

Interactive Student Edition

Cover: (I to r, t to b) guvendemir/E+/Getty Images, Andrey Prokhorov/E+/Getty Images, anatols/iStock/Getty Images, iava777/iStock/Getty Images

mheducation.com/prek-12

Mc Graw Hill

Copyright © 2020 McGraw-Hill Education

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
McGraw-Hill Education
STEM Learning Solutions Center
8787 Orion Place
Columbus, OH 43240
ISBN: 978-0-07-667372-8
MHID: 0-07-667372-3
Reveal Math, Course 1
Interactive Student Edition, Volume 1
Printed in the United States of America.

67891011 12 LMN 282726252423222120

Contents in Brief

Module 1 Ratios and Rates2 Fractions, Decimals, and Percents3 Compute with Multi-Digit Numbers and Fractions4 Integers, Rational Numbers, and the Coordinate Plane
5 Numerical and Algebraic Expressions
6 Equations and Inequalities
7 Relationships Between Two Variables
8 Area
9 Volume and Surface Area
10 Statistical Measures and Displays

Reveal Math ${ }^{\ominus}$ Makes

 Math Meaningful...
...to Reveal YOUR Full Potential!

Reveal Math ${ }^{\circledR}$ Brings Math to Life in Every Lesson

Reveal Math is a blended print and digital program that supports access on the go. You'll find the Interactive Student Edition aligns to the Student Digital Center, so you can record your digital observations in class and reference your notes later, or access just the digital center, or a combination of both! The Student Digital Center provides access to the interactive lessons, interactive content, animations, videos, and technology-enhanced practice questions.

Write down your username and password hereUsername: \qquad \checkmark Password: \qquad

Go Online! my.mheducation.com

Web Sketchpad ${ }^{\circledR}$ Powered by The Geometer’s Sketchpad ${ }^{\text {® }}$ - Dynamic, exploratory, visual activities embedded at point of use within the lesson.

Animations and Videos - Learn by seeing mathematics in action.

Interactive Tools - Get involved in the content by dragging and dropping, selecting, and completing tables.

Personal Tutors - See and hear a teacher explain how to solve problems.
eTools - Math tools are available to help you solve problems and develop concepts.

TABLE OF CONTENTS

Module 1

Ratios and Rates

e. Fssential Question

How can you describe how two quantities are related?
What Will You Learn? 1
Lesson 1-1 Understand Ratios 3Explore Compare Two Quantities
1-2 Tables of Equivalent Ratios 13
Explore Compare Equivalent Ratios
1-3 Graphs of Equivalent Ratios 23
1-4 Compare Ratio Relationships 29
1-5 Solve Ratio Problems 37
1-6 Convert Customary Measurement Units 47
1-7 Understand Rates and Unit Rates 57Explore Compare Quantities with Different Units
1-8 Solve Rate Problems 65
Module 1 Review 73

Fractions, Decimals, and Percets

Q Fssential Question
How can you use fractions, decimals, and percents to solve everyday problems?
What Will You Learn? 77
Lesson 2-1 Understand Percents 79
2-2 Percents Greater Than 100\% and Less Than 1\% 85
2-3 Relate Fractions, Decimals, and Percents 93Explore Percents and Ratios
2-4 Find the Percent of a Number 103
Explore Percent of a Number
2-5 Estimate the Percent of a Number 113
2-6 Find the Whole 121
Module 2 Review 129

TABLE OF CONTENTS

Module 3
 Compute with Multi-Digit Numbers and Fractions

Essential Question

How are operations with fractions and decimals related to operations with whole numbers?
What Will You Learn? 133
Lesson 3-1 Divide Multi-Digit Whole Numbers 135
3-2 Compute With Multi-Digit Decimals 143
3-3 Divide Whole Numbers by Fractions 155
Explore Divide Whole Numbers by Fractions
3-4 Divide Fractions by Fractions 167
3-5 Divide with Whole and Mixed Numbers 177
Explore Divide Fractions by Whole Numbers
Module 3 Review 187

Integers, Rational Numbers, and the Coordinate Plane

Q Essential Question
How are integers and rational numbers related to the coordinate plane?
Lesson 4-1 Represent Integers 193
Explore Represent Integers
4-2 Opposites and Absolute Value 199Explore opposites and Absolute Value
4-3 Compare and Order Integers 205
4-4 Rational Numbers 215
4-5 The Coordinate Plane 225Explore The Coordinate Plane4-6 Graph Reflections of Points237
Explore Reflect a Point
4-7 Absolute Value and Distance. 245
Explore Distance on the Coordinate Plane
Module 4 Review 255
What Will You Learn? 191

TABLE OF CONTENTS

Module 5

Numerical and Algebraic Expressions

Essential Question
How can we communicate algebraic relationships with mathematical symbols?
What Will You Learn? 259
Lesson 5-1 Powers and Exponents 261
5-2 Numerical Expressions 269
5-3 Write Algebraic Expressions 277Explore Write Algebraic Expressions
5-4 Evaluate Algebraic Expressions 287Explore Algebraic Expressions
5-5 Factors and Multiples 295Explore Greatest Common FactorExplore Least Common Multiple
5-6 Use the Distributive Property 305Explore Use Algebra Tiles to Model the Distributive Property
5-7 Equivalent Algebraic Expressions 315Explore Properties and Equivalent Expressions
Module 5 Review 329
e Fissential Question
How are the solutions of equations and inequalities different?
Lesson 6-1 Use Substitution to Solve One-Step Equations 335
6-2 One-Step Addition Equations 341Explore Use Bar Diagrams to Write Addition EquationsExplore One-Step Addition Equations
6-3 One-Step Subtraction Equations 351Explore Use Bar Diagrams to Write Subtraction Equations
6-4 One-Step Multiplication Equations 359Explore Use Bar Diagrams to Write Multiplication Equations
6-5 One-Step Division Equations 369
Explore Use Bar Diagrams to Write Division Equations
6-6 Inequalities 377
Explore Inequalities
Module 6 Review 391
What Will You Learn? 333

TABLE OF CONTENTS

Module 7
 Relationships Between IWo Variables

Essential Question
What are the ways in which a relationship between two variables can be displayed?
What Will You Learn? 395
Lesson 7-1 Relationships Between Two Variables 397Explore Relationships Between Two Variables
7-2 Write Equations to Represent Relationships Represented in Tables 405Explore Relationships with Rules that Require Two Steps
7-3 Graphs of Relationships 415
7-4 Multiple Representations 423
Module 7 Review 429

Module 8
Area
e Essential Question
How are the areas of triangles and rectangles used to find the areas of other polygons?
What Will You Learn? 433
Lesson 8-1 Area of Parallelograms 435
Explore Area of Parallelograms
8-2 Area of Triangles 443Explore Parallelograms and Area of TrianglesExplore Area of Triangles
8-3 Area of Trapezoids 451
8-4 Area of Regular Polygons 463
Explore Area of Regular Polygons
8-5 Polygons on the Coordinate Plane 469
Explore Explore the Coordinate Plane479

TABLE OF CONTENTS

Module 9
 Volume and Surface Area

Essential Question

How can you describe the size of a three dimensional figure?
What Will You Learn? 483
Lesson \quad 9-1 Volume of Rectangular Prisms 485
9-2 Surface Area of Rectangular Prisms 495Explore Cube Nets
9-3 Surface Area of Triangular Prisms 505
Explore Non-Rectangular Prism Nets
9-4 Surface Area of Pyramids 517
Module 9 Review 531

e Essential Question
Why is data collected and analyzed and how can it be displayed?
What Will You Learn? 535
Lesson 10-1 Statistical Questions 537
Explore Collect Data
10-2 Dot Plots and Histograms 543
10-3 Measures of Center 549
Explore Mean
10-4 Interquartile Range and Box Plots 561
10-5 Mean Absolute Deviation 569
10-6 Outliers 575
Explore Mean, Median, and Outliers
10-7 Interpret Graphical Displays 583
Explore Interpret Box Plots
Module 10 Review 593

Module 1

Ratios and Rates

Q. Essential Question

How can you describe how two quantities are related?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it.	0	0	3	0	0	3
writing ratios to compare quantities						
finding unit rates						
using equivalent ratios to solve ratio problems						
graphing and describing ratio relationships						
comparing ratio relationships						
using bar diagrams to solve ratio and rate problems						
using equivalent ratios to solve ratio and rate problems						
using double number lines to solve ratio and rate problems						
converting measurements						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about ratios and rates.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square double number line

- ratio table
\square equivalent ratiosscaling
\square part-to-part ratiounit price
\square part-to-whole ratiounit raterateunit ratioratio

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1
Divide whole numbers.
Find $6 \longdiv { 3 4 8 }$.
58
$6 \longdiv { 3 4 8 }$ Divide each place-value position
-30
$\begin{aligned} & 48 \\ &-48 \text { Since } 48-48=0 \text {, there is no } \\ & \text { remainder. }\end{aligned}$

Quick Check

Find each quotient.

1. $3 \longdiv { 8 7 }$
2. $8 \longdiv { 5 8 4 }$

Example 2
Write fractions to express part of a whole.
Write a fraction to represent the shaded part of the bar diagram.

The shaded part of the bar diagram represents the fraction $\frac{3}{4}$.
3. Write a fraction to represent the shaded part of the bar diagram.

How Did You Do?
Which exercises did you answer correctly in the Quick Check?

Shade those exercise numbers at the right.

Understand Ratios

I Can... show a ratio relationship between two quantities using different representations, and describe the relationship using correct mathematical language.

Explore Compare Two Quantities

Online Activity You will use Web Sketchpad to determine how many students and teachers should be on various buses to maintain the same relationship of one teacher for every eight students.

Learn Understand Ratios

The table shows the ingredients needed to make 10 cups of lemonade. How does the number of cups of lemon juice compare to the total number of cups of lemonade?

Ingredient	Number of Cups
Lemon Juice	2
Simple Syrup	1
Water	7

One way to make a comparison is to use a bar diagram. There are 8 more cups of lemonade than there are cups of lemon juice. This is an additive comparison because $2+8=10$.

(continued on next page)

```
What Vocabulary
Will You Learn?
part-to-part ratio
part-to-whole ratio
ratio
```


Talk About It!

If you did not maintain the same ratio of lemon juice to total cups of lemonade when making 2 or 3 batches, what might happen to your lemonade? Justify your response.

Another way to make a comparison is to use a ratio. A ratio is a comparison between two quantities, in which for every a units of one quantity, there are b units of another quantity. The phrases for every and for each are used to define and describe ratios.

The relationships between the quantities of ingredients in recipes are examples of ratios. To make one batch of lemonade, 10 cups, you need 2 cups of lemon juice.

Ingredient	Number of Cups
Lemon Juice	2
Simple Syrup	1
Water	7

To make two batches of lemonade, 20 cups, how many cups of lemon juice will you need?

Double the quantities of lemon juice and lemonade to maintain the same ratio. Each section represents 2 cups. You need 4 cups of lemon juice.

To make three batches of lemonade, 30 cups, how many cups of lemon juice will you need?

Triple the quantities of lemon juice and lemonade to maintain the same ratio. Each section represents 3 cups. You need 6 cups of lemon juice.

No matter how many batches are made, there are always 2 cups of lemon juice for every 10 cups of lemonade in the recipe. This confirms the same relationship between cups of lemon juice and cups of lemonade is maintained.

4 Module 1-Ratios and Rates

Example 1 Understand Ratios

Pedro mixed two sample containers of blue paint with three sample containers of yellow paint to create his favorite shade of green paint. Pedro realized he did not have enough paint, so he added two more sample containers of each color.

Will the new mixture result in the same shade of green? Justify your response.

To create his favorite shade of green, Pedro used a ratio of 2 to 3 . For every 2 containers of blue paint, there are 3 containers of yellow paint.

Pedro added two more containers of each color. The ratio of blue paint to yellow paint in the new mixture is 4 to 5 .

The amount of blue paint in the new mixture is twice that of Pedro's favorite shade. To maintain the same ratio, the amount of yellow paint should also be twice that of his favorite shade. Because $3 \times 2 \neq 5$, the ratio was not maintained. The resulting shade of green will not have enough yellow in it to match Pedro's favorite shade.

If Pedro adds one more container of yellow paint to his new mixture, he will be able to create his favorite shade of green.

What Pedro Should Do

Check

A recipe for rice calls for 6 cups of water and 3 cups of uncooked rice. Trinity only has 2 cups of uncooked rice. She reasons that because she subtracted 1 cup of rice, she needs to use a total of $6-1$, or 5 cups of water. Is her reasoning correct? Explain.

3 Go Online You can complete an Extra Example online.

Think About It! How will you begin solving the problem?

Learn Part-to-Whole and Part-to-Part Ratios

A part-to-whole ratio compares one part of a group to the whole group. The ratio 2 : 10 is a part-to-whole ratio because it compares the number of cups of lemon juice (the part) to the total number of cups of

Ingredient	Number of Cups
Lemon Juice	2
Simple Syrup	1
Water	7

Model

A part-to-part ratio compares one part of a group to another part of the same group. The ratio $2: 7$ is a part-to-part ratio because it compares the number of cups of lemon juice (one part) to the number of cups of water (another part) needed to make the lemonade.

Because a fraction represents a part of a whole, fraction notation is generally only used to represent part-to-whole ratios.

Example 2 Part-to-Whole Ratios

A florist is arranging flowers in vases to sell to her customers. She has two sizes of vases available: small and large. She wants the large vase to have the same ratio of flowers as the small vase.

If the large vase has a total of $\mathbf{3 6}$ flowers, how many are tulips?

Small Vase	
Flower	Quantity
Carnations	6
Sunflowers	2
Tulips	4

Step 1 Use a bar diagram to represent the ratio of tulips to total flowers for the small vase.

Step 2 Use the same ratio to find the number of tulips in the large vase.

Each section in the diagram represents 3 flowers. There are four sections for tulips, so the large vase will contain 4×3, or \qquad tulips.

Check

Refer to the table in Example 2. If the large vase has a total of 36 flowers, how many are carnations?

Think About It!
Why is the ratio of tulips to total flowers a part-to-whole ratio?

ב

Think About It!

Why is the ratio of blueberry muffins to chocolate muffins a part-to-part ratio?

Talk About It!

Describe a part-towhole relationship that exists in the small box. What ratio represents that relationship?

A bakery sells fresh-baked muffins, sold in small or large boxes. The manager of the bakery wants to maintain the same ratio of each type of muffin in the large box as in the small box.

If the large box contains 9 chocolate muffins, how many blueberry muffins are in the large box?

Step 1 Use a bar diagram to represent the ratio of blueberry muffins to chocolate muffins for the small box.

Small Box

The ratio of blueberry muffins to chocolate muffins is $2: 3$. For every 2 blueberry muffins, there are 3 chocolate muffins.

Step 2 Use the same ratio to find the number of blueberry muffins in the large box.

Large Box

Keep the same ratio $2: 3$. Each section must represent 3 muffins, because there are 3 times as many chocolate muffins, 9 , in the large box as there are in the small box, 3 .

So, there are \qquad blueberry muffins in the large box.

Check

Refer to the table in Example 3. If the large box contains 9 chocolate muffins, how many cinnamon muffins are in the large box?

[^0]
Apply Fundraising

The students at Lake Meadow Middle School will sell bags of honey granola for a fundraising event. The table shows a recipe that makes 6 cups of granola. The students will place 3 cups of granola in each bag. If forty people are expected to buy one bag of granola each, how many cups of rolled oats do they need?

Honey Granola
4 cups rolled oats
1 cup chopped almonds
$\frac{2}{3}$ cup honey
1 cup coconut oil
$\frac{1}{2}$ teaspoon salt
1 tablespoon ground cinnamon
1 teaspoon vanilla extract

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
2 Write About It! Write an argument that can be used to defend your solution.

Check

The ingredients needed to make two servings of a fruit smoothie are shown in the table. Suppose you have 12 cups of frozen strawberries. If you use the entire amount, how many cups of plain yogurt do you need to maintain the same ratio?

Ingredient	Cups
Plain Yogurt	2
Fruit Juice	1
Frozen Strawberries	3

3 Go Online You can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that shows your understanding of ratios. Include examples of each of the following in your graphic organizer.

- bar diagrams
- words
- ratio notation
- part-to-whole ratios
- part-to-part ratios

Practice

1. In Suri's coin purse, she has 6 dimes and 4 quarters. Martha has 5 dimes and 3 quarters. Suri thinks that the ratio of dimes to quarters in both purses is the same because they each have 2 more quarters than dimes. Is the same ratio of dimes to quarters maintained? Justify your response. (Example 1)
2. In a trivia game, Levi answered 8 questions correctly out of 10 turns in the game. He then answered the next three questions correctly. He reasoned that because he added 3 to both the total questions and his correct responses, that the ratio of correct answers to total questions remained the same. Is he correct? Justify your response. (Example 1)
3. A small fruit basket contains the fruits shown. A large basket has the same ratio of fruits as the small basket. If the large basket has 42 total pieces of fruit, how many are pears? (Example 2)

Type of Fruit	Amount
Apple	6
Orange	5
Pear	3

6. A small batch of trail mix contains 2 cups of raisins, 2 cups of peanuts, 1 cup of sunflower seeds, and 1 cup of chocolate coated candies. A large batch has the same ratio of ingredients as a small batch. If the large batch has 8 cups of peanuts, how many cups of sunflower seeds are in a large batch? (Example 3)

Test Practice

7. Open Response A football coach needs to divide 48 players into two groups. He wants the ratio of players in Group 1 to players in Group 2 to be 1 to 3 . How many players will be in Group 2?

Apply

8. T o make a homemade all-purpose household cleaneryou can mix the

All-Purpose Cleaner

 1 cup vinegar $\frac{1}{2}$ cup rubbing alcohol 1 gallon water (16 cups)9. The table shows the ingredients needed to make one batch of homemade slime. Dodi has 2 cups of liquid starch and will use the entire amount. She plans to store the slime in containers that each hold a maximum of 6 fluid ounces. How many containers will she need? Write an argument to defend your solution. (Hint: 2 cups $=16$ fluid ounces)
10. MP Find the Error The ratio of quarts of white paint to red paint is $3: 4$. A student says that to maintain the same ratio, he will need 7 quarts of white paint if he has 8 quarts of red paint, because originally there was one more quart of red paint than white paint. Find the student's mistake and correct it.
11. Create Write your own real-world problem involving part-to-whole or part-to-part ratios. Trade problems with a partner and solve each other's problem. Discuss with your partner how your knowledge of ratios helped you solve each problem.
12. Justify Conclusions Rowan found that 4 out of 28 students in her class bike to school. What is the ratio of students that bike to school to the number of students that do not bike to school? Write an argument to defend your solution.
13. The ratio of the distance around a circle, the circumference, to the distance across a circle, the diameter, is represented by the Greek letter π. If the circumference of a circle is 6.28 inches and the diameter of the same circle is 2 inches, what is the approximate value of π to two decimal places?

Tables of Equivalent Ratios

I Can... represent a collection of equivalent ratios and show the ratio relationship between two quantities using tables of equivalent ratios and double number lines.

Explore Equivalent Ratios

WOnline Activity You will use equivalent ratios to find the number of cups of flour and Greek yogurt to make 8 pizzas.

Learn Equivalent Ratios and Ratio T ables

The table shows the ingredients needed to make the dough for one pizza. You used this information in the Explore activity to find the number of cups of each ingredient

Ingredient	Number of Cups
Greek Yogurt	2
Self-Rising Flour	3

The bar diagrams also show how the ratio of $2: 3$ is maintained, by using two sections that represent Greek yogurt and three sections that represent flour. The resulting ratios for 1,2 , and 3 pizzas are $2: 3$, $4: 6$, and $6: 9$, respectively. The ratios $2: 3,4: 6$, and $6: 9$ are equivalent ratios because they express the same ratio relationship between the quantities.

(continued on next page)

What Vocabulary Will You Learn?
double number line equivalent ratios
ratio table
scaling

a

Talk About It!
Why might a ratio table be more advantageous to use than a bar diagram when finding the quantity of each ingredient needed to make 5 pizzas?

A table of equivalent ratios, or ratio table, is a collection of equivalent ratios that are organized in a table. Each column consists of a pair of quantities that have the same ratio as the pairs of quantities in the other columns.

In the ratio table shown, the ratios $2: 3,4: 6$, and $6: 9$ are all equivalent.

Greek Yogurt (c)	2	4	6
Flour (c)	3	6	9

Ratio tables show both an additive structure and a multiplicative structure.

Add 2 to the cups of yogurt for each new column. Add 3 to the cups of flour for each new column.

Multiply each of the original quantities by the same number to obtain the values in each of the other columns.

The process of multiplying each quantity in a ratio by the same number to obtain equivalent ratios is called scaling.

You can use scaling to extend the ratio table to find the number of cups of each ingredient needed to make additional pizzas. By doing so, you find more equivalent ratios.

Continue the pattern by multiplying each of the original quantities by the same number to obtain the

To make four pizzas, you need 8 cups of Greek yogurt and 12 cups of flour. To make five pizzas, you need 10 cups of Greek yogurt and 15 cups of flour.

The ratios $8: 12$ and $10: 15$ are equivalent to $2: 3,4: 6$, and $6: 9$.

Example 1 Scale Forward to Find Equivalent Ratios

To make yellow icing, Amida mixes 6 drops of yellow food coloring with 2 cups of white icing.

How many drops of yellow food coloring should Amida mix with 8 cups of white icing to get the same shade of yellow?

Step 1 Create a ratio table with the given information.
For every 6 drops of yellow food coloring, there are 2 cups of icing. The unknown is the number of drops of yellow needed to mix with 8 cups of icing.

Step 2 Scale forward to find how many drops of yellow Amida needs to mix with 8 cups of icing.

Because $2 \times \quad=8$, multiply 6 by \quad to obtain 24 .
The ratios $6: 2$ and $24: 8$ are equivalent ratios.

So, Amida should mix \qquad drops of yellow food coloring with 8 cups of white icing to get the same shade of yellow.

Check

In a batch of trail mix, there are 3 tablespoons of peanuts for every 2 tablespoons of sunflower seeds. How many tablespoons of sunflowers seeds are needed if you have 18 tablespoons of peanuts?

3 Go Online Y ou can complete an Extra Example online.

Think About It!
Should Amida add less than, more than, or the same number of drops, 6 , of yellow food coloring to mix with the 8 cups of icing? Why?

Talk About It!
How you can use a ratio table that shows an additive structure to solve this problem? Which structure, additive or multiplicative structure is more advantageous to use in this case? Explain.

Think About It! How do you know that you cannot scale forward to solve this problem?

Talk About It!

Suppose Aiko said that since she has half of the amount of red paint that Akeno has, she can mix that with half of the amount of yellow paint that Akeno has. Is she correct? Explain.

Akeno mixes three sample containers of yellow paint with four sample containers of red paint to create his favorite shade of orange paint. His little sister Aiko wants to create the same shade of orange paint, but she only has two sample containers of red paint.

What should Aiko do to create the same shade of orange paint?

Step 1 Create a ratio table with the given information.
For every 3 containers of yellow paint, there are 4 containers of red paint. The unknown is the amount of yellow paint needed to mix with 2 containers of red paint.

Yellow Paint (containers)	$?$	3
Red Paint (containers)	2	4

Step 2 Scale backward to find the equivalent ratio.

Because $4 \div 2=2$, divide 3 by \qquad to obtain \qquad

The ratios 1.5 to 2 and 3 to 4 are equivalent.
So, Aiko should mix \qquad containers of yellow paint with 2 containers of red paint to create the same shade of orange paint.

Check

To make three loaves of banana bread, you need 9 bananas. How many bananas are needed to make one loaf of banana bread?

Go Online Y ou can complete an Extra Example online.

16 Module 1 • Ratios and Rates

Q Example 3 Scale in Both Directions

Natasha made raspberry punch for a party by mixing 9 fluid ounces of fruit punch, 3 liters of soda, and 6 scoops of raspberry ice cream. Halfway through the party, the punch bowl was empty.

If Natasha only has 6 fluid ounces of fruit punch left, how much ice cream does she need to make another batch of punch?

Step 1 Create a ratio table with the given information.
For every 9 fluid ounces of fruit punch, there are 6 scoops of raspberry ice cream. The unknown is the amount of ice cream needed to mix with 6 fluid ounces of fruit punch.

Fruit Punch (fl oz)	6	9
Ice Cream (scoops)	$?$	6

There is no whole number by which you can multiply 6 to obtain a product of 9 .

Step 2 Scale backward to find an equivalent ratio.

To scale back, you can divide both 9 and 6 by 3 . This results in the equivalent ratio $3: 2$.

Step 3 Use the equivalent ratio you found to scale forward to find the desired equivalent ratio.

To scale forward, you can multiply both 3 and 2 by 2 . This results in the equivalent ratio $6: 4$.

So, Natasha should mix scoops of raspberry ice cream with the remaining 6 fluid ounces of fruit punch.

Check

Refer to Example 3. How many liters of soda should Natasha mix with the 6 fluid ounces of fruit punch?

3 Go Online Y ou can complete an Extra Example online.

Think About It!
To mix with the remaining amount of fruit punch, will the number of scoops of ice cream that Natasha needs be less than, more than, or equal to 6? Explain.

Why was scaling back
Talk About It!
to find the equivalent
ratio $3: 2$ helpful in
solving the problem?

Think About It!
To make 4 biscuits, will the number of cups of flour be less than, greater than, or equal to 2? Explain.

Talk About It!
Compare and contrast using a ratio table and using a double number line to solve this problem.

The ingredients needed to make 24 biscuits are shown in the table.

If Portia wants to only make 18 biscuits, how many cups of flour does she need?

Use a double number line to solve this problem. A double number line consists of two number lines, in which the coordinated quantities are equivalent ratios.

Step 1 Draw a double number line.

Homemade Biscuits

4 c flour
8 tsp baking powder
2 tbsp sugar
1 tsp salt
1 c shortening
2 large eggs
2 c milk

The top number line represents the cups of flour and the bottom number line represents the number of biscuits.

Step 2 Find the equivalent ratio.
To scale back, you can divide both 4 and 24 by 4 . This results in the equivalent ratio 1: 6 . Divide the bottom number line into increments of 6 units and label the corresponding units for the top number line.

The value on the top number line that corresponds with 18 is 3.
So, to make 18 biscuits, Portia needs \qquad cups of flour.

Check

Refer to Example 4. If Portia only wanted to make 6 biscuits, how many teaspoons of baking powder will she need?

3 Go Online Y ou can complete an Extra Example online.

18 Module 1 - Ratios and Rates

Apply Packaging

A toy store sells assorted marbles, sold in small or large bags. The table shows the number of each color of marble in the small bag. The manager of the store wants to maintain the same ratio of each color of marble in the large bag as in the small bag. Each marble costs 20 cents. If the large bag contains 20 green marbles, how much does the large bag cost?

Color	Quantity
Blue	14
Red	12
Green	8
Orange	6

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(2) Write About It! Write an argument that can be used to defend your solution.

Check

The table shows the number of slices of turkey and cheese in the regular Totally Turkey Sandwich at Dave's Deli.

Totally Turkey Sandwich (Regular)	
Ingredient	Quantity
Turkey Slices	3
Cheese Slices	2

The ingredients are doubled in the large Totally Turkey Sandwich. On Wednesday, three times as many customers ordered the regular sandwich as the large sandwich. If 27 customers ordered the regular sandwich, how many total slices of turkey were used to make the sandwiches that day?

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Use any strategy to solve each problem.

1. Jayden's snow cone machine makes 3 snow cones from 0.5 pound of ice. How many snow cones can be made with 5 pounds of ice? (Example 1)
2. The world record for the most number of speed skips in 60 seconds is 332 skips. If the record holder skipped at a constant ratio of seconds to skips, how many skips did she make in 15 seconds? (Example 2)
3. Adrian decorated 16 cupcakes in 28 minutes. If he continues at this pace, how many minutes will it take him to decorate 56 cupcakes? (Example 3)
4. A certain store is selling packages of 10 pencils and 4 pens for back to school. The store manager wants to make a larger package in the same ratio. If the large package has 10 pens, how many pencils are in the large package? (Example 4)
5. Nyoko is having a pizza party. Two large pizzas serve 9 people. How many large pizzas should she order to serve 36 guests at the party? (Example 1)
6. A recipe for homemade clay calls for 6 cups of water for every 12 cups of flour. How many cups of water are needed when 4 cups of flour are used? (Example 2)
7. A comic book store is having a sale. You can buy 20 comic books for $\$ 35$. What is the cost of 8 comic books during the sale? (Example 3)

Test Practice

8. Open Response Ben made trail mix for his camping trip that contained 8 ounces of peanuts, 6 ounces of raisins, and 10 ounces of chocolate candies. He wants to make a larger batch for his next camping trip with 28 ounces of peanuts. How many ounces of raisins will he need?

Apply

9. The table shows the items in a family chicken taster meal at a restaurant. The restaurant wants to create a larger meal to accommodate larger groups of people. They also want to limit the number of chicken tenders to 15 . If the ratio remains the same, how many biscuits are in the larger meal?

Family Taster Meal
4 chicken sliders
6 chicken tenders
8 biscuits
1 pint of cole slaw
10. Identify Structure Generate a ratio table with at least two ratios equivalent to $\frac{\$ 10}{15 \text { tickets. Then describe how the table }}$ shows an additive structure and a multiplicative structure.
11. Justify Conclusions There are 21 goats and 35 chickens on a farm. If 5 more goats and 5 more chickens are added, is the ratio of goats to chickens the same? Write an argument to defend your solution.
13. Create Write and solve a real-world problem where you determine if two ratios are equivalent.

Graphs of Equivalent Ratios

I Can... represent a collection of equivalent ratios as ordered pairs and graph the ratio relationship on the coordinate plane.

Learn Ratios as Ordered Pairs

You previously learned how to create a ratio table and extend it by finding equivalent ratios. You can also represent a ratio relationship by creating a table of ordered pairs and graphing the ordered pairs on the coordinate plane.

To make a simple salad dressing, you can use 3 cups of olive oil for every cup of vinegar. You can then add herbs, salt, and/or pepper for seasoning. This ratio relationship is shown in the table.

Each pair of equivalent ratios can be expressed as an ordered pair. The x-coordinate represents the number of cups of vinegar. The y-coordinate

Vinegar (c),	Olive Oil (c),
x	y
1	3
2	6
3	9
4	12
5	15

Recall that to graph a point, start at the origin. Move right along the x-axis the number of units indicated by the x-coordinate. From that location, move up along the y-axis the number of units indicated by the y-coordinate. Place a dot at that location.

The graph illustrates the ratio relationship of the cups of olive oil to the cups of vinegar in the salad dressing.

What do you notice about the graphed points? You might notice that to travel from each point to the next point, you move up 3 units and to the right 1 unit. These are the same numbers in the ratio of 3 cups of olive oil for every 1 cup of vinegar.

Think About It!
What is the ratio of charms to beads? Beads to charms?

Talk About It!
What do you notice about the points on the graph?

Example 1 Graph Ratio Relationships

Tamara is making charm bracelets for several friends. She uses 6 beads for every charm.

Generate the set of ordered pairs for the ratio relationship between the number of beads y and the number of charms x for a total of $1,2,3$, and 4 charms. Then graph the relationship.

Part A Create a table of ordered pairs.
Let the x-coordinates represent the number of charms and the y-coordinates represent the number of beads.

Charms, x	Beads, y
1	6
2	
3	
4	

Use scaling to complete the table to write the equivalent ratios for 2, 3 , and 4 charms. The ordered pairs are $(1,6),(2,12),(3,18)$, and $(4,24)$.

Part B Graph the ordered pairs on the coordinate plane.

Check

Ken's Home Supply sells fencing that costs $\$ 14$ for every 3 feet. Generate the set of ordered pairs for the ratio relationship between the cost y and the number of feet of fencing x for a total of $3,6,9$, and 12 feet of fencing. Then graph the relationship.

© Example 2 Graph and Interpret Ratio Relationships

To make one batch of homemade modeling clay that can be used in arts and crafts, Sequoia mixed the ingredients shown in the table.

Graph the ratio relationship between the number of cups of water y and the number of cups of flour x for a total of 5 batches.

Homemade Clay
4 cups flour
1 cups salt
2 cups water
food coloring

Part A Graph the ratio relationship.
Step 1 Generate a set of ordered pairs.
For every 4 cups of flour, there are 2 cups of water. Let the x-coordinates represent the number of cups of flour and the y-coordinates represent the number of cups of water.

Flour (c), x	Water (c), y
4	2
8	4
12	6
16	8
20	10

Use scaling to write the equivalent ratios for $1,2,3,4$, and 5 batches.
$4-1$ batch
$4-2$ batches
$4-3$ batches
4.4 batches
$4-5$ batches

Step 2 Graph the relationship.
The x-coordinates increase from 4 to 20 , so let each grid unit along the x-axis on the coordinate plane represent 2 units.

Modeling Clay

Part B Describe the pattern in the ratio relationship.
In the graph, the points appear to fall on a straight line. Each new point is 2 units up from and 4 units to the right of the previous point.
This means that the number of cups of water increases by cups as the number of cups of flour increases by \qquad cups.

Think About It!
How do you know that the relationship between flour and water is a ratio relationship?

Check

To make one batch of nectar to feed hummingbirds, Melanie added 4 cups of boiling water for every cup of refined white sugar.

Part A Graph the ratio relationship between cups of boiling water y and cups of refined white sugar x for a total of $1,2,3,4$, and 5 batches.

Part B Describe the pattern in the relationship.

Go Online Y ou can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Lulah is buying beach balls for her beach themed party. Each package contains 6 beach balls. Generate the set of ordered pairs for the ratio relationship between the number of beach balls y and the number of packages x for a total of $1,2,3$, and 4 packages. Then graph the relationship on the coordinate plane and describe the pattern in the graph. (Examples 1 and 2)

Beach Balls

2. A sloth travels about 7 feet every minute. Generate the set of ordered pairs for the ratio relationship between the total distance traveled y and the number of minutes x for a total of $1,2,3$, and 4 minutes. Then graph the relationship on the coordinate plane and describe the pattern in the graph.
(Examples 1 and 2)

3. Two friends are making scrapbooks. The number of photos Lexi and Audrey place on each page of their scrapbooks is shown in the graph. Describe the ratio relationship for each person.

4. Multiselect Lacy is running laps around the track. The time in minutes and the number of laps ran are shown in the graph. Which of the following is true about the ratio relationship shown in the graph?Every 4 minutes, Lacy ran 1 lap.Lacy ran 8 laps in 2 minutes.It took Lacy 1 minute to run 4 laps.In 16 minutes, Lacy completed 4 laps.
\square Based on the relationship, it would take

Lacy 20 minutes to complete 5 laps.
6. What are the advantages of graphing when solving problems that involve ratios?
8. Multiple Relationships For every second, the average green sea turtle can swim 9 meters. Represent how far a green sea turtle can swim in 1, 2, 3 and 4 seconds in a table. Then graph the points on a coordinate plane.

Time (s)				
Distance (m)				

Green Sea Turtles

Compare Ratio Relationships

I Can... compare ratio relationships that are shown using different representations.

Learn Use Graphs to Compare Ratio Relationships

Ratios for ingredients in dog food vary among companies that manufacture it. Company A advertises 25 grams of protein for every cup of dog food. The relationship between protein and cups of dog food for two other companies is shown in the table and graph.

Company B	
Dog Food (c), x	Protein (g), y
2	44
3	66
4	88

Company C
 representation for each, such as a graph.

The ratios for Company C are already graphed. For Company A , you can generate equivalent ratios to find the ordered pairs (1, 25), (2,50), and $(3,75)$.

For Company B , the ordered pairs are $(2,44),(3,66)$, and $(4,88)$.

Draw a dotted line through the points to determine which relationship has the steepest graph. The graph for Company A is the steepest, and the graph for Company B is steeper than the graph for Company C. This means that Company A has the greatest ratio of protein to cups of dog food.

Think About It!

Just by studying the table, which pizzeria, Slice of Pie or Paulo's Pizzeria, has more pepperonis on a 12 -inch pizza?

Talk About It!
How many more pepperonis would be on an 18 -inch pizza from The Pizza Place than on an 18 -inch pizza from Paulo's Pizzeria? Justify your response.

© Example 1 Use Graphs to Compare Ratio Relationships

Paulo's Pizzeria advertises 24 pepperonis on every 12 -inch pizza. The relationship of pepperonis to pizza size for two other pizzerias is shown in the table and graph.

Slice of Pie	
Pizza Size (in.)	Pepperonis
10	15
12	18
14	21

Which pizzeria advertises the greatest ratio of pepperonis to pizza size?

To compare the three ratios, use the same representation for each, such as a graph. The ratios of pepperonis to pizza size for The Pizza Place are already graphed.
For Paulo's Pizzeria, use scaling to write the ordered pairs $(8,16)$, $(10,20),(12,24),(14,28)$, and $(16,32)$ to represent the ratio relationship.

For Slice of Pie, the ordered pairs are $(10,15),(12,18)$, and $(14,21)$.
Draw dotted lines through the points. The graph for The Pizza Place is the steepest, and the graph

 for Paulo's Pizzeria is steeper than the graph for Slice of Pie.

This means that has the greatest ratio of pepperonis to pizza size, in inches, followed by and then \qquad

Check

Refer to Example 1. A fourth pizzeria, Pizza Café, advertises 14 pepperonis for every 8 -inch pizza. Graph the ratio relationship for Pizza Café on the graph above. Which pizzeria, Pizza Café or Slice of Pie, advertises the greater ratio of pepperonis to pizza size? Justify your response.

3 Go Online Y ou can complete an Extra Example online.

30 Module 1 •Ratios and Rates

Learn Use T ables to Compare Ratio Relationships

Another way to compare ratio relationships is to use tables. For example, a comparison of three smoothie recipes shows that Recipe A has a blueberry to strawberry ratio of 8 to 2 , Recipe B has a ratio of 5 to 1 , and Recipe C has a ratio of 10 to 3 . You can use tables of equivalent ratios to determine which recipe has the greatest ratio of blueberries to strawberries.

Recipe A

Recipe B

Recipe C

Blueberries	10	20	30
Strawberries	3	6	9

Use scaling to write equivalent ratios for each recipe. You can compare the ratios when one of the quantities in each relationship is the same.

Recipe B has a ratio of 30 blueberries for every 6 strawberries, followed by Recipe A with a ratio of 24 to 6 , and Recipe C with a ratio of 20 to 6 . So, Recipe B has the greatest ratio of blueberries to strawberries.

Example 2 Use T ables to Compare Ratio Relationships

Roman is considering different bird seeds to fill his bird feeder Measured in ounces, Recipe A has a sunflower seed to peanut ratio of 2 to 3 , Recipe B has a ratio of 3 to 4 , and Recipe C has a ratio of 5 to 6 .

Which recipe has the greatest ratio of ounces of sunflower seeds to ounces of peanuts?
Step 1 Create a ratio table for each recipe. Find equivalent ratios to compare the relationships.

Recipe A

Sunflower Seeds (oz)	2			
Peanuts (oz)	3			

Recipe B

Recipe C

Sunflower Seeds (oz)	5			
Peanuts (oz)	6			

Talk About It!
Compare and contrast using graphs and using tables to compare ratio relationships.

Apply Mixing Paint

Three friends are each mixing containers of red and blue paint, according to the ratios shown, to create their favorite shades of purple paint. Each container is the same size. If each person uses 6 quarts of red paint, whose paint mixture will have the most blue?

	Marcus	Cassidy	Hiram
Red (qt)	2	3	2
Blue (qt)	3	4	2

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem. A coordinate grid is provided should you choose to use it.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Three cereal brands advertise the average number of berries for every cup of whole-grain cereal flakes as shown in the table. Each box is the same size. Which company advertises the greatest ratio of berries for every cup of flakes?

	Brand A Brand B Brand C		
Cups of Flakes	1	2	3
Berries	5	6	12

A coordinate grid is provided should you choose to use it.
Cereal

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Cereal Brand A advertises that they have 60 raisins in their 24 -ounce box of cereal. The advertised ratio of raisins to ounces for two other cereal brands are shown in the table and graph. Which brand advertises the greatest ratio of raisins to ounces of cereal? Justify your response. (Example 1)

Brand B

| Ounces of Cereal | 6122024 | |
| :--- | :---: | :--- | :--- |
| Raisins | 18366072 | |

(3)
Go Online You can complete your Homework online.
2. At the gym, Alex spends 24 minutes doing resistance training for every 30 minutes spent doing cardio exercises, Carisa spends 15 minutes on resistance for every 20 minutes on cardio, and Manuel spends 14 minutes on resistance for every 15 minutes on cardio. Which person has the greatest ratio of minutes spent on resistance to minutes spent on cardio? (Example 2)

Alex

Resistance (min)			
Cardio (min)			

Carisa

Resistance (min)			
Cardio (min)			

Manuel

Manuel			
Resistance (min)			
Cardio (min)			

Test Practice

3. Open Response Mrs. Quinto is comparing the Calories in different types of bread. Wheat bread has 150 Calories for every 2 slices. The Calories in two other types of bread are shown in the table and graph. Which bread has the greatest ratio of Calories to slices?

White Bread

White Bread	
Slices	Calories
2	160
4	320
6	480

Apply

4. Mrs. Gonzalez wants to hire a catering company for her daughter's quinceañera. The ratios of the cost per person for a child and an adult for two different companies are shown in the table. Mrs. Gonzalez is planning on 25 adults and 12 children adding the party. How much less will it cost for her to hire Planning Pros than Party Time?

	Party Time	Planning Pros
Cost per Adult (\$)	10.50	9.00
Cost per Child (\$)	6.00	7.50

5. Charlie, Beth, and Miguel all babysit kids in their neighborhood. The table shows the number of hours and the amount each of them earned last night. If each person babysits for 5 hours next weekend, which person will earn the most money? Use a coordinate plane if needed to solve.

	Charlie	Beth	Miguel
Number of Hours	3	4.5	4
Total Earned (\$)	28.50	42.00	40.00

6. (4) Construct an Argument Ratio relationships can be described with words or they can be displayed using bar diagrams, tables, and graphs. Which display is more advantageous to use when comparing ratio relationships? Explain your reasoning.
7. Give an example of a ratio relationship that you have seen outside of school. How was the ratio relationship displayed, and why was the relationship displayed that way?
8. Find the Error Avery wants to order new practice T-shirts for her soccer team. The ratio of the total cost to the number of T-shirts purchased for three different stores is shown in the graph. Avery says that the shirts will cost less from Shirts Galore because the graph is steeper than the graphs of the other relationships. Find her mistake and correct it.

Solve Ratio Problems

I Can... solve real-world problems involving ratio relationships by using bar diagrams, double number lines, and equivalent ratios.

Learn Use Bar Diagrams to Solve Ratio Problems

Suppose three out of five randomly selected students at a certain school play sports. There are 525 students at the school. You can create a bar diagram to predict how many of the students play sports.

Step 1 Draw a bar.

There are three sections labeled play sports. So, you can predict that 3×105, or 315 students at the school play sports.

Pause and Reflect

How does the bar diagram illustrate what you have previously
learned in this module about part-to-whole and part-to-part ratios?
How does the bar diagram illustrate what you have previously
learned in this module about part-to-whole and part-to-part ratios?

Step 2 Shade and label the diagram.

Shade three sections to represent the three out of five students who play sports. Label each group and the total number of students at the school, 525.

Step 3 Find the value of each section.

Divide the total number of students by 5 to determine the value of each section. Because $525 \div 5=105$, each section represents 105 students.
Three out of five students play sports, so divide the bar into 5 equal sections.

Think About It!
How do you know that the number of students at Heritage Middle School who prefer cats can be expected to be greater than 375 ?

Talk About It!
How can you use ratio reasoning to check your solution?

(8) Example 1 Use Bar Diagrams to Solve Ratio Problems

Two out of three randomly selected students in Mrs. Mason's class at Heritage Middle School prefer cats as a household pet than any other pet.

If there are 750 students at Heritage Middle School, how many students can be expected to prefer cats as a household pet?

You can use a bar diagram to solve the problem.
Step 1 Draw a bar.

Two out of three students prefer cats, so divide the bar into three equal sections.

Step 2 Shade and label the diagram.

Shade two sections to represent the two out of three students who prefer cats. Label each group and the total number of students at the school, 750.

Step 3 Find the value of each section.

Divide the total number of students by 3 to determine the value of each section. Because $750 \div 3=250$, each section represents 250 students.

Because there are two sections labeled prefer cats, you can predict that 2×250, or 500 students at Heritage Middle School prefer cats as a household pet.

Check

A survey of randomly selected students found that out of every ten students, three said they get their news from their cell phone. If there are 750 students at Heritage Middle School, how many students can be expected to get their news from their cell phone?

Bo Online Y ou can complete an Extra Example online.

© Example 2 Use Bar Diagrams to Solve Ratio Problems

During their family vacation, Marcus took 18 photos on his cell phone. The ratio of the number of photos Marcus took to the number of photos his sister Maribel took is 3 to 4 .

How many photos did Maribel take?
You can use a bar diagram to solve the problem.

Step 1 Draw a bar.

Step 2 Shade and label the diagram.

Step 3 Find the value of each section.

The ratio of the number of photos Marcus took to the number Maribel took is $3: 4$, so divide the bar into four equal sections.

Shade three sections to represent the ratio $3: 4$ and add labels for Marcus and Maribel. Because Marcus took 18 photos, label the three shaded sections as 18 photos.

Divide the total number of photos Marcus took by 3 to determine the value of each section. Because $18 \div 3=6$, each section represents 6 photos.

There are four sections that represent the number of photos Maribel took. Multiply 6 by 4 . So, Maribel took a total of 6×4, or 24 photos on their vacation.

Check

A survey of randomly selected people found that the ratio of people who prefer oatmeal raisin cookies to those who prefer chocolate chip cookies is 3 to 5 . If 27 people said that they prefer oatmeal raisin cookies, how many said they prefer chocolate chip? Draw a bar diagram to support your solution.

3 Go Online Y ou can complete an Extra Example online.

Think About It!
Is the number of photos Maribel took less than, greater than, or equal to 18 ? How do you know?

Learn Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems

The manager of a small hotel determines that it takes 30 loads of laundry to clean the towels and sheets of the hotel's rooms each day. A large bottle of laundry detergent contains 150 ounces and the label indicates that the contents of the bottle can clean 75 loads. How many ounces of detergent are needed to clean the hotel's towels and sheets each day?

You can represent this ratio relationship and solve the problem by using double number lines and equivalent ratios.

Method 1 Use a double number line.
Step 1 Draw a double number line.
The top number line represents the number of loads of laundry. The bottom number line represents the number of ounces of detergent needed.

Mark the ratio of loads to detergent (75:150). Mark and label equal increments to show 30 loads.

Step 2 Find the equivalent ratio.
There are 5 equal sections. Because $150 \div 5=30$, label equal increments of 30 on the bottom number line.

The value on the bottom number line that corresponds with 30 loads is 60 ounces of detergent.

So, 60 ounces of detergent are needed each day.

Method 2 Use equivalent ratios.
Write and solve an equation stating that two ratios are equivalent. Let d represent the unknown number of ounces of detergent needed to clean 30 loads of laundry.
loads of laundry $\longrightarrow \frac{30}{d}=\frac{75}{150}<$ loads of laundry
ounces of detergent \longrightarrow ounces of detergent

$$
\begin{array}{ll}
\frac{30}{d}=\frac{75}{150} & \begin{array}{l}
\text { Because } 75 \div 2.5=30 \\
\text { divide } 150 \text { by } 2.5 \text { to find } \\
\text { the value of } d
\end{array} \\
\div 2.5 & \\
\frac{30}{60}=\frac{75}{150} & \begin{array}{l}
\text { 150 } \div 2.5=60 \\
\text { So, } d=60
\end{array}
\end{array}
$$

So, using either method, 60 ounces of detergent are needed to clean the hotel's towels and sheets each day.

Example 3 Use Double Number Lines and Equivalent Ratios to Solve Ratio Problems

The manager of a grocery store determines that an average of 480 jars of peanut butter are sold each week. Two cases of peanut butter contain 96 jars.

How many cases of peanut butter should the manager order each week?

Method 1 Use a double number line.
Step 1 Draw the double number line.
The top number line represents the number of cases of peanut butter. The bottom number line represents the number of jars of peanut butter.

Mark the ratio of cases to jars (2:96). Mark and label equal increments to show 480 jars.

(continued on next page)

Talk About It!
How can you use scaling and a table of equivalent ratios to solve this problem?

Step 2 Find the equivalent ratio.
There are 5 equal sections. Label equal increments of 2 on the top number line.

The value on the top number line that corresponds with 480 jars is 10 cases. So, 10 cases should be ordered each week.

Method 2 Use equivalent ratios.
Write and solve an equation stating that two ratios are equivalent. Let c represent the unknown number of cases the manager should order each week.
$\begin{array}{r}\text { number of cases } \\ \text { number of jars }\end{array} \longrightarrow \frac{2}{96}=\frac{c}{480}$ number of cases

$$
\frac{2}{96}=\frac{10}{480} \quad 2 \times 5=10 ; \text { So, } c=10 .
$$

So, using either method, the manager should order \qquad cases of peanut butter each week.

Check

The manager of a bakery determines that an average of 112 loaves of cheese bread are sold each week. For every 2 loaves of cheese bread that are sold, about 3 loaves of whole wheat bread are sold. About how many loaves of whole wheat bread are sold each week?

[^1]
Apply Inventory

The manager of an office supply store decides to hold a Buy 2, Get 1 Free sale on all reams of paper. A ream of paper holds 500 sheets of paper. The sale is held for one week and a total of 154 reams of paper were sold (not including the ones given away for free). If each ream of paper cost the store $\$ 4.50$, how much money did the store lose by giving away the free reams of paper?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution.

Math History Minute

Euphemia Haynes

 (1890-1980) was the first African-American woman to earn a Ph.D. in mathematics. She taught in the public school system of Washington, D.C. for 47 years and became the first woman to serve as chair of the city's School Board.\qquad
\square
\qquad
\qquad
\qquad
\qquad

44 Module 1 - Ratios and Rates

Practice

Go Online You can complete your homework online.

Use any strategy to solve each problem. (Examples 1-3)

1. A survey showed that 4 out of 5 students own a bicycle. Based on this result, how many of the 800 students in a school own a bicycle?
2. The ratio of the number of baskets made by Tony to the number of baskets made by Colin is 2 to 3 . Tony made 10 baskets. How many baskets did Colin make?
3. Liberty Middle School has 600 students. In Anna's class, 3 out of 8 students walk to school. How many students at the school can be expected to walk to school?
4. A survey of Mr. Thorne's class shows that 5 out of 8 students will buy lunch today. Based on this result, how many of the 720 students in the school will buy today?
5. In the school choir, there is 1 boy for every 4 girls. There are a total of 11 boys. How many girls are in the choir?
6. Pine Hill Middle School has 300 students. In Zoey's class, 2 out of 5 students belong to a club. How many students at the school would you expect belong to a club?

Test Practice
8. Open Response In a neighborhood, the ratio of houses with swing sets to houses without swing sets is 3 to 5 . If the number of houses with swing sets is 270 , how many houses do not have swing sets?

Apply

9. The manager of an art supply store decides to hold a Buy 2, Get 1 Free sale on tubes of watercolor paints. The sale is held for one week and a total of 280 tubes of paint were sold (not including the ones given away for free). If each tube of watercolor paint cost the store $\$ 7.25$, how much money did the store lose by giving away the free tubes of paint?
10. The manager of a garden store decides to hold a Buy 3, Get 1 Free sale on vegetable plants. The sale is held for one week and a total of 636 vegetable plants were sold (not including the ones given away for free). If each plant cost the store $\$ 2.90$, how much money did the store lose by giving away the free plants?
11. Construct an Argument Determine if the following statement is true or false. Construct an argument to defend your response.

In equivalent ratios, if the numerator of the first ratio is greater than the denominator of the first ratio, then the numerator of the second ratio is less than the denominator of the second ratio.
13. 13 Persevere with Problems Suppose 20 out of 140 people said they play tennis and 1 out of every 9 of those players have a tennis coach. Using these same ratios, in a group of 504 people, predict how many you would expect to have a tennis coach. Explain how you made the prediction.
12. Compare and contrast the use of bar diagrams and equivalent ratios to solve ratio problems.
14. Write and solve a real-world ratio problem that can be solved by using a bar diagram.

Convert Customary Measurement Units

I Can... use ratio reasoning to convert between customary units of measurement.

Learn Unit Ratios and Measurement Conversions

The table shows the Customary measurement conversions of length, weight, and capacity.

Customary Conversions			
Type of Measure	Larger Unit	\rightarrow	Smaller Unit
Length	1 foot (t) 1 yard (yd) 1 mile (mi)	$\begin{aligned} & = \\ & = \\ & = \end{aligned}$	12 inches (in.) 3 feet 5.280 feet
	$\begin{aligned} & 1 \text { pound (} \mathrm{lb} \text {) } \\ & 1 \text { ton }(\mathrm{T}) \end{aligned}$	$\begin{aligned} & = \\ & = \end{aligned}$	16 ounces (oz) 2,000 pounds
Capacity	1 cup (c) 1 pint (pt) 1 quart (qt) 1 gallon (gal)	$\begin{aligned} & = \\ & = \\ & = \\ & = \\ & = \end{aligned}$	8 fluid ounces (f oz) 2 cups 2 pints 4 quarts

Each relationship listed in the table is a ratio relationship. Because there are 12 inches for every 1 foot, the relationship between number of inches and number of feet is a ratio relationship. The ratio of inches to feet is $12: 1$ or 12 to 1 .

A unit ratio is a ratio in which the first quantity is compared to 1 unit of the second quantity. Each of the conversions can be written as unit ratios. Some examples of unit ratios are shown.
inches to feet $12: 1$
feet to yards $3: 1$
feet to miles $\quad 5,280: 1$
What unit ratio can you use to represent the relationship between ounces and pounds?

What unit ratio can you use to represent the relationship between pints and quarts?

What unit ratio can you use to represent the relationship between feet and miles?

What Vocabulary
Will You Learn?
unit ratio

Think About It!
Do you think the number of fluid ounces will be less than, greater than, or equal to 6 ? Why?

Talk About It!

Explain why the number of fluid ounces, 96 , is greater than the number of pints, 6 .

Learn Convert Larger Units to Smaller Units

You can use reasoning about ratios to convert a measurement from a larger unit to a smaller unit. The numerical value of the measurement is greater when a smaller unit is used. To see why, consider the following problem. Suppose you want to know how many fluid ounces are in 6 pints.

Method 1 Use a bar diagram.
Step 1 Draw a bar to represent 6 pints.

Divide the bar into six equal sections. Each section represents 1 pint.

Step 2 Find the number of cups.

Label each section as 2 cups, because there are 2 cups for every 1 pint.

Step 3 Find the number of fluid ounces.

For every 1 cup,
there are 8 fluid ounces. This means that for every 2 cups, there are 16 fluid ounces.

Multiply 6 by 16 to find the number of fluid ounces that are in 6 pints. Because $6 \times 16=96$, there are 96 fluid ounces in 6 pints.

Method 2 Use unit ratios and equivalent ratios.
Step 1 Convert 6 pints to cups.
There are 2 cups in every 1 pint. The unit ratio of cups to pints is $2: 1$. Let c represent the unknown number of cups that are in 6 pints.

48 Module 1 - Ratios and Rates

Step 2 Convert 12 cups to fluid ounces.
There are 8 fluid ounces in every 1 cup. The unit ratio of fluid ounces to cups is $8: 1$. Let f represent the unknown number of fluid ounces.
$\begin{aligned} \text { fluid ounces } & \longrightarrow \frac{8}{1}=\frac{f}{12} \& \text { cups }\end{aligned}$

Using either method, there are \qquad fluid ounces in 6 pints.

Q Example 1 Convert Larger Units to Smaller Units

Marco needs to mix $\frac{1}{2}$ gallon of fertilizer with some soil before planting his tulip bulbs.

How many cups of fertilizer should Marco use?

Method 1 Use a bar diagram.
Step 1 Draw a bar to represent 1 gallon.

Divide the bar into two equal sections. Shade one section to represent $\frac{1}{2}$ gallon.

Step 2 Find the number of quarts.

There are 4 quarts in 1 gallon so there are 2 quarts in a $\frac{1}{2}$ gallon. Divide each half into two sections. Label each section as 1quart.

Step 3 Find the number of pints.

For every 1 quart, there are 2 pints. Label each section as 2 pints.

Talk About It! Compare the use of the bar diagram to using equivalent ratios. Which method is more advantageous to use to visualize the relationship?

Suppose Marco
needed to find the
number of cups that
are in $\frac{1}{3}$ gallon. Why
might a bar diagram
not be the most
advantageous method
to use in this case?

\square
\square
\square

Step 4 Find the number of cups. For every 1 pint, there are 2 cups. This means that for every 2 pints, there are 4 cups.

There are two shaded sections that each represent 4 cups. So there are 2×4 or 8 cups in $\frac{1}{2}$ gallon.

Method 2 Use unit ratios and equivalent ratios.
Step 1 Convert $\frac{1}{2}$ gallon to quarts. There are 4 quarts in every 1 gallon. The unit ratio of quarts to gallons is $4: 1$. Let q represent the unknown number of quarts.

$$
\begin{aligned}
\begin{aligned}
\text { quarts } & \rightarrow \frac{4}{1} \\
\text { gallons } & =\frac{q}{\frac{1}{2}} \leftarrow \text { quarts } \\
& \div \frac{4}{1}=\frac{2}{\frac{1}{2}} \quad \\
& \text { gallons } \\
& \text { of } q . \text { Ther }
\end{aligned}
\end{aligned}
$$

Step 2 Convert 2 quarts to pints. There are 2 pints in every 1 quart. The unit ratio of pints to quarts is $2: 1$. Let p represent the unknown number of pints.

$$
\begin{aligned}
& \text { pints } \rightarrow \frac{2}{1}=\frac{p}{2} \leftrightarrow \text { pints } \\
& \text { quarts }
\end{aligned}
$$

Because $1 \times 2=2$, multiply 2 by 2 to find the value of p. There are 4 pints.

Step 3 Convert 4 pints to cups. There are 2 cups in every 1 pint. The unit ratio of cups to pints is $2: 1$. Let c represent the unknown number of cups.

$$
\begin{aligned}
& \text { cups } \rightarrow \frac{2}{1}=\frac{c}{4} \& \text { pups } \\
& \text { pints } \rightarrow \text { pints }
\end{aligned}
$$

So, Marco should use \qquad cups of fertilizer.

Check

How many ounces are in $\frac{1}{4}$ pound?

Go Online You can complete an Extra Example online.

Learn Convert Smaller Units to Larger Units

You can use reasoning about ratios to convert a measurement from a smaller unit to a larger unit. The numerical value of the measurement is less when a larger unit is used. To see why, consider the following problem. Suppose you want to convert 24 inches to yards.

Method 1 Use a bar diagram.
Step 1 Find the number of feet.
Draw a bar with 24 equal sections to represent 24 inches. For every 12 inches, there is 1 foot. Mark equal increments of 12 inches.

There are 2 whole feet in 24 inches.
Step 2 Find the number of yards.
For every 3 feet, there is 1 yard. There are only 2 feet. Another foot is needed to have 1 whole yard.

There are only two out of three sections shaded. So, there are 24 inches in $\frac{2}{3}$ yard.

Method 2 Use unit ratios and equivalent ratios.
Step 1 Convert 24 inches to feet.
There are 12 inches in every 1 foot. The unit ratio of inches to feet is $12: 1$. Let f represent the unknown number of feet.

Step 2 Convert 2 feet to yards.
Because there are 3 feet in every 1 yard, and there are only 2 feet, the number of yards is $\frac{2}{3}$.
So, using either method, there are 24 inches in $\frac{2}{3}$ yard.

Think About It!
Will the number of tons be less than, greater than, or equal to 9,920? Explain.

Talk About It!
How do you know that the number of tons should be less than 5 , but very close to 5 ?

@ Example 2 Convert Smaller Units to Larger Units

A male hippopotamus can weigh as much as 9,920 pounds.

How much is this weight in tons?

Use unit ratios and equivalent ratios.
There are 2,000 pounds for every 1 ton. The unit ratio of pounds to tons is $2,000: 1$. Let t represent the unknown number of tons.

$$
\begin{aligned}
& \begin{aligned}
& \text { pounds } \longrightarrow \\
& \text { tons }
\end{aligned} \frac{2,000}{1}=\frac{9,920}{t} \& \text { pounds } \\
& \times 4.96 \\
& \frac{2,000}{1}=\frac{9,920}{4.96} \\
& \text { Because 2,000 } \times 4.96=9,920 \text {, } \\
& \text { multiply } 1 \text { by } 4.96 \text { to find the value of } t \text {. } \\
& \text { There are } 4.96 \text { tons. }
\end{aligned}
$$

So, the male hippopotamus can weigh as much as 4.96 tons.

Check

How many yards are in 54 inches?

(3) Online Y ou can complete an Extra Example online.

Apply Soccer Practice

The table shows the amount of drinking water each athlete drinks during one soccer practice. The coach buys bottles of water for $\$ 1.75$ that each hold 1 liter of water. If 1 liter is equal to 1,000 milliliters, how much will the coach spend on water for one practice session?

Athlete	Amount (mL)
Deon	475
Sierra	350.5
Carmen	830
Mia	710.5
Ella	504

4 How can you show your solution is reasonable?
(2. Write About It! Write an argument that can be used to defend your solution.

Check
On Tuesday, Joaquin drank 6 glasses of water each containing 10 fluid ounces. His goal was to drink 2 quarts. How many more fluid ounces does he need to drink in order to reach his goal?

Pause and Reflect
What are the advantages of using a bar diagram to convert Customary measurement units? When might it be more advantageous to use unit ratios and equivalent ratios?

Practice

Use any strategy to solve each problem. (Examples 1 and 2)

1. Mrs. Menary made $4 \frac{1}{2}$ quarts of lemonade for a school party. How many fluid ounces of lemonade did she make?
2. The Martinez family has $\frac{3}{4}$ gallon of orange juice in the refrigerator. How many cups of orange juice are in the refrigerator?
3. A female hippopotamus can weigh 48,000 ounces. How many tons can a female hippopotamus weigh?
4. An elephant can drink up to 6,400 fluid ounces of water a day. How many gallons of water can an elephant drink per day?
5. One quart of strawberries weighs about 2 pounds. About how many quarts of strawberries would weigh $\frac{1}{4}$ ton?
6. A class walked 2.5 miles for a walk-a-thon. How many yards did the class walk?
7. A grand piano can weigh $\frac{1}{2}$ ton. How many ounces can a grand piano weigh?
8. At soccer practice, Tracey's best kick traveled a distance of 1,200 inches. For how many yards did she kick the ball?
9. A recipe for ice cream calls for 56 fluid ounces of milk. How many pints of milk are there in the recipe?

Test Practice

10. Open Response A mini fruit juice box contains 4 fluid ounces of juice. You need $2 \frac{1}{2}$ quarts of fruit juice. How many mini fruit juice boxes will you need?
11. At the grocery store, Mr. Arnett allowed each of his children to fill their own bag with trail mix for their hike. The table shows the amount of trail mix for each child. The trail mix costs $\$ 4.50$ per pound. How much will Mr. Arnett pay for all the trail mix?

Child	Amount of Trail Mix (oz)
Ava	15
Grayson	14
Mason	10
Tyler	17

12. A hockey player needs to shoot a puck 55 meters from his current location to his opponent's goal to score a goal. After the shot, the puck is 120 centimeters from his opponent's goal. If there are 100 centimeters in 1 meter, how many meters did the puck travel?
13. There are 60 minutes in one hour and 60 seconds in one minute. Using this information, explain how you could convert 20 miles per hour to feet per second.
14. The table shows the metric system conversions of length.

Larger Unit	$\rightarrow \quad$ Smaller Unit
1 kilometer (km)	$=1,000$ meters (m)
1 meter	$=100$ centimeters (cm)
1 centimeter	$=10$ millimeters (mm)

How can you use ratio reasoning to find the number of centimeters in 2.2 kilometers?
14. Identify Structure When converting from larger units such as quarts to smaller units such as cups, will the number of smaller units be greater than the number of larger units? Explain your reasoning.
16. (13 Find the Error A student's work for converting 4 gallons to cups is shown. Find the mistake and correct it.
$\frac{16 \text { gallons }}{1 \text { cup }}=\frac{4 \text { gallons }}{d}$
So, d is equal to $\frac{1}{4}$ cup.

Understand Rates and Unit Rates

I Can... understand how a rate is related to a ratio, and use ratio and rate reasoning to find a unit rate.

Explore Compare Quantities with Different Units

WOnline Activity Y ou will use Web Sketchpad to determine how many noodles a machine can make in various amounts of time, if the machine makes the same number of noodles per second.

Learn Understand a Rate and a Unit Rate

Luciana ran 4 laps around the track at her middle school in a total of 6 minutes. Suppose she
 ran at a constant speed. The bar

What Vocabulary Will You Learn?
rate
unit price
unit rate

To find the number of minutes per lap, find the value of each section. Because $6 \div 4=1.5$, Luciana ran at a rate of 1.5 minutes per lap.

This rate is called a unit rate. A unit rate is a rate in which the first quantity is compared to 1 unit of the second quantity. The phrase per is used to describe unit rates. It means for each.

Talk About It!
How does this bar diagram compare to the one on the previous page? Do they represent the same relationship between the two quantities?

Talk About It!
Which unit rate, minutes per lap or laps per minute, would be helpful if you wanted to predict how many minutes it will take Luciana, at that rate, to run 5 laps? Why?

Luciana ran 4 laps in 6 minutes. Suppose you want to find how many laps she can run in 1 minute, at this same rate. The bar diagram represents the relationship between the number of laps, 4 , and the number of minutes, 6 .

The ratio of the number of laps to the number of minutes is $4: 6$, because Luciana ran 4 laps in 6 minutes. The ratio $4: 6$ has the associated rate 4 laps in 6 minutes.

To find the number of laps per minute, find the value of each section. Because $4 \div 6=\frac{4}{6}$, or $\frac{2}{3}$, Luciana ran at a rate of $\frac{2}{3}$ lap per minute.

The table summarizes ratios, rates, and unit rates.

Ratio		
Words	Units	Examples
a comparison between two quantities, in which for every a units of one quantity, there are b units of another quantity	units can be alike or different	6 laps to 4 laps $6: 4$ 4 laps in 6 minutes $4: 6$
Rate		
Words	Units	Examples
a special kind of ratio in which the units are different	units are different	6 minutes for 4 laps 4 laps in 6 minutes
Unit Rate		
Words	Units	Examples

a rate in which the first quantity is given for every 1 unit of the second quantity
units are different
1.5 minutes per lap
$\frac{2}{3}$ lap per minute

58 Module 1 - Ratios and Rates

Example 1 Find a Unit Rate

A scientist studying hummingbirds recorded that a hummingbird flapped its wings 1,590 times in 30 seconds during normal flight.

Assuming a constant rate, how many times did the hummingbird flap its wings per second?

Method 1 Use a ratio table.
Create a ratio table with the given information.

Scale backward to find the number of wing flaps per
 second.

Method 2 Use equivalent rates.
Write and solve an equation stating that two rates are equivalent. Let s represent the unknown number of wing flaps per second.

```
\(\begin{aligned} \text { wing flaps } \\ \text { seconds }\end{aligned} \rightarrow \frac{s}{1}=\frac{1,590}{30} 4 \begin{aligned} & \text { wing flaps } \\ & \text { seconds }\end{aligned}\)
            \(\div 30\)
            \(\frac{s}{1}=\frac{1,590}{30} \quad\) Because \(30 \div 30=1\), divide 1,590 by 30 to
\[
\div 30
\]
\[
\frac{53}{1}=\frac{1,590}{30} \quad 1,590 \div 30=53 ; \text { So, } s=53
\]
```

So, using either method, the hummingbird flapped its wings at a rate of 53 flaps per second.

Check

Refer to Example 1. The scientist also recorded that the hummingbird took 6,250 breaths over a period of 25 minutes. Assuming a constant rate, how many breaths per minute did the hummingbird take?

Think About It!
Why might a bar diagram not be the best method to use to find the unit rate?

At this rate, how many times would the hummingbird flap its wings in 2 minutes? Justify your response.

Learn Unit Price

A grocery store sells a 6 -ounce container of yogurt for $\$ 0.78$. The store also sells a 32 -ounce container of the same yogurt for $\$ 3.84$. To determine which is the better buy - per ounce - find the unit price of each item. The unit price is the cost per unit of an item. You can use what you know about unit rates to find a unit price.

6-Ounce Container

Scale backward to find the price per ounce. The unit price is $\$ 0.13$ per ounce.

32-Ounce Container

Scale backward to find the price per ounce. The unit price is $\$ 0.12$ per ounce.

When might it be better to buy the 6-ounce container instead of the 32-ounce container?

Per ounce, the 32-ounce container of yogurt is the better buy, because the unit price is less than that of the 6-ounce container.

Q Example 2 Find a Unit Price

For Carolina's birthday, her mother took her and four friends to a water park. Carolina's mother can pay either \$130 for a 5-pack of student tickets, or $\$ 28$ for each individual student ticket.

Which ticket payment option has the lesser unit price?
The unit price is given for buying the tickets individually, $\$ 28$ per ticket. Find the unit price for the 5-pack of student tickets.

Scale backward to find the unit price. The unit price is $\$ 26$ per ticket.

So, the 5 -pack ticket payment option has the lesser unit price because $\$ 26<\$ 28$.

Check

A sporting goods store sells a package of twenty baseballs for $\$ 25.95$ or single baseballs for $\$ 1.75$ each. Which option has the lesser unit price?

3 Go Online Y ou can complete an Extra Example online.

60 Module 1 - Ratios and Rates

Apply Travel

The Martinez family and the Davidson family each drove at a constant rate. The Martinez family drove 260 miles in 4 hours and the Davidson family traveled 305 miles in 5 hours. Which family traveled at a faster rate? How much faster?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check
A runner is training for a half marathon. On Wednesday, she ran 6 miles in 50 minutes. On Thursday, she ran 4 miles in 32 minutes. Assume she ran at a constant rate each day. On which day did she run faster? By how much faster did she run?

Go Online Y ou can complete an Extra Example online.

Pause and Reflect
How did what you learned in this lesson relate to a previous lesson or lessons in this module?

Practice

Use any strategy to solve each problem.

1. A hippopotamus can run 6 kilometers in 15 minutes. At this rate, how far can the hippopotamus run in 1 minute? (Example 1)
2. A cat's heart beats approximately 45 times in 15 seconds. At this rate how many times does the cat's heart beat per second? (Example 1)
3. At the school festival, Heather can buy 25 game tickets for $\$ 10$, or she can pay $\$ 0.50$ per game ticket. Which option has the lesser price per ticket? (Example 2)
4. Imena earned $\$ 261$ last week. If she worked 18 hours and earned the same amount each hour, how much was she paid per hour? (Example 1)
5. Mr. Farley used 4 pounds of hamburger to make 10 hamburger patties of the same size. How many pounds of hamburger did he use per patty? (Example 1)
6. At a toy store, Colton can buy a package of 6 mini footballs for $\$ 7.50$, or a package of 8 mini footballs for $\$ 9.60$. Which option has the lesser price per mini football? (Example 2)

Test Practice

8. Multiple Choice Which of the following offers the least price per ounce of shampoo?
(A) $\$ 6$ for 8 ounces of shampoo
(B) $\$ 4$ for 5 ounces of shampoo

C $\$ 8$ for 12 ounces of shampoo
(D) $\$ 12$ for 16 ounces of shampoo

Apply

9. Nolan found two stores that sell filled party favor bags. The table shows his options. Which store has the lesser cost per filled bag? How much less?

Store	Number of Bags	Cost (\$)
Party R Us	8	12
Celebrations	12	21

10. The Houck family and Roberts family took trains for their family vacations, traveling at constant rates. The Houck family's train traveled 552 miles in 6 hours and the Roberts family's train traveled 744 miles in 8 hours. Which family's train is traveling at a faster rate? How much faster?
11. Caleb paid $\$ 4.50$ for 12 bagels. Describe a unit price for bagels that is greater than the unit price Caleb paid.
12. Jif Justify Conclusions If you travel at a rate of 60 miles per hour, how many minutes will it take you to travel 1 mile? Write an argument that can be used to justify your conclusion.
13. 137 Find the Error A large box of spaghetti noodles contains 3 pounds and costs $\$ 2.40$. A student said the unit cost is $\$ 1.20$ per pound. Is the student correct? Explain.
14. Reason Inductively Suppose two boxes of cereal contain the same number of ounces but cost different amounts. Without computing, how can you determine which cereal will cost more per ounce of cereal? Explain.

Solve Rate Problems

I Can... solve real-world problems involving rates and unit rates by using bar diagrams, double number lines, and equivalent rates.

Learn Use Bar Diagrams to Solve Rate Problems

Destiny drove 220 miles in 4 hours. Santiago drove 248 miles in 4 hours. At these rates, how many more miles can Santiago drive in 9 hours than Destiny? You can create bar diagrams to solve this rate problem.

Step 1 Construct bar diagrams to represent the rates.
Draw two bars. Each bar represents the number of miles each person drove in 4 hours. Because each person drove 4 hours, divide each bar into 4 equal-size sections. Each section represents 1 hour.

Step 2 Find the unit rates.
Divide the total number of miles each person drove by the number of sections in the diagram to find the unit rate, the number of miles they drove per hour.

$248 \div 4=62$
The unit rate is 62 miles per hour.

Destiny's unit rate is 55 miles per hour. Santiago's unit rate is 62 miles per hour.
Each hour, Santiago can drive $62-55$, or 7 miles more than Destiny. In 9 hours, Santiago can drive 9×7, or 63 miles more than Destiny.

Think About It!

 Why do you need to know the sizes of the cans? Do you need to use that number when solving the problem?Talk About It!
How can you use estimation to help you solve this problem if you are in a store and do not have access to pencil, paper, or a calculator?

Example 1 Use Bar Diagrams to Solve Rate Problems

A warehouse sells 15 -ounce cans of tomato sauce by the case. Each case contains 6 cans and sells for a price of $\$ 9.96$. At a local grocery store, three 15 -ounce cans of the same brand of tomato sauce are on sale for $\$ 5.67$. A caterer needs to buy 36 cans.

How much will the caterer save by buying 36 cans from the warehouse instead of from the grocery store?

Step 1 Construct bar diagrams to represent each situation.
Draw two bars, one to represent the cost of tomato sauce cans at the warehouse, and one to represent the cost of tomato sauce cans at the grocery store. Each section represents one can.

Grocery Store

Step 2 Find the unit prices.
Divide the total price for each by the number of cans to find the unit price, the price per can.

Grocery Store

$\$ 5.67 \div 3=\$ 1.89$
The unit price is $\$ 1.89$ per can.

The caterer will save $\$ 1.89-\$ 1.66$, or $\$ 0.23$ per can by buying from the warehouse instead of the grocery store. To buy 36 cans from the warehouse instead of the grocery store, the caterer will save $36 \times \$ 0.23$, or \qquad .

Check

Miranda typed 325 words in 5 minutes, while Joseph typed 295 words in 5 minutes. At these rates, how many more words can Miranda type in 9 minutes than Joseph?

Go Online Y ou can complete an Extra Example online.

Learn Use Double Number Lines and Equivalent Rates to Solve Rate Problems

A veterinarian measured the number of heartbeats of her dog and cat for 4 minutes and recorded the results in the table. At these rates, how many more times does the cat's heart beat in 6 minutes than the dog?

Method 1 Use a double number line.
Step 1 Construct a double number line.
In four minutes, the cat's heart beats $520-360$, or 160 more times than the dog's heart. Draw a double number line to represent this difference.

Step 2 Use scaling to find the unit rate.
Scale back to find the difference in heartbeats for 1 minute. Then scale forward to find the difference in heartbeats for 6 minutes.

The cat's heart beats 240 more times in 6 minutes than the dog's heart.
Method 2 Use equivalent rates.
Write and solve an equation. Let d represent the difference in heartbeats for 6 minutes. The difference in heartbeats for 4 minutes is 160 beats.

Animal	Heartbeats
Dog	360
Cat	520

Think About It!
Will the price of a 15 -pound bag be less than twice as much as the price for a 12-pound bag? Why or why not?

Talk About It!

The average weight of a Red Delicious apple is about 5 ounces.
About how many apples would you expect to be in a 15 -pound bag? Explain.

A bulk food store sells a 12-pound bag of Red Delicious apples for $\$ 18$.
At this rate, what is the price of a 15 -pound bag of apples?
Method 1 Use a double number line.
Step 1 Construct a double number line.
Draw a double number line to represent the price of a 12-pound bag. Mark equal increments on the bottom number line.

Step 2 Use scaling to find an equivalent rate.
Scale back to find the price for a 3-pound bag. Then scale forward to find the price for a 15 -pound bag.

At this rate, the price of a 15 -pound bag of apples is $\$ 22.50$.
Method 2 Use equivalent rates.
Write and solve an equation. Let p represent the price of the 15 -pound bag.

$$
\begin{aligned}
& \underset{\text { price }(\$)}{\text { pounds }} \rightarrow \frac{15}{p}=\frac{12}{18} \quad 4 \text { prinds } \\
& \times 1.25 \\
& \frac{15}{p}=\frac{12}{18} \quad \text { Because } 12 \times 1.25=15 \text {, } \\
& p=\frac{18}{18} \quad \text { multiply } 18 \text { by } 1.25 \text { to find } p \text {. } \\
& \times 1.25 \\
& \frac{15}{22.5}=\frac{12}{18} \quad \begin{array}{l}
18 \times 1.25=22.5 ; \\
\text { So, } p=22.5 .
\end{array}
\end{aligned}
$$

So, using either method, the price of a 15 -pound bag is $\$ 22.50$.

