigid motions to transform figures on the coordinate plane.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Reflections in Two Lines

\section*{Develop:}

Compositions of Transformations
- Glide Reflection
- Composition of Isometries

Compositions of Two Reflections
- Reflect a Figure in Two Lines
- Determine Congruence
- Describe Transformations

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice
10
Formative Assessment Math Probe

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|c|}
\hline Resources & Al| & In & Fロ| & \\
\hline Remediation: Rotations & - & & & - \\
\hline Extension: Composition of a Translation and a Reflection in a Perpendicular Line & & - & & \(\bullet\) \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 84 of the Language Development Handbook to help your students build mathematical language related to using two or more rigid motions to transform figures on the coordinate plane.

Ellill You can use the tips and suggestions on page T 84 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{ll}
90 min & 1 day \\
45 min \\
& \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.5 Given a geometric figure and a rotation, reflection or translation, draw the transformed figure using: e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students reflected, translated, and rotated figures on the coordinate plane.
8.G.3, G.CO.5, G.CO. 6

\section*{Now}

Students determine the image of a figure after two or more transformations have occurred.
G.CO.5, G.C0. 6

Next
Students will identify tessellations and transformations in tessellations.
G.CO.4, G.CO. 5

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students extend their understanding of transformations on the coordinate plane to compositions of transformations. They build fluency by completing compositions, and they apply their understanding by solving realworld problems related to compositions of transformations.

\section*{Interactive Presentation}


Launch the Lesson


Today's Vocabulary

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying translations, rotations, and reflections

Answers:
1. \((-2,4)\)
2. \((2,-4)\)
3. \((4,-2)\)
4. \((-4,-2)\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of multiple transformations.Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Mathematical Background}

When a transformation is applied to a figure, and then another transformation is applied to its image, the resulting transformation is called a composition of transformations. A glide translation is a translation followed by a reflection in a line that is parallel to the translation vector.

\section*{Explore Reflections in Two Lines}

Objective
Students use dynamic geometry software to explore reflections in two lines.

\section*{(11) Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of reflections in two lines.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students first explore what happens to a triangle when it is reflected in one line and then a second line parallel to the first. The second image turns out to be a translation of the original triangle, and the translation vector is perpendicular to the two parallel lines and is twice as long as the distance between them. Students then explore what happens to a triangle when it is reflected in one line and then a second line that is perpendicular to the first. The second image turns out to be a rotation of the original triangle, where the point of rotation is the intersection of the two lines, and the angle of rotation has measure twice the measure of the angle between the two lines where the first image falls. Students then complete the Exercises to help them discover these facts. Then, students will answer the Inquiry Question.

\section*{Interactive Presentation}


Explore


Explore
WEB SKETCHPAD
Students use the sketch to explore the reflections of triangles in two lines.

TYPE
Students type to complete the guiding exercises.
(continued on the next page)

\section*{Interactive Presentation}


\section*{Explore}

TYPE
Students respond to the Inquiry Question and can view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Reflections in Two Lines (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- How does the translation vector relate to the two parallel lines? Sample answer: The translation vector is perpendicular to the two parallel lines and is twice as long as the distance between them.
- Where is the rotation point? at the intersection of the two perpendicular lines.
(8) Inquiry

How is a figure affected by reflections in two lines? Sample answer: When a figure is reflected in two parallel lines, the image is the same as the image created by a translation. When a figure is reflected in two intersecting lines, the image is the same as the image created by a rotation.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Compositions of T ransformations}

\section*{Objective}

Students determine the image of a figure after a composition of transformations by analyzing vertices.

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Common Misconception}

Some students rush to the last transformation. Each transformation needs to be looked at individually as well as part of the whole.

\section*{Example 1 Glide Reflection}

Teaching the Mathematical Practices
6 Use Quantities Use the Study Tip to encourage students to clarify their use of quantities in this example. Ensure that they carefully compute coordinates used in the problem and label axes appropriately.

\section*{Questions for Mathematical Discourse}

AL. What does the translation vector of a glide reflection tell us? how far to translate a figure in the first step of the glide reflection
OL. What are the coordinates of the transformed image after a translation along \(\langle-5,4\rangle\) and a reflection in the \(x\)-axis? \(P^{\prime \prime \prime \prime}(-8,-3), Q^{\prime \prime \prime \prime}(-7,1), R^{\prime \prime \prime \prime}(-5,-2)\)
A glide reflection is defined as a translation followed by a reflection. Does the order matter to the final image? Explain. No; sample answer: Because the translation vector is parallel to the axis of reflection for a glide reflection, the order of transformations does not matter.

\section*{(3) Go Online}
- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.


\section*{Interactive Presentation}


Learn
TAP
Students tap to reveal tips and additional instruction.


\section*{Interactive Presentation}


\section*{Example 2}

Students tap to reveal steps in a solution.

CHECK


Students complete the Check online to determine whether they are ready to move on.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity}

\section*{BL}

Have students identify transformations that occur in the real world.

\section*{Example 2 Composition of Isometries}

Teaching the Mathematical Practices
5 Use Estimation Guide students to appro ximate the location of the final image and encourage them to check against their approximation when they find the final coordinates of the image.

\section*{Questions for Mathematical Discourse}

AL Is this a composition of isometries? Explain. Y es; sample answer: This is a composition of a rotation and a translation, both of which are isometries.

OL What are the coordinates of the image if you rotated the triangle \(90^{\circ}\) counterclockwise about the origin instead of \(180^{\circ}\) and then translated along the same vector? \(A(0,-2), B(3,-1), C(-1,2)\)
Bil What single isometry could you use instead of the two in the problem? a \(180^{\circ}\) rotation about ( \(-1,2\) )

\section*{Common Error}

When predicting the image of a composition of transformations, students may think of the transformations in the wrong order. For some compositions, this will matter for the final image, so remind students to be careful about the order of an unfamiliar composition.

\section*{DIFFERENTIATE}

\section*{}

Have students connect the beauty of art with geometry by designing a figure and then applying transformations, including compositions of transformations, to the figure over a large sheet of paper. Then, have students complete the art project by adding color and decoration as they choose.

\section*{Learn Compositions of Two Reflections}

\section*{Objective}

Students describe the transformation that produces the same image as a reflection in two lines by analyzing a given figure.

Teaching the Mathematical Practices
3 Construct Arguments In this L earn, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Common Misconception}

Students may not understand that a composition of two transformations could be the same as a different single transformation.

\section*{Example 3 Reflect a Figure in Two Lines}

\section*{Teaching the Mathematical Practices}

7 Interpret Complicated Expressions Mathematically proficient students can see complicated expressions as single objects or as being composed of several objects. In this example, guide students to see what information they can gather about the transformation just from looking at it.

Questions for Mathematical Discourse
AL
If a figure is reflected in two intersecting lines that form an angle of \(45^{\circ}\), what angle of rotation of the figure will result in the same image? \(90^{\circ}\)
OL After two reflections in parallel lines, an image and its preimage are 75 centimeters apart. What is the distance between the lines? 37.5 cm
[BI. If a figure is reflected in two intersecting lines with preimage point \(A(2,6)\) and image point \(A^{\prime}(-2,-6)\), what is the relationship between the lines? They are perpendicular.

\section*{Example 4 Determine Congruence}

\section*{(11) Teaching the Mathematical Practices}

1 Understand the Approaches of Others W ork with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

\section*{Questions for Mathematical Discourse}

AL. What steps do you follow to find the preimage of a transformed image? perform the transformations on the image in reverse order

이 A preimage is reflected in the line \(y=x\) and translated along \(\langle 1,-3\rangle\). The vertex \(A^{\prime \prime}\) is located at \((-2,-3)\). What are the coordinates of \(A\) ? \((0,-3)\)Suppose a figure is reflected in the \(x\)-axis and then in the \(y\)-axis. What single transformation will result in the same image? \(180^{\circ}\) clockwise rotation about the origin.


Interactive Presentation


Learn



\section*{Check}

Copy the diagram. Reflect quadrilateral \(A B C D\) in line \(m\) and then line \(n\). Then describe a single transformation that maps \(A B C D\) onto \(A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}\) a horizontal translation left 8.4 m


Example 4 Determine Congruence
Are triangles \(A B C\) and \(D E F\) congruent? If so, what composition of transformations maps \(\triangle A B C\) onto \(\triangle D E F\) ?

Because \(\triangle A B C\) can be mapped onto \(\triangle D E F\) by a \(180^{\circ}\) rotation about the origin and a translation along vector ( 3,0 ),
\(\triangle A B C\) is congruent to \(\triangle D E F\).


Qxample 5 Describe \(T\) ransformations
DESIGN PATTERNS Describe the transformations that are combined to create the pattern shown.


The pattern is created by successive translations of the first third of the design. So this pattern can be created by combining two reflections in a pair of parallel lines.

\section*{Interactive Presentation}


Example 4


Students tap to see an alternate solution method and to choose an answer.

\section*{Example 5 Describe T ransformations}

Teaching the Mathematical Practices
4 Apply Mathematics In this e xample, students apply what they have learned about transformations to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL How do you know the pattern isn't created using rotations? Sample answer: The designs are positioned in the same way.

OLI How does the length of the translation vector affect the design? Sample answer: The vector is just a little longer than the basic design so there is little space between the repeated parts of the pattern.

BL. Can a design that is created using reflections always also be created using translations? Explain. No; sample answer: If the basic design is not symmetric, the reflections and the translations will not produce the same image.

Essential Question Follow-Up
Students study compositions of rigid motions to make new types of rigid motions.

\section*{Ask:}

Why are compositions of rigid motions important? Sample answer: They can be used to model rigid motions other than reflections, translations, and rotations, such as glide reflections.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-18\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(19-30\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(31-34\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-29 odd, 31-34
- Extension: Composition of a Translation and a Reflection in a Perpendicular Line

\section*{IF students score 66\%-89\% on the Checks, \\ THEN assign:}
- Practice, Exercises 1-33 odd
- Remediation, Review Resources: Rotations
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Translations, Rotations, Reflections

IF students score \(65 \%\) or less on the Checks, THEN assign:
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Rotations
- Quick Review Math Handbook: Compositions of Transformations
- Q ALEKSTranslations, Rotations, Reflections

\section*{Answers}
9. a \(50^{\circ}\) clockwise rotation about the point where line \(u\) and \(v\) intersect

10. a horizontal translation right 1 in.




\section*{Example 1}

Graph each figure with the given vertices and its image after the indicated


Graph each figure with the given vertices and its image after the indicated
composition of transformations.
5. \(\overline{W X}: W(-4,6)\) and \(X(-4,1)\)
6. \(\overline{A B}: A(-3,2)\) and \(B(3,8)\)

Reflection: in \(x\)-axis Rotation: \(90^{\circ}\) about origin
Translation: Rotation: \(90^{\circ}\) about origin

7. \(F: F(1,1)\) and \(G(6,7)\)
Reflection: in \(x\)-axis

Reflection: in \(x\)-axis
Rotation: \(180^{\circ}\) about orig

8. \(R \mathrm{RS}: R(2,-1)\) and \(S(6,-5)\)
Translation along \((-2,-2)\) \begin{tabular}{ll} 
Rotation: \(180^{\circ}\) about origin & \(\begin{array}{l}\text { Translation: along } \\
\text { Reflection: in } y \text { axis }\end{array}\) \\
\hline
\end{tabular}


Lesson 13-4. Compositions of Transtormations 815

\section*{Example 3}

Copy and reflect each figure in line \(u\) and then line \(v\). Then describe a single
transformation that maps the preimage onto the image. 9-12. See margin.


Example
is \(\triangle J K L\) congruent to \(\triangle M N P\) if so, what composition of transformations maps
\(\triangle J K L\) onto \(\triangle M N P\) ?

15.


Example
17. Describe the transformations that are combined to create the border Sample answer: Reflect the first two shapes in a horizontal line through the 18. Describe the transformations that are combined to create the pattern. Describe the transformations that are combined to create the
Sample answer: Rotate about a point on the corner, and then
translate to the right and repeat.
316 Module 13 . Transtormations and Symmetry

Mixed Exercises
Draw and label the image of each figure after the given composition of
transformations. 19-20. See margin.
19. \(270^{\circ}\) rotation about the origin \(\begin{array}{ll}270^{\circ} \text { rotation about the origin } & \text { 20. reflection in the } y \text {-axis followed by } \\ \text { followed by translation along }\langle 2,-2\rangle & 180^{\circ} \text { rotation about the origin }\end{array}\)

composition of transformations.
21. reflection in the \(x\)-axis, reflection in the \(y\)-axis \((3,-1),(2,-5),(-5,-2)\)
22. rotation \(180^{\circ}\) about origin, translation 3 units up (3, 2), (2, -2), ( \(-5,1\) )
23. reflection in the \(y\)-axis, translation 2 units left \((1,1),(0,5),(-7,2)\)

24. Point \(K\) is reflected over line \(p\) and then over line \(d\). If lines \(p\) and \(d\) are parallel and 2.8 feet apart, what single translation maps \(K\) onto \(K^{\prime \prime}\) ? translation 5.6 ft

\section*{Determine whether eat}
25. A composition of two reflections is a rotation. Sometimes; sample answer: If the lines of reflection intersect, then the composition is a rotation.
26. A composition of two translations is a rotation. Never; sample answer: composition of two translations is always another translation.
27. A reflection in the \(x\)-axis followed by a reflection in the \(y\)-axis leaves a point in its original location. Sometimes; sample answer: This is true if the point is the origin.
28. A translation along \(\langle a, b\rangle\) followed by the translation along \(\langle c, d\rangle\) is the
ranslation along \(\langle a+c, b+d\rangle\). Always; sample answer: The first translation maps \((x, y)\) to \((x+a\), the translation along \(\langle a+c, b+d)\). maps this image to \((x+a+c, y+b+d)\), whic

Lesson 13-4 - Compositions of Transtormations 817
29. PROOF Write a paragraph proof for one case of the Composition of Isometries Theorem
Given: A translation along \(\langle a, b\rangle\) maps \(R\) to \(R^{\prime}\) and \(S\) to \(S^{\prime}\). A reflection in \(a\) maps \(R^{\prime}\) to \(R^{\prime \prime}\) and \(S^{\prime}\) to \(S^{\prime \prime}\). Prove: \(\overline{R S} \cong \overline{R^{\prime \prime} S^{"}}\)
Sample answer: Proof: It is given that a translation along \(\langle a, b\rangle\) maps \(R\) to 'Rand \(S\) to \(S\) '. Using the definition of a translation, po It is also given that a reflection in \(a\) maps \(R^{\prime}\) to \(R^{\prime \prime}\) and \(S^{\prime}\) to \(S^{\prime \prime}\). Using the definition of a reflection, points \(R\) and \(S\) are the same distance from line \(a\), so \(R S \geqq R^{\prime \prime} S^{\prime}\). By the Transitive Property of Congruence, \(\overline{R S} \cong \overline{R^{\prime \prime} S}\)
30. PROOF Write a two-column proof of Theorem 13.2

Given: A reflection in line \(p\) maps \(\overline{B C}\) to \(\overline{B^{\prime} C}\).
\(p \| q, A D=x\)
Prove: \(\overline{B B^{\prime \prime}} \perp p, \overline{B B^{\prime \prime}} \perp q: B B^{\prime \prime}=2 x\) See margin.

Higher-Order Thinking Skills
ns 817
31. ANAL YZE When a rotation and a reflection are performed as a composition of transtormations on a figure, does the order of the transformations sometimes. aiwoys, or never affect the location of the final image? Justify your argument. Sometimes; sample answer: The order of rotating by \(180^{\circ}\) about the origin and reflecting in the line \(y=x\) does not change the location of the final image
32. FIND THE ERROR Daniel and Lolita are translating \(\triangle X Y Z\) along (2,2) and reflecting it in the line \(y=2\). Daniel says that the ansformation is a glide reflection. Lolita disagrees and says either of them correct? Explain your reasoning. See margin.
33. PERSEVERE If PORS is translated along ( \(3,-2\) ), reflected in \(y=-1\), and rotated \(90^{\circ}\) about the origin, what are the \({ }_{P^{\prime \prime \prime}(1,-2), Q^{\prime \prime \prime}(2,1), R^{\prime \prime \prime}(-1,3), S^{\prime \prime \prime}(-2,0)}\)
34. ANAL YZE If an image will be reflected in the line \(y=x\) and the \(x\)-axis, does the order of reflections affect the final image? Explain. See margin.

818 Module 13 . Transformations and Symmetry

\section*{Answers}
11. a \(90^{\circ}\) clockwise rotation about the point where line \(u\) and \(v\) intersect

12. \(180^{\circ}\) rotation about the point where lines \(u\) and \(v\) intersect followed by a reflection in the \(v\)-axis

19.

20.

30. Proof:

Statements (Reasons):
1. A reflection in line \(p\) maps \(\overline{B C}\) to \(\overline{B^{\prime} C^{\prime}}\); a reflection in line \(q\) maps \(\overline{B^{\prime} C^{\prime}}\) to \(\overline{B^{\prime \prime} C^{\prime \prime}}\).; \(p \| q ; x\) is the distance between \(p\) and \(q\). (Given)
2. \(p\) is the perpendicular bisector of \(\overline{B B^{\prime}}\), and \(q\) is the perpendicular bisector of \(\overline{B^{\prime} B^{\prime \prime}}\). (Def. of \(\perp\) bisector)
3. \(B B^{\prime}+B^{\prime} B^{\prime \prime}=B B^{\prime \prime}\) (Seg. Add. Post.)
4. \(\overline{B B^{\prime \prime}} \perp p, \overline{B B^{\prime \prime}} \perp q\) (A line perpendicular to a portion of a segment is perpendicular to the whole segment.)
5. \(\overline{B A} \cong \overline{A B^{\prime}} ; \overline{B^{\prime} D} \cong \overline{D B^{\prime \prime}}\) (Def. of refl.)
6. \(B A=A B^{\prime} ; B^{\prime} D=D B^{\prime \prime}(\) Def. of \(\cong)\)
7. \(B A+A B^{\prime}+B^{\prime} D+D B^{\prime}=B B^{\prime \prime}\) (Seg. Add. Post.)
8. \(A B^{\prime}+A B^{\prime}+B^{\prime} D+B^{\prime} D=B B^{\prime \prime}\) (Subs.)
9. \(2 A B^{\prime}+2 B^{\prime} D=B B^{\prime \prime}\) (Add. Prop.)
10. \(2\left(A B^{\prime}+B^{\prime} D\right)=B B^{\prime \prime}\) (Dist. Prop.)
11. \(A B^{\prime}+B^{\prime} D=A D\) (Seg. Add. Post.)
12. \(2 A D=B B^{\prime \prime}\) (Subs.)
13. \(2 x=B B^{\prime \prime}\) (Subs.)
32. Lolita; sample answer: Because the line \(y=2\) is not parallel to the vector \(x\), the transformation cannot be a glide reflection. It is a composition of a translation and a reflection, so it is a composition of transformations.
34. Yes; sample answer: If a segment with endpoints \((a, b)\) and \((c, d)\) is to be reflected about the \(x\)-axis, the coordinates of the endpoints of the reflected image are \((a,-b)\) and \((c,-d)\). If the segment is then reflected about the line \(y=x\), the coordinates of the endpoints of the final image are \((-b, a)\) and \((-d, c)\). If the original image is first reflected about \(y=x\), the coordinates of the endpoints of the reflected image are \((b, a)\) and ( \(d, c\) ). If the segment is then reflected about the \(x\)-axis, the coordinates of the endpoints of the final image are \((b,-a)\) and \((d,-c)\).

\section*{Tessellations}

\section*{LESSON GOAL}

Students identify figures that tessellate the plane and create tesselations by using rigid transformations.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Creating Tessellations

\section*{Develop:}

\section*{Types of Tessellations}
- Regular Tessellation
- Semiregular Tessellation
- Classify a Tessellation

Transformations in Tessellations
- Identify Transformations in a Tessellation

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket
Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.


\section*{Language Development Handbook}

Assign page 85 of the Language Development Handbook to help your students build mathematical language related to using rigid motions to tessellate the plane.
Enll You can use the tips and suggestions on page T 85 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{|c|c|}
\hline 90 min & 0.5 day \\
\hline 45 min & 1 day \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.5 Given a geometric figure and a rotation, reflection or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment
Previous
Students determined the image of a figure after a transformation has occurred. 8.G.3, G.CO.5, G.CO. 6

\section*{Now}

Students identify tessellations and transformations in tessellations.
G.CO.4, G.CO. 5

Next
Students will identify line and rotational symmetries in two-dimensional and three-dimensional figures.
G.CO.3, G.CO. 5

\section*{Rigor}
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students extend their understanding of transformations to create tessellations. They build fluency by drawing transformed figures, and they apply their understanding by solving real-world problems related to tessellations.

\section*{Mathematical Background}

A figure has symmetry if there is a rigid motion-reflection, translation, rotation, or glide reflection-that maps the figure onto itself. A figure has line symmetry if it can be mapped onto itself by a reflection in a line. A figure has rotational symmetry if it can be mapped onto itself by a rotation between \(0^{\circ}\) to \(360^{\circ}\) about the center of the figure.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- identify types of polygons and angle measures

Answers:
1. rhombus; \(45^{\circ}\) and \(135^{\circ}\)
2. square, \(90^{\circ}\); equilateral triangle, \(60^{\circ}\)
3. regular hexagon, \(120^{\circ}\); equilateral triangle, \(60^{\circ}\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of tessellations.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Creating Tessellations}

\section*{Objective}

Students use translations to create a tessellation and determine the characteristics needed for a polygon to tessellate the plane.

\section*{11 Teaching the Mathematical Practices}

5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of tessellations.
3 Make Conjectures In this Explore, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students read the definition of tessellation. Then they use dynamic geometry software to determine the translation vectors needed to tesselate a geometric figure. Next students use dynamic geometry software to measure angles in regular polygons and to see whether these polygons can tesselate the plane. Students then complete guiding exercises linking the angle measures to the tessellations. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore


Explore
WEB SKETCHPAD
Students use a sketch to explore tessellations. exercises.

\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}
a|
Students respond to the Inquiry Question and can view a sample answer.

\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Creating Tessellations (continued)}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- What happens when you rotate the first figure at the midpoint of each of its sides? Sample answer: The figure can form a tessellation using those rotations.
- What is the least number of regular polygons that can meet at a vertex? 3

\section*{(B) Inquiry}

When will a regular polygon not tessellate the plane? Justify your reasoning. Sample answer: A regular polygon will not tessellate the plane when the measure of one of its interior angles is not a factor of \(360^{\circ}\). Because the sum of the measures of the angles surrounding a vertex must be \(360^{\circ}\) and all the interior angles of a regular polygon are all congruent, the measure of each interior angle must be a factor of \(360^{\circ}\) or else the pattern will have overlapping polygons or empty spaces.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Types of Tessellations}

Objective
Students use transformations to classify tessellations and identify figures that tessellate the plane.
(1) Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of tessellations in this Learn.
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{What Students Are Learning}

Tessellations, unlike nonrepeated figures, can have translation symmetry. Encourage students to look for transformations that will not change the appearance of a tessellation, including reflections, rotations, and translations.

\section*{Common Misconception}

Students may confuse a semiregular tessellation with a tessellation that has only one nonregular polygon. Make sure that students understand that in a semiregular tessellation, the polygons are still regular, but there are more of them than one.

\section*{Example 1 Regular Tessellation}
(17) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AII What does \(n\) represent in the formula? the number of sides of the polygon
OL. Why do we need to know the measure of an interior angle? Sample answer: For a regular polygon to tessellate the plane, its interior angle measure must be a factor of \(360^{\circ}\).
[BLI For which values of \(n\) will a regular \(n\)-gon tessellate the plane? 3,4 , and 6

\section*{Common Error}

Students may try to cancel the values of \(n\) in the formula before multiplying in the numerator. Remind them that they can only cancel expressions that are factors of the numerator and denominator, and that \(n\) is not a factor of the numerator.


\section*{Interactive Presentation}


Learn


\section*{Example 2 Semiregular T essellation}

Teaching the Mathematical Practices
2 Create Representations Guide students to write an equation that models the situation in Example 2. Then use the equation to solve the problem.

\section*{Questions for Mathematical Discourse}

Al. Why is a tessellation of regular octagons and squares semiregular? Sample answer: Because it is made of more than one shape, but both the shapes are regular.
Ol. Why do you need to check the angle sum? Sample answer: Sketching by hand is not always reliable; checking that the angle sum is \(360^{\circ}\) will tell us how reliable the sketch is.

B1. Is it possible to have a semiregular tessellation with a regular octagon and a regular hexagon? Explain. No; sample answer: \(360^{\circ}-135^{\circ}-120^{\circ}=105^{\circ} .105^{\circ}\) does not equal the interior angle measure of any regular polygon, and it is too small to be the sum of any two interior angle measures of two regular polygons.

\section*{Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Q Essential Question Follow-Up
Students learn about tessellations

\section*{Ask:}

How are tessellations related to transformations? Why might this be useful? Sample answer: Some transformations do not change the way tessellations look. So a tessellation might be useful when repeated in a manufacturing process.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity AIL 픈}

Have students look for tessellations in the real world, for example in tile patterns or brick sidewalks. Students should classify the tessellations they find using the definitions they learn throughout the lesson.

\section*{Enrichment Activity [BII}

Have students cut a square out of stiff paper, and have them cut a shape out of one side of the paper and tape it to the opposite side. Have students use the new shape to tessellate the plane using translations, and decorate their tessellation with different colors. Have students come up with other ideas to make tessellations using rotations and reflections.

\section*{Example \(\mathbf{3}\) Classify a T essellation}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about tessellations to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL. Do the colors of the rectangles used make a difference in determining whether this is a tessellation? Explain. No; sample answer: The only characteristics that determine a tessellation are whether the shapes used overlap and whether the shapes have gaps between them.
OL Is it necessary to use rotations to make this tessellation from one rectangle? Explain. Yes; sample answer: The positions of the rectangles can only occur with rotations.

BLI Is there a way to draw a tessellation with this rectangle that is uniform? Explain. Y es; sample answer: Align the rectangles up without rotating them.

\section*{Learn T ransformations in Tessellations}

\section*{Objective}

Students determine whether given polygons tessellate the plane and describe transformations that are used to create tessellations.

Teaching the Mathematical Practices
3 Analyze Cases The Concept Check guides students to examine the cases of different polygons and whether they can tesselate the plane. Encourage students to familiarize themselves with all of the cases.

Example 3 Classify a T essellation
TILES Tiles for kitchen backsplashes come in many shapes that can create unique patterns. The pattern shown is created with rectangular tiles. Determine whether the pattern is a tessellation. If so, describe it as uniform, not uniform, regular, not regular, or semiregular.
The pattern is a tessellation because there are no empty spaces and the sum of the angles at the different vertices is \(360^{\circ}\). The tessellation is not uniform because at vertex \(A\) there are four angles and at vertex \(B\) there are three angles.
The tessellation is not regular because rectangular tile is used to create the pattern and a rectangle is not a regular polygon.

\section*{Check}

WEAVING Basket weaving is one of the oldest art forms of human civilization, dating back to 5000 B.C
Throughout the years, different cultures have
created hundreds of basket patterns. Which terms describe the pattern shown? uniform, tessellation

Learn T ransformations in T essellations
Not all polygons have to be regular to tessellate the plane. Any triangle is capable of tessellating the plane because the sum of the measures of its interior angles is \(180^{\circ}\).
Any quadrilateral is capable of tessellating the plane. Because a quadrilateral can be formed by two triangles, the sum of the interior angles of a quadrilateral is \(2,180^{\circ}\) or \(360^{\circ}\).
Even though all triangles and quadrilaterals can tessellate the plane, not all polygons can. Only fifteen known types of convex pentagons and three types of convex hexagons can tessellate the plane. If a convex polygon has seven or more sides, then it cannot tessellate the plane.

Qgo Online Y ou can complete an Extra Example online.

\section*{3 Go Online} You may want to complete the Concept Check to check your understanding.

\section*{Interactive Presentation}


Think About It! Can the same tessellation be created using only two types of transformations? If so, describe the transformations.
\(Y\) es; sample answer: The tessellation can be created using only rotations and translations. Once Triangle \(A\) is rotated to create Triangle \(B\), the two triangles can each be translated along multiple vectors to create the remaining triangles in the tessellation.

Example 4 Identify T ransformations in a T essellation
Will an isosceles triangle sometimes, always, or never tessellate the plane? Describe the transformation(s) that can be used to create the tessellation shown below.
Because all triangles tessellate the plane, an isosceles triangle will always tessellate the plane.


Triangles \(B\) and \(D\) to create the tessellation.

So, the tessellation can be created using rotations, translations, and reflections.

\section*{Check}

Will a kite sometimes, always, or never tessellate the plane? always
Describe the transformation(s) that can be used to create the tessellation shown. Select all that apply.
(A.) rotation and translation
B. rotation and reflection
C. reflection and translation
D. translation and translation
E. reflection and rotation

Q go Online Y ou can complete an Extra Example online.
822 Module 13 . Transformations and Symmetry

\section*{Example 4 Identify T ransformations in a Tessellation}

Teaching the Mathematical Practices
1 Understand the Approaches of Others Mathematically proficient students can explain the methods used to solve a problem. The Think About It! feature asks students to justify their reasoning.

\section*{Questions for Mathematical Discourse}

Could you perform the transformation of triangles \(A, B, C\), and \(D\) using a translation? Explain. Yes; sample answer: You could translate triangle \(A\) to the green triangle above triangle \(B\).
OLI Is there another way to transform triangles \(A, B, C\), and \(D\) ? Explain. Y es; sample answer: You could rotate the triangles \(180^{\circ}\) around the point at the peak of triangle \(C\).
[BLI. If these were scalene triangles, could you still use the same set of transformations? Explain. Yes; sample answer: The rotations and translations would be the same. The reflection would look slightly different but still tessellate.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

\section*{3 APPLICATION}

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-14\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from \\
this lesson
\end{tabular} & \(15-19\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(20-22\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

\section*{IF students score \(90 \%\) or more on the Checks, \\ THEN assign:}
- Practice, Exercises 1-19 odd, 20-22
- Extension: Creating New Tessellations

IF students score 66\%-89\% on the Checks,
THEN assign:
- Practice, Exercises 1-21 odd
- Remediation, Review Resources: Parallel Lines and Transversals
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Parallel Lines and Transversals

IF students score \(65 \%\) or less on the Checks, THEN assign:
- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Parallel Lines and Transversals
- Q ALEKS'Parallel Lines and Transversals

\section*{Important to Know}

Digital Exercise Alert Exercise 21 requires drawing transformed figures and is not available online. To fully address G.C0.5, have students complete this exercise using their books.

\section*{Answers}

Let \(x\) represent the measure of an interior angle of each regular polygon.
1. \(x=\frac{180(5-2)}{5}=108^{\circ}\); Because \(108^{\circ}\) is not a factor of \(360^{\circ}\), a regular pentagon will not tessellate the plane.
2. \(x=\frac{180(6-2)}{6}=120^{\circ}\); Because \(120^{\circ}\) is a factor of \(360^{\circ}\), a regular hexagon will tessellate the plane.
3. \(x=\frac{180(9-2)}{9}=140^{\circ}\); Because \(140^{\circ}\) is not a factor of \(360^{\circ}\), a regular 9 -gon will not tessellate the plane.
 your argument. See margin.
14. Determine whether a tessellation can be created from a parallelogram. If so, describe the transformation(s) that can be used to create the tessellation and draw a picture to support your reasoning. See margin.

Mixed Exercises

18. HOME IMPROVEMENT A hardware store sells various shapes of regular polygon paving stones. Kiyoko wants a simple design and only wants to buy one shape of stone. To build a solic base floor for her patio, what type of shape shou Kiyoko buy? triangle, square, or hexagon
19. GIFTS Matthew wants to surprise his girlfriend with a homemade gift. He wants to make a puzzle by tessellating one piece with a picture of a heart on it What type of transformations can Matthew perform to create his puzzle? Explain Sample answer: Translations can be performed because the pieces slide. Rotations Nor perm Rellections cannot be

Higher-Order Thinking Skills
20. FIND THE ERROR Heather says that if an interior angle of a regular \(n\)-gon measures \(180^{\circ}\), then the \(n\)-gon will tessellate because \(180^{\circ}\) is a factor of \(360^{\circ}\) Do you agree? Explain your reasoning. See margin.
21. CREATE Draw a tessellation that can be created by translations or rotations. See margin.
22. WRITE How would you accurately describe a tessellation to a person who had never heard the term before? See margin.
\(\mathbf{8 2 4}\) Module 13. Transformations and Symmetry
9. yes; Sample answer: reflection,
rotation, translation

10. yes; Sample answer: rotation, translation

11. Never; sample answer: Each interior angle of a regular dodecagon is \(\frac{180^{\circ}(12-2)}{12}=150^{\circ}\). Because \(150^{\circ}\) is not a factor of \(360^{\circ}\), a regular dodecagon will not tessellate the plane.
12. Sample answer: reflection and rotation

13. Never; sample answer: Each interior angle of a regular 15-gon is \(\frac{180^{\circ}(15-2)}{15}=156^{\circ}\). Because \(156^{\circ}\) is not a factor of \(360^{\circ}\), a regular 15-gon will not tessellate the plane.
14. yes; Sample answer: translation and reflection

20. No; sample answer: Let \(n\) represent the number of interior angles of an \(n\)-gon: \(180=\frac{180(n-2)}{n} \rightarrow 180 n=180(n-2) \rightarrow 180 n=180 n-\) \(360 \rightarrow 0 \neq-360\); Although \(180^{\circ}\) is a factor of \(360^{\circ}\), because 0 does not equal -360 , there is not an \(n\)-gon with an interior angle that measures \(180^{\circ}\).

\section*{21. Sample answer:}

22. Sample answer: A tessellation is a pattern that completely covers a surface and is created by using the same or different shapea De a tessellation, the shapes in the pattern cannot overlap, and there cannot be any gaps between the shapes.

\section*{LESSON GOAL}

Students use symmetry to describe the transformations that carry a figure onto itself.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Symmetry in Figures
8 Develop:

\section*{Line Symmetry}
- Identify Line Symmetry

\section*{Rotational Symmetry}
- Identify Rotational Symmetry
- Determine Order and Magnitude of Symmetry

You may want your students to complete the Checks online.

\section*{3 REFLECT AND PRACTICE}

Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.
\begin{tabular}{|c|c|c|c|}
\hline Resources & ALIMB & F1, & \\
\hline Remediation: Rotations & - 0 & & - \\
\hline Extension: Symmetry in Design & - - & & - \\
\hline
\end{tabular}

\section*{Language Development Handbook}

Assign page 86 of the Language Development Handbook to help your students build mathematical language related to using symmetry to describe the transformations that carry a figure onto itself.
Fill You can use the tips and suggestions on page T86 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l|}
90 min & 0.5 day \\
45 min & \\
& \\
& \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students identified tessellations and transformations in tessellations.
G.CO.4, G.CO. 5

\section*{Now}

Students identify line and rotational symmetries in two-dimensional and three-dimensional figures.
G.C0.3, G.C0. 5

\section*{Next}

Students will understand and describe any symmetry displayed in graphs of functions.
F.IF. 4 (Course 2)

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students expand on their understanding of and fluency with symmetry (first studied in Grade 4) to connect symmetry to transformations. They apply their understanding by solving real-world problems related to symmetry.

\section*{Interactive Presentation}


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- determine coordinates of transformations

Answers:
1. \(A^{\prime}(3,-1), B^{\prime}(1,-3), C^{\prime}(1,-1)\)
2. \(A^{\prime}(3,4), B^{\prime}(4,-3), C^{\prime}(2,-1)\)
3. \(A^{\prime}(-2,-1), B^{\prime}(-4,-2), C^{\prime}(-1,-3)\)
4. \(A^{\prime}(2,1), B^{\prime}(2,3), C^{\prime}(-1,4)\)
5. \(A^{\prime}(-4,-4), B^{\prime}(-4,-1), C^{\prime}(-1,-1)\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see real-world applications of the various types of symmetry.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices?, and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then discuss the questions below with the class.

\section*{Mathematical Background}

A figure has symmetry if there is a rigid motion-reflection, translation, rotation, or glide reflection-that maps the figure onto itself. A figure has line symmetry if it can be mapped onto itself by a reflection in a line. A figure has rotational symmetry if it can be mapped onto itself by a rotation between \(0^{\circ}\) to \(360^{\circ}\) about the center of the figure. Similarly, three-dimensional figures can have plane or axis symmetry.

\section*{Explore Symmetry in Figures}

Objective
Students use dynamic geometry software to explore symmetry in two-dimensional figures.

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students use dynamic geometry software to move a line of reflection so that a figure reflected in it does not change. Then students complete guiding exercises about line symmetry. Next students use dynamic geometry software to determine an angle of rotation so that a figure rotated in that angle does not change. Then students complete guiding exercises about point symmetry. Then, students will answer the Inquiry Question.
(continued on the next page)

\section*{Interactive Presentation}


Explore
WEB SKETCHPAD
Students use a sketch to explore symmetry.

TYPE
Students type to complete the guiding exercises.

\section*{Interactive Presentation}


\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Explore Symmetry in Figures (continued)}

Teaching the Mathematical Practices
3 Construct Arguments In this Explore, students will use stated assumptions, definitions, and previously established results to construct an argument.

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
- Does the triangle shown have line symmetry? If so, how many lines does it have? yes; 3
- Does the rectangle have point symmetry? If so, what is the smallest angle measure for a rotation where the image is the same as the original rectangle? yes; \(180^{\circ}\)

\section*{(9) Inquiry}

How can you tell when a figure can be mapped onto itself? Sample answer: A figure can be mapped onto itself when the figure is regular or when it can be bisected by a line.
(3) Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Line Symmetry}

Objective
Students use line symmetry to describe the reflections that carry a figure onto itself.

(11)
Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{About the Key Concept}

Symmetry connects transformations to single figures. Because a single figure cannot be translated onto itself, the only transformations that can show symmetry in a figure are rotations and reflections.

\section*{Common Misconception}

Students will sometimes find more lines of symmetry than actually exist. Simple or convenient definitions that lines of symmetry cut shapes in half do not imply that these lines must also create two halves that are exact mirror images of each other.

\section*{Example 1 Identify Line Symmetry}

\section*{Teaching the Mathematical Practices}

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This example asks students to respond to the arguments of others.

\section*{Questions for Mathematical Discourse}

AL Describe reflectional symmetry in your own words. Sample answer: a line along which an object can be folded onto itself and both parts look exactly the same

OL. Why does the triangle not have any lines of symmetry? Sample answer: There is no way that this figure can be reflected upon itself.

Bil What figure has infinitely many lines of symmetry? a circle


Interactive Presentation


Learn



\section*{Interactive Presentation}


Learn

\section*{DRAG \& DROP}


\section*{Common Error}

Students may have difficulty finding the lines of symmetry that pass through the vertices of polygons that have an even number of sides.

\section*{Essential Question Follow-Up}

Students learn about different types of symmetry.

\section*{Ask:}

Why is symmetry important in the real world? Sample answer: You can use symmetry to construct the second part of a symmetric figure from the first part.

\section*{Learn Rotational Symmetry}

\section*{Objective}

Students use rotational symmetry to describe the rotations that carry a figure onto itself.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of rotational symmetry in this Learn.

\section*{Things to Remember}

Some, but not all, figures that have rotational symmetry also have line symmetry. Some, but not all, figures that have line symmetry have rotational symmetry.

\section*{Common Misconception}

Students sometimes have difficulty with rotational symmetry. The best way to understand rotational symmetry is to visualize it.


Go Online
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{Example 2 Identify Rotational Symmetry}

Teaching the Mathematical Practices
4 Apply Mathematics In this example, students apply what they have learned about rotational symmetry to solving a real-world problem.

\section*{Questions for Mathematical Discourse}

AL. If figures have line symmetry, do they also have rotational symmetry? Explain. No; sample answer: Some figures that have line symmetry have rotational symmetry, but not all.
OIL What part of the leaf tells you whether it has rotational symmetry? Explain. the stem; Sample answer: No other part of the leaf is as thin, so it cannot have rotational symmetry.
BE. What could you do to one of the figures to make it no longer have rotational symmetry? Sample answer: Add a stem to the clover.

\section*{DIFFERENTIATE}

\section*{Enrichment Activity (B14}

Have the students identify some objects that have rotational symmetry. Sample answer: baseball field, helicopter blades

Key Concept • Point Symmetry
A figure has point symmetry if it can be mapped onto itselfoy a rotation of \(180^{\circ}\). If a figure has point symmetry, then the center of symmetry in
he figure is called the point of symmetry.
Example A rhombus has point symmetry
because it looks the same right-side
up as upside down.
(2) Go Online
\(Y\) ou may want to complete the Concept Check to check you understanding.

Exxample 2 Identify Rotational Symmetry
NATURE Objects found in nature often have rotational symmetry. Determine whether each figure has rotational symmetry. Explain.


No; no rotation less \(Y\) es; the flower can than \(360^{\circ}\) maps the有 360 maps the
es; the flower can rotation that is les than \(360^{\circ}\).
\(Y\) es; the clover can map onto itself with a rotation that is less than \(360^{\circ}\).
Check
HOUSEHOLD Below are several objects that you might find around your house. Determine whether each figure has rotational symmetry Explain.

sson 13-6. Symmetry 827

\section*{Interactive Presentation}


\section*{Example 2}


Students complete the Check online to determine whether they are ready to move on.


\section*{Interactive Presentation}


Example 3


Students tap to reveal steps in a solution.

Students complete the Check online to determine whether they are ready to move on.

\section*{Example 3 Determine Order and Magnitude of Symmetry}

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Questions for Mathematical Discourse}

Do all regular polygons have rotational symmetry? Explain. Y es; sample answer: Because there exists an angle through which you can rotate a regular polygon onto itself, regular polygons have rotational symmetry.
Oll Do all regular polygons have point symmetry? Explain No; sample answer: Regular polygons with odd numbers of sides cannot map onto themselves with rotations of \(180^{\circ}\).
Bill What will the order of symmetry for a regular \(n\)-gon be? \(n\)

\section*{Common Error}

Students may confuse the order and the magnitude of symmetry. Work with them until they understand that the two terms are related but different.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

Suggested Assignments
Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-14\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(15-23\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(24-31\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-23 odd, 24-31
- Extension: Symmetry in Design
- DALEKS'Symmetry, Congruence Transformations

IF students score \(66 \%-89 \%\) on the Checks,
THEN assign:
- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Rotations
- Personal Tutors
- Extra Examples 1-3
- Q ALEKS Rotations

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Rotations
- Quick Review Math Handbook: Symmetry
- Q ALEKS' Rotations

\section*{Answers}

5.

2.

6.


\section*{Practice}

OGo online Y ou can complete yout homework ortine.
Example 1
Determine whether each figure has a line of symmetry. If so, draw the lines of symmetry and state how many lines of symmetry it has. \(1-2,5-6\). See margin for graphs. 1. yes: \(3 \longrightarrow 2\) yes:


2 yes; 2


Example 2
7. ARS Steve found the hubcaps shown below at his local junkyard. Determine whether each hubcap has rotational symmetry. Explain.


Lesson 13.6. Mammetry 829
9. RECYCLING A waste management company offers recycling programs for its clients. Recycling is denoted by the symbol Explain. Y es; the symbol can map onto itself with a rotation that is less than \(360^{\circ}\).

10. VACATION Annabel and her family went to a beach for vacation. While she was on the beach, Annabel collected seashells. Does the seashell shown have rotational symmetry? Explain. No; no rotation less than \(360^{-}\)maps the seashell onto itself.

Example 3
Determine whether each figure has rotational symmetry, If so, locate the center of symmetry, and state the order and magnitude of symmetry.
11. yes; \(3 ; 120^{*}\)

13. yes; \(2 ; 180^{*}\)

14. no


230 Module 13. Transformations and Symmety

\section*{Mixed Exercises}

\section*{efer to the figure at the right.}
15. Draw the line(s) of symmetry in the figure.
16. Locate the center of symmetry for the figure.

\section*{* 访折}
17. What is the order and magnitude of symmetry for the figure? \(2 ; 180^{\circ}\)
18. LETTERS Examine each capital letter in the alphabet. Determine which letters have \(180^{\circ}\) rotational symmetry about a point in the center of the letter. \(\mathrm{H}, \mathrm{I}, \mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{X}, \mathrm{z}\)
19. STRUCTURE A regular polygon has rotational symmetry with an order of 5 and a magnitude of \(72^{\circ}\). What is the figure? pentagon
20. CONSTRUCT ARGUMENTS Consider the symmetry of a circle
a. How many lines of symmetry does a circle have? Justify your argument.
Infinitely many; every line throught the center of the circle is a line of symmetry, and there are infinitely many such lines.
b. What is the order of rotation for a circle? Justify your argument angle measure, no matter how small, maps the circle onto itself.

State whether each figure has rotational symmetry. If so, describe the rotations that map the figure onto itself by giving the order of symmetry and magnitude of symmetry
21. equilateral triangle yes; order of symmetry: 3 ; magnitude of symmetry: \(120^{\circ}\)
22. scalene triangle no rotational symmetry
23. regular hexagon yes; order of symmetry: 6; magnitude of symmetry: \(60^{\circ}\)

\section*{OHigher-Order Thinking Skills}
24. PERSEVERE Draw a three-dimensional object that has a base with line symmetry. See margin
25. CREATE Draw an object that has at least one line of symmetry. Describe the lines f symmetry in this object. Sample answer. A rectangular mirror with two lines of mmetry, one verical and sorizonta, through the middle or a spoon with one line of symmetry down the middle.
26. ANAL YZE The figure shows the floor plan for a new gallery in an art museum. Describe every reflection thot maps the gallery onto itself is a reflection in the line \(y=x\).
27. WRITE A regular polygon has magnitude of symmetry \(15^{\circ}\). How many sides does the polygon have? Explain. \(24 ; 360^{\circ} \div 15^{\circ}=24\), so the order of symmetry is 24 . This means there are 24 sides.
28. FIND THE ERROR Jaime says that Figure A has only line symmetry, and Jewel says that Figure \(A\) has only rotational symmetry. Is either of them correct?

29. PERSEVERE A quadrilateral in the coordinate plane has exactly two lines of symmetry, \(y=x-1\) and \(y=-x+2\). Find possible vertices for the figure. Graph metry. Sample answer: \((-1,0),(2,3),(4,1)\), and (1, -2\()\) See margin for graph
30. CREATE Draw a figure that has line symmetry but not rotational symmetry. Explain. See margin.
31. WRITE How are line symmetry and rotational symmetry related? See margin.

\section*{Answers}

\section*{24. Sample answer:}

29.

30. Sample answer: An isosceles triangle has line symmetry from the vertex angle to the base of the triangle, but it does not have rotational symmetry because it cannot be rotated to map onto itself.

31. Sample answer: In both rotational and line symmetry a figure is mapped onto itself. However, in line symmetry a figure is mapped onto itself by a reflection, and in rotational symmetry a figure is mapped onto itself by a rotation. A figure can have line symmetry and rotational symmetry.

\section*{Rate Yourself 隹目}

Have students return to the Module Opener to rate their understanding of the concepts presented in this module. They should see that their knowledge and skills have increased. After completing the chart, have them respond to the prompts in their Student Edition and share their responses with a partner.

\section*{Answering the Essential Question}

Before answering the Essential Question, have students review their answers to the Essential Question Follow-Up questions found throughout the module.
-Why are compositions of rigid motions important?
- How are tessellations related to transformations? Why might this be useful?
-Why is symmetry important in the real world?
Then have them write their answer to the Essential Question.

\section*{DINAH ZIKE FOLBABLES}
[ELIU A completed Foldable for this module should include the key concepts related to rigid motions and symmetry.

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention. You can create a student assignment in LearnSmart for additional practice on these topics for Congruence, Proof, and Constructions.
- Experiment with transformations in the plane
Essential Question
Essential Question
How are rigid motionsused to show geometric relationships?
How are rigid motionsused to show geometric relationships?
Nlgid motions are used to show that figures are congruent. If no series of rigid motions exists from
Nlgid motions are used to show that figures are congruent. If no series of rigid motions exists from
one figure to another, then the figures are not congruent.
one figure to another, then the figures are not congruent.

\section*{Module Summary}

\section*{Lessons 13-1 through 13-3}
Reflections, Translations, and
Rotations
-When a figure is reflected in a line, each point of the preimage and its corresponding point on the image are the same distance from the line of reflection.
A translation is a function in which all the points of a figure move the same distance in the same direction as described by a translation vector.
A translation vector describes the magnitude and direction of the translation. The magnitude of a vector is its length from the initial point to the terminal point.
A rotation about a lixed point Athrough an angle A is a function that maps point sto point \(\$\) and \(M P=1\)

\section*{Lesson 13-4}
Compositions of Transformations
When a transformation is applied to a figure and then another transformation is applied to its image, the result is called a composition of ransformations.
- A glide reflection is the composition of a translation followed by a reflection in a line parallel to the translation vector.
-The composition of two reflections can result in the same image as a translation or rotation.

Lessons 13-5 and 13-6
Tessellations and Symmetry
- A regular polygon will tessellate if it has an measure that is a factor of \(360^{\circ}\). A semiregular tessellation is formed by two or
ore regular polygons.
A figure has symmetry if there exists a rigid reflection-that maps the figure onto itself

A flgure in the plane has line symmety for reflectional symmetry) if each half of the figure matches the other side exactly.
A figure in the plane has rotational symmetry or radial symmetry) if the figure can be mappe onto itself by being rotated less than \(360^{\circ}\) abou orthe ingure so the image and the preimage are indistinguishable.

\section*{Study Organizer}
(1) Foldables
with a partner core review this module. Working a a partner can be helpful. Ask for clarification ts as needed.

1 GRAPH Graph the image of \(\triangle A B C_{\text {with }}\) vertices at \(A(-5,0), B(-3,5),(-1,2)\) after a reflection in the line \(x--2\) (Lesson 13-1)

2. MLL TIPLE CHOICE Which best describes a Possible step that is used to determine the bcation of the image of point \(B\) when it is eflected in the line \(y=87\) Lesson 13-1

(4) Sve down one and right one from \((0,0)\)

日. Sove down one and right one from ( \(-1,1\) ).
C. Wibe right two from (1, 1)
D. Heve down two from ( \(-1,-1\) ).
3. OPEN RESPONSE When point \(r\) is reflected in the line \(y=x\), the image is located at \((x-9)\) Find the coordinates of point ₹. (Lesson 13-1) \((-9,6)\)
4. MUL TIPLE CHOICE Find the vector that
translates \(4(-2,7\) ) to \(A \mid 5,4\). Lesson 13 -2
A. \((-83)\)
B. \(\langle 3,8\rangle\)
C. \((3,8)\)
(4) \(8,-3)\)
5. OPEN RESPONSE Fefer to the graph.


Explain why a transtion does notmap \(\triangle A B C\) to \(\triangle E F G\). Lesson 13-2) Sample answer: The length of \(\overline{A C}\) is not the same as the length of \(E G\)
6. MUL TIPLE CHOICE Which is the image of A(-5, 11) along the vector ( \(3,-8\) ) ? Lesson 13-2)
\[
\text { A. } P \mid-8,19)
\]
B. \(\cdot(-8,3)\)
C. \((-2,-3)\)
\(P(-2,3)\)
7. MUL TIPLE CHOICE Juan is designing a new playground for the elementary school. He needs to determine the shortest distance from the monkey bars to the slide to create a path. Which statemer best describes the translation from the monkey bars to the slideResson 13-2

A. atranslation right 11 units and up 9 units B. atranslation right 3 units and up 7 units atranslation left 3 units and down 7 units D. a translation left 11 units and down 9 units

\section*{Review and Assessment Options}

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources
Put It All Together: Lessons 13-1 through 13-6
Vocabulary Activity
Module Review

Assessment Resources
Vocabulary Test
AL Module Test Form B
OL Module Test Form A
[3. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

\section*{Test Practice}

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-17 mirror the types of questions your students will see on online assessments.
\begin{tabular}{|l|l|c|}
\hline Question Type & Description & Exercise(s) \\
\hline Multiple Choice & Students select one correct answer. & \begin{tabular}{c}
\(2,4,6-8\), \\
10,12
\end{tabular} \\
\hline Multi-Select & \begin{tabular}{l} 
Multiple answers may be correct. \\
Students must select all correct \\
answers.
\end{tabular} & 13 \\
\hline Table Item & \begin{tabular}{l} 
Students complete a table by \\
entering in the correct values.
\end{tabular} & 15 \\
\hline Graph & \begin{tabular}{l} 
Students create a graph on an \\
online coordinate plane.
\end{tabular} & 1,14 \\
\hline Open Response & \begin{tabular}{l} 
Students construct their own \\
response.
\end{tabular} & \(3,5,9,11\), \\
16,17 \\
\hline
\end{tabular}

To ensure that students understand the standards, check students' success on individual exercises.
\begin{tabular}{|l|c|c|}
\hline Standard(s) & Lesson(s) & Exercise(s) \\
\hline G.C0.4 & \(13-2,13-5\) & \(5,15-16\) \\
\hline G.C0.5 & \(13-1\) through & \(1,4,7-9\), \\
& \(13-6\) & \(13,14,16\) \\
\hline G.C0.6 & \(13-1\) through & \(1-4,6\), \\
& \(13-4\) & \(8-11,14\) \\
\hline
\end{tabular}
8. MUL TIPLE CHOICE Which is the image of \(P(3,0)\) after a counterclockwise rotation of \(90^{\circ}\) about ( 2,4 ) ? Lesson 13-3)
A. P(-2,5)
(4) गु 6.51
c. P侑都
D. P)-4,2)
9. OPEN RESPONSE lefer to the graph


In which quadrant will the image be after a rotation of \(180^{\circ}\) about \((1,-2)\) ? ILesson 13-3)

Quadrant II
10. MUL TIPLE CHOICE Which is the image of ( \(1-2,-7\) ) after a counterclockwise rotation of \(180^{\circ}\) about ( \(-1,5\) ). Lesson \(13-3\) )
A. \(F(1,5)\)
(3) F10. 177
C. F1. 125
D. \(A 2.7\)
11. OPEN RESPONSE True or false Rotating \(M(-5,1) 180^{\circ}\) about the origin and then translating along \(\langle-3,4\rangle\) will give the same result as translating along ( \(-3,4\) ) and then rotating \(180^{\circ}\). Lesson 13-4)
false
12. MUL TPLE CHOICE Triangle AAC is nown (Lesson 13-4)


Triangle \(A P C\) is rotated \(90^{\circ}\) counterclockwise about the origin and then translated along \((-2.3)\) What is the location of the image of point \(B^{\text {? }}\)
A. \((0,0)\)
B. \((1,1)\)
- \(+4,6\) )
D. ( \(-5,1\) )
13. MUL TI-SELECT Select all transformations or composition of transformations that would \(\operatorname{map} \triangle A B C\) to \(\triangle A W C^{\prime}\) (Lesson 13-4)

(3) Pflection in the racos follomed by reflection in the yous
B. Reflection in the naxo followed by : rotation of \(90^{\circ}\) counterclockwise about the origin
. Aflection in \(y=-x\)
कtation of 180 "about the origin
E Aflection in \(y\) " \(x\)

15. IUL TIPLE CHOICE Which figure has 3 lines of Symmetry? (Lesson 13-6)
A.

e.

D.

\({ }^{1}\). OPEN RESPONSE How many lines of
symmetry does this figure have? Describe the reflections, if any, that map the figure onto itself. Lesson 13-G


9; A reflection in any of the 8 lines of symmetry maps the figure onto itself.
17. Open Response tgte the order and magnitude of symmetry for the object below. (Lesson 13-6)

order \(=24 ;\) magnitude \(=15^{\circ}\)

\section*{Module Goals}
- Students use triangle sum theorems to solve problems.
- Students prove triangles congruent using different congruence criteria.
- Students use congruent triangles to solve problems.

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.10 Prove theorems about triangles.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Also addresses G.CO.7, G.CO.8, and G.GPE.4.
Standards for Mathematical Practice:
All Standards for Mathematical Practice will be addressed in this module.

\section*{Be Sure to Cover}

To completely cover G.C0.12, go online to assign the following constructions:
- Construct a Congruent Triangle (Lessons 14-3 and 14-4)
- Construct an Equilateral Triangle (Lesson 14-6)
- Construct an Isosceles Right Triangle (Lesson 14-6)

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students used transformations to determine congruence between two-dimensional figures.

\section*{8.G. 2}

\section*{Now}

Students use the definition of congruence in terms of rigid motions to show that two triangles are congruent and use the congruence criteria to solve problems and prove relationships.
G.C0.7, G.CO.8, G.SRT. 5

\section*{Rigor}

\section*{The Three Pillars of Rigor}

To help students meet standards, they need to illustrate their ability to use the three pillars of rigor. Students gain conceptual understanding as they move from the Explore to Learn sections within a lesson. Once they understand the concept, they practice procedural skills and fluency and apply their mathematical knowledge as they go through the Examples and Practice.

\section*{Suggested Pacing}
\begin{tabular}{|c|c|c|c|}
\hline Lessons & Standards & 45-min classes & 90-min classes \\
\hline \multicolumn{2}{|l|}{Module Pretest and Launch the Module Video} & 1 & 0.5 \\
\hline 14-1 Angles of Triangles & G.CO. 10 & 2 & 1 \\
\hline 14-2 Congruent Triangles & G.C0.7, G.SRT. 5 & 1 & 0.5 \\
\hline 14-3 Proving Triangles Congruent: SSS, SAS & G.C0.8, G.SRT. 5 & 1 & 0.5 \\
\hline 14-4 Proving Triangles Congruent: ASA, AAS & G.C0.8, G.C0.10, G.SRT. 5 & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Put It All Together: Lessons 14-3 through 14-4} & 1 & 0.5 \\
\hline 14-5 Proving Right Triangles Congruent & G.C0.8, G.C0.10, G.SRT. 5 & 1 & 0.5 \\
\hline 14-6 Isosceles and Equilateral Triangles & G.CO.10, G.SRT. 5 & 1 & 0.5 \\
\hline 14-7 Triangles and Coordinate Proof & G.CO.10, G.GPE. 4 & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Module Review} & 1 & 0.5 \\
\hline \multicolumn{2}{|l|}{Module Assessment} & 1 & 0.5 \\
\hline & & 12 & 6 \\
\hline
\end{tabular}


Answers: 1. yes;
2. not enough information; 3. no; 4. yes; 5. not enough information; 6. not enough information

Use the Probe after Lesson 14-6.
\(\square\) Collect and Assess Student Answers
\begin{tabular}{|c|c|}
\hline the student selects these responses... & the student likely... \\
\hline \begin{tabular}{l}
1. no or not enough information \\
4. no or not enough information
\end{tabular} & does not recognize that HL and/or SAS can be used with right triangles. In item1, students overgeneralize that SSA cannot be used with nonright triangles and only look for HL in Item 4. \\
\hline 2. yes or no & does not recognize that the congruency marks compare segments of individual triangles. \\
\hline 3. yes or not enough information & does not notice that the congruent sides are not corresponding sides. \\
\hline 5. yes & does not recognize that both angles are not included angles. \\
\hline 5. no & is not considering that the other missing side could also be 15. \\
\hline 6. yes & is confusing similarity with congruence. \\
\hline 6. no & is not considering that the corresponding sides could be congruent. \\
\hline
\end{tabular}

\section*{Take Action}

After the Probe Design a plan to address any possible misconceptions. You may wish to assign the following resources.
- ALEKS' Isosceles and Equilateral Triangles
- Lesson 14-6, Learn, Examples 1 and 2

Revisit the Probe at the end of the module to be sure that your students no longer carry these misconceptions.

\section*{IGN゙TE!}

The Ignite! activities, created by Dr. Raj Shah, cultivate curiosity and engage and challenge students. Use these open-ended, collaborative activities, located online in the module Launch section, to encourage your students to develop a growth mindset towards mathematics and problem solving. Use the teacher notes for implementation suggestions and support for encouraging productive struggle.

\section*{Essential Question}

At the end of this module, students should be able to answer the Essential Question.

How can you prove congruence and use congruent figures in real-world situations? Sample answer: Showing combinations of angles and sides in two triangles congruent to one another results in the potential to show two triangle congruent. These congruent triangles can be used to represent objects used in the construction of buildings or mechanical objects.

\section*{What Will You Learn?}

Prior to beginning this module, have your students rate their knowledge of each item listed. Then, at the end of the module, you will be reminded to have your students return to these pages to rate their knowledge again. They should see that their knowledge and skills have increased.

\section*{DINAH ZIKE FOLBABLES}

Focus Students read about triangle congruence.
Teach Throughout the module, have students take notes under the tabs of their Foldables while working through each lesson. They should include definitions, terms, and key concepts. Encourage students to record examples of each set of triangle congruence criteria from a lesson on the back of their Foldable.
(11) When to Use It Use the appropriate tabs as students cover each lesson in this module. Students should add to the vocabulary tab during each lesson.

\section*{Launch the Module}

For this module, the Launch the Module video uses viewing artwork to demonstrate the usefulness of congruent triangles. Students learn about using congruent triangles to draw the viewer's eye in a piece of artwork.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{What Vocabulary Will Y ou Learn?} \\
\hline - auxiliary line & - corollary & - included side & - principle of \\
\hline - base angles of an isosceles triangle & \begin{tabular}{l}
- corresponding parts \\
- exterior angle of a
\end{tabular} & - interior angle of a triangle & \begin{tabular}{l}
superposition \\
- remote interior angles
\end{tabular} \\
\hline - congruent polygons & triangle & - isosceles triangle & - vertex angle of an \\
\hline - coordinate proofs & - included angle & - legs of an isosceles triangle & isosceles triangle \\
\hline
\end{tabular}

Are Y ou Ready?
Complete the Quick Review to see if you are ready to start this module. Then complete the Quick Check.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Quick Review} \\
\hline \begin{tabular}{l}
Example 1 \\
Classify each angle as right, acute, or obtuse. \\
a. \(\angle A B G\) \\
Point \(G\) on \(\angle A B G\) lies on the exterior of right angle \(\angle A B F\), so \(\angle A B G\) is an obtuse angle. \\
b. \(\angle D B A\) \\
Point \(D\) on \(\angle D B A\) lies on the interior of right angle \(\angle F B A\), so \(\angle D B A\) is an acute angle.
\end{tabular} & \begin{tabular}{l}
Example 2 \\
Find the distance between \(J(5,2)\) and \(K(11,-7)\).
\[
\begin{aligned}
J K & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(11-5)^{2}+[(-7)-2]^{2}} \\
& =\sqrt{6^{2}+(-9)^{2}} \\
& =\sqrt{36+81} \\
& =\sqrt{117} \text { or about } 10.8
\end{aligned}
\] \\
Distance Formula \\
Substitute. \\
Subtract. \\
Simplify. \\
Add.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Quick Check} \\
\hline \begin{tabular}{l}
Classify each angle as right, acute, or obtuse. Fid \\
1. \(\angle V Q S\) right \\
2. \(\angle T Q V\) acute \\
3. \(\angle P Q V\) obtuse \\
4. \(\angle \mathrm{SQR}\) obtuse
\end{tabular} & \begin{tabular}{l}
nd the distance between each pair of points. Round to the nearest tenth. \\
5. \(F(3,6)\) and \(G(7,-4) 10.8\) \\
6. \(X(-2,5)\) and \(Y(1,11) 6.7\) \\
7. \(R(8,0)\) and \(S(-9,6) 18.0\) \\
8. \(A(14,-3)\) and \(B(9,-9) 7.8\)
\end{tabular} \\
\hline
\end{tabular}

How did you do?
Which exercises did you answer correctly in the Quick Check?

838 Module 14 - Triangles and Congruence

838 Module 14 • Triangles and Congruence

\section*{What Vocabulary Will You Learn?}

ELLI As you proceed through the module, introduce the key vocabulary by using the following routine.

Define An isosceles triangle is a triangle that has at least two congruent sides

\section*{Example}


Ask Do you think the third angle is always the smallest? No; sample answer: The sum of the measures of the angles opposite the congruent sides could be less than \(90^{\circ}\), making the measure of the third angle obtuse and the largest angle in the triangle.

\section*{Are You Ready?}

Students may need to review the following prerequisite skills to succeed in this module.
- classifying angles
- analyzing angle relationships in triangles
- analyzing congruent angles and segments
- identifying isosceles and equilateral triangles

\section*{G ALEKS}

ALEKS is an adaptive, personalized learning environment that identifies precisely what each student knows and is ready to learn, ensuring student success at all levels.

You may want to use the Triangles section to ensure student success in this module.

\section*{Mindset Matters}

\section*{View Challenges as Opportunities}

Part of cultivating a growth mindset in math involves viewing challenging problems or tasks as an opportunity to learn and make new connections in your brain.

\section*{How Can I Apply It?}

Encourage students to embrace challenges by trying problems that are thought provoking, such as the Higher-Order Thinking Problems in the practice section of each lesson. Remember to regularly remind students that each new challenge is an opportunity to grow.

\section*{LESSON GOAL}

Students solve problems using the Triangle Angle-Sum and Exterior Angle Theorems.

\section*{1 LAUNCH}

Launch the lesson with a Warm Up and an introduction.

\section*{2 EXPLORE AND DEVELOP}

Explore: Triangle Angle Sums

\section*{Develop:}

\section*{Interior Angles of Triangles}
- Use the Triangle Angle-Sum Theorem

\section*{Exterior Angles of Triangles}
- Use the Exterior Angle Theorem

Triangle Angle-Sum Corollaries
- Find Angle Measures in Right Triangles

You may want your students to complete the Checks online.
3 REFLECT AND PRACTICE
Exit Ticket

Practice

\section*{DIFFERENTIATE}

View reports of student progress on the Checks after each example.


\section*{Language Development Handbook}

Assign page 87 of the Language Development Handbook to help your students build mathematical language related to the Triangle Angle-Sum and Exterior Angle Theorems.
Ellill You can use the tips and suggestions on page 787 of the handbook to support students who are building English proficiency.


\section*{Suggested Pacing}
\begin{tabular}{l|l|}
90 min & 1 day \\
45 min & 2 days \\
\hline
\end{tabular}

\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.10 Prove theorems about triangles.