Check

The manager of a small bakery determines that an average of 264 loaves of cinnamon raisin bread are sold every 12 weeks. At this rate, about how many loaves of cinnamon raisin bread are sold every 5 weeks?

Go Online Y ou can complete an Extra Example online.

Apply Bike-a-thon

Keshia can ride her bike 15 miles in 90 minutes. She wants to ride in a bike-a-thon that consists of two trail options, a 56 -mile trail or a 36-mile trail. At her current rate, how many more hours will it take her to ride 56 miles than 36 miles? If she wants to ride for about 4 hours, which trail should she choose?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
2. Write About It! Write an argument that can be used to defend your solution.

Check

Martin can run 6 miles in 60 minutes. He wants to run in either one of two upcoming races, a 4 -mile race or a 12 -mile race. At his current rate, how much longer will it take him to run the 12-mile race than the 4 -mile race?
2) Go Online Y ou can complete an Extra Example online.

Pause and Reflect

What are some problems or situations in which you may have encountered rates, such as a unit price or rate of travel, in your everyday life? How can you use your understanding of ratios and rates to solve everyday problems like these?

Practice

Use any strategy to solve each problem.

1. Mr. Anderson is ordering pizzas for a class pizza party. Pizza Place has a special where he can buy 3 large pizzas for $\$ 18.75$. At Mario's Pizzeria, he can buy 4 large pizzas for $\$ 22$. If he needs to buy 12 pizzas, how much will he save if he buys the pizzas from Mario's Pizzeria instead of Pizza Place?
(Example 1)
2. Melissa is buying party favors to make gift bags. Supplies LTD sells a 5-pack of favors for $\$ 11.25$ and Parties and More sells a 3 -pack of favors for $\$ 8.25$. At these rates, how much will she save if she buys 15 favors from Supplies LTD than Parties and More? (Example 1)
3. A bakery makes 260 donuts in 4 hours. At this rate, how many donuts can they make in 6 hours? (Example 2)
4. Skylar and Rodrigo each recorded how far they traveled while skateboarding. Skylar traveled 65 feet in 5 seconds and Rodrigo traveled 108 feet in 8 seconds. How much farther did Rodrigo travel per second than Skylar? (Example 1)
5. Tara can type 180 words in 4 minutes. At this rate, how many words can she type in 10 minutes? (Example 2)

Test Practice

6. Open Response While jumping rope, Juan jumped 24 times in 30 seconds. At this rate, how many times will he jump in 50 seconds?

Apply

7. Naomi can run 12 miles in 108 minutes. She is thinking about running in two different races, a 9-mile race and a 13-mile race. At her current rate, how many more minutes will it take her to complete the 13-mile race than the 9 -mile race?
8. Leroy wants to buy a new racing bicycle that costs $\$ 168$. T o earn money, he can either do yardwork for his grandmother or babysit his brother and sister. He earns $\$ 24$ for 3 hours of yardwork and he earns $\$ 48$ for 4 hours of babysitting. How much longer will it take him to earn the money if he only does yardwork for his grandmother?
9. Billie bikes 9 miles in 45 minutes. At this rate, can she bike 24 miles in 2 hours? Write an argument that can be used to justify your solution.
10. (19) Persevere with Problems A fruit stand is selling mandarin oranges for $\$ 6$ for 4 pounds. A mandarin orange weighs about 2 ounces. There are 16 ounces in a pound. At this rate, how many mandarin oranges can you buy for $\$ 9$?
11. Be Precise Which method, using a double number line or using equivalent rates, do you prefer to use when solving rate problems? Explain.
12. Create Write and solve a real-world rate problem that can be solved by using a double number line.

Rate Yourself!
Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Write about one thing you learned.
Write about a question you still have.

Reflect on the Module

Use what you learned about ratios and rates to complete the graphic organizer.

Fssential Question

How can you describe how two quantities are related?

Describe how each representation can be used to understand ratios, rates, or unit rates.

Test Practice

1. Equation Editor Jeremy is making a healthy ice cream using only ripe bananas and peanut butter. The recipe makes 4 servings and calls for a ratio 5 bananas to 3 tablespoons of peanut butter. If Jeremy has 30 bananas, how many tablespoons of peanut butter does he need? (Lesson 1)

\square
2. Open Response Students at Lincoln Middle School earn $\$ 5$ for every 4 boxes of cookie dough sold during a fundraiser. Students at Williams Middle School earn \$7 for every 6 rolls of wrapping paper sold during their fundraiser. For which fundraiser do students earn the greater amount of money per item sold? (Lesson 4)
3. Multiple Choice A recipe for a punch calls for 12 fluid ounces of orange juice. Reyna needs to make 4 batches of punch for a party. How many quarts of orange juice will Reyna need? (Lesson 6)
(A) 0.375 quart
(B) 1.5 quarts
(C) 3 quarts
(D) 6 quarts
4. Table Item Place an X in the column to indicate whether or not Ratio A is equivalent to Ratio B. (Lesson 2)

Ratio A	Ratio B	Yes	No
8 questions correct out of 10	4 questions orrect out of 5		
15 prizes won in 3 40 attempts	prizes won in 10 attempts		
3 cats for every 1 6 dogs	cat for every 2 dogs		

5. Multiselect Which of the following rates are unit rates? Select all that apply. (Lesson 7)
$\square 65$ miles per hour2 degrees every half hour
3.2 inches of rain in 2 days
$\square 3$ questions for each lesson
$\square 24$ students for every 2 teachers
6. Open Response The table shows the number of canned goods collected by three different homerooms during a food drive. (Lesson 2)

Homeroom	Number of Students	Goods Collected
Mr. Alvarez	25	150
Ms. Jensen	28	154
Mrs. Saunders	27	162

Are the ratios of canned goods per student equivalent between any or all of the classes? Explain your reasoning.
7. Open Response Jessica jogged 4 laps around a track in 9 minutes, Luke jogged 8 laps in 27 minutes. Their rates can be expressed as the ratios $\frac{4 \text { laps }}{9 \text { minutes }}$ and 8 laps . Are Jessica and Luke's rates equivalent? Explain. (Lesson 7)
8. Grid Kurt uses 3 cups of flour for every 2 cups of sugar in a recipe. Graph the ordered pairs to represent the cups of sugar needed if he uses $3,6,9$, or 12 cups of flour. (Lesson 3)

9. Open Response Abigail surveyed 40 students about their favorite kind of movie. The results are shown in the table. If there are 200 students in the school, predict how many more students prefer action movies to scary movies. (Lesson 7)

Type of Movie	Number of Students
Action	14
Animated	3
Comedy	10
Drama	4
Scary	9

\square

76 Module 1 • Ratios and Rates
10. Multiple Choice Three out of 5 students at Maria's school participate in a school club or sport. There are 175 students at the school. Which of the following shows how equivalent fractions can be used to find the total number of students that participate in a school club or sport? (Lesson 5)
(A) $\frac{3}{5}=\frac{s}{175}$
(B) $\frac{3}{5}=\frac{175}{s}$
(C) $\frac{3}{175}=\frac{s}{5}$
11. Open Response A barge traveled 120 miles downstream in 8 hours. Then it traveled 100 miles upstream in 10 hours. (Lesson 8)
A. How did the rate of speed downstream compare to its rate of speed upstream?
B. What was the difference between the rates of speed?

12. Equation Editor Mr. Collins ordered 8,000 ounces of stone. How many tons of stone did he order? (Lesson 6)

e Essential Question
How can you use fractions, decimals, and percents to solve everyday problems?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it. 3 - know it!		0	3	0	0	3
identifying a percent as a rate per 100						
representing percents with 10×10 grids and bar diagrams						
writing fractions or mixed numbers as percents						
writing percents as fractions or mixed numbers						
writing decimals as percents						
writing percents as decimals						
finding the percent of a number						
using benchmark percents to estimate the percent of a number						
finding the whole, given a percent and the part of a number						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about percents.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square benchmark percents
\square percent

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1
Use part to whole ratios.
The ratio of strawberries to total ingredients in a recipe is 2 to 5 . If you have 35 total ingredients, how many are strawberries?
$\begin{aligned} \text { strawberries }\end{aligned} \rightarrow \frac{2}{5}=\frac{s}{35} \leftrightarrow$ - total ingredients

$$
\begin{aligned}
& \frac{2}{5}=\frac{s}{35} \\
& \begin{array}{ll}
\times 7 & \begin{array}{l}
\text { Because } 5 \times 7=35 \\
\text { multiply } 2 \text { by } 7 \text { to find } \\
\text { the value of } s
\end{array} \\
\times 7 & \\
\frac{2}{5}=\frac{14}{35} & \begin{array}{l}
2 \times 7=14 \\
\text { So, } s=14
\end{array}
\end{array} .
\end{aligned}
$$

So, 14 strawberries are needed to maintain the ratio in the recipe.

Quick Check

1. The ratio of cups of borax to total ingredients in a recipe for homemade laundry detergent is $2: 6$. If you need 24 total cups of laundry detergent, how many cups of borax do you need?

How Did You Do?
Which exercises did you answer correctly in the Quick Check?
Shade those exercise numbers at the right.

Example 2

Use place value to write decimals in word form.

Write each decimal in word form.
The place value of the last digit, 3 , is tenths.
word form: three tenths
2.15

The place value of the last digit, 5 , is hundredths.
word form: two and fifteen hundredths
2. Write 0.212 in word form.
3. Write 0.145 in word form.

Understand Percents

I Can... understand the meaning of a percent as a rate per 100, and model percents using 10×10 grids and bar diagrams.

Learn Use 10×10 Grids to Model Percents

A percent is a ratio, or rate, that compares a number to 100. Percent means per hundred and is represented by the symbol \%. For example, 50% means 50 per 100 and is read as fifty percent. It represents the ratio $50: 100,50$ to 100 , or $\frac{50}{100}$.
A 10×10 grid can be used to model a percent. Because there are 100 squares, each square represents 1%. The 10×10 grid shown below represents 45% because the ratio of shaded squares to the total number of squares is $45: 100$.

Other ways to model 45% using a 10×10 grid are shown below. Note that you do not need to shade the squares in any particular order. As long as the number of shaded squares is 45 , you have correctly modeled 45\%.

What Vocabulary Will You Learn?

percent

Talk About It!
What percent of the grid is not shaded? Explain your reasoning.

Talk About It!
How can you quickly determine the number of shaded squares in the grid without counting every square?

Talk About It!
When modeling a percent on a 10×10 grid, is there a specific order in which you must shade the squares? Explain.

Example 1 Identify the Percent

What percent is represented by the 10×10 grid?

Identify the number of shaded squares. How many squares are shaded?

Write the ratio that compares the number of
 shaded squares to the total number of squares.

The ratio is : 100, to 100 , or $\frac{}{100}$.

So, the percent represented by the 10×10 grid is \square

Check

What percent is represented by the 10×10 grid?

Go Online Y ou can complete an Extra Example online.

Q Example 2 Model the Percent

In a recent survey, 17\% of the people surveyed said that they have a magazine subscription.

Shade the $\mathbf{1 0} \times \mathbf{1 0}$ grid to model 17%.

17% means 17 per 100. There are 100 squares in a 10×10 grid. To model 17%, shade \longrightarrow squares on the grid.

Check

A middle school newspaper surveyed the student body and found that 14% of the students surveyed chose horses as their favorite animal. Shade the 10×10 grid to model 14%.

[^2]
Learn Use Bar Diagrams to Model Percents

You can also use bar diagrams to model percents. A bar diagram can be divided into any number of equal-size sections.

To model 10% or a multiple of 10%, you can divide the bar diagram into 10 equal-size sections.

The bar diagrams show representations of several percents that are multiples of 10%.

To model 5\% or a multiple of 5\%, you can divide the bar diagram into 20 equal-size sections.

The bar diagrams show representations of several percents that are multiples of 5%.

Example 3 Identify the Percent

What percent is represented by the bar diagram?

The bar diagram is divided into 10 equal-size sections.
Each section represents \%.

How many sections are shaded?
The total percent represented is $\quad \times 10 \%$, or $-\%$.
So, the percent represented by the bar diagram is - \%.

Check

What percent is represented by the bar diagram?

Go Online Y ou can complete an Extra Example online.

Example 4 Model the Percent

Use a bar diagram to model 65\%.

Draw a bar to represent 100\%. Divide the bar into 20 equal-size sections because 65% is a multiple of 5 .

Each section represents 5%. How many sections should be shaded to represent 65\%?

Shade those sections on the bar diagram above to model 65\%.

Check

Draw a bar diagram to model 35\%.

Go Online Y ou can complete an Extra Example online.

82 Module 2 - Fractions, Decimals, and Percents

Practice

Go Online You can complete your homework online.For Exercises 1 and 2, identify the percent represented by each 10×10 grid. (Example 1)
1.

3. In a school survey, 12% of the students surveyed said they like camping. Shade the 10×10 grid to model 12%. (Example 2)

2.

4. Of the students in the lunch line, 9% said they were buying strawberry milk. Shade the 10×10 grid to model 9\%. (Example 2)

For Exercises 5 and 6, identify the percent represented by each bar diagram. (Example 3)
5.

7. Shade the bar diagram to model 25%. (Example 4)

6.

Test Practice
8. Open Response How can you use a bar diagram to model 45% ?

Apply

9. The model shows the percent of students who voted for a tiger as the new school mascot. Did more than 50\% of the students not vote for a tiger as the mascot? Write an argument that can be used to defend your solution.
\qquad

10. The model shows the percent of baseball players on a team who plan to go to a baseball camp on Saturday. Can the coach say that more than 75% of his players are going to the camp? Write an argument that can be used to defend your solution.

0%		50\%							

11. Reason Abstractly Suppose you divide a bar diagram into 25 equal-size sections and shade 5 sections. What percent is modeled in the diagram? Explain.
12. Make an Argument Use an example to explain how you can model percents greater than 100\%.
13. Find the Error A student said that to write a percent as a fraction, write the number that comes before the percent symbol over a denominator of 100 . Is the student correct? Justify your conclusion.
14. Create Write a real-world problem that involves a percent less than 50%. Then

Lesson 2-2 Percents Greater Than 100% and
Less Than 1\%

I Can... understand that percents can be greater than 100% or less than 1% and use 10×10 grids and bar diagrams to represent them.

Learn Percents Greater Than 100\%

The table shows the total rainfall during April for a certain city for three different years.

Year	April Rainfall (in.)
2017	4.0
2018	3.0
2019	5.0

In 2018, it rained less than it did in 2017. To compare the rainfall in 2018 to that in 2017, use the ratio $3: 4$. Recall that a percent is a ratio that compares a number to 100. You can use equivalent ratios to show that the rainfall in 2018 was 75% of the rainfall in 2017.

If the number being compared to 100 is less than 100 , then the percent is less than 100%.

In 2019, it rained more than it did in 2017. To compare the rainfall in 2019 to that in 2017, use the ratio $5: 4$. You can use equivalent ratios to show that the rainfall in 2019 was 125\% of the rainfall in 2017.

If the number being compared to 100 is greater than 100 , then the percent is greater than 100%.

Percents are greater than 100% when the number being compared to 100 is greater than 100. When the percent is greater than 100%, the part is greater than the whole.

Example
125% means 125 per 100

125: 100, 125 to 100,

$$
\text { or } \frac{125}{100}
$$

one hundred twenty-five percent

Model

Think About It!
How many total squares are in each grid?

Talk About It!
How can you quickly determine the number of shaded squares in the grid without counting every square?

Example 1 Identify the Percent

What percent is represented by the $\mathbf{1 0} \times \mathbf{1 0}$ grids?

The percent compares the number of shaded squares to 100, because one whole grid contains 100 squares.

How many whole grids are shaded?
How many squares are shaded in the third grid?
How many squares are shaded altogether?

Write the ratio that compares the total number of shaded squares to one whole grid of 100 squares.
The ratio is $: 100, \quad$ to 100 , or $\frac{\square}{100}$.

So, the percent represented by the 10×10 grids is \qquad \%.

Check

What percent is represented by the 10×10 grids?

Go Online Y ou can complete an Extra Example online.

Example 2 Model the Percent

At birth, the average kitten weighs 5 ounces. At 3 weeks of age, the average kitten will weigh twice as much as at birth.

Write a percent that compares a kitten's weight at 3 weeks to its weight at birth. Then use $\mathbf{1 0 \times 1 0}$ grids to model the percent.

At 3 weeks of age, the kitten will weigh ounces. 10 ounces is twice as much as 5 ounces.

Write a ratio comparing the average kitten's weight at 3 weeks of age to its weight at birth. Use equivalent ratios to show that the average kitten's weight at 3 weeks of age is \qquad \% its weight at birth.

Draw and shade 10×10 grids to model 200%.

Check

At birth, a male baby giraffe stands almost 6 feet tall. At 4 years of age, the male giraffe will be about three times as tall as at birth. Write a percent that compares the giraffe's height at 4 years of age to its height at birth. Then draw and shade 10×10 grids to model the percent.

Think About It!
If a kitten's weight did not change, what percent would compare its unchanged weight to its weight at birth?

Talk About It!

Suppose the veterinarian states that the kitten's weight increased by 100\%. Is this claim correct? Why or why not? When talking about the kitten's weight, when is it correct to use 100\% and when is it correct to use 200\%?

\square
\square

Learn Percents Less Than 1\%

Percents can also be less than 1%. Consider the following situation.
The distance from the center of Earth to the surface is also known as the radius of Earth. The radius of Earth is about 4,000 miles. The radius of the Sun is about 430,000 miles.

The ratio of Earth's radius to the Sun's radius is $4,000: 430,000$. You can use equivalent ratios to show that the radius of Earth is about 0.93% of the Sun's radius. Because 430,000 divided by 4,300 is 100 , divide 4,000 by 4,300 . Round to the nearest hundredth.

Percents are less than 1% when the number being compared to 100 is less than 1 . When the percent is less than 1%, the part is significantly less than the whole. The radius of Earth is significantly less than the radius of the Sun.

On a 10×10 grid, 0.93% is represented by shading 93% of one grid square. One grid square represents 1% and 0.93% is less than 1%. Compared to $100 \%, 0.93 \%$ is significantly less.

Example	
0.93% means 0.93 per 100	
$0.93: 100,0.93$ to 100, or $\frac{0.93}{100}$	
ninety-three hundredths of a percent	

When thinking about how the size of Earth compares to the size of the Sun, it makes sense that Earth's radius is significantly less than the Sun's radius. Earth's radius is a little less than 1% of the Sun's radius.

Example 3 Identify the Percent

What percent is represented by the $\mathbf{1 0} \times \mathbf{1 0}$ grid?

The percent compares the number of shaded squares to 100 , because one whole grid contains 100 squares.

Less than 1 grid square is shaded on the 10×10 grid. The close-up reveals that one-fourth, $\frac{1}{4}$, or 0.25 , of one grid square is shaded.

Write the ratio that compares the total number of shaded squares to one whole grid of 100 squares.

The ratio is $0.25: 100,0.25$ to 100 , or $\frac{0.25}{100}$.

So, the percent represented by the 10×10 grid is \qquad \%. Another way to write this percent is $\frac{1}{4} \%$.

Check

What percent is represented by the 10×10 grid?
(3) Go Online Y ou can complete an Extra Example online.

Think About It!
How do you know that the percent represented is less than 1% ?

Talk About It! A friend states that the percent represented by the 10×10 grid is 25%. How can you use reasoning to explain to your friend that this is incorrect?

Think About It!

Without calculating the percent, how does the length of the plankton compare to the length of the jellyfish?

Talk About It!

What might be a common error that someone might make when shading 0.5% on the 10×10 grid?

The diet of a jellyfish consists primarily of plankton, which are tiny organisms living in the ocean. One species of plankton has an average length of 0.04 inch. Suppose a certain jellyfish has a length of 8 inches.

Write a percent that compares the length of the plankton to the length of the jellyfish. Then use the $\mathbf{1 0} \times \mathbf{1 0}$ grid to model the percent.

Step 1 Write a ratio comparing 0.04 inch to 8 inches.
Use equivalent ratios to show that the plankton's length is \% the length of the jellyfish.

Step 2 Shade the 10×10 grid.
To model 0.5%, shade half of one percent by shading half of one grid square.

Check

The average weight of a brown bear is about 1,000 pounds. Suppose a large stuffed bear weighs 2.5 pounds. Write a percent to compare the weight of the stuffed animal to the weight of the brown bear.
Then use the 10×10 grid to model the percent.

Go Online You can complete an Extra Example online.

Practice

Go Online You can complete your homework online.

Identify the percent represented by the 10×10 grids. (Examples 1 and 3)
1.

2.

5. The size of a large milkshake is 1.4 times the size of a medium milkshake. Write a percent that compares the size of the large milkshake to the size of the small milkshake. Then draw and shade 10×10 grids to model the percent. (Example 2)
6. The Freedom T ower is 1,776 feet tall. Mr. Feeman's students are building a replica of the tower for a class project that will stand 4.44 feet tall. Write a percent that compares the height of the replica to the height of the actual tower. Then shade the 10×10 grid to model the percent.

7. Equation Editor A certain store's sales increased by 175% compared to the previous year. How many squares would be shaded on 10×10 grids to represent 175% ?

Apply

8. A bottle of cleaner states that it eliminates 0.999 of germs. For a magazine to recommend a cleaner to its readers, the percent of germs that it does not eliminate cannot exceed 1%. Would this cleaner be recommended by the magazine? Write an argument that can be used to defend your solution.
9. Persevere with Problems The top running speed of a giraffe is 250% of the top speed of a squirrel. If a squirrel's top running speed is 12 miles per hour, find the speed of a giraffe.
10. 7.3 Find the Error A student said that to represent 0.2% with a 10×10 grid, you shade 2 squares in the grid. Find the student's error and correct it.
11. Reason Inductively A rational number is any number that can be written as a fraction with a numerator and denominator that are both whole numbers. Is a percent a rational number? Explain your reasoning.
12. Create Write about a real-world situation involving a percent that is greater than 100% or a percent that is less than 1%. Then explain how you would use

Relate Fractions, Decimals, and Percents

I Can... relate fractions, decimals, and percents by using placevalue reasoning and understanding a percent as a ratio that compares a number to 100 .

Fxplore Percents and Ratios

WOnline Activity Y ou will use 10×10 grids to understand the relationship between percents and ratios.

Learn Relate Percents to Fractions and Decimals

By definition, a percent is a ratio that compares a number to 100. The percent 35% compares 35 to 100 as the ratio $35: 100$. In fraction form, this ratio is $\frac{35}{100}$ which means thirty-five hundredths. You can use the definition of percent, equivalent ratios, and place-value reasoning to write percents as both fractions and decimals.

Write 35% as a fraction.
$35 \%=\frac{35}{100} \quad$ Definition of percent
$=\frac{7}{20} \quad$ Find an equivalent ratio. Divide both 35 and 100 by 5.
As a fraction, $35 \%=\frac{35}{100}$, or $\frac{7}{20}$.
Write 35% as a decimal.

$$
\begin{array}{rlrl}
35 \% & =\frac{35}{100} & & \text { Definition of percent } \\
& =0.35 & \frac{35}{100} \text { means thirty-five hundredths }
\end{array}
$$

As a decimal, $35 \%=0.35$.

Think About It! What is the first step to writing a percent as a fraction?

(2) Example 1 Write Percents as Fractions and Decimals

In a recent survey, about 95\% of smartphone users claimed to send text messages.

What fraction of smartphone users is this? What decimal is this?
Part A Write 95\% as a fraction.

$$
\begin{aligned}
95 \% & =\frac{95}{100} & & \text { Definition of percent } \\
& =\frac{19}{20} & & \text { Find an equivalent ratio. Divide both } 95 \text { and } 100 \text { by } 5 .
\end{aligned}
$$

Part B Write 95% as a decimal.

$$
\begin{array}{rlrl}
95 \% & =\frac{95}{100} & & \text { Definition of percent } \\
& =0.95 & \frac{95}{100} \text { means ninety-five hundredths }
\end{array}
$$

So, about \qquad or \qquad of smartphone users claimed to send text messages.

Check

In a recent survey, 22\% of E-mail users claimed to spend less time using E-mail because of spam. What fraction of E-mail users is this? What decimal is this?

3 Go Online You can complete an Extra Example online.

Learn Relate Fractions to Percents and Decimals

You can also write fractions as percents and decimals. Suppose you are given the fraction $\frac{3}{20}$. Use your understanding of equivalent ratios, the definition of percent, and place-value reasoning to write $\frac{3}{20}$ as a percent and as a decimal.
Write $\frac{3}{20}$ as a percent.

= 15\% Definition of percent
As a percent, $\frac{3}{20}=15 \%$.

94 Module 2 • Fractions, Decimals, and Percents

Write $\frac{3}{20}$ as a decimal.

$=0.15 \quad \frac{15}{100}$ means fifteen hundredths
As a decimal, $\frac{3}{20}=0.15$.

Consider the fraction $\frac{9}{15}$. How can you write this fraction as a percent, knowing that there is no whole number by which you can multiply 15 to obtain 100?

3 Go Online Watch the animation to learn how to write $\frac{9}{15}$ as a percent.

The animation shows that you can simplify the fraction first, and then find an equivalent ratio with a denominator of 100. To simplify a fraction, divide both the numerator and denominator by the same number. By simplifying a fraction, you are finding an equivalent ratio. In this case, find an equivalent ratio with a denominator that is a factor of 100.

Write $\frac{9}{15}$ as a percent.

Find an equivalent ratio with 5 as the denominator $\frac{9}{15}=\frac{3}{5} \quad$ because 5 is a factor of 100 . Because $15 \div 3=5$, $\div 3$ divide 9 by 3 to obtain 3 .

As a percent, $\frac{9}{15}=60 \%$.

Talk About It!
A classmate claims that you can always write a fraction as a decimal by dividing the numerator by the denominator. Is this a valid method? Why or why not?

Talk About It!
A classmate wrote the decimal form of $\frac{9}{15}$ as
0.6. Another classmate wrote the decimal form as 0.60. Who is correct? Why?
\qquad

Think About It!
A classmate claims that $\frac{6}{8}$ is less than 60%, because $\frac{6}{8} \overline{80} \underline{60}$, and the denominator 80 is less than 100. Is this reasoning correct? Why or why not?

Example 2 Write Fractions as Percents and Decimals

Write the fraction $\frac{6}{8}$ as a percent and as a decimal.
Part A Write $\frac{6}{8}$ as a percent.
Find an equivalent ratio with a denominator of 100 . There is no whole number by which you can multiply 8 to obtain 100 . So, first simplify the fraction.

Find an equivalent ratio with 4 as the denominator because 4 is a factor of both 100 and 8 . Because $8 \div 2=4$, divide 6 by 2 to obtain 3.
$\times 25$
$\frac{3}{4}=\frac{75}{100}$
$\times 25$

$$
=75 \%
$$

Definition of percent

Part B Write $\frac{6}{8}$ as a decimal.
As a percent, $\frac{6}{8}=75 \%$. Write 75% as a decimal.
$75 \%=0.75 \quad 75 \%=\frac{75}{100}$, which means seventy-five hundredths
As a percent, $\frac{6}{8}=\quad$ \%. As a decimal, $\frac{6}{8}=$ \qquad

Check

Write $\frac{4}{16}$ as a percent and as a decimal.

Example 3 Write Mixed Numbers as Percents

The cheetah is the fastest land mammal in the world. The peregrine falcon is the fastest bird in the world. The peregrine falcon's top speed is $2 \frac{9}{10}$ times as fast as the top speed of a cheetah.

What percent represents this value?

Step 1 Write the mixed number as an improper fraction.
The fraction $2 \frac{9}{10}$ is a mixed number that consists of a whole number part, 2, and a fractional part, $\frac{9}{10}$.

$$
\begin{aligned}
2 \frac{9}{10} & =2+\frac{9}{10} & & \text { Write the mixed number as a sum. } \\
& =\frac{10}{10}+{ }_{10}^{10}+\frac{9}{10} & & 2=1+1 \text { and } 1=\frac{10}{10} \\
& =\frac{29}{10} & & \text { Add. }
\end{aligned}
$$

Step 2 Find an equivalent ratio with 100 as a denominator.

$\frac{29}{10}=\frac{290}{100}$	Find an equivalent ratio with 100 as the denominator.
$\times 10$	Because $10 \times 10=100$, multiply 29 by 10 to obtain 290.
$=290 \%$	
Definition of percent	

So, the peregrine falcon's top speed is \qquad \% that of a cheetah's top speed.

Check

When blue whales feed, they can take in $1 \frac{1}{25}$ times their body weight in food and water in one single gulp. What percent of their body weight is this?

Think About It!
Is the top speed of the falcon greater than 200% that of the cheetah? How do you know?

Learn Relate Decimals to Percents and Fractions

You can use place-value reasoning and equivalent ratios to write decimals as percents and fractions. A decimal with its last nonzero digit in the tenths place can be written as a fraction with a denominator of 10 .
$0.7=\frac{7}{10}$
0.7 means seven tenths

$$
=\frac{70}{100}, \text { or } 70 \%
$$

Find an equivalent ratio with a denominator of 100. Multiply both 7 and 10 by 10 .

As a fraction, $0.7=\frac{7}{10}$. As a percent, $0.7=70 \%$
A decimal with its last nonzero digit in the hundredths place can be written as a fraction with a denominator of 100.
$0.34=\frac{34}{100}$, or $34 \% \quad 0.34$ means thirty-four hundredths
As a fraction, $0.34=\frac{34}{100}$, or $\frac{17}{50}$. As a percent, $0.34=34 \%$.
A decimal with its last nonzero digit in the thousandths place can be written as a fraction with a denominator of 1,000 .
$0.125=\frac{125}{1,000}$
0.125 means one hundred twenty-five thousandths

$$
=\frac{12.5}{100} \text {, or } 12.5 \% \quad \begin{aligned}
& \text { Find an equivalent ratio with a denominator of } 100 . \\
& \text { Divide both } 125 \text { and } 1,000 \text { by } 10 .
\end{aligned}
$$

As a fraction, $0.125=\frac{125}{1,000}$, or $\frac{1}{8} \mathrm{As}$ a percent $0.125=12.5 \%$.

Example 4 Write Decimals as Percents and Fractions

Write 0.025 as a percent and as a fraction.

$$
\begin{aligned}
0.025 & =\frac{25}{1,000} \\
& =\frac{2.5}{100} \\
& =\frac{1}{40}
\end{aligned}
$$

0.025 means twenty-five thousandths

To write 0.025 as a percent, find an equivalent ratio with a denominator of $100.0 .025=2.5 \%$

To write 0.025 as a fraction, find an equivalent ratio

As a percent, $0.025=$ \qquad $\%$. As a fraction, $0.025=\frac{25}{1,000}$ or \qquad

Check

Write 1.4 as a percent and as a mixed number.

Go Online You can complete an Extra Example online.

98 Module 2 - Fractions, Decimals, and Percents

Apply School

The table shows the percent of time Allison spent studying each of her school subjects last week. The total time spent studying is 100%. What fraction of the time was spent studying math and history?

Subject	Percent
Math	$?$
Science	13
Language Arts	11
History	$?$
Reading	20
Music	16

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution.
(3) Online watch the animation.

Math History

 MinuteGraciano Ricalde Gamboa (1873-1942)
was a Mexican mathematician who in 1910, achieved recognition for calculating the orbit of Halley's Comet. His precise calculations proved that the comet would not hit Earth, which was of great concern at the time. Halley's Comet follows a highly elliptical path and can be seen from Earth every 74-79 years.

Check

The table shows the percent of time Naima's soccer team spent on each skill during their last practice. The total time spent practicing is 100%. What fraction of the time was spent on crossing and passing?

Skill	Percent
crossing	$?$
dribbling	21
heading	13
juggling	6
passing	$?$
shooting	15

(3) Go Online Y ou can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Write each percent as a fraction in simplest form and as a decimal. (Example 1)

1. 45%
2. 72%
3. 80%

Write each fraction as a percent and as a decimal. (Examples 2 and 3)
4. $\frac{3}{20}$
5. $1 \frac{3}{4}$
6. $\frac{5}{8}$

Write each decimal as a percent and as a fraction in simplest form. (Example 4)
7. 0.89
8. 0.82
9. 0.65
10. About 0.41 of Hawaii's total area is water. Write 0.41 as a fraction and as a percent.
12. There are 25 students in Muriel's class. Write a percent to represent the number of students that have brown eyes. Then write the percent as a fraction and as a decimal.

Eye Color	Number of Students
Blue	6
Brown	10
Green	7
Hazel	2

11. Over the course of the basketball season, Zane's free throw average went up by 30%. Write 30% as a fraction and as a decimal.

Test Practice
13. Multiselect Which of the following are equivalent to 85% ? Select all that apply.0.85$\frac{85}{100}$0.8$\frac{17}{20}$
14. The table shows the results of a recent survey of sixth grade students at Potter Middle School about their favorite sports. What fraction of the students chose football or soccer?

Sport	Percent
Baseball	14
Football	20
Lacrosse	12
Soccer	35
Softball	8
Volleyball	11

15. The table shows the percent of each type of pet owned by pet owners in a neighborhood. The total percent is equal to 100%. What fraction of the pets owned were cats and dogs?

Pet	Percent
Bird	4
Cat	$?$
Dog	$?$
Fish	14
Hamster	10
Snake	2

16. 7.7 Justify Conclusions Determine if the following statement is true or false. Justify your conclusion.
Any decimal that ends with a digit in the hundredths place can be written as a fraction with a denominator that is divisible by both 2 and 5 .
17. Persevere with Problems Explain how you can write $25 \frac{2}{5} \%$ as a decimal.
18. (7) Reason Inductively A sixth-grade class was surveyed about their favorite kind of drink. The results are shown in the table. Did chocolate milk and lemonade receive more than 50% of the votes? Explain.

Type of Drink	Percent (decimal)
Chocolate Milk	0.22
Iced Tea	0.05
Lemonade	0.24
Orange Juice	0.18
Sports Drink	0.31

19. (13. Identify Structure When writing a fraction as a percent, how can you tell if the percent will be less than 100%, equal to 100%, or greater than 100% ?

Find the Percent of a Number

I Can... find the percent of a number by reasoning about percent as a rate per 100 and by using bar diagrams, ratio tables, equivalent ratios, and double number lines.

Explore Percent of a Number

Online Activity You will use 10×10 grids and bar diagrams to represent the percent of a number.

Learn Find the Percent of a Number

Fifty people were surveyed and asked to vote on their favorite flavor of sherbet. The results are shown in the table.

Flavor	Percent
Lemon	20
Orange	26
Peach	14
Watermelon	40

Method 1 Use a bar diagram.
To find the number of people who prefer lemon, you can use a bar diagram. The bar is separated into 10 equal-size sections. The whole is 50 total people, so each section represents $50 \div 10$, or 5 people. The percent is 20% and the part is 10 people (two sections of 5 people each). The bar diagram shows that 20% of 50 is 10 . In context, 10 people, out of the 50 surveyed, which is 20%, prefer lemon sherbet.

Method 2 Use a ratio table.
You know that 100% of 50 is 50 . You need to find 20% of 50 . Scale back to find 20% of 50 by dividing both 100 and 50 by 5 .

Method 3 Use equivalent ratios.
Let n represent the number of people who prefer lemon.
$\begin{aligned} \text { lemon }\end{aligned} \rightarrow \frac{n}{50}=\frac{20}{100}$ \}percent

So, 10 people prefer lemon.
Method 4 Use a double number line.
Draw a double number line. The bottom number line represents the percent, so use increments of 10 to draw tick marks and label the percents. The top number line represents the number of people, so label the tick mark that corresponds with 100% on the bottom number line, with 50 . Since there are 10 increments, the value of each tick mark on the top number line increases by $50 \div 10$, or 5 units.

The double number line shows that 20% corresponds to 10 people.
Using any method, 10 people out of 50 surveyed prefer lemon flavored sherbet.

Example 1 Find the Percent of a Number

The graph shows the types of snacks that students at York Middle School bring with them to school. Suppose there are 300 students at the school.

How many of them bring cheese for a snack?

First, identify the part, the whole, and the percent. The part is unknown. The whole is 300 . The
 percent is 15%.

Method 1 Use the rate per 100 and mental math.
The percent is 15%. This means, that for every 100 students, 15 of them bring cheese for a snack. This is the rate per 100.

```
15+15+15 There are three 100s in 300. For each 100, 15 students
                                bring cheese as a snack.
    =3\times15 Write repeated addition as multiplication.
    =45 Multiply. 45 students bring cheese as a snack.
```

Method 2 Use equivalent ratios.
Write and solve an equation stating that the ratios are equivalent. Let n represent the number of students who bring cheese as a snack.
$\begin{aligned} & \text { cheese } \longrightarrow \frac{n}{300}=\frac{15}{100} \\ & \text { total students }\end{aligned}$ \} percent

$$
\begin{array}{ll}
\frac{n}{300}=\frac{15}{100} & \begin{array}{l}
\text { Because } 100 \times 3=300 \\
\text { by } 3 .
\end{array} \\
\frac{45}{300}=\frac{15}{100} \quad 15 \times 3=45 ; \text { So, } n=45 .
\end{array}
$$

So, using either method, \qquad students bring cheese as a snack.

Check

Approximately 11% of the U.S. population is left-handed. If there are 700 students at a middle school, about how many of them are expected to be left-handed?
(3) Go Online Y ou can complete an Extra Example online.

Think About It!
A classmate claims that because 15% is a little over 10% and 10% of 300 is 30 , that 15% of 300 will be a little over 30. Do you think this reasoning is correct? Why or why not?

Think About It! Is 30% of 240 less than, greater than or equal to 120 ? How do you know?

Example 2 Find the Percent of a Number

What is $\mathbf{3 0 \%}$ of $\mathbf{2 4 0}$?

The part is unknown. The whole is 240 . The percent is 30%.
Method 1 Use a bar diagram.
Draw a bar diagram with 10 equal-size sections. The whole is 240 , so each section represents $240 \div 10$ or 24 . Shade three sections to represent 30%. So, 30% of 240 is $24+24+24$, or 72 .

Method 2 Use a double number line.
Draw a double number line. The bottom number line represents the percent, so use increments of 10 to draw tick marks and label the percents. The top number line represents the number that corresponds with each percent, so label the tick mark that corresponds with 100% on the bottom number line with 240 . Since there are 10 increments, the value of each tick mark on the top number line increases by $240 \div 10$, or 24 units. So, 30% on the bottom number line corresponds with 72 on the top number line.

Method 3 Use equivalent ratios.
Write and solve an equation stating that the ratios are equivalent.
Let n represent the unknown part.

$$
\begin{aligned}
& \begin{array}{r}
\text { part } \\
\text { whole }
\end{array} \frac{n}{240}=\frac{30}{100} \text { \} percent } \\
& \times 2.4 \\
& \frac{n}{240}=\frac{30}{100} \quad \text { Because } 100 \times 2.4=240, \\
& \frac{240}{100} \quad \text { multiply } 30 \text { by } 2.4 \text {. } \\
& \times 2.4 \\
& \frac{72}{240}=\frac{30}{100} \quad 30 \times 2.4=72 ; \text { So, } n=72 .
\end{aligned}
$$

So, using any method, 30% of 240 is \qquad .

Check

What is 70% of 580 ? Use any strategy.

[^3]106 Module 2 • Fractions, Decimals, and Percents

Example 3 Find the Percent of a Number

What is $\mathbf{1 4 5 \%}$ of $\mathbf{3 2 0}$?

The part is unknown. The whole is 320 . The percent is 145%.
Method 1 Use a ratio table.
You know that 100% of 320 is 320 . You need to find 145% of 320 . Use a ratio table to scale back from 100% to 1%. Then scale forward from 1\% to 145\%.

Method 2 Use equivalent ratios.
Write and solve an equation stating the ratios are equivalent. Let n represent the unknown part.

$$
\begin{aligned}
& \begin{array}{r}
\text { part } \\
\text { whole } \longrightarrow \frac{n}{320}
\end{array}=\frac{145}{100} \text { \} percent } \\
& \times 3.2 \\
& \frac{n}{320}=\frac{145}{100} \\
& \times 3.2 \\
& \frac{464}{320}=\frac{145}{100} \quad 145 \times 3.2=464 ; \text { So, } n=464 . \\
& \text { Because } 100 \times 3.2=320 \text {, } \\
& \text { multiply } 145 \text { by 3.2. }
\end{aligned}
$$

So, using either method, 145% of 320 is \qquad .

Check

What is 275% of 4 ? Use any strategy. ,

Think About It! Is 145% of 320 less than, greater than, or equal to 320 ? How do you know?

3 Go Online Y ou can complete an Extra Example online.

Talk About It! Compare the part, 464, to the whole, 320. Does it make sense that 464 is greater than 320 ? Why or why not?

Think About It!
Why might it not be advantageous to use a bar diagram to find 0.25% of 58 ?

Talk About It!
Compare the part, 0.145 , to the whole, 58.

Does it make sense that 0.145 is significantly less than 58 ? Why or why not?

Example 4 Find the Percent of a Number

What is 0.25% of 58 ?

The part is unknown. The whole is 58 . The percent is 0.25%.
Method 1 Use a ratio table.
You know that 100% of 58 is 58 . You need to find 0.25% of 58 . Use a ratio table to scale back from 100% to 1%. Then scale back again from 1% to 0.25%.

Method 2 Use equivalent ratios.
Write and solve an equation stating the ratios are equivalent. Let n represent the unknown part.

$$
\begin{aligned}
&\left.\begin{array}{rl}
\text { part } \\
\text { whole }
\end{array} \rightarrow \frac{n}{58}=\frac{0.25}{100}\right\} \text { percent } \\
& \times 0.58 \\
& \begin{array}{ll}
\frac{n}{58}=\frac{0.25}{100} & \begin{array}{l}
\text { Because } 100 \times 0.58=58 \\
\text { multiply } 0.25
\end{array} \\
& \times 0.58 \\
\frac{0.145}{58}=\frac{0.25}{100} & 0.25 \times 0.58=0.145 ; \text { So, } n=0.145
\end{array} \\
& 0.2
\end{aligned}
$$

So, using either method, 0.25% of 58 is \qquad .

Check

What is 0.55% of 220 ? Use any strategy.

Apply Book Fair

Students were asked which night they planned on attending the book fair. The results of the survey are shown in the table. Twenty percent of the students who planned to attend on Wednesday attended on Thursday instead. Twenty-five percent of the students who planned to attend on Thursday attended on Wednesday instead. Which day, Wednesday or Thursday, had a greater actual attendance? By how many students?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Five hundred students were asked what color they prefer for the new school colors. The results are shown in the table. How many more students prefer blue than black?

Color	Percent
Yellow	7
Blue	36
Orange	15
Red	12
Black	30

Go Online You can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that shows your understanding of how you can use the following methods to find the percent of a number.

- bar diagram
- ratio table
- double number line
- equivalent ratios

Practice

Use any strategy to solve each problem.

1. The graph shows the career interests of the students at Linda's school. Suppose there are 400 students at the school. How many of them want to be an athlete? (Example 1)

2. The graph shows the favorite activities of campers at a summer camp. Suppose there are 300 campers at the camp. How many campers favor fishing? (Example 1)

Use any method to find the percent of each number. (Examples 2-4)
3. 15% of $240=$ \qquad
6. 150% of $44=$ \qquad 7. 0.15% of $350=$ \qquad
5. 250% of $82=$ \qquad
8. 0.4% of $168=$

Test Practice

9. Open Response Kenzie is putting the family vacation videos onto a flash drive. The flash drive can hold 200 minutes of video. Kenzie has used 45% of the memory space already. How many minutes of the flash drive has she already used?

Apply

10. Students were asked which night they planned on going to the school festival. The results of the survey are shown in the table. If 18% of the students did not go on Friday, and 15% of the students did not go on

Night	Number of Students
Friday	550
Saturday	480

11. Students were surveyed about which school athletic event they were planning to attend this week. Of the students who said they were going to the football game, 25% did not attend. Of the students who stated they were going to the volleyball game, 20\% did not attend. How many more students went to the football game than the volleyball game?

Event	Number of Students
Football Game	120
Gymnastics Meet	95
Volleyball Game	80

12. Persevere with Problems Olive is going to buy a scooter that costs $\$ 95$. The sales tax rate is 8.5%. What is the total cost of the scooter including tax to the nearest cent?
13. Identify Structure How can you find 40% of 150 using mental math? Explain.
14. Justify Conclusions Is 18% of 30 the same as 30% of 18 ? Justify your conclusion.
15. Be Precise Explain how the part of a whole can be greater than the whole itself. Use an example.

Estimate the Percent of a Number

I Can... estimate the percent of a number by using benchmark percents and rounding.

Learn Estimate the Percent of a Number

You learned how to find the percent of a number, such as 27% of 40, by reasoning about percent as a rate per 100 and by using bar diagrams, equivalent ratios, double number lines, and ratio tables. The equivalent ratios show that 27% of 40 is 10.8 .

Sometimes, it is not necessary to calculate the exact percent of a number. It may be sufficient to approximate, or estimate, the percent of a number. These situations can occur when estimating how much of a tip to leave on a restaurant bill, or estimating how much an item will cost after a percent discount.

When estimating the percent of a number, you can use benchmark percents. Benchmark percents are common percents, such as 10%, $20 \%, 25 \%$, and their multiples. You can often perform mental calculations using benchmark percents.

The bar diagram shows the benchmark percent 25%, its multiples, and its corresponding fractional values.

Suppose you wanted to estimate 27% of 40 . You can use the benchmark percent 25% because 27% is close to 25%.

$$
\begin{aligned}
27 \% \text { of } 40 & \approx 25 \% \text { of } 40 & & 27 \% \text { is close to the benchmark percent } 25 \% . \\
& \approx \frac{1}{4} \text { of } 40 & & 25 \% \text { of } 40 \text { is } \frac{1}{4} \text { of } 40 . \\
& \approx 10 & & \frac{1}{4} \text { of } 40 \text { is } 10 . \text { So, } 27 \% \text { of } 40 \approx 10 .
\end{aligned}
$$

Because 10 is close to 10.8, the estimated part of the whole is close to the part of the whole.
(continued on next page)

```
What Vocabulary
Will You Learn?
benchmark percents
```


Talk About It!
Compare and contrast 30% of 40 and the estimate you found on the previous page, 25% of 40 . Which one is closer to the actual value, 27% of 40 ? Why?

Talk About It!
How can you use the benchmark percent 10% to find 30% of 40 ?

Some other benchmark percents you can use are $20 \%, 10 \%$, and their multiples. The bar diagrams show the benchmark percents $20 \%, 10 \%$, their multiples, and corresponding fractional values.

You can also use rounding to estimate the percent of a number. When estimating 27% of 40 , you might round 27% to 30% and find 30% of 40 by using equivalent ratios. The equivalent ratios show that 30% of 40 is 12 . So, 27% of 40 is about 12.

Sometimes, you might find it beneficial to also round the whole when estimating the percent of a number. Suppose you want to estimate 27% of 22 . You can round 22 to 20 and round 27% to 25%, and then estimate 25% of 20 by using the methods shown in this Learn.

$$
\begin{aligned}
\left.\begin{array}{l}
\text { part } \rightarrow \frac{x}{20}=\frac{25}{100}
\end{array}\right] \text { percent } & \begin{array}{l}
\text { Because } 100 \div 5=20 \\
\text { whole } \rightarrow 5 \\
\text { divide } 25 \text { by } 5
\end{array} \\
& \frac{5}{20}=\frac{25}{100}
\end{aligned} \quad 25 \div 5=5 ; \text { So, } x=5 .
$$

So, 27% of 22 is approximately 5 .

Example 1 Estimate the Percent of a Number

Marita and five of her friends went out to dinner. Their total bill was $\$ 47.45$, and they would like to tip 18% of the bill.

About how much money should they leave as a tip?

Use the benchmark percent 20\% because 18\% is close to 20%.
Round $\$ 47.45$ to $\$ 50$.
18% of $\$ 47.45 \approx 20 \%$ of $\$ 50 \quad 18 \%$ is close to the benchmark percent 20%.
Method 1 Use a bar diagram.
The bar diagram shows that 20% of $\$ 50$ is $\$ 10$.

Method 2 Use equivalent ratios.
Let n represent the unknown part.

$$
\begin{gathered}
\text { part } \left.\longrightarrow \frac{n}{50}=\frac{20}{100}\right\} \text { percent } \\
\text { whole } \longrightarrow
\end{gathered}
$$

$$
\frac{10}{50}=\frac{20}{100} \quad 20 \div 2=10 ; \text { So, } n=10
$$

So, using either method, 18% of $\$ 47.45$ is about \qquad Marita and her friends should leave a $\$ 10$ tip.

Check

Of the 78 campers at a youth camp, 63% have birthdays in the spring. About how many campers have birthdays in the spring?

Go Online Y ou can complete an Extra Example online.

Think About It! Is 18% of $\$ 47.45$ less than, greater than, or equal to \$5? How do you know?

Think About It!
Do pet birds spend less than, greater than, or equal to 12 hours a day sleeping? Explain.

Talk About It!
Why might it be more advantageous to use the benchmark percent 10% than 20% ?

Example 2 Estimate the Percent of a Number

Most pet birds spend about 41% of the day sleeping.

About how many hours a day do they spend sleeping?

You need to estimate 41% of 24 , because there are 24 hours in a day. Because 41% is close to $40 \%, 41 \%$ of $24 \approx 40 \%$ of 24 .

Method 1 Use the benchmark percent 10\%.
Draw a bar diagram with 10 equal-size sections. Each section represents 10%. The value of each section is $24 \div 10$ or 2.4 .
So, 10% of 24 hours is 2.4 hours.

Percent 0\% 10\%
100\%

Multiply by 4 to find 40% of 24 hours.

$$
\begin{aligned}
40 \% \text { of } 24 & =4(10 \% \text { of } 24) & & 40 \%=4(10 \%) \\
& =4(2.4) & & 10 \% \text { of } 24=2.4 \\
& =9.6 & & \text { Multiply. }
\end{aligned}
$$

Method 2 Use the benchmark percent 20\%.
Draw a bar diagram with 5 equal-size sections. Each section represents 20%. The value of each section is $24 \div 5$ or 4.8 . So, 20% of 24 hours is 4.8 hours.

Multiply by 2 to find 40% of 24 hours.

$$
\begin{aligned}
40 \% \text { of } 24 & =2(20 \% \text { of } 24) & & 40 \%=2(20 \%) \\
& =2(4.8) & & 20 \% \text { of } 24=4.8 \\
& =9.6 & & \text { Multiply. }
\end{aligned}
$$

So, using either method, 41% of 24 hours is about hours. Pet birds spend about 9.6 hours a day sleeping.

Check

Estimate 76% of 122 . Use any strategy.

Go Online Y ou can complete an Extra Example online.

Apply Financial Literacy

Sabrina takes her car to the car wash and chooses the Gold Star service that includes a wash, wax, and interior cleaning. This service normally costs $\$ 53.99$, but is on special for $\$ 5.00$ off. She must also pay a 6% sales tax, which is applied to the discounted price, and then added to find the total price. Estimate the total amount Sabrina paid at the car wash.

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show that your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

There were 48,500 people at an amusement park on Monday. Fortytwo percent of the people wanted to ride the new roller coaster. Twenty-three percent of those people decided not to ride the coaster because the line was too long. About how many people waited in line for the new roller coaster that day?

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Describe a situation in which you have estimated the percent of a number in your everyday life, or describe a situation in which you might do so in the future.

Practice

For Exercises 1-11, estimate each percent. Show your estimation. (Examples 1 and 2)

1. 51% of $62 \approx$
2. 78% of $148 \approx$ \qquad 5. 19% of $103 \approx$ \qquad 6. 98% of $59 \approx$ \qquad
3. Emilia and her three sisters went out to dinner. The total cost of their dinner was $\$ 38.75$. They want to leave a tip that is 23% of the total bill. About how much of a tip should they leave?
4. The concession stand at a football game served 288 customers. Of those customers, about 77% bought a hot dog. About how many customers bought a hot dog?
5. Karl earned $\$ 188$ last month doing chores after school. If 68% of the money he earned was from doing yard work, about how much did Karl earn doing yard work?
6. In a recent season, the Chicago Cubs won 64% of the 161 regular season games they played. About how many games did they win?

Test Practice

12. Open Response Carolyn's homeroom sold 207 magazine subscriptions. Of the magazine subscriptions sold, 28% were for fashion magazines. About how many fashion magazine subscriptions were sold?

Apply
13. Paul takes his dog to the groomer and selects the deluxe grooming package. He has a coupon for $\$ 10$ off any grooming service. He must pay an 8% sales tax, which is applied to the discounted price, and then added to find the

Grooming Package	Cost (\$)
Regular	48.99
Deluxe	58.75

14. A store purchases a television for $\$ 192$ and adds $\$ 230$ to set the sticker price. The store is having a sale where everything is 20% off the sticker price. Estimate the final price of the television.
15. There were 59,500 people who attended a football game. Twenty-four percent of the people received a voucher for a free water bottle. Six percent of those people never claimed their water bottle. About how many people claimed their water bottle?
16. Explain how you can estimate 39% of $\$ 197$.
17. Reason Inductively Zeb wants to buy a fishing pole regularly priced at $\$ 64$. It is on sale for 60% off. Zeb estimates that he will save 60% of $\$ 60$, or $\$ 36$. Will the actual amount saved be more or less than $\$ 36$? Explain.
18. Justify Conclusions A store is having a 40% off sale. If you have $\$ 38$, will you have enough money to buy an item that regularly sells for $\$ 65.99$? Write an argument to justify your conclusion.

Find the Whole

I Can... find the whole, given the part and the percent by using bar diagrams, ratio tables, double number lines, and equivalent ratios.

Learn Find the Whole

Sixty percent of the sixth grade students at Jackson Middle School play a sport. If 114 sixth grade students play a sport, how many sixth grade students are there in the school?

You are given the part, 114 students, and the percent, 60%. You need to find the whole. In other words, 60% of what number is 114 ?

You can use bar diagrams, ratio tables, double number lines, and equivalent ratios to find the whole.

Method 1 Use a bar diagram.
Sixty is a multiple of 10 and 10 is a factor of 100 . Draw a bar diagram with 10 equal-size sections of 10% each, because $10 \times 10=100$. Shade 6 sections to represent 60%. Label the shaded sections as 114 students, because 60% of the whole is 114 .

Each section represents the same number of students. There are 6 shaded sections. Divide 114 by 6 to find the number of students represented by each section.
$114 \div 6=19$ Divide. Each section represents 19 students.

Because each section represents 19 students and there are 10 total sections, multiply 19 by 10 to find the total number of sixth grade students.
$19 \times 10=190$ Multiply. The whole is 190 students.
So, 60% of 190 is 114 . There are 190 sixth grade students at the school.
\square
alk About It!
A classmate let w represent the unknown whole and set up the equivalent ratios $\frac{114}{w}=$ $\frac{60}{100}$. Is this method valid? Why might this method not be the most advantageous one to use in this case?

Method 2 Use a ratio table.
You know that 60% of some number is 114 . Use a ratio table to scale back from 60\% to 10\%. Then scale forward from 10\% to 100\%.

Because $60 \div 6=10$, divide 114 by 6 to obtain 19. Because $10 \times 10=100$, multiply 19 by 10 to obtain 190 . So, 60% of 190 is 114 .

Method 3 Use a double number line.
Step 1 Draw a double number line.
Draw a double number line. The bottom number line represents the percent, so use increments of 10 to draw tick marks and label the percents. The top number line represents the part of the whole that corresponds with each percent, so label the tick mark that corresponds with 60% on the bottom number line with 114.

Step 2 Find the whole.
Since there are 6 increments before 114 , the value of each tick mark on the top number line increases by $114 \div 6$, or 19 units.

The double number line shows that 100%, or the whole, is 190.
So, using any method, the whole is 190 . In other words, 60% of 190 students is 114 students.

Example 1 Find the Whole

Country music makes up 75\% of Landon's music library.

If he has downloaded 90 country music songs, how many songs does Landon have in his music library?

The part is 90 country music songs. The percent is 75%. The whole, the number of songs he has in his library, is the unknown.

Method 1 Use a bar diagram.
Draw a bar diagram with 4 equal-size sections of 25% each. Shade 3 sections to represent 75\%. Label the shaded sections as 90 songs.

How many songs are represented by each section?
Label each section on the bar diagram.
How many songs are represented by the whole? \qquad
Method 2 Use equivalent ratios.
Let w represent the whole.

$$
\begin{aligned}
& \left.\begin{array}{rl}
\begin{array}{c}
\text { part } \\
\text { whole } \longrightarrow
\end{array} \frac{90}{w}=\frac{75}{100}
\end{array}\right\} \text { percent } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \frac{90}{120}=\frac{90}{4}
\end{aligned} \begin{aligned}
& \text { Simplify } \frac{75}{100} \text { as } \frac{3}{4} . \\
& \times 30
\end{aligned} \begin{aligned}
& \text { Because } 3 \times 30=90 \\
& \text { multiply } 4 \text { by } 30 \text { to obtain } 120 . \\
& \text { So, } w=120 .
\end{aligned}
$$

So, using either method, Landon has \qquad songs in his music library.

Check

In the first year of ownership, a new car lost 20\% of its value. If the car lost $\$ 4,200$ of its value, how much did the car originally cost? Use any strategy.
(Go Online Y ou can complete an Extra Example online.

Think About It!
A classmate claims that because 75% is less than 100, Landon should have more than 90 music songs in his library. Do you think this reasoning is correct? Why or why not?

Talk About It!
Explain why setting up the equation relating the equivalent ratios was advantageous to use in this example.

\square
\square
\square

Think About It!
Is the whole less than, greater than, or equal to \$15? How do you know?

Talk About It!
Choose another strategy, such as a ratio table or an equation relating two equivalent ratios, to solve this problem. Compare and contrast the methods.

Marissa saved $\$ 15$ because she bought a sweater that was on sale for 30\% off.

What was the original price of the sweater?

The part is $\$ 15$. The percent is 30%. The whole is the unknown.
Method 1 Use a bar diagram.
Draw a bar diagram with 10 equal-size sections of 10% each. Shade 3 sections to represent 30\%. Label the shaded sections as $\$ 15$.

How much money is represented by each section?
Label each section on the bar diagram.
How much money is represented by the whole?
Method $\mathbf{2}$ Use a double number line.
Step 1 Draw a double number line.
Label the part, 15 , with its corresponding percent, 30%.

Step 2 Find the whole.
The value of each tick mark on the top number line increases by $15 \div$ 3 , or 5 units. The number line shows that the whole, or 100%, is $\$ 50$.

So, using either method, the original cost of the sweater was \$ \qquad

Check

Kai calculates that he spends 15% of the school day in science class. If he spends 75 minutes in science class, how many minutes long is Kai's school day?

Go Online Y ou can complete an Extra Example online.

Apply Sales

The table shows the percentage of each type of popcorn flavor at a specialty food store. A store clerk put all of the bags of cinnamon popcorn and cheese popcorn in a display in the front of the store. If the clerk put 60 bags in the front, how many bags of popcorn does the store have in all? If the store sells all of the bags of popcorn for $\$ 4.75$ per bag, how much will the store earn in sales?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show that your solution is reasonable?

(2. Write About It! Write an argument that can be used to defend your solution.

Flavor	Percent
Kettle Corn	60
Cinnamon	15
Caramel	10
Cheese	15

Check

The table shows the percent of each type of puzzle in a toy store. During a sale, the store sold all of the 300-piece and 500piece puzzles. If they sold 120 puzzles, how many puzzles did the store have before the sale? If they sell all of the puzzles for $\$ 8.19$ per puzzle, how much

Number of Pieces	Percent of Stock
300	50
500	30
750	15
1,000	5

(3) Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that shows your understanding of how you can use the following methods to find the whole, given the part and the percent.

- bar diagram
- ratio table
- double number line
- equivalent ratios

126 Module 2 - Fractions, Decimals, and Percents

Practice

Use any strategy to solve each problem. (Examples 1 and 2)

1. Y olanda's club requires that 80% of the members be present for any vote. If at least 20 members must be present to have a vote, how many members does the club currently have?
2. Marcus saved $\$ 10$ because he bought a baseball glove that was on sale for 40% off. What was the original price of the baseball glove?
3. Melcher used 24% of the memory card on his digital camera while taking pictures at a family reunion. If Melcher took 96 pictures at the family reunion, how many pictures can the memory card hold?
4. The table shows the number of minutes Tim has for lunch and study hall. He calculates that these two periods account for 18% of the minutes he spends at school. How many minutes does he spend at school?

Period	Number of Minutes
Lunch	45
Study Hall	45

2. Action movies make up 25% of Sara's DVD collection. If she has 16 action DVDs, how many DVDs does Sara have in her collection?
3. Of the students in the marching band, 55% plan to go to the school dance. If there are 110 students in the marching band that are going to the dance, how many students are in the marching band?
4. Mallorie has $\$ 12$ in her wallet. If this is 20% of her monthly allowance, what is her monthly allowance?

Test Practice

8. Open Response The number of sixth grade students accounts for 35% of the total number of students enrolled in middle school. There are 245 sixth grade students. How many students are enrolled in the middle school?
9. Three different options for school lunch were offered on Friday. The table shows the percent of the total lunches sold for each option. If 270 students bought a cheese pizza or a pepperoni pizza, how many lunches were sold on Friday? If each lunch costs $\$ 3.50$, how much money will the cafeteria earn from all of the lunches?

Option	Percent
Cheese Pizza	50
Pepperoni Pizza	40
Fried Chicken	10

10. The volleyball team is selling snack bags to raise money for new uniforms. The table shows the percent of the total bags sold for each type of snack bag. If they sold 210 bags of pretzels and cheese puffs, how many snack bags did they sell in all? If each snack bags costs $\$ 1.75$, how much money did they raise?

Snack	Percent
Cheese Puffs	10
Corn Chips	15
Popcorn	25
Potato Chips	30
Pretzels	20

11. Be Precise Of the number of sixth grade students at a middle school, 120 prefer online magazines over print magazines. Of the number of seventh grade students, 140 prefer online magazines. A student said that this means a greater percent of seventh grade students prefer online magazines than sixth grade students. Is the student correct? Use precise mathematical language to explain your reasoning.
12. Create Write and solve a real-world problem where you use equivalent ratios to find the whole.
13. Use Math Tools In a photography club, about 48% of the members are girls. If there are 26 members who are girls, explain how you can use mental math to estimate the total number of people in the photography club?
14. If 10% of x is 100 , how can you find the value of x ?

Module 2 • Fractions, Decimals, and Percents Review

Foldables Use your Foldable to help review the module.
\square

Rate Yourself!
Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Reflect on the Module

Use what you learned about fractions, decimals, and percents to complete the graphic organizer.

Fssential Question

How can you use fractions, decimals, and percents to solve everyday problems?

Find the Percent of a Number What is 60\% of 60?

Bar Diagram:

So, 60% of 60 is \qquad

Double Number Line:

So, 60% of 60 is \qquad

Equivalent Ratios:

$$
\begin{aligned}
\begin{aligned}
\text { Part } \\
\text { Whole }
\end{aligned} & \left.\frac{x}{60}=\frac{60}{100}\right\} \text { - Percent } \\
& \\
& \\
& \\
& \frac{36}{60}=\frac{60}{100}
\end{aligned} \begin{aligned}
& \text { Because } 100 \times 0.6=60, \\
& \text { multiply } 60 \text { by } 0.6 .
\end{aligned}
$$

So, 60% of 60 is \qquad .

Find the Whole
 27 is 30% of what?

Bar Diagram:

So, 27 is 30% of \qquad .

Double Number Line:

So, 27 is 30% of \qquad .

Equivalent Ratios:

$$
\frac{27}{90}=\frac{30}{100}
$$

Because $30 \times 0.9=27$ multiply 100 by 0.9 .

So, 27 is 30% of \qquad .

Test Practice

1. Multiple Choice What is 2.6% written as a decimal? (Lesson 2)
(A) 0.26
(B) 0.026
(C) 26
(D) 260
2. Equation Editor At a baking competition, 0.5 dishes were cooked by Room 102, $\frac{3}{10}$ were cooked by Room 104, and $\frac{1}{5}$ were cooked by Room 106. What fraction of the dishes were cooked by Rooms 102 and 104? (Lesson 1)

3. Open Response Vineisha earned 22 out of 20 points on her science quiz over the phases of the moon due to an extra credit question. What percent did she earn on the quiz? (Lesson 2)
\square
4. Open Response Refer to the grid shown below. (Lesson 2)

A. What percent of the grid is shaded?
B. Write your answer from part A as a fraction and a decimal.
5. Multiselect Which number forms below are equivalent to 0.28 ? Select all that apply. (Lessons 1 and 4)

28\%
$\square \frac{21}{80}$
$\square \frac{28}{100}$
$\square \frac{14}{50}$
$\square 28$
$\square \frac{7}{25}$
6. Open Response At a food festival, $\frac{3}{8}$ of the dishes were from China. Another 12.5\% of the dishes were from Japan. What percent of the dishes were from other countries? (Lesson 3)
7. Open Response A basketball player made 40% of the shots she attempted. If she made 32 baskets, how many shots did she attempt? (Lesson 6)
8. Multiple Choice A clothing store purchases a sweatshirt for $\$ 26$ and adds $\$ 15$ to set the sticker price. The store is having a sale where everything is on sale for 20% off. Choose the most reasonable estimate for the final price of a sweatshirt. (Lesson 5)
(A) $\$ 8.00$
(B) $\$ 28.00$
(C) $\$ 32.00$
(D) $\$ 40.00$
9. Open Response Three hundred students were surveyed about their favorite subject. The results are shown in the table below. How many more students prefer science than math? (Lesson 4)

Subject	Percent
Language Arts	15
Math	24
Science	33
Social Studies	21
Elective	7

\square
10. Open Response The original price of a DVD is $\$ 11$. The sale price is 30% off the original price. What is the sale price of the DVD? (Lesson 4)
11. Open Response The table shows the percent of total items sold for each type of ball sold at a sports equipment store in one week. (Lesson 6)

Type of Ball	Percent
Baseball	25
Basketball	35
Football	20
Soccer Ball	15
Tennis Ball	5

A. If they sold a total of 450 baseball and tennis balls, how many total items did the store sell in one week?

B. If each item is sold for $\$ 10.95$, how much did the store have in sales?

12. Open Response Twenty-one students in Michael's classroom are wearing jeans. There are 25 students in his class. Michael says that 80% of his class is wearing jeans. Is Michael correct? Explain your reasoning.
(Lesson 4)

Compute with Multi-Digit Numbers and Fractions

e. Essential Question

How are operations with fractions and decimals related to operations with whole numbers?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it.		0	$3)$	0	0	3
dividing multi-digit numbers						
adding and subtracting multi-digit decimals						
multiplying multi-digit decimals						
dividing multi-digit decimals						
finding reciprocals						
dividing whole numbers by fractions						
dividing fractions by fractions						
dividing fractions by whole numbers						
dividing mixed numbers						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about computing with multi-digit numbers and fractions.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square multiplicative inverse
\square divisor
\square quotient
\square Inverse Property of Multiplication
\square reciprocal

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review	
Example 1 Multiply whole numbers. Find 13×15. $\begin{aligned} & 13 \\ & \times 15 \\ & \hline 65 \\ &+130 \text { Multiply the ones. } \\ & \hline 195 \text { Mdd. } \end{aligned}$	Example 2 Divide whole numbers. Find $323 \div 17$. $\begin{array}{r}19 \\ \begin{array}{r}17 \\ \frac{-17}{153}\end{array} \\ \text { Divide the tens. } \\ \frac{-153}{0}\end{array}$ Divide the ones.
Quick Check	
1. Find 19×51. 2. Find 49×23.	3. Find $539 \div 11$. 4. Find $432 \div 16$.
How Did You Do? Which exercises did you answer correctly in the Quick Check? Shade those exercise numbers at the right.	

Divide Multi-Digit Whole Numbers

I Can... use the standard algorithm to divide multi-digit numbers when solving problems.

Learn Divide Multi-Digit Numbers

When one number is divided by another, the result is called a quotient. The dividend is the number that is divided and the divisor is the number used to divide the dividend.

Label each part of the division expression with the terms quotient, dividend, and divisor.

Example 1 Divide Multi-Digit Numbers

Find $\mathbf{2 5 , 7 4 0} \div 12$.

12 | 2,145 |
| ---: |
| 25,740 |
| -24 |
| 17 |
| $\frac{-12}{54}$ |
| $\frac{-48}{60}$ |
| $\frac{-60}{0}$ |

Divide the numbers in each place value position from left to right.

What Vocabulary
 Will You Learn?
 dividend divisor quotient

Check

Find $52,428 \div 34$.
\qquad

Go Online Y ou can complete an Extra Example online.

Learn Divide Multi-Digit Numbers

If two numbers do not divide evenly, you can write the quotient as a whole number with a remainder, or continue dividing by adding a decimal point to the right of the whole number and annexing zeros. Annex as many zeros as necessary to complete the division.

An example is shown. Compare long division using remainders and long division by annexing zeros.

With Remainders

$$
\begin{aligned}
& 3 2 \longdiv { 3 2 \text { R20 } } \\
& \frac{-75}{70} \\
& \frac{-50}{20}
\end{aligned}
$$

Annexing Zeros

$$
2 5 \longdiv { 3 2 . 8 }
$$

-75
70
$\frac{-50}{200}$
$\frac{-200}{0}$

Recall that a remainder can be written as a fraction with the remainder in the numerator and the dividend in the denominator. To check that 32 R 20 is equal to 32.8 , first write the remainder as a fraction and then convert the fraction to a decimal.
32 R $20=32 \frac{20}{25}$

$$
=32 \frac{20}{25} \text { or } 32.8
$$

So, $820 \div 25$ is 32 with a remainder of 20 , or 32.8 .

Example 2 Divide Multi-Digit Numbers

Find 5,272 $\div 64$.

So, $5,272 \div 64$ is \qquad

Check

Find $16,047 \div 60$.

Think About It!
How will you set up
the division?

Go Online You can complete an Extra Example online.

Math History Minute

One of the oldest known forms of division is used by the Egyptians. For example, to divide 22 by 8 , write multiplication sentences in which 8 is a factor. Find the numbers that create a sum of 22 , the dividend. Because $16+4+2=22$, find the sum of the corresponding factors, $2+\frac{1}{2}+\frac{1}{4}$, or $2 \frac{3}{4}$. So, $22 \div 8=2 \frac{3}{4}$.

1	8	$1 \times 8=8$
2	16	$2 \times 8=16$
$\frac{1}{2}$	4	$\frac{1}{2} \times 8=4$
$\frac{1}{4}$	2	$\frac{1}{4} \times 8=2$
$\frac{1}{8}$	1	$\frac{1}{8} \times 8=1$

Example 3 Divide Multi-Digit Numbers

Find $5,287 \div 340$.

15.55

$3 4 0 \longdiv { 5 , 2 8 7 . 0 0 }$
-340
1887
-1700
1870
-1700
1700
$\frac{-1700}{0}$
So, $5,287 \div 340$ is \qquad

Check

Find $4,620 \div 250$.

© Apply Fundraising

The table shows the number of cookies donated for the school bake sale. The cookies were placed into bags with one dozen cookies in each bag. How many bags of one dozen cookies were available to sell?

Bake Sale Cookies	
Type	Number
Chocolate Chip	125
Oatmeal	60
Peanut Butter	245
Sugar	116

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(Write About It! Write an argument that can be used to defend your solution.

Check

There are 24 seats in each row of the middle school auditorium. The table shows the number of students from each grade who attended a concert. If the students fill each row in the auditorium, how many rows would be needed for all of the students?

Grade Number of Students	
Sixth	310
Seventh	256
Eighth	262

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

When dividing whole numbers, the quotient can be written with a remainder, or you can annex zeros and continue dividing. How are these two methods similar? How are they different?

Practice

Find each quotient. (Examples 1-3)

1. $52,080 \div 15=$ \qquad 2. $38,480 \div 26=$ \qquad 3. $648 \div 18=$ \qquad
2. $3,409 \div 14=$ \qquad
3. $8,890 \div 40=$ \qquad
4. $3,120 \div 64=$ \qquad
5. $6,750 \div 240=$ \qquad
6. $4,415 \div 800=$ \qquad
7. $5,777 \div 160=$ \qquad
10.The table shows the distances between major cities. Mr. Santiago has a flight from Los Angeles to Toronto. If the plane travels at 520 miles per hour, how many hours long is the flight?

New York to Paris	3,636 miles
Los Angeles to Toronto	2,171 miles

Test Practice
11. Equation Editor What is the value of the expression $3,082 \div 23$?

Apply

12. The table shows the number of each type of greeting card a gift shop had remaining at the end of the year. The store created bags with 15 random cards in each bag. How many complete bags of cards were they able to make?

Card Type Number of Cards	
Anniversary	163
Birthday	258
Get Well	98
Thank You	47

13. The table shows the number of each type of seed packet a garden center had remaining at the end of summer. Bags were created with 20 random seed packets in each bag. How many complete bags of seeds can be created?

Seed Type	Number of Packets
Aster	40
Daisy	95
Pansy	160
Sunflower	125
Wildflower	70

14. Use the digits 9, 6, and 3 one time each in the following multi-digit division problem. Then rewrite the problem.

$$
\square, \square 00 \div \square 0=40
$$

16. (17.) Justify Conclusions Determine if the following statement is true or false. Justify your conclusion.

The remainder in a division problem can equal the divisor.
15. Persevere with Problems If the divisor is 60 , what is the least four-digit dividend that would not have a remainder?
17. How can you check that your quotient is correct when dividing multi-digit whole numbers?

Compute With Multi-Digit Decimals

I Can... solve problems by using the standard algorithms for addition, subtraction, multiplication, and division to compute with multi-digit decimals.

Learn Add and Subtract Multi-Digit Decimals

You have already added and subtracted decimals to the hundredths place. You can apply the same rules when adding and subtracting decimals to the thousandths place. First, align the decimal points, then annex zeros, if needed, so that both numbers have the same number of decimal places.

Find $45.16+21.384$.
45.160
$+21.384$
Align the decimal points and annex a zero.
45.160
$+21.384$
66.544 Place the decimal point in the sum.

Add numbers in the same place-value position.

So, $45.16+21.384$ is \qquad

So, $32.94-15.386$ is
Find $32.94-15.386$.
32.940
-15.386
Align the decimal points and annex a zero.
32.940
-15.386
17.554

Subtract as with whole numbers.

Place the decimal point in the difference.
\qquad

a
保

\qquad

Your Notes

\qquad
\qquad
\square

Talk About It!
Why is estimation useful when solving problems involving multi-digit decimals?

Example 1 Add Multi-Digit Decimals

Find $23.498+14.93$. Check the solution.
Make an estimate. Round to the nearest whole number.

Find the sum.
23.498
$+14.930$
38.428 Add. Place the decimal point in the sum.

So, $23.498+14.93$ is \qquad

Check the solution.
Compare the solution to the estimate:

Check

Find $356.725+142.4$.

Example 2 Subtract Multi-Digit Decimals

Find 163.45 - 85.374. Check the solution.
Make an estimate. Round to the nearest ten.
$163.45-85.374 \approx \square-\square$ or \square

Find the difference.
163.450
-85.374
78.076 Subtract. Place the decimal point in the difference.

So, $163.45-85.374$ is \qquad

Check the solution.
Compare the solution to the estimate:

Check

Find 356.18 - 142.257. \qquad
Go Online You can complete an Extra Example online.

Example 3 Subtract Multi-Digit Decimals

Find 25-17.469. Check the solution.
Make an estimate. Round to the nearest whole number.

Find the difference.
25.000

- 17.469
7.531 Subtract. Place the decimal point in the difference.

So, $25-17.469$ is \qquad

Check the solution.
Compare the solution to the estimate:
\square \approx \square The solution is reasonable.

Check

Find $34-9.142$.

Learn Multiply Decimals

When multiplying a decimal by a decimal, multiply as with whole numbers. To place the decimal point in the product, find the sum of the number of decimal places in each factor. The product has the same number of decimal places. If there are not enough decimal places in the product, annex zeros to the left of the first non-zero digit.

Find 0.014×3.7.

0.014	« three decimal places
$\times 3.7$	* one decimal place
98	
+ 420	
0.0518	Add. Then annex a zero to make four decimal plac

So, 0.014×3.7 is \qquad

Pause and Reflect

Are you ready to move on to the next Example? If yes, what have you learned that you think will help you? If no, what questions do you still have? How can you get those questions answered?

Example 4 Multiply Multi-Digit Decimals

Find 0.067×1.42. Check your solution.

Make an estimate. Round to the nearest whole number.

Find the product.
0.067 Write the problem.
$\times 1.42$ Multiply as with whole numbers. 134
268
$+67$
0.09514 Add. Then annex a zero to make five decimal places.

So, 0.067×1.42 is \qquad

Check the solution.
Compare the solution to the estimate:

Check

Find 14.7×11.361.

Learn Divide Decimals

When dividing by decimals, it is easier to complete the division when the divisor is a whole number. Multiply both the divisor and dividend by the same power of 10 so that the divisor is a whole number.

Place the decimal point in the quotient directly above the decimal point in the dividend. Divide as with whole numbers, annexing zeros as needed.

Find $0.006 \div 0.12$.

So, $0.006 \div 0.12$ is

Pause and Reflect

How is division of multi-digit decimals similar to division of multi-digit whole numbers? How is it different? How will knowing how to divide whole numbers help you with dividing decimals?

Talk About It!
Why is the quotient larger than the dividend?

Why is the quotient so much greater than the dividend?

Think About It!
How will you set up the division? By what will you need to multiply both values to eliminate the decimal point in the divisor?

$0 . 0 1 2 \longdiv { 6 0 . 9 2 7 }$

$1 2 \longdiv { 6 0 9 2 7 . 0 0 }$ -60

09
-0
92
-84
87
-84
30
-24
60
-60
0
$0 . 0 1 2 \longdiv { 6 0 . 9 2 7 }$ Write the problem.