Standards for Mathematical Practice:
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students used informal arguments to establish facts about the angle sum and exterior angles of triangles.

\section*{8.G.5}

\section*{Now}

Students solve problems using Triangle Angle-Sum and Exterior Angle Theorems.
G.C0.10

\section*{Next}

Students will prove that triangles are congruent.
G.SRT. 5

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students develop an understanding of angle relationships in triangles and build fluency by proving theorems related to angles of triangles. They apply their understanding by solving real-world problems related to interior and exterior angles of triangles.

\section*{Mathematical Background}

The Triangle Angle-Sum Theorem states that the sum of the measures of the interior angles of a triangle is always \(180^{\circ}\). The Triangle Angle-Sum Theorem is used to prove other theorems about angle relationships. Each angle of a triangle has an exterior angle, which is formed by one side of the triangle and the extension of another side.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- classifying angles

Answers:
1. \(\angle 6, \angle 7\)
2. \(\angle 5, \angle 8\)
3. \(\angle 1, \angle 2, \angle 3, \angle 4\)
4. \(\angle 3, \angle 6 ; \angle 5, \angle 4\)
5. \(\angle 1, \angle 2 ; \angle 1, \angle 3 ; \angle 2, \angle 4 ; \angle 3, \angle 4 ; \angle 5, \angle 6 ; \angle 5, \angle 7 ; \angle 6\), \(\angle 8 ; \angle 7, \angle 8\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of interior and exterior angles of a triangle.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore T riangle Angle Sums}

Objective
Students use dynamic geometry software to make conjectures about the interior angles of triangles.

Teaching the Mathematical Practices
5 Use Mathematical Tools Point out that to solve the problem in this Explore, students will need to use dynamic geometry software. Work with students to explore and deepen their understanding of triangle angle sums.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students complete guiding exercises throughout the Explore activity. Students use a sketch to complete the guiding exercises in the Explore. First, students graph a triangle and measure its angles. Then students move the triangle around to observe what happens to the angle measurements. Next students compute the sum of the angle measurements and observe what happens to the sum when they change the triangle. Students write conjectures based on these observations. Then students sketch congruent copies of the triangle in such a way that it leads them to a proof of their conjecture on triangle angle sums. Then, students will answer the Inquiry Question.
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore T riangle Angle Sums}

\section*{Questions}

Have students complete the Explore activity.

\section*{Ask:}
-What happens to the shape of the angles as you drag one vertex? Sample answer: Some angles get bigger while others get smaller. This makes sense because the sum is staying equal to \(180^{\circ}\).
- What angle relationship could be used with the line parallel to \(\overline{A C}\) that goes through \(B\) ? Sample answer: We know that alternate interior angles are congruent, so we could also state that \(\angle B A C \cong \angle C^{\prime} B A\) and \(\angle B C A \cong \angle A^{\prime} B C\).
(C) Inquiry

Is there a relationship associated with the interior angles of a triangle? If so, how do we prove that this relationship is always true? Yes; sample answer: The sum of the measures of the interior angles of a triangle is \(180^{\circ}\). By sketching any triangle, we can show that the interior angles can be transformed to create a straight line at one of the vertices of the triangle.

Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Interior Angles of T riangles}

\section*{Objective}

Students prove the Triangle Angle-Sum Theorem and apply the theorem to solve problems.
(117) Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of the Triangle Angle-Sum Theorem in this Learn.

\section*{About the Key Concept}

The proof of the Triangle Angle-Sum Theorem requires the use of the Parallel Postulate. Because of this, the Triangle Angle-Sum Theorem is only true in Euclidean geometry and not necessarily true in other geometries.

\section*{Apply Example 1 Use the T riangle Angle-Sum Theorem}

Teaching the Mathematical Practices
1 Make Sense of Problems and Persevere in Solving Them, 4 Model with Mathematics Students will be presented with a task. They will first seek to understand the task, and then determine possible entry points to solving it. As students come up with their own strategies, they may propose mathematical models to aid them. As they work to solve the problem, encourage them to evaluate their model and/or progress, and change direction, if necessary.

\section*{Recommended Use}

Have students work in pairs or small groups. You may wish to present the task, or have a volunteer read it aloud. Then allow students the time to make sure they understand the task, think of possible strategies, and work to solve the problem.

\section*{Encourage Productive Struggle}

As students work, monitor their progress. Instead of instructing them on a particular strategy, encourage them to use their own strategies to solve the problem and to evaluate their progress along the way. They may or may not find that they need to change direction or try out several strategies.

\section*{Signs of Non-Productive Struggle}

If students show signs of non-productive struggle, such as feeling overwhelmed, frustrated, or disengaged, intervene to encourage them to think of alternate approaches to the problem. Some sample questions are shown.
- What is the relationship between the angles in \(\triangle J K L\) ?
- What is the relationship between \(\triangle J L K\) and \(\triangle K L M\) ?

\section*{Write About It!}

Have students share their responses with another pair/group of students or the entire class. Have them clearly state or describe the mathematical reasoning they can use to defend their solution.
\begin{tabular}{|c|c|}
\hline Angles & \begin{tabular}{l}
Lesson 14-1 \\
friangles
\end{tabular} \\
\hline Explore Triangle Angle Sums & y's 6 \\
\hline \begin{tabular}{l}
0 Online Activity Use dynamic geometry software to complete the Explore. \\
(6) INQUIRY s there a relationship associated with the interior angles of a triangle? If so, how do we prove that this relationship is always true?
\end{tabular} & \begin{tabular}{l}
Angle-Sum Theorem
nd apply the theorem \\
Prove the Exterior Angle Theorem and pply the theorem to solve problems.
\end{tabular} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Learn Interior Angles of T riangles \\
An interior angle of a triangle is the angle at a vertex of a triangle. \\
Eecause a triangle has three vertices, it also has three interior angles. The Triangle Angle-Sum Theorem describes the relationships among the interior angle measures of any triangle. \\
Theorem 14.1: Triangle Angle-Sum Theorem \\
erior angles of a triangle is 180 \\
\(0^{\text {Go Online } A \text { proof of Theorem } 14.1 \text { is avaliable. }}\) \\
Apply Example 1 Use the Triangle Angle-Sum Theorem \\
Find the measure of each numbered angle. \\
1 What is the task? \\
Describe the task in your own words. Then list \\
any questions that you may have. How can you
find answers to your questions? \\
Sample answer.
1,2 , and \(\angle 3\). What are the relationships between the angle can use the theorems and the angle measures that I need to find? information that I need. \\
2 How will you approach the task? What have you learned that you can use to help you complete the task?
will use the Triangle Angle-Sum Theorem and the \\
fupplementary angles to solve for the missing angle measures. \\
3 What is your solution? \\
Use your strategy to solve the problem. \\
\(m \angle 1=123^{\circ} \mathrm{m} 2=\$ 2 \mathrm{~m} 29\) - \\
4 How can you know that your solution is reasonable? \\
QWrite About It! Write an argument that can be used to defend your solution. \\
Sample answer. The sums of the measures of the interior angles of
\(\triangle J K L\) and \(\triangle L K M\), \(n\) ouid be \(180^{\circ}\). When I add up the angle measures \\
for each triangle the sum equals \(180^{\circ}\)
\(母\) Go Online \(Y\) Ou can complete an Extra Exam
\end{tabular}} & \begin{tabular}{l}
Theorem and apply the \\
corollaries to solve \\
roblems \\
T oday's Vocabulary interior angle of a triangle exterior angle of a triangle remote interior angles corollary
\end{tabular} \\
\hline & \begin{tabular}{l}
Watch Out \\
Triangle Angle-Sum Theorem When you are finding missing
angle measures of a triangle, check the solution by seeing measures of the angles of the triangle is \(180^{\circ}\)
\end{tabular} \\
\hline & © Talk About It! Ellie believes that she can solve for \(m \angle 3\) Wefore solving for \(m \angle 1\) wa ask to questions C her approach? \\
\hline & Sample answer What postulate or theorem did you use to find \(m \angle 3\) ? use to solve for \(m \angle 3\) ? \\
\hline \multicolumn{2}{|r|}{Lesson 141- Angles of Tringles 339} \\
\hline
\end{tabular}

\section*{Interactive Presentation}


\section*{1 CONCEPTUAL UNDERSTANDING}

\section*{Learn Exterior Angles of Triangles}

Objective
Students prove the Exterior Angle Theorem and apply the theorem to solve problems.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of the Exterior Angle Theorem in this Learn.

\section*{Common Misconception}

Students frequently have trouble keeping interior and exterior angles straight. Encourage the students to look carefully at the angles and to use the definitions to determine which angles they are.

\section*{0 \\ Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{DIFFERENTIATE}

\section*{Language Development Activity AII 틴}

Have students draw a copy of the figure for a problem dealing with exterior and interior angles. Then have them color code the angles as exterior or interior, or color code them as an exterior angle matching its remote interior angles, as needed.

\section*{DIFFERENTIATE}

\section*{Reteaching Activity Al}

Have students find the sum of the three exterior angles of a triangle and write a proof of their result.

Example 2 Use the Exterior Angle

\section*{Theorem}

\section*{Teaching the Mathematical Practices}

4 Make Assumptions Have students explain an assumption or approximation that was made to solve the problem.

Questions for Mathematical Discourse

AL. What kind of angle is \(\angle D A B\) ? exterior
OL How can you identify the two remote interior angles? They are the two angles that are not adjacent to the exterior angle.
[BII What is the measure of \(\angle C A B\) ? \(65^{\circ}\)

\section*{Learn T riangle Angle-Sum Corollaries}

Objective
Students prove the corollaries to the Triangle Angle-Sum Theorem and apply the corollaries to solve problems.

Teaching the Mathematical Practices
7 Use Structure Help students use the structure of the Triangle Angle-Sum Theorem to understand the corollaries to the theorem.

Q Example 2 Use the Exterior Angle Theorem

\section*{ARCHITECTURE Find the measure of \(\angle D A\) sin the front face of the}

\(m \angle D A B=m \angle A B C+m \angle B C A\) \(12 x+7-6 x-4+65\)
\(x=9\)
\(m \angle D A B-12(9)+7\) or \(115^{\circ}\)
Check
puzzLes Find the measure of \(\angle X Y\) čreated by the triangle.
\(90^{-}\)


Learn Triangle Angle-Sum Corollaries
A corollary is a theorem with a proof that follows as a direct result
of another theorem. As with a theorem, a corollary can be used as
reason in a proof. The corollaries below follow directly from the
triangle Angle-Sum Theorem.
Corollary 14.1
The acute angles of a right triangle are complementary.
Corollary 14.2
There can be at most one right or obtuse angle in a triangle.
You will prove Corollary 14.1 and 14.2 in Exercises 19 and 20, respectively.
T) Think About It What theorems and definitions can you use o check your answer freasonableness? Sample answer: I can use the Supplement Theorem and the definition of supplementary angles to find \(m \angle B A C\). Then, can use the Triangle Angle-Sum Theorem to verify that the sum


What assumption did you make when you were modeling the front face of the building as a triangle?
Sample answer: assumed that the edges of the building were straight.

\section*{Interactive Presentation}


Learn

\section*{CHECK}

Students complete the Check online to
determine whether they are ready to
move on.


\section*{Interactive Presentation}


Example 3
EXPAND


Students can tap to see a solution to the problem.

CHECK

Students complete the Check online to determine whether they are ready to move on.

\section*{Example 3 Find Angle Measures in Right Triangles}
(1)Teaching the Mathematical Practices

4 Interpret Mathematical Results In this example, point out that to solve the problem, students should interpret their mathematical results in the context of the problem.

Questions for Mathematical Discourse
II What do you know about \(m \angle B D C+m \angle D B C+m \angle C\) ? The sum is \(180^{\circ}\).
OI. What kind of angles are \(\angle B A F\) and \(\angle E A F\) ? complementary angles
BLL Can you find \(m \angle E F D\) before you find \(m \angle A F B\) ? Explain. No; sample answer: You don't have enough information to find \(m \angle E F D\) until you find \(m \angle A F B\).

\section*{Common Error}

Students may incorrectly set up their equations in Example 3. Help them to use Corollary 5.1 to relate the angle measures correctly.

\section*{Exit Ticket}

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-14\) \\
\hline 2 & \begin{tabular}{l} 
exercises that use a variety of skills from this \\
lesson
\end{tabular} & \(15-32\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(33-36\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
Ol|lll
THEN assign:
- Practice, Exercises 1-31 odd, 33-36
- Extension: Stars
- D ALEKS'Angles of Triangles

IF students score 66\%-89\% on the Checks,
AL
THEN assign:
- Practice, Exercises 1-35 odd
- Remediation, Review Resources: Complementary and Supplementary Angles
- Personal Tutors
- Extra Examples 1-3
- CALEKS'Angle Relationships

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Complementary and Supplementary Angles
- Quick Review Math Handbook: Angles of Triangles
- ALEKS'Angle Relationships


Mixed Exercises
Find the value of \(x\). Then find the measure of each angle.

18. CONSTRUCT ARGUMENTS Determine whether the following statement is true or
folse. If false, give a counterexample. If true, give an argument to support your
conclusion. See margin.
If the sum of two acute angles of a triangle is greater than 90:
then the triangle is acute.
PROOF Write the specified type of proof for each corollary.
19. flow proof of Corollary 14.1

Prove: \(\angle \mathrm{S}\) and \(\angle T\) are complementary.

20. paragraph proof of Corollary 14.2
. paragraph 1
Given: \(\triangle M N O ; \angle M\) is a right angle.
Prove: There can be at most one right angle in a triangle.
angle in a triangle.
Proof: 1 is given that in \(\triangle M N O, \angle M\) is a right angle.
\(m \angle M+m \angle N+m \angle O=180^{\circ}\) by the Trian
b. Case 2
Given: \(\triangle P Q R ; \angle P\) is an obtuse angle.

Prove: There can be at most one obtuse angle in a triangle. Proof: It is given that in \(\triangle P O R \angle P\) is an obtuse
\(m \angle M+m \angle N+m \angle O=180^{\circ}\) by the Triangle AngetGLLBy the Triangle Angle-Sum Theorem,
Theorem. \(m \angle M=90^{\circ}\) by the definition of a right angle. Som \(\angle P+m \angle O+m \angle R=180^{\circ}\). By the definition
+m \(\angle N+m \angle O=180\), and \(m \angle N+m \angle O=90^{\circ}\) by of an obtuse angle, \(m \angle P>90^{\circ}\). So,


the Substitution Property of Equality, \(m \angle N \neq 90^{\circ}\) and \(m \angle O\)
\(\neq 90^{\circ}\). So, there cannot be two right angles in a triangle.
REASONING Solve each problem.
21. In triangle \(D E F, m \angle E\) is three times \(m \angle D\), and \(m \angle F\) is \(9^{\circ}\) less than \(m \angle E\). What is
the measure of each angle? \(m \angle D=27^{\circ}, m \angle E=81^{\circ}, m \angle F=72^{\circ}\)
the measure of each angle? \(m \angle D=27^{\circ}, m \angle E=81^{\circ}, m \angle F=72^{\circ}\)
22. In triangle \(R S T, m \angle T\) is \(5^{\circ}\) more than \(m \angle R\), and \(m \angle S\) is \(10^{\circ}\) less than \(m \angle T\). What is
the measure of each angle? \(m \angle R=60^{\circ}, m \angle S=55^{\circ}, m \angle T=65^{\circ}\)
23. In triangle \(J K L, m \angle K\) is four times \(m \angle J\), and \(m \angle L\) is five times \(m \angle J\). What is the measure of each angle?
844 Module 14. Triangles and Congruence
24. Classify the triangle shown by its angles. Justify your reasoning. See margin.
25. In \(\triangle X Y Z, m \angle X=157^{\circ}, m \angle Y=y^{\prime}\), and \(m \angle Z=z^{\circ}\)
 Write an inequality to describe the possible measures of \(\angle Z\). Justify your reasoning. See margin,
26. AUTOMOBILES Refer to the image at the right. b-c. See margin. a. Find \(m \angle 1\) and \(m \angle 2 . m \angle 1=149^{\circ} ; m \angle 2=31^{\circ}\)
b. If the brown hood prop rod were shorter than the one shown, how would \(\mathrm{m} \angle 1\) change? Explain.
c. If the brown hood prop rod were shorter than the on c. If the brown hood prop rod were shorter th
shown, how would \(m \angle 2\) change? Explain.

27. BASKETBALL Sam, Kendra, and T ony are passing a basketbal. If Sam is looking at Kendra, then he needs to turn \(40^{\circ}\) to pass to \(T\) ony. If Tory is looking at Sam, then he needs to turn \(50^{\circ}\) to pass to Kendra. How many degrees would Kendra have to turn her head to look at \(T\) ony if she is looking at Sam? \(90^{\circ}\)
28. CONSTRUCTION The diagram shows an example of the Pratt Truss used in bridge construction. Find \(m \angle 1.55{ }^{\circ}\)

Find the measure of each numbered angle

30.

31. USE TOOLS Use tracing paper to verify the Triangle Angle-Sum Theorem.

Describe your method and include a sketch. See margin.
32. ANAL YZE In \(\triangle A B C\), if an exterior angle adjacent to \(\angle A\) is acute, is the triangle acute, right, or obtuse, or can its classification not be determined? Explain your reasoning.
ust be acute, whe exterior anglie is acute, the sum or the remote interior angles triangle must be obtuse.

Higher-Order Thinking Skills
33. WRITE Explain why a triangle cannot have an obtuse, acute, and a right exterior angle.
Sample answer: Because an exterior angle is acute, the ogle is right the adiacent angle must be right. A triangle cannot contain a right angle and an obtuse angle because the sum would be greater than \(180^{\circ}\). Therefore, a triangle cannot have an obtuse, an acute, and a right exterior angle.
34. PERSEVERE Find the values of \(y\) and \(z\) in the figure at the right. \(y=13, z=14\)

35. CREATE Construct a right triangle and measure one of the acute angles. Calculate the measure of the second acute angle and explain your method. Confirm your result using a protractor.

Sample answer. Hound the measure of the second angle by subtracting the first angle from \(90^{\circ}\) because the acute angles of a right triangle are complementary.
36. PERSEVERE The Flatiron Building in New Y ork City is one of America's oldest skyscrapers, completed in 1902 . It floor plan is approximately a ight triangle. As shown in the figure, 5th Avenue is perpendicular to East 22 nd Street, and \(m \angle B\) is 10 less than 3 times \(m \angle C\). See margin. a. Find the angle measures in the floor plan b. Find \(m \angle B C D\) in two ways. Explain each method.


846 Module 14 - Triangles and Congyuence

\section*{Answers}
18. True; sample answer: Because the sum of the two acute angles is greater than \(90^{\circ}\), the measure of the third angle is a number greater than \(90^{\circ}\) subtracted from \(180^{\circ}\), which must be less than \(90^{\circ}\). Therefore, the triangle has three acute angles and is acute.
24. Obtuse; the sum of the measures of the three angles of a triangle is \(180^{\circ}\). So, \((15 x+1)+(6 x+5)+(4 x-1)=180^{\circ}\) and \(x=7\). Substituting 7 into the expressions for each angle, the angle measures are \(106^{\circ}, 47^{\circ}\), and \(27^{\circ}\). Because the triangle has an obtuse angle, it is obtuse.
25. \(m \angle Z<23^{\circ}\); Sample answer: Because the sum of the measures of the angles of a triangle is \(180^{\circ}\) and \(m \angle X=157^{\circ}, 157^{\circ}+m \angle Y+m \angle Z=\) \(180^{\circ}\), so \(m \angle Y+m \angle Z=23^{\circ}\). If \(m \angle Y\) was \(0^{\circ}\), then \(m \angle Z\) would equal \(23^{\circ}\). But because an angle must have a measure greater than \(0^{\circ}, m \angle Z\) must be less than \(23^{\circ}\), so \(m \angle Z<23\).
26b. Sample answer: The measure of \(\angle 1\) would get larger if the support were shorter because the hood would be closer to the leg of the triangle that is along the engine of the car.
26 c. Sample answer: The measure of \(\angle 2\) would get smaller if the support were shorter because \(\angle 1\) would get larger and they are a linear pair.
31. Sample answer: Draw a triangle and then tear the corners off the triangle. Arrange the three corners so the angles are adjacent. The angles now form a straight angle. Because a straight angle measures \(180^{\circ}\), the sum of the measures of the angles of a triangle is \(180^{\circ}\).


36a. \(m \angle A=90^{\circ}, m \angle B=65^{\circ}, m \angle C=25^{\circ}\).
36b. \(m \angle B C D=m \angle A+m \angle B=90^{\circ}+65^{\circ}\) or \(155^{\circ}\) (Exterior Angle Theorem) \(m \angle B C D=180^{\circ}-m \angle C=180^{\circ}-25^{\circ}\) or \(155^{\circ}\) (Supplement Theorem)

\section*{Congruent Triangles}

\section*{Suggested Pacing}


\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
3 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students solved problems using Triangle Angle-Sum and Exterior Angle Theorems.
G.CO. 10

\section*{Now}

Students prove that triangles are congruent.
G.SRT. 5

Next
Students will prove congruent triangles using the SSS and SAS Theorems.
G.SRT. 5

\section*{Rigor}

The Three Pillars of Rigor
\begin{tabular}{|l|l|l|}
\hline 1 CONCEPTUAL UNDERSTANDING & 2 FLUENCY & 3 APPLICATION \\
\hline
\end{tabular}

Conceptual Bridge In this lesson, students use rigid motions to develop an understanding of congruence. They build fluency and apply their understanding by solving real-world problems related to congruent triangles.

\section*{Mathematical Background}

Two triangles are congruent if and only if their corresponding parts are congruent. Certain transformations do not affect congruence. These transformations are called rigid motions. Congruence of triangles, like that of angles and segments, is reflexive, symmetric, and transitive.

\section*{Interactive Presentation}


Warm Up


Launch the Lesson


\footnotetext{
Today's Vocabulary
}

\section*{Warm Up}

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:
- analyzing angle relationships in triangles

Answers:
1. \(35 ; 100\)
2. 10; 50
3. \(64^{\circ} ; 90^{\circ}\)
4. \(360^{\circ}\)

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of congruent triangles.

0
Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

\section*{Explore Relationships in Congruent Triangles}

\section*{Objective}

Students use dynamic geometry software to make conjectures about the relationships between corresponding sides and angles in congruent triangles.

\section*{Teaching the Mathematical Practices}

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. Students use a sketch to explore the relationships between corresponding parts of two congruent triangles. First students discover that corresponding sides are congruent and then that corresponding angles are congruent. Lastly, students are led to discover that all pairs of corresponding parts of congruent triangles are congruent. Then, students will answer the Inquiry Question.

W
Go Online to find additional teaching notes and sample answers for the guiding exercises.
(continued on the next page)

\section*{Interactive Presentation}


\section*{Interactive Presentation}


\section*{Explore}

\section*{TYPE}

Students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

\section*{Explore Relationships in Congruent Triangles} (continued)

Questions
Have students complete the Explore activity.

\section*{Ask:}
- What does it mean for two shapes to be congruent? Sample answer: They have the same shape and size, but not necessarily the same orientation.
- If you know \(m \angle A=58^{\circ}\), what is true about \(\triangle D E F\) ? Sample answer: Because \(\angle A \cong \angle D\), you also know that their measures are equal and \(m \angle D=58^{\circ}\).
(B) Inquiry

If two triangles are congruent, what is the relationship between their corresponding parts? Sample answer: The corresponding sides are congruent, and the corresponding angles are congruent.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

\section*{Learn Congruent T riangles}

Objective
Students use congruence criterion of corresponding congruent parts of triangles to solve problems.
(11) Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of triangle congruence in this Learn to determine whether two triangles are congruent.

\section*{Common Misconception}

After students learn simpler congruence criteria in later lessons, they might forget that the full definition of triangle congruence requires that all corresponding parts are congruent. Remind them to return to the definition throughout the module to reinforce that other triangle congruence criteria are shortcuts, not the full definition of congruence.

\section*{Essential Question Follow-Up}

Students use triangle congruence to solve problems.

\section*{Ask:}

Why is it useful to know when two triangles are congruent?
Sample answer: When two triangles are congruent, you know that their corresponding parts are congruent.

\section*{Example 1 Identify Corresponding Congruent Parts}

\section*{(17) Teaching the Mathematical Practices}

3 Find the Error This example requires students to read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

\section*{Questions for Mathematical Discourse}

AL. What do you need to know to show that two polygons are congruent? Sample answer: Y ou need to know that corresponding angles are congruent and their corresponding sides are congruent.
이 What do the tick marks on the sides mean? the arc marks on the angles? Sides with the same number of tick marks are congruent; angles with the same number of arc marks are congruent.
Bi. Is it correct to say polygon \(A B C D\) is congruent to polygon ZWXY? Explain. No; sample answer: When you name congruent polygons, you must list the corresponding vertices in order.

\section*{Common Error}

Students may confuse which of two endpoints of a segment correspond to a particular endpoint of the corresponding segment. Help them determine which one is the corresponding endpoint by looking at the relationships to the other parts of the figures.


\section*{Interactive Presentation}


\section*{Learn}


\section*{Interactive Presentation}


Example 2
TAP \begin{tabular}{l} 
Students tap to reveal parts of solutions \\
and to choose answers.
\end{tabular} move on.

\section*{DIFFERENTIATE}

\section*{Language Development Activity ELIL}

Explain to students that congruency can be modeled with drum beats. Point out that to model two congruent equilateral triangles, they could use three equally spaced drum beats for the first and then repeat the exact same rhythm for the second. An isosceles beat could consist of two quick beats and one slow beat or vice versa. Tell students that often in music, a "congruent" rhythm is used throughout a song.

\section*{Example 2 Use Corresponding Parts of Congruent Triangles}

Teaching the Mathematical Practices
3 Construct Arguments in this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

Questions for Mathematical Discourse

AL. What does CPCTC mean? Corresponding parts of congruent triangles are congruent.
OL What angle corresponds to \(\angle R S V\) ? \(\angle T V S\) What side corresponds to \(\overline{S T}\) ? \(R V\)
BL. What is \(m \angle R S T\) ? What angle is congruent to \(\angle R S T\) ? \(m \angle R S T=\) \(168^{\circ}\), and \(\angle R S T \cong \angle R V T\)

\section*{3 Go Online}
- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

\section*{Learn Third Angles Theorem and T riangle Congruence}

\section*{Objective}

Students use the Third Angles Theorem to solve problems and to prove relationships in geometric figures.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of the Third Angles Theorem in this Learn.

\section*{Example 3 Use the Third Angles}

\section*{Theorem}

\section*{Teaching the Mathematical Practices}

3 Find the Error This example requires students to read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Questions for Mathematical Discourse
AI. What is the measure of \(\angle A B C\) ? \(62^{\circ}\)
OL. How can symbols be used to represent the congruent sides and angles? Use 1, 2, and 3 tick marks on the three pairs of corresponding sides. Use 1 and 2 arcs in the two pairs of congruent, acute angles.
BL. How are the three triangles classified? \(\triangle A B C\) is isosceles acute, and \(\triangle A B D\) and \(\triangle D B C\) are right scalene

\section*{Common Error}

Students might confuse the third angles of being congruent with the acute angles of right triangles being complementary. Help them to remember the similarities and differences between the two theorems.


Y ou will prove Theorem 14.3 in Exercise 25.
Like congruence of segments and angles, congruence of triangles is reflexive, symmetric, and transitive.


Symmetric Property of Triangle Congruence
If \(\triangle A B C \cong \triangle H\). ten \(\triangle F G \cong \triangle A B C\)
Transitive Property of Triangle Congruence
If \(\triangle A B C \cong \triangle G\) and \(\triangle F G_{\cong} \triangle I I\), then \(\triangle A B C \cong \triangle / 1\)
© Example 3 Use the Third Angles Theorem
ORIGAMI Aika is folding
origami dragons for
a party she is hosting
\(m \angle B A D=58^{\circ}\), find \(m \angle C B D\).
What Do You Know? How Do You Know It?

\begin{tabular}{|c|c|}
\hline\(m \angle B A D=58^{\circ}\) & Given \\
\hline\(\angle B D C \cong \angle B D A\) & All rt. \(\angle \mathrm{s}\) are I. \\
\hline\(\angle B A D \cong \angle B C D\) & \(\begin{array}{c}\text { Third Angles } \\
\text { Theorem }\end{array}\) \\
\hline
\end{tabular}

\(m \angle C B D+m \angle B C D\) The acute \(\angle \mathrm{s}\) of a rt.
\(m \angle B C D=m \angle B A D D\) Def. of congruence.
\(m \angle B C D=58^{\circ}\).
Transitive Property
\(m \angle C B D+58^{\circ}=90^{\circ} \quad\) Substitute.
\(m / C B D=32^{\circ} \quad\) Solve
The measure of \(\angle C B D\) is \(32^{\circ}\).
Qoo Online Y ou can complete an Extra Example online.
\(\Theta_{\text {Think About It }}\) How could you find the \(m \angle C B D\) in a different way?
Sample answer: I can use the Triangle Angle-Sum Theorem to find \(m \angle A B D\). Then \(m \angle A B D=m \angle C B D\) by the definition of by the definition of
congruent angles.

\section*{Interactive Presentation}


Learn
 congruence properties.


Students drag statements and reasons to their correct locations.


\section*{Interactive Presentation}


\section*{Example 4}
 and to choose answers.

\section*{CHECK}

Students complete the Check online to determine whether they are ready to move on.

\section*{Example 4 Prove that Two Triangles Are Congruent}

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to complete the given proof.

\section*{Questions for Mathematical Discourse}

What is the relationship between \(\angle J L K\) and \(\angle P L M\) ? They are vertical angles.
Ol. Which corresponding parts of the triangles are not shown to be congruent in the given information? \(\angle J L K\) and \(\angle P L M, \angle K\) and \(\angle M\), and \(\overline{L K}\) and \(\overline{L M}\)
BL. What piece of given information could have been replaced by the information that \(L\) bisects \(\overline{J P}\) ? \(\sqrt{L} \cong \overline{P L}\)

\section*{DIFFERENTIATE}

\section*{Enrichment Activity [3LL}

Have students write their own questions in which two triangles are proved to be congruent. Some corresponding parts should be given as congruent, but other parts must be shown to be congruent from other information. Have students solve each other's questions.

\section*{Exit Ticket}

\section*{Recommended Use}

At the end of class, have students respond to the Exit Ticket prompt using a separate piece of paper. Have students hand you their responses as they leave the room.

\section*{Alternate Use}

At the end of class, have students respond to the Exit Ticket prompt verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

\section*{Practice and Homework}

\section*{Suggested Assignments}

Use the table below to select appropriate exercises.
\begin{tabular}{|c|l|c|}
\hline DOK & \multicolumn{1}{|c|}{ Topic } & Exercises \\
\hline 1,2 exercises that mirror the examples & \(1-17\) \\
\hline 2 & exercises that use a variety of skills from this lesson & \(18-25\) \\
\hline 3 & \begin{tabular}{l} 
exercises that emphasize higher-order and \\
critical-thinking skills
\end{tabular} & \(26-30\) \\
\hline
\end{tabular}

\section*{ASSESS AND DIFFERENTIATE}
(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score \(90 \%\) or more on the Checks,
THEN assign:
- Practice, Exercises 1-25 odd, 26-30
- Extension: Overlapping Triangles
- ALEKS Congruent Triangles

IF students score \(66 \%-89 \%\) on the Checks,
THEN assign:
- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Congruent Triangles
- Personal Tutors
- Extra Examples 1-4
- ALEKS'Angles of Triangles

IF students score \(65 \%\) or less on the Checks,
THEN assign:
- Practice, Exercises 1-17 odd
- Remediation, Review Resources: Congruent Triangles
- Quick Review Math Handbook: Congruent Triangles
- ALEKS'Angles of Triangles


Example 3
12. DESIGN Camila is designing a new image for her cell phone case. If
\(m \angle A B C=35^{\circ}, \mathrm{m} \angle B A C=29^{\circ}\), and \(\angle A C B \cong \angle D E B\), what is \(m \angle D E B\) ?
13. CARPENTRY Mr. Lewis is building a rustic dining table. Instead of having four legs, the table has a set of supports at each end. If \(\angle P R Q \cong \angle T V U\) and \(m \angle R P Q=49^{\circ}\), what is \(m \angle T V U ? 41^{\circ}\)

Example 4
PROOF For 14-16, write a two-column proof
14. Given: \(\overline{A B} \cong \overline{C B}, \overline{A D} \cong \overline{C D}, \angle B A D \cong \angle B C D, \overline{B D}\) bisects \(\angle A B C\).
\[
\text { Prove: } \triangle A B D \cong \triangle C B D
\]
\[
\begin{aligned}
& \text { Proof } \\
& \text { Statements (Reasons) } \\
& \frac{10}{C D} \approx \overline{A 0} \approx \frac{C D}{1}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Statements (Reasons) } \\
& \text { 1. } A B \cong=\frac{C B}{} ; A D \cong C D \\
& \text { (Given) }
\end{aligned}
\]
\[
\begin{array}{ll}
\text { 1. } A B \cong C B ; A D \cong C D \text { (Given) } & \text { bisector) } \\
\text { 2. } \overline{B D} \cong \overline{B D} \text { (Reflexive Prop. of } & \text { 6. } \angle B D A \cong \angle B D \text { (Third Angles } \\
\text { Congruence) }
\end{array}
\]
\[
\begin{array}{ll}
\text { Congruence) } & \text { Theorem) } \\
\text { 3. } \angle B A D \cong \angle B C D \text { (Given) } \quad \text { 7. } \triangle A B D D
\end{array}
\]
\[
\text { 7. } \triangle A B D \cong \triangle C B D \text { (Def. }
\]
\[
\text { 15. Given: } \overline{A B} \cong C B, \overline{A D} \cong \overline{C D}, \angle A B D \cong \angle C B D, \angle A D B \cong \angle C D B
\]
. \(\overline{A B} \cong C B ; A D \cong C D\) (Give 2. \(\overline{B D} \cong \overline{B D}\) (Reflexive Prop. of Congruence)
3. \(\angle A B D \cong \angle C B D, \angle A D B \cong \angle C D B\) (Given)
4. \(\angle A \cong \angle C\) (Third Angles Theorem) congruent triangles
16. Given: \(\angle A \cong \angle C, \angle D \cong \angle B, \overline{A D} \cong \overline{C B}, \overline{A E} \cong \overline{C E}, \overline{A C}\) bisects \(\overline{B D}\). Prove: \(\triangle A E D \cong \triangle C E B\) Proof:
Statements (Reasons)
1. \(\angle A \cong \angle C, \angle D \cong \angle B\) (Given)

2. \(\angle A E D \cong \angle C E B\) Nertica

PROOF Write a paragraph proof.
5. \(\overline{D E} \cong \overline{B E}\) (Def. of segment bisector)

Prove: \(\triangle A B D \equiv \triangle C B D\)
Proof:
It is given that \(\overline{B D}\) bisects \(\angle A B C\) and \(\angle A D C\). Therefore, \(\angle A B D \cong \angle C B D\) and \(\angle A D B \cong \angle C D B\) by the definition of angle bisector. By the Third Angles Theorem, \(\angle A \cong \angle C\). It is given that \(\overline{A B} \cong \overline{C B}\) and \(\overline{A D} \cong \overline{C D}\). By the Reflexive Property of Congruence, \(\overline{B D} \cong \overline{B D}\). Therefore, \(\triangle A B D \cong \triangle C B D\) by the definition of congruent triangles.

852 Module 14 . Triengles and Congrivert

Mixed Exercises
18. PRECISION Beverly is using loyalty cards at her coffee shop. When a customer purchases a cup of coffee, he or she can present a loyalty o be stamped with a star-shaped stamp that Beverly purchased specifically for this use. When the customer collects nine stamps, the
receive their tenth cup of coffee for free. What property guarantees receive their tenth cup of coffee for
the stamped designs are congruent?
Sample answer. Both stamped stars are
create the images. According to the Tre congruent to the star on the stamper because it was used to mages are congruent to each other becisitve Property of Polygon Congruence, the two stamped Draw and label a figure to represent the con both are congruent to the star on the stamper:
19. \(\triangle A B C \cong \triangle D E F, A B=7, B C=9, A C=11+x, D F=3 x-13\), and \(D E=2 y-5\)
20. \(\triangle L M N \cong \triangle R S T, m \angle L=49^{\circ}, m \angle M=10 y^{\circ}, m \angle S=70^{\circ}\), and \(m \angle T=(4 x+9)^{\circ}\)
21. \(\triangle J K L \cong \triangle M N P, J K=12, L J=5, P M=2 x-3, m \angle L=67^{\circ}, m \angle K=(y+4)^{\circ}\) and \(m \angle N=(2 y-15)^{\circ}\)
22. SIERPINSKI TRIANGLE The figure shown is a portion of the Sierpinski triangle. The triangle has the property that any triangle made from any combination or edges is equilateral. How many triangles in this portio are congruent to the black triangle at the bottom? 11
23. LOGO DESIGNS Refer to the design shown
a. Indicate the triangles that appear to be congruent.
b. Name the congruent angles and congruent sides of a pair of congruent triangles. Sample answer: \(\angle A \cong \angle E, \angle A B I \cong \angle E B F\),
\(\angle I \cong \angle F: A B \cong E B, B I \cong B F, A I \cong E F\)
24. REASONING Igor noticed on a map that the triangle with vertices that are at the supermarket, the library, and the post office ( \(\triangle S L P\) ) is congruent to the triangle with vertices that are at Igor's home, Jasen's home, and Daran's home ( \(\triangle I J D)\). That is, \(\triangle S L P \cong \triangle I J D\).
a. The distance between the supermarket and the post office is 1 mile. Which path along the triangle \(\triangle I J D\) is congruent to this?
b. The measure of \(\angle L P S\) is \(40^{\circ}\). Identify the angle that is congruent to this angle in \(\triangle J J D . \angle J D I\)
25. PROOF Copy and complete the two-column proof of the Third Angles Theorem by providing the reason for each statement.
Given: \(\angle P \cong \angle X\) and \(\angle O \equiv \angle Y\)
Prove: \(\angle R \cong \angle Z\)
\(\angle Z\) Statements
1. \(\angle P \cong \angle X, \angle Q \cong \angle Y\)
2. \(m \angle P=m \angle X, m \angle Q=m \angle Y\)
3. \(m \angle P+m \angle Q+m \angle R=180\)
\(180=m \angle X+m \angle Y+m \angle Z\)
4. \(m \angle P+m \angle Q+m \angle R=m \angle X+\)
\(m \angle Y+m \angle Z\)
5. \(m \angle X+m \angle Y+m \angle R=m \angle X+\) \(m \angle Y+m \angle Z\)
6. \(m \angle R=m \angle Z\)
7. \(\angle R \cong \angle Z\)

n 14.2 . Congruent Triangles 85

Higher-Order Thinking Skills
26. ANALYZE Determine whether the following statement is sometimes, always, of never true. Justify your argument See margin.

Equilateral triangles are congruent.
27. CREATE A classmate is using the Third Angles Theorem to show that if two corresponding pairs of the angles of two triangles are congruent, then the third pair is also congruent. Write a question to help him decide whether he can use the same strategy for quadrilaterals.
Sample answer: Do you think that the sum of the angles of a quadrilateral is constant? If so, do you think hat the final pair of corresponding angles viil be congruent if three other pairs of corresponding angles re congruent for a pair of quadrilaterals?
28. FIND THE ERROR Jasmine and West are evaluating the congruent figures at right. asmine says that \(\triangle C A B \cong \triangle Z Y X\), and West says that \(\triangle A B C \cong \triangle r X Z\). Is either of them
correct? Explain your reasoning. See margin.

29. WRITE Justify why the order of the vertices is
important when naming congruent triangles. important when naming congruent triangles. Give an example to support your argument. See margin.
30. PERSEVERE Find the values of \(x\) and \(y\) if \(\triangle P Q S \cong \triangle R Q S\).

854 Module 14 . Triangles and Congruence


\section*{Answers}
19.

\(x=12 ; y=6\)
20.

\[
x=13 ; y=7
\]
21.

26. Sometimes; sample answer: Equilateral triangles will be congruent if one pair of corresponding sides is congruent.
28. Both; sample answer: \(\angle A\) corresponds with \(\angle Y, \angle B\) corresponds with \(\angle X\), and \(\angle C\) corresponds with \(\angle Z . \triangle C A B\) is the same triangle as \(\triangle Z Y X\), and \(\triangle A B C\) is the same triangle as \(\triangle Y X Z\).
29. Sample answer: When naming congruent triangles, it is important that the corresponding vertices be in the same location for both triangles because the location indicates congruence. For example if \(\triangle A B C\) is congruent to \(\triangle D E F\), then \(\angle A \cong \angle D, \angle B \cong \angle E\), and \(\angle C \cong \angle F\).

\section*{Proving Triangles Congruent: SSS, SAS}

\section*{Suggested Pacing}


\section*{Focus}

Domain: Geometry
Standards for Mathematical Content:
G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
4 Model with mathematics.

\section*{Coherence}

Vertical Alignment

\section*{Previous}

Students used corresponding parts to prove congruent triangles.

\section*{G.SRT. 5}

\section*{Now}

Students prove that triangles are congruent using the SSS and SAS Postulates. G.SRT. 5

\section*{Next}

Students will prove that triangles are congruent using the ASA Postulate or AAS Theorem.
G.SRT. 5

\section*{Rigor}

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
3 APPLICATION
Conceptual Bridge In this lesson, students show that they understand how the criteria for triangle congruence follow from the definition of congruence in terms of rigid motion. They build fluency by using triangle congruence postulates, and they apply their understanding by solving real-world problems.

\section*{Mathematical Background}

The Side-Side-Side Postulate, also written SSS, and the Side-Angle-Side Postulate, also written SAS, are used to prove that two or more triangles are congruent.

\section*{Interactive Presentation}


Warm Up
Determine whether each pair of angles or line segments is congruent. Write yes or no.

1. \(\angle A B C\) and \(\angle X Y Z\)
2. FG and \(D E\)
3. \(\overline{O R}\) and \(\overline{O S}\)
4. \(\angle 2 \operatorname{and} \angle 4\)
5. \(\angle R O Q\) and \(\angle R O P\)

Warm Up


Launch the Lesson


\section*{Today's Vocabulary}

\section*{Warm Up}

\section*{Prerequisite Skills}

The Warm Up exercises address the following prerequisite skill for this lesson:
- identifying congruent angles and line segments

Answers:
1. yes
2. no
3. yes
4. no
5. yes
6. yes

\section*{Launch the Lesson}

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of congruent triangles.

Go Online to find additional teaching notes and questions to promote classroom discourse.

\section*{Today's Standards}

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

\section*{Today's Vocabulary}

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the questions below with the class.

\section*{Explore Conditions That Prove T riangles Congruent}

\section*{Objective}

Students explain how the criteria for triangle congruence follow from the definition of congruence in terms of rigid motion.

\section*{Teaching the Mathematical Practices}

1 Monitor and Evaluate Point out that in this Explore, students must stop and evaluate their progress and change course to find the ultimate solution.

\section*{Ideas for Use}

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

\section*{Summary of the Activity}

Students will complete guiding exercises throughout the Explore activity. They will use a sketch of two triangles to see which sets of corresponding congruent parts of the triangles create congruent triangles. They will answer questions about their findings and write a conjecture on which sets of congruent corresponding parts can be used to identify whether two triangles are congruent without performing a series of rigid motions. Then, students answer the Inquiry Question.

13
Go Online to find additional teaching notes and sample answers for the guiding exercises.
(continued on the next page)

\section*{Interactive Presentation}





```

 < conguen

Explore

WEB SKETCHPAD

Students use a sketch to explore triangle congruence criteria.

Students select answer choices that match their observations of triangle congruence.

Interactive Presentation

Explore

TYPE
Students respond to the Inquiry Question and view a sample answer.

Explore Conditions That Prove T riangles Congruent (continued)

Questions

Have students complete the Explore activity.

Ask:

- Are all of the corresponding parts of $\triangle A B C$ and $\triangle D E F$ always congruent? SSS: yes; SAS: yes; ASA: yes; AAS: yes; SSA: no
- Can you move the vertices of $\triangle A B C$ so that the two triangles are not congruent? SSS: no; SAS: no; ASA: no; AAS: no; SSA: yes
- Does there exist a rigid motion that will map $\triangle D E F$ onto $\triangle A B C$? SSS: yes; SAS: yes; ASA: yes; AAS: yes; SSA: no
- Must the triangles be congruent? SSS: yes; SAS: yes; ASA: yes; AAS: yes; SSA: no

(3) Inquiry

What conditions can be used to identify whether two triangles are congruent without performing a series of rigid motions? Sample answer: Two triangles can be identified as congruent if they have three pairs of sides (SSS), two pairs of sides and a pair of included angles (SAS), two pairs of angles and a pair of included sides (ASA), or two pairs of angles and a pair of nonincluded sides that are congruent (AAS). Two triangles cannot be identified as congruent without the use of rigid motion if the triangles have two pairs of congruent sides and a pair of congruent nonincluded angles.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Proving T riangles Congruent: SSS

Objective
Students use the SSS Congruence criterion for triangles to solve problems and to prove relationships in geometric figures.
(117) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

About the Key Concept

The SSS Congruence postulate and the other triangle congruence criteria can be proved from the other postulates that are assumed to be true in this course. However, the difficulty level of those proofs means that most high school geometry courses will assume at least one of these criteria is true as a postulate. You can engage students who are beyond level by having them read one of those proofs or by trying to write one themselves.

Example 1 Use SSS to Prove T riangles Congruent

(17) Teaching the Mathematical Practices

2 Different Properties Mathematically proficient students look for different ways to solve problems. Encourage them to work through both ways to solve the problem and to choose the method that works best for them.

Questions for Mathematical Discourse

AL. How is the flow proof similar to a two-column proof? How is it different? Sample answer: They both use the same statements and reasons. A flow proof uses arrows and boxes to show the logical progression of the proof. A two-column proof shows the logical progression by a list of statements and reasons.
OI. What information do you need to know to use the SSS Postulate? Three sides of one triangle are congruent to the corresponding three sides of another triangle.
Bil What information tells you that $\overline{Q T} \cong \overline{S T}$? $\overline{R T}$ bisects $\overline{Q S}$ at point T.

13
 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Think About It!
Is the following
shatement true or fols? ?
Justify your argument.
If the congruent sides in one isosceles triangle have the same measure os the congruent sides riangle, then the riangles are congru

False; sample answer: If

 he third side in one sosceles triangle does not the third side in the other isosceles triangle, then the triangles cannot be congruent.Example 2 Use SSS on the Coordinate Plane
Triangle $J K L$ has vertices $J 2,5), K(1,1)$, and $L(5,2)$. Triangle $O N P$ ses vertices $\left.Q_{(}-4,4\right), N(-3,0)$, and $P(-7,1)$. is $\triangle J K L \cong \triangle O N P$?

Part A Graph the triangles.

Part B Make a conjecture.
Use your graph to make a conjecture as to whether the triangles are congruent. Explain your reasoning
From the graph, it appears that the triangles have the same shape and size, so we can conjecture that they are congruent.
art C Support your conjecture.
Use the Distance Formula to show that all corresponding sides have the same measure.

$J L=\sqrt{\left.15-2)^{2}+Q-5\right)^{2}}$	$O P$	$=\sqrt{(-7-(-4))^{2}+(1-4)^{2}}$	
	$=\sqrt{9+9}$ or $3 \sqrt{2}$		$=\sqrt{9+9 \text { or } 3 \sqrt{2}}$
$L K=\sqrt{(1-5)^{2}+(1-2)^{2}}$	$P N$	$=\sqrt{\left.(-3-(-7))^{2}+10-1\right)^{2}}$	
$=\sqrt{16+1}$ or $\sqrt{17}$		$=\sqrt{16+1}$ or $\sqrt{17}$	
$K J=\sqrt{(2-1)^{2}+15-1}$	$N Q$	$=\sqrt{\left(-4-(-3)^{2}+(4-0)^{2}\right.}$	
	$=\sqrt{1+16}$ or $\sqrt{17}$		$=\sqrt{1+16 \text { or } \sqrt{17}}$

$J L=Q P, L K=P N$, and $K J-N Q i=$ the definition of congruent segments, all corresponding segments are congruent. Therefore, $\triangle J K L \equiv \triangle Q N P$ y SSS .

DIFFERENTIATE

Language Development Activity (Bill 핀

Beginning Ask questions about the lesson content to elicit yes/no answers: "Look at Example 1. Are $\overline{S R}$ and $\overline{Q R}$ congruent?" yes "Are $\bar{\sigma}$ and $\overline{S T}$ congruent?" yes
Intermediate/Advanced Ask questions about the lesson content to elicit short answers: "Look at the given information in Example 1. How many pairs of sides do we know are congruent?"two "What else do we need to show to use SSS to prove the triangles congruent?" $\overline{Q T} \cong \overline{S T}$ Advanced High Ask questions about lesson content to elicit complete sentences: "How does the SAS acronym represent the postulate?" The SS represents two sides, the A between them represents the angle between them. "How would you choose whether to use SSS or SAS to prove two triangles congruent?" If you can show all three pairs of sides congruent, use SSS. If you can show two sides and the included angle, then use SAS.

Example 2 Use SSS on the Coordinate Plane

Teaching the Mathematical Practices
3 Make Conjectures In this example, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

Questions for Mathematical Discourse

AL. How can you find the length of the sides of the triangles on the coordinate plane? Use the Distance Formula.

Ol. How can you tell that you can use SSS to show that the triangles are congruent? The shapes of the triangles look the same.
BEI Can you just say by appearance that the triangles are not congruent? Explain. No; sample answer: Y ou can only make a conjecture from a drawing.

Learn Proving T riangles Congruent: SAS

Objective
Students use the SAS congruence criterion for triangles to solve problems and to prove relationships in geometric figures.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

DIFFERENTIATE

Reteaching Activity A 니 크L

Students can use a systematic approach to write the proofs for problems and examples in this lesson. Have students start by looking for possible methods of proof using SSS or SAS. They should examine the problem to determine how much necessary information is given and how they can find any other information that they need for the proof. Finally, they can draw on prior knowledge of midpoints, distances, angle relationships, and so on, to extract other necessary information and to compile the facts for the final proof.

Check
Triangle $A P C$ has vertices $A 1,1), B(0,3)$, and $C(2,5)$. Triangle $E F G$ has vertices $E(1,-1), F 2,-5)$, and $G_{(4,-4)}$. Is $\triangle A B C \cong \triangle E F G$?

Part A

Graph $\triangle A B C$ and $\triangle E F G$ on the same coordinate plane.

Part B
Find the side lengths of each triangle.
$A B=\frac{7}{\sqrt{5}}: B C=\frac{?}{2 \sqrt{2}}: A C=\frac{?}{\sqrt{17}}: E F=\frac{7}{\sqrt{17}} ; F G=\frac{7}{\sqrt{5}}: E G=\frac{7}{3 \sqrt{2}}$
Part C
Is triangle $A B C$ congruent to triangle $E F G$? Justify your argument.
A. No; AC $\ddagger F G$ so SSS congruence is not met.
B. No; $B C \neq F G$ so SSS congruence is not met.
C. Yes; all corresponding sides have the same measure, so SSS congruence is met.
D. Y es; all corresponding sides have the same measure, so by the definition of congruent figures, $\triangle A B C=\triangle E F G$

Learn Proving T riangles Congruent: SAS
The interior angle formed by two adjacent sides of a triangle is called
an included angle.
If two triangles are formed using the same side lengths and included angle measure, then there is a series of rigid motions that will show that the two triangles are congruent. This leads to the postulate below.

Postulate 14.2: Side-Angle-Side (SAS) Congruence
f two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

OGo Online Y ou can complete an Extra Example online.

Think About It! Both legs of one right triangle are congruent 10 the legs of anothe ight triangle. Are the Justify your argument.

Yes; sample answer:

 The included angles ormed by the legs of he triangles are both ight angles. So the cluded angles are congruent, and by SAS, the triangles are congruent.3 Go Online You may want to
complete the construction a for this lesson.

Interactive Presentation

Learn

Watch

Students watch an animation of the SAS congruence criterion
 determine whether they are ready to move on.

Interactive Presentation

Example 3

\section*{

Students drag statements and reasons to complete the proof.

Students tap to see a Study Tip and a Common Error.

Example 3 Use SAS to Prove T riangles Congruent

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL. What information is given in the problem? $\overline{K L} \cong \overline{L M}$ and $\angle J L K \cong \angle J L M$
OL What other corresponding parts do you need to prove congruent in order to use SAS? \bar{J} and itself

B3. Now that you have proved that the triangles are congruent, what do you know about $\angle L J K$ and $\angle L J M$? Explain. They are congruent because they are corresponding parts of congruent triangles.

Common Error

Students may attempt to prove triangles congruent using SAS where the pairs of congruent corresponding parts have two sides and a nonincluded angle.

Exit Ticket

Recommended Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-16$	
2	exercises that use a variety of skills from this lesson	$17-26$
3	exercises that emphasize higher-order and critical-thinking skills	$27-32$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-25 odd, 27-32
- Extension: Congruent Triangles in the Coordinate Plane
- ALEKS Proving Triangle Congruence

IF students score $66 \%-89 \%$ on the Checks,

THEN assign:

- Practice, Exercises 1-31 odd
- Remediation, Review Resources: Congruence and Corresponding Parts
- Personal Tutors
- Extra Examples 1-3
- 】ALEKS'Congruence and Similarity

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-15 odd
- Remediation, Review Resources: Congruence and Corresponding Parts
- Quick Review Math Handbook: Proving Triangles Congruent (SSS, SAS)
- ALEKS' Congruence and Similarity

Important to Know

Digital Exercise Alert Exercise 30 requires a construction. Students will need to complete the construction by using a compass and straightedge.