Multiply the dividend and divisor by 1,000 to
eliminate the decimal point in the divisor. eliminate the decimal point in the divisor.
5077.25 Place the decimal point in the quotient.

Annex zeros and divide until there is a remainder of 0 .

Place a zero in the quotient above 9 because 9 does not divide 12.
(

$$
\text { not divide } 12 .
$$

Find $60.927 \div 0.012$.
Find the quotient.

So, $60.927 \div 0.012$ is \qquad

Check

Find $2.943 \div 0.27$.

Example 5 Divide Multi-Digit Decimals

Apply Shopping

The table shows the cost of produce per pound at a farmer's market. Mr. Gonzalez bought 0.75 pound of pears and 3.5 pounds of plums. If Mr. Gonzalez paid for his fruit with a $\$ 10$ bill, how much change will he receive?

Produce	Cost per Pound (\$)
Pears	0.98
Oranges	1.29
Carrots	1.18
Plums	1.49

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
2. Write About It! Write an argument that can be used to defend your solution.

Go Online Watch the animation.

How could you have solved the problem another way?

Check

There are two types of granola being sold at a local grocery store. Jerome wants to buy 1.5 pounds of cranberry granola for $\$ 5.99$ per pound and 0.9 pound of dark chocolate granola for $\$ 7.99$ per pound. If Jerome pays for his granola with a $\$ 20$ bill, how much change will he receive?Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Where did you encounter difficulty in this lesson, and how did you deal with it? Write down any questions you still have.

Practice

Find each sum. (Example 1)

1. $34.672+15.31=$ \qquad

Find each difference. (Examples 2 and 3)
3. $139.65-59.623=$ \qquad

Find each product. (Example 4)
5. $0.025 \times 1.24=$ \qquad

Find each quotient. (Example 5)
7. $32.674 \div 0.016=$ \qquad
2. $152.875+35.4=$ \qquad
4. $352.37-231.975=$ \qquad
6. $17.15 \times 1.062=$ \qquad
8. $3.825 \div 0.25=$ \qquad

Test Practice
10. Equation Editor What is the value of the expression $2,965.7+5.8$?

11. The table shows the cost per pound of food items you can buy in bulk at a grocery store. Mrs. Linden bought 1.25 pounds of dried fruit and 0.5 pound of cereal. If Mrs. Linden paid for her items with a $\$ 5$ bill, how much change will she receive?

Item	Cost per Pound (\$)
Beans	2.86
Cereal	2.38
Dried Fruit	1.84
Rice	0.52

12. Chloe is making hair bows to sell at a craft show. The table shows the cost per yard of different types of ribbon. Chloe bought 5.5 yards of satin ribbon and 3.8 yards of tulle. If Chloe paid with a $\$ 20$ bill, how much change will she receive?
13. Construct an Argument Explain how you can mentally determine if the product of 5.5 and 0.95 is less than, greater than, or equal to 5.5 ?
14. Explain how you know that the sum of 26.541 and 14.2 will be greater than 40 .
15. Persevere with Problems Brand A dish detergent costs $\$ 2.48$ for a 21.6 -ounce bottle. Brand B costs $\$ 1.55$ for a 12.6 -ounce bottle. Which brand costs less per ounce?
16. Find the Error A student is multiplying 1.02×2.55. Find the student's mistake and correct it.
1.02
$\times 2.55$
510
5100
$\begin{array}{r}+20400 \\ \hline 260.10\end{array}$

Divide Whole Numbers by Fractions

I Can... apply what I previously learned about multiplication, division, and operations on multi-digit numbers to divide whole numbers by fractions.

Learn Reciprocals

Two numbers whose product is 1 are called multiplicative inverses or reciprocals. The Inverse Property of Multiplication states that the product of a number and its multiplicative inverse is 1 .

Numbers $\quad \frac{2}{3} \times \frac{3}{2}=1$

Algebra
For every number $\frac{a}{b}$ where a and $b \neq 0$, there is exactly one number, $\frac{b}{a}$, such that $\frac{a}{b}-\times \frac{b}{a}=1$.

Example 1 Find Reciprocals

Find the reciprocal of $\frac{1}{8}$.
Since $\frac{1}{8} \times \frac{8}{1}=1$, the reciprocal of $\frac{1}{8}$ is $\frac{8}{1}$ or \qquad .

So, the reciprocal of $\frac{1}{8}$ is 8 .

What Vocabulary
 Will You Learn?
 Inverse Property of Multiplication multiplicative inverse reciprocal

a Talk About It!
The fractions $\frac{2}{3}$ and $\frac{3}{2}$
are multiplicative
inverses, or
reciprocals. What are
the similarities and
differences between
the two numbers?

Your Notes

\qquad
\qquad

So, the reciprocal of $\frac{3}{4} \cdot \frac{4}{3}$

Check

What number multiplied by $\frac{4}{7}$ as a product of 1 ?

Talk About It!
Can you write any whole number as a fraction? Explain.

Example 2 Find Reciprocals of Fractions

What number multiplied by $\frac{3}{4}$ has a product of 1 ?

Example 3 Find Reciprocals of Whole Numbers

Find the reciprocal of 5.

The whole number 5 can be written as the fraction
Since $\frac{5}{1} \times \frac{1}{5}=1$, the reciprocal is \qquad .

So, the reciprocal of 5 is $\frac{1}{5}$.

Check

\qquad .

Find the reciprocal of 4 .
(3) Go Online You can complete an Extra Example online.

156 Module 3 . Compute with Multi-Digit Numbers and Fractions

Explore Divide Whole Numbers by Fractions

Go Online You will use models to divide whole numbers by fractions and make a conjecture about finding the quotient without using a model.

Learn Divide Whole Numbers by Fractions

You can use a visual model to represent division problems involving whole numbers and fractions.
Find $3 \div \frac{3}{4}$.

Draw a model to represent the dividend, 3.

Divide each whole into fourths, because the
 denominator of the divisor is 4 .

Identify groups of threefourths. Shade each
 group of $\frac{3}{4}$.

There are four groups of $\frac{3}{4}$ in 3 wholes.

So, $3 \div \frac{3}{4}$ is 4 .

(continued on next page)

You can also use an equation to solve division problems involving whole numbers and fractions. Recall that multiplication and division are inverse operations, so you can divide a whole number by a fraction by multiplying the whole number by the reciprocal of the fraction.

$$
\begin{aligned}
3 \div \frac{3}{4} & = & & \text { Write the equation. } \\
3 \div \frac{3}{4} & =\frac{\square}{\square} \div \frac{3}{4} & & \text { Write the whole number as a fraction. } \\
& =\frac{3}{1} \times \frac{\square}{\square} & & \text { Multiply by the reciprocal of } \frac{3}{4}, \frac{4}{3} . \\
& =\frac{3}{1} \times \frac{4}{3} & & \text { Divide by common factors. } \\
& =\frac{1 \times 4}{1 \times 1} & & \text { Simplify. } \\
& =\frac{4}{1} \text { or } 4 & & \text { Multiply. }
\end{aligned}
$$

So, $3 \div \frac{3}{4}$ is

Pause and Reflect

Did you struggle with any of the concepts in this Learn? How do you feel when you struggle with math concepts? What steps can you take to understand those concepts?

Example 4 Divide Whole Numbers by Fractions

Find $2 \div \frac{2}{3}$.

Method 1 Use a visual model.

Draw a model to represent the whole-number dividend, 2.

Divide each whole into thirds because the denominator of the divisor is 3 .

Determine how many groups of $\frac{2}{3}$ are in 2 . Shade each group of $\frac{2}{3}$.

Label the number of groups.

How many whole groups of $\frac{2}{3}$ were labeled? \qquad

There are \qquad sections left over.

So, $2 \div \frac{2}{3}$ is 3 .

Think About It!
The quotient represents the number of groups of $\frac{2}{3}$ that are in what number?
\qquad

Method 2 Use an equation.

$$
2 \div \frac{2}{3}=\square \quad \text { Write the equation. }
$$

$2 \div \frac{2}{3}=\frac{\square}{\square} \div \frac{2}{3} \quad$ Write the whole number as a fraction.
$=\frac{2}{1} \times \frac{\square}{\square} \quad$ Multiply by the reciprocal of $\frac{2}{3}, \frac{3}{2}$.
$=\frac{2}{1} \times \frac{3}{2}_{1} \quad$ Divide by common factors.
$=\frac{1 \times 3}{1 \times 1} \quad$ Simplify .
$=\square$ Multiply.

So, $2 \div \frac{2}{3}$ is 3 .

Check

Find $4 \div \frac{2}{5}$.

(Example 5 Divide Whole Numbers by Fractions

At summer camp, the duration of each activity is $\frac{3}{4}$ hour. The camp counselors have set aside 4 hours in the afternoon for activities.
Find $4 \div \frac{3}{4}$. Then interpret the quotient.

Part A Find $4 \div \frac{3}{4}$.
Method 1 Use a model.

Draw a model to represent the dividend, 4.

Divide each whole into fourths.

Identify groups of $\frac{3}{4}$.

Label the number of groups.

There are \qquad whole groups of $\frac{3}{4}$.
There is \qquad section left over.
One section is $\frac{1}{3}$ of a group.

So, $4 \div \frac{3}{4}$ is $5 \frac{1}{3}$.

Method 2 Use an equation.
$4 \div \frac{3}{4}=\square \quad$ Write the equation.
$4 \div \frac{3}{4}=\frac{\square}{\square} \div \frac{3}{4}$
Write the whole number as a fraction.
$=\frac{4}{1} \times \frac{\square}{\square} \quad$ Multiply by the reciprocal of $\frac{3}{4}, \frac{4}{3}$.
$=\frac{4 \times 4}{1 \times 3} \quad$ Multiply the numerators and denominators.
$=\frac{16}{3}$ or $\square \square$ Simplify.

So, $4 \div \frac{3}{4}$ is $5 \frac{1}{3}$.

Talk About It!
Compare and contrast the two methods.

Part B Interpret the quotient.

The quotient is $5 \frac{1}{3}$. So, a camper can complete activities in 4 hours.

Check

Morgan has a 9-foot-long piece of wood that he wants to cut to build some $\frac{5}{6} 00 \mathrm{ot}$-long shelves for his bedroom. Find $9 \div$. $\frac{5}{6}$ en interpret the quotient.

© Apply Cooking

The table shows the ingredients needed to make one batch of salad dressing. A chef has 3 tablespoons (T) of garlic. She made the greatest number of whole batches possible. How much garlic remained?

Ingredient	Amount
Oil	1 c
Vinegar	$\frac{3}{4} \mathrm{C}$
Garlic	$\frac{2}{3} T$

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?
2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution.

Check

The table shows the ingredients needed to make one batch of fudge. A cook has 5 cups of evaporated milk. She made the greatest number of whole batches possible. How much evaporated milk remained?

Ingredient	Amount
Chocolate Chips	$2 \frac{1}{2} \mathrm{c}$
Evaporated Milk	$\frac{3}{4} \mathrm{c}$
Butter	$\frac{1}{2} \mathrm{c}$

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

164 Module 3 . Compute with Multi-Digit Numbers and Fractions

Practice

Find the reciprocal of each numberExample 1 and Example 3)

1. $\frac{1}{2}$
2. $\frac{1}{5}$
3. 8
4. What number multiplied by $\frac{3}{5}$ has a product of 1? (Example 2)
5. What number multiplied by $\frac{7}{10}$ has a product of 1? (Example 2)

Divide. Write in simplest form. (Example 4)
6. $3 \div \frac{1}{4}=$ \qquad 7. $4 \div \frac{2}{5}=$ \qquad 8. $6 \div \frac{2}{3}=$
\qquad
9. Marie is making scarves. She has 7 yards of fabric and each scarf needs $\frac{5}{8}$ yard of fabric. Find $7 \div \frac{5}{8}$. Then interpret the quotient. (Example 5)

Test Practice

10. Roberto is at a tennis day camp. The coach has set aside 2 hours to play mini matches that last $\frac{3}{5}$ hour. Find $2 \div \frac{3}{5}$. Then interpret the quotient.
11. Equation Editor What is the value of $15 \div \frac{5}{9}$?

12. The table shows the amount of each ingredient Jacob is using to make one pizza. If he has 11 cups of mozzarella cheese and makes the greatest number of whole pizzas possible, how much mozzarella cheese remains?

Ingredient	Amount
Mozzarella Cheese	$\frac{3}{4} c$
Sauce	$\frac{1}{2} c$

13. The table shows the ingredients for one batch of barbeque sauce. Anne has 9 cups of ketchup and makes the greatest number of whole batches of barbeque sauce possible. How much ketchup remains?

Ingredient	Amount
Brown Sugar	$\frac{1}{4} \mathrm{c}$
Cider Vinegar	$\frac{1}{2} \mathrm{c}$
Ground Cumin	1 tsp
Ketchup	$\frac{2}{3} \mathrm{c}$
Pepper	1 tsp

14. Find the Error A student is solving $9 \div \frac{3}{4}$. Find the student's mistake and correct it.
$9 \div \frac{3}{4}=\frac{9}{1} \times \frac{3}{4}$
$=\frac{27}{4}$ or $6 \frac{3}{4}$
15. (17) Persevere with Problems In a $\frac{3}{4}$-mile relay race, each runner on one team runs $\frac{3}{16}$ mile. How many runners are on one team?
16. Zach has 20 sub sandwiches for a party. Each sub sandwich is going to be cut into thirds. Zach needs 55 sandwich pieces. Will he have enough sandwich pieces? Justify your answer.
17. Identify the whole number whose reciprocal has a decimal equivalent between 0.2 and

Divide Fractions by Fractions

I Can... apply what I previously learned about multiplication and division with whole numbers and the division of whole numbers by fractions to divide fractions by fractions.

Learn Divide Fractions by Fractions

You can use a visual model to represent division problems involving fractions, such as ${ }_{2}^{1} \dot{\overline{3}}^{1}$.

Label groups of ${ }_{3}^{1}$. Then find the number of groups of ${ }_{3}^{1}$ that are in the shaded section.

There is one group of ${ }_{3}^{1}$ and $\stackrel{1}{2} f$ another third in the shaded section.

So, there are $1{ }_{2}^{1}$ groups of ${ }_{3}^{1}$ in ${ }_{2}^{1}$ This means that ${ }_{2}^{1} \dot{\overline{3}}^{1}$ is 1_{2}^{1}

You can also use an equation to solve division problems involving fractions. To divide a fraction by a fraction, multiply the first fraction by the reciprocal of the second fraction, because multiplication and division are inverse operations.

Wo Online Watch the animation to see how to find $\frac{1}{3} \quad \begin{aligned} & 2 \\ & 9\end{aligned}$.

$$
\begin{aligned}
\frac{1}{3} \div \frac{2}{9} & =\frac{1}{13} \times \frac{9^{3}}{2} & & \begin{array}{l}
\text { Multiply by the reciprocal. Divide by the } \\
\text { common factor, } 3 .
\end{array} \\
& =\frac{1 \times 3}{1 \times 2} & & \text { Multiply the numerators and denominators. } \\
& =\frac{3}{2} \text { or } 1 \frac{1}{2} & & \text { Simplify. }
\end{aligned}
$$

Think About It!
The quotient represents the number of groups of $\frac{3}{8}$ that are in what number?

Example 1 Divide Fractions by Fractions

Find $\frac{3}{4} \div \frac{3}{8}$.

Method 1 Use a model.
Draw a model to represent the dividend, $\frac{3}{4}$.

You want to know how many groups of $\frac{3}{8}$ are in $\frac{3}{4}$. Divide the whole into eighths because the denominator of the divisor is 8 .

Identify the number of groups of $\frac{3}{8}$ in the shaded section. Remember, the shaded region represents $\frac{3}{4}$.

There are \qquad groups of $\frac{3}{8}$ in $\frac{3}{4}$.

Talk About It!
Compare and contrast the two methods.

Method 2 Use an equation.

$$
\begin{array}{rlrl}
\frac{3}{4} \div \frac{3}{8} & = \\
\begin{aligned}
\frac{3}{4} \div \frac{3}{8} & =\frac{3}{4} \times \frac{\text { Write the equation. }}{\square} & & \text { Multiply by the reciprocal of } \frac{3}{8} \frac{8}{3} . \\
& =\frac{1}{4} \times \frac{8^{2}}{3} & & \text { Divide by common factors. } \\
& =\frac{1 \times 2}{1 \times 1} & & \text { Simplify. } \\
& =\frac{2}{1} \text { or } 2 & & \text { Multiply. } \\
\text { So, } \frac{3}{4} & \div \frac{3}{8} \text { is } & &
\end{aligned} \ggg>l
\end{array}
$$

Check

Find $\frac{7}{9} \div \frac{2}{3}$.

Check

Jasmine is mixing paint colors. She has $\frac{3}{4}$ gallon of blue paint. She needs $\frac{1}{6}$ gallon for each new color that she is mixing. Write and solve an equation that models the situation. Then interpret the quotient.

Part A

Write and solve an equation.

Part B

Interpret the quotient.

Go Online Y ou can complete an Extra Example online.

Learn Write Story Contexts

You can write a story context, or word problem, to represent any division problem. You can then solve the problem using a model or equation.

For the expression $\frac{4}{5} \div \frac{1}{10}$, you can write a story context by describing each piece of the division problem.

Write the dividend and divisor into the correct location in the story context.

Navid is hanging pictures in his room and has foot of tape to use. He uses \qquad foot of tape to hang each photo. How many photos can he hang on the wall?

Example 3 Write Story Contexts

Write a story context for $\frac{2}{3} \div \frac{1}{6}$. Then find the quotient.

Part A Write a story context.
To write a story context for the division expression, consider the following situation.

Mimi is very active. She loves to cook, has a couple of hobbies, and has tasks around the house. Choose one the activities shown. Then write a story context using your choice.

cooking dinner	doing laundry	painting
making pasta	feeding birds	swimming

Think About It! How would you begin writing the problem?

Part B Solve.

Write the equation.

Multiply by the reciprocal of $\frac{1}{6}, \frac{6}{1}$.

Divide by common factors.

Simplify.
Multiply.

So, $\frac{2}{3} \div \frac{1}{6}$ is \qquad .

Check

Write a story context for $\frac{5}{6} \div \frac{1}{12}$. Then find the quotient.

3 Go Online You can complete an Extra Example online.

Pause and Reflect

When dividing with fractions, explain why you can multiply the dividend by the reciprocal of the divisor to find the quotient. Can this method be used to divide two whole numbers? Explain your reasoning.

© Apply Food

Alfonso is making snack bags with different types of nuts as shown in the table. Each snack bag contains $\frac{1}{8}$ pound of one type of nut. How many more whole servings of walnuts can he make than peanuts?

Type of Nut	Weight (lb)
Almonds	$\frac{1}{2}$
Cashews	$\frac{1}{4}$
Peanuts	$\frac{2}{5}$
Walnuts	$\frac{3}{4}$

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution.

Check

Stephanie's running schedule is shown in the table. She decides that she wants to do sprint training and will run the total distance by running a series of $\frac{1}{10}$-mile sprints. How many more $\frac{1}{10}$-mile sprints will she have to run on weekends compared to weekdays?

	Total Distance (mile)
Weekdays	$\frac{2}{3}$
Weekends	$\frac{7}{8}$

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Divide. Write in simplest form. (Example 1)

1. $\frac{5}{6} \div \frac{5}{12}=$ \qquad
2. $\frac{1}{3} \div \frac{1}{9}=$ \qquad
3. $\frac{3}{7} \div \frac{1}{14}=$ \qquad
4. Romeo had $\frac{3}{4}$ pound of fudge left. He divided the remaining fudge into $\frac{5}{16}$-pound bags. Write and solve an equation that models the situation. Then interpret the quotient. (Example 2)
5. Chelsea has $\frac{7}{8}$ pound of butter to make icing. Each batch of icing needs $\frac{1}{4}$ pound of butter. Write and solve an equation that models the situation. Then interpret the quotient. (Example 2)

Test Practice

7. Equation Editor What is the value of the expression $\frac{2}{5} \div \frac{1}{6}$?

Apply

8. A teacher is making bags of different colors of modeling clay.

The table shows the amount of each color she has available. Each color will be divided into $\frac{3}{16}$-pound bags. How many more bags of purple can she make than yellow?

Color	Weight (lb)
Green	$\frac{1}{2}$
Purple	$\frac{15}{16}$
Red	$\frac{2}{3}$
Yellow	$\frac{3}{4}$

9. Mateo is making bookmarks with different colored ribbon. The amount of each color he has is shown in the table. Each bookmark will be $\frac{1}{6}$-yard long. How many more orange bookmarks can he make than aqua bookmarks?

Color Length (yd)	
Aqua	$\frac{3}{4}$
Orange	$\frac{9}{10}$
Yellow	$\frac{15}{16}$

10. Make a Conjecture Can the quotient of two positive fractions be less than 1 ? Explain.
11. Persevere with Problems Lannie has $5 \frac{1}{2}$ cups of chocolate chips. She needs $1 \frac{3}{4}$ cups to make one batch of chocolate chip cookies. How many batches of chocolate chip cookies can she make?
12. The length of a race is $\frac{9}{10}$ mile. Andrew wants to place a flag every $\frac{1}{3}$ mile. He has 3 flags. Does he have enough flags?
Explain.
13. Write a division problem involving the division of two positive fractions whose quotient is equal to 1 . Show that your problem is correct.

Divide with Whole and Mixed Numbers

I Can... apply what I previously learned about division and reciprocals to divide fractions by whole and mixed numbers.

Explore Divide Fractions by Whole Numbers

WOnline Activity Y ou will use Web Sketchpad to divide fractions by whole numbers.

Learn Divide Fractions by Whole Numbers

You can use a visual model to represent division problems involving whole numbers and fractions.
Find ${ }_{5}^{3} \div 2$.
Draw a model to represent the dividend, ${ }_{5}^{3}$.

Divide the shaded sections by two, because the divisor is 2 .

The dotted line divides one of the sections representing ${ }_{5}^{1}$ into two equal-size sections. Divide each of the remaining fifths into two equal-size sections.

Each of the smaller sections
is 10 of the whole. Three fifths divided by two is ${ }_{10}^{3}$ of the whole.

So, ${ }_{5}^{3} \div 2$ is $\stackrel{3}{10}$.

(continued on next page)
促

Your Notes

8 Talk About It!
Compare and contrast the two methods.

You can also use an equation to solve division problems involving whole numbers and fractions. To divide a fraction by a whole number, multiply the fraction by the reciprocal of the whole number.
Find ${ }_{5}^{3} \div 2$.

$$
\begin{aligned}
\begin{array}{ll}
5 \\
5
\end{array} & = & & \text { Write the equation. } \\
& =\frac{3}{5} \div \frac{2}{1} & & \text { Write the whole number as a fraction. } \\
& =3 \times 1 & & \text { Multiply by the reciprocal of } \frac{2}{1}, \frac{1}{2} . \\
& =\begin{array}{l}
3 \times 1 \\
5 \times 2
\end{array} & & \text { Multiply the numerators and denominators. } \\
& =\begin{array}{ll}
3 & 10
\end{array} & & \text { Simplify. }
\end{aligned}
$$

$$
\text { So, } \frac{3}{5} \div 2 \text { is } \frac{3}{10} \text {. }
$$

Pause and Reflect

Did you struggle with any of the concepts in this Learn? How do you feel when you struggle with math concepts? What steps can you take to understand those concepts?

Example 1 Divide Fractions by Whole Numbers

Faye is making party favors. She is dividing $\frac{3}{4}$ pound of cashews into 12 packages.

How many pounds of cashews are in each package?

Part A Write an equation to model the problem.
Circle the equation that models the problem.
$\frac{3}{4} \div 12=\square \quad 12 \div \frac{3}{4}=$ \qquad

Part B Solve the equation.
Method 1 Use a visual model.
Draw a model to represent the dividend, $\frac{3}{4}$.

Divide the shaded sections by the divisor, 12.

Divide the remaining part of the whole so that each section is of equal size.
\square
Identify what each of the smallest sections represents.

Each section is $\frac{1}{16}$ of the whole. So, $\frac{3}{4} \div 12$ is $\frac{1}{16}$.

Think About It!
Will the quotient be less than, greater than, or equal to $\frac{3}{4}$ pound? How do you know?

\square
\square
\square

\square
\square
\square
\square

Talk About It!
Compare and contrast the two methods.

Method 2 Use an equation.

There are \qquad pound(s) of cashews in each package.

Check

Ernesto is making designs for classroom bulletin boards. He is cutting $\frac{3}{4}$-yard of fabric into 6 pieces of the same length. Write and solve an equation to find the length of each piece of fabric.

Learn Divide Mixed Numbers

Dividing with mixed numbers is similar to dividing with fractions. To divide with mixed numbers, write the mixed number as a fraction and then divide as with fractions.

3 Go Online Watch the animation to learn how to divide with mixed numbers.

Find $2 \frac{1}{4} \div \frac{2}{3}$.
$2 \frac{1}{4} \div \frac{2}{3}=\square \quad$ Write the equation.

$$
\begin{array}{ll}
=\frac{9}{4} \div \frac{2}{3} & \text { Write the mixed number as a fraction. } \\
=\frac{9}{4} \times \frac{3}{2} & \text { Multiply by the reciprocal of } \frac{2}{3}, \frac{3}{2} . \\
=\frac{9 \times 3}{4 \times 2} & \text { Multiply the numerators and denominators. } \\
=\frac{27}{8} \text { or } 3 \frac{3}{8} & \\
\text { Multiply. }
\end{array}
$$

Example 2 Divide Mixed Numbers

Find $3 \frac{1}{3} \div 6$.
$3 \frac{1}{3} \div 6=\square$ Write the equation.

So, $3 \frac{1}{3} \div 6$ is \qquad

Check

Find $2 \frac{1}{2} \div 3$. Write in simplest form.

Example 3 Divide Mixed Numbers

Find $4 \frac{2}{3} \div 1 \frac{3}{4}$.
$4 \frac{2}{3} \div 1 \frac{3}{4}=\square \quad$ Write the equation.

Write the mixed numbers as fractions.
$=\frac{14}{3} \times \frac{\square}{\square}$
Multiply by the reciprocal of $\frac{7}{4}, \frac{4}{7}$.
$=\frac{214}{3} \times \frac{4}{7}$
Divide by common factors.
$=\frac{2 \times 4}{3 \times 1} \quad$ Simplify.
$=\frac{8}{3}$ or $2 \frac{2}{3}$
Multiply.

So, $4 \frac{2}{3} \div 1 \frac{3}{4}$ is \qquad .

Check

Find $2 \frac{3}{8} \div 1 \frac{1}{4}$. Write in simplest form.

Q Apply Decorating

The table shows the side lengths of two square mirrors. How many times greater is the area of mirror A than the area of mirror B ?

Mirror	Side Length (ft)
A	$2 \frac{1}{2}$
B	$1 \frac{3}{4}$

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Go Online
Watch the animation.

Check

Mylie has $35 \frac{3}{4}$ yards of red ribbon and $30 \frac{1}{3}$ yards of green ribbon.
 the green ribbon into strips that are each $\frac{z^{1}}{6}$ yards long. How many more green strips than red strips does she have?

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

184 Module 3 . Compute with Multi-Digit Numbers and Fractions

Practice

1. The drama teacher is making bandanas for costumes. She is cutting $\frac{1}{2}$ yard of fabric into 6 bandanas of the same size. Write and solve an equation to find how much fabric there will be for each bandana. (Example 1)
2. A landscape designer has $\frac{4}{5}$ ton of mulch to divide equally among 8 customers. Write and solve an equation to find how much mulch each customer will receive. (Example 1)

Divide. Write in simplest form. (Examples 2 and 3)
3. $2 \frac{4}{5} \div 4=$ \qquad 4. $6 \frac{2}{3} \div 8=$ \qquad 5. $4 \frac{2}{3} \div 6=$ \qquad
6. $3 \frac{3}{5} \div 1 \frac{1}{2}=$ \qquad
7. $3 \frac{3}{4} \div 1 \frac{2}{3}=$ \qquad
8. $4 \frac{1}{2} \div 2 \frac{7}{10}=$ \qquad

Test Practice

9. Jeanne has $3 \frac{7}{8}$ yards of fabric. The table shows the amount of fabric she needs for different items. How many pairs of shorts can she make?

Clothing Item	Fabric Needed (yd)
Shirt	$1 \frac{3}{4}$
Shorts	$1 \frac{1}{4}$

10. Equation Editor What is the value of the expression $5 \frac{5}{8} \div 3 \frac{3}{4}$?

Apply
11. Kara and Nathan are each painting a poster for the school dance. Their posters have the dimensions

Student	Poster Length (ft)	Poster Width (ft)
Nathan	$1 \frac{1}{2}$	$1 \frac{1}{2}$
Kara	$3 \frac{3}{4}$	$3 \frac{3}{4}$

12. Mrs. Brown is putting different colored sand into cups for her 4 daughters to make sand art bottles. The total amount of each color she has is shown in the table. If each color is divided equally among the daughters, how much more pink sand will be available for each girl than purple sand?

Sand Color	Weight (lb)
Blue	$\frac{15}{16}$
Pink	$\frac{3}{4}$
Purple	$\frac{1}{2}$
Turquoise	$\frac{7}{8}$

13. Create Write and solve a real-world problem that involves the division of two mixed numbers.
14. (7.) Persevere with Problems Without dividing, explain whether the quotient of $\frac{9}{10} \div 3$ is greater than or less than the quotient of $\frac{9}{10} \div 2$.
15. Find $2 \frac{1}{10} \div 1 \frac{1}{5}$. How can you determine if your quotient is reasonable? Explain.
16. 17 Reason Inductively Without computing, which expression is greater, $20 \times \frac{1}{2}$ or $20 \div \frac{1}{2}$? Explain your reasoning.
(11) Foldables Use your Foldable to help review the module.

Rate Yourself! 0

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Write about one thing you learned.
Write about a question you still have.

Module 3. Compute with Multi Digit Numbers and Fractions

Reflect on the Module

Use what you learned about fractions and decimals to complete the graphic organizer.

Fssential Question

How are operations with fractions and decimals related to operations with whole numbers?

Operation	Whole Numbers	Fractions	Decimals
addition	Align the numbers according to place value and add. $\begin{array}{r} 1,865 \\ +72 \\ \hline 1,937 \end{array}$		
subtraction	Align the numbers according to place value and subtract. $\begin{array}{r} 3,528 \\ -186 \\ \hline 3,342 \end{array}$		
multiplication	First multiply the ones, then multiply the tens, and so on. Then add the products to find the total product. $\begin{array}{r} 265 \\ \times 12 \\ \hline 530 \\ +265 \\ \hline 3,180 \end{array}$		
division	Divide each place value position from left to right. $\begin{array}{r} 12 \\ 7 6 \longdiv { 9 1 2 } \\ -76 \\ \hline 152 \\ -\frac{152}{0} \\ \hline \end{array}$		

Test Practice

1. Open Response In Jamal's county, there are 60 farms that cover about 8,370 acres of land. If the farms are all approximately the same size, how many acres is each farm? Explain how can you solve the problem. (Lesson 1)
2. Equation Editor At the botanical garden, flower bulbs are planted each spring. The table shows the number of bulbs planted in each color. (Lesson 1)

Color	Number
Yellow	280
Red	245
Purple	393

If each flowerbed can hold 36 bulbs, how many flowerbeds will be completely filled with bulbs?

3. Equation Editor Divide $0.008 \div 0.25$.
(Lesson 2)

4. Open Response Mariam is making two kinds of paper lanterns. One type of lantern requires 0.75 square foot of construction paper, while the other requires 1.15 square feet. After making 5 of each type of lantern, Mariam has 12.75 square feet of leftover paper. (Lesson 2)
A. How many square feet of paper did Mariam use when making the 10 lanterns? Explain how you found this answer.
B. How many square feet of paper did Mariam begin with? Describe your reasoning.
5. Multiple Choice What number multiplied by $\frac{7}{9}$ has a product of 1 ? (Lesson 3)
(A) $\frac{7}{9}$
(B) $\frac{9}{9}$
(C) 1
(D) $\frac{9}{7}$
6. Open Response Divide $7 \div \frac{3}{5}$.
(Lesson 3)
7. Equation Editor The table shows the ingredients needed to make one serving of marinade. Kat has 3 cups of soy sauce. She made the greatest number of servings possible. (Lesson 3)

Ingredients	Amount
Ginger	$\frac{1}{8} T$
Soy sauce	$\frac{5}{6} c$
Garlic	$\frac{1}{4} c$

A. How many whole servings of marinade will the 3 cups of soy sauce make?
B. How many cups of soy sauce will be left over?

8. Multiple Choice Tony is making chicken enchiladas. He needs $\frac{1}{8}$ jar of sauce for each enchilada. How many enchiladas can ळny make with $\frac{5}{6}$ jar of sauce? (Lesson 4)
(A) 5 enchiladas
(B) 6 enchiladas
(C) 7 enchiladas
(D) 8 enchiladas
9. Open Response Divide $\frac{2}{3} \div \frac{3}{4}$. (Lesson 4)
\square
10. Multiselect A builder is dividing a hectare (about $2 \frac{1}{2}$ acres of land) into $\frac{1}{3}$-acre lots to build houses. Which expression(s) can be used to find how many lots the builder will have to build on? Select all that apply.
(Lesson 5)
$\square \frac{5}{2} \div \frac{3}{1}$
$\square \frac{2}{5} \div \frac{3}{1}$
$\square \frac{5}{2} \times \frac{3}{1}$
$\square \frac{5}{2} \times \frac{1}{3}$
$\square \frac{2}{5} \times \frac{3}{1}$
$\square \frac{5}{2} \div \frac{1}{3}$
11. Open Response Three-fifth pound of pasta is enough to feed 6 people. (Lesson 5)
A. Write a division equation to find the number of pounds in each serving.
B. How many pounds are in each serving?
\square
12. Multiple Choice A restaurant has a $\frac{3}{4}$-full pan of lasagna. If the cost is $\$ 20$ per $\frac{1}{3}$ pan, how much will the restaurant charge for the $\frac{3}{4}$-full pan of lasagna? (Lesson 5)
(A) $\$ 20$
(B) $\$ 45$
(C) $\$ 60$
(D) $\$ 125$
13. Open Response Find the quotient of $13 \div 4 \frac{7}{8}$ written in simplest form. (Lesson 5) \square

190 Module 3 - Compute with Multi-Digit Numbers and Fractions

Q Fssential Question

How are integers and rational numbers related to the coordinate plane?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - I've heard of it. - I know it!	0	0	5	(1)	0	3
using integers to represent quantities						
graphing integers on a number line						
finding opposites of integers						
finding absolute values of integers						
comparing and ordering integers						
graphing rational numbers on a number line						
finding absolute values of rational numbers						
comparing and ordering rational numbers						
graphing points in the coordinate plane						
reflecting points in the coordinate plane						
finding distance between points in the coordinate plane						

[^4] module. You can use the Foldable throughout the module as you learn about integers, rational numbers, and the coordinate plane.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square absolute value
\square positive integer
\square integerquadrants
\square negative integer
\square rational number
\square opposite
\square reflection

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1
Compare decimals.
Fill in the \circlearrowleft with $<,>$, or $=$ to make a true statement.
$1.6 \bigcirc 1.3$

Since 1.6 is to the right of $1.3,1.6>1.3$.

Example 2

Compare fractions.
Fill in the \bigcirc with $<$, $>$, or $=$ to make a true statement.
$\frac{2}{5} \bigcirc \frac{7}{10}$
Rewrite the fractions so that they have a common denominator. Then compare the numerators.
$\frac{2}{5}=\frac{4}{10} \quad \frac{7}{10}=\frac{7}{10}$
Since 4 is less than $7, \frac{2}{5}<\frac{7}{10}$.

Quick Check

Fill in each \bigcirc with $<,>$, or $=$ to make a
true statement.

1. $7.7 \bigcirc 7.5$
2. 4.8 \square 4.80

Fill in each \bigcirc with $<,>$, or $=$ to make a true statement.
3. $\frac{4}{11} \bigcirc \frac{9}{10}$
4. $\frac{3}{5} \bigcirc \frac{1}{4}$

How Did You Do?
Which exercises did you answer correctly in the Quick Check?
Shade those exercise numbers at the right.

Represent Integers

I Can... use positive and negative numbers, as well as 0 , to represent quantities in my everyday life and use a number line to visually represent the quantities.

What Vocabulary Will You Learn?
integer
negative integer
positive integer

Explore Represent Integers

Online Activity You will explore how positive and negative values can be represented on a vertical number line.

Learn Use Integers to Represent Quantities

An integer is any number from the set $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$, where "..." means continues indefinitely.

A negative integer is an integer less than zero and is written with a - sign. A positive integer is an integer greater than zero, and can be written with or without a + sign.

(continued on next page)

Math History

 MinuteEarly notations for negative numbers were used by the Chinese and Hindu mathematicians.
The Chinese drew a diagonal stroke through the right-most non-zero digit to indicate a negative number and used red and black computing rods to indicate positive and negative values, respectively. The Hindu mathematicians placed a small circle above each negative value. Thus, 4 indicated -4.

Go Online Watch the animation to see how integers are used in real life.

Suppose Anabeth is traveling to different parts of the country. She logs the temperature in each location. When Anabeth was in Miami,

Talk About It!
Give another example of when using a vertical number line is useful. Explain your reasoning.

Think About It!
What does the word loss mean?

Talk About It!
Describe another realworld situation that can be represented by -10 . Explain the meaning of zero in that situation.

Florida, the temperature was 80 degrees. That same week, she traveled to Caribou, Maine, where it was -10 degrees.

How can Anabeth represent the positive and negative values in her temperature log?

© Example 1 Use Integers to Represent Quantities

A football team has a 10-yard loss in one play.
Write an integer to represent the situation. Explain the meaning of \mathbf{O} in the situation.

Part A Write an integer to represent the situation.
Because the situation represents a loss, the integer is negative.
The integer used to represent the situation is \qquad

Part B Explain the meaning of zero in this situation.
In a football play, the integer 0 represents \qquad yards gained or lost.

Check

The elevation of Death Valley National Park is the lowest in North America at 282 feet below sea level.

Part A

Write an integer to represent the situation.

Part B

Explain the meaning of zero in this situation.

Go Online You can complete an Extra Example online.

Learn Graph Integers on a Number Line

Integers and sets of integers can be graphed on a number line. To graph an integer on a number line, place a dot on the number line at its location. Positive numbers are graphed to the right of zero on a horizontal number line, or above zero on a vertical number line. Negative numbers are graphed to the left of zero on a horizontal number line, or below zero on a vertical number line.

A set of integers is written using braces, such as $\{2,-3,0\}$.
The set of integers $\{2,-3,0\}$ is graphed on each number line.

Example 2 Graph Integers on a Number Line

Graph the set of integers $\{-4,2,-1\}$ on the number line.

Place a dot at $-4,2$, and -1 .

Check

Graph the set of integers $\{-3,1,0\}$ on a number line.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

How well do you understand the concepts from today's lesson? What questions do you still have? How can you get those questions answered?

Practice

Write an integer to represent each situation. Explain the meaning of zero in each situation.(Example 1)

1. Since his last vet appointment, a cat lost 2 ounces.
2. Abigail withdrew $\$ 15$ from her checking account.
3. For the month of January, the amount of snowfall was 3 inches above average.
4. On first down, the football team gained 7 yards.
5. By noon, the temperature had risen 5 degrees Fahrenheit.
6. A dolphin is 20 feet below sea level.

Graph each set of integers on a number line. (Example 2)
7. $\{-2,0,4\}$

9. $\{-8,-4,1\}$

11. $\{7,-3,-1\}$

13. The low temperatures for three consecutive days were $-5^{\circ} \mathrm{F}, 3^{\circ} \mathrm{F}$, and $4^{\circ} \mathrm{F}$. Graph this set of integers on a number line.

8. $\{5,-5,-6\}$

10. $\{-7,3,5\}$

12. $\{-1,0,1\}$

Test Practice
14. Multiple Choice Salton City, California is located 38 meters below sea level. What is a possible elevation for Salton City?
(A) 380 m
(B) 38 m
(C) 0 m
(D) -38 m

Apply

15. Rodney is performing a science experiment. The table shows the temperature of two liquids he is using. Graph the integers that represent the temperatures on a number line. Which beaker's liquid is closer to $0^{\circ} \mathrm{C}$? Explain.

Beaker \dagger emperature	
A	$-4^{\circ} \mathrm{C}$
B	$2^{\circ} \mathrm{C}$

16. Sydney owes her mother $\$ 5$ and her brother owes her mother $\$ 7$. Graph the integers that represent the amount they owe their mother as a negative integer on a number line. How much more will her brother have to repay their mother than Sydney? Explain.

17. 3 Use Math Tools Explain how to find the distance between 1 and -3 on a number line.
19. Create Describe a real-world situation that can be represented by a negative integer. Then write the integer.
18. At midnight, the outside temperature was $0^{\circ} \mathrm{F}$.
a. By 6:00 A.M., the temperature had dropped $4^{\circ} \mathrm{F}$, and then the temperature raised $10^{\circ} \mathrm{F}$ by noon. What is the temperature at noon?
b. What represents zero in this situation? Explain.
20. Justify Conclusions Craig has $\$ 28$ in his checking account. He wants to make a withdrawal of $\$ 30$. Will his checking account balance be represented by a positive or negative integer after the withdrawal? Justify your conclusion.

Opposites and Absolute Value

I Can... understand the absolute value of integers and how to order these numbers.

Bxplore Opposites and Absolute Value

WOnline Activity You will use Web Sketchpad to explore opposites and absolute value.

Learn Find Opposites

Integers are opposites when they are the same distance from zero on a number line, in opposite directions. The opposite of a positive integer is indicated by using the notation -(2), which is read the opposite of two. The opposite of a negative integer is indicated by using the notation $-(-2)$, which is read the opposite of negative two.

So, $-(-2)$ is 2 .
The opposite of the opposite of a number is the number itself.

So, $-[-(-4)]$ is -4 .

What Vocabulary

 Will You Learn?absolute value opposites

\qquad

Talk About It!
Can all positive integers be written with or without the + sign? Can all negative integers be written with or without the - sign? Explain.

Graph -5 on the number line.

The point graphed at -5 is \qquad units to the left of 0 . The point that is the same number of units to the right of 0 is 5 .

So, the opposite of -5 is \qquad -

Check

Find $-(-21)$.

(2)

Go Online You can complete an Extra Example online.

Example 1 Use a Number Line to Find Opposites of Integers

Find $-(-5)$.

© Example 2 Find Opposites of Integers Using Symbols

Asia and LaToya are building a sandcastle and digging a moat around the sandcastle. They would like the moat to be as deep as the sandcastle is tall. The sandcastle is 17 inches tall.

What integer represents the depth of the moat? How does this integer compare to the height of the sandcastle?

The depth of the moat can be expressed as the integer that is the opposite of 17. The opposite of a positive is negative.

So, the integer that represents the depth of the moat is $-(17)$ or \qquad
The integers representing the height of the sandcastle and the depth of the moat are opposites.

Check

Josh is planting a flower that is 6 inches tall. He wants the hole he is digging to be as deep as the flower is tall. What integer represents the depth of the hole? How does this compare to the height of the flower?

Go Online You can complete an Extra Example online.

Example 3 Find Opposites of Opposites of Integers

Find $-[-(-3)]$.

The opposite of -3 is 3 .
-3
The opposite of 3 is -3 .
So, the opposite of the opposite of -3 is \qquad

Check

Find $-[-(-11)]$.

3 Go Online You can complete an Extra Example online.

Learn Absolute Value of Integers

The integers 4 and -4 are each 4 units from 0 , even though they are on opposite sides of 0 . Numbers that are the same distance from zero on a number line have the same absolute value.

Words

The absolute value of a number is the distance between the number and zero on the number line.

Model

Symbols
The I I symbol around a number means the absolute value of that number.

$$
\begin{array}{r}
|4|=4 \quad \text { The absolute value of } 4 \text { is } 4 . \\
|-4|=4 \text { The absolute value of }-4 \text { is } 4 .
\end{array}
$$

Talk About It!
Compare the opposite of the opposite of a number to the original number.

Think About It!
Is the location represented by a positive or negative integer?

Talk About It!
What other number has the same absolute value as -150? Explain your reasoning.
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\square
\square

Pause and Reflect

How are opposites related to absolute value? Why do you think these concepts are covered in the same lesson?

Practice

Find the opposite of each integer(Example 1)

1. -3
2. 2
3. 6
4. Chad is planting a plant that is 4 inches tall. He wants the hole he is digging to be as deep as the plant is tall. What integer represents the location of the bottom of the hole? How does this compare to the height of the plant? (Example 2)
5. A hill on a dirt bike course is 5 feet tall. The valley below the hill is as deep as the hill is tall. What integer represents the location of the bottom of the valley? How does this compare to the height of the hill? (Example 2)

Find each value. (Examples 2 and 3)
6. $-(-15)=$ \qquad
9. $-[-(-1)]=$ \qquad
7. $-(-11)=$ \qquad
10. $-[-(55)]=$ \qquad
8. $-[-(-7)]=\square$
\qquad
11. $-[-(100)]=$ \qquad
12. A mountain climber started at sea level and descended down a cliff. Her location can be represented by -75 feet. How many feet did the mountain climber travel? (Example 4)
13. The temperature was $-5^{\circ} \mathrm{F}$ when Tiffany woke up in the morning. By noon, the temperature was $0^{\circ} \mathrm{F}$. How many degrees did the temperature change? (Example 4)

Test Practice

14. Multiselect Which of the following represent opposites?
$\square-4$ and 4
-1 and 1
$\square-2$ and -1
0 and 1
$\square-7$ and -8
$\square 10$ and -10
15. The table shows the minimum and maximum elevations, relative to sea level, of several hiking trails. Which hiking trail has the least change in elevation, related to sea level? Explain how you solved.

Trail	Minimum Elevation (ft)	Maximum Mevation (ft)
Eastern Point	-85	78
Northern Star	-150	34
Southern Moon	-62	48

16. The table shows the lowest and highest record temperatures for three cities. Which city had the greatest change in record temperature? Explain how you solved.

City	$\begin{array}{c}\text { Lowest } \\ \text { Temperature (}{ }^{\circ} \mathrm{F} \text {) }\end{array}$	$\begin{array}{c}\text { Highest } \\ \text { emperature (}\end{array}$
F)		

17. Reason Inductively Determine if the following statement is true or false. Explain your reasoning.

The absolute value of a negative integer is always a negative integer.
19. 71. Justify Conclusions A student states that $-x$ is always equal to a negative integer. Is the student correct? Justify your reasoning.
18. Find the Error Judith states that $-|14|=14$ because the absolute value can never be negative. Find her mistake and correct it.
20. Pid Persevere with Problems Identify integers for x and y that make the following statement true.
$x>y$ and $|x|<|y|$

Compare and Order Integers

I Can... correctly order rational numbers, including integers and absolute values, and then use a number line to write a statement of inequality.

Learn Compare Integers

To compare integers, you can compare the signs as well as the magnitude, or size of the numbers. If the signs are different, the positive integer will always be greater than the negative integer.

Compare 2 and -3 .		
The signs are different, so compare the signs. A positive		
integer is always greater than a negative integer, so 2 is		
greater than -3.		

If the signs of the two integers are the same, you can use a number line to compare them. On a horizontal number line, positive integers are graphed to the right of zero, while negative integers are graphed to the left of zero. The greater numbers will be farther to the right.

On a vertical number line, positive integers are graphed above zero, while negative integers are graphed below zero. The greater numbers are graphed farther above zero.

Think About It!
How can you compare two negative numbers?

Justin has a score of -5 on the Trueville Trivia Game.

Desiree's score is -3 .

Write an inequality to compare the scores. Then explain the meaning of the inequality.

Part A Write an inequality.
Graph the integers on the number line.

Compare. Which number is farther to the right on the number line? \qquad
The inequality is $-3>-5$.

Part B Explain the meaning of the inequality.
Since $-3>-5$, \qquad has a greater score in the trivia game.

Check

Andrew and his father are hiking near Tackle Box Canyon. Their current elevation, in relation to sea level, is -38 feet. Tackle Box Canyon has an elevation of -83 feet.

Part A Write an inequality to compare the elevations.

Part B Explain the meaning of the inequality.

3 Go Online You can complete an Extra Example online.

Learn Order Sets of Integers

You can use a number line to order a set of integers from least to greatest or from greatest to least.

0 Go Online Watch the animation to see how you can use a number line to order a set of integers.

The animation shows how to graph the set of integers $\{-8,3,-1,0,6\}$ on a number line.

From left to right, the integers from least to greatest are $\{-8,-1,0,3,6\}$.

From right to left, the integers from greatest to least are $\{6,3,0,-1,-8\}$.

© Example 2 Order Sets of Integers

The table shows the lowest accessible elevations for several continents.

Continent	Lowest Elevation (m)
Antarctica	-50
Australia	-15
North America	-86
South America	-105

Order the continents from least to greatest according to their lowest elevation.

Graph the integers on a number line.

Which continent has the least accessible elevation?

Which continent has the greatest accessible elevation?

So, the continents written in order from least to greatest elevation are South America, North America, Antarctica, and Australia.

Talk About It!
How does a number line help to organize a set of integers?

Q Talk About It!
The lowest elevation
in Asia is near the
Dead Sea at -423
meters. The lowest
elevation in Africa is
near Lake Assal at
-157 meters. How
would adding these
values to the data set
change the number
line and the order of
the elevations?

\square
\square

Check

The table shows Kesha's cell phone use over the last four months. Positive values indicate the number of minutes she had remaining, and negative values indicate the number of minutes she went over. Arrange the months from fewest to most minutes remaining at the end of each month.

Month	Number of Minutes Over/Under
February	-156
March	12
April	0
May	-45

(3) Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you struggle with any of the concepts in this Check? How do you feel when you struggle with math concepts? What steps can you take to understand those concepts?

Learn Distinguish Absolute Value from Order

You know how to order numbers when you see them on a horizontal number line. The values increase as they move to the right, and the values decrease as they move to the left.

What happens to the absolute value, or magnitude, of numbers as the values increase or decrease? Since absolute value is the distance a number is from zero, the absolute value increases the farther the number is from zero.

As a positive value increases, or moves farther from 0 , its absolute value also increases.

As a negative value decreases, or moves farther from 0 , its absolute value increases.

Suppose Kaito and Ember are scuba diving.
Kaito dove to 25 feet below sea level. This can be represented by the integer

Ember dove to 30 feet below sea level. This can be represented by the integer . Who reached a greater depth?

You know that $-25>-30$, but this does not mean that Kaito's depth was greater. When determining who reached a greater depth, you need to consider the magnitude of the numbers, not just their placement on the number line.

The absolute value of a number takes into account the number's magnitude.

What is the absolute value of -30 ? \qquad
What is the absolute value of -25 ? \qquad
Which absolute value is greater?
Since $|-30|>|-25|$, Ember's depth is greater.

Explain why an account balance less than - $\$ 40$ represents a debt greater than $\$ 40$.

Debt is the money owed by one person to another person.
An example of an account balance less than $-\$ 40$ is $-\$ 50$.
Write an inequality comparing the two amounts.
$-\$ 50$ \square $-\$ 40$

Use the absolute value to determine which integer represents a greater debt.

$$
|-\$ 50| \square|-\$ 40|
$$

An account balance less than $-\$ 50$ has a lesser value, but a greater absolute value.

So, an account balance of $-\$ 50$ means a debt of $\$ 50$, which is greater than a debt of $\$ 40$.

Check
Explain why an account balance less than $-\$ 5$ represents a debt greater than $\$ 5$.

(3) Apply Chemistry

The table shows the freezing points in degrees Celsius for six substances. Nitric acid freezes at $-42^{\circ} \mathrm{C}$. Between the freezing points of which two substances is the freezing point of nitric acid?

Substance	Freezing Point ('Celsius)
Aniline	-6
Acetic Acid	17
Acetone	-95
Water	0
Carbon Dioxide	-78
Sea Water	-2

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

When a football player causes a penalty during a game, the team can lose yards on the play. The table shows the number of penalty yards certain players lost during a game. Which players caused more penalty yards than Luis?

Player	Penalty Yards
Chung	15
Terrell	25
Ben	30
Matías	10
Luis	20
Alex	5

Go Online Y ou can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. After playing 18 holes of golf, John's score was -4 and Terry's score was -1 . Write an inequality to compare the scores. Then explain the meaning of the inequality.
(Example 1)
2. The table shows the freezing points for gases. Order the gases from least to greatest according to their freezing points. (Example 2)

Gas	Freezing Points $\left({ }^{\circ} \mathrm{C}\right)$
Argon	-189
Carbon Monoxide	-205
Ethane	-297
Helium	-272
Oxygen	-219
Sulfur Dioxide	-72

5. Explain why an elevation less than -5 feet represents a distance from sea level greater than 5 feet. (Example 3)
6. In a golf match, Jesse scored 5 over par, Neil scored 3 under par, Felipe scored 2 over par, and Dawson scored an even par. Order the players from least to greatest score.

Go Online You can complete your homework online.
2. The record low temperature for Buffalo, New York is $-20^{\circ} \mathrm{F}$. The record low temperature for Chicago, Illinois is $-27^{\circ} \mathrm{F}$. Write an inequality to compare the record low temperatures. Then explain the meaning of the inequality. (Example 1)
4. The table shows the scores for players in a trivia game after the first round. Order the players from least to greatest according to their scores. (Example 2)

Player	Score
Ace	-11
Diana	3
Jace	-3
Oneida	-7
Nolan	5
Rachel	1

6. Explain why a balance of less than $-\$ 10$ represents a debt greater than $\$ 10$.
(Example 3)

Test Practice

8. Table Item Order the integers from least to greatest.

$$
9,-8,-2,4,-9
$$

least

greatest

Apply

9. The table shows the lowest elevations for several countries. The lowest elevation in the United States is -86 meters. Between the elevations of which two countries is the elevation for the United States?

Country	Lowest Elevation (m)
Argentina	-105
China	-154
Egypt	-133
Ethiopia	-125
Libya	-47
Morocco	-55

10. A group of students participated in a small business challenge. The table shows results for the students' budgets. The student with the greatest amount under budget wins the challenge. In what place did Dave finish?

Student	Budget
Casey	\$2 under
Dave	even
Lily	\$5 over
Luke	\$4 over
Mike	\$1 under
Tyrone	\$6 under

11. Create Write a real-world situation that compares two negative integers. Then represent the situation with an inequality.
12. Order $\{-2.5,4,23,-1,5,-3,0.66\}$ from least to greatest.
13. Justify Conclusions A student said -5 is less than -4 and $|-5|$ is less than $|-4|$. Is the student correct? Justify your reasoning.
14. Identify Structure Suppose $y=2$. Identify all the integers for x that make $|x|<|y|$ a true statement.

Rational Numbers

I Can... order rational numbers and understand that the absolute value of rational numbers shows their distance from 0 .

Learn Rational Numbers

Recall that natural numbers are from the set $\{1,2,3,4, \ldots\}$ where .. means continues without end.

The set of whole numbers includes the set of natural numbers and 0 .
Integers are any numbers from the set $\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$ where ... means continues without end.

Any number that can be written as a fraction $\frac{a}{b}$, where a and b are integers, and $b \neq 0$, is a rational number. A rational number can always be represented as a point on the number line.

Learn Graph Rational Numbers on a Number Line

Rational numbers and sets of rational numbers can be graphed on a horizontal or vertical number line. A set of rational numbers is written using braces, such as $\left\{2.25,-1 \frac{3}{4}, 0\right\}$. To graph a rational number on the number line, place a dot at its location.

What Vocabulary

 Will You Learn?rational number

Think About It!
What do you know about the location of positive rational numbers on a number line? negative numbers?

Talk About It!

Instead of writing the fraction and mixed number as decimals, you can write the decimals as fractions. Compare the two methods.

Example 1 Graph Sets of Rational Numbers

Graph the set of rational numbers $\left\{\frac{1}{5},-0.7,2 \frac{3}{5},-1.8\right)$ on the number line.

Step 1 Find the integer boundaries of the set.
The values in the set lie between the integers \qquad and
\qquad

Step 2 Graph the rational numbers.
To graph the set, it may be helpful to rewrite the fraction and mixed number as decimals in order to find the locations on the number line.
$-\frac{1}{5}=\square \quad 2 \frac{3}{5}=\square$

Then graph each value on the number line. Label each point with the value in its original form.

Check

Graph the set of rational numbers $\left\{-1 \frac{7}{10}, 1.5, \frac{2}{5},-0.6\right\}$ on the number line.

Learn Absolute Value of Rational Numbers

The rational numbers 2.5 and -2.5 are each 2.5 units from 0 , even though they are on opposite sides of 0 . Numbers that are the same distance from zero on a number line have the same absolute value.

Words

The absolute value of a rational number is the distance between the rational number and zero on a number line.

Model

Symbols

$$
\begin{gathered}
|2.5|=2.5 \text { The absolute value of } 2.5 \text { is } 2.5 . \\
|-2.5|=2.5 \quad \text { The absolute value of }-2.5 \text { is } 2.5 .
\end{gathered}
$$

Qxample 2 Find Absolute Value of Rational Numbers

The lowest point in a certain cave has an elevation of -53.4 meters.
If the cave entrance has an elevation of 0 meters, evaluate $|-53.4|$ to determine the number of meters a hiker would descend to reach the lowest point.

Graph -53.4 on a number line.

How many units from 0 is -53.4 ?
So, the hiker descended \qquad meters.

Check

The Miller family is having an inground pool installed. The deepest point will be -9.75 feet below ground. If the ground has an elevation of 0 feet, evaluate $|-9.75|$ to determine the depth of the pool.

Go Online Y ou can complete an Extra Example online.

Learn Compare Rational Numbers

To compare two rational numbers, you can compare the signs as well as the magnitude, or size of the numbers.

If the signs are different, the positive rational number will always be greater than the negative rational number.

Different Signs
Compare 1.5 and -1.2.
The signs are different, so compare the signs. A positive rational number is always greater than a negative rational number.
$1.5>-1.2$

If the signs of the two rational numbers are the same, you can graph the numbers on a number line to compare them. If the numbers are written in different forms, it may help to graph the numbers if they are both written as decimals or both written as fractions. Greater numbers are graphed farther to the right on the number line.

Pause and Reflect

Are you ready to move on to the Example? If yes, what have you learned that you think will help you? If no, what questions do you still have? How can you get those questions answered?

Example 3 Compare Rational Numbers

Compare -0.51 and $-\frac{12}{25}$.
Step 1 Write the fraction as a decimal.
$-\frac{12}{25}=\square$
Rewrite the fraction as a decimal so that the values are in the same form.

Step 2 Graph the values on the number line.

The number -0.51 is farther to the left on the number line.

So, $-0.51<-\frac{12}{25}$.

Check

Compare $-\frac{3}{8}$ and -0.413 .

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Describe some examples of where you might have to compare rational numbers in your everyday life.

Think About It!
How can you compare rational numbers when they are written in different forms?

Talk About It!
How can you compare the numbers without graphing them on a number line?

Talk About It!
How does place value help you order the set of numbers $\left\{\frac{1}{4},-0.375, \frac{17}{50}, 0.3\right\}$.

Think About It! How can you order rational numbers when they are written in different forms?

Talk About It!
How does a number line help you visualize the order of rational numbers?

Learn Order Rational Numbers

To order rational numbers, follow these steps:

1. Write each number in the same form. Since there may be different denominators in the fractions, it may be easier to write all of the numbers as decimals.
2. Use the signs of the numbers, place value, or a number line to compare the numbers.
3. Order the values from least to greatest or greatest to least. To order the set of numbers $\left\{\frac{1}{4},-0.375,-\frac{17}{50}, 0.3\right\}$, graph each number on a number line. The least value is farthest to the left and the greatest value is farthest to the right.

So, the set of numbers in order from least to greatest is
\qquad and from greatest to least is

Example 4 Order Sets of Rational Numbers

Order the set $\left\{-2.46,-2 \frac{22}{25},-2 \frac{1}{10}\right\}$ from least to greatest.
Step 1 Write the mixed numbers as decimals.
$-2.46=-2.46-2 \frac{22}{25}=\square \quad-2 \frac{1}{10}=\square$
Step 2 Graph the numbers on a number line.

So, the set of numbers in order from least to greatest is $\frac{22}{25},-2.46$,

Check

Order the set $\left\{2.12,-2.1,2 \frac{1}{10},-2 \frac{1}{5}\right\}$ from least to greatest.

3 Go Online Y ou can complete an Extra Example online.

© Apply Gardening

Mr. Plumb's agriculture class is growing pumpkins under different conditions. The table shows the change in weight for each student's pumpkin in relation to the weight of the pumpkin with the current class record. Which student's pumpkin(s) broke the record? Which student's pumpkin was closest to the record?

Student	Change
Ricky	$\frac{1}{5} \mathrm{lb}$
Debbie	-0.18 lb
Suni	$3 \frac{1}{4} \mathrm{oz}$
Leonora	-3 oz

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(2) Write About It! Write an argument that can be used to defend
your solution.

Go Online watch the animation.

Check

The table shows the change in the actual amounts of rainfall, in inches, that a city received over four weeks in relation to the average amount that it usually receives during those weeks. In which week was the rainfall closest to the average?

Week Change (in.) 1 $\frac{1}{2}$ 2 -1.6 3 0.3 4 $-1 \frac{1}{2}$
Show (your work here

3 Go Online You can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Graph each set of rational numbers on a number line. (Example 1)

1. $\left\{0.9,-2 \frac{1}{2}, 0.25,-\frac{3}{4}\right\}$
2. $\left\{\frac{1}{4},-1.4,-1 \frac{4}{5},-0.15\right\}$
3. Mammoth Cave in Kentucky has a minimum elevation of -124.1 meters. Suppose a hiker traveled to the bottom of the cave. How many meters did the hiker travel? (Example 2)
4. A scuba diver was at a depth of $-80 \frac{1}{2}$ feet. How many feet did the scuba diver travel if the diver traveled to the surface of the ocean? (Example 2)

Fill in the with $<,>$, or $=$ to make a true statement. (Example 3)
5. -0.24
(C) $-\frac{3}{16}$
6. $-\frac{5}{8} \bigcirc-0.76$
7. $-4 \frac{4}{25} \bigcirc-4.16$
8. $-5.52 \bigcirc-5 \frac{7}{15}$

Order each set of rational numbers from least to greatest. (Example 4)
9. $\left\{-4.25,-4 \frac{7}{10},-4 \frac{3}{20}\right\}$
10. $\left\{-1.55,-1 \frac{11}{100},-1 \frac{23}{25}\right\}$

Test Practice

12. Table Item Order the numbers from least to greatest.

$$
-1.75,2,1.25,-2,0
$$

least
greatest

Apply

13. Saeng wants to run the 100-meter-dash in a certain number of seconds. The table shows the change in times from her goal and her actual times for five races. Between which two race numbers is Saeng's third race?

Race Change in Time from Goal (s)	
1	-1.2
2	$+1 \frac{1}{10}$
3	$-1 \frac{1}{4}$
4	-1.4
5	$+1 \frac{1}{2}$

14. In science class, students are growing plants. The table shows the change in the heights between the heights of some students' plants and the height of last year's tallest plant. Order the changes from least to greatest.

Student	Change
Ellen	$-2 \frac{3}{4} \mathrm{in}$.
Juan	$\frac{1}{4} \mathrm{ft}$
Patty	$3.1 \mathrm{in}$.
Sonny	$-\frac{1}{5} \mathrm{ft}$

15. Create Write about a real-world situation in which you compare two negative rational numbers. Then write an inequality comparing the two numbers.
16. Justify Conclusions A student said $-2 \frac{1}{4}$ is less than -2.2 and $\left|-2 \frac{1}{4}\right|$ is less than $|-2.2|$. Is the student correct? Justify your reasoning.
17. Reason Inductively Determine whether the following statement is always, sometimes, or never true. Justify your reasoning.

If x and y are both less than 0 and $x<y$, then $-x>-y$.

The Coordinate Plane

I Can... recognize rational numbers and graph them in the coordinate plane.

Explore The Coordinate Plane

Online Activity You will use Web Sketchpad to explore the coordinate plane.

Learn The Coordinate Plane

The coordinate plane is formed by the intersection of two number lines, or axes, that meet at right angles at their zero points. The intersection of these number lines separates the coordinate plane into four quadrants: Quadrants I, II, III, and IV.

You can use the x-coordinates and
 y-coordinates to identify the quadrant in which a point is located. The axes and points on the axes, such as $(-3,0)$ and $(0,0.5)$, are not located in any of the quadrants.

Use what you know about the coordinate plane to complete the table.

Quadrant	$x-$ coordinate	$y-y^{-}$ coordinate
I	positive	
II		positive
III	negative	
IV	positive	

Axis	$x-$ coordinate	$y-$ coordinate
x	positive	
y	0	
	negative	0
	0	negative

What Vocabulary
Will You Learn?
quadrants

Talk About It!
How can you tell in which quadrant the point $\left(\frac{2}{3},-7\right)$ lies?

Example 1 Identify the Quadrant

Identify the quadrant in which the point $\left(-\frac{3}{4}, 1 \frac{1}{2}\right)$ is located.

You can use the signs of the x-and y-coordinates to identify the quadrant.

Because the \qquad -coordinate is negative, and the -coordinate is positive, the point is located in Quadrant II.

Check

Identify the quadrant in which the point $\left(-2 \frac{1}{2},-2 \frac{1}{2}\right)$ is located.

Example 2 Identify the Axis

Identify the axis on which the point $\left(0, \frac{2}{5}\right)$ is located.

Look at which coordinate has the nonzero value.
The \qquad -coordinate has the nonzero value.

So, the point lies on the y-axis.

Check

Identify the axis on which the point $(0.25,0)$ is located.
(3) Go Online Y ou can complete an Extra Example online.

Learn Identify Ordered Pairs

Go Online Watch the animation to learn how to identify ordered pairs of points graphed on the coordinate plane.

To identify the ordered pair graphed on the coordinate plane, start at the origin.

First, move horizontally along the x-axis, counting the units.

The x-coordinate of the point is -3 .

Next, move vertically toward the point, counting the units.

The y-coordinate of the point is 4 .

So, the ordered pair for the point is (\qquad).

Pause and Reflect

Are you ready to move on to the Example? If yes, what have you learned that you think will help you? If no, what questions do you still have? How can you get those questions answered?

Think About It!
In which quadrant does point D lie?

Talk About It!
Why is the ordered pair $\left(-1,1 \frac{1}{2}\right)$ incorrect for naming point D ?

Example 3 Identify Ordered Pairs

Identify the ordered pair that names point D.

Start at the origin.
Move \qquad units right on the \qquad -axis until you reach the vertical line that intersects with point D. The x-coordinate of point D is \qquad Move down \qquad unit to reach point D. The y-coordinate of point D is \qquad

So, the ordered pair that names point D is $\left(1 \frac{1}{2},-1\right)$.

Check

Identify the ordered pair that names point B.

Learn Identify Points

Go Online Watch the animation to learn how to identify points graphed in the coordinate plane, given the ordered pair.

You can identify a point graphed on the coordinate plane using the x and y-coordinates. The x-coordinate indicates how far left or right to move from the origin. The y-coordinate indicates how far up or down to move from the origin.

Identify the point graphed at $(-2,4)$.

Because the x-coordinate is negative, move left two units on the x-axis.

Because the y-coordinate is positive, move up four units.

Point \qquad is located at ($-2,4$).
Talk About It!
How can you use what you know about the signs of the coordinates in each quadrant to quickly identify the point?
\qquad

Example 4 Identify Points

Identify the point located at $\left(-2, \frac{1}{2}\right)$.

Start at the origin.
Because the x-coordinate is negative, move units left on the -axis.

Move up \qquad unit because the y-coordinate is positive.
So, point R is located at $\left(-2, \frac{1}{2}\right)$.

Check

Identify the point located at $\left(\frac{1}{2},-2\right)$.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

How does what you already know about graphing integers on a number line help you with identifying points on the coordinate plane?

Learn Graph Ordered Pairs

To graph an ordered pair, place a dot at the point that corresponds to the coordinates.
(3) Go Online Watch the animation to see how to graph ordered pairs.

You can graph a point on the coordinate plane using the x-and y-coordinates.

Graph $A(-4,3)$. The x-coordinate is -4 . The y-coordinate is 3 .
Because the x-coordinate is negative, move left four units on the x-axis from the origin.

Because the y-coordinate is positive, move up three units.

Graph point A by placing a dot at ($-4,3$).

Example 5 Graph Ordered Pairs

Graph $N\left(-2 \frac{1}{2},-3 \frac{1}{2}\right)$.

Start at the origin.
The x-coordinate is negative, so move \qquad units left along the x-axis.

Next, since the y-coordinate is negative, move units down. Place a dot at this location.

Check

Graph $M(4.5,-1)$.

Apply Maps

The table shows the locations for several different places around town. The grid shows a map of the town, and each square on the grid represents one city block. Ben needs to go to the dry cleaner, which is 3 blocks west and 5 blocks north of the library. Where on the grid should he go?

Place	Location
Bank	$\left(1 \frac{1}{4},-1\right)$
Grocery	$\left(-\frac{3}{4}, 0\right)$
Library	$\left(0,-\frac{3}{4}\right)$
Post Office	$\left(-1,1 \frac{1}{4}\right)$

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times.
Discuss these questions with a partner.
First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

The table shows the locations for several different places around town. The grid shows a map of the town, and each square on the grid represents one city block. Yamenah needs to go to the farmer's market, which is 6 blocks east and 2 blocks south of the post office. Where on the grid should she go?

Place	Location
Bank	$\left(1 \frac{1}{4},-1\right)$
Grocery	$\left(-\frac{3}{4}, 0\right)$
Library	$\left(0,-\frac{3}{4}\right)$
Post Office	$\left(-1,1 \frac{1}{4}\right)$

Go Online You can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that will help you when you study identifying and graphing points on the coordinate plane.

Practice

Identify the quadrant in which each point is located. (Example 1)

1. $\left(-1 \frac{1}{2},-2 \frac{1}{4}\right)$
2. $\left(5 \frac{3}{4},-6 \frac{1}{5}\right)$
3. $\left(\frac{4}{5}, 3^{3}\right)$
4. $\left(-3 \frac{1}{2}, 2 \frac{4}{5}\right)$
5. Identify the axis on which the point $\left(-\frac{2}{3}, 0\right)$ is located. (Example 2)
6. Identify the axis on which the point $\left(0,6 \frac{3}{5}\right)$ is located. (Example 2)

Use the coordinate plane. Identify the ordered pair that names each point. (Example 3)
7. A
8. B
9. C \qquad

Use the coordinate plane. Identify the point for each ordered pair. (Example 4)
10. $\left(\frac{1}{2}, \frac{1}{2}\right)$
11. $\left(-1, \frac{1}{2}\right)$
12. $\left(-2,-1 \frac{1}{2}\right)$

Test Practice
13. Graph $A\left(\frac{1}{2}, 1\right)$. (Example 5)

14. Grid Graph $X\left(-1 \frac{1}{2}, 2\right)$.

Apply

15. The table shows the locations for several different places around a small city. The grid shows a map of the city, and each square on the grid represents one city block. Shannon needs to go to the library that is 2 blocks east and 3 blocks south of the bakery. Where on the grid should she go?

Place	Location
Bakery	$\left(-\frac{3}{4},-\frac{1}{2}\right)$
Courthouse	$\left(0, \frac{1}{2}\right)$
Restaurant	$(1,-1)$
Town Hall	$\left(-1 \frac{1}{4}, \frac{3}{4}\right)$

16. 778 Identify Structure If the point (a, b) is located in Quadrant I, in which Quadrant is the point $(a,-b)$ located?
18. 78 Reason Inductively Determine if the following statement is true or false. Explain your reasoning.

A point can be represented by more than one ordered pair.
17. Identify Structure If the point $(-m, n)$ is located in Quadrant I, what must be true about the value of m ? the value of n ?
19. (1P) Find the Error A student stated that if the point $(-a, b)$ is located in Quadrant I, then the point (a, b) is located in Quadrant IV Find the student's mistake and correct it.

Graph Reflections of Points

I Can... recognize that the coordinates of points reflected across either axis differ by the sign of one of the coordinates.

Explore Reflect a Point

WOnline Activity You will use Web Sketchpad to explore reflections of points.

Learn Reflections of Points

The number line shows that -4 and 4 are opposites. They are the same distance from 0 in opposite directions.

In a coordinate plane, the points $(-4,0)$ and $(4,0)$ are the same distance from the origin in opposite directions. These points are reflections across the y-axis.

A reflection is the mirror image produced by flipping a figure across a line. When a point is reflected across the y-axis, the y-coordinate
 stays the same and the x-coordinate reverses its sign. When a point is reflected across the x-axis, the x-coordinate stays the same and the y-coordinate reverses its sign.

In the coordinate plane, when you reflect a point across a line, you name the reflected point using prime notation. In the figure, the reflection of $A(-4,0)$ across the y-axis is $A^{\prime}(4,0)$.

What Vocabulary Will You Learn?
reflection

Talk About It!
What do you notice
about the x - and y -
coordinates of points
A and A ?

Think About It! In what quadrant is point A located? In what quadrant will the reflection of point A across the x-axis be located?

Example 1 Identify Reflections of Points Across the x-axis

Write the ordered pair that is a reflection of $A\left(-3 \frac{1}{2}, 2\right)$ across the x-axis.

Find the point on the coordinate plane that is the same distance from the x-axis as the original point. Graph the point on the coordinate plane and label it.

When a point is reflected across the x-axis, the \qquad -coordinate stays the same and the \qquad -coordinates are opposites.

So, the coordinates of the reflection of $A\left(-3 \frac{1}{2} 2\right)$ across the x-axis are $\left(-3 \frac{1}{2}-2\right)$.

Check

Write the ordered pair that is a reflection of $Q\left(1 \frac{1}{2} 2 \frac{1}{4}\right)$ across the x-axis.
the point $A^{\prime}\left(-3 \frac{1}{2}-2\right)$ is the reflection of the point $A\left(-3 \frac{1}{2} 2\right)$ across the x-axis?

Talk About It!

How do you know, without graphing, that

Go Online You can complete an Extra Example online.

Pause and Reflect

Did you make any errors when completing the Check exercise? What can you do to make sure you don't repeat that error in the future?

©
 Example 2 Identify Reflections of Points Across the y-axis

Kendall is building a square fence. She places fence posts at the locations indicated on the grid.

What is the location of the post that reflects
$S(-2,2)$ across the y-axis?
Find the point on the grid that is the same distance from the y-axis as the original point.
 Graph the point and label it.

When a point is reflected across the y-axis, the \qquad -coordinate stays the same and the -coordinates are opposites.

So, the coordinates of the reflection of $S(-2,2)$ across the y-axis are $(2,2)$.

Check

Rico is building a garden fence in the shape of a square. He placed a corner post of the fence at $(10.2,-5.3)$. What is the location of the corner that reflects that corner post across the y-axis?

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you struggle with any of the concepts in this Example? How do you feel when you struggle with math concepts? What steps can you take to understand those concepts?

Example 3 Identify the Axis of Reflection

The point $A^{\prime}\left(-2 \frac{3}{4},-4\right)$ is the result of reflecting $A\left(2 \frac{3}{4},-4\right)$ on the coordinate plane.

Identify the axis across which the point was reflected.
Complete the table to compare the coordinates of the original point and the point after the reflection.

	Point	Reflected Point
x-coordinate		
y-coordinate		

The \qquad -coordinates are opposites and the -coordinates are the same.

So, point A was reflected across the y-axis.

Check

The point $M^{\prime}\left(2 \frac{1}{3},-1\right)$ is the result of reflecting $M\left(-2 \frac{1}{3},-1\right)$ in the coordinate plane. Identify the axis across which the point was reflected.

3 Go Online You can complete an Extra Example online.

Pause and Reflect

Where do you see reflections in your everyday life? How do these types of reflections compare to reflections of points on the coordinate plane?

Θ Apply Geography

Samantha drew a map of the park in her neighborhood. She graphed the point $P(-3.5,-3.5)$ for the playground. The fountain is located at P^{\prime}, a reflection of P across the y-axis. The picnic tables are located at $P^{\prime \prime}$, a reflection of P^{\prime} across the x-axis. Identify the ordered pair that describes the location of the picnic tables.

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(2) Write About It! Write an argument that can be used to defend your solution.

Go Online watch the animation.

Where would the picnic tables be located if the playground was located at ($-1,-2$)?

Check

Michele drew a map of the route she walks every day after school. She starts at the front entrance of the school, which she graphed at point $S(-3.5,-2.5)$. She walks to the bird feeder, located at S^{\prime}, a reflection of S across the x-axis. Then she walks to where her mother picks her up, at $S^{\prime \prime}$, a reflection across the y-axis. Identify the ordered pair that describes the location where her mother picks her up.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

What was your most positive experience with math in this module? Why was it positive?

Practice

Write the ordered pair that is a reflection of each point across the x-axis. (Example 1)

1. $A\left(-2 \frac{3}{4} 1\right)$
2. $C\left(-4,-2 \frac{1}{2}\right)$
3. Aika is building a square garden. She places a garden post at $(3.5,3.5)$. What is the location of the corner that reflects (3.5, 3.5) across the y-axis? (Example 2)
4. The point $C^{\prime}(-4,-2)$ is the result of reflecting $C(4,-2)$ in the coordinate plane. Identify the axis across which the point was reflected. (Example 3)
5. Graph point $Z(-4,-2.5)$ on the coordinate plane. Then graph its reflection across the y-axis.