```
Example 3
```

PROOF Write the specified type of proof.
11. two-column proof

13. paragraph proof

Given: V is the midpoint of $\overline{W X}$ and $\overline{Y Z}$. Prove: $\triangle X V Z \cong \triangle W V Y$
14. flow proof
Given: $P R \cong \overline{D E}, \overline{P T} \cong \overline{D F}, \angle R \cong \angle E, \angle T \cong \angle F$ Prove: $\triangle P R T \cong \triangle D E F$

See Mod. 14 Answer Appendix
See Mod. 14 Answer Appendix.
15. GAMING Devontae is building a house in a simulation video game. He wants the roof of the house and the main support beam to create congruent riangles. If $B D \perp A C$ and $B D$ bisects $A C$, write a two-column proof to prove $\triangle A B D \cong \triangle C B D$.

Statements (Reasons)

1. $\overline{B D} \perp \overline{A C}, \overline{B D}$ bisects $\overline{A C}$. (Given)
2. $\angle B D A$ and $\angle B D C$ are rt. angles.
(\perp lines form rt a angles.)
3. $\angle B D A \cong \angle B D C$ (All right angles are congruent.)
4. $A D \cong D C$ (Def. of segment bisector)
5. $B D \cong B D$ (Refiexive Pr)
6. $\triangle A B D \cong \triangle C B D$ (SAS)
7. TECHNOLOGY Nevaeh has developed a new timer app. The icon for the app contains an hourglass
that can be modeled by two triangles. If R is the midpoint of $\overline{O S}$ and $\overline{P T}$, write a paragraph proof to prove $\triangle P R Q \cong \triangle T R S$. See Mod. 14 Answer Appendix

[^17]Mixed Exercises
Explain whether there is enough information given in each figure to prove that
the triangles are congruent using SSS or SAS. 17-20. See margin.
17.

18.
19.

20.

21. REASONING Tyson had three sticks of lengths 24 inches, 28 inches, and 30 inches. Is it possible to make two non-congruent triangles using the same three sticks? Explailo; sample answer: The sticks do not change size, so any arrangement will yield a congruent triangle.
22. BAKERY Sonia made a sheet of bakliava. She has markings on her pan so that she can cut them into large squares. Atter she cuts the pastry in squares, she cuts them diagonally to form two congruent triangles, as either SSS or SAS
23. TILES Tammy installs bathroom tiles. Her current job requires tiles that are equilateral triangles, and the tiles have to be congruent to each other. She has a sack of tiles that are in the shape of equilateral triangles. She knows What must she measure on each tile to be sure that they are congruent? Sampe She needs to measure one side of each tije because all the tiles are equilateral triangles.
24. CAKE Carl had a piece of cake in the shape of an isosceles triangle with angles
measuring $26^{\circ}, 77^{\circ}$, and 77^{*}. He wanted to divide it into two equal parts, so he cut it through the middle of the 26°-angle to the midpoint of the opposite side. He claims that the two pieces are congruent. Do you agree? Explain Yes; sample answer. We are given that the piece of cake is an isosceles triangle, so we know that the two sides opposite the 77°-angles are congruent. Also, Carl cuts the piece of cake through the middle of the 26°-angle creating two congruent angles. Finally, by the Reflexive Property of Congruence, the cut that Carl makes creates
two congruent corresponding sides. Therefore, the two pieces of cake are congruent by SAS.
two congruent corresponding sides. Therefore, the two pieces of $\overline{A C} \cong \overline{A D}$. Suppose you know $\angle C \cong \angle D$. Can you 5. In the figure, $A C \cong A D$. Suppose you know $\angle C \cong \angle D$. Can you
prove that $\triangle A B C \cong \triangle A B D$? Why or why not? No; sample prove that $\triangle A B C \cong \triangle A B D ?$ Why or why not? No; sample
answer: Y ou cannot use SAS because the angle congruence th we are given is not an included angle between two sides that are known to be congruent, and SSS cannot be used because only 2 sides of each triangle are known to be congruent
26. USE A SOURCE An engineer is designing a new cell phone tower. Part of the tower is shown in the figure.
a. Can the engineer prove that $\triangle A B C \equiv \triangle D C B>$ Explain why or why not Yess sample answer: It is given that $\overline{A B} \cong \overline{C D}$, and $\overline{B C} \cong \overline{B C}$ by the Reflexive Property of Congruence. $\angle A B C \cong \angle D C B$ because they are alternate interior angles and line $m \|$ line n. Therefore, $\triangle A B C \cong \triangle D C B$ by SAS.
b. Go online to find an image of a bridge or a tower that is designed in such a way that you can prove that two triangles are congruent. Justify your image See Mod. 14 Answer Appendix.
Higher-Order Thinking Skills
27. WHICH ONE DOESNT BELONG? Determine which pair of triangles cannot be proved congruent using the SSS or SAS Postulates. Justify your conclusion First pair; sample answer: The second pair can be shown congruent by SAS of
 SSS, and the third pair can be shown congruent by SSS.

28. ANALYZE Determine whether the following statement is true or folse. If true justify your reasoning. If false, provide a counterexample. If the congruent sides in one isosceles triangle hove the same measure as the congruent sides in another isosceles triangle, then the triangles are congruent. See margin.
29. WRITE Two pairs of corresponding sides of two right triangles are congruent. Are the triangles congruent? Explain your reasoning. See margin.
30. CREATE Use a straightedge to draw obtuse triangle $A B C$. Then construct $\triangle X Y Z$ so it is congruent to $\triangle A B C$ using SSS or SAS. Justify your construction mathematically and verify it using measurement. Sample answer: Using a ruler, measured all the sides and they are congruent, so the triangles are congruem by SSS.
31. FIND THE ERROR Bonnie says that $\triangle P Q R \cong$ $\triangle X Y Z$ by SAS. Shada disagrees. She says that there is not enough information to prove that the two triangles are congruent. is either of them
correct? Explain your reasoning. Shada; to use SAS, the angle must be the included angle.

32. PERSEVERE Refer to the graph shown. See margin.
a. Describe two methods you could use to prove $\Delta W h 2=\Delta W x$. You may no use a Which method do you think is more efficient? Explain.
b. Are $\triangle W Y Z$ and $\triangle W Y X$ congruent? Explain your reasoning.

$\mathbf{8 6 2}$ Module 14 . Triangles and Congruence

861-862 Module 14 - Triangles and Congruence

Answers

1. Statements (Reasons)
2. $\overline{A B} \cong \overline{X Y}$ (Given)
$\overline{A C} \cong \overline{X Z}$
$\overline{B C} \cong \overline{Y Z}$
3. $\triangle A B C \cong \triangle X Y Z$ (SSS Post)
4.

17. Yes; sample answer: $\angle G L H$ and $\angle J L K$ are vertical angles, so they are congruent. Therefore, $\triangle G L H \cong \triangle J L K$ by the SAS Congruence Postulate.
18. No; sample answer: It is not known whether $\overline{Q T} \cong \overline{S R}$, so you cannot use SSS, and none of the angles are known to be congruent, so you cannot use SAS.
19. Yes; sample answer: The triangles share the side $\overline{A C}$, so they have two pairs of congruent sides. The given congruent angles are included angles, so $\triangle A B C \cong \triangle C D A$ by $S A S$.
20. No; both triangles must have three pairs of congruent angles from the Third Angles Theorem, but no side lengths are known.
28. false

29. Case 1: You know that the hypotenuses are congruent and that one pair of legs are congruent. Then the Pythagorean Theorem says that the other pair of legs are congruent, so the triangles are congruent by SSS. Case 2: You know that the pairs of legs are congruent and that the right angles are congruent, so the triangles are congruent by SAS.
32a. Sample answer: Method 1: You could use the Distance Formulas to find the length of each of the sides, and then use the SSS Congruence Postulate to prove the triangles congruent. Method 2: You could find the slopes of $Z X$ and $W Y$ to prove that they are perpendicular and that $\angle W Y Z$ and $\angle W Y X$ are both right angles. You can use the Distance Formula to prove that $\overline{X Y} \cong \overline{Z Y}$. Because the triangles share the leg $\overline{W Y}$, you can use the SAS Congruence Postulate; Sample answer: I think that method 2 is more efficient, because you only have two steps instead of three.

32b. Yes; sample answer: The slope of $W Y$ is -1 , the slope of $\overline{Z X}$ is 1 , and -1 and 1 are opposite reciprocals, so $\overline{W Y}$ is perpendicular to $\overline{Z X}$. Because they are perpendicular, $\angle W Y Z$ and $\angle W Y X$ are both 90°. Using the Distance Formula, the length of $\overline{Z Y}$ is $\sqrt{(4-1)^{2}+(5-2)^{2}}$ or $3 \sqrt{2}$, and the length of $\overline{X Y}$ is $\sqrt{(7-4)^{2}+(8-5)^{2}}$ or $3 \sqrt{2}$. Because $\overline{W Y} \cong \overline{W Y}$, $\triangle W Y Z \cong \triangle W Y X$ by the SAS Congruence Postulate.

Proving Triangles Congruent: ASA, AAS

Suggested Pacing

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO. 8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standards for Mathematical Practice:
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students proved congruent triangles using the SSS and SAS Postulates.
G.SRT. 5

Now

Students prove that triangles are congruent using the ASA Postulate or AAS Theorem.
G.SRT. 5

Next

Students will use triangle congruence criteria to prove right triangles congruent.
G.CO.10, G.SRT. 5

Rigor

The Three Pillars of Rigor

	ENC	
Conceptual Bridge In this lesson, students show that they understand how the criteria for triangle congruence follow from the definition of congruence in terms of rigid motion. They build fluency by using triangle congruence theorems, and they apply their understanding by solving real-world problems.		

Assign page 90 of the Language Development Handbook to help your students build mathematical language related to solving problems using the ASA Congruence Postulate and the AAS Congruence Theorem.

FIll You can use the tips and suggestions on page T90 of the handbook to support students
 who are building English proficiency.

Interactive Presentation

Warm Up

Launch the Lesson

[^18]
Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- proving triangles congruent by using transformations

Answers:

1. congruent
2. not congruent
3. not congruent
4. congruent
5. not congruent

6 . not congruent
7. different shapes
8. different sizes
9. Sample answer: Two figures are congruent if and only if there is a rigid motion or series of rigid motions that maps one figure exactly onto the other.

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of congruent triangles.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the questions below with the class.

Mathematical Background

The Angle-Side-Angle Postulate, written as ASA, and the Angle-Angle-Side, or AAS, Theorem can also be used to prove triangle congruence.

Learn Proving Triangles Congruent: ASA

Objective
Students use the ASA congruence criterion for triangles to solve problems and to prove relationships in geometric figures.

Teaching the Mathematical Practices
7 Use Structure Help students to explore the structure of the Angle-Side-Angle (ASA) Congruence Postulate in this Learn.

Example 1 Use ASA to Prove T riangles Congruent

Teaching the Mathematical Practices

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to complete the given proof.

Questions for Mathematical Discourse

AL What do you need to know to use ASA when you are proving triangles congruent? Two angles and the included side of one triangle are congruent to the corresponding two angles and included side of another triangle.
OL. What does the given information $\overline{B D}$ bisects $\overline{A E}$ tell you? $\overline{A C} \cong \overline{C E}$
[B1. Suppose you weren't given $\angle B A C \cong \angle D E C$; instead, you were given $\angle A B C \cong \angle C D E$. Could you still prove the triangles congruent? Explain. Yes; sample answer: You could show that $\angle B A C \cong \angle D E C$ by using the Third Angles Theorem. Then proceed with ASA.

Go Online

- F ind additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

Interactive Presentation

Example 2

Reteaching Activity A 니 큰

Have students create note cards with the theorems and definitions from this module to help them learn the concepts betteAlso have the students create examples of these theorems.

QExample 2 Apply ASA Congruence
RODUCTIO A company that manufactures windows needs to determine the amount of glass equired to make the hexagonal window shown. $\overline{P Q} \mid T S, R$ is the sidpoint of $P T$, and $\$^{\prime \prime}$ is 12 inches art A Determine whether $\triangle P R Q$ is congruent to $\triangle T R S$.
Because $\overline{P Q}$ is parallel to $\overline{T S} \angle R P Q$
 $\cong \angle R T S$ by the Alternate Interior Angles Theorem.
Because point R is the midpoint of $\overline{P T}, ~ T R \cong P R$ by De Midpeint Theorem
$\angle T R S$ and $\angle P R Q$ are vertical angles, so they are congruent by the Vertical Angles Theorem.
Therefore, by ASA, $\triangle P R Q \equiv \triangle T R S$
Part B Find the area of the window.
If the six triangles that form the window are congruent and the height of $\triangle T R S$ is about 10.39 inches, how much glass is required to manufacture the window?
$A=\frac{1}{2} b l \quad$ Area of a triangle
$\approx \frac{1}{2}(12) 110.39 \quad b-12$ and $h-10.39$
≈ 62.34 Simplify
The area of the window is approximately $62.34(6)$ or about 374.04 square inches.

Check
UGHTING A theater uses scaffolding to hang stage lighting. The stage manager needs to determine how much electrical wire is needed to hang lights across the scaffolding from point to $L W I \overline{O P}$, IMP If wire is needed to display lights across the scaffolding? 8 ft

Q Go Online Y ou can complete an Extra Example online.

DIFFERENTIATE

Enrichment Activity (BLI

Ask students to study the proofs for the examples in this lesson and to note the properties that reculsuch as the reflexive properties of angles, segments, bisectors, midpoints, and so on. Students can start a list of things to watch for when they are working on proofs and include recurring properties, theorems, formulas, and methods that they can refer to in later lessons. They can also look at the order of the steps in paragraph proofs, flow proofs, and two-column proofs for similarities and differences.

DIFFERENTIATE

Example 2 Apply ASA Congruence

Teaching the Mathematical Practices
5 Use a Source Guide students to find external information to answer the questions posed in the Use a Source feature.

Common Error

Students may forget to multiply the area of one pane of glass by 6 to get the area of the window. Remind students that when solving any problem, to read the statement of the problem again when they think they have found a solution to see whether it makes sense.

Questions for Mathematical Discourse

1 What is the relationship between $\angle S R T$ and $\angle Q R P$? Explain. The two angles are congruent because they are vertical angles.
OLI What does the given information R is the midpoint of $\overline{P T}$ tell you? $\overline{P R} \cong \overline{R T}$
BL. Suppose you weren't given $\overline{P Q} \| \overline{\mathcal{S}}$ but instead were told that $\angle Q \cong \angle S$, could you still prove the triangles congruent? Explain. Yes; sample answer: You could use the Third Angles Theorem to show that $\angle P \cong \angle T$.
determine whether they are ready to move on.

Learn Proving T riangles Congruent: AAS

Objective
Students use the AAS congruence criterion for triangles to solve problems and to prove relationships in geometric figures.

(11) Teaching the Mathematical Practices

3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Learn asks students to justify their conclusions.

What Students Are Learning

Notice that SSS, SAS, and ASA were presented as postulates. This is because the proofs of these criteria are beyond the level of most high school geometry students. However, AAS is very easy to prove using ASA, so it is listed as a theorem.

Common Misconception

Sometimes students try to list the congruent sides and angles in a circle as they move around the triangle. This could result in AAS or SAA when there are two pairs of congruent angles and one pair of congruent sides that is not between the angles. They know AAS proves congruence and want to know whether SAA does as well. When this occurs, it is best to redirect their thinking process. With two sets of angles and one set of sides, there are only two possibilities, the side is between the angles or it is another side. When it is between the angles, use ASA. If it is either of the other two sides, then use SAA. This same situation occurs with SSA, but is even more important because SSA is not a test for congruence.

Interactive Presentation

Learn

TYPE

Students type to answer the Think About It!.

Interactive Presentation

Example 3

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY

Example 3 Use AAS to Prove T riangles Congruent

Teaching the Mathematical Practices
6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Questions for Mathematical Discourse
AL. How is AAS different from ASA? Sample answer: In ASA, the side is included between the two angles; in AAS, it is not.
OL. What angle is common to $\triangle A C D$ and $\triangle E C B ? \angle C$
[BLI Provide a counterexample to show that SSA cannot be used to show that triangles are congruent. See students' work.

Common Error

Students may list the vertices of the triangles in the wrong order in this proof based on the illustration. Remind them to continue to take care to keep triangle vertices in corresponding order.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-15$	
2	exercises that use a variety of skills from this lesson	$16-19$
3	exercises that emphasize higher-order and critical-thinking skills	$20-24$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-19 odd, 20-24
- Extension: The Ambiguous Case
- ALEKS Proving Triangle Congruence

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-23 odd
- Remediation, Review Resources: Congruence and Transformations
- Personal Tutors
- Extra Examples 1-3
- DALEKS'Congruence and Similarity

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-15
- Remediation, Review Resources: Congruence and Transformations
- Quick Review Math Handbook: Proving Triangles Congruent (ASA, AAS)
- ALEKS Congruence and Similarity

Important to Know

Digital Exercise Alert Exercise 16 requires a construction and is not available online.

Answers

8a. Proof:
Statements (Reasons)

1. $\angle A B C \cong \angle D C B$ and $\angle A C B \cong \angle D B C$ (Given)
2. $\overline{B C} \cong \overline{B C}$ (Reflexive Property)
3. $\triangle B C A \cong \triangle C B D$ (ASA)

Lesson 14.4 - Proving Triangles Congruent ASA AAS 867

Example 2

7. REASONING Two doorstops have

Cross sections that are right triangles. Both have a 20° angle, and the length of
the side between the 90° and 20° angles are equal.

a. Are the cross sections congruent? Explain. yes; by ASA Congruence Postulate
b. If each cross section has a height of 2 inches and $x=5$, what is the combined area of the two cross sections? $10 \mathrm{in}^{2}$
8. ARCHITECTURE An architect used the stained-glass window A design in the diagram when remodeling an art studio.
a. If $\angle A B C \cong \angle D C B$ and $\angle A C B \cong \angle D B C$, prove that
$\triangle B C A \equiv \triangle C B D$. See margin
b. If the height of $\triangle C B D$ is 1.4 meters and $C D$ is 3.5 meters,
how much glass is needed to make the entire window? $4.9 \mathrm{~m}^{2}$
9. BRIDGES An engineering compary that restores bridges needs to determine the amount of steel required to replace some trusses.
$\overline{A C}\|\overline{B K}, \overline{C B}\| \overline{K M}$, and B is the midpoint of $\overline{A M}$.
a. Use the given information to confirm
 that $\triangle A B C \cong \triangle B M K$. See margin.
b. $\triangle A B C$ is equilateral, and $A B$ is 18.5 feet. What is the perimeter of
quadrilateral $A C K B$? 74 ft
PROOF Write the specified type of proof.
10. two-column proof
11. flow proof

Given: $\overline{B C} \| \overline{E F}, \overline{A B} \cong \overline{D E}, \angle C \cong \angle F \quad$ Given: $\angle S \cong \angle U$, and $\overline{T R}$ bisects $\angle S T U$. Prove: $\triangle A B C \cong \triangle D E F$ Prove: $\triangle S R T \cong \triangle U R T$

Proof:
Statements (Reasons)

1. $\overline{B C} \| \overline{E F}, \overline{A B} \cong \overline{D E}, \angle C \cong \angle F$ (Given)
2. $\angle A B C \cong \angle D E F$ (Corresponding Angles Thm.)
3. $\triangle A B C \cong \triangle D E F(A A S)$

4. USE ESTIMATION Delma came to a river during a hike, and she wanted to estimate the distance across it. She held her walking sticMB wertically on the estimate the distance across it. She held her walking stic $M B$ vertically on the
ground at the edge of the river and sighted along the top of the stick across the river to the base of a tree T. Then she turned without changing the angle of her head and sighted along the top of the stick to a rock R, located on her side of the river.

a. Explain why $\triangle A B T \cong \triangle A B R$. Because Delma did not change the angle of her head, $\angle B A T \cong \angle B A R . \overline{A B} \cong \overline{A B}$ by the Reflexive Property of \cong. Because the walking stick is vertical $\angle A B T$ and $\angle A B R$ are right angles, so $\angle A B T \cong \angle A B R$. Therefore, $\triangle A B T \cong \triangle A B R$ by $A S A$. b. Delma finds that it takes 27 paces to walk from her current location to the rock. She also knows that each of her paces is 14 inches long. Explain how she can use this information to estimate the distance across the river. $B R=27 \cdot 14=378 \mathrm{in}$. or triangles. Therefore, the sobproxm, because they are corresponding parts of congruent triangles. Therefore, the approximate dsite a paragraph proof. See margin.
5. PROOF Write a
Given: $\angle D \cong \angle F$
$\overline{G E}$ bisects $\angle D E F$.
Prove: $\overline{D G} \cong \overline{F G}$

Higher-Order Thinking Skills
20. ANAL YZE Find a counterexample to show why SSA (Side-Side-Angle) cannot be used to prove the congruence of two triangles. See margin.
21. FIND THE ERROR TyTone says that is not possible to show that $\triangle A D E \equiv \triangle A C B$. Lorenzo disagrees, explaining that the Reflexive Property, $\triangle A D E \equiv \triangle A C B$. Who is corret? Explain your reasoning.

Tyrone; Lorenzo showed that all three corresponding angles were congruent, but AAA is not a proof of triangle congruence.
22. CREATE Draw and label two triangles that could be proved congruent by ASA. See margin.
23. WRITE How do you know which method (SSS, SAS, and so on) to use when you are proving triangle congruence? Use a table to explain your reasoning. See margin.
24. PROOF Using the information given in the diagram, write a fiow proof to show that $\triangle P V Q \cong \triangle S V T$. See Mod. 14 Answer Appendix.

Answers

9a.
Sample answer:

- Because $\overline{A C} \| \overline{B K}, \angle C A B \cong \angle K B M$ by the Corresponding Angles Theorem.
- Because $\overline{C B} \| \overline{K M} \angle A B C \cong \angle B M K$ by the Corresponding Angles Theorem.
- Because B is the midpoint of $\overline{A M}, \overline{A B} \cong \overline{B M}$ by the Midpoint Theorem.

Therefore, by the ASA Congruence Postulate, $\triangle A B C \cong \triangle B M K$.
16.

19. Proof: Because it is given that $\overline{G E}$ bisects $\angle D E F, \angle D E G \cong \angle F E G$ by the definition of an angle bisector. It is given that $\angle D \cong \angle F$. By the Reflexive Property, $\overline{G E} \cong \overline{G E}$. So $\triangle D E G \cong \triangle F E G$ by AAS. Therefore $\overline{D G} \cong \overline{F G}$ by СРСТС.
20. Sample answer: $\overline{A B} \cong \overline{X Y}, \overline{B C} \cong \overline{Y Z}, \angle C \cong \angle Z . \triangle A B C \not \equiv \triangle X Y Z$.

22. Sample answer:

23.

Method	Use when...
Definition of Congruent Triangles	All corresponding parts of one triangle are congruent to the corresponding parts of the other triangle.
SSS	The three sides on one triangle must be congruent to the three sides of the other triangle.
SAS	Two sides and the included angle of one triangle must be congruent to two sides and the included angle of the other triangle.
ASA	Two angles and the included side of one triangle must be congruent to two angles and the included side of the other triangle.
AAS	Two angles and a nonincluded side of one triangle must be congruent to two angles and the corresponding nonincluded side of the other triangle.

Proving Right Triangles Congruent

LESSON GOAL

Students solve problems using the LL, HA, LA, and HL Theorems of Right Triangle Congruence.

1 LAUNCH

Launch the lesson with a Warm Up and an introduction.

2 EXPLORE AND DEVELOP

Explore: Congruence Theorems and Right Triangles

Develop:

Right Triangles Congruence

- Problem Solving with Right Triangles

You may want your students to complete the Checks online.

3 REFLECT AND PRACTICE

Exit Ticket

DIFFERENTIATE

View reports of student progress on the Checks after each example.

Resources	ALI	I.B	Inll	
Remediation: Congruence and Transformations				
Extension: Triangles and Area Formulas				

Language Development Handbook

Assign page 91 of the Language Development Handbook to help your students build mathematical language related to solving problems using the LL, HA, LA and HL Theorems of Right Triangle Congruence.
태․․ You can use the tips and suggestions on page T91 of the handbook to support

Suggested Pacing

90 min	0.5 day
45 min	

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.10 Prove theorems about triangles.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standards for Mathematical Practice:
1 Make sense of problems and persevere in solving them.
5 Use appropriate tools strategically.
6 Attend to precision.

Coherence

Vertical Alignment

Previous

Students proved that triangles are congruent using the ASA Postulate or AAS Theorem.
G.SRT. 5

Now

Students use triangle congruence criteria to prove right triangles congruent. G.CO.10, G.SRT. 5

Next

Students will solve problems involving isosceles and equilateral triangles using triangle congruence.
G.C0.10, G.SRT. 5

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING 2 FLUENCY
3APPLICATION
understanding of congruent triangles to right triangles. They build
fluency and apply their understanding by solving real-world problems
related to congruent right triangles.

Mathematical Background

Right triangles have their own theorems to prove congruence. The LL Congruence Theorem and the HL Postulate are used to prove right triangles congruent.

Interactive Presentation

Warm Up

Launch the Lesson

Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- proving triangles congruent by using congruence criteria

Answers:

1. SAS
2. ASA
3. none
4. SAS

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of congruent right triangles.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.
See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Explore Congruence Theorems and Right Triangles

Objective

Students use dynamic geometry software to make a conjecture about the criteria needed to prove right triangles congruent.

Teaching the Mathematical Practices

5 Decide When to Use Tools Mathematically proficient students can make sound decisions about when to use mathematical tools such as dynamic geometry software. Help them see why using these tools will help to solve problems and what the limitations are of using these tools.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will use sets of right triangles to investigate how triangle congruence criteria work in right triangles. Next students answer some guiding exercises to investigate how triangle congruence criteria can be shortened when used for right triangles. Students then use a sketch to investigate how SSA can work if the known angle is a right angle. Next students will complete guiding exercises guiding them to conjecture the HL criterion and to write a proof. Then, students will answer the Inquiry Question.

(3)
Go Online to find additional teaching notes and sample answers for the guiding exercises.
(continued on the next page)

Interactive Presentation

Explore
TYPE
a|

Students use a sketch to explore the HL triangle congruence criterion.

Interactive Presentation

Explore

TYPE

a
Students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Congruence Theorems and Right Triangles (continued)

Questions

Have students complete the Explore activity.

Ask:

- Why are you not investigating the SSS criterion? Sample answer: Right triangles are special because there is already one pair of corresponding congruent angles, but SSS does not require any pairs of congruent angles.

@ Inquiry

What criteria can be used to prove right triangles congruent? Sample answer: You can prove that two right triangles are congruent if corresponding legs are congruent by SAS. If one pair of corresponding acute angles and the hypotenuses are congruent, you can prove the right triangles are congruent by AAS. If one pair of corresponding acute angles and one pair of corresponding legs are congruent, then you can prove that the triangles are congruent by ASA.
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Right Triangle Congruence

Objective
Students use the right triangle congruence theorems to prove relationships in geometric figures.

Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will use stated assumptions, definitions, and previously established results to construct an argument.

What Students Are Learning

Three of the right triangle criteria, LL, HA, and LA, come directly from general triangle congruence criteria. HL comes from the Pythagorean Theorem and the SSS criterion.

Common Misconception

Some students may think that the LL shortcut for the congruence of right triangles comes from SSS when the Pythagorean theorem is applied. Have the students explore the situation with a drawing. They can draw two congruent right triangles and mark sides so the triangles have LL. There is already a congruence guarantee for this, SAS. What would the non right triangle congruence be for HL? Is this a guarantee? (It would be SSA, and no, this does not work in triangles that are not right.)

Essential Question Follow-Up

Students learn to apply triangle angle criteria to right angles.
Ask:
Why is it useful to be able to prove right triangles congruent? Sample answer: Right triangles can model many real-world objects, and knowing that objects are the same shape and size can help you produce them faster.

3 Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

DIFFERENTIATE

Enrichment Activity [BL

Have students prove the right triangle congruence criteria theorems.

Interactive Presentation

Learn

Reasons:
Alternate exterior angles
are congruent.
Alternate interior angles
are congruent.
Consecutive interior
angles are congruent.
Definition of right
triangle
Given
HA
Reflexive Property
Symmetric Property

Draw a diagram to model this situation. It is given that the length of the ladders is the same and that they are placed the same distance from the house.
Because the wall of the house is perpendicular to the ground, the triangles formed by the house, the ground, and the ladders are right ians. The hepores are colgue because the ladders are the ame length. The corresponding legs along the ground are congruent because the ladders are placed the same distance from the house So the triang are corent by the Hypotenuse Le Congruence theorem or HL Thus, $A B$ and $D E$ are congruent by CPCTC You can onclude that the ladders reach to the same height on the house:

Check
FENCES The fence has parallel upports and a crossbar that forms to show that the triangles are show ongruent.
Given: $\angle B$ and $\angle D$ are light angles. $\overline{A D} \mid \overline{B C}$

Prove: $\triangle A B C \quad \triangle D A$ Proof:
 $\angle B$ and $\angle D$ are right

2. $\triangle A B C$ and $\triangle C D A$
2. Definition of right triangle
3. $A D ; B C$
3. \rightarrow Given
4. $\angle D A C \cong \angle B C A$ 4. ? Alternate interior angles are congruent.
$5 . \overline{A C} \equiv \overline{A C} \quad 5 . \rightarrow$ Reflexive Property of Congruence
6. $\triangle A B C \cong \triangle C D A$
6. ? Ma

372 Module 14 - Triangles and Congruenc

Interactive Presentation

Example 1
 determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 1 Problem Solving with

Right Triangles

Teaching the Mathematical Practices

4 Use Tools Point out that to solve the problem in this example, students will need to use diagrams.

Questions for Mathematical Discourse

AL How are right triangles labeled differently than other triangles? They have a right angle symbol.
Ol. What other unique features do right triangles have? The sides adjacent to the right angle are called legs, and the side opposite the right angle is called the hypotenuse.
B31. Is there another type of triangle that has special names for its parts? isosceles

Common Error

Students may forget that they already know that a pair of corresponding angles are congruent when given a pair of right angles. Encourage students to sketch the information given in the problem, and draw in the right angle symbols on their sketch. This will give them a visual reminder so they can see that those right angles are congruent.

DIFFERENTIATE

IF students are having difficulty determining which right triangle congruence criterion to use,
THEN have the students label the names of the corresponding parts such as "leg" on their diagrams.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-3$	
2	exercises that use a variety of skills from this lesson	$4-11$
3	exercises that emphasize higher-order and critical-thinking skills	$12-14$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercise 1, 12-14
- Extension: Triangles and Area Formulas
- ALEKS' Proving Triangle Congruence

IF students score 66\%-89\% on the Checks,
THEN assign:

- Practice, Exercises 1-13 odd
- Remediation, Review Resources: Congruence and Transformations
- Personal Tutors
- Extra Example 1
- ALEKS Congruence and Similarity

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1, 3
- Remediation, Review Resources: Congruence and Transformations
- DALEKS Congruence and Similarity

Practice
Example 1

1. AMPIN In the diagram of the pup tent, the support pole is perpendicular to the ground. The Lase of the support pole is located at the midpoint of the segment connecting the bottom of the sides of the tent. Write a two-column proof to show that the triangles formed by the support pole are congruent. Given: $x z+w, z$ is the midpoint of $w y$, margm Prove: $\triangle W x z=\triangle y x z$
2. TOWERS The cell phone tower has parallel poles and diagonal support beams that form two triangles. Write a two-column proof to show that the triangles are congruent. See margin.

Given: \angle Hand $\angle K$ are right angles. $\mathrm{OH} \mid \mathrm{O}$
Prove: $A_{G K J} \equiv \triangle J H G$
3. BRIDGES In the diagram, the vertical support beam, $\overline{B x}$. is perpendicular to the deck of the bridge. The diagonals, $A B$ and $\overline{C B}$, are equal in length. Write a two-column proof to show that the triangles formed by the vertical support beam are congruent. Given: $\overline{B X} \pm \overline{A C}, A B=C B \quad$ See margin Given:
Prove: $\triangle A X B=\triangle C X B$

Mixed Exercises
Determine whether each pair of triangles is congruent. If yes, include the theorem that applies.

10. Which pairs of corresponding parts need to be congruent to prove that $\triangle A B C \cong \triangle X Y Z$ using the indicated theorem?
a. HA Sample answer: $\overline{A B} \cong \overline{X Y}$ and $\angle A \cong \angle X$
b. LL $\overline{B C} \cong \overline{Y Z}$ and $\overline{A C} \cong \overline{X Z}$

11. PROOF Write a two-column proof. See margin.

Higher-Order Thinking Skills
12. WRITE The sketch shows the side view of a sculpture that is being designed by an artist. Determine whether $\triangle A B C \cong$ $\triangle D C A$. If yes, then provide a paragraph proof. If no, then explain your reasoning. No; there is not enough information provided. Y ou would need to know another angle measure in $\triangle A B C$, the value of y, or the length of another side of $\triangle D C A$.
13. PROOF Write a paragraph proof. See margin.

Given: $\overline{B Y} \perp \overline{A C} ; \overline{C X} \perp \overline{A B} ; A X=A Y$
Prove: $\triangle A B Y \cong \triangle A C X$

14. FIND THE ERROR The Harding Family recently hired an electrical contractor to install two light posts on opposite sides of the end of the walkway that leads from the rear of their house to the alley. They wanted the contractor to install the posts so their distances from the end of the walkway were equal in length. Suppose two triangles are drawn from the light posts to both ends of the walkway as shown. Josephine says that it can be proved with a right triangle congruency theorem that the posts are equidistant from the end of the driveway Is Josephine's conclusion correct? Explain your reasoning.
No; sample answer: Y ou must also know that the segments joining the light posts to the end of the walkway are perpendicular to the end of the walkway

874 Module 14 - Triangles and Congruence

Answers

1. Proof:

Statements (Reasons)

1. $\overline{X Z} \perp W Y$ (Given)
2. $\angle X Z W$ and $\angle X Z Y$ are right angles. (\perp lines form right angles.)
3. $\triangle W X Z$ and $\triangle Y X Z$ are right triangles. (Definition of right triangle)
$4 . Z$ is the midpoint of $W Y$. (Given)
4. $\overline{W Z} \cong \overline{Z Y}$ (Definition of midpoint)
5. $\overline{X Z} \cong \overline{X Z}$ (Reflexive Property of Congruence)
6. $\triangle W X Z \cong \triangle Y X Z$ (LL Congruence Theorem)
7. Proof:

Statements (Reasons)

1. $\angle H$ and $\angle K$ are right angles. (Given)
2. $\triangle G K J$ and $\triangle J H G$ are right triangles. (Definition of right triangle)
3. $\overline{G H} \| \overline{K J}$ (Given)
4. $\angle H G J \cong \angle K J G$ (Alternate interior angles are congruent.)
5. $\overline{G J} \cong \overline{G J}$ (Reflexive Property of Congruence)
6. $\triangle G K J \cong \triangle J H G$ (HA Congruence Theorem)
7. Proof:

Statements (Reasons)

1. $\overline{B X} \perp \overline{A C}$ (Given)
2. $\angle A X B$ and $\angle C X B$ are rt. $\angle s$. (Definition of \perp lines)
3. $\triangle A X B$ and $\triangle C X B$ are rt. $\triangle s$. (Definition of right $\triangle s$)
4. $\overline{X B} \cong \overline{X B}$ (Reflexive Property of Congruence)
5. $A B=C B$ (Given)
6. $\overline{A B} \cong \overline{C B}$ (Definition of congruent)
7. $\triangle A X B \cong \triangle C X B$ (HL Congruence Theorem)
8. Proof:

Statements (Reasons)

1. $\overline{B X} \perp \overline{X A}, \overline{B Y} \perp \overline{Y A}$ (Given)
2. $\angle B X A$ and $\angle B Y A$ are rt. $\angle \mathrm{s}$. (Definition of \perp lines)
3. $\triangle B X A$ and $\triangle B Y A$ are rt. $\triangle s$. (Definition of right $\triangle s$)
4. $\overline{X A} \cong \overline{Y A}$ (Given)
5. $\overline{B A} \cong \overline{B A}$ (Reflexive Property of Congruence)
6. $\triangle B X A \cong \triangle B Y A$ (HL Congruence Theorem)
7. Proof: By the definition of \perp segments, $\angle A Y B$ and $\angle A X C$ are right angles. By the definition of right triangles, both $\triangle A Y B$ and $\triangle A X C$ are right triangles. By the definition of congruent segments $\overline{A X}$ is congruent to $\overline{A Y}$. By the Reflexive Property of Congruence, $\angle B A Y$ is congruent to $\angle C A X$. Therefore by $\mathrm{LA}, \triangle A B Y$ is congruent to $\triangle A C X$.

Isosceles and Equilateral Triangles

Suggested Pacing

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.10 Prove theorems about triangles.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students used triangle congruence criteria to prove right triangles congruent. G.CO.10, G.SRT. 5

Now

Students solve problems involving isosceles and equilateral triangles using triangle congruence.
G.CO.10, G.SRT. 5

Next
Students will use coordinate geometry to prove triangles congruent. G.C0.10, G.GPE. 4

Rigor

The Three Pillars of Rigor

1CONCEPTUAL UNDERSTANDING
2 FLUENCY
3APPLICATION
Conceptual Bridge In this lesson, students extend
their understanding of relationships in triangles to isosceles
and equilateral triangles. They build fluency and apply their
understanding by solving real-world problems related to isosceles
and equilateral triangles.

Mathematical Background

Isosceles triangles have special properties recognized in the Isosceles Triangle Theorem and its converse. If two sides of a triangle are congruent, then the angles opposite those sides are congruent. This theorem is used to prove corollaries about the angles of an equilateral triangle.

Interactive Presentation

Warm Up

Launch the Lesson

Vocabulary

Expand At

$>$ isosceles triangle
$>$ legs of an isosceles triangle
3 vertex angle of an isosceles triangle
$>$ base angles of an isoscetes triangle

1. Describe the various types of trimples: scalene, isosceites, and equitateral.
2. If you know that exactly tro sides of a trangie are congruent. what can you tondude?
3. If you know that exactly two angles of a triangle are congruent, exhat oan you csocluide?
4. How can you tel whether a triangle is auscoles or equilateral?
[^19]
Warm Up

Prerequisite Skills
The Warm Up exercises address the following prerequisite skill for this lesson:

- identifying isosceles and equilateral triangles

Answers:

1. $2 \sqrt{5}$ units
2. $\sqrt{10}$ units
3.3
3. $-\frac{1}{3}$
4. $\triangle A B C$ is isosceles; $\overline{D B}$ is a perpendicular bisector of $\overline{A C}$.

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see real-world applications of equilateral and isosceles triangles.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using these vocabulary terms in this lesson. You can expand each row if you wish to share the definitions. Then, discuss the questions below with the class.

Explore Properties of Equilateral, Isosceles, and Scalene Triangles

Objective
Students use dynamic geometry software to investigate the properties of equilateral, isosceles, and scalene triangles.

Teaching the Mathematical Practices
3 Make Conjectures In this Explore, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.
What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to records their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will use sketches to investigate the properties of equilateral, isosceles, and scalene triangles. With each sketch, students complete the exercises guiding them to make conjectures about equilateral, isosceles, and scalene triangles. Then, students will answer the Inquiry Question.
(continued on the next page)

Interactive Presentation

Explore

Students use a sketch to investigate the properties of equilateral, isosceles, and scalene triangles.

Students type to complete the exercises.

Interactive Presentation

Explore

TYPE

Students will respond to the Inquiry Question and view a sample answer.

Explore Properties of Equilateral, Isosceles, and Scalene Triangles (continued)

Questions
Have students complete the Explore activity.

Ask:

- What observation can you make about the sides and angles in the equilateral triangle? Sample answer: All three sides are congruent, and all three angles are congruent.
- What observation can you make about the sides and angles in the scalene triangle? Sample answer: The lengths of the sides are all different, and the measures of the angles are all different.

What are the differences between equilateral, isosceles, and scalene triangles? Sample answer: An equilateral triangle has three congruent sides and angles. An isosceles triangle has two congruent sides and angles. A scalene triangle has no congruent sides or angles.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

Explore Isosceles and Equilateral T riangles

Objective
Students use dynamic geometry software to make conjectures about the relationships between the parts of isosceles and equilateral triangles.

Teaching the Mathematical Practices
3 Make Conjectures In this Explore, students will make conjectures and then build a logical progression of statements to validate the conjectures. Once students have made their conjectures, guide the students to validate them.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will watch an animation of an isosceles triangle to observe relationships between sides and angles of an isosceles triangle. Then students complete the exercises guiding them to conjecture about isosceles and equilateral triangles. Then, students will answer the Inquiry Question.

0
Go Online to find additional teaching notes and sample answers for the guiding exercises.
(continued on the next page)

Interactive Presentation

Explore

Students use a sketch to investigate isosceles and equilateral triangles.

Students type to complete the guiding exercises.

Interactive Presentation

Explore

TYPE

a
Students respond to the Inquiry Question and view a sample answer.

1 CONCEPTUAL UNDERSTANDING

Explore Isosceles and Equilateral T riangles (continued)

Questions

Have students complete the Explore activity.

Ask:

- When you animate the triangle, what do you notice about the lengths of sides $A B$ and $A C$? The lengths of sides $A B$ and $A C$ always remain the same.
- When you animate the triangle, what do you notice about the measures of $\angle A B C$ and $\angle A C B$? The measures of $\angle A B C$ and $\angle A C B$ always remain equal.

(9) Inquiry

What conjecture can you make about the relationship between the parts of isosceles and equilateral triangles? Sample answer: An isosceles triangle must have two congruent angles opposite its two congruent sides. An equilateral triangle must have three congruent angles and three congruent sides.

3 Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Isosceles T riangles

Objective
Students solve problems involving isosceles triangles by using theorems of triangle congruence.

(11) Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of isosceles triangles in this Learn.

What Students Are Learning

Special triangles such as right triangles and isosceles triangles have special definitions for some of their parts. The sides of right triangles adjacent to the right angle are legs, and the side opposite the right angle is the hypotenuse. Two congruent sides of an isosceles triangle are also called legs, and the third side is called the base.

Common Misconception

When they are looking at a figure, students have a hard time adjusting to the idea that even if two segments or angles look congruent, they cannot be assumed to be congruent unless they are marked. A triangle is not isosceles unless at least two of the sides are marked congruent, no matter how much it looks like an isosceles triangle. Maybe one side is a millimeter longer, but the figure is too small to show the difference. Congruent means "exactly the same." It is helpful to remind the students that they are learning a new, extremely precise language. In geometry, congruence must be communicated with the proper marks if it is known to exist.

Bo Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

876 Module 14 - Triangles and Congruence

Interactive Presentation

Example 1
DRAG \& DROP

Students drag statements and reasons to complete the proof.

CHECK
Students complete the Check online to determine whether they are ready to move on.

Example 1 Prove the Isosceles T riangle Theorem

(1) Teaching the Mathematical Practices

7 Draw an Auxiliary Line Help students see the need to draw an auxiliary line to prove the Isosceles Triangle Theorem.

Questions for Mathematical Discourse

AL. What do you know about isosceles triangles? At least two of the sides are congruent.
OL. Why is it useful to draw an auxiliary line in this proof? The auxiliary line creates two triangles so we can find three pairs of corresponding congruent sides.Draw the angle bisector of $\angle M L P$. Can you still prove the theorem? Explain. Y es; using the angle bisector, you can prove the theorem using SAS.

Common Misconception

Students may notice that the base angles appear congruent and think that the theorem is obvious and, therefore, does not need to be proved. Remind them that we can make conjectures based on appearances, but only a proof will let us know whether a particular mathematical statement is true.

Example 2 Find Missing Measures in Isosceles Triangles

Teaching the Mathematical Practices
1 Understand the Approaches of Others Work with students to look at the Alternate Method. Ask students to compare and contrast the original method and the alternate method.

Questions for Mathematical Discourse

AL. What do you know about $m \angle B$ and $m \angle C$? They are equal.
OL. Write an equation to find $m \angle B$ using the Triangle Angle-Sum Theorem. $m \angle B+m \angle B+70^{\circ}=180^{\circ}$
If you were given that $m \angle A=(5 x+4)^{\circ}$ and $m \angle B=(7 x-7)^{\circ}$, what would the value of x be? $x=10$

Learn Equilateral T riangles

Objective

Students solve problems involving equilateral triangles by using theorems of triangle congruence.

Teaching the Mathematical Practices

7 Use Structure Help students to explore the structure of equilateral triangles in this Learn.

Common Misconception

Students may assume that the definition of an isosceles triangle does not include equilateral triangles. Remind them that being isosceles means that the triangle has at least two congruent sides, not exactly two.

DIFFERENTIATE

Enrichment Activity BL

Create an equilateral triangle with three unknown sides and use an algebraic equation to solve the problem.

```
Example 2 Find Missing Measures in Isosceles T riangles
Fnd m\angleA and m\angleC
Part A Determine side relationships.
Use the Distance Formula to determine the
measures of the sides of }\triangleABC\mathrm{ The
l
```



```
AC = \sqrt{ (0 -4)}{2}+(3-(-2)\mp@subsup{]}{}{2}\mathrm{ or }\sqrt{}{41}\mathrm{ units}
C8 - v/4-(-4) +[-2-(-2) {}\mathrm{ or 8 unit)
So, }\triangleABC\mathrm{ is an isosceles triangle with }\overline{AB}\cong\overline{AC
Part B Determine the angle measures.
```

Watch Out! Triangle Relationships We cannot use the Theorem until we show that two sides of $\triangle A B C$ are congruent.

Boo Online

An alternate method is vailable for this example

T riangle Theorem.
$m \angle A+m \angle B+m \angle C=180^{\circ} \quad$ Triangle Angle-Sum Theorem
$m \angle A+2 m \angle B=180^{\circ}$
$70^{\circ}+2 m \angle B=180^{\circ}$
$m \angle B=m \angle C=55^{\circ}$
Substitut
Solve.
Check
Find $m \angle X Y Z$ and $m \angle Y D X$
$m \angle X Y Z=745^{*}$
$m \angle Y Z X=745^{\circ}$

Learn Equilateral T riangles
The Isosceles Triangle Theorem leads to two corollaries about the angles of an equilateral triangle.
Corollary 14.3
A triangle is equilateral if and only if it is equiangular.
Corollary 14.4
Fach angle of an equilateral triangle measures 60°
Y ou will prove Coroliaries 14.3 and 14.4 in Exercises 18 and 19, respectively.

Interactive Presentation

1 CONCEPTUAL UNDERSTANDING

Example 3 Find Missing Measures in Equilateral Triangles

(11) Teaching the Mathematical Practices

4 Analyze Relationships Mathematically Point out that to solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

Questions for Mathematical Discourse

AI. What is the relationship between isosceles and equilateral triangles? Sample answer: All equilateral triangles are also considered to be isosceles triangles.
OI. What are the legs and the vertex of the triangle? \sqrt{L} and $\overline{J K}$ are the legs; $\angle J$ is the vertex.

BL. If you were given that $m \angle J=6 x+6$ and $m \angle K=7 x-3$, what would be the value of x be? $x=9$

DIFFERENTIATE

Reteaching Activity ALILIL

Have groups of students work on Example 3. Encourage groups to discuss the properties of isosceles and equilateral triangles while they are solving the problem.

Example 4 Find Missing Values

Teaching the Mathematical Practices
4 Analyze Relationships Mathematically Point out that to solve the problem in this example, students will need to analyze the mathematical relationships in the problem to draw a conclusion.

Questions for Mathematical Discourse

Based on the diagram, what do you know about $m \angle C ? m \angle C=m \angle A$
OL. Write an equation to find $m \angle B$ using the Triangle Angle-Sum Theorem. $m \angle B+60^{\circ}+60^{\circ}=180^{\circ}$

BEL In Part B, is it possible for $B C \frac{1}{2} y+3$? Explain. No; if $y=2$, then 1_{2}^{1} $y+3=4$. Because the triangle is equilateral, the three sides must be congruent.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so that you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Practice and Homework

Suggested Assignments
Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2	exercises that mirror the examples	$1-16$
2	exercises that use a variety of skills from this lesson	$17-26$
3	exercises that emphasize higher-order and critical-thinking skills	$27-32$

ASSESS AND DIFFERENTIATE

Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,

THEN assign:

- Practice, Exercises 1-25 odd, 27-32
- Extension: Exterior and Interior Angles of Isosceles Triangles
- ALEKS'Isosceles and Equilateral Triangles

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:

- Practice, Exercises 1-32 odd
- Remediation, Review Resources: Triangles
- Personal Tutors
- Extra Examples 1-4
- © ALEKSTriangle Constructions and Triangle Inequalities

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-16 odd
- Remediation, Review Resources: Triangles
- Quick Review Math Handbook: Proving Triangles Congruent (ASA, AAS)
- ALEKS'Triangle Constructions and Triangle Inequalities

Important to Know

Digital Exercise Alert Exercise 25 requires constructions. Students will need to complete the constructions by using a compass and straightedge.

Mixed Exercise

17. STRUCTURE Each of the triangles shown is isosceles.

a. Use a ruler to find the midpoint of each side of each triangle. Copy and drav a triangle formed by connecting the midpoints of each side.
b. Look for patterns in your drawings. Make a conjecture about what you notice Sample answer: The triangle formed by connecting the midpoints of the sides a an isosceles triangle is an isosceles triangle.
18. P
a. Case
Given: $\triangle D E F$ is an equilateral triangle.
Prove: $\triangle D E F$ is an equiangular triangle.
Proof:
b. Case 2

Prove: $\triangle D E F$ is an equilateral triangle.
Proot:
Statements (Reasons)

1. $\triangle D E F$ is an equiangular triangle. (Given)
2. $\angle D \cong \angle E \cong \angle F$ (Def. of equiangular \triangle)
3. $\triangle D E F$ is an equilateral triangle. (Def of equilateral triangle)

Statements (Reasons)

1. $\triangle D E F$ is an equilateral triangle. (Given)
2. $\angle D \cong \angle E \cong \angle F$ (sosoceles \triangle (hm)
3. $\triangle D \cong \angle D E F$ is an equiangular triangle. (Def $\triangle D E F$ is an equiangular triangle. (Deft of
equiangular triangle)
4. PRoof Write a two-column proof to prove Corollary 14.

Given: $\triangle P Q R$ is an equilateral triangle.
Prove: $m \angle P=m \angle Q=m \angle R=60^{\circ}$

Proof:

tatements (Reasons)

1. $\triangle P O R$ is an equilateral triangle. (Given) 2. $P Q \cong O R \cong P R$ (Def. of equilateral triangle) . $\angle P=m \angle Q=m \angle P$ (Def of congruence) 4. $m \angle P=m \angle O=m \angle R$ (Def. of congruence)

REGULARITY Find each measure
20. $m \angle C A D \quad 44^{\circ}$
21. $m \angle A C D \quad 44^{\circ}$
22. $m \angle A C B \quad 136^{\circ}$
23. $\mathrm{m} \angle A B C \quad 22^{\circ}$
2. PATHS A marble patt, as shown at the right, is constructed out of several congruent iososeles triangles. All the vertex angles measure 20°. What is the
measure of angle 1 in the figure? 80°

Lesson 14.6 - Isosceles and Equilateral Triangles 881
25. PRECISION Construct three different isosceles right triangles. Explain your method. Then verify your constructions using measurement and mathematics. See margin.
26. STATE YOUR ASSUMPTIONS Every day, cars drive through approximate isosceles triangles when they go over the Leonard Zakim Bridge in Bosto The ten-lane roadway forms the bases of the triangles.

a. If $m \angle A=67^{7}$, find $m \angle B .46$

b. Find $m \angle C .67^{\circ}$
c. What assumption is made when approximating that the bridge forms isosceles triangles? Sample answer: I assumed that the cables representing the legs of the triangles were the exact same length.
Higher-Order Thinking Skills
ANAL YZE Determine whether the following statements are sometimes, always,
or never true. Justify your argument.
27. If the measure of the vertex angle of an isosceles triangle is an integer, then the measure of each base angle is an integer. Sometimes; sample answer. Only if the measure
of the vertex angle is even. of the vertex angle is even.
28. If the measures of the base angles of an isosceles triangle are integers, then the measure of its vertex angle is odd. Never; sample answer: The measure of the vertex angle will be
$180-2$ (measure of the base angle). So, if the base angles are integers, then 2(measure of base
29. CRgle) will be even and $180-2$ (measure of the base angle) will be even. If it is not possible, explain why not. Sample answer. It is not possible because a triangle cannot have more than one obtuse angle.
30. WRITE How can triangle classifications help you prove triangle congruence? See margin.
31. FIND THE ERROR Darshan and Miguela are finding $m \angle G$ in the figure shown. Darshan says that $m \angle G=35^{\circ}$, and Miguela says that $m \angle G=60^{\circ}$. Is either of them correct? Explain your reasoning. No; $m \angle G=\frac{180-70}{2}$ or 55°
32. PERSEVERE A boat is traveling at $25 \mathrm{mi} / \mathrm{m}$ paralle to a straight section of the shoreline, $X Y$, as shown. An observer in a lighthouse L spots the boat when the angle formed by the boat, the lighthouse, and the shoreline is 35°. The observe spots the boat again when $m \angle C L X=70^{\circ}$
a. Explain how you can prove that $\triangle B C L$ is
isosceles. See margin.
b. It takes the boat about 15 minutes to travel from point B to point C. When the boat is at point C, what is the distance to the lighthouse? 6.25 mi

Answers

25.

Sample answer: I constructed a pair of perpendicular segments and then used the same compass setting to mark points that are equidistant from their intersection. I measured both legs for each triangle. Because $A B=A C=1.3 \mathrm{~cm}, D E=D F=1.9 \mathrm{~cm}$, and $G H=G J=2.3 \mathrm{~cm}$, the triangles are isosceles. I used a protractor to confirm that $\angle A, \angle D$, and $\angle G$ are all right angles.
30. Sample answer: If a triangle is already classified, you can use the previously proven properties of that type of triangle in the proof. Doing this can save you steps when writing the proof.

32a. Because $B \overline{B C} \| \overline{X Y}, m \angle C B L=35^{\circ}$ by the Alternate Interior Angles Theorem. Because $\angle C B L \cong \angle C L B, \triangle B C L$ is isosceles by the Converse of the Isosceles Triangle Theorem.

Suggested Pacing

Focus

Domain: Geometry
Standards for Mathematical Content:
G.CO.10 Prove theorems about triangles.
G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically.
Standards for Mathematical Practice:
2 Reason abstractly and quantitatively.
4 Model with mathematics.
7 Look for and make use of structure.

Coherence

Vertical Alignment

Previous

Students solved problems involving isosceles and equilateral triangles using triangle congruence.
G.Co.10, G.SRT. 5

Now

Students use coordinate geometry to prove triangles congruent.
G.CO.10, G.GPE. 4

Rigor

The Three Pillars of Rigor

1 CONCEPTUAL UNDERSTANDING
2 FLUENCY
四 Conceptual Bridge In this lesson, students draw on their
understanding of relationships in triangles and build fluency by using
coordinates to prove theorems about triangles.

Mathematical Background

A coordinate proof uses the coordinate plane in combination with algebra to prove theorems. The Distance Formula, Slope Formula, and Midpoint Formula are often used in coordinate proofs.

Interactive Presentation

Warm Up

Launch the Lesson

[^20]
Warm Up

Prerequisite Skills

The Warm Up exercises address the following prerequisite skill for this lesson:

- identifying SSS

Answers:

1. $2 \sqrt{2}$
2. $\sqrt{17}$
3. $\sqrt{5}$
4. $2 \sqrt{2}$
5. $\sqrt{17}$
6. $\sqrt{5}$
7. yes; SSS

Launch the Lesson

Teaching the Mathematical Practices
4 Apply Mathematics In this Launch the Lesson, students can see a real-world application of coordinates.

Go Online to find additional teaching notes and questions to promote classroom discourse.

Today's Standards

Tell students that they will be addressing these content and practice standards in this lesson. You may wish to have a student volunteer read aloud How can I meet these standards? and How can I use these practices? and connect these to the standards.

See the Interactive Presentation for I Can statements that align with the standards covered in this lesson.

Today's Vocabulary

Tell students that they will be using this vocabulary term in this lesson. You can expand the row if you wish to share the definition. Then, discuss the questions below with the class.

Explore T riangles and Coordinate Proofs

Objective
Students apply properties of triangles on the coordinate plane to label the vertices using algebra.

Teaching the Mathematical Practices
3 Justify Conclusions Mathematically proficient students can explain the conclusions drawn when solving a problem. This Explore asks students to justify their conclusions.

Ideas for Use

Recommended Use Present the Inquiry Question, or have a student volunteer read it aloud. Have students work in pairs to complete the Explore activity on their devices. Pairs should discuss each of the questions. Monitor student progress during the activity. Upon completion of the Explore activity, have student volunteers share their responses to the Inquiry Question.

What if my students don't have devices? Y ou may choose to project the activity on a whiteboard. A printable worksheet for each Explore is available online. You may choose to print the worksheet so that individuals or pairs of students can use it to record their observations.

Summary of the Activity

Students will complete guiding exercises throughout the Explore activity. They will examine three triangles on the coordinate plane and find the coordinates of their vertices. Then students complete the Exercises guiding them to use variables for coordinates given the base length and height of an isosceles triangle. Then, students will answer the Inquiry Question.

Go Online to find additional teaching notes and sample answers for the guiding exercises.
(continued on the next page)

Interactive Presentation

Explore

TYPE

1 CONCEPTUAL UNDERSTANDING

Explore T riangles and Coordinate Proofs (continued)

Questions

Have students complete the Explore activity.

Ask:

- If a right triangle has base length c and height d , what would the coordinates of point A, B, and C be? $A(0,0), B(0, d), C(c, 0)$

How can you assign coordinates to vertices of a triangle if the lengths of the sides are unknown? Sample answer: Y ou can use variables to represent the x-and y-coordinates of each vertex. You can use the properties of the triangle to determine the relationship between the coordinates to reduce the number of variables needed.
(3) Go Online to find additional teaching notes and sample answers for the guiding exercises.

Learn Position and Label T riangles

Objective
Students position a triangle on the coordinate plane and label the vertices.
(11) Teaching the Mathematical Practices

6 Communicate Precisely Encourage students to routinely write or explain their solution methods. Point out that they should use clear definitions when they discuss their solutions with others.

Example 1 Position and Label a T riangle

Teaching the Mathematical Practices
2 Make Sense of Quantities Mathematically proficient students need to be able to make sense of quantities and their relationships. In this example, notice the relationship between the problem variables and the triangle in question.

Questions for Mathematical Discourse

What lines on a coordinate plane make it easier to find distance? Sample answer: the x-axis and the y-axis.OL_ If two sides of the triangle are placed along each axis, what do you know about the measure of the included angle? It is a right angle.What is $B C ? \sqrt{4 a^{2}+4 b^{2}}$

3

Go Online

- Find additional teaching notes.
- View performance reports of the Checks.
- Assign or present an Extra Example.

Interactive Presentation

$\mathbf{8 8 4}$ Module $\mathbf{1 4}$. Triangles and Congruence

Interactive Presentation

Example 2

TAP | Students tap to choose answers and to |
| :--- |
| see the next steps in a proof. |

Students complete the Check online to determine whether they are ready to move on.

1 CONCEPTUAL UNDERSTANDING

Example 2 Identify Missing Coordinates

Teaching the Mathematical Practices

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

Common Error

Students may incorrectly identify the quadrant in which the triangle is located. Remind them that whenever possible they should use coordinates in the first quadrant because all coordinates there are positive.

Questions for Mathematical Discourse

4L Why is the x-coordinate of $S 0$? Sample answer: S is on the y-axis.
OL What is the y-coordinate of any point on the x-axis? 0
Bㄴ․ How does the Hypotenuse-Leg Theorem help you find the coordinates of T ? If you draw a perpendicular segment from S to the origin O and label the intersection point Q, you can use the theorem to show that $\triangle R S Q \cong \triangle T S Q$; so, that Q is the midpoint of $\overleftrightarrow{R T}$.

DIFFERENTIATE

Enrichment Activity B

Supply students with an overhead or translucent copy of a map. Have students choose three destinations and use these vertices to draw a triangle. Next, students place the translucent map on a coordinate plane. Encourage students to experiment with this placement. Finally, have students use coordinate proof to classify the triangle.

Learn T riangles and Coordinate Proof

Objective
Students write coordinate proofs to verify properties and to prove theorems about triangles.
1 Teaching the Mathematical Practices
3 Construct Arguments In this Learn, students will see how to use stated assumptions, definitions, and previously established results to write a coordinate proof.

Common Misconception

Students may think that for proof purposes a triangle on the coordinate plane must be completely random in terms of where it is located and how it is oriented. Explain to them that any triangle is congruent to one that is in the position and orientation that makes the coordinates simple. This is why we can position a triangle and label its vertices this way.

Essential Question Follow-Up
Students prove theorems about triangles on the coordinate plane.

Ask:

Why is it important to know how to prove theorems using the coordinate plane? Sample answer: Sometimes the theorem is easier to prove using coordinates than without coordinates.

Example 3 Write a Coordinate Proof

(17) Teaching the Mathematical Practices

3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to construct an argument.

Questions for Mathematical Discourse
(ALI How else can you write the congruence statement? Sample answer: $\triangle G H F \cong \triangle D C F$
OL How did using a coordinate proof make it easier to complete this proof? Sample answer: On the coordinate plane, you can use the Distance Formula to determine whether two line segments are congruent.
[BLI Could you prove the statement using SAS? Explain. Yes; $\angle D F C \cong \angle G F H$ because they are vertical angles.

Learn Triangles and Coordinate Proof
Coordinate proofs use figures on the coordinate plane to prove geometric concepts and theorems.
Key Concept . Writing a Coordinate Proof
Step 1 Place the figure on the coordinate plane.
Step 2 Label the coordinates of the vertices of the figure.
Step 3 use algebra to prove properties or theorems.
Example 3 Write a Coordinate Proof
Write a coordinate proof to show that $\triangle F G H \equiv \triangle F D C$ Use the Distance Formula to find the length of each side of each triangle. If the sides of the triangles are congruent, then the triangles are congruent by SSS.

$\left.G H=\sqrt{(} a-a)^{2}+\mid b-\sigma\right)^{2}$ or b
Because $D C=G H, D C=$ GF by the definition of congruence.
$D F=\sqrt{\left(0-(-a)^{2}+\left(\frac{b}{3}-0\right)^{2}\right.}$ or $\sqrt{\sigma^{\alpha}+\frac{b^{2}}{4}}$
$\sigma f=\sqrt{(a-0)^{2}+\left(a-\frac{s}{2}\right)^{2}}$ or $\sqrt{\left(a+\frac{p}{4}\right.}$
$c F=\sqrt{0-1-a)^{2}+\left(\frac{b}{2}-0\right)}$) or $\sqrt{\theta^{\alpha}+\frac{b}{4}}$
$H F=\sqrt{\left(0-0 \beta^{2}+\left(0-\frac{1}{2}\right)^{2}\right.}$ or $\sqrt{\sqrt{a^{2}+\frac{0^{2}}{4}}}$
Because $D F=G F=C F=A F, \overline{D F} \cong G F=C F=\overline{H F}$,
$\triangle F G H \geqslant \triangle F D C$ by SSS
Check
Write a coordinate proof to show that $\triangle A B X \cong \triangle C O X$.
Proof: midpoint of $\overline{A C}$ is $\left(\frac{0 . a+x}{2}+\frac{0+b}{2}\right)$, or $\left(\frac{a+\Delta, b}{2} \cdot \frac{2}{2}\right)$ The
midpoint of $B D$ is $\left(\frac{0+x+a}{2}, \frac{b+0}{2}\right)$ or $\left(\frac{a+x}{2}, \frac{b}{2}\right)$ Because π is
located at $\left(\frac{O+x}{2}, 2\right)$, it is the midpoint of $\overline{A C}$ and $B D$ By the definition of a segment bisector, $\overline{M C}$ bisects $\overline{B D}$ and $\overline{B D}$ tisects $\overline{A C}$
Therefore $\overline{B X} \cong \overline{X D}$ and $\overline{A X} \cong \overline{C C}$. From the ? Distance Formule $C D=\sqrt{\mid a+x)-\left.o\right|^{2}+(b-o r}$ or $x^{2}+b^{2}$, and
$A B=\sqrt{|0+x|-\left.O\right|^{2}+\frac{0}{2}-\left.0\right|^{2}}$ or $\sqrt{x^{2}+b^{2}}$. Therefore, $\overline{C D} \cong \overline{A B}$
by the definition of congruence , and $\triangle A B X \cong \triangle C D X$ by SSS.

Study Tip

Coordinate Proofs These guidelines apply to all polygons, not just triangles.

3 Go Online

You can complete an Extra Example online.

Interactive Presentation

Example 3
TAP
Students tap to reveal steps in the proof and to select answer choices.

86 Module 14. Inian

Interactive Presentation

Example 4

TAP

Students tap to reveal steps in the solution.

Example 4 Prove a Theorem by Using Coordinate Geometry

Teaching the Mathematical Practices
3 Construct Arguments In this example, students will use stated assumptions, definitions, and previously established results to complete the given proof.

Questions for Mathematical Discourse
A1. What is the formula for slope on the coordinate plane? $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
OL. How do you know that $\overleftrightarrow{A B}$ is equidistant from $\overleftrightarrow{C D}$ in the diagram? Sample answer: Along two different horizontal lines, the lines are the same number of units apart horizontally.
BL. How did using a coordinate proof make it easier to complete this proof? Sample answer: On the coordinate plane, you can use the concept of slope to show that the two lines are parallel.

DIFFERENTIATE

Reteaching Activity $A \mathrm{~L}$ 큰

Use coordinates geometry to prove the Midpoint Formula.

Example 5 Classify a T riangle

Teaching the Mathematical Practices
6 Use Quantities Use the Study Tip to guide students to clarify their use of quantities in this example. Ensure that they specify the units of measure used in the problem and label axes appropriately.

Questions for Mathematical Discourse

What do you know about scalene triangles? All the sides of a scalene triangle are different lengths.
OLI Easter Island has a negative y-coordinate while Hawaii has a positive y-coordinate. What does that tell you? Easter Island is south of the equator and Hawaii is north of the equator.
[31. New Zealand is west of the International Date Line, and Easter Island and Hawaii are east of the line. What part of their coordinates tells you this? Explain. Sample answer: The x-coordinate of New Zealand is less than 180, and the x-coordinates of Easter Island and Hawaii are more than 180 . This is because the International Date Line is 180° around the Earth from the origin.
(Example 5 Classify a T riangle
NAVIGATION The Polynesian Triangle is a triangle formed between the three Pacific island groups that form the South Pacific region known as Polynesia. The approximate coordinates in latitude and longitude of each vertex are Auckland, New Zealand (-40.9, 174.9) Honolulu, Hawaii (21.3, -157.9), and Easter Island (-27.1, -109.4).

The triangle appears to be $a(n)$ acute scalene triangle.
都 type of triangle formed.
Use the Distance Formula to determine the length of each side of the triangle.
flound to the nearest tenth.
$A E=\sqrt{\mid-40.9-\left(-27 A^{2}+\mid 774.9-\left(-109.4| |^{2}\right.\right.}$
~284.6
$E H=\sqrt{(-2711-213]^{2}+(-1094-(-1579)]^{2}}$

* 68.5
$A H=\sqrt{(-40.9-213)^{2}+\left[174.9-(-1579)^{2}\right.}$
* 338.6

Because the length of each side is different, the triangle is scalene
Q Go Online Y ou can complete an Extra Example online.

Study Tip units of Measure While the distance usually measured in miles or kilometers, latitude and longitude are measured in degrees relative to the prime Meridian and the Equator.

Interactive Presentation

Example 5

Students tap to reveal steps in the proof and to select answer choices.

Part A Istimate the type of triangle formed.
A. acute scalene B. obtuse scalene C right scalene (D) right isosceles equilateral

Part \mathbf{B} Which of the following can be used in a coordinate proof to show that the estimate chosen above is correct?
A. Use the Distance Formula to find the lengths of J, \mathcal{K}, and K they are all equal, then the triangle is equilateral.
B. Use the Distance Formula to find the lengths of $\pi, \bar{\pi}$, and $K L$. If they are different, then the triangle is scalene.
C. Compare the slopes of \mathbb{R} and $k \pi$. If the product of the slopes is -1 , then the lines are perpendicular. Use the Distance Formula to find the lengths of \bar{K} and $\overline{K L}$. If the lengths are equal, then the triangle is a right isosceles triangle.
D. Compare the slopes of $J K$ and $K \lambda$. If the product of the slopes is -1 , then the lines are perpendicular. Use the Distance Formula to find the lengths of \bar{J}, \mathcal{R}, and $\overline{K L}$. If the lengths are different, then the triangle is a right scalene triangle.

Exit Ticket

Recommended Use
At the end of class, go online to display the Exit Ticket prompt and ask students to respond using a separate piece of paper. Have students hand you their responses as they leave the room.

Alternate Use

At the end of class, go online to display the Exit Ticket prompt and ask students to respond verbally or by using a mini-whiteboard. Have students hold up their whiteboards so you can see all student responses. Tap to reveal the answer when most or all students have completed the Exit Ticket.

Interactive Presentation

Example 6

Students complete the Check online to determine whether they are ready to move on.

Practice and Homework

Suggested Assignments

Use the table below to select appropriate exercises.

DOK	Topic	Exercises
1,2 exercises that mirror the examples	$1-16$	
2	exercises that use a variety of skills from this lesson	$17-24$
3	exercises that emphasize higher-order and critical-thinking skills	$25-30$

ASSESS AND DIFFERENTIATE

(11) Use the data from the Checks to determine whether to provide resources for extension, remediation, or intervention.

IF students score 90% or more on the Checks,
THEN assign:

- Practice, Exercises 1-23 odd, 25-30
- Extension: Rectangle Paradox

IF students score $66 \%-89 \%$ on the Checks,
THEN assign:
01
THEN assign:

- Practice, Exercises 1-29 odd
- Remediation, Review Resources: Proving Triangles Congruent: ASA, AAS
- Personal Tutors
- Extra Examples 1-5
- ALEKS'Proving Triangle Congruence

IF students score 65% or less on the Checks,
THEN assign:

- Practice, Exercises 1-15 odd
- Remediation, Review Resources: Proving Triangles Congruent: ASA, AAS
- Quick Review Math Handbook: Isosceles and Equilateral Triangles
- ALEKS Proving Triangle Congruence

Practice

Example 1
REGULARITY Position and label each triangle on the coordinate plane. 1-4. See margin.

1. isosceles $\triangle A B C$ with base $\overline{A B}$ that is a units long and height that is b units
2. right $\Delta X Y Z$ with hypotenuse $\overline{Y Z}$, leg $\overline{X Y}$ that is b units long, and leg $\overline{X Z}$ that is three times the length of $\overline{X Y}$
3. isosceles right $\triangle R S T$ with hypotenuse $\overline{R S}$ and legs $3 a$ units long
4. right $\triangle J K L$ with legs $\overline{J K}$ and $\overline{K L}$ such that $\overline{J K}$ is a units long and leg $\overline{K L}$ is $4 b$ units long

Example 2

$c(p, q)$

Examples 3 and 4
PROOF For Exercises 9-13, write a coordinate proof for each statement
9. The segments joining the midpoints of the sides of a right
triangle form a right triangle. See Mod. 14 Answer Appendix triangle form a right triangle. See Mod. 14 Answer Appendi.
Given: Point R is the midpoint of $\overline{A B}$. Point P is the midpoint of $B C$.
Prove: $\triangle R P Q$ is a right triangle.

290n 14.7. Tiengles and Coordinate Proof 889
10. A segment from the vertex angle of an isosceles triangle to the midpoint of the base is perpendicular to the base.
Given: Isosceles $\triangle R S T ; U$ is the midpoint of base $R T$
Prove: $\overline{S U} \perp \overline{R T}$
Proof:
U is the midpoint of $\overline{R T}$, so the coordinates of U are $\left(\frac{-a+a}{2}, \frac{0+0}{2}\right)=(0,0)$.

Thus, $S U$ lies on the y-axis, and $\triangle R S T$ was placed so $R T$ lies on the x-axis. The
axes are perpendicular, so $S U \perp R I$.
11. In an isosceles right triangle, the segment from the vertex of the right angle to the midpoint of the hypotenuse is perpendicular to the hypotenuse.
Given: isosceles right $\triangle A B C$ with right angle $\angle A B C$; M the midpoint of $\overline{A C}$.
Prove: $\overline{B M} \perp \overline{A C}$

Proof:
Proof:
The Midpoint Formula shows that the coordinates of M are $\left(\frac{0+2 a}{22}, \frac{2 a+0}{}\right)$ or (a, a).
The slope of $\overline{A C}$ is $\frac{2 a-0}{a-2 a}=-1$. The slope of $\overline{B M}$ is $\frac{a-0}{a-0}=1$. The product of the slopes is -1 , so $\overline{B M} \perp \overline{A C}$.
12. The measure of the segment that joins the vertex of the right angle in a

The measure of the segment that foins che vertex of the right angle in a
of the hypotenuse.
Given: right $\triangle A B C$, P is the midpoint of $\overline{B C}$.
Prove: $A P=\frac{1}{2} B C$
Midpoint P is $\left(\frac{0+2 c}{2}, \frac{2 b+0}{2}\right)$ or (c, b).

$A P=\sqrt{(c-0)^{2}+(b-0)^{2}}$ or $\sqrt{c^{2}+b^{2}}$
$B C=\sqrt{(2 c-0)^{2}+(0-2 b)^{2}}=\sqrt{4 c^{2}+4 b^{2}}$ or $2 \sqrt{c^{2}+b^{2}}$
$\frac{1}{2} B C=\sqrt{c^{2}+b^{2}}$
So, $A P=\frac{1}{2} B C$.
13. If a line segment joins the midpoints of two sides of a triangle, then its

If a line segment joins the midpoints of two sides of a tr
length is equal to one-half the length of the third side.
Given: S is the midpoint of $\overline{A C}$.
T is the midpoint of $\overline{B C}$.
Prove: $S T=\frac{1}{2} A B$
Proof:
The coordinates of S are $\left(\frac{b}{2}, \frac{c}{2}\right)$, and the coordinates of T are $\left(\frac{a+b}{2}, \frac{c}{2}\right)$)
$S T=\sqrt{\left(\frac{a+b}{22}-\frac{b}{)^{2}}+\left(\frac{c}{2} \varepsilon^{c}\right)^{2}\right.}$ or $\frac{a}{2}$
$A B=\sqrt{(a-0)^{2}+(0-0)^{2}}$ or a
$S T=\frac{1}{2} A B$
890 Module 14 . Triangles and Congruence

Example 5

14. NEIGHBORHOODS Kalini Iives 6 miles east and 4 miles north of her high school. After school, she works part time at the mall in a music store. The mall is 2 miles west and 3 miles north of the school. Use coordinate geometry to determine the type of triangle
formed by Kalini's high school, her home, and the mall. See Mod. 14 Answer Appendix.
15. COUNTY FAIR The fair committee wants to print a map to distribute to vendors as they arrive to set up their booths at the fairgrounds. O a coordinate grid, the main gate is located at (3, -1), the grandstand islocated at (1, 2), and he ides and games are by these locations. See Mod. 14 Answer Appendix.
16. USE ESTIMATION A town is preparing for a 5 K run. The race will start at city hall C. The course will take runners along straight streets to the library L, to the science museum S , and back to city hall for the finish.
a. Estimate the type of triangle formed by the course. acute scalene b. Use coordinate geometry to determine the type of triangle formed. See margin.

Mixed Exercises

EASONING For Exercises 17 and 18 , determine whether the triangle
can be a right triangle. Explain. 17-18. See margin.
17. $X(0,0), Y(2 h, 2 h), Z(4 h, 0) \quad$ 18. $X(0,0), Y(1, h), Z(2 h, 0)$
19. SHELVES Martha has a shelf bracket shaped like a right isosceles triangle. She wants to know the length of the hypotenuse relative to the sides. She does not have a ruler but remembers the Distance
Formula. She places the bracket in Quadrant I of a coordinate grid with the right angle at the origin. The length of each leg is a. What are the coordinates of the vertices that form the two acute angles? $(a, 0)$ and $(0, a)$
20. FLAGS A flag is shaped like an isosceles triangle. A designer would like to make a drawing of the flag on a coordinate plane She positions it so the base of the triangle is on the y-axis with $\left(a, \frac{b}{2}\right)$. What are the coordinates of the third vertex? $(0, b)$