6. $B\left(1 \frac{1}{4}-\frac{1}{2}\right)$
7. $D\left(\frac{3}{4}, 3\right)$
8. A farmer is installing a chicken pen in the shape of a square. He placed a corner of the enclosure at $(-5.25,-5.25)$. What is the location of the corner that reflects $(-5.25,-5.25)$ across the y-axis? (Example 2)
9. The point $B^{\prime}\left(-5 \frac{1}{4},-3 \frac{1}{2}\right)$ is the result of reflecting $B\left(-5 \frac{1}{4}, 3 \frac{1}{2}\right)$ in the coordinate plane. Identify the axis across which the point was reflected. (Example 3)

Test Practice

10. Multiple Choice Which ordered pair represents a reflection of point $Y\left(1 \frac{3}{4},-4\right)$ across the x-axis?
(A) $\left(-4,1 \frac{3}{4}\right)$
(B) $\left(1 \frac{3}{4},-4\right)$
(C) $\left(1 \frac{3}{4}, 4\right)$
(D) $\left(-1 \frac{3}{4}, 4\right)$

Apply

11. T rey drew a map of the summer camp he is staying at this summer. He graphed the point $D(-4.5,4.5)$ for the dining hall. The flag pole is located at D^{\prime}, a reflection of D across the y-axis. The campfire is located at $D^{\prime \prime}$, a reflection of D^{\prime} across the x-axis. Identify the ordered pair that describes the location of the campfire.
12. Liv drew a map of her favorite park. She graphed the point $S\left(2 \frac{1}{2},-2\right)$ for the swings. The picnic tables are located at S^{\prime}, a reflection of S across the x-axis. The lake is located at $S^{\prime \prime}$, a reflection of S^{\prime} across the y-axis. Identify the ordered pair that describes the location of the lake.
13. Find the Error A student was finding the ordered pair for point $Y(1.5,-2)$ after its reflection across the x-axis. Find the student's mistake and correct it.

$$
Y(1.5,-2) \rightarrow Y^{\prime}(-1.5,-2)
$$

14. Persevere with Problems Determine whether the statement is always, sometimes, or never true. Justify your response.

When a point is reflected across the x-axis, the new point has a negative y-coordinate.
16. Reason Inductively A point is located on the y-axis. It is reflected across the x-axis. What do you know about the x - and y-coordinates of the reflected point?

Absolute Value and Distance

I Can... use coordinates and absolute value to find the distance between points with the same x - or the same y-coordinates.

Explore Distance on the Coordinate Plane

Online Activity You will use Web Sketchpad to explore distance on the coordinate plane.

Learn Find Horizontal Distance

You can find the horizontal distance between two points with the same y-coordinate on the coordinate plane by using coordinates and absolute value.
(3) Online Watch the animation to learn how to find horizontal distance in the coordinate plane.

When two points are in the same quadrant and they have the same y-coordinate, subtract the absolute values of the x-coordinates to find the distance between the two points.

Consider the points $(-5,-4)$ and $(-1,-4)$. They have the same y-coordinates, so find the absolute value of each x-coordinate.
$|-1|=\square \quad|-5|=\square$
Subtract the absolute values.
$5-1=\square$
The distance between the two points is 4 units.

(continued on next page)

Talk About It! If both points are in Quadrant III, will the distance be a negative number? Explain why or why not.

Think About It!
Are the x-coordinates the same or different? Are the y-coordinates the same or different?

Talk About It!
How can you check your solution? Explain the process you would use.

When two points are in different quadrants and they have the same y-coordinate, add the absolute values of the x-coordinates to find the distance between the two points.

Consider the points $(-4,2)$ and $(1,2)$. They have the same y-coordinates, so find the absolute value of each x-coordinate.

$|-4|=\square \quad|1|=\square$
Add the absolute values. $4+1=$ \square
The distance between the two points is 5 units.

Example 1 Find Horizontal Distance in the Same Quadrant

Find the horizontal distance between the two points.

To find the horizontal distance between the two points, consider the scale on each axis. The scale
 of the axes is in $\frac{1}{2}$-unit increments.

Identify the ordered pair for each point.
U: \square
$v: \square$

Since the y-coordinates are the same, find the absolute value of each x-coordinate.
$U:\left|\frac{1}{2}\right|=\square$
$v:|2|=\square$

Because the points are in the same quadrant, subtract the absolute values of the x-coordinates to find the distance between the points.
$2-\frac{1}{2}=1 \frac{1}{2}$
So, points U and V are \square unit(s) apart.

Check

Find the horizontal distance between the two points.

3 Go Online Y ou can complete an Extra Example online.

Example 2 Find Horizontal Distance in Different Quadrants

Find the horizontal distance between the two points.

To find the horizontal distance between the two points, consider the scale on each axis. The scale of the axes are in 0.25 -unit increments.

Identify the ordered pair for each point.

Since the y-coordinates are the same. Find the absolute value of each x-coordinate.
$E:|-0.75|=\square$ $F:|0.25|=\square$

Because the points are in different quadrants, add the absolute values of the x-coordinates to find the distance between the points.

$$
0.75+0.25=1
$$

So, points U and V are \square unit(s) apart.

Check

Find the horizontal distance between the two points.

Go Online Y ou can complete an Extra Example online.

Think About It!
Are the points in the same quadrant? How will that affect how you find the distance?

Learn Find Vertical Distance

You can find vertical distance between two points on the coordinate plane with the same x-coordinates.
(3) Go Online Watch the animation to learn how to find vertical distance on the coordinate plane.

When two points are in the same quadrant and they have the same x-coordinate, subtract the absolute values of the y-coordinates to find the distance between the two points.

Consider the points $(3,-1)$ and $(3,-5)$. They have the same x-coordinates, so find the absolute value of each y-coordinate.

$$
|-1|=\square \quad|-5|=\square
$$

Subtract the absolute values.

$$
5-1=\square
$$

Talk About It!
How can you find the distance between two points with the same x-coordinates, but different y-coordinates, if you are only given the coordinates, and not the graph?

Example 3 Find Vertical Distance in the Same Quadrant

Find the vertical distance between the points $D\left(-1,-\frac{1}{2}\right)$ and $C(-1,-2)$.

The x-coordinates are negative and the y-coordinates are negative.
This means the points are in Quadrant \qquad
The x-coordinates are the same. To find the distance each point is from the x-axis, find the absolute value of each y-coordinate.
$C:|-2|=\square$
$D:\left|-\frac{1}{2}\right|=\square$

Because the points are in the same quadrant, subtract the absolute values of the y-coordinates to find the distance between the points.
$2-\frac{1}{2}=1 \frac{1}{2}$

So, points C and D are \qquad unit(s) apart.

Check

Find the vertical distance between the points $A\left(-\frac{1}{3},-\frac{2}{3}\right)$ and $B\left(-\frac{1}{3},-1 \frac{1}{3}\right)$.
(3) Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you struggle with any of the concepts in this Example and Check? How do you feel when you struggle with math concepts? What steps can you take to understand those concepts?

Think About It!
Are the x-coordinates the same or different? Are the y-coordinates the same or different?

Talk About It!
How can you check your solution? Explain a process you could use.

Think About It!
Are the points in the same quadrant? How will that affect how you find the distance?

Example 4 Find Vertical Distance in Different Quadrants

Find the vertical distance between points $S(1,0.5)$ and $T(1,-0.5)$.
The x-coordinates have the same signs.
The y-coordinates have different signs.
This means the points are in different quadrants.
The x-coordinates are the same. To find the distance each point is from the x-axis, find the absolute value of each y-coordinate.
$S:|0.5|=\square$
$T:|-0.5|=\square$

Because the points are in different quadrants, add the absolute values of the y-coordinates to find the distance between the points.
$0.5+0.5=1$
So, points S and T are \qquad unit(s) apart.

Check

Find the vertical distance between points $E(0.5,1.5)$ and $F(0.5,-2)$.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Could you use the methods described in this lesson to find the distance between two points on a number line? Explain your reasoning.

Θ Apply Distance

Fritz and Manolo like to skateboard together at a nearby park. They want to determine who has to walk the farther distance to get to the park, so they graph the locations on a coordinate plane, with the city's main square at the origin. The coordinates for each location are shown in the table. Each unit represents a city block. Who has to walk the farther distance to get to the park?

Location	Coordinates
Fritz's house	$\left(-2 \frac{1}{2}, 2\right)$
Manolo's house	$\left(3,-3 \frac{3}{4}\right)$
Park	$(3,2)$

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution.

Go Online watch the animation.

Check

Fernando has a dog-walking job and will walk the dogs from his house to one of the two parks shown. He wants to go to the park that will give the dogs a longer walk. To which park should he go?

Location	Coordinates
Fernando's house	$\left(-2 \frac{1}{2}, 2 \frac{1}{4}\right)$
Cobblestone Dog Park	$\left(1 \frac{3}{4}, 2 \frac{1}{4}\right)$
Blue Limestone Park	$\left(-2 \frac{1}{2},-1 \frac{1}{2}\right)$

Practice

Find the horizontal or vertical distance between the two points. (Examples 1-4)
1.

3.

5. $X(-2,3)$ and $Y\left(-2,1 \frac{1}{4}\right)$
2.

4.

6. $Y\left(1,-\frac{3}{4}\right)$ and $Z\left(-1,-\frac{3}{4}\right)$
8. $C(3.5,-0.25)$ and $D(0.5,-0.25)$

Test Practice

9. Multiple Choice What is the vertical distance between the points $C(2,-0.8)$ and $D(2,1.2)$?
(A) 0 units
(C) 1 unit
(B) 0.4 unit
(D) 2 units
10. There are two parks near Kennedy's house. She wants to go the park closer to her house. To which park should Kennedy go?

Location	Coordinates
Maple Avenue Park	$\left(2,1 \frac{1}{2}\right)$
Oak Woods Park	$\left(-\frac{1}{2},-\frac{3}{4}\right)$
Kennedy's House	$\left(2,-\frac{3}{4}\right)$

11. James and Amber walk their dogs together at a nearby dog park. They want to determine who has to walk a farther distance to get to the dog park, so they graph the locations on a coordinate plane, with the town square at the origin. Each whole unit represents a city block. James's house is located at the point $(-1.5,4)$. Amber's house is located at the point ($2,0.25$).
The dog park is located at the point $(2,4)$. Who has to walk the farther distance to get to the dog park?
12. Explain how to find the distance between the points $A(-2,2)$ and $B(-2,-2)$.
13. Give the coordinates for two points that have a vertical distance between them of 1.5 units.
14. Find the Error A student said that the vertical distance between the two points graphed is 3 units. Find the student's mistake and correct it.

15. Yara said that the vertical distance between two points is -1.5 units. How do you know that Yara's answer is incorrect?
16. Foldables Use your Foldable to help review the module.

Rate Yourself! 1

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Reflect on the Module

Use what you learned about integers, rational numbers, and the coordinate plane to complete the graphic organizer.

Fssential Question

How are integers and rational numbers related to the coordinate plane?

Vocabulary	
integer	
rational number	

How are integers and rational numbers related?

How are integers and rational numbers related to the coordinate plane?

Test Practice

1. Open Response While riding one of the rides at the local amusement park, Zachary lost \$5 from his pocket. (Lesson 1)
A. Write an integer to represent this situation. Explain.
B. Explain the meaning of zero in this situation.
2. Grid Graph the set of integers $\{-6,-1,0\}$ on the number line. (Lesson 1)

3. Equation Editor Find -(-14). (Lesson 2)

4. Table Item Indicate whether each inequality is true or false. (Lesson 3)

	True	False
$-7<-9$		
$5>-1$		
$-12<-10$		

5. Open Response The table shows the boiling points, to the nearest degree Celsius, for six substances. Carbon dioxide boils at $-79^{\circ} \mathrm{C}$. Between which two substances is the boiling point of carbon dioxide? (Lesson 3)

Substance	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$
Ammonia	-36
Benzene	80.4
Acetylene	-84
Ethanol	79
Fluorine	-187
Water	100

6. Equation Editor Evaluate I-6.21. (Lesson 4)

7. Open Response During the overnight hours, the temperature in Juneau fell from $0^{\circ} \mathrm{F}$ to $-12^{\circ} \mathrm{F}$. How many degrees did the temperature fall? (Lesson 4)
\square
8. Multiple Choice Identify the quadrant in which the point $\left(\frac{2}{3},-1 \frac{1}{5}\right)$ is located. (Lesson 5)
(A) Quadrant I
(B) Quadrant II
(C) Quadrant III
(D) Quadrant IV
9. Table Item Indicate the axis on which each of the points lie. (Lesson 5)

	x-axis	y-axis
$(-4,0)$		
$(0,9)$		
$(0,-6)$		

10. Multiselect Consider the point $\left(-2 \frac{1}{4},-3\right)$. Which of the following statements are true regarding the reflection of this point? Select all that apply. (Lesson 6)When this point is reflected across the x-axis, the x-coordinate is the opposite and the y-coordinate stays the same.
\square The reflection of $A\left(-2 \frac{1}{4},-3\right)$ across the x-axis can be represented by $A\left(2 \frac{1}{4},-3\right)$.When this point is reflected across the x-axis, the x-coordinate stays the same and the y-coordinate is the opposite.The reflection of $A\left(-2 \frac{1}{4},-3\right)$ across the y-axis can be represented by ' $\left\{2 \frac{1}{4},-3\right.$). When this point is reflected across the y-axis, the x-coordinate is the opposite and the y-coordinate stays the same.
11. Grid Derrius drew a map of the community playground. He graphed the point $S\left(2 \frac{1}{2},-5\right)$ for the slide. The swings are located at S^{\prime}, a reflection across the x-axis. The restrooms are located at $S^{\prime \prime}$, a reflection across the y-axis. (Lesson 6)
A. Identify the ordered pair that describes the location of the restrooms.
B. Plot and label the point $S^{\prime \prime}$ on the coordinate plane.

12. Equation Editor What number of units describes the vertical distance between the points $X(3,4.5)$ and $Y(3,-1)$? (Lesson 7)

Module 5

Numerical and Algebraic Expressions

Q. Essential Question

How can we communicate algebraic relationships with mathematical symbols?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - i've heard of it. $\mathrm{O}^{\text {- } 1 \text { know it! }}$	0	©	(3)	0	((2)
writing products as powers						
evaluating powers						
evaluating numerical expressions						
writing numerical expressions						
writing algebraic expressions						
evaluating algebraic expressions						
finding the greatest common factor of two whole numbers						
finding the least common multiple of two whole numbers						
using the Distributive Property						
using the greatest common factor to factor numerical expressions						
identifying equivalent expressions						
simplifying expressions by combining like terms						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about numerical and algebraic expressions.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square algebra
\square Distributive Property

- like terms
\square algebraic expression
\square Associative Propertybase
\square coefficientCommutative Property
\square constant
\square defining the variable
\square equivalent expressions
\square evaluate
\square exponentfactoring the expression
greatest common factor
- Identity Property
least common multiple

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1

Multiply repeated factors.
Multiply $5 \times 5 \times 5 \times 5$.
The number 5 is used as a factor four times.
$5 \times 5 \times 5 \times 5=625$

Example 2

Subtract fractions and mixed numbers.
Find $3 \frac{7}{8}-1 \frac{1}{2}$.

$$
\begin{aligned}
3 \frac{7}{8} & -1 \frac{1}{2} & & \\
& =3 \frac{7}{8}-1 \frac{4}{8} & & \text { Rewrite using the LCD, } 8 . \\
& =2 \frac{3}{8} & & \text { Subtract. }
\end{aligned}
$$

Quick Check

1. Multiply $7 \times 7 \times 7$.
2. Multiply $2 \times 2 \times 2 \times 2 \times 2$.
3. Find $\frac{4}{5}-\frac{1}{2}$.
4. Find $3 \frac{1}{10}-2 \frac{5}{6}$.

How Did You Do?
Which exercises did you answer correctly in the Quick Check?

(4)

Shade those exercise numbers at the right.

Powers and Exponents

I Can... write a product of whole numbers, fractions, or decimals as a power and write a power as a product of factors.

Learn Products as Powers

A product of like factors can be written in exponential form using an exponent and a base. A number expressed using an exponent is called a power. The base is the number used as a factor. The exponent tells how many times a base is used as a factor.

3 Go Online Watch the animation to see how an expression involving repeated factors can be written as a power.

The animation explains how to write the product of the repeated factor, 3 , as a power.

Label each part of the equation using the words below. factors exponent base power

What Vocabulary Will You Learn?

base
exponent
power

\qquad
\qquad
The base \qquad is used as a factor \qquad times.

So, $7 \times 7 \times 7 \times 7 \times 7$ can be written using an exponent as 7^{5}.

Check

Write $8 \times 8 \times 8$ using an exponent.

Think About It!
What information do you have that will help you use the correct exponent?

Talk About It!
Why are parentheses used in $\left(\frac{2}{5}\right)^{3}$?

Example 1 Write Products as Powers

Write $7 \times 7 \times 7 \times 7 \times 7$ using an exponent.

Example 2 Write Products as Powers

Write $\frac{2}{5} \times \frac{2}{5}-\times \frac{2}{5}$ using an exponent.
The base $\frac{2}{5}$ is used as a factor \qquad times.

So, $\frac{2}{5} \times \frac{2}{5} \times \frac{2}{5}$ can be written as $\left(\frac{2}{5}\right)^{3}$.

Check

Write $\left(1 \frac{1}{2}\right) \times\left(1 \frac{1}{2}\right) \times\left(1 \frac{1}{2}\right) \times\left(1 \frac{1}{2}\right) \times\left(1 \frac{1}{2}\right) \times\left(1 \frac{1}{2}\right) \times\left(1 \frac{1}{2}\right)$ using an exponent.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you make any errors when writing the product of a repeated factor as a power? What can you do to make sure you don't repeat that error in the future?

262 Module 5 • Numerical and Algebraic Expressions

Learn Powers as Products

To write powers as products, determine the base and the exponent. The base of 3^{2} is 3 and the exponent is 2 . To read powers, consider the exponent. The power 3^{2} is read as three to the second power or three squared, the power 3^{3} is read three to the third power or three cubed, and 3^{5} is read three to the fifth power.

To evaluate powers, find the value of the power after multiplying.
Complete the table for the first four powers of 5 .

Powers			
Power	Words	Factors	Value
5^{1}	5 to the first power	5	5
5^{2}	5 to the second power	5×5	
5^{3}			125
5^{4}	5 to the fourth power		

Example 3 Evaluate Powers

Evaluate 45 .

$$
\begin{aligned}
4^{5} & =4 \times 4 \times 4 \times 4 \times 4 & & \text { Write } 4^{5} \text { as a product. } \\
& =1,024 & & \text { Simplify } .
\end{aligned}
$$

So, 4^{5} is \qquad

Check

Evaluate 8^{4}.

Talk About It!
What are some mistakes that could be made when evaluating 5^{3} ?

Talk About It!
A friend evaluates the expression 4^{5} and arrives at a value of 20 for the solution.
Describe the mistake.

Think About It!
What does the exponent of 4 mean?
© Talk About It!
A friend evaluates the expression $\left(\frac{1}{3}\right)^{4}$ and arrives at a value of $\frac{1}{12}$. Describe the likely mistake.

Example 4 Evaluate Powers

Evaluate $\left(\frac{1}{3}\right)^{4}$.

$$
\begin{aligned}
\left(\frac{1}{3}\right)^{4} & =\frac{1}{3} \times \frac{1}{3}-\times \frac{1}{3}-\times \frac{1}{3} & & \text { Write }\left(\frac{1}{3}\right)^{4} \text { as a product. } \\
& =\frac{1}{81} & & \text { Simplify. }
\end{aligned}
$$

So, $\left(\frac{1}{3}\right)^{4}$ is \qquad

Check

Evaluate $\left(\frac{2}{5}\right)^{3}$.

Example 5 Evaluate Powers

Evaluate (2.5) ${ }^{3}$.

$$
\begin{aligned}
(2.5)^{3} & =(2.5) \times(2.5) \times(2.5) & & \text { Write }(2.5)^{3} \text { as a product. } \\
& =15.625 & & \text { Simplify } .
\end{aligned}
$$

So, $(2.5)^{3}$ is \qquad

Check

Evaluate (0.2) ${ }^{4}$.

© Apply Biology

Delmar is studying the growth rate of a specific type of bacteria. He places 3 cells in a Petri dish and records the number of bacteria over time. He records the results over 20 hours in the table shown and notices a pattern. At this rate, how many bacteria are expected to be present in the Petri dish after 30 hours?

Number of Hours	Number of Bacteria
5	3×3
10	$3 \times 3 \times 3$
15	$3 \times 3 \times 3 \times 3$
20	$3 \times 3 \times 3 \times 3 \times 3$

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Go Online watch the animation.

Talk About It!
Suppose Delmar originally placed 4 cells in the Petri dish. Could you use the same method to determine the total cells after 30 hours? Explain.

\square
\square
\square
\square

Check

Faith is turning 12 this year. She asks her parents to give her $\$ 2$ on her birthday and to double that amount for her next birthday. If she continues with this pattern, how much money will Faith receive on her 20th birthday?

Birthday	Amount (\$)
12th	2
13th	2×2
14th	$2 \times 2 \times 2$
15th	$2 \times 2 \times 2 \times 2$

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

How well do you understand the process of evaluating powers? What questions do you still have? How can you get those questions answered?

Practice

Write each product using an exponent. (Examples 1 and 2)

1. $4 \times 4 \times 4$
2. $3 \times 3 \times 3 \times 3 \times 3$
3. $15 \times 15 \times 15 \times 15$
4. $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} 4 \times \frac{3}{-} \times \frac{3}{-} \times \frac{3}{-}$
5. $\frac{1}{3}-\frac{1}{3} 3 \frac{1}{3} \times \frac{1}{3} \frac{1}{3} x^{1}-x^{1}-x^{1}-x^{1}$
6. 1.625×1.625

Evaluate each power. (Examples 3-5)
7. $5 \stackrel{5}{=}$ \qquad 8. $63=$ \qquad
10. $\left(\frac{1}{2}\right)^{2}=$ \qquad 11. $\left(\frac{2}{5}\right)^{3}=$ \qquad
14. $(0.2)^{2}=$ \qquad
9. $10^{4}=$ \qquad
12. $\left(\frac{1}{4}\right)^{4}=$ \qquad
15. $(0.4)^{3}=$ \qquad

Test Practice

16.The table shows the approximate area in square miles of the largest and smallest states in the United States. What is the difference between the areas in square miles?

State	Area (mi²
Alaska	87^{3}
Rhode Island	39^{2}

17. Multiselect Select all expressions that are equivalent to $7 \times 7 \times 7 \times 7$.
4^{7}
$\square 7^{4}$
7^{7}
$\square 28$
2,401
16,384

Apply

18. Willa is studying the growth rate of a specific type of organism called a ciliate. She places 2 cells in a dish and records the number of cells over time. The table shows her results. If the pattern continues, how many cells will be in the dish after 12 hours?

Number of Hours	Number of Cells
2	2×2
4	$2 \times 2 \times 2$
6	$2 \times 2 \times 2 \times 2$
8	$2 \times 2 \times 2 \times 2 \times 2$

19. Christiano is performing a science experiment and studying the growth rate of a certain type of onion root cell under different conditions. He places a cell in a dish and records the number of cells each day. Based on the pattern shown in the table, predict the number of cells in the dish after 5 days.

Number of Days	Number of Cells
1	4
2	4×4
3	$4 \times 4 \times 4$

20. Write a power whose value is greater than 500 but less than 1,000 .
21. 11.) Reason Inductively Suppose the world population is about 8 billion. Is 8 billion closer to 10^{10} or 10^{11}. Explain.
22. 19 Find the Error A student was evaluating 2^{3}. Find the student's mistake and correct it.

$$
\begin{aligned}
2^{3} & =3 \times 3 \\
& =9
\end{aligned}
$$

23. Be Precise Explain how exponential form is similar to multiplication being the process of repeated addition.

Numerical Expressions

I Can... write and evaluate a numerical expression using the correct order of operations.

Learn Numerical Expressions

A numerical expression is a combination of numbers and at least one operation, such as $4^{2}+7 \div(3-1)$.

To evaluate a numerical expression, you find its value. A numerical expression can be evaluated using the order of operations. The order of operations are the rules that tell which operation to perform first when more than one operation is used. This guarantees that the same value of a numerical expression is found each time the expression is evaluated.

Order of Operations

1. Simplify the expressions inside of grouping symbols, such as parentheses.
2. Find the value of all powers.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

W Go Online Watch the animation to learn how to simplify a numerical expression using the order of operations.

The animation explains how to evaluate the expression below.

$$
\begin{array}{rlrl}
6^{2} & -12 \div 3+(14-9) \times 2 & & \\
& =6^{2}-12 \div 3+5 \times 2 & & \text { Simplify the expression inside the parentheses. } \\
& =36-12 \div 3+5 \times 2 & & \text { Evaluate the exponent. } \\
& =36-4+5 \times 2 & & \text { Divide } 12 \text { by } 3 . \\
& =36-4+10 & & \text { Multiply } 5 \text { by } 2 . \\
& =32+10 & & \text { Subtract } 4 \text { from } 36 . \\
& \text { Add } 32 \text { and } 10 .
\end{array}
$$

So, the value of the expression is 42 .
What Vocabulary
Will You Learn?
evaluate
numerical expression
order of operations

Talk About It!
Use the expression $12+3 \times 4$ to explain why we need rules for evaluating expressions.

口

Think About It! What does the order of operations tell you to do first?

Talk About It!
Explain why subtraction was performed before addition when the expression showed $100-90+2$.

Example 1 Evaluate Numerical Expressions

Evaluate $100-3^{2} \times(6+4)+2$.

$$
\begin{array}{rlrl}
100-3^{2} \times(6+4)+2 & & \text { Write the expression. } \\
100-3^{2} \times(6+4)+2 & =100-3 \times 10+2 & & \text { Simplify parentheses. } \\
& =100-9 \times 10+2 & & \text { Evaluate the exponent. } \\
& =100-90+2 & & \text { Multiply. } \\
& =10+2 & & \text { Subtract. } \\
& =12 & & \text { Add. }
\end{array}
$$

So, the value of the expression is \qquad

Check

Evaluate $\left[23-\left(8+2^{3}\right] \times 2+10\right.$.

Example 2 Evaluate Numerical Expressions

Evaluate $5+\left(82 \div \frac{2}{5}\right) \times 2$.
$5+\left(8^{2} \div \frac{2}{5}\right) \times 2 \quad$ Write the expression.

$$
\begin{aligned}
5+\left(8 \div \frac{2}{5}\right) \times 2 & =5+\left(64 \div \frac{2}{5}\right) \times 2 & & \begin{array}{l}
\text { Evaluate the exponent inside of } \\
\text { the parentheses. }
\end{array} \\
& =5+160 \times 2 & & \text { Simplify parentheses. } \\
& =5+320 & & \text { Multiply. } \\
& =325 & & \text { Simplify. }
\end{aligned}
$$

So, the value of the expression is \qquad .

Check

Evaluate $8.2 \times\left(2^{4}-3\right)+8$.

Go Online Y ou can complete an Extra Example online.

Learn Write Numerical Expressions

In a real-world situation where one or more operations occur, you can write an expression to represent the situation.

Suppose Mariana and her friends are buying snacks at a hockey game. Hot dogs cost $\$ 4$, boxes of popcorn cost $\$ 2$, and drinks cost $\$ 2.50$. The expression below represents the total cost of 4 hot dogs, 3 boxes of popcorn, and 2 drinks.

The different colored text represents each part of the expression.
hot dogs + popcorn + drinks
$(\$ 4 \times 4)+(\$ 2 \times 3)+(\$ 2.50 \times 2)$

©xample 3 Write and Evaluate Numerical Expressions

Paula is shopping for the items shown in the table.

Write an expression to represent the total cost of 5 lotions, 2 candles, and 4 lip balms. Then find the total cost.

Part A Write an expression.
cost of lotions + cost of candles + cost of lip balms

$$
\left(5^{2}\right) \quad+(2 \times 7.80)+\quad(4 \times 2.49)
$$

Part B Find the total cost.

$$
\begin{aligned}
\left(5^{2}\right)+(2 \times 7.80)+(4 \times 2.49) & =\square+\square+\square \\
& =50.56
\end{aligned}
$$

So, the total cost is \$

Talk About It!
How else can you represent the part of the expression written as (4×4)?

:---
In this situation, does
the placement of the
parentheses have an
effect on the
evaluation of the
expression? Explain.

Math History

 MinuteMary G. Ross (19082008) is considered the first known Native American female mathematician and engineer. After her retirement, Ross was an advocate of women studying STEM fields (Science, Technology, Engineering, and Mathematics). She earned a place in the Silicon Valley Engineering Council's Hall of Fame.

Check

Tickets to a play cost $\$ 10.50$ for adult members of the theater, $\$ 19.95$ for adult non-members, and $\$ 8$ for students.

Part A

Suppose 4 non-members, 2 members, and 8 students are buying tickets for the play. Which expression could be used to find the total cost of the tickets?
(A) $4(19.95+10.50+8)$
(B) $(4 \times 19.95)+(2 \times 10.50)+8^{2}$
(C) $(2 \times 19.95)+(4 \times 10.50)+8^{2}$
(D) $(4 \times 19.95)+(2 \times 10.50)+8^{8}$

Part B

What is the total cost of the tickets?

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Describe some examples of when writing an expression can help you solve problems in everyday life. How does understanding the order of operations help you to evaluate those expressions?

- Apply Art Supplies

An art store sells different-sized art kits that include crayons and a sketch pad. The table shows the number of boxes of crayons and sketch pads in each kit. A school buys 30 small, 35 medium, and 10 large art kits. Then they return 11 medium art kits. How many boxes of crayons and sketch pads do they have in all?

Art Kit Size	Boxes of Crayons	Sketch Pads
Small	16	20
Medium	24	40
Large	68	100

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

At a summer camp, you can buy clothing embroidered with the camp logo. Short sleeve T-shirts are $\$ 15$ each, shorts are $\$ 18$ each, and long sleeve T -shirts are $\$ 25$ each. During the final week of summer, the clothing is marked down to $\frac{3}{4}$ the original price.
You buy two short sleeve T-shirts, one pair of shorts, and three long sleeve T-shirts. What was the total cost of the purchase?

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Where did you encounter difficulty in this lesson, and how did you deal with it? Write down any questions you still have.

Practice

Evaluate each expression. (Examples 1 and 2)

1. $64 \div(15-7) \times 2-9$
2. $9+8 \times 3-(5 \times 2)$
3. $4 \times\left(5^{2}-12\right)-6$
4. $78-2^{4} \div(14-6) \times 2$
5. $9+7 \times(15+3) \div 3^{2}$
6. $13+\left(4^{3} \div 2\right) \times 5-17$
7. $12+\left(2^{3} \div \frac{2}{3}\right)-2$
8. $80 \div\left(42 \div \frac{2}{5}\right)+3.75$
9. $4+\left(62 \div \frac{1}{4}\right) \times 3$
10. $36 \div\left(3^{2} \div \frac{3}{4}\right)-2.4$
11. Mei is shopping for the items shown in the table. Write an expression to represent the total cost of 6 bubbles, 2 beach balls, and 3 sand buckets. Then find the total cost.
(Example 3)
Item bubbles beach ball sand buckets

Cost	$\$ 1.49$	$\$ 2.00$	$\$ 3.50$

12. Roy and 2 friends are at a game center. Each person buys a hot dog for \$3, fries for $\$ 2.49$, and a drink for $\$ 2.50$. They also have a coupon for $\$ 1$ off each drink. Write an expression to represent the total cost. Then find the total cost. (Example 3)

Test Practice

13. Multiselect Alice takes an art class after school once a week. At each class, she buys a bottle of juice for $\$ 1.25$ and a bag of pretzels for $\$ 0.85$. Select all expressions that represent the amount of money, in dollars, Alice spends after attending 8 art classes.
```
8(1.25)(0.85)
```

 \(8(1.25+0.85)\)
 $\square 8(1.25)+8(0.85)$
$\square 8+1.25+0.85$
$\square(8+1.25)+(8+0.85)$
14. An art teacher is ordering colored pencils for the new school year. The table shows the number of colored pencils per box size. The teacher buys 24 small boxes, 12 medium boxes, and 5 large boxes. She had to return 3 small boxes due to defects. How many colored pencils does the teacher have in all?

Box Size	Number of Colored Pencils
Small	12
Medium	64
Large	100

15. A bakery sells boxes of muffins in the sizes shown in the table. On Monday, the bakery sold 15 minis, 8 dozens, and 6 jumbos. However, 6 of the minis sold were free with a coupon. How many total muffins were paid for on Monday?

Size	Number of Muffins
Mini	6
Dozen	12
Jumbo	24

16. Persevere with Problems Refer to the expression $2+6 \div 2+4 \times 3$.
a. Place parentheses in the expression so that the value of the expression is 16 .
b. Place parentheses in the expression so that the value is not equal to 16. Then find the value of the new expression.
17. Write an expression that contains parentheses, 5 numbers, two different operations, and has a value of 20 .
18. Find the Error A student is evaluating the expression $42+6 \div 2$. Find the student's mistake and correct it.

$$
\begin{aligned}
42+6 \div 2 & =48 \div 2 \\
& =24
\end{aligned}
$$

19. Create Write about a real-world situation that could be represented by a numerical expression. Then write and evaluate the expression.

Write Algebraic Expressions

I Can... identify parts of an expression from a verbal description in order to write an algebraic expression, using variables for unknown quantities, that models a real-world or mathematical problem.

Explore Write Algebraic Expressions

WOnline Activity You will use algebra tiles to write algebraic expressions.

Learn Structure of Algebraic Expressions

Algebra is a branch of mathematics that uses symbols. A variable is a symbol, usually a letter, used to represent a number. An algebraic expression is a combination of variables, numbers, and at least one operation. For example, the expression $n+2$ represents the phrase the sum of an unknown number and two. In this case, n is the variable.

Any letter can be used as a variable, but the letter x is commonly used. To avoid confusion with \times as a multiplication symbol, multiplication is shown in other ways. Division can also be written in different ways.

Words	Variables
five times the variable x	$5 \cdot x, 5(x), 5 x$
five times x divided by 3	$5 x \div 3, \frac{5 x}{3}$
five times twice the value of x	$5 \cdot 2 x, 5(2 x), 5 \cdot 2 \cdot x$ or $10 x$

Talk About It!
In the expression $2 x^{2} y+4 x y^{2}$, explain why $2 x^{2} y$ and $4 x y^{2}$ are not like terms.

Algebraic expressions can contain like terms, coefficients, variables, and constants. When addition or subtraction signs separate an algebraic expression into parts, each part is called a term.
$4 x+12+2 x \quad 4 x, 12$, and $2 x$ are terms.

Like terms contain the same variables to the same powers.
$4 x+12+2 x \quad 4 x$ and $2 x$ are like terms.

The numerical factor of each term that contains a variable is called the coefficient of the variable.
$4 x+12+2 x \quad$ The coefficient of x is 4.
The coefficient of x is 2 .

A term without a variable is called a constant.
$4 x+12+2 x \quad$ The number 12 is a constant.

Pause and Reflect

How is an algebraic expression similar to a numerical expression? How is it different? How do you think knowing these differences will help you as you progress through this lesson?

Example 1 Identify Parts of Algebraic Expressions

Identify the terms, like terms, coefficients, and constants in the expression $6 n+7 n+4+2 n$.

Terms are parts of the expression that are separated by addition and subtraction, so the terms are:

$$
6 n, 7 n, 4,2 n
$$

Circle the like terms above.
Write the coefficients of the terms and the constants in the appropriate bin.

So, the terms are $6 n, 7 n, 4$, and $2 n$.
The like terms are $6 n, 7 n$, and $2 n$.
The coefficients are 6, 7, and 2.
The constant is 4 .

Check

Identify the terms, like terms, coefficients, and constants in the expression $3 x+2+10+4 x$.
terms
like terms
coefficients \qquad
constants \qquad

Go Online Y ou can complete an Extra Example online.

Think About It!
How would you begin identifying the parts of the expression?

Talk About It!
Are there any like terms in this expression that are constants? Explain.

Talk About It!
Suppose that an additional term, n, is added to the end of the expression. What is the coefficient for n ?

Learn Write One-Step Algebraic Expressions

To write verbal phrases as algebraic expressions, use the table below. When defining the variable, choose a variable and decide what it represents.

Words

Describe the mathematics of the problem.

Variable

Define a variable to represent the unknown quantity.

Expression

Translate the words into an algebraic expression.
In order to translate a situation into an expression, it is important to correctly identify operations that are described in words.

Write each phrase below the operation that it describes.
the product of increased by less than a number
the quotient of the sum of

Addition

Multiplication

Subtraction

Division

Example 2 Write One-Step Algebraic Expressions

Define a variable to represent the unknown in the phrase ten dollars more than Anthony earned. Then write the phase as an algebraic expression.

Words

ten dollars more than Anthony earned
Variable
Let d represent the number of dollars Anthony earned.

$$
\begin{aligned}
& \text { Expression } \\
& d+10
\end{aligned}
$$

So, the expression
can be used to model the phrase ten dollars more than Anthony earned.

Check

Define a variable to represent the unknown in the phrase twelve dollars less than the original price. Then write the phrase as an algebraic expression.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Why is it important to define the variable when writing an algebraic expression? What possible errors might be made if the variable is not correctly defined?

Example 3 Write One-Step Algebraic Expressions

Define a variable to represent the unknown in the phrase four and one-half times the number of gallons. Then write the phrase as an algebraic expression.

Words

four and one-half times the number of gallons

Variable

Let g represent the number of gallons.
Expression
$4 \frac{1}{2} g$ or $4.5 g$

So, the expression \qquad or \qquad can be written to model the phrase four and one-half times the number of gallons.

Check

Define a variable to represent the unknown in the phrase six times more money than Eliot saved. Then write the phrase as an algebraic expression.

Talk About It!
How can you write an algebraic expression for the phrase two more than three times a number?

3 Go Online Y ou can complete an Extra Example online.

Learn Write Two-Step Algebraic Expressions

Two-step expressions contain two different operations. The table shows how to translate a verbal phrase into an algebraic expression.

Words

Describe the mathematics of the problem.

Variable

Define a variable to represent the unknown quantity.
Expression
Translate the words into an algebraic expression.

Example 4 Write Two-Step Algebraic Expressions

Define a variable to represent the unknown in the phrase five less than three times the number of points. Then write the phrase as an algebraic expression.

Words

five less than three times the number of points

Variable

Let p represent the number of points.

$$
\begin{gathered}
\text { Expression } \\
3 p-5
\end{gathered}
$$

So, the expression \qquad can be written to model the phrase five less than three times the number of points.

Check

Define a variable to represent the unknown in the phrase two less than one-third of the points that the Panthers scored. Then write the phrase as an algebraic expression.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you make any errors when writing the two-step algebraic expressions? Were the errors the same or different from any errors you made while writing one-step algebraic expressions? What can you do to make sure you do not repeat that error in the future?

Think About It!
How would you begin writing the expression?

Think About It!
What will your variable represent?

Talk About It!
Does the order in which you write the terms in the expression matter? Explain your reasoning.

Example 5 Write Algebraic Expressions

A rectangle has a length that is twice its width.
Define a variable to represent the unknown quantity. Then write an expression to represent the perimeter of the rectangle.

Words

The length of the rectangle is its width.

Variable

Let w represent the width of the rectangle. Because the length of the rectangle is twice the width, use the expression to represent the length.

Expression

$$
w+w+\square+\square
$$

So, the perimeter of the rectangle can be represented by the expression $w+w+2 w+2 w$, where w represents the width and $2 w$ represents the length.

Check

A rectangle has a length that is three times its width. Define a variable to represent the unknown quantity. Then write an expression to represent the perimeter of the rectangle.

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Describe an instance in which the order you write the terms in the expression matters. Why is this important to recognize?

Practice

Identify the terms, like terms, coefficients, and constants in each expression. (Example 1)

1. $4 e+7 e+5+2 e$
2. $5 a+2+7+6 a$
3. $4+4 y+y+3$

For each verbal phrase, define a variable to represent the unknown quantity. Then write the phrase as an algebraic expression. (Examples 2-4)
4. three more pancakes than Hector ate
6. two and one-half times the number of minutes spent exercising
8. four less than seven times Lynn's age
10. A plumber charges $\$ 50$ to visit a house plus $\$ 40$ for every hour of work. Define a variable to represent the unknown quantity. Then write an expression to represent the total cost of hiring a plumber. (Example 4)
12. A rectangle has a length that is half its width. Define a variable to represent the unknown quantity. Then write an expression to represent the perimeter of the rectangle. (Example 5)
5. twelve fewer questions than were on the first test
7. one-third the number of yards
9. $\$ 2.50$ more than one-fourth the cost of a pizza
11. A gymnastics studio charges an annual fee of $\$ 35$ plus $\$ 20$ per class. Define a variable to represent the unknown quantity. Then write an expression to represent the total cost of taking classes. (Example 4)
13. In a triangle there are two sides that have the same length and the third side is 1.5 times longer than the length of the other two. Define a variable to represent the unknown quantity. Then write an algebraic expression to represent the perimeter of the triangle. (Example 5)
14. Open Response Nate scored 5 more than twice the number of points as Jake scored. Write an expression that represents the relationship of the number of points Nate scored in terms of the number of points Jake scored, p.
\square
15. (73. Identify Structure Write an expression that has four terms and at least one constant. Identify the like terms, coefficients, and constants in your expression.
17. Persevere with Problems Norman earns $\$ 8$ for every dog he washes plus 25% of the cost of the dog wash. Write an expression that represents the total amount of money Norman earns for one dog wash with a cost, c .
16. If x represents the number of questions on a test, analyze the meaning of each expression: $x+4, x-5,2 x$, and $x \div 3$.
18. Create Write about a real-world situation that can be represented with an algebraic expression. Then represent the situation with the expression.

Evaluate Algebraic Expressions

I Can... use the order of operations to evaluate algebraic expressions for given values.

Explore Algebraic Expressions

Online Activity Y ou will use Web Sketchpad to explore how to evaluate algebraic expressions.

Learn Evaluate Algebraic Expressions

The variables in an algebraic expression can be replaced with a number. Once the variables have been replaced, you can evaluate, or find the value of, the algebraic expression.

Suppose that $x=5$ in the expression $4 x+2$. The expression can be evaluated by replacing the x with 5 and simplifying according to the order of operations as shown.

$$
\begin{aligned}
4 x+2 & =4(5)+2 & & \text { Replace } x \text { with } 5 . \\
& =20+2 & & \text { Multiply. } \\
& =22 & & \text { Add. }
\end{aligned}
$$

Talk About It!
Can you evaluate the expression $2 x+5 y-1$ if you know that $x=3$? Explain your reasoning.

The expression $4 x+2$ is equal to \qquad when $x=5$.

Think About It! What does it mean to evaluate an expression?

Talk About It!
Why is the value of the expression not equal to $6 \frac{1}{2}$?

Example 2 Evaluate One-Step Algebraic Expressions

Evaluate the expression $x+y$ when $x=\frac{3}{4}$ and $y=\frac{2}{3}$.

$$
\begin{array}{rlrl}
x+y & & \text { Write the expression. } \\
x+y & =\frac{3}{4}+\frac{2}{3} & & \text { Replace } x \text { with } \frac{3}{4} \text { and } y \text { with } \frac{2}{3 .} . \\
& =\frac{9}{12}+\frac{8}{12} & & \text { Rewrite the fractions with common denominators. } \\
& =\frac{17}{12} \text { or } \frac{5}{12} & & \text { Add. }
\end{array}
$$

So, the value of the expression is \qquad .

Check

Evaluate $a+b$ when $a=\frac{5}{6}$ and $b=3 \frac{1}{4}$.

Example 3 Evaluate Multi-Step Algebraic Expressions

Evaluate $(5 x-4 y) \div z^{2}$ when $x=4, y=\frac{1}{2}$, and $z=3$.

$$
\begin{array}{rlrl}
(5 x-4 y) \div z^{2} & & \text { Write the expression. } \\
(5 x-4 y) \div z^{2} & =\left(5 \cdot 4-4 \cdot \frac{1}{2}\right) \div 3^{2} & & \text { Replace } x \text { with } 4, y \text { with } \frac{1}{2} \\
& =(20-2) \div 9 & & \text { and } z \text { with } 3 . \\
& =18 \div 9 & & \text { Multiply. } \\
& =2 & & \text { Subtract. } \\
& & \text { Divide. }
\end{array}
$$

So, the value of the expression is \qquad

Check

Evaluate $\frac{x}{4}+2\left(y^{2}-3 z\right)$ when $x=12, y=7$, and $z=8$.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Compare and contrast evaluating one-step and multi-step algebraic expressions. Do the differences affect your approach to evaluating the expressions? If yes, what do you do differently? If no, then explain why your approach remains the same.

Think About It! How would you begin solving the problem?

Talk About It!
Explain how the Commutative Property allows you to multiply $\frac{1}{2} \cdot 19 \cdot 9.8$.

Example 4 Use Algebraic Expressions

The expression $\frac{1}{2} a(b+c)$ can be used to find the area of the trapezoid.

What is the area of the trapezoid when $a=9.8, b=12$, and $c=7$?
$\frac{1}{2} a(b+c) \quad$ Write the expression.

$\frac{1}{2} a(b+c)=\frac{1}{2} \cdot 9.8(12+7)$ Replace a with $9.8, b$ with 12 , and c with 7.
$=\frac{1}{2} \cdot 9.8(19) \quad$ Simplify inside the parentheses.
$=4.9(19) \quad$ Multiply.
$=93.1 \quad$ Multiply.

So, the area of the trapezoid is \qquad square inches.

Check

The expression $\frac{1}{2} a(b+c)$ can be used to find the area of the trapezoid. What is the area of the trapezoid when $a=3.7 b=6.4$, and $c=3.6$?

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you encounter difficulty when using algebraic expressions in this Example and Check? What are some helpful tips you could give a classmate who encountered difficulty when using algebraic expressions?

U Onample

Q Apply Woodworking

The table shows the dimensions of three rectangular picture frame sizes that Martina is making. How much wood is needed to make two small frames and three large frames? The perimeter of a rectangle is $2 \ell+2 w$, where ℓ is the length and w is the width.

Picture Frame Size Length (in.) Width (in.)		
Small	3	5
Medium	5	7
Large	8	10

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

At a garage sale, Georgia found some used DVDs and CDs that she wanted to buy. Each DVD costs $\$ 3$ and each CD costs $\$ 2$. She also has the option of paying $\$ 25$ for the entire box of DVDs and CDs. Evaluate the expression $3 d+2 c$ when $d=4$ and $c=7$ to find the cost of 4 DVDs and 7 CDs. What is the difference between the cost of buying the entire box and buying the items individually?

(3) Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Describe a real-world scenario when it would be advantageous to use an algebraic expression to solve a problem. How will the concepts you learned in this lesson help you to evaluate any algebraic expression you encounter?

Practice

Evaluate each expression when $x=\frac{3}{4}$ and $y=2.5$. (Example 1)

1. $8 x$
2. y^{2}
3. $\frac{10}{y}$

Evaluate each expression when $a=\frac{2}{3}, b=\frac{4}{5}$, and $c=6$. Write in simplest form. (Example 2)
4. $a+b$
5. $c-b$
6. $b-a$

Evaluate each expression when $a=4, b=3$, and $c=\frac{1}{3}$. (Example 3)
7. $(3 a+18 c) \div b^{2}$
8. $\left(a^{2}+12 c\right) \div(7 b-1)$
9. $(2 b+3 a)\left(c^{2}\right)$
10. The expression $\frac{1}{2} a(b+c)$ can be used to find the area of the trapezoid. What is the area of the trapezoid when $a=5.5, b=5$, and $c=7.2$? (Example 4)

11. The expression $\frac{1}{2} a(b+c)$ can be used to find the area of the trapezoid. What is the area of the trapezoid when $a=4.4$, $b=8$, and $c=3$? (Example 4)

Test Practice

13. Equation Editor What is the value of the expression when $x=7, y=\frac{1}{2}$, and $z=8$? (Example 3)
$(24 y+2 x) \div\left(\frac{1}{4} z\right)$

14. Mr. Young is replacing the fencing around his rabbit pens and garden. The table shows the dimensions of the different areas. How many feet of fencing will he need to replace two rabbit pens and his garden? The perimeter of a rectangle is

Item	Length (ft)	Width (ft)
Rabbit Pen	3.5	4.5
Garden	12	10

15. Angel is comparing the price to print shirts for summer camp at two companies. Company A charges an initial fee of $\$ 50$ and $\$ 12$ per shirt. Company B charges an initial fee of $\$ 10$ and $\$ 15$ per shirt. Evaluate the expressions $50+12 x$ and $10+15 x$ for $x=40$ to find the total cost to print 40 shirts at each company. What is the difference in cost between the companies?
16. Which One Doesn't Belong? Circle the expression that does not equal 13 when $x=3$.

$$
\begin{array}{cc}
5 x-2 & 5 x^{2}-27+5 \\
\left(x^{3}-1\right) \div 2 & x+13-x
\end{array}
$$

18. Be Precise Compare and contrast algebraic expressions and numerical expressions.
19. Find the Error A student was evaluating $4 b+c$ for $b=2$ and $c=3$. Find the student's mistake and correct it.

$$
\begin{aligned}
4 b+c & =4(3)+2 \\
& =12+2 \\
& =14
\end{aligned}
$$

19. Give an example of an algebraic expression and a numerical expression that have the same value when evaluated.

Factors and Multiples

I Can... find the greatest common factor and least common multiple of two whole numbers.

Explore Greatest Common Factor

Online Activity You will find the greatest common factor of two whole numbers.

Learn Greatest Common Factor

A common factor is a number that is a factor of two or more numbers. The greatest of the common factors of two or more numbers is the greatest common factor (GCF).

You can find the GCF of two or more numbers using different methods. Some of these methods include:

- listing the factors
- making a factor tree

W Go Online Watch the animation to learn how to find the GCF by listing the factors.

The animation shows the lists of factors of each number used to find the GCF of 9,15 , and 18 .
factors of 9: 1, 3, 9
factors of 15: $1,3,5,15$
factors of 18: 1, 2, 3, 6, 9, 18
The common factors are 1 and 3.
Since 3 is greater than 1 , the greatest common factor is 3 .
What Vocabulary
Will You Learn?
common factor
greatest common factor
least common multiple

\square

Talk About It!
Can the greatest common factor of two numbers ever be 1 ? If so, give an example.

Think About It!

How will you set up a factor tree for each number?

Example 1 Find the GCF by Using a List of Factors

Use a list of factors to find the greatest common factor of 12 and 28.

Step 1 List the factors of each number.
factors of 12: 1, 2, 3, 4, 6, 12
factors of 28: 1, 2, 4, 7, 14, 28
Step 2 Identify the common factors.
common factors: 1, 2, 4
Step 3 Identify the greatest common factor.
greatest common factor: \qquad

So, the greatest common factor of 12 and 28 is 4 .

Check

Use a list of factors to find the GCF of 9 and 20.

Go Online You can complete an Extra Example online.

Example 2 Find the GCF by Using a Factor T ree

Use factor trees to find the greatest common factor of 52 and 78.
For greater numbers, listing all of the factors can be inefficient. A factor tree is another method you can use to find the GCF.

Complete each factor tree.

Look at the bottom row of the factor trees. The common prime factors are \qquad and \qquad
Because 2 and 13 are factors of both 52 and 78 , the product of 2 and 13 is also a factor of both numbers. Multiply the common prime factors to find the GCF.

So, the GCF of 52 and 78 is 2×13, or 26 .

Check

Use factor trees to find the GCF of 45 and 75 .

W Go Online Y ou can complete an Extra Example online.

Explore Least Common Multiple

0
Online Activity Y ou will use Web Sketchpad to find the least common multiple of two whole numbers.

Talk About It!
Does changing the order of the factors result in a different GCF? Explain.

Learn Least Common Multiple

The least nonzero number that is a multiple of two or more whole numbers is the least common multiple (LCM) of the numbers.

You can find the least common multiple of a set of whole numbers by:

- listing the multiples
- using a number line
(3) Go Online Watch the animation to learn how to find the LCM of 4 and 6 by listing the nonzero multiples.

The animation shows the lists of the first six nonzero multiples of each number.
multiples of $4: 4,8,12,16,20,24, \ldots$
multiples of $6: 6,12,18,24,30,36, \ldots$
The common multiples in the list are 12 and 24.
Since 12 is less than 24 , the least common multiple is 12.
You can also find the least common multiple of a set of whole numbers by using a number line.

The least number with both an X and a dot is 12 .
So, the least common multiple is 12 .

Think About It!
When will Ernesto be back at the community center? Will Kamala be there? How do you know?

© Example 3 Find the LCM by Using a List of Multiples

Ernesto is at the community center every 8 weeks for his painting class. Kamala is at the community center every 6 weeks for her pottery class. They were both at the center for their classes this week.

How many weeks will it be until they both have their classes in the same week again?

Step 1 List the multiples of each number.
multiples of 8: \qquad
multiples of 6: \qquad

Step 2 Identify the least common multiple.
Circle the multiples that 8 and 6 have in common.
multiples of $8: 8,16,24,32,40,48,56,64 \ldots$
multiples of $6: 6,12,18,24,30,36,42,48$...
least common multiple:

So, Ernesto and Kamala have their classes in the same week again in 24 weeks.

Check

Every 10th week Tamika visits the zoo. Every 12th week she visits the local pet rescue. If she visited both this week, how many weeks will it be until she visits both in the same week again?

Pause and Reflect

Describe the differences between finding the greatest common factor and finding the least common multiple. How will knowing these differences be helpful when checking the accuracy of your answers?

QTalk About It!
Can the least common multiple of two numbers ever be one of the given numbers? If so, give an example.

Example 4 Find the LCM by Using a Number Line

Use a number line to find the least common multiple of 2 and 3.

Place an X above each multiple of 2.
Place a dot above each multiple of 3 .

What is the least number with both an X and a dot?
So, the least common multiple of 2 and 3 is 6 .

Check

Use a number line to find the LCM of 2 and 8 .

0
Go Online You can complete an Extra Example online.

Pause and Reflect

Compare and contrast using a number line and using a list of multiples to find the least common multiple. When might using a number line be more advantageous? When might using a list be more advantageous?

Θ Apply School Supplies

The table shows the supplies a school supply store has left at the end of the week. The store manager wants to put pencils and notepads together in bags to sell as a combo pack, and he wants to make the greatest number of bags possible.

Item	Number
Pencils	48
Pens	32
Erasers	60
Notepads	36

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(2) Write About It! Write an argument that can be used to defend your solution.
(3) Go Online watch the animation.

Check

A gardener has 27 pansies and 36 daisies to plant in identical rows in a community flower garden. It costs $\$ 5$ to plant each row. How much will it cost if he plants the greatest number of rows possible with no flowers leftover?

Go Online You can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that will help you study the concepts of greatest common factor and least common multiple. You might want to consider including multiple methods of finding each.

Practice

Use any method to find the greatest common factor of each pair of numbers. (Examples 1 and 2)

1. 12,30
2. 4,16
3. 9,36
4. 35,63
5. 42,56
6. 54,81
7. On every fourth visit to the hair salon, Margot receives a discount of $\$ 5$. On every tenth visit, she receives a free hair product. After how many visits will Margot receive the discount and a free product at the same time? (Example 3)
8. The table shows the city bus schedule for certain bus lines. Both buses are at the bus stop right now. In how many minutes will both buses be at the bus stop again?
(Example 3)

Bus Line	Arrives at the bus stop every...
A	25 minutes
B	15 minutes

Use any method to find the least common multiple of each pair of numbers. (Example 4)

9. 4,6 She wants to put all the flowers into decorative vases. Each vase must have the same number of flowers in it. Without mixing flowers, what is the greatest number of flowers that Monique can put in each vase?

Flower Type	Number
Daisies	20
Roses	25

10. 3,5

Test Practice

12. Equation Editor What is the greatest common factor of 35 and 28 ?

Apply

13. The table shows the number of each type of cookie a bakery has left at the end of the day. The baker wants to make the greatest number of cookie boxes to sell, using chocolate chip and sugar cookies together. If all of the chocolate chip and sugar cookies are distributed evenly among the boxes and the baker charges $\$ 5$ per box, how much money will the bakery bring in if they sell all of the boxes?

Type of Cookie	Number
Chocolate Chip	26
Oatmeal Raisin	34
Peanut Butter	18
Sugar	39

14. A teacher needs to purchase notebooks and pencils for her students. Notebooks come in packages of 6 and pencils in packages of 10. The table shows the cost of the items. What is the least amount of money the teacher can spend and have the same number of notebooks and pencils?

Item	Cost (\$)
Folder Packages	3.50
Notebook Packages	5.00
Pencil Packages	2.00

15. Identify Structure Explain how the Commutative Property is applied when finding the GCF using factor trees.
16. Use a Counterexample Determine if the statement is true or false. If true, support with an example. If false, give a counterexample.

If one number is a multiple of another number, the LCM is the lesser of the two numbers.
16. Make a Conjecture A student is finding the GCF of 6 and 12 . Without computing, will the GCF be odd or even? Explain.
18. Make a Conjecture Can two different pairs of numbers have the same LCM? Explain.

Use the Distributive Property

I Can... use the Distributive Property to evaluate numerical expressions, to rewrite algebraic expressions, and to factor numerical and algebraic expressions.

Explore Use Algebra Tiles to Model the Distributive Property

WOnline Activity You will use algebra tiles to investigate the Distributive Property.

Learn The Distributive Property

The Distributive Property states that to multiply a sum by a number, multiply each term inside the parentheses by the number outside the parentheses.

Words

To multiply a sum by a number, multiply each addend by the number outside the parentheses.

$$
\begin{gathered}
\text { Numbers } \\
2(5+6)=2(5)+2(6) \\
\text { Variables } \\
a(b+c)=a b+a c
\end{gathered}
$$

(continued on next page)

What Vocabulary
Will You Learn?
Distributive Property factoring the expression

\square
\square
\square

Talk About It!
When there are only numbers in an expression, such as $3(4+9)$, is the Distributive Property the only way to evaluate the expression?

Go Online Watch the animation to see how to use the Distributive Property to expand an expression.

The animation shows how to expand the expression $a(b+c)$.
$a(b+c)=a \cdot b+a \cdot c \quad \begin{array}{ll}\text { Multiply each term inside the } \\ \text { parentheses by } a . \text { Then simplify } .\end{array}$
The expression can be written $a s a b+a c$.

Consider the expression $2(3+5)$.

$2(3+5)=2 \cdot 3+2 \cdot 5$	Multiply each term inside the parentheses by 2.
$6+10$	Multiply 2 by 3 and 2 by 5.

The expression can be written as $6+10$ or 16 .

Consider the expression $3(x+4)$.

$$
\begin{array}{ll}
3(x+4)=3 \cdot x+3 \cdot 4 & \text { Multiply each term inside the } \\
\text { parentheses by } 3
\end{array}
$$

The expression can be written as $3 x+12$.

Pause and Reflect

What questions do you have about the Distributive Property as a result of this Learn? Can you begin to think of an instance where the Distributive Property could be beneficial?

Example 1 Use the Distributive Property

Use the Distributive Property to expand 2($x+3$).

$$
\begin{aligned}
2(x+3) & =2(x)+2(3) & & \text { Distributive Property } \\
& =2 x+6 & & \text { Multiply. }
\end{aligned}
$$

So, $2(x+3)$ can be written as \qquad

Check

Use the Distributive Property to expand $8(x+3)$.

Example 2 Use the Distributive Property

Use the Distributive Property to find $8 \cdot 3 \frac{1}{2}$.

$8 \cdot 3 \frac{1}{2}$

$$
\begin{array}{rlrl}
8 \cdot 3 \frac{1}{2} & & \text { Write the expression. } \\
8 \cdot 3 \frac{1}{2} & =8\left(3+\frac{1}{2}\right) & & \text { Write } 3 \frac{1}{2} \text { as }\left(3+\frac{1}{2}\right) . \\
& =8(3)+8\left(\frac{1}{2}\right) & & \text { Distributive Property } \\
& =24+4 & & \text { Multiply. } \\
& =28 & & \text { Add. }
\end{array}
$$

So, $8 \cdot 3 \frac{1}{2}$ is \qquad

Check

Use the Distributive Property to find $12 \cdot 2 \frac{1}{4}$.
 .

[^5]
Talk About It!

How can you use algebra tiles to verify you expanded the expression correctly?

Think About It!
How can you rewrite $3 \frac{1}{2}$ s a sum of two terms?

Talk About It!
Can you use the Distributive Property to multiply a one-digit number by a two-digit number, such as 9×37 ? Explain your reasoning.

Learn Greatest Common Factor and the Distributive Property

You can use the greatest common factor (GCF) to rewrite the sum of two whole numbers with a common factor as a product. The Distributive Property allows you to write the sum as the product of the greatest common factor and the sum of the remaining factors.

When numerical or algebraic expressions are written as a product of their factors, the process is called factoring the expression. To factor an expression, follow these steps.

1. Find the GCF of the terms.
2. Write the terms as a product of factors.
3. Rewrite the expression as the product of two terms.

Go Online Watch the animation to see how to use the GCF and the Distributive Property to factor an expression.

The animation explains how to factor the expression $8+56$.

$$
\left.\begin{array}{rl}
8 & =\left(\begin{array}{l}
2 \\
56
\end{array}=\binom{2}{2} \cdot 2 \cdot(2\right. \\
2
\end{array}\right) \cdot 7
$$

Find the GCF of the terms. GCF has been factored out of the expression?

The GCF is 8 .

$$
\begin{array}{rlrl}
8+56 & =8(1)+8(7) & & \begin{array}{l}
\text { Use the GCF to write each term as } \\
\text { a product of factors. }
\end{array} \\
& =8(1+7) & & \text { Rewrite the expression as a product } \\
\text { of two terms. }
\end{array}
$$

You can also use the GCF to factor expressions containing variables, such as $45 x+6$.

$$
\begin{aligned}
45 x & =3 \cdot 3 \cdot 5 \cdot x \\
6 & =3 \cdot 2
\end{aligned}
$$

Find the GCF of the terms.

The GCF is 3 .

$$
\begin{aligned}
45 x+6 & =3(15 x)+3(2) & & \begin{array}{l}
\text { Use the GCF to write each term as } \\
\text { a product of factors. }
\end{array} \\
& =3(15 x+2) & & \begin{array}{l}
\text { Rewrite the expression as a product } \\
\text { of two terms. }
\end{array}
\end{aligned}
$$

Example 3 Use GCF to Factor Numerical Expressions

Use the GCF to factor $\mathbf{4 5 + 7 2}$.

$45+72$	
$45+72=9(5)+9(8)$	Write the expression. Rewrite each term as a product of the GCF, 9, and its remaining factor.
$=9(5+8) \quad$	Use the Distributive Property to write as the product of two terms.

So, $45+72$ in factored form is \qquad

Check

Use the GCF to factor $80+56$.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

How did your prior knowledge of greatest common factor help you to understand the concepts in this Learn and Example?

Think About It!
How can you find the GCF of 45 and 72 ?

Talk About It!
Are the expressions $9(5+8)$ and $(5+8) 9$ equal to the same value? Explain your reasoning.

Think About It!
What is the GCF of the two terms?

Talk About It!
Is it possible to factor an expression using a factor other than the GCF? Explain.

Example 4 Use GCF to Factor Algebraic Expressions

Use the GCF to factor $6 x+15$.

$6 x+15$
$6 x+15=3(2 x)+3(5)$
$=3(2 x+5)$

Write the expression.
Rewrite each term as a product of the GCF, 3, and its remaining factor.

Use the Distributive Property to write as the product of two terms.

So, $6 x+15$ in factored form is \qquad

Check

Factor $36 x+30$. Use the GCF.

(3)
Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you make any errors while factoring the algebraic expression in the Check exercise? If so, was it in finding the GCF or rewriting each term? If not, how could you check the accuracy of your answer?

Q Apply Money

Wen is buying bottles of apple juice and wants to mentally calculate how much they will cost. He buys 5 bottles of juice at $\$ 2.15$ each. Use mental math and the Distributive Property to determine how much change he will receive from $\$ 20$.

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Martin exercised four days for 65 minutes each day. His goal is to exercise for a total of 300 minutes in 5 days. How many minutes does he need to exercise on the fifth day to meet his goal?

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Write a real-world problem that involves writing an expression using the Distributive Property. Explain how you came up with that problem. Exchange problems with a classmate and solve each other's problem.

Practice

Use the Distributive Property to expand each algebraic expression. (Example 1)

1. $3(x+8)$
2. $5(6+x)$
3. $9(3+x)$

Use the Distributive Property to simplify each expression. (Example 2)
4. $12 \cdot 3 \frac{3}{4}$
5. $15 \cdot 2 \frac{2}{3}$
6. $8 \cdot 4 \frac{1}{2}$

Use the GCF to factor each numerical expression. (Example 3)
7. $16+48$
8. $35+63$
9. $26+39$

Use the GCF to factor each algebraic expression. (Example 4)
10. $8 x+16$
11. $24+6 x$
12. $42+7 x$

Test Practice

13. Five friends each bought a shirt and a pair of shoes. The table shows the cost of the items. The expression $5(x+24)$ shows the total amount of money they spent. Expand the expression using the Distributive Property.

Item	Cost (\$)
Shirt	x
Shoes	24.00

14. Multiple Choice Which expression has the same value as $9+24$?
(A) $3(3+24)$
(B) $3(3+8)$
(C) $3(9+8)$
(D) $9(1+24)$

Apply
15. The table shows the cost of snacks at a basketball game. Mrs. Cooper buys 6 nachos for her daughter and 5 friends. Use mental math and the Distributive Property to determine how much change she will receive from $\$ 30$.

Item	Cost
Nachos	$\$ 4.10$
Popcorn	$\$ 2.85$

16. Jeffery is making 4 batches of chocolate chip cookies. Each batch of cookies needs $2 \frac{3}{4}$ cups of chocolate chips. If he has 96 ounces of chocolate chips, how many ounces will be left over? Use mental math and the Distributive Property.
17. 77 Identify Structure Write two equivalent numerical expressions involving fractions that illustrate the Distributive Property.
18. (17.) Construct an Argument Is the expression 2(6x) equivalent to $(2 \cdot 6)(2 \cdot x)$? Explain why or why not.
19. Justify Conclusions A student rewrote the expression $4(5+x)$ as $20+x$. Did the student rewrite the expression correctly? Justify your reasoning.
20. Are the expressions $4(x+5)+1$ and $(2 x+16)+2 x+5$ equivalent? Explain.

Equivalent Algebraic Expressions

I Can... use the properties of operations to write expressions in simplest form and check to see if two expressions are equivalent.

Explore Properties and Equivalent Expressions

Online Activity You will use algebra tiles and mathematical properties to identify equivalent expressions.

Learn Use Properties to Identify Equivalent Expressions

Equivalent expressions are expressions that have the same value. Algebraic expressions are equivalent when they have the same value, no matter what value is substituted for the variable(s). You can write an equivalent expression by applying the properties of operations to an expression.

Commutative Property

Words

The order in which numbers are added or multiplied does not change the sum or product.

Numbers

$$
\begin{aligned}
7+9 & =9+7 \\
8 \cdot 4 & =4 \cdot 8
\end{aligned}
$$

Variables

$$
\begin{aligned}
a+b & =b+a \\
a \cdot b & =b \cdot a
\end{aligned}
$$

Associative Property

Words
The order in which numbers are grouped when added or multiplied does not change the sum or product.

Numbers

$3+(4+7)=(3+4)+7$
$7 \cdot(6 \cdot 2)=(7 \cdot 6) \cdot 2$
Variables
$\begin{aligned} a+(b+c) & =(a+b)+c \\ a \cdot(b \cdot c) & =(a \cdot b) \cdot c\end{aligned}$
(continued on next page)

What Vocabulary

 Will You Learn?Associative Property Commutative Property Distributive Property equivalent expressions Identity Property simplest form
\qquad

Words

To multiply a sum by a number, multiply each addend by the number outside the parentheses.

Numbers

$$
2(7+9)=2(7)+2(9)
$$

$$
4(5-2)=4(5)-4(2)
$$

Variables

$$
a(b+c)=a(b)+a(c)
$$

$$
a(b-c)=a(b)-a(c)
$$

Identity Property

Words

The sum of an addend and 0 is the addend. The product of a factor and 1 is the factor.

Numbers

$$
\begin{aligned}
13+0 & =13 \\
7 \cdot 1 & =7
\end{aligned}
$$

Variables

$$
\begin{array}{r}
a+0=a \\
a \cdot 1=a
\end{array}
$$

Go Online Watch the animation to see how to use properties to identify equivalent expressions.

The animation explains how to use properties to determine whether or not $4(2 x+3)+5$ and $(4 x+3)+5$ are equivalent expressions.

Simplify the expressions and draw a conclusion.

$$
\begin{aligned}
4(2 x+3)+5 & =8 x+12+5 & & \text { Distributive Property } \\
& =8 x+(12+5) & & \text { Associative Property } \\
& =8 x+17 & & \\
(4 x+3)+5 & =4 x+(3+5) & & \text { Associative Property } \\
& =4 x+8 & &
\end{aligned}
$$

Because the simplified expressions have different terms, they will never have the same value. So, the expressions are not equivalent.

Talk About It!
Are the expressions that are written before and after a property is applied equivalent? Explain your reasoning.

The animation also explains how to use properties to determine whether or not $8+3 n+2$ and $3(n+1)+7$ are equivalent expressions.

Simplify the expressions and draw a conclusion.

$$
\begin{aligned}
8+3 n+2 & =3 n+8+2 & & \text { Commutative Property } \\
& =3 n+(8+2) & & \text { Associative Property } \\
& =3 n+10 & & \\
3(n+1)+7 & =3 n+3+7 & & \text { Distributive Property } \\
& =3 n+(3+7) & & \text { Associative Property } \\
& =3 n+10 & &
\end{aligned}
$$

Because the simplified expressions have the same terms, they will always have the same value. So, the expressions are equivalent.

Example 1 Identify Equivalent Expressions

Use the properties of operations to determine whether or not $3(x+7)+2$ and $5+3(x+6)$ are equivalent.

Step 1 Simplify the first expression.

$$
\begin{aligned}
3(x+7)+2 & =3 x+21+2 & & \text { Distributive Property } \\
& =3 x+(21+2) & & \text { Associative Property } \\
& =3 x+23 & & \text { Add. }
\end{aligned}
$$

Step 2 Simplify the second expression.

$$
\begin{aligned}
5+3(x+6) & =5+3 x+18 & & \text { Distributive Property } \\
& =3 x+18+5 & & \text { Commutative Property } \\
& =3 x+(18+5) & & \text { Associative Property } \\
& =3 x+23 & & \text { Add. }
\end{aligned}
$$

So, the expressions $3(x+7)+2$ and $5+3(x+6) \quad$ equivalent.

Check

Use the properties of operations to determine whether or not $\frac{1}{2} a+\frac{1}{2} b$ and $\frac{1}{2}(a+b)$ are equivalent.

Think About It!
What determines whether two expressions are equivalent?

Talk About It!
What are some expressions that are not equivalent to $3 x+23$?

Talk About It!
Why is it important to substitute more than one value into an expression to help determine equivalency?

Learn Use Substitution to Identify Equivalent Expressions

3 Go Online Watch the animation to learn about using substitution to identify when expressions are equivalent.

The animation explains how to determine whether $y+y+y$ and $3 y$ are equivalent expressions using substitution.

Step 1 Evaluate the expressions for the same value of the variable.
Evaluate each expression when $y=0$.

$$
\begin{array}{rlrl}
y+y+y & =0+0+0 & 3 y & =3(0) \\
& =0 & & =0
\end{array}
$$

Repeat Step 1 using a different value for the variable. Evaluate each expression when $y=5$.

$$
\begin{array}{rlrl}
y+y+y & =5+5+5 & 3 y & =3(5) \\
& =15 & & =15
\end{array}
$$

Step 2 Draw a conclusion.
Based on substitution, the expressions appear to be equivalent. If you continue substituting additional values of x, you will see that the expressions will always be equivalent, regardless of the value of the variable being substituted.

The animation also explains how to determine whether $5(x+4)$ and $5 x+4$ are equivalent expressions using substitution.

Step 1 Evaluate the expressions for the same value of the variable.
Evaluate each expression when $x=0$.

$$
\begin{aligned}
5(x+4) & =5(0+4) \\
& =5(4) \\
& =20
\end{aligned}
$$

$$
5 x+4=5(0)+4
$$

$$
=0+4
$$

$$
=4
$$

Step 2 Draw a conclusion.
Based on substitution, the expressions are not equivalent.

Example 2 Determine Equivalency Using Substitution

Use substitution to determine whether or not $2 x+x+x$ and $4 x$ are equivalent.

Let $x=0,1$, and 2 . Substitute those values into both expressions. Then compare to determine whether or not they are equivalent.

$2 x+x+x$	Write the expression.	$4 x$
$2(0)+0+0=0$	$x=0$	$4(0)=0$
$2(1)+1+1=4$	$x=1$	$4(1)=4$
$2(2)+2+2=8$	$x=2$	$4(2)=8$

When x is replaced with different values, the results are the same for both expressions.

So, the expressions are \qquad because they have the same value when values are substituted in for the variable.

Check

Use substitution to determine whether or not $3 x+x+4$ and $x+2(x+1)+x$ are equivalent.

Example 3 Determine Equivalency Using Substitution

Use substitution to determine whether or not $\frac{1}{2} x+x^{2}+\frac{1}{2}$ and $\frac{1}{2} x+3 x^{2}+\frac{1}{2}-x^{2}$ are equivalent.

$\frac{1}{2} x+x^{2}+\frac{1}{2} \quad$| Write the |
| :--- |
| expressions. |$\frac{1}{2} x+3 x^{2}+\frac{1}{2}-x^{2}$

$\frac{1}{2}(0)+(0)^{2}+\frac{1}{2}=\frac{1}{2} \quad x=0 \quad \frac{1}{2}(0)+3(0)^{2}+\frac{1}{2}-(0)^{2}=\frac{1}{2}$
$\frac{1}{2}(1)+(1)^{2}+\frac{1}{2}=2 \quad x=1 \quad \frac{1}{2}(1)+3(1)^{2}+\frac{1}{2}-(1)^{2}=3$
$\frac{1}{2}(2)+(2)^{2}+\frac{1}{2}=5 \frac{1}{2} \quad x=2 \quad \frac{1}{2}(2)+3(2)^{2}+\frac{1}{2}-(2)^{2}=9 \frac{1}{2}$

So, the expressions are _because they have the same value when $x=1$ and $x=2$.

Check

Use substitution to determine whether or not $y+2 y+3$ and $1+y+2(y+1)$ are equivalent.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you encounter any difficulty when using substitution to determine equivalency? What are some important things to remember as you progress through this lesson?

Learn Combine Like T erms

An expression is in simplest form if it has no like terms and no parentheses. You can use the structure of an algebraic expression to combine like terms and write it in simplest form.

When you have an expression with only constants, such as $5+2$, you can combine these terms for a result of 7 .

Sometimes you have an expression with like terms, such as $3 x+5 x$, which means 3 groups of x plus 5 groups of x. You can combine these terms for a result of $8 x$.

Algebra tiles can also be used to model and simplify an expression that contains like terms.

Go Online Watch the animation to learn about using algebra tiles to combine like terms in an algebraic expression.

The animation demonstrates how to simplify the expression $2 x+4+3 x$.

To model the expression, place two x-tiles, four 1 -tiles, and three more x-tiles on the integer mat.

Combine like tiles.

There are five x-tiles and four 1 -tiles.

The simplified expression is $5 x+4$.

The animation also demonstrates how to simplify the expression $x+5 x+x$.

To model the expression, place one x-tile, then five x-tiles, and then one more x-tile on the integer mat.

Combine like tiles.

There are seven x-tiles.
The simplified expression is $7 x$.

You can also use the Distributive Property to combine like terms. This method allows you to simplify by adding or subtracting the coefficients of the terms.

$$
\begin{aligned}
3 x+5 x & =x(3+5) & & \text { Factor out the common factor in the terms, } x . \\
& =x(8) & & \text { Add inside parentheses. } \\
& =8 x & & \text { Multiply. }
\end{aligned}
$$

Pause and Reflect

How did your prior knowledge of like terms help you to understand the concepts in this Learn?

Example 4 Combine Like T erms

Simplify $2 x+5+4 x-2$.
$2 x+5+4 x-2$
Write the expression.
$2 x+5+4 x-2=2 x+4 x+5-2 \quad$ Commutative Property.

$$
\begin{aligned}
& =x(2+4)+5-2 \\
& =6 x+5-2 \\
& =6 x+3
\end{aligned}
$$

Factor.
Add.
Subtract.

So, the simplified expression is \qquad

Check

Simplify $2 x+5+1 x-1$.

Go Online Y ou can complete an Extra Example online.

Example 5 Combine Like T erms

Simplify $5 x^{2}+2 x+2+x+{ }^{2} 6$.
Step 1 Identify like terms.
Write the terms in the appropriate bins that describe them.
x^{2} terms
x terms
 constants

Step 2 Simplify the expression.

$$
\begin{aligned}
5 x^{2} & +2 x+2+x^{2}+6 \quad \text { Write the expression. } \\
& =5 x^{2}+x+2 x+6+2 \text { Reorder using the Commutative Property. } \\
& =6 x^{2}+2 x+8
\end{aligned}
$$

So, the simplified expression is \qquad .

Think About It!
What are the like terms in this expression and what property allows you to reorder the terms?

Q Talk About It!
Study the expressions $2 x+5+4 x-2$ and $6 x+3$. What is the relationship between the coefficients of x in each expression?

Talk About It!
Why is $2 x$ not combined with any other terms when the expression $5 x^{2}+2 x+2+x^{2}+6$ is simplified?

Check

Simplify $2 x^{3}+x \neq 0.5+x+21.5$.

Learn Apply Properties to Write Equivalent Expressions

Talk About It!
What property allows you to combine like terms?

Think About It!
What property should be used first to simplify the expression?

Talk About It!
What are some other expressions that are equivalent to
$\frac{1}{2}\left(2 x^{2}+\frac{1}{2}\right)+\frac{2}{5} x^{2}+7$?

When you simplify an expression, you can apply properties and combine like terms to write equivalent expressions.

$$
\begin{aligned}
3(4 x+1)+2 x^{2}+x & =12 x+3+2 x^{2} x & & \text { Distributive Property } \\
& =2 x^{2}+12 x+x+3 & & \text { Commutative Property. } \\
& =2 x^{2}+13 x+3 & & \text { Combine like terms. }
\end{aligned}
$$

So, $3(4 x+1)+2 x^{2}+x$ is equivalent to

Example 6 Write Equivalent Expressions

Simplify $\frac{1}{2}\left(2 x^{2}+\frac{1}{2}\right)+\frac{2}{5} x^{2}+7$.

$$
\begin{aligned}
\frac{1}{2}\left(2 x^{2}+\frac{1}{2}\right)+\frac{2}{5} x^{2}+7 & =x^{2} \quad \frac{1}{4}+\frac{2}{5} x^{2}+7 & & \text { Distributive Property } \\
& =x^{2}+\frac{2}{5} x^{2}+\frac{1}{4}+7 & & \text { Commutative Property } \\
& =1 \frac{2}{5} x^{2}+7 \frac{1}{4} & & \text { Combine like terms. }
\end{aligned}
$$

So, $\frac{1}{2}\left(2 x^{2}+\frac{1}{2}\right)+\frac{2}{5} x^{2}+7$ is equivalent to

Check

Simplify $\frac{1}{4}(4 x+12)+\frac{1}{2} x+1+\frac{3}{2} x$.
\qquad .

324 Module 5 • Numerical and Algebraic Expressions

© Apply Shipping

Dawit wants to buy some vintage comic books at a local shop and have them shipped to his cousin. The price of a comic book is based on its condition. The table shows the total cost of x number of comic books for each condition. He buys two that are in excellent condition, two that are in good condition, and two that are in fair condition. The shipping cost for the comic books is $\$ 5.00$. What expression represents the total cost of buying and shipping the comic books?

Condition	Book Costs
Poor	x
Fair	$4.5 x$
Good	$9.75 x$
Excellent	$18 x$
Like New	$25.5 x$

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(Write About It! Write an argument that can be used to defend your solution.

Check

Yasmin bought a case of 144 beach hats for $\$ 7.39$ per hat and a case of 125 pairs of flip-flops for $\$ 2.09$ per pair. She sold x number of hats for $\$ 15.75$ each and y number of pairs of flip-flops for $\$ 4.95$ each. Write an expression that represents Yasmin's profit. Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

326 Module 5. Numerical and Algebraic Expressions

Practice

Use properties of operations to determine whether or not the expressions are equivalent.(Example 1)

1. $(x+10)+x+9$ and $2(x+7)+5$
2. $0.5 x+1$ and $1(0.5 x)$

Use substitution to determine whether or not the expressions

 are equivalent. (Examples 2 and 3)3. $3 x+2 x+x$ and $7 x$

Simplify each expression. (Examples 4 and 5)
4. $x \neq 1$ and $\frac{2}{3} x^{2}+\frac{1}{3} x^{2}+1+x$
6. $10+7 x-5+4 x$
8. $\frac{1}{2} x^{2}+x+\frac{1}{2}+2 x+\frac{1}{2} x^{2}$

Test Practice

9. Simplify $\frac{3}{4}+\frac{2}{3}(9 x+6)+4 x+3 \frac{1}{4}$. (Example 6)
10. Multiselect Which of the following are equivalent to $\frac{3}{4}\left(8 x^{2}+1\right)+3 x^{2} \quad \frac{1}{4}$? Select all that apply.

$$
\begin{aligned}
& \square 6 x^{2}+\frac{3}{4}+3 x^{2}+\frac{1}{4} \\
& \square 6 x^{2}+1+3 x^{2} \quad \frac{1}{4} \\
& \square 9 x^{2}+1 \frac{1}{4} \\
& \square 9 x^{2}+\frac{3}{4}+\frac{1}{4} \\
& \square 9 x^{2}+2 \\
& \square 9 x^{2}+1
\end{aligned}
$$

Apply

11. Mrs. Watson is buying vintage records for a friend at a local record shop. The price of a record is based on its condition. The table shows the total cost of x number of records for each condition. She buys 3 that are in good condition, 2 that are in like new condition, and 1 in fair condition. The shipping cost for the records is $\$ 8.00$. What expression represents the total cost of buying and shipping the records?

Condition	Total Cost
Poor	x
Fair	$5 x$
Good	$10.5 x$
Like New	$19.95 x$

12. Jake is buying baseball cards for his brother in college. The price of a card is based on its condition. The table shows the total cost of x number of cards for each condition. He buys 6 that are in fair condition, 5 that are in good condition, and 2 that are in excellent condition. The shipping cost for the baseball cards is $\$ 4.00$. What expression represents the total cost of buying and shipping the baseball cards?

Condition	Total Cost
Poor	x
Fair	$1.75 x$
Good	$9.5 x$
Excellent	$20.5 x$
Like New	$45.65 x$

13. (47. Identify Structure Write an expression that when simplified is equivalent to $3 y^{2}+2 y+\frac{1}{2}$.
14. Write two expressions that are equivalent because of the Identity Property of Zero.
15. 16. Justify Conclusions A student said the expressions $\frac{1}{2} x+2+1 \frac{1}{2} x$ and $2 x+2$ are equivalent. Is the student correct? Justify your reasoning.
1. Reason Inductively Are the expressions $x^{2}+x^{2}+x$ and $4 x$ equivalent when $x=3$? Explain your reasoning.

Foldables Use your Foldable to help review the module.

Tab 1	Properties of Addition	
Example	Example	Example
Write About It	Write About It	Write About It
Tab 2 _ Properties of Multiplication		

Rate Yourself! 1

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Write about one thing you learned. \qquad

Module 5. Numerical and Algebraic Expressions 329

Reflect on the Module

Use what you learned about numerical and algebraic expressions to complete the graphic organizer.

Fssential Question

How can we communicate algebraic relationships with mathematical symbols?

| Expression | Variable | Write a real-world example to represent the given expression.
 What does the variable represent? |
| :---: | :---: | :--- | :--- |
| $7 x$ | x | Each ticket to the school play costs $\$ 7$. The variable x represents the
 number of tickets purchased. |
| $9+4$ | | |
| $23-p$ | | |
| 2 | | |

Test Practice

1. Multiselect Which expression is equivalent to 5^{3} ? Select all that apply. (Lesson 1)
$\square 3 \times 3 \times 3 \times 3 \times 3$
$\square \times 5 \times 5$$5 \times 5 \times 5 \times 5 \times 5$15
125
2. Equation Editor Market researchers are studying the effects of sending an advertisement through text messaging. On the first day of the advertisement program, the researcher sent a text message to 8 people. On the next day, each of those people will send the text message to another 8 people, and so on. The pattern of sending the advertisement through text messaging is shown in the table. (Lesson 1)

Number of Days	Number of People Receiving Text Message
1	8
2	8×8
3	$8 \times 8 \times 8$
4	$8 \times 8 \times 8 \times 8$

Predict the number of people who will receive the text message on the 8th day of the advertising program.

3. Open Response Roberto is buying fruit from a local farmer's market. The prices are shown in the table. (Lesson 2)

Item	Mango	Peach	Watermelon
Cost	$\$ 1.79$	$\$ 0.75$	$\$ 3.00$

A. Write an expression to represent the total cost of buying 2 peaches, 5 mangoes, and 3 watermelons.

B. What is the total cost for the fruit? Round your answer to the nearest hundredth.
4. Equation Editor The local food bank is requesting donations in order to distribute meals during a holiday. Turkeys cost \$18 each, a bag of potatoes cost $\$ 2.55$ each, and cans of green beans cost $\$ 1.25$ each. As of last week, the food bank needed 30 turkeys, 28 bags of potatoes, and 62 cans of green beans for meals. However, this week a grocery store donated 15 of the turkeys. How much money will need to be donated to distribute meals for all the families? (Lesson 2)

5. Open Response Identify the terms, like terms, coefficients, and constants in the expression $8 p+6 q+5+9 q+12 p$. (Lesson 3)
\square
6. Open Response Write fifteen dollars more than the original cost as an algebraic expression. Let c represent the original cost. Do not include dollar signs in your expression. (Lesson 3)
7. Multiple Choice Evaluate
$(6 x+3 y)-z^{2} \div(2 x)$ when $x=3, y=4$, and $z=6$. (Lesson 4)
(A) -1
(B) 11
(C) 24
(D) 96
8. Open Response Savannah is choosing between two cell phone plans. Plan A charges $\$ 60$ a month plus a one-time activation fee of $\$ 75$. Plan B charges $\$ 63$ a month plus a one-time activation fee of $\$ 15$. Evaluate the expressions $60 m+75$ and $63 m+15$ when $m=18$ to find the total cost for each cell phone plan for 18 months. What is the difference in cost between the two cell phone plans? (Lesson 4)

\square
9. Multiple Choice Consider the expression $32 x+56$. (Lesson 6)
A. What is the GCF of $32 x$ and 56 ?
(A) 2
(B) 4
(C) 8
(D) 14
B. Use the GCF to factor $32 x+56$.

10. Open Response Avery is buying cupcakes for 12 friends at the school bake sale. Each cupcake costs $\$ 1.25$ (Lesson 6)
A. Write an expression using the Distributive Property to find the total cost of 12 cupcakes.

B. If Avery has $\$ 24$, how much money will he have left?
11. Table Item Indicate whether or not the two expressions are equivalent using substitution. (Lesson 7)

	Equivalent	Not Equivalent
$5 x+2$ and		
$4 x+1+x+2$		
$(8 y+4 x+4 y+5)$		
and $4(3 y+x)+5$		
$y^{2}+4 y+5-3 y$ and $y^{2}+y+5$		

Equations and Inequalities

e Essential Question

How are the solutions of equations and inequalities different?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it. 3 l know it!	0	0	3	0	0	3
solving equations using substitution						
writing and solving one-step addition equations						
writing and solving one-step subtraction equations						
writing and solving one-step multiplication equations						
writing and solving one-step division equations						
writing and graphing inequalities						
finding solutions of inequalities						

(II) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about equations and inequalities.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square Addition Property of EqualityDivision Property of Equality
\square equals sign
\square equation
\square guess, check, and revise strategyinequality

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1
Subtract decimals.
Find $2.46-1.37$.

2.46	
$\frac{-1.37}{1.09}$	Line up the decimal points.
$1.09 b t r a c t$.	

Example 2
Add fractions.
Find $\frac{2}{3}+\frac{1}{5}$.
$\frac{2}{3}+\frac{1}{5} \quad$ Write the problem.

$$
\begin{array}{ll}
=\frac{10}{15}+\frac{3}{15} & \text { Rename using the LCD, } 15 . \\
=\frac{13}{15} & \\
\text { Add the numerators. }
\end{array}
$$

2. Find $\frac{3}{4}+\frac{7}{10}$.
3. Find $14.39-7.45$.
\square inverse operations
\square Multiplication Property of Equality
\square solution
\square solve
\square Subtraction Property of Equality

I Can... use substitution to determine whether a given number is a solution of a one-step equation.

Learn Equations

An equation is a mathematical sentence showing that two expressions are equal. An equation contains an equals sign, $=$.

Equation	
Definition	Example
a mathematical sentence showing two expressions are equal	$3 x=6$

Learn Solve Equations Using Substitution

When you solve an equation, you find the value for the given variable that makes the equation true. This value is called the solution of the equation.

You may be given a specified set of values to use to find the solution of an equation. You can determine whether a value is a solution of an equation by using substitution. For example, given the equation $x+3.5=7.9$, is $3.4,4.2$, or 4.4 a solution?

Value of x	$x+3.5=7.9$	Is the value a solution?
3.4	$3.4+3.5 \xlongequal{?} 7.9$	no
$6.9 \neq 7.9$		
4.2	$4.2+3.5 \xlongequal{=} 7.9$	no
$7.7 \neq 7.9$		
4.4	$4.4+3.5 \stackrel{?}{=} 7.9$	yes
$7.9=7.9$		

What Vocabulary Will You Learn?

equals sign
equation
guess, check, and revise strategy
solution
solve

Talk About It!
Describe the similarities and differences between equations and expressions.

Talk About It!
Is there another value that is a solution of $4.5 x=135$? Explain your reasoning.

You can also use the guess, check, and revise strategy to find the solution of an equation. To find the solution of the equation $4.5 x=135$, begin by choosing a reasonable value for x. For example, $\operatorname{try} x=20$.

Value of x	$4.5 x=135$	Is the value a solution?

Example 1 Solve Equations Using Substitution

Is $\mathbf{3 , 4}$, or 5 the solution of the equation $p+9.7=13.7$?

Complete the table to find the solution of the equation.

Value of p	$p+9.7=13.7$	Is the value a solution?
3	$\begin{gathered} 3+9.7 \stackrel{?}{=} 13.7 \\ 12.7 \neq 13.7 \\ \hline \end{gathered}$	
4	$\begin{gathered} 4+9.7 \stackrel{?}{=} 13.7 \\ 13.7=13.7 \end{gathered}$	
5	$\begin{gathered} 5+9.7 \stackrel{?}{=} 13.7 \\ 14.7 \neq 13.7 \end{gathered}$	

So, the solution is 4 .

Check

Is 1,2 , or 3 the solution of the equation $m+\frac{4}{5}=2 \frac{4}{5}$?

Go Online You can complete an Extra Example online.

Example 2 Solve Equations Using Substitution

Navaeh is building a door that is 36 inches wide using wooden planks that are $4 \frac{1}{2}$ inches wide.

Use the guess, check, and revise strategy to solve the equation $4 \frac{1}{2} p=36$ to find p, the number of planks Nevaeh will need to make her door.

Begin by substituting 6 into the equation.
$4 \frac{1}{2} p=36$
$4 \frac{1}{2}(6) \stackrel{?}{=} 36$

Since $27<36$, try a greater number of planks.

Substitute 7 into the equation.

$$
\begin{array}{r}
4 \frac{1}{2} p=36 \\
4 \frac{1}{2}(7) \stackrel{?}{=} 36 \\
\square=36
\end{array}
$$

Since $31 \frac{1}{2}<36$, try a greater number of planks.

Substitute 8 into the equation.

$$
4 \frac{1}{2} p=36
$$

$$
4 \frac{1}{2}(8) \stackrel{?}{=} 36
$$

$$
\square=36
$$

The sentence is true, so 8 is the solution of the equation $4 \frac{1}{2} p=36$.

So, Nevaeh needs to use \qquad planks to build the door.

Think About It!
How will you make your first guess?

Talk About It!
How can you use mental math to solve the equation?

Check

This year, students ate 100 pounds of broccoli in the Walnut Springs Middle School cafeteria. This is $6 \frac{1}{4}$ times as much as they ate in the previous year. Use the guess, check, and revise strategy to solve the equation $6 \frac{1}{4} b=100$ to find b, the number of pounds of broccoli the students ate the previous year.

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Write a real-world problem that uses the guess, check, and revise strategy to solve an equation. Explain how you came up with that problem. Exchange problems with a classmate and solve each other's problem.

Practice

Identify the solution of each equation from the specified set. (Example 1)

1. $x+5.6=11.6 ; 5,6,7$
2. $b-9.7=13.3 ; 23,24,25$
3. $4.5 x=18 ; 3,4,5$
4. $d \div 5.5=4 ; 22,23,24$
5. Brinley is making headbands for her friends. Each headband needs $16 \frac{1}{2}$ inches of elastic and she has 132 inches of elastic. Use the guess, check, and revise strategy to solve the equation $16 \frac{1}{2} h=132$ to find h, the number of headbands Brinley can make. (Example 2)
6. $4.2+z=11.2 ; 6,7,8$
7. $d-8.4=8.6 ; 15,16,17$
8. $2.25 c=27 ; 12,13,14$
9. $36.3 \div y=12.1 ; 2,3,4$
10. Maddox has $\$ 12.25$ to spend on sports drinks. Each drink costs $\$ 1.75$. Use the guess, check, and revise strategy to solve the equation $1.75 d=\$ 12.25$ to find d, the number of drinks Maddox can buy.(Example 2)
11. Manuel has two different recipes for chocolate chip muffins. The table shows the amount of chocolate chips needed per batch for each recipe. He has $8 \frac{3}{4}$ cups of chocolate chips. Use the guess, check, and revise strategy to solve the equation $\frac{1}{4} b=8 \frac{3}{4}$

Recipe	Chocolate Chips (cups)
1	$\frac{3}{4}$
2	$1 \frac{1}{4}$

12. Multiple Choice Consider the following equation.
$x+9=17$
Which of the values can be substituted for x to make the equation true?
(A) 7
(B) 8
(C) 9
(D) 26
13. Create Write a real-world problem that can be solved using the equation $7.5+x=16$.
14. Be Precise Compare and contrast the expression $x+1$ and the equation $x+1=2$.
15. (17) Justify Conclusions A student said that for $x+7=11$, the value of x can be any value. Is the student correct? Write an argument that can be used to defend your response.
16. Give an example of an addition equation and a subtraction equation that each have a solution of 10 .

One-Step Addition Equations

I Can... write and solve addition equations for real-world and mathematical problems by using the Subtraction Property of Equality.

Explore Use Bar Diagrams to Write Addition Equations

WOnline Activity Y ou will use a model to explore how to write one-step addition equations to model real-world problems.

Learn Write Addition Equations

You can write equations to represent many real-world problems involving addition. The table below shows the steps for writing an equation to represent a real-world problem.

Words

Describe the mathematics of the problem. Use only the most important words in the problem.

Variable
Define a variable to represent the unknown quantity.

Equation

Translate the words into an algebraic equation.

Describing the quantity that a variable represents and selecting a letter to represent that unknown quantity is called defining the variable.

What Vocabulary
 Will You Learn?

inverse operations
Subtraction Property of Equality

\qquad
\square
\square
\square
\qquad (Go Online Watch the animation to learn how to write an addition equation to represent the following real-world problem.

In a recent Summer Olympics, the United States won 23 more medals in swimming than Australia. The United States won a total of 33 swimming medals. Write an addition equation that can be used to determine the number of medals won by Australia.

Words

Describe the mathematics of the problem.
medals for Australia plus 23 equals 33 medals for the U.S.
Variable
Define the variable.

Let m represent the number of medals for Australia.

Equation

Write an equation.

$$
m+23=33
$$

Q Example 1 Write Addition Equations

Together, Ruben and Tariq downloaded 245.5 megabytes (MB) of music. Ruben downloaded 132 MB of that total.

Write an addition equation that can be used to find how many megabytes of music Tariq downloaded.

Words

Describe the mathematics of the problem.

> Ruben and Tariq downloaded a total of __MB of music.

Of this total, Ruben downloaded MB

Variable
Define the variable.
Let m represent the MB that Tariq downloaded.
Equation
Write an equation.

$$
\square+\square=\square
$$

So, the equation $132+m=245.5$ can be used to find the MB that Tariq downloaded.

Check

Together, Zacharias and Paz have \$756.80. If Zacharias has \$489.50, how much does Paz have? Write an addition equation that can be used to find the amount of money that belongs to Paz.

Learn Solve Addition Equations

You can use substitution, models, or properties of mathematics to solve addition equations.
(3) Go Online Watch the video to learn how to solve one-step addition equations using algebra tiles.

The video demonstrates how to find the value of x for the equation $x+4=7$.

To model the equation, place one x-tile and four 1-tiles on the left side of the mat. Place seven 1 -tiles on the right side of the mat.

To isolate the variable, or the x-tile, remove the same number of 1 -tiles from each side of the mat until the x-tile is by itself.

There are three 1-tiles remaining on the right side, so $x=3$.

Another way to solve an addition equation is to use inverse operations, which are operations that undo each otherWhen you solve an addition equation by subtracting the same number from each side of the equation, you are using the Subtraction Property of Equality.

Words	Examples
If you subtract the same	If $5=5$, then
number from each side of	$5-2=5-2$.
an equation, the two sides	If $x+2=3$, then
remain equal.	$x+2-2=3-2$.

To solve the addition equation $x+4=7$ by using inverse operations, undo the addition of 4 by subtracting 4 from each side of the equation.

$$
\begin{aligned}
x+4=7 & \text { Write the equation. } \\
-4-4 & \text { Subtraction Property of Equality } \\
x=3 & \text { The solution is } x=3 .
\end{aligned}
$$

344 Module 6 • Equations and Inequalities

Example 2 Solve Addition Equations

Solve $8=x+3$. Check your solution.
Method 1 Use a model.
Step 1 Place eight 1-tiles on the left side of the mat and one x-tile and three 1-tiles on the right side of the mat.

Step 2 Remove three 1-tiles from each side of the mat.

$$
\square=x
$$

Method 2 Use the Subtraction Property of Equality.

$$
8=x+3 \quad \text { Write the equation. }
$$

$-3 \quad-3$	Subtraction Property of Equality
$\square=x$	Simplify.

Method 3 Use a bar diagram.

Draw a bar diagram to represent the equation.

The total length of the bar represents 8 , which represents the value of the equation. What is the value of x ?

So, the solution of the equation is 5 .
Check the solution.
$8=x+3 \quad$ Write the equation.
$8 \stackrel{?}{=} 5+3 \quad$ Replace x with 5 .
$8=8 \quad$ The sentence is true.

Think About It!
What property will you use to solve for x ?

Check

Solve $570=33+x$ for x.

Think About It!
What do you notice about the equation? Does this change your approach to solving it? Why or why not?

Example 3 Solve Addition Equations

Solve $3 \frac{3}{4}+m=7 \frac{1}{2}$. Check your solution.

$$
\begin{aligned}
3 \frac{3}{4}+m & =7 \frac{1}{2} & & \text { Write the equation. } \\
3 \frac{3}{4}+m & =7 \frac{2}{4} & & \text { Rewrite with like denominators. } \\
-3 \frac{3}{4} & -3 \frac{3}{4} & & \text { Subtraction Property of Equality } \\
\hline m & =3 \frac{3}{4} & &
\end{aligned}
$$

So, the solution of the equation is \qquad .

Check the solution.

$$
\begin{aligned}
3 \frac{3}{4}+m & =7 \frac{1}{2} & & \text { Write the equation. } \\
3 \frac{3}{4}+3 \frac{3}{4} & \stackrel{?}{=} 7 \frac{1}{2} & & \text { Replace } m \text { with } 3 \frac{3}{4} . \\
7 \frac{1}{2} & =7 \frac{1}{2} & & \text { The sentence is true. }
\end{aligned}
$$

Check

Solve $k+\frac{5}{8}=2 \frac{1}{4}$ for k. Check your solution.
(3) Go Online Y ou can complete an Extra Example online.

© Apply Money

An online bookstore is having a sale on mysteries. The table shows the cost of each book format. Abigail has $\$ 70$ to spend. She bought two paperbacks, one hardcover, and one e-book. Write an addition equation that can be used to determine how much more money Abigail still has to spend. Then solve the equation.

Books	Hardcover Paperback	E-book	Audio book	
Cost (\$)	19.49	8.25	10.99	25.19

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(2. Write About It! Write an argument that can be used to defend your solution.

Check

Miguel has $2 \frac{1}{2}$ hours to work on his homework. The table shows how much time he spent working on his English homework and his math homework. Write an equation that can be used to find how much time, in minutes, he has left to work on his science project if he wants to take a 15 -minute snack break. Then solve the equation.

Homework	Time Spent (min)
English	45
Math	28
Science Project	$?$

Go Online You can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. On Saturday and Sunday, Jarrod went running and burned a total of 647.5 Calories. He burned 320 of those Calories on Saturday. Write an addition equation that could be used to find the number of Calories Jarrod burned on Sunday. (Example 1)
2. A piece of material measures 38.25 inches. Courtney cuts the piece of material into two pieces. One piece measures 19.5 inches. Write an addition equation that could be used to find the length of the other piece of material. (Example 1)
3. Maggie and her sister bought a gift for their mother that cost $\$ 54.75$. Maggie contributed $\$ 26$ to the cost of the gift. Write an addition equation that could be used to find how much money Maggie's sister contributed to the gift. (Example 1)
4. On a two-day car trip, the Roberts family drove a total of 854.25 miles. On Day 1, the family drove 497.75 of those miles. Write an addition equation that could be used to find how many miles the Roberts family drove on Day 2 of their trip. (Example 1)

Solve each equation. Check your solution. (Examples 2 and 3)
5. $9=3+a \quad 6.5+x=10$
7. $3 \frac{1}{4}+z=6 \frac{3}{4}$
8. $9 \frac{1}{2}=b+2 \frac{1}{4}$

Test Practice
10. Equation Editor Solve $x+5.15=23.85$.

Apply

11. Jeremiah has $\$ 35$ to spend on items for his dog at the pet store. The table shows the cost of the items. He bought a collar, two toys, two biscuits, and a ball. Write an addition equation that can be used to determine how much more money Jeremiah still has to spend. Then solve the equation.

Item	Cost (\$)
Ball	3.45
Biscuit	1.15
Bone	2.50
Collar	8.99
Toy	5.75

12. Jasmine has $\$ 30$ to spend on ice cream for a party. The table shows the cost of each size of ice cream. She bought five quarts and one gallon. Write an addition equation that can be used to determine how much more money Jasmine still has to spend. Then solve the equation.

Ice Cream Size	Cost (\$)
Gallon	6.99
Pint	1.59
Quart	3.35

13. Reason Abstractly Suppose $a+b=20$ and the value of a is increased by 1 . If the sum of a and b remains the same, what must happen to the value of b ?
14. Persevere with Problems In the equation $m+n=12$, the value for m is a whole number greater than 5 but less than 9 . Determine the possible solutions for n.
15. (13) Find the Error A student is solving the equation $x+9=14$. Find the student's mistake and correct it.

$$
\begin{aligned}
x+9 & =14 \\
+9 & =+9 \\
\hline x \quad & =23
\end{aligned}
$$

16. Create Write and solve a real-world problem that can be solved with a one-step addition equation.

One-Step Subtraction Equations

I Can... write and solve subtraction equations for real-world and mathematical problems by using the Addition Property of Equality.

What Vocabulary
 Will You Learn?
 Addition Property of Equality

Explore Use Bar Diagrams to Write Subtraction Equations

Online Activity Y ou will use a model to explore how to write one-step subtraction equations to model real-world problems.

Learn Write Subtraction Equations

You can write equations to represent real-world problems involving subtraction. The table below shows the steps for writing an equation to represent a real-world problem.

Words

Describe the mathematics of the problem. Use only the most important words in the problem.

Variable
Define a variable to represent the unknown quantity.
Equation
Translate the words into an algebraic equation.

What key words in the problem indicate subtraction?

Talk About It!
What is the unknown in this problem?

Talk About It!
The equation can be
$a-52=25$ or
$a-25=52$. Can you
write any addition equations that can represent this situation? Explain.

Go Online Watch the animation to see how to write a subtraction equation to represent the following real-world problem.

Caroline gave Everly 8 beads and was left with 37 beads. Write a subtraction equation that can be used to determine the total number of beads Caroline had originally.

Words

Describe the mathematics of the problem.
The total number of beads minus the number of beads given away equals the number remaining.

Variable

Define the variable.
Let t represent the total number of beads.
Equation
Write an equation.

$$
t-8=37
$$

Θ Example 1 Write Subtraction Equations

The oldest person to travel in space was John Glenn. The youngest person to fly in space was only 25 years old. At 25 years old, this is 52 years less than John Glenn's age.

Write a subtraction equation that can be used to find John Glenn's age when he traveled in space.

(3) Go Online Watch the animation.
Words
Describe the mathematics of the problem.
52 years less than John Glenn's age is the youngest
person's age.
Variable
Define the variable.
Let a represent the age of John Glenn.
Equation

So, the equation $a-52=25$ can be used to find John Glenn's age.

Check

An e-Book costs $\$ 14.95$. This is $\$ 7.55$ less than the cost of the hardback version of the same book. Write a subtraction equation that can be used to find the cost of the hardback book.

Go Online Y ou can complete an Extra Example online.

Learn Solve Subtraction Equations

You can use substitution, models, or properties of mathematics to solve subtraction equations.

0
Go Online Watch the video to learn how to solve one-step subtraction equations using a bar diagram.

The video demonstrates how to find the value of x in the equation $x-15=11$.

Draw a bar to represent the total. The total length of the bar represents the original amount, x. Divide the bar into two sections to show the known values, 15 and 11.

Because x represents the length of the entire bar, add 15 and 11 to find the value of x.

So, $x=26$.

To solve a subtraction equation, use the inverse operation, which is addition. When you solve an equation by adding the same number to each side of the equation, you are using the Addition Property of Equality.

Words

If you add the same number to each side of an equation, the two sides remain equal.

Examples

If $10=10$, then
$10+3=10+3$.
If $n-6=7$, then
$n-6+6=7+6$.
Talk About It!
Compare and contrast solving one-step addition equations and solving one-step subtraction equations.

Example 2 Solve Subtraction Equations

Solve $32=x-7$. Check your solution.

$$
\begin{array}{rlrl}
32 & =x-7 \\
+7 & =+7 \\
39 & =x & & \text { Write the equation. } \\
& & \text { Addition Property of Equality }
\end{array}
$$

So, the solution of the equation is \qquad
Check the solution.
$32=x-7 \quad$ Write the equation.
$32 \stackrel{?}{=} 39-7$
Replace x with 39 .
$32=32$
The sentence is true.

Check

Solve 2,019 $=x-731$ for x.

Example 3 Solve Subtraction Equations

Solve $m-13 \frac{2}{3}=2 \frac{1}{6}$.

$$
\begin{aligned}
m-13 \frac{2}{3}=2 \frac{1}{6} & \text { Write the equation. } \\
m-13 \frac{4}{6}=2 \frac{1}{6} & \text { Rewrite with like denominators. } \\
+13 \frac{4}{6}+13 \frac{4}{6} & \text { Addition Property of Equality } \\
\hline m=15 \frac{5}{6} &
\end{aligned}
$$

So, the solution of the equation is \qquad $-$

Check

Solve $p-\frac{3}{4}=4 \frac{2}{5}$ for p.
(5) Go Online Y ou can complete an Extra Example online.

354 Module 6 • Equations and Inequalities

Tyson had \$302.87 in his savings account after he withdrew money to go shopping. He spent the amounts shown, and he had $\$ 18.25$ remaining. Use an equation to find

Item	Total Spent (\$)
Clothes	95.21
Gifts	42.79
Soccer ball	23.75

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Nina used $12 \frac{1}{3}$ yards of ribbon to make hair bows and 5 yards of ribbon to wrap gifts. She has $17 \frac{2}{3}$ yards of ribbon left. Use a subtraction equation to find how many yards of ribbon she had to start.

Go Online You can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. On Monday, Homeroom 104 turned in 64 canned goods. This is 17 less than the number of canned goods turned in by Homeroom 106. Write a subtraction equation that could be used to find the number of canned goods turned in by Homeroom 106 on Monday. (Example 1)
2. To make a cake, Rose needed $1 \frac{1}{2}$ cups of sugar. This is $\frac{1}{4}$ cups less than the amount of flour she needed for the cake. Write a subtraction equation that could be used to find the amount of flour she needed for the cake. (Example 1)
3. Izan's youngest relative is 5 years old. This is 79 years less than the age of his oldest relative. Write a subtraction equation that could be used to find the age of his oldest relative. (Example 1)
4. On Sunday, Jax biked 10.25 miles. This is 3.5 fewer miles than the number of miles he biked on Saturday. Write a subtraction equation that could be used to find the number of miles Jax biked on Saturday. (Example 1)

Solve each equation. Check your solution. (Examples 2 and 3)
5. $24=x-5$
6. $z-7=19$
7. $z-9 \frac{1}{3}+=1 \frac{5}{9}$
8. $5 \frac{1}{2}=b-12 \frac{1}{4}$

Test Practice

10. Equation Editor Solve $x-7.49=87.3$.

11. After spending money for a golf outing, Gus had $\$ 51$. . 2 remaining in his checking account. The table shows how much money he spent on different items to participate in the outing. Use an equation to find how much money Gus originally had in his checking account.
12. Robin made two batches of every item shown in the table. At the end of the day, she had $\frac{1}{4}$ cups of flour left. Use an equation to find how much flour Robin originally had on Saturday.

Item	Cost (\$)
Entry Fee	94.50
Golf Shoes	44.25
Gloves	11.25

13. Reason Abstractly During a test flight, Jeri's rocket reached a height of 18 yards above the ground. This was 7 yards less than the height that Devon's rocket reached. Did Devon's rocket reach a height greater than 23 yards? Explain.
14. Multiple Representations The bar diagram represents a subtraction equation.

a. Words Write a real-world situation for the bar diagram.
b. Algebra Write a subtraction equation for the bar diagram.
c. Numbers Solve the equation from part b.
15. Find the Error A student is solving the equation $x-3.2=5.5$. Find the student's mistake and correct it.
$x-3.2=5.5$
$\begin{array}{cl}-3.2 & -3.2 \\ x & =2.3\end{array}$
16. Create Write and solve a real-world problem involving decimals that can be solved with a one-step subtraction equation.

One-Step Multiplication Equations

I Can... write and solve multiplication equations for real-world and mathematical problems by using the Division Property of Equality.

Explore Use Bar Diagrams to Write Multiplication Equations

Online Activity Y ou will use a model to explore how to write one-step multiplication equations to model real-world problems.

Learn Write Multiplication Equations

You can write equations to represent real-world problems involving multiplication. The table below shows the steps for writing an equation to represent a real-world problem.

Words

Describe the mathematics of the problem. Use only the most important words in the problem.

Variable
Define a variable to represent the unknown quantity.
Equation
Translate the words into an algebraic equation.

What Vocabulary
Will You Learn?
Division Property of Equality

Talk About It!
What key words in the problem indicate multiplication?

Think About It! How do you know this equation uses multiplication?

Talk About It!
The equation can also be written as $186.25 f=745$. Does removing the multiplication symbol make it easier or more difficult to understand? Explain your reasoning.

Kosumi is saving an equal amount each week for 4 weeks to buy a video game for $\$ 55$. Write a multiplication equation that can be used to determine the amount she is saving each week.

Words

Describe the mathematics of the problem.
The number of weeks times the amount saved each week equals the total amount saved.

Variable

Define the variable.
Let a represent the amount saved each week.
Equation
Write an equation.

$$
4 a=55
$$

Go Online Watch the animation to see how to write a multiplication equation to represent the following real-world problem.

$@$ Example 1 Write Multiplication Equations

Vincent and some friends shared the cost of a season ticket package for the local football team. The package cost $\$ 745$ and each person contributed \$186.25.

Write a multiplication equation that can be used to find how many friends contributed to the ticket purchase.

Words

Describe the mathematics of the problem.
The number of friends times the amount each person paid equals the total cost.

Variable

Define the variable.
Let f represent the number of friends who contributed.

Equation

Write an equation.

So, the equation $f \cdot 186.25=745$ can be used to find the number of friends that contributed. This equation can also be written as $186.25 f=745$.

Check

A jewelry store is selling a set of 4 pairs of earrings for $\$ 58.85$ including tax. Neva and three of her friends want to buy the set so each could have one pair of earrings. Write a multiplication equation that could be used to find how much each person should pay.

Go Online You can complete an Extra Example online.

Learn Solve Multiplication Equations

You can use substitution, models, or properties of mathematics to solve multiplication equations.

Go Online Watch the video to learn how to solve one-step multiplication equations using algebra tiles.

The video demonstrates how to find the value of x for $4 x=12$.
To model the equation, place four x-tiles on the left side of the mat to represent $4 x$. Place twelve 1 -tiles on the right side of the mat to represent 12.

Arrange the tiles into equal groups on each side of the mat. This will allow you to group the tiles into 4 equal groups to find the value of x.

For each x-tile, there are three 1 -tiles, so $x=3$.

Talk About It!
Why is the Division Property of Equality used when solving a multiplication equation?

To solve a multiplication equation, use the inverse operation, which is division. When you solve a multiplication equation by dividing each side of the equation by the same nonzero number, you are using the Division Property of Equality.

Words

If you divide each side of an equation by the same nonzero number, the two sides remain equal.

Examples

If $9=9$, then
$9 \div 3=9 \div 3$.
If $4 x=8$, then
$4 x \div 4=8 \div 4$.

Example 2 Solve Multiplication Equations

Solve $2 x=10$. Check your solution.

Method 1 Use a model.
Step 1 Place two x-tiles on the left side of the mat to represent $2 x$ and ten 1 -tiles on the right side of the mat to represent 10.

Step 2 Group the 1-tiles on the right side into two equal groups because there are two x-tiles on the left side.

Because there are five 1 -tiles for every x-tile, the value of x is 5 .

$$
x=\square
$$

Method 2 Use the Division Property of Equality.

$2 x=10$	Write the equation.
$2 x=10$	Division Property of Equality
$2=2$	Simplify.

So, the solution of the equation is 5 .

Check the solution.

$2 x$	$=10$		Write the equation.
$2(5)$	$\stackrel{?}{=} 10$		Replace x with 5.
10	$=10$		The sentence is true.

Check

Solve $84=7 x$.

Go Online You can complete an Extra Example online.

Pause and Reflect

You can also use the bar diagram shown to represent and solve the equation $2 x=10$.

Compare and contrast each of these methods: algebra tiles, properties of equality, and bar diagrams.

Think About It!
By what number will you need to divide each side of the equation to undo multiplying by $\frac{2}{3}$?

R Talk About It!
Why did you need to multiply each side of the equation by $\frac{3}{2}$, even though you used the Division Property of Equality?

Example 3 Solve Multiplication Equations

Solve $\frac{2}{3} m=\frac{5}{8}$. Check your solution.

$$
\begin{array}{ll}
2 \\
3 & =5 \\
\frac{2}{3} m & \frac{\frac{5}{8}}{\frac{2}{3}}=\frac{\text { Write the equation. }}{\frac{2}{3}}
\end{array}
$$

$\frac{2}{3}\left(-\frac{3}{2}\right) m=\frac{5}{8}\left(\frac{3}{2}\right) \quad$ Multiply by the reciprocal.

$$
m=\frac{15}{16}
$$

So, the solution of the equation is \qquad

Check the solution.

$$
\begin{array}{rlrl}
\frac{2}{3} m & =\frac{5}{8} & & \text { Write the equation. } \\
\frac{2}{3}\left(\frac{15}{16}\right) & \stackrel{?}{=} \frac{5}{8} & & \text { Replace } m \text { with } \frac{15}{16} . \\
\frac{30}{48} & ? & \frac{5}{8} & \\
\frac{5}{8} & =\frac{5}{8} & \text { Multiply. } \\
& & \text { Simplify. The sentence is true. }
\end{array}
$$

Check

Solve $\frac{4}{5} k=\frac{1}{3}$ for k.

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you struggle with any Examples about solving multiplication equations? How do you feel when you struggle with math concepts? What steps can you take to understand those concepts?

Q Apply Nutrition

The nutrition information for two different bottles of iced tea is shown. Alicia wants to compare the grams of sugar in a single serving for each brand. Which brand has more sugar per serving? How much more?

Aunt Maggie's Iced Tea (3 servings)		Southern Goodness Sweet Tea (4 servings)	
Calories	120	Calories	125
Sodium (mg)	75	Sodium (mg)	82
Sugar (g)	63	Sugar (g)	74

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(2. Write About It! Write an argument that can be used to defend your solution.

Check

The nutrition information for two different bags of chips is shown. Frederick wants to compare the milligrams of sodium per serving in each bag of chips. Which brand has more milligrams of sodium per serving? How much more?

	Northern Grown (9 servings)	Heartland (7 servings)
Calories	1,440	1,250
Sodium	$1,530 \mathrm{mg}$	$1,211 \mathrm{mg}$
Sugar	9 g	5 g

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Maribel and some friends went to an adventure park. The total cost of their tickets was $\$ 374$ and each person paid $\$ 46.75$. Write a multiplication equation that can be used to find how many people bought tickets to the adventure park. (Example 1)
2. The distance around a lake is 2.6 miles. On Saturday, Doug biked a total of 18.2 miles around the lake. Write a multiplication equation that can be used to find how many times Doug biked around the lake.
(Example 1)
3. It takes Samuel $\frac{1}{5}$ hour to walk a mile. Yesterday, Samuel walked for $\frac{1}{2}$ hours. Write a multiplication equation that can be used to find the number of miles Samuel walked. (Example 1)
4. An express delivery company charges $\$ 3.25$ per pound to mail a package. Georgia paid $\$ 9.75$ to mail a package. Write a multiplication equation that can be used to find the weight of the package in pounds. (Example 1)

Solve each equation. Check your solution. (Examples 2 and 3)
5. $12=6 x$
7. $\frac{3}{4} z=\frac{2}{3}$
6. $3 z=15$
8. $\frac{1}{2}=\frac{5}{8} w$

Test Practice
10. Equation Editor Solve $3.9 x=16.068$.

Apply

11. Mira is comparing two different types of popcorn. The table shows the nutritional information. She wants to compare the number of Calories per cup for each type of popcorn. Which type has more Calories per cup? How many more?

Light Popcorn $3 \frac{1}{2}$ cups	Caramel Popcorn $2 \frac{1}{2}$ cups
Calories: 105	Calories: 170
Carbohydrates: 21 g	Carbohydrates: 15 g
Fat: 0 g	Fat: 11 g

12. The table shows the nutritional information for two different brands of apple juice. Marcus wants to compare the number of carbohydrates in a single serving of each brand. Which brand has more carbohydrates per serving? How many more?

Brand A (4 servings)	Brand B (3 servings)
Calories: 480	Calories: 360
Carbohydrates: 120 g	Carbohydrates: 87 g
Sugars: 120 g	Sugar: 78 g

13. Reason Abstractly Earline needs to save $\$ 367.50$ for her summer vacation. She plans on saving $\$ 52.50$ per week. In 6 weeks, will she have enough money? Explain.
14. Persevere with Problems Do the equations $\frac{1}{3}=3 x$ and $\frac{1}{3} \div x=3$ have the same solution? Explain why or why not.
15. Find the Error A student is solving the equation $3 x=9$. Find the student's mistake and correct it.

$$
\begin{aligned}
3 x & =9 \\
3 \cdot 3 x & =9 \cdot 3 \\
x & =27
\end{aligned}
$$

16. Create Write and solve a real-world problem involving decimals that can be solved with a one-step multiplication equation.

One-Step Division Equations

I Can... write and solve division equations for real-world and mathematical problems by using the Multiplication Property of Equality.

Explore Use Bar Diagrams to Write Division Equations

WOnline Activity Y ou will use a model to explore how to write one-step division equations to model real-world problems.

Learn Write Division Equations

You can write equations to represent real-world problems involving division. The table below shows the steps for writing an equation to represent a real-world problem.

Words

Describe the mathematics of the problem. Use only the most important words in the problem.

Variables
Define a variable to represent the unknown quantity.

Equation

Translate the words into an algebraic equation.

What Vocabulary
Will You Learn?
Multiplication Property of Equality

Go Online Watch the animation to see how to write a division equation to represent the following real-world problem.

Cyrus, Breyon, and Michael are sharing a pack of stickers. Each student gets 9 stickers. Write a division equation that can be used to determine the total number of stickers in the pack.

Words

Describe the mathematics of the problem.
The total number of stickers divided by the number of students equals the number of stickers each student receives.

Variable

Define the variable.
Let s represent the total number of stickers.
Equation
Write an equation.

$$
s \div 3=9
$$

Think About It!
How do you know that you will use division when you write the equation?

Example 1 Write Division Equations

Benji rode his bike from Pittsburgh to Cleveland over the course of a three-day weekend. His average distance was 48.5 miles each day.

What was the total distance he rode?

Words

Describe the mathematics of the problem.
The total distance divided by 3 equals 48.5 miles.

Variable

Define the variable.
Let b represent the total distance he rode.
Equation
Write an equation.

$$
\square \div \square=\square
$$

So, the equation $b \div 3=48.5$ can be used to find the total distance Benji rode.

Check

Sophia has $\$ 16.50$ to spend on party favors. She wants to spend $\$ 2.75$ per person. Write a multiplication equation that can be used to find the number of people Sophia can have at the party.

Go Online You can complete an Extra Example online.

Learn Solve Division Equations

You can use substitution, models, or properties of mathematics to solve division equations.
(3) Go Online Watch the video to learn how to solve one-step division equations using bar diagrams.

The video demonstrates how to find the value of x in the equation $\frac{x}{4}=6$.

Draw a bar to represent the total. The total length of the bar represents the original amount, x. Divide the bar into four sections to show division by 4 . Then work backward to solve the equation.

Because x represents the entire length of the bar, and there are four equal sections of 6 , multiply 6 by 4 to find the value of x. So, $x=24$.

To solve a division equation, use the inverse operation, multiplication. When you solve an equation by multiplying each side of the equation by the same number, you are using the Multiplication Property of Equality.

Words	Examples
If you multiply each side of	If $6=6$, then
an equation by the same	$6 \times 5=6 \times 5$.
number, the two sides	
If $x \div 3=4$, then	
remain equal.	$x \div 3 \times 3=4 \times 3$.

Think About It!
What operation is represented in the expression $\frac{x}{9}$?

Talk About It!
The equation $\frac{x}{9}=13$ can also be written as $\frac{1}{9} x=13$. What property of equality can you use to solve this equation? Explain your reasoning.

Example 2 Solve Division Equations

Solve $\frac{X}{9}=13$. Check your solution.

$$
\begin{aligned}
\frac{x}{9} & =13 & & \text { Write the equation. } \\
\frac{x}{9}(9) & =13(9) & & \text { Multiplication Property of Equality } \\
x & =117 & & \text { Simplify. }
\end{aligned}
$$

So, the solution of the equation is \qquad
Check the solution.
$\frac{x}{9}=13 \quad$ Write the equation.
$\frac{117}{9} \stackrel{?}{=} 13 \quad$ Replace x with 117.
$13=13 \quad$ The sentence is true.

Check

Solve $9=\frac{x}{17}$ for x.

Example 3 Solve Division Equations

Solve $\frac{c}{3}=\frac{2}{5}$.

$$
\begin{aligned}
\frac{c}{3} & =\frac{2}{5} & & \text { Write the equation. } \\
\frac{c}{3}(3) & =\frac{2}{5}(3) & & \text { Multiplication Property of Equality } \\
c & =\frac{6}{5} \text { or } 1 \frac{1}{5} & & \text { Simplify. }
\end{aligned}
$$

So, the solution of the equation is \qquad .

Check

Solve $\frac{k}{4}=4 \frac{2}{3}$ for k.

© Apply Catering

Dario is catering a party and serves 5.5 -ounce servings of chicken to twelve guests, and 5.25 -ounce servings of fish to nine guests. Did Dario serve more total ounces of chicken or fish? How much more?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(Write About It! Write an argument that can be used to defend your solution.

Check

Marcel is purchasing boards to build a bookcase. He will use three 4.5 -foot boards of pine and four 3.25 -foot boards of white oak. Did Marcel use more pine or white oak to build the bookcase? How much more?

Go Online You can complete an Extra Example online.

Pause and Reflect

How do you feel when you are asked during class to answer a question or to explain a solution?

374 Module $6 \cdot$ Equations and Inequalities

Practice

1. Jenny exercised 6 days this week. She averaged burning 284.5 Calories each day. Write a division equation that could be used to find the total number of Calories she burned this week. (Example 1)
2. A box of Mason's cereal contains 479.4 grams of cereal. Mason eats 28.2 grams of cereal per serving. Write a division equation that could be used to find the number of servings of cereal Mason can eat from one box of cereal. (Example 1)
3. On a 3-hour bike ride, Rod averaged 5.25 miles per hour. Write a division equation that could be used to find the total distance Rod biked. (Example 1)
4. Rowan bought a bag of jelly beans that contained 54 ounces of jelly beans. She divided the jelly beans into bags that contained 6.75 ounces each. Write a division equation that could be used to find the number of bags she made. (Example 1)

Solve each equation. Check your solution. (Examples 2 and 3)
5. $6=\frac{j}{8}$
6. $\frac{k}{7}=7$
7. $\frac{z}{4}=\frac{2}{3}$
8. $\frac{1}{2}=\frac{w}{8}$

Test Practice

9. $5.31=\frac{p}{9.2}$
10. Equation Editor Solve $\frac{x}{1.3}=1.94$.

11. Each month the student council sells snack bags. The table shows the number of ounces in each bag. The first month, the student council sold 50 bags of cheese crackers and 65 bags of pretzels.
Cheese Crackers 2.25 ounces

Pretzels 3.5 ounces How many total ounces of each snack did they sell? What is the difference in the total number of ounces?
12. Jason bought two different types of boards to make picture frames. He bought a red cedar board and will cut it into eight 10.25 -inch pieces. He also bought a tiger maple board that he will cut into sixteen 10.5-inch pieces. Determine the difference between the boards' total lengths.
13. Reason Abstractly Shawna noticed that the distance from her house to the ocean, which is 40 miles, was one fifth the distance from her house to the mountains. What is the distance from her house to the mountains? Explain how you solved.
15. Justify Conclusions A model car is $\frac{1}{24}$ the size of the actual car. If a model car is 7.75 inches long, how long is the actual car? Justify your answer.
14. 717 Find the Error A student is solving the equation $\frac{x}{3}=6$. Find the student's mistake and correct it.

$$
\begin{aligned}
\frac{x}{3} & =6 \\
\frac{x}{3} \div 3 & =6 \div 3 \\
x & =2
\end{aligned}
$$

16. Create Write and solve a real-world problem that can be solved with a one-step division equation.

Inequalities

I Can... understand how inequalities are similar to and different from equations, and graph the solution of an inequality on a number line.

Explore Inequalities

Wonline Activity Y ou will use Web Sketchpad to explore inequalities using a balance and shapes that represent unknown values.

Learn Inequalities

An inequality is a mathematical sentence that compares quantities that may or may not be equal. The table shows the four inequality symbols, $>$ (greater than), $<$ (less than), \geq (greater than or equal to), and \leq (less than or equal to). A solution of an inequality is a value of the variable that makes the inequality a true statement.

```
What Vocabulary Will You Learn? inequality
```

a
Ratk About It!
Tampare and contrast
an equation and an
inequality.

\qquad real-world problem.

Words
Describe the mathematics of the problem. Use only the most important words. Identify key words.

Variables

Define a variable to represent the unknown quantity.
Inequality
Translate the words into an algebraic inequality.
To write an inequality to represent a real-world problem, look for key words, such as at least, at most, no more than, no less than, less than, or greater than.

Go Online Watch the animation to see how to write an inequality for the following scenario.

A person must be at least 18 years old to vote. Write an inequality to represent the possible ages of a voter.

Words

Describe the mathematics of the problem.
The age of a voter is greater than or equal to 18 years.

Variable

Define the variable.
Let a represent the age of a voter.
Inequality
Write an inequality.

$$
a \geq 18
$$

Pause and Reflect

Compare and contrast the equation $a=18$ and the inequality $a \geq 18$. Why does the inequality represent the voter's age scenario and not the equation? Describe a scenario for which the equation might be the better representation.

378 Module $6 \cdot$ Equations and Inequalities

Example 1 Write Inequalities

In some states, you must be at least 16 years old to have a driver's license.

Write an inequality to represent the age at which you can have a driver's license.

Words

Describe the mathematics of the problem.
In order to have a valid driver's license, your age must be at least 16.

Variable

Define the variable.
Let a represent the age to have a license.

> Inequality

Write an inequality.

$$
a \geq 16
$$

So, the inequality $a \geq 16$ represents the situation.

Check

A certain hotel only permits dogs that weigh less than 50 pounds to stay with hotel guests. Write an inequality that can be used to represent the weight w of dogs that are permitted to stay at the hotel.
(3) Go Online You can complete an Extra Example online.

Pause and Reflect

Refer to the Example and Check. Why do both of these situations represent inequalities and not equations? Explain your reasoning.

Think About It!

What are the key words that will help you determine which inequality symbol to use?

Talk About It!
Explain why the inequality is $a \geq 16$ and not $a>16$.

Learn Graph Inequalities

Because an inequality like $x>5$ or $y \leq 100$ has infinitely many solutions, it is impossible to list all of them. So, inequalities can be graphed on a number line. A number line graph helps you to visualize all of the values that make the inequality true.

When you graph an inequality on a number line, place a dot at the value shown in the inequality. An open dot means the number is not included ($<$ or $>$), and a closed dot means the number is included (\leq or \geq). Then draw an arrow in the correct direction to include all of the solutions.

Talk About It!
Why do you think an open dot indicates the number is not a solution?
(3) Go Online Watch the video to learn more about graphing inequalities on a number line.

The video demonstrates how to graph the inequalities $x>3, x<-1$, $x \leq 2$, and $x \geq-7$.

Graph the inequality $x>3$.
Place an open dot at 3 to indicate that 3 is not a solution.

Draw an arrow to the right of 3 to indicate that any number greater than 3 is a solution. For example, 3.1, 3.5, 4, 4.8, and 6 are all solutions to the inequality, There are, in fact, an infinite number of solutions.

Graph the inequality $x<-1$.

Place an open dot at -1 to indicate that -1 is not a solution.

Draw an arrow to the left of -1 to indicate that any number less than -1 is a solution. For example, $-1.01,-1.9,-3$, and -3.4 are all solutions to the inequality. As with $x>3$, there are an infinite number of solutions to the inequality $x<-1$.

Graph the inequality $x \leq 2$.

Place a closed dot at 2 to indicate that 2 is a solution.

Draw an arrow to the left of 2 to indicate that any number less than 2 is also a solution.

Graph the inequality $x \geq-7$.

Place a closed dot at -7 to indicate that -7 is a solution.

Draw an arrow to the right of -7 to indicate that any number greater than -7 is also a solution.

Example 2 Graph Inequalities

Graph the inequality $x<-5.75$.

Place an open dot at -5.75 . Draw an arrow to the left of -5.75 . The values that lie on the line make the inequality true.

Check

Graph the inequality $x>1 \frac{2}{5}$.

3 Go Online Y ou can complete an Extra Example online.

Talk About It!
Why do you think a closed dot indicates the number is a solution?

Think About It!
What does the symbol < tell you about the graph?

Talk About It!
How can you check that your graph is correct?

Think About It!
What does the symbol \geq tell you about the graph?

Talk About It!
How can you check that your graph is correct?

Example 3 Graph Inequalities

Graph the inequality $x \geq \frac{\mathbf{2}}{5}$.

Check

Graph the inequality $x \leq-0.75$.

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you make any errors when completing the Check exercise? What can you do to make sure you don't repeat that error in the future?

Learn Find Solutions of an Inequality

When you replace a variable with a value that results in a true sentence, you solve the inequality. That value for the variable is a solution of the inequality. Some inequalities have infinitely many solutions. For example, any rational number greater than 4 will make the inequality $x>4$ true.

Use substitution to determine if the whole numbers $5,6,7,8$, and 9 are solutions of the inequality $2+x>9$.

Value of x	$2+x>9$	Is the inequality true?
5	$2+5>9$	
$7>9$		
6	$2+6>9$	
$7>9$		
7	$2+7>9$	
8	$2+8>9$	
8	$10>9$	
9	$2+9>9$	
	$11>9$	

The whole numbers \qquad and \qquad are solutions of the inequality.

Example 4 Find Solutions of an Inequality

Which of the following are solutions of the inequality

 $a+4 \leq 11: 6,7,8$?Complete the table to determine whether or not each number is a solution of the inequality.

Value of \boldsymbol{a}	$\boldsymbol{a}+4 \leq 11$	Is the inequality true?
6	$6+4 \leq 11$	
7	£ 11	
$7+4 \leq 11$		
8	$8+4 \leq 11$	
	$12 \leq 11$	

So, of the given values, the solutions are \qquad and \qquad .

Math History

 MinuteThe symbols < and > were first introduced in 1631 in a mathematics text. The author of the text was English mathematician Thomas Harriot (1560 - 1621). While Harriot initially used triangular symbols to represent inequality, his editor changed them to $<$ and $>$.

Check

Which of the following are solutions of the inequality $c+28>72: 44,45,46$?

B Go Online Y ou can complete an Extra Example online.

Example 5 Find Solutions of an Inequality

Which of the following are solutions of the inequality $16 b>5.6: \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$?

Complete the table to determine if the inequality is true for each value of b.

| Value of b | $16 b>5.6$ Is the inequality true?
 $\frac{1}{2}$ $16 \cdot \frac{1}{2}>5.6$
 $8>5.6$
 $\frac{1}{3}$ $16 \cdot \frac{1}{3}>5.6$
 $5 \frac{1}{3}>5.6$
 $\frac{1}{4}$ $16 \cdot \frac{1}{4}>5.6$
 $4>5.6$ |
| :---: | ---: | ---: |

So, of the given values, the solution is \qquad .

Check

Which of the following are solutions of the inequality $11.75 b \leq 24.675: 2.1,2.3,2.5$?

Go Online You can complete an Extra Example online.

(9) Example 6 Find Solutions of an Inequality

Raven has $\$ 60$ to spend on matching T-shirts that cost $\$ 8.40$ each for her running team. The inequality $60 \geq 8.40 t$ represents the number of T -shirts t she could buy.

If there are 9 teammates on the team, how many could receive a T-shirt?

To find a solution of the inequality, substitute varying values for t. Try 9 first because that represents the number of teammates. If 9 is a solution of the inequality, then every single one of the 9 members could receive a T-shirt.

Substitute 9	Substitute 8	Substitute 7
$60 \geq 8.40 t$	$60 \geq 8.40 t$	$60 \geq 8.40 t$
$60 \geq 8.40(9)$	$60 \geq 8.40(8)$	$60 \geq 8.40(7)$
$60 \nsupseteq 75.60$	$60 \nsucceq 67.20$	$60 \geq 58.80$

For which values is the inequality true?
So, Raven can purchase no more than \qquad T-shirts. This means that 7 or fewer teammates could receive a T -shirt.

Check

At the end of his vacation, Mr. Otey has $\$ 55$ left to spend at a souvenir shop. He woud like to buy some picture frames that cost $\$ 12.75$ each to display some of his vacation photos. The inequality $12.75 f<55$ represents the number of frames f he can choose to buy. What is the greatest number of frames that he can buy?

Go Online You can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that shows the different inequality symbols and some key words that are used to indicate which symbol should be used when writing inequalities.

Q Apply Earnings

Several friends hope to attend a festival that costs $\$ 62.49$ each to attend. To earn money, they mowed lawns for $\$ 7.50$ per hour. The table shows the number of hours each person worked each day. Who earned enough money to attend the festival? What inequality can you write to represent this situation?

	Friday Saturday (hours) (hours)	
Emir	$8 \frac{1}{2}$	1
Katherine	5	$2 \frac{1}{2}$
Dylan	$6 \frac{1}{2}$	$2 \frac{1}{2}$
Anna	$3 \frac{3}{4}$	$3 \frac{1}{4}$

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About lt! Write an argument that can be used to defend your solution.

Check

Several friends each want to buy a ticket to a football game that costs $\$ 75.99$. To earn money, they worked extra hours at their job where they each earn $\$ 9.10$ per hour. The table shows the number of hours each person worked each day. Who earned enough money to buy a ticket? What inequality can you write to represent this situation?

	Friday (hours)	Saturday (hours)
Aaron	$5 \frac{1}{2}$	2
Cliff	$3 \frac{1}{2}$	6
Missy	$7 \frac{1}{2}$	$2 \frac{1}{2}$
Torrance	$2 \frac{1}{2}$	1

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Compare what you learned today about writing, graphing, and solving inequalities with something similar you learned about writing and solving equations. How are they similar? How are they different?

Practice

1. The minimum deposit for a new checking account is $\$ 75$. Write an inequality to represent the amounts in dollars a that could be deposited in a new checking account. (Example 1)
2. To win a medal in a 5 K race, a runner's time must be less than 22 minutes. Write an inequality to represent the times in minutes m that would win a medal. (Example 1)

Graph each inequality on the number line. (Examples 2 and 3)
3. $b<-1.5$

5. $a>\frac{4}{5}$

7. Which of the following are solutions of the inequality $t+7 \leq 12: 4,5,6$? (Example 4)
9. Which of the following are solutions of the inequality $8 r \geq 1.8: \frac{1}{5}, \frac{1}{4}, \frac{1}{3}$? (Example 5)
11. Jessica has $\$ 32$ to buy movie tickets that cost $\$ 5.25$ each for her and her friends. The inequality $32 \geq 5.25 t$ represents the number of tickets t she could buy. What is the greatest number of tickets Jessica can buy? (Example 6)
4. $d \geq 4.75$

6. $d \leq-2 \frac{1}{4}$

8. Which of the following are solutions of the inequality $h-4>9$: 12, 13, 14? (Example 4)
10. Which of the following are solutions of the inequality $\frac{2.4}{n}<6: 0.25,0.4,0.5$? (Example 5)

Test Practice

12. Multiselect Stanley has $\$ 18$ to spend on packs of trading cards that cost $\$ 1.50$ each. The inequality $18 \geq 1.5 p$ represents the number of packs p he can buy. Identify all the numbers of packs Stanley can buy.

13. Some members of a tennis team want to attend a tennis day camp that costs $\$ 74.50$ each to attend. To earn money, they washed cars for $\$ 8.25$ per hour. The table shows the number of hours each tennis player worked each day. Who earned enough money to attend the tennis day camp? What inequality can you write to represent this situation?

Tennis Player	Saturday (hours)	Sunday (hours)
Betsy	$7 \frac{1}{4}$	$1 \frac{1}{4}$
China	6	$3 \frac{3}{4}$
Danielle	$5 \frac{1}{2}$	3
Maria	$4 \frac{1}{2}$	$4 \frac{3}{4}$

14. Several friends each want to buy new basketball shoes that cost $\$ 59.17$. To earn money, they do yard work for $\$ 9$ an hour. The table shows the number of hours each person did yard work for each day. Who earned enough money to buy the basketball shoes? What inequality can you write to represent this situation?

Friends	Saturday (hours)	Sunday (hours)
Chad	$3 \frac{1}{2}$	$3 \frac{1}{2}$
Jason	4	$2 \frac{3}{4}$
Martin	$3 \frac{1}{2}$	3
Zek	$2 \frac{1}{2}$	$3 \frac{3}{4}$

15. Create Write a real-world sentence that can be represented with an inequality. Then write the inequality that represents the situation.
16. For each inequality, name a whole number that is a possible solution.
a. $18+a>21$
b. $7+r \geq 18$
c. $24-x \leq 19$
17. π Find the Error A student is writing an inequality for the expression a minimum donation of $\$ 25$. Find the student's mistake and correct it.
$d \leq 25$
18. Reason Abstractly A roller coaster at a theme park requires children to be over 48 inches tall to ride it. Jay is 48 inches tall. Can he ride the roller coaster? Explain why or why not.

Foldables Use your Foldable to help review the module.

Rate Yourself! 0 ?

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Reflect on the Module

Use what you learned about equations and inequalities to complete the graphic organizer.

Fssential Question

How are the solutions of equations and inequalities different?

$x-5=13$	$n+4=9$	
$\frac{9}{3}=4$	Explain how to solve each equation. Then solve the equation.	$6 m=42$

What are the similarities between solving an equation and solving an inequality?

What are the differences between the solution of an equation and the solution of an inequality?

Test Practice

1. Multiple Choice Which of the following is a solution of the equation $y+\frac{1}{3}=3 \frac{2}{3}$?
(Lesson 1)
(A) $2 \frac{1}{3}$
(B) $2 \frac{2}{3}$
(C) 3
(D) $3 \frac{1}{3}$
2. Open Response Tonya is using $3 \frac{1}{2}$ inch tiles along the 28 inch ledge of her bathroom counter. Use the guess, check, and revise strategy to solve the equation $3 \frac{1}{2} t=28$ to find t, the number of tiles Tonya will need. Show your work. (Lesson 1)
\square
3. Multiselect Together, Rhonda and Margo saved $\$ 478.50$. If Rhonda saved $\$ 225$ of that total, how much did Margo save? Select the addition equation that could be used to find how much money m Margo saved. Select all that apply. (Lesson 2)$m+478.50=225$$m+225=478.50$$225+478.50=m$$225+m=478.50$$478.50+m=225$

4. Equation Editor (Lesson 2)

A. Solve $625=219+x$ for x.

$$
x=\square
$$

B. Check the solution.

5. Open Response A one-topping pizza costs $\$ 12.99$. This is $\$ 6.50$ less than the cost of a specialty pizza. Write a subtraction equation that could be used to find the cost c of a specialty pizza. (Lesson 3)
6. Equation Editor Solve $1,785=x-414$ for x.
(Lesson 3)
$x=\square$

7. Multiple Choice Solve $\frac{3}{8} d=\frac{5}{24}$ for d.
(Lesson 4)
(A) $d=\frac{5}{64}$
(B) $d=\frac{5}{9}$
(C) $d=\frac{1}{6}$
(D) $d=\frac{3}{4}$
8. Table Item The nutrition information for two different bottles of orange juice is shown. Kylie wants to compare the Calories in a single serving for each brand. (Lesson 4)

	Brand A (3 servings)	Brand B (2 servings)
Calories	150	220
Protein (g)	3	4
Sugar (g)	30	44

A. Find the number of Calories per serving of each brand, then indicate the correct number for each brand in the table.

Calories per Serving	Brand A Brand B	Neither A nor B	
50			
85			
110			

B. Which brand has more Calories per serving? How many more?
9. Open Response Solve $\frac{y}{11}=28$. Show your work. (Lesson 5)

10. Multiple Choice Mr. Wolfe has a box of 144 pencils. If he wants to give 6 pencils to each of his students, which equation can be used to find the number of students s to whom Mr. Wolfe can give pencils? (Lesson 5)
(A) $\frac{144}{s}=6$
(B) $\frac{s}{144}=6$
(C) $144 s=6$
(D) $144(6)=s$
11. Grid Graph $x<\frac{1}{3}$. (Lesson 6)

12. Table Item Use the table to indicate whether 11,12 , or 13 is a solution of the inequality $b+8 \geq 20$. (Lesson 6)

Value of b	Yes	No
11		
12		
13		

13. Multiselect Brandi has $\$ 50$ to spend on matching bracelets that cost $\$ 3.75$ each for her volleyball team. The inequality $50 \geq 3.75 b$, where b is the number of bracelets, represents the situation. If there are 16 teammates, how many will possibly receive a bracelet? (Lesson 6)
$\square 16$ teammates
$\square 15$ teammates14 teammates13 teammates12 teammates

e Essential Question

What are the ways in which a relationship between two variables can be displayed?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it. 3 - know it!	0	0	$3)$	0	0	6
finding dependent variable values in a table						
finding independent variable values in a table						
writing one-step and two-step equations to represent relationships between variables						
graphing relationships from equations						
writing equations from graphs						
representing relationships multiple ways						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about relationships between two variables.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square dependent variable
\square independent variable

Are You Ready?

Study the Quick Review to see if you are ready to start this module. Then complete the Quick Check.

Quick Review

Example 1
Write algebraic expressions.
Write an algebraic expression that represents the phrase 8 less than n. Then evaluate the expression when $n=15$.
$n-8$
Write the expression.
$n-8=15-8$
Replace n with 15.
$=7$
Subtract.

Example 2

Graph points on a coordinate plane.
Graph the point $(-3,5)$ on a coordinate plane.
Start at (0,0). Move 3 units left. Then 5 units up.

Quick Check

1. Jane spent $\$ 17$ less than three times the amount Jake spent. Write an expression to find how much Jane spent if Jake spent x dollars. If Jake spent $\$ 15$, how much did Jane spend?
2. Graph the point $(2,-4)$ on the coordinate plane.

How Did You Do?

Which exercises did you answer correctly in the Quick Check?
Shade those exercise numbers at the right.

Relationships Between Two Variables

I Can... use equations and rules to find missing values of independent and dependent variables in tables.

Explore Relationships Between Two Variables

WOnline Activity You will use Web Sketchpad to explore the relationship between two variables.

Learn Identify Independent and Dependent Variables

In a relationship between two quantities, one quantity is the independent variable and the other quantity is the dependent variable. The independent variable, often called the input, does not depend upon the other quantity. The dependent variable, often called the output, changes in response to the input for the independent variable.

Consider the following situation. At top speed, a cheetah can travel about 103 feet every second. The total distance traveled at top speed t is equal to 103 times the number of seconds s.
independent variable $=$ number of seconds

$$
\text { dependent variable }=\text { total distance }
$$

The total distance is the dependent variable because the cheetah's distance depends on the number of seconds it travels.

Suppose Jaeda earns $\$ 5$ per hour for babysitting. The total amount she earns a is equal to 5 times the hours h that she babysits.

What is the independent variable? \qquad
What is the dependent variable? \qquad

The unit cost is $\$ 0.25$ per game. How is this rate shown in the table? Explain your reasoning.

Learn Find Dependent Variable Values in a T able

Suppose it costs $\$ 0.25$ to play one game at an arcade. You can use a table to show the relationship between the independent variable (input) and the dependent variable (output). In the table, the input value is the number of games played g, and the rule is $0.25 g$. The output is the total cost c. To find the output, replace g with the input, and evaluate the expression.

Input (independent variable)	Rule (relationship between the input and output)	Output (dependent variable)
Number of Games Played, g	$0.25 g$	Total Cost (\$), c
5	$0.25 \cdot 5$	1.25
10	$0.25 \cdot 10$	
15	$0.25 \cdot 15$	

Think About It! How many columns will your table have? What will they be named?

Talk About It!
If Joe chooses a different drink with his breakfast, at a different price, how will it change the rule?

Example 1 Find Dependent Variable Values in a Table

Joe bought an iced coffee for $\$ 2.95$. The total cost of his breakfast c is equal to the cost of his food f plus $\$ 2.95$. The rule is $f+2.95$.

Make a table using the rule to find the total cost of Joe's breakfast if his food costs $\$ 5.50, \$ 7.75$, or $\$ 10.00$.

Step 1 Identify the independent and dependent variables.
The cost of the food f is the independent variable. The total cost of his breakfast c is the dependent variable, because the total cost depends on the cost of Joe's food.

Step 2 Find each output.
Use the rule to complete the table.

Input Cost of Food (\$), \boldsymbol{f}	Rule $f+2.95$	Output Total Cost (\$), c
5.50	$5.50+2.95$	
7.75		
10.00		12.95

So, if his food costs $\$ 5.50$, his total cost is $\$$ \qquad .

If his food costs $\$ 7.75$, his total cost is \$ \qquad If his food costs $\$ 10.00$, his total cost is $\$$

Check

A grocery store charges $\$ 2.50$ per gallon of fruit punch. The total cost c of g gallons of fruit punch is equal to 2.5 times g. The rule is 2.5 g . Make a table using the rule to find the total cost of buying 1,2 , or 3 gallons of fruit punch.

Input Number of Gallons, \boldsymbol{g}	Rule 2.5 g	Output Total Cost (\$), \boldsymbol{c}
1		
2		
3		

Go Online Y ou can complete an Extra Example online.

Learn Find Independent Variable Values in a Table

Suppose it costs $\$ 0.25$ to play one game at an arcade. The total cost of playing any number of games can be represented by the rule $0.25 g$, where g is the number of games played. You can use a table to find the independent variable (input) if you know the dependent variable (output) and the rule.

Note that in the table below, the output values are $\$ 1.75, \$ 3.00$, and $\$ 4.25$. Because the rule is 0.25 g , write and solve an equation to find the input g when the output is $\$ 1.75$.
$0.25 \mathrm{~g}=1.75 \quad$ The input g multiplied by 0.25 equals the output, $\$ 1.75$.
$\frac{0.25 \mathrm{~g}}{0.25}=\frac{1.75}{0.25} \quad$ Divide each side by 0.25 .
$g=7 \quad$ Simplify. The input value is 7.
Repeat this process to complete the table for the other two output values, $\$ 3.00$ and $\$ 4.25$.

Number of Games Played, g	Rule 0.25 g	Output Total Cost (\$), c
7	$0.25 \cdot 7$	1.75
	$0.25 \cdot \square$	3.00
	$0.25 \cdot \square$	4.25

Think About It!
Do you need to find the input values or the output values?

Talk About It!
How is solving this Example related to what you already know about solving equations?

Each small pizza at the local pizza shop costs $\$ 6.75$. The total cost c of p small pizzas is equal to 6.75 times p.

Make a table to find the number of small pizzas purchased if the total cost is $\$ 13.50, \$ 27$, or $\$ 33.75$.

Step 1 Identify the independent and dependent variables.
The number of pizzas p is the input, or independent variable.
The total cost of the pizza c is the output, or dependent variable.
The total cost is 6.75 times p, so the rule is \qquad
Step 2 Find each input.
To find the number of pizzas for each of the total costs given in the table, use the work backward strategy. To undo multiplication by 6.75 , use the inverse operation to divide each output value by 6.75 .

Complete the table.

Input Number of Pizzas, p	Rule $6.75 p$	Output Total Cost (\$), c
		13.50
		27.00
		33.75

Check

Leslie has 48 stickers to give to her friends. The number of stickers s each friend will receive is equal to 48 divided by f, the number of friends. Complete the table to find the number of friends Leslie gave stickers to if each friend receives 12,8 , or 6 stickers.

Input Number of Friends, f	Rule $48 \div f$	Output Number of Stickers, s
		12
		8
		6

Go Online Y ou can complete an Extra Example online.

Q Apply Measurement

Sondra is placing sculptures on a 3-foot-tall base to display in a cabinet in the school entryway. The height including the base b is equal to the height h of the sculpture plus 3 . If the cabinet is 84 inches tall, which sculpture(s) will fit in the cabinet?

Height of Sculpture (ft), h Rule $h+3$ Height with Base $(\mathrm{ft}), b$		
$2 \frac{1}{4}$		
$3 \frac{3}{4}$		
$5 \frac{1}{8}$		

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Talk About It!
Why is it helpful to convert the measurements to the same unit?

Check

Katarina wants to take four friends to an amusement park for her birthday. The total cost c is equal to the admission rate r times 5 . If she can spend no more than $\$ 150$ on admission tickets, which amusement park(s) can they visit?

Amusement Park	Admission Rate (\$), r	Rule, $5 r$	Total Cost (\$), c
A	30		
B	35		
C	40		

Go Online You can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Go Online You can complete your homework online.

1. Sadie ordered a pizza and had it delivered. The delivery fee is $\$ 3.50$. The total cost c is equal to the cost of her pizza p plus $\$ 3.50$. The rule is $p+3.50$. Complete the table using the rule to find the total cost if her pizza costs $\$ 9.75, \$ 12.00$, or $\$ 14.50$.(Example 1)

Input, Cost of Pizza (\$), p	Rule $p+3.50$	Output, Total Cost (\$), c
9.75		
12.00		
14.50		

2. Joshua has a coupon for $\$ 1.50$ off his purchase at the souvenir shop. The total cost c is equal to the cost of his purchase p minus $\$ 1.50$. The rule is $p-1.50$. Complete the table using the rule to find the total cost if his purchase is $\$ 5.67$, $\$ 8.34$, or $\$ 11.97$. (Example 1)

Input, Cost of Purchase (\$), p	Rule $p-1.50$	Output, Total Cost (\$), c
5.67		
8.34		
11.97		

3. Miranda has a coupon for $\$ 0.75$ off any salad at a restaurant. The total cost c is equal to the cost of her salad s minus $\$ 0.75$. The rule is $s-0.75$. Complete the table using the rule to find the total cost if her salad costs $\$ 2.79$, $\$ 3.55$, or $\$ 4.25$. (Example 1)

Input, Cost of Salad (\$), s	Rule $s-0.75$	Output, Total Cost (\$), c
2.79		
3.55		
4.25		

5. Each pie at a bakery costs $\$ 9.50$. The total cost c of p pies is equal to 9.50 times p. Complete the table to find the number of pies purchased if the total cost is $\$ 19.00$, $\$ 28.50$, or $\$ 47.50$. (Example 2)

Input, Number of Pies, p	Rule $9.50 p$	Output, Total Cost (\$), c
		19.00
		28.50
		47.50

4. Avery is buying material by the yard to make bags. The material costs $\$ 4.98$ per yard. The total cost c of y yards is equal to 4.98 times y. Complete the table to find the number of yards Avery purchased if the total cost is $\$ 14.94, \$ 29.88$, or $\$ 44.82$. (Example 2)

Input, Number of Yards, y	Rule $4.98 y$	Output, Total Cost (\$), c
		14.94
		29.88
		44.82

Test Practice

6. Table Item Anthony is buying plants for his garden. Each plant costs $\$ 0.95$. The total cost c of p plants is equal to 0.95 times p. Complete the table to find the number of plants Anthony purchased if the total cost is $\$ 7.60$, $\$ 11.40$, or $\$ 15.20$.

Input, Number of Plants, p	Rule $0.95 p$	Output, Total Cost (\$), c
		7.60
		11.40
		15.20

Apply

7. Mara lives in a state that has no sales tax on apparel. She has a coupon for $\$ 15$ off the price of one pair of shoes. The total cost c of a pair of shoes is equal to the original price of the shoes p minus 15 . If she only has $\$ 60$ to spend on a pair of shoes, which pair(s) could she buy?

Original Price (\$), p	Rule $p-15$	Total Cost (\$), c
65		
73		
79		

8. An empty suitcase weighs 224 ounces. The total weight t of the suitcase is equal to the weight of its contents w plus 224 . To not be charged an additional fee for a flight, the total weight must be no more than 50 pounds. Which suitcase(s) would be charged a fee?
9. 10. Identify Structure Complete the table by finding the input values.

Input, x	Rule, $2 x-2.5$ Output, y	
		7.5
		10.5
		13.5

11. 1.3 Persevere with Problems A concession stand sells soft pretzels for $\$ 2.75$ each and drinks for $\$ 1.50$ each. The equation $c=2.75 p+1.50 d$ can be used to represent the total cost c of p pretzels and d drinks. What is the total cost of 3 pretzels and 4 drinks? Explain how you solved.
12. Reason Inductively A student said that the independent variable for the following situation is the number of days, d. Is the student correct? Explain.