21. DESIGN Andrew is using a coordinate plane to design a quilt Two of the triangular patches for the quilt are shown in the figure. Andrew wants to be sure that $\angle A$ and $\angle D$ have the same meas Describe the main steps you can use to prove that $\angle A \cong \angle D$. each side of each triangle. Show that the triangles are congruent by SSS. Conclude that $\angle A \cong \angle D$ using CPCTC.
22. COMmUNITY A landscape architect is using a coordinate plane to design a triangular community garden. The fence that will surround the garden is modeled by $\triangle A B C$. The architect wants to know whether any of the thre agles in the fence will be congruent. Determine the answer for the chitect and give a coordinate proof to justify your response. Y es, $\angle A$ 푸 $~ \angle C$; sample answer: Use the Distance Formula to show that $A B=\sqrt{37}, B C=\sqrt{37}$, and $A C=\sqrt{50}$. Because $A B=B C$, two sides of the triangle are congruent. By the Isosceles Triangle Theorem, the angle ppposite these sides are congruent, so $\angle A \cong \angle C$
23. $\triangle A B C$ is isosceles with $\overline{A B} \equiv \overline{A C}$. D is the midpoint of $\overline{A B}, E$ is the midpoint of $B C$, and F is the midpoint of $\overline{A C}$. What are the coordinates of D, E, and F ? $D(a, b), E(2 a, 0), F(3 a, b)$

24. DRAFTING An engineer is designing a roadway. Three roads intersect to form a triangle. The engineer marks two vertices of the triangle at ($-5,0$) and (5,0) on a coordinate plane.
a. Describe the set of points in the coordinate plane that could not be used as the third vertex of the triangle. the x-axis
b. Describe the set of points in the coordinate plane that could be the vertex of an isosceles triangle. the y-axis except for the origin
c. Describe the set of points in the coordinate plane that would make a right triangle with the other two points if the right angle is located at $(-5,0)$. the points with x-coordinate -5 , except for $(-5,0)$

Higher-Order Thinking Skills
25. CREATE Draw an isosceles right triangle on the coordinate plane so the midpoint of its hypotenuse is the origin. Label the coordinates of the vertex. See margin.
26. WRITE Explain why following each guideline for placing a triangle on the coordinate plane is helpful in proving coordinate proofs. a-c. See margin.
a. Use the origin as a vertex of the triangle.
b. Place at least one side of the triangle on the x - or y-ax
c. Keep the triangle within the first quadrant if possible.

PERSEVERE Find the coordinates of point L so $\triangle J K L$ is the indicated type of triangle. Point J has coordinates $(0,0)$, and point K has coordinates ($2 a, 2 b$) 27-29. Sample answers given. $\begin{array}{ccc}\text { 27. scalene triangle } & (a, 0) & \text { 28. right triangle } \\ (2 a, 0) \text { or }(0,2 b) & \text { 29. isosceles triangle } \\ (4 a, 0) \text { or }(0,4 b)\end{array}$
30. ANAL YZE The midpoints of the sides of a triangle are located at $(a, 0),(20, b)$ and ($($, , b). If one vertex is located at the origin, what are the coordinates of the other (o, b). If one vertex is located at the origin, what

892 Module 14 - Triangles and Congruence

Answers

1.

2.

3.

4.

16b. $L S=2 \sqrt{29}, C S=\sqrt{52}, L C=4 \sqrt{5} ;$ Because none of these lengths are the same, the triangle is scalene. Slope $\overline{L C}=2$, slope $\overline{C S}=-\frac{2}{3}$ because these slopes are not opposite reciprocals, the angle is not right. Therefore, the triangle is not a right triangle. Using a protractor, I can confirm that it is acute.
17. Slope of $\overline{X Y}=1$, slope of $\overline{Y Z}=-1$, slope of $\overline{Z X}=0$; because $1(-1)=-1$, $\overline{X Y} \perp \overline{Y Z}$. Therefore, $\triangle X Y Z$ is a right triangle.
18. Slope of $\overline{X Y}=h$, slope of $\overline{Y Z}=\frac{h}{1-2 h}$, slope of $\overline{Z X}=0$; when $h=\frac{1}{2}$, $\overline{Y Z}$ is a vertical segment and $\overline{Z X} \perp \overline{Y Z}$. When $h=1, h \cdot \frac{h}{1-2 h}=-1$ and $\overline{X Y} \perp \overline{Y Z}$. So, $\triangle X Y Z$ is only a right triangle if $h=\frac{1}{2}$ or 1 .
25. Sample answer:

26a. Using the origin as a vertex of the triangle makes calculations easier because the coordinates are $(0,0)$.

26b. Placing at least one side of the triangle on the x - or y-axis makes it easier to calculate the length of the side because one of the coordinates will be 0 .
$26 c$. Keeping a triangle within the first quadrant makes all of the coordinates positive, and it makes the calculations easier.
30. (2a, 0), (2a, 2b); Using the Midpoint Formula,
$(a, 0)=\left(\frac{0+x_{1}, 0+y_{1}}{2}\right)$, so $x_{1}=2 a$ and $y_{1}=0$.

Rate Yourself 伊禺自

Have students return to the Module Opener to rate their understanding of the concepts presented in this module．They should see that their knowledge and skills have increased．After completing the chart，have them respond to the prompts in their Student Edition and share their responses with a partner．

Answering the Essential Question

Before answering the Essential Question，have students review their answers to the Essential Question Follow－Up questions found throughout the module．
－Why is it useful to know when two triangles are congruent？
－Why is it useful to be able to prove right triangles congruent？
－Why is it important to know how to prove theorems using the coordinate plane？

Then have them write their answer to the Essential Question．

DINAH ZIKE FOLBABLES

［ELIU A completed Foldable for this module should include the key concepts related to triangle congruence．

LearnSmart Use LearnSmart as part of your test preparation plan to measure student topic retention．You can create a student assignment in LearnSmart for additional practice on these topics for Congruence， Proof，and Constructions and Connecting Algebra and Geometry Through Coordinates．
－Understand congruence is terms of rigid motions
－Prove Geometric Theorems
－Use coordinates to prove simple geometric theorems algebraically

Test Practice

1. CPEN RESPONSE find the measure of $\angle A C C_{5}$. in degrees. (Lesson 14-1)

106
2. MUL TIPLE CHOICE Find the value of \% given the triangle below. (Lesson 14-1)

3. MUL TT-SELECT in $\triangle P Q R, \angle Q$ is a right angle. Select all the statements about $\angle P$ and $\angle R$ that must be true. (Lesson 14-1)
A) $\angle P$ and \angle Pare complementary
B. \angle Pand \angle Fare supplementary.
C. \angle Pand $\angle N$ are congruent.
D. $\angle P$ and $\angle R$ are acute.
E. P a $\angle P$ is obtuse.
4. OPEN RESPONSE $\triangle P R Q$ has side lengths $P R=6, Q R=8$, and $P Q=5$.
If $\triangle P R Q=\triangle C B A$, then put the side lengths of $\triangle C B A$ in order from shortest to longest. Lesson 14-z]
$A C, B C, A B$

894 Module 14 Review - Triangles and Congruence

NFSELECT Given \triangle and $\triangle E F$ where $\overline{D E} \cong J, F D=\overline{K J}, \overline{L K} \cong E F \angle D=\angle J$, $\angle E=\angle L$, and $\angle F=\angle K$, which of the following conclusions can be made? Select all that apply. (Lesson 14-2)
$\triangle D E F$ and $\triangle A K$ are congruent.
且 $\triangle O E F$ and $\triangle A K$ are not congruent.
C A series of rigid motions will map $\triangle D E F$ onto AlK
D. A series of rigid motions will not map \triangle Off onto $\triangle J L K$
$\triangle F O F$ and $\triangle K J L$ are congruent 1. $\triangle F O F$ and $\triangle K J L$ are notcongruent
6. MEL TIPLE CHOICE Which postulate shows $\triangle A B C=\triangle D E F$ (Lesson 14-3)

Review and Assessment Options

The following online review and assessment resources are available for you to assign to your students. These resources include technologyenhanced questions that are auto-scored, as well as essay questions.

Review Resources

Put It All Together: Lessons 14-3 through 14-4
Vocabulary Activity
Module Review

Assessment Resources

Vocabulary Test
ALl Module Test Form B
OL Module Test Form A
[BL. Module Test Form C
Performance Task*
*The module-level performance task is available online as a printable document. A scoring rubric is included.

Test Practice

You can use these pages to help your students review module content and prepare for online assessments. Exercises 1-16 mirror the types of questions that your students will see on online assessments.

Question Type	Description	Exercise(s)				
Multiple Choice	Students select one correct answer. 2, 6, 7, 11, 14,					
$16-19$			$	$	$3,5,9$	
:---	:---					
Multi-Select	Multiple answers may be correct. Students must select all correct answers.					
Table Item	Students complete a table by entering in the correct values.					
Open Response	Students construct their own response.					

To ensure that students understand the standards, check students' success on individual exercises.

Standard(s)	Lesson(s)	Exercise(s)
G.C0. 7	$14-2$	5
G.C0.10	$14-1,14-6$	$1-3,13-15$
G.SRT.5	$14-2$ through 14-5	$4,6-12$
G.GPE.4	$14-7$	$16-19$

7. MUL TIPLE CHOICE n \triangle.NLI and $\triangle P Q R$ $\overline{J K}=\bar{N}$ and $\overline{J L}=\bar{\beta}$. Which additional statement would prove that $\triangle, P C=\triangle P Q R$? Lesson 14-3)
© $\angle \leqslant \angle P$
B. $\angle L \cong \angle R$
C. $\overline{J N} \cong \overline{P R}$
D. $\bar{\pi}=\bar{\pi}$
8. CPEN RESPONSE Stephanie and Fernando are building triangular prism birdhouses that have the same dimensions.

- Stephanie says that they should measure the length of two sides of the triangular base and use a protractor to measure the ncluded angle to be sure the bases are congruent.
Fernando says that they can be sure the triangular bases are congruent if they "easure the lengths of all three sides.
Which student is correct? (Lesson 14-3)
Both are correct.

9. MUL T-SELECT In $\triangle A B C$ and $\triangle M N P, \angle A \cong \angle M$
and $B C \cong N P$ What additional plece(s) of
could be used to prove $\triangle A B C$ $\triangle M N$ Pb AAS? Lesson 14-4)

(4) $\angle a=\angle N$

- $\angle C \cong \angle P$
C. $\bar{\pi} \pi \overline{M N}$
D. $\overline{A C} \cong M P$
E. $\angle A=\angle N$

10 OPEN RESPONSE A technician is assembling parts for a radio antenna. He attaches two metal bars to 3 -foot-long crosspleces so a triangle is formed, with each ©ar meeting the crosspiece at a 40° angle. Which postulate proves that all triangles formed this way are congruent? (Lesson 14-4) ASA Postulate
11. MUL TIPLE CHOICE In \triangle PST. $m \angle R=85$. $m \angle S=33^{\circ}$ and $R T=17$
Which set of measurements would make $\triangle R S T \cong \triangle M N{ }^{\prime}$ by the AAS Theorem?
(Lesson 14-4)
A $m \angle M=85^{\circ}, m \angle N=33^{\circ}$, and $M P=17$ e. $m \angle M=85^{\circ} ; \pi \angle N=33^{\circ}$, and $M N=17$ C. $T L M=33^{\circ} m A N=85^{\circ}$ and $M P=17$ D. $\pi \angle M=33^{\circ} . m \angle N=85^{\prime}$ and $M N=17$

12 ML T1-SELECT Select all the pairs of triangles that must be congruent to each other

(Lesson 14-5)

1. PEN RESPONSE the vertex angle of an isosceles triangle measures 86 , what is the angle measure in degrees of one of the base angles? (Lesson 14-6)
47
2. MUL TIPLE CHOICE Find the value of x Lesson 14-6)

3. OPEN RESPONSE What is the length of segment $Q R^{7}$ (Lesson 14-6)

33 units
16. MUL TIPLE CHOICE An air traffic control tower is located at 0,0) on a coordinate plane. Aircraft A is located at A 39,52) and aircraft B is located at $B(25,60)$.
What statement is true about this situation? Lesson 14-7
A. Aircraft A is closer to the control tower.
B. Aircraft B is closer to the control tower. Both aircraft are the same distance from the control tower.
$\triangle O A B$ is an equilateral triangle.
17. mul TIPLE CHOICE A triangle drawn on a coordinate plane has vertices $\mathrm{A} 0,0$). G($0,2 b$, and $c(2,0)$. Which expression lepresents the slope of $\overline{B C}$? (Lesson 14-7) (A) a. $\frac{1}{7}$ C. $\frac{6}{b}$ D. $\frac{\varepsilon}{5}$
18. MUL TIPLE CHOICE The given triangle will be ved in a coordinate proof.

What are the coordinates of the midpoint of $O R^{\prime}$ Lesson 14-7)
A. $(b-d, 0)$
B. $(b+d 0)$
C. $(\mathrm{B}-\mathrm{d}, \mathrm{c})$
$3(b+d c)$
19. MUL TIPLE CHOICE Use coordinate geometry o determine the type of triangle formed nelew. LLesson 14-7)

A. equilateral
isosceles
C. right
a. scalen e
3. Proof:

Statements (Reasons)

1. $\overline{A B} \cong \overline{C B}, D$ is the midpoint $0 \overline{A C}$. (Given)
2. $\overline{A D} \cong \overline{D C}$ (Definition of midpoint)
3. $\overline{B D} \cong \overline{B D}$ (Reflexive Property of Congruence)
4. $\triangle A B D \cong \triangle C B D(S S S)$
5.

5. Proof: We know that $\overline{Q R} \cong \overline{S R}$ and $\overline{S T} \cong \overline{Q T} . \overline{R T} \cong \bar{R} T$ by the Reflexive Property. Because $\overline{Q R} \cong \overline{S R}, \overline{S T} \cong \overline{Q T}$, and $\overline{R T} \cong \overline{R T}, \triangle Q R T \cong \triangle S R T$ by SSS.
6. Proof:

Statements (Reasons)

1. $\overline{A B} \cong \overline{E D}, \overline{C A} \cong \overline{C E}, \overline{A C}$ bisects $\overline{B D}$ (Given)
2. C is the midpoint of $\overline{B D}$. (Definition of segment bisector)
3. $\overline{B C} \cong \overline{C D}$ (Midpoint Thm.)
4. $\triangle A B C \cong \triangle E D C$ (SSS)
5. Proof: Because V is the midpoint of $\overline{Y Z}$ and the midpoint of $\overline{W X}$, by the Midpoint Theorem, $\overline{Y V}=\overline{V Z}$ and $\overline{W V}=\overline{X V}$. Because $\angle Y V W$ and $\angle Z V X$ are vertical angles, by the Vertical Angle Theorem, the angles are congruent. Therefore, by SAS, $\triangle X V Z \cong \triangle W V Y$.
6.

16. Because R is the midpoint of \bar{Q}_{S} and $\overline{P T}, \overline{P R} \cong \overline{R T}$ and $\overline{R Q} \cong \overline{R S}$ by definition of a midpoint. $\angle P R Q \cong \angle T R S$ by the Vertical Angles Theorem. So, $\triangle P R Q \cong \triangle T R S$ by SAS .

26b. Sample answer: $\overline{B D} \cong \overline{B D}$ by the Reflexive Property, and $\angle B D A \cong \angle B D C$ because they are both right angles. If I can prove that $\overline{A D} \cong \overline{C D}$, then I can prove that these two triangles are congruent.

Lesson $14-4$

1. Proof:

Statements (Reasons)

1. $\overline{A B} \| \overline{C D}$ (Given)
2. $\angle C B D \cong \angle A D B$ (Given)
3. $\angle A B D \cong \angle B D C$ (Alternate Interior Angles Theorem)
4. $\overline{B D} \cong \overline{B D}$ (Reflexive Property of Congruence)
5. $\triangle A B D \cong \triangle C D B$ (ASA)
6. Proof:

Statements (Reasons)

1. $\angle S \cong \angle V$
T is the midpoint of $\overline{S V}$. (Given)
2. $\overline{S T} \cong \overline{T V}$ (Definition of Midpoint)
3. $\angle R T S \cong \angle V T U$ (Vertical Angle Theorem)
4. $\triangle R T S \cong \triangle U T V ~(A S A)$
5. Proof:

6. Proof: We know that $\angle E \cong \angle B C A$ and $\overline{C D}$ bisects $\overline{A E}$. Because $\overline{C D}$ bisects $\overline{A E}$, by the definition of bisector, $\overline{A C}=\overline{C E}$. We are also given that $\overline{A B} \| \overline{C D}$. From this we can determine that $\angle A$ is congruent to $\angle D C E$ by the Corresponding Angles Theorem. From this we know that $\triangle A B C \cong \triangle C D E$ by the ASA Congruence Postulate.
7. Proof: We are given that $\overline{C E}$ bisects $\angle B E D$ and that $\angle B C E$ and $\angle E C D$ are right angles. Because all right angles are congruent, $\angle B C E \cong \angle E C D$. By the definition of angle bisector, $\angle B E C \cong \angle D E C$. The Reflexive Property tells us that $\overline{E C} \cong \overline{E C}$. By Angle-Side-Angle Congruence Postulate,
$\triangle E C B \cong \triangle E C D$.
8. Proof: It is given that $\angle W \cong \angle Y, \overline{W Z} \cong \overline{Y Z}$, and $\overline{X Z}$ bisects $\angle W Z Y$. By the definition of angle bisector, $\angle W Z X \cong \angle Y Z X$. The Angle-Side-Angle Congruence Postulate tells us that $\triangle X W Z \cong \triangle X Y Z$.
9. Proof:

Lesson 14-6

1. Proof:

Statements (Reasons)

1. $\angle 1 \cong \angle 2$ (Given)
2. $\angle 2 \cong \angle 3$ (Vertical Angles Thm.)
3. $\angle 1 \cong \angle 3$ (Transitive Prop. of \cong)
4. $\overline{A B} \cong \overline{C B}$ (Conv. of Isos. Triangle Thm.)
5. Proof:

Statements (Reasons)

1. $C \bar{D} \cong \overline{C G}$ (Given)
2. $\angle D \cong \angle G$ (Isosceles Triangle Theorem)
3. $\overline{D E} \cong \overline{G F}$ (Given)
4. $\triangle C D E \cong \triangle C G F(S A S)$
5. $\overline{C E} \cong \overline{C F}(C P C T C)$
6. Proof:

Statements (Reasons)

1. $\overline{D E} \| \overline{B C}$ (Given)
2. $\angle 1 \cong \angle 4$, $\angle 2 \cong \angle 3$ (Corresponding angles are \cong.)
3. $\angle 1 \cong \angle 2$ (Given)
4. $\angle 1 \cong \angle 3$ (Transitive Property of \cong)
5. $\angle 3 \cong \angle 4$ (Transitive Property of \cong)
6. $\overline{A B} \cong \overline{A C}$ (Converse of Isosceles Triangle Thm.)
7. Proof:

Statements (Reasons)

1. $\overline{B D} \perp \overline{A C}, \triangle A B C$ is an isosceles triangle with base $A C$. (Given)
2. $\angle B D A$ and $\angle B D C$ are right angles. (Definition of perpendicular lines)
3. $\angle B D A \cong \angle B D C$ (All right angles are congruent.)
4. $\overline{A B} \cong \overline{B C}$ (Definition of isosceles triangle)
5. $\angle B A D \cong \angle B C D$ (Isosceles Triangle Theorem)
6. $\triangle B A D \cong \triangle B C D$ (AAS)
7. $\angle A B D \cong \angle C B D$ (CPCTC)
8. $\overline{B D}$ bisects the angle formed by the sloped sides of the roof, $\angle A B C$. (Definition of angle bisector)

5a. The coordinates of $\triangle A B C$ are $A(0,5), B(3,1)$, and $C(-3,1)$.
$A C=\sqrt{[0-(-3)]^{2}+(5-1)^{2}}$ or 5 units
$A B=\sqrt{(0-3)^{2}+(5-1)^{2}}$ or 5 units
$B C=6$ units
So, $\triangle A B C$ is an isosceles triangle with $\overline{A B} \cong \overline{A C}$.
5b. Because $\overline{A B} \cong \overline{A C}$, we know that $\angle C \cong \angle B$ by the Isosceles Triangle Theorem.

$$
\begin{array}{rlrl}
m \angle A+m \angle B+m \angle C & =180^{\circ} & & \text { Triangle Angle-Sum Theorem } \\
m \angle A+2 m \angle C & =180^{\circ} & \text { Definition of congruent } \\
m \angle A+2(55) & =180^{\circ} & \text { Substitute. } \\
m \angle A+110 & =180^{\circ} & \text { Multiply. } \\
m \angle A & =70^{\circ} & & \text { Solve. }
\end{array}
$$

16. 115°; Sample answer: Because $\triangle P Q R$ is isosceles, base angles are congruent, so $m \angle P=m \angle Q R P$. It is given that $m \angle Q=50^{\circ}$, so by the Triangle Angle-Sum Theorem, $m \angle P+m \angle Q R P+50^{\circ}=180^{\circ}$. By substitution $2 m \angle Q R P+50^{\circ}=180^{\circ} .2 m \angle Q R P=130^{\circ}$, so $m \angle Q R P=65^{\circ}$. Because $\angle Q R P$ and $\angle Q R S$ are supplementary, $m \angle Q R S=180^{\circ}-65^{\circ}=115^{\circ}$.

9．Sample answer：The midpoint P of $\overline{B C}$ is $\left(\frac{0+2 a}{2}, \frac{2 b+0}{2}\right)=(a, b)$ ． The midpoint Q of $\overline{A C}$ is $\left(\frac{0+2 a}{2}, \frac{0+0}{2}\right)=(a, 0)$ ．The midpoint R of $\overline{A B}$ is $\left(\frac{0+0}{2}, \frac{0+2 b}{2}\right)=(0, b)$ ．The slope of $\overline{R P}$ is $\frac{b-b}{a-0}=\frac{0}{a}=0$ ， so the segment is horizontal．The slope of $\overline{P Q}$ is $\frac{b-0}{a-a}=\frac{b}{0}$ ，which is undefined，so the segment is vertical．$\angle R P Q$ is a right angle because any horizontal line is perpendicular to any vertical line．$\triangle P R Q$ has a right angle，so $\triangle P R Q$ is a right triangle．
14．Slope of $\overline{S K}=\frac{4-0}{6-0} \mathrm{gr}^{2}$
Slope of $\overline{S M}=\frac{3-0}{-2-0}$ or $-\frac{3}{2}$
Because the slope of $\overline{S M}$ is the negative reciprocal of the slope of $\overline{S K}, \overline{S M} \perp \overline{S K}$ ．Therefore，$\triangle S K M$ is right triangle．
Therefore，the triangle formed by Kalini＇s high school，her home，and the mall is a right triangle．
15．The slope between the grandstand and the rides and games is $\frac{2}{3}$ ．The slope between the grandstand and the main gate is $-\frac{3}{2}$ ．Because $\frac{2}{3} \cdot-\frac{3}{2}=-1$ ， the triangle formed by these three locations is a right triangle．

Selected Answers

SA2-SA3 Selected Answers

ล็ โั

SA14 Selected Answers

SA14－SA15 Selected Answers

7. $\{h \mid 2 \leq h<3\}$
9. $\{y \mid y<-3\}$

43. The graph has been reflected over the
x-axis and reflected over the y-axis. It has been
stretched vertically by a factor of 3 and shifted
up 1 unit.

47. Jennifer is correct. Sample answer: As it is causes the graph to rise more rapidly than the parent graph, so Jennifer is correct. However,
$g(x)=2\left(2^{2}\right)$ is equivalent to $g(x)=2^{x+1}$. This graph is the parent graph of $f(x)=2^{x}$ shifted to
the left one unit, but it still rises at the same rate. 49. The first pair, $g(x)$ is shifted right 3 units
instead of left 3 units.

1. $y=4 \cdot 2^{x} \quad$ 3. $y=10 \cdot 3^{x} \quad 5 . y=3 \cdot 4^{x}$
2. $y=3 \cdot 2^{x} \quad$ 9. $y=\left(\frac{1}{4}\right)^{x} \quad 11 . f(x)=50 \cdot 2^{x}$.
where x is the number of 30 -minute time $\begin{array}{ll}\text { periods } & \text { 13. } f(x)=43 \cdot(1.23)^{\text {, }} \text {, where } x \text { is the }\end{array}$ 15a. $P=8,192,426$ (1.009) 15 b . about $9,370,872$ 19. $\$ 2200 \quad 21.360$ million 27. Sample answer: The equation can be amount of original investment, a, and the rate
of increase or decrease. Because $\sigma=2400$, he invested $\$ 2400$. Because $1+r=0.95$ and is less than 1 , his investment is decreasing in
value. A graphing calculator can be used to find that the investment will be worth $\$ 1200$ in
about 13.5 years. 29a. $P(t)=128(1.25)^{*}$

15a. 1038 mill libars

15c. It decrease
19. Sample answer. The number of teams competing in a basketball
be repesented by $y=2^{x}$, where the number rounds is x. The y-intercept of the graph is 1 . The graph increases rapidly for $x>0$. With an fournament will play all of the other teams. If the scenario were modeled with a linear
function, each team that joined would play a
fixed number of teams

Lesson 8-2

$$
\begin{aligned}
& \begin{array}{lll}
\text { tanslated } 1 \text { unit right } & 7 \text {. reflected across } \\
& & \text { and }
\end{array} \\
& \begin{array}{ll}
\\
\text { vertically by a factor of } 20 & 21 \text {. translated up }
\end{array} \\
& \begin{array}{ll}
\text { units } & 23 \text {. reflected across the } x \text {-axis; }
\end{array}
\end{aligned}
$$

> 33. $g(x)=\frac{1}{2}\left(4^{4}\right) \quad 35 \cdot g(x)=2^{3 x}$
> $\begin{array}{ll}\text { 37. } g(x)=5^{*}-2 \quad 39 . g(x)=5^{x-4} \\ \text { 41a. translated up } 500 \text { units } \quad 4 \mathrm{~b} . \$ 500\end{array}$

39. Sample answer: $\sigma_{n}=39,416(1.03)^{n-1} ; \approx$ 69,116.19; This means that after 20 years of employment the average annual salary will be about \$69,116.19. 41. $-3,-12,-48$ 43a. The first method provides a starting salary of $\$ 100$ and an $\$ 8$ per month raise. The second method provides a starting salary of $\$ 0.01$ and doubles it each month. 43b. The first situation is linear because there is a common difference of $\$ 8$. The equation is $y=8 x+92$. The second situation is exponential because it is a geometric sequence with a common ratio of 2 . The equation is $y=0.01(2)^{x-1}$. 43c. Sample answer. As long as I do not need money immediately, I would use the second method. In the last month, I would make $y=0.01(2)^{23}=\$ 83,886.08$ due to the fact that the payment is growing exponentially. In the last month, in the first method I would make $y=8(24)+92=\$ 284$. 45. If the values fit a geometric sequence, then $r=\sqrt{\frac{540}{180}}=\sqrt{3}$. This would mean that the interior angles of a square would have a sum of $180 \sqrt{3} \approx 312^{\circ}$. Since the sum of the angles in a square is 360°, this is not a geometric sequence. 47. Neither; Haro calculated the exponent incorrectly. Matthew did not calculate $(-2)^{8}$ correctly. 49. Sample answer: When graphed, the terms of a geometric sequence lie on a curve that can be represented by an exponential function. They are different in that the domain of a geometric sequence is the set of natural numbers, while the domain of an exponential function is all real numbers. Thus, geometric sequences are discrete, while exponential functions are continuous. 51. Sample answer. In the geometric sequence $6,3,1.5, \ldots$, the value of r is 0.5 and the absolute value of a_{n+1} will be closer to zero than the value of a_{n}.

29. Sample answer. I can assume that the data
is tightly clustered around 37 because all three measures of center are close. 31.75° percentile 33. Because the mean is an average of all the numbers in the data set, it is most affected by
outliers. An outlier on the high end will cause outliers. An outlier on the high end will cause
the mean to increase. The median is the middle value in the dataset, adding one high number should not have much effect on the median
unless the dataset has values, which are widely spread. The mode is the most trequent number so the outlier will have no effect on the mode
unless the outlier is the same as the mode. unless the outlier is the same as the mode.
35. The mean, median, and mode will all be multiplied by the number. 37 . Julio should
have chosen the mean because all the growth have chosen the mean because all the growth
values are close together. 39 . Sample answer. To find a percentile rank, order the data set in decreasing order. Count the number of items
 by 100 to arrive at the percentile rank.

Module 9
Quick Check

1. mean: 15.625 , median: 15.5 , mode: none
2. mean: 3.3 , median: 2.5 , mode: 2 5. mean: 5 students, median: 4 stud, median
students 7 . mean: 54.75 mph ; mela 3 students 7 . mean: 54.75 mph median:
54 mph ; mode: 53 mph
3. mean: about 2.8 ; median: 2.75 ; mode: $2 \quad 11.25^{n}$ percentile
4. Sample answer. The mean could be slightly higher because on a few of Saturday nights
throughout the year, there were a very large number of people at the movies, which caused
the mean to increase but did not affect the median. 15. mean: 252 ; median: 245; mode: none 17. 23 19. mean: 51.5 , median:
51 , mode: none $\quad 21.20$ points 23.90^{m} percentile 25 a. mean $=109,633$; median $=$
66,556 , no mode 25 b. Sample answer. The novels lower than the 50 th percentile would be
those consisting of words in the thiry-thousands and in the upper fity-thousands. My prediction 47th percentile, which is just under the 50th percentile. $\mathbf{2 5 c}$. The median will change from
66,556 to 69,920 , a difference of 3364 words. The mean will change from 109,633 to 111,065 , difference of 1432 words. 27. Canada: 20th percentile; France: 50th percentile; Japan: 40th
percentile; Russia: 60th percentile; Brazil: 10th
percentile; Great Britain: 70 th percentile

ected Answers
Lesson 10-7
 the endpoints. Divide each coordinate of the endpoint that is not located at the origin by 2 .
For example, if the segment has coordinates $(0,0)$ and $(-10,6)$, the midpoint is located at

 61. Sample answer.
5. Sample answer. Substitute 10 for $d,(1,3)$
 $100=(9-1)^{2}+(y-3)^{2}$

$$
\begin{aligned}
& =64+(y-3)^{2} \\
36 & =(y-3)^{2} \\
6 & =y-3 \text { or }-6=y-3
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
6=y-3 \text { or }-6=y-3 \\
9=y \text { or }-3=y
\end{array} \\
& \text { So, the } y \text {-coordinate of point } B \text { is } 9 \text { or }-3 \text {. }
\end{aligned}
$$

| 1. 6 | 3.9 | 5. 8.4 | 7. -1 | 9. -5.5 | $11 .-4$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13. -1 | 15. -2 | 17. Y | 19. -4 | $21 .-3$ | |

 27. $2 \frac{2}{5}$ in. 29. Sample answer. Draw $A B$. Next,
draw a construction line and place point C on
 a segment bisector two times to create a $\frac{1}{4} A B$
length. Label the endpoint D. $\quad 31$. Sometimes;

 positive and the coordinate of Y is greater than
the coordinate of X, then the coordinate of W
will be greater than the coordinate of X.

Lesson 10-6

1. $(-3.6,-2.2) \quad$ 3. $\left(1,1 \frac{2}{3}\right) \quad$ 5. $\left(\frac{14}{3}, 1\right)$
 $\begin{array}{ll}\text { 13. }(-3,-2) & \text { 19. } \frac{3}{4} \\ \text { 17a. Julianne substituted }\end{array}$ the wrong values for $\left(x_{1}, y\right)$ and $\left(x_{2}, y\right)$.
21b. (1.6, 4.2) \quad 23. Sample answer: Because

 Therefore, the fractional distance that P is from Therefore, the fractional distance that P is from
A to D is $\frac{2}{2+1}$ or $\frac{2}{3}$. The coordinates of point P
are $(5,10)$. are $(5,10)$.

2. Sample answer: Hiroshi is correct. After you
draw the line from the first point tot the other 47. Sample answer: :iroshi is correct. Aftry
draw the line from the first point to the other
three, one of the lines from the second point is three, one of the lines from the second point is
already drawn. 49. Sample answer: A table is a finite plane. It is not possible to have a
real-life object that is an infinite plane because reall-life objectlife objects have boundaries.

Lesson 10-3

1. $2.1 \mathrm{~mm} \quad 3.1 .1 \mathrm{~cm} \quad 5.2 .0 \mathrm{~m} \quad 7.2 \frac{1}{4} \mathrm{in}$.
2. $5.3 \mathrm{~mm} \quad$ 11. $b=12.5 ; Y Z=100 \quad 13 . c=1.7$; $\begin{array}{lll}9.5 .3 \mathrm{~mm} & 11 . b=12.5 ; Y Z=100 & 13 . c=1 ; \\ y Z=3.4 & \text { 15. } w=4 ; Y Z=24 \quad \text { 17. } n=4 ;\end{array}$
$\begin{array}{ll}Y Z=1 & \text { 19. } k=6 ; Y Z=46 \quad 21 . x=6 ; \\ Y Z=18 & 23 . x=10 ; Y Z=60 \quad 25.13 \text { in. and }\end{array}$ $65 \mathrm{in}$. . $27 \mathrm{a} .6 \mathrm{mi} \quad 27 \mathrm{~b}$. Sample answer: I
assumed the three locations were in a straight $\begin{array}{llll}\text { assumed } \\ \text { line. } & 29.4 .4 \mathrm{~mm} & \mathbf{3 1 . 1 0 . 8} \mathrm{in} . & \mathbf{3 3 .} 66 \text { units } \\ 35.3 & 37.4\end{array}$ 39. Sample answer. $A P+P M=A M$
3. $5184 \mathrm{ft} \quad 43 . x=3 ; 13 \mathrm{mi} \quad 45.40 \mathrm{ft}$ 47. $J K=12, K L=16 \quad 49 . x=3 ; y=4$
4. Sample answer. $2.8+B C=5.3 ; B C=2.5$ in. 2.8in.

 $\stackrel{F}{F}, \stackrel{F H}{29} \quad$ 31a. The lines intersect at the vanishing points. 31b. Sample answer. The walls of
building and the ground form planes. 33. Sample answer日8 (Cols

5. Sample answer: line $q \quad$ 37. $\overleftrightarrow{C D}$ or $\overleftrightarrow{D C}$
6. Sample answer: 39. Sample answer. $T \longrightarrow$ $\xrightarrow{\text { ? }}$

SA48 Selected Answers

Module 11 Review 43. Sample answer. The 0 in each dimension,
1.40 cm and 1.60 cm , is significant. The answer
should be given with 3 significant figures as
2.24 square centimeters. 45. Yest sample
answer: The zeros before and after the
decimal are not significant because a
nonzero number did not come before
them. Therefore, both numbers have two
significant figures. 47. Sometimes; sample
answer. A zero between two nonzero
significant figures is always significant, a
leading zero is never significant, and a zero at
the end of a number is only significant when a
decimal point is given in the number.

51. Sometimes; sample answer. $\overleftrightarrow{A B}$
intersects $\overrightarrow{E F}$ depending on where the planes
intersect.
53. $x=171$ or $x=155$; $y=3$ or $y=5$
55. No; sample answer. From the definition 55. No; sample answer. From the definition
of skew lines, the lines must not intersect and
cannot be coplanar. Different planes cannot intersecting. Therefore, planes cannot be skew. Lesson 12-8

 Ci 8
0
0
0
\vdots
0
0
0
1 5. perpendicular
 को
 - 梠 4 7. perpendicular 9. par

SA60 Selected Answers

 11. a 90° clockwise
rotation about rotation about
the point where
lines u and v
intersect
 13b. Sample answer. 270° clockwise rotation
about point P 15. Sample answer. A rotation followed by
another rotation is still a rotation. For example, a rotation of 30° clockwise followed by a rotation of 20° counterclockwise is the same as a rotation