Jess walks 1.5 miles every day for d days. What is the total number of miles she walks?
12. Describe a real-world situation that has an independent variable and a dependent variable. Identify each variable. Relationships Represented in Tables

I Can... use variables, which represent independent and dependent values, to write one-step and two-step equations from real-world situations.

Learn Write One-Step Equations

Luciana earns \$8 per hour walking dogs in her neighborhood. The table shows the relationship between the number of hours h she walks and the total amount d, in dollars, she earns. To write an equation that relates the variables h and d, first determine the rule that describes the relationship.

Input Number of Hours, h	Rule $?$	Output Dollars Earned (\$), \boldsymbol{d}
1		8
2		16
3		24
4		32

The output values increase by the same number, 8 , as the input values increase by 1 . Because repeated addition can be written as multiplication, check each pair of input-output values to determine if the rule $8 h$ accurately describes the relationship.

Input Number of Hours, h	Rule $8 h$	Output Dollars Earned (\$), d
1	$8(1)$	8
2	$8(2)$	16
3	$8(3)$	24
4	$8(4)$	32

So, the rule $8 h$ accurately describes the relationship. Notice that the ratio of each output value to each input value is constant. This further confirms that the multiplication expression $8 h$ is the rule and no other operation is involved.

$$
\frac{\$ 8}{1}=\$ 8 \quad \frac{\$ 16}{2}=\$ 8 \quad \frac{\$ 24}{3}=\$ 8 \quad \frac{\$ 32}{4}=\$ 8
$$

Think About It! How would you begin solving the problem?

Talk About It!
What connections do you see in this relationship that relate to what you already know about unit price? Where can you see the unit price in the table?

Use the rule $8 h$ to write an equation relating the two variables h and d.
Each output value is the product of the
$d=8 h$
constant ratio, 8, and the corresponding input value h.

Example 1 Write One-Step Equations

The table shows the total cost c, in dollars, of buying t souvenir T-shirts.

Write an equation to represent the relationship between c and t.

Step 1 Identify the variables.
The independent variable is

Number of T-shirts, t	Total Cost (\$), c
1	9
2	18
3	27
4	36
5	45

The dependent variable is
Step 2 Determine the rule.
The output values increase by the same number, 9 , as the input values increase by 1 . Because repeated addition can be written as multiplication, check each pair of input-output values to determine if the rule $9 t$ accurately describes the relationship.

Input Number of T-shirts, t	Rule $9 t$	Output Total Cost (\$), c
1	$9(1)$	9
2	$9(2)$	18
3	$9(3)$	27
4	$9(4)$	36
5	$9(5)$	45

So, the rule $9 t$ accurately describes the relationship.
Step 3 Write the equation.
Use the rule $9 t$ to write an equation relating the two variables t and c.

> Each output value is the product of the constant ratio, 9, and the corresponding input value t.
$c=9 t$

So, the equation that represents the total cost c of buying t souvenir T -shirts is \qquad .

Check

The table shows the total cost c of belonging to the gym for m months. Write an equation to represent the relationship between c and m.

Number of Months, m	Total Cost (\$), c
1	24.95
2	49.90
3	74.85
4	99.80
5	124.75

Go Online You can complete an Extra Example online.

Explore Relationships with Rules that Require

 Two Steps

Math History Minute
In 1993, Ellen Ochoa (1958-) became the world's first Hispanic female astronaut. She has flown in space four times and has logged nearly 1,000 hours in orbit. Ochoa's high school calculus teacher inspired her to pursue studies in math and science.

Online Activity You will use Web Sketchpad to explore the relationship between two variables with two-step rules.

Learn Write Two-Step Equations

Sometimes the relationship between two variables cannot be accurately described by a one-step equation. In those cases, check to see if more than one operation is involved. Consider the following scenario.

An online store sells baseball bats. You will pay for each bat that you order, plus a one-time shipping fee. The table shows the relationship between the number of bats ordered and the total cost. Write a two-step equation to represent the total cost c

Number of Bats, b	Total Cost $(\$), c$
1	6
2	8
3	10

Step 1 Look for a pattern.
The output values increase by the same number, 2 , as the input values increase by 1 . The rule includes $2 b$.

Step 2 Determine the rule.

Input, Number of Bats, b	Rule $2 b$	Output, Total Cost $(\$), c$
1	$2(1)$	6
2	$2(2)$	8
3	$2(3)$	10
4	$2(4)$	12
5	$2(5)$	14

> Check each pair of inputoutput values to determine if the rule $2 b$ accurately describes the relationship. The rule $2 b$ does not accurately describe the relationship.

Input, Number of Bats, b	Rule $2 b+4$	Output, Total Cost (), c
1	$2(1)+4$	6
2	$2(2)+4$	8
3	$2(3)+4$	10
4	$2(4)+4$	12
5	$2(5)+4$	14

Step 3 Write the equation.
Use the rule $2 b+4$ to write an equation relating the two variables b and c.
$c=2 b+4$

Example 2 Write Two-Step Equations

The table shows the total number of necklaces Ari has made after a certain number of hours.

Write a two-step equation to represent the total number of necklaces n she will have made after h hours.

Time (hours), h	Number of Necklaces, n
1	5
2	7
3	9
4	11

Step 1 Look for a pattern.
The output values increase by the same number, 2 , as the input values increase by 1 . The rule includes $2 h$.

Step 2 Determine the rule.
Check each pair of input-output values to determine if the rule $2 h$ accurately describes the relationship.

Time (hours), h	Rule $2 h$	Number of Necklaces, n
1	$2(1)$	5
2	$2(2)$	7
3	$2(3)$	9
4	$2(4)$	11

By itself, the rule $2 h$ does not describe the relationship. Check to see if this relationship involves two operations.

Step 3 Write the equation.
Use the rule $2 h+3$ to write an equation relating the two variables h and n.
$n=2 h+3$
So, the equation used to represent the total number of necklaces n
Ari will have made after h hours is \qquad .

Think About It!
Is there repeated addition in the output?

Check

The table shows the total fees f for d days a library book is overdue. Write a two-step equation to represent the total fee for the number of days the book is overdue.

Time (days), d	Total Fee (\$), f
1	0.30
2	0.50
3	0.70
4	0.90

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you struggle more with writing two-step equations as compared to one-step equations? If so, what questions can you ask to better understand the concept? If not, how could you explain the concept to someone who is struggling?

Q Apply Art

Each evening, Autumn and Bennett painted signs for a school campaign. The table shows the total number of signs painted after a certain number of hours. If the pattern continues, how many more signs will Autumn have painted than Bennett after painting for 9 hours?

Hours	Total Signs: Autumn	otal Signs: Bennett
1	6	4
2	9	6
3	12	8
4	15	10

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(2) Write About It! Write an argument that can be used to defend your solution.

Go Online
Watch the animation.

Check

The table shows the total number of miles Lan and Bailey have run after a certain number of days. If the pattern continues, how many more miles will Bailey have run after 6 days than Lan?

Days	Lan	Bailey
1	6	3
2	8	6
3	10	9
4	12	12

Go Online You can complete an Extra Example online.
(1) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Go Online You can complete your homework online.

1. The table shows the total cost c of buying t movie tickets. Write an equation to represent the relationship between c and t.
(Example 1)

Number of Tickets, t	Total Cost $(\$), c$
1	7
2	14
3	21
4	28

3. The table shows the total cost of bowling any number of games and renting bowling shoes. Write a two-step equation to represent the total cost c for bowling g games. (Example 2)

Number of Games, \boldsymbol{g}	Total Cost $(\$), \boldsymbol{c}$
1	6
2	10
3	14
4	18

2. The table shows the total number of pencils p in b boxes. Write an equation to represent the relationship between p and b.
(Example 1)

Number of Boxes, b	Total Number of Pencils, p
1	12
2	24
3	36
4	48

4. The table shows the total cost of renting a canoe based on the number of hours and a one-time rental fee. Write a two-step equation to represent the total cost c of renting a canoe for h hours. (Example 2)

Number of Hours, h	Total Cost $(\$), c$
1	16
2	27
3	38
4	49

Test Practice

5. Open Response The table shows the total cost of belonging to a fitness center based on the number of months and a one-time registration fee. Write a two-step equation to represent the total cost c for belonging to the fitness center for m months.

Number of Months, m	Total Cost $(\$), c$
1	25
2	40
3	55
4	70

Apply

6. On weekends, Peter and Aiden washed cars to raise money for a school trip. The table shows the total number of cars washed, after a certain number of hours. If the pattern continues, how many more cars will Aiden have washed than Peter after 8 hours?

Hours	Cars Washed: Cars Washed: Peter	Aiden Aid
1	5	4
2	7	7
3	9	10
4	11	13

7. Persevere with Problems Write an equation to represent the relationship shown in the table.

Input, x	Output, y
3	4
6	5
9	6
12	7
15	8

9. π Find the Error A student wrote the equation $c=20 h+12$ to represent the relationship shown in the table. Find the student's error and correct it.

Hours, h	1	2	3	4
Cost, c	$\$ 32$	$\$ 44 \$ 56$	$\$ 68$	

8. Reason Abstractly A dance studio charges $\$ 45$ per month, plus a $\$ 30$ registration fee. Willa has $\$ 210$ for dance lessons. How many months can she take lessons? Explain how you solved.
9. Write about a real-world situation that can be represented with a two-step equation. Write the equation and explain the meaning of the variables.

Graphs of Relationships

I Can... graph a relationship represented by an equation and write an equation represented by a graph by identifying and using the independent and dependent variables.

Learn Graph a Relationship from an Equation

You can use an equation that represents the relationship between an independent variable (input) and a dependent variable (output) to graph the relationship on the coordinate plane. The independent variable is represented by the x-coordinate and the dependent variable is represented by the y-coordinate.

Similar to graphing ratio tables, you can make a table of values to represent the equation, use the values to generate a set of ordered pairs, and graph the relationship. Consider the following equation.

$$
y=2 x+500
$$

Make a table of values.

Independent Value, x	Dependent Value, \boldsymbol{y}
0	500
1	502
2	504
3	506

Write the ordered pairs.

Graph the ordered pairs.
Draw a line to connect the points.

A break shows that the there are no values between 0 and 499.

a
QTalk About It!

Think About It!
What is the dependent variable? the independent variable?
\qquad
\square
\square Step 2 Make a table.
Use the equation $a=126 b$ to make a table of values. Place the independent variable in the first column, and the dependent variable in the second column.

Number of Bushels, b	Number of Apples, a
0	
1	
2	

Step 3 Use the values to make a list of ordered pairs.

(b, a)

Step 4 Graph the ordered pairs. Then draw the line.
Because you cannot have partial apples, the line representing the relationship should be dashed.

Check

The equation $c=2 p+3$ represents the total cost c, in dollars, of ordering p pounds of personalized jelly beans from an online store with a $\$ 3$ shipping fee. Graph the relationship on the coordinate plane.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

In Example 1, the graph of the line is dashed because you cannot have part of an apple in a bushel. In the Check for Example 1, the line is solid because you can have part of a pound. Work with a partner to give an example of two real-world relationships that could be represented using a dashed line and two real-world relationships that could be represented using a solid line.

Talk About It!
In this situation, why does it not make sense for the graph of the line to cross the y-axis?

Learn Write an Equation from a Graph

An equation can be used to symbolically describe the graph of a relationship. Use the work backward strategy to make a table of ordered pairs, then write the equation to represent the relationship.
(3) Go Online Watch the animation to learn how to write an equation from the following graph.

The graph shows the relationship between the cost to rent a canoe and the number of hours the canoe is rented.

Step 1 Determine the independent and dependent variables.

The time h in hours is the independent variable, and the cost c in dollars is the dependent variable.

Step 2 Identify the ordered pairs on the graph.

The graph includes the ordered pairs $(1,15),(2,25)$, and $(3,35)$.

Step 3 Make a table.

Time (h), \boldsymbol{h}	Cost (\$), c
1	15
2	25
3	35

Step 4 Write the equation.
The values of the dependent variable c increase by every hour.

After multiplying by 10, you add \qquad to obtain the correct value for c .

So, the equation to find the total cost c after h hours is $c=10 h+5$.

Example 2 Write an Equation from a Graph

Martino constructed the graph that shows the height of his cactus after several years of growth.

Assuming the cactus grows at a constant rate, write an equation from the graph that could be used to find the height h of the cactus after g years.

Step 1 Determine the independent and dependent variables.

The graph shows the relationship between time and the height of the cactus, where time is the \qquad variable and the height is the \qquad variable.

Step 2 Identify the ordered pairs on the graph.
The ordered pairs are $(1,42),(2,44)$, and $(3,46)$.

Step 3 Make a table.

Years of Growth, g	Height (in.), h

Step 4 Write the equation.
The values of the dependent variable h increase by each year.

After multiplying by 2 , you add \qquad to obtain the correct value for h.

Check each pair of values to determine if the rule $2 g+40$ accurately describes the relationship.

So, the equation to find the height of the cactus h after g years of growth is $h=2 g+40$.

Think About It!
What are the ordered pairs you can use to write the equation?

Check

The graph shows the approximate number of inches of rain r that is equivalent to s inches of snow. Write an equation from the graph that could be used to find the total inches of snow equivalent to any number of inches of rain.

Rainfall (in.)
(3) Go Online Y ou can complete an Extra Example online.
(1) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. The equation $p=144 b$ represents the number of pencils p in b boxes. Graph the relationship on the coordinate plane. (Example 1)

2. The graph shows the total cost c of buying one large bucket of popcorn and d large drinks. Write an equation from the graph that could be used to find the total cost c if you buy one large bucket of popcorn and d large drinks. (Example 2)

3. The equation $c=2 b+6$ represents the total cost c of b sets of beads and one necklace string. Graph the relationship on the coordinate plane. (Example 1)

Test Practice

4. Open Response The graph shows the total cost c of buying one parking pass and t tickets to a concert. Write an equation from the graph that could be used to find the total cost c if you buy one parking pass and t tickets to a concert. (Example 2)

Apply

5. Nancy and Elsa like to ride bikes. The equation $m=12 h$ represents the approximate number of miles m Nancy bikes in h hours. The equation $m=9 h$ represents the approximate number of miles m Elsa bikes in h hours. How much longer will it take Elsa to bike 72 miles than Nancy?
6. Write a real-world situation for the graph.

Then write the equation that represents the situation.

8. Reason Inductively Explain the difference between the graphs $y=3 x$ and $y=3 x+2$.
7. (13) Find the Error The graph shows the total amount saved s for w weeks. A student said that the equation for the line is $s=10 w+5$. Find the student's mistake and correct it.

9. Make a Conjecture What would the graph of $y=\frac{1}{2} \times$ look like? Name three ordered pairs that lie on the line.

Multiple Representations

I Can... identify the independent and dependent variables in a given scenario and use that information to create an equation, table, and graph that represent the situation.

Learn Multiple Representations of Relationships

Relationships between two variables can be described using multiple representations, such as words, equations, tables, and graphs. By generating multiple representations of the same relationship, you can identify correspondences between the representations. Each representation describes the same relationship, yet in a different way.

Words

Words help express the relationship, using real-life elements.

On a trip, a cyclist traveled at a constant speed of 14 miles per hour for several hours.

Table

Tables help organize individual pairs of input-output values.

Time (h), t Distance (mi), d	
1	14
2	28
3	42

Equation

Equations can be used to readily find other values for the relationship that are not already known.

$$
d=14 t
$$

Graph

Graphs help to show trends in the relationship and can be used to make predictions.

a

Think About It!
What will you do first, write an equation, make a table, or create a graph?

Example 1 Multiple Representations of Relationships

The student council has already earned $\$ 150$ this year. For the next fundraiser, they are holding a car wash and charging $\$ 7$ for each car they wash.

Represent the relationship between the number of cars washed c and the total earnings t with an equation, a table, and a graph.

Part A Represent the relationship with an equation.
Step 1 Determine the independent and dependent variables.
In this relationship, the number of cars washed c is the variable and the total earnings t is the variable.

Step 2 Write the equation.
Before the car wash, the student council had already earned
\$ For washing cars, they will earn \$ per car.
To determine the total earned t, multiply the number of cars washed c by 7 and add 150 .

The equation that represents the situation is $t=7 c+150$.

Part B Represent the relationship with a table.

Number of Cars, c	Earnings (\$), t
1	
2	
3	
4	
5	

Part C Represent the relationship with a graph.
Step 1 Write the ordered pairs.
From the table, the ordered pairs are $(1,157),(2,164),(3,171)$, $(4,178)$, and $(5,185)$.

Step 2 Graph the ordered pairs and draw the line.

Pause and Reflect

Compare what you learned today with something similar you learned in an earlier module or grade. How are they similar? How are they different?

Talk About It!
Which representation would be good to use if you wanted to see a trend in the amount of money the student council was earning? Explain your reasoning.

Check

An online stores sells trail mix for $\$ 2.75$ per pound and charges a shipping fee of $\$ 4$. Represent the relationship between the pounds of trail mix bought p and the total cost c with an equation, a table, and a graph.

Part A Represent the relationship with an equation.

Part B Represent the relationship with a table.

Pounds of Trail Mix, p	Total Cost (\$), c
1	
2	
3	
4	
5	

Part C Represent the relationship with a graph.

Go Online Y ou can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the

Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

426 Module 7 • Relationships Between Two Variables

Practice

Go Online You can complete your homework online.

1. A school sells tickets to their school play through an online ticket company. Each ticket costs $\$ 8$ and the company charges a $\$ 2.50$ processing fee per order. Represent the relationship between the number of tickets bought t and the total cost c with an equation, a table, and a graph. (Example 1)
a. Represent the relationship with an equation.
b. Represent the relationship with a table.

Number of Tickets, t	Total Cost (\$), c
1	
2	
3	
4	

c. Represent the relationship with a graph.

Test Practice
3. Open Response The table shows the earnings for each pie sold at the sixth grade bake sale. Represent the relationship between the number of pies sold p and the total earnings e with an equation.
2. Carmelo earns a weekly allowance of \$5 plus an additional $\$ 0.75$ for each chore that he completes. Represent the relationship between the total earned t and the number of chores completed c with an equation, a table, and a graph. (Example 1)
a. Represent the relationship with an equation.
b. Represent the relationship with a table.

Number of Chores, c	Total Earned $(\$), t$
1	
2	
3	
4	

c. Represent the relationship with a graph.

Apply

4. Zari is comparing the costs of having cupcakes delivered from two different bakeries. Betty's Bakery offers free delivery and sells cupcakes by the dozen. The table shows the total cost c of d dozens from Betty's Bakery. The Sweet Shoppe charges $\$ 20$ for delivery and $\$ 18$ per dozen. The equation $c=18 d+20$ represents the total cost c of d dozens of cupcakes and delivery from the Sweet Shoppe. If Zari has $\$ 110$ to spend, which bakery should she use to order the greatest number of cupcakes? Explain.
5. Persevere with Problems Ryder plays a video game where each player is given points and players earn more points by catching bugs. Write an equation to represent the total number of points p earned for catching b bugs. Use the equation to find Ryder's points after catching 10 bugs.

6. Reason Abstractly Reese and Tamara both babysit. Reese earns $\$ 5$ per hour and Tamara earns $\$ 10$ per hour. Will the amount earned for each girl ever be the same for the same number of hours after zero hours? Explain.
7. Multiple Representations Winslow earns $\$ 15.50$ for each lawn that he mows.
a. Represent the relationship between the number of lawns mowed m and his total earnings e with an equation.
b. Represent the relationship in a table for $0,1,2$, and 3 lawns mowed.
8. Write about a real-world situation that could be represented with an equation, a table, and a graph.

Module 7 • Relationships Between Two Variables Review

Foldables Use your Foldable to help review the module.

Rate Yourself!
Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Write about one thing you learned.
Write about a question you still have.

Reflect on the Module

Use what you learned about relationships between two variables to complete the graphic organizer.

Fssential Question

What are the ways in which a relationship between two variables can be displayed?

Explain how each representation can be used to describe a relationship between two variables.

Test Practice

1. Equation Editor A store charges $\$ 1.70$ for a fountain soft drink. The total cost c of d soft drinks is equal to 1.7 times d. The table below represents this situation. What is the missing value in the output column? (Lesson 1)

Input, d	Rule, 1.7d	Output, c
1	$1.7(1)$	1.7
2	$1.7(2)$	3.4
3	$1.7(3)$	$?$

2. Multiple Choice Mr. Hamilton has 144 pencils to give to his students. The number of pencils p each student will receive is equal to 144 divided by s, the number of students. The table below represents this situation. Which of the following numbers should be entered into the input column (top to bottom) in order to complete the table? (Lesson 1)

Input, s	Rule, $\frac{144}{s}$	Output, p
$?$	$\frac{144}{s}$	12
$?$	$\frac{144}{s}$	9
$?$	$\frac{144}{s}$	6

(A) $9,12,16$
(B) $9,16,24$
(C) $12,16,24$
(D) $12,18,24$
3. Open Response The table shows the total cost c of buying b shell bracelets at a souvenir shop. Write an equation to represent the relationship between c and b. (Lesson 2)

Number of Bracelets, b	Total Cost (\$), c
1	6
2	12
3	18
4	24
5	30

4. Equation Editor The table shows the total number of laps Sue and Kee walked over the past four days. If the pattern continues, how many more laps will Sue have walked than Kee after 7 days? (Lesson 2)

Days	Sue	Kee
1	4	2
2	8	4
3	12	6
4	16	8

5. Open Response The equation $c=15.25 h$ represents the cost c for h hours of a bicycle rental. What is the cost of a 4-hour bicycle rental? (Lesson 3)
6. Multiselect The table shows the total cost for h hours a plumber charges to make a service call to a customer Which of the following two-step equations represents the total cost for the number of hours of service the plumber provides? Select all that apply(Lesson 2)

Number of Hours, h	Total Cost (\$), c
1	70
2	110
3	150
4	190

$$
40 h+30=c
$$

7. Grid The equation $b=8 p$ represents the number of biscuits b in p packages of biscuits. (Lesson 3)
A. Complete the table of values that represents this situation.

Number of Packages, p	Number of Biscuits, b

0	
1	
2	
3	

B. Graph the equation on the coordinate plane.

Biscuit Packages

Module 7 • Relationships Between Two Variables
8. Open Response The graph shows the amount of money m, in dollars, Stacey earned for h hours of work. Write an equation that could be used to find the amount of money Stacey earns for any number of hoursLesson 3)

9. Multiple Choice Heath is selling magazine subscriptions. He earns $\$ 10$ for every subscription sold. Use s to represent the number sold and t for total earnings(Lesson 4)
A. Which of the following equations can be used to find Heath's total earnings t given s subscriptions sold?
(A) $t=10 \mathrm{~s}$
(B) $t=10+s$
(C) $s=10 t$
(D) $s=10+t$
B. Graph the ordered pairs and draw the line on the coordinate plane.

Magazine Subscriptions

[^6]

e Fissential Question

How are the areas of triangles and rectangles used to find the areas of other polygons?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it. \quad - know it!	0	0	3	0	0	3
finding areas of parallelograms						
finding missing dimensions of parallelograms						
finding areas of triangles						
finding missing dimensions of triangles						
finding areas of trapezoids						
finding missing dimensions of trapezoids						
finding areas of regular polygons						
finding perimeters and areas of polygons on the coordinate plane						

(II) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about area.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square base
\square parallelogram
\square congruent figures
\square regular polygon
\square height
\square trapezoid

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1
Find area of rectangles.
Find the area of the rectangle.
8 in.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =8 \cdot 5 & & \text { Replace } \ell \text { with } 8 \text { and } w \text { with } 5 . \\
& =40 & & \text { Multiply. }
\end{aligned}
$$

The area of the rectangle is 40 square inches.

Quick Check

1. A garden is in the shape of a rectangle. The length of the garden is 12 feet and the width is 7 feet. What is the area of the garden?
2. Find $\frac{1}{2} \cdot 34$.

How Did You Do?

Which exercises did you answer correctly in the Quick Check?
Shade those exercise numbers at the right.

Area of Parallelograms

I Can... understand how a parallelogram can be decomposed into a rectangle to find its area, and use the area formula for a parallelogram to find areas or missing dimensions.

Explore Area of Parallelograms

Online Activity Y ou will use Web Sketchpad to explore the area of a parallelogram.

Pause and Reflect

Now that you have completed the Explore activity, what are some concepts you learned in a prior grade that might help you find the area of parallelograms in this lesson?

What Vocabulary Will You Learn?
base
height
parallelogram

Talk About It!
How is the formula for the area of a parallelogram, $A=b h$, similar to the area of a rectangle, $A=\ell w$?

Learn Area of Parallelograms

A parallelogram is a quadrilateral with opposite sides that are parallel and have the same length. Recall that area is the measure of the interior surface of a two-dimensional figure and is measured in square units.

Go Online Watch the video to learn how the area of a parallelogram is related to the area of a rectangle.

The video shows how a rectangle can be used to find the area of a parallelogram by following these steps.

A parallelogram is shown on grid paper. In the video, a student cuts out the parallelogram.

The student cuts along the line that forms the third side of the right triangle on the left side of the figure.

The student moves the triangle to the right side of the figure to form a rectangle.

The area of a figure is the number of unit squares needed to cover it. The area of the rectangle formed by moving the right triangle is 50 square units. Because nothing was added or removed, the area of the parallelogram is also 50 square units.

The formula for the area of a parallelogram is similar to the formula for the area of a rectangle, but it uses its base and height instead of length and width.

The base b of a parallelogram can be any one of its sides.

The height h of a parallelogram is the perpendicular distance from a base to its opposite side.

Words
The area of a parallelogram is the product of its base b and its height h.

Example 1 Find Area of Parallelograms

Romilla is painting a replica of the national flag of Trinidad and Tobago for a research project.

30 in.
Find the area of the black stripe.

Step 1 Identify the measures of the base and the height of the stripe.

What is the measure of the base? \qquad inches

What is the measure of the height? \qquad inches

Step 2 Find the area.
$A=b h$
Area of a parallelogram
$A=\binom{3}{4}(30) \quad$ Replace b and h with the known values.
$A=\square$
Multiply.

So, the area of the black stripe is $202 \frac{1}{2}$ square inches.

Check

Find the area of the parking space shown.

Go Online You can complete an Extra Example online.

Think About It!
What dimensions do you need to know to find the area of a parallelogram?
\square
Talk About It! Why are the units that represent the area in square inches, instead of inches?
\qquad

Think About It!
What formula will you use to solve this problem?

Example 2 Find Missing Dimensions of Parallelograms

Find the missing dimension of the parallelogram.

Step 1 Identify the given values.

The base and the area are given. You need to find the height.

Step 2 Find the missing dimension.

$$
\begin{aligned}
A & =b h & & \text { Area of a parallelogram } \\
45 & =9 h & & \text { Replace } A \text { and } b \text { with the known values. } \\
\frac{45}{9} & =\frac{9 h}{9} & & \text { Divide each side by } 9 . \\
5 & =h & & \text { Simplify. }
\end{aligned}
$$

So, the height of the parallelogram is \qquad inches.

Check

Find the missing dimension of the parallelogram shown.

Q Apply Landscaping

Andy, a city horticulturalist, is developing a new park over an old city lot. The center of the park features a koi pond that will cover 1,245 square feet. The remaining space will need to be covered with grass seed. If a 50-pound bag of grass seed covers up to 7,500 square feet, how many bags of grass seed will Andy need to buy to seed the rest of the park?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(Write About It! Write an argument that can be used to defend your solution.

Check

Margie is designing a collage that will be shaped like a parallelogram as shown. The center of the collage will be a square photo that has an area of 0.25 square foot. This will be surrounded by painted, square tiles that each have an area of 0.0625 square foot. How many whole tiles does Margie need to cover the collage?

Go Online Y ou can complete an Extra Example online.
(1) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

\qquad Date \qquad

Practice

1. The pattern shows the dimensions of a quilting square that Nakida will use to make a quilt. How much blue fabric will she need to make one square? (Example 1)

2. Find the missing dimension of the parallelogram. (Example 2)

$A=28 \mathrm{~m}^{2}$
3. Find the area of the yellow striped region of the flag of the Republic of the Congo.

Go Online You can complete your homework online.
2. A group of students is painting the flag of Brunei for a geography project. Joseph is responsible for painting only the background colors of the flag. How many square inches will he cover with white paint? (Example 1)

4. Find the missing dimension of the parallelogram. (Example 2)

Test Practice

6. Open Response What is the area of the parallelogram?

11 in.

Apply

7. Liam is designing a patio and fountain for his backyard. The fountain will cover 50 square feet. The remaining space will be covered with tiles. If one tile covers 2.25 square feet, how many tiles will Liam need?

8. T ara and Veronica are making a parallelogram-shaped banner for a football game. They will paint the entire banner except for a rectangular section where a photo of the school's mascot will be placed. The photo of the mascot has an area of 6 square feet. If a 16-ounce bottle of primer covers 24 square feet, how many bottles of paint will they need?

9. 1.3 Identify Structure Find the area of the shaded region.

10. Reason Abstractly If you were to draw three different parallelograms each with a base of 5 units and a height of 4 units, how would the areas compare? Write an argument that could be used to defend your solution.
11. Create Draw and label a parallelogram with a base that is 2 times its height and has an area that is less than 100 square yards.
12. Persevere with Problems A rectangle and a parallelogram have the same area of 24 square inches. Describe the possible dimensions for each figure.

Area of Triangles

I Can... understand how a parallelogram can be decomposed into two congruent triangles to find the area of one triangle, and use the area formula for a triangle to find areas or missing dimensions.

Explore Parallelograms and Area of Triangles

(3) Online Activity You will use Web Sketchpad to explore how the area of a parallelogram is related to the area of triangles.

Pause and Reflect

What did you learn in the previous lesson that might help you find the area of triangles in this lesson? What did you learn in the Explore activity that also might help you in this lesson?

What Vocabulary
 Will You Learn?

base
congruent figures
height (triangle)

Think About It!

What formula will you use to find the area?

Talk About It!

What is the area of a rectangle with a base of 6 centimeters and a height of 4 centimeters? How can you use this to check your answer to this example?

Learn Area of T riangles

Congruent figures are figures that have the same shape and size. A diagonal of a parallelogram separates it into two congruent triangles. Since congruent triangles have the same area, the area of a triangle is one-half the area of the parallelogram.

0
Go Online Watch the video to learn how a parallelogram is used to find the area of a triangle.

The base of the parallelogram is 8 units. The height is 12 units. The area of the parallelogram is $8(12)$, or 96 square units.

A diagonal line is drawn to form two congruent triangles.

The area of one triangle is half the area of the parallelogram, which is $96 \div 2$, or
 48 square units.

The formula for the area of a triangle is derived from the formula for the area of a parallelogram. It also uses its base and height. The base b of a triangle can be any one of its sides. The height h is the perpendicular distance from a base to its opposite vertex.

Words

Symbols
The area of a triangle is one half the product of its base b and its height h.

$$
A=\frac{1}{2} b h \text { or } A=\frac{b h}{2}
$$

Example 1 Find Area of Right T riangles

Find the area of the triangle.

$$
\begin{array}{ll}
A=\frac{1}{2} b h & \text { Area of a triangle } \\
A=\frac{1}{2}(6)(4) & \begin{array}{l}
\text { Replace } b \text { and } h \text { with the } \\
\text { known values. }
\end{array} \\
A=\square & \text { Multiply. }
\end{array}
$$

So, the area of the triangle is 12 square centimeters.

Check

Find the area of the triangle.

Go Online You can complete an Extra Example online.

Explore Area of Triangles

Online Activity You will use Web Sketchpad to explore the area of a triangle.

Example 2 Find Area of T riangles

The front of a camping tent has the dimensions shown.

How much material was used to make the front of the tent?
$A=\frac{1}{2} b h$
Area of a triangle
$A=\frac{1}{2}\left(5 \frac{1}{5}\right)(3) \frac{1}{2}$
Replace b and h with the known values.
$A=9 \frac{1}{10}$
Multiply.

So, the amount of fabric used to make the front of the tent is
\qquad square feet.

Think About It! What is a good estimate for the solution?

Talk About It! Compare your solution to the estimate.

Check

A floor is tiled with triangular tiles as shown. Find the area of one tile.

3 Go Online You can complete an Extra Example online.

Example 3 Find Missing Dimensions of T riangles

Find the missing dimension of the triangle.

Step 1 Identify the given values.

The height and the area are given.

$$
A=24.8 \mathrm{em}
$$

You need to find the base.
Step 2 Find the missing dimension.

$$
\begin{aligned}
A & =\frac{1}{2} b h & & \text { Area of a triangle } \\
24.8 & =\frac{1}{2} b(6.2) & & \text { Replace } A \text { and } h \text { with the known values. } \\
49.6 & =b(6.2) & & \text { Multiply each side by the reciprocal of } \frac{1}{2}, 2 . \\
8 & =b & & \text { Divide each side by } 6.2 .
\end{aligned}
$$

So, the base of the triangle is \qquad centimeters.

Check

Find the missing dimension of the triangle.

$$
A=11.68 \mathrm{~mm}
$$

Go Online Y ou can complete an Extra Example online.

- Apply Home Improvement

Blossom is painting the outlined section of the cabin shown. A gallon of paint costs $\$ 24.95$ and covers 250 square feet. If the total area of the windows is 0.75 square feet, how much money will Blossom spend on paint?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Vladimir is planting wildflowers in the corner of his yard as shown. A packet of wildflower seeds costs $\$ 4.95$ and covers 50 square feet. How much will Vladimir spend on wildflower seeds?

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Find the area of each triangle. (Example 1)
1.

3. Tameeka is in charge of designing a school pennant for spirit week. What is the area of the pennant? (Example 2)

2.

4. Norma has an A-frame cabin. The back is shown below. If the total area of the windows and doors is 3.5 square yards, how many square yards of paint will she need to cover the back of the cabin? (Example 2)

Find the missing dimension in each triangle. (Example 3)

$$
A=38.7 \mathrm{~km}^{2}
$$

6.

6.75 in.

$$
A=13.5 \mathrm{in}^{2}
$$

Test Practice
8. Open Response What is the area of the triangle?

Apply

9. Aubrey is painting a mural of an ocean scene. The triangular sail on a sailboat has a base of 6 feet and a height of 4 feet. Aubrey will paint the sail using a special white paint. A container of this paint covers 10 square feet and costs $\$ 6.79$ per container. How much will Aubrey spend on the white paint?

10. Silas is a making a wildflower meadow with the dimensions shown. He plans to cover the entire meadow with a wildflower seed mix. One bag of wildflower seed mix covers 22 square yards and costs $\$ 12.79$. How much will Silas spend on the wildflower seed mix?
11. Find the Error A student is finding the height of the triangle. Find the student's mistake and correct it.

12. Reason Abstractly Mrs. Giuntini's lawn is triangle-shaped with a base of 25 feet and a height of 10 feet. Is the area of Mrs. Giuntini's lawn greater than 250 square feet? Write an argument that can be used to defend your solution.
13. Create Draw and label a triangle with a base that is 3 times its height and has an area that is less than 50 square inches.
14. (n) Justify Conclusions Determine if the following statement is always, sometimes, or never true. Write an argument that can be used to defend your solution. If a triangle and a parallelogram have the same base and height, the area of the triangle will always be greater.

Area of Trapezoids

I Can... understand how to find the area of a trapezoid by decomposing or composing, relate this to the area formula, and find the area of trapezoids or missing dimensions.

Learn Find Area of T rapezoids by Decomposing

A trapezoid is a quadrilateral with one pair of parallel sides. To find the area of a trapezoid, first decompose, or break down, the trapezoid into triangles and a rectangle. Since you know the formulas for the areas of triangles and rectangles, you can find the area of each smaller section and then add them together to find the area of the trapezoid.

Go Online Watch the animation to see how to find the area of a trapezoid by decomposing.

The animation shows how to find the area of the trapezoid, by first finding the areas of the shapes that make up the trapezoid.

The trapezoid shown is made up of one rectangle and two congruent triangles.

Step 1 Find the area of the rectangle.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =9(6) & & \text { Replace } \ell \text { and } w \text { with the known values. } \\
& =54 & & \text { Multiply. }
\end{aligned}
$$

Step 2 Find the areas of the triangles.
The two triangles are congruent, so the areas are the same. You only need to find the area of one triangle.

$$
\begin{aligned}
A & =\frac{1}{2} b h & & \text { Area of a triangle } \\
& =\frac{1}{2}(4)(6) & & \text { Replace } b \text { and } h \text { with the known values. } \\
& =12 & & \text { Multiply. }
\end{aligned}
$$

Step 3 Add the areas of the rectangle and the two congruent triangles.
$54+12+12=78$

So, the area of the trapezoid is 78 square inches.

What Vocabulary

Will You Learn?
base
height (trapezoid)
trapezoid

Think About It!

How can you divide the trapezoid into shapes with which you are familiar?

Talk About It!
Is there another way you can decompose the trapezoid? Will this result in the same area measurement? Explain your reasoning.

Example 1 Find Area of T rapezoids by Decomposing

Decompose the trapezoid to find its area.

Step 1 Decompose the trapezoid.
The trapezoid is decomposed into a rectangle and two triangles. Note that

7 in. the two triangles are not congruent.

Step 2 Find the area of each shape.

Triangle1

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(3)(5) \\
& =7.5
\end{aligned}
$$

Rectangle

$$
\begin{aligned}
A & =\ell w \\
& =7(5) \\
& =35
\end{aligned}
$$

Triangle2

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(2)(5) \\
& =5
\end{aligned}
$$

Step 3 Find the total area.
$A=7.5+35+5$

So, the area of the trapezoid is \qquad square inches.

Check

Decompose the trapezoid to find its area.

Go Online Y ou can complete an Extra Example online.

Learn Find Area of T rapezoids by Composing

Two congruent trapezoids can be composed, or combined, to form a parallelogram. Since you know the formula for the area of a
parallelogram, you can use that formula to help you find the area of a trapezoid.

Go Online Watch the video to see how to find the area of a trapezoid by composing.

The video shows that a parallelogram can be used to find the area of a trapezoid.

To find the area of the trapezoid shown, draw the trapezoid on grid paper.

Flip the trapezoid and align it as shown. Draw the second trapezoid.

The two congruent trapezoids form a parallelogram. Find the area of the parallelogram.
$A_{\text {parallelogram }}=12(8)$ or 96 units 2
The parallelogram has a base of 12 units and a height of 8 units.

Because the parallelogram is composed of two congruent trapezoids, the area of one trapezoid is half the area of the parallelogram.
$A_{\text {trapezoid }}=96 \div 2$ or 48 units 2
Talk About It!
How can you use the concept of composing to find area if you do not know the formula for the area of a trapezoid?

Math History
 Minute

Júlio César de Mello e Souza (1895-1974)
was a Brazilian mathematician, professor, and writer. His writings weave mathematics into entertaining word problems and puzzles. His most famous book, The Man Who Counted, tells of the adventures of Beremiz Samir who uses mathematics as a superpower. In Rio de Janeiro, Brazil, his birthday, May 6, is declared as Mathematician's Day.

Learn Find Area of T rapezoids by Using the Formula

0
Go Online Watch the animation to see how the formula for the area of a trapezoid is derived by composing it into a parallelogram.

In the trapezoid shown, base one, b_{1}, is the shorter base and base two, b_{2}, is the longer base. The height, h, is the perpendicular
 distance between the bases.

Step 1 Make a copy of the trapezoid.

Step 2 Rotate the second trapezoid and align as shown.

The two congruent trapezoids form a parallelogram.
The height of the parallelogram is the same as the height of the trapezoid. The base of the parallelogram is the sum of b_{1} and b of the trapezoid. The area of one trapezoid is half the area of the parallelogram.

The formula for the area of a trapezoid is derived from the formula for the area of a parallelogram. It also uses its base and height. The bases of a trapezoid are the parallel sides, and the height is the perpendicular distance between the bases.

base $2\left(b_{2}\right)$

$$
\begin{array}{rlrl}
A_{\text {parallelogram }} & =b h & & \text { Write the formula. } \\
& =\left(b_{1}+b \not b h\right. & & \text { The base of the parallelogram is } b_{1}+b_{2} \\
A_{\text {trapezoid }}=\frac{1}{2}\left(b_{1}+b\right) h & & \begin{array}{l}
\text { The area of one trapezoid is half the area of } \\
\text { the parallelogram. }
\end{array} \\
=\frac{1}{2} h\left(b_{1}+b b\right. & & \text { Commutative Property }
\end{array}
$$

Words

The area of a trapezoid is one half the product of the height, h, and the sum of its bases, b_{1} and b_{2}

Example 2 Find Area of T rapezoids

Find the area of the trapezoid.
Method 1 Find the area by composing.
Step 1 Compose the trapezoid into a parallelogram.

Step 2 Find the area of the parallelogram.
$A=(16)(5)$ The base is $10+6$, or 16 feet. The height is 5 feet.
$=80$ The area of the parallelogram is 80 square feet.
Step 3 Find the area of the trapezoid.
$80 \div 2=\square$
Divide the area of the parallelogram by 2 . The area of the trapezoid is 40 square feet.

Method 2 Find the area using the formula.
$A=\frac{1}{2} h\left(b_{1}+b\right) \quad$ Area of a trapezoid
$A=\frac{1}{2}(5)(10+6) \quad$ Replace h, b_{1}, and b_{2} with the known values.
$A=\frac{1}{2}(5)(16)$
Add.
$A=40 \quad$ Multiply.
So, using either method, the area of the trapezoid is
\qquad square feet.

Check

Find the area of the trapezoid.

Go Online Y ou can complete an Extra Example online.

Think About It!
How can you find the area of the trapezoid by composing?
\square
Talk About It! Compare the two methods.

Think About It!
What measurements do you need to find the area of the trapezoid?

Talk About It!
Why is one of the sides of the trapezoid the height?

(2) Example 3 Find Area of Right T rapezoids by Using the Formula

The shape of Osceola County, Florida, resembles a trapezoid.
What is the approximate area of this county?

Use the formula for area of a trapezoid.
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right.$
Area of a trapezoid
$A=\frac{1}{2}(51)(48+16.4)$
Replace h, b_{1}, and b_{2} with the known values.

$A=\frac{1}{2}(51)(64.4)$
Add.
$A=1,642.2$

So, the approximate area of the county is \qquad square miles.

Check

The shape of the driveway resembles a trapezoid. Find the area of the driveway.

Example 4 Find Area of T rapezoids

Each of the airplane's wings in the drawing is in the shape of a trapezoid.

Find the area of one wing.
Use the area formula for a trapezoid.

$A=\frac{1}{2} h\left(b_{1}+b_{2} \quad \quad\right.$ Area of a trapezoid
$A=\frac{1}{2}(16.5)(4.5+6.3) \quad$ Replace h, b_{1}, and b_{2} with the known values.
$A=\frac{1}{2}(16.5)(10.8) \quad$ Add.
$A=89.1 \quad$ Multiply.

So, the area of one wing is \qquad square feet.

Check

A teacher's small-group table is in the shape of a trapezoid. Find the area of the table.

Go Online You can complete an Extra Example online.

Think About It!
What formula will you use to solve the problem?

Talk About It!
Does the solution change depending on which value you choose for b_{1} and which value you choose for b_{2} ? Explain.

Example 5 Find Missing Dimensions of Trapezoids

Find the missing dimension of the trapezoid.

Step 1 Identify the given values.
The area and lengths of the two bases are given. You need to find the height.

Step 2 Find the missing dimension.
To find a missing dimension of a trapezoid, use the formula for the area of a trapezoid. First replace the variables with the known measurements. Then solve the equation for the remaining variable.

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{\underline{2}}\right. & & \text { Area of a trapezoid } \\
108 & =\frac{1}{2} h(15+12) & & \text { Replace } A, b_{1}, \text { and } b_{2} \text { with the known values. } \\
108 & =\frac{1}{2} h(27) & & \text { Add. } \\
108 & =h(13.5) & & \text { Multiply. } \\
8 & =h & & \text { Divide each side by } 13.5 .
\end{aligned}
$$

So, the height of the trapezoid is \qquad feet.

Check

Find the missing dimension of the trapezoid.

Θ Apply Budgets

The parking lot shown is being repaved. The office manager budgeted $\$ 10,000$ for the repaving project. Asphalt for the parking lot costs $\$ 8.95$ per square foot. Find the cost of the asphalt to determine if the office manager budgeted enough money to complete the project.

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
(Write About It! Write an argument that can be used to defend your solution.

Go Online
Watch the animation.

Talk About It!
How can you solve the problem another way?

Check

Ardis, the community center director, is having the swimming pool floor resurfaced and has budgeted $\$ 20,000.00$. The new pebblebased cement material costs $\$ 8.45$ per square foot. Find the cost to resurface the pool and determine if Ardis has budgeted enough money to complete the project.

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

Decompose each trapezoid to find its area. (Example 1)
1.

Find the area of each trapezoid. (Example 2)
3.

5. The shape of Arkansas resembles a trapezoid. What is the approximate area of Arkansas? (Example 3)

7. Find the missing dimension of the trapezoid. (Example 5)

6. The top of the desk shown is in the shape of a trapezoid. What is the area of the top of the desk? (Example 4)

Test Practice
8. Open Response Ciro made a sign in the shape of a trapezoid. What was the area of Ciro's sign?

Apply
9. Greta has budgeted $\$ 1,500$ to have a concrete patio poured in her backyard like the one shown. The cost per square foot of the concrete is $\$ 5.50$. Find the cost of the patio to determine if Greta has budgeted enough money to complete the project.

10. Create Draw and label a trapezoid that has no right angles and an area greater than 75 square meters.
12. Create Write and solve a real-world problem where you need to find the area of a trapezoid.
11. Explain the steps needed to rewrite the formula for the area of a trapezoid to find b_{2}.
13. Reason Inductively The area of a trapezoid is 48 square centimeters. The height is 6 centimeters and one base is 3 times the length of the other base. What are the lengths of the bases?

Area of Regular Polygons

I Can... decompose a polygon into triangles, parallelograms, and trapezoids, find the areas of the decomposed figures, and then add or multiply to find the area of the polygon.

Explore Area of Regular Polygons

DOnline Activity Y ou will use Web Sketchpad to explore how the area of triangles, parallelograms, and trapezoids can be used to find the area of regular polygons.

Learn Area of Regular Polygons

To find the area of a regular polygon, a polygon in which all sides and all angles are congruent, you can decompose the figure into triangles, parallelograms, or trapezoids. Find the area of each smaller figure, and then add or multiply to find the total area.
Wo Online Watch the animation to learn how to decompose a regular polygon to find its area.

The animation shows how to find the area of the hexagon shown.
Step 1 Decompose the figure into two congruent trapezoids.

Step 2 Find the area of one trapezoid.
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right.$
Area of a trapezoid
$A=\frac{1}{2}(1.73)(4+2)$
$h=1.73 ; b_{1}=4 ; b_{2}=2$
$A=5.19 \quad$ Simplify. $A=5.19 \mathrm{~cm}^{2}$

The trapezoids are congruent, so the areas are the same.
Step 3 Add the areas. $5.19+5.19=10.38 \mathrm{~cm}^{2}$

What Vocabulary Will You Learn? regular polygon
\square

Think About It!
Is the area less than, greater than, or equal to 36^{2}, or 1,296 square inches? How do you know?

Talk About It!

With the given information, can you decompose the octagon into different shapes to find the area? Why or why not?
——
\qquad
\square
\qquad
\square
\square
\square
\square
\square
\longrightarrow

\qquad

A stop sign is shaped like a regular octagon. Each side of the sign is 15 inches long and measures 36 inches between parallel sides.

Find the area of the octagon.
Step 1 Decompose the octagon into congruent triangles.

The octagon decomposes into 8 congruent triangles.

Step 2 Find the area of each triangle.
$A=\frac{1}{2}(15)(18)=135$
The area of each triangle is \qquad square inches.

Step 3 Multiply to find the total area of the octagon.
Because the triangles are congruent, multiply the number of triangles, \qquad by the area of each triangle.
$8(135)=1,080$
So, the area of the stop sign is \qquad square inches.

Check

The white section of the soccer ball is a regular hexagon. Each side of the hexagon is 1.8 inches. Find the area of the hexagon. Round to the nearest hundredth.

Q Apply Home Improvement

Keilani designed a gazebo and wants to cover the floor with tiles. The gazebo is shaped like a decagon with 3.75 foot sides. If floor tiles cost $\$ 2.89$ per square foot, what is the least amount she will spend on the tiles?

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?
Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Morgan designed a stained glass window to be added above the door at the community center. The window is shaped like an octagon with 15 -inch sides. If stained glass costs $\$ 0.70$ per square inch, how much will she spend on the window?

3 Go Online You can complete an Extra Example online.

Pause and Reflect

Compare finding the area of regular polygons with finding the area of irregular polygons. What are some similarities? What are some differences?

Practice

1. Kendra knitted the coaster shown as a present for her grandmother. The coaster is shaped like a regular hexagon. Each side of the hexagon is 3.5 inches. Find the area of the coaster. Round to the nearest hundredth. (Example 1)

2. Paul bought a new rug in the shape of a regular decagon. Each side of the decagon is 4.25 feet. Find the area of the rug. Round to the nearest hundredth. (Example 1)

Test Practice

3. Open Response A regular pentagon is shown. What is the area of the pentagon?

Apply

4. Julian is going to build a picnic table. The top of the picnic table is shaped like an octagon with sides measuring 2.5 feet.
If the wood costs $\$ 3.95$ per square foot, what is the least he will spend on the top of the picnic table?

5. Williana's mother wants to buy a glass tabletop for their dining room table. The tabletop is shaped like a hexagon with sides measuring 27.75 inches. If the glass costs $\$ 0.06$ per square inch, how much will she spend on the glass table top?

6. Draw a regular pentagon and use dashed lines to show the ways it can be decomposed. Describe the shapes in the decomposed figure.
7. Reason Abstractly The area of a regular hexagon is about 65 square units. You decompose the figure into 6 triangles. The height of one triangle is about 4.3 units. What is the approximate length of the base of the triangle?
8. Identify Structure What is the area of the figure below?

9. Reason Inductively The figure shown is a regular decagon. If the perimeter is 80 inches, what is the area of the decagon? Write an argument that can be used to defend your solution.

Polygons on the Coordinate Plane

I Can... graph the vertices of a polygon, draw the shape represented by the points, and then use the graphed polygon to find its area and perimeter.

Explore Explore the Coordinate Plane

WOnline Activity You will use Web Sketchpad to explore finding perimeter and area of polygons graphed on the coordinate plane.

Learn Draw Polygons on the Coordinate Plane

You already know how to graph points on the coordinate plane. You can also graph polygons on the coordinate plane.
(3) Go Online Use Web Sketchpad to complete the activity.

The sketch shows points A, B, C, and D graphed on a coordinate plane.

The points $A(0,0)$, $B(3,4), C(5,4)$, and $D(7,0)$ form a polygon.

What polygon was created?

Talk About It!
What does the number of coordinate points given tell you about the polygon?

Talk About It!
How can the coordinates of vertices be used to find the area of a polygon?

Learn Find Perimeter and Area on the Coordinate Plane

You can use the coordinates of a polygon to find its dimensions by finding the distance between two points.

To find the distance between two points with the same x-coordinates, subtract their y-coordinates. To find the distance between two points with the same y-coordinates, subtract their x-coordinates. You can use those dimensions to find the perimeter and area of a polygon.

Go Online Watch the animation to learn about finding perimeter on the coordinate plane.

The animation shows rectangle $A B C D$ graphed on the coordinate plane with vertices at $A(1,5), B(7,5), C(7,2)$, and $D(1,2)$.

To find the perimeter, start by using the coordinates to find the distance between two points, which gives the length of the side.

Step 1 Subtract the y-coordinates.
Subtract the y-coordinates to find the lengths of sides $A D$ and $B C$.
side $A D$: $5-2$, or 3
side $B C$: $5-2$, or 3
Both sides $A D$ and $B C$ are 3 units long.

Step 2 Subtract the x-coordinates.
Subtract the x-coordinates to find the lengths of sides $A B$ and $C D$.
side $A B$: $7-1$, or 6
side CD: $7-1$, or 6
Both sides $A B$ and $C D$ are 6 units long.

Step 3 Add the lengths of the four sides.
$6+3+6+3=18$ units

So, rectangle $A B C D$ has a perimeter of \qquad units.

(2)
 Example 1 Find Perimeter of an Irregular Figure

Find the perimeter of the exhibit shown on the coordinate plane.

Method 1 Count the units.
Count the units as you move along the perimeter of the exhibit.

Start at the entrance, or $(0,0)$. How many units do you need to travel along the y-axis to reach the monkeys? units

How many units do you need to travel along the x-axis from the monkeys to reach the gorillas?
units
Continue counting along the perimeter until you return to the entrance.

Add to find the perimeter.
$10+7+3+4+4+4+3+7=\square$ units
Method 2 Use the coordinates to find the distances.

Find the lengths of the horizontal line segments by subtracting the x-coordinates.
tigers to elephants:
$11-7=4$
aquarium to rhinoceros:
$11-7=4$
reptiles to entrance:
$7-0=7$
gorillas to monkeys:
$7-0=7$

Find the lengths of the vertical line segments by subtracting the y-coordinates.
gorillas to elephants:
$10-7=3$
tigers to aquarium:
$7-3=4$
rhinoceros to reptiles:
$3-0=3$
monkeys to entrance:
$10-0=10$

Find the sum of the sides.
$4+4+7+7+3+4+3+10=$ \qquad

So, using either method, the perimeter of the exhibit is 42 units.

Think About It!
How can you find the distance between two points on the coordinate plane?

口 RTalk About It! Compare the two methods.

Check

Find the perimeter of the outlined section of the park shown on the coordinate plane.

3 Go Online Y ou can complete an Extra Example online.

Example 2 Find Perimeter Using Coordinates

A rectangle has vertices $A(2,8), B(7,8), C(7,5)$, and $D(2,5)$.
Use the coordinates to find the perimeter of the rectangle.

Step 1 Identify the sides of the rectangle.
Graph the vertices on the coordinate plane. Then draw line segments to connect them to form a rectangle.

The horizontal sides are $\overline{A B}$ and $C D$. You can also determine this from studying the coordinates.

Points A and B have the same
 y-coordinate, so they are endpoints of horizontal side $\overline{A B}$.

Points C and D have the same y-coordinate, so they are endpoints of horizontal side $\overline{C D}$.

The vertical sides are $\overline{A D}$ and $\overline{B C}$. Y ou can also determine this from studying the coordinates.

Points A and D have the same x-coordinate, so they are endpoints of vertical side $\overline{A D}$.

Points B and C have the same x-coordinate, so they are endpoints of vertical side $\overline{B C}$.
(continued on next page)

Step 2 Find the perimeter of the rectangle.
Find the length of each side. You can count the units along each side of the rectangle's graph, or you can use the coordinates of the vertices and subtract to find the length of each side.

So, rectangle $A B C D$ has a perimeter of $5+5+3+3$, or \qquad units.

Check

A rectangle has vertices $A(1,4), B(1,9), C(8,9)$, and $D(8,4)$. Find the perimeter of the rectangle. Use the coordinate plane if needed.

Go Online You can complete an Extra Example online.

Pause and Reflect

Suppose a classmate was having difficulty finding perimeter on the coordinate plane. How can you explain how to use the different methods to help the classmate understand?

Example 3 Find Area Using Coordinates

A polygon has vertices $A(2,5), B(2,8)$, and $C(5,8)$.
Find the area of the polygon.
Step 1 Identify the polygon.
Graph the vertices. Draw line segments to connect them to form the polygon.

What polygon is formed?

Step 2 Find the area of the polygon.
The base is side $\overline{A B}$, and the height is side $\overline{B C}$.
Length of $\overline{A B}: \square$ units
Length of $\overline{B C}: \square$ units
Find the area.

$$
\begin{aligned}
A & =\frac{1}{2} b h & & \text { Area of a triangle } \\
& =\frac{1}{2}(3)(3) & & \text { Replace } b \text { with } 3 \text { and } h \text { with } 3 . \\
& =4 \frac{1}{2} & & \text { Simplify. }
\end{aligned}
$$

So, the area of the polygon is \square square units.

Check

A polygon has vertices $A(2,4), B(2,9)$, and $C(9,9)$. Find the area of the polygon. Use the coordinate plane if needed.

© Apply Business Finance

Miyu, a craft store owner, plans to rent a location in the mall and is considering the two spaces shown. On the map, one unit is equal to one foot. Space A has a monthly rental cost of $\$ 13.89$ per square foot. Space B has a monthly rental cost of $\$ 13.49$ per square foot. Miyu wants to pay the lower total monthly rental price. Which location should she choose to rent?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

Write About It! Write an argument that can be used to defend your solution.

Go Online
Watch the animation.

Check
Jackie, a sports store owner, plans to rent a location in a strip mall and is considering the two spaces shown. On the map, one unit is equal to one foot. Space A has a monthly rental cost of $\$ 14.59$ per square foot. Space B has a monthly rental cost of $\$ 15.15$ per square foot. Jackie wants to pay the lower total monthly rental price. Which location should she choose to rent?

Practice

1. Find the perimeter of the summer camp shown on the coordinate plane. (Example 1)

2. A rectangle has vertices $W(2,7), X(2,0)$, $Y(6,0)$, and $Z(6,7)$. Use the coordinates to find the perimeter of the rectangle. (Example 2)
3. A rectangle has vertices $H(3,0), I(3,7), J(6,7)$, and $K(6,0)$. Use the coordinates to find the perimeter of the rectangle. (Example 2)

Test Practice

6. Multiple Choice A polygon has vertices $J(2,3), K(4,3), L(4,7)$, and $M(2,7)$. What is the area of the polygon? (Example 3)
(A) 8 square units
(B) 10 square units

C 12 square units
D 16 square units

Apply

7. Ethan wants to open a pet store in a town mall and is considering the two spaces shown. On the map, one unit is equal to one foot. Space A has a monthly rental cost of $\$ 14.75$ per square foot. Space B has a monthly rental cost of $\$ 14.50$ per square foot. Ethan wants to pay the lower total monthly rental price. Which location should he choose to rent? Write an argument that can be used to justify your solution.

8. Draw and label a triangle on the coordinate plane that has an area of 20 square units.

9. Persevere with Problems Mrs. Palmer is placing a retaining wall around a garden. The coordinates of the vertices of the wall are $(1,1),(1,5),(6,5)$, and $(6,1)$. If each grid square has a length of 2 feet, what is the perimeter of the area? Write an argument that can be used to justify your solution.
10. Reason Inductively A certain rectangle has a perimeter of 10 units and an area of 6 units. Two of the vertices have coordinates (1,7) and (1,4). Find the two missing coordinates.
11. Find the Error Rectangle $A B C D$ has vertices $A(2,1), B(2,7), C(10,7)$, and $D(10,1)$. A classmate states that the perimeter of the rectangle is 16 units. Find the student's mistake and correct it.

11 Foldables Use your Foldable to help review the module.

Rate Yourself! 0

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Write about one thing you learned.

Reflect on the Module

Use what you learned about area to complete the graphic organizer.

Fssential Question

How are the areas of triangles and rectangles used to find the areas of other polygons?

Write the formula used to find the area of each polygon.

Explain how to use triangles to find the area of each polygon.

Test Practice

1. Open Response Find the area of one of the parallelograms in the quilt pattern shown. (Lesson 1)

2. Multiple Choice What is the height of the parallelogram? (Lesson 1)

(A) 14 meters
(B) 14.5 meters
(D) 15.5 meters
3. Open Response Find the area of the triangle. (Lesson 2)

15 in.

4. Multiselect Yolanda wants to replace the grass in this triangular section of her yard with mulch. A bag of mulch costs $\$ 4.85$ and covers 3 square feet. Which of the following statements accurately describe this situation? Select all that apply.
(Lesson 2)

\square The area of the triangle is 480 square feet.The area of the triangle is 240 square feet.Yolanda will need 80 bags of mulch.Yolanda will need 120 bags of mulch.Yolanda will spend $\$ 363.75$ on mulch.Yolanda will spend $\$ 388$ on mulch.
5. Equation Editor What is the height of the trapezoid in yards? (Lesson 3)

$$
A=73.5 \mathrm{yd}^{2}
$$

6. Multiple Choice The shape of the park resembles a trapezoid. Which of the following is the approximate area of the park? (Lesson 3)

(A) $109,242 \mathrm{~km}^{2}$
(B) $154,602 \mathrm{~km}^{2}$
(C) $231,903 \mathrm{~km}^{2}$
(D) $309,204 \mathrm{~km}^{2}$
7. Open Response A tapestry is shaped like a regular hexagon. (Lesson 4)

A. Explain how you can decompose the hexagon in order to find its area.
B. Find the area of the tapestry.
\square
8. Open Response Kim wants to replace the area covered by this rug with hardwood flooring. The rug is shaped like a regular octagon with 3 -foot sides.
(Lesson 4)

A. What is the area of the floor?
(A) $38.2 \mathrm{ft}^{2}$
(B) $40.1 \mathrm{ft}^{2}$
(C) $43.2 \mathrm{ft}^{2}$
(D) $45.0 \mathrm{ft}^{2}$
B. If hardwood flooring costs $\$ 9.50$ per square foot, how much will she spend to resurface the floor? Explain why you need to round the area up to the nearest whole square foot in order to calculate the cost.

9. Equation Editor A rectangle has vertices $A(1,2), B(1,9), C(7,9)$, and $D(7,2)$. Find the perimeter of the rectangle in units. (Lesson 5)

e. Essential Question

How can you describe the size of a three-dimensional figure?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it.	0	0	3	0	0	6
finding volume of rectangular prisms						
finding missing dimensions of rectangular prisms						
making nets to represent rectangular prisms						
finding surface areas of rectangular prisms						
making nets to represent triangular prisms						
finding surface areas of triangular prisms						
making nets to represent pyramids						
finding surface areas of pyramids						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about volume and surface area.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square cubic units
\square slant height
\square lateral facesurface areanet
\square prism
\square three-dimensional figure
\square triangular prismpyramid
\square volumerectangular prism

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1
Multiply rational numbers.
Find $12 \times 3.5 \times 18$.
$12 \times 3.5 \times 18=42 \times 18$ Multiply 12 and 3.5 .

$$
=756 \quad \text { Multiply by } 18
$$

Example 2

Evaluate numerical expressions.
Evaluate $(8 \times 6)+(3 \times 9)$.
$\begin{aligned}(8 \times 6)+(3 \times 9) & =48+27 & & \text { Multiply. } \\ & =75 & & \text { Add. } .\end{aligned}$

$$
=75 \quad \text { Add }
$$

How Did You Do?
Which exercises did you answer correctly in the Quick Check?
Shade those exercise numbers at the right.

Volume of Rectangular Prisms

I Can... find the volume of a rectangular prism by using unit cubes and by using the volume formula when given the length, width, and height of the prism.

Learn Volume

A three-dimensional figure has length, width, and height. A prism is a three-dimensional figure with two parallel bases that are congruent polygons. In a rectangular prism, the bases are congruent rectangles.

Volume is the amount of space inside a three-dimensional figure. It is measured in cubic units, which can be written using abbreviations and an exponent of 3 , such as units ${ }^{3}$ or in^{3}.

You can find the volume of a rectangular prism with whole number measurements by packing the prism with unit cubes. Decomposing the prism tells you the number of cubes of a given size it will take to fill the prism. The volume of a rectangular prism is related to its dimensions: length, width, and height.

The rectangular prism shown has a length of 5 units, a width of 3 units, and a height of 3 units. There is a total of 15 unit cubes in the base layer of the prism. The prism has 3 layers. So, the volume of the prism is $15+15+15$, or $3(15)$, or 45 cubic units.

Recall that you learned how to find the volume of a rectangular prism in an earlier grade, by using the volume formula, $V=\ell w h$, where V represents the volume, ℓ represents the length, w represents the width, and h represents the height. Using this method, the volume of the prism shown is $5(3)(3)$, or 45 cubic units.

What Vocabulary
Will You Learn?
cubic units
prism
rectangular prism
three-dimensional figure
volume volume

Math History

 MinuteBenjamin Banneker (1731-1806) was an African-American mathematician, astronomer, inventor, and writer. When he was 22 , he used his own drawings and calculations to construct a working clock that was made almost entirely out of wood.

Learn Volume of a Rectangular Prism

You can find the volume of a rectangular prism with fractional measurements using different methods.

Method 1 Use unit cubes.

$2 \frac{1}{2} \mathrm{in}$.
You can pack a rectangular prism with unit cubes. A cube is a special rectangular prism with all sides congruent. The volume of a cube is found by cubing the side length.

Step 1 Find the number of unit cubes needed to fill the prism. Each unit cube has a side length of $\frac{1}{2}$ inch.
Length The length of the prism is $2 \frac{1}{2}$ inches. So, the length is composed of $2 \frac{1}{2} \div \frac{1}{2}$ or 5 unit cubes.
Width The width of the prism is 3 inches. So, the width is composed of $3 \div \frac{1}{2}$ or 6 unit cubes.
Height The height of the prism is $1 \frac{1}{2}$ inches. So, the height is composed of $1 \frac{1}{2} \div \frac{1}{2}$ or 3 unit cubes.
The base layer of the prism contains 5×6, or 30 unit cubes. There are three total layers in the prism. So, the rectangular prism contains 30×3, or 90 unit cubes.

Step 2 Find the volume of one unit cube.

$$
\begin{aligned}
V & =s^{3} & & \text { Volume of a cube with side length } s . \\
& =\left(\frac{1}{2}\right)^{3} & & \text { Replace } s \text { with } \frac{1}{2} . \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) & & \text { Definition of exponent } \\
& =\frac{1}{8} & & \text { Multiply. The volume of each cube is } \frac{1}{8} \mathrm{in}^{3} .
\end{aligned}
$$

Step 3 Multiply the volume of each unit cube by the total number of unit cubes, 90 .

$$
\begin{aligned}
V & =90\left(\frac{1}{8}\right) & & \text { There are } 90 \text { unit cubes, each with a volume of } \frac{1}{8} \text { in }^{3} . \\
& =11 \frac{1}{4} & & \text { Multiply. The volume of the prism is } 11 \frac{1}{4} \mathrm{in}^{3} .
\end{aligned}
$$

Method 2 Use the formula.
The formula for the volume of a right prism is $V=B h$ where B represents the area of the base of the prism and h represents the height of the prism. In a rectangular prism the base is a rectangle, so $B=\ell w$. So, the volume of a right rectangular prism can also be found using the formula $V=\ell w h$.
$V=$ lwh \quad Volume formula
$V=2 \frac{1}{2} \cdot 3 \cdot 1 \frac{1}{2} \quad \ell=2 \frac{1}{2} w=3, h=1 \frac{1}{2}$
$V=11 \frac{1}{4} \quad$ Multiply.
So, using either method, the volume of the rectangular prism is $11 \frac{1}{4}$ cubic inches.

@ Example 1 Find the Volume of a Rectangular Prism

Mini sugar cubes measure $\frac{1}{4}$ inch on each side. The box shown is packed full of sugar cubes.

What is the volume of the box?
Method 1 Use unit cubes.
Step 1 Find the number of mini sugar cubes.

Each sugar cube has a side length of $\frac{1}{4}$ inch.

Length of Prism: $3 \frac{1}{2}$ inches
Because $3 \frac{1}{2} \div \frac{1}{4}=14$, there are 14 mini sugar cubes that fit along the length of the prism.
Width of Prism: $1 \frac{1}{2}$ inches
Because $1 \frac{1}{2} \div \frac{1}{4}=6$, there are 6 mini sugar cubes that fit along the width of the prism.

Height of Prism: 6 inches
Because $6 \div \frac{1}{4}=24$, there are 24 mini sugar cubes that fit along the height of the prism.

The base layer of the prism contains 14×6, or \qquad mini sugar cubes. There are 24 total layers of unit cubes in the prism. So, the rectangular prism contains \qquad $\times 24$, or \qquad total mini sugar cubes.

Talk About It!
The formula $V=B h$ can be used to find the volume of any right prism. You know that for a right rectangular prism, the area of the base, B, is represented by the expression ℓw. Think of a prism that doesn't have a rectangular base, such as a triangular prism. What expression can you use to represent the area of the base?

Think About It! Estimate the volume of the box of minisugar cubes.

Step 2 Find the volume of one mini sugar cube.

$$
\begin{aligned}
V & =s^{3} & & \text { Volume of a cube with side length } s . \\
& =\left(\frac{1}{4}\right)^{3} & & \text { Replace } s \text { with } \frac{1}{4} . \\
& =\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right) & & \text { Definition of exponent } \\
& =\frac{1}{64} & & \text { Multiply. The volume of each cube is } \frac{1}{64} \mathrm{in}^{3} .
\end{aligned}
$$

Step 3 Multiply the volume of each cube by the total number of unit cubes, 2,016.
$\begin{aligned} V & =\square\left(\frac{1}{64}\right) \begin{array}{l}\text { There are } 2,016 \text { unit cubes, each with a volume } \\ \text { of } \frac{1}{64} \text { in }{ }^{3} .\end{array} \\ & =\square \begin{array}{l}\text { Multiply. The volume of the prism is } 31 \frac{1}{2} \mathrm{in}^{3} .\end{array}\end{aligned}$
Method 2 Use the volume formula.
The formula for the area of a right rectangular prism is $V=B h$ or $V=\ell w h$.

Substitute the dimensions of the box for the variables in the formula and multiply.
$V=$ lwh \quad Write the volume formula.
$V=3 \frac{1}{2} \cdot 1 \frac{1}{2} \cdot 6 \quad$ Replace ℓ with $3 \frac{1}{2}, w$ with $1 \frac{1}{2}$, and h with 6 .
$V=31 \frac{1}{2} \mathrm{in}^{3} \quad$ Multiply.
So, using either method, the total volume of the box is cubic inches.

Check

Find the volume of the prism.

Learn Find Missing Dimensions

When you know the volume of a rectangular prism and 2 out of 3 dimensions, you can write and solve an equation to find the missing dimension. Using the volume formula, replace the variables with the known values. Then solve the equation to find the unknown value.
(3) Go Online Watch the animation to learn how to find the missing dimension for the rectangular prism shown.

The rectangular prism shown has a volume of 60 cubic feet. The width of the prism is 3 feet and the length is 5 feet. The height of the prism is unknown.

To find the unknown height, you can use the formula for volume of a rectangular prism.

V	$=\ell w h$		Write the volume formula.
60	$=(5)(3) h$		Replace V with $60, \ell$ with 5, and w with 3.
60	$=15 h$		Multiply.
$\frac{60}{15}$	$=\frac{15 h}{15}$		Division Property of Equality
4	$=h$		Simplify.

So, the height of the rectangular prism is \qquad feet.

Think About It!
What formula can you use to solve this problem?

Talk About It Why is the unit for the height of the prism inches and not cubic inches? Explain your reasoning.
\qquad
\square
\square
\square
\square
\square
\square
\square

Check

Find the height of a rectangular prism with a volume of 126 cubic inches, a width of $7 \frac{7}{8}$ inches, and a length of 2 inches. \qquad

Q Apply Comparisons

A movie theater sells three different-sized boxes of popcorn. If the boxes are rectangular prisms, which size of popcorn is the best buy?

Size	Length (in.)	Width (in.)	Height (in.)	Price (\$)
Small	$5 \frac{1}{2}$	4	$8 \frac{1}{4}$	4.50
Medium	$6 \frac{3}{4}$	5	$10 \frac{1}{2}$	5.75
Large	$10 \frac{1}{4}$	6	$11 \frac{1}{2}$	7.00

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(2) Write About It! Write an argument that can be used to defend your solution.

Check

A storage cube that has an edge length of 16 centimeters is being packed in a cardboard box with a length of 28 centimeters, a width of 18 centimeters, and a height of 22 centimeters. The extra space is being filled with packing peanuts. The packing peanuts cost $\$ 0.002$ per cubic centimeter. How much will it cost to fill the extra space with packing peanuts?

Go Online You can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the

Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Geneva's younger brother has a toy box that is shaped like a rectangular prism with the dimensions shown. What is the volume of the toy box? (Example 1)

2. The rectangular prism shown has a volume of 52 cubic meters. What is the width of the prism? (Example 2)

3. The rectangular prism shown has a volume of 115 cubic yards. What is the length of the prism? (Example 2)

Test Practice

6. Open Response A rectangular prism has a length of 8 inches, a width of $7 \frac{1}{2}$ inches, and a height of $6 \frac{1}{4}$ inches. What is the volume of the prism?
the width is 8 feet, what is the height of the bed of the dump truck?
7. Raphael drives a standard-sized dump truck with a rectangular prism shaped bed. The volume of the bed of the truck is 720 cubic feet. If the length of the bed is 15 feet and

Go Online You can complete your homework online.
2. Roy made a jewelry box in the shape of a rectangular prism with the dimensions shown. What is the volume of the jewelry box? (Example 1)

Apply

7. The Lagusch family needs to rent a dumpster. The dumpsters they can choose from are shaped like rectangular prisms and have the dimensions shown. Which size dumpster is the best value to rent based on the cost per cubic foot?

Size	Length (ft)	Width (ft)	Height (ft)	Cost (\$)
Small	16	8	2	204.80
Medium	20	8	3.5	420.00
Large	22	8	5	677.60

8. Create Draw and label a rectangular prism that has a volume less than 100 cubic meters.
9. Reason Abstractly A town provides a rectangular recycling bin for each household. The volume of each bin is 3,840 cubic inches. Is the height of the recycling bin greater than one foot? Write an argument that can be used to defend your solution.

10. Find the Error A classmate found the height of the prism shown using the following method. Find the error and correct it.

$$
\begin{aligned}
h & =1.5(1.2)(2.5) \\
& =4.5 \mathrm{~cm}
\end{aligned}
$$

$$
V=1.5 \mathrm{~cm}^{3}
$$

11. Reason Abstractly The loaf pan shown is shaped like a rectangular prism. It will be filled with batter to $\frac{2}{3}$ full to make a loaf of bread without overflowing while baking. How much batter would it take to fill the pan $\frac{2}{3}$ of the way? Write an argument that can be used to defend your solution.

Surface Area of Rectangular Prisms

I Can... represent a rectangular prism with its net to find the surface area in mathematical and real-world contexts.

Explore Cube Nets

Online Activity Y ou will use models to explore nets of prisms.

Learn Make a Net to Represent a Rectangular Prism

A net is a two-dimensional representation of a three-dimensional figure. When you construct a net, you are deconstructing the threedimensional figure using its two-dimensional faces. A rectangular prism has six rectangular faces. The top and bottom faces are congruent. The front and back faces are congruent. The two side faces are congruent.


```
What Vocabulary
Will You Learn?
net
surface area
```

PT Talk About It!
What similarities do
you notice between
the length, width, and
height of the prism,
and the dimensions
given in the net?

Think About It!
How can the prism be unfolded to make a two-dimensional net?

Example 1 Make a Net to Represent a Rectangular Prism

A rectangular prism has a length of 10 centimeters, a width of 6 centimeters, and a height of 8 centimeters.

Draw and label a net to represent the rectangular prism.

Step 1 Draw and label the front
 face and side faces.

The dimensions of the front of the prism are 10 centimeters by 8 centimeters. Use grid paper. Let each grid unit represent 1 centimeter. The dimensions of each side are 6 centimeters by 8 centimeters.

Step 2 Draw and label the top and bottom faces.
The dimensions of the top and bottom are 10 centimeters by 6 centimeters.

Step 3 Draw and label the back face.
The dimensions of the back are the same as the front, 10 centimeters by 8 centimeters.

Check

Draw and label a net to represent the rectangular prism. Let each grid unit represent 1 inch.

3 Go Online You can complete an Extra Example online.

Talk About It!
Explain why there are only three measurements for a rectangular prism, with each face using two of the three measurements.

Learn Surface Area of a Rectangular Prism

The surface area of a rectangular prism is the sum of the areas of the faces. Using a net can help you deconstruct the prism into two-dimensional shapes so you can find the area of each face.
(3) Go Online Watch the video to learn how to use a net to find the surface area of the rectangular prism shown.

The video shows the net of a rectangular prism.

Talk About It!
In the video, the student measured the top and bottom, front and back, and side 1 and side 2. What shortcut can you use when finding the surface area of a rectangular prism?

The length ℓ of the rectangular prism is 3 inches, the width w is 2 inches, and the height h is 4 inches.
Step 1 Find the area of each face.

Front and Back

The front and back faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the front and back faces.

$$
\begin{aligned}
A & =\ell h & & \text { The front face has dimensions } \ell \text { and } h . \\
& =3(4) & & \text { Replace } \ell \text { with } 3 \text { and } h \text { with } 4 . \\
& =12 & & \text { Multiply. The area of the front face is } 12 \mathrm{in}^{2} .
\end{aligned}
$$

The combined area of the front and back faces is 2(12), or 24 square inches.

Top and Bottom

The top and bottom faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the top and bottom faces.

$$
\begin{aligned}
A & =\ell w & & \text { The top face has dimensions } \ell \text { and } w . \\
& =3(2) & & \text { Replace } \ell \text { with } 3 \text { and } w \text { with } 2 . \\
& =6 & & \text { Multiply. The area of the top face is } 6 \mathrm{in}^{2} .
\end{aligned}
$$

The combined area of the top and bottom faces is $2(6)$, or 12 square inches.

Sides

The two side faces are congruent. Find the area of one. Then multiply by 2 to find the total area of the side faces.

$$
\begin{aligned}
A & =w h & & \text { Each side face has dimensions } w \text { and } h . \\
& =2(4) & & \text { Replace } w \text { with } 2 \text { and } h \text { with } 4 . \\
& =8 & & \text { Multiply. The area of each side face is } 8 \text { in }^{2} .
\end{aligned}
$$

The combined area of the two side faces is $2(8)$, or 16 square inches.
Step 2 Add the areas to find the total surface area.
$24+12+16=52$
So, the total surface area of the rectangular prism is square inches.

- Example 2 Surface Area of a Rectangular Prism

Jon is covering the faces of the gift box shown with wrapping paper.

Use the net to determine the minimum amount of wrapping paper he will need to cover the box.

Step 1 Find the area of each face.

Front and Back

The front and back faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the front and back faces.
$A=\ell \quad$ The front face has dimensions ℓ and h.
$=10(8)$ Replace ℓ with 10 and h with 8 .
$=80$ Multiply. The area of the front face is $80 \mathrm{~cm}^{2}$.
The combined area of the front and back faces is $2(80)$, or 160 square centimeters.

(continued on next page)
Think About It! How many differentsized faces are there?

Top and Bottom

The top and bottom faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the top and bottom faces.

$$
\begin{aligned}
A & =\ell w \quad \text { The top face has dimensions } \ell \text { and } w . \\
& =10(6) \text { Replace } \ell \text { with } 10 \text { and } w \text { with } 6 . \\
& =60 \quad \text { Multiply. The area of the top face is } 60 \mathrm{~cm}^{2} .
\end{aligned}
$$

The combined area of the top and bottom faces is $2(60)$, or 120 square centimeters.

Sides

The two side faces are congruent. Find the area of one face. Then multiply by 2 to find the total area of the side faces.

$$
\begin{aligned}
A & =w h & & \text { Each side face has dimensions } w \text { and } h . \\
& =6(8) & & \text { Replace } w \text { with } 6 \text { and } h \text { with } 8 . \\
& =48 & & \text { Multiply. The area of each side face is } 48 \mathrm{~cm}^{2} .
\end{aligned}
$$

The combined area of the two side faces is $2(48)$, or 96 square centimeters.

Step 2 Add the areas to find the total surface area.
$160+120+96=376$
So, Jon will need a minimum of square centimeters of wrapping paper.

Talk About It!
Why is the unit of measure square centimeters rather than centimeters or cubic centimeters?

Check

A moving crate that is shaped like a rectangular prism with the dimensions shown needs to be painted. Use the net to determine the area that is to be painted.

(3) Go Online Y ou can complete an Extra Example online.

© Apply Home Improvement

Takeru is planning to paint the walls of his bedroom, which is in the shape of a rectangular prism. The bedroom has one window and two doors. The dimensions of the window and doors are shown in the table. If one gallon of paint covers about 150 square feet, how many gallons of paint are needed to cover the walls of a room that is 20 feet long, 15 feet wide, and 8 feet high?

Part	Height (ft)	Width (ft)
door	$6 \frac{3}{4}$	$2 \frac{3}{4}$
window	3	5

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words. Second Time What mathematics do you see in the problem? Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?

(2) Write About It! Write an argument that can be used to defend your solution.

Go Online
Watch the animation.

Check

Mrs. Hernandez is redesigning her craft room which is in the shape of a rectangular prism. She wants to add wainscoting, which is a wood wall covering, from the floor to halfway up the walls. There are two doors that are each 3 feet wide. How many square feet of wainscoting will she need to cover the space?

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Draw and label a net to represent the rectangular prism. Let each grid unit represent 1 inch. (Example 1)

2. Trey is using cardboard to construct building blocks that are shaped like rectangular prisms. Use the net to determine the minimum amount of cardboard he will need to construct one block. (Example 2)

Test Practice

3. Open Response Cordgysspanititigg

the box shown for part of his art project. If he paints all of the surfaces, how many square centimeters will he paint? Use the net to find the surface area of the rectangular prism.

Apply

4. Jing is putting a special restorative stain on the entire surface of her rectangular prism shaped hope chest, except for her name plate that measures $\frac{1}{2}$ foot by $\frac{3}{4}$ foot. If one can of stain covers about 35 square feet, how many cans of stain will she need to buy?

5. Make a Conjecture Write a formula that could be used to find the surface area of a rectangular prism. Define each variable you choose to use in your formula.
6. Reason Abstractly Find the surface area and volume of each rectangular prism shaped block. Which block has the greater surface area? Does the same block have a greater volume? Write an argument that can be used to defend your solution.

Block B

2 in.

6. Create Draw and label a rectangular prism that has a surface area that is greater than its volume.
8. Meredith is painting rectangular prisms like the one shown. If she covers all the surfaces, how many square inches need to be painted? Describe two different ways to solve the problem.

Surface Area of Triangular Prisms

I Can... create a net to represent a triangular prism and use the net to find the surface area of the prism.

Explore Non-Rectangular Prism Nets

WOnline Activity You will use Web Sketchpad to explore the relationship between the shape of the base of a prism and the number of faces in the prism.

Learn Make a Net to Represent a Triangular Prism

A triangular prism is a prism that has triangular bases. The net of a right triangular prism is composed of two congruent triangles, called the bases, and three rectangles, which are the faces or sides.

What Vocabulary
Will You Learn?
triangular prism

Think About It! How can the prism be unfolded to make a two-dimensional net?

Example 1 Make a Net to Represent a Triangular Prism

Draw and label a net to represent the triangular prism.

Step 1 Draw and label the bottom rectangular face and the two triangular bases.

Let each grid unit represent 1 foot. The bottom face is a rectangle with side lengths of 12 feet and 15 feet. The bases are triangles that have a base length of 12 feet and a height of 5 feet.

Step 2 Draw and label the side rectangular face.
The side face is a rectangle with side lengths of 15 feet and 5 feet.

(continued on next page)

Step 3 Draw and label the remaining rectangular face.
The top face is a rectangle with side lengths of 15 feet and 13 feet.

Check

Draw and label a net to represent the triangular prism. Let each grid unit represent 1 centimeter.

Go Online Y ou can complete an Extra Example online.

Talk About It!
A rectangular prism has pairs of faces that have the same dimensions. This triangular prism has three rectangular faces that have different dimensions. Explain why there are no pairs of faces with the same dimensions in this prism.
\square

Learn Surface Area of a T riangular Prism

You can use the net of a prism to find the surface area of the prism.

Talk About It!
Because the bases are isosceles triangles, two of the three rectangular faces are congruent. Is there a way that all three rectangular faces could be congruent? Explain.

Go Online Watch the animation to learn how to use a net to find the surface area of the prism shown.

The prism has two triangular bases and three rectangular faces.

Step 1 Find the area of the triangular bases.

The triangles are congruent, so the area of each triangular base is the same. Find the area of one base. Then multiply by 2 to find the total area of both bases.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$A=\frac{1}{2}(6)(4) \quad b=6$ and $h=4$
$A=12 \quad$ Multiply.

The combined area of the triangular bases is 2(12), or 24 square inches.

Step 2 Find the area of each rectangular face.
Because the triangular bases of the prism are isosceles, two of the rectangular faces of the prism are congruent.

2 Congruent Rectangular Faces

Each face has dimensions of 9 inches and 5 inches. Find the area of one face.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =9(5) & & \ell=9 \text { and } w=5 \\
& =45 & & \text { Multiply. }
\end{aligned}
$$

The combined area of the two congruent rectangular faces is $2(45)$, or 90 square inches.

3rd Rectangular Face

The dimensions of the third rectangular face are 9 inches and 6 inches.

$$
\begin{aligned}
\text { A } & =\ell w \quad \text { Area of a rectangle } \\
& =9(6) \ell=9 \text { and } w=6 \\
& =54 \quad \text { Multiply. }
\end{aligned}
$$

The third rectangular face has an area of 54 square inches.

Step 3 Add the areas to find the total surface area.
$24+90+54=168$
So, the surface area of the triangular prism is \qquad square inches.

Example 2 Surface Area of a T riangular Prism

Use the net to find the surface area of the triangular prism.

Step 1 Find the area of the triangular bases.
The triangles are congruent, so the area of each triangular base is the same. Find the area of one base. Then multiply by 2 to find the total area of both bases.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$A=\frac{1}{2}(12)(5) b=12$ and $h=5$
$A=30 \quad$ Multiply.
The combined area of the triangular bases is $2(30)$, or 60 square feet.
Step 2 Find the area of each rectangular face.
Because the triangular bases of the prism are scalene, all three rectangular faces have different dimensions.

Bottom

The length ℓ of the bottom face is 12 feet and the width w is 15 feet.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =12(15) & & \ell=12 \text { and } w=15 \\
& =180 & & \text { Multiply. }
\end{aligned}
$$

The area of the bottom face is 180 square feet.

Top

The length ℓ of the top face is 13 feet and the width w is 15 feet.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =13(15) & & \ell=13 \text { and } w=15 \\
& =195 & & \text { Multiply. }
\end{aligned}
$$

The area of the top face is 195 square feet.

Side

The length ℓ of the side face is 15 feet and the width w is 5 feet.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =15(5) & & \ell=15 \text { and } w=5 \\
& =75 & & \text { Multiply. }
\end{aligned}
$$

The area of the side face is 75 square feet. (continued on next page)

Think About It!
What shapes are the faces and bases?
What formulas can you use to find the area of each face and base?

Talk About It!
Explain why the bases of the triangular prism have the same area.

Step 3 Add the areas to find the total surface area.

$$
60+180+195+75=510
$$

So, the total surface area of the triangular prism is square feet.

Check

Use the net to find the surface area of the triangular prism.

Example 3 Find Surface Area of a Triangular Prism

Use the net to find the surface area of the triangular prism.

Step 1 Find the area of the triangular bases.
The triangles are congruent, so the area of each triangular base is the same. Find the area of one base. Then multiply by 2 to find the total area of both bases.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$A=\frac{1}{2}(1)(0.9) b=1$ and $h=0.9$
$A=0.45 \quad$ Multiply.
The combined area of the triangular bases is $2(0.45)$, or 0.9 square centimeter.

Step 2 Find the area of each rectangular face.
Because the triangular bases of the prism are equilateral, the rectangular faces of the prism are congruent.

The length ℓ of each rectangular face is 2 centimeters and the width w is 1 centimeter.

$$
\begin{aligned}
A & =\ell w & & \text { Area of a rectangle } \\
& =2(1) & & \ell=2 \text { and } w=1 \\
& =2 & & \text { Multiply. }
\end{aligned}
$$

The combined area of the three rectangular faces is $3(2)$, or 6 square centimeters.

Step 3 Add the areas to find the total surface area.
$0.9+6=6.9$
So, the total surface area of the triangular prism is \qquad square centimeters.

Check

Use the net to find the surface area of the triangular prism.

© Apply Food

The Flying Pizza food truck serves their individual slices of pizza in boxes that are shaped like triangular prisms. The box for a small piece of pizza costs $\$ 0.25$ to make and the box for the large piece costs $\$ 0.32$ to make. Which box has the greater cost per square inch?

Large

9.5 in .

Small

6.5 in .

Go Online Watch the animation.

Check

The dimensions of two climbing walls that are in the middle of an obstacle course are shown. How much greater is the surface area of Wall B than Wall A?

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Draw and label a net to represent the triangular prism. Let each grid unit represent 1 foot. (Example 1)

2. Use the net to find the surface area of the triangular prism.
(Example 2)

Test Practice

3. Open Response Use the net to find the surface area of the triangular prism in square meters. (Example 3)
\square

Apply

4. Mr. Saldivar is building a ramp in the shape of a triangular prism with the dimensions shown. Sheets of plywood are 8 feet long and 4 feet wide. What is the minimum number of sheets of plywood he needs to buy in order to have enough to build the ramp?

5. A tent is in the shape of the triangular prism with the dimensions shown. If the canvas to make the tent costs $\$ 4.99$ per square yard, how much will it cost for the fabric to make the tent?

6. Reason Abstractly Why is the surface area of a triangular prism measured in square units rather than in cubic units? Explain.
7. Find the surface area of a triangular prism that has the base triangle shown and a prism height of 7 feet.

8. Find the Error A classmate found the surface area of the triangular prism shown. Find the error and correct it.

Area of Bases
$A=2\left(\frac{1}{2}\right)(6)(8)$
$A=48$
Area of Faces
$A=3(7)(10)$
$A=210$

The surface area of the prism is $48+210$ or 258 square inches.

Surface Area of Pyramids

I Can... represent a triangular or square pyramid with a net made up of squares and triangles, and then use that net to find the surface area of the given figure.

Learn Make a Net to Represent a Pyramid

A pyramid is a three-dimensional figure that has one polygonal base and triangular sides that meet at a point. The sides are called lateral faces.

A regular pyramid has a base that is a regular polygon and lateral faces that are all congruent. The height of one of the lateral faces in a regular pyramid is the slant height of the pyramid. The slant height also divides the base of the triangular face in half, creating two congruent segments.

A square pyramid is a pyramid with a square base and four triangular faces.

A triangular pyramid is a pyramid with a triangular base and three triangular faces. The base of a regular triangular pyramid is an equilateral triangle.

What Vocabulary
Will You Learn?
lateral faces
pyramid
slant height

QTalk About It!
Compare and contrast pyramids and prisms.

Lesson 9-4 • Surface Area of Pyramids

Think About It! How can the pyramid be unfolded to make a two-dimensional net?

Talk About It!
Explain why the slant heights of the triangles are equal.

Step 2 Draw and label the triangular faces.

The base of each triangular face is 4 centimeters long and the height is 7.23 centimeters.

Check

Draw and label a net to represent the pyramid shown. Let each grid unit represent 1 foot.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Draw a square pyramid in the space below, one that is different from the ones in Example 1 and Check. Trade your drawing with a partner. Draw and label a net that can be used to represent your partner's pyramid.

\square

Think About It!
How can the pyramid be unfolded to make a two-dimensional net?

Talk About It!
What do you notice about each face and base of this pyramid? Are all triangular pyramids like this? If so, explain why. If not, give a counterexample.

Example 2 Make a Net to Represent a Triangular Pyramid

Draw and label a net to represent the triangular pyramid.

Step 1 Draw and label the triangular base.
The base is an equilateral triangle with 9-meter sides and a height of 7.8 meters. Let each grid unit represent 1 meter.

Step 2 Draw and label the lateral faces.
The faces are also equilateral triangles with 9-meter sides and heights of 7.8 meters.

Check

Draw and label a net to represent the pyramid shown.

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Draw a triangular pyramid in the space below, one that is different from the ones in Example 2 and Check. Trade your drawing with a partner. Draw and label a net that can be used to represent your partner's pyramid.

Learn Surface Area of a Pyramid

You can use the net of a pyramid to find the surface area of the pyramid.

3 Go Online Watch the animation to learn how to use a net to find the surface area.

You can use a net to find the surface area of the pyramid shown.

The pyramid has a square base and four triangular lateral faces.

Talk About It!
If the base of a pyramid was a regular octagon, how many lateral faces would the pyramid have? Would they all be congruent? Explain.

Step 1 Find the area of the square base.
$A=s^{2}$
Area of a square
$A=(6)^{2}$ Replace s with 6 .
$A=36$
Simplify.
The area of the base is 36 square centimeters.

Step 2 Find the area of each lateral face.
The base is a square, so the area of each triangular face is the same.
$A=\frac{1}{2} b h$ Area of a triangle
$A=\frac{1}{2}(6)(8) \quad$ Replace b with 3 and h with 8 .
$A=24 \quad$ Multiply.
The combined area of the four lateral faces is $4(24)$, or 96 square centimeters.

Step 3 Add the areas to find the total surface area.
$36+96=132$

So, the total surface area of the pyramid is \qquad square centimeters.

Example 3 Find Surface Area of a Square Pyramid

Use the net to find the surface area of the square pyramid.

Step 1 Find the area of the square base.
The base of the pyramid is a square.
$A=s^{2} \quad$ Area of a square
$A=(4)^{2} \quad$ Replace s with 4 .
$A=16 \quad$ Simplify.
The area of the square base is 16 square centimeters.

Step 2 Find the area of each lateral face.
Because the base is a square, the lateral faces are congruent.
The faces are congruent triangles with a base length of 4 centimeters and a height of 7.23 centimeters.
$A=\frac{1}{2} b h$
Area of a triangle
$A=\frac{1}{2}(4)(7.23) \quad$ Replace b with 4 and h with 7.23.
$A=14.46$
Multiply.
The combined area of the four lateral faces is $4(14.46)$, or 57.84 square centimeters.

Step 3 Add the areas to find the total surface area.
$16+57.84=73.84$

So, the total surface area of the square pyramid is \qquad square centimeters.

Think About It!
What shapes are the different faces and base? What formulas can you use to find the area of each face and base?

Talk About It!
Can you think of a different type of pyramid where the faces are not congruent triangles? Explain its characteristics.

Check

Use the net to find the surface area of the square pyramid.

Go Online Y ou can complete an Extra Example online.

Pause and Reflect

How might you explain how to find the surface area of a square pyramid to a classmate who is encountering difficulty? What vocabulary and steps might be important to include in your explanation?

Example 4 Find Surface Area of a Triangular Pyramid

Use the net to find the surface area of the triangular pyramid.

Step 1 Find the area of the triangular base.
The base is an equilateral triangle with 9-meter sides and a height of 7.8 meters.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$A=\frac{1}{2}(9)(7.8)$ Replace b with 9 and h with 7.8.
A $=35.1 \quad$ Multiply.
The area of the triangular base is 35.1 square meters.

Step 2 Find the area of each lateral face.
Because the base is an equilateral triangle, the lateral faces are congruent. The faces are congruent triangles with 9-meter sides and heights of 7.8 meters.
$A=\frac{1}{2} b h \quad$ Area of a triangle
$A=\frac{1}{2}(9)(7.8)$ Replace b with 9 and h with 7.8.
$A=35.1 \quad$ Multiply.
The combined area of the three lateral faces is $3(35.1)$, or 105.3 square meters.

Step 3 Add the areas to find the total surface area.
$35.1+105.3=140.4$
So, the total surface area of the triangular pyramid is \qquad square meters.

Think About It!
How many differentsized faces are there?

Check

Use the net to find the surface area of the triangular pyramid.

3 Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Did you make any errors when finding the surface area of triangular pyramids? What can you do to make sure you don't repeat that error in the future?

© Apply Set Design

Morgan needs to construct three different square pyramids for the school play. The dimensions of the pyramids are shown in the table. The cost of materials to build the pyramids is $\$ 0.29$ per square foot. How much will Morgan spend on materials for all three pyramids?

Pyramid	Base Edge (ft)	Height of
A	2	5
B	5	12
C	3.5	9

1 What is the task?
Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Lin is constructing three different square pyramids for a classroom display about Egypt. The dimensions of the pyramids are shown in the table. How much more surface area does the pyramid with the greatest surface area have than the pyramid with the least surface area?

Pyramid	Base Edge (in.)	Height of
A	5	8.5
B	8	5
C	6	10

Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Draw and label a net to represent the square pyramid. (Example 1)

2. Use the net to find the surface area of the pyramid. (Example 3)

3. Draw and label a net to represent the triangular pyramid. (Example 2)

Test Practice

4. Open Response Use the net to find the surface area of the pyramid in square inches. (Example 4)

Apply

5. Mr. Potter makes two types of wooden pyramid puzzles. The base of Puzzle 1 is a square with side lengths of 5 inches and a slant height of 7 inches. Puzzle 2 is shown. If the cost of materials to build the puzzles is $\$ 0.16$ per square inch, what is the difference in cost to make the puzzles?

6. Be Precise Compare and contrast finding the surface area of a square pyramid and a regular triangular pyramid.
7. Create Draw and label a square pyramid that has a surface area that is less than 100 square meters. Then find the surface area of the pyramid.
8. 10 Persevere with Problems A square pyramid has a surface area of 210 square yards. The length of the base is 7 yards. What is the slant height?
9. (TP Persevere with Problems A triangular pyramid has a surface area of 174 square feet. It is made up of equilateral triangles with side lengths of 10 feet. What is the slant height? Round to the nearest tenth.

Foldables Use your Foldable to help review the module.

Tab 1

Real-World Examples

Tab 2

Rate Yourself! 0 ?

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Write about one thing you learned.

Reflect on the Module

Use what you learned about volume and surface area to complete the graphic organizer. -

Fssential Question

How can you describe the size of a three-dimensional figure?

Test Practice

1. Multiple Choice What is the volume of the prism? (Lesson 1)

(A) $13.3 \mathrm{ft}^{3}$
(B) $13.5 \mathrm{ft}^{3}$
(C) $25.2 \mathrm{ft}^{3}$
(D) $37.8 \mathrm{ft}^{3}$
2. Open Response A grocery store offers two different-sized boxes of cereal. If the boxes are rectangular prisms, which box of cereal is the better buy? Justify your answer.
(Lesson 1)

Box	Length (in.)	Width (in.)	Height (in.)	Price (\$)
A	6	$1 \frac{1}{2}$	11	2.99
B	$8 \frac{1}{2}$	2	14	5.00

3. Open Response The volume of the prism shown is 520 cubic centimeters. Find the height of the prism. (Lesson 1)

4. Open Response Use the net to find the surface area of the rectangular prism. (Lesson 2)

5. Multiselect Which of the following statements accurately describes the net of a rectangular prism with a length of 9 inches, a width of 4 inches, and a height of 11 inches? Select all that apply. (Lesson 2)The net will be made up of 4 parts, representing the top, bottom, and both sides of the rectangular prism.The net will be made up of 6 parts, representing the top, bottom, front, back, and both sides of the rectangular prism.
\square Two parts of the net will have dimensions 4 inches by 11 inches.Two parts of the net will have dimensions 4 inches by 9 inches.

Two parts of the net will have dimensions 11 inches by 13 inches.
6. Table Item Consider the prism and the net shown. (Lesson 3)

A. Indicate which of the following calculations are correct.

	Correct llicorrect	
Area of top face: $255 \mathrm{~cm}^{2}$		
Area of bottom face: $120 \mathrm{~cm}^{2}$		
Area of base: $70 \mathrm{~cm}^{2}$		
Area of base: $60 \mathrm{~cm}^{2}$		
Area of face: $136 \mathrm{~cm}^{2}$		

B. What is the surface area of the prism?
(A) $800 \mathrm{~cm}^{2}$
(B) $885 \mathrm{~cm}^{2}$
(C) $886 \mathrm{~cm}^{2}$
(D) $2,040 \mathrm{~cm}^{2}$
7. Multiple Choice Select the net that
represents the pyramid shown. (Lesson 4)

(A)

(B)

(c)

(D)

Q. Essential Question

Why is data collected and analyzed and how can it be displayed?

What Will You Learn?

Place a checkmark (\checkmark) in each row that corresponds with how much you already know about each topic before starting this module.

KEY	Before			After		
- I don't know. - l've heard of it.		0	3	0	0	3
identifying statistical questions						
displaying data in a table						
constructing dot plots						
constructing histograms						
finding the mean and median of a data set						
finding the range and interquartile range of a data set						
constructing box plots						
finding the mean absolute deviation of a data set						
identifying outliers of a data set and identifying their effect on the measures of center and variation						
interpreting the distribution of a data set						

(11) Foldables Cut out the Foldable and tape it to the Module Review at the end of the module. You can use the Foldable throughout the module as you learn about statistical measures.

What Vocabulary Will You Learn?

Check the box next to each vocabulary term that you may already know.
\square average
\square interquartile range (IQR)

- quartiles
\square box plot
\square cluster
\square distribution
\square dot plotfirst quartile
\square gap
\square histogram
\square mean
\square range
\square mean absolute deviation
\square measures of center
\square measures of variation
\square medianoutlier
\square second quartile
\square statistical questionstatistics
\square symmetric distribution
\square third quartile
\square peak

Are You Ready?

Study the Quick Review to see if you are ready to start this module.
Then complete the Quick Check.

Quick Review

Example 1

Add rational numbers.
Find $11.83+8.76+13.28+16.38$.
11.83
8.76 Add.
13.28
16.38
$+\quad 1$
50.25

Example 2
Divide rational numbers.
Lydia typed 105.2 words in 4 minutes. How many words did Lydia average typing each minute?

$$
\begin{aligned}
105.2 \div 4=26.3 & \begin{array}{l}
\text { Divide the total number of } \\
\\
\text { words typed by the number } \\
\text { of minutes. }
\end{array}
\end{aligned}
$$

Lydia averaged 26.3 words each minute.

Quick Check

1. Find $7.68+5.25+2.99+3.18$.
2. A pilot flew $1,308.3$ miles this week. The pilot flew the same number of miles each of 3 days this week. How many miles did the pilot fly each day?

How Did You Do?
Which exercises did you answer correctly in the Quick Check?
Shade those exercise numbers at the right.

Statistical Questions

I Can... understand that a statistical question anticipates a variety of responses.

Learn Statistical Questions

Statistics involves collecting, organizing, and interpreting pieces of information, or data. One way to collect data is by asking statistical questions. A statistical question is a question that is answered by collecting data. Answers to a statistical question will vary based on the data collected.

The table gives some examples of statistical questions and examples that are not statistical questions.

Statistical Questions	Not Statistical Questions
How many text messages do middle school students typically send each day?	What is the height in feet of the tallest mountain in Colorado?
How many hours per night does a typical teenager spend watching television?	How many people attended last night's jazz concert?

In the table, the questions on the left are statistical questions because if you were to survey a group of students, you will likely get a variety of responses. The questions on the right are not statistical questions because each question has one specific response.

Constructing statistical questions is an important part of the process of using statistics to collect, organize, and interpret data. You will learn how to apply these steps in order to help answer a statistical question.

Step 1 Construct a statistical question.
Step 2 Use your question to collect data.
Step 3 Summarize the data using tables or graphical displays.
Step 4 Use the data to answer the statistical question.

What Vocabulary
Will You Learn?
statistical question
statistics

—
\square
\qquad
\square
\square
\square
\square
\square In what year was the tallest roller coaster built?

3 Go Online Y ou can complete an Extra Example online.

Explore Collect Data

W Online Activity Y ou will explore using a survey to collect data to explain how statistical questions anticipate a variety of answers.

Learn Display Data in a T able

A survey is one way to collect data to answer a statistical question. Once the data are collected, you can record the results in an organized way, such as a table, and then analyze the results.

Suppose a random group of adults were asked the question How many hours do you exercise each week? The results are shown in the table.

How many hours do you exercise each week?							
Number of Hours	0	1	2	3	4	5	6
Number of Responses	1	2	5	5	3	1	2

Based on the results in the table, one observation you can make is that more than half of the people who responded exercised fewer than four hours per week.

Example 2 Display Data in a T able

Suppose you want to answer the statistical question How many hours per week does the typical sixth grade math student study? You survey students in your math class using the question How many hours do you typically spend studying each week? The responses were $2,4,5,4,2,1,3,1,1,4,6,3,5,2,2,1,1$, and 4 hours.

Organize the data in a table. Then analyze the results.
Part A Organize the data in a table.
Complete the table by recording the number of responses.

How many hours do you typically spend studying each week?	
Number of Hours	Number of Responses
1	
2	
3	
4	
5	
6	

Talk About It!
What are some other observations that can be made based on the data?

Part B Analyze the results.
Step 1 Find the total number of students surveyed.
Find the sum of the number of responses.
$5+4+2+4+2+1=\square$ students
Step 2 Summarize the data.
Study the responses to determine if there is an overall trend.
One observation you can make is that half of the students in the survey studied fewer than 3 hours per week.

Check

Suppose you want to answer the statistical question How many times does the typical middle school student exercise each month? You survey your friends using the question How many times each month do you typically exercise?

The responses were $14,12,6,2,1,0,10,6,3,4$, and 5 times.
Organize the data in a table. Then analyze the results.

Part A

Organize the data by completing the table.
Number of Times Spent Exercising Number of Responses

fewer than 4	
$4-7$	
$8-11$	
12 or more	

Part B

Select the statement that best represents the data.
(A) Most students surveyed typically exercise at least 8 times each month.
(B) Most students surveyed typically exercise more than 7 times each month.
(C) Most students surveyed typically exercise 7 or fewer times each month.
(D) Exactly half of the students surveyed typically exercise 4 or more times each month.

3 Go Online Y ou can complete an Extra Example online.

Practice

Go Online You can complete your homework online.

Determine whether or not each question is a statistical question.

(Example 1)

1. How many continents are there?
2. How many continents has the average student visited?
3. How many sporting events did the average student attend last year?
4. In what year was the first World Series?
5. Suppose you want to determine the number of siblings each of your classmates have. You survey them using the question How many siblings do you have?. The responses were $1,4,2,3,0,1,0,5,1,2,2,3,0,1,2,0,1$, 1,6 , and 2 siblings. Organize the data by completing the table and analyze the results. (Example 2)
6. You survey your classmates using the question How many toppings do you like on an ice cream sundae?. The responses were $2,3,7,4,5,5,4,4,1,2,4,3,4,3,6,0,4,5$, 6 , and 5 toppings. Organize the data by completing the table and analyze the results. (Example 2)

Number of Siblings	Number of Responses
$0-1$	
$2-3$	
$4-5$	
6 or more	

Number of Toppings Number of Responses	
$0-1$	
$2-3$	
$4-5$	
6 or more	

7. Y ou survey your classmates using the question How many sports do you play?. The responses were 2, 2, 1, 3, 1, 2, 4, 1, 2, 1, $3,2,2$, and 2 sports. Organize the data by completing the table and analyze the results. (Example 2)

Number of Sports	Number of Responses
1	
2	
3	
4	

8. Multiselect Which of the following are statistical questions? Select all that apply.

How many DVDs does a typical student own?

How many oceans are there in the world?

How many times did a typical student go to the zoo last year?
\square How many classes does each student take?
\square How many pets does a typical student own?
\square How many continents are there?
9. Create Write a survey question that is a statistical question. Then write a survey question that is not a statistical question. Explain why each question is or is not a statistical question.
11. Reason Abstractly Mara surveyed her friends as to the number of tablets their family owns. The responses were $1,2,2,1$, $0,3,1,2,4$ and 2 tablets. Mara concludes that of her friends' families, most own 1 or 2 tablets. Is she correct? Explain.
10. Find the Error Pete surveyed his friends as to the amount of their weekly allowance. The responses were $\$ 5, \$ 0, \$ 8$, $\$ 10, \$ 8, \$ 10, \$ 0, \$ 0$, and $\$ 1$. Pete analyzed the results and stated that more than half of his friends earned $\$ 8$ or more per week. Find his mistake and correct it.
12. Refer to Exercise 8. Choose one of the questions that is not a statistical question and rewrite it so that it is a statistical question.

Dot Plots and Histograms

I Can... use dot plots and histograms to display and analyze data.

Learn Construct Dot Plots

One way to represent a data set is to construct a dot plot. A dot plot is a visual display of a distribution of data values where each data value is shown as a dot above a number line.

The number of wins in a recent year by several football teams is $10,9,6,6,5,5,2,12,12,8,8,7,5,5$, and 4 wins. The dot plot shown organizes the data and shows possible patterns.

Football Team Wins

Q Example 1 Construct Dot Plots

Jasmine surveyed the students in her class using the question How many pets do you own?. The results are shown in the table.

Number of Pets											
3	0	0	1	2	1	1	2	2	0	1	2
1	2	3	4	3	3	2	0	1	42		

Construct a dot plot of the data. Then summarize the results.

Part A Construct a dot plot.
Draw and label a number line from 0 to 4 , because the least data value is 0 and the greatest data value is 4 . For each data value, place a dot above the corresponding number on the number line.

Part B Summarize the results.
A total of 24 students responded to the survey. Students are more likely to own 1 or 2 pets than 3 or 4 pets. No student in the survey owned more than 4 pets.

What Vocabulary Will You Learn? dot plot histogram

\square

Part A

Calories in a Serving of Peanut Butter			
190	160	210	210
200	185	190	190
185	200	190	210
190	185	200	200

Construct a dot plot.

Part B

There are __brands of peanut butter. The brand with the greatest number of Calories per serving contained \qquad Calories and the brand with the least contained \qquad Calories. The most common number of Calories per serving was \qquad .

Learn Construct Histograms

Data from a frequency table can be displayed as a histogram, a type of bar graph used to display numerical data that have been organized into equal intervals. This allows you to see the frequency distribution of the data, or the quantity of data that are in each interval.

When constructing a histogram, it is important that the intervals are equal and consecutive, so that you can make accurate observations about the data, based on the heights of the bars. The intervals should leave no gaps so that the entire range of data can be represented.

Example 2 Construct Histograms

A park ranger at a state park was asked the question How many daily visitors attended the park each day for 20 days? The table shows the results.

Construct a histogram to represent the data.

Step 1 Make a frequency table.
Use a scale to include all of the values, 100 through 399, with equally-spaced intervals.

Complete the frequency table to organize the data.

Daily Visitors	
108209171152236	
165244263212161	
327185192226137	
193235207382241	

Daily Visitors	
Visitors	Frequency
$100-149$	
$150-199$	
$200-249$	
$250-299$	
$300-349$	
$350-399$	

Step 2 Draw and label the axes.
When you construct the histogram, first draw the axes. Label the horizontal axis using the intervals from the frequency table, 100-149 through 350-399. Label the vertical axis with the frequencies, 1-10.

Daily Visitors

Step 3 Graph the intervals.
For each interval, draw a bar with a height that is indicated by the frequency table. Complete the histogram by drawing and shading the correct bar heights.

Think About It!
What intervals will you select for the histogram?

a
a

Check

The students in Mrs. Angelo's class were asked the question How many books did you read over summer vacation?. The responses are shown in the table.

Number of Books Read					
3	6	4	2	8	0
6	3	9	3	1	4
5	12	10	4	11	0
7	3	7	5	12	6
7	13	14	5	1	2

Construct a histogram to represent the data.

Go Online You can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Chris surveyed the members of his tennis team by asking the question In how many tennis tournaments have you played?. The results are shown in the table. Construct a dot plot of the data and summarize the results. (Example 1)

Number of Tennis Tournaments					
0	2	1	4	0	1
1	0	3	2	6	0

Test Practice

4. Open Response Petra surveyed the members of her dance class by asking the question How many hours outside of class do you usually practice dance each week?. The results are shown in the table. Construct a dot plot of the data.

Number of Hours				
1	3	4	5	2
2	2	4	3	1
3	3	2	4	2

Apply

5. Lou wanted to determine how much his friends pay for video games. He surveyed them using the question How much did you pay for the last video game you bought? The responses were $\$ 29, \$ 45, \$ 50, \$ 55, \$ 34, \$ 28, \$ 35, \$ 35, \$ 45$, $\$ 30, \$ 34$, and $\$ 55$. How many more games cost between $\$ 30$ and $\$ 39$ than between $\$ 40$ and $\$ 49$?
6. Provide a data set that can be represented by the histogram shown.

7. Reason Abstractly Laura recorded the daily temperatures, in degrees Fahrenheit, during January in Minnesota. What changes might she have to make in a number line for a dot plot that starts at zero and goes to 20, so that it could be used to make a dot plot of the temperatures? Explain.
8. Make a Conjecture Refer to the histogram. In one or two sentences, write a conclusion you can make about the data.

9. Justify Conclusions Determine if the statement is true or false. Justify your conclusion.

Histograms display individual data values.

Measures of Center

I Can... use the measures of center to summarize a numerical data set with a single number, and find a missing data value given the mean.

Explore Mean

Online Activity Y ou will use interactive workmats to explore how to find the mean of a data set.

Learn Measures of Center

A data set can contain many values, but sometimes it is beneficial to find a single value that can represent, or summarize, the entire data set.
Measures of center are numbers used to describe the center of a numerical data set. The measures of center you will learn about in this lesson are the mean and median.

One measure of center used to describe a numerical data set is the mean. The mean, or average, of a data set is the sum of the data divided by the number of data values.

Suppose you have 4 test scores, $86 \%, 90 \%, 72 \%$, and $88 \% .0 \nmid$ can find the mean by adding the test scores and then dividing by the total number of scores, 4 .
$\frac{86+90+72+88}{4}=\square$
Add the test scores. Then divide by the total number of scores.

The mean score is 84%.

What Vocabulary

 Will You Learn?average
mean
measures of center
median

Talk About It!
What are some ways you have seen mean used in real life?

Think About It!

Without calculating the mean, what temperature do you think best describes the center of the data? Explain your reasoning.

The mean is the balance point of the data. The dot plot displays the test scores. The total distance between the values below the mean and the mean must be equal to the total distance between the values above the mean and the mean.

Example 1 Find the Mean

The table shows the recorded high temperatures in degrees Fahrenheit for six days in Little Rock, Arkansas.

Find the mean temperature to summarize the data.

High Temperatures in Little Rock, Arkansas (${ }^{\circ} \mathrm{F}$)					
Mon.	Tues.	Weds.	Thurs.	Fri.	Sat.
45	52	45	50	49	47

$$
\begin{aligned}
\text { mean } & =\frac{\text { sum of the data values }}{\text { number of data values }} & & \text { Definition of mean } \\
& =\frac{45+52+45+50+49+47}{6} & & \text { There are } 6 \text { data values. } \\
& =\frac{288}{6} & & \text { Add. } \\
& =48 & & \text { Divide. }
\end{aligned}
$$

The mean temperature for the selected days is \qquad ${ }^{\circ} \mathrm{F}$. The dot plot confirms that the mean temperature of $48^{\circ} \mathrm{F}$ is the balance point of the data. The total distance between the values above the mean and the mean, 7 , is equal to the total distance between the values below the mean and the mean.

Check

The table shows the number of headphones sold at an electronics store during a sale. Find the mean number of headphones sold to summarize the data.

Headphones Sold					
Mon.	Tues.	Weds.	Thurs.	Fri.	Sat.
9	18	7	7	10	15

Go Online Y ou can complete an Extra Example online.

Learn Find a Missing Data Value Using the Mean

You can use dot plots and bar diagrams to find a missing data value given the mean and the other data values. Consider the following problem.

Caitlin's first four quiz scores are shown in the table. What score does Caitlin need to earn on her fifth quiz to have a mean quiz score of 90 ?

Caitlin's Quiz Scores				
88	95	93	80	$?$

Method 1 Use the mean as a balance point.
Plot the four known quiz scores and label the mean.

distance below the mean $=10+2$, or 12
distance above the mean $=5+3$, or 8
The distances are not the same because the fifth quiz score is not plotted. There is a greater distance below the mean. This means the missing value must be above the mean. In order for the total distance above the mean to equal 12 , the missing value must be 4 units above the mean, because $8+4=12$. The missing value is $90+4$, or 94 .

Method 2 Use an equation.
Draw a bar diagram to represent the situation. To find the total amount needed to achieve a mean score of 90 , multiply the mean, 90 , by the number of data values, 5 .
$90(5)=450$
The sum of the known data values is $88+95+93+80$, or 356 . Let q represent Caitlin's score on her fifth quiz.

The equation that can be used to find the missing data value is $356+q=450$. Solve the equation.

$356+q=450$		Write the equation.
-356		Subtraction Property of Equality
$q=94$		Simplify.

The missing value is 94 .
So, using either method, Caitlin needs a score of \qquad on her fifth quiz to have a mean quiz score of 90 .

Think About It!
Do you think the missing value is less than, greater than, or equal to the mean?
Explain.

Example 2 Find a Missing Data Value Using the Mean

The number of messages Alex sent on her phone each month for the past five months were $494,502,486,690$, and 478 . Suppose the mean for six months was 532 messages.

How many messages did Alex send during the sixth month?
Method 1 Use the mean as a balance point.
Plot the five known data values and label the mean.
distance below the mean $=54+46+38+30$, or \square
distance above the mean $=158$
The distances are not the same because the sixth amount is not plotted. There is a greater distance below the mean. This means the missing value must be above the mean. In order for the total distance above the mean to be equal to 158 , the missing value must be 10 units above the mean, because $158+10=168$.

The missing value is $532+10$, or \square

Method 2 Use an equation.
Draw a bar diagram to represent the situation. To find the total amount needed for the mean number of messages to be 532, multiply the mean by the number of data values.

532(6) $=3,192$
The sum of the known data values is $494+502+486+690+478$ or 2,650 . Let m represent the number of messages Alex sent during the sixth month.

The equation that can be used to find the missing data value is $2,650+m=3,192$. Solve the equation.

So, using either method, Alex sent 542 messages during the sixth month.
Talk About It!
Compare and contrast Method 1 and Method 2. When might it be more advantageous to use Method 2?

Check

The table shows the greatest depths of four of Earth's five oceans. If the average greatest depth is 8.094 kilometers, what is the greatest depth of the Southern Ocean? Round to the nearest hundredth.

Ocean	Greatest Depth (km)
Pacific	10.92
Atlantic	9.22
Indian	7.46
Arctic	5.63
Southern	d

Go Online Y ou can complete an Extra Example online.

Learn Find the Median

Another measure of center used to describe a numerical data set is the median.

The median of a numerical data set is the middle value when the data are ordered from least to greatest. If there is an odd number of data values, the median is the middle data value. If there is an even number of data values, the median is the mean of the two values in the middle.

Just as the mean is a single value used to summarize a data set, the median also summarizes a data set with a single value.

Consider the following set of numerical data, which represents the ages of participants in a board game club.

$$
8,8,8,8,9,10,10,11,12,12,16,16,19
$$

There are 13 data values. Since the number of data values is odd, the median is the middle data value. Make sure the data values are ordered from least to greatest before finding the median.

554 Module 10 • Statistical Measures and Displays

Example 3 Find the Median Given an Odd Number of Data Values

Between 2009 and 2015, the number of Atlantic hurricanes each year were $3,12,7,10,2,6$, and 4 .

Find the median of the data.

There are 7 data values. Since the number of data values is odd, the median is the middle data value.

Step 1 Order the values from least to greatest.

Step 2 Find the median.
How many data values are below the median? \qquad
How many data values are above the median? \qquad
What is the median? \qquad

The center of the data can be represented by the single value, \qquad So, the median number of hurricanes from 2009 to 2015 is 6 hurricanes.

Check

Dina's scores on recent science tests were $86,98,85,90,85,91,89$, 88 , and 89 points. Find the median of her test scores.

Think About It!
A classmate immediately stated the median is 10 . What was the likely mistake?

Talk About It!
Find the mean of the data set to the nearest tenth. What do you notice about its value when compared to the median? Why do you think that is?

Talk About It!
If the data value of 12 was changed to 13 , how would the mean be affected? the median?

Think About It!
A classmate stated that the median will not be one of the data values. Is this correct? Why or why not?

Talk About It!
The histogram represents the data from the table. Can you use the histogram to find the mean or median? Explain your reasoning.

Zoo Monkeys

Example 4 Find the Median Given an Even Number of Data Values

The table shows the number of
monkeys at ten different zoos.

Find the median of the data.
Number of Monkeys

27	36	18	25	12
18	42	34	16	30

There are 10 data values. Because the number of data values is even, the median is the mean (average) of the two middle data values.

Step 1 Order the values from least to greatest.
In order from least to greatest, the values are 12, 16, 18, 18, 25, 27, 30, 34,36 , and 42.

Step 2 Find the median.
Because there is an even number of data values, find the two values closest to the middle.

The two values closest to the middle are and \qquad
Find the mean of the two middle data values.

$$
\begin{aligned}
\text { mean } & =\frac{25+27}{2} & & \text { Find the mean of } 25 \text { and } 27 . \\
& =\frac{52}{2} & & \text { Add. } \\
& =26 & & \text { Divide. }
\end{aligned}
$$

So, the median of the data is \qquad monkeys. The data can be summarized by describing the center of the data as 26 monkeys.

Check

The table shows the prices of different packages of juice boxes at a local store. Find the median of the data.

Cost of Juice Boxes (\$)			
1.65	1.97	2.45	2.87
2.35	3.75	2.49	2.87

Go Online Y ou can complete an Extra Example online.

Apply Track

The table shows Kendra's 100-meter dash times. Kendra wants to record the measure of center that describes her times as the fastest. Which measure should she use, the mean or median? Why?

Kendra's 100 -meter Dash Times (seconds)			
15.1	17.2	14.6	16.2
17.9	16.5	17.8	17.1
14.7	17.1	19.5	13.8

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

Rosario recorded the number of hours she spent doing homework for five nights. She wants to use the greater measure of center to describe her time spent doing homework. Which measure should she use, the mean or median? Why?

Day	Time (\mathbf{h})
1	1.25
2	2.25
3	1.5
4	2
5	0.75

Go Online You can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that compares and contrasts the two measures of center you studied in this lesson.

Practice

1. The number of cans collected over the weekend by each sixth grade homeroom was $57,59,60,58,58$, and 56 cans. Find the mean number of cans collected. (Example 1)
2. The amount Lucy earned babysitting each month for the past five months was $\$ 225$, $\$ 280, \$ 240, \$ 180$, and $\$ 200$. Suppose the mean for six months was $\$ 220$. How much did Lucy earn babysitting during the sixth month? (Example 2)
3. The table shows the results of a survey about the number of E-mails sent in one day. Find the median number of E -mails sent per day. (Example 3)

Number of E-mails Sent Per Day						
20	24	22	27	21	27	20
27	22	23	20	22	24	26
23	26	27	22	27	20	25

Go Online You can complete your homework online.
2. Grace and her friends are comparing the number of pets they own. They have 1, 2, 0, $5,1,1$ and 4 pets. Find the mean number of pets owned. (Example 1)
4. The average high temperature last week was 65 degrees Fahrenheit. The high temperatures for Sunday through Friday were $68,70,73,45,68$, and 71 degrees Fahrenheit. What was the high temperature on Saturday? (Example 2)
6. The table shows the number of students in each group on a school field trip. Find the median size of a group. (Example 3)

Number of Students in Each Group

5	7	8	7	6
4	4	5	6	9
7	5	7	8	6
9	7	5	4	5

Test Practice

8. Open Response The number of points Seth has earned playing his favorite game is shown. Find the median of the data.

$$
40,28,24,37,43,26,30,36
$$

Apply

9. The table shows the number of minutes Kenny spent practicing the piano. Kenny wants to record the greater measure of center that describes his time spent practicing. Which measure should he use, the mean or median? Why?

Number of Minutes			
38	30	26	25
20	24	25	60

10. The table shows the number of push-ups Jade completed each day this week. Jade wants to record the greater measure of center that describes her ability to do push-ups. Which measure should she use, the mean or median? Why?

Number of Push-ups

65	70	67	38
55	68	64	

11. Create Generate a real-world data set that has a mean of 8.
12. 13 Find the Error A student said the mean of the data set shown is 17 . Find the student's error and correct it.
number of texts sent in an hour: 15, 11, 25 , 19, 11, 27
13. Use a Counterexample Determine if the following statement is true or false. If false, provide a counterexample.

The mean and median of a data set cannot be the same value.
14. Reason Abstractly Ty worked 5 nights this week at an ice cream shop. He earned $\$ 23, \$ 29, \$ 25$, and $\$ 16$ in tips. The average amount he earned in tips for the 5 nights was $\$ 22$. Is the amount he earned in tips on night 5 more or less than the average amount? Explain.

Interquartile Range and Box Plots

I Can... understand how a measure of variation describes the variability of a data set with a single value, display a numerical data set in a box plot, and summarize the data.

Learn Measures of Variation

Measures of variation are values that describe the variability, or spread, of a data set. They describe how the values of a data set vary with a single number.

One measure of variation is the range, which is the difference between the greatest and least data values in a data set. Consider the data set shown.
$0,0,1,1,2,2,2,3,4,5,6,6,7,7,7,8 \quad$ The data values range from 0 to 8 . The range is $8-0$, or 8 .

Another measure of variation is the interquartile range. Before you can find this measure, you first need to understand and find quartiles.
Quartiles divide the data into four equal parts. The first quartile, Q_{1}, is the median of the data values less than the median. The third quartile, Q_{3}, is the median of the data values greater than the median. The median is also known as the second quartile, Q_{2}.

The interquartile range (IQR) is the distance between the first and third quartiles of the data set. To find the IQR, subtract the first quartile from the third quartile.

The interquartile range represents the middle half, or middle 50%, of the data. The lower the IQR is for a data set, the closer the middle half of the data is to the median.

In the given data set, the IQR is $6.5-1.5$, or 5 .

What Vocabulary

Will You Learn?
box plot
first quartile
interquartile range measures of variation quartiles
range
second quartile
third quartile

© Talk About It!

How does knowing that the data is divided into four equal parts help you remember the vocabulary term quartile?

Talk About It! If the median describes the center of a data set, what does the interquartile range describe?

Think About It!
Do the data values need to be in numerical order? Why?

Talk About It!

Which value, the interquartile range, the first quartile, or the third quartile tells you more about the spread of the data values? Explain your reasoning.

Example 1 Find the Range and Interquartile Range

The table shows the approximate maximum speeds, in miles per hour, of different animals.

Use the range and interquartile range to describe how the data vary.

Part A Describe the variation of the data using the range.

The greatest speed in the data set is 70 miles per hour. The least speed in the data set is 1 mile per hour.

The range is $70-1$, or 69 miles per hour.
The speeds of animals vary by 69 miles per hour.

Part B Describe the variation of the data using the interquartile range.

Step 1 Find the median.
Write the speeds in order from least to greatest.

least
The median is \qquad .

Animal Speed (mph)

Housecat	30
Cheetah	70
Elephant	25
Lion	50
Mouse	8
Spider	1

Step 2 Find the first and third quartiles.
The first quartile is \qquad Find the median of the lower half of the data.

The third quartile is \qquad Find the median of the upper half of the data.

Step 3 Find the interquartile range.
Interquartile range $=Q_{3}-Q_{1}$

Find the mean of the two middle numbers, 25 and 30.

$$
\begin{array}{cl}
=\square-\square & Q_{3}=50 ; Q \mp 8 \\
=\square & \text { Subtract. }
\end{array}
$$

So, the spread of the middle 50% of the data is \qquad This means that the middle half of the data values vary by \qquad miles per hour.

Check

The average wind speeds for several cities in Pennsylvania are given in the table. Use the range and interquartile range to describe how the data vary.

Part A

Describe the variation of the data using the range.

Wind Speed	
City	Speed (mph)
Allentown	8.9
Erie	11.0
Harrisburg	7.5
Middletown	7.7
Philadelphia	9.5
Pittsburgh	9.0
Williamsport	7.6

Part B

Describe the variation of the data using the interquartile range.

3 Go Online You can complete an Extra Example online.

Learn Construct Box Plots

A box plot, or box-and-whisker plot, uses a number line to show the distribution of a data set by plotting the median, quartiles, and extreme values. The extreme values, or extremes, are the greatest and least values in the data set. The extremes, quartiles, and median are referred to as the five-number summary.

A box is drawn around the two quartile values. The whiskers extend from each quartile to the extreme data values, unless the extremes are very far apart from the rest of the data set. The median is marked with a vertical line, and separates the box into two boxes.

Box plots separate data into four sections. These sections are visual representations of quartiles. Even though the parts may differ in length, each contain 25% of the data. The two boxes represent the middle 50% of the data. A longer box or whisker indicates the data are more spread out in that section. A longer box or whisker does not mean there are more data values in that section. Each section contains the same number of values, 25% of the data.

Math History Minute

Florence Nightingale (1820-1910) used statistics to help improve the survival rates of hospital patients. She discovered that by improving sanitation, survival rates improved. She designed charts to display the data, as statistics had rarely been presented with charts before. She is known for inventing the coxcomb graph, which is a variation of the circle graph.

Think About It!
What does the length of the box and whiskers tell you about the spread of the data in the box plot?

Talk About It!
What does the interquartile range describe in the context of the problem?

The box plot shows the annual snowfall totals, in inches, for a certain city over a period of 20 years.

Annual Snowfall (in.)

Describe the distribution of the data. What does it tell you about the snowfall in this city?

The annual snowfall ranges from about 110 inches to about 250 inches. The middle half of the data range from about 140 inches to about 195 inches. Because the boxes are shorter than the whiskers, there is less variation among the middle half of the data. Having less variation means there is a greater consistency among the middle 50% of the data than in either whisker.

Check

The average gas mileage, in miles per gallon, for various sedans is shown in the box plot. Describe the distribution of the data. What does it tell you about the average gas mileage for those sedans?

Average Gas Mileage (mpg)

Example 3 Construct and Interpret Box Plots

The table shows the recorded speeds of cars traveling on a country road.

Car Speeds (mph)									
25	35	27	22	34	40	20	19	23	25

Construct a box plot to represent the data. Then describe the distribution of the data.

Part A Construct a box plot.
Step 1 Order the values from least to greatest.
In order from least to greatest, the speeds are 19, 20, 22, 23, 25, 25, $27,30,34,35$, and 40 miles per hour.

Step 2 Graph the values above a number line.
Find the median, the extremes, and the first and third quartiles. Graph the values above a number line.

Step 3 Draw the box plot.

Draw a line from the first quartile to the least value. Draw a line from the third quartile to the greatest value. Add a title.

Part B Describe the distribution of the data.
The recorded speeds range from 19 miles per hour to 40 miles per hour. The middle half of the data range from 22 miles per hour to 34 miles per hour. Because the boxes are longer than the whiskers, there is more variation among the middle half of the data. Having more variation means there is a lesser consistency among the middle 50% of the data than in either whisker.

Think About It!
What are the different measures of variation you need to find in order to construct a box plot?

Check

Earthquakes occur at different depths below Earth's surface. Stronger earthquakes happen at depths that are closer to the surface. The table shows the

Depth of Recent Earthquakes (km) depths of recent earthquakes, in kilometers.

Part A Construct a box plot to represent the data.

Part B Describe the distribution of the data.

Go Online Y ou can complete an Extra Example online.
(17) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. Cameron surveyed her friends about the number of apps they use. The responses were $15,16,18,9,18,4,19,20,17$, and 36 apps . Use the range and interquartile range to describe how the data vary. (Example 1)
2. The table shows the number of hours different animals spend sleeping per day. Use the range and interquartile range to describe how the data vary. (Example 1)

Time Animals Spend Sleeping (h)

12	20	16	11	4	2

3. The box plot shows the ages of vice presidents when they took office.

Describe the distribution of the data. What does it tell you about the ages of vice presidents? (Example 2)

Ages of US Vice Presidents

4. The ages of children taking a hip-hop dance class are 10, 9, 9, 7, 12, 14, 14, 9, and 16 years old. Construct a box plot of the data. Then describe the distribution of the data. (Example 3)

Test Practice
5. Open Response The cost of tents on sale at a sporting goods store are $\$ 66, \$ 72, \$ 78, \$ 69, \$ 64, \$ 70, \$ 67, \$ 72$, and $\$ 66$. Use the range and interquartile range to describe how the data vary.

Apply

6. The table shows the number of points scored by the seventh and eighth grade girls basketball teams in each of their games this season. Construct a box plot to represent the data for each team. Then use the box plots to compare the data.

Points Scored per Game							
Seventh Grade Team				Eighth Grade Team			
39	36	40	27	34	36	47	40
35	29	36	29	39	38	45	43
31	38	30	34	42	41	45	42

7. Justify Conclusions Determine if the following statement is true or false. If false, justify your reasoning.

You can determine the mean of a data set from a box plot.
9. Make an Argument A student said that, in a box plot, if the box to the right of the median is longer than the box to the left of the median, there are more data values represented by the longer box. Is the student's reasoning correct? Construct an argument to defend your solution.
8. Create Provide a set of real-world data and then construct a box plot of the data.
10. Reason Inductively What can you conclude about a data set shown in a box plot where the whiskers and boxes are all the same length?

Mean Absolute Deviation

I Can... understand how the mean absolute deviation describes the variation in a data set and interpret its value within the context of a given real-world scenario.

Learn Mean Absolute Deviation

You have learned how the range and interquartile range describe the spread of a data set. Another measure of variation is the mean absolute deviation (MAD). The MAD of a data set is the average distance between each data value and the mean. The lower the MAD is for a data set, the closer the data values are to the mean.

3 Go Online Watch the animation to learn about mean absolute deviation. The animation shows a data set of the points scored in each game. Follow the steps to find the mean absolute deviation.

Points Scored per Game					
46	58	50	53	48	57

Step 1 Find the mean.

$$
\frac{46+58+50+53+48+57}{6}=52
$$

Calculate the sum of the values in the data set and then divide by the total number of values.

Step 2 Find the distance between each data value and the mean.

(continued on next page)

What Vocabulary Will You Learn?

mean absolute deviation

a

Step 3 Find the mean of the distances.

Talk About It!
The mean absolute deviation is a measure of variability that compares each data value's distance to the mean. In the animation, the MAD of the team scores is 4 . Do you think the MAD indicates the data set has a great deal of variability? Explain.

$$
\frac{6+4+2+1+5+6}{6}=4 \quad \begin{aligned}
& \text { Calculate the sum of the distances } \\
& \text { and divide by the number of } \\
& \text { distances, } 6 .
\end{aligned}
$$

So, the mean absolute deviation of the data set is 4 . In other words, the average distance each score is from the mean score of 52 is 4 points.

Example 1 Find Mean Absolute Deviation

The table shows the maximum speeds of eight roller coasters.

Find the mean absolute deviation

Maximum Speeds (mph)			
58	88	40	60
72	66	80	48

Part A Find the mean absolute deviation.
Step 1 Find the mean.

$$
\frac{58+88+40+60+72+66+80+48}{8}=\square \mathrm{mph}
$$

Step 2 Find the distance between each data value and the mean.
Use a number line. Remember that distance is always positive.

Step 3 Find the mean of the distances.

$$
\begin{aligned}
\frac{24+16+6+4+2+8+16+24}{8} & =\frac{100}{8} \\
& =\square
\end{aligned}
$$

So, the mean absolute deviation is 12.5 miles per hour.
Part B Explain what the mean absolute deviation represents.
The average distance each roller coaster's speed is from the mean is \qquad miles per hour.

Check

The table shows the number of daily visitors to a website on the Internet. Find the mean absolute deviation of

Number of Daily Visitors
112145108160122 the data set. Explain what the mean absolute deviation represents.

Part A Find the mean absolute deviation. Round to the nearest hundredth.

Part B Explain what the mean absolute deviation represents.

Go Online Y ou can complete an Extra Example online.

Q Example 2 Compare Mean Absolute Deviations

Two driving schools use the same practice driver's test. Out of 100, School A had scores of 70, 79, 80, 82, and 95. School B had scores of $77,83,83,81$, and 82 .

Find the mean absolute deviations. Then compare the variations.
Part A Find the means and the mean absolute deviations.

School A

Mean: \qquad
MAD: \qquad

School B
Mean: \qquad
MAD: \qquad

Part B Compare the variations.
The mean absolute deviation for School \qquad is greater than that for School \qquad This means the scores for School are closer together and clustered around the mean. The scores for School are more spread out and not as clustered around the mean.

Check

The table shows the height of waterslides at two different water parks.

Height of Waterslides (ft)		
Splash Lagoon	Wild Water Bay	
75958011088120108	94135128	

Part A Find the mean absolute deviations.

Part B Compare the variations.

3 Go Online Y ou can complete an Extra Example online.

Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. The table shows the number of sunny days in various U.S. cities in the last month. Find the mean absolute deviation. Explain what the mean absolute deviation represents.
(Example 1)

Number of Sunny Days in Various Cities Last Month			
15	27	10	19
24	21	28	16

3. The table shows the number of wins of two school baseball teams over the last five years. Find the mean absolute deviation for each team. Then compare the variations.
(Example 2)

Go Online You can complete your homework online.
2. The table shows the number of flowers sold by each sixth grade homeroom. Find the mean absolute deviation. Explain what the mean absolute deviation represents.
(Example 1)

Number of Flowers Sold				
75	89	80	145	85
60	92	104	90	100

	Number of Wins Per Season				
Bears	7	10	13	12	9
Saints	12	15	10	14	13

4. The table shows the number of canned goods each homeroom collected over seven days. Find the mean absolute deviation. Then compare the variations. Round to the nearest hundredth, if necessary. (Example 2)

	Number of Canned Goods Collected						
Room 101	57	52	40	42	37	54	47
Room 102	51	17	42	40	46	74	31

Test Practice

5. Open Response The table shows the number of Calories per serving of different snacks. What is the mean absolute deviation

Number of Calories					
61	42	52	27	35	23

Apply

6. The table shows the number of laps Candice and her two friends ran each day for five days. Which friend ran the most consistent number of laps each day? Use the mean absolute deviation to construct an argument to justify your response.

Girl	Day 1	Day 2	Day 3	Day 4	Day 5
Candice	5	6	8	5	7
Malaya	4	5	3	3	5
Zoe	7	8	6	8	8

7. Persevere with Problems The table shows the highway fuel economy of various popular vehicles. Find the mean absolute deviation. How many data values are closer than one mean absolute deviation away from the mean?

Fuel Economy (miles per gallon)

34	48	25	35	33
37	32	34	23	30

9. Make an Argument Use the meanings of the terms mean, absolute, and deviation to make an argument for why the mean absolute deviation of a data set is named using these terms.
10. Justify Conclusions The table shows the high temperatures for the last 6 days. If today's high temperature was $61^{\circ} \mathrm{F}$, how is the mean absolute deviation affected? Justify your response.

High Temperature (${ }^{\circ}$ F)					
75	58	72	68	69	66

10. Reason Inductively If the distance between the mean and a data value on a number line is 0 , what do you know about the data value? Explain.

I Can... understand how an outlier may affect a measure of center, and determine which measure of center is most appropriate to use when describing a data set that does or does not contain an outlier.

Learn Outliers

An outlier is a data value that is very far away from the other data values. It can be much greater in value or much less than the other values. Consider the data set shown.
$225,245,295,305,360,387,388,420,470,480,625,780$
How do you know if either of the extreme values, 225 or 780, are considered outliers?

An outlier is defined as a value that lies more than 1.5 times the interquartile range either above Q_{3} or below Q_{1}.

Determine the upper and lower limits for the outliers.

Upper Limit

$$
\begin{array}{lll}
\text { Upper Limit } & & \text { Lower Limit } \\
\begin{aligned}
Q_{3}+(1.5 \cdot I Q R)
\end{aligned} & \begin{array}{c}
Q_{1}-(1.5 \cdot I Q R)
\end{array} \\
=475+(1.5 \cdot 175) & \text { Substitute. } & \\
=300-(1.5 \cdot 175) \\
=475+262.5 & \text { Multiply. } & =300-262.5 \\
=737.5 & \text { Simplify. } & =37.5
\end{array}
$$

Any data values that are greater than 737.5 or less than 37.5 are outliers. So, the value 780 is an outlier. Because the data set does not contain any values that are less than 37.5 , the only outlier is 780 .

The box plot represents the data set. Outliers are indicated with an asterisk (*).

What Vocabulary Will You Learn?
outlier

\square

Think About It!
What measures of variation do you need to find in order to identify any outliers?

Talk About It!
What does it mean that 23 is an outlier?

Example 1 Identify Outliers

The ages, in years, of the candidates in an election are $55,49,48,57$, 23,63 , and 72 .

Identify any outliers in the data set.

Step 1 Find the quartiles and interquartile range.
List the data values from least to greatest.

Find the quartiles and interquartile range.
Median = \qquad $Q_{1}=$ \qquad $Q_{3}=$ \qquad IQR = \qquad
Step 2 Determine the upper and lower limits for the outliers.

Upper Limit

$$
\begin{aligned}
\mathrm{Q}_{3} & +(1.5 \cdot \mathrm{IQR}) \\
& =\square+(1.5 \cdot 15) \\
& =\square+\square \\
& =\square
\end{aligned}
$$

Step 3 Identify any outliers.
Any data values that are greater than 85.5 or less than 25.5 are outliers. So, the value 23 is an outlier. Because the data set does not contain any values that are greater than 85.5, the only outlier is 23 .

Check

The lengths, in feet, of various bridges are 354, 88, 251, 275, 727 , and 1,121 . Identify any outliers in the data.

3 Go Online Y ou can complete an Extra Example online.

576 Module 10 • Statistical Measures and Displays

Explore Mean, Median, and Outliers

Online Activity You will use Web Sketchpad to explore how outliers affect the mean and median.

Learn Describe the Effect of Outliers

If a data set contains an outlier, the outlier may affect the measures of center and/or variation.

Suppose you track the daily high temperatures for one week and the results are recorded in the table shown.

High Temperatures (${ }^{\circ}$ F)	
Sunday	72
Monday	68
Tuesday	71
Wednesday	74
Thursday	75
Friday	72

Suppose that the high temperature on Saturday is $42^{\circ} \mathrm{F}$. This temperature is much lower than the other temperatures in the data set. It is also an outlier, because 42 is less than the lower limit for outliers.

$$
\begin{aligned}
Q_{1}- & -1.5 \cdot I Q R) & & \\
& =68-(1.5 \cdot 6) & & \text { Substitute. } \\
& =68-9 & & \text { Multiply. } \\
& =59 & & \text { Simplify. }
\end{aligned}
$$

Because $42<59,42$ is an outlier.

(continued on next page)

Talk About It!
Suppose Saturday's temperature had been $59^{\circ} \mathrm{F}$, which does not qualify as an outlier, but is cooler than the rest. How does this affect the mean? the median?

To see how an outlier affects the measures of center and variation, calculate the measures both with and without the outlier.

Calculate the measures with the outlier.

Mean Absolute Deviation (MAD)

$42,68,71,72,72,74,75$

To the nearest tenth, the MAD is \qquad

Median

The median is \qquad $-$

Interquartile Range (IQR)

The IQR is \qquad

Calculate the measures without the outlier.

$68,71,72,72,74,75$

To the nearest tenth, the MAD is \qquad .

Median

Interquartile Range (IQR)

The median is \qquad . The IQR is \qquad
The median was not affected by the inclusion of the outlier. Without the outlier, the mean, MAD, and IQR all increased in value. With the outlier, the mean is not the best representation of center, because most of the values are higher than 67.7.

Use either the mean or median when the data does not contain any outliers. Use only the median when the data contains an outlier. While the median might change a little when an outlier is included or removed, it does not change as much as the mean.

Use the corresponding measure of variation to describe the spread of the data.

- If you choose the mean to describe the center, choose the MAD to describe the variation.
- If you choose the median to describe the center, choose the IQR to describe the variation.

Example 2 Describe the Effect of Outliers

The table shows the average lifespans of selected animals.

Calculate the mean and median with and without the outlier, 200. Then choose the measure that best describes the center.

Step 1 Calculate the mean and median with the outlier. Round to the nearest tenth, if necessary.

Average Lifespan	
Animal	Lifespan (years)
Elephant	35
Dolphin	30
Chimpanzee	50
Tortoise	200
Gorilla	30
Gray Whale	70
Horse	20

Mean

$\frac{35+30+50+200+30+70+20}{7} \approx 62.1$
The mean lifespan is about \qquad years.

Median

The median lifespan is \qquad years.

Step 2 Calculate the mean and median without the outlier. Round to the nearest tenth, if necessary.

Mean

$\frac{35+30+50+30+70+20}{6} \approx 39.2$
The mean lifespan is about \qquad years.

Median

The median lifespan is \qquad years.

Step 3 Choose the measure that best describes the center.
The \qquad was most affected by the inclusion of the outlier.
The \qquad changed very little.

So, the \qquad best describes the center of the data.

Think About It!

Will the outlier affect the mean or the median more? Explain your reasoning.

a

Check

The table shows the cooking temperatures for different recipes. Calculate the mean and median with and without the outlier. Round to the nearest tenth, if necessary. Then choose the measure that best describes the center.

(3) Go Online Y ou can complete an Extra Example online.

Pause and Reflect

Create a graphic organizer that will help you study the concepts you learned today in class.

Practice

1. Last week, Joakim spent 40, 25, 60, 30, 35, and 40 minutes practicing the piano. Identify any outliers in the data. (Example 1)
2. Abrianna sold 20, 23, 18, 4, 17, 21, 15, and 56 boxes of cookies after different football games. Identify any outliers in the data. (Example 1)
3. The prices of trees that Sahana bought are $\$ 46, \$ 39, \$ 40, \$ 45, \$ 44, \$ 68$, and $\$ 51$. Calculate the mean and median with and without the outlier. Round to the nearest tenth, if necessary. Choose the measure that best describes the center. (Example 2)
4. Last month, a basketball team scored 83 , $84,85,87,89,88,67,79$, and 81 points in their games. Identify any outliers in the data. (Example 1)
5. Last week a certain pet store had $52,72,96$, $21,58,40$, and 75 paying customers. Identify any outliers in the data. (Example 1)
6. The prices of backpacks are $\$ 37, \$ 43, \$ 41$, $\$ 36, \$ 44$, and $\$ 70$. Calculate the mean and median with and without the outlier. Round to the nearest tenth, if necessary. Choose the measure that best describes the center. (Example 2)
7. The table shows the number of points scored by a football team. Calculate the mean and median with and without the outlier. Round to the nearest tenth, if necessary. Choose the measure that best describes the center. Explain. (Example 2)

Points Scored by a Football Team

14	20	3	9
18	35	21	24
7	12	31	68

8. Open Response The table shows the number of points scored by the players in a trivia game. Which measure of center best represents the data? Explain your reasoning.

Points Scored in a Trivia Game

12	9	5	11
6	0	14	7

\square
9. Create Generate a set of real-world data that contains two outliers.
11. 47 Construct an Argument Explain how an outlier may or may not affect the mean and median.
10. Justify Conclusions The ages, in years, of participants in a relay race are $12,15,14$, $13,15,12,22,16$, and 11 . Identify any outliers in the data set. Justify your response.
12. 73 Justify Conclusions Does an outlier affect the range of a data set? Explain.

Interpret Graphical Displays

I Can... determine the symmetry of data represented in different displays, determine the most appropriate measure of center and variation based on the symmetry, and use the measures to describe the data.

Learn Interpret Dot Plots

The distribution of a data set shows the arrangement of data values. It can be described by its center, spread (variation), or overall shape. Determining the symmetry of a distribution is one way to describe its shape. If the left side of a distribution looks like the right side, then the distribution is a symmetric distribution. If there is an outlier, the distribution is usually not symmetric.

The shape of a data distribution tells you which measure of center and measure of spread are most appropriate to use.

What Vocabulary Will You Learn?

cluster
distribution
gap
peak
symmetric distribution

Think About It!
What do you notice about the shape of the distribution?

Talk About It!
What do you notice about the measure of center's location on the dot plot?

Example 1 Interpret Dot Plots

The results of a class survey about the number of states visited by students are shown in the dot plot.

Choose the appropriate measure of center and variation. Then use the measures to describe the distribution.

Part A Choose the appropriate measures.
The data are not evenly distributed between the left side and the right side.

There appears to be an outlier.
So, the distribution is not symmetric.
Which measure of center should you use?
Which measure of variation should you use?

Part B Describe the distribution.
A total of students responded to the survey.
Find the measure of center you chose in Part A.

The measure of center indicates that the number of states visited by the students can be summarized by the single value of \qquad states.

Find the measure of variation you chose in Part A.

The measure of variation indicates that the spread of the data around the center is \qquad states. Other than the outlier, there is not a lot of variation among the data.

Check

The results of a class survey about the number of hours spent on the Internet each week by students are shown in the dot plot.

Number of Hours Spent on the Internet

Part A Choose the appropriate measure of center and variability.

Part B Use the chosen measures to describe the distribution.

Go Online Y ou can complete an Extra Example online.

Learn Interpret Histograms

You can also describe the distribution of histograms, including symmetry, clusters, gaps, and peaks. A cluster occurs when data values are grouped together. A gap occurs where there are no data values. A peak is the most frequently occurring value or interval of values in a data set.

Data were collected on the heights of some buildings in Seattle, Washington and are displayed in the histogram. The graph shows an example of a peak, a gap, and a cluster. This distribution is not symmetric and does not contain any outliers.
There is a peak from 400 to 499 feet.

Think About It!
How many solar eclipses are represented in the data set?

Talk About It!
What can you infer about solar eclipses using the cluster of data values?

Example 2 Interpret Histograms
The histogram shows the duration, in minutes and seconds, of solar eclipses over a 10-year period.

Use clusters, gaps, peaks, outliers, and symmetry to describe the shape of the distribution.

Solar Eclipses

Step 1 Identify any symmetry, clusters, and outliers. The distribution is not symmetric. There is a cluster from 0:01-7:30. There are no outliers.

Step 2 Identify any peaks.
There is a peak from 0:01-2:30.
Step 3 Identify any gaps.
There is a gap from 7:31-10:00.
Step 4 Describe the distribution.
Summarize the information you found.
The distribution is not symmetric and does not contain any outliers. The data cluster around 1 second to 7 minutes and 30 seconds and have a peak at 1 second to 2 minutes and 30 seconds. There is a gap at 7 minutes and 31 seconds to 10 minutes.

Check

The histogram shows the number of laps each student walked while exercising. Use clusters, gaps, peaks, outliers, and symmetry to describe the shape of the distribution.

Explore Interpret Box Plots

Online Activity You will use Web Sketchpad to explore how changes in a data set affect a box plot.

Learn Interpret Box Plots

Although a box plot does not show individual data values, you can still describe the distribution of data.

Box plots are constructed using the median and interquartile range, so use those measures to describe the center and variation of the data. Because a box plot does not show individual data values, the mean cannot be found, unless the data are perfectly symmetric. In this case, the mean and the median have the same value.

Box plots do indicate symmetry.
If the whiskers are all the same length, and the median line divides the box into two equal-sized boxes, then the distribution is symmetric.

If the boxes and whiskers are of varying lengths, then the distribution is not symmetric.

Outliers are represented by an asterisk (*) on a box plot. Whiskers will not extend to outliers, but instead to the previous or next data value.

Talk About It!
What percent of the data is represented by each box and whisker? What do shorter boxes or whiskers indicate about the data? longer boxes or whiskers?

\square
\square
\square

Think About It! What are the key parts of the box plot you will need to examine?

Talk About It!
What does the shape of the box plot tell you about the attendance at the fitness club?

The box plot shows the daily attendance at a fitness club.

Describe the distribution of the data, including any symmetry, outliers, measures of center, and measures of variation.

The distribution is not symmetric.
The data contain an outlier, 110 people, indicated by the asterisk.
The median is 70 people. This means that for half of the days, the daily attendance at the fitness club was below 70 , and for half of the days, the daily attendance was above 70.

The interquartile range is $80-65$, or 15 . This means that the middle 50% of the data vary by 15.

The left box is the shortest. This means that 25% of the data is between 65 and 70 people, and these data values are closer together than the data values in the other box or whiskers.

Check

The average gas mileage for various sedans is shown in the box plot. Describe the distribution of the data, including any symmetry, outliers, measures of center, and measures of variation.

Average Gas Mileage

The histogram shows the distances a volleyball team travels to their games. One player claimed that because the peak of the distribution is from 20-24 miles, that the team traveled 20-24 miles more than 50% of the time. Is the player correct?

1 What is the task?

Make sure you understand exactly what question to answer or problem to solve. You may want to read the problem three times. Discuss these questions with a partner.

First Time Describe the context of the problem, in your own words.
Second Time What mathematics do you see in the problem?
Third Time What are you wondering about?

2 How can you approach the task? What strategies can you use?

3 What is your solution?

Use your strategy to solve the problem.

4 How can you show your solution is reasonable?
Write About It! Write an argument that can be used to defend your solution.

Check

The histogram shows the heights of the students in Mrs. Sanchez's class. What percent of the students are taller than 55 inches? Round to the nearest tenth if necessary.

Go Online Y ou can complete an Extra Example online.
(11) Foldables It's time to update your Foldable, located in the Module Review, based on what you learned in this lesson. If you haven't already assembled your Foldable, you can find the instructions on page FL1.

Practice

1. The dot plot shows the number of televisions owned by the families in a neighborhood. Choose the appropriate measure of center and variation. Then use the measures to describe the data set. (Example 1)

Number of Televisions

3. The histogram shows the dollars pledged by supporters of an animal shelter. Use clusters, gaps, peaks, outliers, and symmetry to describe the shape of the distribution. (Example 2)

Dollars Pledged

Dollars
2. The dot plot shows the number of miles run by various sixth grade students. Choose the appropriate measure of center and variation. Then use the measures to describe the data set. (Example 1)

4. The box plot shows the amount of money, in dollars, Olivia saved during various months. Find the median and the measures of variation. Then describe the data. (Example 3)

Amount Saved (\$)

Test Practice
5. Multiple Choice The box plot shows the ticket prices, in dollars, of various concerts. What is the median, interquartile range, and range of the data, in that order?

Ticket Prices (\$)

(A) $30 ; 35 ; 50$
(B) $30 ; 40 ; 105$
(c) $30 ; 15 ; 50$
(D) $30 ; 35 ; 105$

Apply

6. The histogram shows the number of candy bars each player on a football team sold. One player claimed that more than 50% of the players sold 90 or more candy bars. Is the player correct? Write an argument that can be used to defend your solution.

Candy Bars Sold

Number of Candy Bars
7. The histogram shows the weights of pumpkins picked by students on a pumpkin farm. One student claimed that more than 25% of the pumpkins picked weighed 20 pounds or more. Is the student correct? Write an argument that can be used to defend your solution.

Weight (lb)
8. Be Precise The dot plot shows the number of runs scored by a baseball team for last season. Use clusters, gaps, peaks, outliers, and symmetry to describe the shape of the distribution.

Runs Scored

10. Create Draw a dot plot that is not symmetric.
9. Justify Conclusions According to the histogram, do more than 50% of the roller coasters have a speed of 70 mph or greater? Explain.

Speeds of Roller Coasters

11. 1 P Persevere with Problems If a box plot's distribution is symmetric, which measure of center and measures of spread are most appropriate to use?
11) Foldables Use your Foldable to help review the module.

Rate Yourself! 0 O

Complete the chart at the beginning of the module by placing a checkmark in each row that corresponds with how much you know about each topic after completing this module.

Reflect on the Module

Use what you learned about statistical measures to complete the graphic organizer.

Fssential Question

Why is data collected and analyzed and how can it be displayed?

How are the mean and median helpful in describing data?				
Definition	Mean			Median

How can data be displayed?			
	Dot Plot	Histogram	Box Plot
Definition			
Explain how to describe the data.			