of 10° clockwise. 17. Sample answer: Distance is preserved because the lengths of segments remain
the same measure. Angle measures are preserved because angle measures remain the same measure. Parallelism is preserved
because parallel lines remain parallel. because parallel lines remain parallel.
Collinearity is preserved because points
remain on the same lines remain on the same lines.
19. Yes; sample answer. A rotation is a 19. Yes; sample answer. A rotation is a
transformation that maintains congruence
of the original figure and its image. So, the preimage can be mapped onto the image, and corresponding segments will be congruent. points are maintained in rotations.

SA66-SA67 Selected Answers

Glossary

Glossary

cone A solid figure with a circular base connected by a curved surface to a single vertex.	cono Una figura sólida con una base circular conectada por una superficie curvada a un solo vértice.	constarterm	m A term that does not contain a variable.	término constante Un término que no contiene una variable.	
confidence interval An estimate of the population parameter stated as a range with a specific degree of certainty.	intervalo de confianza Una estimación del parámetro de población se indica como un rango con un grado especfico de certeza.	constraint A	A condition thata solution must satisfy.	restricción Una condición que una solución debe satisfacer.	
conguent Having the same size and shape.	congruente Tener el mismo tamañoy forma.	constructions use of measur	Methods of creating figures without the uring tools.	construcciones Métodos de creación de figuras sin el uso de herramientas de medición.	
congruent angles Two angles that have the same measure.	ángulo congruentes Dos ángulos que tienen la misma medida.	continuous fu with a line or	function A function that can be graphed an unbroken curve.	función continua Una función que se puede representar gráficamente con una linea o una curva ininterrumpida.	
congruentarcs Arcs in the same or congruent circles that have the same measure.	arcos congruentes Arcos en los mismos círculos o congruentes que tienen la misma medida.	continuous ran random event	random variable The numerical outcome of a t that can take on any value.	variable aleatoria continua El resultado numérico de un evento aleatorio que puede tomar cualquier valor.	
congruent polygons All of the parts of one polygon are congruent to the corresponding parts or matching parts of another polygon.	poligonos congruentes Todas las partes de un poligono son congruentes con las partes correspondientes o partes coincidentes de otro poligono.	contrapositive the hypothesis conditional.	ve A statement formed by negating both sis and the conclusion of the converse of a	antitesis Una afirmación formada negando tanto la hipótesis como la conclusión del inverso del condicional.	
congruent segments Line segments that are the same length.	segmentos congruentes Línea segmentos que son la misma longitud.	convenience available or e	ample Members that are readily easy to reach are selected.	muestra conveniente Se seleccionan los miembros que están fácilmente disponibles o de fácil acceso.	
congruent solids Solid figures that have exactly the same shape, size, and a scale factor of $1: 1$.	sólidos congruentes Figuras sólidas que tienen exactamente la misma forma, tamaño y un factor de escala de 1:1.	converse A hypothesis an	A statement formed by exchanging the and conclusion of a conditional statement.	recíproco Una declaración formada por el intercambio de la hipótesis y la conclusión de la declaración condicional.	
conic sections Cross sections of a right dircular cone.	sectiones cónicas Secciones transversales de un cono circular derecho.	convex polyge measuring les	gon A polygon with all interior angles less than 180°.	polígono convexo Un poligono con todos los ángulos interiores que miden menos de 180°.	
conjecture An educated guess based on known information and specific examples. conjugates Two expressions, each with two terms, in	conjetura Una suposición educada basada en información conocida y ejemplos especificos. conjugados Dos expresiones, cada una con dos	coordinate prod coordinate pla concepts.	proofs Proofs that use figures in the plane and algebra to prove geometric	pruebas de coordenadas Pruebas que utiizan figuras en el plano de coordenadas y álgebra para probar conceptos geométricos.	
which the second terms are opposites.	términos, en la que los segundos términos son opuestos.	coplanar Lyi	ying in the same plane.	coplanar Acostado en el mismo plano.	
conjunction A compound statement using the word and.	conjunción Una declaración compuesta usando la palabray.	corollary A direct result	theorem with a proof that follows as a of another theorem.	corolario Un teorema con una prueba que sigue como un resultado directo de otro teorema.	
consecutive interior angles When two lines are cut by a transversal, interior angles that lie on the same side of the transversal.	ángulos internos consecutivos Cuando dos líneas se cortan por un ángulo transversal, interior que se encuentran en el mismo lado de la transversal.	correlation co well data are	coefficient A measure that shows how modeled by a regression function.	coeficiente de correlación Una medida que muestra cómo los datos son modelados por una función de regresión.	
consistent A system of equations with at least one ordered pair that satisfies both equations.	consistente Una sistema de ecuaciones para el cual existe al menos un par ordenado que satisfice ambas ecuaciones.	corresponding transversal, a transversal and	ng angles When two lines are cut by a angles that lie on the same side of a and on the same side of the two lines.	ángulos correspondientes Cuando dos líneas se cortan transversalmente, los ángulos que se encuentran en el mismo lado de una transversal y en el mismo lado de las dos líneas.	
constant function A linear function of the form $y=b$, The function $f(x)=a$, where a is any number.	función constante Una función Ineal de la forma $y=b$; La función $f(x)=a$, donde a es cualquier número.	corresponding	ing parts Corresponding angles and	partes correspondientes Ángulos correspondientes y	
constant of variation The constant in a variation function.	constante de variación La constante en una función de variacón.	corresponding cosecant Th the length of t	ig sides of two polygons. The ratio of the length of a hypotenuse to the leg opposite the angle.	lados correspondientes. cosecante Relación entre la longitud de la hipotenusa y la longitud de la pierna opuesta al ángulo.	
G8 Glossary				Glossary G9	

linear extrapolation The use of a linear equation to predict values that are outside the range of data.	extrapolación lineal El uso de una ecuación lineal para predecir valores que están fuera del rango de datos.	magnitude of symmetry The smallest angle through which a figure can be rotated so that it maps onto itself.	magnitud de la simetria Elángulo más pequeño a través del cual una figura se puede girar para que se cargue sobre sí mismo.
linear function Afunction in which no independent variable is raised to a power greater than 1 ; A function with a graph that is a line.	función lineal Una función en la que ninguna variable independiente se eleva a una potencia mayor que 1 ; Una función con un gráfico que es una línea.	major arc An arcwith measure greater than 180°.	arco mayor Un arco con una medida superior a 180°.
linear inequality A half-plane with a boundary that is a straight line.	desigualdad ineal Un medio plano con un límite que es una línea recta.	mapping An illustration that shows how each element of the domain is paired with an element in the range.	cartografía Unaìustración que muestra cómo cada elemento del dominio está emparejado con un elemento del rango.
linear interpolation The use of a linear equation to predict values that are inside the range of data.	interpolación lineal Eluso de una ecuación lineal para predecir valores que están dentro del rango de datos.	marginal frequencies In a two-way frequency table, the frequencies in the totals row and column; The totals of each subcategory in a two-way frequency table.	frecuencias marginales En una tabla de frecuencias de dos vías, las frecuencias en los totales de fila y columna; Los totales de cada subcategoría en una tabla de
linear pair A pair of adjacent angles with noncommon sides that are opposite rays.	par lineal Un par de ángulos adyacentes con lados no comunes que son rayos opuestos.		frecuencia bidireccional.
	programación lineal El proceso de encontrar los	maximum The highest point on the graph of a function.	máximo El punto más alto en la grafica de una función.
maximum or minimum values of a function for a region	valores máximos o mínimos de una función para una	maximum error of the estimate The maximum	error máximo de la estimación La diferencia máxima
defined by a system of inequalities.	región definida por un sistema de desigualdades.	difference between the estimate of the population mean and its actual value.	entre la estimación de la media de la población ysu valor real.
linear regression An algorithm used to find a precise	regresión lineal Un algoritmo utilizado para encontrar		
line of fit for a set of data.	una línea precisa de ajuste para un conjunto de datos.	measurement data Data that have units and can be measured.	medicion de datos Datos que tienen unidades y que pueden medirse.
linear transformation One or more operations performed on a set of data that can be written as a	transformación lineal Una o más operaciones realizadas en un conjunto de datos que se pueden	measures of center Measures of what is average.	medidas del centro Medidas de lo que es promedio.
linear function.	escribir comouna funcorn lineat	measures of spread Measures of how spread out the	medidas de propagación Medidas de cómo se
literal equation A formula or equation with several variables.	ecuación literal Un formula o ecuación con varias variables.	data are.	extienden los datos son.
$\operatorname{logarithm} \ln x=b^{\prime}, y$ is called the logarithm, base b, of x.	logaritmo En $x=b^{y}, y$ se denomina logaritmo, base b, de x.	median The beginning of the second quartie that separates the data into upper and lower halves.	mediana El comienzo del segundo cuartil que separa los datos en mitades superior e inferior.
of x.		median of a triangle A ine segment with endpoints	mediana de un triángulo Un segmento de línea con
logarithmic equation An equation that contains one or more logarithms.	ecuación logartmica Una ecuación que contiene uno o más logaritmos.	that are a vertex of the triangle and the midpoint of the side opposite the vertex	extremos que son un vértice del triángulo y el punto medio del lado opuesto al vétice.
logarithmic function A function of the form $f(x)=\log$ base b of x, where $b>0$ and $b \neq 1$.	función logaritmica Una función de la forma $f(x)=$ base $\log b$ de x, donde $b>0 y b \neq 1$.	metric A rule for assigning a number to some characteristic or attribute.	métrico Una regla para asignar un número a alguna caracteristica 0 atribuye.
logically equivalent Statements with the same truth value.	Iógicamente equivalentes Declaraciones con el mismo valor de verdad.	midline The line about which the graph of a function oscilates.	linea media La línea sobre la cual oscila la gráfica de una función periódica.
lower quartile The median of the lower half of a set of data.	cuartil inferior La mediana de la mitad inferior de un conjunto de datos.	midpoint The point on a line segment halfway between the endpoints of the segment.	punto medio El punto en un segmento de línea a medio camino entre los extremos del segmento.
		midsegment of a trapezoid The segment that connects the midpoints of the legs of a trapezoid.	segment medio de un trapecio El segmento que conecta los puntos medios de las patas de un trapecio.
magnitude The length of a vector from the initial point to the terminal point.	magnitud La longitud de un vector desde el punto inicial hasta el punto terminal.	midsegment of a triangle The segment that connects the midpoints of the legs of a triangle.	segment medio de un triángulo El segmento que conecta los puntos medios de las patas de un triángulo.
		minimum The lowest point on the graph of a function.	minimo El punto más bajo en la gráfica de una función.
G22 Glossary			Glossary G23

sinusoidal function A function that can be produced by translating, reflecting, or dilating the sine function.	función sinusoidal Función que puede producise traduciendo, reflejeando o dilatando la función sinusoidal.	standard error of the mean The standard deviation of the distribution of sample means taken from a population.	error estandar de la media La desviación estándar de la distribución de los medibs de muestra se toma de una población.
skew lines Noncoplanar lines that do not intersect. slant height of a pyramid or right cone The length of a segment with one endpoint on the base edge of the figure and the other at the vertex.	líneas alabeadas Líneas no coplanares que no se cruzan. altura inclinada de una pirámide o cono derecho La longitud de un segmento con un punto final en el borde base de la figura y el otro en el vétice.	standard form of a linear equation Any linear equation can be written in this form, $A x+B y=C$, where $A \geq 0, A$ and B are not both 0 , and A, B, and C are integers with a greatest common factor of 1 .	forma estándar de una ecuación lineal Cualquier ecuación lineal se puede escribir de esta forma, $A x+$ $B y=C$, donde $A \geq 0, A$ y B no son ambos 0, y $A, B y C$ son enteros con el mayor factor común de 1 .
slope The rate of change in the y-coordinates (rise) to the corresponding change in the x-coordinates (run) for points on a line.	pendiente La tasa de cambio en las coordenadas y (subida) al cambio correspondiente en las coordenadas x (carrera) para puntos en una línea.	standard form of a polynomial A polynomial that is written with the terms in order from greatest degree to least degree.	forma estándar de un polinomio Un polinomio que se escribe con los términos en orden del grado más grande a menos grado.
slope criteria Outines a method for proving the relationship between lines based on a comparison of the slopes of the lines.	criterios de pendiente Describe un método para probar la relación entre líneas basado en una comparación de las pendientes de las líneas.	standard form of a quadratic equation A quadratic equation can be written in the form $a x^{2}+b x+c=0$, where $\sigma \neq 0$ and a, b, and c are integers.	forma estándar de una ecuación cuadrática Una ecuación cuadrática puede escribirse en la forma $a x^{2}+$ $b \mathrm{x}+c=0$, donde $a \neq 0 \mathrm{y} a, b$, yc son enteros.
solid of revolution A solid figure obtained by rotating a shape around an axis.	sólido de revolución Una figura sólida obtenida girando una forma alrededor de un eje.	standard normal distribution A normal distribution with a mean of 0 and a standard deviation of 1 .	distribución normal estándar Distribución normal con una media de 0 y una desviación estándar de 1 .
solution A value that makes an equation true.	solución Un valor que hace que una ecuación sea verdadera.	standard position An angle positioned so that the vertex is at the origin and the initial side is on the positive x-axis.	posición estándar Un ángulo colocado de manera que el vértice está en el origen y el lado inicial está en el eje x positivo.
solve an equation The process of finding all values of the variable that make the equation a true statement.	resolver una ecuación El proceso en que se hallan todos los valores de la variable que hacen verdadera la ecuación.	statement Any sentence that is either true or false, but not both.	enunciado Cualquier oración que sea verdadera o falsa, pero no ambas.
solving a triangle When you are given measurements to find the unknown angle and side measures of a triangle.	resolver un triángulo Cuando se le dan mediciones para encontrar el ángulo desconocido y las medidas laterales de un triángulo.	statistic A measure that describes a characteristic of a sample.	estadistica Una medida que describe una característica de una muestra.
space A boundless three-dimensional set of all points.	espacio Un conjunto tridimensional ilimitado de todos los puntos.	statistics An area of mathematics that deals with collecting, analyzing, and interpreting data.	estadíticas El proceso de recolección, análisis e interpretación de datos.
sphere A set of al points in space equidistant from a given point called the center of the sphere.	esfera Unconjunto de todos los puntos del espacio equidistantes de un punto dado llamado centro de la esfera.	step function A type of piecewise-linear function with a graph that is a series of horizontal line segments.	función escalonada Un tipo de función lineal por piezas con un gráfico que es una serie de segmentos de línea horizontal.
square A parallelogram with all four sides and all four angles congruent.	cuadrado Un paralelogramo con los cuatro lados y los cuatro ángulos congruentes.	straight angle An angle that measures 180°.	ángulo recto Un ángulo que mide 180°.
square root One of two equal factors of a number.	raíz cuadrada Uno de dos factores iguales de un número.	stratified sample The population is first divided into similar, nonoverlapping groups. Then members are randomly selected from each group.	muestra estratficada La población se divide primero en grupos similares, sin superposición. A continuación, los miembros se seleccionan aleatoriamente de cada grupo.
square root function A radical function that contains the square root of a variable expression. square root inequality An inequality that contains the	función raíz cuadrada Función radical que contiene la raíz cuadrada de una expresión variable. square root inequality Una desigualdad que contiene	substitution A process of solving a system of equations in which one equation is solved for one variable in terms of the other.	sustitución Un proceso de resolución de un sistema de ecuaciones en el que una ecuación se resuelve para una variable en términos de la otra.
square root of a variable expression. standard deviation A measure that shows how data deviate from the mean.	la raíz cuadrada de una expresión variable. desviación tipica Una medida que muestra cómo los datos se desvían de la media.	supplementary angles Two angles with measures that have a sum of 180°.	ángulos suplementarios Dos ángulos con medidas que tienen una suma de 180°.
G36 Glossary			Glossary G37

every Formative Assessment Math Probe every What Will You Learn, second page every Practice, first page
Assess and Differentiate, every Practice and Homework, first page
Assessment, see Review and Assessment Options, Formative Assessment

c

Cheryl Tobey, see Formative Assessment Math Probe

Common Misconception, 3, 16, 26, 28, 35, 38, $45,49,52,65,75,93,95,117,121,135,139,147$, 150, 157, 160, 167, 179, 182, 191, 212, 231, 239, 240, 243, 251, 252, 260, 267, 273, 295, 300, 308, 319, 327, 357, 392, 393, 400, 406, 413, 431, 433, 487, 489, 495, 497, 505, 509, 515, $523,533,535,553,561,564,569,579,585$, 594, 615, 617, 619, 625, 627, 628, 635, 645, 648, 649, 651, 657, 659, 667, 670, 679, 681, 687, 689, 703, 715, 721, 723, 729, 741, 751, 759, $767,775,783,799,803,811,813,819,825$, 826, 840, 847, 865, 871, 875, 876, 877
Conceptual Bridge, see Rigor

Differentiate

Resources Chart, every Lesson Teacher page a
Practice and Homework, every Practice, first page

Activities, 4, 6, 15, 18, 25, 27, 29, 35, 37, 40, 46, 50, 51, 54, 66, 69, 70, 75, 80, 86, 92, $93,96,101,110,119,123,138,152,157,168$, $169,179,180,194,210,213,222,232,233$, 242, 253, 254, 260, 261, 268, 272, 273, 289, 299, 301, 308, 310, 316, 320, 321, $328,342,344,351,359,367,369,391$, 392, 401, 406, 416, 431, 435, 452, 455, $466,474,490,504,515,517,526,528$, 534, 553, 561, 569, 579, 580, 587, 595, 600, 601, 602, 615, 619, 625, 627, 635, 637, 645, 648, 650, 651, 657, 659, 668, 670, 679, 682, 688, 705, 716, 723, 734, $740,751,758,786,799,800,803,808$, 812, 820, 827, 840, 848, 850, 856, 857, $864,871,872,877,878,884,886$
Dinah Zike Foldables ${ }^{\circledR}$, see Foldables ${ }^{\oplus}$

ELL Support

every What Will You Learn, second page Language Development Support, every Lesson Teacher page a see Differentiate, Activities
Essential Question, 1, 63, 133, 207, 285, 339, $385,429,485,551,613,701,797,837$

Essential Question Follow-Up, 6, 13, 17, 45, $54,59,67,69,77,80,88,92,93,103,111$, $120,123,129,135,162,186,196,203,213$, 233, 242, 262, 281, 291-292, 298, 320, 321, 330, 335, 344, 351, 376, 381, 392, 402, 407, 422, 425, 431, 453, 473, 481, $500,504,528,547,561,577,585,594$, 609, 615, 628, 638, 687, 697, 704, 711, 723, $733,751,759,775,793,814,820,826$, 833, 847, 871, 885, 893
Explore, Explore and Develop, Lesson T eacher pages c-h

edges of polyhedron, 657
elimination method
using addition, 405
using multiplication, 413
using subtraction, 407
end behavior, 185
equations, 65
absolute value, 101
equivalent, 75
linear, 160
literal, 117
multi-step, 85
multi-step, 85
solve, 75
solve, 75
systems of, 387
with coefficients represented
by letters, 87
equidistant, 599
equivalent equations, 75 equivalent expressions, 38 Estimation, 58, 588, 694, 699, 786, 870, 887, 888, 891 evaluate, 5
Expand, 30, 234, 436 exponential
decay functions, 433, 436 functions, 431 growth functions, 433 exponents, 5
expressions
expressions
absolute value, 45
algebraic, 13
equivalent, 38
numerical, 3
extrema, 182
extreme values, 518

faces of polyhedra, 657
factors, 2, 3
families of graphs, 239
Find the Error, 12, 44, 48, 58, 61, 90, 108, 128, 218, 228, 266, 294, 306, 334, 350, 366, 374, $380,398,404,418,450,464$, $472,480,494,508,514,540$, 560, 568, 598, 634, 655, 656, 666, 678, 696, 720, 738, 746, $774,782,792,802,810,818$, $832,854,862,870,874,882$
five-number summaries, 509
formulas
Distance Formula on a Number Line, 577
Distance Formula on the
Coordinate Plane, 579
Midpoint Formula on a Number
Line, 599
Midpoint Formula on the
Coordinate Plane, 601
Section Formula on a Number
Line, 587
Line, 58
Section Formula on the
Coordinate Plane, 594
formulas, 117
explicit, 473
recursive, 473
recursive, 473
Slope Formula, 222, 223, 224
Four-Step Problem-Solving Plan, 7
fractional distances, 585
frequencies
conditional relative, 535
joint, 533
marginal, 533
relative, 535
functions, 147
absolute value, 267
constant, 231
continuous, 157
decreasing, 182
discrete, 157
exponential, 431
exponential decay, 433, 436
exponential decay, 433,436
exponential growth, 433
exponential growth, 433
greatest integer, 260
identity, 239
increasing, 182
inverse, 328, 329
linear, 160
negative, 167
negative, 167
nonlinear, 160
notation, 150
notation, 150
piecewise-defined, 259
piecewise-defined, 259
plecewise-line
positive, 167
positive, 167
step, 260

geometric
models, 638
geometric sequences, 465
glide reflections, 811 greatest integer functions, 260

linear equations
point-slope form, 295
slope-intercept form, 229
standard form, 160
writing, 65, 229, 287, 295
linear pairs, 619
lines, 561
auxiliary, 876
equidistant,, 787
parallel, 757
perpendicular , 626-627
of reflection, 645
skew, 757
lines of fit, 308
literal equations, 117
logically equivalent, 712 lower quartiles, 509
magnitudes, 803
mapping, 135
Math History Minutes, 8, 94, 196, 262, 320, 352, 415, 435, 475, 505, 553, 658, 767, 820, 876
maximum, 182
measurement data, 487
measures of center, 487 mean, 487-488 median, 487, 488 mode, 487,488 measures of spread, 509 interquartile range, 509 range, 509
standard deviation, 512 variance, 512
medians, 487,488 metrics, 49
midpoints, 599
minimum, 182
multi-step equations, 85
multiplicative identity, 26 multiplicative inverses, 26
negations, 711
negative correlations, 307 negatively skewed distributions, 515 nets, 670

no correlation, 307

 nonlinear functions, 160 numerical expressions, 3 orthographic drawings, 667 outliers, 518

parallel lines, 300, 757 parameters, 231 parent functions, 239 percentiles, 489 perimeters, 635
perpendicular lines, 300 piecewise-defined functions, 259 piecewise-linear functions, 259 planes, 561
intersecting, 563
parallel, 757
Platonic solids, 658 point-slope form, 767 points, 561
polygons, 635
concave, 636
concave, 636
congruent, 847
convex, 636
polyhedrons, 657
populations, 503
positive correlations, 307
positively skewed
distributions, 515
postulates, 553
Parallel Postulate, 775
powers, 5
precision, 679
preimage, 645
principle of superposition, 847
prisms, 657
product, 3
proofs, 731
coordinate, 883
flow, 732
paragraph, 734
two-column, 731
properties
Addition Property of
Equality, 75
Addition Property of
Inequalities, 342
Additive Identity Property, 25
Additive Inverse Property, 25
Distributive Property, 35
Division Property of
Equality, 78
Division Property of
Inequalities, 344
Multiplication Property of
Equality, 78
Equality, 78
Multiplication Property of
Multiplicative Identity
Multiplicative Identity
Property, 26
Multiplicative In
Multiplicative Property of
Multiplicativ
Zero, 26
Reflexive Property, 23
Reflexive Property of T riangle
Congruence, 849
Congruence, 849
Symmetric Property of Triangle
Congruence, 849
Subtraction Property of
Equality, 75
Subtraction Property of
Inequalities, 342
Symmetric Property, 23
T ransitive Property, 23
ransitive Property of T riangle Congruence, 849

proportions, 109

pyramids, 657

-

quartiles, 509

R

ranges, 135, 509
rates of change, 219
rays, 615
opposite, 615
reasoning
deductive, 721
inductive, 703
reflections, 245
reflections, 645
in a horizontal line, 799
in intersecting lines, 813

Foldables, 1, 59, 63, 129, 133, 203, 207, 281, 285, 335, 339, 381, 385, 425, 429, 481, 485, 547, 551, 609, 613, 697, 701, 793, 797, 833, 837, 893
Formative Assessment Math Probe (Cheryl Tobey), 1b, 63b, 133b, 207b, 285b, 339b, 385bb, 487bbb, 485b, 551b, 613b, 701b, 797b, 837d

Growth Mindset, see Mindset Matters

Inquiry, see Explore
Intervention, see Tier 2 Intervention

Mathematical Background, 3a, 13a, 23a, 35a, 45a, 49a, 65a, 75a, 85a, 91a, 101a, 109a, 117a, 135b, 147b, 157a, 167a, 179a, 191b, 209b, 219a, 229b, 239b, 251b, 259a, 267a, 287a, 295b, 307a, 315a, 319a, 327a, 327, 341a, 351a, 357a, 367a, 375a, 387a, 399a, 405a, 413a, 419a, 431b, 439b, 451b, 461a, 465a, 473a, 487a, 495a, 503a, 509a, 515a, 523, 533a, , 553a, 561, 569a, 577a, 585a, 593a, 599a, 615a, 625a, 635a, 645a, 657a, 667a, 679a, 687a, 703a, 711a, 721a, 729a, 739a, 747a, 765a, 775a, 783a, 799a, 803a, 807a, 811, 819a, 825a, 839a, 847a, 855a, 863, 871a, 875a, 883a
Mathematical Practices, see T eaching the Mathematical Practices
Mindset Matters, 2, 64, 134, 208, 286, 340, $386,430,486,552,614,702,798,838$

Pacing, every page a

Prerequisite Skills

Are You Ready?, 2, 64, 134, 208, 286, 340, 386, 430, 486, 552, 614, 702, 798, 838
Warm Up, every Lesson Teacher page b

B

Review, see Review and Assessment Options
Review and Assessment Options, 60, 130,
204, 282, 336, 382, 426, 482, 548, 610, 698, 794, 834, 894

Rigor, every Module Teacher and Lesson Teacher page a

S

Standardized Test Practice, see Test Practice

T

Teaching the Mathematical Practices, every Launch, Lesson Teacher page b every Explore, second page every Explore and Develop
Test Practice, 60-62, 130-132, 204-206, 282-284, 336-338, 382-384, 426-428, 482-484, 548-550, 610-612, 698-700, 794-796, 834-836, 894-896
in parallel lines, 813
in a vertical line, 799
in the line $y=x, 799$ regular
polyhedra, 658 tessellations, 819
relations, 135
relative maximum, 182 relative minimum, 182 residuals, 322 rigid motions, 645 roots, 171 rotations, 645

S

samples, 503
scale, 139
scatter plots, 307
semiregular tessellations, 819
sequences, 251
arithmetic, 251
as explicit formulas, 473
as functions, 252, 467
as recursive formulas, 473
geometric, 465
terms of, 251, 465
set-builder notation, 342
Side-Angle-Side (SAS) Congruence, 857
Side-Side-Side (SSS) Congruence, 855 sides of angles, 615 significant figures, 687 simplest form, 38

slant heights

of pyramids, 659-660
of right cones, 659-660
slope, 222
slope criteria, 765 for parallel lines, 765
for perpendicular lines, 765 slope-intercept form, 767 slopes, 765
solutions, 75 solve an equation, 75
space, 561
spheres, 657
standard deviations, 512 standard form of a linear equation, 160 statements, 711 biconditional, 715 compound, 711 conditional, 712 conditional,
if-then, 712 statistics, 505 step functions, 260 substitution method, 399
surface areas, 659 of regular pyramids, 659 of right cones, 659 of right cylinders, 659 of right prisms, 6
symmetric distributions, 515
symmetry, 825
centers of, 826
line, 825
lines of, 825
magnitudes of, 826
orders of, 826
point, 827
points of, 826-827
rotational, 826
synthetic geometry, 555
systems of equations, 387
consistent, 387
dependent, 387
inconsistent, 387
independent, 387
systems of inequalities, 419
terms, 13
terms of a sequence, 251,465 tessellations, 819
theorems, 553
Alternate Exterior Angles
Theorem, 759
Alternate Interior Angles
Theorem, 759
Consecutive Interior Angles
Theorem, 759
Corresponding Angles
Theorem, 759
Exterior Angle Theorem, 840
Isosceles T riangle
Theorem, 875

Perpendicular Transversa Theorem, 759
Third Angles Theorem, 849
riangle Angle-Sum
Theorem, 839
transformations, 239
transformations, 645
compositions of, 811
congruence, 645
rigid motion, 645
translation vectors, 649
translations, 239,645
transversals, 757
triangles
isosceles, 875
truth values, 711
two-way frequency tables, 533
two-way relative frequency tables, 535

0

undefined terms, 553 uniform tessellations, 819
unions, 359
univariate data, 487
upper quartiles, 509
valid arguments, 721
variable terms, 13
variables, 13,510
variances, 512
vertex angle of an isosceles
triangle, 875
Vertical Line T est, 147
vertices, 267
of angles, 615
of polyhedra, 657
volumes, 659
of cones, 659
of cylinders, 659
of prisms 659
of pyramids, 659
of spheres, 659

Write See Practice in the lessons.

Tier 2 Intervention, 9-10, 19-20, 31-32, 41-42, 47, 55-56, 71-72, 81-82, 89, 97-98, 105-106, 113-114, 125-126, 143-144, 153-154, 163-164, 175-176, 187-188, 199-200, 215-216, 225-226, 235-236, 247-248, 255-256, 263-264, 277-278, 291-292, 303-304, 311-312, 317, 323-324, 331-332, 347-348, 353-354, 363-364, 371-372, 395-396, 403, 409-410, 417, 423, 437, 447-448, 457-458, 463, 469-470, 477-478, 491-492, 501, 507, 513, 519-520, 529-530, 537-538

Vertical Alignment, every Module Teacher and Lesson Teacher page a
Vocabulary, 2, 3b, 13b, 23b, 35b, 45b, 49b, 64, 65b, 75b, 85b, 91b, 109b, 117b, 134, 135b, 147b, 157b, 167b, 179b, 208, 219b, 229b, 239b, 251b, 259b, 267b, 286, 295b, 307b, 315b, 319b, 327b, 340, 341b, 357b, 375b, 386, 387b, 399b, 405b, 419b, 430, 431b, 465b, 473b, 486, 487b, 495b, 503b, 509b, 515b, 533b, 552, 553b, 561b, 569b, 577b, 585b, 599b, 614, 615b, 625b, 635b, 645b, 657b, 667b, 679b, 687b, 702, 703b, 711b, 721b, 729b, 757b, 765b, 783b, 798, 803b, 811b, 819b, 825b, 838, 839b, 855b, 863b, 875b, 883b

Reveal MATH

 Integrated I • Volume 2
CONTENTS

MODULEI EXPRESSIONS
MODULE2 EQUATIONS IN ONE VARIABLE
MODULE 3 RELATIONS AND FUNCTIONS
MODULE 4 LINEAR AND NONLINEAR FUNCTIONS
MODULE 5 CREATING LINEAR EQUATIONS
MODULE G LINEAR INEQUALITIES
MODULE 7 SYSTEMS OF LINEAR EQUATIONS AND INEQUALITIES
MODULE 8 EXPONENTIAL FUNCTIONS
MODULE 9 STATISTICS
MODULE 10 TOOLS OF GEOMETRY
MODULE A1 ANGLES AND GEOMETRIC FIGURES
MODULE 12 LOGICAL ARGUMENTS AND LINE RELATIONSHIPS
MODULE 13 TRANSFORMATIONS AND SYMMETRY
MODULE 14 TRIANGLES AND CONGRUENGE

[^0]: -Shah, 2017

[^1]: -Zike, 2017, InRIGORating Math Notebooks

[^2]: Today's Vocabulary

[^3]: Launch the Lesson

[^4]: 486 Module 9 - Statistics

[^5]: Today's Vocabulary

[^6]: Today's Vocabulary

[^7]: Today's Vocabulary

[^8]: Today's Vocabulary

[^9]: Today's Vocabulary

[^10]: Today's Vocabulary

[^11]: Today's Vocabulary

[^12]: Today's Vocabulary

[^13]: Today's Vocabulary

[^14]: Launch the Lesson

[^15]: Today's Vocabulary

[^16]: Today's Vocabulary

[^17]: $\mathbf{8 6 0}$ Module 14 - Triangles and Congruence

[^18]: Today's Vocabulary

[^19]: Today's Vocabulary

[^20]: Today's Vocabulary