Test Practice

1. Multiselect Which of the following are statistical questions? Select all that apply. (Lesson 1)How many countries make up the continent of Africa?
\square How many televisions does the typical family own?
\square How many Major League Baseball teams are there?How many U.S. National Parks are there?How many states has the average student visited?
\square How many students are in the average sixth grade class?
2. Open Response Scott kept track of how long he watched television for five days, and recorded the data in the table. What is the difference between the mean and median length of the time Scott spent watching television? Explain. (Lesson 3)

Day	1	2	3	4	5
Time (min)	60	30	45	90	60

3. Open Response The average annual amounts of rainfall for several U.S. cities are given in the table. (Lesson 4)

City	Rainfall (in.)
Atlanta	49.7
Baltimore	41.9
Chicago	36.9
Denver	15.6
Houston	49.8
Phoenix	8.2

What are the range and inter quartile range of the data?
4. Multiple Choice Jessica surveyed her teammates using the statistical question, How many siblings do you have? The results are shown in the table. (Lesson 2)

Number of Siblings		
1	2	4
2	3	0
1	1	3
1	1	2
5	3	3

A. Which dot plot best represents the situation?
(A) Number of Siblings

B Number of Siblings

(C) Number of Siblings

(D) Number of Siblings

B. What is the greatest number of siblings out of all of her teammates? What is the least number of siblings out of all of her teammates?
5. Table Item The ages of the current students attending an art class at a local community center are shown in the box plot. Consider the parts of the box plot and indicate which of the parts are correctly named. (Lesson 4)

Ages of Art Class Students		
24.2628303234363840424446485052545658		
	Correct	Incorrect
Lower Extreme $=24$		
Median $=39$		
$\mathrm{Q}_{1}=33$		
$Q_{3}=44$		
Upper Extreme $=58$		

6. Multiple Choice The table shows the top ten test scores of the students in Ms. Schneider's science class. (Lesson 5)

Test Scores				
102	100	95	93	88
96	100	99	90	97

A. Which of the following represents the mean absolute deviation of the data?
(A) 3.2 points
(B) 3.4 points
(C) 3.6 points
(D) 4.1 points
B. Describe what the mean absolute deviation represents.

7. Multiselect The heights, in feet, of various trees in the park are $32,10,70,40,34,44$, and 36 . Identify any outliers in the data set. Select all that apply. (Lesson 6)10 feet34 feet36 feet40 feet
$\square 70$ feet
8. Open Response The histogram shows the distances Jerome's co-workers have to commute to work each morning. What percent of his co-workers travel more than 10 miles to work? Round to the nearest percent. (Lesson 7)

Distance to Work

III Foldables Study Organizers

What Are Foldables and How Do I Create Them?

Foldables are three-dimensional graphic organizers that help you create study guides for each module in your book.

Step 1 Go to the back of your book to find the Foldable for the module you are currently studying. Follow the cutting and assembly instructions at the top of the page.

Step 2 Go to the Module Review at the end of the module you are currently studying. Match up the tabs and attach your Foldable to this page. Dotted tabs show where to place your Foldable. Striped tabs indicate where to tape the Foldable.

How Will I Know When to Use My Foldable?

You will be directed to work on your Foldable at the end of selected lessons. This lets you know that it is time to update it with concepts from that lesson. Once you've completed your Foldable, use it to study for the module test.

How Do I Complete My Foldable?

No two Foldables in your book will look alike. However, some will ask you to fill in similar information. Below are some of the instructions you'll see as you complete your Foldable. HAVE FUN learning math using Foldables!

Instructions and What They Mean
Best Used to... Complete the sentence explaining when the concept should be used.

Definition Write a definition in your own words.
Description Describe the concept using words.
Equation
Write an equation that uses the concept. You may use one already in the text or you can make up your own.

Example Write an example about the concept. You may use one already in the text or you can make up your own.

Formulas Write a formula that uses the concept. You may use one already in the text.

How do I ...? Explain the steps involved in the concept.
Models Draw a model to illustrate the concept.
Picture Draw a picture to illustrate the concept.
Solve
Algebraically Write and solve an equation that uses the concept.
Symbols Write or use the symbols that pertain to the concept.
Write About It Write a definition or description in your own words.
Words Write the words that pertain to the concept.

Meet Foldables Author Dinah Zike

Dinah Zike is known for designing hands-on manipulatives that are used nationally and internationally by teachers and parents. Dinah is an explosion of energy and ideas. Her excitement and joy for learning inspires everyone she touches.

\square

\square

(1)

$\sigma^{9}=$

\int_{0} cut on all dashed lines \square fold on all solid lines $\because \because$ tape to page 531

\square

\qquad

Glossary

The Multilingual eGlossary contains words and definitions in the following 14 languages:

Arabic	English	Hmong	Russian	Urdu
Bengali	French	Korean	Spanish	Vietnamese
Brazilian Portuguese	Haitian Creole	Mandarin	Tagalog	

English

Español

absolute value (Lesson 4-2) The distance between a number and zero on a number line.

Addition Property of Equality (Lesson 6-8) If you add the same number to each side of an equation, the two sides remain equal.
algebra (Lesson 5-3) A mathematical language of symbols, including variables.
algebraic expression (Lesson 5-3) A combination of variables, numbers, and at least one operation.
analyze (Lesson 10-1) To use observations to describe and compare data.
area (Lesson 8-1) The measure of the interior surface of a two-dimensional figure.

Associative Property (Lesson 5-7) The way in which numbers are grouped does not change the sum or product.
average (Lesson 10-3) The sum of two or more quantities divided by the number of quantities; the mean. entre el número de cantidades; la media.

base (Lesson 8-1) Any side of a parallelogram or any side of a triangle.
base (Lesson 9-1) One of the two parallel congruent faces of a prism.
valor absoluto Distancia entre un número y cero en la recta numérica.
propiedad de adición de la igualdad Si sumas el mismo número a ambos lados de una ecuación, los dos lados permanecen iguales.
álgebra Lenguaje matemático que usa símbolos, incluyendo variables.
expresión algebraica Combinación de variables, números y, por lo menos, una operación.
analizar Usar observaciones para describir y comparar datos.
área La medida de la superficie interior d una figura bidimensional.
propiedad asociativa La forma en quese agrupan tres números al sumarlos o multiplicarlos no altera su suma o producto.
promedio La suma de dos o más cantidades dividida
base Cualquier lado de un paralelogramo o cualquier lado de un triángulo.
base Una de las dos caras paralelas congruentes de un prisma.
base (Lesson 5-1) In a power, the number used as a factor. In 10^{3}, the base is 10 . That is, $10^{3}=10 \times 10 \times 10$.
bases (Lesson 8-3) The bases of a trapezoid are the two parallel sides.
benchmark percent (Lesson 2-5) A common percent used when estimating part of a whole.
box plot (Lesson 10-4) A diagram that is constructed using five values.
base En una potencia, el número usado como factor. En 10^{3}, la base es 10 . Es decir, $10^{3}=10 \times 10 \times 10$.
bases Las bases de un trapecio son los dos lados paralelos.
porcentaje de referencia Porcentaje común utilizado para estimar parte de un todo.
diagrama de caja Diagrama que se construye usando cinco valores.
cluster (Lesson 10-7) Data that are grouped closely together.
coefficient (Lesson 5-3) The numerical factor of a term that contains a variable.
common factor (Lesson 5-5) A number that is a factor of two or more numbers.

Commutative Property (Lesson 5-7) The order in which numbers are added or multiplied does not change the sum or product.
congruent (Lesson 8-2) Having the same measure.
congruent figures (Lesson 8-2) Figures that have the same size and same shape; corresponding sides and angles have equal measures.
constant (Lesson 5-3) A term without a variable.
coordinate plane (Lesson 1-3) A plane in which a horizontal number line and a vertical number line intersect at their zero points.
cubic units (Lesson 9-1) Used to measure volume. Tells the number of cubes of a given size it will take to fill a three-dimensional figure.
agrupamiento Conjunto de datos que se agrupan.
coeficiente El factor numérico de un término que contiene una variable.
factor común Un número que es un factor de dos o más números.
propiedad commutativa La forma en que se suman o multiplican dos números no altera su suma o producto.
congruente Ques tienen la misma medida.
figuras congruentes Figuras que tienen el mismo tamaño y la misma forma; los lados y los ángulos correspondientes con igual medida.
constante Un término sin una variable.
plano de coordenadas Plano en que una recta numérica horizontal y una recta numérica vertical se intersecan en sus puntos cero.
unidades cúbicas Se usan para medir el volumen. Indican el número de cubos de cierto tamaño que se necesitan para llenar una figura tridimensional.
data (Lesson 10-1) Information, often numerical, which is gathered for statistical purposes.
defining the variable (Lesson 5-3) Choosing a variable and deciding what the variable represents.
datos Información, con frecuencia numérica, que se recoge con fines estadísticos.
definir la variable Elegir una variable y decidir lo que representa.
dependent variable (Lesson 7-1) The variable in a relation with a value that depends on the value of the independent variable.
distribution (Lesson 10-7) The arrangement of data values.

Distributive Property (Lesson 5-6) To multiply a sum by a number, multiply each addend by the number outside the parentheses.
dividend (Lesson 3-1) The number that is divided in a division problem.

Division Property of Equality (Lesson 6-4) If you divide each side of an equation by the same nonzero number, the two sides remain equal.
divisor (Lesson 3-1) The number used to divide another number in a division problem.
double number line (Lesson 1-2) A double number line consists of two number lines, in which the coordinated quantities are equivalent ratios.
dot plot (Lesson 10-2) A diagram that shows the frequency of data on a number line. Also known as a line plot.
variable dependiente La variable en una relación cuyo valor depende del valor de la variable independiente.
distribución El arreglo de valores de datos.
propiedad distributiva Para multiplicar una suma por un número, multiplica cada sumando por el número fuera de los paréntesis.
dividendo El número que se divide en un problema de división.
propiedad de igualdad de la división Si divides ambos lados de una ecuación entre el mismo número no nulo, los lados permanecen iguales.
divisor El número utilizado para dividir otro número en un problema de división.
línea doble Una línea numérica doble consta de dos líneas numéricas, en las cuales las cantidades coordinadas son proporciones equivalentes.
diagrama de puntos Diagrama que muestra la frecuencia de los datos sobre una recta numérica.
equals sign (Lesson 6-1) A symbol of equality, =.
equation (Lesson 6-1) A mathematical sentence showing two expressions are equal. An equation contains an equals sign, $=$.
equivalent expressions (Lesson 5-7) Expressions that have the same value, regardless of the values of the variable(s).
equivalent ratios (Lesson 1-2) Ratios that express the same relationship between two quantities.
evaluate (Lesson 5-2) To find the value of an algebraic expression by replacing variables with numbers.
exponent (Lesson 5-1) In a power, the number that tells how many times the base is used as a factor. $\ln 5^{3}$, the exponent is 3 . That is, $5^{3}=5 \times 5 \times 5$.
signo de igualdad Símbolo que indica igualdad, $=$.
ecuación Enunciado matemático que muestra que dos expresiones son iguales. Una ecuación contiene el signo de igualdad, $=$.
expresiones equivalentes Expresiones que poseen el mismo valor, sin importer los valores de la(s) variable(s).
razones equivalentes Razones que expresan la misma relación entre dos cantidades.
evaluar Calcular el valor de una expresión algebraica sustituyendo las variables por número.
exponente En una potencia, el número que indica las veces que la base se usa como factor. En 5^{3}, el exponente es 3 . Es decir, $5^{3}=5 \times 5 \times 5$.
face (Lesson 9-1) A flat surface of a prism or pyramid.
factoring the expression (Lesson 5-6) The process of writing numeric or algebraic expressions as a product of their factors.
first quartile (Lesson 10-4) The first quartile is the median of the data values less than the median.
cara Una superficie plana de un prisma o pirámide.
factorizar la expresión El proceso de escribir expresiones numéricas o algebraicas como el producto de sus factores.
primer cuartil El primer cuartil es la mediana de los valores menores que la mediana.

c

gap (Lesson 10-7) An empty space or interval in a set of data.
graph (Lesson 1-3) To place a dot on a number line, or on the coordinate plane at a point named by an ordered pair.
greatest common factor (GCF) (Lesson 5-5) The greatest of the common factors of two or more numbers.
guess, check, and revise strategy (Lesson 6-1) A strategy used to solve a problem which involves narrowing in on the correct answer using educated guesses.

Iaguna Espacio o intervalo vacío en un conjunto de datos.
graficar Colocar una marca puntual en una línea numérica, o en el plano de coordenadas en el punto que corresponde a un par ordenado.
máximo común divisor (MCD) El mayor de los factores comunes de dos o más números.
adivinar, comprobar y revisar la estrategia Una estrategia utilizada para resolver un problema que implica el estrechamiento en la respuesta correcta usando conjeturas educadas.

H

height (Lesson 8-1) The height of a parallelogram is the perpendicular distance between the base and its opposite side.
height (Lesson 8-2) The height of a triangle is the perpendicular distance from the base to the opposite vertex.
height (Lesson 8-3) The height of a trapezoid is the perpendicular distance between the two bases.
histogram (Lesson 10-2) A type of bar graph used to display numerical data that have been organized into equal intervals.
altura La altura de un paralelogramo es la distancia perpendicular entre la base y su lado opuesto.
altura La altura de un triángulo es la distancia perpendicular de la base al vértice opuesto.
altura La altura de un trapecio es la distancia perpendicular entre las dos bases.
histograma Tipo de gráfica de barras que se usa para exhibir datos que se han organizado en intervalos iguales.

Identity Properties (Lesson 5-7) Properties that state that the sum of any number and 0 equals the number and that the product of any number and 1 equals the number.
independent variable (Lesson 7-1) The variable in a relationship with a value that is subject to choice.
inequality (Lesson 6-6) A mathematical sentence indicating that two quantities are not equal.
integer (Lesson 4-1) Any number from the set $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ where \ldots means continues without end.
interquartile range (IQR) (Lesson 10-4) A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set.
interval (Lesson 10-2) The difference between successive values on a scale.
inverse operations (Lesson 6-2) Operations which undo each other. For example, addition and subtraction are inverse operations.

Inverse Property of Multiplication (Lesson 3-3) A property that states that the product of a number and its multiplicative inverse is 1 .
propiedades de identidad Propiedades que establecen que la suma de cualquier número y 0 es igual al número y que el producto de cualquier número y 1 es iqual al número.
variable independiente Variable en una relación cuyo valor está sujeto a elección.
desigualdad Enunciado matemático que indica que dos cantidades no son iguales.
entero Cualquier número del conjunto $\{\ldots,-4,-3$,
$-2,-1,0,1,2,3,4, \ldots\}$ donde ... significa que continúa sin fin.
rango intercuartil (RIQ) El rango intercuartil, una medida de la variación en un conjunto de datos numéricos, es la distancia entre el primer y el tercer cuartil del conjunto de datos.
intervalo La diferencia entre valores sucesivos de una escala.
operaciones inversas Operaciones que se anulan mutuamente. La adición y la sustracción son operaciones inversas.
propiedad inversa de la multiplicación Una propiedad que indica que el producto de un número y su inverso multiplicativo es 1.
lateral face (Lesson 9-4) Any face that is not a base.
least common multiple (LCM) (Lesson 5-5) The smallest whole number greater than 0 that is a common multiple of each of two or more numbers.
like terms (Lesson 5-3) Terms that contain the same variable(s) to the same power.
cara lateral Cualquier superficie plana que no sea la base.
mínimo común múltiplo (mcm) El menor número entero, mayor que 0 , múltiplo común de dos o más números.
términos semejantes T érminos que contienen la misma variable o variables elevadas a la misma potencia.
mean (Lesson 10-3) The sum of the numbers in a set of data divided by the number of pieces of data.
media La suma de los números en un conjunto de datos dividida entre el número total de datos.
mean absolute deviation (MAD) (Lesson 10-5)
A measure of variation in a set of numerical data, computed by adding the distances between each data value and the mean, then dividing by the number of data values.
measures of center (Lesson 10-3) Numbers that are used to describe the center of a data set. These measures include the mean and median.
measures of variation (Lesson 10-4) A measure that is used to describe the variability, or spread, of a data set.
median (Lesson 10-3) A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list, or the mean of the two central values, if the list contains an even number of values.

Multiplication Property of Equality (Lesson 6-5) If you multiply each side of an equation by the same nonzero number, the two sides remain equal.
multiplicative inverses (Lesson 3-3) Any two numbers that have a product of 1 .
desviación media absoluta (DMA) Una medida de variación en un conjunto de datos numéricos que se calcula sumando las distancias entre el valor de cada dato y la media, y luego dividiendo entre el número de valores.
medidas del centro Numéros que se usan para describir el centro de un conjunto de datos. Estas medidas incluyen la media, la mediana y la moda.
medidas de variación Medida que se utiliza para describir la variabilidad o la dispersión de un conjunto de datos.
mediana Una medida del centro en un conjunto de datos numéricos. La mediana de una lista de valores es el valor que aparece en el centro de una versión ordenada de la lista, o la media de los dos valores centrales si la lista contiene un número par de valores.
propiedad de multiplicación de la igualdad Si multiplicas ambos lados de una ecuación por el mismo número no nulo, lo lados permanecen iguales.
inversos multiplicativos Cualquier dos números que tengan un producto de 1.

N

negative integer (Lesson 4-1) A number that is less than zero. It is written with a - sign.
net (Lesson 9-2) A two-dimensional figure that can be used to build a three-dimensional figure.
numerical expression (Lesson 5-2) A combination of numbers and operations.
entero negativo Número que es menor que cero y se escribe con el signo - .
red Figura bidimensional que sirve para hacer una figura tridimensional.
expresión numérica Una combinación de números y operaciones.
opposites (Lesson 4-2) Two integers are opposites if they are represented on the number line by points that are the same distance from zero, but on opposite sides of zero. The sum of two opposites is zero.
opuestos Dos enteros son opuestos si, en la recta numérica, están representados por puntos que equidistan de cero, pero en direcciones opuestas. La suma de dos opuestos es cero.
order of operations (Lesson 5-2) The rules that tell which operation to perform first when more than one operation is used.

1. Simplify the expressions inside grouping symbols.
2. Find the value of all powers.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.
ordered pair (Lesson 1-3) A pair of numbers used to locate a point on the coordinate plane. The ordered pair is written in the form (x-coordinate, y-coordinate).
origin (Lesson 1-3) The point of intersection of the x-axis and y-axis on a coordinate plane.
outlier (Lesson 10-6) A value that is much greater than or much less than the other values in a set of data.
orden de las operaciones Reglas que establecen cuál operación debes realizar primero, cuando hay más de una operación involucrada.
5. Ejecuta todas las operaciones dentro de los símbolos de agrupamiento.
6. Evalúa todas las potencias.
7. Multiplica y divide en orden de izquierda a derecha.
8. Suma y resta en orden de izquierda a derecha.
par ordenado Par de números que se utiliza para ubicar un punto en un plano de coordenadas. Se escribe de la forma (coordenada x, coordenada y).
origen Punto de intersección de los ejes axiales en un plano de coordenadas.
valor atípico Dato que se encuentra muy separado de los otros valores en un conjunto de datos.
parallelogram (Lesson 8-1) A quadrilateral with opposite sides parallel and opposite sides congruent.
part-to-part ratio (Lesson 1-1) A ratio that compares one part of a group to another part of the same group.
part-to-whole ratio (Lesson 1-1) A ratio that compares one part of a group to the whole group.
peak (Lesson 10-7) The most frequently occurring value in a line plot.
percent (Lesson 2-1) A ratio, or rate, that compares a number to 100 .
positive integer (Lesson 4-1) A number that is greater than zero. It can be written with or without $a+$ sign.
powers (Lesson 5-1) A number expressed using an exponent. The power 3^{2} is read three to the second power, or three squared.
prism (Lesson 9-1) A three-dimensional figure with at least three rectangular lateral faces and top and bottom faces parallel.
paralelogramo Cuadrilátero cuyos lados opuestos son paralelos y congruentes.
proporción de parte a parte Una proporción que compara una parte de un grupo con otra parte del mismo grupo.
proporción de parte a total Una proporción que compara una parte de un grupo con todo el grupo.
pico El valor que ocurre con más frecuencia en un diagrama de puntos.
por ciento Una relación, o tasa, que compara un número a 100.
entero positivo Número que es mayor que cero y se puede escribir con o sin el signo + .
potncias Números que se expresan usando exponentes. La potencia 3 se lee tres a la segunda potencia o tres al cuadrado.
prisma Figura tridimensional que tiene por lo menos tres caras laterales rectangulares y caras paralelas superior e inferior.
pyramid (Lesson 9-4) A three-dimensional figure with at least three triangular sides that meet at a common vertex and only one base that is a polygon.
pirámide Una figura de tres dimensiones con que es en un un polígono y tres o mas caras triangulares que se encuentran en un vértice común.
quadrants (Lesson 4-5) The four regions in a coordinate plane separated by the x-axis and y-axis.
quartiles (Lesson 10-4) Values that divide a data set into four equal parts.
quotient (Lesson 3-1) The result when one number is divided by another.
cuadrantes Las cuatro regiones de un plano de coordenadas separadas por el eje x y el eje y.
cuartiles Valores que dividen un conjunto de datos en cuatro partes iguales.
cociente El resultado cuando un número es dividido por otro.

R

range (Lesson 10-4) The difference between the greatest number and the least number in a set of data.
rate (Lesson 1-7) A special kind of ratio in which the units are different.
ratio (Lesson 1-1) A comparison between two quantities, in which for every a units of one quantity, there are b units of another quantity.
ratio table (Lesson 1-2) A collection of equivalent ratios that are organized in a table.
rational number (Lesson 4-4) A number that can be written as a fraction.
reciprocals (Lesson 3-3) Any two numbers that have a product of 1 . Since $\frac{5}{6} \times \frac{6}{5}=1 \frac{5}{6}$ and $\frac{6}{5}$ are reciprocals.
rectangular prism (Lesson 9-1) A prism that has rectangular bases.
reflection (Lesson 4-6) The mirror image produced by flipping a figure over a line.
regular polygon (Lesson 8-4) A polygon with all congruent sides and all congruent angles.
rango La diferencia entre el número mayor y el número menor en un conjunto de datos.
tasa Un tipo especial de relación en el que las unidades son diferentes.
razón Una comparación entre dos cantidades, en la que por cada a unidades de una cantidad, hay unidades b de otra cantidad.
table de razones Una colección de proporciones equivalentes que se organizan en una tabla.
número racional Número que se puede expresar como fracción.
recíproco Cualquier par de números cuyo producto es 1. Como $\frac{5}{6}-\times \frac{6}{5}=1, \frac{5}{6}$ y $\frac{6}{5}$ son recíprocos.
prisma rectangular Una prisma que tiene bases rectangulares.
reflexión Transformación en la cual una figura se voltea sobre una recta. También se conoce como simetría de espejo.
polígono regular Un polígono con todos los lados congruentes y todos los ángulos congruentes.
second quartile (Lesson 10-4) Another name for the median, or the center of a set of numerical data.
simplest form (Lesson 5-4) The status of an expression when it has no like terms and no parentheses.
slant height (Lesson 9-4) The height of each lateral face of a pyramid.
solution (Lesson 6-1) The value of a variable that makes an equation true.
solve (Lesson 6-1) To replace a variable with a value that results in a true sentence.
statistical question (Lesson 10-1) A question that anticipates and accounts for a variety of answers.
statistics (Lesson 10-1) Collecting, organizing, and interpreting data.

Subtraction Property of Equality (Lesson 6-2) If you subtract the same number from each side of an equation, the two sides remain equal.
surface area (Lesson 9-2) The sum of the areas of all the surfaces (faces) of a three-dimensional figure.
survey (Lesson 10-1) A question or set of questions designed to collect data about a specific group of people, or population.
symmetric distribution (Lesson 10-7) Data that are evenly distributed.
homotecia El proceso de multiplicar cada cantidad en una proporción por el mismo número para obtener relaciones equivalentes.
segundo cuartil Otro nombre para la mediana, o el centro de un conjunto de datos numéricos.
forma más simple El estado de una expresión cuando no tiene términos iguales y no hay paréntesis.
altura oblicua Altura de cada cara lateral de un pirámide.
solución Valor de la variable de una ecuación que hace verdadera la ecuación.
resolver Reemplazar una variable con un valor que resulte en un enunciado verdadero.
cuestión estadística Una pregunta que se anticipa y da cuenta de una variedad de respuestas.
estadística Recopilar, ordenar e interpretar datos.
propiedad de sustracción de la igualdad Si sustraes el mismo número de ambos lados de una ecuación, los dos lados permanecen iguales.
área de superficie La suma de las áreas de todas las superficies (caras) de una figura tridimensional.
encuesta Pregunta o conjunto de preguntas diseñadas para recoger datos sobre un grupo específico de personas o población.
distribución simétrica Datos que están distribuidos.
term (Lesson 5-3) Each part of an algebraic expression separated by a plus or minus sign.
third quartile (Lesson 10-4) The third quartile is the median of the data values greater than the median.
término Cada parte de un expresión algebraica separada por un signo más o un signo menos.
tercer cuartil El tercer cuartil es la mediana de los valores mayores que la mediana.
three-dimensional figure (Lesson 9-1) A figure with length, width, and height.
trapezoid (Lesson 8-3) A quadrilateral with one pair of parallel sides.
triangular prism (Lesson 9-3) A prism that has triangular bases.
figura tridimensional Una figura que tiene largo, ancho y alto.
trapecio Cuadrilátero con un único par de lados paralelos.
prisma triangular Prisma con bases triangulares.

U

unit price (Lesson 1-7) The cost per unit of an item.
unit rate (Lesson 1-7) A rate in which the first quantity is compared to 1 unit of the second quantity.
unit ratio (Lesson 1-6) A ratio in which the first quantity is compared to 1 unit of the second quantity.
precio unitario El costo por unidad de un artículo.
tasa unitaria Una tasa en la que la primera cantidad se compara con 1 unidad de la segunda cantidad.
razón unitaria Una relación en la que la primera cantidad se compara con 1 unidad de la segunda cantidad.

V

variable (Lesson 5-3) A symbol, usually a letter, used to represent a number.
volume (Lesson 9-1) The amount of space inside a three-dimensional figure. Volume is measured in cubic units.
variable Un símbolo, por lo general, una letra, que se usa para representar un número.
volumen Cantidad de espacio dentro de una figura tridimensional. El volumen se mide en unidades cúbicas.

X

x-axis (Lesson 1-3) The horizontal line of the two perpendicular number lines in a coordinate plane.
x-coordinate (Lesson 1-3) The first number of an ordered pair. The x-coordinate corresponds to a number on the x-axis.
eje x La recta horizontal de las dos rectas numéricas perpendiculares en un plano de coordenadas.
coordenada x El primer número de un par ordenado, el cual corresponde a un número en el eje x.
y-axis (Lesson 1-3) The vertical line of the two perpendicular number lines in a coordinate plane.
eje y La recta vertical de las dos rectas numéricas perpendiculares en un plano de coordenadas.
y-coordinate (Lesson 1-3) The second number of an coordenada y El segundo número de un par ordered pair. The y-coordinate corresponds to a number ordenado, el cual corresponde a un número en el eje y. on the y-axis.

Absolute value, 201-202, 209-211, 217, 245-250
Addition equations
solving, 344-346
writing, 341-342
Addition Property of
Equality, 353-354
Algebraic expressions, 277-284
evaluating, 287-290
writing, 277-278, 280-284
Annex zeros, 143-150
Area
of parallelograms, 436-438
of regular polygons, 463-464
of trapezoids, 451-458
of triangles, 444-446
on the coordinate plane, 470, 474

Associative Property, 315
Average, 549-550 (see also
mean)

B

Bar diagrams

to find percent of a number, 103, 106, 113-116
to find the whole, 121, 123-124
to model percents, 81-82
to represent rates, 57-58
to represent ratio relationships, 3-4, 6-8, 13
to solve equations, 341,353 , 359, 369
to solve rate problems, 67-68
to solve ratio problems, 65-66

Base

exponent, 261-263
of a parallelogram, 436
of a trapezoid, 454
of a triangle, 444
Benchmark percents, 113
Box plots, 563-565, 587-588

Cluster, 585
Coefficient, 278-279
Common factor, 295-296
Commutative Property, 315-317
Comparisons
of integers, 205-206
of rational numbers, 218-219
Composing figures, 453
Congruent figures, 444
Constant, 278-279
Conversion of units, 47-52
Coordinate plane, 23, 225-232,
469-472
drawing polygons on, 469
finding distance on, 245-250
graphing lines on, 415-416
graphing ordered pairs on, 231-232
graphing ratio relationships on, 23-25, 29-30
identifying axis, 226
identifying ordered pairs, 227-228
identifying points, 229-230 identifying quadrants, 225-226
reflecting points on, 237-240
Cubic units, 485
Customary Measurement
System, 47-52

Data, 537
Data displays, 539-540
Decimals
addition of, 143-144
as mixed numbers, 98
as percents and fractions, 93-98
division of, 149-150
multiplication of, 147-148
subtraction of, 143, 145-146

Decomposing figures, 451-452
Defining a variable, 280
Dependent variable, 397, 398
Distribution of data, 583
cluster, 585
gap, 585
outliers, 575-580
peak, 585
symmetric, 585
Distributive Property, 305-310,
316-317
Dividend, 135
Division
of decimals, 149-150
of fractions, 157-162, 167-172
of fractions by whole numbers, 177-180
of multi-digit numbers, 134-138

Division equations
solving, 371-372
writing, 369-370
Division Property of
Equality, 362
Divisor, 135
Dot plots, 543-544, 584
Double number lines, 18
to find percent of a number, 104, 106
to find the whole, 122-124
to solve rate problems, 67-68
to solve ratio problems, 18, 40-42

Equals sign, 335
Equation, 335
addition, 342-346
division, 369-372
graphing, 415-416
multiplication, 359-364
solving
by addition, 343-346
by division, 371-372
by multiplication, 361-364
by substitution, 336-337
by subtraction, 353-354
subtraction, 351-354
writing
addition, 342
division, 370
from a graph, 418-419
multiplication, 360
subtraction, 352
Equivalent expressions, 315-320
Equivalent rates, 67-68
Equivalent ratios,
and graphs, 23-25
and tables, 13-17
to find percent of a number,
104-108, 113-115
to find the whole, 123
to write decimals as percents, 98
to write fractions as
percents, 94-97
to write percents, 85-90
to write percents as fractions, 93-94
use scaling to find, 14-17
Evaluation of algebraic
expressions, 287-290
Exponents, 261-264

Expressions

algebraic, 277-284
factoring, 308-310
numerical, 269-271

Factoring

algebraic expressions, 310
greatest common factor, 308-310
numerical expressions, 309
First quartile, 561
Foldables ${ }^{\oplus}, 20,26,34,100,129$, 164, 174, 184, 187, 212, 222, 255, 326, 329, 348, 356, 366, 391, 402, 412, 420, 426, 429, 440, 448, $460,479,492,502,514,528,531$, 546, 566, 572, 590, 593

Formulas

area of parallelograms 436
area of trapezoids, 451-454
area of triangles, 444
volume of cube, 486
volume of right prism, 487
volume of rectangular prism, 487

Fractions

as percents and decimals, 93-98
dividing by whole numbers, 177-180
dividing whole numbers by, 157-162
division, 167-172

Gap, 585
Greatest common factor
(GCF), 295-297 and the Distributive Property, 308-310
Graphic Organizers, 73, 130, 188, 256, 330, 392, 430, 480, 532, 594
Graphing,
equations, 415-416
inequalities, 380-383
lines, 415-419
ordered pairs, 231-232
ratio relationships, 23-25, 29-30
rational numbers, 225-232
reflections of points, 237-240
Guess, check, and revise
strategy, 336
H

Height

of a parallelogram, 436
of a trapezoid, 454
of a triangle, 444
Histogram, 544-545, 585-586

Identity Property, 316
Independent variable, 397,
399-400
Inequalities, 377
graphing, 380-382
solving, 383-385
writing, 378-379
Integers
absolute value of, 201-202, 209-210
comparing, 205-206
graphing, 195-196
opposites of, 199-201
ordering, 207
representing, 193-194
Interquartile range (IQR), 561,
583
Inverse operations, 344
in solving, 351, 362, 369
Inverse Property of
Multiplication, 155

Lateral face, 517
Least common multiple
(LCM), 298-300
Like terms, 278-279, 321-323
combining, 321-323
Line plots. See dot plots

Mean, 549-550
Mean absolute deviation
(MAD), 569-572, 583
Measures of center, 549
Measures of variation, 561
Median, 553, 561
Missing data, 551
Missing dimensions
of parallelograms, 437 of rectangular prisms, 489-490
of trapezoids, 458
of triangles, 446
Mixed numbers
as percents, 97
division of, 181-182
Multi-digit numbers, 134-138
Multiple representations of
relationships, 423-425
Multiplication of decimals, 147-148
Multiplication equations solving, 361-364
writing, 359-360
Multiplication Property of
Equality, 371
Multiplicative inverse, 155

Negative integer, 193
Nets, 495
of rectangular prisms, 495-497
of square pyramids, 517-519
of triangular prisms, 505-507
of triangular pyramids, 519-521
Numerical expressions, 269-271
evaluating, 270, 271
writing, 271

Opposites, 199-201
Order of operations, 269-270
Ordered pair,
identifying, 227-232
writing equivalent ratios as, 23-26, 29-30

Origin, 23, 227-228
Outlier, 575-576
effect on data, 577-580

P

Parallelogram, 436
area of, 436-438
base of, 436
height of, 436
missing dimensions of, 438
Part-to-part ratio, 6, 8
Part-to-whole ratio, 6-7
Peak, 585
Percent, 79-82, 85-90
as decimals and fractions, 93-98
as mixed numbers, 97
benchmark, 113-116
estimating, 113-116
model, 79-82, 85-90
of a number, 103-108

Perimeter

on the coordinate plane, 470, 471-473

Positive integer, 193
Powers, 261-264
as products, 261-263
evaluating, 263-264

Prism, 485
nets of, 495-497, 505-507
rectangular, 485-494, 496-500
surface area of, 498-500, 508-512
triangular, 505-512
volume of, 486-490
Pyramid, 517
nets of, 518-521
regular, 517
square, 518-519, 522-524
surface area of, 522-526
triangular, 519-521, 525-526

Quadrants, 225-226
Quartiles, 561
Quotient, 135
interpretation of, 161-162, 169
R

Range, 561
interquartile, 561, 583
Rates, 57-58, 65-68
Ratios, 3-5
and bar diagrams, $3-4,6$, 13, 37
and double number lines, 18, 40
comparing ratio relationships, 29-32
equivalent (see equivalent ratios)
graphing ratio relationships, 23-25, 29-30
part-to-part ratio, 6, 8
part-to-whole ratio, 6-7
ratio relationships, 3-5, 29-32
to convert measurements, 47-52
unit ratio, 47
Ratio table, 14-17, 29-32, 104, 107-108, 122
Rational numbers, 215
absolute value of, 217
comparing, 218-219
graphing, 215-216
ordering, 220
Reciprocal, 155-156, 158-162

Rectangular prisms, 485
missing dimensions of, 489-490
nets of, 495-497
surface area of, 498-500
volume of, 486-490
Reflections on the coordinate plane, 237-240
Regular polygon, 463
Regular pyramid, 517

S

Scaling, 14-17, 104, 107-108, 122
Simplest form, 321-322
Slant height, 517
Solution, 335
Solve, 335
addition equations, 342-346
by guess and check, 336
by substitution, 336-337
division equations, 371-372
inequalities, 383-385
multiplication equations, 361-364
subtraction equations, 352-354
Square pyramids
nets of, 517-519
surface area of, 522-523
Statistical question, 537-538
Statistics, 537
Subtraction Property of
Equality, 344
Subtraction equations,
solving, 353-354
writing, 351-352
Surface area
of rectangular prisms, 498-500
of square pyramids, 522-524
of triangular prisms, 508-511
of triangular pyramids, 525-526
Symmetric distribution, 583

Tape diagrams. See bar diagrams

Terms of an algebraic
expression, 278, 279
Third quartile, 561
Three-dimensional figures, 485
Trapezoid
area of, 290, 451-458
base of, 454
height of, 454
missing dimensions of, 458
Triangle
area of, 444-446
base of, 444
height of, 444
missing dimensions of, 446
Triangular prisms
nets of, 505-507
surface area of, 508-512
Triangular pyramids
nets of, 519-521
surface area of, 525-526
U

Unit price, 60
Unit rate, 57-58

Unit ratio, 47
Units
conversion of, 47-52
y-axis, 23, 225
y-coordinate, 23, 225-228

Variables, 277-278, 280-284, 341-342

Variation, measures of, 561
Volume, 485
of cube, 486
of rectangular prisms, 486-490
of right prism, 487

Whole numbers, 135-138, 156-162, 177-180

x-axis, 23, 225
x-coordinate, 23, 225-228

Selected Answers

Lesson 1-1 Understand Ratios, Practice Pages 11-12

1. no; Sample answer: Suri's ratio is $6: 4$ and Martha's is $5: 3$. $\mathbf{3} .6$ cups $\mathbf{5} .10$ chocolate doughnuts 7.36 players 9.8 containers; Sample answer: She has 2 cups or 16 fluid ounces of liquid starch. She will make $16 \div 4$ or 4 batches of slime. Each batch makes 4×3 or 12 fluid ounces, so she will make a total of 48 fluid ounces of slime. If each container holds 6 fluid ounces, she needs $48 \div 6$ or 8 containers. 11. $4: 24$; Sample answer: If 4 students bike to school, then $28-4$ or 24 students do not bike to school. The ratio is $4: 24$. 13. $\frac{3.14}{1}$ or 3.14

Lesson 1-2 T ables of Equivalent Ratios, Practice Pages 21-22

1. 30 snow cones 3.83 skips 5 . 98 minutes
2. 25 pencils 9.20 biscuits 11. no; Sample answer: If 5 goats and 5 chickens are added, there would be 26 goats and 40 chickens on the farm, with a goat-to-chicken ratio of $13: 20$. The ratio of goats to chickens was originally $3: 5$, which is not equivalent to 13 : 20. 13. Sample answer: Seth's bouquet has 21 flowers with 15 roses. Keith's bouquet has 35 flowers with 25 roses. Are the ratios of roses to flowers the same? Yes, they both scale to 5 roses to 7 flowers.

Lesson 1-3 Graphs of Equivalent Ratios, Practice Pages 27-28

1. $(1,6),(2,12),(3,18),(4,24)$; Sample answer: The points appear to be in a straight line. Each point is 6 units up from and 1 unit to the right of the previous point. This means that the number of beach balls increases by 6 as the number of packages increases by 1 .

2. Sample answer: The ratio of photos to pages for Lexi's scrapbook is $4: 1$. The ratio of photos to pages for Audrey's scrapbook is $6: 1$. Audrey uses more photos per page than Lexi. 5. dimes to dollars; Sample answer: The ratio of dimes to dollars is $10: 1$ and the ratio of quarters to dollars is $4: 1$. Since 10 is greater than 4, the ratio of dimes to dollars will have a steeper line. 7 . yes; Sample answer: A bracelet could have a length of 10.5 inches and 42 beads.

Lesson 1-4 Compare Ratio Relationships, Practice Pages 35-36

1. Brand B; Sample answer: When all three ratio relationships are graphed on the same graph, the graph for $\mathrm{Brand} B$ is the steepest. This means that Brand B has the greatest ratio of raisins to ounces of cereal. 3. white bread 5. Miguel 7 . Sample answer: Three packages of hot dogs cost $\$ 9.50$. The relationship was displayed in words because it's easier and faster for people to understand while shopping.

Lesson 1-5 Solve Ratio Problems, Practice Pages 45-46

1. 640 students 3.15 baskets
2. 225 students 7.480 students
3. $\$ 1,015$ 11. false; Sample answer: For the ratios to be equivalent, they must be equivalent fractions. So, the numerator of the second fraction must also be greater than the denominator. Otherwise, the ratios are not equivalent. 13. 8 people; Sample answer: Using equivalent ratios, $\frac{20}{140}=\frac{?}{540}$. So, 72 people in a group of 504 , would play tennis. Using equivalent ratios, $\frac{1}{9}=\frac{?}{72}$. So, 8 people out of those 72 would have a tennis coach.

Lesson 1-6 Convert Customary Measurement Units, Practice Pages 55-56

1. 144 fluid ounces 3.12 cups $5.1 \quad \frac{1}{2}$ tons
2. 50 gallons 9.250 quarts 11. $\$ 15.75$
3. Sample answer: First, convert 20 miles to feet. There are $5,280 \times 20$ or 105,600 feet in 20 miles. Then convert one hour to seconds. There are 60×60 or 3,600 seconds in one hour. So, $\frac{105,600 \mathrm{ft}}{3,600 \mathrm{~s}} \approx \frac{29.3 \mathrm{ft}}{1 \mathrm{~s}}$ or about 29.3 feet per second. 15. Sample answer: I can use the equivalent ratios $\frac{1 \mathrm{~km}}{1,000 \mathrm{~m}}=\frac{2.2 \mathrm{~km}}{? \mathrm{~m}}$ to find that 2.2 kilometers is equal to 2,200 meters. I can then use the equivalent ratios $\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{2,200 \mathrm{~m}}{? \mathrm{~cm}}$ to convert meters to centimeters. So, 2.2 kilometers is equal to $100 \times 2,200$ or 220,000 centimeters.

Lesson 1-7 Understand Rates and Unit Rates, Practice Pages 63-64

1. 0.4 km per min 3.3 beats per second
2. 25 game tickets for $\$ 107$. 6-pack of Student Tickets 9. Party R Us; $\$ 0.25$ less
3. Sample answer: 1 bagel for $\$ 0.50$
4. 1 min; Sample answer: There are 60 minutes in 1 hour, so 1 mile per minute is equivalent to 60 miles per hour.

Lesson 1-8 Solve Rate Problems, Practice Pages 71-72

1. $\$ 9$ 3. $\$ 7.505 .390$ donuts $7 \quad .36$ minutes
2. yes; Sample answer: 2 hours $=120$ minutes; Billie bikes at the rate of $\frac{45 \mathrm{~min}}{9 \mathrm{mi}}$ or $\frac{5 \mathrm{~min}}{1 \mathrm{mi}}$ and $\frac{5 \mathrm{~min}}{1 \mathrm{mi}}=\frac{120 \mathrm{~min}}{24 \mathrm{mi}}$. 11.48 mandarin oranges

Module 1 Review Pages 75-76

1. 18 3. B 5.65 miles per hour; 3 questions for each lesson 7 . no; Sample answer: Since the rates do not have the same unit rate, they are not equivalent. 9.25 students
11a. rate of speed downstream $=15 \mathrm{mph}$; rate of speed upstream $=10 \mathrm{mph}$; The rate of speed downstream was faster than the rate of speed upstream. 11b. 5 miles per hour

Lesson 2-1 Understand Percents, Practice Pages 83-84

1. 60%
2.

5. 90%
7.

9. yes; Sample answer: Each section of the model represents 20%. The 3 sections not shaded represent the percentage of students who did not vote for the tiger. So, $20 \% \times 3=$ 60% and 60% is greater than 50%. 11. 20%; Sample answer: Each section represents 4\%. Since 5 sections are shaded, $5 \times 4 \%=20 \%$. 13. yes; Sample answer: To model 110%, use two bar diagrams each divided into 10 equal sections. Shade one bar diagram entirely to represent 100% and then shade the remaining 10% in the second bar diagram.

Lesson 2-2 Percents Greater Than 100% and Less Than 1\%, Practice Pages 91-92

1. 136% 3. 0.75%
2. 140\%

3. 0.0085 9. 30 mph 11. Sample answer: The student modeled 2%, not 0.2%. To model 0.2%, only $\frac{1}{5}$ of one square should be shaded.

Lesson 2-3 Relate Fractions,

 Decimals, and Percents, Practice Pages 101-1021. $\frac{9}{20}, 0.45$ 3. $\frac{4}{5}, 0.85 .175 \%, 1.75$
$\begin{array}{llll}\text { 7. } 89 \% & \frac{89}{100} & 9.65 \%, \frac{13}{20} & \text { 11. } \frac{3}{10} ; 0.3\end{array}$ $\begin{array}{lll}\text { 13. } 0.85 ; \frac{85}{100} ; \frac{17}{20} & \text { 15. } \frac{7}{10} & \text { 17. no; Sample }\end{array}$ answer: $0.22+0.24=0.46$ and $0.46=46 \%$. Since $46 \%<50 \%$, chocolate milk and lemonade did not receive more than 50% of the votes. 19. Sample answer: The percent will be less than 100% if the numerator is less than the denominator. The percent will equal 100% if the numerator and the denominator are equal. The percent will be greater than 100% if the numerator is greater than the denominator.

Lesson 2-4 Find the Percent of a Number, Practice Pages 111-112

1. 48 students 3.365 .87 . 66
2. 0.525 11. 0.913 .43 students 15. $\$ 103.08$
3. Sample answer: 40% can be represented as
$10 \%+10 \%+10 \%+10 \% .10 \%$ of 150 is 15 .
$15+15+15+15=60$, So, 40% of 150 is 60 .

Lesson 2-5 Estimate the Percent of a

 Number, Practice Pages 119-1201. Sample answer: $30 ; 50 \%$ of $60=30$
2. Sample answer: $80 ; 40 \%$ of $200=80$
3. Sample answer: $20 ; 20 \%$ of $100=20$
4. Sample answer: about $\$ 10 ; 25 \%$ of $40=10$
5. Sample answer: about 225 customers; 75% of $300=225$ 11. Sample answer: about 125 students; 25% of $500=125$ 13. about $\$ 55$ 15. about 14,250 people 17 . Sample answer: First, round 39% to 40% and $\$ 197$ to $\$ 200$. Next, find 10% of $\$ 200$, which is $\$ 20$. Last multiply $\$ 20$ by 4 to find 40% of 200 , or $\$ 80$.

Lesson 2-6 Find the Whole, Practice Pages 127-128

1. 25 members $\mathbf{3}$. $\$ 255.400$ pictures
2. 500 minutes 9.300 lunches; $\$ 1,050$
3. no; Sample answer: A percent compares the part to the whole. In this case, the only known value is the part. To compare percents, the whole, the total number of sixth grade students and the total number of seventh grade students, must be known. 13. Sample answer: James's soccer team won 68% of the games they played. If they won 17 games, how many did they play? 25 games

Module 2 Review Pages 129-130

1. B 3. 110% 5. $28 \% ; \quad \frac{28}{100}, \frac{14}{50} \cdot \frac{7}{25}$
2. 80 shots 9.27 students 11a. 1,500 items 11b. \$16,425

Lesson 3-1 Divide Multi-Digit Whole

 Numbers, Practice Pages 141-1421. 3,472 3. 36 5. 222.257 . 28.125
2. 36.10625 11. 13413.24 bags 15. 1,020
3. Sample answer: Check your answer by multiplying the quotient by the divisor Compare this answer to the dividend. They should be equal.

Lesson 3-2 Compute With Multi-Digit Decimals, Practice Pages 153-154

1. 49.892 3. 80.027 5. $0.0317 \quad .2,042.125$
2. 8.52 mi 11. $\$ 1.51$ 13. Sample answer: Since the decimal 0.95 is less than 1 , the product of 5.5×0.95 must be less than 5.5×1 or 5.5 .
3. Sample answer: If you add the whole numbers, the sum is 40 . The sum of the decimals will be added to 40 which will make the sum greater than 40 .

Lesson 3-3 Divide Whole Numbers by Fractions, Practice Pages 165-166

1. $23 . \frac{1}{8}$
2. $\frac{10}{7}$
3. $109.11 \frac{1}{5}$; Marie can make $11 \frac{1}{5}$ scarves or 11 whole scarves.
4. 27 13. $\frac{1}{3}$ cup 15. yes; Sample answer: $20 \div \frac{1}{3}=\frac{20}{1} \times \frac{3}{1}$ or 60 , which is greater than 55 , so Zach will have enough sandwich pieces. 17. 4; Sample answer: The reciprocal of 4 is $\frac{1}{4}$, which is equal to 0.25 , and $0.2<0.25<0.3$.

Lesson 3-4 Divide Fractions by

 Fractions, Practice Pages 275-2761. 2 3. 65 . $\frac{7}{8} \div \frac{1}{4}=3 \frac{1}{2}$; Chelsea can make 3 batches of icing. 7 . $2 \frac{2}{5} \quad 9.1$ more bookmark 11. yes; Sample answer: $\frac{9}{10} \div \frac{1}{3}=$ $\frac{9}{10} \times \frac{3}{1}=\frac{27}{10}=2 \frac{7}{10}$. He only needs 2 flags. So, he has enough. 13. Sample answer: $\frac{7}{8} \div \frac{7}{8}=$ $\frac{7}{8} \times \frac{8}{7}=\frac{56}{56}=1$

Lesson 3-5 Divide with Whole

 and Mixed Numbers, Practice Pages 285-286$\begin{array}{lllll}\text { 1. } \frac{1}{2} \div 6=\frac{1}{12}: \frac{1}{12}-\operatorname{yd} 3 . & \frac{7}{10} & \text { 5. } \frac{7}{9} & \text { 7. } \frac{9}{4} \text { or } 2 \frac{1}{4}\end{array}$ 9. 3 pairs $11.6 \frac{1}{4}$ times greater 13. Sample answer: A bag contains $22 \frac{1}{2}$ cups of flour.
A recipe for pancakes uses $1 \frac{1}{4}$ cups of flour. How many batches of pancakes can be made with one bag of flour? 18 batches
15. less than; Sample answer: $\frac{9}{10} \div 3$ is divided into more parts than $\frac{9}{10} \div 2$. Since it is divided into more parts, each part represents a lesser amount. So, $\frac{9}{10} \div 2>\frac{9}{10} \div 3$.

Module 3 Review Pages 289-290

1. 139.5 acres; Divide 8,370 by 60 to find that each farm is 139.5 acres. 3. 0.032 5. D
7a. 3 7b. $\frac{3}{5} \quad$ 9. $\frac{8}{9} \quad$ 11a. $\frac{3}{5} \div 6$ 11b. $\frac{3}{5} \div 6=$ $\frac{3}{5} \times \frac{1}{6}=\frac{3}{30}$, or $\frac{1}{10}$ pound 13.2 $\frac{2}{3}$

Lesson 4-1 Represent Integers, Practice Pages 297-298

1. -2 ; The integer 0 represents no ounces gained or lost. 3. -15 ; The integer 0 represents no money withdrawn or deposited.
2. 3; The integer 0 represents average snowfall.

3.

11.

13.

15. Beaker B; Sample answer: Beaker B is 2 units away from 0 on the number line, while Beaker A is 4 units from 0 on the number line. $4>2$.

17. Sample answer: Graph 1 and -3 on a number line. Then count the units between each integer and zero. There is 1 unit between 0 and 1 . There are 3 units between 0 and -3 . So, 1 unit +3 units $=4$ units. 19. Sample answer: Riley lost 10 points playing a trivia game; - 10 .

Lesson 4-2 Opposites and Absolute Value, Practice Pages 203-204

1. 3 3. -6 5. -5 ; Sample answer: This is the opposite of the height of the hill. 7.11 9. -1 11. 10013.5 degrees 15 . Southern Moon; Sample answer: I found the absolute value of each minimum elevation and added the maximum elevation for each trail. The change in elevation for Southern Moon is $62+48$, or 110 , which is the least change of the three trails. 17 . false; Sample answer: Absolute value is a measure of distance and distance can never be negative. 19. no; Sample answer: If x is a positive integer such as 1 , then the result is -1 . If x is a negative integer such as -1 , then the result is 1 .

Lesson 4-3 Compare and Order

 Integers, Practice Pages 213-2141. $-4<-1$; Since $-4<-1$, John has a lesser score than Terry. 3. ethane, helium, oxygen, carbon monoxide, argon, sulfur dioxide 5. Sample answer: An elevation less than 5 feet is -10 feet. This means the distance is 10 feet from sea level, which is greater than a distance of 5 feet from sea level. 7 . Neil, Dawson, Felipe, Jesse 9. Morocco and Argentina 11. Sample answer: On Saturday the high temperature was $-1^{\circ} \mathrm{F}$. On Sunday the high temperature was $-3^{\circ} \mathrm{F} ;-1>-3$ 13. -3 , $-2.5,-1,0.66,4,5,23$

Lesson 4-4 Rational Numbers,

 Practice Pages 223-2241.

3. $124.15 .<7$. $=9 .-4 \frac{7}{10},-4.25,-4 \frac{3}{20}$ 11. $-3.2,-2 \frac{1}{5} \cdot 5^{2}-1.43$ 13. Race 4 and Race 1
15. Sample answer: Ming's account balance is $-\$ 10.50$. Her brother's account balance is $-\$ 15.50$. Compare their balances; $-\$ 10.50>$ -\$15.50 17 . always; Sample answer: The
lesser the number, the closer it is to 0 ; therefore, it's opposite is also closer to $0 . x=-3, y=-2$

Lesson 4-5 The Coordinate Plane, Practice Pages 235-236

1. Quadrant III 3. Quadrant I 5. x-axis
2. $(-1.5,1)$
3. $(-1,-1.5)$
4. X
5.

15. $\left(-\frac{1}{4}-1 \frac{11}{4}\right) \quad$ 17. m is a negative number; n is a positive number 19. Sample answer: The student did not consider that b is positive, and therefore would be in either Quadrant I or II. The correct answer is Quadrant II.

Lesson 4-6 Graph Reflections of

 Points, Practice Pages 243-2441. $\left(-2 \frac{3}{4},-1\right)$
2. $\left(-4,2 \frac{1}{2}\right)$
3. $(-3.5,3.5)$
4. y-axis
5.

11. (4.5, -4.5) 13. Sample answer: The student wrote the ordered pair for a reflection across the y-axis, not the x-axis. The correct ordered pair for point Y^{\prime} is (1.5, 2). 15. Sample answer: $A(-1,-1) ; A^{\prime}(1,-1)$

Lesson 4-7 Absolute Value and

Distance, Practice Pages 253-254

9. D 11. Amber 13. Sample answer: The student did not use the scale on the y-axis. The scale is 0.5 unit. So, the actual distance is 1.5 units. 15. Sample answer: Distance cannot be negative. You have to find the absolute value of each coordinate.

Module 4 Review Pages 257-258

1a. -5 ; Because the situation represents a loss, the integer is negative. $\mathbf{1 b}$. Zero represents no money gained or lost. 3. 14 5. acetylene and ammonia 7.12°
9.

	x-axis	y-axis
$(-4,0)$	x	
$(0,9)$		x
$(0,-6)$		x

11a. $S^{\prime \prime}\left(-2 \frac{1}{2}, 5\right)$
11b.

Selected Answers

Lesson 5-1 Powers and Exponents, Practice Pages 267-268
$\begin{array}{lll}\text { 1. } 4^{33} \text { 3. } 155.4 & \left(\frac{1}{3}\right)^{7} & \text { 7. } 3,125 \\ 9.10,000\end{array}$
$\begin{array}{ll}\text { 11. } \frac{8}{125} & \text { 13. } 3.37515 .0 .06417 \quad .7^{4}, 2,401\end{array}$
19. 1,024 cells 21. Sample answer: The student used the exponent as the base. The base should be 2 and the exponent is 3 . The power evaluated should be $2 \times 2 \times 2=8$. 23. Sample answer: Exponential form is repeated multiplication of a common factor.

Lesson 5-2 Numerical Expressions, Practice Pages 275-276

1.73.465.237 . 436 9. $\frac{3}{5}$ or 0.6
11. Sample expression: $(6 \times 1.49)+\left(2^{2}\right)+$ (3×3.50); \$23.44 13. 8(1.25 + 0.85); $8(1.25)+8(0.85)$ 15. 294 muffins 17 . Sample answer: The student did not follow the order of operations. The student added first before dividing. The division should have been performed first. $42+6 \div 2=42+3$ or 45
19. Sample answer: Frankie and his two sisters each order a hamburger, a fruit cup, and a bottled water for lunch. A hamburger costs $\$ 3$, a fruit cup costs $\$ 0.75$, and a bottled water costs \$1.25.; $3^{2}+(3 \times 0.75)+(3 \times 1.25) ; \$ 15$

Lesson 5-3 Write Algebraic Expressions, Practice Pages 285-286

1. terms: $4 e, 7 e, 5,2 e$; like terms: $4 e, 7 e, 2 e$; coefficients: 4, 7, 2; constant: 5 3. terms: $4,4 y, y, 3$; like terms: $4 y, y, 4,3$; coefficients: 4, 1; constants: 4, 3 5. Sample answer: Let q represent the number of questions on the first test; $q-127$. Sample answer: Let y represent the number of yards; $\frac{1}{3} y 9$. Sample answer: Let c represent the cost of a pizza; $\frac{1}{4} c+2.5$
2. Sample answer: Let c represent the number of classes; $35+20$ c 13. Sample answer:

Let ℓ represent the length of one of the equal sides; $\ell+\ell+1.5 \ell$ 15. Sample answer: $2 x+8$ $+x+6$; like terms: $2 x, x ; 8,6$; coefficients: 2,1 ; constants: 8, $617.8+0.25 c$

Lesson 5-4 Evaluate Algebraic Expressions, Practice Pages 293-294

1. 6 3. 4 5. $\quad \frac{26}{5}$ or $5 \frac{1}{5} \quad$ 7.29.2 11. $24.2 \mathrm{ft}_{2}^{2}$
2. 13 15. \$80 17 . Sample answer: The student replaced the variables with the incorrect values. The correct value should be $4(2)+3$, or 11. 19. Sample answer: If $a=2$, then $a+10=12 ;(15+5)-8=12$

Lesson 5-5 Factors and Multiples, Practice Pages 303-304

1. 6 3. $95.147 \quad .20$ visits 9.12
2. 5 flowers 13. \$65 15. Sample answer: The bottom row of the factor trees may not show the factors listed in order from least to greatest. I can use the Commutative Property to write the factors in order from least to greatest. 17. false; Sample answer: 25 and $50 ; 50$ is a multiple of 25 , 50 is the LCM, and 50 is the greater numberthe LCM is the greater of the two numbers.

Lesson 5-6 Use the Distributive

 Property, Practice Pages 313-3141. $3 x+243.27+9 \times 5.407 \quad .16(1+3)$
2. $13(2+3)$ 11. $6(4+x) 13.5 x+120$
3. $\$ 5.4017$. Sample answer: $8\left(4 \frac{3}{4}\right)=$ $8\left(4+\frac{3}{4}\right) \quad$ 19. no; Sample answer: The Distributive Property combines addition and multiplication. The expression $2(6 x)$ is one term with three factors and does not contain addition. $2(6 x)$ is equal to $12 x$.

Lesson 5-7 Equivalent Algebraic Expressions, Practice Pages 327-328

1. equivalent 3. not equivalent 5. $8 x+3$
2. $4 x^{2}+7 x+10$ 9. $10 x+8$ 11. $76.4 x+8$
3. Sample answer: $2 y^{2}+y^{2}+y+y+\frac{1}{2}$
4. Sample answer: $3 x+0$ and $3 x$

Module Review Pages 331-332

1. $5 \times 5 \times 5$; 125 3a. $(2 \times 0.75)+(5 \times 1.79)+$ (3×3) 3b. 19.45 5. terms: $8 p, 6 q, 5,9 q, 12 p$; like terms: $8 p$ and $12 p, 6 q$ and $9 q$; coefficients: 8, 6, 9, 12; constant: 57 . C 9. C
2.

	Equivalent	Not Equivalent
$5 x+2$ and $4 x+1+x+2$		x
$(8 y+4 x+4 y+5)$ and $4(3 y+x)+5$	x	
$y^{2}+4 y+5+3 y$ and $y^{2}+y+5$	x	

Lesson 6-1 Use Substitution to Solve

 One-Step Equations, Practice Pages 339-3401. 63.235 .47 . 229.8 headbands
2. 7 batches 13. Sample answer: Jack had $\$ 7.50$. His mother gave him his allowance at the end of the week. Now Jack has $\$ 16$. Solve the equation $7.5+x=16$ to find how much money his mother gave him. 15. Sample answer: $x+1$ is an algebraic expression and is not equal to a specific value. So, there are no restrictions placed on the value of $x \cdot x+1=2$ is an algebraic equation. Each side of an algebraic equation must be equal, so x can only be equal to one value. In this case, $x=1$.

Lesson 6-2 One-Step Addition
 Equations, Practice Pages 349-350

1. Sample answer: $320+c=647.5$
2. Sample answer: $m+19.5=38.25$
3. 67 . $3 \frac{1}{2} \quad 9.13 .25$ 11. Sample equation:
$8.99+2(5.75)+2(1.15)+3.45+x=35 ; \$ 8.76$
4. The value of b must be decreased by 1 .
5. 4, 5, 6

Lesson 6-3 One-Step Subtraction Equations, Practice Pages 357-358

1. Sample answer: c-17 = 64 3. Sample answer: $f-1 \frac{1}{4}=1 \frac{1}{2} \quad 5.297 \cdot 10 \frac{8}{9} \quad 9.72 .35$
2. $\$ 667.92$ 13. yes; Sample answer: Solve the equation $x-7=18$ to find the height of Devon's rocket. Devon's rocket reached a height of $18+7$ or 25 yards. Since $25>23$, Devon's rocket reached a height greater than 23 yards 15a. Sample answer: ठday's high temperature is $64^{\circ} \mathrm{F}$. This is $9^{\circ} \mathrm{F}$ less than yesterday's high temperature. What was yesterday's high temperature? 15b. $x-9=64$ 15c. $73^{\circ} \mathrm{F}$

Lesson 6-4 One-Step Multiplication Equations, Practice Pages 367-368

1. Sample answer: $46.75 p=374$
2. Sample answer: $2.6 t=18.25 .27 \quad . \frac{8}{9}$
3. 6.58 11. caramel popcorn; 38 Calories
4. no; Sample answer: Solve the equation $52.5 x=367.50$ to find the number of weeks she needs to save. She needs to save for 7 weeks. Since $7>6$, she will not have enough money in 6 weeks. 15. yes; Sample answer: If you solve each equation you get a value of $x=\frac{1}{9}$. If you replace x with ${ }_{9}^{1}$ for each equation it makes the equation true. So, $\frac{1}{3}=3 \times \frac{1}{9}$ or $\frac{1}{3}$ and $\frac{1}{3} \div \frac{1}{9}=3$.

Lesson 6-5 One-Step Division Equations, Practice Pages 375-376

1. Sample answer: $c \div 284.5=6$ 3. Sample answer: $d \div 5.25=35.487 \quad . \frac{8}{3}$ or $2 \frac{2}{3}$ 9. 48.852 11. cheese crackers: 112.5 oz ; pretzels: $227.5 \mathrm{oz} ; 115 \mathrm{oz}$
2. 200 miles; Sample answer: Write and solve the division equation $\frac{m}{5}=40 ; 5 \times 40$ is 200 . So, $m=200$ miles. 15. 186 in.; Sample answer: The length of the actual car c divided by 24 , the scale, equals the length of the model car: $\frac{c}{24}=7.75$; So, $c=186 \mathrm{in}$.

Lesson 6-6 Inequalities, Practice
Pages 489-490

1. $a \geq 75$
2.

5.

7. 4, 5 9. $\frac{1}{4}, \frac{1}{3}$ 11. Jessica can buy no more than 6 tickets. 13. China, Maria; $8.25 h \geq 74.50$ 15. Sample answer: More than 2,500 people attended the game; $x>2,500$ 17a. 4 17b. 12 17c. 6

Module 6 Review Pages 493-494

1. D 3. $m+225=478.50 ; 225+m=478.50$
2. $c-6.50=12.997$. В 9. $\quad \frac{y}{11}(11)=28(11)$; $y=308$
3.

13. 13 teammates; 12 teammates

Lesson 7-1 Relationships Between Two Variables, Practice Pages 403-404
1.

Input, Cost of Pizza (\$), p	Rule $p+3.50$	Output, Total Cost (\$), c
9.75	$9.75+3.50$	13.25
12.00	$12.00+3.50$	15.50
14.50	$14.50+3.50$	18.00

3.

Input, Cost of Sundae (\$), s	Rule $s-0.75$	Output, Total Cost (\$), c
2.79	$2.79-0.75$	2.04
3.55	$3.55-0.75$	2.80
4.25	$4.25-0.75$	3.50

5.

Input, Number of Pies, p	Rule $9.50 p$	Output, Total Cost (\$), c
2	$9.50(2)$	19.00
3	$9.50(3)$	28.50
5	$9.50(5)$	47.50

7.

Original Price $(\$), p$	Rule, $p-15$	Total Cost $(\$), c$
65	$65-15$	50
73	$73-15$	58
79	$79-15$	64

She could buy the pair that originally cost $\$ 65$ or the pair that originally cost $\$ 73$.
9.

Input, x	Rule, $2 x-2.5$	Output, y
5	$2(5)-2.5$	7.5
6.5	$2(6.5)-2.5$	10.5
8	$2(8)-2.5$	13.5

11. $\$ 14.25$; Sample answer: In the equation $c=2.75 p+1.5 d$, replace p with 3 and d with 4 and then simplify. $c=2.75 \times 3+1.5 \times 4$ or 14.25.

Lesson 7-2 Write Equations to

 Represent Relationships Represented in Tables, Practice Pages 413-4141. $c=7 t$ 3. $c=4 g+25 . c=15 m+10$
2. $y=\frac{1}{3} x+3$ 9. Sample answer: The student switched the coefficient and the constant. The coefficient is 12 and the constant is 20 . The equation should be $c=12 h+20$.

Lesson 7-3 Graphs of Relationships, Practice Pages 421-422
1.

3. $c=4 d+85.2$ more hours 7 . Sample answer: The student switched the coefficient and constant. The correct equation is $s=5 w+10.9$. Sample answer: a straight line through the origin; $(0,0),(2,1),(4,2)$

Lesson 7-4 Multiple Representations, Practice Pages 427-428

1a. $c=8 t+2.5$
1b.

Number of Tickets, t	Total Cost $(\$), c$
1	10.50
2	18.50
3	26.50
4	34.50

1c.

3. $e=6 p$ 5. $p=5 b+5$; 55 points
7. no; Sample answer: The graphs of the lines will never meet other than at zero hours.

Module 7 Review Pages 431-432

1. 5.1 3. $c=6 b$ 5. $\$ 61$

7a.

Number of Packages, p	Number of Biscuits, b
0	0
1	8
2	16
3	24

7b.
Biscuit Packages

9a. $t=10 \mathrm{~s}$;

Number of Subscriptions, s	Total Earnings, t
1	10
2	20
3	30

9b.

Lesson 8-1 Area of Parallelograms, Practice Pages 441-442

1. $50.02 \mathrm{in}^{2} 3 . b=7 \mathrm{~m} 5.13 .6$ in $7{ }^{2} \quad .41$ tiles
2. $480 \mathrm{~mm}^{2} 11$. Sample answer: Because the area of a parallelogram is found by multiplying the base and height, the area of each of the three parallelograms would be 20 square units, because $5 \times 4=20$.

Lesson 8-2 Area of T riangles, Practice Pages 449-450

1. $15 \mathrm{yd}^{23}$. $11 \mathrm{ft}_{\frac{5}{8}}^{\frac{3}{8}} b^{2}=9 \mathrm{~km} 7$
$.144 .5 \mathrm{~cm}^{2}$
2. $\$ 13.58$ 11. Sample answer: The formula for the area of a triangle is $A=\frac{1}{2} b h$, not $b h$. $\frac{1}{2}(17) h=68 ; h=8 \mathrm{~m}$ 13. no; Sample answer: The area of her lawn is 125 febecause the area of a triangle is $A=\frac{1}{2} b h$. So, $\frac{1}{2}(25 \times 10)=125$.

Lesson 8-3 Area of T rapezoids,

 Practice Pages 461-4621. $105 \mathrm{~cm}^{2} 3.36$ in $5 .{ }^{2} 155,000 \mathrm{~km} 7 \quad 2 \quad .4 \mathrm{in}$.
2. The cost of the patio is $\$ 1,443.75$. Since this is less than $\$ 1,500$, Greta has budgeted enough money. 11. Start with the area formula: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$. Multiply each side by 2 :
$2 A=h\left(b_{1}+b\right)$. Multiply each side by $\frac{1}{h}$:
$\frac{2 A}{h}=b_{1}+b_{2}$ Subtract b_{1} from each side:
$\frac{2 A}{h}-b_{1}=b_{2}$, or $b_{2}=\frac{2 A}{h}-b_{1} .13 .4 \mathrm{~cm}$ and 12 cm

Lesson 8-4 Area of Regular Polygons, Practice Pages 467-468

1. $31.82 \mathrm{in}^{2} 3.281 .92 \mathrm{~cm} \mathrm{5}.{ }^{2} \$ 120.03$
2. $473.2 \mathrm{~cm}^{2} 9.492$ in ; the base length of each triangle is $80 \div 10$ or 8 in . So, $10\left(\frac{1}{2} \times 8 \times 12.3\right)=492$.

Lesson 8-5 Polygons on the Coordinate Plane, Practice Pages 477-478

1. 38 units 3.22 units 5.9 square units
2. Space A; The monthly rental price of Space A is $\$ 4,720$. The monthly rental price of Space B is $\$ 4,756$. $\$ 4,720$ is less than $\$ 4,756$. 9. Sample answer: $(3,4)$ and $(3,7) \mathbf{1 1}$. Sample answer: The student subtracted $10-7$ and $7-2$ to find lengths 3 and 5 . The student should have subtracted $7-1$ and $10-2$ to find lengths 6 and 8 . The perimeter is 28 units.

Module 8 Review Pages 481-482

1. $12 \mathrm{~cm}^{2} 3.45$ in $5 .{ }^{2} 7$ 7a. Sample answer: I would decompose the hexagon into two trapezoids. 7b. $261 \mathrm{~cm} \mathrm{9.2} 26$

Lesson 9-1 Volume of Rectangular

 Prisms, Practice Pages 493-4941. $15 \mathrm{ft}^{3} 3.4 \mathrm{~m} 5.6 \mathrm{ft} 7 \quad$. medium dumpster
2. Sample answer: The classmate switched the volume measurement and h in the formula. The correct value for the height is 0.5 centimeter.
3. $90 \mathrm{in}^{3}$; Sample answer: The volume of the pan is $9 \times 5 \times 3$ or 135 cubic inches. Multiply that by two-thirds to find the volume that is filled with batter. $134 \times \frac{2}{3}=90$.

Lesson 9-2 Surface Area of Rectangular Prisms, Practice Pages 503-504
1.

3. $1,120 \mathrm{~cm}^{2} 5$. Sample answer: Let $\ell=$ length, $w=$ width, and $h=$ height; S.A. $=2 \ell w+$ $2 \ell h+2 w h 7$. Block A: 94 in $^{2} ; 60$ in 3; Block B: $104 \mathrm{in}^{2} ; 60 \mathrm{in}^{3}$, Block B has a greater surface area. No, the volumes of Blocks A and B are the same.

Lesson 9-3 Surface Area of T riangular Prisms, Practice Pages 515-516
1.

3. $811.2 \mathrm{~m}^{2} 5 . \$ 106.797 \quad .75 \mathrm{ft}^{2}$

Lesson 9-4 Surface Area of Pyramids, Practice Pages 529-530
1.

3. $56 \mathrm{ft}^{2} 5 . \$ 1.767 \quad .11 .5 \mathrm{yd} 9.8 .7 \mathrm{ft}$

Module 9 Review Pages 533-534

1. D 3. 8 cm 5 . The net will be made up of 6 parts, representing the top, bottom, front, back, and both sides of the rectangular prism; Two parts of the net will have dimensions 4 in. by 11 in.; Two parts of the net will have dimensions 4 in. by 9 in. 7 . B

Lesson 10-1 Statistical Questions, Practice Pages 541-542

1. not a statistical question 3 . statistical question
2.

Number of Siblings	Number of Responses
$0-1$	10
$2-3$	7
$4-5$	2
6 or more	1

Sample answer: Half of the students have 0 or 1 siblings.
7.

Number of Sports	Number of Responses
1	4
2	7
3	2
4	1

Sample answer: Half of the students that responded play 2 sports. 9. Sample answers: How many smartphones does a typical family own?; In what year was the cell phone invented?; The first question is a statistical question because it anticipates a variety of responses. The second question is not a statistical question because it does not anticipate a variety of responses. 11. yes; Sample answer: Of the 10 families, 3 own one tablet and 4 own two tablets. Since $3+4$ is 7 and 7 is close to 10 , this is a reasonable conclusion.

Lesson 10-2 Dot Plots and Histograms,

 Practice Pages 567-5681.

Sample answer: Of the 12 players on Chris's team, some played in as few as 0 and as many as 6 tournaments. Most players played in 1 or fewer tournaments.
3.

Hours Spent Volunteering

Number of Hours
5. 3 video games 7 . Sample answer: Most students have 3 or fewer siblings. The most common number of siblings is 2 or 3. 9. false; Sample answer: Dot plots display individual data values. Histograms display data by equal intervals, not individual data values.

Lesson 10-3 Measures of Center, Practice Pages 559-560

1. 58 cans 3. $\$ 1955.23$ E-mails
2. 53 points 9. the mean; Sample answer: The mean of the data is 31 minutes and the median is 25.5 minutes. Since Kenny wants to use a measure that represents a greater number of minutes spent practicing, he should choose the greater of the two measures, the mean.
3. Sample answer: Shoe sizes of the Holden family: 8, 10, 7, 9, and 6. 13. Sample answer: The student found the median of the data set. The mean of data set is 18 texts.

Lesson 10-4 Interquartile Range and Box Plots, Practice Pages 567-568

1. The data vary by a range of 32 apps. The middle half of the data values vary by 4 apps . 3. Sample answer: The ages range from about 36 years to about 71 years. The middle half of the data range from about 50 years to about 60 years. Because the boxes are shorter than the whiskers, there is less variation among the middle half of the data. Having less variation means there is a greater consistency among the middle 50% of the data than in either whisker.
2. The data vary by a range of $\$ 14$. The middle half of the data values vary by \$6.7.false; Sample answer: A box plot does not show individual data values so you cannot find the mean of the data from a box plot alone. 9. no; Sample answer: Each section of the box plot represents 25% of the total values. This means that each whisker and each box represents the same amount of data values. The length of each section depends on the spread of the data.

Lesson 10-5 Mean Absolute Deviation, Practice Pages 573-574

1. 5; Sample answer: The average distance for each value from the mean is 5 days.
2. Bears: 1.84; Saints: 1.44; Sample answer: The mean absolute deviation of the number of wins is greater for the Bears than for the Saints. The data values for the Saints are closer to the mean. 5. 11.67 Calories $7 \quad .4 .5$ miles per gallon; 7 data values 9 . Sample answer: The term absolute refers to the absolute value of a number, which is the distance a number is from 0 on a number line and distance is always positive. To deviate means to vary or change. So, the mean absolute deviation of a data set is the average (mean) distance from each data value to the mean, which is a description of how the data values deviate or vary from the mean.

Lesson 10-6 Outliers, Practice Pages 581-582

1. 60 minutes 3.4 boxes and 56 boxes are both outliers 5 . mean with outlier: ≈ 47.6, mean without outlier: ≈ 44.2; median with outlier: 45 , median without outlier: 44.5 ; The median best describes the center7 . mean with outlier: ≈ 21.8, mean without outlier: ≈ 1; median with outlier: 19, median without outlier: 18; The median best describes the center because the mean was affected the most by the outlier 9. Sample answer: age, in years, of people attending a picnic: $4,32,34,40,45$, and 72 11. Sample answer: An outlier may make the mean significantly greater or less than the mean would be without the outlier

Lesson 10-7 Interpret Graphical Displays, Practice Pages 591-592

1. median and interquartile range; The median is 2 . This means the data are centered on 2 televisions. The spread of the data around the center is 2 televisions. 3. Sample answer: The shape of the distribution is symmetric. There is a peak from 10-14 dollars. There are no gaps, clusters, or outliers. 5. D 7 . no; Sample answer: There were 6 pumpkins that weighed 20 pounds or more, out of 40 total pumpkins picked. $\frac{6}{40}=15 \%$, which is less than 25%, so the student was not correct. 9. no; Sample answer: There are a total of 13 roller coasters. There are 6 roller coasters that have speeds 70 mph or greater. ${ }_{13}^{6}$ is about 46.2%. 46.2% is less than 50%. 11. mean; mean absolute deviation.

Module 10 Review Pages 595-596

1. How many televisions does the typical family own?; How many states has the average student visited?; How many students are in the average sixth grade class? 3. 41.6 inches; 34.1 inches.
2.

	Correct	Incorrect
Lower Extreme $=24$		X
Median $=39$	X	
$\mathrm{Q}_{1}=33$	X	
$\mathrm{Q}_{3}=44$		X
Upper Extreme $=58$	X	

7. 10 feet; 70 feet

Reveal MATH

Course 1

CONTENTS

VOLUME 1

MODULE 1 RATIOS AND RATES
MODULE 2 FRACTIONS, DECIMALS, AND PERCENTS
MODULE 3 COMPUTE WITH MULTI-DIGIT NUMBERS AND FRACTIONS
MODULE 4 INTEGERS, RATIONAL NUMBERS, AND THE COORDINATE PLANE

VOLUME 2
MODULE 5 NUMERICAL AND ALGEBRAIC EXPRESSIONS
MODULE 6 EQUATIONS AND INEQUALITIES
MODULE 7 RELATIONSHIPS BETWEEN TWO VARIABLES
MODULE 8 AREA
MODULE 9 VOLUME AND SURFACE AREA
MODULE 10 STATISTICAL MEASURES AND DISPLAYS

[^0]: Go Online Y ou can complete an Extra Example online.

[^1]: B Go Online Y ou can complete an Extra Example online.

[^2]: Go Online Y ou can complete an Extra Example online.

[^3]: B Go Online Y ou can complete an Extra Example online.

[^4]: (11)
 Foldables Cut out the Foldable and tape it to the Module Review at the end of the

[^5]: Go Online Y ou can complete an Extra Example online.

[^6]: Number of Subscriptions

